
A DATA-DRIVEN HIERARCHICAL FRAMEWORK FOR PLANNING,

NAVIGATION, AND CONTROL OF UNCERTAIN SYSTEMS:

APPLICATIONS TO MINIATURE LEGGED ROBOTS

by

Konstantinos Karydis

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical
Engineering

Fall 2015

c© 2015 Konstantinos Karydis
All Rights Reserved



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion.

  
All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

ProQuest 10014772

Published by ProQuest LLC (2016).  Copyright of the Dissertation is held by the Author.

ProQuest Number:  10014772



A DATA-DRIVEN HIERARCHICAL FRAMEWORK FOR PLANNING,

NAVIGATION, AND CONTROL OF UNCERTAIN SYSTEMS:

APPLICATIONS TO MINIATURE LEGGED ROBOTS

by

Konstantinos Karydis

Approved:
Suresh G. Advani, Ph.D.
Chair of the Department of Mechanical Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
Ann L. Ardis, Ph.D.
Interim Vice Provost for Graduate and Professional Education



I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Herbert G. Tanner, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Ioannis Poulakakis, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Jeffrey Heinz, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Christopher Rasmussen, Ph.D.
Member of dissertation committee



I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Guoquan Huang, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Sunil Agrawal, Ph.D.
Member of dissertation committee



ACKNOWLEDGEMENTS

First and foremost, I thank my advisors Dr. Bert Tanner and Dr. Ioannis

Poulakakis for supporting and guiding me during my doctoral studies. Over the course

of these past five years, they provided me with numerous opportunities to acquire and

develop a broad set of skills, granted me access to all the tools I needed to perform

my research, and they offered me targeted advice when appropriate. I am ingenuously

thankful for Dr. Tanner’s efforts to instill in me a strong interdisciplinary academic

profile, and Dr. Poulakakis’s provocative discussions and questions. All I have learned

through their guidance and support will be extremely helpful as I further my profes-

sional career.

I am grateful to the faculty who also mentored and supported me during my

studies. I thank Dr. Jeffrey Heinz for serving in my committee, working closely to-

gether, and sharing his knowledge on computational linguistics, as well as my com-

mittee members Dr. Christopher Rasmussen, Dr. Guoquan Huang, and Dr. Sunil

Agrawal for the time and effort invested in my research work, and their insightful com-

ments that had a major positive impact on improving this dissertation. I express my

gratitude to Dr. Daniel Freeman for introducing me to the world of entrepreneurship

and technology innovation. I am confident that this experience will complement my

academic training and serve me well in my future endeavors, academic or not. I am

also pleased that this work has led to several collaborations outside the University of

Delaware, and specifically with Dr. Vijay Kumar and his group at University of Penn-

sylvania, Dr. Ron Fearing and his group at University of California at Berkeley, as well

as Dr. David Zarrouk at Ben Gurion University.

This work would not have been possible without the generous financial support

by our funding agencies, and the University. Specifically, this work was supported

v



by the National Science Foundation under grants CNS-1035577, CMMI-1130372, IIS-

1350721, and the Army Research Laboratory under grant MAST CTA # W911NF-

08-2-0004. I also wish to thank the National Science Foundation for awarding us the

travel grant IIS-1546663, which supported participation for me and other researchers

and students in the workshop on Miniature Legged Robots which I co-organized. In

addition, I am grateful to the Department of Mechanical Engineering for supporting my

first year of graduate studies through the Helwig Fellowship in Mechanical Engineering,

and a semester of my studies through a teaching assistantship.

On a personal note, I am honored to be part of a loving and caring family that

has been selflessly supporting and encouraging me in good and bad times. I deeply

appreciate that—although it is very difficult for them to see me only once per year—

they kept on supporting my choices and encouraging me from distance throughout this

whole endeavor. I can only hope to instill in my own children the devotion and love

my family has shown to me.

For their constant support I thank my close friends back in Greece (currently

scattered all over Europe). Although we do not get to see each other often, our friend-

ship remains stronger than ever. During my doctoral studies in the Unites States I

have also had the pleasure to meet many people from different backgrounds and make

new friendships. I wish these friendships will hold in time.

Finally, I wish to thank wholeheartedly my partner Elena. Thank you for being

in my life. This dissertation is dedicated to you.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Challenge of Dealing with Uncertainty in Robot Navigation . . . 3

1.1.1 Objective and Significance . . . . . . . . . . . . . . . . . . . . 3

1.2 A Data-Driven Hierarchical Control Framework for Robot Navigation
under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Justification for a Hierarchical Approach: Divide et Impera . . 4
1.2.2 Components of the Framework . . . . . . . . . . . . . . . . . . 4
1.2.3 Consistency Conditions and the Role of Models and Data . . . 5

1.3 Focus on Miniature Legged Robots . . . . . . . . . . . . . . . . . . . 6

1.3.1 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Potential of Miniature Legged Robots . . . . . . . . . . . . . . 7
1.3.3 Challenges for Effective Navigation and Control at Small Scales 9

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Intellectual Merits and Broader Impact . . . . . . . . . . . . . . . . . 11
1.6 Dissertation Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 ELEMENTS OF THE HIERARCHICAL CONTROL
FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 High-Level Discrete Task Planning . . . . . . . . . . . . . . . . . . . 13

vii



2.2 Low-Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Mid-level Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Control and Planning through Motion Primitives . . . . . . . 16
2.3.2 What is Missing? . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Need for Appropriate Models and Data to Achieve Consistency 17

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 TEMPLATES IN ROBOT MOTION PLANNING,
NAVIGATION, AND CONTROL . . . . . . . . . . . . . . . . . . . . 20

3.1 Templates for Robotic Legged Locomotion in the Miniature Scale . . 21

3.1.1 Bio-Inspired Templates . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Use of Car-Like Templates in Legged Locomotion . . . . . . . 22
3.1.3 Need for more Templates at the Miniature Scale . . . . . . . . 23

3.2 The Switching Four-Bar Mechanism (SFM) Template . . . . . . . . . 24

3.2.1 Description of the Model . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Analysis and Closed-Form Expressions . . . . . . . . . . . . . 26

3.2.2.1 State propagation during a step in the local frame . . 26
3.2.2.2 State propagation between steps in the global frame 27

3.2.3 Generating Motion Patterns with the SFM . . . . . . . . . . . 29

3.2.3.1 Generating straight-line paths . . . . . . . . . . . . . 29
3.2.3.2 Generating curved paths . . . . . . . . . . . . . . . . 31
3.2.3.3 From model parameters to path curvatures . . . . . . 33
3.2.3.4 Reachability properties . . . . . . . . . . . . . . . . . 34

3.2.4 Application to Miniature Legged Robots . . . . . . . . . . . . 34

3.2.4.1 Brief description of experimental platforms . . . . . . 35
3.2.4.2 Technical approach . . . . . . . . . . . . . . . . . . . 40

3.3 Template-Based Motion Planning, Navigation, Control for Miniature
Legged Robots Using the SFM . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Trajectory Tracking Control . . . . . . . . . . . . . . . . . . . 52

viii



3.3.3 Trajectory Replanning and Control . . . . . . . . . . . . . . . 59

3.4 Additional Considerations . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 A DATA-DRIVEN PROBABILISTIC FRAMEWORK FOR
UNCERTAINTY QUANTIFICATION . . . . . . . . . . . . . . . . . 69

4.1 Extending Deterministic Models to Stochastic Regimes . . . . . . . . 70

4.1.1 Joint Stochastic Model Extension and Probabilistic Validation 70

4.2 Development of the Framework . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Quantifying Model Fidelity: The Probability of Violation . . . 74
4.2.3 Distributions of Models and Model Expressiveness . . . . . . . 78
4.2.4 A Randomized Approach for Stochastic Model Extension and

Probabilistic Validation . . . . . . . . . . . . . . . . . . . . . 80

4.2.4.1 Cone of Data and Decision Function . . . . . . . . . 81
4.2.4.2 Approximating the Probability of Violation . . . . . 82
4.2.4.3 Approximating the Maximum of the Probability of

Violation over a Distribution of Models . . . . . . . . 83

4.2.5 Algorithm and Implementation . . . . . . . . . . . . . . . . . 84

4.3 Application to a Miniature Legged Robot . . . . . . . . . . . . . . . . 88

4.3.1 Stochastic Extension of the SFM . . . . . . . . . . . . . . . . 89
4.3.2 Application of the Method . . . . . . . . . . . . . . . . . . . . 90
4.3.3 Different Ways to Infuse Stochasticity . . . . . . . . . . . . . . 93

4.4 Outlook: Probabilistically-Valid Templates to Ensure Consistency . . 95
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 CONCLUSIONS AND FUTURE DIRECTIONS . . . . . . . . . . 99

5.1 Hierarchical Control for Uncertainty in Robot Navigation . . . . . . . 99

5.1.1 Selecting Suitable Templates is Key . . . . . . . . . . . . . . . 100
5.1.2 Experimental Data Guarantee Low-Level Implementation of

