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ABSTRACT

In this thesis we study three different problems associated to the detection of

two types of material defects: interfacial cracks and delaminations. In Chapter 2 we

address the problem of interfacial crack detection in layered isotropic elastic media.

In the first part, a well-posedness result is established, and we use this result in the

second part of the chapter to adapt the Factorization Method (FM) in order to propose

a reconstruction algorithm. In Chapter 3 we consider the problem of detecting if two

materials that should be in contact have separated or delaminated. The goal is to find

an acoustic technique to detect the delamination. We model the delamination as a thin

opening between two materials of different acoustic properties, and using asymptotic

techniques we derive an asymptotic model where the delaminated region is replaced by

jump conditions on the acoustic field and flux. The asymptotic model has potential

singularities due to the edges of the delaminated region, and we show that the forward

problem is well posed for a large class of possible delaminations. We then design a

special Linear Sampling Method (LSM) for detecting the shape of the delamination

assuming that the background, undamaged, state is known. In Chapter 4 we consider

the problem of detecting planar delaminated regions of constant thickness. Here we aim

to develop an electromagnetic technique to detect the delamination. Again, we derive

a asymptotic model where the delaminated region is replaced by jump conditions on

the electric and magnetic fields. We show that the forward problem is well posed under

some assumptions on the material properties, and finally adapt again a LSM to detect

the shape of the delamination assuming that the background state is known. In all three

chapters we show, by numerical experiments, that our nondestructive testing (NDT)

methods can indeed be used to determine the shape of the corresponding defect.
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Chapter 1

INTRODUCTION

Inverse scattering is a field of science concerned with the development of tech-

niques to infer physical properties of a system, from measurements of how incoming

waves are scattered in the presence of the system. Among examples of such problems,

are the identification of the shape of an obstacle and the determination of relevant

material properties of an object to which no direct access is available. These kind of

problems have important applications in medical imaging (e.g. [4, 16]), nondestructive

testing of materials (e.g. [44, 2, 68]), geological exploration (see [42, 64, 88]), etc. The

mathematical methods that have been developed to solve inverse scattering problems

are diverse, and can be divided into three main categories (see [55]): weak scattering

methods, optimization methods and qualitative methods. Weak scattering methods are

based on approximations that neglect multiple scattering effects, and which are valid

only in the sub-resonant region (where either the wave number k of the interrogating

waves or the material contrasts are very small). In contrast, both optimization methods

and qualitative methods have been successful in tackling inverse scattering problems

in more general regimes. These two families of methods are based on substantially

different approaches, each of them with their own advantages and disadvantages. Op-

timization methods lead to final reconstruction algorithms involving iterative schemes,

where in each iteration a forward problem has to be solved. They are numerically

expensive and require substantial a priori information, although have the advantage

of providing information on both geometrical and physical parameters of the object.

Qualitative methods, on the contrary, typically require little a priori information and

result in cheap final reconstruction or identification algorithms, but at the expense of

recovering only partial information: either the geometry or the physical parameters of
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the object. For a general overview of inverse scattering methods we refer the reader to

[32].

In this thesis we will develop nondestructive testing (NDT) methods for the

identification of material defects (delamination and cracks), based on two of such qual-

itative methods: the linear sampling method (LSM) and the factorization method

(FM). The LSM was first developed by D. Colton and A. Kirsch in 1996 [31], and the

FM was invented by A. Kirsch in 1998 [56, 54].

The general idea of both the LSM and FM is to find the location of an object (in our

case a defect) by the construction of an indicator function whose support is precisely

the object. The algorithm to construct such indicator function consists in sampling

points on a grid where the object is expected to be, and then use a criterion provided

by the LSM or the FM to decide whether the point belongs or not to the support of

the object.

The LSM criterion to construct the indicator function is based on solving a linear (ill-

posed) equation for each sampling point, with the implementation of a regularization

scheme, and then to use this regularized solution to approximate the indicator func-

tion.

In contrast, the FM criteria is based on the characterization of the range of an op-

erator that can be constructed from measurable scattering data. Based on the exact

knowledge of this range, the indicator function can be found directly. Although the

FM is mathematically more satisfactory, the assumptions required by this method are

much more restrictive than those for the LSM.

In both cases, the LSM and FM require multistatic data for a single wave number

k = 2π/λ, meaning that the information is collected from an array of sources and

receivers.

Note that one can increase the resolution of the LSM and FM by simply increasing the

wave number k of the interrogating waves [45].

We refer the reader to [56], [21] and [23] for a variety examples of applications of LSM

and FM.
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We start the thesis with Chapter 2, where we address the problem of interfacial

crack detection. The general problem of crack detection has been an active research

topic in both engineering and mathematics due to its broad range of applications,

including hydrology, geothermal sources, and environmental protection. It has been

experimentally confirmed that both the geometry and the interfacial conditions of the

fracture are equally important to its response to a given “activation” [76]. In our ap-

proach, we present a method that captures the geometrical distribution of interfacial

cracks, in an elastic isotropic layered medium, assuming that a linear contact law is

satisfied on the crack. This means that the relation between the traction and the jump

of the displacements across the discontinuity is linear, given by the so-called stiffness

matrix. The method developed is based on an adaptation of the FM, and it is partially

a generalization of previous work [77] to the case of inhomogeneous media. The results

of this chapter will appear soon in [34].

In Chapters 3 and 4, we turn our attention to the problem of the identification

of delamination. Delamination is a defect that occurs when two materials that should

be bonded together, partially separate. This is a common failure occuring, for example,

in composite or stratified media that are subject to repeated stresses (see [72, 19, 82]).

Delamination is considered one of the most critical defects in engineering, be-

cause it changes the structural stability of the system (see [72]), and the development

of nondestructive testing (NDT) of delamination is therefore an important area of

research (e.g. see [83, 44]).

In order to obtain a model that provides a unified picture of scattering by a

thin crack of arbitrary shape, the first parts of Chapters 3 and 4 are devoted to a pre-

sentation of reduced models for the scattering of acoustic and electromagnetic waves.

The full derivation of the reduced models can be found in Appendix B (for acoustic

scattering) and in Appendix C (for electromagnetic scattering).
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These reduced models are derived from asymptotic expressions of the fields, that

exploit the fact that the maximum thickness of the delamination δ is a small parameter

(with respect to both the size of the obstacle and to the wave-length λ).

The origin of these type of methods goes back to the work of M.A. Leontovich

and S.M. Rytov [62, 78]. In his work, Leontovich derived for the first time the now well-

known surface impedance boundary condition (SIBC) to approximate the scattering

of an electromagnetic wave by a highly conducting obstacle. Rytov, however, seems to

be the first one to have expressed the fields, in the vicinity of a thin film as a power

series with respect to the thickness of the film δ (see [86]). Using this approach Rytov

provided a general method to derive high order models with better accuracy.

In the context of highly conducting obstacles, subsequent work has resulted in

the derivation of approximate boundary conditions, the so-called Generalized Impedance

Boundary Conditions (GIBCs) [49, 81]. The ideas have been applied beyond this set-

ting to the case of perfect conductors (e.g. [48, 14, 66]), to the study of thin periodic

films and rough surfaces (e.g. [73, 74, 15, 35, 36, 37, 38]), and to thin transmitting

coatings (e.g. [71, 30, 40]). In these two last settings, the concept of approximate

transmission conditions (ATCs) has been developed. The general idea is to approxi-

mate the effect of the thin layer by suitable jump -or transmission- conditions for the

fields.

For a more exhaustive review on the development of these asymptotic methods, we

refer the reader to the introductory chapter in [35].

For our delamination problem, we derived ATCs models by formally consider-

ing an asymptotic expression of the field in a vicinity of the thin delamination, as a

power series with respect to δ. These ATCs models are new with respect to previous

approaches in the sense that we allow the thin domain to be supported in a surface

that has a non-empty boundary (in previous works the thin films were supported in

4



a closed surface). This brings into play potential singularities in the asymptotic ex-

pansion, and extra difficulties in the analysis of the well-posedness of the ATCs models.

In Chapter 3, the ATCs model for acoustic scattering considers jumps of the

fields on a single surface, and thus is considered to be a crack-type model. However,

in the electromagnetic case a crack-type ATCs (whose full derivation can be found in

Appendix C, model I) leads to a model where the signs of the coefficients involved

in the ATCs are not compatible with a classical splitting into coercive plus compact

terms, that would lead to a well-posedness result. This is not a surprise since it has

been shown in [30] that the corresponding model in the time-domain is unstable.

Therefore, in Chapter 4, instead of considering crack-type ATCs with jumps of traces

of the fields on the same surface, we consider a different model where the traces of the

fields are taken on the two different surfaces, sometimes called Chun’s-type ATCs, that

constitute the outer and inner boundaries of the delamination. The full derivation of

a general setting for this model can be found in Appendix C, model II.

After having established the ATCs models, a subsequent part of Chapters 3 and

4 is devoted to the numerical validation of these new ATCs models as “good” approx-

imations to the original full model. In both cases we perform numerical experiments

and study the numerical convergence of the ATCs models to the standard one, as the

small parameter δ approaches to zero.

Later on, in Chapter 3, we study the reduced acoustic ATCs model and prove

that, in certain geometrical and material regimes, the model is well-posed. Moreover,

we finish the chapter presenting a NDT algorithm for detecting delamination using

acoustic waves, based on a LSM adapted precisely to the ATCs model. This NDT can

be regarded as a first step to develop methods to identify delaminations using elastic

waves (e.g. ultrasound), and it is also a preliminary step for NDT using electromag-

netic waves (e.g. microwaves), which is the topic of discussion of Chapter 4.
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Due to technical difficulties associated with the reduced ATCs model for elec-

tromagnetic scattering, in Chapter 4 we restrict our discussion to the case of planar

delaminations of constant thickness. For this case, a well-posedness result based in a

Helmholtz decomposition is provided. The last part of Chapter 4 gives the development

of a NDT of planar delaminations by adapting the LSM to this model. Preliminary

numerical results are also presented.

The results in Chapter 3 have been already published in [24], while the results

of Chapter 4 will soon appear in [25] and [26].
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Chapter 2

ACTIVE ULTRASONIC SENSING OF INTERFACIAL CRACKS IN
LAYERED ELASTIC MEDIA

2.1 The problem

In this first part of the thesis, the aim is to develop a nondestructive testing

algorithm to detect the location and size of fractures at the interface of two linear

isotropic elastic materials that, in the undamaged or background state, were bonded

together.

To this end, we study the scattering of a linear elastic wave by a bounded, isotropic

penetrable obstacle, Ω ⊂ R3, with Lipschitz continuous boundary Γ1, which is embed-

ded in a homogeneous medium Ωext := R3 \ Ω, see Figure 2.1. In the scenario that we

consider, Ω is composed by two layers of different materials, Ω− and Ω+, which have

also a closed, Lipschitz continuous, common interface Γ.

In the damaged configuration, one part of Γ has been damaged and a fracture Γ0 ⊂ Γ

has appeared (Figure 2.1, Panel b)). In general, Γ0 is an open surface, and its relative

boundary on Γ will be denoted by ∂Γ0.

All three domains Ω+, Ω−, Ωext have different material properties, characterized by

their relative density ρ and the fourth-order elasticity tensor C that defines the lin-

ear constitutive relation between strain and stress. In the context of isotropic elastic

material, is given by [80]:

Cijk` = λδijδ`k + µ(δi`δjk + δikδj`), (2.1)

where λ and µ are the so-called Lamé parameters. It can be shown that µ > 0 is

the shear modulus, while λ does not have a direct physical interpretation but satisfies

K = λ + 2
3
µ, where K is the bulk modulus of the material. This imposes the natural
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(a) (b)

Figure 2.1: Panel (a) Transversal cut of the undamaged, also called background state.
The stratified media consists of two materials Ω− and Ω+. Panel (b)
Transversal cut the damaged configuration. The crack Γ0 occurs at the
interface of the two layers.

condition that 3λ+ 2µ > 0. However, in this work we will restrict ourselves to the case

λ > 0, which is reasonable in most common situations [63].

In the setting we consider, both ρ, λ and µ are constant in the exterior domain Ωext

with values ρ = 1, λ = λ0, and µ = µ0, while in Ω− and Ω+ they are known piece-wise

smooth functions, with possible jumps at the interfaces Γ, Γ1, satisfying:

(λ+|Γ − λ−|Γ)(µ+|Γ − µ−|Γ) ≥ 0 and (λ+|Γ1 − λ0)(µ+|Γ1 − µ0) ≥ 0, (2.2)

where λ±, µ± are the Lamé coefficients λ, µ in Ω±, respectively.

Remark 2.1.1. The monotonicity condition (2.2) for the Lamé parameters in trans-

mission problems is necessary in order to have a unique representation of the fields in

terms of single- and double-layer potentials in the context of Lipschitz domains (see

[41]).
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Let v be a function defined in Ω+ and Ω−. In the sequel, we denote the jump

of v across Γ0 by [v] := v+|Γ0 − v−|Γ0 . Then if we assume a linear contact law on the

fracture Γ0 ([77]), the displacement u satisfies:

∂∗νu = K[u], on Γ0, (2.3)

where K ∈ L∞(Γ0)3×3 is the so-called stiffness matrix, which is assumed to be sym-

metric in order to be consistent with the reciprocity principle, and

∂∗νu := ν ·C : ∇u

is the co-normal derivative or “traction”, where ν is the unit normal vector on Γ,

pointing into Ω+.

Denote by ∆∗ the elastic differential operator, defined by

∆∗u := ∇ · (C : ∇u) = ∇ · (2µ ε(u) + λ(∇ · u)I3×3), (2.4)

where ε(u) := 1
2
(∇u +∇uT ) is the strain tensor corresponding to u.

Then the scattering of the total elastic field u ∈ H1
loc(R3 \ Γ0)3 in the damaged config-

uration is, in the frequency domain, given by

∆∗u + ρω2u = 0 in R3 \ Γ0, (2.5)

∂∗νu = K[u] on Γ0, (2.6)

and where in the unbounded domain Ωext the total field can be decomposed as u =

usc + ui, where ui denotes the incident field, and usc the radiating field that satisfies

the Kupradze radiation conditions (see [59]):

∂up

∂r
− ikpup = O

(
1

r

)
and

∂us

∂r
− ikpus = O

(
1

r

)
, as r →∞, (2.7)

where r = |x|, the limits are uniform with respect to x̂ = x/|x|, and where

up :=
1

k2
s − k2

p

(∆ + k2
s)u

sc in Ω, (2.8)

us :=
1

k2
p − k2

s

(∆ + k2
p)u

sc in Ω, (2.9)

for

k2
s =

ω2

µ0

and k2
p =

ω2

λ0 + 2µ0

. (2.10)
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2.2 The well-posedness of the direct problem

The well-posedness of problem (2.5)-(2.7), is proven using the same arguments

given in the case where the background is homogeneous, and already studied in [77].

For the reader’s convenience we provide here the details.

In order to study our problem in a Fredholm operator framework, it is convenient to

consider an equivalent formulation of the problem (2.5)-(2.7) involving only bounded

domains. To this end, let BR ⊂ R3 be an arbitrary ball of radius R > 0, such that that

Ω ⊂ BR. As usual, multiplying equation (2.5) by a test vector field v and integrating

by parts in BR, we get the following equivalent variational formulation of our problem

(2.5)-(2.6): Seek u ∈ H1(BR \ Γ0)3 such that

A(u,v) = L(v) ∀v,u ∈ H1(BR \ Γ0)3, (2.11)

where

A(u,v) =

∫
BR

∇v : C : ∇u d y − ω2

∫
BR

ρv · u d y

+

∫
Γ0

[v] ·K [u] ds(y)−
∫
SR

v · TRu ds(y),

L(v) = +

∫
SR

{
v · ∂∗νui − v · TRui

}
ds(y),

(2.12)

and where the Dirichlet-to-Neumann operator TR : H1/2(SR)3 → H−1/2(SR)3 is defined

by

TRφ = ∂∗νuφ|SR , (2.13)

where uφ satsfies

∆∗uφ + ω2uφ = 0 in R3 \BR, (2.14)

uφ|SR = φ on SR, (2.15)

and the Kupradze conditions (2.7). It is well known that the operator TR is well defined

and bounded [21].

Define the following Sobolev spaces:

H1/2(Γ0) :=
{
u|Γ0 |u ∈ H1/2(Γ)

}
, (2.16)

H̃1/2(Γ0) :=
{
u ∈ H1/2(Γ0) | supp u ⊂ Γ0

}
, (2.17)
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where supp u is the essential support of u defined as the largest relatively closed subset

of Γ such that u = 0 almost everywhere in Γ \ supp u.

Moreover, it is well known (see [63, 21]) that:

H̃1/2(Γ0) =
{
u ∈ H1/2(Γ0) | ũ ∈ H1/2(Γ) ⊂ Γ0

}
, (2.18)

where ũ is the extension by zero of u to Γ.

Both spaces H1/2(Γ0) and H̃1/2(Γ0) can be endowed with the restricted H1/2(Γ)−inner

product, and in such a case they are Hilbert spaces.

And finally, the associated dual spaces of H̃1/2(Γ0) and H1/2(Γ0) are, respectively:

H−1/2(Γ0) =
(
H̃1/2(Γ0)

)∗
, (2.19)

H̃−1/2(Γ0) =
(
H1/2(Γ0)

)∗
, (2.20)

where

H−1/2(Γ0) :=
{
v|Γ0 | v ∈ H−1/2(Γ)

}
, (2.21)

H̃−1/2(Γ0) :=
{
v ∈ H−1/2(Γ0) | supp v ⊂ Γ0

}
. (2.22)

The space duality (2.19)-(2.20) are defined precisely in terms of the following natural

duality pairings:

〈v, u〉H−1/2(Γ0),H̃1/2(Γ0) := 〈v, ũ〉H−1/2(Γ),H1/2(Γ), (2.23)

where on the right-hand-side of (2.23) ũ is the extension by zero of u to Γ, and

〈v, u〉H̃−1/2(Γ0),H1/2(Γ0) := 〈ṽ, u〉H−1/2(Γ),H1/2(Γ), (2.24)

where ṽ ∈ H−1/2(Γ) is the extension by zero of v.

It is then true that:

H̃1/2(Γ0) ⊂ H1/2(Γ0) ⊂ L2(Γ0) ⊂ H̃−1/2(Γ0) ⊂ H−1/2(Γ0), (2.25)

and all the embeddings are bounded.
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Remark 2.2.1. Observe that for u ∈ H1(BR \ Γ0)3, the jump [u] ∈ H̃1/2(Γ0)3. More-

over, if the stiffness matrix K ∈ L∞(Γ0)3×3, then K [u] ∈ H−1/2(Γ0)3 (see corollary 8.8

in [58]).

Therefore, on one hand the interfacial condition (2.6) makes mathematical sense, and

the term: ∫
Γ0

[v] ·K [u] ds(y)

appearing in the expression (2.12) is considered in the sense of the duality pairing

〈·, ·〉H−1/2(Γ0)3,H̃1/2(Γ0)3 , and then pivoting with respect to the L2(Γ0)3 inner product.

Lemma 2.2.1. The Dirichlet-to-Neumann operator TR can be decomposed as TR =

T cR + T 0
R , where T cR : H1/2(SR)3 → H−1/2(SR)3 is compact and −T 0

R : H1/2(SR)3 →

H−1/2(SR)3 is non-negative and self-adjoint. Moreover,

=〈TRφ, φ〉SR > 0 for all φ ∈ H1/2(SR)3 \ {0}. (2.26)

For the proof of this result see Lemma 1 in [77].

Theorem 2.2.1. (Well-posedness of the crack problem) Let K ∈ L∞(Γ0)3×3 such that

=(v ·Kv) ≤ 0 for all v ∈ H1/2(Γ0)3. Then the variational problem (2.11) is well-posed.

Proof. Define

A0(u,v) =

∫
BR

∇v : C : ∇u d y + ω2

∫
BR

v · u d y

−
∫
SR

T 0
Ru · v ds(y), (2.27)

B(u,v) = −ω2

∫
BR

(1 + ρ)v · u d y

+

∫
Γ0

[v] ·K [u] ds(y)−
∫
SR

v · T cRu ds(y), (2.28)
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so that A = A0 +B.

Notice that from (2.4) and from Korn’s inequality [63],

|A0(u,u)| =

∫
BR

{
2µ|ε(u)|2 + λ|∇·u|2 + ω2|u|2

}
d y

−
∫
SR

T 0
Ru · u ds(y) (2.29)

≥
∫
BR

{
2µ|ε(u)|2 + ω2|u|2

}
d y (2.30)

≥ C ‖u‖2
H1(BR\Γ0) , (2.31)

where C > 0 is a constant independent of u, implying that A0 : H1(BR\Γ0)3×H1(BR\

Γ0)3 → C is coercive.

On the other hand, for all u,v ∈ H1(BR \ Γ0)3,

|B(u,v)| ≤ ω2(1 + ‖ρ‖∞) ‖u‖L2(BR\Γ0)3 ‖v‖L2(BR\Γ0)3 (2.32)

+ ‖K‖∞ ‖[u]‖L2(Γ0)3 ‖[v]‖L2(Γ0)3 + ‖T cRu‖H−1/2(SR)3 ‖v‖H1/2(SR)3 ,(2.33)

and then for all ‖v‖H1(BR\Γ0)3 = 1,

|B(u,v)| ≤ C0 ‖u‖L2(BR\Γ0)3 + C1 ‖K‖∞ ‖[u]‖L2(Γ0)3 + C2 ‖T cRu‖H−1/2(SR)3 ,(2.34)

where C0 = ω2(1 + ‖ρ‖∞), C1 is twice the norm of the trace operator from H1(BR \

Γ0)3 → L2(Γ0)3, and C2 > 0 is the norm of the compact trace operator from H1(BR \

Γ0)3 → H1/2(SR)3.

Let {un} be a sequence that converges weakly to 0 in H1(BR \ Γ0)3, then, from the

compactness of H1(BR \ Γ0)3 ⊂ L2(BR \ Γ0)3, the boundedness of the trace operator

H1(BR \ Γ0)3 → H1/2(BR \ Γ0)3, together with the compactness of the embedding

H̃1/2(Γ0)3 ⊂ L2(Γ0)3, and the compactness of T cR : H1/2(SR)3 → H−1/2(SR)3, we

conclude that B(un,v) → 0 for all v in H1(BR \ Γ0)3. Hence, B(·, ·) is a compact

sesquilinear form. Therefore, A is the sum of a coercive and a compact sequilinear

form, and thus the uniqueness of the solution to the problem is equivalent to its well
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posedness.

To prove uniqueness, suppose that A(u,u) = 0, and take the imaginary part. Then:

0 =

∫
Γ0

=(K [u] · [u]) ds(y)−=
{∫

SR

TRu · u ds(y)
}
. (2.35)

By the properties of TR stated in Lemma 2.2.1 (and pivoting with L2(SR)3),

Im
{∫

SR

TRu · u ds(y)
}
≥ 0. (2.36)

Since =([u] ·K [u]) ≤ 0, then necessarily:

=
{∫

SR

TRu · u ds(y)
}

= 0. (2.37)

Therefore, u = 0 on SR, and therefore, by the unique continuation principle, u = 0 in

BR, which finishes the proof.

2.3 The inverse problem

2.3.1 Preliminary notation and concepts

For any d̂ ∈ S2 and p ∈ R3, we define the pressure plane waves ui,p(·, d̂,p) and

the shear plane waves ui,s(·, d̂,p) with incidence direction d̂ and polarization vector p,

by

ui,s(x, d̂,p) = d̂× (p× d̂) eiksx·d̂, and ui,p(x, d̂,p) = (p · d̂)d̂ eikpx·d̂, (2.38)

where ks and kp are defined by (2.10) These two orthogonal families of plane waves

constitute important analytic solutions to the homogeneous problem ∆∗0u+ω2u = 0 in

R3, where ∆∗0 refers to the elastic differential operator (2.4) corresponding to constant

Lamé coeafficients λ0 and µ0 in R3.

The incident plane-wave tensor Wi(·, d̂) ∈ C∞(R3)3×3 defined by

Wi(x, d̂) := eiksx·d̂(I3×3 − d̂⊗ d̂) + eikpx·d̂d̂⊗ d̂,

then satisfies

Wi(·, d̂)p = ui,s(·, d̂,p) + ui,p(·, d̂,p) in R3, (2.39)
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for all d̂ ∈ S2 and p ∈ R3.

Next we introduce in this section some necessary concepts and notation for our analysis.

In the sequel, ub will be called a total field solution to the background problem due to

the incident field ui, if it satisfies:

ub ∈ H1
loc(R3)3 (2.40)

∆∗ub + ω2ρub = 0 in R3, (2.41)

ub = uscb + ui in Ωext, (2.42)

and where uscb satisfies the Kupradze radiation conditions (2.7).

Let d̂ ∈ S2 and p ∈ R3, then denote by ub(·, d̂,p) the total field solution to the back-

ground problem (2.40)-(2.42) when the incident field is precisely the pressure and shear

plane wave combination ui(·, d̂,p) := Wi(·, d̂)p. Since the mapping p 7→ ub(·, d̂,p)

is linear, then there is a second order response tensor Wb(·, d̂) such that Wb(·, d̂)p =

ub(·, d̂,p).

Given a scattered wave usc that solves ∆∗usc +ω2usc = 0 in Ωext, it can be shown that

it has the asymptotic behavior ([59]):

usc(x) = αp
eikpr

r
up,∞(x̂) + αs

eiksr

r
us,∞(x̂) +O

(
1

r2

)
, (2.43)

where, in turn, up,∞, us,∞ are the corresponding acoustic far-field patterns of the waves

us and up defined by (2.8)-(2.9) (see e.g. [21],[32]), and

αp =
1

4π(λ0 + 2µ0)
and αs =

1

4πµ0

. (2.44)

The elastic far-field pattern of usc is defined by

u∞ := up,∞ ⊕ us,∞. (2.45)

Denote by Γ0(·, z) the fundamental solution, also called the Kupradze matrix associated

with the Lamé coefficients of λ0 and µ0, that satisfies:

∆∗0Γ0 + w2Γ0 = −δz I3×3 in R3, (2.46)
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where δz is the Dirac distribution with support in z.

It is well known that Γ0 is given ([59]) by

Γ0(x, z) = −αsφks(x, z)I3×3 − βs(∇x ⊗∇x)φks(x, z)− βp(∇x ⊗∇x)φkp(x, z),

where ks and kp are defined by (2.10), αs is defined by (2.44), βs = 1
4πω2 , βp = − 1

4πω2 ,

and where for any k ∈ R, φk(x, z) = eik|x−z|

|x−z| , which is the well-known fundamental

solution of the Helmholtz operator ∆u+ k2u in R3.

The far-field pattern of the Kupradze matrix is given by

Γ∞0 (x̂, z) = Γp,∞
0 (x̂, z)⊕ Γs,∞

0 (x̂, z), (2.47)

where

Γp,∞
0 (x̂, z) = γ e−iksx̂·z(I3×3 − x̂⊗ x̂) and Γp,∞

0 (x̂, z) = γ e−ikpx̂·z x̂⊗ x̂, (2.48)

and γ = 1
4π

. Then, for every fixed x̂ ∈ S2, Γ∞0 (x̂, ·) = γWi(·,−x̂).

2.3.2 The mixed reciprocity principle and the scattering operator

The inverse problem we aim to tackle is to identify the part Γ0 of the interface

Γ where the crack is located, from far field measurements corresponding to incident

plane-waves in all possible directions d̂ ∈ S2 and polarization vectors p ∈ R3.

It will be proven in the following section that this can indeed be done, using a version

of the Factorization Method, first introduced by A. Kirsch [56].

To this end, we assume that we know the background configuration, that is, the con-

figuration in absence of the defect Γ0.

For every z ∈ R3, let Gb(·, z) in H1
loc(R3 \ {z})3×3 be the (radiating) Green’s matrix

associated with the background problem, that is,

∆∗Gb(·, z) + ω2ρGb(·, z) = −δz I3×3 in R3, (2.49)

and such that Gb(·, z)p satisfies the elastic radiation condition (2.7) for every p ∈ R3.

Then we have the following:
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Theorem 2.3.1 (Mixed reciprocity principle). Let G∞b (·, z) denote the far-field pattern

of Gb(·, z), then the following relation holds

G∞b (d̂, z) = γWb(z,−d̂) for all z ∈ R3 and d̂ ∈ S.

Proof. Case 1. Let z ∈ Ωext.

By definition, all the columns of Gb(·, z)−Γ0(·, z) are non-singular radiating solutions

of ∆∗0u + ρω2u = 0 in Ωext. Therefore, after integrating by parts twice using Betti’s

formulas and recalling that both Gb(·, z) − Γ0(·, z) and Γ0(·,y) satisfy the radiation

conditions (2.7):

(Gb − Γ0)(x, z) =

∫
Γ1

{
∂∗ν(y)Γ0(x,y)(Gb − Γ0)(y, z)

− Γ0(x,y)∂∗νy(Gb − Γ0)(y, z)
}

ds(y)

=

∫
Γ1

{
Gb(y, z)∂∗ν(y)Γ0(x,y)

− Γ0(x,y)∂∗ν(y)Gb(y, z)
}

ds(y), (2.50)

for all x ∈ Ωext, and where in the second line we have used Lemma A.0.2, i.e.,∫
Γ1

{
Γ0(y, z)∂∗νyΓ0(x,y)− Γ0(x,y)∂∗νyΓ0(y, z)

}
ds(y) = 0.

Then, from (2.50), and from the fact that Γ∞0 (x̂, z) = γWi(z,−x̂),

G∞b (x̂, z)− γWi(z,−x̂)

= γ
∫

Γ1

{
Gb(y, z)∂∗νyW

i(y,−x̂)− ∂∗νyG
i
b(y, z)Wi(y,−x̂)

}
ds(y) (2.51)

for all x ∈ Ωext.

On the other hand, the columns of the scattered field associated with the background

problem, Wsc
b (·,−x̂), are also radiating solutions of ∆∗u + ω2ρu = 0 in Ωext, so

∫
Γ1

{
(Γ0 −Gb)(y, z)∂∗νyW

sc
b,ext(y,−x̂) −

∂∗νy(Γ0 −Gb)(y, z)Wsc
b,ext(y,−x̂)

}
ds(y) = 0,
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but by the integral representation of Wsc
b (·,−x̂) in Ωext (see [59]), we have that

Wsc
b (z,−x̂) =

∫
Γ1

{
∂∗ν(y)Γ0(y, z)Wsc

b,ext(y,−x̂)

− Γ0(y, z)∂∗ν(y)W
sc
b,ext(y,−x̂)

}
ds(y)

=

∫
Γ1

{
∂∗ν(y)Gb(y, z)Wsc

b,ext(y,−x̂)

− Gb(y, z)∂∗ν(y)W
sc
b,ext(y,−x̂)

}
ds(y). (2.52)

Additionally, from the transmission conditions of the background problem,∫
Γ1

{
∂∗ν(y)Gb(z,y)Wb,ext(y,−x̂)−Gb(z,y)∂∗ν(y)Wb,ext(y,−x̂)

}
ds(y)

=

∫
Γ1

{
∂∗ν(y)Gb(z,y)Wb,+(y,−x̂)−Gb,+(z,y)∂∗ν(y)Wb,+(y,−x̂)

}
ds(y)

=

∫
Ω+∪Ω−

{
∆∗yGb(z,y)Wb(y,−x̂)−Gb(z,y)∆∗yWb(y,−x̂)

}
d y

+

∫
Γ

{
∂∗ν(y)Gb(z,y) [Wb] (y,−x̂)−Gb(z,y)

[
∂∗ν(y)Wb

]
(y,−x̂)

}
ds(y)

= 0. (2.53)

So from (2.52) and (2.53), since ub = uscb + ui, we have that

Wsc
b (z,−x̂) =

∫
Γ1

{
Gb(z,y)∂∗ν(y)W

i(y,−x̂)−∂∗ν(y)Gb(z,y)Wi(y,−x̂)
}

ds(y). (2.54)

And then, from (2.51),

G∞b (x̂, z) = γWb(z,−x̂).

Case 2. Let z ∈ Ω+∪Ω−. Then Gb(·, z) is a smooth radiating solution of ∆∗u+ρω2u = 0

in Ωext, so integrating by parts twice using Betti’s formulas, and using the fact that

both Γ0(·,y) and Gb(·, z) radiation condition:

Gb(x, z) =

∫
Γ1

{
∂∗νΓ0(x,y)Gb(y, z)

− Γ0(x,y)∂∗ν(y)Gb(y, z)
}

ds(y), (2.55)
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for every x ∈ Ωext, and then

G∞b (x̂, z) =

∫
Γ1

{
∂∗ν(y)Γ

∞
0 (x̂,y)Gb(y, z)− Γ∞0 (x̂,y)∂∗ν(y)Gb(y, z)

}
ds(y). (2.56)

Moreover, since the rows of Wsc
b (·,−x̂) are all radiating solutions of ∆∗u + ρω2u = 0

in Ωext,∫
Γ1

{
∂∗ν(y)Gb(y, z)Wsc

b,ext(y,−x̂)−Gb(y, z)∂∗ν(y)W
sc
b,ext(y,−x̂)

}
ds(y) = 0, (2.57)

and then adding (2.56) and γ(2.57),

G∞b (x̂, z) = γ

∫
Γ1

{
Gb(y, z)∂∗νyWb(x̂,y)

− ∂∗νyGb(y, z)Wb(x̂,y)
}

ds(y)

= γ

∫
Ω+∪Ω−

{
Gb(y, z)∆∗νyWb(y,−x̂)

− ∆∗νyGb(y, z)Wb(y,−x̂)
}

d y

+ γ

∫
Γ

{
Gb(y, z)

[
∂∗νyWb

]
(y,−x̂)

− ∂∗ν(y)Gb(y, z) [Wb] (y,−x̂)
}

ds(y)

= γ

∫
Ω+∪Ω−

{
− ρω2Gb(y, z)Wb(y,−x̂)

+
(
δz(y)I3×3 + ρω2Gb(y, z)

)
Wb(y,−x̂)

}
d y

= γWb(z,−x̂).

Finally, by continuity of Gb and Wb, we know that the identity G∞b (x̂, ·) = γWb(·,−x̂)

holds everywhere in R3.

Definition 2.3.1. The scattering operator Sb : L2(S2)3 → L2(S2)3 is defined by

Sb = I + 2ikγ|α|2Fb,

where I denotes the identity map, k = kp ⊕ ks, and γ = − 1
4π

and α = αp ⊕ αs.

Remark 2.3.1. By similar arguments to those given in [56], it can be proven that the

scattering operator is unitary, that is SbS∗b = S∗bSb = I.
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The following result describes the role of the scattering operator. The proof

given below follows the proof of Theorem 2.3 in [17], but we include it here for the

reader’s convenience.

Proposition 2.3.1. For every z ∈ Ω and x̂ ∈ S2,

Wb(z,−x̂) = Sb(Wb(z, ·))(x̂). (2.58)

Proof. Let y ∈ Ωext and z ∈ Ω. Choose R > 0 large enough so that the open ball BR

satisfies {y} ∪ Ω ⊂ BR. Then, the columns of both Gb(·, z) − Gb(·, z) and Gb(·, z) −

Γ0(·, z) are regular solutions to ∆∗u + ω2u = 0 in Ωext.

Using Betti’s formulae in ΩR := Ωext ∩BR,

Gb(y, z)−Gb(y, z)

=

∫
SR

{
Γ0(x,y)∂∗ν(x)(Gb(x, z)−Gb(x, z))

− ∂∗ν(x)Γ0(x,y)(Gb(x, z)−Gb(x, z))
}

ds(x)

−
∫

Γ1

{
Γ0(x,y)∂∗ν(x)(Gext

b (x, z)−Gext
b (x, z))

− ∂∗ν(x)Γ0(x,y)(Gext
b (x, z)−Gext

b (x, z))
}

ds(x). (2.59)

On the other hand, again as a consequence of Betti’s formulae,

0 =

∫
SR

{
(Gb(x,y)− Γ0(x,y))∂∗ν(x)(Gb(x, z)−Gb(x, z))

− ∂∗ν(x)(Gb(x,y)− Γ0(x,y))(Gb(x, z)−Gb(x, z))
}

ds(x)

−
∫

Γ1

{
(Gext

b (x,y)− Γ0(x,y))∂∗ν(x)(Gext
b (x, z)−Gext

b (x, z))

− ∂∗ν(x)(Gext
b (x,y)− Γ0(x,y))(Gext

b (x, z)−Gext
b (x, z))

}
ds(x). (2.60)
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Thus combining identities (2.60) and (2.60),

Gb(y, z)−Gb(y, z)

=

∫
SR

{
Gb(x,y)∂∗ν(x)(Gb(x, z)

− Gb(x, z))− ∂∗ν(x)Gb(x,y)(Gb(x, z)−Gb(x, z))
}

ds(x)

−
∫

Γ1

{
Gext
b (x,y)∂∗ν(x)(Gext

b (x, z)−Gext
b (x, z))

− ∂∗ν(x)Gext(x,y)(Gext
b (x, z)−Gext

b (x, z))
}

ds(x), (2.61)

and applying Betti’s formulae in Ω for the integral on Γ1 in (2.61),

Gb(y, z)−Gb(y, z)

=

∫
SR

{
Gb(x,y)∂∗ν(x)(Gb(x, z)−Gb(x, z))

− ∂∗ν(x)Gb(x,y)(Gb(x, z)−Gb(x, z))
}

ds(x)

= −
∫
SR

{
Gb(x,y)∂∗ν(x)Gb(x, z)

+ ∂∗ν(x)Gb(x,y)Gb(x, z)
}

ds(x), (2.62)

where in the last step we used that both Gb(·, z) and Gb(·,y) are smooth in R3 \ BR

and radiating. Therefore, taking the limit when R→∞,

Gb(y, z)−Gb(y, z)

=

∫
S2

{
αpGp,∞

b (x,y)ikpαpGp,∞
b (x̂, z) + αsGs,∞

b (x̂,y)iksαsGs,∞
b (x̂, z)

− αpikpGp,∞
b (x,y)αpGp,∞

b (x̂, z)− αsiksGs,∞
b (x̂,y)αsGs,∞

b (x̂, z)
}

ds(x̂)

= 2i

∫
S2

{
kp|αp|2Gp,∞

b (x,y)Gp,∞
b (x̂, z) + ks|αs|2Gs,∞

b (x̂,y)Gs,∞
b (x̂, z)

}
ds(x̂)

= 2ik|α|2
∫
S2

{
G∞b (x,y)G∞b (x̂, z)

}
ds(x̂), (2.63)

21



where k = kp ⊕ ks and α = αp ⊕ αs.

On the other hand from the mixed reciprocity principle Theorem 2.3.1 and corollary

A.0.1,

γWb(z,−x̂)− γWb(z, x̂)

=

∫
Γ1

∂∗ν(y)Γ
∞
0 (x̂,y)(Gext

b (y, z)−Gext
b (y, z))

−
∫

Γ1

Γ∞0 (x̂,y)∂∗ν(y)(Gext
b (y, z)−Gext

b (y, z))

= 2ik|α|2
∫
S2

∫
Γ1

{
∂∗ν(y)Γ

∞
0 (x̂,y)

(
G∞b (d̂,y)G∞b (d̂, z)

)}
ds(y) ds(d̂)

− 2ik|α|2
∫
S2

∫
Γ1

{
Γ∞0 (x̂,y)∂∗ν(y)

(
G∞b (d̂,y)G∞b (d̂, z)

)}
ds(y) ds(d̂), (2.64)

and again using the mixed reciprocity relation Theorem 2.3.1,

γWb(z,−x̂)− γWb(z, x̂)

= 2ikγ|α|2
∫
S2

Wb(z,−d̂)

{∫
Γ1

∂∗ν(y)Γ
∞
0 (x̂,y)G∞b (d̂,y)

− Γ∞0 (x̂,y)∂∗ν(y)G∞b (d̂,y) ds(y)

}
ds(d̂)

= 2ikγ2|α|2
∫
S2

Wb(z,−d̂)W∞
b (d̂,−x̂) ds(d̂)

= 2ikγ2|α|2
∫
S2

Wb(z,−d̂)W∞
b (d̂,−x̂) ds(d̂)

= 2ikγ2|α|2
∫
S2

Wb(z,−d̂)W∞
b (x̂,−d̂) ds(d̂)

= 2ikγ2|α|2
∫
S2

Wb(z, d̂)W∞
b (x̂, d̂) ds(d̂)

= 2ikγ2|α|2Fb(Wb(z, ·))(x̂), (2.65)

which finishes the proof.
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2.3.3 The factorization method

For later use we define the defective problem as follows. Given h ∈ H−1/2(Γ0)3,

we seek u ∈ H1
loc(R3 \ Γ0)3 such that

∆∗u + ρω2u = 0 in R3 \ Γ ∪ Γ1 (2.66)

∂∗νu = K[u]− h, on Γ0, (2.67)

and such that u satisfies the radiation condition (2.7).

