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ABSTRACT

The computational capabilities of molecular dynani®) simulations have
greatly advanced in recent years, allowing forrtiaglelingof evermore complex
systems. In the field of membrane simulation, this has facilititetiesof bothlarge,
heterogeneousystems and dynamics on millisecond time scales. @oedly,
innovations in experimental technique have allowed for probing dynamics on length
and time scales approaching those in simula#A@rthese efforts continue to progress,
future extensions will allow for direct comparison between experiment @udbasion,
enablingfurther refinemento both.

Membranes are qua&D viscous fluids which require accurate modeling of
hydrodynamic transport to fully capture their dynamics. Relevant hydrodynamic
theory predict longrangecouplingamong proteins diffusg laterallyin the
membrane. In MD simulation, these ledgtance interactions lead to selferaction
through the periodic image lattice and other finite size effects which may only be
reduced by increasing the system s@zensequently,@urate modéhg of bulk
hydrodynamic transport using traditioMdD (i.e. with explicit solvent particles) is
not feasibleCalculating pairwise forces between the solvent particles demands an
overwhelming majority of the available computational resources at thesitequi
system sizes. This predicament constitutes an unmet scientific need as novel
algorithms and software implementations are required for accurate and efficient

modeling of hydrodynamic interactions at scale.

xxiii



We have met that need by supplementing aniangolvent lipid model called
Dry Martini with an efficient mesoscopic hydrodynamics model called paltiicle
collision (MPC) dynamics. Our hybrid model, called STRD Martini, is implemented
in the popular opesource MD software package GROMACS v5,@fiening the
way to further studies of membrane dynamics with proper accounting for
hydrodynamic interactions. The selection of MPC dynarfacghe mesoscopic
solvent model was motivated by its partibl@sed nature, which cleanly interfaces
with existig GROMACS codeAs such, GROMACS may treat MPC particles just as
any other particle for the purposes of integration, parallelization, trajectory writing,
analysis, and force calculation (when desired). When combined with domain
decomposition, STRD Martirscales to thousands of processors, providing accurate
hydrodynamics while running at least an order of magnitude faster than equivalent
explicit-solvent simulations.

The theory for membrane hydrodynamics in periodic geometries, called
periodicSaffmanDelbriick theoryrequires three parameters, two of which may be
measured independently and a third which is a true fit parameter of the irozlel.
independent parametegsharacterize the membrane surface viscosity and coefficient of
friction between membrane leaflets. These parameters are not commonly calculated
from simulation and remain uncharacterized for most popular membrane force fields.
Following the blueprint of ararier work, we further develop a protocol for
conducting nonequilibrium shearing simulations to measure these parameters and

apply the protocol to both coargeain and alatom membranes.
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Chapter 1

INTRODUCTION

1.1 Introduction to Lipid Membranes

The study obiology and soft mattas replete with examples of complex
molecular systemexhibiting interesting physic©ne fascinating example are plasma
membranes; the serpermeable, selissembling fluid sheets which enclose cells and
yet allow them to interaatith their environmenf3]. The plasma membrane hosts
thousands of different proteins, the molecular machinery responsible for cellular
activity. About onethird of the proteins in the human proteome are integral membrane
proteins[4], and well over half of pharmaceutical drugs target these proteins or the
membrane itself to trigger or disrupt important cellular funct{®hsThe organization
and dynamic behavior of these proteins, and hence their response temte&m
governed by the physical environment provided by the plasma membrane. In addition,
viral infection requires crossing the membrane via the process of endocytosis;
following replication, viral exit requires passing back through the membrane via
exocytosis[3]. Hence, a nuanced understanding of the structure and dynamics of cell
membranes and the transport of proteins embedded within them is of great interest to
medical science independent of the interesting questions they pose for soft matter
physicists.

Plasma membranes are composednophipathianolecules calledipids,
which join one or moréydrophobidatty acid tails witthydrophilic polarheadd6].

In the presence of water, this difference in hydrophobicity causes these molecules to



spontaneously form double sheets with the headfe exterior and the tails shielded
within. Each sheet of the membrane is called a leaflet; together they form the
phospholipidbilayer. These membranes are roughly 4 nm thick but extend over
micrometer lengtiscales. The lipids in each leaflet are free to move about, creating a
two-dimensional viscous fluilMomentum transport in the membrane is closely
coupled to hydrodynamic flows in the surrounding water, creating a hybrid system
which exhibits characteris$ of both tweand threedimensional hydrodynamics at
different lengthscaleq7].

Over sufficiently long lengtlscales membrangcan be accurately modeled
continuous elastic sheawith elastic moduli describing the enetig penalty to stretch
or to bend tem([8]. The required bending energy is low enough for thermal
fluctuations tospontaneouslgxcite undulations of the membrane surface. Cells (and
invading viriors) are able to exploit this flexibility to remodel the membrane in a
variety of ways, creating pits or folds in the surface or budding off a region of the
membrane and its contents entirely. The plasma membrafsonnected at
various points to an iatnal fiber network called the cytoskeleton, which provides
rigidity and structure to the celh addition to the plasma membranell€useother
lipid membraneso provide internal structure and to compartmentalize important
cellular functions into orgeelles[3].

