
AUTOMATIC DEPLOY HADOOP CLUSER ON

AMAZON ELASTIC COMPUTE CLOUD

by

Hao Chen

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Electrical and
Computer Engineering

Fall 2015

c© 2015 Hao Chen
All Rights Reserved

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 10014944

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

ProQuest Number: 10014944

AUTOMATIC DEPLOY HADOOP CLUSER ON

AMAZON ELASTIC COMPUTE CLOUD

by

Hao Chen

Approved:
Stephan Bohacek, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
Ann L. Ardis, Ph.D.
Interim Vice Provost for Graduate and Professional Education

ACKNOWLEDGMENTS

My sincere regards to my supervisor Dr.Stephan Bohacek for his guidance and

support throughout the process of developing this project and equipping me with ad-

equate knowledge and skills to do my thesis. It would not be possible to write this

thesis without his help. I have enjoyed in the two years I have worked with him. I

also want to thank my friend Yongwei Ma for his extremely helpful suggestions to my

paper.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vii
ABSTRACT . x

Chapter

1 INTRODUCTION . 1

2 BIG-DATA PLATFORM: HADOOP 4

2.1 Basics of Hadoop . 4

2.1.1 HDFS . 4
2.1.2 MapReduce Engine . 6

2.2 Two Generations of Hadoop . 6

2.2.1 First Generation of Hadoop: MRV1 7
2.2.2 Second Generation of Hadoop: MRV2 8

2.2.2.1 Issues of MRV1 . 8
2.2.2.2 Sencond Generation of Hadoop: MRV2 9

2.3 An Alternative Data Framework:Apache Spark 12

2.3.1 Resilient Distributed Dataset 15
2.3.2 Spark VS Hadoop . 16

3 AUTO-DEPLOY HADOOP ON AMAZON EC2 CLUSTER . . . 18

3.1 Steps to Build a Hadoop Cluster on AWS Manually 18

3.1.1 Create an Amazon Account 18

iv

3.1.2 Launch AWS Instances . 19

3.1.2.1 Create a Security Group 19
3.1.2.2 Create a Key Pair 19
3.1.2.3 Launch Instance . 21

3.1.3 Log into Instances . 22

3.1.3.1 Generate PPK File 23
3.1.3.2 Log into Instances 23

3.1.4 Set up Hadoop Cluster . 25

3.1.4.1 Install JAVA . 25

3.1.5 Install Hadoop . 26
3.1.6 Set up Configuration of Hadoop 27

3.1.6.1 Set up Password-less Access 27
3.1.6.2 Set up Configuration Files 28

3.1.7 Test the Cluster . 30

3.2 Auto-deploy Hadoop Cluster on AWS 31

3.2.1 Create an Amazon Account 33
3.2.2 Launch AWS Instances . 33
3.2.3 Log into Instances . 34
3.2.4 Set up Hadoop Cluster . 34
3.2.5 Set up Configuration of Hadoop 35

4 OVERVIEW OF THE PROGRAM 39

4.1 Prerequisite . 39
4.2 Program Structures . 39

4.2.1 Set up AWS Credentials . 39
4.2.2 Gather User Data . 40
4.2.3 Launch Instance and Collect Necessary Information 41
4.2.4 Collect Instance Information 42
4.2.5 Log into Instance . 42
4.2.6 Hadoop Configuration . 44

v

5 CONCLUSION . 46

BIBLIOGRAPHY . 47

vi

LIST OF FIGURES

2.1 MRV1 Architechture . 5

2.2 MRV1 Task Flow . 8

2.3 Changes on MRV2 . 10

2.4 MRV2 Task Flow . 13

2.5 Spark FrameWork Ecosystem . 14

2.6 Components of Spark . 15

3.1 Create Account . 19

3.2 Create Security Group . 20

3.3 Select AMI . 20

3.4 Select Instance Type . 21

3.5 Select Security Group . 22

3.6 Instance Information . 22

3.7 Generate PPK File . 23

3.8 Login with PuTTY . 24

3.9 Select Key Pair . 24

3.10 Successfully Login . 24

3.11 Successfully Intalled JAVA . 25

3.12 Set JAVA Environment Variables 26

vii

3.13 Successfully Set JAVA Environment Variables 26

3.14 Set up Password-less Access . 27

3.15 Core-site.xml . 28

3.16 Hdfs-site.xml . 29

3.17 Mapred-site.xml . 29

3.18 Yarn-site.xml . 30

3.19 Jobs on Master Node . 30

3.20 Jobs on Data Node . 31

3.21 Data Node Report . 32

3.22 IAM of AWS . 33

3.23 Create Custom AMI-Step 1 . 35

3.24 Create Custom AMI-Step 2 . 36

3.25 Core-site.xml with Undetermined Master Node IP 36

3.26 Hdfs-site.xml with Undetermined Master Node IP 37

3.27 Mapred-site.xml, No Change Needed 37

3.28 Yarn-site.xml with Undetermined Master Node IP 38

4.1 Set Up Credential-1 . 40

4.2 Set Up Credential-2 . 40

4.3 JOptionPane . 40

4.4 Dialog Box . 41

4.5 Fill User Data . 41

4.6 Launch Instance . 41

viii

4.7 Collect Instance Information . 42

4.8 Select Private Key . 43

4.9 Log into Instance . 43

4.10 Edit Configuration Files . 45

ix

ABSTRACT

With the explosive amount of data generated everyday, Big-Data is becoming

one of the most popular topics today which receives both research and business atten-

tion. Hadoop, which was built based on the Google proposed algorithm MpaReduce,

was first introduced by Doug Cutting and his group in 2005. Then it became an

Apache project in 2008 and its improved second version was released in 2012. Hadoop

has dominated the Big-Data framework area that it is considered as the first choice for

most companies and research groups. To deploy a Hadoop cluster, we need to build a

computer cluster with a number of nodes. It might not be affordable for small business

and research groups with limited funding, so the cloud computing service becomes the

alternative. AWS(Amazon Web Service) is one of the most popular cloud providers due

to their high quality service and more affordable price. However, building a Hadoop

cluster on AWS manually is time consuming due to various factors. Firstly, node in-

formation is not fixed when a new set of nodes is requested. There is also extra work

to log into all instances to edit their configuratons, it becomes worse when the cluster

size is over hunderds or throusands. To address this impeding, this paper has proposed

a method to automatically deploy an any size of Hadoop cluster on AWS, including

installation and configuration. This saved time which can be spent on more important

work.

x

Chapter 1

INTRODUCTION

Big-Data is a popular buzz-word lately, both in scholarly work and in business.

It relates to the explosive growth of data. Big-Data, including any unstructured data,

semi-structured data or structured data was characterized with three keywords: Vol-

ume, Velocity and Variety by [1] in 2001. Volume describes the large amount data

we need to handle,[2] has reported that nearly 2.5 quintillion bytes of data was being

created in a single day. Velocity describes the high speed of data generation and the

associated information is time-sensitive, thus it requires the corresponding quick data

analysis. Variety shows the data are existing with all kinds of different formats, like

the traditional structured data in database, or unstructured data like video , audio,

pictures and etc. In 2015, three new words were introduced by [3] to better describe

features of the term Big-Data. They are Variability, Veracity and Complexity.