Now let g ∈ L2(S2)3. Then g = gs ⊕ gp, where

gp(d̂) := (d̂⊗ d̂)g and gs(d̂) := (I3×3 − d̂⊗ d̂)g. (2.68)

The elastic Herglotz wave associated with g is defined by ([33])

vg(x) :=

∫
S2

gseiksd̂·x ds(d̂) +

∫
S2

gpeikpd̂·x ds(d̂), for x ∈ R3. (2.69)

Let F : L2(S2)3 → L2(S2)3 denote the far-field operator associated with the crack

problem, defined by

Fg = u∞g ,

where u∞g is the far field pattern of the scattered field associated with the crack problem

(2.5)-(2.6) when the incident field is precisely the Hergoltz wave vg.

In a similar manner, we denote by Fb : L2(S2)3 → L2(S2)3 the far-field operator

associated with the background, defined by

Fbg = u∞g,b,

where u∞g,b is the far field pattern of the scattered field associated with the background

problem (2.40)-(2.42) when the incident field is again the Hergoltz wave vg.

Finally, we define the far-field operator associated with the defect, FD := F − Fb.

Notice that FDg is the far field pattern of the scattered field due to (2.66)-(2.67) when

the source term correspnds to h = ∂∗νug,b.

The main result of this paper consists of a characterization of the range of FD, stated
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in Theorem 2.3.3, and which is the basis of the reconstruction algorithm of Γ0. This

theorem is a consequence of the abstract result Theorem 3.2 in [18], that for the

reader’s convenience we state as Theorem 2.3.2 below. This abstract result is in turn

an adaptation of Theorem 2.15 in [56] and a particular case of Theorem 2.1 in [61].

Given a Hilbert space Z and a bounded linear operator L : Z → Z, we define

Re(L) :=
L+ L∗

2
and Im(L) :=

L− L∗

2i
. (2.70)

Theorem 2.3.2. Let H ⊂ U ⊂ H∗ be a Gelfand triple with a Hilbert space U and
a reflexive Banach space H such that the embedding is dense. Moreover, let Y be a
second Hilbert space and let F : Y → Y , H : Y → H, and T : H → H∗ be linear
bounded operators such that we make the following assumptions:

(A1) H∗ is compact with dense range.

(A2) Re(T ) = C+K with some compact operator K and some self-adjoint and coercive
operator C : H → H∗, i.e, there exists c > 0 with 〈φ,Cφ〉 ≥ |φ|2 for all φ ∈ H,
and Im(T ) is positive on the closure of the range of H.

Then the operator F# = |Re(F )|+ Im(F ) is positive, and the ranges of H∗ : H∗ → Y

and (F#)1/2 : Y → Y coincide.

In what follows we will prove that a factorization with the properties stated in

Theorem 2.3.2 is satisfied in our case.

Define the Hergoltz operator by H : L2(S2)3 → H−1/2(Γ0)3 such that H g = ∂∗νug,b.

Then we have the following:

Lemma 2.3.1. Assume that there are no non-trivial background fields ug,b such that

∂∗νug,b|Γ0 = 0. Then the Hergoltz operator H is injective with dense range and its

conjugate transpose operator H ∗ : H̃1/2(Γ0)3 → L2(S2)3 satisfies:

SbH ∗η =

∫
Γ0

∂∗ν(y)G∞(·,y)η(y) ds(y). (2.71)
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Proof. Let η ∈ H̃1/2(Γ0)3, then

(H g,η)L2(Γ0)3 =

∫
Γ0

∂∗νug,b(y) · η(y) ds(y)

=

∫
Γ0

η(y) ·
∫
S2

∂∗ν(y)Wb(y, d̂)g(d̂) ds(d̂) ds(y)

=

∫
S2

g(d̂) ·
∫

Γ0

∂∗ν(y)G∞b (−d̂,y)η(y) ds(y) ds(d̂)

= (g,H ∗η)L2(S2)3 , (2.72)

thus,

H ∗η =

∫
Γ0

∂∗νG∞b (−·,y)η(y) ds(y), (2.73)

and from Proposition 2.3.1, it follows immediately identity (2.71). To prove the injec-

tivity of H , observe that if H g = 0, then from the assumption, ug,b = 0, and by the

well posedness of the background problem (2.40)-(2.42), this means that vg = 0, and

hence g = 0.

To prove the denseness of the range of H , we will show that H ∗ is injective. From

(2.73),

(H ∗η)(d̂) = u∞(−d̂),

where u∞ is the far field pattern of

u =

∫
Γ0

∂∗νGb(·,y)η(y) ds(y),

which is a generalized double-layer potential. Therefore, we know that u ∈ H1
loc(R3 \

Γ0)3 and solves

∆∗u + ω2ρu = 0 in R3 \ (Γ1 ∪ Γ), (2.74)

[u] = η on Γ0. (2.75)

Thus if H ∗η = 0, then u∞ = 0, and by Rellich’s lemma (Lemma 2.11 in [32]) u = 0

in Ωext, and by continuity of both the displacement and traction on Γ1, Holmgren’s

theorem implies that u = 0 in an open neighborhood of Γ1. By the unique continuation

principle, u = 0 in Ω+. Again, by Holmgren’s theorem u = 0 in an open neighborhood
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of Γ \ Γ0, and thus by the unique continuation principle, u = 0 in Ω−. Therefore

[u] = 0 and then η = 0, which finishes the proof.

Remark 2.3.2. Therefore, defining T : H1/2(Γ0)3 → H̃1/2(Γ0)3 by Th = [wh], where

wh ∈ H1(R3 \ Γ0)3 solves (2.66)-(2.67), we get automatically the factorization FD =

SbH ∗TH .

Lemma 2.3.2. The operator T defined in Remark 2.3.2, is linear, bounded and there

exist two bounded linear operators T0, Tc : H1/2(Γ0)3 → H̃1/2(Γ0)3 such that T = T0+Tc,

where T0 is coercive and self-adjoint, and Tc is compact.

Therefore, Re(T ) = T0 +Re(Tc), and Re(Tc) is compact.

Proof. The boundedness of operator T is an immediate consequence of the well-posedness

of the problem (2.66)-(2.67).

Define T0 : H1/2(Γ0)3 → H̃1/2(Γ0)3 by T0h = [u0], where u0 ∈ H1(BR \ Γ0)3

satisfies

A0(u0,v) =

∫
Γ0

h · [v] ds(y), for all v ∈ H1(BR \ Γ0)3. (2.76)

Notice that u0 satisfies:

∆∗u0 − u0 = 0 in BR \ (Γ ∪ Γ1), (2.77)

∂∗νu0 = −h on Γ0. (2.78)

Since A0 is coercive and self-adjoint, T0 is well defined, bounded and self-adjoint too.

Moreover, from the properties of the trace theorem,

||h||2
H̃1/2(Γ0)3 = ||∂∗νu0||2H̃1/2(Γ0)3 ≤ C

(
||∆∗u0||2L2(BR)3 + ||C : ∇u0||2L2(BR)3

)
(2.79)

≤ C̃
(
||u0||2L2(BR)3 + ||∇u0||2L2(BR)3

)
(2.80)

≤ C̃1|A0(u0,u0))| = C̃1

∣∣∣∣ ∫
Γ0

h · T0φ ds(y)

∣∣∣∣, (2.81)

and then

||h||H̃1/2(Γ0)3 ≤ C̃1|〈T0h,h〉|, (2.82)
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thus T0 is coercive.

On the other hand, notice that if Tc := T − T0, then, by definition, Tch = [uc], where

uc = u− u0 satisfies the variational problem:

A0(uc,v) = −B(u,v) for all v ∈ H1(BR \ Γ0)3. (2.83)

Since A0 is coercive and B is compact, then the mapping u 7→ uc is compact, and

from the trace theorem together with the well posedness of the problem (2.66)-(2.67)

that u satisfies, the mapping h 7→ [uc], i.e. the operator Tc, is also compact. The fact

that Re(Tc) is compact is therefore an immediate consequence, and then the proof is

complete.

Lemma 2.3.3. Assume that K ∈ L∞(Γ0)3 is such that =(η · Kη) ≤ 0 for all η ∈

H̃1/2(Γ0)3. Then the operator Im(T ) = T−T ∗
2i

is positive definite, i.e.,

〈Im(T )h,h〉 > 0 for all h ∈ H−1/2(Γ0)3. (2.84)

Proof. From the definition of T , we know that given h ∈ H−1/2(Γ0)3,∫
Γ0

h · [wh] ds(y) = A(wh,wh), (2.85)

where A(·, ·) is defined by (2.12). Therefore for any given h ∈ H−1/2(Γ0)3,

1

2i
(〈Th,h〉 − 〈h, Th〉) =

1

2i

(∫
Γ0

h · [wh] ds(y)−
∫

Γ0

h · [wh] ds(y)

)
= −=(A(wh,wh))

= −
∫

Γ0

=([wh] ·K[wh]) + =
(∫

SR

wh · TRwh ds(y)

)
> 0, (2.86)

where in the last line we used the properties of K, together with those of the Dirichlet-

to-Neumann map stated in Lemma 2.2.1.

For a given open surface L ⊂ Γ and a density η ∈ H̃1/2(L)3, we define the test

function φ∞L ∈ L2(S2)3 by

φ∞L =

∫
L

∂∗ν(y)G∞(·,y)η(y) ds(y) = γ

∫
L

∂∗ν(y)Wb(y,−·)η(y) ds(y). (2.87)
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Lemma 2.3.4. The operator G := SbH ∗T is such that, φ∞L ∈ Range(G ) for all

η ∈ H̃1/2(L)3 not vanishing identically on any subset of L of positive Lebesgue measure,

if and only if L ⊂ Γ0.

Proof. Observe that, by definition, G : H−1/2(Γ0)3 → L2(S2)3 is such that G h = w∞,

where w∞ is the far field pattern of the solution w to the defective problem (2.66)-

(2.67).

Assume first that L ⊂ Γ0. Given η ∈ H̃1/2(L)3, then η̃, the extension by zero of η to

Γ0, is in H̃1/2(Γ0)3. Thus we know that φ∞
L is the far field pattern of the generalized

double-layer potential:

w =

∫
Γ0

∂∗ν(y)Gb(·,y)η̃(y) ds(y), (2.88)

which is in H1
loc(R3 \ L)3 and satisfies:

∆∗w + ω2ρw = 0 in R3 \ (Γ1 ∪ Γ), (2.89)

[w] = η on Γ0, (2.90)

and w satisfies the Kupradze radiation conditions. Thus, if we define h := Kη̃− ∂∗νw,

then h ∈ H−1/2(Γ0)3 and G h = φ∞
L .

Conversely, assume there is η ∈ H̃1/2(L)3 such that η does not vanish in any subset

of L of positive Lebesgue measure, and such that φ∞
L in Range(G ), but L 6⊂ Γ0. By

definition of G , φ∞
L is the far-field pattern of w ∈ H1

loc(R3 \ Γ0)3 that satisfies the

defective problem (2.66)-(2.67) for some h ∈ H−1/2(Γ0)3.

Therefore , φ∞
L is the far field pattern of the two potentials:

PLη =

∫
L

∂∗ν(y)Gb(·,y)η(y) ds(y), (2.91)

and

w =

∫
Γ0

∂∗ν(y)Gb(·,y)[w](y) ds(y). (2.92)

By Rellich’s lemma and the unique continuation principle, we know that both potentials

are identical in R3 \ (L∪Γ0). However, by assumption, there exists x ∈ L and an open
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neighborhood Vδ of x such that on Vδ ∩ L ⊂ (L \ Γ0) where the density η does not

vanish. Hence, the potential PL has a discontinuity on x along the normal direction to

L, whereas w is continuous at the same point, and this is a contradiction.

The following corollary follows immediately from Lemma 2.3.4, and considering

the properties of the scattering operator.

Corollary 2.3.1. The operator H ∗ is such that, S∗bφ
∞
L ∈ Range(H ∗) for all η ∈

H̃1/2(L)3 not vanishing identically on any subset of L of positive Lebesgue measure, if

and only if L ⊂ Γ0.

In summary, we have proved the following theorem, which is the basis for the

NDT algorithm to detect interfacial cracks.

Theorem 2.3.3. Under the assumptions of Lemmas 2.3.1 and 2.3.2, F̃D := S∗bFD
satisfies that:

i) The operator F̃#
D := |Re(F̃D)| + Im(F̃D) is positive, and the ranges of H ∗ :

H̃1/2(Γ0)3 → L2(S2)3 and (F̃#
D )1/2 : L2(S2)3 → L2(S2)3 coincide.

ii) S∗bφ
∞
L ∈ Range((F̃

#
D )1/2) for all η ∈ H̃1/2(L)3 such that η does not vanish iden-

tically in any subset of L of positive Lebesgue measure, if and only if L ⊂ Γ0.

Therefore, the reconstruction of Γ0 can in principle be done by solving the so-

called far-field equation:

(F̃#
D )1/2g = φ̃∞L , (2.93)

where φ̃∞L := S∗bφ
∞
L , for all possible open surfaces L ⊂ Γ.

From Picard’s criterion, Theorem 2.7 in [21], the following result is an immediate

consequence.

Corollary 2.3.2. Let {µ`,ψ`}∞`=1 be the eigensystem of F̃#
D , then: L ⊂ Γ0 if and only

if

∞∑
`=1

|(φ̃∞L ,ψ`)L2(S2)3|2

|µ`|
< ∞, (2.94)

where φ̃∞L := S∗bφ
∞
L and the density η ∈ H̃1/2(L)3 in the definition (2.87) of φ∞L is

such that η does not vanish identically in any subset of L of positive Lebesgue measure.
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2.4 Numerical examples

The numerical simulations presented in this section were carried on using a

boundary elements method by Fatemeh Pourahmadian, and will published in [34].

For our numerical simulations we let L shrink to a point z ∈ Γ. More precisely,

let η in the definition of our test function (2.87) be such that η ∼ δze`, where {e`}3
`=1.

Therefore, the three corresponding test functions are:

φ∞z,` := νz ·C : ∇zWb(z,−·)e`, for all ` = 1, 2, 3. (2.95)

Define

fz := (φ∞z,1
T , φ∞z,2

T , φ∞z,3
T )T , (2.96)

and let M be the discrete far-field operator FD, and S∗ the discrete S∗b . Then A =

|Re(S∗M)| + Im(S∗M) is the discretized F̃#
D . Let {µ`,ψ`}3M

`=1 be an eigensystem of

A, then by Corollary 2.3.2, we expect that z ∈ Γ0 if and only if the discrete Picard

criterion holds:

G(z) :=

NT∑
`=0

|f̃z · φ`|2

|µ`|
<∞, (2.97)

where f∗z = S∗fz and the natural number NT < 3N is a heuristic truncation level

(see Theorem 2.11 in [21]). This can therefore be used to construct an approximate

indicator function of Γ0, by:

1Γ0 =

1 if G(z)−1 > τtol,

0 otherwise,

for a suitable threshold parameter τtol.

2.4.1 Numerical examples

The numerical experiments that we consider are the examples corresponding to

Fig. 2.2, panels (a) and (b).

Motivated by engineering applications where the aim is the detection of fractures at
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interfaces of concrete and the external homogeneous domain, the cracks in our numer-

ical examples are placed at the exterior interface Γ1 (as opposed to previous sections

where Γ0 ⊂ Γ). In this setting, however, the techniques are the same and thus the

examples presented below serve as a proof of principle for our method.

The first example, shown in Fig. 2.2 panel (a), is a configuration where the inho-

mogeneity Ω is the ellipsoid in R3 whose boundary satisfies the equation:

x2

a2
+
y2

b2
+
z2

c2
= 1, (2.98)

where a = 4.5, b = 4, c = 6. The interface Γ between Ω− and Ω+, is the ellipsoid with

cannonical equation (2.98) for a = 3, b = 2.5 and c = 2. The material properties in the

exterior domain Ωext are ρ = 1, λ0 = 1, and µ0 = 1, whereas ρ+ = 0.75, λ+ = 8/60,

µ+ = 0.2, ρ− = 1.5, λ+ = 6/10, and µ+ = 0.4. The interfacial crack Γ0 ⊂ Γ1 is the

shaded surface.

Define {τ 1, τ 2} to be an orthonormal set of vectors that span the tangent plane at a

point on Γ0, then the vectors {τ 1, τ 2,ν} are a local basis that is well defined every-

where on Γ0. In this local surface basis the stiffness matrix is given by K = diag{1, 1, 1}.

The second example, shown in Fig. 2.2 panel (b), corresponds to an inhomo-

geneity that has three connected components: a cube Ωc, an ellipsoid Ωe and a sphere

Ωs. The domain Ωc has side length of l = 1.8, and it is centered at (0, 3, 3), the domain

Ωe obeys the cannonical equation (2.98) for a = 3, b = 2, c = 4, and finally Ωs is a

sphere of radius r = 2 and center (0,−4,−2).

In this case, Γ = ∅, Ω− = ∅, i.e., the inhomogeneity has a single layer Ω+ = Ωc∪Ωe∪Ωs.

The three connected components of Ω+ have the same constant material properties

given by ρ+ = 0.5, λ+ = 2/15, µ+ = 0.2, whereas the material properties in the exte-

rior domain Ωext = R3 \Ω+ are ρ = 1, λ0 = 1, and µ0 = 1. Finally, the stiffness matrix

with respect to the local surface coordinates {τ 1, τ 2,ν} is given by

K =

diag{0, 0, 0} in Γ0 ∩ (Ωc ∪ Ωs)

diag{2, 2, 2} in Γ0 ∩ Ωe.
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Figure 2.2: Panel (a) shows a connectd ellipsoidal inhomogeneity that consists of
two layers, and where Γ0 ⊂ Γ1. Panel (b) shows an inhomogeneity with
three connected components of the same material, a cube Ωc, an ellipsoid
Ωe and a sphere Ωs. The shaded regions on their surfaces are the three
connected components of Γ0 ⊂ Γ1.

In this second example Γ0 ⊂ Γ1 has three different connected components, each of

them is the shaded surface at the boundaries of Ωc, Ωe and Ωs, respectively.

On both examples, the excitation frequency was chosen as ω = 4, and to construct M

as explained in the previous subsection, the far-field pattern of the radiating solutons

associated with 450 incident plane waves (corresponding to 150 incident directions d̂

and their 3 possible linearly independent polarization vectors p) were computed.

The results of the reconstruction of Γ0 for the first example are shown in Fig. 2.3,

and the results of the reconstruction of Γ0 for the second example are shown in Fig.

2.4. In each case, on panel (a) it is shown the computation of the function G defined

by (2.97), whereas on panel (b), the indicator function 1Γ0 as defined in the previous

subsection is plotted.

As we can see, the numerical examples presented in Figs 2.3 and 2.4, show that

the NDT algorithm for interfacial crack detection that derives from Theorem 2.3.3, is

suitable for finding the geometry of the fractures using differential measurements, i.e.

by comparison to a known healthy (background) configuration.
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Figure 2.3: Interfacial crack reconstruction for example 1. Panel (a) shows function
G defined by (2.97) on each of the interfaces Γ1 and Γ. Panel (b) shows
the plot of the indicator function 1Γ0 .

Figure 2.4: Interfacial crack reconstruction for example 2. Panel (a) shows function
G defined by (2.97) on the interface Γ1. Panel (b) shows the plot of the
indicator function 1Γ0 .
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Remark 2.4.1. The results presented here are true not only in the case of interfacial

cracks; they hold for cracks embedded in an inhomogeneous media Ω with the following

properties:

· Ω is the interior of ∪N`=1Ω`, where {Ω`}N`=1 is a collection of connected domains

with Lipschitz continuous boundary.

· The restricted material properties µ` := µ
∣∣
Ω`

, λ` := λ
∣∣
Ω`

, and ρ` := ρ
∣∣
Ω`

, are contin-

uous.

· Adjacent domains Ω` and Ωj, such that Γell,j := ∂Ω` ∩ ∂Ωj 6= ∅, satisfy the mono-

tonicity condition (2.2), which in this context reads:

(λ`
∣∣
Γ`,j
− λj

∣∣
Γ`,j

)(µ`
∣∣
Γ`,j
− µj

∣∣
Γ`,j

) ≥ 0. (2.99)

Conclusion

The problem of elastic wave scattering in isotropic layered media was shown to

be well-posed. The NDT of interfacial cracks based on an adaptation of the FM and

proposed in this chapter, was successfully proved analitycally, with the auxiliary mixed

reciprocity principle and the definition of the elastic scattering operator. Numerical

experiments show that the method can be used in practice and that it works for the de-

tection and geometrical reconstruction of multiple disconnected cracks at the interface

of two layers of different materials.

The method proposed in this chapter can easily be adapted to a more gen-

eral regime, including not only interfacial cracks, but the case when the crack crosses

transversally the interface between two internal layers, as long as the material proper-

ties satisfy the conditions stated in Remark 2.4.1.

The results presented throughout this chapter will appear in [34].
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Chapter 3

NONDESTRUCTIVE TESTING OF THE DELAMINATED
INTERFACE BETWEEN TWO MATERIALS: THE ACOUSTIC CASE

3.1 The problem

As has already been mentioned in the general introduction of the thesis, the

delamination of two materials occurs when one material becomes partially detached

from the other. This process is common in composite structures [19], concrete [82] and

many other engineering applications (e.g. [83, 44]). In this chapter, we will develop an

inverse scattering approach to the detection of delamination using acoustic waves.

The material presented here, including the figures, has been already published as [24].

In this problem, we consider two materials that should have a coincident bound-

ary (in the undamaged or background state) and we wish to detect if there is a part of

the common boundary where the two materials have separated. In particular we want

to determine the size and position of the delamination.

More precisely, we denote by Ω ⊂ Rm, m = 2, 3 the support of the inhomogeneity

to be tested which in absence of delamination is composed of two different materials

adjacent to one another. For short, denote µ+, n+ and µ−, n− the material properties in

Ω+ and Ω−, respectively. We denote their bounded support by Ω− and Ω+, respectively,

and the shared interface by Γ := ∂Ω− (i.e. Ω = Ω− ∪ Ω+). Both the outer boundary

∂Ω+ of the domain Ω+ and the boundary ∂Ω− of the simply connected domain Ω− are

assumed to be piece-wise smooth, unless mentioned otherwise, and ν denotes the unit

normal always oriented outwards to the region bounded by the curve. For simplicity we

let Ωext := Rm \Ω. Furthermore, we assume that along a part of the interface, denoted

here by Γ0 ⊂ Γ, these two materials have detached (delaminated) and we model this

fact with the appearance of an opening with support Ωδ and material properties µδ,
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nδ (see Fig. 3.1). Note that Γ0 = Ωδ ∩ Γ. The material properties (possibly complex

valued) in each of the domains are assumed to be smooth, i.e. µ+, n+ ∈ C1(Ω+),

µ−, n− ∈ C1(Ω−) and µδ, nδ ∈ C1(Ωδ) (however note that across the interfaces there are

discontinuities in the material properties).

u i

u
s

-

+
+,n+

 -,n -

Figure 3.1: Layered media with a thin delamination at the interface of two layers Ω−
and Ω+. The opening Ωδ, with coefficients µδ, nδ is shown as the white
region.

Assuming now that the incident field and the other fields in the problem are

time harmonic (i.e. the time dependent incident field is of the form < (ui(x)eiωt) where

ω is the angular frequency), then the total field uext = us + ui in Ωext, where us is the
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scattered field, and the fields u+, u− and U inside Ω+, Ω− and Ωδ, respectively, satisfy

∆uext + k2uext = 0 in Ωext, (3.1)

∇ ·
(

1

µ+

∇u+

)
+ k2n+u

+ = 0 in Ω+, (3.2)

∇ ·
(

1

µ−
∇u−

)
+ k2n−u

− = 0 in Ω−, (3.3)

∇ ·
(

1

µδ
∇U

)
+ k2nδU = 0 in Ωδ. (3.4)

Here the wave number k = ω/cext with cext denoting the sound speed of the homoge-

neous background. Across the interfaces the fields on either side and their conormal

derivatives are continuous, i.e.

uext = u+ and
∂uext

∂ν
=

1

µ+

∂u+

∂ν
on Γ1, (3.5)

u+ = u− and
1

µ+

∂u+

∂ν
=

1

µ−

∂u−

∂ν
on Γ\Γ0, (3.6)

U = u+ and
1

µδ

∂U

∂ν
=

1

µ+

∂u+

∂ν
on Γ+, (3.7)

U = u− and
1

µδ

∂U

∂ν
=

1

µ−

∂u−

∂ν
on Γ−. (3.8)

Of course the scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0 (3.9)

uniformly in x̂ = x/|x|, where x ∈ Rm and r = |x|. In this chapter we consider plane

waves as incident fields which are given by ui(x) := eikx·d̂ where the unit vector d̂ is

the incident direction. Instead of plane waves, it is also possible to consider incident

waves due to point sources located outside Ω, in which case the obvious modifications

need to be made in the formulation of the problem.

The goal of the this study is to propose and analyze a Linear Sampling Method

(LSM) type scheme for detecting the delaminated region using remote measurements

of acoustic waves scattered by the structure. In practice, the thickness of the opening

is much smaller than both the interrogating wave length in free space λ = 2π
k

and the
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thickness of the layers of background material. This introduces an essential compu-

tational difficulty in the numerical solution of the forward problem. In the following

section we take advantage of the small scale of the thickness and, using an asymptotic

method from [10, 71], we derive an approximate model of the delaminated structure

where the opening Ωδ is replaced by new jump relations for u+ and u− across the

delaminated part Γ0 that account for the presence of the opening. This is undertaken

in Section 3.2 using formal asymptotic methods. Before analyzing the model further,

we then demonstrate numerically that the asymptotic model predicts correctly the

acoustic field and far field pattern of the scattered field for a particular model scatterer

incorporating a delamination of small positive maximum width.

Remark 3.1.1. In the acoustic scattering case in Rm, m = 2, 3, each material is

characterized by two parameters, both related to the mass density function, ρ. In this

case, if ρext denotes the constant density of the homogeneous exterior domain Ωext,

then the relative constitutive material properties are the scalar fields µ = ρ/ρext and

n = cρ
cextρext

, where c is the speed of sound field, and cext is the speed of sound in the

exterior domain Ωext.

In the case m = 2, the model that we present here corresponds also to the scattering of

spatially polarized electromagnetic waves when the obstacle is an infinite cylinder (see

[32]). In such a case, µ and n correspond to the so called relative magnetic permeability

and relative electric permitivity parameters. In this setting, n is a complex scalar field,

where the imaginary part is related to the conductivity of the material.

Although there has been considerable work on the asymptotics of scattering from

thin films (see for example [8, 5, 6, 7, 9, 49, 35, 10, 71]), the novelty of our reduced

problem is that the delamination covers only a portion of the interface. The thickness

of the delamination vanishes at its boundary and this introduces potential singularities

into the asymptotic model. Therefore in Section 3.3 we analyze the forward reduced

problem using an appropriate variational formulation and show that under reasonable
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Figure 3.2: Zoom of the thin delamination Ωδ, and the parametrization of the bound-
aries Γ− and Γ+. Here δ scales the width of the delamination and is as-
sumed small compared to other characteristic dimensions of the problem.

conditions on the constitutive parameters and on the shape of the delamination the

forward asymptotic model has a solution (indeed it is this variational scheme that

was used to generate the finite element solution used in Section 3.2). Of course a

thorough understanding of the forward model is also needed in our analysis of the

inverse problem.

The inverse problem under study is precisely formulated in Section 3.4. We

assume that the background or undamaged state is known, and then seek to determine

the delaminated region Γ0 using remote (far field) acoustic measurements. In prepa-

ration for the analysis of our scheme and to allow a simple calculation of the right

hand side of the far field equation we then prove a new mixed reciprocity result for

layered media. Next in Section 3.4.2 we give details of the LSM: in particular we seek

to determine whether small artificial test arcs on the interface are within the delam-

ination or in the undamaged region. This requires a suitable testing function for the

LSM adapted to the delamination problem. We then prove the usual theorem for the

LSM suggesting that an approximate solution of the far field equation can be used as

an indicator function for the delamination.

Finally in Section 3.5 we test the inversion scheme on synthetic data for a special

choice of the testing function from Section 3.4.2. In particular we show that our LSM

can detect delamination even in the presence of noise on the data, and that multiple

delaminated regions can be detected.
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3.2 An approximate asymptotic model

In this section we assume m = 2 and, focusing our attention on a neighborhood

of the opening Ωδ, use formal asymptotic analysis to derive an approximate model that

takes into account the thin opening Ωδ. To this end, we start by assuming that the

portion Γ0 of the boundary can be written in the form

Γ0 := {xΓ(s), s ∈ [0, L]},

where xΓ ∈ C1[0, L] is the counter-clockwise arc-length parametrization of Γ0. If the

curve Γ0 is regular and c(s) denotes its curvature at xΓ(s), then 0 ≤ cm := max{|c(s)| :

s ∈ [0, L]} is finite. Hence, in the neighborhood of Γ0, one can define the curvilinear

coordinates (s, η) ∈ [0, L]× (− 1
cm
, 1
cm

) by

x = xΓ(s) + ην(s),

where we recall that ν is the unit normal vector on Γ0 oriented outward to Ω− (and

taking 1
cm

=∞ if cm = 0). Therefore, if the curvature of Γ0 is small enough, both the

outer and inner boundaries of Ωδ, denoted here by Γ+ and Γ−, can be written in this

coordinate system as

Γ+ =
{
xΓ+(s) := xΓ(s) + δf+(s)ν(s), s ∈ [0, L]

}
and

Γ− =
{
xΓ−(s) := xΓ(s)− δf−(s)ν(s), s ∈ [0, L]

}
.

Note that the function δ(f+ + f−)(s) defined on Γ0 describes the thickness of the

delamination. Here δ is a small parameter (compared to both the wave length and the

size of the domains involved), and maxs∈[0,L] f
±(s) = 1 (see Figure 3.2).

In an open neighborhood of Ωδ, we can now express the fields U , u−, and u+

in terms of the curvilinear variables (s, η). Ignoring small neighborhoods of the tip

points s = 0 and s = L, since Ωδ plays here the role of a boundary layer, in order to

transfer the small parameter δ from the geometry to the expression of the fields we

make a stretching change of variables inside Ωδ defined by ζ = η
δ
. Hence, ζ = η

δ
and s
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are now the new coordinates inside Ωδ. Next, following [10] and [71], we formally make

the following ansatz for the fields U and u± in an open neighborhood of Ωδ

U(s, ζ) =
∞∑
j=0

δjUj(s, ζ) (3.10)

and

u±(s, η) =
∞∑
j=0

δju±j (s, η), (3.11)

where neither u±j nor Uj depend on δ any longer. Furthermore, we expand each of

the terms u±j (s, η) in a power series with respect to the normal direction coordinate η

around zero, i.e.

u±j (s, η) = u±j (s, 0) + η
∂

∂η
u±j (s, 0) +

η2

2

∂2

∂η2
u±j (s, 0) + ...

and after plugging in (3.11) we finally obtain the following expression for u±(s, η),

u±(s, η) =
∞∑
j=0

∞∑
k=0

δj
ηk

k!

∂k

∂ηk
u±j (s, 0). (3.12)

Now based on the ansatz (3.10) and (3.12), and using the equations along with the

transmission conditions, we can formally obtain an approximate model for the field

in the opening Ωδ. For detailed calculations we refer the reader to Appendix B (see

also [71]) and in the following we simply sketch the steps that lead to our approximate

model.

3.2.1 The approximate transmission conditions

First we consider the expressions (3.10) and (3.12) which we substitute in (3.6),

(3.7) and (3.8). To this end, starting with the Dirichlet part of the transmission con-

ditions on Γ±, we can write

U(s,±f±) =
∞∑
j

δjUj(s,±f±),

and

u±(s,±δf±) =
∞∑
j=0

δj
j∑

k=0

(±1)j−k(f±)j−k

(j − k)!

∂j−k

∂ηj−k
u±k (s, 0).
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Then the Dirichlet part of the transmission condition can be directly computed by

equating terms with the same powers of δ. Doing so leads to

Uj(s,±f±) =

j∑
k=0

(±1)j−k(f±)j−k

j − k!

∂j−k

∂ηj−k
u±k (s, 0) for all j = 0, 1, 2, ... (3.13)

Next we deal with the Neumann part of the transmission conditions on Γ±. Unlike

the Dirichlet part, the Neumann part of the transmission conditions is more delicate,

because in order to compute the co-normal derivatives at Γ±, one has to take into

account the expression in curvilinear coordinates of the normal vectors to those curves.

To this end, as discussed in [10], the normal vectors ν± on Γ± have the following

expressions

ν± =
1

|τ±|

(
(1± δf±)ν ∓ δdf

±

ds
τ

)
,

where ν and τ are the outer unit normal vector and the unit tangential vector defined

on Γ0, respectively, whereas the tangent vectors τ±(s) := d
ds

xΓ±(s) to Γ± are not unit

vectors. Next, in curvilinear coordinates the gradient operator takes the form

∇u(x) =
1

1 + ηc

∂u

∂s
τ +

∂u

∂η
ν

where c := c(s) denotes the curvature function of Γ0. Thus we now have all the

ingredients to compute the Neumann part of the transmission conditions, and after

straightforward but long calculations (see Appendix B), the Neumann transmission

conditions

ν± · ∇u±|Γ± = ν± · ∇U |Γ± ,

imply the following expression:

±df±

ds

(
1
µδ

∂Uj−1

∂s
(s,±f±)− 1

µ±

∑j−1
k=0

(±1)j−k−1(f±)j−k−1

(j−k−1)!

∂j−ku±k
∂ηj−k−1∂s

(s, 0)
)

=
(

1
µδ

∂Uj+1

∂ζ
(s,±f±)− 1

µ±

∑j
k=0

(±1)j−k(f±)j−k

(j−k)!

∂j−k+1u±k
∂ηj−k+1 (s, 0)

)
(3.14)

±2f±c
(

1
µδ

∂Uj
∂ζ

(s,±f±)− 1
µ±

∑j−1
k=0

(±1)j−k−1(f±)j−k−1

(j−k−1)!

∂j−ku±k
∂ηj−k

(s, 0)
)

+c2(f±)2
(

1
µδ

∂Uj−1

∂ζ
(s,±f±)− 1

µ±

∑j−2
k=0

(±1)j−k−2(f±)j−k−2

(j−k−2)!

∂j−k−1u±k
∂ηj−k−1 (s, 0)

)
,
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for j = −1, 0, 1, 2, ..., for all s ∈ [0, L] and with the convention that Ul = 0 and ul = 0

for l < 0.

Next, we consider the partial differential equation satisfied by Uj. To this end,

we write the differential operators in curvilinear coordinates and obtain

∇ ·
(

1

µ
∇w
)

=
1

(1 + ηc)

∂

∂s

(
1

µ

1

(1 + ηc)

∂w

∂s

)
+

1

(1 + ηc)

∂

∂η

(
(1 + ηc)

µ

∂w

∂η

)
.

Therefore, the equation satisfied by the field U inside Ωδ in the new curvilinear coor-

dinates is given by

1

(1 + δζc)

∂

∂s

(
1

µ

1

(1 + δζc)

∂U

∂s

)
+

1

δ

1

(1 + δζc)

∂

∂ζ

(
(1 + δζc)

δµ

∂U

∂ζ

)
+ k2nδU = 0.

Now substituting the ansatz (3.10) and collecting the terms corresponding to same

powers of δ, we obtain

∂
∂ζ

(
1
µδ

∂
∂ζ

)
Uj +

(
3ζc ∂

∂ζ

(
1
µδ

∂
∂ζ

)
+ c

µδ

∂
∂ζ

)
Uj−1+(

∂
∂s

(
1
µδ

∂
∂s

)
+ 3ζ2c2 ∂

∂ζ

(
1
µδ

∂
∂ζ

)
+ 2c2ζ

µo
∂
∂ζ

+ k2nδ

)
Uj−2+ (3.15)(

ζc ∂
∂s

(
1
µδ

∂
∂s

)
+ ζ3c3 ∂

∂ζ

(
1
µδ

∂
∂ζ

)
+ c3ζ2

µo
∂
∂ζ
− ζc′

µδ

∂
∂s

+ 3ζck2nδ

)
Uj−3+

+3ζ2c2k2nδUj−4 + ζ3c3k2nδUj−5 = 0,

for j = 0, 1, 2..., and where again c := c(s) is the curvature of Γ0 and conveying that

Ul = 0 for negative l.

The recursive relations for the transmission conditions (3.13) and (3.14), and

the partial differential equation (3.15) of the three lowest order terms U0, U1, U2 allow

us to derive relations between the jumps and mean values of the outer fields u0 and

u1 and their co-normal derivatives across Γ0. In the following we summarize these

relations (we refer the reader to Appendix B and [71] for details):

[u0] = 0,[
1
µ
∂u0

∂ν

]
= 0, (3.16)

[u1] = 2 〈f(µδ − µ)〉
〈

1
µ
∂u0

∂ν

〉
,[

1
µ
∂u1

∂ν

]
= 2

(
∂
∂s

(〈
f
(

1
µ
− 1

µδ

)〉
∂
∂s

)
+ k2 〈f (n− nδ)〉

)
〈u0〉 .
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Here [ui] := u+
i (s, 0) − u−i (s, 0) and 〈ui〉 := (u+

i (s, 0) + u−i (s, 0))/2, i = 0, 1, are the

point wise jump and average values of the outer fields on Γ0. Analogously we use the

symbols
[

1
µ
∂ui
∂ν

]
and

〈
1
µ
∂ui
∂ν

〉
for the jump and average values of the co-normal deriva-

tive on Γ0, and similar definitions for the average values 〈f (n− nδ)〉,
〈
f
(

1
µ
− 1

µδ

)〉
,

and 〈f(µδ − µ)〉. Therefore, noting that u± = u±0 + δu±1 + O(δ2), after dropping the

O(δ2)−terms, we finally obtain the Approximate Transmission Conditions (ATCs) of

the second order

[u] = α

〈
1

µ

∂u

∂ν

〉
on Γ0, (3.17)[

1

µ

∂u

∂ν

]
=

(
− ∂

∂s
〈βf〉 ∂

∂s
+ γ

)
〈u〉 on Γ0, (3.18)

where

α = 2δ 〈f(µδ − µ)〉 , β± = 2δ

(
1

µδ
− 1

µ±

)
, γ = 2δk2 〈f (n− nδ)〉 . (3.19)

It is worthwhile noticing that all the three coefficients involved in the expression

of the ATCs depend on the thickness and the shape of the defect Ωδ, as well as on

the contrasts between material properties of the two delaminated layers Ω± and the

original thin delamination Ωδ.

Remark 3.2.1. We remark that our asymptotic expressions along with the derivation

of the ATCs are merely formal. Although not needed to write down the final asymptotic

model, in our derivation process we have used the assumption that the functions f±

are regular at the end points of Γ0 meaning in particular that f±(0) = f±(L) = 0.

In the case of regular f±, a rigorous justification of the asymptotic model can be done

following the approach in [37, 35] for periodic interfaces with constant width.

3.2.2 Formulation of the approximate model

We can now replace the original problem (3.1)-(3.4), (3.5)-(3.8) and (3.9) by

an approximate problem, here referred to as the crack problem, where the opening

Ωδ is replaced by the portion Γ0 of Γ where the fields satisfy the jump conditions
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derived above. In an abuse of notation, from now on u± will refer to the solution of

the approximate problem. We define then the forward approximate scattering problem

(i.e. the crack problem): given the plane wave incident field ui(x) := eikx·d̂ find the

total fields uext = us + ui, u+ and u− satisfying

∆uext + k2uext = 0 in Ωext, (3.20)

∇ ·
(

1

µ+

∇u+

)
+ k2n+u

+ = 0 in Ω+, (3.21)

∇ ·
(

1

µ−
∇u−

)
+ k2n−u

− = 0 in Ω−, (3.22)

and

uext = u+ and ∂uext

∂ν
= 1

µ+

∂u+

∂ν
on Γ1, (3.23)

[u] = 0 and
[

1
µ
∂u
∂ν

]
= 0 on Γ\Γ0,(3.24)

[u] = α
〈

1
µ
∂u
∂ν

〉
and

[
1
µ
∂u
∂ν

]
=
(
− ∂
∂s
〈βf〉 ∂

∂s
+ γ
)
〈u〉 on Γ0, (3.25)

along with the Sommerfeld radiation condition (3.9) for the scattered field us (see

Figure 3.3), where we recall [w] = w+ − w− and 〈w〉 = (w+ + w−)/2, and α, β±, and

γ are given by (3.19). We remark that although our formal asymptotic calculations

are performed only in the two-dimensional case, for the analysis in the following will

assume that the approximate model (3.20)-(3.22), (3.23)-(3.25) and (3.9) is valid in

the three-dimensional case also. Of course in the three-dimensional case the boundary

differential operator ∂/∂s 〈βf〉 ∂/∂s is replaced by the Laplace-Beltrami operator in

the divergence form ∇Γ · 〈βf〉∇Γ, i.e. (3.25) is replaced by

[u] = α

〈
1

µ

∂u

∂ν

〉
and

[
1

µ

∂u

∂ν

]
= (−∇Γ · 〈βf〉∇Γ + γ) 〈u〉 on Γ0 (3.26)

where∇Γ· and∇Γ are the surface divergence and the surface gradient on Γ, respectively.