Manydifferentproteinsassociate witimembrans. Some only attach to their
membrane on a temporary basis, while others are permanently andhuerédaiter are
called integral membrane proteins and
leaflets and often include domains located inside (intracellular) and outside the

membrane (extracellularfheseproteinsservea variety ofimportant cellular



functions including proteins which induce or facilitate membrane curvatcihannels
that allow ions or other small molecules to pass through the memhbratreceptors
which react to the presence of particular molecules outside th®wgell half of dl
FDA-approveddrugs targethesetransmembranproteins, with the most common
class being a group of receptors couplehti@acellulari @ r ot Bl ns 0

There are also a wide variety of different lipids found in the membranes of
living cellsd ca. 800 different combinations of acyl chain, backbone, and headgroup
chemistry[10], but about onghird by mole of the lipid component in eukaryotic
membranes is cholesterol. Depending on their mutual interactions, these complex
mixtures of lipids and proteins might form localized regions of distinct composition in
the cell membrane. Thetion that these domains may serve a functional role as
platforms for signaling [11k Wkendiwrmedfosn t he A F
the complex, nonequilibrium environment of the cell, model membrane mixtures can
form coexisting fluidamhadid s ,quad @d2].l1de & ot Idieq u
Both are fluid, but they differ in composition, and as a result, in the extent to which
the acyl chains order. Such model systems have long served amstéordrealcell

membranes in both experiment and simulation.

1.2 Lipid Types

Four lipids are frequently referenced throughout this document using their
abbreviated names: DPPC, DOPC, POPC, and PSM. Full chemical names for these
lipids are given imable 1.1 and their chemical structures are illustrate&io 1.1.
The first three differ only in their tails; they share the same phosphatidylcholine (PC)
headgroups connected to the glycératkboneTheir tails are all either palmitoyl or

oleyl, with thelatter containing a single unsaturation about halfway along the acyl



chain and two additional carbons. Ofas two palmitoyl, D©has two oleyl, and PO

has one of each. As is often the case in chemistry, this minor difference has a profound
impactonthegi col |l ective dynamics. The unsaturat
which causes oleyl tails to be more disordered, leading higher membrane viscosity,

slower diffusion, and lower melting temperature. In contrast, the orderly palmitoyl

tails tend to lineip more readily, leading to higher melting temperature.

Tablel.1l: Lipids referenced throughout this documénelting temperatures given
by DPPC[13], DOPC[14], POP{15], PSM[16], CHOL [17]).

Abbreviation| Full Chemical Name Tel\r/lneplfei?gture
DPPC 1,2-Dipalmitoyl-sn-glycerc-3-phosphocholine 314 K
DOPC 1,2-Dioleoyl-snglycero-3-phosphocholine 256 K
POPC 1-Palmitoyt2-oleoytsnglycero3-phosphocholing 271K
PSM Palmitoyl sphingomyelin 314 K
CHOL Cholesterol 422 K




CHOL

Figurel.l: Chemical structures of lipids referenced throughout this document
(Images created using the ChemSketch v1AL8]).

1.3 The Case for Simulation
Experimental methods to observe the spatiotemporardigs of membrane
proteins and lipids have advanced significantly over the last decade, and especially in

the last few years. In live cells, single particle tracking (§B9]y [21] and



fluorescence correlatisgpectroscopy (FCS) with subdiffraction detection volumes
(achieved by stimulated emission depletion (STED) microsd@2yhave revealed

the plasma membrane to be heterogeneous on tens of nanometers, with
correspondingly heterogeneous dynamics. Taken together, these resulés augge
hierarchical membrane organization, with the cytoskeleton influencing transport above
80 nm lengtlscaleq23], and lipidprotein interactions operating below this length
scale[24].

In model systems, mixtures that are comparatively simple are also
heterogenemi Neutron scattering reveals nanoscale liguakred domains in
vesicles comprised of a mixture of 3 or 4 components (including choleg&5pl)n a
ternary mixture that supports liguatdered/liquiddisordered (Lo/Ld) coexistence
nanoscale heterogeneities in composition and dynamics are observed byrSBED
[26], provided the mixture is deposited on a glass support, which pins a fraction of
lipids facingthe support. In similar mixtures of a uniform Lo phase, heterogeneities
are observed on yet smaller lengtiales and timscales by molecular dynamics
simulationg27], [28] and interferometric scattering (ISCAT) based $29.

While these experimental results point to essential aspects of spatiotemporal
organizationd the role of the cytoskeleton in partitioning the membrane, the
existence of nanoscale compositiohaterogeneity) they are mostly silent on the
details of the underlying mechanism. For example, how does actin create a barrier to
diffusion? By a simple steric mechani$®i], or by modifying the mmbrane
viscosity in the neighborhood of actin binding protdB@j, or in some other way?

How do nanoscale heterogeneities in composition modify local proteusidiff when

observed (i.e., averaged) over the longer length andstiales relevant to signaling?



Answers to these questions will come froomputationamodeling
approaches. Based on the above discussion, an appropriate modeling approach must
fulfill certain criteria: (i) It must resolve proteprotein and lipigprotein interactions
with reasonable chemical specificity, (ii) It must span lesgtdes from individual
lipids to the 100 nm lengtbcale of the cortical cytoskeleton mesh, (iii) It must
accuately resolve dynamics. In order to achieve this last point, a modeling approach
must account properly for the hydrodynamics of the solvent adjacent to the membrane.
This is clear from continuum arguments originally proposed by Saffmabealbdick

[7], and later extended by Hughes, Palinthorpe, and 3iiie

1.4 Research Objectives

As computational capabilities have grown étent decades, the scope of
accessible molecular dynamics (MD) simulations has expanded from studies of hard
sphere$32] and simple fluid$33] to virus capsid$§34], coarsegrained viriong35],
and millisecond simulations of single domain prot¢8€. Early simulations
involving lipid bilayers were chiefly concerned with demonstratingassiembly and
obtaining sensible thermodynamic properties such as the thickness, area per lipid,
NMR observables, and beimg modulus of single component membrai3a3i [39].
Contemporary simulations have achieved sufficient complexity to study phase
separation in mukcomponent mixtureR28], [40], [41] and the dynamic properties of
relatively large membrang42], [43].

