
TOWARD GENERATING COMMIT MESSAGES FOR SOFTWARE

REPOSITORIES

by

Casey Casalnuovo

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Honors Bachelor of Science in Computer
Science with Distinction

Spring 2013

c� 2013 Casey Casalnuovo
All Rights Reserved



TOWARD GENERATING COMMIT MESSAGES FOR SOFTWARE

REPOSITORIES

by

Casey Casalnuovo

Approved:
Lori Pollock, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Vijay Shanker, Ph.D.
Committee member from the Department of Computer Science

Approved:
James Glancey, Ph.D.
Committee member from the Board of Senior Thesis Readers

Approved:
Michael Arnold, Ph.D.
Director, University Honors Program



ACKNOWLEDGMENTS

First and foremost, I’d like to thank my Senior Thesis Advisor, Lori Pollock,

for helping me through the research process and for all her assistance in writing my

Thesis. I’d also like to thank my second and third readers, Vijay Shanker and James

Glancey. Secondly, for assisting me with getting in contact with survey respondents

and in improving the survey’s content, I’d like to thank Je↵ Carver, Nick Lacock, and

Terry Harvey. I’d also like to thank both the University of Delaware students and

developers who took the time to complete the survey. Finally, I’d like to thank my

parents for their continuing support while I worked on completing my research and

writing my thesis.

iii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Importance of Documentation and its Automatic Generation . . . . . 1
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Software Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Commit Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Alternatives to Commit Messages . . . . . . . . . . . . . . . . 6

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 STATE OF THE ART . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 File and Version Di↵erencing . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Comment Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Natural Language Processing and SWUM . . . . . . . . . . . 11

3.3 Commit Message Generation and Classification . . . . . . . . . . . . 12
3.4 Limitations and Identified Improvements . . . . . . . . . . . . . . . . 13

4 CHARACTERISTIC STUDY OF COMMITS AND COMMIT
MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Subjects of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



4.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Non-linguistic Analysis of Commit Messages . . . . . . . . . . . . . . 16

4.3.1 Developer Behavior . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Length of Commit Messages . . . . . . . . . . . . . . . . . . . 18
4.3.3 Scope of Commits . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Linguistic analysis of Commit Messages . . . . . . . . . . . . . . . . . 23

4.4.1 Linguistic Properties of Commit Messages . . . . . . . . . . . 23
4.4.2 Extracting Verb Direct Object Summaries . . . . . . . . . . . 26

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 HUMAN OPINION SURVEY ON COMMIT MESSAGES . . . . 34

5.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 General Usage of Commit Messages . . . . . . . . . . . . . . . 35
5.1.2 Commit Messages and Their Extracted Summaries . . . . . . 35
5.1.3 Uncategorized Commit Messages . . . . . . . . . . . . . . . . 36

5.2 Survey Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Refining and Testing the survey . . . . . . . . . . . . . . . . . . . . . 37
5.4 Targeted Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5.1 Purposes for Reading and Writing Commit Messages . . . . . 38
5.5.2 Useful and Non-Useful Commit Messages . . . . . . . . . . . . 40
5.5.3 Appropriateness of Verb-Direct Object Summarization for

Commit Messages . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.4 Usefulness of Commit Messages without Verb Phrases . . . . . 47

5.6 Implications for Automated Tool Output . . . . . . . . . . . . . . . . 48
5.7 Summary of Properties of Well-Written Commit Messages . . . . . . 49
5.8 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 50

6 INDEPENDENT ANALYSIS OF DELTADOC . . . . . . . . . . . . 52

6.1 Overview of DeltaDoc . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Test Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



6.3 Comparing Distribution to Documentation . . . . . . . . . . . . . . . 53

6.3.1 Brief Source Code Review . . . . . . . . . . . . . . . . . . . . 53
6.3.2 Input and Performance Limitations of DeltaDoc . . . . . . . . 55

6.4 Comparing DeltaDoc Output to Di↵ Output . . . . . . . . . . . . . . 56

6.4.1 Comparing DeltaDoc Output to the Survey Results . . . . . . 59
6.4.2 Conclusions and Capacity for Extension . . . . . . . . . . . . 60

6.5 Threats to Validity and Future Work . . . . . . . . . . . . . . . . . . 62

7 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . 63

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Appendix

A HUMAN OPINION SURVEY ON COMMIT MESSAGES AND
EXTRACTED SUMMARIES . . . . . . . . . . . . . . . . . . . . . . 69

A.1 Background: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Instructions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.4 Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.5 Group 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B ADDITIONAL EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . 73

B.1 Commit Messages and their Extracted Summaries . . . . . . . . . . . 73

vi



LIST OF TABLES

4.1 General Software Repository Statistics . . . . . . . . . . . . . . . . 15

4.2 Classification of Developers by Number of Commits (x) Made Over
All Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Percent of Commits Containing a Java Source Code Modification,
Addition, or Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Subset of Penn Treebank Word Chunks Tags Used in Example . . . 28

4.5 Examples of Commit Messages and their Extracted Phrases . . . . 32

4.6 Number of Identified Verb Phrases vs Uncategorized Commits . . . 32

B.1 Additional Examples of Commit Messages and their Extracted
Phrases used on the Survey . . . . . . . . . . . . . . . . . . . . . . 74

vii



LIST OF FIGURES

3.1 Example Di↵ Output . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Total Lines per Commit Message . . . . . . . . . . . . . . . . . . . 18

4.2 Number of Words in a Commit Message . . . . . . . . . . . . . . . 19

4.3 Files Modified Across Projects . . . . . . . . . . . . . . . . . . . . . 22

4.4 First Word Part of Speech in Commits . . . . . . . . . . . . . . . . 24

4.5 Word Phrases in Commits . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Usage of commit message . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Variation in Opinion on Commit Message Usefulness . . . . . . . . 42

5.3 Survey Results for Question 2 . . . . . . . . . . . . . . . . . . . . . 43

5.4 Survey Results for Question 3 . . . . . . . . . . . . . . . . . . . . . 44

5.5 Survey Results for Question 4 . . . . . . . . . . . . . . . . . . . . . 45

5.6 Survey Results for Question 5 . . . . . . . . . . . . . . . . . . . . . 46

viii



ABSTRACT

Poor quality documentation increases the time developers spend trying to un-

derstand and modify source code. Therefore, if documentation can be automatically

extracted from words and phrases in source code, it can diminish maintenance costs

when human-written documentation is poor. Commit messages are a type of documen-

tation that specifically describes program change. While methods exist for both find-

ing di↵erences between versions and for extracting linguistic information from source

code, there has been little work in producing output that uses both to produce natural

language output similar to developer-written commit messages. In order to lay ground-

work for such a model of output, in this Thesis we performed an observational study of

commit messages from open source software projects to determine their linguistic and

non-linguistic properties. We also sent out a survey to users of software repositories to

learn about how they use commit messages, what kinds of commit messages they find

useful, and to present an initial model of output for natural-language commit messages

using verb phrases and their associated direct objects. We find this model is insu�cient

as it lacks important location information from the original commit messages, which

is often found in prepositional phrases in the original messages. Finally, we performed

an independent analysis on a distribution of DeltaDoc, a research tool which attempts

to generate output to supplement developer written commit messages. We found this

distribution to be too problematic to use as it is, but that its output has potential

be extended using natural language techniques if the concerns about its usability and

performance can be addressed.

ix



Chapter 1

INTRODUCTION

A significant part of software engineering is software maintenance, which takes

place throughout the software development cycle. It is defined in the IEEE standard

as ”the totality of activities required to provide cost-e↵ective support to a software

system. Activities are performed during the pre-delivery stage as well as the post-

delivery stage” [17]. Examples of such activities include optimizations of existing code,

the tracing and removal of errors, or restructuring of code for easier use. Software

maintenance comprises a significant component of software development, exceeding

the time spent on the initial development of the system. Depending on the project,

software maintenance takes anywhere between 40 to 80 percent of the developer’s

resources [12]. Therefore, improvements that a↵ect the software maintenance process

will have a significant positive e↵ect on the overall quality of software.

1.1 Importance of Documentation and its Automatic Generation

Critical to assisting developers in understanding code, which is particularly

needed during software maintenance is the human-written documentation surround-

ing the code. Previous research in software engineering has shown that when mak-

ing changes to software, developers that are unfamiliar with the code being modified

spend more time trying to understand code than actually implementing changes to

the code[14]. The formal language of source code, designed for easy processing by ma-

chines, is not by itself designed to be easily read by humans. As such, software projects

typically have a significant amount of documentation complementing their source code,

which simplifies the task of understanding code. This documentation varies in scope,

from low-level documentation such as comments embedded within the code, to higher

1



level documentation such as system requirements, use cases, etc. One type of docu-

mentation often used to describe changes between code versions are commit messages.

These messages are typically no more than a few lines and allow developers to com-

ment on changes made to the program. Since commit messages are used to specifically

document program change, they relate closely to the various tasks carried out during

software maintenance.

Although standards of documentation vary from project to project, documen-

tation is often not very well written in practice [7]. It can be lacking or unavailable, or

worse, misleading or out of date. Therefore, if documentation could be automatically

created, developers would be able to make code changes e↵ectively even in situations

when human-written documentation is poor or missing.

Currently, while no research group has attempted to generate commit messages

in natural language form, there has been significant work done in related areas. One is

the area of file and version di↵erencing, which seeks to extract the information about

changes between two versions of a program[16, 18, 21, 31, 23, 3]. However, the out-

put from such techniques are not as concise as developer-written commit messages

and are not targeted at producing natural language output. Likewise, there has also

been much work in extracting English language information from static source code

distributions[22, 27, 14, 29], but these have not been applied to describing the changes

between program versions. The most closely related work to automatic commit mes-

sage generation in natural language is DeltaDoc, developed by Buse and Weimer [5].

However, the output of this program is closer to pseudocode than the English commit

messages written by developers.

1.2 Thesis Contributions

This Thesis seeks to establish a grounding for generating meaningful natural

language commit messages as a first step to summarizing the main intent of a commit.

First, we performed a study of approximately 60,000 commit actions and their associ-

ated commit messages across 9 open source projects, investigating both their linguistic

2



and non-linguistic properties. We extracted verb phrases and their associated direct

objects from these commit messages. Then, we launched a survey to users of software

repositories and commit messages to learn about how commit messages are used. Sur-

vey respondents also evaluated the quality of commit messages and the e↵ectiveness of

the verb-direct object summarization as a potential form of natural language output.

Finally, we performed an observational study on a distribution of DeltaDoc and its

output. We evaluated the e↵ectiveness of DeltaDoc’s output in comparison to both

our survey results and to the raw di↵erences between the files summarized.

3



Chapter 2

BACKGROUND

2.1 Software Repositories

Software repositories are tools used by software developers to store source code

and related materials (e.g. documentation, test cases, etc.) for a project. Software

repositories are commonly used in software projects developed by more than one person,

or in projects developed for long periods of time. Significant applications cannot be

developed quickly and instead change over time as developers make incremental changes

to the code. Documentation is updated as new features are added, errors are corrected,

or code is optimized. While software develops over time, at any given time, a static

set of code can be marked as a specific version of an application. Repositories assist

developers by keeping track of all the code versions that exist over the lifetime of a

project. The repository format provides a convenient method for tracking changes in

the code and secondary artifacts made by members of a software development team,

ensuring team members can access the changes made by others e�ciently. Changes

are recorded and developers can return to prior versions if a change introduces serious

bugs. Examples of software repositories include free projects such as SVN, CVS, Git,

Mercurial, as well as some proprietary systems.

2.2 Commit Messages

While there are many implementations of software repositories, all of them oper-

ate under roughly the same model. While the term software version often applies only

to o�cial releases of a software project, each change added to a software repository is

called a commit, often referred to as committing a change. With each commit added to

a repository, developers have an opportunity to document the changes they made in a

4



short message called a commit message. These messages are typically only a sentence

or two, but they can be longer. The message should document the changes clearly and

concisely, but often the messages are too short or vague to convey useful information

about the commit. Below are a few examples of commit messages that qualitatively

seem to be good or poor, respectively:

Examples of well-written commit messages from our data set:

• Added preliminary, ugly VectorKeyStrokeOptionComponent that can handle mul-
tiple keystrokes per action.

• Fixed ArrayIndexOutOfBounds exception on Player.stance[] when attacking an
enemy privateer

• Logger now sanity checks the verbosity level param. Listener now has verbosity
and log round the right way where it was crashing phex. SwarmingManager now
makes backup copies of the download file. This should make us more robust
against going down unexpectedly while writing this file.

Examples of poorly-written commit messages from our data set:

• XML and XSL stu↵

• several updates

• fixed problems

• Refactoring

Additionally, commit messages can serve di↵erent purposes to di↵erent audi-

ences. The primary audience for commit messages are other members of the develop-

ment team working on the project. The commit messages act as a way for developers

to quickly see what changes have been made. However, researchers studying software

evolution also make use of commit messages to better understand how software devel-

ops over its lifetime. While commit messages can act as a record of change in a project,

some software evolution researchers claim that the granularity of change summarized

by commit messages is too large to be e↵ective for their purposes. Additionally, the

poor quality and sometimes the outright lack of commit messages hamper their ability

to act as a record of the changes in a software’s lifetime [24].