3.2.3 Numerical validation of the approximate model

We end this section with a numerical study of the convergence of the approx-

imate crack problem to the original problem as δ → 0 in the two-dimensional case.
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Figure 3.3: The configuration of the crack problem.

Again ignoring the effect of the end points of Γ0 on the asymptotic expansions, heuris-

tically it is expected that the order of convergence is δ2. To validate the ATCs, we

carried numerical experiments implemented in the finite element library FreeFem++

[51].

In our experiments, we compare the solution of the scattering problem by a finite

element method based on directly meshing the opening Ωδ (i.e. solving (3.1)-(3.4),

(3.5)-(3.8) and (3.9) by a finite element method) to the solution of the crack problem

(i.e. (3.20)-(3.22), (3.23)-(3.25) and (3.9) by a finite element based on the variational

problem (3.36)). Both problems are solved using a FEM code in FreeFem++ [51],

where the unbounded domain is truncated and the exact boundary condition in terms

of Dirichlet-to-Neumann operator (which is explained in more detail in the following

section) is imposed on a circular artificial boundary.

For our numerical example we consider a circular inhomogeneity of radius one

with an opening Ωδ given by (see Figure 3.4)

f−(s) = 0, f+(s) := −l−2(s+ l)(s− l); for s ∈ (−l, l), with l = 0.2π,
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on the interface r = 1. The material properties are chosen to be n− = 1, µ− = 1 in

Ω−, n+ = 1, µ+ = 1 in Ω+, nδ = 0.2, µδ = 0.9 in Ωδ, and the wave number k = 3, so in

this case the wavelength is λ = 2π/k ' 2. For fixed δ = 0.04λ ' 0.083, and different
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ext
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Figure 3.4: The configuration of the delaminated structure used in the numerical
experiments

incident directions d̂ = (cos(θ), sin(θ)), in Figure 3.5 panel (a) we plot the H1 relative

error

e(δ, d̂) :=
‖uextδ (·, d̂)− uext(·, d̂)‖H1(BR\Ω)

‖uext(·, d̂)‖H1(BR\Ω)

where uextδ and uext correspond to the exact scattering problem (3.1)-(3.4), (3.5)-(3.8),

(3.9)) and to the approximate scattering problem (3.20)-(3.22), (3.23)-(3.25), (3.9)),

respectively, and BR is a large ball of radius R > 0 containing Ω = Ω+∪Ω−. We observe

that the maximum error is, as expected, attained for the incident direction d̂ = (1, 0),

i.e. for the incident plane wave ui(x,y) = eikx·y which hits the opening Ωδ in the

middle in the perpendicular direction. Figure 3.5 panel (b) shows the H1 relative error

e(δ, d̂) as a function of the small parameter δ corresponding to the incident direction

d̂ = (1, 0). The plot shows that the numerical convergence rate is close to O(δ1.7)

which approximately corresponds to the expected theoretical rate of convergence rate

O(δ2) for the second order ATCs model. Since for the solution of inverse problem we

use far field data, which is defined in Section 3.4, in Figure 3.6 we show numerical

results where we compare the far fields of the exact model and the approximate model

for the same shape as above. In Figure 3.6 panel (a) is shown the absolute value of

the far fields u∞δ (·, d̂) and u∞(·, d̂) corresponding to the scattered waves for the ATCs
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Figure 3.5: Panel (a) shows the H1 relative error of total fields resulting from different
incident direction, whereas panel (b) the H1 relative error for different
values of δ. The approximated rate of convergence is O(δ1.7).

model and the exact model, respectively, again for d̂ = (1, 0). In Figure 3.6 panel (b)

we show the relative L2 error of these far fields

e∞(δ, d̂) :=
‖u∞δ (·, d̂)− u∞(·, d̂)‖L2(S1)

‖u∞(·, d̂)‖L2(S1)

for different values of δ and d̂ = (1, 0). The plot shows that the numerical convergence

rate of the far fields in approximately O(δ1). And we suggest that this drop of conver-

gence (for O(δ2)) is due to singularities at the edges of the crack (see Remark 3.2.1).

3.3 The well-posedness of the approximate model

Now we turn our attention to the study of the well-posedness of the approximate

crack problem (3.20)-(3.22), (3.23)-(3.25) and (3.9). Although our formal asymptotic

calculations are performed only in the two-dimensional case, for the analysis we shall

assume that this approximate model is also valid in the three-dimensional case. To

study the problem we employ a variational method which provides also the analytical

framework for a finite element method to numerically compute the solution. The first
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Figure 3.6: Panel (a) shows the plot of the modulus of the far field for both models

for δ = 0.05. Panel (b) shows the far field L2 relative error e∞(δ, d̂), for
different values of δ. The approximated rate of convergence is O(δ1).

step is to formulate the problem in a bounded domain and to this end we introduce

a large ball BR of radius R > 0 containing Ω and let SR denote the boundary of BR.

The exterior Dirichlet-to-Neumann operator Tk : H1/2(SR)→ H−1/2(SR) is defined by

Tk : α 7→ ∂v

∂ν
on SR

where v ∈ H1
loc(Rm \BR) solves

∆v + k2v = 0 in Rm \BR,

v = α on SR,

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0.

It is well-known that the exterior Dirichlet-to-Neumann operator Tk : H1/2(SR) →

H−1/2(SR) satisfies (see e.g [22])

=
(∫

SR

(Tku)uds

)
≥ 0 and −<

(∫
SR

(Tku)uds

)
≥ 0. (3.27)
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It is standard to show (see e.g. [21] and [22]) that (3.20)-(3.22), (3.23)-(3.25) and (3.9)

is equivalent to the problem of finding uext, u+, u− satisfying

∆uext + k2uext = 0 in BR \ Ω, (3.28)

∇ ·
(

1

µ+

∇u+

)
+ k2n+u

+ = 0 in Ω+, (3.29)

∇ ·
(

1

µ−
∇u−

)
+ k2n−u

− = 0 in Ω−, (3.30)

∂(uext − ui)
∂ν

= Tk(u
ext − ui) on SR, (3.31)

uext = u+ and ∂uext

∂ν
= 1

µ+

∂u+

∂ν
on Γ1, (3.32)

[u] = 0 and
[

1
µ
∂u
∂ν

]
= 0 on Γ\Γ0,(3.33)

[u] = α
〈

1
µ
∂u
∂ν

〉
and

[
1
µ
∂u
∂ν

]
= (−∇Γ · 〈βf〉∇Γ + γ) 〈u〉 on Γ0. (3.34)

In R2 the boundary differential operator simplifies to

∇Γ · 〈βf〉∇Γw =
∂

∂s
〈βf〉 ∂

∂s
w.

We recall that Ω = Ω+ ∪ Ω− and the coefficients α, 〈βf〉 and γ, which are bounded

functions defined on Γ0, are given by (3.19). In order to study the well-posedeness

of the above problem, we notice that while the energy space H1 suffices to rigorously

define the solution of the differential equations in Ω± and BR\Ω, it is not enough to

define the boundary differential operator on Γ0 that appears in (3.34). To handle the

boundary differential operator on Γ0 we define the space

H :=
{
u ∈ H1(BR\Γ0) such that

√
f±∇Γ 〈u〉 ∈ L2(Γ0)

}
, (3.35)

endowed with the norm

‖u‖2
H = ‖u‖2

H1(BR\Γ0)
+
∥∥∥√f+∇Γ 〈u〉

∥∥∥2

L2(Γ0)
+
∥∥∥√f−∇Γ 〈u〉

∥∥∥2

L2(Γ0)
.

Obviously H is a Hilbert space since the weights f± ∈ L∞(Γ0) are non-negative (note

that f± = 0 at the boundary of Γ0 on Γ). Now, multiplying all three equations with

v ∈ H, integrating by parts, using the continuity of transmission conditions across
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Γ\Γ0, the boundary condition on SR, and the approximate transmission condition on

Γ0, we arrive at the following equivalent variational formulation of (3.28)-(3.34): find

u ∈ H such that

A(u, v) = L(v) for all v ∈ H (3.36)

where

A(u, v) :=

∫
BR

1

µ
∇u · ∇v − k2nuv dx+

∫
Γ0

〈βf〉∇Γ 〈u〉∇Γ〈v〉ds

+

∫
Γ0

γ 〈u〉 〈v〉 ds+

∫
Γ0

1

α
[u] [v] ds−

∫
SR

Tkuv ds (3.37)

and

L(v) = −
∫
SR

(
Tku

iv − ∂ui

∂ν
v

)
ds. (3.38)

Here u|Ω+ = u+, u|Ω− = u− and u|BR\Ω = uext, and

µ := 1, n := 1 in BR \ Ω, µ := µ+, n := n+ in Ω+, µ := µ−, n := n− in Ω−. (3.39)

We decompose the bounded sesquilinear form A : H×H → C defined by (3.43) as

A(u, v) = A0(u, v) +B(u, v), (3.40)

where

A0(u, v) :=

∫
BR

1

µ
∇u · ∇v + uv dx+

∫
Γ0

〈βf〉∇Γ 〈u〉∇Γ〈v〉 ds−
∫
SR

Tkuvds

and

B(u, v) := −
∫
BR

(k2n+ 1)uv dx+

∫
Γ0

γ 〈u〉 〈v〉 ds+

∫
Γ0

1

α
[u] [v] ds.

Let A0 : H → H and B : H → H be the linear operators defined from the sesquilinear

forms A0(·, ·) and B(·, ·) by means of the Riesz representation theorem

(A0u, v)H = A0(u, v) and (Bu, v)H = B(u, v), for all u, v ∈ H.
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At this point let us assume that there exist constants ε1 > 0 and ε2 > 0 such that

<
(

1
µ

)
≥ ε1, and <

(
1
µδ
− 1

µ±

)
≥ ε2 (which implies that <(β±) ≥ 2δε2). Then we have

that

< (A0(u, u)) =

∫
BR

(
<
(

1

µ

)
|∇u|2 + |u|2

)
dx+

∫
Γ0

〈<(β)f〉 |∇Γ 〈u〉|2 ds

− <
(∫

SR

(Tku)u ds

)
(3.41)

≥ min(ε1, 1)‖u‖2
H1(Ω) + δε2

∥∥∥√f+∇Γ 〈u〉
∥∥∥2

L2(Γ0)

+ δε2

∥∥∥√f−∇Γ 〈u〉
∥∥∥2

L2(Γ0)
≥ C‖u‖2

H

for some positive constant C > 0, which proves that A0(·, ·) is coercive. The bound-

edness of A0(·, ·) is obvious given the assumptions on the coefficients and the fact that

Tk is bounded. Thus, A0 : H → H is invertible operator with bounded inverse.

Due to the fact that α := 2δ 〈f(µδ − µ)〉 is zero at the boundary of Γ0 in Γ, the

operator B is not bounded in general. We need to impose some restriction on the rate

that f± approaches zero at boundary of Γ0. Indeed we can prove the following result:

Lemma 3.3.1. Assume 1/α ∈ Lt(Γ0) for t = 1 + ε in R2 and t = 7/4 + ε in R3 for

arbitrary small ε > 0. Then B : H → H is a compact bounded linear operator.

Proof. We check all three terms of the operator B, i.e.

(B1u, v)H = −
∫
BR

(k2n+ 1)uv dx, (B2u, v)H =

∫
Γ0

γ 〈u〉 〈v〉 ds

and (B3u, v)H =

∫
Γ0

1

α
[u] [v] ds.

Noting that n ∈ L∞(BR), the compactness of B1 follows from the fact that H1(BR)

(and consequently H) is compactly embedded in L2(BR) and that

‖B1u‖H = sup
‖v‖H=1

∣∣∣∣−∫
BR

(k2n+ 1)uvdx

∣∣∣∣ ≤ C‖u‖L2(BR).
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Next, since γ ∈ L∞(Γ0), we have that

‖B2u‖H = sup
‖v‖H=1

∣∣∣∣∫
Γ0

γ 〈u〉 〈v〉 ds

∣∣∣∣ ≤ C sup
‖v‖H=1

‖ 〈u〉 ‖L2(Γ0)‖ 〈v〉 ‖L2(Γ0)

≤ C sup
‖v‖H=1

‖ 〈u〉 ‖L2(Γ)‖ 〈v〉 ‖H1/2(Γ)

≤ C sup
‖v‖H=1

‖ 〈u〉 ‖L2(Γ)‖v‖H1(BR) ≤ C‖ 〈u〉 ‖L2(Γ).

for some positive constant C > 0, where we have used the continuity of the trace

operator from H1(BR) to H1/2(Γ). Now the compactness of B2 follows from the the

boundedness of the trace operator and compactly embedding of H1/2(Γ) into L2(Γ).

Due to the fact that α := 2δ 〈f(µδ − µ)〉 is zero at the boundary of Γ0 in Γ, the

analysis of B3 is more delicate and we need to appeal to Rellich-Kondrachov embedding

theorems for Wm,p spaces (see e.g. [1]). To this end we first recall that from Theorem

5.3 of [1], we have that for a bounded domain O with C1-boundary ∂O, the trace

operator γ : H1(O) → Lq(∂O) is a continuous embedding if 2 ≤ q < ∞ for O ⊂ R2,

and 2 ≤ q < 4 forO ⊂ R3. Hence assuming that Γ0 is smooth and using this embedding

result, for t as in the assumptions of the lemma we have that

‖B3u‖H = sup
‖v‖H=1

∣∣∣∣∫
Γ0

1

α
[u][v]ds

∣∣∣∣ ≤ sup
‖v‖H=1

∥∥∥∥ 1

α

∥∥∥∥
Lt(Γ0)

‖[v]‖Lp(Γ0)‖[u]‖Lq(Γ0)

≤ C sup
‖v‖H=1

∥∥∥∥ 1

α

∥∥∥∥
Lt(Γ0)

‖v‖H‖[u]‖Lq(Γ0) ≤ C

∥∥∥∥ 1

α

∥∥∥∥
Lt(Γ0)

‖[u]‖Lq(Γ0). (3.42)

where we have used that there is a constant C > 0, such that ‖[v]‖Lp(Γ0) ≤ C‖v‖H.

Note that for arbitrary small ε, p and q are chosen arbitrarily large in R2 and arbitrarily

close to 4 in R3, in both cases such that 1/t+ 1/p+ 1/q = 1. We also remark that for

u ∈ H we have that [u] = 0 in Γ \ Γ0. Now, we use the Rellich-Kondrachov compact

embedding theorem (see Theorem 6.3, Part I in [1]). Applying this theorem for Ω := Γ0

which is a 2-d smooth manifold in the case of R3 or 1-d smooth manifold in the case

of R2 (in our case m = 1/2, p = 2, j = 0, k = n = 2 in R3 or k = n = 1 in R2), implies

that the embedding

H1/2(Γ0) ↪→ Lq(Γ0)
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is compact if 1 ≤ q < 4 in R3 or if 1 ≤ q < ∞ in R2. Combining this with the fact

that embedding H ↪→ H1/2(Γ0) is bounded, from (3.42) we deduce that B3 is compact,

and this concludes the proof of the lemma. We remark that here Theorem 6.3, [1] is

adapted to the compact manifold Γ0 covered by a finite number of charts, each with

Riemannian metric bounded below and above by the Euclidean metric, by applying

standard arguments based on the partition of unity.

Lemma 3.3.2. Assume that 0 ≤ =(n±) ≤ =(nδ) and 0 ≤ =(µ±) ≤ =(µδ). Then

problem (3.28)-(3.34) has a unique solution.

Proof. Take ui = 0 in (3.28)-(3.34), and let u be a solution to the homogenous problem.

Taking the imaginary part of (3.43) for v = u we have

0 =

∫
BR

=
(

1

µ

)
|∇u| − k2=(n)|u|2 dx+

∫
Γ0

= 〈βf〉 |∇Γ 〈u〉|2 ds

+

∫
Γ0

=(γ) |〈u〉|2 ds+

∫
Γ0

=
(

1

α

)
|[u]|2 ds−=

(∫
SR

Tkuu ds

)
(3.43)

Now, since from the assumptions on the material properties we have that =
(

1
µ±

)
≤ 0,

=(n±) ≥ 0, =(〈βf〉) ≤ 0, =(α) ≥ 0 and =(γ) ≤ 0, the above equation implies

=
(∫

SR

Tkuu ds

)
≤ 0.

But (3.27) now implies that indeed

=
(∫

SR

Tkuu ds

)
= 0.

The definition of the Dirichet-to-Neumann operator and Rellich’s lemma (see [21] and

[32]) now imply that u = 0 and ∂u/∂ν = 0 on SR. Finally, from Holmgren’s theorem

together with the unique continuation principle (which under our geometrical and

physical assumptions holds true, see e.g. Theorem 17.2.6 in [52]), we can conclude that

u = 0 which proves the uniqueness of (3.28)-(3.34).

In summary, combining Lemma 3.3.1 and Lemma 3.3.2 with the coercivity result

(3.41) we obtain the main result of this section.
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Theorem 3.3.1 (Well-posedness). In addition to the geometrical and physical assump-
tions stated in the Introduction, assume that:

1. <
(

1
µ

)
≥ ε1, and <

(
1
µδ
− 1

µ±

)
≥ ε2 for some constants ε1 > 0 and ε2 > 0 ,

2. 0 ≤ =(n±) ≤ =(nδ) and 0 ≤ =(µ±) ≤ =(µδ) and

3. the profile f± go to zero at the boundary of Γ0 in Γ such that 1/α ∈ Lt(Γ0)
for t = 1 + ε in R2 and t = 7/4 + ε in R3 for arbitrary small ε > 0, where
α = 〈f(µδ − µ)〉.

Then problem (3.28)-(3.34) has a unique solution u ∈ H which depends continuously

on the incident wave ui with respect to the H-norm.

Remark 3.3.1. Since any solution of (3.28)-(3.34) can be extended to a solution of

the scattering problem (3.20)-(3.22), (3.23)-(3.25) and (3.9) and vise-versa, Theorem

(3.3.1) provides a well-posedness result for the approximate crack problem.

For later use we need to consider the above scattering problem in the following

form: Find w ∈ H ∩H1
loc(Rm \ Γ0) such that

∇ ·
(

1
µ
∇w
)

+ k2nw = 0 in Rm \ Γ0, (3.44)

[w] = α
〈

1
µ
∂w
∂ν

〉
+ αh1 on Γ0, (3.45)[

1
µ
∂w
∂ν

]
= (−∇Γ · 〈βf〉∇Γ + γ) 〈w〉+ h2 on Γ0, (3.46)

limr→∞ r
m−1

2

(
∂w
∂r
− ikw

)
= 0, (3.47)

where h1 and h2 are
h1 :=

〈
1

µ

∂v

∂ν

〉
− 1

α
[v],

h2 := (−∇Γ · 〈βf〉∇Γ + γ) 〈v〉 −
[

1

µ

∂v

∂ν

]
,

(3.48)

for some v ∈ H with ∇ · ((1/µ)∇v) ∈ L2(BR \ Γ0). For the later use we define the

following trace space on Γ0 of function u ∈ H,

H (Γ0) :=
{
u ∈ H1/2(Γ0) such that

√
f±∇Γu ∈ L2(Γ0)

}
(3.49)
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and its dual H−1 (Γ0) with respect to the following duality pairing

(u, v)H(Γ0),H−1(Γ0) := (u, v)H1/2(Γ0),H̃−1/2(Γ0) +
(
f±∇Γu,∇Γv

)
L2(Γ0),L2(Γ0)

. (3.50)

Here H̃1/2(Γ0) and H̃−1/2(Γ0) consist of functions in H1/2(Γ0) and H−1/2(Γ0) that

can be extended by zero in the entire Γ as H1/2 and H−1/2 functions, respectively.

They are duals of H−1/2 (Γ0) and H1/2 (Γ0), respectively. Hence h1 ∈ H−1/2(Γ0) and

h2 ∈ H−1(Γ0).

3.4 The inverse problem of reconstructing the delaminated part Γ0

In this section we turn our attention to the main goal of this study, which is

the reconstruction of the delaminated portion Γ0 of the interface Γ between two ma-

terials from measured scattering data. Our reconstruction method is a modified linear

sampling method, adapted to our problem where we already know the interface Γ and

only look for the delaminated part Γ0. The linear sampling method and factorization

method have been used to reconstruct cracks or screens with various types of bound-

ary conditions [13], [18], [20], [57] and [87] (see also the monographs [21] and [23]).

Although numerically both the linear sampling method and factorization method pro-

vide similar reconstruction results, the factorization method is mathematically more

satisfactory. Here we develop the linear sampling method since our complicated jump

conditions modeling the delaminated part Γ0 fail to satisfy the standard assumptions

under which the factorization method works (see [28]). For other inversion methods

applied to similar types of inverse problems in acoustic and elasticity we refer the reader

to [5, 6, 9].

We assume that the interrogating incident fields are plane waves given by

ui(x, d̂) = eikd̂·x where the unit vector d̂ is the incident direction. The corresponding

scattered field us(x, d̂), i.e. the solution of (3.20)-(3.22), (3.23)-(3.25) and (3.9) with

ui := eikd̂·x satisfies (see [32] and [21])

us(x, d̂) = γm
eik|x|

|x|(m−1)/2
u∞(x̂, d̂) +O

(
1

|x|

)
, x̂ = x/|x|, |x| → ∞,
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where

γm =
eiπ/4√
8πk

if m = 2 and γm =
1

4π
if m = 3. (3.51)

The function u∞(x, d̂) which is an analytic function of x̂ on the unit sphere Sm−1 :=

{x ∈ Rm, |x| = 1}, is referred to as the far field pattern of the scattered field us(x, d̂).

The inverse problem we consider here is to determine the delaminated portion Γ0

of the boundary Γ from a knowledge of u∞(x, d̂) for x̂ and d̂ on the unit sphere Sm−1.

Although in applications to nondestructive testing it is possible to have measurements

all around, we remark that the inversion algorithm that we shall develop next can also

be justified and implemented for limited aperture data (see Section 4.5 in [21]) as well

as for near field data. However, the quality of the reconstruction is likely to be poor

for small apertures which is usually the case for qualitative methods [46]. We also

remark that for many problems in nondestructive testing, it is reasonable to assume

that the background medium is known as we do here, since the background corresponds

to the healthy object to be tested. In the cases when the background is not know and

for simple defects, qualitative methods could be used to determine interfaces between

homogeneous regions of the background media along with the defect (see [85] and some

references therein).

3.4.1 A mixed reciprocity principle

We start by proving a mixed reciprocity result in order to deal with the non-

homogeneous background. This generalizes similar results first used in [75], and later

developped also in [46], [17] and [27] (see also [7] for a similar type of calculations).

To this end we let ub(·, d̂) be the total field due to the background, i.e. in

absence of the delamination Γ0, corresponding to the incident plain wave ui(·, d). More

precisely, ub(·, d̂) is the unique solution in H1
loc(Rm) of

∇ ·
(

1
µ
∇ub

)
+ k2nub = 0 in Rm,

ub = usb + ui, (3.52)

limr→∞ r
m−1

2

(
∂usb
∂r
− ikusb

)
= 0,
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where µ and n, both in L∞(Ω), are defined by (3.39). Note that the continuity of

the field and co-normal derivatives across Γ1 and Γ are implicit in this formulation.

Next let Gb(·, ·) be the Green’s function associated with the background media, i.e

Gb(·, z) ∈ H1
loc(Rm \ {z}) satisfying

∇ ·
(

1
µ
∇Gb(·, z)

)
+ k2nGb(·, z) = −δ(· − z), in Rm \ {z},

limr→∞ r
m−1

2

(
∂Gb(·,z)
∂r
− ikGb(·, z)

)
= 0, (3.53)

where again the continuity of the field and co-normal derivatives across Γ1 and Γ is

understood. We denote by G∞b (·, z) ∈ L2(Sm−1) the far-field pattern of the radiating

field Gb(·, z).

Theorem 3.4.1 (Mixed Reciprocity principle). The following relation holds

G∞b (x̂, z) = γmub(z,−x̂) for all z ∈ Rm and x̂ ∈ Sm−1,

where γm is defined by (3.51).

Proof. Let us first consider z ∈ Ωext := Rm \ Ω. Let Φ(·, z) denote the fundamental

solution of the Helmholtz equation ∆u+ k2u = 0 given by

Φ(x, z) =



i

4
H

(1)
0 (k|x− z|) in R2,

1

4π

eik|x−z|

|x− z|
in R3.

Since Gb(·, z)−Φ(·, z) is a non-singular radiating solution to ∆u+ k2u = 0 in Ωext, an

application of Green’s second identity together with the Sommerfeld radiation condition

implies that for all x ∈ Ωext

(Gb − Φ)(x, z) =

∫
Γ1

{
(Gb − Φ)(y, z)

∂Φ

∂νy
(x,y)− Φ(x,y)

∂(Gb − Φ)

∂νy
(y, z)

}
ds(y)

=

∫
Γ1

{
Gb(y, z)

∂Φ

∂νy
(x,y)− Φ(x,y)

∂Gb

∂νy
(y, z)

}
ds(y), (3.54)
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where we have used the fact that, since z ∈ Ωext,∫
Γ1

{
Φ(y, z)

∂Φ

∂νy
(x,y)− Φ(y, z)

∂Φ

∂νy
(x,y)

}
ds(y) = 0.

Then, from (3.54), and using the fact that Φ∞(x̂, z) = γmu
i(z,−x̂) := γme

−ix̂·z we

obtain for all x ∈ Ωext

G∞b (x̂, z)− γmui(z,−x̂) =

γm

∫
Γ1

{
Gb(y, z)

∂ui

∂νy
(y,−x̂)− ui(y,−x̂)

∂Gb

∂νy
(y, z)

}
ds(y). (3.55)

On the other hand, the scattered field due to the background usb(·,−x̂) is also a radiating

solution of ∆u+ k2u = 0 in Ωext hence we have that∫
Γ1

{
(Φ−Gb)(y, z)

∂usb
∂νy

(y,−x̂)− usb(y,−x̂)
∂(Φ−Gb)

∂νy
(y, z)

}
ds(y) = 0.

Now the integral representation formula for usb(·,−x̂) in Ωext (see [21]) yields

usb(z,−x̂) =

∫
Γ1

{
usb(y,−x̂)

∂Φ

∂νy
(y, z)− Φ(y, z)

∂usb(y,−x̂)

∂νy

}
ds(y) (3.56)

=

∫
Γ1

{
usb(y,−x̂)

∂Gb

∂νy
(y, z)−Gb(y, z)

∂usb(y,−x̂)

∂νy

}
ds(y).

In addition, using the transmission conditions across the interfaces Γ1 and the equations

for ub and Gb(·, ·) we obtain

∫
Γ1

{
ub(y,−x̂)∂Gb

∂νy
(z,y)−Gb(z,y)∂ub(y,−x̂)

∂νy

}
ds(y)

=
∫

Γ1

{
u+
b (y,−x̂) 1

µ+

∂G+
b

∂νy
(z,y)−G+

b (z,y) 1
µ+

∂u+
b (y,−x̂)

∂νy

}
ds(y) (3.57)

=
∫

Ω

{
ub(y,−x̂)∇ ·

(
1
µ
∇Gb

)
(z,y)−Gb(z,y)∇ ·

(
1
µ
∇ub

)
(y,−x̂)

}
ds(y) = 0

Thus from (3.56) and (3.57), since ub = usb + ui we have that

usb(z,−x̂) =

∫
Γ1

{
Gb(z,y)

∂ui(y,−x̂)

∂νy
− ui(y,−x̂)

∂Gb

∂νy
(z,y)

}
ds(y). (3.58)

Finally (3.55) provides

G∞b (x̂, z) = γmub(z,−x̂).
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Next let z ∈ Ω+ ∪Ω−. Then Gb(·, z) is a smooth radiating solution of ∆u+ k2u = 0 in

Ωext, and hence Green’s representation formula implies

Gb(x, z) =

∫
Γ1

{
Gb(y, z)

∂Φ

∂νy
(x,y)− Φk(x,y)

∂Gb

∂νy
(y, z)

}
ds(y). (3.59)

Evaluating the far field pattern yields

G∞b (x̂, z) = γm

∫
Γ1

{
Gb(y, z)

∂e−ikx̂·y

∂νy
− e−ikx̂·y∂Gb(y, z)

∂νy

}
ds(y). (3.60)

Moreover, since usb(·,−x̂) is also a radiating solution to the Helmholtz equation in Ωext,

we have that

γm

∫
Γ1

{
Gb(y, z)

∂usb(y,−x̂)

∂νy
− usb(y,−x̂)

∂Gb(y, z)

∂νy

}
ds(y) = 0, (3.61)

Hence adding (3.60) and (3.61), recalling that ub(y,−x̂) = usb(y,−x̂) + e−ikx̂·y and

applying Green’s second identity and the transmission conditions across Γ1 and Γ

proves that

G∞b (x̂, z) = γm

∫
Γ1

{
Gb(y, z)

∂e−ikx̂·y

∂νy
− e−ikx̂·y∂Gb(y, z)

∂νy

}
ds(y)

= γm

∫
Ω+∪Ω−

{
Gb(y, z)∇ ·

(
1

µ
∇ub

)
(y,−x̂)

− ub(y,−x̂)∇ ·
(

1

µ
∇Gb

)
(y, z)

}
dy

+ γm

∫
Γ

{
Gb(y, z)

[
1

µ

∂ub
∂ν(y)

]
(y,−x̂)− ub(y,−x̂)

[
1

µ

∂Gb

∂νy

]
(y, z)

}
ds(y).

Now we use the continuity of 1
µ
∂ub
∂νy

and 1
µ
∂Gb
∂νy

across Γ and the fact that ub and Gb

satisfy the same equation in (Ω+ ∪Ω−) \Bε(z), where Bε(z) is a small ball of radius ε

centered at z and included either in Ω+ or Ω−, to obtain

G∞b (x̂, z) = γm

∫
Bε(z)

{
Gb(y, z)∇·

(
1

µ
∇ub

)
(y,−x̂)−ub(y,−x̂)∇·

(
1

µ
∇Gb

)
(y, z)

}
dy.

Letting ε tend to zero and using the equation for ub and the first equation in (3.53) for

x ∈ Bε(z) finally implies

G∞b (x̂, z) = γm ub(z,−x̂)

where we have used (3.56). Finally, by the continuity of Gb across Γ1 and Γ, we can

now conclude that G∞b (x̂, ·) = γm ub(·,−x̂) holds everywhere in Rm.
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3.4.2 The linear sampling method

We now propose and analyze a version of the Linear Sampling Method (LSM)

to detect the delaminated part Γ0 on the known interface Γ. As mentioned earlier,

the data needed for our inversion scheme is the multistatic far field pattern u∞(x̂, d̂),

x̂, d̂ ∈ Sm−1. This far field data allows us to define the standard far field operator

F : L2(Sm−1)→ L2(Sm−1) given by

(Fg) (x̂) =

∫
Sm−1

u∞(x, d̂)g(d̂) ds(d̂). (3.62)

By linearity Fg is the far field pattern of the scattered field us satisfying the scattering

problem (3.20)-(3.22), (3.23)-(3.25) and (3.9) with ui := vg, where vg is the so-called

Herglotz wave function defined by

vg(x) =

∫
Sm−1

g(d̂)eikx·d̂ ds(d̂). (3.63)

On the other hand the far field pattern u∞b (x̂, d̂) of the scattered field due to the

background, i.e. the solution usb(·, d) of (3.52), defines the background far field operator

Fb : L2(Sm−1)→ L2(Sm−1)

(Fbg) (x̂) =

∫
Sm−1

u∞b (x, d̂)g(d̂) ds(d̂). (3.64)

Note that Fbg can be computed since it is assume that the undamaged configuration

of the scatterer is known a priori. Similarly, by linearity Fbg is the far field pattern of

the solution usb with ui := vg. Also by linearity, the total field ub,g corresponding to the

scattering by the background media due to vg as incident field, i.e solution of (3.52)

with ui := vg, can be written as

ub,g(x) :=

∫
Sm−1

ub(x, d̂)g(d̂) ds(d̂). (3.65)

Finally, we define the far field operator solely due to the delamination FD : L2(Sm−1)→

L2(Sm−1) which is given by

FDg = Fg −Fbg. (3.66)
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Obviously FDg can be seen as the far field pattern of the scattered field due to the defect

Γ0 when the incident field is ub,g given by (3.65). From this point we assume that we

know FD, and we will use it to develop the linear sampling method to reconstruct Γ0. To

this end, we define the bounded linear operator H : L2(Sm−1)→ H−1/2 (Γ0)×H−1 (Γ0)

by

H g =

(
α

1

µ

∂ub,g
∂ν

∣∣∣∣
Γ0

, Kub,g

)
, (3.67)

where K : H (Γ0)→ H−1 (Γ0) corresponds to one part of the boundary data on Γ0 and

is given by (see (3.48) and (3.50))

(Kφ,ψ)H(Γ0),H−1(Γ0) =

∫
Γ0

{
〈βf〉∇Γφ · ∇Γψ + γφψ

}
ds.

The conjugate transpose operator K∗ : H (Γ0)→ H−1 (Γ0) is defined by

(K∗φ, ψ) =

∫
Γ0

{〈
βf
〉
∇Γφ · ∇Γψ + γφψ

}
ds :=

(
Kφ,ψ

)
.

Note that H g maps ub,g to the corresponding transmission conditions given by (3.48),

since both the field ub,g and its co-normal derivative are continuous on Γ0 (so the terms

in (3.48) with jumps disappear) and we simply write the average by the common value

on either side of the curve, i.e
〈

1
µ

∂ub,g
∂ν

〉
= 1

µ±
∂u±b,g
∂ν

, and 〈ub,g〉 = u±b,g. We remark that

for smooth Γ0 and smooth coefficients µ± and n±, we can assume by the regularity of

the solution of the transmission problem that ub,g ∈ H and hence its trace on Γ0 is in

H (Γ0).

Lemma 3.4.1. The operator H : L2(Sm−1)→ H−1/2 (Γ0)×H−1 (Γ0) has dense range.

Assume in addition to the assumptions of Theorem 3.3.1 that <(n− nδ) > 0 (or more

generally that there is no non-trivial ub,g such that Kub,g = 0), then H is injective.

Proof. We first check the injectivity. Let g ∈ L2(Sm−1) such that H g = 0. Then both

1
µ

∂ub,g
∂ν
|Γ0 and ub,g|Γ0 = 0. The latter follows by taking the real part of Kub,g = 0 and

the fact that <(〈βf〉) > 0 and <(γ) > 0. Then, by Holmgren’s theorem we conclude

that ub,g = 0 in a region extending on both sides of Γ0, and by analytic continuation we
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obtain that ub,g ≡ 0 vanishes identically. Since ub,g is sum of radiating scattering wave

and the Herglotz wave function vg which is an entire solution to Helmholtz equation,

the latter implies vg ≡ 0 yielding g = 0. Next, to show that H has dense range it

suffices to prove that H ∗ is injective, where H ∗ : H̃1/2 (Γ0) × H (Γ0) → L2(Sm−1) is

the transpose-conjugate operator associated with H . To this end, suppose that (ζ, η)

in H̃1/2 (Γ0)×H (Γ0). Then

(H g, (ζ, η)) =

(
α

µ

∂ub,g
∂ν

, ζ

)
+ (Kub,g, η) =

(
α

µ

∂ub,g
∂ν

, ζ

)
+
(
ub,g, Kη

)
=

∫
Γ0

{α
µ

∂ub,g
∂νy

ζ + ub,gKη dsy

}
(3.68)

=

∫
Sm−1

g(x̂)

∫
Γ0

{
ζ
α

µ

∂ub(y, x̂)

∂νy
+Kηub(y, x̂)

}
dsy dsx̂

= (g,H ∗ (ζ, η)) .

Thus

H ∗ (ζ, η) =

∫
Γ0

{αµ
µ

1

µ

∂ub(y,−x̂)

∂νy
ζ + ub(y,−x̂)Kη

}
dsy. (3.69)

From the mixed reciprocity relation Theorem 3.4.1, we have that that H ∗ (ζ, η) is the

far field pattern associated with the scattered wave

ws(x) = γ−1
m

∫
Γ0

{
ζ
αµ

µ

1

µ

∂Gb(x,y)

∂νy
+KηGb(x,y)

}
dsy

where γm is defined in (3.51). Moreover, since the singularity of the free space Green’s

function Gb(·, ·) is of the same order as the fundamental solution Φ(·, ·), ws is given by

the following representation formula (see e.g. [63])

ws(x) =

∫
Γ0

{
[ws]

1

µ

∂Gb(x,y)

∂νy
−
[

1

µ

∂ws

∂ν

]
Gb(x,y)

}
dsy,

and thus

[ws] = γ−1
m

αµ

µ
ζ and

[
1

µ

∂ws

∂ν

]
= −γ−1

m Kη. (3.70)

Therefore, if H ∗(ζ, η) = 0, then by Rellich’s lemma together with the unique continua-

tion principle and Holmgren’s theorem, ws = 0 in Rm\Γ0, so [ws] = 0 and
[

1
µ
∂ws

∂ν

]
= 0,

implying that ζ = η = 0.
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Next, define the bounded linear operator G : H−1/2(Γ0)×H−1(Γ0)→ L2(Sm−1)

by

G : (h1, h2) 7→ w∞

where w∞ is the far field pattern of the corresponding radiating solution w to (3.44)-

(3.47). Notice here that the the well-posedness of the problem guarantees that the

operator G is well defined and bounded, since in the variational formulation the source

terms h1, h2 always define a bounded linear functional in the space H. It is clear from

the definition of H and G that we have the factorization FD = G H .

Since for our inverse problem we know the interface Γ and are looking for the

delaminated part Γ0, we define the test function as follows: for any L ⊂ Γ, given

(αL, βL) ∈ L2(L)× H̃1(L) we define

φ∞L (x̂) := γm

∫
L

{
αL(y)ub(y,−x̂) + βL(y)

1

µ

∂ub(y,−x̂)

∂ν(y)

}
ds(y) (3.71)

where x̂ = x/|x|. Then, we can prove the following

Lemma 3.4.2. Let L ⊂ Γ and (αL, βL) ∈ L2(L) × H̃1(L), not simultaneously zero.

Then L ⊂ Γ0 if and only if φ∞L ∈ Range(G ).

Proof. Let’s first assume that L ⊂ Γ0. Then the corresponding extensions by zero in

Γ0, (α̃L, β̃L), are in L2(Γ0)× H̃1(Γ0), and the potential

φ0(x) :=

∫
Γ0

{
α̃L(y)Gb(x,y) + β̃L(y)

1

µ

∂Gb(x,y)

∂ν(y)

}
ds(y)

belongs to H1
loc(Rm\Γ0) and satisfies

[φ0] = β̃L,

[
1

µ

∂φ0

∂ν

]
= −α̃L on Γ0. (3.72)

Let’s now denote by SΓ0 and KΓ0 the restriction to Γ0 of the generalized single and

double layer potentials, defined by

(SΓ0ψ)(x) :=

∫
Γ0

ψ(y)Gb(x,y) ds(y), x ∈ Γ0
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and

(KΓ0ψ)(x) :=

∫
Γ0

ψ(y)
∂

∂ν(y)
Gb(x,y) ds(y), x ∈ Γ0.