Variability describes the inconsistency of the data, the same type of data may have

different meaning at same time but in different circumstance. Veracity describes the

quality of the source data. Noise or bias in data may significantly change the outcome

of the analysis. Complexity shows the difficulty of data management. Over the years,

Big-Data has extremely grown so much that traditional data management tools, such

as relational database is not able to efficiently handle it. Thus in order to explore the

true value in the data, it is crucial to have advanced analytic technique and powerful

management tool.

Traditionally, data was stored and processed in a database, like Oracle database

or MS-SQL server. However, these standarded databases were not capable of handling

high volumes of data.of solving such issues, several programming models are proposed.

1

In 2000, ECL(data-centric programming language)[4], a C++ based programming lan-

guage, was introduced by Seisint Inc. With ECL, the client is able to declare the

data-flow and create data query at a very high level and thus no need to consider the

low level system code. In 2004, Google proposed an algorithm called MapReduce which

divides a task into many parts and sends them to different computers inside one clus-

ter, and generates the final result from the sub-results sent back from these computers.

MapReduce is probably one of the most successful programming models for big data,

and Hadoop is the implementation framework of the MapReduce algorithm.

Hadoop is an open source software which is written by JAVA and runs programs

based on MapReduce algorithm. It was first introduced to the world by a group

from Yahoo led by Doug Cutting. The name Hadoop is inspired by his son‘s toy

elephant. Later, Apache Software Foundation took over this project in 2008. In 2013,

the MapReduce 2.0 was launched with great improvement on the scalability(the 1.0

version was reported limited at 4000 nodes per cluster). Hadoop is one of the most

popular frameworks for Big-Data, not only big companies[5], many small businesses are

using Hadoop. It also receives a lot of research attentions[6][7][8][9]. [10] proposed a

GPU-Hadoop integrated framework. [11] introduced an improved hybrid scheduler with

fair scheduling, FIFO and COSHH to improve Hadoops performance. [12] performs an

evaluation on the read and write operations on HDFS system and results show that

the file is better to be smaller than a block size to achieve best performance.

Although Hadoop is popular in both business and scientific field, the cost to

build a hadoop cluster, especially a large cluster over hundreds of nodes, is an issue to

small business and researchers with limited funding. Thus building a Hadoop cluster

on cloud computing service will be a good choice[13]. And AWS(Amazon Web Service)

is one of the best service providers due to its high quality service and affordable price.

However, it is not easy to set up a Hadoop cluster on AWS, because 1)node information

is not fixed when we request a new set of nodes 2)we need to log into all instances to

edit their configuratons, it becomes worse when the cluster size is over hunderds or

throusands. It is desirable to have a tool which can automatically set up all the

2

nodes, install and configure Hadoop on AWS. In this goal, we analyze the installation

procedure and provide a solution that helps people easily set up a working Hadoop

cluster.

The rest of this paper is organized as follows: Chaper 2 introduces the history

of Hadoop, the architecture of Hadoop Mrv1 and the improved version Mrv2 and

compares it to Apache Spark. Chaper 3 highlights the basic steps of setting up a

Hadoop cluster manually, then analyzes these steps and provides solution on how to

perform these steps automatically. Chapter 4 concludes this paper.

3

Chapter 2

BIG-DATA PLATFORM: HADOOP

The Apache Hadoop with the MapReduce function is the current mainstay to

process the distributed data. It was spearheaded by the Google MapReduce framework

and Google file system[14]. Based on its unique scale-out and fine-grained processing

infrastructure, the Hadoop received its explosive growth in Big Data area. Furthermore,

the application ecosystem is also rapidly developed, such as Apache Zookeeper, Apache

HBase, Apache Hive, Impala, Apache Phoenix, Apache Oozie, Apache Pig, Apache

Sqoop, Apache Flumeand among others.

2.1 Basics of Hadoop

Hadoop cluster can be running on a single node (this node represents both the

master node and date nodes) to extend to thousands of nodes (Different nodes have

their own jobs and run in parallel) with very high level fault tolerance guaranteed. 2.1

shows one basic Hadoop cluster.

Generally, one Hadoop cluster can be decomposed into two abstractions: a dis-

tributed file system HDFS(Hadoop Distributed File System) and a MapReduce engine.

2.1.1 HDFS

The HDFS provides a storage model. When all of your data is loaded on Hadoop,

it is split into several pieces and stored across your cluster. It is able to copy and process

data between different nodes, and it supports large files. HDFS has the directory of all

the files in its system in order to keep track the location of each data. Furthermore, for

each piece of data, there are multiple copies kept, even if one node dies, the lost data

4

Figure 2.1: MRV1 Architechture

5

can still be replicated from another location, this is the basis of the fault tolerance of

HDFS.

2.1.2 MapReduce Engine

What is MapReduce? Basically, MapReduce means working on a way that

parallel executes a program on a cluster. Lets first take a look at what parallel pro-

gramming is. Parallel programming, as the name implies, is a programming model

that a task is divided into several parts and executes these parts at the same time.

Most importantly, there should be no dependency between these parts. It means that

the input of one part should not be related to any other parts‘ execution.

Compared to simple parallel programming, MapReduce is a more advanced

scheme. Usually, its input is a very huge set of data. Because the input is too large to

be processed by a single node, and due to time constrains(for example, a Google search

result for more than 10 seconds is not acceptable), we need to process these data over

thousands of machines simultaneously. Thousands of machines are performing the same

computation but with different data input, furthermore, besides fast response time,

MapReduce also takes load balancing and fault tolerance into consideration which will

be discussed later. In Hadoop, the MapReduce engine consists of two core functions:

1)Map: a procedure which decomposes large input data into two or more small

chunks to be processed.

2)Reduce: a procedure which collects all sub-results and generates the final

result.

2.2 Two Generations of Hadoop

Hadoop was first created by Yahoo! (Doug Cutting‘s team) in 2006, and taken

over by Apache Software Foundation in 2008. In Dec 2011, the version 1.0 was released

in the public domain and two years later, the second generation was released.

6

2.2.1 First Generation of Hadoop: MRV1

The first generation contains two major components: Job Tracker and Task

Trackers. Job Tracker runs on NameNode(the master node in Hadoop) and plays like

the central coordinator of this cluster. It is responsible for allocating jobs to Task

Trackers, manage all the resources on the cluster and keep track of all the running

tasks. Each Task Tracker runs on one DataNode(the slave nodes in Hadoop) in the

cluster and is responsible for managing the tasks arranged by Job Tracker and keeping

contacting Job Tracker to report the current status of its tasks.

Now, lets systematically examine the procedure of executing a MapReduce job.

When a client sends a job request to the Hadoop cluster, this request is first received

by Job Tracker. This request will contain information like: Map and Reduce functions,

the path to the required data, etc.

After receiving the request, the Job Tracker will put the request into the request

queue which is executed in FIFO(first in first out) manner.

