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The computational capabilities of molecular dynamics (MD) simulations have 

greatly advanced in recent years, allowing for the modeling of ever more complex 

systems. In the field of membrane simulation, this has facilitated studies of both large, 

heterogeneous systems and dynamics on millisecond time scales. Concurrently, 

innovations in experimental technique have allowed for probing dynamics on length 

and time scales approaching those in simulation. As these efforts continue to progress, 

future extensions will allow for direct comparison between experiment and simulation, 

enabling further refinement to both. 

Membranes are quasi-2D viscous fluids which require accurate modeling of 

hydrodynamic transport to fully capture their dynamics. Relevant hydrodynamic 

theory predicts long-range coupling among proteins diffusing laterally in the 

membrane. In MD simulation, these long-distance interactions lead to self-interaction 

through the periodic image lattice and other finite size effects which may only be 

reduced by increasing the system size. Consequently, accurate modeling of bulk 

hydrodynamic transport using traditional MD (i.e. with explicit solvent particles) is 

not feasible. Calculating pairwise forces between the solvent particles demands an 

overwhelming majority of the available computational resources at the requisite 

system sizes. This predicament constitutes an unmet scientific need as novel 

algorithms and software implementations are required for accurate and efficient 

modeling of hydrodynamic interactions at scale. 

ABSTRACT 
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We have met that need by supplementing an implicit-solvent lipid model called 

Dry Martini with an efficient mesoscopic hydrodynamics model called multi-particle 

collision (MPC) dynamics. Our hybrid model, called STRD Martini, is implemented 

in the popular open-source MD software package GROMACS v5.0.1, opening the 

way to further studies of membrane dynamics with proper accounting for 

hydrodynamic interactions. The selection of MPC dynamics for the mesoscopic 

solvent model was motivated by its particle-based nature, which cleanly interfaces 

with existing GROMACS code. As such, GROMACS may treat MPC particles just as 

any other particle for the purposes of integration, parallelization, trajectory writing, 

analysis, and force calculation (when desired). When combined with domain 

decomposition, STRD Martini scales to thousands of processors, providing accurate 

hydrodynamics while running at least an order of magnitude faster than equivalent 

explicit-solvent simulations. 

The theory for membrane hydrodynamics in periodic geometries, called 

periodic Saffman-Delbrück theory, requires three parameters, two of which may be 

measured independently and a third which is a true fit parameter of the model. The 

independent parameters characterize the membrane surface viscosity and coefficient of 

friction between membrane leaflets. These parameters are not commonly calculated 

from simulation and remain uncharacterized for most popular membrane force fields. 

Following the blueprint of an earlier work, we further develop a protocol for 

conducting nonequilibrium shearing simulations to measure these parameters and 

apply the protocol to both coarse-grain and all-atom membranes.



 1 

INTRODUCTION  

1.1 Introduction to Lipid Membranes 

The study of biology and soft matter is replete with examples of complex 

molecular systems exhibiting interesting physics. One fascinating example are plasma 

membranes; the semi-permeable, self-assembling fluid sheets which enclose cells and 

yet allow them to interact with their environment [3]. The plasma membrane hosts 

thousands of different proteins, the molecular machinery responsible for cellular 

activity. About one-third of the proteins in the human proteome are integral membrane 

proteins [4], and well over half of pharmaceutical drugs target these proteins or the 

membrane itself to trigger or disrupt important cellular functions [5]. The organization 

and dynamic behavior of these proteins, and hence their response to treatment, is 

governed by the physical environment provided by the plasma membrane. In addition, 

viral infection requires crossing the membrane via the process of endocytosis; 

following replication, viral exit requires passing back through the membrane via 

exocytosis [3]. Hence, a nuanced understanding of the structure and dynamics of cell 

membranes and the transport of proteins embedded within them is of great interest to 

medical science independent of the interesting questions they pose for soft matter 

physicists. 

Plasma membranes are composed of amphipathic molecules called lipids, 

which join one or more hydrophobic fatty acid tails with hydrophilic, polar heads [6]. 

In the presence of water, this difference in hydrophobicity causes these molecules to 
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spontaneously form double sheets with the heads on the exterior and the tails shielded 

within. Each sheet of the membrane is called a leaflet; together they form the 

phospholipid bilayer. These membranes are roughly 4 nm thick but extend over 

micrometer length scales. The lipids in each leaflet are free to move about, creating a 

two-dimensional viscous fluid. Momentum transport in the membrane is closely 

coupled to hydrodynamic flows in the surrounding water, creating a hybrid system 

which exhibits characteristics of both two- and three-dimensional hydrodynamics at 

different length scales [7]. 

Over sufficiently long length scales, membranes can be accurately modeled as 

continuous elastic sheets with elastic moduli describing the energetic penalty to stretch 

or to bend them [8]. The required bending energy is low enough for thermal 

fluctuations to spontaneously excite undulations of the membrane surface. Cells (and 

invading virions) are able to exploit this flexibility to remodel the membrane in a 

variety of ways, creating pits or folds in the surface or budding off a region of the 

membrane and its contents entirely. The plasma membrane is also connected at 

various points to an internal fiber network called the cytoskeleton, which provides 

rigidity and structure to the cell. In addition to the plasma membrane, cells use other 

lipid membranes to provide internal structure and to compartmentalize important 

cellular functions into organelles [3]. 

Many different proteins associate with membranes. Some only attach to their 

membrane on a temporary basis, while others are permanently anchored. The latter are 

called integral membrane proteins and are ñtransmembrane,ò i.e., they span both 

leaflets and often include domains located inside (intracellular) and outside the 

membrane (extracellular). These proteins serve a variety of important cellular 



 3 

functions; including proteins which induce or facilitate membrane curvature, channels 

that allow ions or other small molecules to pass through the membrane, and receptors 

which react to the presence of particular molecules outside the cell. Over half of all 

FDA-approved drugs target these transmembrane proteins, with the most common 

class being a group of receptors coupled to intracellular ñG-proteinsò [9]. 