In [21], it is shown that SΓ0 : H̃−
1
2

+s(Γ0)→ H
1
2

+s(Γ0) and KΓ0 : H̃
1
2

+s(Γ0)→ H
1
2

+s(Γ0)

are continuous for every −1 ≤ s ≤ 1 (here H̃r(Γ0) denotes the space of functions

that can be extended by zero to the whole Γ as functions in Hr(Γ)). Since, by the

transmission conditions (3.72), we know that
[

1
µ
∂φ0

∂ν

]
∈ L2(Γ0) and [φ0] ∈ H̃1(Γ0),

together with the fact that 〈φ0〉 = −SΓ0

[
1
µ
∂φ0

∂ν

]
+KΓ0 [φ0], we have that 〈φ0〉 ∈ H1(Γ0)

and hence the potential φ0 belongs to H. Therefore, φ0 satisfies (3.44)-(3.47) with

h1 and h2 defined by (3.48) for v = −φ0 ∈ H, implying that G (h1, h2) = φ∞L . To

prove the converse, let’s suppose that L 6⊂ Γ0 but that there exists a pair (αL, βL) ∈

L2(L) × H̃1(L), not simultaneously zero, such that φ∞L ∈ Range(G ). By definition of

G , there exists (h1, h2) in H−1/2(Γ0) × H(Γ0) such that φ∞L = w∞, where w satisfies

(3.44)-(3.47). Therefore, φ∞L is the far field pattern of the two potentials:

φL(x) = γ−1
m

∫
L

{
αL(y)Gb(x,y) + βL(y)

1

µ

∂Gb(x,y)

∂ν(y)

}
ds(y)

and

w(x) =

∫
Γ0

{[
1

µ

∂w

∂ν(y)

]
(y)Gb(x,y) + [w](y)

1

µ

∂Gb(x,y)

∂ν(y)

}
ds(y).

By Rellich’s lemma, unique continuation, and Holmgren’s theorem, w = φL identically

in Rm\Γ0 ∪ L. However this is a contradiction, because given any point x0 ∈ L\Γ0,

both w and the co-normal derivative 1
µ
∂w
∂νL

are continuous at x0, whereas either φL

or the co-normal derivative 1
µ
∂φL
∂νL

have a jump across L at x0 (since either αL or βL

doesn’t vanish at that point).

Lemma 3.4.3. Assume in addition to the assumptions of Theorem 3.3.1 that <(n −

nδ) > 0 (or more generally there is no non-trivial ub,g such that Kub,g = 0). Then

FD : L2(Sm−1)→ L2(Sm−1) is injective and has dense range.

Proof. Since FD = G H , the injectivity follows from Lemma 3.4.1 and the fact that

the operator G is injective due to the well-posedness of (3.44)-(3.47). Next, since the
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range of H is dense in H−1/2 (Γ0)×H−1 (Γ0) it suffices to show that the range of G is

dense. From Lemma 3.4.2, in particular we have that functions Pψ of the form

(Pψ)(x̂) :=

∫
Γ0

ψ(y)ub(y,−x̂) dy = γ−1
m

∫
Γ0

ψ(y)G∞b (x̂,y) dy

are in the range of G for all ψ ∈ L2(Γ0). The set {Pψ for allψ ∈ L2(Γ0)} is dense in

L2(Sm−1). Indeed, let us consider P : L2(Γ0)→ L2(Sm−1). Its adjoint P ∗ : L2(Sm−1)→

L2(Γ0) is given by

(P ∗g)(y) =

∫
Sm−1

g(x̂)ub(y,−x̂)dx̂ = ub,h(y)

where h(x̂) := g(−x̂) and ub,h is given by (3.65). Now the total field due to the

background medium ub,h corresponding to the Herglotz wave function vh as incident

wave can not be zero unless h = 0, since the background problem is well posed under

the assumptions of Theorem 3.3.1. This implies that P ∗ is injective which finishes the

proof.

Now we are ready to characterize Γ0 in terms of the behavior of the approximate

solution to the far-field equation

FDg = φ∞L .

The following main theorem is a summary of the all the above results.

Theorem 3.4.2 (Linear Sampling Method). Let FD : L2(Sm−1) → L2(Sm−1) be the
far field operator corresponding given by (3.66). Then:

1. For an arbitrary arc L ⊂ Γ0 and ε > 0, there exists a function gεL ∈ L2(Sm−1)
such that

‖FDgεL − φL∞‖L2(Sm−1) < ε,

and, as ε→ 0, the corresponding solution ub,gεL to the background problem (3.52)

converges in H to the unique solution uL of (3.44)-(3.47) with h1 = α
〈

1
µ

∂φ∞L
∂ν

〉
and h2 = K 〈φ∞L 〉 on Γ0.

2. For L 6⊂ Γ0 and ε > 0, every function gεL ∈ L2(Sm−1) such that

‖FDgεL − φL∞‖L2(Sm−1) < ε,

is such that the corresponding solution ub,gεL to the background problem (3.52)
satisfies

lim
ε→0
‖ub,gεL‖H =∞ and lim

ε→0
‖gεL‖L2(Sm−1) =∞.
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This theorem constitutes the foundation of the linear sampling method which

we will implement in the next section.

3.5 Numerical examples for the inverse problem

In this section we show how the linear sampling method that we have just devel-

oped can be applied numerically, and show its viability by some numerical examples.

From the statement of Theorem 3.4.2, we know that the approximate solution of the

far-field equation FDg̃L = φ∞L can be used to detect the delaminated part Γ0. Unfor-

tunately, the far field equation is ill-posed since the far-field operator FD is compact,

and of course the discrete counterpart, AgL = fL, will inherit the ill-posedness as

ill-conditioning. Therefore, it has to be solved by means of a regularization method.

Let us first discuss the construction of the discrete far-field operator A and the

right hand side fL. In all the numerical examples that we present in this section, the

discrete counterpart of the far-field operator is the matrix A ∈ C40×40, such that Aij =

u∞(x̂i, d̂j) − u∞b (x̂i, d̂j), where u∞(·, d̂j) and u∞b (·, d̂j) are the the far-field pattern of

the scattering problem with and without delamination, respectively, when the incident

one is uinc(x, d̂j) = eikx·d̂j . Here we take d̂j = (cos(2πj/40), sin(2πj/40)), and x̂i =

(cos(2πi/40), sin(2πi/40)), for i, j = 0, 1, ..., 39.

The far-field patterns for the approximate model given by (3.20)-(3.22), (3.23)-

(3.25) and (3.9), are computed using a finite element based on the variational problem

(3.36) implemented in FreeFem++ [51]. In all our simulations P1 elements were used.

The mesh refinement in FreeFem++ is imposed by specifying the number of nodes

on the boundaries involved. In our examples, the number of nodes on the exterior

boundary SR was set as pext = 40πR/λ, in the boundary of the homogeneity Γ1 as

NΓ1 = 12πr1/dx, and on the interface Γ as NΓ = 5πr1/dx, where λ = 2π
k

is the wave-

length, dx = λ/20 and r1 is the charachteristic length of the inner layer Ω−.

The Dirichlet-to-Neumann (DtN) map on the exterior boundary SR was im-

plemented by Nicolas Chaulet [29]. Both for the DtN and the far-field calculation, a

truncated expression of their expansion in terms the first 2N+1 Fourier basis elements
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{einθ}Nn=−N were considered, where N = pext/10.

In order to investigate the stability of the reconstruction method with respect to noise,

we added some random noise to the computed far field for the approximate crack

problem, so we actually consider Ãij = Aij(1 + εζij), where {ζij} is a collection of

independent random variables with uniform distribution over the interval [−0.5, 0.5],

and ε > 0 is a constant chosen so that the relative noise ρ := ||A− Ã||2/||A||2 attains

the desired value. In each example ρ is computed and specified.

Since fL is the discrete version of the right hand side of equation (3.73) and we

have some freedom to choose the densities αL and βL, we decided to consider αL as an

approximation of δz (where δz is the Dirac delta located on z ∈ Γ) and βL = 0. Then,

for a given finite set of sample points {zj} ⊂ Γ, our discrete right hand side simplifies

to

(fzj)k = ub(zj,−d̂k).

Since Γ is already known there are many other possibilities for choosing the sampling

arc L and test functions αL, βL but we have not tried them here. Nevertheless, as

the numerical examples show, our choice give reasonable reconstructions. In all the

numerical examples that we present, we chose a collection of equally distributed points

along the interface Γ, {zk}64
k=1. In order to “solve” each of the 64 ill-conditioned linear

equations

Ãρgk = fzk ,

we use the well-known Tikhonov regularization method, that consists in solving the

following minimization problems instead

gλ
∗

k = argming∈C40{||Ãρg − fzk ||2 + λ∗||g||2},

where the regularization parameter was arbitrarily chosen as λ∗ = 10−10. The solution

of these problems was made using the free Matlab package regtools (see [50]).

As stated in Theorem (3.4.2), the value of ||gλ∗k ||−1 is large if zk is in the crack

support Γ0, and small otherwise. Therefore, it can be used to identify the location
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of Γ0. In the reconstructions that we present, we show results for four different noise

levels ρ, in three different settings (a circle with one single crack, a kite with one single

crack, and a kite with two cracks). For visualization purposes, in our reconstructions

the separation of the dotted lines Γ̃± is chosen to be proportional to Θ(zk) = ||gλ∗k ||−1,

with the parametrization:

xΓ̃±
(t) = xΓ(t)± η∗Θ(xΓ(t))ν(t),

where xΓ is the parametrization of Γ, and we arbitrarily set η∗ = 0.04 as a constant

that modulates the size of Θ for pure visualization purposes. The openings of the

dotted lines Γ̃± correspond, therefore, to the predicted location of the cracks by the

linear sampling method just developed in section 3.4. All the numerical experiments

presented here were made for layered obstacles with parameters n− = 4, n+ = 2,

µ− = µ+ = 1, µδ = 0.9, nδ = 0.2, and wave number k = 3. Numerical examples
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Figure 3.7: Reconstruction of a single crack Γ0 in a circular interface, for four levels
of noise ρ. The solid line at the circular interface is the exact location of
the crack, and the opening between the dotted lines xΓ̃±

is the predicted
location of Γ0. The outer lighter coloured curve is Γ1.

are presented in Figure 3.7, Figure 3.8 and Figure 3.9 indicate that our reconstruction

method provides reasonable reconstructions of Γ0 even in the presence of noise.
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Figure 3.8: Reconstruction of a single crack Γ0 in a kite-shaped interface of a two-
layered media, for four levels of noise ρ. The solid line at the kite-shaped
interface is the exact location of the crack, and the opening between the
dotted lines xΓ̃±

is the predicted location of Γ0. The outer lighter colored
curve is Γ1.

Conclusion

We have derived a asymptotic model for the delamination of a two materials that

successfully approximates scattering from thin delaminated regions. This model was

shown to be well-posed and was then used to derive a new inverse scattering technique

based on a modified linear sampling method that we showed can detect delamination

in model problems. The extension of these ideas to the 3D electromagnetic problem

are considered in the next chapter.
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Figure 3.9: Reconstruction of two cracks Γ1
0 ∪ Γ2

0 in a kite-shaped interface of a two-
layered media for four levels of noise ρ. The solid line at the kite-shaped
interface is the exact location of the crack, and the opening between the
dotted lines xΓ̃±

is the predicted location of Γ0. The outer lighter colored
curve is Γ1.
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Chapter 4

NONDESTRUCTIVE TESTING OF THE DELAMINATED
INTERFACE BETWEEN TWO MATERIALS: THE

ELECTROMAGNETIC CASE

4.1 The problem

In this fourth chapter, we will turn our attention to the problem of detection

of delamination, but in the context of electromagnetic inverse scattering (e.g. mi-

crowaves). The applications of this method would include, for example, the detection

of debonding in integrated electric circuits [39, 53], and could potentially be used for

the identification of thin biological tissues connected to early stages of cancer devel-

opement [43, 84].

The inherent technical difficulties associated with the analysis of Maxwell’s equations

have forced us to restrict ourselves to the specific case of the detection of planar de-

laminations of constant thickness.

We will study the scattering of an electromagnetic wave by a layered isotropic

penetrable obstacle, Ω ⊂ R3, that is schematically depicted in Figure 4.1. Being

consistent with the notation of previous chapters, we denote by Γ1 = ∂Ω the boundary

of Ω, and by Ωext := R3 \ Ω the exterior domain. In what follows we assume that Γ is

a smooth surface.

In the undamaged or background state, we consider Ω to be composed by two

layers of different materials, Ωb
− and Ωb

+, where Ωb
− is simply connected and Ωb

+ is just

connected. The boundary of Ωb
−, denoted by Γ, is the common interface of the two

layers Ωb
− and Ωb

+, and it is an orientable C2 regular surface (see panel (a) in Fig. 4.1).

In the damaged or defective state, the two layers have separated, and the thin

delamination Ωδ has appeared. The section Γ0 := Γ∩Ωδ is precisely where the original

72



layers have separated. In this defective configuration Ω = int(Ω+ ∪ Ω− ∪ Ωδ).

We will assume throughout this chapter that Γ0 is an open surface with Lipschitz

continuous relative boundary ∂Γ0. It will also be assumed that Γ0 is part of a planar

section of Γ, and that Ωδ is of constant thickness (see panel (b) in Fig. 4.1 and Fig.

4.2). In practice, this is unlikely to happen, because actually delaminations usually

occur at bending interfaces, but it will constitute a first approach to the problem that

we expect to generalize in future work.

Under these geometrical assumptions, Ωδ has a cylindrical shape and its boundary,

∂Ωδ, can be split into three components: the top and bottom surfaces Γ+ and Γ−

parallel to Γ0, and the side S (see Figs. 4.2 and 4.3). The four different domains,

(a) (b)

Figure 4.1: Panel (a) Cross section of the undamaged state. Panel (b) Cross section
of the damaged or defective obstacle. The thin layer Ωδ represents the
delamination.

Ωext, Ω+, Ω− and Ωδ, have different physical properties characterized by their electric

permittivity and magnetic permeability. After normalizing with respect to the material

properties of the homogeneous medium Ωext, these material properties are expressed

in terms of the relative magnetic permeability µ and the relative electric permittivity

ε, so that ε = µ = 1 in Ωext, and are assumed to be piece-wise continuous scalar fields

73



in the other sub-domains, Ω+, Ω− and Ωδ, which will respectively be denoted by:

µ =


µ+ in Ω+

µ− in Ω−

µδ in Ωδ

and ε =


ε+ in Ω+

ε− in Ω−

εδ in Ωδ

Assumption 4.1.1. Throughout this chapter we will asume the following properties:

· The functions µ : R3 → R and ε : R3 → C are piece-wise smooth functions in R3.

Moreover, <(ε) > 0, =(ε) ≥ 0, and 0 < µ−1 < C for some constant C > 0.

· The material properties in the thin layer, µδ and εδ, are constant.

· There is an open neighborhood N of Ωδ where the functions µ± and ε±, are constant.

Being consistent with the notation of the previous chapters, we denote by ν the

unit normal vector on Γ1 pointing towards Ωext, and on Γ \ Γ0 towards Ω+.

Figure 4.2: Zoom on the planar delamination. Panel (b) Normal vectors on the
boundary of the delamination.

The equations that model the scattering of the total electromagnetic fields

(E,H) in the frequency domain are given by

∇×H + ikεE = 0 in Ωδ ∪ Ω+ ∪ Ω− ∪ Ωext, (4.1)

∇× E− ikµH = 0 in Ω+ ∪ Ωδ ∪ Ω− ∪ Ωext, (4.2)
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Figure 4.3: Normal vectors on the boundary of the delamination.

where both ν×H and ν×E are continuous across the interfaces Γ1, Γ± S , and (Γ\Γ0)

. In the unbounded domain Ωext the total fields can be decomposed as E = Es + Ei

and H = Hs + Hi, where (Ei,Hi) denotes the incident fields, and (Es,Hs) are the

radiating fields that satisfy the Silver-Müller radiation condition:

lim
r→∞

r (Hs × x̂− Es) = 0, (4.3)

where x̂ = x
|x| , r = |x|, and the convergence is uniform in all directions x̂ ∈ S2.

Existence of a unique solution for the full model is well known (cf. [65]).

4.2 The asymptotic model

Following the same ideas as in Chapter 3, we will substitute the full model

(4.1)-(4.3), by an ATCs model, to avoid solving a differential equation in Ωδ.

However, as opposed to Chapter 3, the second order ATCs crack-type model for electro-

magnetic scattering (Model I in Appendix 3) is unstable, as already discussed by Chun

et al. in [30] for the time domain. This is reflected in the fact that in the frequency

domain, the signs of the coefficients appearing in the corresponding ATCs model, are

not compatible with the main operators.

Therefore, the ATCs model that we use in this analysis differs from the one presented

in Chapter 3, in the fact that the jumps and average values of the fields are taken with
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respect to traces of the fields on the two different surfaces Γ− and Γ+. This model

corresponds to the set of ATCs in Corollary C.3.1. This set of ATCs are called some-

times Chun’s-type ATCs [30, 40] and were derived in a much more general setting in

Proposition C.3.1, and are similar to the models analyzed in [30] and in [38].

Although the fully detailed derivation of the ATCs model is in Appendix C, we sketch

here the main ideas for the reader’s convenience.

4.2.1 Elements of Differential Geometry

In order to establish the asymptotic model, we introduce some notation and

concepts from basic differential geometry. The notation is consistent with the more

general configuration explained in detail in Appendix C, and is based on [47].

As mentioned before, ν denotes the constant unit normal vector defined on the smooth

surface Γ, pointing into Ωb
+. For each xΓ ∈ Γ there exists a local parametrization

ξ = (ξ1, ξ2) 7→ xΓ which without loss of generality we assume induces a positive

orientation of Γ, consistent with ν.

Let 0 < η∗ be a real number such that in the open neighborhood of Γ given by

N := {x ∈ R3 | min
y∈Γ
|x− y| < η∗}, (4.4)

the mapping

(xΓ, η) 7→ x = xΓ + ην(xΓ), (4.5)

is an isomorphism. Moreover, define the vector field ν̆ in N by

ν̆(xΓ + sν) := ν(xΓ), for all xΓ ∈ Γ and |η| < η∗,

then the curvature tensor defined by CxΓ
:= ∇Γν̆(xΓ) is identically zero for all xΓ on

Γ0. The tangential vectors {τα := ∂ξαxΓ}α=1,2 are called the covariant basis of the

tangent plane TxΓ
to Γ at xΓ.

Let v is a C∞(Γ0)3 vector field, then we define the tangential and normal pro-

jection of v, respectively, by:

Π||v = ν × (v × ν) and ΠNv = ν · v. (4.6)
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Using compact notation, the tangential and normal projections on Γ0 will be denoted

by vT := (ν×v)×ν and vN := ν ·v, respectively. Analogously, for the parallel surfaces

Γ± to Γ0, if v± are in C∞(Γ±)3, then we write for short their respective tangential and

normal projections on Γ± as: v±T := (ν × v±)× ν and v±N := ν · v±.

Remark 4.2.1. It is well known that the projections Π|| and ΠN defined by (4.6) have

continuous extensions γ±T : H(curl,N ∩ Ω±)→ H−1/2(curlΓ,Γ0) and γ±N : H(div,N ∩

Ω±)→ H−1/2(Γ0), respectively (see [65]).

Surface differential operators.

1. Given a scalar field u defined on Γ0, one can compute its surface gradient

defined by

∇Γu(xΓ) := ∇ŭ(xΓ),

where the scalar field ŭ : N → C is defined by ŭ(xΓ + ην(xΓ)) := u(xΓ). In terms of

the covariant basis {τα}, it can be written as ∇Γ = (∂ξ1·)τ 1 + (∂ξ2·)τ 2.

2. By definition, the adjoint operator of ∇Γ is −divΓ, which for all smooth

vector fields v defined on Γ0 satisfies divΓv = ∂ξ1(v · τ 1) + ∂ξ2(v · τ 2).

3. Important surface differential operators for the upcoming analysis, will be

the scalar and vectorial surface curl operators, respectively denoted by curlΓ and
−−→
curlΓ,

defined as follows: given a smooth tangential vector η = η1τ 1 + η2τ 2 ∈ (C∞(Γ0))3 and

a smooth scalar field ρ ∈ C∞(Γ0),

curlΓη := ∂1η2 − ∂2η1 and
−−→
curlΓρ := ∂2ρτ 1 − ∂1ρτ 2. (4.7)

4. In [47] it is shown that if v is a smooth enough vector field in R3 the

differential operator curl can be expressed in terms of the curvilinear coordinates (xΓ, η)

on the planar surface as

∇× v = (curlΓvT )ν +
−−→
curlΓvN + ν × ∂ηv. (4.8)
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Figure 4.4: The reference coordinates xΓ defined on Γ.

4.2.1.1 The formal asymptotic analysis

In order to establish the setting for the asymptotic analysis, we will assume that

the delamination is thin enough so that Ωδ ⊂ N (where N is defined by (4.4)), then, as

shown in Fig. 4.2, the two boundaries Γ± of Ωδ can be written in our new curvilinear

coordinates as follows:

Γ± :=
{

xΓ± = xΓ ± δf±ν : xΓ ∈ Γ0

}
, (4.9)

where 0 < δ � 1 is the thickness of the delamination and f+, f− ≥ 0 are constants

such that f+ + f− = 1.

4.2.1.2 The ansatz for the outer and inner fields

If the parameter δ is small enough, then we formally assume that the following

asymptotic expansions of the fields are valid in a neighborhood N0 of Ωδ such that

N 0 ⊂ N :

(E±(xΓ, η),H±(xΓ, η)) =
∞∑
l=0

δl(E±l (xΓ, η),H±l (xΓ, η)) in Ω±, (4.10)

where each term (E±l (xΓ, η),H±l (xΓ, η)) in the asymptotic expansion is assumed to be

analytic and independent of δ, for all l ≥ 0.

The ansatz for the asymptotic expansion inside the delamination Ωδ is slightly

different because here Ωδ plays the role of a boundary layer and we expect rapid changes

on the fields. Thus we will regularize the singular asymptotic problem by considering
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the usual stretching of the normal variable ζ = η
δ

(see for example [10],[47],[71]), and

this leads to

(Eδ,Hδ)(xΓ, ζ) =
∞∑
l=0

δl(El(xΓ, ζ),Hl(xΓ, ζ)) in Ωδ, (4.11)

where, again, none of the terms (El,Hl), l ≥ 0, depend on δ.

4.2.1.3 The approximate transmission conditions (ATCs)

In order to state the new model we need to introduce some more notation. Given

a function u (either scalar or vectorial), such that u = u+ in Ω+ and u = u− in Ω−,

whose traces are well-defined on Γ+ and Γ−, then we denote the jump and average

value of u by:

JuK = u+|Γ+ − u−|Γ− and 〈〈u〉〉 =
1

2
(u+|Γ+ + u−|Γ−). (4.12)

Using this notation, from the asymptotic expansion (4.10) the tangential traces of our

fields satisfy (at least formally) the following exact transmission conditions:

Jν × EK(xΓ) =
∞∑
j=0

δjJν × EjK(xΓ), (4.13)

Jν ×HK(xΓ) =
∞∑
j=0

δjJν ×HjK(xΓ), (4.14)

for all xΓ ∈ Γ0.

For any n ≥ 0, the n-th order ATCs associated with this problem are defined

by the transmission conditions that we obtain after dropping the O(δn+1) terms (see

[71],[49]):

Jν × EK(xΓ) =
n∑
j=0

δjJν × EjK(xΓ), (4.15)

Jν ×HK(xΓ) =
n∑
j=0

δjJν ×HjK(xΓ), (4.16)
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for all xΓ ∈ Γ0. In the problem setting that we are currently analyzing, it can be shown

after some calculations (see Proposition C.3.1), that under the hypothesis of a planar

delamination of constant thickness, the second order ATCs are:

Jν × EK = Ã1〈〈HT 〉〉 and Jν ×HK = Ã2〈〈ET 〉〉, (4.17)

where

Ã1〈〈HT 〉〉 = δα̃1〈〈HT 〉〉+ δβ̃1

−−→
curlΓ (curlΓ〈〈HT 〉〉) on Γ0, (4.18)

Ã2〈〈ET 〉〉 = δα̃2〈〈ET 〉〉 + δβ̃2

−−→
curlΓ (curlΓ〈〈ET 〉〉) on Γ0, (4.19)

and α̃1 = 2ikµδ, α̃2 = −2ikεδ, β̃1 = 2
ikεδ

, and β̃2 = − 2
ikµδ

.

Therefore the second order ATCs model that we will study in this chapter consists of

equations (4.1) and (4.2) in the domains Ω−∪Ω+∪Ωext, and the transmission conditions

defined by (4.17).

In terms of only the electric field E, by equation (4.1), the ATCs model gives rise to

the problem: Seek the field E ∈ H(curl,R3 \ Ωδ) that satisfies

∇×
(
µ−1∇× E

)
− k2εE = 0 in Ω+ ∪ Ω− ∪ Ωext, (4.20)

Jν × EK = δα1〈〈
(
µ−1∇× E

)
T
〉〉 − δβ1

−−→
curlΓcurlΓ〈〈

(
µ−1∇× E

)
T
〉〉 on Γ0,(4.21)

Jν ×
(
µ−1∇× E

)
K = δα2〈〈ET 〉〉 − δβ2

−−→
curlΓ curlΓ〈〈ET 〉〉 on Γ0, (4.22)

n×
(
µ−1∇× E

)
= 0 on S , (4.23)

where the coefficients appearing in the transmission conditions have the expressions

α1 = 2µδ, α2 = 2k2εδ, β1 = 2
k2εδ

, and β2 = 2
µδ

, and where, in Ωext, E = Es + Ei is the

total field, Ei is an incident field, and Es satisfies the Silver-Müller radiation condition:

lim
r→∞

r ((∇× Es)× x̂− ikEs) = 0, (4.24)

where x̂ = x
|x| and r = |x|.
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4.3 The variational formulation

4.3.1 The boundary operators

As usual, in order to place our problem within a Fredholm operator framework,

we will work in a bounded domain. Let BR be an arbitrary ball of radius R > 0 that

contains the obstacle Ω, and denote by SR its boundary. Then, muliplying equation

(4.20) by a test function v ∈ C∞0 (R3) and integrating by parts in BR, we get the

following expression:∫
BR

µ−1∇× E · ∇ × v − k2εE · v d y

+

∫
Γ0

〈〈
(
µ−1∇× E

)
T
〉〉 · Jν × vK ds(y)−

∫
Γ0

Jν ×
(
µ−1∇× E

)
K · 〈〈v〉〉T ds(y)

+ ik〈Ge(x̂× E),vT 〉SR = −
∫
SR

(x̂× Ei) · v ds(y)

+ ik〈Ge(x̂× Ei),vT 〉SR , (4.25)

where 〈·, ·〉SR is the duality pairing between H−1/2(divSR , SR) and H−1/2(curlSR , SR)

(and that, by pivoting with L2
t (SR), can be substituted by the usual L2

t (SR)-inner

product), and Ge : H−1/2(divSR , SR) → H−1/2(divSR , SR) is the well-known exterior

electric-to-magnetic Calderón operator (see [65],[32]), defined by Ge(λ) = x̂ × Hs,

where (Es,Hs) satisfy

ikEs +∇×Hs = 0 in R3 \BR,

ikHs −∇× Es = 0 in R3 \BR,

x̂× Es = λ on SR,

lim
r→∞

r(Hs × x̂− Es) = 0, (4.26)

where again x̂ = x
|x| and r = |x|.

4.3.2 The ATCs operators

In order to use the ATCs (4.21)-(4.22) in (4.25), we have to, first of all, invert

the transmission condition (4.21) on Γ0. To this end, it will be useful to prove Lemma
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4.3.1 and to recall Lemma 4.3.2, whose proof can be found in [3].

Denote by n̂ the unit normal vector defined on ∂Ωδ, and pointing to the exterior of Ωδ.

Therefore (see Figure 4.3):

n̂ =


ν on Γ+,

n on S ,

−ν on Γ−.

Define in addition

H̃−1/2(Γ±) :=
{

v ∈ H−1/2(Γ±) | ṽ ∈ H−1/2(∂Ω0),

where ṽ = v in Γ±,

and ṽ = 0 in ∂Ω0 \ Γ±

}
, (4.27)

endowed with the H−1/2(Γ±) norm.

Analogously, we define H̃−1/2(Γ0) (see also Appendix D), as follows:

H̃−1/2(Γ0) :=
{

v ∈ H−1/2(Γ0) | ṽ ∈ H−1/2(Γ),

where ṽ = v in Γ0,

and ṽ = 0 in Γ \ Γ0

}
, (4.28)

endowed with the H−1/2(Γ0) norm.

Using this notation we have the following result.

Lemma 4.3.1. Let u ∈ H(curl,Ω \ Ωδ). Then,

1. n̂ · ∇ × u|∂Ωδ = curl∂Ωδ(n̂× (u× n̂)) in H−1/2(∂Ωδ).

2. If u is such that n× (µ−1∇× u)|S = 0, then

ν · ∇ × u|Γ± = curlΓu|Γ± ∈ H̃−1/2(Γ±),

and therefore curlΓ〈〈u〉〉T ∈ H̃−1/2(Γ0).

Proof. To see 1., notice that ∇×u ∈ H(div,Ω \Ωδ) and thus n̂ · ∇×u ∈ H−1/2(∂Ωδ).

Thus given ξ ∈ H1(Ωδ) whose support does not intersect Γ1, using Green’s identities,

〈n̂ · ∇ × u, ξ〉H−1(Ωδ),H1(Ωδ) = 〈∇ × u, ∇(χψ)〉H−1/2(∂Ωδ),H1/2(∂Ωδ)
(4.29)
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where ψ ∈ H3/2
loc (R3 \ Ωδ) is a lifting of ξ, and χ ∈ C∞ is a cut-off function such that

χ = 1 is a neighborhood of Ωδ and its support is compact.

Thus, pivoting with L2(Ω \ Ωδ)
3 and using Stokes formulas,

〈n̂ · ∇ × u, ξ〉H−1(Ω\Ωδ),H1(Ω\Ωδ) = 〈n̂× u, ∇∂Ωδξ〉L2(∂Ωδ)3 (4.30)

= 〈u, ∇∂Ωδξ × n̂〉L2(∂Ωδ)3 , (4.31)

and since ∇∂Ωδξ × n̂ =
−−→
curl∂Ωδξ on , we get that n̂ · ∇ × u = curl∂Ωδ(n̂× (u× n̂)) in

H−1/2(∂Ωδ).

To see 2., suppose that in addition n× (µ−1∇× u)|S = 0. This in particular implies

that ν (which is normal to the planar faces Γ±) satisfies ν · ∇ × u|S = 0.

Therefore ν × (∇ × u) ∈ H−1/2(∂Ωδ)) is well defined and its restrictions to the pla-

nar sides satisfy curl∂Ωδu|Γ± = ±curlΓ±u ∈ H̃−1/2(Γ±). Moreover, curlΓ〈〈u〉〉T ∈

H̃−1/2(Γ0).

Given the surface differential operator DΓ± = curlΓ± or DΓ± = divΓ± , we define

the spaces

H̃−1/2(DΓ± ,Γ±) :=
{

u ∈ H̃−1/2(Γ±) |DΓ±u ∈ H̃−1/2(Γ±)
}
, (4.32)

endowed with the graph norm

‖u‖2
H̃−1/2(DΓ± ,Γ±) = ‖u‖2

H̃−1/2(Γ±) +
∥∥DΓ±u

∥∥2

H̃−1/2(Γ±)
. (4.33)

The following result is an immediate consequence of Lemma 2.2 in [3]:

Lemma 4.3.2. Let E be a solution to (4.20)-(4.23). Then

(µ−1
± ∇× E)T |Γ± ∈ H̃−1/2(curlΓ± ,Γ±) and

ν × (µ−1
± ∇× E)|Γ± ∈ H̃−1/2(divΓ± ,Γ±). (4.34)

For our analysis, define the space

H0(Γ0) := H̃−1/2(curlΓ,Γ0) ∩H(curlΓ,Γ0), (4.35)
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with the norm

‖u‖2
H(curlΓ,Γ0) = ‖u‖2

L2(Γ0) + ‖curlΓu‖2
L2(Γ0) . (4.36)

Remark 4.3.1. It is immediate that (H0(Γ0), ‖·‖H0(Γ0)) is a Hilbert space, with ‖·‖H0(Γ0)

corresponds to the graph norm:

‖u‖H0(Γ0) :=
(
‖u‖2

H−1/2(Γ0) + ‖curlΓu‖2
H−1/2(Γ0) + ‖u‖2

L2(Γ0) + ‖curlΓu‖2
L2(Γ0)

)1/2

.

But since for every u ∈ H0(Γ0),

‖u‖2
H−1/2(Γ0) + ‖curlΓu‖2

H−1/2(Γ0) + ‖u‖2
L2(Γ0) + ‖curlΓu‖2

L2(Γ0)

≤ (C + 1)(‖u‖2
L2(Γ0) + ‖curlΓu‖2

L2(Γ0)),

where C > 0 is the norm of the embedding L2(Γ0) ⊂ H−1/2(Γ0), we know also that

(H0(Γ0), ‖·‖H(curlΓ,Γ0)) is a Hilbert space.

Moreover, denote by H0(Γ0)∗ the dual space of H0(Γ0) with respect to the pivot

space L2(Γ0)3. Then since the embedding H0(Γ0) ⊂ H̃−1/2(curlΓ,Γ0) is bounded,

H−1/2(divΓ,Γ0) ⊂ H0(Γ0)∗ is bounded as well.

Define Ai : H0(Γ0)→ H0(Γ0)∗ by

Aiu = αiu− βi
−−→
curlΓcurlΓu. (4.37)

Observe that pivoting with L2
t (Γ0),〈

Aiu,v
〉
H0(Γ0)∗,H0(Γ0)

=

∫
Γ0

αiu · v ds(y)−
∫

Γ0

βicurlΓu curlΓv ds(y),(4.38)

for all u, v ∈ H0(Γ0). The analysis of the invertibility of (4.21) will be based on

variational techniques and a Helmholtz decomposition of H0(Γ0) will be used. Inspired

by the sesquilinear form (4.38) first define the Hilbert space:

SΓ :=

{
p ∈ H1(Γ0)

∣∣∣∣ ∫
Γ0

p ds(y) = 0

}
, (4.39)

equipped with the norm

||p||SΓ
:= ||∇Γp||L2

t (Γ0). (4.40)
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Lemma 4.3.3. Let u ∈ H0(Γ0), then the problem of finding p ∈ SΓ such that∫
Γ0

α1∇Γp · ∇Γq ds(y) =

∫
Γ0

u · ∇Γq ds(y) for all q ∈ SΓ, (4.41)

is well posed.

Proof. The sesquilinear form β : ∇ΓSΓ ×∇ΓSΓ → C defined by

β(∇Γp,∇Γq) :=

∫
Γ0

α1∇Γp · ∇Γq ds(y)

is coercive:

β(∇Γp,∇Γp) :=

∫
Γ0

α1|∇Γp|2 ds(y) ≥ µδ||∇Γp||2L2 ,

so the proof follows by the Lax-Milgram theorem.

Now define the orthogonal space to ∇ΓSΓ for the Helmholtz decomposition:

VΓ :=

{
u0 ∈ H0(Γ0)

∣∣∣∣ ∫
Γ0

α1u0 · ∇Γq ds(y) = 0 for all q ∈ SΓ

}
, (4.42)

endowed with the || · ||H0(Γ0) norm.

Theorem 4.3.1. (Helmholtz decomposition of H0(Γ0))

H0(Γ0) = ∇ΓSΓ ⊕ VΓ. (4.43)

Proof. (i) Clearly, both ∇ΓSΓ and VΓ are closed subspaces of H0(Γ0).

(ii) Moreover, given u ∈ H0(Γ0), from Lemma 4.3.3 we know that there is a unique
p ∈ SΓ that solves (4.3.3). Then u0 := u−∇Γp belongs to VΓ, so that H0(Γ0) ⊂
∇ΓSΓ + VΓ.

(iii) Finally, if u0 ∈ ∇ΓSΓ ∩ VΓ, then u0 = ∇Γp and then solves problem (4.41) for
zero right hand side, implying that u0 = 0. Therefore H0(Γ0) ⊂ ∇ΓSΓ ⊕ VΓ.

Remark 4.3.2. Since divΓu0 = 0 in Γ0, from the standard Helmholtz decomposition

of L2
t (Γ) (see [67]) we know that for all u0 ∈ VΓ, there is q ∈ H1(Γ) such that u0 =

−−→
curlΓq|Γ0, thus the embedding VΓ ⊂ H1/2(Γ0) holds and it is bounded, which implies

that VΓ is compactly embedded in L2
t (Γ0).
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Necessary for the upcoming analysis, we will assume throughout this paper that

the following holds:

Assumption 4.3.1. The quantity ω = k2εδµδ is not a Dirichlet eigenvalue of
−−→
curlΓcurlΓ

in Γ0.

Proposition 4.3.1. The operator A1 : H0(Γ0) → H0(Γ0)∗ is invertible. Moreover, if

q ∈ H1(Γ0), then A−1
1

−−→
curlΓq is in VΓ.

Proof. Given any w0 ∈ VΓ , consider the problem of finding u0 ∈ H0(Γ0) such that〈
u0, v0

〉
H0(Γ0)∗,H0(Γ0)

=

∫
Γ0

w · v0 ds(y), for all v0 ∈ VΓ. (4.44)

It is equivalent to find u0 ∈ VΓ such that∫
Γ0

{
u0 · v0 + β1curlΓu0 curlΓv0

}
ds(y)

−
∫

Γ0

{
(α1 + 1)u0 · v0

}
ds(y) = −

∫
Γ0

w · v0 ds(y), (4.45)

for all v0 ∈ VΓ. By Remark 4.3.2, the second integral term is a compact sesquilinear

dorm in VΓ×VΓ, whereas the first integral is obviously a coercive term. Therefore, the

well-posedness of this problem is equivalent to the uniqueness of its solution, and this

is a direct consequence of Assumption 4.3.1.

Therefore, combining this with Lemma 4.3.3, we conclude that for any w = w0 + ξ in

H0(Γ0) (where the decomposition is in ∇ΓSΓ⊕ VΓ), the unique solution u ∈ H0(Γ0) to〈
u, v

〉
H0(Γ0)∗,H0(Γ0)

=

∫
Γ0

w · v ds(y), for all v ∈ H0(Γ0) (4.46)

is u = u0 +∇Γp, where u0 ∈ VΓ solves (4.44), and p ∈ SΓ is the unique solution of the

variational problem (4.41).

Finally, if q ∈ H1(Γ0), then w0 =
−−→
curlΓq is in VΓ, and thus it is clear that A−1

1

−−→
curlΓq

is in VΓ.
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4.3.3 The variational formulation of the asymptotic model

Having established conditions for the invertibility of A1 in Proposition 4.3.1, we

can formally write:

A−1
1 Jν × EK = 〈〈µ−1∇× E〉〉T . (4.47)

Let BR be the open ball of radius R > 0 be large enough so that Ω ⊂ BR. Thus, after

multiplying equation (4.20) by a test function v and integrating by parts in BR, we

deduce that a variational formulation of problem (4.20)-(4.24) is: Seek E ∈ H0 such

that

a(E,v) = L(v) for all v ∈ H0, (4.48)

where,

a(E,v) = a+(E,v) + b(E,v) + ik〈Ge(x̂× E),vT 〉SR , (4.49)

and

a+(E,v) :=

∫
BδR

(
µ−1∇× E · ∇ × v

)
d y

+

∫
Γ0

δβ2curlΓ〈〈ET 〉〉 curlΓ〈〈vT 〉〉 ds(y) (4.50)

b(E,v) := −
∫
BδR

k2εE · v d y −
∫

Γ0

δα2〈〈ET 〉〉 · 〈〈v〉〉T ds(y)

+
1

δ

∫
Γ0

λE · Jν × vK ds(y), (4.51)

L(v) =

∫
SR

(x̂× (∇× Ei)) · v − ik〈Ge(x̂× Ei),vT 〉SR , (4.52)

where Bδ
R := BR \ Ωδ, λE = A−1

1 Jν × EK, i.e.,∫
Γ0

Jν × EK · η ds(y) =

∫
Γ0

α1λE · η ds(y)−
∫

Γ0

β1curlΓλE curlΓη ds(y) (4.53)

for all η ∈ H0(Γ0), and the solutions space is

H0 :=
{

u ∈ H(curl, Bδ
R)
∣∣∣ 〈〈uT 〉〉 ∈ H(curlΓ,Γ0) and n×

(
µ−1∇× u

) ∣∣∣
S

= 0
}

(4.54)

endowed with the norm

||u||2H0
:= ||u||2H(curl,BδR) + ||〈〈uT 〉〉||2H(curlΓ,Γ0). (4.55)
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4.3.4 A Helmholtz decomposition of H0

Recalling the definition (4.39) of SΓ, define now:

S := {p ∈ H1(Bδ
R) | 〈〈p〉〉 ∈ SΓ}

=

{
p ∈ H1(Bδ

R)
∣∣∇Γ〈〈p〉〉 ∈ L2

t (Γ0), and∫
Γ0

〈〈p〉〉 ds(y) = 0

}
, (4.56)

endowed with the norm

||p||2S := ||∇p||2H0
= ||∇p||2L2(BδR) + ||∇Γ〈〈p〉〉||2L2

t (Γ0). (4.57)

We now prove that the variational problem is well-posed in V0.