When executing a request, the Job Tracker will first decide how to decompose

this request (the number of splits). Then the Job Tracker will communicate to HDFS

to get the location information of the required data. After gathering the data location

information, the Job Tracker will allocate tasks to the DataNode which has available

slots (the number of slots means the number of tasks this node can execute in parallel)

and shortest distance to the required processing data. When a Task Tracker receives a

job, it starts to prepare the necessary files for this job, such as the Jar file. Concurrently,

the Task Tracker keeps reporting the status of all jobs running on this node to the Job

Tracker. When the Job Tracker finds that all Map tasks are done, it will notify the

selected Task Tracker to execute the corresponding Reduce jobs. When all work are

done, the Job Tracker will update the status and notify the client the job is finished.

When executing the tasks, two separate Java virtual machines will be launched

by Task Tracker to prevent the failure which may be caused by current running jobs.

The Task Tracker will keep sending a heartbeat signal to Job Tracker every few

minutes to indicate this Task Tracker is still alive. If the Job Tracker does not sense

7

Figure 2.2: MRV1 Task Flow

the heartbeat signal for a certain time, the Job Tracker will consider this Task Tracker

has failed and will re-assign its jobs to another available Task Tracker.

2.2.2 Second Generation of Hadoop: MRV2

Compared to MRV1, MRV2 add a completely new layer into its framework, it

is call YARN(Yet Another Resource Negotiator), which is located in mid of HDFS and

MapReduce engine. The functionality of YARN is to manage all the resource on this

cluster, such as memory, CPU (More resource will be added in future version). So

MapReduce engine now is focusing on performing data processing function only.

2.2.2.1 Issues of MRV1

In MRV1, the resource management is controlled by a component called Job

Tracker which is part of the MapReduce engine. And Job Tracker also monitors each

scheduled task. If it finds any failed job, it re-allocates a new job to a new DataNode.

8

MapReduce jobs consist of Mappers(Map jobs) and Reducers(Reduce jobs).

Mapper and Reducer can be running on the map slot and reduce slot on DataNode

respectively. Although MRV1 is one of the most successful schemes in the Big-Data

area, it still has many issues which need to be fixed:

1) Scalability: In MRV1, there‘s only one Job Tracker per cluster. So it will

be the bottleneck when the cluster size grows up. It is determined that the maximum

number of nodes on a MRV1 cluster is only 4000 which is not able to meet the needs

of some large companies nowadays.

2) Availability: Apparently, the Job Tracker is the single point of failure of

MRV1. If the Job Tracker fails, all jobs need to be restarted.

3) Resource utilization: In MRV1, Mapper can only be executed on the Map

slot on DataNode and Reducer can only be executed on the Reduce slot on DataNode.

In certain times, the amount of Mapper and Reducer are unbalanced. This happens

when the Map slot is full but the Reduce slot is empty. Hence, the computer resource

(memory, CPU) is not fully utilized to maximize the speed of computation.

4) No-MapReduce job support: the MapReduce programming model is great but

it is not good for every application. Some other programming models, such as MPI,

real-time processing and graphics processing is not easy to be converted to MapReduce

model. In MRV1, Job Tracker is specifically designed to schedule and monitor MapRe-

duce jobs. So it is essential for Hadoop to support these models that the company that

has the Hadoop-based cluster can also easily deploy such applications on their cluster

to lower the cost. Otherwise they need to build a new cluster and move data back and

forth.

2.2.2.2 Sencond Generation of Hadoop: MRV2

In order to overcome the issues mentioned in last section, MRV2 removed Job

Tracker and Task Tracker from MapReduce engine. Instead, a new design YARN is

placed as a new layer between the HDFS and MapReduce engine to take over the job

of resource management. All applications (including MapReduce one and normal one)

9

Figure 2.3: Changes on MRV2

share the same resource management from YARN. Also, the definition of Map-slot and

Reduce-slot is removed. Every task will have a certain amount of resources, such as

memory and CPU cores. Furthermore, the function of old Job Tracker is replaced by

a scheme called Application Master, and we can launch multiple Application Master

in one cluster.

Now, let’s closely examine MRV2, before we discuss the procedure how MRV2

works, we first need to understand some key concepts in MRV2:

1)Resource Manager: the Resource Manager only runs on master node, it man-

ages and allocates the resources of this cluster to all requested applications through

a pluggable global scheduler. The scheduler does not monitor or track any informa-

tion of the launched application, it only allocates resources based on the applications

requirement and several predefined constrains.

2)Container: Container is an abstract concept in MRV2 that represents the

amount of available resources (memory, CPU cores) on one DataNode. It is created

by Resource Manager upon a successful resource request from an application. Once a

Container is allocated, it is controlled by Application Master and used to launch and

10

execute tasks.

3)Node Manager: there‘s one Node Manger per node. It is responsible for

preparing the Container which is allocated by Resource Manager, monitoring these

Containers‘ status, such as CPU usage, memory usage, the network condition and

also keeping informing Resource Manager with the monitored information mentioned

above.

4)Application Master: the Application Master is launched one per application.

Its job is to negotiate with Resource manager about the container the application

is needed. Container is just a set of resources of one machine in the cluster. With

the allocated Container, the Application Master needs to communicate with Node

Manger, provides the application specific information to Node Manger to launch the

tasks, monitors the status of the Containers (such as resource consumption) and the

application‘s progress. Due to the effort of Application Mater, the YARN is able to

improve its:

Scalability: The Application Master is designed to have a pure scheduler, so it

only focuses on the resource scheduling without considering other functions like fault

tolerance. Also the Application Master is launched as one per application, so itself

will not be an issue to the clusters scalability. It is shown that, with the Application

Master design, the YARN cluster is able to easily scale to over 10000 nodes without

any major issues being reported. It is a great improvement compared to the 4000 nodes

limitation in MRV1.

Compatibility: With Application Master handling all application-specific code,

YARN is able to support more programming models other than MapReuce, such as

MPI, graphics processing. Furthermore, YARN is able to deploy any kind of applica-

tion, in MRV1, only JAVA code is supported.

In YARN, Application Master is designed to be one instance per application,

but it is not necessarily be this model. In Apache Pig and Apache Hive(based on

YARN), Application Master is designed to support more than one application. With

the concepts introduced above, we now can step into the details of the procedure on

11

how an application is launched on Hadoop-YARN cluster:

1)The client submits the target application to Hadoop-YARN cluster. The

information includes the application name, application path, required data to execute

the application and application required resource.

2)The Resource Manger first receives the client application launch request. It

needs to find a DataNode and allocate a special Container for an Application Master

and launch the Application Master on the DataNode .

3)When the Application Master is launched, it will first register itself with the

Resource Manager. After this registration, the client is able to directly talk to the

Application Master if any information needed.

4)Then the Application Master starts communicating to the Resource Manger

to ask for enough resource (containers) to launch this application based on client‘s

request.

5)Once the Resource Manager finds enough resource to meet this application‘s

request, it notifies the corresponding Node Manger and launches the required amount of

Containers on these nodes. The necessary launch information is provided to the Node

Manager by the Resource Manager. After this, the Container is able to communicate

with the Application Master.