High-Level Policies despite Uncertainty . . . . . . . . . . . . . 100

ix



5.1.3 Miniature Legged Robots Fit Well in the Framework . . . . . 100

5.2 Dealing with Uncertainty in Robot Planning, Navigation, and Control 101

5.2.1 Extending Low-Level Control to Bio-Inspired Templates . . . 101
5.2.2 Dealing with Uncertainty in Perception and the Environment 101
5.2.3 Uncertainty in Planning, Navigation, and Control of

Multi-Robot Systems . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Uncertainty in Multi-Robot Cyber-Physical Systems . . . . . . . . . . 102
5.4 Frontiers in Robotics, Control, and Small-Scale Animal Locomotion . 102

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix

A KEY TERMINOLOGY IN LEGGED LOCOMOTION . . . . . . . 116
B DERIVATION OF CLOSED-FORM EXPRESSIONS . . . . . . . . 118
C UNCERTAINTY QUANTIFICATION IN SMALL-SCALE

AERIAL VEHICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.1 The Nominal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.2 Stochastic Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.3 Application of the Method . . . . . . . . . . . . . . . . . . . . . . . . 126
C.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

D REPRINT PERMISSIONS . . . . . . . . . . . . . . . . . . . . . . . . 132

x



LIST OF TABLES

3.1 Motion Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Identified Nominal SFM Parameter Values . . . . . . . . . . . . . 47

3.3 Errors in Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Primitives-Based RRT Planner Steps . . . . . . . . . . . . . . . . . 50

3.5 Trajectory Completion Rates for OctoRoACH . . . . . . . . . . . . 60

4.1 Key Terminology for Stochastic Model Extension . . . . . . . . . . 86

4.2 Probabilistically Valid Stochastic Model Extension Algorithm . . . 88

4.3 Initial pose error statistics . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Nominal SFM model parameters . . . . . . . . . . . . . . . . . . . 91

4.5 Probably approximate near maximum SFM model uncertainty . . 93

4.6 Probably approximate near maximum SFM model uncertainty for the
second parametric randomization of Section 4.3.3 . . . . . . . . . . 94

C.1 Quadrotor hovering altitudes . . . . . . . . . . . . . . . . . . . . . 125

C.2 PID gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.3 Probably approximate near maximum quadrotor model uncertainty 128

C.4 Probably approximate near maximum quadrotor model uncertainty
when the excitation term affects the model output . . . . . . . . . 130

xi



LIST OF FIGURES

1.1 Interaction of action, perception, and the environment determine
robot performance. Uncertainty is present in all three components. 2

1.2 Uncertain behavior of a particular octoroach [120] platform. The
robot crawls at low speed to follow eleven curvature-parameterized
trajectories in open loop for 5 sec. The path variability is clearly
visible and consistently high although the control commands remain
the same for each mode of operation, and discrepancies in initial
placement between sample trials are negligible. Each mode of
operation is color-coded and contains 50 trials. Data are collected via
motion capture at a rate of 100 Hz. . . . . . . . . . . . . . . . . . 7

1.3 Examples of the domain of application of miniature legged robots. (a)
Pipe inspection. (b) Building surveillance and intelligence. . . . . 8

1.4 A family of miniature legged robots studied in this work. (a) The
eight-legged octoroach [120], and (b) the 3D-printed star [161].
Both robots are designed and manufactured at University of
California, Berkeley. Inspired by these designs, we redesigned and
manufactured in-house (c) a revamped octoroach able to carry more
payload, and (d) spidar, a heavy-duty, highly-versatile miniature
legged robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Schematic representation of the hierarchical control framework
followed in this work. The levels of hierarchy complement each other.
This dissertation provides results that ensure consistency among
levels by introducing and employing probabilistically-valid templates. 19

3.1 (a) The sfm template. Two pairs of rigid legs become active in turns,
forming two fourbar linkages, {O1A,AB,BO2} and {O3A,AB,BO4}.
d is the distance between the two hip-point joints A and B, l denotes
the leg length, and G is its geometric center. (b) Pictorial
representation of state propagation—the active pair is marked with
thick solid lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xii



3.2 Model state propagation. State propagation in the local frame is
mapped to the global frame through the homogeneous
transformations T(qR−) and T(qL−) on SE(2). Note that the end state
of a pair is used directly to initiate the next one. . . . . . . . . . . 28

3.3 Model configurations to achieve straight-line and curved paths. (a)
The initial configuration is determined by setting the touchdown
angles, φtd

i , i = 1, . . . , 4. (b) Straight-line paths are achieved when the
leg touchdown and liftoff angles are symmetric with respect to the
horizontal body axis (equivalently, all sweep angles are equal). (c)
Creating asymmetry, ∆ψ, in the sweep angles enables turning of the
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Evolution of the model’s state when executing straight-line paths.
Solid, dotted, and dash-dotted curves correspond to φtdSLP = π

3
rad

(red), φtdSLP = π
4

rad (black), and φtdSLP = π
6

rad (blue), respectively. (a)
Evolution of the position of the geometric center, G, of the model.
Increasing φtdSLP accentuates the waving motion pattern, and enables
the model to cover longer distances along the y-direction. (b)
Evolution of the orientation of the model, θ, as it moves forward. . 30

3.5 The sfm propelling itself in straight-line paths. Solid lines indicate
the active pair, the tips of which are marked with solid disks. (a) The
right pair begins first. Its legs rotate around their tips, which are
assumed to remain fixed to the ground. (b) When the right pair
reaches its liftoff configuration, the left pair turns active and the right
pair is instantaneously reseted to its touchdown configuration. (c)
Both pairs have completed their stride, and the model is ready to
enter the next cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Evolution of the position of the model’s geometric center, G when
executing counter-clockwise curved paths. (a) Only the right pair
turns active. In all three cases φtd

1 = φtd
2 = π

3
rad. Solid, dashed, and

dash-dotted curved correspond to φlo
1 = φlo

2 = −π
6

rad (red),
φlo

1 = φlo
2 = 0 rad (black), and φlo

1 = φlo
2 = π

6
rad (blue), respectively.

(b) Both pairs are active. We set φtd
1 = φtd

2 = π
3

rad,
φlo

1 = φlo
2 = φlo

3 = φlo
4 = 0 rad, and plot the model’s response for

φtd
3 = φtd

4 = π
6

rad (solid, red), φtd
3 = φtd

4 = π
7

rad (dashed, black),
φtd

3 = φtd
4 = π

8
rad (dash-dotted, blue), and φtd

3 = φtd
4 = π

9
rad (dotted,

magenta). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Instantaneous change in orientation when switching between steps.
By convention, the sign of the angle is given by the right hand rule. 34

xiii



3.8 The set of reachable states produced by the sfm, starting at the
initial state x0 = (0, 0) cm, θ0 = 0o, spanning 10 model steps. Not all
possible combinations of touchdown and liftoff angles are shown; this
leads to some small areas not being covered by the paths. . . . . . 35

3.9 (a) The octoroach [120] designed and manufactured at the
University of California, Berkeley. Its body size is 130x60x30 mm, it
weights 35 g, and it can reach a maximum speed of 0.5 m/s.(b) The
foot-fall pattern of the robot, which results to an alternating tetrapod
gait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Relating the sfm template to the octoroach. (a) The alternating
tetrapod gait superimposed on the robot. (b) An eight-legged
kinematic simplification of the gait mechanism used by the robot [71].
(c) The sfm template is formed by grouping coupled legs (indicated
by the angles α and β and shown here for the right tetrapod) within
a tetrapod into a single virtual leg that induces the same
displacement. That is, legs {1, 2, 3, 4} reduce to the pair {O1, O2},
while legs {5, 6, 7, 8} reduce to the pair {O3, O4}. . . . . . . . . . . 37

3.11 The revamped octoroach compared to the original design. Under
minimal modifications (described in text), the revamped
octoroach has improved durability, longer life-cycle, and increased
payload capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.12 (a) The spidar designed and manufactured in-house, at the
University of Delaware. It measures 140x150x60 mm (including the
offset due to the legs when fully-extended), and weights 350 g. (b)
Side view of the robot where the mechanical coupling of the legs can
be easily observed. The same holds for the other side (not shown),
and as a result, the robot is designed to follow an alternating tripod
gait. This gait is mapped to the Switching Four-bar
Mechanism (sfm) by grouping coupled legs into virtual ones, as in
the case of octoroach; see Figure 3.10. . . . . . . . . . . . . . . . 40

3.13 Path dispersion at (a) 2 sec, (b) 2.5 sec, (c) 3 sec, (d) 3.5 sec for the
octoroach. All primitives start at the origin, and are largely
dispersed at the end of the 3 sec trial as shown in (c). The z axis
counts the number of paths that are inside a particular grid square.
Due to the selected grid size, some paths may appear more than once
inside a square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiv



3.14 Experimental data for the motion primitives considered here.
Individual paths are shown with thin curves, while experimental
averages are marked with thick curves. The sfm outputs that capture
best these experimental averages are shown with lightly-shaded
dashed curves. (a)-(c) ccw, sl, and cw primitives for the
octoroach. Similarly (d)-(f) for the revamped octoroach, and
(g)-(i) spidar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.15 The rrt is combined with the motion primitives generated by the
sfm template for the (a) octoroach and (b) spidar (see Table 3.2).
The solver generates desired trajectories (thick curves) in
environments populated with obstacles. We discard any edges and
vertices that cross the boundaries of the augmented obstacle regions
(lightly shaded areas) surrounding the actual obstacles (in blue). . 51