5



2.2.1 Alternatives to Commit Messages

Some researchers have considered using alternative methods to gain informa-

tion about the changes software undergoes. For example, the Eclipse add-ons Syde

and Scamp work by giving the smallest granularity possible of change possible. They

broadcast changes made in real time to other developers on the project [20]. They are

designed with the focus of increasing team awareness, i.e. its goal is to raise awareness

about who is working on what files to help prevent conflicts. It is not clear that it is

appropriate as a method to replace commit messages. Other groups have suggested

alternative means to display the information made in a commit message. For instance,

the tool Commit 2.0, created for SmallTalk, an object-oriented programming language,

creates a visual graph of the commit. This visually displays the changes of a commit

as an complement to developer-written messages. The program automatically identi-

fies and displays both new, deleted, and modified sections of code. These can be seen

at di↵erent granularities, such as the package, class, or method levels. Additionally,

the tool tries to identify not only the areas that changed, but also other structures in

code that use these changed areas. Including this context gives developers a better

idea about what code might have been a↵ected by the changes. However, this tool is

intended to assist the understanding of existing documentation, not replace it [6].

2.3 Summary

While commit messages are known to be helpful, developers often do not write

them or write minimal phrases are that not helpful to readers. There are some al-

ternative techniques designed to assist understanding of code changes, but commit

messages continue to be used as the most common method of change documentation

in software repositories. However, how frequently commit messages are used is an

important question, which we will return to address Chapter 5.

6



Chapter 3

STATE OF THE ART

The problem of automatically generating commit messages is essentially a com-

bination of two distinct subproblems. The first problem is how to extract di↵erences

between two versions of an application. The second problem is figuring out how to dis-

play this information in an natural language format of no more than a few sentences.

Both of these areas have received some attention in research, but their have been only

a few limited attempts to combine them to generate human readable documentation.

3.1 File and Version Di↵erencing

At the most basic level, file di↵erencing works by comparing two files and cre-

ating some sort of output about the di↵erences between the two files. It di↵ers from

the problem of creating commit messages in that it usually is not concerned with sum-

marizing the changes in a few English language sentences, and in the general case, it

doesn’t necessarily involve source code. File di↵erencing is often used to see what has

changed between two versions of the same file. The simplest form of this technique is

the UNIX di↵ command, which takes two files and outputs line by line the di↵erences

between two files, regardless of what is stored in the file.

Figure 3.1 shows a sample of the di↵ command’s output for two very simple

Java files, which were changed by adding one new line and removing another:

7



DiffExample1.java

public class DiffExample {

    

    public static void main(String args)

    {

        int x = 5;

        int y = x + 3;

        System.out.println(x);

        System.out.println(y);

    }

}

Example Diff output:

5a6

>         int z = x - 2;

7,8c8

< 

<         System.out.println(x);

---

>         

9a10

>         System.out.println(z);

DiffExample2.java

public class DiffExample {

    

    public static void main(String args)

    {

        int x = 5;

        int z = x - 2;

        int y = x + 3;

        

        System.out.println(y);

        System.out.println(z);

    }

}

Figure 3.1: Example output of di↵ for two test Java files

8



However, for the purposes of acting as a substitute for commit messages, UNIX

di↵ output is lacking. A commit message summarizes changes between versions, and

the changes being summarized may encompass multiple files and many changed lines

of code. The di↵ output, on the other hand, gives virtually no summarization and is

often confusing to read without having both files open to understand the context of

what changed. The more changes made, the longer and less convenient the di↵ output

becomes for tracking down changes.

Many researchers have noticed the limitations of di↵ output, and consequently,

there have been several attempts to develop more sophisticated di↵erencing algorithms

to give better output for software developers interested in understanding code changes.

Susan Horwitz addressed the problem of di↵erencing source code rather than general

files, and introduced an algorithm that could be used to find di↵erences in simplis-

tic languages [16], but is not su�cient for full object-oriented programs. Semanticdi↵

is another di↵erencing tool, but its scope is limited to measuring the changes in in-

put/output behavior of a single function [18]. Another group was able to determine

file di↵erences in C/C++ by translating the code into an XML representation called

src XML and using existing XML analysis techniques to extract information about the

source code di↵erences [21].

In addition to these tools, there are some version di↵erencing techniques that

seek to specifically take advantage of the structure of object-oriented languages. One

such di↵erencing tool is UMLDi↵ [31], implemented via the Eclipse plugin JDEvAN,

which focuses on file di↵erencing between two di↵erent versions of the object-oriented

language Java. It takes two separate versions of a Java project as input, and then

builds a tree to represent the structural changes made between the two Java versions.

It records what classes, methods, fields, and other attributes were added/removed,

moved, or renamed between the two versions. However, it su↵ers from some issues

when the scope of changes is quite large, and can take 30 - 50 minutes to record the

changes between major releases of a program.

9



Ren et al, focused on change impact analysis, which is the practice of determin-

ing what e↵ects a change has had on other parts of a program, and developed a tool,

Chianti, for Java [23]. Chianti breaks down the changes to a Java program into a series

of atomic changes. It requires the existence of extensive unit testing of the source code,

as it maps how each of the changes it has extracted from the program will a↵ect the

existing tests.

Another version di↵erencing algorithm focused on finding di↵erences in object

oriented source code is CalcDi↵, which is implemented in the Eclipse add-on JDi↵.

[3]. CalcDi↵ operates by first identifying classes and interfaces and sorting out which

are added/removed or modified. It then identifies changes within methods and traces

program behavior within the context of both the execution of these methods and the

larger context of overall object-oriented design. In this way CalcDi↵ focuses on lower

level changes than UMLDi↵, as it does not lean so heavily on structural modifications.

3.2 Comment Generation

Some work has been done in the area of creating documentation for a single

static version of a program. Sridhara et al. created a tool for the purpose of generating

Javadoc comments [29]. Javadoc comments are associated with a single method within

a Java class, usually giving a descriptive summary of the purpose of the method.

This technique uses the Software Word Usage Model (SWUM) for Java [14] as the

basis for extracting meaningful words and phrases from source code and then applies

a three step process to generate a comment. First, lines of significant code for the

summary are selected using various heuristics. Then, for each line of code selected an

English summary is generated. Finally, each of these phrases is combined and further

summarized to generate a natural language summary comment for the overall method.

10



3.2.1 Natural Language Processing and SWUM

The techniques SWUM uses to parse source code falls under the larger area

known as natural language processing (NLP), the interpretation of language by ma-

chines. This is often domain specific, and prior research [22] has determined that

there can be great benefit in using English words and phrases within source code to

aid in program understanding. These techniques are called Natural Language Program

Analysis (NLPA), and work by combining knowledge of the structure of the English

language with knowledge about the structure of source code, in order to meaningfully

extract information from the code to aid in the process of software maintenance.

In terms of analyzing source code for linguistic structures, not all programming

languages are equally useful, and depending on the structure of the language, tech-

niques for mining information may vary significantly. In particular, Java has been a

focus of research due to its characteristics [14]. For one, it is an example of Object-

oriented programming (OOP), which functions by using pieces of code called classes

which serve as a template for the eponymous objects. These objects can be viewed as

nouns in the context of the larger program, and they have various attributes associated

with them, which may be simple data such as integers or other objects. Additionally,

functions written in a class are considered the class’s methods. These functions are

equivalent to verbs or actions in OOP, and they take various objects (the nouns) as

input and can return them as output [14].

In addition to being an object oriented language, Java is a good candidate for

linguistic analysis for a couple of other reasons. First, it is a well-known and widely

used language, ensuring a large corpus of code to analyze, but also ensuring that

tools developed to assist Java developers will be relevant in a wide range of situations.

Additionally, Java also has a reputation as a ”wordy” language, with developers often

using long and descriptive names for classes and methods. For the purposes of linguistic

analysis, it makes Java a compelling source of information to retrieve, analyze, and

display extracted information.

Hill et al. worked to develop a model of linguistic representation of Java code

11



called the Software Word Usage Model (SWUM), that improves on more simplistic

frequency-based methods, like bag of words [14]. The SWUM model was designed

to aid in searching source code for concerns, which are ”anything stakeholders of the

software consider to be a conceptual unit, such as features, requirements, design idioms,

or implementation mechanisms” [25]. The key insight of the SWUM model is that the

context in which words occur in software is extremely important. SWUM preprocesses

the source code to accurately extract English words, using a tool called Samurai to

parse words out of method names, even when they are not using standard camel case,

e.g. getlist() instead of getList(). SWUM also expands common abbreviations within

source code. Once these words are extracted, the model is built by considering how

the words occur together in the code.

3.3 Commit Message Generation and Classification

In contrast to the more extensive research in version di↵erencing and linguis-

tic parsing of source code, the automatic generation of commit messages for software

repositories is a topic that has received little direct attention. The most directly related

tool, DeltaDoc, was created by Buse and Wiemer to create commit messages for Java

source code [5]. Their tool operates by matching additions and removals at the class

and method level, and then using symbolic execution to build control flow graphs for

changed methods. From these, they extract path predicates, which describe the con-

ditions under which code statements will be executed. They compare the predicates

in the old and new versions and use the di↵erences as a basis for their output. This

output can be too long, so they then apply a series of lossy transformations to summa-

rize the code changes. However, they use only very basic natural language processing

techniques to improve the output, and what is produced resembles pseudocode more so

than English. Although the study they performed found that these messages aided in

understanding the changes and could supplement developer-written commit messages,

they do not match what is typically understood when discussing commit messages. We

perform a more detailed analysis of DeltaDoc with examples in Chapter 6.

12



One other tool for assisting in commit message generation is the plugin Mylyn

[19]. It allows for commit messages to be created from user defined tasks. These tasks

are conceptual units of work that developers complete while working on any project,

such as adding a feature or fixing an error. However, since the messages generated

from Mylyn are ultimately based on these developer-described tasks, it is subject to

the same problems seen in other forms of human-written documentation - it merely

pushes the issue to a di↵erent area. Moreover, the commit message generation feature

is not the main focus of the plugin.

N. Dragan, et al. [9, 10, 8] developed a technique for categorizing commits based

on distributions of method stereotypes. The stereotype of a method gives an abstraction

of its purpose into one of several types. When a commit is made to a software repository,

they measure how the method stereotypes have changed to create a commit signature,

an estimation of the overall purpose of that commit. Rather than trying to identify

the specific changes, these stereotypes provide insight into the overall purpose of the

commit message. Some examples of the categories they created to describe commits

include relationships modifier commits, which alter how classes relate to each other,

degenerate modifier commits, which contain empty methods - possibly signaling a new

feature will be added, or state update modifier commits, which signal a change in an

object’s internal behavior. These classifications di↵er from those generally found in

the existing literature [15, 2] for categorizing types of maintenance changes, which are

based around modifying or adapting categories of maintenance developed by Swanson

in 1976 [30].

3.4 Limitations and Identified Improvements

While there are several techniques for extracting information about di↵erences

in files and versions of code, the output of such methods tend to be extensive. The

output does not resemble what is usually viewed as developer-written commit messages.

Likewise, while there exist techniques for extracting natural language information from

source code, they are not currently targeted at measuring program changes.

13



Chapter 4

CHARACTERISTIC STUDY OF COMMITS AND COMMIT
MESSAGES

We performed a study of commit messages on a variety of open source software

projects to obtain an understanding the quality and form of commit messages. An

important first step towards successfully generating commit messages in English is to

understand both the general form and linguistic structure of developer written commit

messages. This study was directed at answering the following questions:

• How are commits distributed among developers in open source projects? Are
they spread evenly among many authors or are the majority of commits made
by only a few developers?

• What is the appropriate length for a commit message? How long are the commit
messages that developers typically write?

• What is the scope of program change for each commit? How many source code
files are typically changed, added, or removed?

• What is the linguistic composition of commit messages? What parts of speech are
used to begin messages? What does the structure of the whole commit message
look like?

Finally, we present a technique for extracting verbs and their direct objects as a

first step toward summarizing the content of developer written commit messages, and

gather feedback from developers on those summaries. This feedback is presented in

Chapter 5.

4.1 Subjects of Study

All the messages chosen for this study have been selected from a set of nine Java

projects: Drjava, iText, Phex, JFreeChart, Jedit, Freecol, Squirrel-sql, Java-game-lib,

14



Table 4.1: General Software Repository Statistics

Project Revisions* Developers Type Downloads* Lines of Code

Atunes 5000 3 Audio player 1627500 63000

DrJava 5400 59 Java code editing 1570600 91000

Freecol 7900 39 Game 1562800 117000

iText 4900 16 PDF utility 1562800 124000

Java-game-lib 3700 17 Game Library 674300 136000

Jedit 20400 119 Text 6942100 207000

JFreeChart 2400 4 Data Presentation 3309000 147000

Phex 3500 24 File Sharing 1127200 107000

Squirel-sql 6500 18 SQL Client 3926000 313000

Total 59700 297 —– 23517500 130500

and Atunes. Table 4.1 summarizes some of the relevant characteristics of each project.