6)The application‘s code is deployed on the Container and the application starts

to execute. In the meantime, the Application Master monitors the applications execu-

tion status.

7)When the application is executed, the client can directly communicate with

the Application Master about the execution status.

8)Once the task finished, the Application Master will report the Resource Man-

ager, turn off itself and free its own Container.

2.3 An Alternative Data Framework:Apache Spark

Although the new Hadoop-YARN framework greatly improves the Hadoop clus-

ter and supports other normal applications deployed on the cluster, it is still designed

12

Figure 2.4: MRV2 Task Flow

to mainly support these two-step Map-reduce batch processing tasks. As the rapid

development of current Big-Data area, some other frameworks come out to compete

with Hadoop MRV2 with some unique design, such as the in-memory processing from

Apache Spark, and successfully replace Hadoops dominance in certain areas. In the

next part, I will simply introduce the structure of Apache Spark and the differences

between Hadoop and Spark.

Apache Spark is an open source Big Data based project which was first intro-

duced by university of California, Berkeley and now managed by the Apache Software

Foundation. It is developed with a programming language called Scala, and executes

under the JAVA environment, and multiple programming languages are supported on

the Spark cluster. These are:

1) SCALA

2) PYTHON

3) JAVA

13

Figure 2.5: Spark FrameWork Ecosystem

4) R

5) CLOJURE

Spark is designed to improve the Hadoop, so the traditional 2-step Map-Reduce

model is supported. Besides the Map-Reduce, it also supports other operations like

graphics processing(GraphX), machine learning(MLlib), streaming processing and SQL

query. Test result shows Spark is able to run 99 times faster than the traditional

Hadoop[15] due to its memory based operation, compared to Hadoops disk based op-

eration. Now, let‘s take a little more detailed look into Spark:

Basically, Spark consists of 3 major components: the data storage, API and a

cluster resource manager.

1)Data storage: Spark can use the HDFS system, Apache Cassandra, Amazon

S3 or even custom solution.

2)API: API is used to support other developer more easily write Spark based

applications. Currently, the API is supported with 3 languages: SCALA, JAVA and

PYTHON.

3)Cluster Resource Manager: Spark can be deployed as a stand-alone native

Spark server or deployed based on other resource management framework like YARN

14

Figure 2.6: Components of Spark

and MESOS.

2.3.1 Resilient Distributed Dataset

Resilient Distributed Dataset is the key feature that Sparks provided to achieve

fault-tolerance.

It is Spark‘s fundamental primary data abstraction which can be made and

operated in a parallel manner. And it is immutable. There are three ways to create

the Resilient Distributed Dataset:s

1)Paralleling an existing collection: if the data is already in Spark, we can

operate it in parallel. It is done by calling function called SparkContexts parallelize on

a dataset. After executing this function, a new distributed dataset will be generated

and it can be used in parallel in future.

2)Referencing a data set which is stored in external system: the dataset can be

from any data source: like HDFS, local file system, Amazon S3, etc. It can be done

by calling a function called SparkCintext S textFile.

15

When Resilient Distributed Dataset is created, an associated DAG (directed

acyclic graph) is created. To operate these data sets, Spark also provides two methods:

1)Transformation: it is used to update the DAG, but actually nothing really

happens until some actions are initiated. Some supported transformation functions

include: filter, groupByKey, flatMAP, map, pipe, aggregateByKey, etc.

2)Action: it is able to return a new value. When the function action is called, all

the required processing data will be executed and new results will be returned. Some

supported transformation functions include: collect, count, reduce, take, first, foreach,

etc.

2.3.2 Spark VS Hadoop

Hadoop is a successful Big Data framework. Its key feature is the two-step

MapReduce procedure that each operation in this scheme needs to be divided into two

phases, Map and Reduce. To fully utilize Hadoop framework, you need to transfer

any application into the MapReduce model. All the intermediate and final results

from Hadoop are stored in the HDFS system on the cluster disk. In order to achieve

fault tolerance, these data are replicated just in case that one of data nodes is down.

But the disk reading&writing latency and replication intensively degrades its‘ overall

performance. For some complex tasks, you need to connect a series of MapReduce jobs

together. And we can not start a new job until the last one is finished.

Spark improves Hadoop by processing the data in memory level and the nearly

real-time data processing. Compared to Hadoop which reads&writes the data on disk,

Spark holds the intermediate data in memory, this feature is especially useful when

this intermediate data needs to be used more than once. The fault tolerance of Spark

is achieved by the design of Resilient Distributed Dataset which is able to recover the

failure during execution.

However, Spark does not have it own distributed storage system which is one

the key feature of Big Data framework. Instead of storing all the data in one huge

machine, the distributed storage system is much salable that more data set can be

16

added later. In order to set up a Spark cluster, it needs to be built on some third party

distributed storage system, such as HDFS.

Its important to note that the relation between Hadoop and Spark is not based

on competition. Sparks out-performs Hadoop in some areas, such as machine learning

algorithm(it is reported it can be 100x faster than Hadoop in some cases). But when

we are going to process some traditional batch data processing work, in which case

all the data may not be able to fit in to memory, we still need to store data on disk.

In this case, Spark is not able to out-perform Hadoop which dominates the Big-Data

framework area for the past. Also, Spark is a newly developed tool which may have

more bugs which need to be fixed..

17

Chapter 3

AUTO-DEPLOY HADOOP ON AMAZON EC2 CLUSTER

In the previous section, we have established that Hadoop is important in the Big

Data area. Most companies, especially small business with limited funding will choose

to deploy their Hadoop clusters on cloud computing service, such as AWS. However, it

is not easy to deploy a cluster on AWS because 1)cloud node information is not fixed

when we request a new set of nodes 2)we need to log into all instances to edit their

configuratons, it becomes worse when the cluster size is over hunderds or thousands.

So it is desirable to have a tool which can automatically set up all the nodes, install

and configure Hadoop on AWS. In order to implement the function that auto-deploys

Hadoop cluster on Amazon Ec2 instances, we need to first understand how this is done

in normal case,which means how it is done manually. Based on this, we can then

further analyze and discuss how to make this procedure automatic.

3.1 Steps to Build a Hadoop Cluster on AWS Manually

In this case, we will build a Hadoop cluster with 3 Nodes as example, 1 master

and 2 slave nodes respectively, within 6 steps.

3.1.1 Create an Amazon Account

The first thing we need to do is to set up an Amazon account at website:

https://aws.amazon.com/. By default, one Amazon account is only allowed to run

20 instances at the same time. So one account is good in this case. The registration

is pretty easy and straightforward, and I already have one account with Amazon, so I

skip this step.

18

https://aws.amazon.com/

Figure 3.1: Create Account

3.1.2 Launch AWS Instances

Before we launch the AWS instances, we need to do some preparations first:

3.1.2.1 Create a Security Group

The security group is a set of rules which control the behavior of target instances.