For MD simulations with periodic boundary conditions, the loaugge nature
of hydrodynamic interactions in membranes leads to coupling between periodic
images, resulting in significahtydrodynamidinite-size effects. An important

consequence is the deviation in observed diffusion rates of lipids and transmembrane



proteins whertompared to predictions from SaffmBelbrick (SD) theory7], [31],
[44]1[46]. In order to perform quantitative, predictive simulations of dynamics in
complex membranes, it is necessary to operate in a regime that minimizesifiaite
effects due to hydrodynamic interactions, which requiresmawventionally large
systemd44]. For lateral diffusion, simulated systems should be at least an order of
magnitude larger than the SaffmBelbrick length in all three dimensions.

Since allatom force fields have SD lengths comparable to experiment (i.e.,
p 1 mm), simulating sufficiently large athtom systems for any appreciable length of
time is infeasible for the foreseeable future. In contrast, comeseed force fields are
tractable due to their softer liplgbid interactions, which result in lower membrane
surface viscosity. For instance, membranes of Martini DPPC have a SD length of
roughly 8.6 nm, which implies sufficiently large systems are2@Dnm. Even so, a
100 nm cubic Martini system has roughly 8.5 million interaction sites, 95% of which
are wate. The majority of the computational effort is devoted to resolving interactions
within the solvent. A more efficient treatment would be to replace the egeased
water particles with a mesoscopic hydrodynamics model coupled to the Martini lipids.

The first goal of my research was to produce a podafoncept
implementation of this idea using a modif6&ROMACSV5.01[47]. To forgo
reparametrizing the lipid model, an implisiblvent variation of Martini called Dry
Martini [48] was used. The hydrodynamic momentum transport of the solvent was
introduced through a mesoscopic hydrodynamics model called stoalwasation
dynamics (SRD), the resulting combination

rotation dynamicso (STRD) Martini



Once the code was finished, significant effort was required to optimize its
communication protocol for efficient parallelizatidrhis was an iterative process,
featuring severgbromisingprotocolswhich were implemented and promptly
discarded as better protoselere designed. The final communication code achieves a
dramatic performance improvement relative to the originally published code, along
with a crucial correction to the integrator. Taken togetiherimprovements alloed
STRD Martini to perform 200 nmparsegrained membrane simulations with scalable
performance approaching the efficiency of Dry Martini, while including solvent
hydrodynamics.

Recent work has provided a theoretical description for computing lateral
diffusion in periodic membraneslled geriodic SaffmarDelbriick (PSD) theoriA4],

[46]. Diffusion in the merbrane simulations has been successfully shown to follow
thistheory[45], but it lacks predictive power due to a dependence on two membrane
parameters which are not readily available in the literafuthird goalof my

research was to develop a methothttependentlygalculatetheseparametes from
nonrequilibrium simulationgnd compare them with values fitted to the PSD theory. If
the shear viscosity of a membrane is known, the theory is reduced to only one free
parameter: the effective hydrodynamic radius of the diffusing object. Wherea@ppli
lipid diffusion, this may provide an avenue for understanding the length scale where

molecular and continuum hydrodynamics for lipids intersect.

1.5 Dissertation Outline
The next three chapters provide an overview of the background material
relevant tohis work. Principles of molecular dynamics simulations are discussed in

Chapter 2, including algorithms for integration, temperature, and pressure control. A



discussion of the force fields used throughout this work is also included. Chapter 3
develops th¢heory for low Reynolds number hydrodynamics, finishing with a
description of membrane hydrodynamics and its application to a periodic system. This
is followed by a discussion of the MPC algorithm in Chapter 4 along with a brief
survey of other mesoscoanulation models.

The final three chapters present results for the STRD Mangmibrane
simulation model and membrane viscosity measurements from nonequilibrium
shearing simulations. Chapter 5 discusses the GROMACS implementation of STRD
Martini, giving rationales for the coupling method and parameter selection before
showing the results of validation testing. It ends with an application of STRD Martini
that demonstrates an important hydrodynamic finite size effect on lateral diffusion in
the membrane. §nificant effort went into optimizing the communication code to
make the performance of STRD Martini competitive with Dry Martini. This work is
detailed in Chapter 6, along with results from a series of performance benchmarks.
Chapter 7 presents membraneface viscosity results along with the theory required

to calculate them.
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Chapter 2
MOLECULAR DYNAMICS SIMULATION

2.1 Principles of Molecular Dynamics

Molecular dynamics (MD) simulations study the dynamics of maanyicle
molecular systems by numerically integratthg classical laws of motigd9]. MD
particles may represent whole molecules, atoms, or groups of atoms, depending on the
level of chenical specificity required by the system under considerafigpical lipid
membrane simulations either involve atora-@tom simulations) or groups of atoms
(coarsegrainedsimulations, in the parlance of the field). The positions and velocities
of each particle are represented with continuous variables, while time is discretized
into regular intervalef durationz-0 called timestepsAt each timestep, the force
acting on ach particle is calculated through its interactions with other particles,
parameterized by farce field. The equations of motion are integrated for each
particle with these forces to produce new positions and velocities for the next
timestep. This procede is repeated many times to gradually gendrajectoriesfor
each particle in the simulatigeeeFig 2.1).