Four of these projects (IText, Phex, JFreeChart, and Freecol) were selected from the

set of 5 analyzed in the study of commits performed by Buse and Weimer as their

baseline for building DeltaDoc, which were chosen in order to give us some ability to

compare to their study on commit messages [5]. The other five projects that were

selected also came from svn repositories. Moreover, all the projects chosen include

Java code so that future studies on the source code will be able to use prior methods

for linguistic analysis of Java. The other criteria used to select these projects were that

the projects had a significantly sized repository of at least a few thousand commits and

that the projects are su�ciently popular, i.e. they have had at least several hundred

thousand downloads over their lifetimes. Furthermore, the projects were chosen from a

wide variety of applications to ensure a range of potentially di↵erent commit messages.

The commit messages were obtained from the projects by either checking out a local

copy and parsing the svn log files, or by screen scraping the messages individually from

Sourceforge’s website [28].

4.2 Threats to Validity

As mentioned previously, all commit messages were obtained from svn reposi-

tories. However, it is possible that commit message content and form might di↵er in

15



Table 4.2: Classification of Developers by Number of Commits (x) Made Over All
Projects

Project # Developers Categorization of Developers by Number of Commits Made

x<50 50<=x<100 100<=x<500 500<=x<1000 x>1000

Atunes 3 0 0 0 1 2

DrJava 59 38 7 10 4 0

Freecol 39 25 5 6 1 2

iText 16 10 0 4 1 1

Java-game-lib 17 12 0 3 0 2

Jedit 119 76 20 16 1 6

JFreeChart 4 3 0 0 0 1

Phex 24 21 1 1 0 1

Squirel-sql 18 11 3 1 1 2

from users of Git, CVS, or other software repositories. Additionally, all the projects

selected used primarily Java code. Programmers who favor di↵erent languages may

have di↵erent attitudes toward documentation, so this study may not generalize to

repositories for all projects. Finally, all of the commit messages were chosen from open

source projects. It is likely that closed sourced projects may have stricter rules about

documentation than open source projects. Therefore, the results of this study cannot

be applied to closed source projects.

4.3 Non-linguistic Analysis of Commit Messages

In the following subsections, we discuss our findings about the distribution of

commit activity among authors, the length of commit messages, and the scope of

changes made in each commit.

4.3.1 Developer Behavior

There were a couple of patterns in committing behavior across all projects, and

Table 4.2 classifies the developers in each project by the number of commits they made

to the project. First, in every case other than Atunes, the majority of the developers

working on the project made less than 50 commits. However, the overall contribution

of this group was small, with a majority of commits being made by a much smaller

16



group of developers. Additionally, a few of the applications seemed to be personal

projects; they were dominated by one committer. This was most clear in the cases of

JFreechart and Phex, where a single developer was responsible for 98.2% and 85.6% of

the commits respectively. Although most of the commits were made by a subset of the

total developers in the other projects as well, the degree to which this was focused on

just a few developers varied depending on the project. For instance, DrJava and Jedit

had the most spread out distributions, with more authors contributing equally to the

project. These contrast with a project like Squirrel-sql, which had only 4 developers

with over 100 commits.

In the case of larger open source projects, a detailed study on the structure

of developer interactions was performed by Christian Bird, et. al. They discovered

that developers in open source projects tend to self-organize into groups. Specifically,

these groups were more modular when working on shared sections of the program and

more broad when dealing with application-wide changes. Pairs of developers within

each group tended to modify the same files more frequently than pairs of developers in

di↵erent groups [4].

Therefore, since many open source projects are team based, and since team

members tend to specialize into subgroups even in open source projects, it seems that

developers whose files will be most a↵ected by a commit will also be most familiar

with the code changed. Therefore, commit message’s core audience can be assumed to

have a good knowledge of the code a↵ected. However, as our data shows, there may

be large numbers of developers who commit less regularly. Or, even if they do commit

regularly, they may work in di↵erent sections of the code. As such, it would likely be

useful to include information in commit messages that allows this secondary audience

to assess how code changes may a↵ect them without needing to know the details of the

local implementation.

17



Figure 4.1: Distribution of Commit Message Lengths Over All Projects

4.3.2 Length of Commit Messages

One major consideration for creating commit messages is how long a commit

message should be. To measure the length of a measure, we first used the metric of

physical lines in the message log. Figure 4.1 shows the distribution of commit message

size in lines across all projects. We found that 87.29% of the commit messages were

only a single line, and 96.22% were 3 lines or less. The prevalence of single line commit

messages agrees with the finding of Buse and Weimer’s study [5]. One thing to note

is the number of commit messages of over 10 lines, particularly in the projects Drjava

and Jfreechart. Qualitative analysis of these longer commit messages showed that they

were long and detailed developer-written commit messages, typically between 10 to

20 lines. In some cases this output exceeded 100 lines, but these constituted a very

small portion of the commits. In these cases, the developers had usually copied a list

of additional information into the commit message. For example, Drjava had a few

extremely long commit messages caused by developers appending lists of changed files

18



Figure 4.2: Boxplot of the Distribution of the Number of Words in Commit Messages
in Each Project

or debug output. In JFreechart, occasionally long messages were the result of one

developer’s documentation style, which listed the entire directory path of each change

on a new line. These messages seem to be produced under what might be an automated

template, where the developer fills in the comments on each change. A short example

is listed below:

• * source/org/jfree/chart/entity/AxisLabelEntity.java

(AxisLabelEntity): Assign axis argument,

(toString): New method override.

However, since commit messages are often only a few lines, and since we are

looking to mimic them with natural language output, we also measured message size in

terms of words. We determine words solely by spaces, so file paths like ”source/org/jfree

/chart/entity/AxisLabelEntity.java” or method names like ”AxisLabelEntity” in the

19



example above would both count as one word. Figure 4.2 shows the distribution of the

number of words in each of the projects with the outliers (very large commit messages)

removed. The median number of words in a commit messages ranged from 4 to 10

depending on the project, and in all projects the commit messages were less than

25 words at least 75% of the time. Therefore, we believe that a good target for the

median length of generated natural language commit messages would be no more than

25 words.

Finally, it is notable that we found that virtually no log messages in these

repositories were left blank. In some cases, the commit messages had very poor content,

with only a few non-descriptive words, but they were not left blank. This agrees with

the findings of Buse’s study, which found that over 99% of commits were not empty

[5].

4.3.3 Scope of Commits

There is no standard definition of what is granularity of change is too small

or too large for a commit. Therefore, we measured the sizes of commits in terms of

their Java source code files. We classify these changes into 3 categories: number of

modified, added, and removed files. File di↵erencing methods exist for modified files,

but established di↵erencing methods may not be suitable for describing wholly added

or removed files. If these appear frequently, di↵erent techniques would need to be used

to describe the changes.

In Table 4.3, we breakdown how frequently we see each type of change in com-

mits. The percentages in the table are not exclusive; they document the percentage

of commits with at least one modification, addition, or removal out of the total set

examined. First, in every project, the most significant portion of change came from

modifications to the Java source code files. Also note that in all projects, new file

additions outpace the number of file removals. This makes intuitive sense - the source

code grows as the the project matures. Moreover, source code modifications occur in

at least half of all commit messages across all projects. Since the amount of source

20



Table 4.3: Percent of Commits Containing a Java Source Code Modification, Addi-
tion, or Removal

Project Modified Files Added Files Removed Files
Atunes 72.49% 12.04 % 5.14 %
DrJava 53.38% 39.49 % 2.2 %
Freecol 80.76% 6.72 % 1.01 %
iText 65.65% 10.98 % 2.43 %

Java-game-lib 50.96% 15.56 % 1.97%
Jedit 59.96% 9.3 % 2.38 %

JFreeChart 91.75% 6.13 % 1.67 %
Phex 76.48% 14.52 % 4.57 %

Squirel-sql 56.04% 15.22 % 1.97 %

code file additions and removals are typically much smaller than the amount of mod-

ifications, any initial techniques to produce commit messages should focus primarily

on the modifications to existing source code files. Finally, in some cases there were no

Java files added, removed, or modified in a commit. We did not document how often

this case occurs, but these commits include changes to documentation, libraries, and

code changes to non-Java files.

Figure 4.3 summarizes the number of changes to already existing Java files, with

very large changes removed for clarity. All distributions had large numbers of outliers,

indicating rare occurrences when a large number of files in the repository were edited.

Since these large changes are very infrequent and would be very di�cult to summarize

concisely and accurately in a few sentences, they should not be the first focus for an

automated tool. Due to the number of large commits, we use the robust measure of

the median and quartiles to determine the scope of a typical commit message. Using

the interquartile range across all projects, we estimate that a commit will typically

result in a modification of between 1 to 4 java source code files. Studies performed by

other researchers also found that most commits do not a↵ect a large numbers of files

[5, 13]. Buse and Wiemer calculated the size of the di↵ results for a commit and found

an average of 37.8 lines [5]. Since we did not measure the number of lines changed per

21



Figure 4.3: Distribution of Java Source Code Files Modified per Commit

22



file, we cannot verify the amount of change per file. It is possible that large changes

were being made to only a few files. But, at least from the perspective of the number

of changed source code files, the amount of change is not typically large.

4.4 Linguistic analysis of Commit Messages

We performed some basic linguistic analysis on the messages by extracting parts

of speech and word phrases from the commit messages. In order to generate natural

language output, we must first have an understanding for the linguistic structure of

developer-written commit messages. In order to examine the linguistic structure, we

used the OpenNLP [11] natural language processing library for Java to tag and chunk

the commit messages. In a natural language context, tagging it involves the labeling

of words with an associated part of speech. OpenNLP uses the Penn Treebank tag

definitions [26] for its part of speech tagging. The second stage, chunking, uses the

tagged words to identify larger constructions in a sentence, such as noun, verb, and

prepositional phrases.

4.4.1 Linguistic Properties of Commit Messages

Due to the tedious nature of the work, we picked only a subset of 4 projects

(Phex, JFreechart, iText, and Freecol) in our initial examination of the linguistic prop-

erties of commits messages. In each of these projects, we examined two things. First,

we tracked what part of speech the commit messages began with. Second, we mea-

sured the composition of the whole commit message in terms of word phrases (chunks).

While commit messages sometimes follow the format of English sentences, they also

are prone to be filled with phrases instead of complete sentences, and parsing the mes-

sages for part of speech information gives a better sense of the structure of the commit

message. Charts for the distributions of the parts of speech and phrases can be seen

in the figures below.

First, we were concerned with only the part of speech of the first word in the

commit. Examining the distributions by frequency, we can see that as a beginning

23



Figure 4.4: Frequency of each part of speech in first word position of commit mes-
sage. Note that these parts of speech are a subset of the full set of Penn
Treebank tags.

word choice of a commit, verbs and nouns are by far the most popular choice, although

which of these is used more commonly depends on the project. After these, adjectives

are the second most popular choice, which indicates that the starting word phrase of

the commit is likely a noun phrase. Similarly, determiners (”a”, ”the”, ”this”, ”few”,

etc.) modify nouns and indicate that the beginning of the commit message is a noun

phrase. Adverbs also appear as a first word a notable number of times, which would

indicate a verb phrase at the start of the commit. Taking these modifiers into account,

it seems that noun phrases are a slightly more common opening section to a commit

message than verb phrases. Within the distributions of the noun and verb phrases,

there is a large degree of variance from project to project, with two exceptions. For

nouns, singular nouns consistently were the most common starting word, as opposed

to plural nouns. Likewise, past participles appear often in the verbs, as they capture

the past tense terms many commit messages begin with, such as ”Fixed”, ”Added”,

”Changed”.

After examining the distribution of part of speech frequencies for each first word,

24



Figure 4.5: Distribution of Word Phrases in Open Source Projects

25



we also examined the distribution of word chunks across the entirety of the messages.

Among the listed chunk tags, three types of phrases stand out: noun phrases, verb

phrases, and prepositional phrases. Figure 4.5 presents the distributions of the word

phrases across the commits in each of the examined projects. Noun phrases dominate

the content of the commit messages, with verb phrases in a distant second by about

3 to 1. While it was expected that nouns and verbs would dominate the commit

messages, this asymmetry suggests that more nouns phrases than verb phrases would

be needed in a generated commit message. Perhaps the action of the commit can

be summarized in a few verbs, but describing all a↵ected objects, methods, and files

would take several nouns. Finally, while prepositional phrases comprise a significant

number of the word phrases in developer written commit messages, they are not part of

the verb-direct output model that has been used for search and comment generation in

some techniques [27, 29]. The information that prepositional phrases convey in commit

messages will be explored further in the next chapter along with an evaluation of the

verb-direct object technique as a way of extracting summaries from commit messages.