For example, it can allow access or deny certain types of protocols communication(such

as TCP, UDP), also it can stop any access from outside except selected IPs. With the

security group, the instance is much more safe to use. The security group button is

located in the EC2 control panel under the tag NETWORK & SECURITY. In our

case, to build a Hadoop cluster, we need to allow all TCP access, all ICMP access and

the SSH access under port 22. I have not limited the access from selected IPs this

time, but it can be done to ensure more security.

3.1.2.2 Create a Key Pair

The key pair is used to log into Amazon instance with SSH tools after instances

are launched. In EC2, there‘s no user name and corresponding password. The key pair

is the only way that provides the identification for you to have the authority to access

your instances. To create key pair, the button is also located in the EC2 control panel

and under the tag NETWORK & SECURITY. Its straightforward to create a key pair,

19

Figure 3.2: Create Security Group

Figure 3.3: Select AMI

20

Figure 3.4: Select Instance Type

and a .pem file will be downloaded into your computer. You need to carefully store

this key pair as it is your only identification to access the instances.

3.1.2.3 Launch Instance

After setting the security group and key pair ready, we can now launch the AWS

instances. To launch an Amazon EC2 instance, we need to firstly select an AMI. AMI,

standing for Amazon Machine Image, is an image that the newly launched instance

will be. It contains the information including operation system, installed applications

and environment parameters, etc. Amazon provides some basic AMIs with basic OS

installed (such as Ubuntu, Red hat). With the default AMI, some required applications

are pre-installed, such as SSH. But some other necessary applications are not installed.

We select the Ubuntu version in this installation. Pick t2.micro in next step, it is free

of use for 1 year. Then enter number 3 as the number of instances in next step. We

can skip the Add Storage and Tag Instance steps. Then select the security group we

just created.

After reviewing all the details to make sure everything is correct, we can click

21

Figure 3.5: Select Security Group

Figure 3.6: Instance Information

the launch button, select an existing key pair as the identification. If it launches

successfully, we will have 3 EC2 instances ready to use. The instance information,

include the public&private IPs, are located under the tag instances.

3.1.3 Log into Instances

With the public IPs, now we can log into these instances. If you are using

Windows machine to log in, you need to prepare two tools: PuTTy and PuTTygen, they

can be downloaded at: http://www.chiark.greenend.org.uk/~sgtatham/putty/.

If your are not using the Windows machine, please refer the AWS documentation for

help.

22

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Figure 3.7: Generate PPK File

3.1.3.1 Generate PPK File

Remember we get a .pem key pair in section 3.1.2.2 as our identification, how-

ever, puTTy does not support .gem file. So we need to first convert the .pem file into

the .ppk file which is supported by PuTTy.

PuTTYgen is used to generate the .ppk file. First select the SSH-2 RSA as the

target type and then load the .pem file we get in section 3.1.2.2. After clicking the

save private key button, we will get our .ppk file.

3.1.3.2 Log into Instances

Now we have the public IP and required .ppk file, we can use PuTTy to log into

Amazon Ec2 instances. Enter your user-name@your-public-ip as the host name(we

launched an Ubuntu machine, ubuntu is the user name, if you are using other Linux

OS, please use the corresponding user name). For the key pair, click Connection →

SSH → Auth, browser and select the correct .ppk file. If everything is set correctly,

you will be able to see the similar display as 3.10.

23

Figure 3.8: Login with PuTTY

Figure 3.9: Select Key Pair

Figure 3.10: Successfully Login

24

Figure 3.11: Successfully Intalled JAVA

3.1.4 Set up Hadoop Cluster

Now we are successfully logging to the instance. It is just a plain Linux OS and

only a few basic tools installed. In order to set up the Hadoop cluster, we need to do

the following things:

3.1.4.1 Install JAVA

Before we install JAVA, I suggest to update the apt-get to make sure everything

is up to date. To do this, run command:

sudo apt-get update

To install JAVA, we can choose either Oracle JDK or OpenJDK. In this case, I

picked OpenJDK 7. To do this, run command:

sudo apt-get install openjdk-7-jre openjdk-7-jdk

When the installation finished, you can run command to test:

java -version

If you see the same message as 3.11, it confirms that you just successfully in-

stalled JAVA. After installation, we need to set the correct environment variables,

JAVA HOME to help other applications find the path to JAVA. It can be done by

editing the .bashrc file under your default directory. To do this, run command:

vi ~/.bashrc

Add the line export JAVA HOME=/usr/lib/jvm/java-7-openjdk-amd64

at the first line of this file and save this file. To make this update effective, we need to

source this file by running command:

source ~/.bashrc

25

Figure 3.12: Set JAVA Environment Variables

Figure 3.13: Successfully Set JAVA Environment Variables

You can type:

$JAVA HOME

to test, if the JAVA installation path shows, it means the path is set correctly.

3.1.5 Install Hadoop

The next step is to install Hadoop application on this node (only installa-

tion, not configuration). The current stable version of Hadoop can be found at web:

http://mirrors.cnnic.cn/apache/hadoop/common/stable/. 2.7.1 is the latest sta-

ble version when writing this paper. Please download the file with name hadoop-x.x.x-

tar.gz, this is the one that finished compilation. The one with name hadoop-x.x.x-

src.tar.gz is the source code which requires you to compile first before using it.(In all

the following steps, if you are not using 2.7.1 version, please change the command to

your version accordingly)

26

http://mirrors.cnnic.cn/apache/hadoop/common/stable/

Figure 3.14: Set up Password-less Access

When we get the hadoop-x.x.x.tar.gz file, we need to frist unzip it into /usr/local

directory with command:

sudo tar -zxvf ./hadoop-2.7.1.tar.gz -C /usr/local

Also change its owner and group information from root to current user with

commands:

cd /usr/local

chown -R ubuntu:ubuntu ./hadoop-2.7.1

In Hadoop directory, type:

./bin/hadoop.

If the help instructions show on the screen, it confirms the Hadoop application

is installed correctly. For other 2 nodes in this cluster, we need to perform the same

installation procedure for other two nodes. After this, we now have 3 nodes with

Hadoop installed. The next step is to configure the cluster.

3.1.6 Set up Configuration of Hadoop

Now we already have 3 nodes with all necessary applications installed, but this

is not enough. To have a working cluster, we still need to edit some configuration files

to make this cluster correctly running.

3.1.6.1 Set up Password-less Access

On Hadoop cluster, the master node needs to remotely access all slave nodes,

but the access between EC2 nodes needs verification (the key pair).

27

Figure 3.15: Core-site.xml

To enable this password-less access, we need first load the key pair into our

nodes. To do this, we need to use a file transfer tool. In this case, I used the tool called

WinScp. For information about how to use WinScp, please refer this web: http://

docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html#Transfer_WinSCP

After the .pem file is loaded into our EC2 nodes, we need to first change its

permission, otherwise we will get an error saying the permission is too open sometimes

later. To do so, type the following command:

chmod 400 xxx(path to your pem file)

Then we need to launch the ssh-agent by typing the commands:

eval ‘ssh-agent -s‘

ssh-add xxx(path to your pem file)

Now we can easily ssh into any other node in the cluster without being asked

to provide the key pair. (ssh-agent and ssh-add commands do not work for lifetime,

we need to do it every time we log in)

3.1.6.2 Set up Configuration Files

For a basic Hadoop cluster, we need to, at least, change 5 configuration files.