There are also a wide variety of different lipids found in the membranes of 

living cells ð ca. 800 different combinations of acyl chain, backbone, and headgroup 

chemistry [10], but about one-third by mole of the lipid component in eukaryotic 

membranes is cholesterol. Depending on their mutual interactions, these complex 

mixtures of lipids and proteins might form localized regions of distinct composition in 

the cell membrane. The notion that these domains may serve a functional role as 

platforms for signaling is known as the ñRaft Hypothesisò [11].  When divorced from 

the complex, nonequilibrium environment of the cell, model membrane mixtures can 

form coexisting fluid phases, called ñliquid orderedò and ñliquid disorderedò [12]. 

Both are fluid, but they differ in composition, and as a result, in the extent to which 

the acyl chains order. Such model systems have long served as stand-ins for real cell 

membranes in both experiment and simulation. 

1.2 Lipid Types 

Four lipids are frequently referenced throughout this document using their 

abbreviated names: DPPC, DOPC, POPC, and PSM. Full chemical names for these 

lipids are given in Table 1.1 and their chemical structures are illustrated in Fig. 1.1. 

The first three differ only in their tails; they share the same phosphatidylcholine (PC) 

headgroups connected to the glycerol backbone. Their tails are all either palmitoyl or 

oleyl, with the latter containing a single unsaturation about halfway along the acyl 
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chain and two additional carbons. DP- has two palmitoyl, DO- has two oleyl, and PO- 

has one of each. As is often the case in chemistry, this minor difference has a profound 

impact on their collective dynamics. The unsaturation causes a ñkinkò in its chain, 

which causes oleyl tails to be more disordered, leading higher membrane viscosity, 

slower diffusion, and lower melting temperature. In contrast, the orderly palmitoyl 

tails tend to line up more readily, leading to higher melting temperature. 

Table 1.1: Lipids referenced throughout this document (melting temperatures given 

by DPPC [13], DOPC [14], POPC [15], PSM [16], CHOL [17]). 

Abbreviation Full Chemical Name 
Melting 

Temperature 

DPPC 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine 314 K 

DOPC 1,2-Dioleoyl-sn-glycero-3-phosphocholine 256 K 

POPC 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 271 K 

PSM Palmitoyl sphingomyelin 314 K 

CHOL Cholesterol 422 K 
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Figure 1.1: Chemical structures of lipids referenced throughout this document 

(Images created using the ChemSketch v14.01 [18]). 

1.3 The Case for Simulation 

Experimental methods to observe the spatiotemporal dynamics of membrane 

proteins and lipids have advanced significantly over the last decade, and especially in 

the last few years. In live cells, single particle tracking (SPT) [19]ï[21] and 
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fluorescence correlation spectroscopy (FCS) with subdiffraction detection volumes 

(achieved by stimulated emission depletion (STED) microscopy) [22] have revealed 

the plasma membrane to be heterogeneous on tens of nanometers, with 

correspondingly heterogeneous dynamics. Taken together, these results suggest a 

hierarchical membrane organization, with the cytoskeleton influencing transport above 

80 nm length scales [23], and lipid-protein interactions operating below this length 

scale [24].  

In model systems, mixtures that are comparatively simple are also 

heterogeneous. Neutron scattering reveals nanoscale liquid-ordered domains in 

vesicles comprised of a mixture of 3 or 4 components (including cholesterol) [25]. In a 

ternary mixture that supports liquid-ordered/liquid-disordered (Lo/Ld) coexistence 

nanoscale heterogeneities in composition and dynamics are observed by STED-FCS 

[26], provided the mixture is deposited on a glass support, which pins a fraction of 

lipids facing the support. In similar mixtures of a uniform Lo phase, heterogeneities 

are observed on yet smaller length scales and time scales by molecular dynamics 

simulations [27], [28] and interferometric scattering (iSCAT) based SPT [29]. 

While these experimental results point to essential aspects of spatiotemporal 

organization ð the role of the cytoskeleton in partitioning the membrane, the 

existence of nanoscale compositional heterogeneity ð they are mostly silent on the 

details of the underlying mechanism. For example, how does actin create a barrier to 

diffusion? By a simple steric mechanism [21], or by modifying the membrane 

viscosity in the neighborhood of actin binding proteins [30], or in some other way? 

How do nanoscale heterogeneities in composition modify local protein diffusion when 

observed (i.e., averaged) over the longer length and time scales relevant to signaling? 
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Answers to these questions will come from computational modeling 

approaches. Based on the above discussion, an appropriate modeling approach must 

fulfill certain criteria: (i) It must resolve protein-protein and lipid-protein interactions 

with reasonable chemical specificity, (ii) It must span length scales from individual 

lipids to the 100 nm length scale of the cortical cytoskeleton mesh, (iii) It must 

accurately resolve dynamics. In order to achieve this last point, a modeling approach 

must account properly for the hydrodynamics of the solvent adjacent to the membrane. 

This is clear from continuum arguments originally proposed by Saffman and Delbrück 

[7], and later extended by Hughes, Palinthorpe, and White [31].  

1.4 Research Objectives 

As computational capabilities have grown in recent decades, the scope of 

accessible molecular dynamics (MD) simulations has expanded from studies of hard 

spheres [32] and simple fluids [33] to virus capsids [34], coarse-grained virions [35], 

and millisecond simulations of single domain proteins [36]. Early simulations 

involving lipid bilayers were chiefly concerned with demonstrating self-assembly and 

obtaining sensible thermodynamic properties such as the thickness, area per lipid, 

NMR observables, and bending modulus of single component membranes [37]ï[39]. 

Contemporary simulations have achieved sufficient complexity to study phase 

separation in multi-component mixtures [28], [40], [41] and the dynamic properties of 

relatively large membranes [42], [43].  