4.4.2 Extracting Verb Direct Object Summaries

As a first step toward generated commit message content, we extracted verbs

and their matching direct objects automatically from commit messages to examine

how well that information could capture the whole commit message. The method of

extraction is described in detail below, and the evaluation of this output as a summary

for commit messages and as a potential target for automated output is presented in

Chapter 5.

Step 1. In order to tag and chunk the commit messages with the OpenNLP tag-

ger [11], they must first be modified slightly to have the correct format for input to

OpenNLP. The openNLP library is designed to handle English sentences, and in many

cases the commit messages have poor grammar or do not otherwise follow the patterns

of conventional English. One important first step is that certain kinds of punctuation

must be removed because the tagger was observed to be performing poorly in some

26



cases. In preprocessing scripts before the openNLP tagger, contractions are expanded

to avoid dealing with apostrophes. For example, can’t becomes can not, won’t becomes

would not, etc. Additionally, file paths in commit messages have all occurrences of the

’/’ character removed so that they can be treated as a single word. Furthermore, file

names are altered to contain only text in the following manner: if the file name is ex-

ample.java, it becomes examplexjava for the tagger. Prior to making this modification,

the openNLP tagger would assume that the ’.’ marked the beginning of a new sen-

tence. This issue also arose with version numbers, which contain periods (e.g. 1.5.4).

These numbers are specially encoded so that they will remain intact for the tagger,

and they are reconstructed after passing through the tagger. The correctness of each

modification was verified by closely examining the output files and checking the output

from many di↵erent examples.

Step 2. The output files from Step 1 are then processed by the openNLP tagger

and chunker. However, as the openNLP package expects to parse individual sentences,

before the commits are tagged, they are divided up using the remaining punctuation

as a guide. Then commit messages are run through the tagging software. The tagger is

able to produce multiple part of speech taggings for each word, and ranks each tagging

by probability of correctness. Manual accuracy studies were done on these parts of

speech taggings to determine if they were correct. By examining 100 first words from

the part of speech taggings, it was found that the tagger correctly identified the part

of speech 87 times within the first three taggings. Therefore, each word was given

three tags, which represent the three most likely part of speeches for each word in the

context of that sentence. Next, the chunker was called for each commit message three

times. The most probable chunking generated by openNLP for each tagging is stored,

giving a total of three chunkings.

Below is an example of the output of the openNLP tagging and chunking for a

commit message, divided up into each of its constituent words. The definitions of all

tags used in this example are described in Table 4.4:

27



Table 4.4: Subset of Penn Treebank Word Chunks Tags Used in Example

Word Tag Meaning
VBG Gerund
VB Verb, Base form
NN Singular Noun
NNP Singular Proper Noun
TO Special tag for ’to’

Chunk Tag Meaning
B-VP Beginning of new verb phrase
I-VP Continuing verb phrase from last chunk
B-NP Beginning of new noun phrase
I-NP Continuing noun phrase from last chunk

• Refactoring (B-VP, B-NP, B-NP, VBG, NN, NNP)

• method (B-NP, I-NP, I-NP, NN, NN, NN)

• extraction (I-NP, I-NP, I-NP, NN, NN, NN)

• to (B-VP, B-VP, B-VP, TO, TO, TO)

• improve ([I-VP, I-VP, I-VP, VB, VB, VB)

• code (B-NP, B-NP, B-NP, NN, NN, NN)

Each word has six tags associated with it. Consider the final three tags of

each word first. These are the part of speech tags from the Penn Treebank set [26]

associated with the word in decreasing order of likelihood. So for the word ’refactoring’,

it considers the most likely tagging to be ’VBG’, or a gerund. Afterwords, it considers

’NN’ and ’NNP’, both of which are noun taggings. Now consider the first three tags.

These are the chunk tags for each associated with each part of speech. They are divided

into two parts, separated by a dash. The first part is either an ’I’ or ’B’, which indicates

either that the chunk is a continuation of a word phrase started in an earlier chunk or

the beginning of a new word phrase. So for ’refactoring’, it thinks this is most likely

the beginning of a verb phrase (VP). Alternatively, the model suggests that this word

28



might be the beginning of the noun phrase ’Refactoring method extraction’, indicated

with ’B-NP’. Notice that this is continued in the second most likely chunk tags for

’method’ and ’extraction’ with the phrase ’I-NP’, which means the noun phrase is

continued from the previous word. However, OpenNLP has selected that the most

likely breakdown of this commit message is the following:

• Refactoring (Verb Phrase)

• method extraction (Noun phrase)

• to improve (Verb phrase)

• code (Noun phrase)

Step 3. After tagging the messages once, we modified the commit messages slightly to

further improve the accuracy of the tagger and chunker. We examined the word level

tags of the first word of each tagged message. Words tagged as past tense verbs and

as past participles have the word ’I’ appended to the front of the commit message and

those messages with gerunds as their first tag have the words ’I am’ appended to them.

For example, we changed the commit message ”finishing up configuration” to ”I am

finishing up configuration” and ”fixed false jarfile bug” to ”I fixed false jar file bug”.

Since commit messages sometimes exhibit poor grammar, we found this change often

made messages more closely resemble full English sentences, which is the expected

input for openNLP. This technique of adding a subject is similar to what Abebe and

Tonelle use to improve the parsing of sentences created from words extracted from

method names [1]. This modification is made whenever at least one of the three part

of speech tags assigned to the first word was either in the past tense or a past participle,

as we had noticed that OpenNLP had been tagging words incorrectly in this instance.

Step 4. The messages are run through the openNLP tagger and chunker a second

time with the slight modifications.

Step 5. In this step, we summarize the commit messages and then output them next

to the original message. In order to create a summary from the tagged messages, we

29



examine all three chunkings of every commit message. Recall that each word in the

commit message is given three part of speech tags in order of decreasing probability.

For each set of part of speech tags (1st most likely, 2nd most likely, 3rd most likely),

the most likely chunking is used. This results in 3 separate chunkings, each based on a

di↵erent set of part of speech tags. For each message, we decode the encoded version

numbers and apply a conservative correction to the chunking. By qualitatively observ-

ing the output we found a pattern of where a word tagged as a verb was incorrectly

labelled as part of a noun phrase in the chunk tag. To correct this mislabeling, for each

noun phrase chunk, we examine each tagged word in the chunk. If a word in the chunk

is tagged as VB or verb base in all three tags, the noun phrase chunk is divided into

three pieces: anything before and after the verb becomes a new noun phrase, and the

verb itself becomes a verb phrase. For example, this sentence in a commit message:

”Let ListOption wrap options rather than raw values, making the UI more generic.”

After completing the tagging and chunking, openNLP had labeled ”wrap” as a verb

base in all three tags. However, in the chunking, it mistakenly described this word as

part of a noun phrase: ”ListOption wrap options”. The change described above divides

this into three parts, first a noun phrase, then a verb phrase, and then another noun

phrase, which is the correct way to divide this phrase in the context of the sentence.

Finally, the rest of the commit message is examined for verb phrases. We start

searching for verb phrases with the most highly rated chunking, and if nothing is

found, we check the second and then the third rated chunkings. By using all three

chunkings returned from openNLP, we increase our ability to extract verb phrases out

of ambiguous commit messages. Depending on whether or not one is found, we do one

of two things:

Step 6. If the chunker was not able to find a verb phrase, the commit message is

put into file separate from those messages where we found verb phrases. Commit

messages in this file can be one of two types. The first possibility is that the message

does not contain any verb phrases. The second is that the tagger/chunker incorrectly

30



labelled the message, and the verb phrases have been tagged as another type of chunk.

These messages are filtered for uniqueness and length, i.e., repeated messages are only

printed once and messages with only one word are automatically discarded. We make

the assumption that one-word commit messages are not e↵ective summaries of changes

in the code.

For messages where the tagger found at least one verb phrase, we apply our

method of extracting the important actions of the commit by pairs of verb phrases

with their associated direct objects. To do this, we attempt to identify the voice of

each verb phrase. The di↵erence between active and passive voice is that in active

case the subject performs the action, and in the other an action is performed on the

subject. The following commit message is an example that uses both the active and

passive voice: ”Fixed a bug where an extra list item was added if the list was in a

table”. The active voice verb ’Fixed’ has ’bug’ as its direct direct object, whereas the

passive voice verb ’was added’ refers to the ’extra list item’ that comes right before it

in the sentence.

The passive voice is most commonly associated with the past participle. If there

is a past participle in the phrase, we search for a noun phrase before the verb, and

label it the direct object. This search is halted when either a noun phrase is found, the

start of the commit message is reached, or, in the case of multiple verb direct object

pairs, when we reach a chunk previously used in another verb direct object pair. If no

noun phrase is found in this case, the verb phrase is then treated as if it were in the

active voice. In the case of active voice, we search for the first noun phrase after the

verb phrase or until the next verb phrase is found. If no noun phrase is found, then

only the verb phrase is reported. Once all verb phrases have been accounted for, we

print them in the form <pair1 >- <pair2 >- ... - <pair n>for each commit message.

Some examples of summaries with their associated commits messages are shown below

in Table 4.5, and additional examples can be found in Table B.1 in Appendix B:

Table 4.6 summarizes the results of our extraction across all projects. The range

of commits in which we identified verb phrases varied, from 64-65% in Atunes and Phex

31



Table 4.5: Examples of Commit Messages and their Extracted Phrases

Commit Message 1
Allow attack from ship?land if amphibiousMoves option is enabled,
mitigating longstanding concerns regarding unconquerable islands.

Summary 1
Allow attack - amphibiousMoves option is enabled - mitigating
longstanding concerns - regarding unconquerable islands -

Commit Message 2 Removed option to show ticks and labels in progress slider

Summary 2 Removed option - to show ticks and labels -

Commit Message 3
used new GUIActionPerformer for banning hosts, changed banning
time from SESSION to one week new priority icons

Summary 3 used new GUIActionPerformer - changed banning time -

Table 4.6: Number of Identified Verb Phrases vs Uncategorized Commits

Project Commits Categorized Total Number of Commits
Found Verb Phrase Uncategorized
# % # %

Atunes 3243 64.18 788 15.59 5053
DrJava 5267 96.55 168 3.08 5455
Freecol 6253 78.43 1452 18.21 7973
iText 3407 68.41 996 20.00 4980

Java-game-lib 3067 82.07 532 14.24 3737
Jedit 16797 82.21 2182 10.68 20432

JFreeChart 1780 72.36 100 4.07 2460
Phex 2310 64.94 563 15.83 3557

Squirel-sql 5195 78.94 804 15.59 6581
Note: Since the Uncategorized Commits do not include single word commits
or repeats, the percentages do not sum to 100% and the raw totals do not sum
to the total commits column.

32



commits to 96.55% in the DrJava commits. Overall, 78.6% of commits were identified

as having verb phrases. Therefore, it seems likely that verb phrases are necessary for

good commit messages, but we will explore this further in Chapter 5.

4.5 Summary

We have examined a large subset of commits and commit messages over a range

of popular open source Java projects. We found that although the distribution com-

mits among developers varied, the majority of commits in open source projects are

focused around a relatively small group of developers, with a larger group making

small contributions. Both commits and commit messages tend to be relatively small in

scope, with commits usually only modifying a few files, and commit messages typically

not exceeding more than a few lines or more than 25 words. Finally, we analyzed the

linguistic structure of commit messages and found that they typically begin with noun

or verb phrases. Across the whole commit message, noun phrases dominate, although

both verb and prepositional phrases occur regularly. We found that nearly 4 out of

5 commit messages have at least one verb phrase, indicating that they are likely im-

portant in developer-written commit messages. Finally, while we account for the role

of noun and verb phrases in commits in our model, we did not account for the role of

prepositional phrases, which will be examined more in Chapter 5.

33



Chapter 5

HUMAN OPINION SURVEY ON COMMIT MESSAGES

In order to design algorithms for generating commit messages, we need a clear

view of what information is written in commit messages, when people read in commit

messages, and what information is wanted in commit messages from others working on

the project. Therefore, we created an online survey to ask users of software repositories

both general questions about commit usage and about the usefulness of the extracted

summaries described in Chapter 4. Since noun and verb phrases have clear mappings

to objects and methods, respectively, in object-oriented programs, we wanted to know

if the verb-direct object summarization technique would be su�cient as output for

automatically generated commit messages, or if not, what information should be tar-

geted in creating a commit message. The research questions we wish to answer and

the design of the survey are explained in the following section, and the full survey can

be viewed in appendix A.

5.1 Research Goals

A commit message can be viewed from two perspectives: the person writing the

commit message and the person reading the commit message. Our survey’s primary

goal is to answer questions about what readers of commit message desire, although a

few questions do address the writer’s perspective. If there is a discrepancy between

what developers want in commit messages and what they actually put in them, this

would be a great target for a automated tool generating output that complements

existing messages. Our research questions are:

• Do developers read other’s commit messages?

34



• When developers read them, why do developers read them?

• Under what situations do developers read them?

• What kinds of information do they find most useful in commit message?

• Do useful commit messages have a similar linguistic form or similar set of lin-
guistic forms? What about useless commit messages?