3.16 The physical environment realizing the case studies considered here.
The robot starts at the bottom left corner and is required to navigate
to the top right corner of the environment, while avoiding collisions. 52

3.17 Simulated response of the system commanded to follow the desired
trajectory shown earlier in Figure 3.15(a) (thick red curve), when
uncertainty perturbs its state at the end of every step. In all cases we
simulate 100 trials. (a) Open-loop response of the system with low
magnitude of infused uncertainty scores a 10% success rate. (b) As
the magnitude of the infused uncertainty grows, the system looses
track of the desired trajectory, and the success rate reduces to 2%. 54

3.18 Experimental results with the octoroach commanded to follow the
desired trajectory generated by the rrt solver in open-loop. I = 15
trials are considered. As expected by the simulations, open-loop
execution of the desired trajectory is unsatisfactory. The robot
collides with its environment soon after it starts navigating. . . . . 55

3.19 Model state propagation with injected step-by-step uncertainty. The
uncertainty is added at a step’s end state expressed in the global
frame, and is q̃R+

for a right step or q̃ L+
for a left step. . . . . . . 55

xv



3.20 Simulated response of the system commanded to follow a desired
trajectory (thick red curve), when uncertainty affects its state at the
end of every step. In all cases we simulate 100 trials. (a) Closed-loop
response of the system using the reported trajectory tracking
controller. When the magnitude of the infused uncertainty is low, the
controller enables the system to follow the desired trajectory, scoring
a 100% success rate. (b) As the magnitude of the infused uncertainty
grows, the system exits the region of attraction of the controller and
may loose track of the desired trajectory, with the success rate
reducing to 85%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.21 Experimental results of closed-loop navigation for the octoroach and
spidar. The desired trajectory is marked with a thick curve (in red)
in both cases. I = 15 paths are collected for each robot. (a)
Closed-loop response of octoroach using the reported trajectory
tracking controller. Compared to open-loop execution (cf.
Figure 3.18), the controller substantially improves the behavior of the
robot and enables it to follow the desired trajectory for longer;
however, the local nature of the controller inhibits successful
completion of the task. (b) Closed-loop response of spidar using the
reported trajectory tracking controller. The response of the robot is
smoother, and application of the controller yields a 93.3% probability
of reaching the target. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.22 Experimental results with the octoroach. As before, the desired
trajectory is marked with a thick curve (in red), and we repeat the
trial for 15 times. The combination of local trajectory tracking
control with the prediction phase enables the robot to successfully
complete its task most of the times (terminal collisions are marked
with a cross). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.23 Illustrative example of how the two-stage trajectory replanning and
control scheme works when applied to the physical robot. (a) The
initial trajectory (thick curve) generated by the rrt solver (see
Figure 3.15) is updated after the first 2 primitives of the plan have
been executed, with the local trajectory tracking controller being
active. (b) The updated trajectory (thick curve) is followed for the
first 2 primitives, and updated again by the solver. (c)-(j) This
process is repeated until the desired state has been reached. . . . . 61

xvi



3.24 The sfm integrates within the rrt solver when the initial state
varies. The first case differs in the initial position, while the last three
start at the same position but with different initial orientations.
Regardless the initial state, the solver was always able to find a
solution in a matter of seconds. The curvy final part in cases (a), (c),
and (d) is caused by setting the desired final orientation in the
interval [−30, 30]o; this effect can be rectified by letting the execution
time vary. The tree is constructed using template-predicted
octoroach motion primitives. . . . . . . . . . . . . . . . . . . . . 63

3.25 An example of a more complex task: surveillance under
visibility-based and operational tempo constraints. Our approach
works in a recursive fashion. (a) It first constructs a sub graph of the
reachability tree (thin lines), and selects the node that maximizes the
visibility polygon (highlighted region). (b)-(d) Then the system
navigates to the selected node and the process repeats. . . . . . . 64

3.26 (a) The state of the robot is (xG, yG, θ) ∈ R2 × S. (b) Data collected
from star. Thin curves depict the evolution of the geometric center
of the robot, while the experimental sample means out of a total of 30
paths for each case is shown in thick curves. . . . . . . . . . . . . . 65

3.27 Implementation of the rrt solver for the case study of star. The
map increases in complexity from left to right by adding more
obstacles. (a) The basic map: Many solutions exist, and the resulted
shortest path involves minimal switching among robot actions. (b) A
set of obstacles has been added to block the initial path. The planner
has to respect the motion constraints of the problem; this leads to the
“wavy” motion pattern close to the top left corner. (c) The most
complicated environment considered: Two areas to the right are now
inaccessible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.28 Experimental implementation of the plans shown in Figure 3.27. (a)
Least complex workspace: 4 paths (in green) reach the desired
configuration. (b) Medium-complexity workspace: 3 trials reached the
goal. (c) No successful trials were recorder for the hardest workspace. 67

xvii



4.1 (a) A multisample of length K = 8. The sample paths of interest are
marked with dashed curves, and are superimposed on top of the
whole experimental set of paths. The thick solid curve in the center
denotes the average of the eight sample paths, while the thick outline
denotes the corresponding cone of data, explained below in
Section 4.2.4.1. (b) A schematic representation for computing the
cone of data and the decision function. For each t ∈ {1, . . . , 60}, the
data variability ellipses Et are centered at the sample mean (marked
with disks), while their axes are constructed based on sample
variances of the multisample; see Sections 4.2.4.1 and 4.2.5. Taking
the union of all the ellipses yields the cone of data for a particular
multisample. Then, the decision function g reports 0 if a model
instantiation never crosses the boundary of the cone of data, as shown
with the thick curve, and 1 (“violation”) otherwise (as shown with
the dashed curve crossing the boundary at t = 24). . . . . . . . . . 76

4.2 (a) Experimental data for the three control models considered.
Dashed outlines indicate the cone of data for each case, while
experimental averages are shown with dashed thick curves in the
interior of each cone. (b) Output of the stochastic model, tuned
according to the values in Tables 4.4 and 4.5. A set of 248 random
model instantiations are plotted over the experimental averages and
cones of data. For all cases, the average behavior of the model,
marked with a solid curve, remains very close to the experimental
average (marked with a dashed curve). The uncertainty ellipses at the
final position also match closely. . . . . . . . . . . . . . . . . . . . 92

4.3 Output of the stochastic model, tuned according to the values in
Tables 4.4 and 4.6. 248 random model instantiations are plotted over
the experimental averages and cones of data. Similarly to
Figure 4.2(b), model-predicted statistics follow closely the
experimental statistics. . . . . . . . . . . . . . . . . . . . . . . . . 95

B.1 Geometric analysis of sfm. Bold thick lines and unprimed symbols
annotate the right pair configuration at touchdown, while dashed
thick lines and primed letters describe the mechanism at the liftoff
configuration. Thin dashed-dotted lines outline the various triangles
we refer to in text. Due to the no-slip assumption, the mechanism
pivots around the touchdown points, O1 and O2. Points C and C ′

denote the intersection of the torso of the model and the segment
O1O2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xviii



C.1 The experimental setup. Our support structure aids in restraining the
motion along the vertical direction only. The driving strings are
composed of nylon cords; they provide strong support and minimal
friction, while minimizing the fluctuations on the normal to the
motion plane. We also added a wooden floor to artificially generate
the ground effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C.2 (a) Experimentally collected paths for a quadrotor aerial vehicle
tasked to hover at four distinct altitudes (0.02 m, 0.11 m, 0.20 m, and
0.50 m, respectively). Individual paths are enclosed within the
respective cone-of-data areas (marked with the dashed curves), while
the experimental averages are shown in solid thick curves. For the
fourth case, the steady state is achieved at t = 20 sec. For clarity
purposes, we show the last 5 sec in the add-on window on the top
right corner of the figure. The superimposed solid thick curves
correspond to the model-predicted outputs according to (C.3). (b)
The output of the stochastically perturbed control architecture
depicted in Figure C.3, where the values of σξ for each case have been
estimated by the proposed framework, and are shown in Table C.3. A
set of 248 random model instantiations are plotted on top of the
experimental averages and cones of data. We are now able to capture
the data variability during the steady-state response. . . . . . . . . 127

C.3 Schematic representation of the closed-loop control stochastic model
for the steady-state vertical dynamics component during quadrotor
hovering. The input r denotes the desired hovering height, while the
gains of the pid controller have been tuned a-priori, and remain the
same with those used in our data collections. In ξ̃ ∼ N (0, σ2