Therearemanywell-known algorithms fonumeri@l integraton ofordinary
differential equationsising finite differencesncludng the Euler, RungeKutta,
Verlet, and leapfrognethod [50]. MD programs call code responsible fotegrating
the equations of motioimtegrators. Careful algorithmic considerations are necessary
to minimize integratiorerror and produce physical trajectories. Not every algorithm

for numerical integration is suitable for MD. Some produce trajectories which do not
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conserve energy. Others require multiple force computations per timestep, which is
overwhelmingly the most coputationdly laborious part of any MD program. Other
popular integrators do not conseesergy,modeling the dynamics of particles

coupled to a heat bath via random impulses and dissipative forces.

! Force

Particle
Configuration Calculation
G F(#)

\ Integratlon l
= ma;

l

Figure2.1: The central loop of an MD simulatioForces are computed based on the
particle configuration and the equations of motion are integrated using
these forcegproducing and new configuratioklillions to billions of
these iterations are required to produce némmicrosecond trajectories.

Interactions between particlage divided between intramolecular and
intermolecularlntramolecular interactions are responsible for maintaining realistic
molecular structure and providing rotational and vibrational internal degrees of
freedom.Intermolectar interactions include electrostatic and van der Waals

interactions. Atomsvithin molecules have partial charges which reflect their average
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electronic structure in the molecule, but no further attempt is made to model electronic
degree®f freedom. In the most widely used MD models,ititermolecular

interactions are assumed to be pairvadditive.Particle definitions andeir

interactions are defined using a set of parameterized potential energy functions,
coll ectivelry ecdliled dd oPopmdar firda feeldsnhavd leeén.
developed at various levels of granularityclude those which include every atom in

the systeni51]i [53], those which use coargeain interaction sitegl8], [54], and

those in betweefb5].

As a practical matter, tractable MD simulations of meaningful duration are
limited to p mparticles, often much fewer on modest computing resources. Despite
steady andmpressive growth in simulation scaleer time[34], [35], [42], [43] these
still represent faly small systemgp 1matoms comprise a 100 nm cube of water).
Consequentlypur MD simulations cannot properly model bulk systems unless
periodic boundary condition®BC)are employedseeFig 2.2). Using PBC
eliminates boundary effects from unphysical surfatdbe edges of the simulation
box in exchange for finite size effects imparted throughisgdfactions with periodic
images. In many contexts, this can be ameliorated through the use of larger simulation
sizesHowever, sce geriodic boundary conditianbreak rotational symmetrigtal
angular momentum is not generally consernvelllD simulations.

Rigorous integration results in MD trajectories which sample configurations
from themicrocanonical (NVEEnsembleSimulation of éher ensembleis possible
throughtemperatureoupling (NVT)[56]i [60] or pressure coupling (NPT57], [61]i
[65]. These coupling methods are particularly useful for relaxing systeenstéte of

equilibriumprior tolongerii p r o d usinulationaCarefulconsideratiorshould be
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appliedwhenselectng a coupling algorithnto ensure thequilibriumfluctuations
generatehe correct ensembland produce a trajectory whichtisfesergodicity[60],
[66], [67].

When used properlyID simulations can be used afa& o mpooal at i
microscope [68] to calculate quantitative dynamics of complex biological systems
and tounderstandheir qualitativemolecular behavioon length and time scales that
are inaccessibl® experimentPopular MD software packages include GROMACS
[47], NAMD [69], CHARMM [70], LAMMPS [71], and other$§72], [73]. This work

was performed exclusively in the context of GROMAGS0.1
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Figure2.2: Periodic boundary conditionkustratedin two dimensions with an
exaggerated membrane undulation. The central cell (in color) contains
the real system which interactions with an infinite lattice of periodic
images (greyscale). Particles which exit one side of the periodic box
emerge on theppositeside.
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2.2 Integrators
At the heart of every molecular dynamics simulation is a simheerical

integrationofN e wt on 6 s (withi® r&da) | aw

Q . -
a5P gy

for each particlgjiventheset of initial positionsg 1 and velocitieso 1T . Forces are
assumed tdepend only ortheinstantaneouparticle positions® "8 hb hp 8
Many techniques have been developed for solving this type of initial value problem
based on finite differencgS0], [74]. Since the most computationally expensive part
of any MD code is the calculation of forces are limitedto integrators which only
require a single force computation per step. This restricti@sout thepopular
RungeKutta methodalong withvarious iterativepredictorcorrectormethodq74]
(e.g. Geaf75)).

The simplest integratonvolving asingle force evaluation isi¢ Euler method,

invented in 176®ased on the forward difference in position

30
) b 30 §39)

with the subscripts denoting the timestépe forward differencés analogous t@a
Taylor expansion ab 0 in time. Despite its simplicity, this method is not used in
molecular dynamics due toserious problemit does not conserve energyhich can
be inferred from the fact that it breaks timeversal symmetry.

In order to conservenergy, integrators used in MD programs must be
symplectic. That is, they must transform the generalized coordingitipsof the

systembés Hamiltoni an i nspage volaneGROMACE h a 't
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implements twaeequivalenintegrators whichulfill this requirementeap frog[76]
andvelocityVerlet[77]. To obtain them, we can add together the Taylor series for the

forward and backwarfinite differences

Q. 30 Q . 30 Q .

5] b 30— - —b U 30 &
’Q(LJ)D ¢ Qw ¢ Qw G
[5) 5] 3~b’Q‘ 30 O 5} 30 O [5) 30 &
Qe ¢ Qw ¢ W v S
‘ ‘ ‘ Q.
5} 2 (b 30 o) (bID q8p
Solving forbe  gives the Verlef78] integrator
[ ¢b b 30 ® &
. [5} [}
® D cap

This form is inconvenient for MD code becauseeguires storing three sets of
positions in ordeto computehe velocity at each stefphough this computation is
optional for integration, velocities aneeded to compuieportant scalaquantities
such as kinetic energy, temperature, and pressure.