• Can a simple verb phrase capture the main action of the commit message? Are
commit messages that don’t contain verb phrases useful and if so, why?

• Is the technique of providing a summary with verb phrases and direct objects
su�cient?

• Does certain kinds of information in a commit message typically appear in dif-
ferent parts of speech?

• What kinds of information do writers say they put in commit messages?

• How does what developers say they put into commit messages compare with what
they want from commit messages?

To address these questions, the survey was divided into three sections, a section

on general usage of commit messages, a section addressing the commit messages that

OpenNLP successfully extracted a verb phrase from, and a section addressing the

commit messages for which OpenNLP did not identify a verb phrase in.

5.1.1 General Usage of Commit Messages

First, respondents were asked questions about their current positions and gen-

eral experience with programming. In this section, respondents were asked about how

frequently they used commit messages and for what purposes they used them. Ad-

ditionally, we asked questions about what kinds of information they put into commit

messages, and what information they like to see in commit messages they read.

5.1.2 Commit Messages and Their Extracted Summaries

The second section of the survey presented respondents with commit messages

that our tagger was able to extract verb phrases from. On the survey, we referred to

commit messages of this type as group 1, and will continue using that naming method

35



here. This section asked questions about the e↵ectiveness of the extracted verb phrases

and direct objects as a summary of the original commit message. Summaries were only

presented for commit messages that the evaluators deemed useful, and in the cases

where they were not, we asked for an explanation of why the original commit message

was not considered useful. In cases where we did present the summary, questions were

asked about the overall e↵ectiveness of the summary, including if it was misleading, or

had too much or too little information in the summary.

5.1.3 Uncategorized Commit Messages

In the third section, we presented the commit messages in which our tagger was

not able to find a verb phrase. These commit messages are considered to be in group

2. Recall that this case occurs for one of two reasons, either the tagger mislabeled the

commit, and there actually is a verb phrase, or the commit message did not contain

a verb phrase. Regardless, we asked them to classify the commit message as useful or

not useful, and in cases where the commit message was both useful and did not contain

a verb phrase, we asked them to explain why the message was useful without a verb.

5.2 Survey Design

The survey was designed to be easy for respondents to understand and use and

to avoid biasing their responses. The questions came in three types - text responses,

multiple choice/check boxes, and scaled questions from one to five. Since they cause

the greatest inconvenience for survey takers, the number of text response questions

was limited, and typically they were used in situations where the respondents could

optionally provide additional information. Questions where we wanted either a positive

or negative response were posted on a range to give a more nuanced view of the evalu-

ators’ opinions. Finally, questions about the usage of commit messages had preloaded

answers from which respondents could select any number of responses. All evaluators

who took the survey received an account, so that they could stop at any time and

return later to finish it at their convenience. Although the survey was designed to take

36



about 20 to 30 minutes to complete, since the judgements on the commit messages and

their summaries could get tedious, the questions about the general usage of commit

messages was placed first so respondents would at the very least complete this section.

This also served the purpose of getting them to think about commit messages and

their usage before making judgements on the quality of actual commit messages and

the extracted summaries.

The commit messages used in this survey were randomly selected from the

software repositories of the 9 Java projects discussed in the previous section. In total,

there were 10 commit messages and summaries presented to each evaluator from Group

1, and 10 commit messages from Group 2. For each commit message in the two groups,

the message was presented to 3 di↵erent respondents. By having multiple evaluators

for each commit message, we strengthen the judgements on the quality of the commit

messages and extracted results as it allows us to obtain majority opinions for each of

the commit messages.

5.3 Refining and Testing the survey

After building an initial framework for the survey in 2012, we went through

a process of improving the content, scope, and clarity of the survey before properly

launching it. After a draft of the online survey and database had been tested for

correctness, a student from the University of Delaware was asked to complete the

survey and provide commentary on the clarity of the presentation and mention of

any bias or misleading terms in the questions. Additionally, the survey content was

examined by Je↵ Carver, an empirically-based software engineering researcher at the

University of Alabama, who o↵ered feedback on the style and content of the questions

that were being asked. Finally, in the week before the survey was launched, several

more students were asked to complete the survey in a trial run and their answers were

monitored to ensure that they were understanding the questions correctly. Once this

was completed, the survey was released to the rest of the correspondents.

37



5.4 Targeted Demographics

The survey was targeted at people who had experience working with software

repositories and software projects in a team environment. Therefore, we targeted both

software developers as well as undergraduate and graduate students at the University

of Delaware with experience working with software repositories. Je↵ Carver assisted

us in getting into contact with some software developers. The students chosen had

completed at least one course in software engineering. These courses simulate working

in software development teams, requiring students to work in groups to create a sub-

stantial software project. In each of these projects, the students had to use a software

repository to manage their projects, which included the use of commits and commit

messages as a form of documentation. The list of students asked for this survey was

obtained with the assistance of Professor Terry Harvey.

5.5 Results

After running our survey for approximately two weeks from the end of January to

early February 2013, we received a total of 26 responses, with 18 individuals completing

the whole survey. Every respondent completed the first section of the survey, but there

were varying degrees of completion of the last two sections. In total, respondents looked

at 90 commit messages in group 1, and 90 commit messages in group 2. Respondents

were asked to state their current position(s), and since their was some overlap, 18

identified as undergraduates, 3 as graduate students, 8 as being in the workforce as

developers/software engineers, a 1 computer science graduate not currently working as

a developer. Of these correspondents, 16 listed their experience as less than 5 years, 9

as having 5 to 10 years, and 1 with 10 to 15 years experience as a developer.

5.5.1 Purposes for Reading and Writing Commit Messages

First and foremost is the question: How relevant are commit messages as a form

of documentation? If commit messages are not used by developers, then it would not

be useful to attempt to automatically generate them. These results of this question

38



Figure 5.1: Frequency of Reading Commit Messages

are presented in Figure 5.1. Notably, all respondents to the survey answered that

they at least occasionally read commit messages. The distribution of answers skews

toward reading commit messages infrequently, but a significant component read commit

messages always or at least frequently.

Survey respondents said that they most often read commit messages to get the

intent of the changes, while seeking to understand the commit’s purpose in the larger

context of the program is an important, if secondary goal. The results of the survey

suggested error tracking is also a use for commit messages, with 65.4% of respondents

saying they read commit messages in this scenario. Here are some survey comments

to that a↵ect:

• ”Usually, I read commit messages and use vimdi↵ to isolate di↵erences in code
such as bugs. I usually want to isolate some module that didn’t work properly
and go back to a version before it was implemented for comparison.”

• ”If after updating, function A no longer works, I want the commit messages to
tell me what functions they edited so I can find the commit that broke function
A.”

39



While all but one of the respondents thought a short summary of the changes

made were important, only 42.3% thought commit messages should be explicitly re-

lated to a project goal, and 26.9% thought that important to include information on

how the changes were implemented. Therefore, any method for summarizing code

changes to create a commit message should avoid outputting too low level of an ex-

planation. Additionally, it seems that better commit messages avoid putting in too

much higher level content, such as relating the change to project goals. For example,

one respondent said the following, suggesting that such information is better suited to

other forms of documentation: ”When working on a team, goals should have already

been communicated and I don’t like reading an essay on what I already know. I much

rather prefer a short but thorough description on what was changed, and if I don’t

understand a change I investigate it further, and as a last resort I contact the person

directly.”

The information respondents reported including in their personal commit mes-

sages matches what they want while reading them fairly closely. 92% of respondents

identified explaining what changed in the commit as an important goal when writ-

ing messages, as opposed to 34% who said explaining the implementation details as

important. Regarding this, one respondent said, ”Specific support would be in code

comments”, suggesting that the comments are the best place to explain implemen-

tation details. Approximately 58% said that they link the changes to project goals,

which is slightly higher than the number who found it useful while reading. Finally,

one comment mentioned, ”I also put in line numbers and file names when available.”

While this would be fairly easy to implement, these features are already available in

some repository implementations as additional information to the actual message.

5.5.2 Useful and Non-Useful Commit Messages

In order to determine whether a commit message is useful or not, we use a

majority opinion of the evaluators who looked at each message. As the usefulness of

a commit message is ranked from 1 to 5, for a single evaluator, a rank of 1 or 2 is

40



considered useless, while 3 or above is useful. If at least 2 evaluators ranked a message

as useful or useless, then it is considered as such, regardless of whether the message was

evaluated by 2 or all 3 people. Messages that received only one response, or had only

two evaluators who disagreed are considered as indeterminate and are not considered

in the counting.

Applying this metric, there were 115 commit messages with 2 or more evalu-

ators in agreement about the usefulness of the commit message out of a total of 180

commit messages presented. Of these, evaluators stated that 78 were useful and 35

were useless across both groups, giving a measure of 67.8% useful and 32.2% useless

commit messages across all the open source projects. However, there was significant

variance in the opinion of the usefulness of evaluated commit messages among respon-

dents. Figure 5.2 shows the di↵erences between the highest and lowest opinions of

all 124 commit messages with at least 2 evaluations. While complete disagreement

about the usefulness of a commit message was uncommon, in the most common case

the evaluators had moderate disagreement on how useful the commit message was -

a di↵erence of 2 on a 5 point scale. Therefore, while our results suggest that at best

about 2/3 of open source commit messages are useful, it is di�cult to be conclusive

as a di↵erent set of evaluators may have given di↵erent results. We are not sure what

factors may contribute to having a stricter standard of a useful commit message.

The data on useful and non-useful commits were also manually categorized into

groups to determine the overall purpose of the commit message and to see if there was

any correlation between the content of the message and its usefulness. These categories

were error fixes, refactoring, feature additional, feature removal, general modification,

updates to supporting materials (anything other than source code), and indeterminate

for commit messages whose category could not be identified. However, there was no

obvious correlation between category and usefulness. In the useless commit message

category, the most common categorization was indeterminate. These commit messages

were too vague to determine even a general idea of the commit’s purpose, including for

example, ”Next version”, ”Small changes”, etc. Otherwise, bug fix commits were most

41



Figure 5.2: Variation in Opinion on Commit Message Usefulness

common in the useful commits and second most common in the useless commits, but

no trend was significant enough to draw a positive conclusion.

5.5.3 Appropriateness of Verb-Direct Object Summarization for Commit

Messages

The histograms in Figures 5.3, 5.4, 5.5, 5.5 detail the average responses to

the four questions we asked correspondents about how well the technique of verb-

direct object summarization maintains the meaning of the original commit message.

The graphs measure the average opinion for these questions on each pair of commit

message and extracted summary from the set of respondents who rated the original

commit message in that pair useful.

The evaluators comments and ratings on the e↵ectiveness of the verb-direct

object summarization technique suggest that it is not appropriate as a summarization

technique for commit messages. The evaluators gave the overall technique only slightly

above 3 on average, meaning that it only somewhat maintained the information in

42



Figure 5.3: Distribution of average opinion among evaluators for each commit mes-
sage to the question: ”Overall, do the extracted clauses convey the main
action(s) portrayed by the commit message?”. The responses range from
1 - ”Not at all” to 5 - ”Completely”.

43



Figure 5.4: Distribution of average opinion among evaluators for each commit mes-
sage to the question: ”Does the summary created by the extracted clauses
contain misleading information?”. The responses range from 1 - ”Very
Misleading” to 5 - ”Not Misleading”.

44



Figure 5.5: Distribution of average opinion among evaluators for each commit mes-
sage to the question: ”Do the extracted clauses contain unnecessary in-
formation?”. The responses range from 1- ”A lot of unnecessary infor-
mation” to 5- ”No unnecessary information”

45



Figure 5.6: Distribution of average opinion among evaluators for each commit mes-
sage to the question: ”Does the extracted summary leave out any impor-
tant information?”. The responses range from 1- ”Missing a lot” to 5 -
”No information missing”

46



the original commit message. Additionally, on average, respondents believed that the

summaries were somewhat misleading, and in some cases, as shown in Figure 5.4, it

did very poorly.

The problem was not that the extracted phrases contained too much informa-

tion, but instead that they were lacking information. Figure 5.6 shows their ratings

on how much information each commit message left out. Disregarding examples where

the technique created a distorted summary due to incorrect tagging, the extracted

phrases usually missed out on identifying where a change took place. This information

is not contained in the verb or its direct object. One of the most clear examples of

this is the commit message: ”Added minimum size to EditPreferencesDialog” and the

extracted phrase: ”Added minimum size - ”. Here, the change is mentioned, but there

is a loss of context to where the change is occurring. Also, the location mentioned may

not be a file or method, but also could be a location within the application: ”search

button added to tool bar”. We observed that this information is typically found in

prepositional phrases, which were not included in the extraction technique’s model.

In English, prepositional phrases are used to modify nouns or verbs, restricting their

scope. Although we must be cautious about our claims due to the small data set, it

seems that these phrases are often used to identify where a change has taken place.