ξ ), the
variance σ2

ξ is estimated using the proposed algorithm. . . . . . . . 128

C.4 Schematic representation of the modified closed-loop control
architecture. As before, the input r denotes the desired hovering
height, and the pid gains have been tuned a-priori. . . . . . . . . . 130

xix



C.5 (a) The output of the stochastically perturbed control architecture
depicted in Figure C.3, where the values of σξ for each case have been
estimated by the proposed framework, and are shown in Table C.3. A
set of 248 random model instantiations are plotted against the
experimental averages and cones of data. (b) Training data and
exogenous excitation statistics correspond to the second case only
(ztrain = 0.11 m, and σ̄ξ,train = 0.13). The stochastically extended
control architecture (Figure C.3) is then used to predict the
steady-state response of the system under different inputs, as well as
extend these predictions temporally. Provided that the operating
conditions do not vary significantly, the stochastic extension is able to
make accurate predictions, both temporal, and for different reference
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xx



ABSTRACT

Performing navigation with state-of-the-art mobile robots in real-world settings

is challenging because of, among other reasons, the presence of uncertainty. Dealing

with uncertainty in robot navigation is a difficult problem because it invalidates the

performance guarantees achieved in deterministic settings, while its precise effect on

motion cannot be predicted. Typically, we find uncertainty embedded within the sys-

tem (“process uncertainty”), in perception, and in the environment. This dissertation

develops tools for dealing with process uncertainty. The developed tools lay the basis

for a general framework that can be used to quantify the effect of process uncertainty on

robot motion, and recover some performance guarantees for achieving motion tasks. If

we could capture the variability in motion caused by process uncertainty, quantify risk,

and establish performance trade-offs in its presence, we could then create consistent

links between high-level objectives and low-level implementation. Such links would

allow for robot navigation in real-world settings with performance certificates, a need

that becomes pressing as robotics is rapidly gaining momentum in consumer applica-

tions. Dealing with uncertainty is not only important in robotics but also in general

cyber-physical and biological systems; elements of this work may find applications in

these domains as well.

We follow a data-driven hierarchical control framework to address the need

for consistent links between high-level objectives and low-level implementation. The

framework has three levels: low-level control, high-level task planning, and mid-level

motion generation. The benefit of the hierarchical approach is that it breaks the

problem into smaller sub-parts that can be tackled more easily, and allows for available

techniques at the two ends to be bridged. However, we still need to ensure compatibility

and reconcile the two ends in face of uncertainty. To tackle these challenges, we focus

xxi



on the mid level and propose two new important components: first, simple abstract

models (“templates”), which are data-driven, ensure compatibility; second, a data-

driven probabilistic framework recovers some guarantees that the policies prescribed

in the high (cyber) level are implementable in the low (physical) level. As it turns

out, templates must be reconciled with the physics of the system through experimental

data, and this is the key to achieving consistency under uncertainty.

The main ideas of the approach are fixed using a particular application area:

miniature legged robots. The reduction in scale magnifies the effect of uncertainty, and

thus miniature legged robots provide a suitable testbed for the proposed framework;

indeed, uncertainty enters naturally (e.g., inherent uncertain leg-ground interactions),

while its effect on robot motion is clearly visible. By applying the framework to this

area, we enable real-time robot navigation and control at the miniature scale. The

latter pushes the limits of what palm-sized crawling robots can achieve, and aids in

shaping their potential in applications including building/pipe inspection, search-and-

rescue, and wildlife monitoring. Overall, we provide key components of a hierarchical

framework that can potentially be used for approaching more general problems of

planning, navigation, and control in the presence of uncertainty. The novel components

are: (i) consistent data-driven templates that ensure compatibility among the different

levels of the framework; and (ii) a probabilistic framework that reconciles high-level task

planners and low-level motion controllers in the presence of uncertainty. Together, these

components advance the state-of-the-art in planning, navigation, and control at small

scales under uncertainty, and when applied to the realm of miniature legged robots,

they offer tangible benefits with regards to motion capabilities for such platforms.

xxii



Chapter 1

INTRODUCTION

Contemporary mobile robots are tasked to operate and perform reliably in real-

world settings in the context of applications ranging from advanced consumer electron-

ics to robotic first responders. As robots begin to venture outside the controlled lab

settings, uncertainty becomes an important determinant of behavior, affecting robot

motion and compromising successful operation. It is thus important to develop tools

to deal with the uncertainty in robot motion planning, navigation, and control timely

and efficiently.

Dealing with uncertainty is crucial since we find it in all real-world applications.

There are many cases where we cannot simply neglect or filter it out. Yet, we can

still harness uncertainty and use it constructively for enhancing robot performance

and supporting robot operation in real-world settings. Unfortunately, this turns out

to be a highly non-trivial task, mainly because the uncertainty affects robot operation

in multiple ways.

Robot operation involves the interaction of multiple components, primarily ac-

tion, perception, and the environment—see Figure 1.1—each entailing different aspects

of uncertainty. Uncertainty in action, often called process uncertainty,1 is found in the

actual motion of the physical platform, and is captured in the models used to describe

that motion. Process uncertainty stems from intrinsic platform uncertainties (e.g.,

manufacturing variabilities, or uncertain material properties), unmodeled dynamics

(e.g., depleting battery effects, or mechanical wear), as well as uncertain physical in-

teractions with the environment the system operates in—extrinsic uncertainties—(e.g.,

1 Hereafter we shall use these two terms interchangeably.

1



walking on pebbles and sand, or flying under the effect of gusts). On the other hand,

uncertainty in perception relates to the sensing capabilities endowed to the robotic

platform, while uncertainty in the environment is linked to conscious decision making

in dynamically-changing environments. Dealing simultaneously with all three types

of uncertainty is currently daunting; instead, it may be more appropriate to first im-

prove our understanding and deal with each aspect separately, before we combine them

together into a general framework.

action

perception environment

Figure 1.1: Interaction of action, perception, and the environment determine robot
performance. Uncertainty is present in all three components.

The work here focuses on providing tools to capture process uncertainty in mo-

bile robot planning, navigation and control. The rationale for this choice is that dealing

with process uncertainty first provides the basis for determining “natural” robot be-

haviors. Then, dealing with perception and environment uncertainties can build on

top of the derived tool sets for dealing with process uncertainty to further support

successful autonomous robot operation in real-life (that is, dynamic) environments.

Specifically, in this work we show how data from uncertain physical platforms can be

used to develop tools capable of linking high-level objectives to low-level implementa-

tion in the presence of uncertainty. In turn, the developed tools can be used to capture

and formally describe process uncertainty in mobile robot planning, navigation and

control.

2



1.1 The Challenge of Dealing with Uncertainty in Robot Navigation

Dealing with process uncertainty in mobile robot planning, navigation and con-

trol is a difficult problem. First, process uncertainty arises from multiple different

sources—i.e., intrinsic, extrinsic, and modeling uncertainties—and one source’s effect

on robot motion often cannot be studied independently of the others. In addition,

the uncertainty invalidates the performance guarantees that would be available for

deterministic settings, while its precise effect on motion cannot be predicted a-priori.

It is beneficial to develop a framework to quantify the effect of process uncer-

tainty on robot motion because it may lead us to ways of recovering some performance

guarantees for achieving motion tasks. Doing so would aid us in taking the execution

of complex motion tasks out of the controlled lab settings and into the real world

which is inherently uncertain. To be useful, the framework needs to be general enough

to accommodate the multiple sources of process uncertainty, and be applicable across

platforms.

1.1.1 Objective and Significance

The objective of this dissertation is thus to develop a general framework for for-

mally capturing and reproducing process uncertainty. The framework provides tools for

(i) quantifying and infusing motion uncertainty in models, (ii) restoring performance

guarantees in the presence of uncertainty, and (iii) establishing tradeoffs between risk

and task satisfaction. The derived tools can then be used to create consistent links be-

tween high-level task planners and low-level motion controllers. In turn, such consistent

links are key for supporting robot navigation in real-life settings with performance cer-

tificates. Certifying robot navigation in real-life settings becomes pressing as robotics

in consumer applications are rapidly gaining momentum. To achieve our objective we

will consider a data-driven hierarchical control framework.

3



1.2 A Data-Driven Hierarchical Control Framework for Robot Navigation

under Uncertainty

A promising way to perform control and navigation under uncertainty is through

the application of symbolic control techniques that utilize tools from formal languages,

hybrid systems, and control theory [14]. Taken together, these techniques give rise to

a unified, hierarchical control framework which comprises three distinct levels: (i) the

high level that accepts task objectives and generates symbolic control laws, (ii) the

mid level that ensures compatibility between the generated symbolic control laws and

the system dynamics, and (iii) the low level that focuses on local closed-loop control

of the system.

1.2.1 Justification for a Hierarchical Approach: Divide et Impera

A hierarchical control approach like the one considered here has two benefits.

First, it breaks the big problem into smaller subparts that can be encountered more

efficiently. Secondly, it allows us to bridge available tools in the literature, and fa-

cilitates application across different platforms. This way the focus now shifts toward

combining these tools to capture and subsequently harness uncertainty. The last point

is in fact the main challenge that needs to be tackled when considering a hierarchical

framework: the framework must be designed so that its various levels of hierarchy are

compatible with each other.

1.2.2 Components of the Framework

The approach followed here is designed to ensure compatibility among levels.