For MD simulations with periodic boundary conditions, the long-range nature 

of hydrodynamic interactions in membranes leads to coupling between periodic 

images, resulting in significant hydrodynamic finite-size effects. An important 

consequence is the deviation in observed diffusion rates of lipids and transmembrane 
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proteins when compared to predictions from Saffman-Delbrück (SD) theory [7], [31], 

[44]ï[46]. In order to perform quantitative, predictive simulations of dynamics in 

complex membranes, it is necessary to operate in a regime that minimizes finite-size 

effects due to hydrodynamic interactions, which requires unconventionally large 

systems [44]. For lateral diffusion, simulated systems should be at least an order of 

magnitude larger than the Saffman-Delbrück length in all three dimensions. 

Since all-atom force fields have SD lengths comparable to experiment (i.e., 

ρππ nm), simulating sufficiently large all-atom systems for any appreciable length of 

time is infeasible for the foreseeable future. In contrast, coarse-grained force fields are 

tractable due to their softer lipid-lipid interactions, which result in lower membrane 

surface viscosity. For instance, membranes of Martini DPPC have a SD length of 

roughly 8.6 nm, which implies sufficiently large systems are 100-200 nm. Even so, a 

100 nm cubic Martini system has roughly 8.5 million interaction sites, 95% of which 

are water. The majority of the computational effort is devoted to resolving interactions 

within the solvent. A more efficient treatment would be to replace the coarse-grained 

water particles with a mesoscopic hydrodynamics model coupled to the Martini lipids.  

The first goal of my research was to produce a proof-of-concept 

implementation of this idea using a modified GROMACS v5.01 [47]. To forgo 

reparametrizing the lipid model, an implicit-solvent variation of Martini called Dry 

Martini [48] was used. The hydrodynamic momentum transport of the solvent was 

introduced through a mesoscopic hydrodynamics model called stochastic rotation 

dynamics (SRD), the resulting combination being called ñstochastic thermostatted 

rotation dynamicsò (STRD) Martini. 
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Once the code was finished, significant effort was required to optimize its 

communication protocol for efficient parallelization. This was an iterative process, 

featuring several promising protocols which were implemented and promptly 

discarded as better protocols were designed. The final communication code achieves a 

dramatic performance improvement relative to the originally published code, along 

with a crucial correction to the integrator. Taken together, the improvements allowed 

STRD Martini to perform 200 nm coarse-grained membrane simulations with scalable 

performance approaching the efficiency of Dry Martini, while including solvent 

hydrodynamics. 

Recent work has provided a theoretical description for computing lateral 

diffusion in periodic membranes called periodic Saffman-Delbrück (PSD) theory [44], 

[46]. Diffusion in the membrane simulations has been successfully shown to follow 

this theory [45], but it lacks predictive power due to a dependence on two membrane 

parameters which are not readily available in the literature. A third goal of my 

research was to develop a method to independently calculate these parameters from 

non-equilibrium simulations and compare them with values fitted to the PSD theory. If 

the shear viscosity of a membrane is known, the theory is reduced to only one free 

parameter: the effective hydrodynamic radius of the diffusing object. When applied to 

lipid diffusion, this may provide an avenue for understanding the length scale where 

molecular and continuum hydrodynamics for lipids intersect. 

1.5 Dissertation Outline 

The next three chapters provide an overview of the background material 

relevant to this work. Principles of molecular dynamics simulations are discussed in 

Chapter 2, including algorithms for integration, temperature, and pressure control. A 
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discussion of the force fields used throughout this work is also included. Chapter 3 

develops the theory for low Reynolds number hydrodynamics, finishing with a 

description of membrane hydrodynamics and its application to a periodic system. This 

is followed by a discussion of the MPC algorithm in Chapter 4 along with a brief 

survey of other mesoscopic simulation models. 

The final three chapters present results for the STRD Martini membrane 

simulation model and membrane viscosity measurements from nonequilibrium 

shearing simulations. Chapter 5 discusses the GROMACS implementation of STRD 

Martini, giving rationales for the coupling method and parameter selection before 

showing the results of validation testing. It ends with an application of STRD Martini 

that demonstrates an important hydrodynamic finite size effect on lateral diffusion in 

the membrane. Significant effort went into optimizing the communication code to 

make the performance of STRD Martini competitive with Dry Martini. This work is 

detailed in Chapter 6, along with results from a series of performance benchmarks. 

Chapter 7 presents membrane surface viscosity results along with the theory required 

to calculate them. 
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MOLECULAR DYNAMICS SIMULATION  

2.1 Principles of Molecular Dynamics 

Molecular dynamics (MD) simulations study the dynamics of many-particle 

molecular systems by numerically integrating the classical laws of motion [49]. MD 

particles may represent whole molecules, atoms, or groups of atoms, depending on the 

level of chemical specificity required by the system under consideration. Typical lipid 

membrane simulations either involve atoms (all-atom simulations) or groups of atoms 

(coarse-grained simulations, in the parlance of the field). The positions and velocities 

of each particle are represented with continuous variables, while time is discretized 

into regular intervals of duration ɝὸ called timesteps. At each timestep, the force 

acting on each particle is calculated through its interactions with other particles, 

parameterized by a force field. The equations of motion are integrated for each 

particle with these forces to produce new positions and velocities for the next 

timestep. This procedure is repeated many times to gradually generate trajectories for 

each particle in the simulation (see Fig 2.1). 

There are many well-known algorithms for numerical integration of ordinary 

differential equations using finite differences, including the Euler, Runge-Kutta, 

Verlet, and leapfrog methods [50]. MD programs call code responsible for integrating 

the equations of motion integrators. Careful algorithmic considerations are necessary 

to minimize integration error and produce physical trajectories. Not every algorithm 

for numerical integration is suitable for MD. Some produce trajectories which do not 
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conserve energy. Others require multiple force computations per timestep, which is 

overwhelmingly the most computationally laborious part of any MD program. Other 

popular integrators do not conserve energy, modelling the dynamics of particles 

coupled to a heat bath via random impulses and dissipative forces. 

 

Figure 2.1: The central loop of an MD simulation. Forces are computed based on the 

particle configuration and the equations of motion are integrated using 

these forces, producing and new configuration. Millions to billions of 

these iterations are required to produce nano- to microsecond trajectories. 