The 5 files are slaves, core-site.xml, hdfs-site.xml, mapred-site.xml, yarn-site.xml. I

will talk about how to configure them one by one.

28

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html#Transfer_WinSCP
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html#Transfer_WinSCP

Figure 3.16: Hdfs-site.xml

Figure 3.17: Mapred-site.xml

1)slaves: Delete the localhost value in original file, and add all the slave nodes

IP in it. In our case, two IPs need to be added: 172.31.26.102 and 172.31.26.103.

2)core-site.xml: two properties need to be set. fs.defaultFS: need to be set

to master nodes IP with port number 9000. Hadoop.tmp.dir: need to be set to the

temporary directory under Hadoop. My file is set to as 3.15:

3)hdfs-site.xml: 3 properties need to be set. dfs.namenode.secondary.http-

address: need to be set to Masters IP and port 50090. dfs.namenode.name.dir

and dfs.datanode.data.dir: corresponding temp file. dfs.replication: the number

of slave nodes. My file is set to as 3.16:

29

Figure 3.18: Yarn-site.xml

Figure 3.19: Jobs on Master Node

4)mapred-site.xml: one property needs to be set. mapreduce.framework.name:

need to be set to the resource manage framework: YARN. My file is set to as ??:

5)yarn-site.xml: 2 properties need to be set yarn.resourcemanager.hostname:

need to be set to masters IP address. yarn.nodemanager.aux-services: need to be

set to value mapreduce shuffle My file is set to as 3.18:

Now we can start to launch our hadoop cluster by the following 3 commands:

bin/hdfs namenode -format

sbin/start-dfs.sh

sbin/start-yarn.sh

3.1.7 Test the Cluster

To test whether the Hadoop cluster is launched successfully, we can type the

command:

Jps

30

Figure 3.20: Jobs on Data Node

to see all the currently running processes. There should be 3 jobs on master

node: ResourceManger, SecondaryNameNode and NameNode.

And 2 jobs on slave node: DataNode and NodeManger

We can also run the report on Master node by executing the command:

bin/hdfs dfsadmin -report

to check whether slave nodes are running correctly. In my case, two nodes are

running as 3.21:

3.2 Auto-deploy Hadoop Cluster on AWS

In last section, we discussed on how to deploy a Hadoop cluster in a regular way.

In this paper, our goal is to make this procedure easier so that a client can easily launch

a Hadoop cluster with any number of nodes(under AWS limitation) on AWS by just 1

click. In my application, I decided to choose the AWS SDK FOR JAVA[16] as the

basic framework. It is a JAVA library that richly contains APIs to help you perform

operations on EC2 nodes. I used the Eclipse toolkit version for this SDK. Assume your

JAVA environment has already been set and Eclipse IDE is installed. In Eclipse, click

the Help → Install New Software. Put the link: http://aws.amazon.com/eclipse

in the work with bar and press enter. Eclipse will show all available packages on

that link, pick the AWS Toolkit for Eclipse and click next to install it. For more

information about this SDK, please refer to web: http://docs.aws.amazon.com/

AWSToolkitEclipse/latest/GettingStartedGuide/welcome.html

Later, we shall go through and analyze all steps in last section to see whether

these steps can be done by programming. If so, how can this be done? In the last

31

http://aws.amazon.com/eclipse
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/welcome.html
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/welcome.html

Figure 3.21: Data Node Report

32

Figure 3.22: IAM of AWS

section, set up Hadoop cluster is divided into 6 major steps:

1.Create an Amazon account

2.Launch AWS instances

3.Log into instances

4.Set up Hadoop cluster

5.Set up configuration of Hadoop

6.Test the cluster

Step 6 can be skipped, now we shalll look into step 1-5 as follows:

3.2.1 Create an Amazon Account

Amazon account can be easily created. In order to allow the AWS sdk get the

authorization to access our account, we need to set the AWS Access Credentials. First

go to IAM console which is located under Security & Identity service. Click the user

button in next page. Then create a user, and the credential will be downloaded into

your computer. Save it into the path: C:\Users\your-user-name\.aws\credentials

3.2.2 Launch AWS Instances

This step mainly consists of 3 parts: build a security group, create the key pair

and set the appropriate parameters to launch AWS instances.

33

Create security and key pair in the preparation work. They can be set easily,

and not necessarily done by programming.

Launch instances with appropriate parameters: in normal case, we launch a

AWS instance with a default AMI and install the JAVA and Hadoop on it. In JAVA

and Hadoop installation (do not include the Hadoop configuration) we are doing the

same procedure. So if we are going to build Hadoop cluster more than once in future,

or we are going to create a cluster with huge amount of nodes, it‘s better to create

a custom AMI which has the JAVA and Hadoop pre-installed. So next time, we can

directly launch instances. I will talk about how to set up a custom AMI later. Launch

instance can be done by the API: RunInstancesRequest provided by AWS sdk.

3.2.3 Log into Instances

After the AWS instances are created, in last section, we use PuTTy to log

into them to do some operations. In our auto-deploy application, we need to find

a way to communicate with these AWS instances. More specific, we need to find a

JAVA library which can support the SSH communication between our client and the

remote nodes. After comparing several candidates and making a careful consideration,

I picked the Jsch[17] as the SSH library we are going to use. Jsch is written by

JAVA and with the goal to implement SSH2. Basically, with Jsch, you can remotely

log into a server, transfer files between remote servers and local machine and X11

forwarding, etc. For more information about Jsch, please refer to its website: http:

//www.jcraft.com/jsch/ It provides a very good example to follow: http://www.

jcraft.com/jsch/examples/Exec.java.html

3.2.4 Set up Hadoop Cluster

Set up Hadoop cluster (not including setting up configuration files) consists of

two parts: intall JAVA and install Hadoop application. Basically, these need to be

done on each newly launched node. However, there is another very easy way to do

this, the custom AMI. Amazon Machine Image(AMI) can be considered as a template,

34

http://www.jcraft.com/jsch/
http://www.jcraft.com/jsch/
http://www.jcraft.com/jsch/examples/Exec.java.html
http://www.jcraft.com/jsch/examples/Exec.java.html

Figure 3.23: Create Custom AMI-Step 1

which contains all the information needed to launch a new node, including the type

of operating system, the pre-install applications, etc. The one we used in manually

deploy part is a default Linux AMI provided by Amazon. However, we can create our

own AMI. With such AMI, when a node is created, it will be same as the custom AMI

with all the required applications, such as JAVA and Hadoop, are installed. To create

a custom AMI, we first set up everything on a sample node. (install and configure all

applications we want to be on the new node) and in the AWS EC2 panel, choose the

sample node and pick: Actions → Image → Create Image.