Each level treats different aspects of the problem, and produces outputs which sub-

sequently serve as input to another level. Specifically, the high level uses tools from

theoretical computer science for discrete task planning (and learning) to generate sym-

bolic motion planning tasks in the form of a temporal sequence of behaviors. The mid

level comprises control-oriented languages that assign to each behavior symbol in the

4



sequence a control action realizable by the physical system. The succession of con-

troller activations generates desired trajectories. Then, low-level navigation controllers

are employed to make the physical system track to these desired trajectories.

Although this decomposition allows for tackling the uncertainty individually at

each level, available approaches in the literature (e.g., [86, 29, 65]) assume specific

noise statistics in models. This assumption is placed in order to facilitate analysis,

yet it may be too restrictive when validating through experimental implementation.

We claim that we need to resort to experimental data for deriving analytical formu-

lations that reinforce the links between analysis and physical platforms. In turn, this

calls for developing more tools to ensure consistency between levels in the presence of

uncertainty—a key contribution of this dissertation.

1.2.3 Consistency Conditions and the Role of Models and Data

To ensure consistency in the presence of uncertainty we require two key con-

ditions. Foremost, appropriate low-dimensional abstract models, often called “tem-

plates” [47], can ensure compatibility if they

• capture and reproduce salient robot motion behaviors;

• apply to different systems when operating under similar conditions; and

• facilitate both low-level control and mid-level analysis.

The second consistency condition calls for probabilistic tools that can reconcile high-

level objectives with low-level realizability through

• quantifying and infusing uncertainty back into templates;

• recovering performance guarantees in face of the uncertainty; and

• establishing tradeoffs between risk and task satisfaction.

In both conditions, data are essential. Indeed, data are used as the basis for tuning

model parameters and developing a systematic method to reinforce the connections

5



among the three levels. Taken together, the above conditions reveal the key to achieving

consistency:

“Templates must be reconciled with the physics of the system through
experimental data.”

We shall use the term probabilistically-valid templates to refer to such templates.

1.3 Focus on Miniature Legged Robots

We fix the main ideas of the general approach using an application from the

area of miniature legged robots. These robots demonstrate potential in real-world

applications, and serve as testbeds for studying the effect of process uncertainty. By

applying the framework to miniature legged robots, we push the limits of what they

can achieve and shape their potential in applications.

1.3.1 Justification

Miniature legged robots fit within the framework proposed in this work, and in

essence they can be thought of as “laboratories” to study the effect of process uncer-

tainty. The small scale magnifies the effect of uncertainty. Compared to other small

ground robots—such as wheeled ones—uncertainty in miniature legged robots enters

naturally, and has clearly visible effects. Indeed, the uncertain effect of manufacturing

variabilities, in conjunction with the inherently uncertain leg-ground contact interac-

tion and exacerbated by the robot’s small scale, makes miniature legged robots an

interesting example of uncertain physical systems, where the same control inputs may

lead to a rich set of behaviors as Figure 1.2 showcases: Depicted data correspond to

the miniature legged robot octoroach [120] commanded to follow various curvature-

parameterized trajectories in open loop for 5 sec. The path variability within each

mode of operation is clearly visible.

6



-30 -20 -10 0 10 20 30
-10

-5

0

5

10

15

20

25

30

35

x [cm]

y
[c
m
]

Figure 1.2: Uncertain behavior of a particular octoroach [120] platform. The robot
crawls at low speed to follow eleven curvature-parameterized trajectories
in open loop for 5 sec. The path variability is clearly visible and con-
sistently high although the control commands remain the same for each
mode of operation, and discrepancies in initial placement between sample
trials are negligible. Each mode of operation is color-coded and contains
50 trials. Data are collected via motion capture at a rate of 100 Hz.

1.3.2 Potential of Miniature Legged Robots

There is value in applying the framework to the domain of miniature legged

robots as they offer multiple benefits, relative to scale. Legs support all-terrain mobil-

ity and allow these robots to overcome obstacles and move in confined spaces in ways

impossible for their wheeled counterparts (e.g., [105, 92]), while low production cost

and rapid manufacturing enable deployment in large numbers. Essentially, miniature

crawlers can be used to explore, manipulate, and act as remote sensors in a range of

real-world applications such as search-and-rescue, building and pipe inspection, unob-

trusive wildlife monitoring, and Intelligence, Surveillance, and Reconnaissance (isr),

eventually involving multiple robots; Figure 1.3 depicts two representative cases.

7



(a) (b)

Figure 1.3: Examples of the domain of application of miniature legged robots. (a)
Pipe inspection. (b) Building surveillance and intelligence.

The potential of miniature legged robots has been acknowledged recently. Fu-

eled by advances in novel manufacturing processes, it is rapidly gaining momentum as

indicated by the growing number of biologically-inspired robot designs. Some exam-

ples include a cockroach-inspired hexapod [158] which uses two piezoelectric ceramic

actuators to drive its legs, the Mini-Whegs robot series [106, 87] utilizing a three-spoke

rimless wheel (“wheg”) design, and a miniature direct-drive legged robot [21] with sim-

ilar leg design. Moving a step forward, the 3D-printed star robot [161] incorporates a

mechanism that adjusts the sprawl angle of the robot, while psr [144]—similar in na-

ture to star—employs a passive sprawl-adjusting mechanism. On a different vein we

find the Sprawlita [25] and i-Sprawl [77] robots, manufactured via the Shape Deposi-

tion Manufacturing (sdm) process [103, 15], and origami-inspired printable robots [109]

System integration at very small scales has been made possible through the Smart

Composite Microstructure (scm) fabrication technique [156]; typical examples include

hamr [13, 12], roach [60], and Medic [82]. The scm process has been also used to fab-

ricate minimally actuated palm-sized walking robots, including the hexapod crawlers

dash [16], dynaroach [59], velociroach [52], and openroach [51] as well as the eight

legged robot octoroach [120]. Figure 1.4 presents the robots we consider here.

8



(a) (b) (c) (d)

Figure 1.4: A family of miniature legged robots studied in this work. (a) The eight-
legged octoroach [120], and (b) the 3D-printed star [161]. Both robots
are designed and manufactured at University of California, Berkeley. In-
spired by these designs, we redesigned and manufactured in-house (c)
a revamped octoroach able to carry more payload, and (d) spidar, a
heavy-duty, highly-versatile miniature legged robot.

As robot capabilities increase, the introduction and implementation of naviga-

tion and control techniques at this scale will expand the capacity of these miniature

robots in real-world applications.

1.3.3 Challenges for Effective Navigation and Control at Small Scales

To develop and exploit the capabilities of miniature legged robots, we need to

bring together the areas of Biological Inspiration, unconventional fabrication methods,

as well as navigation and control at small scales. Unfortunately, the advances in our

understanding of legged locomotion at small scales [143, 162, 93, 31, 63], as well as the

advent of novel manufacturing processes [103, 15, 156, 21, 109, 51], and the introduction

of a number of platforms have not been matched by a solid understanding on how

navigation, planning, and control can be realized on these miniature crawlers.

The challenge in performing navigation and control at small scales can be at-

tributed to two main factors. Foremost, stringent size and weight specifications con-

strain the number and power density of the actuators. Consequently, this leads to

heavily underactuated designs, prohibits extensive reliance on feedback control to mit-

igate the effect of process uncertainty [59], and restricts power autonomy by imposing

strict bounds on control effort. The second factor is that developing detailed analytical

9



models for miniature legged robots that can be used for planning, navigation, and con-

trol is challenging. Indeed, the novel manufacturing processes employed to fabricate

such platforms lead to complex highly-articulated designs, with involved transmission

and actuation mechanisms.2 Detailed modeling is also hindered by the uncertain me-

chanical properties of the structural material and the various manufacturing variabili-

ties introduced by the relatively low precision manufacturing and assembling processes.

The latter also leads to poor mobility performance [48].

Because of the aforementioned challenges, there is only a limited number of at-

tempts to perform navigation and control at the miniature scale [101, 136]. One way

to mitigate constraints of computational nature is by performing some of the demand-

ing processing off-line [101]. While essentially circumventing the problem of limited

on-board computational capacity, this approach shifts some of the challenges to commu-

nication, thus hindering real-time execution. Workarounds exist [136]; after substantial

off-line pre-computations, the actual control action can be computed on-board in real

time. Unlike aforementioned approaches [101], the latter also offers probabilistic per-

formance guarantees assuming unbounded control effort, without temporal limits on

when the task should be completed. However, the amount of pre-computations needed

prior to deployment may limit the practical utility of this approach. Notwithstanding

these recent efforts, effective real-time navigation and control at small scales under the

perceived challenges is still elusive. The work here contributes to narrowing this gap.

1.4 Contributions

Overall, this dissertation provides key components of a hierarchical framework,

which when completed, form the foundation for approaching more general problems

of planning and control in the presence of uncertainty. The focus here is mostly on

developing tools in the mid level that can be used to reinforce the connections among

the high and low levels.

2 See for example the transmission of octoroach [120, Fig. 2].

10



First, it is demonstrated that consistent data-driven abstract models (templates)

are essential for ensuring compatibility among levels. As it turns outs, consistency is

achieved when abstract models are validated against experimental data. To be useful,

such models must also be able to capture and reproduce salient robot behaviors and

facilitate analysis in support of navigation and control for uncertain systems. To show

the practical utility of these notions a new kinematic template for legged locomotion

at low crawling speeds is derived, and used to perform real-time motion planning,

navigation, and control on miniature legged robots.