Interactions between particles are divided between intramolecular and 

intermolecular. Intramolecular interactions are responsible for maintaining realistic 

molecular structure and providing rotational and vibrational internal degrees of 

freedom. Intermolecular interactions include electrostatic and van der Waals 

interactions. Atoms within molecules have partial charges which reflect their average 
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electronic structure in the molecule, but no further attempt is made to model electronic 

degrees of freedom. In the most widely used MD models, the intermolecular 

interactions are assumed to be pairwise-additive. Particle definitions and their 

interactions are defined using a set of parameterized potential energy functions, 

collectively called the ñforce fieldò of the model. Popular force fields have been 

developed at various levels of granularity, include those which include every atom in 

the system [51]ï[53], those which use coarse-grain interaction sites [48], [54], and 

those in between [55]. 

As a practical matter, tractable MD simulations of meaningful duration are 

limited to ρπ particles, often much fewer on modest computing resources. Despite 

steady and impressive growth in simulation scale over time [34], [35], [42], [43], these 

still represent fairly small systems (ρπ atoms comprise a 100 nm cube of water). 

Consequently, our MD simulations cannot properly model bulk systems unless 

periodic boundary conditions (PBC) are employed (see Fig 2.2). Using PBC 

eliminates boundary effects from unphysical surfaces at the edges of the simulation 

box in exchange for finite size effects imparted through self-interactions with periodic 

images. In many contexts, this can be ameliorated through the use of larger simulation 

sizes. However, since periodic boundary conditions break rotational symmetry, total 

angular momentum is not generally conserved in MD simulations. 

Rigorous integration results in MD trajectories which sample configurations 

from the microcanonical (NVE) ensemble. Simulation of other ensembles is possible 

through temperature coupling (NVT) [56]ï[60] or pressure coupling (NPT) [57], [61]ï

[65]. These coupling methods are particularly useful for relaxing systems to a state of 

equilibrium prior to longer ñproductionò simulations. Careful consideration should be 
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applied when selecting a coupling algorithm to ensure the equilibrium fluctuations 

generate the correct ensemble and produce a trajectory which satisfies ergodicity [60], 

[66], [67]. 

When used properly, MD simulations can be used as a ñcomputational 

microscopeò [68] to calculate quantitative dynamics of complex biological systems 

and to understand their qualitative molecular behavior on length and time scales that 

are inaccessible to experiment. Popular MD software packages include GROMACS 

[47], NAMD [69], CHARMM [70], LAMMPS [71], and others [72], [73]. This work 

was performed exclusively in the context of GROMACS v5.0.1. 

 

Figure 2.2: Periodic boundary conditions illustrated in two dimensions with an 

exaggerated membrane undulation. The central cell (in color) contains 

the real system which interactions with an infinite lattice of periodic 

images (greyscale). Particles which exit one side of the periodic box 

emerge on the opposite side. 
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2.2 Integrators 

At the heart of every molecular dynamics simulation is a simple numerical 

integration of Newtonôs third law (with Ὢᴆ Ὂᴆάϳ ) 

Ὠ

Ὠὸ
ὶᴆ Ὢᴆ ςȢρ 

for each particle given the set of initial positions ὶᴆπ and velocities ὺᴆπ. Forces are 

assumed to depend only on the instantaneous particle positions Ὢᴆ Ὢᴆὶᴆȟὶᴆȟὶᴆȟȣ . 

Many techniques have been developed for solving this type of initial value problem 

based on finite differences [50], [74]. Since the most computationally expensive part 

of any MD code is the calculation of forces, we are limited to integrators which only 

require a single force computation per step. This restriction rules out the popular 

Runge-Kutta method along with various iterative predictor-corrector methods [74] 

(e.g. Gear [75]). 

The simplest integrator involving a single force evaluation is the Euler method, 

invented in 1768 based on the forward difference in position 

ὶᴆ ὶᴆ ɝὸ ὺᴆ
ɝὸ

ς
Ὢᴆ ςȢς 

ὺᴆ ὺᴆ ɝὸ Ὢᴆ ςȢσ 

with the subscripts denoting the timestep. The forward difference is analogous to a 

Taylor expansion of ὶᴆὸ in time. Despite its simplicity, this method is not used in 

molecular dynamics due to a serious problem: it does not conserve energy, which can 

be inferred from the fact that it breaks time-reversal symmetry. 

In order to conserve energy, integrators used in MD programs must be 

symplectic. That is, they must transform the generalized coordinates ήᴆȟὴᴆ of the 

systemôs Hamiltonian in a manner that conserves phase-space volume. GROMACS 
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implements two equivalent integrators which fulfill  this requirement, leap frog [76] 

and velocity Verlet [77]. To obtain them, we can add together the Taylor series for the 

forward and backward finite differences 

ὶᴆ ὶᴆ ɝὸ
Ὠ

Ὠὼ
ὶᴆ

ɝὸ

ς

Ὠ

Ὠὼ
ὶᴆ

ɝὸ

φ

Ὠ

Ὠὼ
ὶᴆ ὕɝὸ ςȢτ 

ὶᴆ ὶᴆ ɝὸ
Ὠ

Ὠὼ
ὶᴆ

ɝὸ

ς

Ὠ

Ὠὼ
ὶᴆ

ɝὸ

φ

Ὠ

Ὠὼ
ὶᴆ ὕɝὸ ςȢυ 

ὶᴆ ὶᴆ ςὶᴆ ɝὸ
Ὠ

Ὠὼ
ὶᴆ ςȢφ 

Solving for ὶᴆ  gives the Verlet [78] integrator 

ὶᴆ ςὶᴆ ὶᴆ ɝὸὪᴆ ςȢχ 

ὺᴆ
ὶᴆ ὶᴆ

ςɝὸ
ςȢψ 

This form is inconvenient for MD code because it requires storing three sets of 

positions in order to compute the velocity at each step. Though this computation is 

optional for integration, velocities are needed to compute important scalar quantities 

such as kinetic energy, temperature, and pressure. 