Proposition 4.3.2. Assume in addition to Assumptions 4.1.1 and 4.3.1that there is a

constant εmin > 0 such that <(ε±) ≥ εmin > 0 and that the constant material properties

in Ωδ satisfy <(εδ) > 0 and µδ > 0. Then the problem of finding p ∈ S such that

a(∇p,∇q) = `(∇q) for all q ∈ S, (4.58)

is well posed for all ` ∈ (∇S)∗.

Proof. Let p, q ∈ S. Then JpK, JqK ∈ SΓ and thus by Proposition 4.3.1, A−1
1 Jν×∇ΓpK =

A−1
1

−−→
curlΓJpK = λ∇p ∈ VΓ and A−1

1 Jν ×∇ΓqK = A−1
1

−−→
curlΓJqK = λ∇q ∈ VΓ.

Moreover, a(∇p,∇q) can be decomposed into

a(∇p,∇q) = −α̃(∇p,∇q)− β̃(∇p,∇q) + ik〈Ge(x̂×∇p),∇q〉SR

where

α̃(∇p,∇q) :=

∫
BδR

k2ε∇p · ∇q d y +

∫
Γ0

δα2∇Γ〈〈p〉〉 · ∇Γ〈〈q〉〉 ds(y)

+
1

δ

∫
Γ0

β1 curlΓλ∇p · curlΓλ∇q ds(y) (4.59)

β̃(∇p,∇q) := −1

δ

∫
Γ0

α1 λ∇p · λ∇q ds(y). (4.60)
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From the expressions of α1, α2 and β1,

<(α̃(∇p,∇p)) =

∫
BδR

k2<(ε)|∇p|2 d y +

∫
Γ0

2δµδ∇Γ|〈〈p〉〉|2 ds(y)

+
1

δ

∫
Γ0

2<(εδ)

k2|εδ|2
|curlΓλ∇p|2 ds(y)

≥ C̃(||∇p||2L2(BδR) + ||∇Γ〈〈p〉〉||2L2
t (Γ0)), (4.61)

where C̃ = min
{
k2εmin, 2δµδ

}
> 0 is a constant independent of p. Thus α̃ is a coercive

sesquilinear form in ∇S ×∇S.

On the other hand, it is clear that β̃(·, ·) is bounded and, from the boundedness of A−1
1

(Proposition 4.3.1), and the boundedness of the embedding H̃−1/2(divΓ,Γ0) ⊂ H0(Γ0)∗,

we get that

||λ∇p||H0(Γ0) ≤ C||
−−→
curlΓJpK||H0(Γ0)∗ ≤ C1||

−−→
curlΓJpK||H−1/2(divΓ,Γ0)

≤ C2||∇ΓJpK||H−1/2(Γ0) ≤ C3||∇p||L2(BδR). (4.62)

So

|β̃(∇p,∇q)| ≤ c||λ∇p||L2
t (Γ0)||q||S. (4.63)

Let (pn) be a bounded sequence in S, then by (4.62) (λ∇pn) is also a bounded sequence

in VΓ (see Proposition 4.3.1). Since the space VΓ is compactly embedded in L2
t (Γ0)

(Remark 4.3.2), then, from (4.63), the Riesz operator B̃ : S → C defined by

〈〈B̃(p), q〉〉S∗,S := β̃(∇p,∇q)

has a strongly convergent subsequence (B̃(pnk)) in S∗. Thus the operator B̃ : S → C

is compact.

The remaining part to analyze is related to the Calderón operator Ge. In Lem-

mas 9.23 and 9.24 of [65], it is shown that there exists an operator G̃e : H−1/2(divSR , SR)→

H−1/2(divSR , SR) such that

〈G̃e(ξ), ξ × x̂〉SR < 0, for all ξ ∈ H−1/2(divSR , SR),
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and that the operator Ge + ikG̃e : H
−1/2
divSR

(divSR , SR) → H−1/2(divSR , SR) is compact,

where

H
−1/2
divSR

(divSR , SR) :={
λ =

∞∑
n=1

m=n∑
m=−n

bn,mVm
n

∣∣∣∣ ∞∑
n=1

m=n∑
m=−n

1√
1 + n(n+ 1)

|bn,m|2 <∞
}

(4.64)

endowed with the norm

‖λ‖2

H
−1/2
divSR

(divSR ,SR)
:=

∞∑
n=1

m=n∑
m=−n

1√
1 + n(n+ 1)

|bn,m|2 (4.65)

for λ =
∑∞

n=1

∑m=n
m=−n bn,mVm

n .

Moreover, from similar arguments to those given in [65], x̂×∇p ∈ H
−1/2
divSR

(divSR , SR)

for all p ∈ S, and therefore, we can conclude that the splitting into a negative and a

compact term:

ik〈Ge(x̂×∇p),∇q〉SR = k2〈G̃e(x̂×∇p),∇q〉SR+ik〈(Ge+ikG̃e)(x̂×∇p),∇q〉SR (4.66)

makes sense. Then −α̃(·, ·) + k2〈G̃e(x̂× ·), ·〉SR is a sesquilinear form in ∇S ×∇S as-

sociated with a coercive Riesz operator, and the sesquilinear form in ∇S×∇S defined

by β̃(·, ·)+ ik〈(Ge+ ikG̃e)(x̂×·), ·〉SR has a compact associated Reisz operator. In sum-

mary, the Reisz operator associated with the complete sesquilinear form a(·, ·)|∇S×∇S
is Fredholm with index zero, meaning that the problem is well-posed if and only if it

is uniquely solvable. To check this, observe that

=(a(∇p,∇p)) = −
∫
BδR

k2=(ε)|∇p|2 d y −
∫

Γ0

2δk2=(εδ)∇Γ〈〈p〉〉 · ∇Γ〈〈q〉〉 ds(y)

− 1

δ

∫
Γ0

=(εδ)

k2|εδ|2
|curlΓλ∇p|2 ds(y)

+ =〈ikGe(x̂×∇p),∇p〉SR . (4.67)

By Rellich’s lemma (see Lemma 9.28 in [65]), since

=〈ikGe(x̂×∇p),∇p〉SR ≥ 0,
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then ∇SRp = 0 on SR, and then all the terms in the right hand side of equation (4.67)

vanish. In particular:

∇Γ〈〈p〉〉 = 0 and curlΓλ∇p = 0. (4.68)

So by (4.61), ∇p = 0 in Bδ
R.

Now consider the second space for the Helmholtz decomposition of H0:

V0 :=

{
u0 ∈ H0

∣∣ b(u0,∇q) + ik〈Ge(x̂× u0),∇q〉SR = 0 for all q ∈ S
}

(4.69)

=

{
u0 ∈ H0

∣∣∣∣ div(εu0) = 0 in Bδ
R,

Jεν · u0K = −δα2

k2
divΓ〈〈u0〉〉T ,

〈〈εν · u0〉〉 =
1

δk2
curlΓ (λu0) ,

n · u0 = 0 on S and n× (µ−1∇× u0)|S = 0,

x̂ · u0 = − i
k
divΓGe(x̂× u0) on SR

}
. (4.70)

Theorem 4.3.2. (Helmholtz decomposition of H0)

H0 = V0 ⊕∇S

Proof. It is obvious that both ∇S and V0 are closed subspaces of H0. Now, given

u ∈ H0, we know from Proposition 4.3.2 that there is unique p ∈ S such that

a(∇p,∇q) = a(u,∇q) for all q ∈ S, (4.71)

and then if we define u0 := u − ∇p, it satisfies by definition that u0 ∈ V0. Thus

X ⊂ V0 +∇S. Now, if u0 = ∇p ∈ V0 ∩∇S, then by definition of V0,

a(∇p,∇q) = b(∇p,∇q) + ik〈Ge(x̂×∇p),∇q〉SR = 0 for all q ∈ S (4.72)

and from Proposition 4.3.2, this means that u0 = ∇p = 0. ThereforeH0 = V0⊕∇S.
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4.4 Well-posedness

The Helmholtz decomposition in Theorem 4.3.2 can be used to decompose the

variational problem (4.48) into two decoupled problems, one in ∇S and another one

in V0. We use these facts to prove the well-posedness of the variational problem (4.48)

on H0.

We start by deriving a decomposition of the Calderón map Ge in the following lemma,

which is essentially the same as Lemma 10.5 in [65].

Lemma 4.4.1. The electric-to-magnetic Calderón operator Ge can be decomposed

as Ge = G1
e + G2

e, where G1
e ◦ γT : V0 → H−1/2(divSR , SR) is compact and G2

e :

H−1/2(divSR , SR)→ H−1/2(divSR , SR) satisfies

ik〈G2
e(ξ), ξ × x̂〉SR ≥ 0 for all ξ ∈ H−1/2(divSR , SR).

Proof. This proof is a slight variation of the proof of Lemma 10.5 in [65], but we present

here the details for the reader’s convenience. In [65], it is shown that the Calderón

map Ge can be split in terms of spherical harmonics as

Ge(ξ) =
∞∑
n=1

n∑
m=−n

(
−ikRbn,m

δn
Um
n + an,m

(δn − δ̃n)

ikR
Vm
n

)

+
1

ikR

∞∑
n=1

n∑
m=−n

an,mδ̃nV
m
n

= G1
e(ξ) +G2

e(ξ) (4.73)

where

ξ =
∞∑
n=1

n∑
m=−n

an,mUm
n + bn,mVm

n

δn =
1

ikR

(
1 +

kRh
(1)′
n (kR)

h
(1)
n (kR)

)
, and δ̃n =

1

ikR

(
1 +

kRj
′
n(kR)

jn(kR)

)
, (4.74)
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and where, of course, we assume that R > 0 has been chosen so that 0 < |δ̃n| <∞.

In turn, the operator G1
e can be splitted as G1

e = G1,U
e +G1,V

e , where

G1,U
e (ξ) =

∞∑
n=1

n∑
m=−n

−ikRbn,m
δn

Um
n , and

G1,V
e (ξ) =

∞∑
n=1

n∑
m=−n

an,m
(δn − δ̃n)

ikR
Vm
n . (4.75)

Moreover, it is proved that

δn − δ̃n = O

(
1

n

)
, for all n ≥ 1,

which ensures that G1,V
e is compact from H−1/2(divSR , SR) into itself, and, from the

boundedness of the tangential trace operator γT : H(curl,Ω) → H−1/2(divSR , SR),

we have that G1,V
e ◦ γT : V → H−1/2(divSR , SR) is compact. Now, given u0 ∈ V ,

if we consider a cut-off function χ, such that χ = 1 in a neighborhood NR of SR,

and such that supp(χ) ∩ Ω− = ∅, then the restriction (χu0)|NR ∈ Ṽ , where the space

Ṽ := {u ∈ H0 |
∫
BR
εu · ∇p d y + ik〈Ge(x̂× u),∇p〉SR = 0 for all p ∈ S} is compactly

embedded in (L2(BR))3 (see Lemma 10.4 in [65]). Thus, we have the following

||(G1,U
e ◦ γT )u0||H−1/2(divSR ,SR) ≤ ||(G1,U

e ◦ γT )(χu0)|NR ||H−1/2(divSR ,SR)

≤ ||G1,U
e (x̂× u0)||H−1/2(divSR ,SR)

≤ C||divSRGe(x̂× u0)||H−1/2(SR). (4.76)

Now, from the variational characterization of Ṽ (similar to (4.69)), and from the trace

theorems for H(div, BR) (see Theorem 3.24 in [65]),

||∇SR ·Ge(x̂× u0)||H−1/2(SR) = ||x̂ · u0||H−1/2(SR)

≤
√
||χu0||2(L2(BR))3 + ||∇ · (εχu0)||2L2(BR)

= ||χu0||(L2(BR))3 , (4.77)

so the compactness of the embedding of Ṽ ⊂ (L2(BR))3 together with the boundedness

of the multiplication by χ from V0 to Ṽ , implies that (G1,U
e ◦ γT is compact from V0 to

H−1/2(divSR , SR).

93



Finally, the proof of the property for G2
e is immediate because

〈Ge(x̂× ξ), ξ〉SR =
1

R

∞∑
n=1

n∑
m=−n

−|bn,m|2δ̃n ≥ 0. (4.78)

Proposition 4.4.1. Assume in addition to Assumption 4.1.1, that there is a constant

εmin > 0 such that <(ε±) ≥ εmin > 0 and =(ε±) ≥ εmin > 0, and that the constant

material properties in Ωδ are such that <(εδ) > 0, =(εδ) > 0 and µδ > 0 (in particular

Assumption 4.3.1 is true). Then the problem of finding u0 ∈ V0 such that

a(u0,v0) = `(v0) for all v0 ∈ V0, (4.79)

is well posed for all ` ∈ V ∗0 .

Proof. Define the auxiliary sesquilinear forms a0, b0 : V0 × V0 → C by

a0(u0,v0) :=

∫
BδR

(
µ−1∇× u0 · ∇ × v0

)
d y

+

∫
Γ0

δβ2curlΓ〈〈u0〉〉T curlΓ〈〈v0〉〉T ds+
1

δ

∫
Γ0

α1λv0 · λu0 ds (4.80)

b0(u0,v0) := −
∫
BδR

k2εu0 · v0 d y −
∫

Γ0

δα2〈〈u0〉〉T · 〈〈v0〉〉T ds

− 1

δ

∫
Γ0

β1curlΓλv0curlΓλu0 ds. (4.81)

Then

<(a0(u0,u0)) :=

∫
BδR

µ−1|∇ × u0|2 d y

+

∫
Γ0

2µ−1
δ |curlΓ〈〈u0〉〉T |

2 ds+
1

δ

∫
Γ0

2µδ|λu0 |2 ds (4.82)

<(b0(u0,u0)) := −
∫
BδR

k2<(ε)|u0|2 d y −
∫

Γ0

δ2k2<(εδ)|〈〈u0〉〉T |
2 ds

− 1

δ

∫
Γ0

2
<(εδ)

k2|εδ|2
|curlΓλu0 |2 ds. (4.83)

=(b0(u0,u0)) := −
∫
BδR

k2=(ε)|u0|2 d y −
∫

Γ0

δ2k2=(εδ)|〈〈u0〉〉T |
2 ds

− 1

δ

∫
Γ0

2
=(εδ)

k2|εδ|2
|curlΓλu0 |2 ds, (4.84)
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Define ã(·, ·) : V0×V0 → C as the sequilinear form that contains all the terms involved

in a(·, ·) except for the term associated with the Calderón operator:

ã(u0,v0) = a0(u0,v0) + b0(u0,v0).

Therefore,

(1 + γ̃)|ã(u0,u0)| ≥ |<(ã(u0,u0))|+ γ̃|=(ã(u0,u0))|

≥ Re(a0(u0,u0)) + <(b0(u0,u0))− γ̃=(b0(u0,u0))

≥ Re(a0(u0,u0)) + c(‖u0‖2
L2(BδR)3

+ ‖〈〈u0〉〉‖2
L2(Γ0)3 + ‖curlΓλu0‖

2
L2(Γ0)3)

≥ c̃(||u0||2H(curl,BδR) + ||〈〈u0〉〉T ||
2
Hff (curlΓ,Γ0)) = c̃||u0||2X ,

(4.85)

where we have taken γ̃ > 0 large enough so that there is a constant c > 0 such that

<(b0(u0,u0))− γ̃=(b0(u0,u0)) ≥

c(‖u0‖2
L2(BδR)3 + ‖〈〈u0〉〉‖2

L2(Γ0)3 + ‖curlΓλu0‖
2
L2(Γ0)3), (4.86)

and c̃ = min
{
µ−1
max,

2
µδ
, 2µδ

δ
, c
}

.

Thus ã is coercive in V0. From Lemma 4.4.1, we know that then ã(u0,v0) + ik〈G2
e(x̂×

u0),v0〉SR is coercive and ik〈G1
e(x̂× u0),v0〉SR is compact in V0. Finally,

=(a(u0,u0)) = =(b0(u0,u0)) + =〈ikGe(x̂× u0),u0〉SR

≤ =(b0(u0,u0)) ≤ −˜̃c||u0||L2(BδR), (4.87)

where ˜̃c = min
{
k2εmin, 2δk2=(εδ),

2=(εδ)
k2δ|εδ|2

}
and again in the second line we have used

Rellich lemma (Lemma 9.28 in [65]), so a(u0,u0) = 0 if and only if u0 = 0.

In summary, using Propositions 4.3.2 and 4.4.1 and Lemma 4.4.1, we have proved

the following well-posedness result:
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Theorem 4.4.1. Assume in addition to Assumption 4.1.1 that there is a constant

εmin > 0 such that <(ε±) ≥ εmin > 0, =(ε±) ≥ εmin > 0 and, that the constant material

properties in Ωδ are such that <(εδ) > 0, =(εδ) > 0 and µδ > 0 (so in particular

Assumption 4.3.1 is satisfied). Then u = u0 +∇p is the unique solution to the problem

a(u,v) = L(v) for all v ∈ H0, (4.88)

for all L ∈ H∗0, where p ∈ S and u0 ∈ V are defined by propositions 4.3.2 and 4.4.1,

with ` = L|∇S and ` = L|V0, respectively.

4.5 Validation of the asymptotic model

In order to validate our approximate model, we have carried out a numeri-

cal error analysis based on the comparison between the so called full model and the

asymptotic model that we have presented and analyzed throughout this work. For

this analysis, we compared the numerical solutions of the full model (4.1)-(4.2) and

(4.3) with the numerical solution of the Chun’s-type ATCs model (4.20)-(4.24), as the

thickness of the delamination δ tends to zero.

In each case, we used a finite element method implemented in the Netgen/Ngsolve

package [79].

To approximate the Calderón map Ge, we used a spherical perfectly matched

layer (PML) surrounding the obstacle. Then, instead of solving for the total field E

everywhere, we solve for the scattered field Es in BR \Ω and for the total field E only

in Ω. We here describe the variational formulation used for each of the two models

(except for the PML which is standard).

We start with the full model, which can be written as the simple transmission problem
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where we seek the fields Es ∈ Hloc(curl,R3 \ Ω) and E ∈ H(curl,Ω) that satisfy,

∇×∇× Es − k2Es = 0 in Ωext, (4.89)

∇×
(
µ−1∇× E

)
− k2εE = 0 in Ω, (4.90)

ν × Ei + ν × Es = ν × E on Γ1 (4.91)

ν × (∇× Ei) + ν × (∇× Es) = ν × (∇× E) on Γ1, (4.92)

and, in addition, Es satisfies the Silver-Müller radiation condition (4.24).

As usual, to derive the variational formulation we multiply the differential equations

by a test function v and integrating by parts in the ball BR we get,∫
BR\Ω

∇× Es · ∇ × v − k2Es · v d y

+

∫
Ω

µ−1∇× E · ∇ × v − k2εE · v d y

+

∫
Γ1

〈
µ−1∇× E

〉
· [ν × v] ds(y)−

∫
Γ1

[
µ−1∇× E

]
· 〈ν × v〉 ds(y)

+ ik 〈Ge(x̂× Es),v〉SR = 0, (4.93)

where we have substituted the radiation condition (4.24) by the Calderón operator Ge,

and the brackets [u], 〈u〉 respectively denote the jump and average values of a function

u at the interface Γ:

[u] = uext|Γ1 − u+|Γ1 and 〈u〉 =
uext|Γ1 + u+|Γ1

2
, (4.94)

where u|Ωext = uext and u|Ω = u+.

Thus using the transmission condition (4.92),∫
BR\Ω

∇× Es · ∇ × v − k2Es · v d y

+

∫
Ω

µ−1∇× E · ∇ × v − k2εE · v d y

+

∫
Γ1

µ−1∇× E · [ν × v] ds(y) + ik 〈Ge(x̂× Es),v〉SR

=
1

2

∫
Γ1

∇× Ei · [ν × v] ds(y) +

∫
Γ1

∇× Ei · 〈ν × v〉 ds(y).
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On one hand, using a Nitsche’s method [69, 60] to enforce the continuity transmission
condition (4.91) and on the other hand to get a symmetric form, we add and substract
the following two terms to (4.95):

a) The Nitsche’s term γ
hmax

∫
Γ0

[w]T · [v]T ds(y) for a constant γ ∈ C, and mesh
resolution hmax.

b) A symmetrizing term
∫

Γ1
[ν ×w] · µ−1

+ ∇× v+ ds(y),

which leads to the variational problem of finding Es ∈ Hloc(curl,R3 \ Ω) and E ∈

H(curl,Ω) that satisfy,

avol((E,E
s),v) + bΓ1((E,Es),v) = LΓ1v, (4.95)

for all v such that v|R3\Ω ∈ Hloc(curl,R3 \Ω) and v|Ω ∈ H(curl,Ω), where the volume

terms are

avol((E,E
s),v) :=

∫
BR\Ω

∇× Es · ∇ × v − k2Es · v d y

+

∫
Ω

µ−1∇× E · ∇ × v − k2εE · v d y

+ ik 〈Ge(x̂× Es),v〉SR ,

the transmission terms on Γ1 correspomd to

bΓ1((E,Es),v) :=

∫
Γ1

µ−1∇× E · [ν × v] ds(y) +

∫
Γ1

[ν × E] · µ−1
+ ∇× v+ ds(y)

+
γ

hmax

∫
Γ1

[E]T · [v]T ds(y), (4.96)

where µ−1
+ ∇ × v+ is the trace taken from the interior of Ω, and the right-hand-side

linear form is given by

LΓ1v :=
1

2

∫
Γ1

∇× Ei · [ν × v] ds(y) +

∫
Γ1

∇× Ei · 〈ν × v〉 ds(y)

−
∫

Γ1

ν × Ei · µ−1
+ ∇× v+ ds(y)− γ

hmax

∫
Γ1

Ei
T · [v]T ds(y). (4.97)

The ATCs model can be written as the problem where we seek the fields Es ∈
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Hloc(curl,R3 \ Ω) and E ∈ H0(Ω \ Ωδ), where H0(Ω \ Ωδ) is the space of functions in

H0 restricted to Ω \ Ωδ, satisfying:

∇×∇× Es − k2Es = 0 in Ωext, (4.98)

∇×
(
µ−1∇× E

)
− k2εE = 0 in Ω+ ∪ Ω−, (4.99)

Jν × EK = δα1〈〈µ−1∇× E〉〉T − δβ1

−−→
curlΓcurlΓ〈〈µ−1∇× E〉〉T on Γ0, (4.100)

Jν ×
(
µ−1∇× E

)
K = δα2〈〈ET 〉〉 − δβ2

−−→
curlΓ curlΓ〈〈ET 〉〉 on Γ0, (4.101)

n×
(
µ−1∇× E

)
= 0 on S , (4.102)

and in addition Es satisfies the Silver-Müller radiation condition (4.24). Therefore,

multiplying the differential equations by a test function v and integrating by parts,

a variational formulation of this problem is: seek Es ∈ Hloc(curl,R3 \ Ω) and E ∈

H0(Ω \ Ωδ) such that

aδvol((E,E
s),v) + bΓ1((E,Es),v) + bΓ0((E,Es),v) = LΓ1v, (4.103)

for all v such that v|R3\Ω ∈ Hloc(curl,R3 \ Ω) and v|Ω ∈ H0(Ω \ Ωδ), where bΓ1 and

LΓ1 are defined by (4.96) and (4.97), respectively, and

aδvol((E,E
s),v) :=

∫
BR\Ω

∇× Es · ∇ × v − k2Es · v d y

+

∫
Ω\Ωδ

µ−1∇× E · ∇ × v − k2εE · v d y

+ ik 〈Ge(x̂× Es),v〉SR ,

which is almost the same as (4.96), except for the integration domain of the second

integral, and

bΓ0((E,Es),v) :=

∫
Γ0

δβ2curlΓ〈〈ET 〉〉 curlΓ〈〈vT 〉〉 ds(y) (4.104)

−
∫

Γ0

δα2〈〈ET 〉〉 · 〈〈v〉〉T ds(y)

+
1

δ

∫
Γ0

A−1
1 Jν × EK · Jν × vK ds(y), (4.105)
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(a) (b)

Figure 4.5: Panel (a) Geometrical setting for the numerical experiments for the
validation of the ATC model. Panel (b) Mesh generated using Net-
gen/Ngsolve when δ = 0.1.

are the terms associated with the ATCs.

In summary, the respective finite element solutions to the variational formulations

(4.95) and (4.103) will be used to compare in the example of the following subsection

the full and the approximate models, in order to validate our approximate model.

4.5.1 The numerical error analysis

In this subsection we describe the numerical experiments that we did to validate

our approximate model, as explained in the previous part.

We considered a spherical obstacle Ω as shown in Figure 4.5, where the internal

layer Ω− is a cube. The separation or delamination Ωδ has constant thickness and is

present on one face of the inner layer Ω−. The radius of the exterior boundary Γ1 is

r1 = 1.3, whereas each face of the cube Γ has side length r0 = 1.2. We chose in this case

to set Γ− = Γ, so that f− = 0 and f+ = 1. The material properties in this experiments

were µ+ = 1, µ− = 1, µδ = 1, and ε+ = 1 + 0.001i, ε− = 1 + 0.001i, εδ = 3.5 + 0.001i.
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Figure 4.6: L2(BR)3 and H(curl, BR) relative errors, respectively, of the total fields
resulting from different values of δ. In both cases the approximate rate
of convergence is O(δ0.9).

As an incident field, we chose a plane wave Ei = peikd̂·x, where the wave number

is k = 3, the direction of propagation is d̂ = (0, 0, 1), and the polarization vector

p = (1, 0, 0).

Finally, a spherical Perfectly Matched Layer (PML) was used in the annular region

{x : 2 < |x| < 2.7}, with absorbing parameter α = 0.6. It is important to mention

here that for the numerical implementation of the model, it was impossible for us to

compute the pointwise difference and sum of the traces of E+ and E−, in the two

different boundaries Γ+ and Γ−. Thus instead of considering the jump and average

values J·K and 〈〈·〉〉 in (4.104), we computed the traces on the same boundary, Γ−, i.e.

we substituted the jump and mean-value by:

〈u〉Γ− =
1

2
(u+|Γ− + u−|Γ−), and [u]Γ− = u+|Γ− − u−|Γ−.

In Figure 4.6, the two relative L2(BR)3 and H(curl, BR) errors, respectively defined
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by:

eL2(δ) =
||EATC − Efull||L2(BR)

||Efull||L2(BR)

and eHcurl(δ) =
||EATC − Efull||H(curl,BR)

||Efull||H(curl,BR)

, (4.106)

were computed.

It is shown that both errors have decaying behavior and an approximate rate of con-

vergence of order O(δ0.9). Although by definition of the second order ATCs we expect

an error of order O(δ2), the observed reduced rate of convergence may be due to the

fact that we changed the jump and average value computations on Γ0. However, at

least in this case we can observe that the corresponding ATCs model is increasingly

accurate as δ decreases and may be used to develop inverse scattering results.

An alternative possibility to explain the drop in the convergence rate of the approx-

imate model may be that the assumption n × (µ−1∇ × E) = 0 on S , is not of the

appropriate order of accuracy. This is a line of research that should be further inves-

tigated.

4.6 Inverse problem

4.6.1 Reciprocity and mixed reciprocity principles

For the upcoming development of our nondestructive test for the detection of

the delamination Γ0, it will be important to introduce some concepts. It is well known

(see for example [32] or [23]) that if (E,H) are radiating solutions of the homogeneous

Maxwell equations

∇× E− ikH = 0 (4.107)

∇×H + ikE = 0. (4.108)

in R3\Ω, where the boundary of Γ1 is C2, then there exist analytic functions (E∞,H∞)

defined on the sphere S2, such that the following asymptotic expressions hold:

E(x) =
eikr

r
E∞(x̂) +O

(
1

r2

)
when r →∞, (4.109)

H(x) =
eikr

r
H∞(x̂) +O

(
1

r2

)
when r →∞, (4.110)
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where r = |x|, x̂ = x
|x| , and the convergence is uniform in x̂. The functions (E∞,H∞)

are called the electric and magnetic far field patterns, respectively, and it can be proved

that (see Theorem 1.4 in [23]) they have the following expressions:

E∞(x̂) =
ik

4π
x̂×

∫
Γ1

{(ν(y)× E(y)) + (ν(y)×H(y)× x̂)e−ikx̂·y} ds(y),

H∞(x̂) =
ik

4π
x̂×

∫
Γ1

{(ν(y)×H(y))− (ν(y)× E(y)× x̂)e−ikx̂·y} ds(y).

We will define the solution of the so called background problem to be the unique solution

Eb in Hloc(curl,R3) such that:

∇× Eb − ikµHb = 0 in R3, (4.111)

∇×Hb + ikεEb = 0 in R3, (4.112)

where, again, Eb = Es
b + Ei in Ωext, Ei is the incident field, and Es

b is the scattered

field that satisfies the Silver-Müller radiation condition (4.24).

The background solutions are the electric and magnetic fields associated with

the healthy material (i.e. when the delamination is not present). Notice that in the

definition of PB it is implicit that the tangential components of the fields are continuous

across all interfaces.

We will now define two important well-known families of solutions to the homo-

geneous Maxwell equations (4.107)-(4.108).

First, for a given vector p ∈ R3, we define the electromagnetic field generated

by an electric dipole with polarization p, (Ei
edp(·, ·,p),Hi

edp(·, ·,p)), is given by:Ei
edp(y, z,p) = − 1

ik
∇y ×∇y × (pφ(y, z)) ,

Hi
edp(y, z,p) = ∇y × (pφ(y, z)) ,

where φ(y, z) = eik|y−z|

4π|y−z| is the radiating fundamental solution of the Helmholtz equation.

It is well known that the electromagnetic pair (E,H) = (Ei
edp(·, z,p),Hi

edp(·, z,p)) is
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the radiating fundamental solution of the homogeneous Maxwell equations (see [23])

satisfying,

∇× E− ikH = 0 in R3, (4.113)

∇×H + ikE = pδ(· − z) in R3. (4.114)

Second, given a direction vector d̂ ∈ S2 and a polarization vector p ∈ R3 the corre-

sponding electromagnetic plane wave (Ei
pl(·, d̂,p),Hi

pl(·, d̂,p)) is defined by:Ei
pl(y, d̂,p) = ik((d̂× p)× d̂)eikd̂·y,

Hi
pl(y, d̂,p) = ik(d̂× p)eikd̂·y.

The pair (E,H) = (Ei
pl(·, d̂,p),Hi

pl(·, d̂,p)) is an entire solution of the homoge-

neous Maxwell equations (4.107)-(4.108) in R3.

In the particular case when the incident field is a plane wave Ei = Ei
pl(·, d̂,p),

the solution to the background problem (4.111)-(4.112) will be denoted by Epl(·, d̂,p),

and the corresponding scattered field by Es
pl(·, d̂,p) ∈ H(curl,R3 \ Ω).

Notice that if we define

Hs
pl(·, d̂,p) :=

1

ik
∇× Es

pl(·, d̂,p),

then (Es
pl(·, d̂,p),Hs

pl(·, d̂,p)) solves (4.113)-(4.114) in R3\Ω. The corresponding total

field Hpl(·, d̂,p) is defined as usual by Hpl(·, d̂,p) = Hi
pl(·, d̂,p) + Hs

pl(·, d̂,p). Anal-

ogously, when the incident field is an electric dipole Ei = Ei
edp(·, ·,p), the solution to

the background problem (4.111)-(4.112) will be denoted by Eedp(·, ·,p), and the corre-

sponding scattered field by Es
edp(·, ·,p) ∈ H(curl,R3 \ Ω).

Again, if Hs
edp(·, ·,p) := 1

ik
∇×Es

edp(·, ·,p), then (Es
edp(·, ·,p),Hs

edp(·, ·,p)) solves (4.113)-

(4.114) in R3\Ω. and the corresponding total field Hedp(·, ·,p) is, as usual, Hedp(·, d̂,p) =

Hi
edp(·, ·,p) + Hs

edp(·, ·,p) in Ωext.

Finally, the radiating electromagnetic Green’s tensor associated with the background

medium is the generalized electric dipole, defined as the pair of second order tensors

(GE,GH) that for any constant vector p ∈ R3 and z ∈ R3, the corresponding fields
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(GE(·, z)p,GH(·, z)p) ∈ Hloc(curl,R3 \ {z}) ×Hloc(curl,R3 \ {z}) solve the following

problem: 
∇y × (GE(·, z)p)− ikµGH(·, z)p = 0 in R3,

∇y × (GH(·, z)p) + ikεGE(·, z)p = pδ(· − z) in R3,

limr→∞ r((GH(x, z)p)× x̂− ikGE(x, z)p) = 0.

We are ready to prove a mixed reciprocity principle, similar to those presented

in [75] for the electromagnetic case, and in [46],[17],[27] or [24] in the acoustic case.

Theorem 4.6.1. (Mixed reciprocity principle) For all x̂ ∈ S2 and all z ∈ R3 \ (Γ∪Γ1),

4πp ·GE,∞(x̂, z)q = q · Epl(z,−x̂,p), (4.115)

for all q,p ∈ R3. Moreover, for z ∈ Γ ∪ Γ1, then the identity (4.115) is true if

q · ν(z) = 0 and p · ν(z) = 0.

Proof. Consider p,q ∈ R3, and the following cases:

Case 1. z ∈ R3 \ Ω.

Since in this case the pair

(E,H) =
(
GE(·, z)q− Ei

edp(·, z,q), GH(·, z)q−Hi
edp(·, z,q)

)
is a radiating and non-singular solution of the homogeneous Maxwell equations (4.107)-

(4.108) in R3 \ Ω, we can use the Stratton-Chu formula for radiating fields (see [65],

Theorem 9.4):

GE(x, z)q− Ei
edp(x, z,q) = ∇x ×

∫
Γ1

ν(y)× (GE(y, z)q− Ei
edp(y, z,q))φ(x,y) ds(y)

− 1

ik
∇x ×∇x ×

∫
Γ1

ν(y)× (GH(y, z)q−Hi
edp(y, z,q))φ(x,y) ds(y), (4.116)

for all x ∈ R3 \ Ω.
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On the other hand, for any constant p ∈ R3, taking the dot product of p with

the terms in the right-hand-side of the Stratton-Chu formula (4.116) involving the

electric dipole fields Ei
edp and Hi

edp, we get:

p · ∇x ×
∫

Γ1

(ν(y)× Ei
edp(y, z,q))φ(x,y) ds(y)

− 1

ik
p · ∇x ×∇x ×

∫
Γ1

(ν(y)×Hi
edp(y, z,q))φ(x,y) ds(y) =

−
∫

Γ1

(ν(y)× Ei
edp(y, z,q)) · ∇y × (pφ(x,y)) ds(y)

− 1

ik

∫
Γ1

(ν(y)×Hi
edp(y, z,q)) · ∇y ×∇y × (pφ(x,y)) ds(y)

=

∫
Γ1

(ν(y)× Ei
edp(y, z,q)) ·Hi

edp(x,y,p) ds(y)

+

∫
Γ1

(ν(y)×Hi
edp(y, z,q)) · Ei

edp(x,y,p) ds(y), (4.117)

thus,

p · ∇x ×
∫

Γ1

(ν(y)× Ei
edp(y, z,q))φ(x,y) ds(y)

− 1

ik
p · ∇x ×∇x ×

∫
Γ1

(ν(y)×Hi
edp(y, z,q))φ(x,y) ds(y) =

−
∫

Γ1

(ν(y)× Ei
edp(y, z,q)) · ∇y × (pφ(x,y)) ds(y)

− 1

ik

∫
Γ1

(ν(y)×Hi
edp(y, z,q)) · ∇y ×∇y × (pφ(x,y)) ds(y)

=

∫
Ω

{∇ × Ei
edp(y, z,q)) ·Hi

edp(x,y,p)} d y

−
∫

Ω

{(∇×Hi
edp(x,y,p)) · Ei

edp(y, z,q)} d y

+

∫
Ω

{∇ ×Hi
edp(y, z,q)) · Ei

edp(x,y,p)} d y

−
∫

Ω

{(∇× Ei
edp(x,y,p)) ·Hi

edp(y, z,q)} d y, (4.118)
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and therefore,

p · ∇x ×
∫

Γ1

(ν(y)× Ei
edp(y, z,q))φ(x,y) ds(y)

− 1

ik
p · ∇x ×∇x ×

∫
Γ1

(ν(y)×Hi
edp(y, z,q))φ(x,y) ds(y) =

−
∫

Γ1

(ν(y)× Ei
edp(y, z,q)) · ∇y × (pφ(x,y)) ds(y)

− 1

ik

∫
Γ1

(ν(y)×Hi
edp(y, z,q)) · ∇y ×∇y × (pφ(x,y)) ds(y)

=

∫
Ω

{ikHi
edp(y, z,q) ·Hi

edp(x,y,p)} d y

+

∫
Ω

{ikEi
edp(x,y,p) · Ei

edp(y, z,q)} d y

+

∫
Ω

{−ikEi
edp(y, z,q) · Ei

edp(x,y,p)} d y

−
∫

Ω

{ikHi
edp(x,y,p) ·Hi

edp(y, z,q)} d y = 0, (4.119)

which implies that (4.116) simplifies to

GE(x, z)q− Ei
edp(x, z,q) = ∇x ×

∫
Γ1

(ν(y)×GE(y, z)q)φ(x,y) ds(y)

− 1

ik
∇x ×∇x ×

∫
Γ1

(ν(y)×GH(y, z)q)φ(x,y) ds(y), (4.120)

for all x ∈ R3 \ Ω. Therefore, by taking the dot product of a constant vector p ∈ R3

with (4.120), we know that the far field patterns satisfy

p · (GE,∞(x̂, z)q)− p · Ei,∞
edp (x̂, z,q)

=
ik

2π
p · {x̂×

∫
Γ1

{(ν(y)×GE(y, z)q) + (ν(y)×GH(y, z)q)× x̂}e−ikx̂·y ds(y)}

=
ik

2π

∫
Γ1

(ν(y)×GE(y, z)q) · (−x̂× p)e−ikx̂·y

+ (ν(y)×GH(y, z)q) · ((−x̂)× (p× (−x̂))e−ikx̂·y ds(y)

=
1

2π

∫
Γ1

(ν(y)×GE(y, z)q) ·Hi
pl(y,−x̂,p)

+ (ν(y)×GH(y, z)q) · Ei
pl(y,−x̂,p) ds(y), (4.121)
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for all x̂ ∈ S2. On the other hand,

p · Ei,∞
edp (x̂, z,q)

= − 1

i4πk
p · ∇z ×∇z × (qe−ikx̂·z)

=
ik

4π
p · (−x̂× (−x̂× q))e−ikx̂·z

=
ik

4π
q · ((−x̂× p)× (−x̂))e−ikx̂·z

=
1

4π
q · Ei

pl(z,−x̂,p), (4.122)

(4.123)

and

p ·Hi,∞
edp (x̂, z,q)

= − 1

4π
p · ∇z × (qe−ikx̂·z)

= − ik
4π

p · (−x̂× q)e−ikx̂·z

=
ik

4π
q · (−x̂× p)e−ikx̂·z

=
1

4π
q ·Hi

pl(z,−x̂,p). (4.124)

Hence, (4.121) can be written as

p · (GE,∞(x̂, z)q)− ik

4π
q · Ei

pl(z,−x̂,p)

=
1

4π

∫
Γ1

(ν(y)×GE(y, z)q) ·Hi
pl(y,−x̂,p) ds(y)

+
1

4π

∫
Γ1

(ν(y)×GH(y, z)q) · Ei
pl(y,−x̂,p) ds(y), (4.125)

for all x̂ ∈ S2. We will now show that the right hand side of (4.125) is exactly 1
4π

q ·

Es
pl(z,−x̂,p).
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Observe that on one hand, by Green’s formula, for any two given solutions

(E1,H1) and (E2,H2) to the homogeneous Maxwell’s equations (4.107)-(4.108) in Ω,∫
Γ1

(ν(y)× E1(y)) ·H2(y) ds(y) +

∫
Γ1

(ν(y)×H1(y)) · E2(y) ds(y)

=

∫
Ω

{µ−1∇y × E1(y) ·H2(y)−∇y ×H2(y) · E1(y)} d y +∫
Ω

{∇y ×H1(y) · E2(y)−∇y × E2(y) ·H1(y)} d y

= 0, (4.126)

while on the other hand, if both (E1,H1) and (E2,H2) satisfy the background problem

(4.111)-(4.112) in Ω,∫
Γ1

(ν(y)× E1(y) ·H2(y) ds(y) +

∫
Γ1

(ν(y)×H1(y) · E2(y) ds(y)

=

∫
Ω

{∇y × E1(y) ·H2(y)−∇y ×H2(y) · E1(y)} d y +∫
Ω

{∇y ×H1(y) · E2(y)−∇y × E2(y) ·H1(y)} d y = 0. (4.127)

Therefore, for any q ∈ R3 constant, by the second Stratton-Chu formula,

q · Es
pl(z,−x̂,p)

= q · ∇z ×
∫

Γ1

(ν(y)× Es
pl(y,−x̂,p))φ(z,y) ds(y)

− 1

ik
q · ∇z ×∇z ×

∫
Γ1

(ν(y)×Hs
pl(y,−x̂,p))φ(z,y) ds(y)

=

∫
Γ1

(ν(y)× Es
pl(y,−x̂,p)) ·Hi

edp(z,y,q) ds(y)

+

∫
Γ1

(ν(y)×Hs
pl(y,−x̂,p)) · Ei

edp(z,y,q) ds(y),

and if we use (4.126) with (E1,H1) = (Ei
pl,H

i
pl) and (E2,H2) = (Ei

edp,H
i
edp), and

(4.127) with E1 = GE(·, z)p−Ei
edp(z, ·,p), ,H1 = GH(·, z)p−Hi

edp(z, ·,p) and (E2,H2) =
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(Epl,Hpl),

q · Es
pl(z,−x̂,p)

=

∫
Γ1

(ν(y)× Epl(y,−x̂,p)) ·Hi
edp(z,y,q) ds(y)

+

∫
Γ1

(ν(y)×Hpl(y,−x̂,p)) · Ei
edp(z,y,q) ds(y)

−
∫

Γ1

(ν(y)× Ei
pl(y,−x̂,p)) ·Hi

edp(z,y,q) ds(y)

+

∫
Γ1

(ν(y)×Hi
pl(y,−x̂,p)) · Ei

edp(z,y,q) ds(y)

=

∫
Γ1

(ν(y)× Epl(y,−x̂,p)) · (GH(y, z)q) ds(y)

+

∫
Γ1

(ν(y)×Hpl(y,−x̂,p)) · (GE(y, z)q) ds(y)

=

∫
Γ1

(ν(y)×GH(y, z)q) · Ei
pl(y,−x̂,p) ds(y)

+

∫
Γ1

(ν(y)×GE(y, z)q) ·Hi
pl(y,−x̂,p) ds(y), (4.128)

Therefore, combining (4.125) and (4.128),

4πp · (GE,∞(x̂, z)q) = q ·Ei
pl(z,−x̂,p) + q ·Es

pl(z,−x̂,p) = q ·Epl(z,−x̂,p), (4.129)

for all z ∈ R3 \ Ω. Thus completes the proof for case 1.