Another problem is the loss of precision fréonceterm due tahe30 factor,
which may be smattompared to the position termisis desirable to reformulate the
Verlet integrator tde linear in3-0. This can be accomplished by solving for the
velocities between timesteps, called thestéfp or midpoint velocities. This yields the

leapfrogintegrator]76]
[5) P 30® CP 1

Which can be shown tequalthe Verlet integratoif we define
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o P p
This integrator is fast, easy to implement, accurate to-troldr, timereversible, and
memoryefficient. It is the default integrator GROMACS However, it does not
supply simultaneous values ferandw , with important consequences for the
mesacopic hydrodynamics model implemented in this work. Fortunately, there is an
equivalent, gnchronized form of leapfrognplemented byGROMACSwhichyields

b andb called thevelocity Verletintegrator{77]

\ . 30,
© y ® = 2] ¢ G
[2 b 30® o
30
® D ?"?2 P

Since these two integrators are equivalent, they will produce the same trajectory given
the same initial conditions.

Choosing an appropriate timestep is essential for stable integration. Though we
seek the longest feasible timesteps for computational efficiency, stable integration
requires the timestep to be smaller than the period of dswilleor the fastest degree
of motion in the simulation. This imposes a maximum timestep duration of about 2 fs
for all-atom simulations and 20 fs for coaig@in simulations like the Martini models

[48], [54] used in this work.

2.3 Temperature and Pressure Control
Accurate integration produces particle trajectories that conserve energy. These

MD simulations sample particle configurations from the microcanonicaE)NV
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ensemble. This is not always desirable. In some situations, we might rather simulate
systems at constant temperati¥er constant pressute. For example, one might be
interested in nowequilibrium simulations where driving forces or deformatiores a
applied, and work done on the system muslibsipatedas heat, or in situations

where dissipative forces are important. One might also be interested in fluctuation
dependent properties sampled from the canonical ensemble. On a practical basis,
enforcng a prescribed temperature over long simulations is often necessary to combat
the slow energy drift from accumulated numerical noise in the integration. Allowing
pressure and temperature to change is also useful for relaxing the initial configuration
of asystem to its equilibrium state. This section will discuss the various temperature

and pressure coupling schemes used throughout the rest of this work.

2.3.1 Temperature

The algorithm used for temperature control is calledibemostat There are
many ways taontrol temperature in a simulation. One aald orremove kinetic
energy by rescaling particle velocities, adjust the equations of motion to include
dissipation or coupling to a heat bath, or simply draw new velocities from a Maxwell
Boltzmann distributn at random.

Theinstantaneougemperature of system with degrees of freedom is

related to the kinetic energy of the constituent particles (indexed Wwjth

AR c® U

Y o — a v Qa0
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Since different parts af smulationmaybe coupled to independent heat baths, is
equal to threéimes the number of particles in teebsystem under consideratiess
the number of constraingsnong those particles.

The moststraightforwardwvay to adjust the temperature of a group is to rescale

all velocities by aglobal scaling factor. “Y

Y a U P X

The scaling factor required fopaescribed temperatuf® may befoundby dividing

this expressioly theinstantaneougemperature

A P a0 P Y
Y 0 Q = 0 Q
i & 0 & o @
~ - S:3
R &

The prescribed temperaturetisenmaintained byperiodicallyrecalculaing the
instantaneougemperature and resaaj all particle. This does not have to be done
after every timestep, as the average temperature drift per step is small. This approach
is perfectly valid in the thermodynamlimit but suffers from a importantdrawback
when usedor finite systems: it does not adrfliictuationsin the kinetic energywe
may improveuponthis by coupling the system to an external heat bath and allowing
the prescribed temperature to gradually change.

The weltknownBerendserthermostaf57] implements this coupling with a
first-order differential equation using a relaxation tile

g'Y YUY

Qo T & p
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It canbe recast into @elocity rescaling factor applied every timestep given by

0"Y
v P & ¢

I
o)
—|-| &

Since the equation is firstrder, the solution is neoscillatory and any deviation from
the prescribed temperature decay exponentially with time. Both propertiestinnak
thermostat ideally suited to initial equilibration (i.e. relaxati®mfortunately the
exponential decay excessively dampens thermal fluctuations; the resulting dynamics
do not sampldrom the canonicaénsemble.

TheBussiDonadio-Parrinello thernostat[60] (colloquially referred to as
ABussi-re oaaliewd i isan®BifiedBarénggen thermostat with
thermodynamicallgorrect kinetic energy fluctuatiomstroduced through Wiener

noise ternQ win the coupling equation

oYY Y'Y
QY ——Qo0 ¢ ﬁQw & o

Just like Berendsen, this equation is first order in time, decaying exponentially to the
prescribed temperature when the system is far from equilib@umra.satisfying
property of this thermosté that it has a conserved quantity analogous to total energy,
which is useful when error checking new code. This is the thermostat we use when
running STRD Martini simulations.