Subsequently, a novel probabilistic framework to reconcile high-level objectives

with low-level realizability under uncertainty is constructed. Essentially, the derived

tools generate a probabilistic matching between physical platforms and templates and

report on its the validity. What is important is that the reported outcome comes with

probabilistic guarantees of validity, which can be used to establish tradeoffs between

risk and task satisfaction. These guarantees also render the aforementioned consis-

tent templates probabilistically-valid, which is key to ensure consistency and recover

some performance guarantees under uncertainty. All these notions are grounded in the

application domain of miniature legged robots.

Last but not least, application of these tools to the area of miniature legged

robots advances the state-of-the-art in planning, navigation, and control of miniature

legged robots. The tools are general and can be applied to multiple platforms; we show

this point by applying them to several miniature legged robots.

1.5 Intellectual Merits and Broader Impact

Dealing with uncertainty is not only important in robotics but also in more gen-

eral cyber-physical and biological systems; elements of this work may find application

in these domains as well. Specifically, the tools provided here are directly applicable to

capturing process uncertainty in other robotic systems, such as small-scale aerial vehi-

cles or larger legged robots. This information can then be used to harness uncertainty

in support of motion planning, navigation, and control toward resilient multi-robot

11



Cyber-Physical Systems (CPSs). Furthermore, developing a better understanding of

how control can be effectively applied at the miniature scale—given the constraints and

limitations on payload, energy utilization, and computational power—is very likely to

drive design decisions [144], and possibly feed back to biology by shedding light on the

tradeoffs in small animal locomotion [31, 63].

1.6 Dissertation Layout

The remainder of this dissertation is organized as follows. Chapter 2 provides

a technical description of the proposed hierarchical control framework, an overview of

the existing tools that can be used at each level, and justifies the need to develop more

tools to ensure consistency among levels in support of motion planning, navigation, and

control of mobile robots under uncertainty. To ensure consistency, low-dimensional be-

havioral models (templates) are combined with novel probabilistic tools that harness

uncertainty to create probabilistically-valid templates. To this end, Chapter 3 empha-

sizes the importance of templates, reports on a newly-developed template for low-speed

crawling locomotion, and shows how this template facilitates navigation and control

at small scales. Then, Chapter 4 reports on the novel probabilistic tools, and their

application to extending deterministic models into stochastic ones with probabilistic

guarantees of validity. Finally, Chapter 5 summarizes the contributions of this work,

and presents several future research directions that the research efforts herein have

enabled.

12



Chapter 2

ELEMENTS OF THE HIERARCHICAL CONTROL FRAMEWORK

This dissertation employs a data-driven hierarchical control framework for robot

navigation under uncertainty. The hierarchy has three levels. The high level is re-

sponsible for discrete task planning; the low level focuses on deriving system-specific

controllers; the mid level provides tools for ensuring compatibility and consistency be-

tween the high and low levels. This decomposition breaks the problem into smaller

subproblems for which we have a relatively good idea about how to address with avail-

able tools in the literature. In what follows, we provide an overview of some of the

most representative of these tools, and identify missing elements in the framework that

this work provides.

2.1 High-Level Discrete Task Planning

The high level features task planners that derive symbolic motion control policies

for complex navigation tasks. Consider for example a surveillance task: “Visit the

waypoints A, B, and C infinitely often while avoiding the obstacles O1 and O2;” or a

reconnaissance task: “Explore area E and return to base while avoiding any obstacles

encountered.” These tasks are described as high-level natural language commands,

and need to be translated mathematically into some computationally tractable form,

utilizing symbols for expressing actions (“go to point A”), events (“if an object is

encountered”), and conditions (“while moving, take laser scans”).

One way to express such tasks and behaviors in a computationally tractable

form, inspired by developments in theoretical computer science, is through the use

of temporal logic formulae [42]. Temporal logic, a subset of modal logic, was estab-

lished to “provide a formal system for qualitatively describing and reasoning about

13



how the truth values of assertions change over time” [42]. Intuitively, these formulae

consist of Boolean operators, atomic propositions, and temporal operators that can be

connected according to some syntax rules, and were first introduced for assessing the

correctness of computer programs [113]. Using temporal logics, automata theory, and

formal languages [139] we can reason about the temporal properties of discrete models

of physical processes (automata for instance). In the context of expressing complex

robot tasks, the states of an automaton may represent atomic propositions (e.g., “point

A reached”), while transitions between states may reflect the control actions required

by the robot (e.g., “go to”).

The above notions are also used in designing appropriate task planners. The

most popular approach involves the utilization of model checking [30, 11] for high-level

robot motion and task planning [79, 43, 96, 126, 155]. Some recent advancements in

this area include environment-reactive control [85], multi-robot distributed control [80],

and planning under sensor and actuator uncertainty by modeling the system as a

Markov Decision Process (mdp) while employing Probabilistic Computation Tree Logic

(pctl) [86]. Other approaches based on formal languages include the use of control-

oriented languages and Dynamic Programming (dp) [8], and the Motion Grammar

(mg) framework [34], which uses Context-Free Grammars (cfg) to represent planning

and control of robotic systems with uncertainty in the outcomes of control actions. Al-

ternative design tools for planning in adversarial environments [26, 46] utilize machine

learning techniques that draw from game theory and grammatical inference [36].

What is common in all methodologies of this spirit is that they produce symbolic,

discrete control plans. The realizability and applicability of these plans on the physical

platform is implicitly assumed. Notwithstanding, they can be applied to special types

of systems with rather simple dynamics (such as affine control and unicycle systems).

The reason is that systems with such dynamics can be “abstracted” intuitively at

a discrete level—that is, the low-level dynamics can be expressed in the form of a

14



transition system.1 However, in order for the derived high-level policies to find real-

world applicability, they must be grounded to particular physical systems of interest

through platform-compatible controllers and experimental data. This is exactly what

the low level in our hierarchical architecture is tasked to do.

2.2 Low-Level Control

The low level centers on deriving control laws that are applicable to the physi-

cal system at hand. Approaches in this realm focus on stabilization [142] or path and

trajectory tracking [3], and can be derived based on a variety of methods including

potential fields [84] and navigation functions [81], principles of stochastic control de-

sign [7], robust control [45], optimal control [94], model predictive control (mpc) [124],

or approaches that integrate the above into a single framework [137, 135, 136]. The

resulting navigation controllers are able to steer the system around obstacles, and

through waypoints.

However, these navigation controllers are typically platform– and task-specific,

while methods based on robust control—that is often employed in the study of systems

with uncertainty—may be overly conservative. In addition, the low-level controllers

may be too restrictive relative to the full spectrum of tasks mandated by the high-level

task planners. To tackle these limitations, low-level controllers should be put together

in a way that ensures compatibility and consistency between the low and high levels;

this is what happens at the mid level of the hierarchy.

2.3 Mid-level Integration

The mid level provides a series of tools that can bridge the gap between high-level

planning and low-level control. In detail, symbolic high-level controllers—that respect

the mechanical, control, sensing and communication constraints of the system—can be

constructed through a control-oriented language capable of handling symbolic control

1 Such systems are formally characterized by the existence of the bisimulation and
approximate bisimulation properties [30, 104, 6, 114].

15



plans that are expressed in the form of a string. Such languages include Computa-

tion and Control Language (ccls) [78] that accommodate for multi-robot cases, and

Maneuver Automata (ma) [44] that offer an example of using regular languages to

solve complex motion planning tasks and can be viewed as a subset of the extended

Motion Description Language (mdle) [62]. The latter forms a very general frame-

work for encoding symbolic plans. Powerful motion planning techniques [28, 88] such

as the sampling-based Rapidly-exploring Random Trees (rrt) [89] and Probabilistic

Roadmaps (prm) [75] can be considered as special cases of the mdl framework.

2.3.1 Control and Planning through Motion Primitives

The Motion Description Languages framework gives rise to a multimodal control

strategy that defines different modes of operation with respect to a particular task.

The underlying idea is to break a global plan down into behavioral sub-plans (motion

primitives) that can be attained by the low-level elementary controllers. Generating

the associated motion primitives depends heavily on the system at hand, and can

be done in several ways. Although a general formulation that facilitates portability

between different platforms is still elusive, there exist some promising methodologies.

For example, motion primitives for acrobatic helicopters can be generated by on-board

controllers [44], while experimental data from ants produce motion primitives that

are then being applied to drive unicycle systems [38]. If a model for the platform

exists, an alternative way lies on optimal control design [100]. Irrespectively of their

generation method, motion primitives considerably simplify the overall planning and

control problem since, instead of having to account for constraints in the high-level,

each motion primitive is guaranteed to satisfy the kinematic and dynamic constraints

of a system.

Once the motion primitives are available, they are then combined together ac-

cording to some discrete switching logic (interrupt functions) in order to achieve the

global objective. Consider for example primitives of the form (πi, gi), where πi corre-

spond to low-level elementary controllers, and gi ∈ {0, 1} are binary interrupt functions.