5.5.4 Usefulness of Commit Messages without Verb Phrases

Since the size of the data set here is very small, we can only make observations,

but our respondents seem to suggest that a commit message must at least have an

implied verb phrase in order to be useful. After separating out the group 2 commit

messages that had been tagged improperly, among the commit messages with no verb

phrase still identified as useful, we saw two cases. First, the verb was not explicitly

mentioned, but it could be implicitly understood from the context of the commit

message. In these cases, the implied verb was typically either some form of addition or

removal, for example, ”A new edit mode, minor abbrev tweak” or ”No more JAXB”.

In other cases, we observed the verb was hidden in the form of a noun phrase. The

47



word ’cleanup’ in this example message shows this behavior: ”Misc minor build script

cleanup”. Finally, as one respondent mentioned, ”If there is no action, then the commit

message isn’t useful... Then the code didn’t change...”. While it seems that commit

messages without an explicit verb can sometimes be useful, for the purposes of an

automated natural language tool, the most straightforward approach would be to keep

the verb explicit.

5.6 Implications for Automated Tool Output

In Buse and Weimer’s paper on DeltaDoc they describe commit messages as

generally having one or two types of information, what and why. What information

summarizes the actual changes made, and why information explains the rationale for

making the change. They say that extracting high level why information from the code

is often di�cult, and instead focus on extracting what information [5]. Our survey

results suggest that the information users of software repositories most want is in fact

the what information, with why information being a useful, if secondary goal. However,

the survey results also suggest that what is least desired is how information. This

distinction is subtle, but how information details the implementation of the change,

and is perhaps too low level to be appropriate in a commit message. Therefore, the

concern with any tool generating commit messages from code is to avoid outputting

information about how the code changed, and instead obtaining a greater level of

abstraction provided by what information.

Therefore, combining these insights with the developer comments on our verb-

direct object extraction technique, we can build a preliminary model of a natural

language output for commit messages. There are six questions that are standardly

asked about any situation: who, what, when, where, why, and how. In the case of

a commit message, we can disregard who and when information as they are already

part of the commit message’s meta information. Why information is useful, but as a

secondary goal. Since it is a di�cult to produce, it is not appropriate to develop for an

initial tool. What information should be the primary goal of the commit message, but

48



any automated tool generating commit messages should be careful to abstract the code

changes enough not to produce how information instead. If the message becomes too

descriptive in implementation of the change, it is not as useful to readers. Comparing to

how actual commit messages are written, it seems that what information is summarized

well by the verb-direct object model we examined in this chapter. Finally, the message

should also include where change takes place. Fortunately, in simple cases, this can

be added easily by including the name of the package, file, and method in which the

change takes place. In more complex cases, location information may also be a feature

or part of the running application, which falls under the field of feature location. Either

way, when modeling human written commit messages, where information seems most

appropriately represented in the form of a prepositional phrase. Finally, since commits

sometimes represent more than one change to the repository, each of these changes

should be represented with a di↵erent sentence. This will help readers distinguish

individual changes from each other, and since the scope of change in commits are

typically small, this method will not usually be too verbose.

5.7 Summary of Properties of Well-Written Commit Messages

Pulling from the results of the survey and manually examining the 180 evaluated

commit messages, we can speculate on some properties that contribute to a good

commits and commit messages. While the size of the commit might vary, it should

be possible to describe the changes made in a few sentences. If the changes cannot

be adequately summarized into a few discrete ideas to describe what changed, perhaps

the commit is too large and should have been divided into smaller commits. It also

seems important for readers of commit messages to be easily able to identify what

type of change occurred in the commit, but using the type of change alone is likely

insu�cient. The general type of change described should be related to the specifics

in the application. This includes information about the location of the changes, but

also more details about the type of change than just a general category. For instance,

writing that a bug was fixed does described what changed, but saying what kind of

49



bug it was and what areas of the program were a↵ected seems to be more useful for

other developers who may not be familiar with the a↵ected code.

5.8 Limitations and Future Work

The validity of judgements about the usefulness of commit messages is one

potential limitation of this study. Opinions about commit message usefulness will

likely vary depending on the audience. Those familiar with the source code a↵ected

will likely require less information in order for the message to be useful. However, as

mentioned in Chapter 4, research shows that even in a open source environments not all

developers will work in the same area of a large project [4]. For automated messages, it

would be better to output information that will be useful to a larger audience so long

as the message does not become too verbose. Our evaluators might be giving a stricter

evaluation of commit message usefulness because they are unfamiliar with the context

of the changes and may need more information to claim a message is useful. However,

if our evaluators believe that the message is useful, it is likely to be useful to those

more familiar with the project. Nevertheless, their lack of specific knowledge about

the projects does prevent them from being able to give accurate judgements about the

contextual usefulness of the message. Therefore, their opinions about the usefulness

of the commit messages should be taken as a judgement about whether the messages

contain the right kinds of information with the appropriate level of detail based on

their own experience working in team software projects.

Another limitation on our survey is that the respondent demographic were

largely made up of undergraduate students, only a few of which had worked as ac-

tual developers. However, this is mitigated by the fact that all students asked have

already used software repositories while working on team projects that simulate soft-

ware development. Also, since not everyone finished the survey, some of the commit

messages examined did not have 3 opinions on their usefulness and the quality of their

summaries. However, there were enough complete responses to draw conclusions from

the data. Finally, since the overall set of the data is small, we are cautious about our

50



conclusions, and as such they are intended to be suggestions for a preliminary model

of an automated commit message generating tool.

Ideally, the results of this survey could be used to develop a larger survey on a

more diverse group to obtain a better idea of the standards and practices of developer-

written commit messages. Additionally, it might be useful to have perform a survey

where software engineering students judge the usefulness of commit messages from their

own projects. This would permit questions about the usefulness of commit messages

within the context of the projects themselves. Though the standards used on the

project would di↵er somewhat from open source projects, using student projects would

be more feasible than trying to contact developers of specific open source projects for

opinions about the usefulness of their own documentation.

51



Chapter 6

INDEPENDENT ANALYSIS OF DELTADOC

Among available techniques for measuring program change, DeltaDoc’s [5] out-

put is the closest to modeling actual commit messages. Unlike other methods men-

tioned in Chapter 3, it generates output intended to supplement developer written

commit messages. However, the output seems to resemble pseudocode and they ap-

ply only a minimal amount of natural language transformations. It does not resemble

developer written commit messages. Raymond Buse, one of the creators of the algo-

rithm has made a distribution of the source code available. Therefore, we performed

an independent analysis of the source and its functionality to answer the following

questions:

• How does the distribution of DeltaDoc compare with the algorithm described in
the paper?

• How well does DeltaDoc summarize source code changes compare to the raw
UNIX di↵ in regards to correctness and conciseness?

• Based on the results from our survey, does DeltaDoc output compare with the
content and scope that users of software repositories want in a commit message?

• Is DeltaDoc a good platform to extend to achieve the kinds of commit messages
developers desire? Can its output be enhanced using natural language processing
techniques?

6.1 Overview of DeltaDoc

The DeltaDoc distribution was initially designed to take 2 Java source code

files and output a summary of the di↵erences of the files by using path predicates. It

has a few di↵erent options for output display, but for the purposes of this study, we

only consider the default plain text output intended to approximate textual commit

52



messages. DeltaDoc requires Java 7 to run, and uses the Eclipse Abstract Syntax

Tree (AST) Parser to extract and represent information in the source code. ASTs are

data structures representing the syntactic components of source code, such as loops,

conditionals, and variable declarations. They are simplified representations of the

actual source code, and are commonly used for program analysis.

6.2 Test Inputs

We used two sets of input to test the functioning and output of DeltaDoc.

One set consisted of 4 pairs of manually created Java files. Each pair was designed

to test di↵erent parts of the output described in the DeltaDoc paper. The second

set of inputs, 57 in total, came from Java source code files extracted from the open

source projects JFreechart, Atunes, DrJava, and Phex. These commits were chosen

arbitrarily from the projects, although there were some limitations on which files we

were able to extract. For instance, when we tried to extract commits from early in

the project’s development on some repositories, svn was unable to locate and export

the files in the commits. Then, these source code files were altered by a preprocessing

script to remove structures in the code that DeltaDoc was unable to handle. These

structures, and the method for handling them, are described in the section ”Input and

Performance Limitations of DeltaDoc”.

6.3 Comparing Distribution to Documentation

Although we used the DeltaDoc paper as a guide for using the distribution,

we double checked the source code and the inputs and outputs to see how closely the

distribution matched what was described in the paper.

6.3.1 Brief Source Code Review

The code of the DeltaDoc algorithm seems to follow what is described in the

paper somewhat closely, although there are some di↵erences. The program takes two

Java source code files as input. Then the Eclipse AST parser is run on each file to

create a syntax tree for the file’s source code. The parser separates out the classes,

53



methods, and variables in the file, and di↵erent types of code structure are tagged and

put into the tree. Once the tree is built, DeltaDoc does a symbolic execution of the

code to build the control flow graphs and path predicates for each method in the files.

After the setup stage, the algorithm begins to calculate the di↵erences between

the two files. However, the first stage is a filtering of relevant statements from irrele-

vant statements. Statements that are considered relevant by the algorithm are return

statements - which contain the result of the called method, error throwing statements,

and method invocation statements. These filters are fairly close to those described in

the paper, although the paper suggests they added a filter to remove accessor methods,

i.e. ”methods of the form get[Field]()” [5]. After the filters have been applied, Delta-

Doc begins searching for di↵erences between the files. This process starts at the class

level and proceeds inwards towards methods and then finally program statements. At

the highest level, added and removed classes are documented, then modified classes are

examined. Within the modified classes, added and removed attributes and methods

are documented, and then modified methods are examined. When comparing rele-

vant statements inside the method, DeltaDoc uses the generated path predicates to

determine how to classify the statement. The four possibilities are listed below:

1. If there is a statement in the new version no longer reachable by any path, it is
classified as removed.

2. If there is a statement in the new version that was not reachable by any path in
the old version, it is classified as added.

3. If there is a program path that leads to a statement that it did not previously, it
is associated with output of the form ”If X Do Y instead of Z” statement.

4. If there is a statement that is only reached from paths di↵erent than it used
to be, it is associated with output of the form ”If X Do Y instead of When Z”
statement.

After computing the di↵erences between the two files, DeltaDoc converts them to

a series of formatting objects. These objects are used for formatting the output and for

applying further summarization. Specifically, the type of summarization being applied

finds and removes shared subexpressions within the path predicates. This process of

54



removing common subexpressions and simplifying is only one of the summarizations

mentioned in the DeltaDoc paper. The previously mentioned statement also reduces

the length of the output. In fact, regarding the e↵ectiveness of these summarizations,

Buse and Wiemer’s own study found that filtering what statements were relevant gave

by far the largest reductions in size [5]. However, we did not find that the final summary

transformation described in the paper was being applied to the output. In the paper,

when the output was longer than 10 lines, a more general summarization was applied;

it listed only key statements to give a general sense of the a↵ected code areas. We

did not see this final summarization being performed for the output in the provided

distribution.

6.3.2 Input and Performance Limitations of DeltaDoc

When running the DeltaDoc code, the initial phase performed by the AST

parser at first crashed on virtually all input from actual open source projects, including

files from commits that were explicitly mentioned as being tested in the DeltaDoc

paper. For example, the program did not first complete on the files from JFreechart’s

revision 1155 to 1556, which was used as an example in the paper[5]. The problem

was that certain types of Java code structures were unable to be interpreted by the

program. Upon contacting Raymond Buse about this issue, he confirmed that the

provided version of DeltaDoc was later extended, although that implementation was

not being provided. Therefore, in order to handle these structures and run DeltaDoc,

a small program was written to remove these structures from the program. In the

case of statements that did not a↵ect control flow, the statements were changed into

comments. In the case of problematic content in statements that do a↵ect control flow,

the content was replaced instead. For ’if’ statements, since DeltaDoc would be unable

to interpret the content of the statement anyway, the ’if’ statement was changed to

always resolve as false, and hence the control flow path would be cut short. The set of

statements that the DeltaDoc distribution did not parse included:

• Bitwise operators such as ”>>”, ”|”, ”ˆ”, and ”&”

55



• The ”?” operator, used to express conditionals concisely

• ”Do while” loops.

• Calls to superclasses.

• Any line referencing the .class object

This list was gathered experimentally, and is not intended to be a complete list

of all Java structures the distribution is unable to parse.

Secondly, while running Deltadoc, we discovered performance issues on some

forms of input. In the DeltaDoc paper, it is was mentioned that the program typically

finishes each set of inputs within a few seconds. However, the authors did note that

since their algorithm uses symbolic execution to generate path predicates, it is po-

tentially exponential [5]. We observed that in many cases, including all the manually

created test files, DeltaDoc completed within a few seconds. However, in some cases,

the program performance was poor. Some file pairs extracted from JFreeChart took

several hours to be processed by DeltaDoc. PiePlot.java, for example, which changed

between revision 132 to 133, had to be left running overnight before it completed. By

examining debug output, we were able to confirm that this slowdown was the result of

large numbers of control flow paths (over 10000 in one method) being explored during

symbolic execution, and also from the time necessary to compute the di↵erences and

summarize them in. In the case of PiePlot.java, the path predicates that were being

summarized were several pages long. Comparatively, predicate generation completed

faster than the process of summarizing the output. It is uncertain if these slowdown

issues are the result of poor implementation and can be fixed, or if they are potentially

a problem with any implementation of summarization based on path predicates and

symbolic execution.