Case 2. Let z ∈ Ω.

Then the field (GE(·, z)q,GH(·, z)q) is a non-singular radiating solution of the

homogeneous Maxwell equations (4.107)-(4.108) in R3 \ Ω, and then taking the dot

product of p ∈ R3 with the Stratton-Chu formula of GE(x, z)q for any x ∈ R3 \ Ω,

p ·GE(x, z)q = p · ∇x ×
∫

Γ1

(ν(y)×GE(y, z)q)φ(x,y) ds(y)

− 1

ik
p · ∇x ×∇x ×

∫
Γ1

(ν(y)×GH(y, z)q)φ(x,y) ds(y)

= −
∫

Γ1

(ν(y)×GE(y, z)q) · ∇y × (φ(x,y)p) ds(y)

− 1

ik

∫
Γ1

(ν(y)×GH(y, z)q) · ∇y ×∇y × (φ(x,y)p) ds(y),
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so the far field pattern satisfies

p ·GE,∞(x̂, z)q

=
1

4π

∫
Γ1

(ν(y)×GE(y, z)q) ·Hi
pl(y,−x̂,p) ds(y)

+
1

4π

∫
Γ1

(ν(y)×GH(y, z)q) · Ei
pl(y,−x̂,p) ds(y)

=
1

4π

∫
Γ1

(ν(y)×GE(y, z)q) ·Hpl(y,−x̂,p) ds(y)

+
1

4π

∫
Γ1

(ν(y)×GH(y, z)q) · Epl(y,−x̂,p) ds(y)

=
1

4π

∫
Ω

(∇y ×GE(y, z)q) ·Hpl(y,−x̂,p) d y

− 1

4π

∫
Ω

(∇y ×Hpl(y,−x̂,p)) ·GE(y, z)q d y

+
1

4π

∫
Ω

(∇y ×GH(y, z)q) · Epl(y,−x̂,p) d y

− 1

4π

∫
Ω

(∇y × Epl(y,−x̂,p)) ·GH(y, z)q d y,

where in the second equality we have used the fact that for every two radiating solutions

of (4.107)-(4.108) in R3 \ Ω, (Es
1,H

s
1) and (Es

2,H
s
2), it is true that

0 =

∫
Γ1

{(ν(y)× Es
1) ·Hs

2 + (ν(y)×Hs
1) · Es

2} ds(y). (4.130)

Therefore, from (4.130),

p ·GE,∞(x̂, z)q

=
1

4π

∫
Ω

ikµ(GH(y, z)q) ·Hpl(y,−x̂,p) d y

+
1

4π

∫
Ω

ikεEpl(y,−x̂,p) ·GE(y, z)q d y

+
1

4π

∫
Ω

(−ikεGE(y, z)q + qδ(y − z)) · Epl(y,−x̂,p) d y

− 1

4π

∫
Ω

ikµHpl(y,−x̂,p) ·GH(y, z)q d y

=
1

4π
q · Epl(z,−x̂,p), (4.131)
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as wanted.

Case 3. z ∈ Γ1 ∪ Γ.

Notice that by continuity of the tangential traces of Epl(·,−x̂,p) and GE,∞(x̂, ·)p

on Γ1 ∪ Γ, then the identity (4.115) is true at z ∈ Γ1 ∪ Γ as long as p,q ∈ R3 satisfy

ν(z) · p = ν(z) · q = 0, and the proof is complete.

We now turn our attention to the approximate problem (4.20)-(4.24) for the

delaminated configuration. We will next pove that the reciprocity relation satisfied by

far field patters of solutions to the full model (4.1)-(4.3) (see Theorem 6.30 in [32]) is

still satisfied by far field patterns of radiating solutions to the approximate model.

For the sake of simplicity, in the following theorem we denote by

E∞pl (·, d̂,p) and H∞pl (·, d̂,p) (4.132)

the far field patterns of the radiating solutions to the problem (4.20)-(4.24):

Es
pl(·, d̂,p) and Hs

pl(·, d̂,p), (4.133)

where of course we have set Hs
pl := −ik∇× Es

pl in Ωext.

Theorem 4.6.2. (The reciprocity principle for the ATCs model) For all x̂, d ∈ S2 and

p,q ∈ R3,

q · E∞pl (x̂, d̂,p) = p · E∞pl (−d̂,−x̂,q).

Proof. Following the arguments of the proof of Theorem 6.30 in [32], if x̂, d̂ ∈ S2 and

p,q ∈ R3, then from the divergence theorem in Ω,

0 =

∫
(Γ\Γ0)∪Γ+

ν(y)× Ei
pl(y, d̂,p) ·Hi

pl(y,−x̂,q) ds(y)

=

∫
(Γ\Γ0)∪Γ+

ν(y)×Hi
pl(y, d̂,p) · Ei

pl(y,−x̂,q) ds(y), (4.134)

and from the radiation condition,

(Es
pl(·, d̂,p),Hs

pl(·, d̂,p)) and (Es
pl(·,−x̂,q),Hs

pl(·,−x̂, q))
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satisfy:

0 =

∫
(Γ\Γ0)∪Γ+

ν(y)× Es
pl(y, d̂,p) ·Hs

pl(y,−x̂,q)

+ ν(y)×Hs
pl(y, d̂,p) · Es

pl(y,−x̂,q) ds(y). (4.135)

Moreover,

4πq · E∞pl (x̂, d̂,p) =

∫
(Γ\Γ0)∪Γ+

ν(y)× Es
pl(y, d̂,p) ·Hi

pl(y,−x̂,q)

+ ν(y)×Hs
pl(y, d̂,p) · Ei

pl(y,−x̂,q) ds(y) (4.136)

and

4πp · E∞pl (−d̂,−x̂,q) =

∫
(Γ\Γ0)∪Γ+

ν(y)× Es
pl(y,−x̂,q) ·Hi

pl(y, d̂,p)

+ ν(y)×Hs
pl(y,−x̂,q) · Ei

pl(y, d̂,p) ds(y), (4.137)

and therefore considering the sum (4.134) + (4.135) + (4.136) - (4.137) we get,

4π(q · E∞pl (x̂, d̂,p)− p · E∞pl (−d̂,−x̂,q))

=

∫
(Γ\Γ0)∪Γ+

ν(y)× Epl(y,−x̂,q) ·Hpl(y, d̂,p) ds(y)

+

∫
(Γ\Γ0)∪Γ+

ν(y)×Hpl(y,−x̂,q) · Epl(y, d̂,p) ds(y), (4.138)

and thus

4π(q · E∞pl (x̂, d̂,p)− p · E∞pl (−d̂,−x̂,q))

=

∫
Γ+

ν(y)× Epl(y,−x̂,q) ·Hpl(y, d̂,p) ds(y)

+

∫
Γ+

ν(y)×Hpl(y,−x̂,q) · Epl(y, d̂,p) ds(y)

−
∫

Γ−

ν(y)× Epl(y,−x̂,q) ·Hpl(y, d̂,p) ds(y)

+

∫
Γ−

ν(y)×Hpl(y,−x̂,q) · Epl(y, d̂,p) ds(y)

+

∫
(Γ\Γ0)∪Γ−

ν(y)× Epl(y,−x̂,q) ·Hpl(y, d̂,p) ds(y)

+

∫
(Γ\Γ0)∪Γ−

ν(y)×Hpl(y,−x̂,q) · Epl(y, d̂,p) ds(y) (4.139)
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and thus,

4π(q · E∞pl (x̂, d̂,p)− p · E∞pl (−d̂,−x̂,q))

=

∫
Γ0

Jν(y)× Epl(y,−x̂,q)K · 〈〈Hpl(y, d̂,p)〉〉 ds(y)

+

∫
Γ0

Jν(y)×Hpl(y,−x̂,q)K · 〈〈Epl(y, d̂,p)〉〉 ds(y)

−
∫

Γ0

〈〈Epl(y,−x̂,q)〉〉 · Jν(y)×Hpl(y, d̂,p)K ds(y)

+

∫
Γ0

〈〈Hpl(y,−x̂,q)〉〉 · Jν(y)× Epl(y, d̂,p)K ds(y) (4.140)

which implies that, substituting the expression (4.17) for the ATCs of our approximate

model:

4π(q · E∞pl (x̂, d̂,p)− p · E∞pl (−d̂,−x̂,q))

=

∫
Γ0

Ã1(〈〈Hpl(y,−x̂,q)〉〉T ) · 〈〈Hpl(y, d̂,p)〉〉T ds(y)

+

∫
Γ0

Ã2(〈〈Epl(y,−x̂,q)〉〉T ) · 〈〈Epl(y, d̂,p)〉〉 ds(y)

−
∫

Γ0

〈〈Epl(y,−x̂,q)〉〉 · Ã2(〈〈Epl(y, d̂,p)〉〉T ) ds(y)

+

∫
Γ0

〈〈Hpl(y,−x̂,q)〉〉 · Ã1(〈〈Hpl(y, d̂,p)〉〉T ) ds(y)

= 0, (4.141)

where the last line is a consequence of the fact that the operators Ã1 and Ã2, defined

by (4.18)-(4.19), are symmetric.

Remark 4.6.1. About the representation formula for electromagnetism:

Let D ⊂ R3 be a bounded, simply connected domain with Lipschitz boundary ∂D. If

v is a function such that v = vout in R3 \ D and v = vδ in D, and ν denotes the

unit normal vector on ∂D pointing outwards from D, then the jump of v across ∂D is

defined by:

[v]∂D := vout|∂D − vδ|∂D. (4.142)

114



Let Es in Hloc(curl,R3\D) be a scattered electric field (satisfying (4.24)) such that for a

given incident field Ei, the corresponding total field E := Ei+Es in Hloc(curl,R3 \∂D)

satisfies the inhomogeneous problem:

∇× (∇× E)− k2E = 0 in R3 \D, (4.143)

∇× (µ−1
D ∇× E)− k2εDE = 0 in D, (4.144)

where µD and εD are smooth material properties. Then Es holds the following repre-

sentation formula:

Es(x) =
1

ik

∫
∂D

{
− µ−1∇×GE

D(x,y) [ν × Es]∂D (y)

+ GE
D(x,y)

[
ν × (µ−1∇× Es)

]
∂D

(y)
}

ds(y), (4.145)

where GE
D denotes the corresponding electric Green’s tensor.

4.6.2 The linear sampling method

The inverse problem that we want to solve is to determine the location of the

delaminated part of the interface Γ0, from the knowledge of all the far field measurments

of the electromagnetic field, when the incident fields are plane waves in all directions

of incidence, and with all possible polarizations.

In order to develop our method for the solution of this inverse problem, we

will introduce the necessary notation for the construction and analysis of the linear

sampling method.

Let g ∈ L2
t (S2), then the electric Hergoltz wave Eg is defined by

Eg(x) =

∫
S2

g(d̂)eikx·d̂ dsd̂. (4.146)

The far field operator F : L2
t (S2) → L2

t (S2) associated with the medium with

the defect is defined by

(Fg)(x̂) =

∫
S2

E∞(x̂, d̂,g(d̂)) dsd̂, (4.147)
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where E∞(·, d̂,g(d̂)) is the far field pattern of the radiating field Es(·, d̂,g(d̂)) as-

sociated with the solution of (4.20)-(4.24) when the incident field is the plane wave

Ei(·, d̂,g(d̂)). By linearity, Fg is the far field pattern of the radiating solution of

(4.20)-(4.24) when Ei = Eg.

In an analogous manner, we can define the far field operator FB : L2
t (S2) →

L2
t (S2) associated with the background problem by

(FBg)(x̂) =

∫
S2

E∞pl (x̂, d̂,g(d̂)) dsd̂, (4.148)

where E∞pl (·, d̂,g(d̂)) is the far field pattern of the radiating field Es
pl(·, d̂,g(d̂)) defined

in the previous subsection. We will denote by Eb,g and Es
b,g the total and radiating field

solutions to the background problem (4.111)-(4.112), respectively, when the incident

field is Ei = Eg. Then, again by linearity, FBg is the far field pattern of Es
b,g.

The far-field operator associated with the defect is defined by the difference

FD := F − FB, (4.149)

which will provide the informaton associated with the delamination alone. If we assume

that FB is well known and that F can be measured, then we will develop a method

to detect the existence and location of Γ0 based of FD. Therefore, we will study the

range of this operator.

Define now

H :=
{

u ∈ H(curl, Bδ
R)
∣∣∣µ−1∇× u ∈ L2(Bδ

R) and 〈〈uT 〉〉 ∈ H(curlΓ,Γ0)
}
, (4.150)

endowed with its graph norm,

‖u‖2
H = ||u||2H(curl,BδR) + ||µ−1∇× u||2L2(BδR) + ||〈〈uT 〉〉||2H(curlΓ,Γ0). (4.151)
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A solution to the defective problem is given by E ∈ Hloc(curl,R3 \ Ωδ) such that

E|BδR ∈ H and that satisfies:

∇×
(
µ−1∇× E

)
− k2εE = 0 in R3 \ Ωδ, (4.152)

A−1
1 Jν × EK = δ〈〈

(
µ−1∇× E

)
T
〉〉+ h1, (4.153)

Jν ×
(
µ−1∇× E

)
K = δA2〈〈ET 〉〉+ h2, (4.154)

n×
(
µ−1∇× E

)
= h3 on S , (4.155)

and E satisfies the Silver-Müller radiation condition (4.24), where
h1 := δ 〈〈µ−1∇× v〉〉T − A

−1
1 Jν × vK,

h2 := δA2〈〈v〉〉T − Jν × µ−1∇× vK ,

h3 := −n×
(
µ−1∇× v

) ∣∣∣
S
,

(4.156)

for some v ∈ H.

Define the Hergoltz operator H : L2
t (S2)→ H(curlΓ,Γ0)×H0(Γ0)∗×H−1/2(divS ,S )

by

H g =

(
δ〈〈µ−1∇× Eb,g〉〉T −A

−1
1 Jν × Eb,gK,

δA2(〈〈Eb,g〉〉T )− Jν × µ−1∇× Eb,gK, ,

− n×
(
µ−1∇× Eb,g

) ∣∣∣
S

)
, (4.157)

where Ai : H0(Γ0)→ H0(Γ0)∗, i = 1, 2, are the boundary operators defined by (4.37).

Remark 4.6.2. Notice that FDg is, by linearity, the far-field pattern associated with

the solution to the defective problem (4.152)-(4.155) when the incident field is Ei =

Eb,g, i.e., when the the boundary source terms are H g.

Define G : H(curlΓ,Γ0)×H0(Γ0)∗ ×H−1/2(divS ,S )→ L2
t (S2) by

G (h1,h2,h3) = E∞,

where E∞ is the far field pattern of the scattered field E that solves the defective

problem (4.152)-(4.155). From Theorem 4.4.1, we know that the operator G is well
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defined and bounded.

Then it is clear that the following factorization of the far field operator FD holds:

FD = G H ,

and we will prove the linear sampling method based on the properties of G and H .

Proposition 4.6.1. In addition to the assumptions of Theorem 4.4.1, assume that the

function |∇µ| is bounded in a neighbourhood of Γ and n× (µ−1∇× Eb,g)
∣∣∣
S

= 0 if and

only if g = 0. Then the operator H is injective with dense range.

Proof. Observe first that by linearity,

Eb,g(x) =

∫
S2

Epl(x, d̂,g(d̂)) dsd̂, (4.158)

and thanks to Theorem 4.6.1, for all p ∈ R3,

p · Eb,g(x) =

∫
S2

4πg(d̂) ·GE,∞(−d̂,x)p dsd̂. (4.159)

Observe that

H(curlΓ,Γ0) =
{
∇Γp+∇Γ × q

∣∣∣∇Γ × q ∈ H1
t (Γ0), ∇Γp ∈ L2

t (Γ0)
}

(4.160)

and thus

H(curlΓ,Γ0)∗ =
{
∇Γp+∇Γ × q

∣∣∣∇Γ × q ∈ H−1
0 (Γ0), ∇Γp ∈ L2

t (Γ0)
}
,(4.161)

= H−1
0 (divΓ,Γ0). (4.162)
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Given (ξ,η,σ) ∈ H−1
0 (divΓ,Γ0)×H0(Γ0)×H̃−1/2(curlS ,S ), if 〈·, ·〉 is the correspond-

ing duality pairing, then by always using as pivoting space L2
t (in either Γ0 or S ):

〈H g, (ξ,η,σ)〉 =

∫
Γ0

{
δ〈〈µ−1∇× Eb,g〉〉T · ξ −A

−1
1 Jν × Eb,gK · ξ

}
ds(y)

+

∫
Γ0

{
δA2〈〈Eb,g〉〉T · η − Jν × µ−1∇× Eb,gK · η

}
ds(y)

−
∫

S

n×
(
µ−1∇× Eb,g

)
· σ ds(y)

=

∫
Γ0

∫
S2

{
δ〈〈µ−1∇× Eb(y, d̂,g(d̂))〉〉T · ξ

− A−1
1 Jν × Eb(y, d̂,g(d̂))K · ξ

}
ds(d̂) ds(y)

+

∫
Γ0

∫
S2

{
δA2〈〈Eb(y, d̂,g(d̂))〉〉T · η

− Jν × µ−1∇Eb(y, d̂,g(d̂))K · η
}

ds(d̂) ds(y)

−
∫

S

∫
S2

n× µ−1∇× Eb(y, d̂,g(d̂)) · σ ds(d̂) ds(y), (4.163)

and by the mixed reciprocity principle,

1

4π
〈H g, (ξ,η,σ)〉 =

∫
S2

g(d̂) ·

{∫
Γ0

{
δ〈〈µ−1∇×GE,∞(−d̂,y))〉〉T ξ(y)

+JGE,∞(−d̂,y)K(ν ×A−1
1 ξ(y))

}
ds(y)

+

∫
Γ0

{
δ〈〈GE,∞(−d̂,y)〉〉TA2η(y)

+Jµ−1∇×GE,∞(−d̂,y)KT (ν × η(y))

}
ds(y)

+

∫
S

µ−1∇×GE,∞(−d̂,y)(n× σ(y)) ds(y)

}
ds(d̂),(4.164)

Notice that in general A−1
1 and A2 are not self-adjoint operators because =(εδ) > 0.

Thus if we define

A1η := α1η − β1

−−→
curlΓ curlΓ η, and (4.165)

A2η := α2η − β2

−−→
curlΓ curlΓ η, (4.166)
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then we conclude that the conjugate transpose operator H ∗ : H−1/2(curlΓ,Γ0) ×

H−1/2(curlΓ,Γ0)→ L2
t (S2) of H , is given by:

1

4π
H ∗(ξ,η,σ) =

∫
Γ0

{
δ〈〈µ−1∇×GE,∞(−·,y))〉〉T ξ(y)

+ JGE,∞(−·,y)K(ν ×A1
−1
ξ(y))

}
ds(y)

+

∫
Γ0

{
δ〈〈GE,∞(−·,y)〉〉TA2η(y)

+ Jµ−1∇×GE,∞(−·,y)KT (ν × η(y))

}
ds(y)

+

∫
S

µ−1∇×GE,∞(−·,y)(n× σ(y)) ds(y). (4.167)

Thus E∞(x̂) = 1
4π

H ∗(ξ,η,σ)(−x̂) is the far field pattern of the following potential:

E(x) =

∫
Γ0

{
δ〈〈µ−1∇×GE(x,y))〉〉T ξ(y)

+ JGE(x,y)K(ν ×A1
−1
ξ(y))

}
ds(y)

+

∫
Γ0

{
δ〈〈GE(x,y)〉〉TA2η(y)

+ Jµ−1∇×GE(x,y)KT (ν × η(y))

}
ds(y)

+

∫
S

µ−1∇×GE(x,y)(n× σ(y)) ds(y). (4.168)
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Observe that E = (EΓ+)T + (EΓ−)T + ES , where we define

EΓ+(x) :=

∫
Γ0

{
δ

2
µ−1

+ ∇×GE(x,yΓ + δf+ν) ξ(yΓ)

+ GE(x,yΓ + δf+ν)(ν ×A1
−1
ξ(yΓ))

}
d yΓ

+

∫
Γ0

{
δ

2
GE(x,yΓ + δf+ν)A2η(yΓ)

+ µ−1
+ ∇×GE(x,yΓ + δf+ν)(ν × η(yΓ))

}
d yΓ, (4.169)

EΓ−(x) :=

∫
Γ0

{
δ

2
µ−1
− ∇×GE(x,yΓ − δf−ν) ξ(yΓ)

− GE(x,yΓ − δf−ν)(ν ×A1
−1
ξ(yΓ))

}
d yΓ

+

∫
Γ0

{
δ

2
GE(x,yΓ − δf−ν)A2η(yΓ)

− µ−1
− ∇×GE(x,yΓ − δf−ν)(ν × η(yΓ))

}
d yΓ, (4.170)

ES (x) :=

∫
S

µ−1∇×GE(x,y)(n× σ(y)) ds(y). (4.171)

Moreover, using the notation and the representation formula in Remark 4.145, we know

that the following jump conditions on Γ−, Γ+, and S are satisfied by E:

[ν × E]Γ+
=

[
ν × EΓ+

]
Γ+

= −ik δ
2
ξ − ik(ν × η), (4.172)

[ν × E]Γ− =
[
ν × EΓ−

]
Γ−

= −ik δ
2
ξ + ik(ν × η), (4.173)

[ν × E]S = [ν × ES ]S = −ik(n× σ), (4.174)
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and

[
ν ×

(
µ−1∇× E

)]
Γ+

=
[
ν ×

(
µ−1∇× EΓ+

)]
Γ+

= ik(ν ×A1
−1
ξ) + ik

δ

2
A2η, (4.175)[

ν ×
(
µ−1∇× E

)]
Γ−

=
[
ν ×

(
µ−1∇× EΓ−

)]
Γ−

= −ik(ν ×A1
−1
ξ) + ik

δ

2
A2η, (4.176)[

n×
(
µ−1∇× E

)]
S

=
[
n×

(
µ−1∇× ES

)]
S

= 0. (4.177)

Now, suppose then that E∞ = 0, then by the Rellich Lemma (Lemma 9.28 in [65]), we

know that E = 0 in R3 \ Ω. Moreover, from the assumptions of |∇µ| and the unique

continuation principle for isotropic time harmonic Maxwell equations (Theorem 2.3 in

[70]), we ensure that E = 0 in R3 \ Ωδ. Then:

[ν × E]Γ+
= ν × Eout

∣∣∣
Γ+

− ν × Eδ
∣∣∣
Γ+

= −ν × Eδ
∣∣∣
Γ+

, (4.178)

[ν × E]Γ− = ν × Eδ
∣∣∣
Γ−
− ν × Eout

∣∣∣
Γ−

= ν × Eδ
∣∣∣
Γ−
, (4.179)

[ν × E]S = n× Eout
∣∣∣
S
− n× Eδ

∣∣∣
S

= −n× Eδ
∣∣∣
S
, (4.180)

and

[
ν ×

(
µ−1∇× E

)]
Γ+

= ν × µ−1∇× Eout
∣∣∣
Γ+

−ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ+

= −ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ+

, (4.181)[
ν ×

(
µ−1∇× E

)]
Γ−

= ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ−

−ν × µ−1∇× Eout
∣∣∣
Γ−

= ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ−
, (4.182)[

n×
(
µ−1∇× E

)]
S

= −n×
(
µ−1∇× Eδ

) ∣∣∣
S
. (4.183)
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thus combining (4.172)-(4.177) with (4.178)-(4.183),

ν × Eδ
∣∣∣
Γ+

= ik
δ

2
ξ + ik(ν × η), (4.184)

ν × Eδ
∣∣∣
Γ−

= −ik δ
2
ξ + ik(ν × η), (4.185)

n× Eδ
∣∣∣
S

= ik(n× σ), (4.186)

and

ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ+

= −ik(ν ×A1
−1
ξ)− ik δ

2
A2η, (4.187)

ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ−

= −ik(ν ×A1
−1
ξ) + ik

δ

2
A2η, (4.188)

n×
(
µ−1∇× Eδ

) ∣∣∣
S

= 0. (4.189)

Introducing the following notation for the internal jump and the internal mean value:

JuδKΩδ := uδ
∣∣∣
Γ+

− uδ
∣∣∣
Γ−
, 〈〈uδ〉〉Ωδ :=

1

2
(uδ
∣∣∣
Γ+

+ uδ
∣∣∣
Γ−

)

for every uδ (scalar or vectorial field) defined in Ωδ, we know that,

Jν × EδKΩδ = ikδξ, (4.190)

〈〈Eδ
T 〉〉Ωδ = ikη, (4.191)

and

Jν ×
(
µ−1∇× Eδ

)
KΩδ = −ikδA2η, (4.192)

〈〈(µ−1∇× Eδ)T 〉〉Ωδ = −ikA1
−1
ξ. (4.193)

Therefore, Eδ = E|Ωδ ∈ H(curl,Ωδ) satisfies

∇× µ−1
± ∇× Eδ − k2ε±E = 0 in Ω±δ , (4.194)

A1
−1Jν × EδKΩδ = −δ〈〈(µ−1∇× Eδ)T 〉〉Ωδ , (4.195)

Jν ×
(
µ−1∇× Eδ

)
KΩδ = −δA2〈〈Eδ

T 〉〉Ωδ , (4.196)

n×
(
µ−1∇× Eδ

) ∣∣∣
S

= 0, (4.197)

n× Eδ
∣∣∣
S

= ik(n× σ). (4.198)
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Notice that (4.194)-(4.198) is an over-determined system which in general will not have

a solution. However, to investigate further, multiply by a test function and integrating

by parts we get that Eδ necessarily satisfies,

aΩδ(E
δ,vδ) = 0, for all vδ ∈ Hδ

0, (4.199)

where

aΩδ(E
δ,vδ) =

∫
Ωδ

{
µ−1
± ∇× Eδ · ∇ × vδ − k2ε±Eδ · vδ

}
d y (4.200)

+
1

δ

∫
Γ0

A1
−1Jν × EδKΩδ · Jν × vδKΩδ ds(y)

−
∫

Γ0

δA2〈〈Eδ
T 〉〉Ωδ · 〈〈v

δ〉〉Ωδ ds(y), (4.201)

and

Hδ
0 :=

{
uδ ∈ H(curl,Ωδ)

∣∣∣ 〈〈uδT 〉〉Ωδ ∈ H(curlΓ,Γ0) and

n×
(
µ−1∇× uδ

) ∣∣∣
S

= 0
}
, (4.202)

with the graph norm∥∥uδ∥∥2

Hδ0
=

∥∥uδ∥∥2

H(curl,Ωδ)
+
∥∥〈〈uδT 〉〉Ωδ∥∥2

H(curlΓ,Γ0)
. (4.203)

Observe that aΩδ(·, ·) has the same structure as the sesquilinear form a+(·, ·) + b(·, ·),

where a+(·, ·) and b(·, ·) are respectively defined in (4.50) and (4.51). Hence, repeating

the arguments given in the proofs of Proposition 4.3.2 and Theorem 4.4.1, it is possible

to prove that the problem (4.199) is well posed. Therefore, its unique solution is

Eδ = 0. We then deduce that (ξ,η,σ) = (0,0,0), and thus H ∗ is injective, implying

that H has dense range.

Now, to show that H is injective, lets observe that if H (g) = 0 , then in particular

n× µ−1∇× Eb,g

∣∣∣
S

= 0, which by the assumptions is only possible if g = 0.

Given a regular surface L ⊂ Γ, we define

C∞0,t(L) :=
{
u ∈ (C∞0 (L))3 |ν · u = 0 on L

}
.
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For any density aL ∈ C∞0,t(L), we define φ∞L by

φ∞L (x̂) :=

∫
L

GE,∞(x̂,yΓ + δf+ν)aL(yΓ) d yΓ. (4.204)

The collection of functions φ∞L will be called test functions, and with them we will

characterize the range of G :

Lemma 4.6.1. (Characterization of the range of G ) Let L ⊂ Γ, and aL ∈ C∞0,t(L)

such that aL does not vanish in any open subset of L. Then L ⊂ Γ0 if and only if

φ∞L ∈ Range(G ).

Proof. Let L ⊂ Γ0 and aL ∈ C∞0,t(L). Then its extension by zero ãL in Γ0 belongs to

C∞t (Γ0), and the corresponding test function

φ∞L (x̂) :=

∫
L

GE,∞(x̂,y)aL(y) ds(y) =

∫
Γ0

GE,∞(x̂,y)ãL(y) ds(y) (4.205)

is the far field pattern of P ãL, defined by:

(P ãL)(x) :=


∫

Γ0
GE(x,yΓ + δf+ν)ãL(y) d yΓ in R3 \ Ωδ ∪ Ω−,

∫
Γ0
GE(x,yΓ − δf−ν)ãL(yΓ) d yΓ in Ω−.

Due to well-known properties of the single- and double-layer potentials (see Remark

4.145),

∇× µ−1∇× P ãL − k2εP ãL = 0 in R3 \ Ωδ, (4.206)

Jν × P ãLK = 0, (4.207)

Jν ×
(
µ−1∇× P ãL

)
K = ikãL, (4.208)

and P ãL is a radiating field. Therefore, P ãL is the solution to (4.152)-(4.155), for

(h1,h2,h3) defined by (4.156), for v = −P ãL, and G (h1,h2,h3) = φ∞L .

To prove the other direction, let aL ∈ C∞0,t(L) such that φ∞L ∈ Range(G ). Then there

is (h1,h2,h3) ∈ H(curlΓ,Γ0)×H0(Γ0)∗×H−1/2(divS ,S ) such that E is a solution to

(4.152)-(4.155) and its far field pattern satisfies E∞ = φ∞L .

On the other hand, φ∞L is also the far field pattern of the radiating field φL defined by

φL(x) := 4π

∫
L

GE(x,yγ + δf+ν)aL(yΓ) d yΓ.
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By Rellich’s lemma, E and φL are identical in R3 \ Γ0 ∪ L. Suppose L \ Γ0 6= ∅, then

since aL does not vanish in open sets of L there is x ∈ L \ Γ0 such that aL(x) 6= 0.

Then ν×µ−1∇×E would be continuous at x while ν×µ−1∇×φL would have a jump

at that same point, which is a contradiction.

Proposition 4.6.2. Under the same hypothesis of Proposition 4.6.1, FD : L2
t (S2) →

L2
t (S2) is injective with dense range.

Proof. The fact that FD = G H is injective is an immediate consequence of Proposition

4.6.1 and from the injectivity of G , which follows from the well-posedness of (4.152)-

(4.155).

To see that FD has dense range, take P : L2
t (Γ0)→ L2

t (S2) defined by

(Pa)(d̂) =
1

4π

∫
Γ0

GE,∞(d̂,y)a(y) ds(y) (4.209)

and then

〈Pa,g〉L2
t (S2) = 4π

∫
S2

g(d̂) ·
{∫

Γ0

GE,∞(d̂,y)a(y) ds(y)
}

ds(d̂)

=

∫
Γ0

a(y) ·
{∫

S2

Epl(y,−d̂,g(d̂)) ds(d̂)
}

ds(y), (4.210)

thus

(P ∗g)(y) =

∫
S2

Epl(y,−d̂,g(d̂)) ds(d̂) = Eb,g̃(y), (4.211)

where g̃ = g(−x̂). Therefore, P ∗g = 0 if and only if g = 0 and thus P has dense

range. Since Range(P ) ⊂ Range(FD), the proof is complete.

Now we can prove the standard theorem to justify the linear sampling method.

Theorem 4.6.3. (linear sampling method) Let FD : L2
t (S2) → L2

t (S2) be the far field
operator given by (4.149). Then the following hold:

1. For any arbitrary open surface L ⊂ Γ0 and ε > 0, there exists a function gε ∈
L2
t (S2) such that

‖FDgε − φ∞L ‖L2
t (S2) < ε,

and, as ε → 0, the corresponding solution Eb,gε to the background problem
(4.111)-(4.112) converges in H0 to the unique solution EL of (4.152)–(4.155)
with h1, h2 and h3 are given by (4.156), with v = φ∞L .
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2. For L 6⊂ Γ0 and ε > 0, every function gε ∈ L2
t (S2) such that

‖FDgε − φ∞L ‖L2
t (S2) ≤ ε

is such that the corresponding solution Eb,gε to the background problem (4.111)-
(4.112) satisfies

lim
ε→0
‖Eb,gε‖Hloc(curl,R3) =∞, and lim

ε→0
‖gε‖L2

t (S2) =∞.

Remark 4.6.3. Theorem 4.6.3 is the basis for the NDT for the detection of the de-

laminated region Γ0 ⊂ Γ, but it is worth noticing that from the definition (4.204), the

test functions correspond to far field patterns of potentials given by

φL(x) :=

∫
L

GE(x,yΓ + δf+ν)aL(yΓ) d yΓ, (4.212)

which are discontinuous on the shifted segment

L+ := {y = yΓ + δf+ν(yγ)d |yγ ∈ L}, (4.213)

that in principle we do not know, since δf+ is an unknowns quantity. However, let τ

is a tangential vector to L ⊂ Γ at yΓ, then by the mixed reciprocity principle Theorem

4.6.1,

4πτ ·GE,∞(·,yΓ + δf+ν(yΓ))aL(yΓ)

= aL(yΓ) · Epl(yΓ + δf+ν(yΓ),−·, τ), (4.214)

and since the tangential traces of Epl(·,−x̂, τ) are continuous, then if δ is small enough,

4πτ ·GE,∞(·,yΓ + δf+ν(yΓ))aL(yΓ)

∼ aL(yΓ) · Epl(yΓ,−·, τ), (4.215)

which can be computed because it is defined on the known surface Γ.

4.7 Numerical experiments

In this part of the chapter we present some numerical results, using a numerical

algorithm reconstruction based on the linear sampling method Theorem 4.6.3. In
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what follows we explain how the discretized far field operator and test functions were

constructed. This is based on [23], p.47.

Let {x̂j}Nj=1 ⊂ S2 be the nodes and ω = (ω1, ..., ωN)T ∈ RN
+ be the weights vector

associated with a given quadrature rule on the unit sphere S2. We will set both the

incidence and the observation directions to coincide with {x̂j}Nj=1.

Therefore, the far-field operator acting on g ∈ L2
t (S2)3, satisfies

(Fg)(x̂i) =

∫
S2

E∞(x̂i, d̂,g(d̂)) ds(d̂)

∼
N∑
j=1

ωjE
∞
comp(x̂i, x̂j,g(x̂j)). (4.216)

If we define for every j = 1, ..., N , given x̂j × pj 6= 0,

p̂θj :=
pj × x̂j
|pj × x̂j|

and p̂φj :=
pj × (x̂j × pj)

|pj × (x̂j × pj)|
, (4.217)

and for ` ∈ {θ, φ} and j ∈ {1, ..., N}

g`j := g(x̂j) · p̂`j,

then by linearity,

E∞comp(x̂i, x̂j,g(x̂j)) = E∞comp(x̂i, x̂j, p̂
θ
j)g

θ
j + E∞comp(x̂i, x̂j, p̂

φ
j )gφj . (4.218)

Thus denoting

A`
i,j = E∞comp(x̂i, x̂j, p̂

`
j) for ` ∈ {θ, φ}, (4.219)

at the discrete level the associated far field equation becomes

N∑
j=1

ωjA
θ
i,jg

θ
j + ωjA

φ
i,jg

φ
j = φ∞z (x̂i). (4.220)

However, the discrete far-field equation (4.220) is in tensor form. To get a standard

matrix equation we take the dot product of both sides of equation (4.220) with p̂βj , for

β ∈ {θ, φ} and thus

N∑
j=1

ωjA
β,θ
i,j g

θ
j + ωjA

β,φ
i,j g

φ
j = fβz (x̂i), (4.221)
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where

Aβ,`
i,j := p̂βi ·A`

i,j = p̂βi · E∞comp(x̂i, x̂j, p̂`j) and fβz (x̂i) := p̂βi · φ
∞
z (x̂i). (4.222)

In matrix form, if M`,β ∈ CN×N is defined by

M`,β = A`,βD, (4.223)

where D = diag{ω} is the diagonal matrix whose principal diagonal is the weights

vector ω.

The far-field equation becomes

Mθ,θ Mθ,φ

Mφ,θ Mφ,φ


2N×2N



gθ

gφ


2N×1

=



f θz

fφz


2N×1

.

As the discrete version of the ill-posedness of the far-field equation, this linear

equation is also severely ill-posed but can be approximately solved using, for example,

the standard Tikhonov regularization method. Given the solution gz,η to the regu-

larized problem associaled to the regularization parameter 0 < η � 1, the indicator

function that we would compute is given by

Gη(z) = 1/||gz,η||. (4.224)

In our case, for the practical examples, the test function will be considered when the

surface L ⊂ Γ shrinks to the point z and the density aL tends to a delta function

δ(·−z)τ `, where τ ` for ` = 1, 2 are the basis of the tangential plane to Γ at z. In such

a case,

φ∞z,`(x̂i) = GE,∞(x̂i, z + δf+ν)τ ` for ` = 1, 2. (4.225)
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And then the right-hand-side terms for the discrete far field equation are:

fβz,`(x̂i) = p̂βi · φ
∞
z,`(x̂i) (4.226)

= p̂βi ·GE,∞(x̂i, z + δf+ν)τ ` (4.227)

=
1

4π
τ ` · Eb(z + δf+ν,−x̂i, p̂

β
i )

∼ 1

4π
τ ` · Eb(z,−x̂i, p̂

β
i ). (4.228)

4.7.1 Numerical reconstruction example

The example we presented here was done for the configuration shown in Fig.