An alternative approadmaving its owrconserved quantity is tiéosa-Hoover
thermostaf58], [59]. Rather than rescaling the velocities, this thermastaples
particle dynamics to an external heat bath through the introduction of a damping term

in the particle equations of motion
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n
—b 0 =
’QOID UHD & T

WithT beinganewdimensionless degree of freedom associatedtivitheat bath
havingmomentumj. Q i s the fAmasso of the heat bat
the coupling (large Q corresponds to weak coupling). The momenfttime heat bath
is evolved in time according to
%) & v

We can write a Hamiltonian for this extended system including the heat bath degree of
freedom and identify a conserved quantity with it. In fdgs thermostat predater
rescale; it was the first widelysed thermostab correctly sample the microcanonical
ensemble while maintaining a conserved quanititywever, the origindNoséHoover
thermostat has problems with edigity; given infinite time, it will not exhaustively
sample phase space. This maybeviatedby recursively coupling multipl&losé
Hooverthermostats together in a ch§@®]. This is the thermostat usedthis wak
when running simulationsith the CHARMM force field

The Dry Martini force field uses tretochastic dynamicthermostat based on

the Langevin equation

’Q\ " \ T T~ N
ooP 0 b ¢ QYY, o & o
g of, o tO 1 19 & X

Where the damping constdntontrols the coupling strength and thdorce is a delta
correlated Gaussian process. This thermostat is both a thermostat and an integrator,
which may be used to mimic the effects of viscous drag and thermal noise of a solvent

for implicit-solvent models lik®©ry Martini. A major drawback ofe Langevin and
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other stochastic approaches for hydrodynamics problems is that they scramble the

velocity correlations responsible for hydrodynamic flg8].

2.3.2 Pressure
The algorithm used for pressure control is calledoiv®@stat The pressure in
a simulation may be controlled by coupling the size and shape of the simidak to

the instantaneous pressure tensor. When the pressure is greater than the prescribed

valueD , the box is allowed to gradually expafithe 3x3virial pressure tensar in
an MD simulation is defined to be the difference between the engrgyrte and

the virial tensofy , each defined as a sum over ati@

~ C .
v 5O h & Y
: P x
O E a »aw & w
P N
h c b a® B M

Whered denotes an outer product of two vecidrs 6 & 6 , and'® gives the
pairwise force between atoritandQ

Hence we may write the total expression for the pressure as

5 g) & & b b&D & p

This is just the instantaneous virial stress after a change in siga,pasitive stress is

expansive while a positive stress is compressive. The scalar pressure is given by

~

N (RN
0 (—540) C& C
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Pressure coupling can be performed uniformlgll dimensions using this
scalar pressure (isotropic coupling), independently for each axis using the full pressure
tensor (anisotropic coupling) or separately for the lateral (x and y) and normal (z) axes
using the pressure tensor (semiisotropic cogpli

In theBerendser{57] scheme, this idone by rescalinthe simulation box and
all particle coordinateBy a scaling matrix , calculated from &rst-order equation
based on the difference betweenitistantaneous and prescribed pressure tensor

1 00 B 0
‘ 1 f T o o

Wherg s the time between pressure coupling stépss the time constant of the
relaxation, anfl  the isothermal compressibility tensor. Like the Berendsen
thermostat, this barostat is particularly well suited to equilibration simulations because
it converges exponentially towatd. Otherbarostats should be used in situations
where pressure flucttians are important, such BarrinellcRahmari61], [62] or
MartynaTuckermanrTobiasKlein [63], [64]. Aside from equilibrium CHARMM
simulations, which used ParrinelRahman, Brendsemvas the only barostat used in

this work, as pressure coupling was predominantly used for relaxation purposes, with

Aproductiono simulations running in the

2.4 Interactions and the Force Field

MD simulations use classicaltemactionsto calculate forces between atoms.
Thesenteractions are classified as either bonded (intramoleaiagnbonded
(intermolecular) with the bonded interactions describoanformationabnd
vibrational degrees of freedoi@ince using classicatteractiongs anapproximaion,

their mathematicaform oftenfollows from a compromise between physical accuracy

23
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and computational efficiengyvith the task of reproducing relevant physical properties
being relegated to the force field parameterization.
Thetotal potential energy in a GROMACS simulatimay be written athe

sum ofsix majorcontributions

n o . A4

(2.34)

The first term is the pairwise sum of van der Waals interactions, modeled wéth 12
LennardJones potentials, and the second term is the pairwise sum of electrostatic
interactions. The next two terms quantify energetics for vibrational degrees of
freedom,starting with the energy cost of individual bond stretching irbthedsterm

and bending in thanglesterm. The fifthdihedralterm describes rotations about the
axis defined by a sequence of four covalently bonded atoms. The last term restrains
certainplanar bondinggeometries t@reserve molecular structure. For each sum, the

0 coefficients give the associated energy, while =eiroscripted quantities are

equilibrium values. Both are supplied as force field parameters.

2.4.1 Bonded Interactions
There ardourcommont ypes of HAbondedod i nteraction
dihedral, and improper. Some force fields incladéitional intramolecular

interactiongo imposefurtherrestraints on molecular structure. For example, the
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CHARMM force field includes aivtual harmonic bond between the ouf®i3) atoms

of a bonded triplet called the Urd@radley force.

I

/ .
. Dihedral _ Improper

o
..

Figure2.3: Types of bonded interactiomsth covalent bonds indicated by dashed
red lines. Greentamsfor dihedral and improper bondse ceplanar.