6.4 Comparing DeltaDoc Output to Di↵ Output

For convenience in comparing DeltaDoc output to the file di↵ output, we di-

vided DeltaDoc output into three categories: no change found, change but no modified

56



methods, and change inside methods. The first category of output is produced when

DeltaDoc deems that there is no significant change to the file, output as ”[No Appre-

ciable Change]”. 22 out of the 57 test cases fell in this category. We observed several

di↵erent cases in the di↵ files when this occurred. In a few cases, this was because

the preprocessing script had commented out the changed lines. Nevertheless, the dis-

tribution of DeltaDoc would not be able to handle these anyway. In the other cases,

we observed that DeltaDoc identified no change when there were changes to modifiers

in variables (public/private, or final), changes to the human written comments in the

source code, and changes to import statements at the top of the file.

Additionally, DeltaDoc did not document changes to local variable assignments,

which are described as being left out in the DeltaDoc paper [5]. For instance, DeltaDoc

did not document a line ”boolean isAdded = trackedAddresses.add( address );” which

changed to ”boolean isAdded = trackedAddresses.add(pong.getPongAddress());”. In

another case, DeltaDoc did not report changes in object type used in the file. For in-

stance, an object had its type changed from ”DefaultDestAddress” to ”DestAddress”.

Additionally, there where some other cases were DeltaDoc left out changes in variable

assignment, such as when ”caughtHostsContainer = new CaughtHostsContainer();”

changed to ”caughtHostsContainer = new CaughtHostsContainer(hostFetchingStrategy);”.

While the paper mentions changes to methods as important to the algorithm [5], per-

haps constructors are considered di↵erently from other method invocations.

In the remaining 35 cases where DeltaDoc did report change within the code,

we divided them into cases where DeltaDoc produced path predicate outputs and

cases where it did not. The path predicate summaries were used only in cases where

DeltaDoc identified statements changing within methods. 19 of these outputs had no

path predicate output and the other 16 did. Disregarding 4 cases where the predicates

had been clearly generated incorrectly, the median length of the DeltaDoc output was

8 lines versus the median di↵ output which was 28 lines, so DeltaDoc does give a more

concise summary of the changes to the file on average.

Finally, we give a few comments on the structure of output in these cases. In

57



the case without file predicates, DeltaDoc’s performance was accurate; it correctly

identified removed and added fields and methods in the file. Cases where DeltaDoc

failed to document all changes fell into the set of examples described in the no change

case. When documenting changes within methods, DeltaDoc’s path predicate output

exhibited few oddities. First, the output often described the change in terms of a

conditional if statement, even when this was unnecessary. The following output is a

good example:

when calling AboutDialog

if TRUE

instead of

setSize(500, 400)

do

getRootPane().setDefaultButton( okButton)

setSize(550, 400)

From examining the di↵ output and actual files, we found no conditional state-

ment surrounding these statements within the method. It seems that DeltaDoc some-

times defaults to describing change in terms of an ’if’ statement, even if there was no

such statements in the original method being summarized.

Additionally, while DeltaDoc usually identified what changed correctly, it did

not always output the changed statement in the correct form. On one of the manu-

ally created test cases, it reversed the meaning of a boolean expression from ”return

subfunctionZ() >= test;” to ”return test >= subfunctionZ();” Other than examples of

this type, the observed output of the predicates behaved as described, giving a more

concise summary than the di↵ output.

58



6.4.1 Comparing DeltaDoc Output to the Survey Results

Recall in Chapter 5 that software repository users who responded to our survey

indicated that the information most desired in commit messages is what changed as

opposed to how the change was implemented. In the DeltaDoc paper, the stated

goal of DeltaDoc is to display this what information as opposed the higher level why

information [5]. However, no distinction was made in the paper between what and

how information. The di↵erence between the two is the level of abstraction, with what

information being a overview not considered with local implementation specifics. The

concern is that if DeltaDoc output is too low level, it will not capture the desired level

of abstraction in a commit message.

In the case of small changes of only a few lines, it is di�cult to divorce the

implementation of how something changed from describing what changed and in these

cases DeltaDoc output is better suited to describing the change. But when many

statements change, listing path predicates seems to be too closely tied to the code,

requiring either good knowledge of the code within the file or requiring the reader to

read the files in addition to the output. Buse and Weimer try to address larger scale

changes with higher level summarizations in their paper, which forgo path predicates

to list changes in invocations, returns, etc. [5]. Unfortunately, this summarization

technique was not seen in this distribution, and regardless is not always applicable to

longer output, such as when large numbers of methods are added as in the example

below:

ImportToRepositoryAction

added field : IRepositoryHandler repositoryHandler

added field : IErrorDialogFactory errorDialogFactory

added field : IFrame frame

added field : IMultiFolderSelectionDialogFactory multiFolderSelectionDialogFactory

added field : ILookAndFeelManager lookAndFeelManager

added method : executeAction

59



added method : setRepositoryHandler

added method : setErrorDialogFactory

added method : setMultiFolderSelectionDialogFactory

added method : setFrame

added method : setLookAndFeelManager

removed method : actionPerformed

Finally, in regards to identifying where information, DeltaDoc does identify

a↵ected classes, fields, and methods. Since DeltaDoc only operates between two files,

it is not necessary for it to output location information at a larger scope. While

simple to include, our survey results indicated information of this sort was important

to include in commit messages. However, no attempts were made to relate the path

predicates or changed fields to a particular aspect or feature of the application.

6.4.2 Conclusions and Capacity for Extension

As a whole, this distribution of DeltaDoc seems to be too problematic for prac-

tice. Some of the summarization capabilities described in the paper weren’t used, and

we experienced many bugs while trying to run the tool. While the range of accept-

able inputs was limited, that part was relatively easy to handle. However even if the

program worked correctly, the potential of exponential time performance suggests that

this method of documenting change may not be appropriate for documenting changes

at the level of a commit. Commits typically only modify a few files, and its unclear

if it is necessary to generate large path predicates with symbolic execution in order to

document changes of this size.

However, if the output of DeltaDoc can be generated without bugs and the

performance issues are not a problem, the output can be improved with natural lan-

guage processing techniques. For instance, path predicates can be long and di�cult

to interpret for developers not familiar with the code in a particular file. Consider the

60



following output from DeltaDoc:

when calling fromOtherViews

if TRUE

do

indeterminateProgressDialogFactory.newDialog(frame,

lookAndFeelManager).setTitle(I18nUtils.getString(”PLEASE WAIT”))

new DeleteFilesWorker(indeterminateProgressDialogFactory.newDialog(frame,

lookAndFeelManager), new LocalAudioObjectFilter().getLocalAudioObjects(

navigationHandler.getFilesSelectedInNavigator())).execute()

instead of

new DeleteFilesWorker(new LocalAudioObjectFilter().getLocalAudioObjects(

navigationHandler.getFilesSelectedInNavigator())).execute()

Using this output as an example, we demonstrate cases where extracting nat-

ural language could significantly improve the readability of the output. The method

developed by Sridhara et al. to create natural language summaries for code statements

could be applied here [29].

Likewise, it is questionable if DeltaDoc’s method of merely giving method names

that have been added and removed is appropriate for describing the level of change

in the added code. Information extracted from their associated Javadoc comments or

generated from statements within the code [29] might be more e↵ective in explaining the

change to all the potential audiences of a commit message, not just the few developers

intimately familiar with the code in that particular file. Finally, when many fields and

methods are added or removed, simply listing them seems to be tied too closely to

implementation. If we extracted words and phrases from these methods, identifying

patterns would enable a more concise and abstract summary to be written.

61



6.5 Threats to Validity and Future Work

This observational study is intended to be a cursory examination of DeltaDoc

and its output. As such, its conclusions should be considered only a starting point.

However, the di�culties of using this distribution of DeltaDoc make it di�cult to

do further studies without significant work. However, if we were to more definitively

classify the qualities of the output, including whether it focuses too much on im-

plementation level information, a formal study with independent evaluators could be

performed. Likewise, the performance issues mentioned were only observed in practice

and not measured systematically. Anyone looking to use DeltaDoc should consider

experimenting to determine what situations in code are correlated with exceptionally

long run times, and evaluate how frequently these situations occur.

62



Chapter 7

CONCLUSIONS AND FUTURE WORK

When making changes to software, developers spend more time trying to un-

derstand code rather than implementing changes. Critical to assisting developers in

understanding code is human-written documentation. Unfortunately, in many contexts

the documentation is not as good as it could be. Therefore, if linguistic information

can be extracted from code and presented as documentation, it provide support for

developers when in cases where documentation is lacking.

Commit messages are a type of documentation closely tied to changes in soft-

ware. While work has been done on both extracting information about changes between

software versions and on parsing linguistic information from static versions of source

code, relatively little has been done in combining the two areas. While one program,

DeltaDoc [5] attempts to generate commit messages, they apply relatively little in the

way of natural language transformations to their output.

7.1 Conclusions

In this Thesis, we sought to create a grounding for what output would be most

appropriate for mimicking developer-written commit messages. We first performed an

observational study of commits and their associated messages in open source projects

to examine their linguistic and non linguistic properties. We found that commits were

typically modifications of no more than a few code files and that commit messages

were typically only a few lines in length and usually not more than 25 words long.

Linguistically, verb, noun and prepositional phrases dominated the commit messages.

We also extracted verbs and their associated direct objects from these commit

messages and presented this as a preliminary model of output to users of software

63



repositories. While we found that commit messages were read at least infrequently

by all survey respondents, the method of verb-direct object summarization was often

misleading and left out important information. It would leave out the context of where

in the code the changes occurred. By observation, we discovered that this information

was often located in prepositional phrases, which had not been included in the original

model. Additionally, we found that users generally preferred that implementation

details be left out of commit messages. On the other hand, we also found that higher

levels of abstraction in commit messages, such as relation to project goals, should at

best be supplemental information to a concise summary of what changed. Evaluators

also rated the usefulness of existing commit messages and found about two thirds of

them useful, although they often disagreed on how useful a commit message was.

Finally, we performed an independent evaluation on a distribution of DeltaDoc

[5]. We found this distribution di�cult to use on code extracted from actual open source

projects, and it deviated somewhat from what was described in the paper. It required

additional preprocessing scripts to remove certain unsupported code structures, and in

some cases we saw very poor time performance. However, if a more stable distribution

of DeltaDoc was used and underlying concerns about the potentially exponential per-

formance of the algorithm can be addressed, then DeltaDoc’s output can be extended

with existing natural language techniques to improve the readability of the output.

7.2 Future work

As this Thesis establishes a target for potential commit message output using

verb, noun, and prepositional phrases, the next step would be to begin developing

an initial version of a tool to produce this output. This could proceed one of two

ways. One approach would be to debug DeltaDoc and try to limit performance errors

so that the distribution models the behavior described in the paper more accurately.

Then techniques developed in SWUM [14] and Javadoc comment generation [29] could

be used to improve the output readability. Or, these linguistic models of word use

in source code could instead be used as a starting point instead. Output could be

64



generated based on finding changes in the model from version to version. Either way,

the output from this process should be presented to a larger set of evaluators and

compared with existing commit messages, di↵ output, and potentially with DeltaDoc

output as well. Further changes and refinements to the model would depend on the

results of this evaluation. Ideally, this would eventually become a basis for a tool or

add-on to repository software to generate commit messages in order to supplement

existing developer written messages.

65



BIBLIOGRAPHY

[1] S.L. Abebe and P. Tonella. Natural language parsing of program element names
for concept extraction. In Program Comprehension (ICPC), 2010 IEEE 18th In-
ternational Conference on, pages 156–159, 2010.

[2] Juan Jose Amor, Gregorio Robles, Jesus M. Gonzalez-barahona, and Alvaro
Navarro. Discriminating development activities in versioning systems: A case
study ?, 2006.

[3] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. Jdi↵: A
di↵erencing technique and tool for object-oriented programs. Automated Software
Engg., 14(1):3–36, March 2007.

[4] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar
Devanbu. Latent social structure in open source projects. In Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of software engi-
neering, SIGSOFT ’08/FSE-16, pages 24–35, New York, NY, USA, 2008. ACM.

[5] Raymond P.L. Buse and Westley R. Weimer. Automatically documenting program
changes. In Proceedings of the IEEE/ACM international conference on Automated
software engineering, ASE ’10, pages 33–42, New York, NY, USA, 2010. ACM.

[6] M. D’Ambros. Commit 2.0: enriching commit comments with visualization. In
Software Engineering, 2010 ACM/IEEE 32nd International Conference on, vol-
ume 2, pages 529 –530, may 2010.

[7] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira. A study
of the documentation essential to software maintenance. In Proceedings of the
23rd annual international conference on Design of communication: documenting
& designing for pervasive information, SIGDOC ’05, pages 68–75, New York, NY,
USA, 2005. ACM.