Another problem is the loss of precision from force term due to the ɝὸ factor, 

which may be small compared to the position terms. It is desirable to reformulate the 

Verlet integrator to be linear in ɝὸ. This can be accomplished by solving for the 

velocities between timesteps, called the off-step or midpoint velocities. This yields the 

leapfrog integrator [76] 

ὺᴆ Ⱦ ὺᴆ Ⱦ ɝὸ Ὢᴆ ςȢω 

ὶᴆ ὶᴆ ɝὸ ὺᴆ ςȢρπ 

Which can be shown to equal the Verlet integrator if we define 
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ὺᴆ
ὶᴆ ὶᴆ

ɝὸ
ςȢρρ 

This integrator is fast, easy to implement, accurate to third-order, time-reversible, and 

memory-efficient. It is the default integrator of GROMACS. However, it does not 

supply simultaneous values for ὶᴆ and ὺᴆ, with important consequences for the 

mesoscopic hydrodynamics model implemented in this work. Fortunately, there is an 

equivalent, synchronized form of leapfrog implemented by GROMACS which yields 

ὶᴆ and ὺᴆ called the velocity Verlet integrator [77] 

ὺᴆ Ⱦ ὺᴆ
ɝὸ

ς
 Ὢᴆ ςȢρς 

ὶᴆ ὶᴆ ɝὸ ὺᴆ ςȢρσ 

ὺᴆ ὺᴆ
ɝὸ

ς
 Ὢᴆ ςȢρτ 

Since these two integrators are equivalent, they will produce the same trajectory given 

the same initial conditions. 

Choosing an appropriate timestep is essential for stable integration. Though we 

seek the longest feasible timesteps for computational efficiency, stable integration 

requires the timestep to be smaller than the period of oscillation for the fastest degree 

of motion in the simulation. This imposes a maximum timestep duration of about 2 fs 

for all-atom simulations and 20 fs for coarse-grain simulations like the Martini models 

[48], [54] used in this work. 

2.3 Temperature and Pressure Control 

Accurate integration produces particle trajectories that conserve energy. These 

MD simulations sample particle configurations from the microcanonical (NVE) 
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ensemble. This is not always desirable. In some situations, we might rather simulate 

systems at constant temperature Ὕ or constant pressure ὖ. For example, one might be 

interested in non-equilibrium simulations where driving forces or deformations are 

applied, and work done on the system must be dissipated as heat, or in situations 

where dissipative forces are important. One might also be interested in fluctuation-

dependent properties sampled from the canonical ensemble. On a practical basis, 

enforcing a prescribed temperature over long simulations is often necessary to combat 

the slow energy drift from accumulated numerical noise in the integration. Allowing 

pressure and temperature to change is also useful for relaxing the initial configuration 

of a system to its equilibrium state. This section will discuss the various temperature 

and pressure coupling schemes used throughout the rest of this work. 

2.3.1 Temperature 

The algorithm used for temperature control is called the thermostat. There are 

many ways to control temperature in a simulation. One can add or remove kinetic 

energy by rescaling particle velocities, adjust the equations of motion to include 

dissipation or coupling to a heat bath, or simply draw new velocities from a Maxwell-

Boltzmann distribution at random. 

The instantaneous temperature of system with ὔ  degrees of freedom is 

related to the kinetic energy of the constituent particles (indexed by ) with 

ρ

ς
ὔ ὯὝ

ρ

ς
ά ὺ ςȢρυ 

Ὕ
ρ

ὔ Ὧ
ά ὺ ςȢρφ 
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Since different parts of a simulation may be coupled to independent heat baths, ὔ  is 

equal to three times the number of particles in the subsystem under consideration less 

the number of constraints among those particles. 

The most straightforward way to adjust the temperature of a group is to rescale 

all velocities by a global scaling factor ‗Ὕ 

Ὕ
ρ

ὔ Ὧ
ά ‗ὺ ςȢρχ 

The scaling factor required for a prescribed temperature Ὕ may be found by dividing 

this expression by the instantaneous temperature 

Ὕ

Ὕ

ρ

ὔ Ὧ
ά ‗ὺ

ρ

ὔ Ὧ
ά ὺ ςȢρψ 

Ὕ

Ὕ
‗ ά ὺ ά ὺ ςȢρω 

‗ Ὕ Ὕϳ ςȢςπ 

The prescribed temperature is then maintained by periodically recalculating the 

instantaneous temperature and rescaling all particle. This does not have to be done 

after every timestep, as the average temperature drift per step is small. This approach 

is perfectly valid in the thermodynamic limit but suffers from an important drawback 

when used for finite systems: it does not admit fluctuations in the kinetic energy. We 

may improve upon this by coupling the system to an external heat bath and allowing 

the prescribed temperature to gradually change. 

The well-known Berendsen thermostat [57] implements this coupling with a 

first-order differential equation using a relaxation time † 

ὨὝ

Ὠὸ

Ὕ Ὕ

†
ςȢςρ 
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It can be recast into a velocity rescaling factor applied every timestep given by  

‗ ρ
Ўὸ

†

Ὕ

Ὕ
ρ ςȢςς 

Since the equation is first-order, the solution is non-oscillatory and any deviation from 

the prescribed temperature decay exponentially with time. Both properties make this 

thermostat ideally suited to initial equilibration (i.e. relaxation). Unfortunately, the 

exponential decay excessively dampens thermal fluctuations; the resulting dynamics 

do not sample from the canonical ensemble. 

The Bussi-Donadio-Parrinello thermostat [60] (colloquially referred to as 

ñBussiò or ñv-rescaleò in GROMACS) is a modified Berendsen thermostat with 

thermodynamically correct kinetic energy fluctuations introduced through a Wiener 

noise term Ὠὡ in the coupling equation 

ὨὝ
Ὕ Ὕ

†
Ὠὸς

ὝὝ

ὔ †
Ὠὡ ςȢςσ 

Just like Berendsen, this equation is first order in time, decaying exponentially to the 

prescribed temperature when the system is far from equilibrium. One satisfying 

property of this thermostat is that it has a conserved quantity analogous to total energy, 

which is useful when error checking new code. This is the thermostat we use when 

running STRD Martini simulations. 