Fig. 2.3 illustrates the four boretl interaction termgom equation2.34.
Bonds between individual molecules are modeled as harmonic springs having an
equilibrium lengtht . The angle formed by a bonded triplet is also restrained using a
harmonic potential about the equilibrium bond argleThe dihedral (also called the
torsion) is defined as the angle between the planes formed by2tBeahd 23-4

triplets inFig. 2.3. Impropersare another form of dihedrals, defined in the same
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manner but used for bond geometries other thesions, usually to maintain planarity

of chemical groupgOne configuration is depicted ig. 2.3 which may be used to

enforce a specific 3D structure. Other configurations include the plane formed by three
atoms connected to a central atom (i.e. for one side of a tetrameter) or the plane
formed by hree consecutive atoms in a featom chain. The latter may be used to
enforce planarity for ring structures.

Due to the inherently quantum nature of thindednteractions, nonbonded
interactions are typically omitted among atoms connected over a s€nae or two
covalent bonds (called2 and 13 exclusions respectively)leglectinginteractions
among thirdnearest (¥4 exclusior) atoms is uncommon. However, a scaling fagor
oftenused to reduce the forces between such atoms. This featurd isyube

GROMOS and OPLS force fields.

2.4.2 Nonbonded Interactions

2.4.2.1 Van der Waals
The van der Waals (dispersion) and exchange repulsion foetesen atoms
andj in GROMACS areausuallymodeled with the welknown 126 LennardJones

interaction, given by

Yo T- — — &L

With the interaction parameters and, depending on the specific atdgpesof the

pairunder consideratiol.hese parameters maitherbe definedn a pairwise basis
for each pair of M atom types inla 0 interaction matrix (as in Martini), or

individually for each atom type (as in CHARMM). In the latter casmrabination
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rule is required tadetermine th@airwise parameters from the atistic parameters

givenatom tyesi andj. A commonlyused combination rule is

T & ¢

” - ” ” c&- X

ThelLennardJones potentias illustrated inFig. 2.4. The attractive part scales
asi , which has a physical interpretation as the dispersion force arisingtfeom
correlated motions of electrons in each molecule (sometimes described as coupling
between instantaneousoleculardipoles). The repulsive part scalesias for

computational efficiency, as this is simply the square of the attractive part

U/e

0.6 0.8 1 1.2 14 1.6 1.8 2

Figure2.4: The 612 Lennarddones potential in natural unjtsand-. The potential
iszero at, 1and the depth of the well is-.
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Since this is a shoerange interaction, enormous computational effivaty be
sparedby ignoring all interactions involving interparticle distances over a certain
cutoff length scalér . A naive implementation of the shagnge force computation
requires) U pairwise distance calculations to iterate over all particle pairs. When
cutoffs are employed, this can be improved t6 through the use afeighbor lists
peratom lists of all dier atoms within a certain distani¥e Y [78]. When using
these lists, each atom needs only consider interactions with particles from its neighbor
list. Since the number of gaclesin thisx 'Y  regionis independent of the total
system size, the time required for force evaluation becomes lineseliBie may
also be constructed in linear tinmea twostage process. First, all particles are binned
in a spatial cell grid with bins Y . Second, the neighbor list for each particle is
constructed from among the atoms of the 27 nearest bins (including its own home bin).
When using aeighbor list cutoff larger than the force cutoff, these hsay be
calculated infrequently, so long as partidiesn outside the neighbor listgion do
not diffuse intothe force cutoff radiuslhe required frequency of neighbor list updates

is thusdependent upotie choserthickness of the boundary region 'Y ‘Y.

2.4.2.2 Electrostatics
Charged particles (e,glissolved ions or atoms with partial charges) have
pairwise éectrostatic interactiangiven by the wetknownCoulomb potential
nn

%o | -
-1

&y

In contrast withthe Lennaredonegpotential, thiss along-rangednteraction.

Applying a cutoff leadto seriousartifacts[80]. Summing over all particles in a
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periodic system is prohibitively expensive unless an Ewald[8a&ims used,

decomposinghe ineraction intesshortrangeandlong-rangepartsaccording to

%o 1 %o i %o 1 C& w
% i AOWA &
%o 1 AQE r“n-n‘l ¢a p

With the parametér controlling the length scale of the decompositibime sum over
shortrangecontributionsnow rapidly convergedn reciprocal space, the lofignge

contribution is given by

x nn Q
0,
% Q ) TQA QD—TT & ¢

which also rapidly convergebsing this method, we may impose a cutoff in real
space and compute the lerange contribution in reciprocal spatising a short
cutoff in real spacgields0 0 scaling inreciprocal spaceThe optimal choice of
cutoff with this method is to equal the square root of the periodic box size, resulting in
O 0 7 scaling[82].
This procedurés further improved by computing the reciprocal contridt
on adiscretegrid using a fast Fourier transform, completéiny 1 10C time. This
method is called the particle mesh Ewald (PME) mefB8¢ Charges in the system
are distributed over grid points using an interpolation scheme and the resulting forces
are interpolated back afterward. This is the standard electrostatics method used in
GROMACS. A more dicient method based on multipole sustales with) 0

[84]1[86], but the prefactor is prohibitively large unless large systems are being
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simulakd.Detailed comparisorsmongthese and other methods are available in the

literature[87], [88].

2.5 Force Fields

The set of all atom types and their interactions in a MD simulation is called the
chemical AThecselectmn df thesd pdrameters involves an arcane and
arduouppr ocess ¢ al | e dwhitlprnaay iachodetqueantimzrechanicsn o
calculations and repeated MD simulations to tune the thermodynamic properties.
There are three common levels of modeling resoluaiiratom (AA) modelg52],
[53], [89], which account for every atom in the system; united atom (UA) m{ils
which combine certain hydrogen and carbon atantg (he hydrogens omethylene
bridges and terminal methyl groups); and coapsened (CG) models, which combine
groups of atoms inteffective interaction sitgfgl8], [54]. Fig. 2.5 illustrates the
difference in model resolution betweenaibm and coarsgrain force fields for a
DPPC lipid.