[8] Natalia Dragan, Michael L. Collard, Maen Hammad, and Jonathan I. Maletic.
Using stereotypes to help characterize commits. In Proceedings of the 2011 27th
IEEE International Conference on Software Maintenance, ICSM ’11, pages 520–
523, Washington, DC, USA, 2011. IEEE Computer Society.

[9] Natalia Dragan, Michael L. Collard, and Jonathan I. Maletic. Reverse engineering
method stereotypes, 2006.

66



[10] Natalia Dragan, Michael L. Collard, and Jonathan I. Maletic. Using method
stereotype distribution as a signature descriptor for software systems. In 25th
IEEE International Conference on Software Maintenance (ICSM 2009), Septem-
ber 20-26, 2009, Edmonton, Alberta, Canada, pages 567–570. IEEE, 2009.

[11] Isabel Drost, Grant Ingersoll, Benson Margulies, Thilo Goetz, Jrn Kottmann,
Jason Baldridge, James Kosin, Thomas Morton, William Silva, Boris Galitsky,
and Aliaksandr Autayeu. Apache opennlp.

[12] Robert L. Glass. Frequently forgotten fundamental facts about software engineer-
ing. IEEE Softw., 18(3):112–111, May 2001.

[13] L.P. Hattori and M. Lanza. On the nature of commits. In Automated Software
Engineering - Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM Inter-
national Conference on, pages 63 –71, sept. 2008.

[14] Emily Hill. Integrating natural language and program structure information to
improve software search and exploration. PhD thesis, University of Delaware,
Newark, DE, USA, 2010. AAI3423409.

[15] A. Hindle, D.M. German, M.W. Godfrey, and R.C. Holt. Automatic classication
of large changes into maintenance categories. In Program Comprehension, 2009.
ICPC ’09. IEEE 17th International Conference on, pages 30 –39, may 2009.

[16] Susan Horwitz. Identifying the semantic and textual di↵erences between two
versions of a program. In Proceedings of the ACM SIGPLAN 90 Conference on
Programming Language Design and Implementation, pages 234–245, 1990.

[17] IEEE. International standard - iso/iec 14764 ieee std 14764-2006 software engineer-
ing 2013; software life cycle processes 2013; maintenance. ISO/IEC 14764:2006
(E) IEEE Std 14764-2006 Revision of IEEE Std 1219-1998), pages 1–46, 2006.

[18] D. Jackson and D.A. Ladd. Semantic di↵: a tool for summarizing the e↵ects of
modifications. In Software Maintenance, 1994. Proceedings., International Con-
ference on, pages 243 –252, sep 1994.

[19] Mik Kersten. Focusing knowledge work with task context. PhD thesis, University
of British Columbia, Vancouver, BC, Canada, 2007.

[20] M. Lanza, L. Hattori, and A. Guzzi. Supporting collaboration awareness with real-
time visualization of development activity. In Software Maintenance and Reengi-
neering (CSMR), 2010 14th European Conference on, pages 202 –211, march 2010.

[21] J.I. Maletic and M.L. Collard. Supporting source code di↵erence analysis. In
Software Maintenance, 2004. Proceedings. 20th IEEE International Conference
on, pages 210 – 219, sept. 2004.

67



[22] Lori Pollock, Vijay Shanker, David Shepherd, Emily Hill, Zachary Fry, and
Kishen Maloor. Introducing natural language program analysis. In In 7th ACM
SIGPLAN-SIGSOFT Workshop of Program Analysis for Software Tools and En-
gineering, June 2007.

[23] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley.
Chianti: A tool for change impact analysis of java programs. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 432–
448. ACM Press, 2004.

[24] Romain Robbes, Michele Lanza, and Mircea Lungu. An approach to software
evolution based on semantic change. In Proceedings of the 10th international
conference on Fundamental approaches to software engineering, FASE’07, pages
27–41, Berlin, Heidelberg, 2007. Springer-Verlag.

[25] Martin P. Robillard and Gail C. Murphy. Representing concerns in source code.
ACM Trans. Softw. Eng. Methodol., 16(1), February 2007.

[26] Beatrice Santori. Part-of-speech tagging guidelines for the penn treebank project
(3rd revision, 2nd printing), 1995.

[27] David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-Shanker.
Using natural language program analysis to locate and understand action-oriented
concerns. In Proceedings of the 6th international conference on Aspect-oriented
software development, AOSD ’07, pages 212–224, New York, NY, USA, 2007.
ACM.

[28] Sourceforge. http://sourceforge.net/, 2013.

[29] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-
Shanker. Towards automatically generating summary comments for java methods.
In Proceedings of the IEEE/ACM international conference on Automated software
engineering, ASE ’10, pages 43–52, New York, NY, USA, 2010. ACM.

[30] E. Burton Swanson. The dimensions of maintenance. In Proceedings of the 2nd
international conference on Software engineering, ICSE ’76, pages 492–497, Los
Alamitos, CA, USA, 1976. IEEE Computer Society Press.

[31] Zhenchang Xing and Eleni Stroulia. Umldi↵: an algorithm for object-oriented de-
sign di↵erencing. In Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, ASE ’05, pages 54–65, New York, NY, USA,
2005. ACM.

68



Appendix A

HUMAN OPINION SURVEY ON COMMIT MESSAGES AND
EXTRACTED SUMMARIES

The following appendix displays the instructions and questions asked in the on-

line survey in approximately the form they were display to the survey respondents.

Since the survey dynamically loaded commit messages and di↵erent questions depend-

ing on the respondents answers, only the questions are displayed.

A.1 Background:

Our current research goal is to identify an e↵ective way of representing commit

messages found in software repositories such as svn, with the ultimate goal of being

able to generate commit messages from code that meaningfully summarize information

developers would find useful. This purpose of this study is to determine if the approach

of extracting verb phrases from commit messages and pairing them with their direct

objects adequately retains the information found in a commit message.

A.2 Instructions:

Participation in this survey is completely voluntunary, and completing the sur-

vey should take approximately 20 to 30 minutes.

First, you will be asked several questions about your software engineering expe-

rience and general usage of commit messages. Then, you will be asked a few questions

about 20 commit messages, separated into 2 groups of 10. Group 1 includes mes-

sages that our tool summarized with a verb-direct object summary. Group 2 contains

messages that were not successfully summarized.

69



In order to keep your comments grouped together as a single user, you will be

asked to input a username and password before starting. If you do not finish the survey,

the results you have submitted will be saved and you may return later.

Finally, please note that once you submit your answers for a commit message,

you cannot go back and change them. Make sure your answers are what you intended

before submitting.

A.3 Overview

How many years of programming experience do you have?

1. 0-5 years

2. 5-10 years

3. 10-15 years

4. 15-20 years

5. over 20 years

How would you describe your current position:

1. Undergraduate student

2. Graduate student

3. Software Engineer

4. Developer

5. Professor

6. Other:

1. What sorts of information do you put in commit messages? (Select all that apply.)

• An explanation of how I implemented a change.

• An explanation of what changed in the code.

• An explanation of what features the changes intend to support.

• Other:

70



2. Do you read commit messages when working on a software project?

1 (Never) - 5 (Always)

3. Why do you read commit messages? (Select all that apply.)

• To confirm my correct understanding of the code changes.

• To get a higher level view of the changes.

• To get the intent/goal of the changes.

• Other:

4. Under what scenarios do you read commit messages? (Select all that apply.)

• When it is a commit message I wrote earlier, and I need a quick summary of
what I did.

• When I want a high-level view of what work is being accomplished.

• When I need to trace down a new error in the application.

• Other:

5. When working in a development team, what do you find most useful in commit
messages? (Select all that apply.)

• A short summary of the changes made.

• What project goal the changes are supporting.

• How the changes in this revision were implemented.

• Other:

A.4 Group 1

1. How useful is the commit message in conveying information about how the code

changed? (Without having to look at the code.)

1 (Not at all)-5 (Very useful):

if Question 1 has a response of 3, 4, or 5:

2a. Overall, do the extracted clauses convey the main action(s) portrayed by the

commit message?

71



1 (Not at all) - 5 (Completely)

3. Does the summary created by the extracted clauses contain misleading information?

1 (Very misleading) - 5 (Not misleading)

4. Do the extracted clauses contain unnecessary information?

1 (A lot of unnecessary information-5 (No unnecessary information)

5. Does the extracted summary leave out any important information?

1 (Missing a lot)-5 (No information missing)

5b: If information is missing explain:

if Question1 has response of 1 or 2:

2b. Please briefly explain why the original commit message does not contain useful

information:

A.5 Group 2

1. How useful is the original commit message in conveying information about how the

code changed? (Without having to look at the code.)

1 (Not at all)-5 (Very useful):

if Question 1 has a response of 3, 4, or 5:

2a. If the commit message contains at least one action, please enter what you believe

to be the main action of the message. Note that the action may be in the form of a

noun (e.g. Addition, other words ending in -tion, etc):

3. If there is no action, what do you think makes the commit message useful?

if Question1 has response of 1 or 2:

2b. Please briefly explain why the original commit message does not contain useful

information:

72



Appendix B

ADDITIONAL EXAMPLES

B.1 Commit Messages and their Extracted Summaries

The table on the following page lists some examples of the commit messages

and extracted summaries that we presented to survey correspondents:

73



Table B.1: Additional Examples of Commit Messages and their Extracted Phrases
used on the Survey

Commit Message 1 Minor changes while writing chapter 14

Summary 1 writing chapter 14 -

Commit Message 2 Removed redundant entry, since it is merged into 4.3.

Summary 2 Removed redundant entry - it is merged -

Commit Message 3 Defend playerExploredTiles against NPEs.

Summary 3 Defend playerExploredTiles -

Commit Message 4 PdfContentByte.addImage() draws the borders

Summary 4 draws the borders -

Commit Message 5 Added Line Enumeration (FR #508676), but still buggy

Summary 5 Added Line Enumeration FR 508676 -

Commit Message 6 Moved the plugin from SVN to git.

Summary 6 Moved the plugin - to git -

Commit Message 7
Adds Michael’s fix for updating the menu bar after changing the
language.

Summary 7 Adds Michaels - fix the menu bar - changing the language -

Commit Message 8
Removed the child column index creation when creating a FK. In-
formix does this automatically when a FK is created.

Summary 8 Removed the child column index creation - creating a FK - does
this - a FK is created -

Commit Message 9 Added a label to the logviewer dockable.

Summary 9 Added a label -

74


	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Importance of Documentation and its Automatic Generation
	1.2 Thesis Contributions

	2 Background
	2.1 Software Repositories
	2.2 Commit Messages
	2.2.1 Alternatives to Commit Messages

	2.3 Summary

	3 State of the Art
	3.1 File and Version Differencing
	3.2 Comment Generation
	3.2.1 Natural Language Processing and SWUM

	3.3 Commit Message Generation and Classification
	3.4 Limitations and Identified Improvements

	4 Characteristic Study of Commits and Commit Messages
	4.1 Subjects of Study
	4.2 Threats to Validity
	4.3 Non-linguistic Analysis of Commit Messages
	4.3.1 Developer Behavior
	4.3.2 Length of Commit Messages
	4.3.3 Scope of Commits

	4.4 Linguistic analysis of Commit Messages
	4.4.1 Linguistic Properties of Commit Messages
	4.4.2 Extracting Verb Direct Object Summaries

	4.5 Summary

	5 Human Opinion Survey on Commit Messages
	5.1 Research Goals
	5.1.1 General Usage of Commit Messages
	5.1.2 Commit Messages and Their Extracted Summaries
	5.1.3 Uncategorized Commit Messages

	5.2 Survey Design
	5.3 Refining and Testing the survey
	5.4 Targeted Demographics
	5.5 Results
	5.5.1 Purposes for Reading and Writing Commit Messages
	5.5.2 Useful and Non-Useful Commit Messages
	5.5.3 Appropriateness of Verb-Direct Object Summarization for Commit Messages
	5.5.4 Usefulness of Commit Messages without Verb Phrases

	5.6 Implications for Automated Tool Output
	5.7 Summary of Properties of Well-Written Commit Messages
	5.8 Limitations and Future Work

	6 Independent Analysis of DeltaDoc
	6.1 Overview of DeltaDoc
	6.2 Test Inputs
	6.3 Comparing Distribution to Documentation
	6.3.1 Brief Source Code Review
	6.3.2 Input and Performance Limitations of DeltaDoc

	6.4 Comparing DeltaDoc Output to Diff Output
	6.4.1 Comparing DeltaDoc Output to the Survey Results
	6.4.2 Conclusions and Capacity for Extension

	6.5 Threats to Validity and Future Work

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future work

	Bibliography
	A Human Opinion Survey on Commit Messages and Extracted Summaries
	A.1 Background:
	A.2 Instructions:
	A.3 Overview
	A.4 Group 1
	A.5 Group 2

	B Additional Examples
	B.1 Commit Messages and their Extracted Summaries