An alternative approach having its own conserved quantity is the Nosé-Hoover 

thermostat [58], [59]. Rather than rescaling the velocities, this thermostat couples 

particle dynamics to an external heat bath through the introduction of a damping term 

in the particle equations of motion 



 21 

Ὠ

Ὠὸ
ὶᴆ Ὢᴆ

ὴ

ὗ
ὺᴆ ςȢςτ 

With  being a new dimensionless degree of freedom associated with the heat bath 

having momentum ὴ. Q is the ñmassò of the heat bath, which controls the strength of 

the coupling (large Q corresponds to weak coupling). The momentum of the heat bath 

is evolved in time according to 

Ὠὴ

Ὠὸ
Ὕ Ὕ ςȢςυ 

We can write a Hamiltonian for this extended system including the heat bath degree of 

freedom and identify a conserved quantity with it. In fact, this thermostat predates v-

rescale; it was the first widely-used thermostat to correctly sample the microcanonical 

ensemble while maintaining a conserved quantity. However, the original Nosé-Hoover 

thermostat has problems with ergodicity; given infinite time, it will not exhaustively 

sample phase space. This may be alleviated by recursively coupling multiple Nosé-

Hoover thermostats together in a chain [66]. This is the thermostat used in this work 

when running simulations with the CHARMM force field. 

The Dry Martini force field uses the stochastic dynamics thermostat based on 

the Langevin equation 

Ὠ

Ὠὸ
ὶᴆ Ὢᴆ ὺᴆ ςὯὝ ‚ὸ ςȢςφ 

ộ‚ὸẗ‚ὸ †Ớ † ςȢςχ 

Where the damping constant  controls the coupling strength and the ‚ force is a delta 

correlated Gaussian process. This thermostat is both a thermostat and an integrator, 

which may be used to mimic the effects of viscous drag and thermal noise of a solvent 

for implicit-solvent models like Dry Martini. A major drawback of the Langevin and 
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other stochastic approaches for hydrodynamics problems is that they scramble the 

velocity correlations responsible for hydrodynamic flows [79]. 

2.3.2 Pressure 

The algorithm used for pressure control is called the barostat. The pressure in 

a simulation may be controlled by coupling the size and shape of the simulation box to 

the instantaneous pressure tensor. When the pressure is greater than the prescribed 

value ὖ, the box is allowed to gradually expand. The 3x3 virial pressure tensor ὖ  in 

an MD simulation is defined to be the difference between the energy tensor Ὁ  and 

the virial tensor ɧ , each defined as a sum over atoms ὭȟὮ 

ὖ
ς

ὠ
Ὁ ɧ ςȢςψ 

Ὁ
ρ

ς
ά ὺᴆ ἆ ὺᴆ ςȢςω 

ɧ
ρ

ς
ὶᴆ ἆ Ὂᴆ ςȢσπ 

Where ἆ denotes an outer product of two vectors, ὅ ὃ ἆ ὄ , and Ὂᴆ gives the 

pairwise force between atoms Ὥ and Ὦ. 

Hence, we may write the total expression for the pressure as 

ὖ
ρ

ὠ
ά ὺᴆ ἆ ὺᴆ ὶᴆ ἆ Ὂᴆ ςȢσρ 

This is just the instantaneous virial stress after a change in sign, i.e., a positive stress is 

expansive while a positive stress is compressive. The scalar pressure is given by 

ὖ
ρ

σ
4Òὖ ςȢσς 
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Pressure coupling can be performed uniformly in all dimensions using this 

scalar pressure (isotropic coupling), independently for each axis using the full pressure 

tensor (anisotropic coupling) or separately for the lateral (x and y) and normal (z) axes 

using the pressure tensor (semiisotropic coupling). 

In the Berendsen [57] scheme, this is done by rescaling the simulation box and 

all particle coordinates by a scaling matrix ‘ , calculated from a first-order equation 

based on the difference between the instantaneous and prescribed pressure tensor 

‘  
ὸ

†

ὖȟ ὖ

σ
ςȢσσ 

Where ὸ is the time between pressure coupling steps, † is the time constant of the 

relaxation, and   the isothermal compressibility tensor. Like the Berendsen 

thermostat, this barostat is particularly well suited to equilibration simulations because 

it converges exponentially toward ὖ. Other barostats should be used in situations 

where pressure fluctuations are important, such as Parrinello-Rahman [61], [62] or 

Martyna-Tuckerman-Tobias-Klein [63], [64]. Aside from equilibrium CHARMM 

simulations, which used Parrinello-Rahman, Berendsen was the only barostat used in 

this work, as pressure coupling was predominantly used for relaxation purposes, with 

ñproductionò simulations running in the constant volume (NVT) ensemble.  

2.4 Interactions and the Force Field 

MD simulations use classical interactions to calculate forces between atoms. 

These interactions are classified as either bonded (intramolecular) or nonbonded 

(intermolecular), with the bonded interactions describing conformational and 

vibrational degrees of freedom. Since using classical interactions is an approximation, 

their mathematical form often follows from a compromise between physical accuracy 
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and computational efficiency, with the task of reproducing relevant physical properties 

being relegated to the force field parameterization. 

The total potential energy in a GROMACS simulation may be written as the 

sum of six major contributions: 
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„
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ὑȟρ ÃÏÓὲ• ɿ

ὑȟ   

(2.34) 

The first term is the pairwise sum of van der Waals interactions, modeled with 12-6 

Lennard-Jones potentials, and the second term is the pairwise sum of electrostatic 

interactions. The next two terms quantify energetics for vibrational degrees of 

freedom, starting with the energy cost of individual bond stretching in the bonds term 

and bending in the angles term. The fifth dihedral term describes rotations about the 

axis defined by a sequence of four covalently bonded atoms. The last term restrains 

certain planar bonding geometries to preserve molecular structure. For each sum, the 

ὑ  coefficients give the associated energy, while zero-subscripted quantities are 

equilibrium values. Both are supplied as force field parameters. 