Treatment of the solvent is an important comgnt of the parameterization.
Many treatments exist for water molecules, from complex models including many
body interaction$90] to simple ones which treat each molecule as a single Lennard
Jones interaction site with extra sites for electrostfits The design and
parameterization of these water models for biophysical simulation is a rich field of
study in its ownight [92], [93]. Certain force fields designed for memmbe
simulations are parameterized without including water 48]l [94]i [96], opting
instead to incorporate the influence of solvation and hydrophobicity into thdipd
interactions. Thesclevamteocmadtdelds Aii mpdti wernt r

been to properly account for polarizability in the solvent (and epfabdel. Such
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efforts have been applied in the context ofaatim[97], [98] and coarsgrain[99]
force fields.Other work hasaken the opposite approacising additional computation

effort toincorporaé manybody effect4100], [101]

CHARMM36 Martini
DPPC ‘}{ DPPC

Figure2.5: A lipid represented in both aitom and coarsgrain force fields.

CHARMMS36 [51], [89], [102] [104] is the latest version of an @tomforce
field whichwasoriginally developed for the CHARMNF0] MD program.The
CHARMM lipid force field has been supported for many years. In that time, it has
beenthrough multiple revisionglL02], [103]and has seen the introductionpobteins
[89] andnucleic acid4102]. Excellent reviews are available in the literature
concerninghemeticulous parameterization proc¢$85] and the development of the

lipid force field[106]. TheCHARMM3G6 force field is fully compatible with the
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GROMACS simulation code. Proper integration of the vibrational modes esduiis
timesteps. The fastest of these are the hydrogen bond stretching modes. These are
often constrained to their equilibrium length when using CHARMM to permit 2 fs
timesteps. GROMACS8nplements these constraints in parallel using the LINCS
constraintalgorithm[107], [108]

The most popular coarggain forcefield idMartini [54], [109], [110] which
mays groupsof 3-4 heavyatomsto chemically distinctoarsegraininteraction sits,

i nfor mal | y .Thadolveatds mbdeledavithsadath of such beads, each
representindour water moleculesAn excellent review is available by the architects
of the force field111]. It consists bnearlytwodoenmo dul ar Abui |l di ng bl
characterized by thepolarity (e.g. polar, nonpolar, apolar, and charged) and
hydrogen bonding affinitgpr degree of polarity. A single interaction matrix defines all
interactions among these building blocks with parametatesreed largely though
calculations opartitioning free energig®r small organic compouna®nstructed

from them All -atom structures are convertedctmarsegrainstructures by mapping

the center of mass for a group of atoms singlebead. Bonded teractiongor the
coarsegrainstructureare determined by comparing distribution functions of these
beadgo those of the corresponding centers of mass fromatath simulatios.

Martini does not use longange electrostatics. The electrostatic potéigia
shifted to zero between 0 and AZind a relative dielectric constant of 15 is used for
screening. Interactions between the Martini beads are softer than taeomall
counterparts with fewer degrees of freed@enerally speakingeducing the frigbn
andsmoothing out the energy landscapéhis wayaccelerates the pace of the

simulation speeding up the kinetiedpermitting faster conformational changes.
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Identifying a globaltimg es cal i ng factor to obtain
the speedup factor is not consistamtongdifferent degrees of freedom within the
system[112]. A smoother energlandscape and slower vibrations atseans the
fastest timescale of the system is considerable slower than iratoralksimulation,
permitting the use of time steps from 20 to 40 fs.

Despite its simplicity, the Martini forcefield has baearedibly successful in
studies of membrane dynamidd 3], [114]and has even been extended to model
proteins[109].

Dry Matrtini [48] is a variant of Martinparametdazed for implicitsolvent
simulations The interaction levels have been adjusteehtsurethat astable bilayer
will sel-assembl@ven in the absence of solve@ther membrane properties such as
area per lipidarea compressibilitgnd tail ordeparameter are in agreement with
ordinary Martini. Oneadvantagef avoidinga full reparameterizatiors thatmany
lipids, and even some proteins, parameterized for Martini can often be used with Dry
Martini simply by rescaling interactionRemoval of thesolvent necessitates the
addition of a stochastic term to the integration in order to provide a source of friction
and thermal nois&his has the side effect of drastically reducing lipid-géfusion.

The difference between Martini and Dry Martini Bosmall membrane is illustrated in

Fig. 2.6.
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Figure2.6: A small membrane in Martini and Dry Martini. Removing the solvent
greatly reduceshe computational burdesf force evaluation.

2.6 Standard GROMACS Parameters for Selected Force Fields
Default simulation parameters used in this work are giv@rables2.1to 2.3.

Unless otherwise indicatedssumehese parametefsr their relevant simations.

Table2.1: Standard parameters for Martmembranesimulations iInGROMACS.

Integration Velocity-Verlet withYo ¢ EO

Center of mass motion removed every timestep, treating
membrane and solvent separately

Long range forces calculated eyestep

NeighborLists | Group scheme, recalculatedery 10 timesteps;
Cutoff at 14A

Van der Waals | Potential shifted to zero over®2 A.

Electrostatics | Electrostatic potential shifted to zero ovet D A;
No longrange electrostatics;
Relative permittivity- pu
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