16



Intuitively, the system is being controlled by πi until the interrupt function gi changes

from 0 to 1 (e.g., a target was reached, or the system failed to reach a target after 10

seconds); subsequently, the next control law πi+1 initiates. The timing of the inter-

rupts may depend on various design parameters, such as time instances of exiting a

region, reaching a bound of a cost function, and others. Concatenation of primitives

yields control plans or “programs” that can be executed by the system. These plans

are strings, or words in the mdl.

Existing work that falls within the general context of the above framework

tends to revolve around two fundamentally complementary views: bottom-up, and

top-down design approaches. Top-down approaches (e.g., [86, 29, 65]) begin with high-

level specifications, and synthesize controllers in the presence of uncertainty with some

probabilities of successful task execution on actual hardware. On the other hand,

bottom-up techniques [24, 17, 151] begin with the system dynamics, and focus on

deriving dynamically-feasible trajectories that satisfy high-level reachability objectives

under the presence of uncertainty, with user-defined probabilistic guarantees.

2.3.2 What is Missing?

Irrespectively of the different methodological approach they employ, existing

techniques uniformly assume specific noise statistics in the models employed. This as-

sumption facilitates analysis, yet it may be too restrictive in experimental testing and

validation. The argument put forward in this dissertation is that analytical formula-

tions should be driven and shaped by experimental data in order to reinforce the links

between theoretical analysis and physical behaviors. In turn, this motivates the devel-

opment of novel tools for quantifying the uncertainty within models as it is observed

in real-world datasets.

2.3.3 Need for Appropriate Models and Data to Achieve Consistency

The results reported herein equip the mid level with tools for reconciling the two

ends of the spectrum in this hierarchical framework, despite the presence of uncertainty.

17



In particular, the thesis in this dissertation is that suitable simple models (templates)

can ensure consistency between abstract symbolic plans and actual physical dynamics,

provided that data have been employed to ground these models to physical platforms

of interest.

Simple Models Ensure Realizability without Oversimplification

Carefully-crafted yet simple models can ensure realizability of high-level policies

on low-level hardware without oversimplifying the system’s dynamics. This is achieved

if models are (i) general and suited to morphologically distinct platforms; (ii) compat-

ible with a Control-Orientated Languages framework, facilitating the design of motion

primitives; and (iii) capable of capturing the variability within individual system be-

haviors such as crawling or running. Note that the last point essentially means that

such models must be validated against experimental data; the work here provides a

systematic framework to accomplish this.

A Data-Driven Probabilistic Framework Removes Conservatism

A data-driven probabilistic framework is developed to remove conservatism by

jointly validating models and extending them to stochastic regimes. In other words, the

observed process uncertainty is infused into the model so that the latter can capture

and reproduce the variability that is observed in practice within a certain behavior of

the system. The reported method provides probabilistic guarantees of implementing

high-level policies to the physical system based on the actual uncertainty exhibited by

the system.

2.4 Discussion

Overall, the three levels considered here naturally complement each other (see

Figure 2.1). Each level treats different aspects of the problem, and produces out-

puts which subsequently serve as input to another level. This decomposition allows

for tackling the uncertainty individually at each level, and bridges different available

techniques. The dissertation contributes to narrowing the gap in ensuring consistency

18



among levels by combining templates with novel probabilistic tools that harness un-

certainty to create probabilistically-valid templates. In turn, probabilistically-valid

templates can be used to recover performance guarantees in face of the uncertainty,

and establish tradeoffs between risk and task satisfaction, based on the uncertainty

exhibited by the real system.

Probabilistically-valid templates

Low-level control Mid-level integration

Appropriate
templates

Probabilistic
tools

High-level task planning

Figure 2.1: Schematic representation of the hierarchical control framework followed in
this work. The levels of hierarchy complement each other. This disserta-
tion provides results that ensure consistency among levels by introducing
and employing probabilistically-valid templates.

The following chapters provide details on the technical approach for building the

middle layer by exemplifying the steps of the method using miniature legged robots.

Chapter 3 treats templates and demonstrates their use in navigation and control in

small scales, while Chapter 4 focuses on the developed probabilistic tools for quantifying

uncertainty.

19



Chapter 3

TEMPLATES IN ROBOT MOTION PLANNING, NAVIGATION, AND
CONTROL

Loosely speaking, the term template [47] is used to describe the simplest possible

model that captures and reproduces behaviors of interest, and applies to different

robotic systems when operating under similar conditions. Compared to detailed models

grounded in the morphology of the platform at hand, templates do not necessarily

model exactly the mechanisms that energy is transmitted from the motors to the

components that interact with the environment to generate motion (e.g., legs, wheels,

arms). Instead, the purpose of a template is to abstract some of these mechanisms to an

extent that facilitates analysis and control, and permits direct experimental validation.

Using templates in robotic legged locomotion is essential. Given that legged

locomotion is the outcome of complex, nonlinear, and inherently uncertain interactions

between the physical system and its environment, exact modeling of these interactions

is a very challenging task [47]. It is also challenging to derive first-principles models that

describe the mechanisms that generate motion since legged robots often rely on complex

highly-articulated system designs and involved transmission and actuation mechanisms

to create motion. We thus resort to extracting only some of the key features of those

mechanisms to derive simpler models that exhibit salient robot behaviors.

In what follows, we present some models that have been proposed in the liter-

ature as templates for legged locomotion, and propose a new template for low-speed

crawling locomotion. We then show how this new template is useful in terms of facili-

tating motion planning, navigation, and control for miniature legged robots.

20



3.1 Templates for Robotic Legged Locomotion in the Miniature Scale

3.1.1 Bio-Inspired Templates

Most bio-inspired modeling attempts concentrate on simple spring-mass sys-

tems. Their aim is to capture the underlying similarities of the center-of-mass (com)

motion in animals and robots despite their apparently diverse structural and morpho-

logical characteristics [47]. In this realm we find the Spring Loaded Inverted Pendu-

lum (slip) template [18, 132] which captures the com motion of robots (and animals)

in the sagittal plane. The model was motivated by studies in diverse species of animals

which suggested that, during a step, the center of mass reaches its lowest position by

compressing a virtual leg spring at mid-stance, and then extends by recovering stored

elastic energy [47]. Despite its apparent simplicity, slip and its extensions (for example

the asymmetric [116] and bipedal [50, 9] slip) have been successfully used in a range

of studies to model com motion, and derive controllers for robots (e.g., [122, 116]).

However, since most contemporary miniature legged robots such as hamr [13, 12],

dash [16], and octoroach [120] have a more sprawled than upright posture, we also

need bio-inspired templates in the horizontal plane.

Research in sprawled arthropods [20, 23] has motivated the introduction of

bio-inspired templates in the horizontal plane. Perhaps the most well-known tem-

plate for legged locomotion in the horizontal plane is the Lateral Leg Spring (lls)

model [130, 131, 58] which has been successful in explaining lateral stabilization [134],

and in deriving turning strategies [64, 119] for hexapedal runners. In its most com-

mon configuration, the lls is a conservative mechanical system composed by a rigid

torso and two prismatic legs that are modeled as massless springs. Each leg repre-

sents the collective effect of a support tripod formed during the stance phase by the

front and rear ipsilateral,1 and the contralateral middle legs that are in contact with

1 Ipsilateral means on the same side and contralateral means on the other side. Ap-
pendix A summarizes some key terms in legged locomotion that are used here.

21



the ground.2 The Sliding Spring Leg (ssl) model [160] extends lls by incorporating

the sliding effects of the leg-ground interaction that is often observed in multi-legged

miniature robots. Modeling eight-legged crawlers like the octoroach has received less

attention in the relevant literature than hexapedal runners; besides eight-legged models

for crabs [19], which typically employ a metachronal tetrapod gait to move laterally in

the horizontal plane, no further analyses appear to be available.

3.1.2 Use of Car-Like Templates in Legged Locomotion

Beyond bio-inspired templates, it has been hypothesized that models developed

for wheeled vehicles may also be applicable in the context of legged locomotion. In

detail, [98, 35] suggest that a unicycle model may suffice for the gross description of

the kinematics of multi-legged robots such as rhex [127]. Moreover, it has been shown

analytically that under some simplifying assumptions, the dynamics of rhex can be

reduced to that of a unicycle with a dynamic extension [110]. The validity of the

aforementioned hypothesis has been also tested in smaller scales [74] for star [161]

when the robot operates at low-sprawled postures.3

More generally, however, uncertainty becomes an important determinant of be-

havior as robots scale down in size; in this case, bio-inspired legged templates may pro-

vide better intuition than car-like templates regarding the mechanisms through which

the uncertainty affects the behavior of the system. The former, feature physically-

relevant parameters that can be tuned to capture or model (aspects of) uncertainty

and may offer some explanation about its source. For instance, varying the touchdown

and liftoff angles of a legged model may capture terrain profile variations4—information

2 See [58] for a detailed description of lls and its various configurations.

3 star features a rimless wheel leg design; consequently, at sufficiently low sprawl
postures, the robot’s legs are in contact with the ground for longer periods of time,
resulting to smooth, car-like behaviors [161]. Of course, this result may not generalize
well to other miniature legged robots with different leg design, like the octoroach [120].