2.4.1 Bonded Interactions 

There are four common types of ñbondedò interactions: stretching, bending, 

dihedral, and improper. Some force fields include additional intramolecular 

interactions to impose further restraints on molecular structure. For example, the 
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CHARMM force field includes a virtual harmonic bond between the outer (1-3) atoms 

of a bonded triplet called the Urey-Bradley force. 

 

Figure 2.3: Types of bonded interactions with covalent bonds indicated by dashed 

red lines. Green atoms for dihedral and improper bonds are co-planar. 

Fig. 2.3 illustrates the four bonded interaction terms from equation 2.34. 

Bonds between individual molecules are modeled as harmonic springs having an 

equilibrium length ὰ. The angle formed by a bonded triplet is also restrained using a 

harmonic potential about the equilibrium bond angle —. The dihedral (also called the 

torsion) is defined as the angle between the planes formed by the 1-2-3 and 2-3-4 

triplets in Fig. 2.3. Impropers are another form of dihedrals, defined in the same 
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manner but used for bond geometries other than torsions, usually to maintain planarity 

of chemical groups. One configuration is depicted in Fig. 2.3 which may be used to 

enforce a specific 3D structure. Other configurations include the plane formed by three 

atoms connected to a central atom (i.e. for one side of a tetrameter) or the plane 

formed by three consecutive atoms in a four-atom chain. The latter may be used to 

enforce planarity for ring structures. 

Due to the inherently quantum nature of their bonded interactions, nonbonded 

interactions are typically omitted among atoms connected over a series of one or two 

covalent bonds (called 1-2 and 1-3 exclusions respectively). Neglecting interactions 

among third-nearest (1-4 exclusion) atoms is uncommon. However, a scaling factor is 

often used to reduce the forces between such atoms. This feature is used by the 

GROMOS and OPLS force fields. 

2.4.2 Nonbonded Interactions 

2.4.2.1 Van der Waals 

The van der Waals (dispersion) and exchange repulsion forces between atoms i 

and j in GROMACS are usually modeled with the well-known 12-6 Lennard-Jones 

interaction, given by 

Ὗ ὶ τ‐
„

ὶ

„

ὶ
ςȢσυ 

With the interaction parameters ‐ and „  depending on the specific atom types of the 

pair under consideration. These parameters may either be defined on a pairwise basis 

for each pair of M atom types in a ὓ ὓ interaction matrix (as in Martini), or 

individually for each atom type (as in CHARMM). In the latter case, a combination 
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rule is required to determine the pairwise parameters from the atomistic parameters 

given atom types i and j. A commonly-used combination rule is 

‐ ‐‐ ςȢσφ 

„
ρ

ς
„ „ ςȢσχ 

The Lennard-Jones potential is illustrated in Fig. 2.4. The attractive part scales 

as ὶ , which has a physical interpretation as the dispersion force arising from the 

correlated motions of electrons in each molecule (sometimes described as coupling 

between instantaneous molecular dipoles). The repulsive part scales as ὶ  for 

computational efficiency, as this is simply the square of the attractive part. 

 

Figure 2.4: The 6-12 Lennard-Jones potential in natural units „ and ‐. The potential 

is zero at „ π and the depth of the well is ‐. 
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Since this is a short-range interaction, enormous computational effort may be 

spared by ignoring all interactions involving interparticle distances over a certain 

cutoff length scale Ὑ. A naive implementation of the short-range force computation 

requires ὕὔ  pairwise distance calculations to iterate over all particle pairs. When 

cutoffs are employed, this can be improved to ὕὔ  through the use of neighbor lists: 

per-atom lists of all other atoms within a certain distance Ὑ Ὑ [78]. When using 

these lists, each atom needs only consider interactions with particles from its neighbor 

list. Since the number of particles in this ͯ Ὑ  region is independent of the total 

system size, the time required for force evaluation becomes linear. These lists may 

also be constructed in linear time in a two-stage process. First, all particles are binned 

in a spatial cell grid with bins Ὑ . Second, the neighbor list for each particle is 

constructed from among the atoms of the 27 nearest bins (including its own home bin). 

When using a neighbor list cutoff larger than the force cutoff, these lists may be 

calculated infrequently, so long as particles from outside the neighbor list region do 

not diffuse into the force cutoff radius. The required frequency of neighbor list updates 

is thus dependent upon the chosen thickness of the boundary region  Ὑ Ὑ. 

2.4.2.2 Electrostatics 

Charged particles (e.g., dissolved ions or atoms with partial charges) have 

pairwise electrostatic interactions given by the well-known Coulomb potential 

‰ ὶ
ήή

τ“‐ὶ
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In contrast with the Lennard-Jones potential, this is a long-ranged interaction. 

Applying a cutoff leads to serious artifacts [80]. Summing over all particles in a 
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periodic system is prohibitively expensive unless an Ewald sum [81] is used, 

decomposing the interaction into short-range and long-range parts according to 

‰ ὶ ‰ ὶ ‰ ὶ ςȢσω 
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With the parameter  controlling the length scale of the decomposition. The sum over 

short-range contributions now rapidly converges. In reciprocal space, the long-range 

contribution is given by 
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which also rapidly converges. Using this method, we may impose a cutoff in real 

space and compute the long-range contribution in reciprocal space. Using a short 

cutoff in real space yields ὕὔ  scaling in reciprocal space. The optimal choice of 

cutoff with this method is to equal the square root of the periodic box size, resulting in 

ὕὔȾ  scaling [82]. 

This procedure is further improved by computing the reciprocal contribution 

on a discrete grid using a fast Fourier transform, complete in ὕὔÌÏÇὔ  time. This 

method is called the particle mesh Ewald (PME) method [83]. Charges in the system 

are distributed over grid points using an interpolation scheme and the resulting forces 

are interpolated back afterward. This is the standard electrostatics method used in 

GROMACS. A more efficient method based on multipole sums scales with ὕὔ  

[84]ï[86], but the prefactor is prohibitively large unless large systems are being 
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simulated. Detailed comparisons among these and other methods are available in the 

literature [87], [88]. 