Select a name for it, and create Image. When a custom image is created, it can

be used to launch a new instance. So in our case, we need to create a custom AMI with

the JAVA environment and Hadoop application. Then the only thing we need to is to

configure the Hadoop file if we plan to set up a Hadoop cluster in future. Furthermore,

some standard configuration files, (the files content is always the same and does not

depend on its role (master or slave) or other dynamic elements like the IPs). We will

talk about this in the next section.

3.2.5 Set up Configuration of Hadoop

As we discussed in the previous section, some parts of the configuration can be

pre-configured and build into the custom AMI. Lets take a look at each part of the

35

Figure 3.24: Create Custom AMI-Step 2

configuration file in details:

1) slaves: we need to firstly delete the localhost value and fill in all the IPs of

the slave nodes. The IPs are dynamically allocated so they cannot be built into the

custom AMI. So we leave blank in this file.

2) core-site.xml: two properties need to be set. fs.defaultFS: need to be set to

master nodes IP and port number 9000. The masters IP can not be pre-determined,

Figure 3.25: Core-site.xml with Undetermined Master Node IP

36

Figure 3.26: Hdfs-site.xml with Undetermined Master Node IP

Figure 3.27: Mapred-site.xml, No Change Needed

so it can not be built into custom AMI. We fill a keyword Master in the position of

IP. Hadoop.tmp.dir: need to be set to the temporary directory under Hadoop. This

directory is fixed, so this value can be built into custom AMI. The file is set to as 3.25:

3) hdfs-site.xml: 3 properties need to be set. dfs.namenode.secondary.http-

address: need to be set to master‘s IP and port 50090. Same as core-site.xml, the mas-

ters IP can not be pre-determined, so it can not be built into custom AMI. We fill a key-

word Master in the position of IP. dfs.namenode.name.dir and dfs.datanode.data.dir:

corresponding temp file. The directory is fixed so this can be built into the custom

AMI. dfs.replication: the number of slave nodes. This number is decided by the

client and is different from clusters. So it can not be built into custom AMI. We fill

the keyword replication in the position of number. So the file is set to as 3.26:

37

Figure 3.28: Yarn-site.xml with Undetermined Master Node IP

4) mapred-site.xml: one property needs to be set. mapreduce.framework.name:

need to be set to the resource manage framework: yarn. This is fixed, so it can be

built into custom AMI. So the file is set to as ??:

5) yarn-site.xml: 2 properties need to be set yarn.resourcemanager.hostname:

need to be set to masters IP address. Same as above, the masters IP can not be pre-

determined, so it can not be built into custom AMI. We fill a keyword Master in the

position of IP. yarn.nodemanager.aux-services: need to be set to value mapre-

duce shuffle. This is fixed, so it can be built into custom AMI. So the file is set to as

3.28:

With the above analysis, we now have a custom AMI ready with required ap-

plication installed (Hadoop), required environment set (JAVA) and all configuration

files ready and their values can be pre-determined. So right now, to launch a Hadoop

cluster is easier, we only need to set up the configuration files which needs the run-time

information (IPs).

38

Chapter 4

OVERVIEW OF THE PROGRAM

The main contribution of this thesis is a application that automatically deploy

a Hadoop cluster on AWS instances. In previous sections, we perfromed a detailed

analysis on how to make such application. In this chaper, let’s take a detailed look at

the code level. I will show some codes for the key functions in the program and give

explainations for them if necessary. The source code for the program is uploaded to

Github.com, it can be found at: https://github.com/chudel2015/my-thesis

4.1 Prerequisite

Before we start to discuss the program, we need to make sure the following

preparations are finished:

1: Custom AMI: as we discussed in section 3.2.0.4, the custom AMI has the

Hadoop and JAVA installed, JAVA environment ready and some configurations pre-set

if these configuration values are fixed.

2: AWS access Credential: as we discussed in section 3.2.0.1

3: Security group: as we discussed in section 3.2.0.2

4: Pair Key: as we discussed in section 3.2.0.2

4.2 Program Structures

In this section, I will show codes and give some explainations follow the program

sequence.

4.2.1 Set up AWS Credentials

The first thing I did in my program is to set up the AWS credentials, because

no AWS operations are allowed without it. There are two ways to set the credentials:

39

https://github.com/chudel2015/my-thesis

Figure 4.1: Set Up Credential-1

Figure 4.2: Set Up Credential-2

1: You can place the credentials under the directory C:\Users\your-user-name\aws\credentials

and provide the value default to API ProfileCredentialsProvider.

2: You can directly provide the credentials values to the API BasicAWSCre-

dentials.

After finishing setting the credentials, we need to provide the credentials to the

main API AmazonEC2Client.

4.2.2 Gather User Data

After setting up the credentials, we now can access the AWS account. We need

user provide some important information, such as:

What is custom AMI‘s name?

How many nodes to be launched this time?

What is pair key‘s name?

Figure 4.3: JOptionPane

40

Figure 4.4: Dialog Box

Figure 4.5: Fill User Data

What is security group‘s name?

In our program, we used JOptionPane from the javax.swing libary, several

dialog boxes will jump out to ask user the above questions. Then collected information

will be filled into the API RunInstancesRequest.

4.2.3 Launch Instance and Collect Necessary Information

To launch AWS instances, simply execute the runInstances function from

AmazonEC2Client with the RunInstancesRequest provided.

Figure 4.6: Launch Instance

41

Figure 4.7: Collect Instance Information

4.2.4 Collect Instance Information

After we launch the AWS instances, we need to collect some instance infor-

mation, such as the instance IPs for future use. To do so, we need first suspend the

program for several seconds because it takes time to launch the requested instances, the

instance information are not available immediately. After few seconds, we are able to

gather the instanceIDs from API RunInstancesRequest. With the instanceIDs, we

are able to collect the reservation through the APIs DescribeInstancesRequest and

DescribeInstancesResult. The reservation contains all the instances‘ information.

4.2.5 Log into Instance

After the AWS instances are launched, the next step is to log into them and

make appropriate configurations. In order to do that we need to log into the instances

first through a library called Jsch as we discussed in section 3.2.0.3. To log into

instances, we need provide the Jsch our private pair key and add it as identity. After

the private key is provided, we need to create a SSH session, and the connection to the

instance can be established if some correct information are filled in(user name, IP and

port number)

42

Figure 4.8: Select Private Key

Figure 4.9: Log into Instance

43

4.2.6 Hadoop Configuration

Now, the SSH connection is established, the final job is to edit the Hadoop con-

figuration files with corresponding information. There are 4 files need to be modified:

salve, core-site.xml, hdfs-site.xml and yarn-site.xml.

One simple way is to echo all required configuration content into an empty file.

But this is not recommended, because this build-in information is not standardized.

The configuration procedure we discussed in previous sections is just a sample config-

uration. There are various ways to configure a Hadoop cluster. As we discussed in

section 3.2.0.5, the better way is to leave a keyword in the configuration file in custom

AMI, such as Master stands for IP of master node. And we replace such keyword with

the real time information. To replace the key words, there are three methods:

1: We can transfer the configuation file back to local machine, then we can

replace the keyword on local machine. When the replacement is finished, we transfer

the configuration file back to AWS instance to replace the old file. Here is a very good

example showing how to use Jsch to transfer files: http://www.jcraft.com/jsch/

examples/ScpTo.java.html.