(4.5), were Ω− is the interior of a cube, and the delamination is located on one side of

the cube.

The material physical and geometrical parameters in this particular example were:

k = 3, δ = 0.01, µ− = µ+ = µδ = 1, ε+ = 2 + 0.001i, ε− = 4 + 0.001i, εδ = 3.5 + 0.001i.

In this example, the PML is spherical, with external boundary the sphere of radius

Rpml = 2.7, and the internal boundary of radius R = 2. On the other hand Γ1 is a

sphere of radius R+ = 1.3, and Γ is the surface of the cube centered at the origin and

with side-length l = 1.2.

In total, the number of incident directions d̂ ∈ S2 was 93 in this example, and they

were generated as the nodes of a uniform mesh on the unit sphere S2 constructed by

Netgen/Ngsolve. The sampling points {z`}Ns`=1, Ns = 152, were constructed in a similar

way, by defining a surface mesh on the cube. The regularization parameter for the

Tikhonov regularization method in this example was chosen as η = 10−10.

Both the far field data and the right-hand-side (4.228) were computed by solving the

full problem (4.1)-(4.2) and (4.3), and using a finite element method for the variational

formulation (4.95). The Nitsche’s parameter was set as γ = 103, and the mesh refine-

ment level hmax = 0.2. Some noise in the data was added in order to avoid numerical

crimes. We consider Ãij = Aij(1 + εζij), where {ζij} is a collection of independent

random variables with uniform distribution over the interval [−0.5, 0.5], and ε > 0 is a

constant. The level of noise is defined by ρ := ||A− Ã||2/||A||2.
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(a) (b)

Figure 4.7: Panel Reconstruction of the delamination on one side of the cube, under
ρ = 5.5% noise.

Conclusion

A Chun’s-type ATCs model for the scattering of electromagnetic waves in the

presence of planar delaminations with constant thickness was proposed, based on a

particular case of the more general ATCs model whose complete derivation can be

found in Proposition C.3.1.

After a well-posedness result was successfully established when the absortion in the

whole obstacle is large, i.e. when =(ε±), =(εδ) ≥ εmin > 0, the ATCs model was

used to develop a NDT of delamination by adapting the LSM to this case. Although

the LSM proven analitically works only under the assumption that one of the bound-

aries of the delamination is known (Γ+), the practical implementation still works when

suitable approximations to the test function are considered and this extra impractical

assumption is eliminated. The reconstruction algorithm has been successfully tested

in a numerical example.
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Chapter 5

OPEN PROBLEMS AND FUTURE WORK

As described before, this thesis combines asymptotic techniques and qualita-

tive methods for the development of NDT to detect delaminations and cracks. The

mathematical methodologies that were applied to solve the inverse scattering problems

discussed in this thesis are diverse, and different lines of research may still be explored.

Here we point out some open problems that arise from the analysis presented through-

out the thesis.

Regarding the problem of crack detection in elastic materials discussed in Chapter 2,

it would be interesting, for example, to consider the following two generalizations:

· Crack detection in layered anisotropic elastic materials.

· More general interfacial conditions on the crack.

Concerning the interfacial conditions, it would be a possibility, for example, to explore

an ATCs model for elastic materials in the fashion of the asymptotic model that was

described in Chapter 3 for the acoustic wave scattering. These models would presum-

ably be more accurate to describe the so-called delamination cracks in elastic media.

In the case of inverse acoustic scattering for the detection of delaminated inter-

faces considered in Chapter 3, it would be interesting to

· Investigate the performance of the numerical algorithm for limited aperture data.

· Develop a mathematically more rigorous test via the the Generalized Linear Sam-

pling Method (GLSM) [12, 11].

Moreover, due to the geometry of the defect, the singuarity of the solution at the edges

of the delamination Ωδ plays a role in the stability analysis of the asymptotic model

as the thickness of the delamination goes to zero, and this has still to be theoretically
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understood (see Remark 3.2.1).

Regarding the asymptotic model for the scattering of electromagnetic waves in

the presence of thin domains (delaminations), whose analysis constitutes the first part

of Chapter 4, the problem of considering more general geometries is still the main issue.

More specifically, it would be desirable to study the following two cases: (a) delami-

nations of constant thickness but sitting on curved interfaces, and (b) delaminations

of variable thickness.

Although the second order ATCs model derived in Proposition C.3.1, takes into con-

sideration the two general cases (a) and (b), the complications arise in the integration-

by-parts (4.25), which is the previous step in the derivation of a variational formulation

of the problem:∫
Γ−

ν− × (µ−1
− ∇× E−) · v− ds(y)−

∫
Γ+

ν+ × (µ−1
+ ∇× E+) · v+ ds(y). (5.1)

Below we describe in more detail the complications that the cases (a) and (b) described

before lead to.

· In case (a), where the functions f± are constant (and thus ν = ν− = ν+), but the

curvature of Γ0 is not identically vanishing, then (5.1) becomes:

−
∫

Γ0
D+ν × (µ−1

+ ∇× E+) · v+ ds(y) (5.2)

−
∫

Γ0
J
√
Dν × (µ−1∇× E)K · 〈〈

√
Dv〉〉 ds(y)

−
∫

Γ0
〈〈
√
Dν × (µ−1∇× E)〉〉 · J

√
DvK ds(y), (5.3)

where D± = 1 ± δ(c1 + c2)f± + δ2c1c2(f±)2 are the determinants of the Jacobians

associated with the change of variables xΓ 7→ xΓ ± δf±ν(xΓ).

In [30], the authors have successfully addressed the case when f− = f+, noticing that

the expression (5.3) simplifies in terms of the non-weighted jumps and average values

Jν × (µ−1∇× E)K and 〈〈ν × (µ−1∇× E)〉〉, and thus the ATCs model can be used in

such case. However, the extra hypothesis f− = f+ is not considered in our work since

our main interest is the inverse problem of the detection of Γ0, where f− = f+ cannot
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be a priori assumed.

· In case (b), where the functions f± = f±(xΓ) are non-constant but the principal cur-

vatures c1 and c2 vanish identically on Γ0, the determinants D± of the transformations

xΓ 7→ xΓ ± δf±ν(xΓ) are D± = 1 identically. In this case, (5.1) becomes:

∫
Γ−
ν × (µ−1

− ∇× E−) · v− ds(y)−
∫

Γ+
ν+ × (µ−1

+ ∇× E+) · v+ ds(y)

= −
∫

Γ0
Jν± × (µ−1∇× E)K · 〈〈v〉〉 ds(y)

−
∫

Γ0
〈〈ν± × (µ−1∇× E)〉〉 · JvK ds(y), (5.4)

where we have included the superindices ± on the normal vectors defined on the bound-

ary of the delamination, ν+ and ν−, to emphasize the fact that they do not coincide

with the unit normal vector on Γ0, ν. Therefore, in this case it is difficult to relate the

terms in (5.4) to the ATCs expressions in Proposition C.3.1.
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Appendix A

AUXILIARY LEMMAS FOR ELASTICITY

This Appendix contains some auxiliary technical results of linear elasticity, used

in Chapter 2. The notation here, unless otherwise stated, corresponds to that chapter.

We start by deriving an analogue of Green’s representation formula.

Lemma A.0.1. Let D ⊂ R3 be a bounded, connected and open domain with Lipschitz

boundary ∂D. Let usc ∈ H1
loc(R3 \D)3 be a radiating solution to ∆∗λ0,µ0

usc + ω2usc = 0

in R3 \D. Then, if we denote by νD the unit normal vector on ∂D that points to the

exterior of D,

usc(x) =

∫
∂D

{
∂∗νD(y)Γ0(x,y)usc(y)− Γ0(x,y)∂∗νDusc(y)

}
ds(y), (A.1)

for all x ∈ R3 \D.

Proof. Let x ∈ R3 \ D and R > 0 large enough so that the open ball BR of radius
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R > 0 is such that {x} ∪D ⊂ BR. Then, integrating by parts in ΩR := BR \D,

usc(x) = −
∫

ΩR

(∆∗λ0,µ0
Γ0(y,x) + ω2Γ0(y,x)) · usc(y) d y

=

∫
ΩR

{
∇usc(y) : C : ∇yΓ0(y,x)− ω2Γ0(y,x) · usc(y)

}
d y

+

∫
∂D

{
∂∗νD(y)Γ0(x,y)usc(y)

}
ds(y)−

∫
∂BR

{
∂∗ŷΓ0(x,y)usc(y)

}
ds(y)

= −
∫

ΩR

{
Γ0(y,x)(∆∗0u

sc(y) + ω2usc(y))
}

d y

+

∫
∂D

{
∂∗νD(y)Γ0(x,y)usc(y)− Γ0(x,y)∂∗νDusc(y)

}
ds(y)

+

∫
∂BR

{
Γ0(x,y)∂∗ŷu

sc(y)− ∂∗ŷΓ0(x,y)usc(y)
}

ds(y)

=

∫
∂D

{
∂∗νD(y)Γ0(x,y)usc(y)− Γ0(x,y)∂∗νDusc(y)

}
ds(y)

+

∫
∂BR

{
Γ0(x,y)∂∗ŷu

sc(y)− ∂∗ŷΓ0(x,y)usc(y)
}

ds(y), (A.2)

Observe that when R → ∞, the integral on ∂BR in the last line of (A.2) vanishes, so

that

usc(x) =

∫
∂D

{
∂∗νD(y)Γ0(x,y)usc(y)− Γ0(x,y)∂∗νDusc(y)

}
ds(y). (A.3)

Using the previous result we can prove the following representation formula for

the far field pattern of the Green’s matrix Gb defined by (2.49).

Corollary A.0.1. For all z ∈ Ω,

G∞b (x̂, z) =

∫
Γ1

{
∂∗ν(y)Γ

∞
0 (x̂,y)Gb(y, z)− Γ∞0 (x̂,y)∂∗νDGb(y, z)

}
ds(y), (A.4)

We now prove an identity of scattered elastic fields, which is a necessary auxiliary result

for the proofs of the mixed reciprocity principle Theorem 2.3.1 and the propeties of the

scattering operator Sb stated in Proposition 2.3.1.
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Lemma A.0.2. Let D ⊂ R3 be a bounded, connected and open domain with Lipschitz

boundary ∂D. Let u, w ∈ H1
loc(R3 \D)3 be two regular radiating solutions of ∆∗0u

sc +

ω2usc = 0 in R3 \ D. Then, if we denote by νD the unit normal vector on ∂D that

points to the exterior of D,

0 =

∫
∂D

{
∂∗νDu(y) ·w(y)− u(y) · ∂∗νDw(y)

}
ds(y). (A.5)

Proof. Let R > 0 be large enough so that D ⊂ BR. Then, integrating by parts in

ΩR := BR \D,

0 = −
∫

ΩR

(∆∗0w(y) + ω2w(y)) · u(y) d y

=

∫
ΩR

{
∇u(y) : C0 : ∇w(y)− ω2w(y) · u(y)

}
d y

+

∫
∂D

{
∂∗νDw(y) · u(y)

}
ds(y)−

∫
∂BR

{
∂∗ŷw(y) · u(y)

}
ds(y)

= −
∫

ΩR

{
w(y) · (∆∗0u(y) + ω2u(y))

}
d y

+

∫
∂D

{
∂∗νDw(y) · u(y)−w(y) · ∂∗νDu(y)

}
ds(y)

+

∫
∂BR

{
w(y) · ∂∗ŷu(y)− ∂∗ŷw(y) · u(y)

}
ds(y)

=

∫
∂D

{
∂∗νDw(y) · u(y)−w(y) · ∂∗νDu(y)

}
ds(y)

+

∫
∂BR

{
w(y) · ∂∗ŷu(y)− ∂∗ŷw(y) · u(y)

}
ds(y). (A.6)

Now, from the radiation conditions (2.7),∫
∂BR

{
w(y) · ∂∗ŷu(y)− ∂∗ŷw(y) · u(y)

}
ds(y)

= R

∫
S2

{
w(Rd̂) · ∂∗

d̂
u(Rd̂)− ∂∗

d̂
w(Rd̂) · u(Rd̂)

}
ds(d̂)

= ikα

∫
S2

{
w∞(d̂) · u∞(d̂)−w∞(d̂) · u∞(d̂)

}
ds(d̂) +O

(
1

R

)
= O

(
1

R

)
, (A.7)
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and then taking the limit in (A.6) when R→∞, we get finally that

0 =

∫
∂D

{
∂∗νDu(y) ·w(y)− u(y) · ∂∗νDw(y)

}
ds(y). (A.8)
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Appendix B

DERIVATION OF THE APPROXIMATE TRANSMISSION
CONDITIONS FOR THE ACOUSTIC CASE

The material in this appendix concerns the detailed derivation of the second

order approximate transmission conditions (ATCs) in R2 used in Chapter 3.

At the risk of repetition, to allow an independent study of this appendix, we describe

here in detail the setting of the original acoustic scattering problem addressed in Chap-

ter 3.

Denote by Ω ⊂ R2, the support of a layered medium which is composed of two

different materials adjacent to one another with constitutive material properties µ+,

n+ and µ−, n−. We denote their bounded support by Ω− and Ω+, respectively, and the

shared interface by Γ := ∂Ω− (i.e. Ω = Ω−∪Ω+). Both the outer boundary ∂Ω+ of the

domain Ω+ and the boundary ∂Ω− of the simply connected domain Ω− are assumed

to be piece-wise smooth, unless mentioned otherwise, and ν denotes the unit normal

always oriented outwards to the region bounded by the curve. For simplicity we let

Ωext := R2\Ω. Furthermore, we assume that along a part of the interface, denoted here

by Γ0 ⊂ Γ, these two materials have detached (delaminated) and we model this fact

with the appearance of an opening with support Ωδ and material properties µδ, nδ (see

Fig. B.1). Note that Γ0 = Ωδ∩Γ. The material properties (possibly complex valued) in

each of the domains are assumed to be smooth, i.e. µ+, n+ ∈ C1(Ω+), µ−, n− ∈ C1(Ω−)

and µδ, nδ ∈ C1(Ωδ) (however note that across the interfaces there are discontinuities

in the material properties). Assuming now that the incident field and the other fields

in the problem are time harmonic (i.e. the time dependent incident field is of the form

< (ui(x)eiωt) where ω is the angular frequency), then the total field uext = us + ui in
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Figure B.1: Layered media with a thin delamination at the interface of two layers
Ω− and Ω+. The opening Ωδ, with coefficients µδ, nδ is shown as the
white region.

Ωext, where us is the scattered field, and the fields u+, u− and U inside Ω+, Ω− and

Ωδ, respectively, satisfy

∆uext + k2uext = 0 in Ωext (B.1)

∇ ·
(

1

µ+

∇u+

)
+ k2n+u

+ = 0 in Ω+ (B.2)

∇ ·
(

1

µ−
∇u−

)
+ k2n−u

− = 0 in Ω− (B.3)

∇ ·
(

1

µδ
∇U

)
+ k2nδU = 0 in Ωδ. (B.4)

Here the wave number k = ω/cext with cext denoting the sound speed of the homoge-

neous background. Across the interfaces the fields on either side and their conormal
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derivatives are continuous, i.e.

uext = u+ and
∂uext

∂ν
=

1

µ+

∂u+

∂ν
on Γ1 (B.5)

u+ = u− and
1

µ+

∂u+

∂ν
=

1

µ−

∂u−

∂ν
on Γ\Γ0 (B.6)

U = u+ and
1

µδ

∂U

∂ν
=

1

µ+

∂u+

∂ν
on Γ+ (B.7)

U = u− and
1

µδ

∂U

∂ν
=

1

µ−

∂u−

∂ν
on Γ−. (B.8)

Of course the scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

r
1
2

(
∂us

∂r
− ikus

)
= 0 (B.9)

uniformly in x̂ = x/|x|, where x ∈ R2 and r = |x|. Let xΓ ∈ C1[0, L] be the counter-

f
+

δ (s)

 
�

(s)
-

f- (s)
0

+

-

δ (s)ν

(s)ν

 
�

(s)
-

+
 
�

(s)

Figure B.2: Zoom of the thin delamination Ωδ, and the parametrization of the bound-
aries Γ− and Γ+. Here δ scales the width of the delamination and is
assumed small compared to other characteristic dimensions of the prob-
lem.

clockwise arc-length parametrization of Γ0. If the curve Γ0 is regular and c(s) denotes

its curvature at xΓ(s), then 0 ≤ cm := max{|c(s)| : s ∈ [0, L]} is finite. Hence, in the

neighborhood of Γ0, one can define the curvilinear coordinates (s, η) ∈ [0, L]×(− 1
cm
, 1
cm

)

by

x = xΓ(s) + ην(s),

where we recall that ν is the unit normal vector on Γ0 oriented outward to Ω− (and

taking 1
cm

=∞ if cm = 0). Therefore, if the curvature of Γ0 is small enough, both the
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outer and inner boundaries of Ωδ, denoted here by Γ+ and Γ−, can be written in this

coordinate system as

Γ+ =
{
xΓ+(s) := xΓ(s) + δf+(s)ν(s), s ∈ [0, L]

}
and

Γ− =
{
xΓ−(s) := xΓ(s)− δf−(s)ν(s), s ∈ [0, L]

}
.

Note that the function δ(f+ +f−)(s) defined on Γ0 describes the thickness of Ωδ. Here

δ > 0 is a small parameter (compared to both the wave length and the size of the

domains involved), and maxs∈[0,L] f
±(s) = 1 (see Fig. B.2). In an open neighborhood

of Ωδ, we can now express the fields U , u−, and u+ in terms of the curvilinear variables

(s, η). Ignoring small neighborhoods of the tip points s = 0 and s = L, since Ωδ plays

here the role of a boundary layer, in order to transfer the small parameter δ from the

geometry to the expression of the fields we make a stretching change of variables inside

Ωδ defined by ζ = η
δ
. Hence, ζ = η

δ
and s are now the new coordinates inside Ωδ. Next,

following [10] and [71], we formally make the following ansatz for the fields U and u±

in an open neighborhood of Ωδ:

U(s, ζ) =
∞∑
j=0

δjUj(s, ζ) in Ωδ,

and

u±(s, η) =
∞∑
j=0

j∑
`=0

δj
η`

`!

∂`

∂η`
u±j (s, 0).

We will derive here the two sets of Dirichlet and Neumann transmission conditions for

the first three terms in the asymptotic expansion, as well as the PDEs that they satisfy.

The transmission conditions

The Dirichlet transmission conditions

The original Dirichlet transmission conditions on the field u, correspond to the

continuity of the total field across Ωδ interface:

u± = U on Γ±, respectively.
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Directly from the asymptotic expressions, on Γ± we have in particular the Dirichlet
boundary conditions for the lowest order terms become:

• j = 0 :
U0(s,±f±) = u±0 (s, 0) (B.10)

• j = 1 :

U1(s,±f±) = ±f±∂u
±
0

∂η
(s, 0) + u±1 (s, 0) (B.11)

• j = 2 :

U2(s,±f±) =
f±

2

∂2u±0
∂η2

(s, 0)± f±∂u
±
1

∂η
(s, 0) + u±2 (s, 0). (B.12)

The Neumann transmission conditions

Next, we turn our attention to the original Neumann transmission conditions of

the field u, given by the continuity condition of the flux of the field at the boundary

of the delamination:

1

µ±
∇u± · ν± =

1

µδ
∇U · ν± on Γ±, respectively.

As derived in [10], the unit normal vectors ν± to Γ± have the following expressions:

ν± =
1

|τ±|
((1± δf±)ν ∓ δf±′τ ),

where ν and τ are the outer unit normal vector and unit tangential vector defined on

Γ0, respectively, and τ± is the tangential vector defined on Γ± (which is not a unit

vector in general).

Moreover, abusing notation and denoting by U the inner field both in Cartesian and

in curvilinear coordinates, we have

∇U(x) =
1

(1 + ηc)

∂U

∂s
τ +

∂U

∂η
ν.

where c = c(s) is the curvature of Γ0.

So we have all the ingredients to compute the Neumann transmission conditions:

ν± · ∇u± =
1

|τ±|
((1± δf±)

∂u±

∂η
∓ δf±

′

(1± δf±)

∂u±

∂s
)
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and

ν± · ∇U =
1

|τ±|
((1± δf±)

∂U

∂η
∓ δf±

′

(1± δf±)

∂U

∂s
)

so then

1

µ±
((1± δf±)

∂u±

∂η
∓ δf±

′

(1± δf±)

∂u±

∂s
)

=
1

µδ
((1± δf±)

∂U

∂η
∓ δf±

′

(1± δf±)

∂U

∂s
) (B.13)

so

(1± δf±)2
( 1

µ±

∂u±

∂η
− 1

δµδ

∂U

∂ζ

)
= ±δf±′

( 1

µ±

∂u±

∂s
− 1

µδ

∂U

∂s

)
(B.14)

and hence,

(1± 2δf± + δ2f±
2
)
(

1
µ±

∑∞
j=0 δ

j
∑j

`=0
(±1)j−`(f±)j−`

j−`!
∂j−`+1

∂ηj−`+1u
±
` (s, 0)

− 1
µδ

∑∞
j=−1 δ

j ∂
∂ζ
Uj+1(s,±f±)

)
= ±δf±′

(
1
µ±

∑∞
j=0 δ

j
∑j

`=0
(±1)j−`(f±)j−`

j−`!
∂j−`+1

∂ηj−`∂s
u±` (s, 0)

− 1
µδ

∑∞
j=0 δ

j ∂
∂s
Uj(s,±f±)

)
which can be expressed as∑∞

j=−1 δ
j
(

1
µ±

∑j−1
`=0

(±1)j−`−1(f±)j−`−1

j−`−1!
∂j−`

∂ηj−`
u±` (s, 0)− 1

µδ

∂
∂ζ
Uj+1(s,±f±)

)
±f±

∑∞
j=0 δ

j
(

1
µ±

∑j−1
`=0

(±1)j−`−1(f±)j−`−1

j−`−1!
∂j−`

∂ηj−`
u±` (s, 0)− 1

µδ

∂
∂ζ
Uj+1(s,±f±)

)
+f±

2 ∑∞
j=1 δ

j
(

1
µ±

∑j−1
`=0

(±1)j−`−1(f±)j−`−1

j−`−1!
∂j−`

∂ηj−`
u±` (s, 0)− 1

µδ

∂
∂ζ
Uj+1(s,±f±)

)
= ±f±′

∑∞
j=0 δ

j
(

1
µ±

∑j
`=0

(±1)j−`(f±)j−`

j−`!
∂j−`+1

∂ηj−`∂s
u±` (s, 0)− 1

µδ

∂
∂s
Uj(s,±f±)

)
.

And then one can finally get the following expressions for the Neumann B.C.:

±f±′
(

1
µδ

∂Uj−1

∂s
(s,±f±)− 1

µ±

∑j−1
`=0

(±1)j−`−1(f±)j−`−1

(j−`−1)!

∂j−`u±`
∂ηj−`−1∂s

(s, 0)
)

=
(

1
µδ

∂Uj+1

∂ζ
(s,±f±)− 1

µ±

∑j
`=0

(±1)j−`(f±)j−`

(j−`)!
∂j−`+1u±`
∂ηj−`+1 (s, 0)

)
+

±2f±c
(

1
µδ

∂Uj
∂ζ

(s,±f±)− 1
µ±

∑j−1
`=0

(±1)j−`−1(f±)j−`−1

(j−`−1)!

∂j−`u±`
∂ηj−`

(s, 0)
)

+c2(f±)2
(

1
µδ

∂Uj−1

∂ζ
(s,±f±)− 1

µ±

∑j−2
`=0

(±1)j−`−2(f±)j−`−2

(j−`−2)!

∂j−`−1u±`
∂ηj−`−1 (s, 0)

)
, (B.15)

144



for j = −1, 0, 1, 2, ..., for all s ∈ [0, L], and with the convention that u` = 0 for negative
`.
Therefore, the three lowest order terms become:

• j = −1 :

∂U0

∂ζ
(s,±f±) = 0. (B.16)

• j = 0 :
1

µ±δ

∂U1

∂ζ
(s,±f±) =

1

µ±

∂u±0
∂η

(s, 0). (B.17)

• j = 1 :

±f±
(

1
µδ

∂U0

∂s
(s,±f±)− 1

µ±

∂u±0
∂s

(s, 0)
)

=
(

1
µδ

∂U2

∂ζ
(s,±f±)− ±f±

µ±

∂2u±0
∂η2 (s, 0)− 1

µ±

∂2u±1
∂η

(s, 0)
)

±2f±
(

1
µδ

∂U2

∂ζ
(s,±f±)− 1

µ±

∂2u±0
∂η

(s, 0)
)

+ c2(f±)2

µδ

∂U0

∂ζ
(s,±f±).

The partial differential equations for the inner field

Considering the expression of the gradient and divergence in curvilinear coordi-

nates:

∇ ·
(

1

µ
∇U

)
=

1

(1 + ηc)

∂

∂s

(
1

µ

1

(1 + ηc)

∂U

∂s

)
+

1

(1 + ηc)

∂

∂η

(
(1 + ηc)

µ

∂U

∂η

)
,

it is possible to express the PDE of the field U by

1

(1 + δζc)

∂

∂s

(
1

µ

1

(1 + δζc)

∂U

∂s

)
+

1

δ

1

(1 + δζc)

∂U

∂ζ

(
(1 + δζc)

δµ

∂u

∂ζ

)
+ k2nδU = 0.

So substituting the Ansatz for U and collecting terms that correspond to same powers

of δ, one gets the following equation:

∂

∂ζ

(
1

µδ

∂

∂ζ

)
Uj +

(
3ζc

∂

∂ζ

(
1

µδ

∂

∂ζ

)
+

c

µδ

∂

∂ζ

)
Uj−1 +(

∂

∂s

(
1

µδ

∂

∂s

)
+ 3ζ2c2 ∂

∂ζ

(
1

µδ

∂

∂ζ

)
+

2c2ζ

µo

∂

∂ζ
+ k2nδ

)
Uj−2 +(

ζc
∂

∂s

(
1

µδ

∂

∂s

)
+ ζ3c3 ∂

∂ζ

(
1

µδ

∂

∂ζ

)
+
c3ζ2

µo

∂

∂ζ
− ζc′

µδ

∂

∂s
+ 3ζck2nδ

)
Uj−3 +

+3ζ2c2k2nδUj−4 + ζ3c3k2nδUj−5 = 0,(B.18)
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for j = 0, 1, 2..., and where c = c(s) is the curvature of Γ, again using the convention

that u` = 0 for negative `.

B.1 Derivation of the approximate transmission conditions.

In what follows, we define two different kind of jumps:

1) For the inner fields. If V is a function in H1(Ωδ), then the jump and mean
values of V are refered to the traces of V on Γ±. So they are respectively defined
by:

JV KΩδ := V |Γ+ − V |Γ− and 〈〈V 〉〉Ωδ :=
1

2
(V |Γ+ + V |Γ−).

2) For the outer fields. if v+ and v− are functions inH1(Ω+∪Ωδ) andH1(Ω−∪Ωδ),
respectively, then the jump and mean values of v+ and v− on Γ0 are defined as:
[v] := v+|Γ0 − v−|Γ0 and 〈v〉 := 1

2
(v+|Γ0 + v−|Γ0).

Using this notation, we derive the following:

• From (B.18), j = 0, we know that ∂2U0

∂ζ2 = 0, so then

∂U0

∂ζ
(s, ζ) = J

∂U0

∂ζ
KΩδ(s),

and then from B.17, ∂U0

∂ζ
(s, ζ) = 0, so

u0(s, ζ) = 〈u0〉 (s).

Now, since from B.10 we know that u0(s,±f±) = u±0 (s,±δf±), then

[u0] = 0. (B.19)

• From (B.18), j = 1, ∂2U1

∂ζ2 = 0, so then

∂U1

∂ζ
(s, ζ) = J

∂U1

∂ζ
KΩδ(s),

and hence J 1
µδ

∂U1

∂ζ
KΩδ = 0. So from (B.17), 1

µδ

∂U1

∂ζ
(s,±f±) = 1

µ±
∂u0

∂η
(s,±δf±) and

thus [
1

µ

∂u0

∂η

]
= 0. (B.20)

• From (B.11),

[u1] = JU1KΩδ − 2

〈
f±

∂u0

∂η

〉
,
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and since

JU1KΩδ =

∫ f+

−f−

∂U1

∂ζ
(s, ζ)dζ = (f+ + f−)〈〈∂U1

∂ζ
〉〉Ωδ = µδ(f

+ + f−)

〈
1

µ

∂u0

∂η

〉
,

where for the last equality we used (B.17).
Therefore,

[u1] = µδ(f
+ + f−)

〈
1

µ

∂u0

∂η

〉
− 2

〈
f±

∂u0

∂η

〉
=

(
µδ

(f+ + f−)

2
− f+µ+

)
1

µ+

∂u+
0

∂η

+

(
µδ

(f+ + f−)

2
− f−µ−

)
1

µ−

∂u−0
∂η

=

(
µδ

(f+ + f−)

2
− f+µ+

)〈
1

µ

∂u0

∂η

〉
+

(
µδ

(f+ + f−)

2
− f−µ−

)〈
1

µ

∂u0

∂η

〉
= 2 〈f(µδ − µ)〉

〈
1

µ

∂u0

∂η

〉
. (B.21)

• From B.18,

2
(
〈〈 f ′
µδ

∂U0

∂s
〉〉Ωδ −

〈
f ′

µ
∂u0

∂s

〉)
= J 1

µδ

∂U2

∂ζ
KΩδ − 2

〈
f ′

µ
∂2u0

∂η2

〉
−
[

1
µ
∂u1

∂η

]
+4c

(
〈〈 f
µδ

∂U0

∂ζ
〉〉Ωδ −

〈
f
µ
∂u0

∂η

〉)
,

so

2

〈
f ′
(

1

µδ
− 1

µ

)〉
∂

∂s
〈u0〉

= J
1

µδ

∂U2

∂ζ
KΩδ − 2

〈
f ′

µ

∂2u0

∂η2

〉
−
[

1

µ

∂u1

∂η

]
. (B.22)

(i) Now, using (B.18) for j = 2,

J 1
µδ

∂U2

∂ζ
KΩδ =

∫ f+

−f−
∂2U2

∂ζ2 (s, ζ)dζ

=
∫ f+

−f−

(
− c〈〈 1

µδ

∂U1

∂ζ
〉〉Ωδ −

1
µδ

∂2

∂ζ2 〈〈U0〉〉Ωδ − k
2nδ〈〈U0〉〉Ωδ

)
dζ
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and hence

J 1
µδ

∂U2

∂ζ
KΩδ = −c(f− + f+)〈〈 1

µδ

∂U1

∂ζ
〉〉Ωδ

− (f−+f+)
µδ

∂2

∂s2
〈〈U0〉〉Ωδ − (f− + f+)k2nδ〈〈U0〉〉Ωδ (B.23)

(ii) From the differential equation that the outer field satisfies, one knows that:

1
µ±

∂2u±0
∂η2 (s,±δf±) = 1

µ±

∂2u±0
∂s2

(s,±δf±) + 1
µ±
c
∂u±0
∂η

(s,±δf±) + k2n±u±0 ,

and hence:

−2
〈
f
µ
∂2u0

∂η2

〉
= 2

〈
1
µ
∂2u0

∂s2

〉
+ 2c

〈
1
µ
∂u0

∂η

〉
+ 2k2 〈nu0〉 . (B.24)

Therefore, and substituting (B.23) and (B.24) in (B.22),

2
〈
f ′
(

1
µδ
− 1

µ

)〉
∂
∂s
〈u0〉

= −c(f− + f+)〈〈 1
µδ

∂U1

∂ζ
〉〉Ωδ −

(f−+f+)
µδ

∂2

∂s2
〈〈U0〉〉Ωδ

−(f− + f+)k2nδ〈〈U0〉〉Ωδ + 2
〈
f
µ
∂2u0

∂s2

〉
+ 2c

〈
f
µ
∂u0

∂η

〉
+2k2 〈fnu0〉 −

[
1
µ
∂u1

∂η

]
= 2

〈
f
(

1
µ
− 1

µδ

)〉
∂2

∂s2
〈u0〉+ 2k2 〈f(n− nδ)〉 〈u0〉 −

[
1
µ
∂u1

∂η

]
,

and then,[
1

µ

∂u1

∂η

]
= 2

〈(
1

µ
− 1

µδ

)
∂

∂s

(
f
∂

∂s

)〉
〈u0〉+ 2k2 〈f(n− nδ)〉 〈u0〉 .

Moreover, if µ± are constant along Γ0,[
1

µ

∂u1

∂η

]
= 2

∂

∂s

(〈
f

(
1

µ
− 1

µδ

)〉
∂

∂s

)
〈u0〉+ 2k2 〈f(n− nδ)〉 〈u0〉 .

In summary, on one hand we deduce for the jump of the field u:

[u] = [u0] + δ [u1] +O(δ2)

= δα

〈
1

µ

∂u0

∂ν

〉
+O(δ2)

= δα

〈
1

µ

∂u

∂ν

〉
+O(δ2), (B.25)

(B.26)
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where in the second line we have used (B.19) and (B.21), and have defined α =

2 〈f(µδ − µ)〉.

On the other hand, for the jump on the flux:[
1

µ

∂u

∂ν

]
=

[
1

µ

∂u0

∂ν

]
+ δ

[
1

µ

∂u1

∂ν

]
+O(δ2)

= δ

(
− ∂

∂s

(
β
∂

∂s

)
〈u0〉+ γ 〈u0〉

)
+O(δ2)

= δ

(
− ∂

∂s

(
β
∂

∂s

)
+ γ

)
〈u〉+O(δ2), (B.27)

(B.28)

where in the second line we have substituted (B.20) and (B.25), and have defined

γ = 2k2 〈f(n− nδ)〉 and β = 2
〈
f
(

1
µδ
− 1

µ

)〉
.

By neglecting the terms of order O(δ2) in (B.25) and (B.27), we finally get that the

second order approximate transmission conditions (ATCs) for acoustic scattering are

given by,

[u] = δα

〈
1

µ

∂u

∂ν

〉
, (B.29)[

1

µ

∂u

∂ν

]
= δ

(
− ∂

∂s

(
β
∂

∂s

)
+ γ

)
〈u〉 . (B.30)
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Appendix C

DERIVATION OF ATC MODELS FOR ELECTROMAGNETIC
SCATTERING IN THE PRESENCE OF A DELAMINATION

C.1 The full model for the scattering of electromagnetic waves in the pres-

ence of delamination

Let Ω be an inhomogeneity in free space, which consists of a bounded connected

subset of R3. We are interested in the case where Ω is a composite material consisting

of two layers, Ω− and Ω+, with a thin opening at their interface that we will denote

by Ωδ. Here Ω− is the inner layer, a bounded simply connected subset of R3, and Ω+

is the outer layer (see Fig. C.1).

Denote by ∂Ω− ∩ ∂Ω+ the interface between the two layers Ω− and Ω+, and let Γ0 be

any smooth curve such that Γ = Γ0 ∪ (∂Ω− ∩ ∂Ω+) is a smooth surface. Assume in

addition that the relative boundary of Γ0 in Γ is a Lipschitz continuous curve. The

Figure C.1: Layered media with a thin delamination at the interface of two layers
Ω− and Ω+. The opening Ωδ is the thin domain.

aim of this section is to study how an electromagnetic wave scatters in the presence of

the thin delaminated domain Ωδ.
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Let’s observe that the inhomogeneity is Ω = Ω+ ∪ Ω− ∪ Ωδ. If we define the total

electric and magnetic fields as follows:

(E,H) =


(Eext,Hext) in R3\Ω,

(E±,H±) in Ω±,

(Eδ,Hδ) in Ωδ,

then the boundary value problem that the total fields (E,H) satisfy is

ikHext − curl(Eext) = 0 in R3\Ω, (C.1)

ikEext + curl(Hext) = 0 in R3\Ω, (C.2)

ikµ±H± − curl(E±) = 0 in Ω±, (C.3)

ikε±E± + curl(H±) = 0 in Ω±, (C.4)

ikµδH
δ − curl(Eδ) = 0 in Ωδ, (C.5)

ikεδE
δ + curl(Hδ) = 0 in Ωδ, (C.6)

along with the transmission conditions

ν± × E± = ν± × Eδ on Γ± ∪ Γ1, (C.7)

ν± ×H± = ν± ×Hδ on Γ± ∪ Γ1. (C.8)

In addition, in R3\Ω, (Eext,Hext) = (Ei,Hi) + (Es,Hs), where (Ei,Hi) is the inci-

dent field and (Es,Hs) is the scattered field resulting from the interaction with the

inhomogeneity, and that satisfies the Silver-Müller radiation condition:

lim
r→∞

r (Hs × x̂− Es) = 0 (C.9)

uniformly in x̂ = x/|x|, where r = |x|.

C.1.1 Elements of Differential Geometry

In this section we follow the notation and ideas of [47]. Let Γ0 be a C2- surface,

then for every point xΓ ∈ Γ0, the unit normal vector to Γ0 at xΓ pointing to infinity,
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ν(xΓ), is well defined. Moreover, there is area number 0 < η∗ such that in the open

neighborhood N := {x ∈ R3 | minx∈Γ0 |x− y| < η∗} of Γ0, the projection Π|| : N → Γ0

such that

x 7→Π|| xΓ := argmin{|x− y| : y ∈ Γ0}

is also well defined.

Figure C.2: Curvilinear coordnates on the neighborhood of Γ0.

Then the mapping

(xΓ, η) 7→ x = xΓ + ην(xΓ),

is an isomorphism from Γ0 × (−η∗, η∗) to N , and therefore it defines a valid change of

coordinates around Γ0.

Now, let’s define the tangential vector field ν̆ in N by

ν̆(xΓ + sν(xΓ)) := ν(xΓ),

then the curvature tensor is the symmetric linear operator CxΓ
: R3 → TxΓ

defined by

CxΓ
:= ∇Γν̆(xΓ). (C.10)

Abusing notation, we will omit the explicit dependence on xΓ and simply denote the

curvature tensor as C.

The (real) eigenvalues of C, denoted by c1, c2, 0, are associated with the set of

orthonormal vectors {τ p1, τ
p
2,ν}. The tangential vectors τ p1, τ

p
2 associated with the
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possibly non-zero eigenvalues c1 ≤ c2, are called the directions of principal curvature

of Γ0.

The tangent plane to Γ0 at xΓ will be denoted by TxΓ
. If ξ = (ξ1, ξ2) 7→ xΓ is a

parametrization of a neighborhood of xΓ in Γ0, then we can define the covariant base

of TxΓ
, consisting of the vectors {τα := ∂ξαxΓ}α=1,2. The associated contravariant (or

dual) base is {τα}α=1,2 ⊂ T ∗xΓ
defined by

〈τα, τ β〉TxΓ
,T ∗xΓ

= δα,β

for α, β = 1, 2, and where δα,β is the Kronecker symbol and 〈·, ·〉TxΓ
,T ∗xΓ

is the duality

pairing. Surface differential operators.

1. Given a scalar field u defined on Γ0, one can compute its surface gradient

defined by

∇Γu(xΓ) := ∇ŭ(xΓ),

where, in turn, the scalar field ŭ : N → C is defined by ŭ(xΓ + ην(xΓ)) := u(xΓ).

In terms of the contravariant basis {τα}, it can be written as

∇Γ = (∂ξ1·)τ 1 + (∂ξ2·)τ 2

the adjoint of ∇Γ is −divΓ, which coincides with

divΓv = ∂ξ1(v · τ 1) + ∂ξ2(v · τ 2),

for all v defined in N .

Using the proof of Lemma 2.6 in [47], we know that if v is a vector field in R3 we

can express the differential operator curl in these new curvilinear coordinates (xΓ, η)

as

curl(v) = (Rητ
α × ∂ξαv) + ν × ∂ηv, (C.11)

where for each xΓ ∈ Γ0 the linear operator Rη : N → TxΓ
is well defined as the unique

linear extension that satisfies the following two conditions:

153



1. Restricted to x ∈ TxΓ
, Rη is the inverse of x 7→ x + ηCx.

2. Rην = 0.

In other words, Rη(Π|| + ηC) = Π|| and Rην = 0. Therefore if |η| < 1, we have

the following expression:

Rη =
∞∑
l=0

(−η)lCl, where C0 := Π||. (C.12)

Local parametrization of the surfaces Γ±

Figure C.3: Zoom on the thin domain Ωδ.

Since the surface Γ0 is Riemannian, then we know that for all xΓ ∈ Γ0, there is an open

neighborhood of xΓ in Γ0 such that the parametrization ξ = (ξ1, ξ2) 7→ xΓ satisfies that

the covariant vectors τα := ∂ξαxΓ, for α = 1, 2, i.e. the parametrization is alligned

with the directions of principal curvature.