2.5 Force Fields 

The set of all atom types and their interactions in a MD simulation is called the 

chemical ñforce fieldò. The selection of these parameters involves an arcane and 

arduous process called ñparameterizationò which may include quantum mechanics 

calculations and repeated MD simulations to tune the thermodynamic properties. 

There are three common levels of modeling resolution: all atom (AA) models [52], 

[53], [89], which account for every atom in the system; united atom (UA) models [55], 

which combine certain hydrogen and carbon atoms (e.g., the hydrogens on methylene 

bridges and terminal methyl groups); and coarse-grained (CG) models, which combine 

groups of atoms into effective interaction sites [48], [54]. Fig. 2.5 illustrates the 

difference in model resolution between all-atom and coarse-grain force fields for a 

DPPC lipid. 

Treatment of the solvent is an important component of the parameterization. 

Many treatments exist for water molecules, from complex models including many-

body interactions [90] to simple ones which treat each molecule as a single Lennard-

Jones interaction site with extra sites for electrostatics [91]. The design and 

parameterization of these water models for biophysical simulation is a rich field of 

study in its own right [92], [93]. Certain force fields designed for membrane 

simulations are parameterized without including water at all [48], [94]ï[96], opting 

instead to incorporate the influence of solvation and hydrophobicity into the lipid-lipid 

interactions. These are called ñimplicit-solventò models. Another recent effort has 

been to properly account for polarizability in the solvent (and solute) model. Such 
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efforts have been applied in the context of all-atom [97], [98] and coarse-grain [99] 

force fields. Other work has taken the opposite approach, using additional computation 

effort to incorporate many-body effects [100], [101]. 

 

Figure 2.5: A lipid represented in both all-atom and coarse-grain force fields. 

CHARMM36 [51], [89], [102]ï[104] is the latest version of an all-atom force 

field which was originally developed for the CHARMM [70] MD program. The 

CHARMM lipid force field has been supported for many years. In that time, it has 

been through multiple revisions [102], [103] and has seen the introduction of proteins 

[89] and nucleic acids [102]. Excellent reviews are available in the literature 

concerning the meticulous parameterization process [105] and the development of the 

lipid force field [106]. The CHARMM36 force field is fully compatible with the 
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GROMACS simulation code. Proper integration of the vibrational modes requires 1 fs 

timesteps. The fastest of these are the hydrogen bond stretching modes. These are 

often constrained to their equilibrium length when using CHARMM to permit 2 fs 

timesteps. GROMACS implements these constraints in parallel using the LINCS 

constraint algorithm [107], [108]. 

The most popular coarse-grain forcefield is Martini  [54], [109], [110], which 

maps groups of 3-4 heavy atoms to chemically distinct coarse-grain interaction sites, 

informally called ñbeadsò. The solvent is modeled with a bath of such beads, each 

representing four water molecules. An excellent review is available by the architects 

of the force field [111]. It consists of nearly two dozen modular ñbuilding blocksò 

characterized by their polarity (e.g. polar, nonpolar, apolar, and charged) and 

hydrogen bonding affinity or degree of polarity. A single interaction matrix defines all 

interactions among these building blocks with parameters obtained largely though 

calculations of partitioning free energies for small organic compounds constructed 

from them. All -atom structures are converted to coarse-grain structures by mapping 

the center of mass for a group of atoms to a single bead. Bonded interactions for the 

coarse-grain structure are determined by comparing distribution functions of these 

beads to those of the corresponding centers of mass from all-atom simulations.  

Martini does not use long-range electrostatics. The electrostatic potential is 

shifted to zero between 0 and 12 Å and a relative dielectric constant of 15 is used for 

screening. Interactions between the Martini beads are softer than their all-atom 

counterparts with fewer degrees of freedom. Generally speaking, reducing the friction 

and smoothing out the energy landscape in this way accelerates the pace of the 

simulation, speeding up the kinetics and permitting faster conformational changes. 
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Identifying a global time-rescaling factor to obtain ñrealò times is often not feasible as 

the speedup factor is not consistent among different degrees of freedom within the 

system [112]. A smoother energy landscape and slower vibrations also means the 

fastest timescale of the system is considerable slower than in an all-atom simulation, 

permitting the use of time steps from 20 to 40 fs. 

Despite its simplicity, the Martini forcefield has been incredibly successful in 

studies of membrane dynamics [113], [114] and has even been extended to model 

proteins [109]. 

Dry Martini  [48] is a variant of Martini parameterized for implicit-solvent 

simulations. The interaction levels have been adjusted to ensure that a stable bilayer 

will  self-assemble even in the absence of solvent. Other membrane properties such as 

area per lipid, area compressibility, and tail order parameter are in agreement with 

ordinary Martini. One advantage of avoiding a full reparameterization is that many 

lipids, and even some proteins, parameterized for Martini can often be used with Dry 

Martini simply by rescaling interactions. Removal of the solvent necessitates the 

addition of a stochastic term to the integration in order to provide a source of friction 

and thermal noise. This has the side effect of drastically reducing lipid self-diffusion. 

The difference between Martini and Dry Martini for a small membrane is illustrated in 

Fig. 2.6. 
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Figure 2.6: A small membrane in Martini and Dry Martini. Removing the solvent 

greatly reduces the computational burden of force evaluation. 

2.6 Standard GROMACS Parameters for Selected Force Fields 

Default simulation parameters used in this work are given in Tables 2.1 to 2.3. 

Unless otherwise indicated, assume these parameters for their relevant simulations. 

Table 2.1: Standard parameters for Martini membrane simulations in GROMACS. 

Integration Velocity-Verlet with Ўὸ ςπ ÆÓ 
Center of mass motion removed every timestep, treating 

membrane and solvent separately 

Long range forces calculated every step 

Neighbor Lists Group scheme, recalculated every 10 timesteps; 

Cutoff at 14 Å 

Van der Waals Potential shifted to zero over 9-12 Å. 

Electrostatics Electrostatic potential shifted to zero over 0-12 Å;  

No long-range electrostatics; 

Relative permittivity ‐ ρυ 










































































































































































































































































































































