2: We can build a string replacement program and build it into the custom

AMI. When the instanced is launched, we can replace the keyword by executing this

program.

3: We can replace the keyword in a file by the SED command, for how to

use sed command in Linux, here is a good tutorial: http://www.brunolinux.com/

02-The_Terminal/Find_and%20Replace_with_Sed.html

In our program, we pick the third method. After all files are properly configured,

we can disconnect the SSH session and the Hadoop cluster is ready to be used now.

44

http://www.jcraft.com/jsch/examples/ScpTo.java.html
http://www.jcraft.com/jsch/examples/ScpTo.java.html
http://www.brunolinux.com/02-The_Terminal/Find_and%20Replace_with_Sed.html
http://www.brunolinux.com/02-The_Terminal/Find_and%20Replace_with_Sed.html

Figure 4.10: Edit Configuration Files

45

Chapter 5

CONCLUSION

This paper has given an in-depth insight to automatically fast deploy a Hadoop

cluster with any number of AWS EC2 nodes. A detailed introduction was given on

the history of Hadoop, including its first generation MRV1 and next generation MRV2.

Having explained the importance of Hadoop, our goal is to provide a solution to easily

and quickly set up a Hadoop cluster with a cloud computing service. In our method-

ology,, we first went through a tutorial on Hadoop installation. However, for cloud

computing service, the node‘s information(such as IPs) will be different when we re-

quest a new set of nodes, so it is time-consuming to finish the installation, especially

for large size of cluster. There was an analysis of the procedure and proposed a new

method to achieve the above goal. Some constant settings, such as JAVA installation,

can be included into the AWS custom AMI. And the communication between local

machine and remote nodes is implemented under the help of the Jsch library. With the

help of the proposed tool, people are able to focus on more important research work

by freeing themselves from the time-consuming installation and configuration.

46

BIBLIOGRAPHY

[1] Douglas Laney. 3d data management: Controlling data volume, velocity and
variety. Gartner, February 2001.

[2] Bringing big data to the enterprise. https://www-01.ibm.com/software/data/

bigdata/what-is-big-data.html.

[3] Martin Hilbert. Big data for development: A review of promises and challenges.
Development Policy Review, January 2013.

[4] Ecl programming language. https://en.wikipedia.org/wiki/ECL_

programming_language.

[5] Hadoop poweredby. http://wiki.apache.org/hadoop/PoweredBy.

[6] A.-M. Popescu V. Ubarhande and H. Gonzalez-Velez. Novel data-distribution
technique for hadoop in heterogeneous cloud environments. Complex, Intelligent,
and Software Intensive Systems (CISIS), 2015 Ninth International Conference on,
July 2015.

[7] S. Bailey S. Narayan and A. Daga. Hadoop acceleration in an openflow-based
cluster. High Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion, November 2012.

[8] Peng Ning Yu Xianqing and M.A. Vouk. Enhancing security of hadoop in a public
cloud. Information and Communication Systems (ICICS), 2015 6th International
Conference on, April 2015.

[9] ChangJun Jiang Dazhao Cheng, Jia Rao and Xiaobo Zhou. Resource and deadline-
aware job scheduling in dynamic hadoop clusters. Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2015 IEEE International, May 2015.

[10] Hardesty E. Hai Jiang Jie Zhu, Juanjuan Li and Kuan-Ching Li. Gpu-in-hadoop:
Enabling mapreduce across distributed heterogeneous platforms. Computer and
Information Science (ICIS), 2014 IEEE/ACIS 13th International Conference on,
June 2014.

[11] A. Rasooli and D.G. Down. A hybrid scheduling approach for scalable heteroge-
neous hadoop systems. High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion, November 2012.

47

https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
https://en.wikipedia.org/wiki/ECL_programming_language
https://en.wikipedia.org/wiki/ECL_programming_language
http://wiki.apache.org/hadoop/PoweredBy

[12] T. Ragunathan T.L.S.R. Krishna and S.K. Battula. Performance evaluation of
read and write operations in hadoop distributed file system. Parallel Architectures,
Algorithms and Programming (PAAP), 2014 Sixth International Symposium on,
July 2014.

[13] K. Daudjee L. Northam, R. Smits and J. Istead. Ray tracing in the cloud using
mapreduce. High Performance Computing and Simulation (HPCS), 2013 Inter-
national Conference on, July 2013.

[14] John Wiley and Sons. Data science and big data analytics: Discovering, analyzing,
visualizing and presenting data. ISBN 9781118876220, December 2014.

[15] Matei Zaharia Michael J. Franklin Scott Shenker Reynold S. Xin, Josh Rosen and
Ion Stoica. Shark: Sql and rich analytics at scale. SIGMOD, June 2013.

[16] Aws sdk for java. https://aws.amazon.com/sdk-for-java/.

[17] Jcraft. http://www.jcraft.com/jsch/.

48

https://aws.amazon.com/sdk-for-java/
http://www.jcraft.com/jsch/

	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	2 Big-Data Platform: Hadoop
	2.1 Basics of Hadoop
	2.1.1 HDFS
	2.1.2 MapReduce Engine

	2.2 Two Generations of Hadoop
	2.2.1 First Generation of Hadoop: MRV1
	2.2.2 Second Generation of Hadoop: MRV2
	2.2.2.1 Issues of MRV1
	2.2.2.2 Sencond Generation of Hadoop: MRV2

	2.3 An Alternative Data Framework:Apache Spark
	2.3.1 Resilient Distributed Dataset
	2.3.2 Spark VS Hadoop

	3 Auto-deploy Hadoop on Amazon EC2 Cluster
	3.1 Steps to Build a Hadoop Cluster on AWS Manually
	3.1.1 Create an Amazon Account
	3.1.2 Launch AWS Instances
	3.1.2.1 Create a Security Group
	3.1.2.2 Create a Key Pair
	3.1.2.3 Launch Instance

	3.1.3 Log into Instances
	3.1.3.1 Generate PPK File
	3.1.3.2 Log into Instances

	3.1.4 Set up Hadoop Cluster
	3.1.4.1 Install JAVA

	3.1.5 Install Hadoop
	3.1.6 Set up Configuration of Hadoop
	3.1.6.1 Set up Password-less Access
	3.1.6.2 Set up Configuration Files

	3.1.7 Test the Cluster

	3.2 Auto-deploy Hadoop Cluster on AWS
	3.2.1 Create an Amazon Account
	3.2.2 Launch AWS Instances
	3.2.3 Log into Instances
	3.2.4 Set up Hadoop Cluster
	3.2.5 Set up Configuration of Hadoop

	4 Overview of the Program
	4.1 Prerequisite
	4.2 Program Structures
	4.2.1 Set up AWS Credentials
	4.2.2 Gather User Data
	4.2.3 Launch Instance and Collect Necessary Information
	4.2.4 Collect Instance Information
	4.2.5 Log into Instance
	4.2.6 Hadoop Configuration

	5 Conclusion
	Bibliography