Let’s now suppose that our delaminated domain Ωδ is thin enough so that

Ωδ ⊂ N , and then the two boundaries Γ± of Γ0 can be writen in our new curvilinear

coordinates as follows:

Γ+ := {xΓ+ = xΓ + δf+(xΓ)ν(xΓ) : xΓ ∈ Γ0}, (C.13)

and

Γ− := {xΓ− = xΓ − δf−(xΓ)ν(xΓ) : xΓ ∈ Γ0}, (C.14)

where δ > 0 is a small parameter that characterizes the scale of the thickness of the

delamination, and f± : Γ0 → [0, 1] are the functions that define the profile of the
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delamination, and therefore satisfy that f±|∂Γ0 = 0, where ∂Γ0 denotes the relative

boundary of Γ0 in Γ.

Now, differentiating the parametrization of the boundaries Γ± (C.13) and (C.14),

we get a set of two linearly independent tangential vectors on them, as follows

τ±α := ∂ξαxΓ±

= ∂ξαxΓ ± ∂ξα(f±)ν(xΓ)± f±∇ν∂ξαxΓ

= τα ± δ∂ξα(f±)ν + δf±Cτα. (C.15)

Then the (non-unit) outward normal vector to the surfaces Γ± is N± := τ±1 × τ±2 and

has the following exact asymptotic expression

N± = ν + δ

{
± f±(c1 + c2)ν ∓∇Γf

±
}

+ δ2

{
(±f±)2c1c2ν ∓ f±C∇Γf

±
}
.(C.16)

Figure C.4: Zoom on the thin domain and the normal vectors ν(xΓ), ν−(xΓ), and
ν+(xΓ).

C.2 Model I: Derivation of the Approximate Transmission Conditions for

a crack-type model

The model we will derive in this section is the electromagnetic analogue to the

one derived for acoustic scattering in the previous chapter. The setting is formally the

same, i.e., we approximate the jump condition of the fields at an intermediate surface

Γ0 that crosses the delamination.
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Unfortunately, in the case of electromagnetic scattering, it has been shown that this

kind of model is unstable for the time-domain [30], and although we have found the

same issues while attempting to prove well-posedness results in the frequency domain,

we considered impotant to include this model for the sake of completeness of the thesis.

C.2.1 The formal asymptotic analysis

If the parameter δ is small enough, then the thin delamination is a subset of N ,

and then, we formally assume that the following asymptotic expansions of the fields

are valid in a neighbourhood N0 of Ωδ, with N0 ⊂ N :

(E±(xΓ, η),H±(xΓ, η)) =
∞∑
l=0

δl(E±l (xΓ, η),H±l (xΓ, η)) in Ω±, (C.17)

where each asymptotic term (E±l (xΓ, η),H±l (xΓ, η)) is assumed to be analytic and in-

dependent of δ, for all l ≥ 0. If in addition we Taylor-expand around η = 0 (that is,

around the surface Γ0), then:

(E±(xΓ, η),H±(xΓ, η)) =
∞∑
l=0

δl
∞∑
j=0

ηj

j!

∂j(E±l ,H
±
l )

∂ηj
(xΓ, 0) in Ω±, (C.18)

and if we do the same with the derivative of (C.17) with respect to η,

∂(E±l ,H
±
l )

∂η
(xΓ, η) =

∞∑
l=0

δl
∞∑
j=0

ηj+1

j!

∂j+1(E±l ,H
±
l )

∂ηj
(xΓ, 0) in Ω±. (C.19)

Notice that expressions (C.18) and (C.19) imply that on the boundaries Γ± (i.e.

for η = ±δf±),

(E±,H±)(xΓ,±δf±) =
∞∑
l=0

δl
l∑

j=0

(±f±)l−j

(l − j)!
∂l−j(E±j ,H

±
j )

∂ηl−j
(xΓ, 0) on Γ±, (C.20)

and

∂(E±l ,H
±
l )

∂η
(xΓ,±δf±) =

∞∑
l=0

δl
l∑

j=0

(±f±)l−j

(l − j)!
∂l−j+1(E±j ,H

±
j )

∂ηl−j+1
(xΓ, 0) on Γ±. (C.21)

On the other hand, the ansatz for the asymptotic expansion inside the delami-

nation Ωδ is slightly different because since here Ωδ plays the role of a boundary layer,
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and we expect rapid changes of the fields in the thin domain. We then regularize

the sigular asymptotic problem by the usual stretching of the normal variable (see for

example [10],[47],[71]) ζ = η
δ
, leading to

(Eδ,Hδ)(xΓ, ζ) =
∞∑
l=0

δl(El(xΓ, ξ),Hl(xΓ, ζ) in Ωδ, (C.22)

where again, none of the terms (El,Hl) depend on δ any longer.

Remark C.2.1. (On the notation) From now on, the sub-indices T and N will in-

dicate the tangential and normal component of a vector with respect to the surface Γ,

respectively. That is, for a vector v defined in N , Π||v = vT and Π⊥v = vN .

C.2.2 An identity for the outer fields

Lemma C.2.1. The lowest order terms (E±0 ,H
±
0 ) in the ansatz (C.18) satisfy the

following identities:

ν × ∂ηE±0 (xΓ, 0) = ikµ±H±0 (xΓ, 0)−
−−→
curlΓ(E±0 )N(xΓ, 0)

− curlΓ(E±0 )T (xΓ, 0)ν, (C.23)

−ν × ∂ηH±0 (xΓ, 0) = ikε±E±0 (xΓ, 0) +
−−→
curlΓ(H±0 )N(xΓ, 0)

+ curlΓ(H±0 )T (xΓ, 0)ν. (C.24)

Proof. From the differential equations (C.3)-(C.4), expressions (C.20)-(C.21), and the

ansatz for the operator Rη (C.12) for η = ±δf±, we get that on the boundaries Γ±:

0 =
∑∞

l=0 δ
likµ±

∑l
j=0

(±f±)l−j

(l−j)! ∂l−jη H±j (xΓ, 0)

+
∑∞

l=0 δ
l
∑l

j=0
(±f±)l−j

(l−j)! ν × ∂
l−j
η E±j (xΓ, 0)

−
∑∞

l=0 δ
l(±f±)l

(
Clτα

)
×
∑∞

l=0 δ
l
∑l

j=0

{
(±f±)l−j

(l−j)! ∂ξα∂
l−j
η E±j (xΓ, 0)

+δl−j,0∂ξα

(
(±f±)l−j

(l−j)!

)
∂l−jη E±j (xΓ, 0)

}
, (C.25)
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where δl−j,0 = 1 if l − j = 0 and δl−j,0 = 0 otherwise. Collecting the terms of order

O(1) and O(δ),

ikµ±H±0 (xΓ, 0) + ikµ±δ
(
±f±∂ηH±0 (xΓ, 0) + H±1 (xΓ, 0)

)
∂ξαE

±
0 (xΓ, 0)

−(τα × ∂ξαE±0 )− δτα ×
{
± f±∂ξα∂ηE±0 + ∂ξα(±f±)∂ηE

±
0 + ∂ξαE

±
1

}
−δ(±f±)(Cτα)× (∂ξαE

±
0 (xΓ, 0))− ν × ∂ηE±0 (xΓ, 0)

−δ
{
± f±ν × ∂2

ηE
±
0 (xΓ, 0) + ν × ∂ηE±1 (xΓ, 0)

}
= O(δ2). (C.26)

Thus by identifying the terms of the same order (and repeating the same procedure

for equation (C.4))

ikµ±H±0 (xΓ, 0)− τα × ∂ξαE±0 (xΓ, 0)− ν × ∂ηE±0 (xΓ, 0) = 0, (C.27)

ikε±E±0 (xΓ, 0) + τα × ∂ξαH±0 (xΓ, 0) + ν × ∂ηH±0 (xΓ, 0) = 0. (C.28)

Finally, recalling that τα × ∂ξαv =
−−→
curlΓ(v)N + curlΓ(v)Tν, the lemma is proven.

C.2.3 The boundary value problem for the inner fields

Lemma C.2.2. The lowest order terms (E0,H0) and (E1,H1) in the ansatz of (Eδ,Hδ)

satisfy the following equations:

ν × ∂ξE0 = 0, (C.29)

ν × ∂ξH0 = 0. (C.30)

and

ikµδH0 −
−−→
curlΓ(E0)N − curlΓ(E0)Tν = ν × ∂ξE1, (C.31)

−ikεδE0 −
−−→
curlΓ(H0)N − curlΓ(H0)Tν = ν × ∂ξH1, (C.32)

for all xΓ ∈ Γ0 and ζ ∈ (−f−(xΓ), f+(xΓ)), in addition to the following boundary

conditions:

ν × E±0 (xΓ, 0) = ν × E0(xΓ,±f±), (C.33)

ν ×H±0 (xΓ, 0) = ν ×H0(xΓ,±f±), (C.34)
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and

ν × E±1 (xΓ, 0) = ν × E1(xΓ,±f±)∓ f±ν × ∂ηE±0 (xΓ, 0)

± 〈(E0)N〉
(
εδ
ε±
− 1

)
−−→
curlΓ(f±), (C.35)

ν ×H±1 (xΓ, 0) = ν ×H1(xΓ,±f±)∓ f±ν × ∂ηH±0 (xΓ, 0)

± 〈(H0)N〉
(
µδ
µ±
− 1

)
−−→
curlΓ(f±). (C.36)

Proof. Consider first the differential equation. Substituting in equation (C.5) the

ansatz (C.22), the expression (C.11) of the curl operator, and the ansatz (C.12) of

Rη when η = ±δf±, we get:

∞∑
l=0

δlikµδHl(xΓ, ζ)−
∞∑
l=0

δl−1ν × ∂ξEl(xΓ, ζ)

−
∞∑
l=0

δl(−ζ)l
(
Clτα

)
×
∞∑
l=0

δl∂ξαEl(xΓ, ζ) = 0, (C.37)

in Ωδ. Therefore, collecting terms of order O(δ−1) and O(1) (and doing similar calcula-

tions for equation (C.6)) we get the differential equations (C.29) - (C.32), respectively.

Notice that we have used the identity τα × ∂ξαv =
−−→
curlΓ(v)N + curlΓ(v)Tν.

Now, we derive the expressions for the boundary conditions for the inner fields.

Since the transmission conditions (C.7)-(C.8) can be written as

N± × E± = N± × Eδ on Γ±, (C.38)

N± ×H± = N± ×Hδ on Γ±, (C.39)

where the vectors N± are the non-unit normal vectors on Γ± defined by (C.16), sub-

stituting the ansatz (C.22) and (C.18) in (C.38),(
ν + δ

{
± f±(l1 + l2)ν ∓∇Γf

±
})
× (E±0 + δ{E±1 ± f±∂ηE±0 })(xΓ, 0)

=

(
ν + δ

{
± f±(l1 + l2)ν ∓∇Γf

±
})
× (E0 + δE1)(xΓ,±f±) +O(δ2), (C.40)

159



and hence, identifying terms of order O(1) we get (C.33)-(C.34) and identifying terms

of order O(δ) (and in the similar expression that we get when performing similar

computations for the boundary condition (C.39)),we get:

ν × E±1 (xΓ, 0) = ν × E1(xΓ,±f±)∓ f±ν × ∂ηE±0 (xΓ, 0)

± ∇Γf
± × (E±0 (xΓ, 0)− E0(xΓ,±f±)), (C.41)

ν ×H±1 (xΓ, 0) = ν ×H1(xΓ,±f±)∓ f±ν × ∂ηH±0 (xΓ, 0)

± ∇Γf
± × (H±0 (xΓ, 0)−H0(xΓ,±f±)). (C.42)

From the boundary conditions (C.33)-(C.34), the tangential components

((E0)T , (H0)T )(xΓ,±f±)

coincide with ((E±0 )T , (H
±
0 )T )(xΓ, 0), so that the last term in expressions (C.31)-(C.32)

become:

∇Γf
± × (E±0 (xΓ, 0)− E0(xΓ,±f±))

= (E±0 (xΓ, 0)− E0(xΓ,±f±))N ∇Γf
± × ν

= (E±0 (xΓ, 0)− E0(xΓ,±f±))N
−−→
curlΓ(f±) (C.43)

and

∇Γf
± × (H±0 (xΓ, 0)−H0(xΓ,±f±))

= (H±0 (xΓ, 0)−H0(xΓ,±f±))N ∇Γf
± × ν

= (H±0 (xΓ, 0)−H0(xΓ,±f±))N
−−→
curlΓ(f±). (C.44)

Moreover, from equations (C.29)-(C.30), we see that the tangential components of

H0,E0 do not depend on ζ, that is,

(E0)T = 〈E0〉T and (H0)T = 〈H0〉T , (C.45)
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and therefore applying Π|| to both sides in equations (C.31)- (C.32), and then using

(C.45),

ikεδ(E0)N = −curlΓ 〈H0〉T , (C.46)

ikµδ(H0)N = curlΓ 〈E0〉T , (C.47)

and using (C.29)-(C.30),

ikεδ 〈(E0)N〉 = −curlΓ 〈(H0)T 〉 = −curlΓ
〈
(H±0 )T

〉
= ikε±(E±0 )N , and (C.48)

ikµδ 〈(H0)N〉 = curlΓ 〈(E0)T 〉 = curlΓ
〈
(E±0 )T

〉
= ikµ±(H±0 )N , (C.49)

thus

(E±0 )N =
εδ
ε±
〈(E0)N〉 and (H±0 )N =

µδ
µ±
〈(H0)N〉 , (C.50)

so that (C.43)-(C.44) become

∇Γf
± × (E±0 (xΓ, 0)− E0(xΓ,±f±)) = 〈(E0)N〉

(
εδ
ε±
− 1

)
−−→
curlΓ(f±), (C.51)

∇Γf
± × (H±0 (xΓ, 0)−H0(xΓ,±f±)) = 〈(H0)N〉

(
µδ
µ±
− 1

)
−−→
curlΓ(f±). (C.52)

Therefore, substituting these two last expressions into (C.41) and (C.42), one gets

ν × E±1 (xΓ, 0) = ν × E1(xΓ,±f±)∓ f±ν × ∂ηE±0 (xΓ, 0)

± 〈(E0)N〉
(
εδ
ε±
− 1

)
−−→
curlΓ(f±), (C.53)

ν ×H±1 (xΓ, 0) = ν ×H1(xΓ,±f±)∓ f±ν × ∂ηH±0 (xΓ, 0)

± 〈(H0)N〉
(
µδ
µ±
− 1

)
−−→
curlΓ(f±), (C.54)

finishing the proof.

Proposition C.2.1. Given constant material properties ε±, µ±, µδ, and εδ in a neigh-

borhood N0 ⊂ N , the second order Approximate Transmission Conditions (ATCs)

using the ansatz (C.22) and (C.18) are:

[ν × E] = δα̃∗1 〈HT 〉+ δ
−−→
curlΓ

(〈
β̃∗1f

〉
curlΓ 〈HT 〉

)
on Γ0 (C.55)

[ν ×H] = δα̃∗2 〈ET 〉+ δ
−−→
curlΓ

(〈
β̃∗2f

〉
curlΓ 〈ET 〉

)
on Γ0, (C.56)
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where α̃∗1 = 2ik 〈f(µδ − µ)〉, α̃∗2 = 2ik 〈f(ε− εδ)〉, β̃±,∗1 = 2
ik

(
1
εδ
− 1

ε±

)
, and β̃±,∗2 =

2
ik

(
1
µ±
− 1

µδ

)
.

Proof. We derive the proof into the following three steps.

1. From (C.45),

[ν × E0] = 0 and [ν × H0] = 0,

so from the boundary conditions (C.33)-(C.34),

[ν × E±0 ] = 0, [ν × E±0 ] = 0. (C.57)

2. On the other hand from (C.45)-(C.46) we know that any component of the zeroth-

order fields (E0,H0) depend on the normal variable ζ, using this fact in equations

(C.31)-(C.32), and integrating with respect to ζ along the interval (−f−, f+), the

fundamental theorem of calculus implies that

2 〈f〉 ikµδ 〈H0〉 − 2 〈f〉
−−→
curlΓ 〈E0〉N − 2 〈f〉 curlΓ 〈E0〉T ν = [ν × E1], (C.58)

−2 〈f〉 ikεδ 〈E0〉 − 2 〈f〉
−−→
curlΓ 〈H0〉N − 2 〈f〉 curlΓ 〈H0〉T ν = [ν ×H1]. (C.59)

3. From the boundary conditions (C.35)-(C.36) and using the fact that in N0 ⊂ N all

the material properties are piece-wise constant, we get[
ν × E±1

]
= [ν × E1]− 2ν ×

〈
f±∂ηE

±
0

〉
+ 2 〈E0〉N

−−→
curlΓ

〈
f±
(
εδ
ε±
− 1

)〉
, (C.60)[

ν ×H±1
]

= [ν ×H1]− 2ν ×
〈
f±∂ηH

±
0

〉
+ 2 〈H0〉N

−−→
curlΓ

〈
f±
(
µδ
µ±
− 1

)〉
. (C.61)

To get an expression for the terms ν ×
〈
f±∂ηE

±
0

〉
and ν ×

〈
f±∂ηH

±
0

〉
, we multiply by

±f± the identities in Lemma C.2.1, applying Π|| to both sides of the above identities,

and adding them together we get

2ik
〈
f±µ±

〉
〈(H0)T 〉 − 2

〈
f±

εδ
ε±

〉
−−→
curlΓ 〈(E0)N〉 = 2ν ×

〈
f±∂ηE

±
0

〉
, (C.62)

−2ik
〈
f±ε±

〉
〈(E0)T 〉 − 2

〈
f±

µδ
µ±

〉
−−→
curlΓ 〈(H0)N〉 = 2ν ×

〈
f±∂ηH

±
0

〉
, (C.63)
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and substituting these identities and (C.58)-(C.59) in (C.60)-(C.61), we get[
ν × E±1

]
= 2ik 〈f(µδ − µ)〉

〈
(H±0 )T

〉
+ 2

−−→
curlΓ

(〈
f

(
εδ
ε±
− 1

)〉
〈(E0)N〉

)
, (C.64)[

ν ×H±1
]

= 2ik 〈f(ε− εδ)〉
〈
(E±0 )T

〉
+ 2

−−→
curlΓ

(〈
f

(
µδ
µ±
− 1

)〉
〈(H0)N〉

)
, (C.65)

on Γ0. Using (C.48)-(C.49) finally get[
ν × E±1

]
= 2ik 〈f(µδ − µ)〉

〈
(H±0 )T

〉
+

2

ik

−−→
curlΓ

(〈
f

(
1

εδ
− 1

ε±

)〉
curlΓ

〈
(H±0 )T

〉)
on Γ0 (C.66)[

ν ×H±1
]

= 2ik 〈f(ε− εδ)〉
〈
(E±0 )T

〉
+

2

ik

−−→
curlΓ

(〈
f

(
1

µ±
− 1

µδ

)〉
curlΓ

〈
(E±0 )T

〉)
on Γ0. (C.67)

The proof is completed by observing that from the asymptotic expanssion (C.18),[
ν × E±

]
(xΓ, 0) = [ν × E±0 ](xΓ, 0) + δ[ν × E±1 ](xΓ, 0) +O(δ2), (C.68)[

ν ×H±
]

(xΓ, 0) = [ν ×H±0 ](xΓ, 0) + δ[ν ×H±1 ](xΓ, 0) +O(δ2), (C.69)

and by substituting (C.57) and (C.66)-(C.67).

The crack-type model derived from the previous proposition, is related to the

new configuration where the small opening Ωδ is no longer present, and instead, we

include the ATCs just derived (see Fig. C.5). More precisely, the associated crack-type

model is defined by:

∇× E− ikH = 0 in R3 \ Ωext, (C.70)

∇×H + ikE = 0 in R3 \ Ωext, (C.71)

∇× E− ikµ±H = 0 in Ωb
±, (C.72)

∇×H + ikε±E = 0 in Ωb
±, (C.73)

[ν × E] = δα̃∗1 〈HT 〉+ δ
−−→
curlΓ

(〈
β̃∗1f

〉
curlΓ 〈HT 〉

)
on Γ0 (C.74)

[ν ×H] = δα̃∗2 〈ET 〉+ δ
−−→
curlΓ

(〈
β̃∗2f

〉
curlΓ 〈ET 〉

)
on Γ0, (C.75)
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Figure C.5: Layered media with a crack Γ0 at the interface of two layers Ωb
− and Ωb

+.

and in R3 \Ω, E = Es + Ei and H = Hs + Hi, where (Es,Hs) satisfy the Silver-Müller

radiation condition (C.9).

This model is the analogue of a time domain model for electromagnetic scattering that

has been analyzed by Chun et al. in [30], where the authors prove its unstablility.

This issue is reflected in our crack-type model in the fact that the signs of the coefficients

appearing in the ATCs, are not compatible with the main operators.

Due to these complications, we derive in the following section a different model, that

at least for a particular case leads to a stable model, as analyzed in Chapter 4.

C.3 Model II: Derivation of the Approximate Transmission Conditions for

a Chun’s type model

As mentioned in the last lines of the previous section, the aim of this part of

the Appendx C is to derive a different set of ATCs for the electromagnetic scattering

problem, which are sometimes referred to as Chun’s-type ATCs (see [30, 40]). This

Chun’s-type ATCs differ from the crack-type ATCs in the fact that the jumps and

average values of the fields are taken with respect to traces of the fields on the two

different surfaces Γ− and Γ+. The complete set of ATCs is presented as Proposition

C.3.1, and it is similar to the models analyzed in [30, 38, 40].
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C.3.1 The formal asymptotic analysis

Let u with well-defined traces u|Γ± , we define:

JuK := u|Γ+ − u|Γ− and 〈〈u〉〉 :=
u|Γ+ + u|Γ−

2
.

As in the previous section, we assume that if 0 < δ is small enough, then in a

neighborhood of Ωδ, the expressions for the outer-fields (C.17) are true, and that after

again considering ζ = η
δ
, inside Ωδ the fields have the expression (C.22).

Proposition C.3.1. Assuming that µδ εδ are constant, and assuming that the ansatz

(C.22) and (C.17) are valid in a neighborhood N0 of Ωδ, the second order ATCs are:

Jν± × E±K = 2δ 〈f〉 (c1 + c2)ν × 〈〈E±〉〉T

− 2δ∇Γ 〈f〉 × 〈〈Eδ〉〉T

+ 2δik 〈f〉µδ〈〈H±〉〉T

+
2δ

ikεδ

−−→
curlΓ

(
〈f〉 curlΓ〈〈H±〉〉T

)
(C.76)

Jν± ×H±K = 2δ 〈f〉 (c1 + c2)ν × 〈〈H±〉〉T

− 2δ∇Γ 〈f〉 × 〈〈H±〉〉T

− 2δik 〈f〉 εδ〈〈E±〉〉T

− 2δ

ikµδ

−−→
curlΓ

(
〈f〉 curlΓ〈〈E±〉〉T

)
. (C.77)

Proof. We divide the proof into several steps.

1.Observing that from the ansatz (C.17) and (C.22), and (C.16):

JN± × E±K = Jν × E±0 K + 2δ(c1 + c2)ν × 〈〈f±E±0 〉〉

− 2δ〈〈∇Γf
± × E±0 〉〉+ δJν × E±1 K +O(δ2) (C.78)

JN± ×H±K = Jν ×H±0 K + 2δ(c1 + c2)ν × 〈〈f±H±0 〉〉

− 2δ〈〈∇Γf
± ×H±0 〉〉+ δJν ×H±1 K +O(δ2). (C.79)
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2. Moreover, from the continuity conditions (C.7)-(C.8),

N± × E±(xΓ,±δf±) = N± × Eδ(xΓ,±f±), (C.80)

N± ×H±(xΓ,±δf±) = N± ×Hδ(xΓ,±f±), , (C.81)

and therefore, from the expresion (C.16) andthe ansatz (C.17) and (C.22), when col-

lecting terms of order O(1) and O(δ):

ν × E±0 (xΓ,±δf±) = ν × Eδ
0(xΓ,±f±), (C.82)

ν ×H±0 (xΓ,±δf±) = ν ×Hδ
0(xΓ,±f±), (C.83)

and

ν × E±1 (xΓ,±δf±) +

{
± f±(c1 + c2)ν ∓∇Γf

±
}
× E±0 (xΓ,±δf±) =

ν × Eδ
1(xΓ,±f±) +

{
± f±(c1 + c2)ν ∓∇Γf

±
}
× Eδ

0(xΓ,±f±) (C.84)

ν ×H±1 (xΓ,±δf±) +

{
± f±(c1 + c2)ν ∓∇Γf

±
}
×H±0 (xΓ,±δf±) =

ν ×Hδ
1(xΓ,±f±) +

{
± f±(c1 + c2)ν ∓∇Γf

±
}
×Hδ

0(xΓ,±f±) ,(C.85)

and therefore:

Jν × E±0 K = Jν × Eδ
0K, (C.86)

Jν ×H±0 K = Jν ×Hδ
0K, (C.87)

and

Jν × E±1 K = Jν × Eδ
1K

+ 2(c1 + c2)ν × 〈〈f±(Eδ
0 − E±0 )T 〉〉

− 2〈〈∇Γf
± × (Eδ

0 − E±0 )〉〉, (C.88)

Jν ×H±1 K = Jν ×Hδ
1K

+ 2(c1 + c2)ν × 〈〈f±(Hδ
0 −H±0 )T 〉〉

− 2〈〈∇Γf
± × (Hδ

0 −H±0 )〉〉, (C.89)
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3. Therefore, substituting (C.88)-(C.89) in (C.78)-(C.79):

JN± × E±K = Jν × E±0 K + 2δ(c1 + c2)ν × 〈〈f±Eδ
0〉〉

− 2δ〈〈∇Γf
± × Eδ

0〉〉+ δJν × Eδ
1K +O(δ2), (C.90)

JN± ×H±K = Jν ×H±0 K + 2δ(c1 + c2)ν × 〈〈f±Hδ
0〉〉

− 2δ〈〈∇Γf
± ×Hδ

0〉〉+ δJν ×Hδ
1K +O(δ2). (C.91)

4. Now, observe that since the ansatz of the inner fields (Eδ,Hδ) are the same as in

Model I, the PDEs (C.29)-(C.32) are still valid. Therefore:

(Eδ
0)T = 〈〈Eδ

0〉〉T and (Hδ
0)T = 〈〈Hδ

0〉〉T , (C.92)

and hence,

Jν × Eδ
0K = 0 and Jν × Hδ

0K = 0. (C.93)

So from (C.86)-(C.87):

Jν × E±0 K = 0 and Jν × H±0 K = 0. (C.94)

Moreover, applying P|| on both sides of equations (C.31)-(C.32) and integrating with

respect to ζ along the interval (−f−, f+),

2ik 〈f〉µδ〈〈Hδ
0〉〉T − 2 〈f〉

−−→
curlΓ〈〈Eδ

0〉〉N = Jν × Eδ
1K, (C.95)

−2ik 〈f〉 εδ〈〈Eδ
0〉〉T − 2 〈f〉

−−→
curlΓ〈〈Hδ

0〉〉N = Jν ×Hδ
1K. (C.96)

5. Substituting (C.94) and (C.95)-(C.96) in (C.90)-(C.91), we get

JN± × E±K = 2δ(c1 + c2)ν × 〈〈f±Eδ
0〉〉

− 2δ〈〈∇Γf
± × Eδ

0〉〉

+ 2δik 〈f〉µδ〈〈Hδ
0〉〉T − 2δ 〈f〉

−−→
curlΓ〈〈Eδ

0〉〉N +O(δ2), (C.97)

JN± ×H±K = 2δ(c1 + c2)ν × 〈〈f±Hδ
0〉〉

− 2δ〈〈∇Γf
± ×Hδ

0〉〉

− 2δik 〈f〉 εδ〈〈Eδ
0〉〉T − 2δ 〈f〉

−−→
curlΓ〈〈Hδ

0〉〉N +O(δ2). (C.98)
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6. Observe that:

∇Γf
± × ν =

−−→
curlΓ(f±), (C.99)

so then for any vector u = uT + uN ν,

∇Γf
± × u =

−−→
curlΓ(f±)uN +∇Γf

± × uT . (C.100)

Therefore (C.97)-(C.98) become:

JN± × E±K = 2δ(c1 + c2)ν × 〈〈f±Eδ
0〉〉

− 2δ〈〈∇Γf
± × (Eδ

0)T 〉〉

+ 2δik 〈f〉µδ〈〈Hδ
0〉〉T − 2δ

−−→
curlΓ

(
〈f〉 〈〈Eδ

0〉〉N
)

+O(δ2), (C.101)

JN± ×H±K = 2δ(c1 + c2)ν × 〈〈f±Hδ
0〉〉

− 2δ〈〈∇Γf
± × (Hδ

0)T 〉〉

− 2δik 〈f〉 εδ〈〈Eδ
0〉〉T − 2δ

−−→
curlΓ

(
〈f〉 〈〈Hδ

0〉〉N
)

+O(δ2). (C.102)

7. Observe now that

ikεδ(E
δ
0)N = −curlΓ〈〈Hδ

0〉〉 = −curlΓ〈〈H±0 〉〉, (C.103)

ikµδ(H
δ
0)N = curlΓ〈〈Eδ

0〉〉 = curlΓ〈〈E±0 〉〉, (C.104)

therefore (C.101)-(C.102) become

JN± × E±K = 2δ 〈f〉 (c1 + c2)ν × 〈〈E±0 〉〉T

− 2δ∇Γ 〈f〉 × 〈〈Eδ
0〉〉T

+ 2δik 〈f〉µδ〈〈H±0 〉〉T

+
2δ

ikεδ

−−→
curlΓ

(
〈f〉 curlΓ〈〈H±0 〉〉T

)
+O(δ2), (C.105)

JN± ×H±K = 2δ 〈f〉 (c1 + c2)ν × 〈〈H±0 〉〉T

− 2δ∇Γ 〈f〉 × 〈〈H±0 〉〉T

− 2δik 〈f〉 εδ〈〈E±0 〉〉T

− 2δ

ikµδ

−−→
curlΓ

(
〈f〉 curlΓ〈〈E±0 〉〉T

)
+O(δ2). (C.106)
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8. Finally, since

N± ·N± = 1± 2δf±(c1 + c2) +O(δ2), (C.107)

we have

|N±| = 1± δf±(c1 + c2) +O(δ2). (C.108)

Thus since ν± = N±/|N±|, (C.105) and (C.106) become:

Jν± × E±K = 2δ 〈f〉 (c1 + c2)ν × 〈〈E±0 〉〉T

− 2δ∇Γ 〈f〉 × 〈〈Eδ
0〉〉T

+ 2δik 〈f〉µδ〈〈H±0 〉〉T

+
2δ

ikεδ

−−→
curlΓ

(
〈f〉 curlΓ〈〈H±0 〉〉T

)
+O(δ2), (C.109)

Jν± ×H±K = 2δ 〈f〉 (c1 + c2)ν × 〈〈H±0 〉〉T

− 2δ∇Γ 〈f〉 × 〈〈H±0 〉〉T

− 2δik 〈f〉 εδ〈〈E±0 〉〉T

− 2δ

ikµδ

−−→
curlΓ

(
〈f〉 curlΓ〈〈E±0 〉〉T

)
+O(δ2), (C.110)

and this implies the statement by noticing that

δ〈〈E±〉〉T = δ〈〈E±0 〉〉T +O(δ2), (C.111)

δ〈〈H±〉〉T = δ〈〈H±0 〉〉T +O(δ2). (C.112)
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The new ATCs derived in the previous proposition, lead to the so called Chun’s-

type model (see [47, 40]). More precisely, it is defined by:

∇× E− ikH = 0 in R3 \ Ωext,(C.113)

∇×H + ikE = 0 in R3 \ Ωext,(C.114)

∇× E− ikµ±H = 0 in Ω±, (C.115)

∇×H + ikε±E = 0 in Ω±, (C.116)

Jν± × E±K = 2δ 〈f〉 (c1 + c2)ν × 〈〈E±〉〉T

−2δ∇Γ 〈f〉 × 〈〈Eδ〉〉T

+2δik 〈f〉µδ〈〈H±〉〉T

+
2δ

ikεδ

−−→
curlΓ

(
〈f〉 curlΓ〈〈H±〉〉T

)
(C.117)

Jν± ×H±K = 2δ 〈f〉 (c1 + c2)ν × 〈〈H±〉〉T

−2δ∇Γ 〈f〉 × 〈〈H±〉〉T

−2δik 〈f〉 εδ〈〈E±〉〉T

− 2δ

ikµδ

−−→
curlΓ

(
〈f〉 curlΓ〈〈E±〉〉T

)
. (C.118)

and in R3 \Ω, E = Es + Ei and H = Hs + Hi, where (Es,Hs) satisfy the Silver-Müller

radiation condition (C.9).

Let’s then turn our attention to a very particular case, which constitute the

ATCs used in Chapter 4 for the scattering of electromagnetic waves for planar delam-

inations of constant thickness.
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Corollary C.3.1. Assuming the ansatz (C.22) and (C.17), then for planar delamina-

tions of constant thickness the second order Chun’s-type ATCs are:

Jν± × E±K = δα̃1〈〈H±〉〉T

+ δβ̃1

−−→
curlΓ

(
curlΓ〈〈H±〉〉T

)
(C.119)

Jν± ×H±K = δα̃2〈〈E±〉〉T

+ δβ̃2

−−→
curlΓ

(
curlΓ〈〈E±〉〉T

)
, (C.120)

where α̃1 = 2ikµδ, α̃2 = −2ikεδ, β̃1 = 2
ikεδ

and β̃2 = 2
ikµδ

.

Proof. Under this setting where Γ0 is planar (implying that c1 = c2 = 0) and the

thickness of Γ0 is constant (so both f± are now -perhaps different -constants), this is

an immediate consequence of Proposition C.3.1.

Notice that under the conditions of Corollary , the shape of the thin domain Ωδ

is cylindrical, as shown in Fig. C.6.

Imposing natural boundary conditions on the side of the cylinder that we denote by

Figure C.6: Zoom on the planar delamination. Panel (b) Normal vectors on the
boundary of the delamination.
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Figure C.7: Normal vectors on the boundary of the delamination.

S , and where the normal unit vector is denoted by n (see Fig. C.7), the associated

model with these ATCs consists of:

∇× E− ikH = 0 in R3 \ Ωext, (C.121)

∇×H + ikE = 0 in R3 \ Ωext, (C.122)

∇× E− ikµ±H = 0 in Ω±, (C.123)

∇×H + ikε±E = 0 in Ω±, (C.124)

Jν± × E±K = δα̃1〈〈H±〉〉T

+δβ̃1

−−→
curlΓ

(
curlΓ〈〈H±〉〉T

)
(C.125)

Jν± ×H±K = δα̃2〈〈E±〉〉T

+δβ̃2

−−→
curlΓ

(
curlΓ〈〈E±〉〉T

)
, (C.126)

n×H = 0 on S , (C.127)

and in R3 \Ω, E = Es + Ei and H = Hs + Hi, where (Es,Hs) satisfy the Silver-Müller

radiation condition (C.9).

This model is precisely the one analyzed in Chapter 4, for which a well posedness result

Theorem 4.4.1, under the additional Assumptions 4.1.1 on the material properties µ

and ε.
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Appendix D

LIST OF SOBOLEV SPACES ON SURFACES

In this appendix we introduce the definitions of important Sobolev spaces on
surfaces for the analysis in Chapter 4. Being consistent with the notation in that
chapter, let Ω− ⊂ R3 be a bounded, simply connected domain with smooth boundary
Γ ⊂ R3. If Γ0 ⊂ Γ is and open surface with Lipschitz countinuous relative boundary
∂Γ0, then we define the following Sobolev spaces:

• First, we define the set of infinitely differentiable functions with compact support
in Γ0 by

D(Γ0) :=
{
φ ∈ C∞(Γ0) | supp(φ) is compact in Γ0

}
, (D.1)

endowed with the norm ‖φ‖∞ := max
{
|φ(xΓ)| |xΓ ∈ Γ0

}
.

• The dual space of D(Γ0), is the space of distributions D′(Γ0) on Γ0 defined by

D′(Γ0) :=
{
u : D(Γ0)→ C |u is linear and continuous

in the sense of distributions
}
, (D.2)

where u ∈ D′(Γ0) is said to be continuous in the sense of distributions if and
only if for every compact subset K of Γ0 there exists a constant CK > 0 and a
non-negative integer NK such that

|u(φ)| ≤ CK max
{
|∂αφ(xΓ)| |xΓ ∈ K

}
,

for all test functions φ ∈ D(Γ0) with support contained in K and all multi-indices
α with |α| ≤ NK .

•
L2(Γ0) := {u ∈ D′(Γ0) |

∫
Γ0

|u|2 ds <∞}, (D.3)

endowed with the inner product (u, v)L2(Γ0) :=
∫

Γ0
uv ds.

• additionally,

L2(Γ0) := {u ∈ D′(Γ0)3 |
∫

Γ0

|u|2 ds <∞}, (D.4)

endowed with the inner product (u,v)L2(Γ0) :=
∫

Γ0
u · v ds.
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• and the tangential L2 vector fields are defined by:

L2
t (Γ0) := {u ∈ L2(Γ0) |ν · u = 0}, (D.5)

endowed with the L2(Γ0) inner product.

• For n ∈ N,

Hn(Γ0) := {u ∈ D′(Γ0)3 | ∂αu ∈ L2(Γ0)3

for all multi-index α ∈ N3such that |α| ≤ n}, (D.6)

and endowed with the norm

||u||2Hn(Γ0) :=
∑
|α|≤n

||∂αu||2L2(Γ0)3 . (D.7)

This definition can be extended for n ∈ R, in the same way it is done for sub-
domains in the Euclidean space Rn, see [63].

• Let s ∈ R, then we define

H̃s(DΓ,Γ0) := {u ∈ H̃s(Γ0)3 |ν · u = 0 and DΓu ∈ H̃s(Γ0)}, (D.8)

endowed with the Hs(DΓ,Γ0) norm, where H̃s(Γ0) are defined by

H̃s(Γ0) = {u ∈ Hs(Γ0) | the extension

by zero of u in Γ, ũ, is in Hs(Γ)}, (D.9)

endowed with the restricted Hs(Γ0) inner product.
It has been proven (see [63]) that for

s =
2`+ 1

2
,

where ` ∈ Z, the space H̃s(Γ0) is precisely the dual space of H−s(Γ0), with respect
to the duality pairing:

〈v, u〉H−s(Γ0),H̃s(Γ0) := 〈v, ũ〉H−s(Γ),Hs(Γ), (D.10)

where on the right-hand-side of (2.23) ũ is the extension by zero of u to Γ, and

〈v, u〉H̃−s(Γ0),Hs(Γ0) := 〈ṽ, u〉H−s(Γ),Hs(Γ), (D.11)

where ṽ ∈ H−s(Γ) is the extension by zero of v.

• If DΓ denotes either the surface divergence divΓ or the surface scalar curlΓ defined
in Appendix C, and s ∈ R, then

Hs(DΓ,Γ0) := {u ∈ Hs(Γ0) |ν · u = 0, and DΓu ∈ Hs(Γ0)}, (D.12)

with the graph norm ‖u‖2
Hs(DΓ,Γ0) = ‖u‖2

Hs(Γ0) + ‖DΓu‖2
Hs(Γ0).
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Appendix E

RIGHTS & PERMISSIONS
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[52] L. Hörmander. The analysis of linear partial differential operators. III. Pseudod-

ifferential operators. Springer-Verlag, Berlin, 1985.

[53] S. Kharkovsky and R. Zoughi. Microwave and millimeter wave nondestructive

testing and evaluation - overview and recent advances. IEEE Instrumentation

Measurement Magazine, 10:26–38, 2007.

[54] A. Kirsch. Characterization of the shape of a scattering obstacle using the spectral

data of the far field operator. Inverse Problems, 14:1489, 1998.

[55] A. Kirsch. An introduction to the mathematical theory of inverse problems.

Springer, New York, 2011.

[56] A. Kirsch and N. Grinberg. The factorization method for inverse problems. Oxford

University Press, 2008.

[57] A. Kirsch and S. Ritter. A linear sampling method for inverse scattering from an

open arc. Inverse Problems, 16:89–105, 2000.

[58] R. Kress. Linear integral equations. Springer, New York, 1999.

[59] V.D. Kupradze. Three-dimensional problems of the mathematical theory of elastic-

ity and thermoelasticity. North-Holland Publishing Company, Amsterdam, 1979.
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