4 Chapter 4 reports on a new methodology for tuning model parameters to capture
uncertainty.

22



which is important in order to design better controllers. Car-like models lack the de-

scriptive capacity to capture such phenomena, yet they have been successfully used for

deriving a vast number of approaches to perform motion planning [88, 28], navigation,

and control.5 We will take advantage of such methods by applying them to small-scale

legged robots using appropriate bio-inspired templates.

3.1.3 Need for more Templates at the Miniature Scale

We focus on the particular operation regime of crawling locomotion at low speeds.

The term essentially describes quasi-static operation regimes which are characterized

by relatively slow maneuvers with no extended slippage or flight phases. Such operation

regimes are important in applications; for example, if we mount a small camera on a

miniature legged robot, the robot needs to crawl slowly and smoothly, and offer the

system sufficient time to register and process new scenes. Besides, enabling navigation

and control at these regimes can then be used as a building block for high-speed

dynamic locomotion in other applications.

In the quasi-static operation regime, the motion of miniature robots is mainly

dominated by surface forces instead of dynamic and inertia effects [143, 121], as it is

often the case in meso– and large-scale robots. However, we currently lack detailed de-

scriptions of ground interaction that could be incorporated into a dynamical model [91].

What is more, it remains unclear how to directly map the parameters of such models

to robot design parameters [59], and control parameters such as motor gains. On the

other hand, crawling at low speeds in quasi-static operation regimes is typically cap-

tured well by a kinematic model; see for instance, the kinematic model for a centipede

microrobot [56]. Although this model is capable of describing the physical platform

accurately, it tends to be tailored to the particular mechanism employed by this robot.

Thus, there appears to be a need for more general kinematic templates, that can (i)

capture the salient features of locomotion behaviors of multiple robots, (ii) be amenable

5 Due to the extensive body of literature that falls under this category, we mention
later in this section only those results that have been considered in this work.

23



to analysis and control, and (iii) provide intuitive and physically-relevant mechanisms

to infuse uncertainty. To meet these challenges, we introduce a new kinematic template

called Switching Four-Bar Mechanism (sfm) [68].

3.2 The Switching Four-Bar Mechanism (SFM) Template

The Switching Four-Bar Mechanism has been proposed [68] as a kinematic tem-

plate for low-speed, quasi-static locomotion in the horizontal plane. The model does

not rely explicitly on the detailed mechanisms by which the physical platform generates

motion; it is thus capable of capturing salient behaviors of multiple miniature legged

robots. It is also amenable to analysis as it allows analytic, closed-form state prop-

agation and facilitates control by enabling real-time computations. Additionally, the

sfm encompasses a small set of intuitive and physically-relevant parameters that can

be tuned to achieve various motion patterns, and may offer explanation regarding the

mechanisms through which uncertainty affects the motion of the system (see Chapter 4

for details on the last benefit of the model).

3.2.1 Description of the Model

The sfm—see Figure 3.1(a)—is a horizontal-plane model consisting of a rigid

torso and four rigid legs organized in two pairs [68]. With the notation of Figure 3.1(a),

d is the distance between the two hip-point joints A and B, l denotes the leg length, and

G is the model’s geometric center. The two leg pairs {AO1, BO2}, and {AO3, BO4}
are defined as the right and left pair, respectively.6 The two pairs become active in

turns as shown in Figure 3.1(b). We require the following design specifications.

Design Condition 1 Once a pair of legs touches the ground (effective pair), the tips

of the legs remain fixed until the other pair touches down (no slipping).

Design Condition 2 At any given time other than the switching instant between

pairs, only one pair is active (touches the ground).

6 The notation follows from the leading leg at each pair.

24



O1

O2

O3

O4

φ1

φ3

φ4

φ2B

G

A

θ

d

l

xR

yL

xL

yR

y

xO

(a)

yL

yRy

xO

G′

xR
G

xL

∆θ

RGG′

(b)

Figure 3.1: (a) The sfm template. Two pairs of rigid legs become active in turns,
forming two fourbar linkages, {O1A,AB,BO2} and {O3A,AB,BO4}. d
is the distance between the two hip-point joints A and B, l denotes the
leg length, and G is its geometric center. (b) Pictorial representation of
state propagation—the active pair is marked with thick solid lines.

Design Condition 3 Within a pair, a 50% duty factor7 for its legs is used. Intu-

itively, both legs of each pair touch, and lift off the ground at the same time instant.

The practical significance of the above design specifications is that the template

can be essentially viewed as a switching four-bar mechanism (hence the name). The

kinematics of each effective pair is determined by the four-bar linkage these legs repre-

sent. Due to the kinematic equivalence to a four-bar linkage, the motion at each step is

fully determined by one degree of freedom: the angle φ1 when the right pair is active,

and the angle φ3 when the left pair is active (see Figure 3.1(a)). The motion of the

model is parameterized by the leg touchdown and liftoff angles φtd
i and φlo

i , respectively

7 The duty factor refers to the percentage of the total cycle which a leg touches the
ground; see Appendix A.

25



(where i = 1, . . . , 4), requiring π
2
≥ φtd

i ≥ φlo
i ≥ −π

2
. We follow the convention that a

leg angle φi ∈ [φtd
i , φ

lo
i ] is positive when the tip of the leg (point Oi) is in the “upper

semi-plane” defined by the longitudinal axis of the model and its normal that crosses

the leg’s hip-point (A or B)—all angles φi are sketched positive in Figure 3.1(a). To

facilitate analysis, we also define the sweep angle ψi as the absolute difference between

the touchdown and liftoff angles, that is ψi = |φtd
i − φlo

i |, i = 1, . . . , 4. Due to Design

Specification 3, the sweep angle takes the same value for both legs within a pair so

that ψ1 = ψ2 = ψR and ψ3 = ψ4 = ψL. Additionally, we define the leg angular velocity

φ̇i, i = 1, . . . , 4 as a means to introduce time in the parameterization of the paths

realized by the sfm.

3.2.2 Analysis and Closed-Form Expressions

The state of the model is a tuple q = (xG, yG, θ) ∈ R2 × S. With reference

to Figure 3.1(a), (xG, yG) denotes the position of the geometric center of the model,

G, with respect to some global coordinate frame {O}, and θ is the orientation of the

model, defined as the angle formed between the longitudinal axis of the model and

the y axis of the global frame. We adopt the convention that positive changes in the

orientation of the model correspond to counter-clockwise rotations.8

3.2.2.1 State propagation during a step in the local frame

In each active pair, the progression of the position vector RGG′ = (∆x,∆y)

and orientation ∆θ of the model during a step in the local coordinate frame—see

Figure 3.1(b)—is given by

(∆x,∆y,∆θ) = f(φ; ξ) , (3.1)

where f :
[
φtd, φlo

]
× Ξ → R2 × S and ξ ∈ Ξ denotes the model’s set of parameters.

The parameters ξ in (3.1) contain the touchdown angles of each active pair, and are

8 Note that this differs from the way we sign the leg angles φi.

26



used to ground the mechanism. Then, the state propagation in the local frame is a

function of one variable (φ), determined by the active pair.

When the right pair is active, the local coordinate frame is attached at O1 (see

Figure 3.1), φ = φ1, ξ =
{
φtd

1 , φ
td
2

}
, and (∆x,∆y,∆θ) = fR(φ1;φtd

1 , φ
td
2 ) with

fR(φ1;φtd
1 , φ

td
2 ) =


r(φ1) sin

(
ω(φ1)−|φ1−φtd

1 +χ(φ1)|
)
−r(φtd

1 ) sinω(φtd
1 )

r(φ1) cos
(
ω(φ1)−|φ1−φtd

1 +χ(φ1)|
)
−r(φtd

1 ) cosω(φtd
1 )

φ1 − φtd
1 + χ(φ1)

 . (3.2)

In Appendix B we provide the exact expressions for the length r(·), and the angles ω(·)
and χ(·), and describe the steps to derive the above state propagation equations.

Similarly, when the left pair is active, the local coordinate frame is attached at

O3, φ = φ3, ξ =
{
φtd

3 , φ
td
4

}
, and (∆x,∆y,∆θ) = fL(φ3;φtd

3 , φ
td
4 ) with

fL(φ3;φtd
3 , φ

td
4 ) =


−
(
r(φ3) sin

(
ω(φ3)−|φ3−φtd

3 +χ(φ3)|
)
−r(φtd

3 ) sinω(φtd
3 )
)

r(φ3) cos
(
ω(φ3)−|φ3−φtd

3 +χ(φ3)|
)
−r(φtd

3 ) cosω(φtd
3 )

−
(
φ3 − φtd

3 + χ(φ3)
)

 . (3.3)

Remark 1 Note that (3.2) and (3.3) have the exact same structure, and differ only in

the signs of ∆x and ∆θ. This is a direct effect of the symmetry of the sfm about the

longitudinal axis of the model. Thus, the motion of one pair mirrors that of the other,

a feature that is exploited to expedite computations.

3.2.2.2 State propagation between steps in the global frame

Figure 3.2 depicts an example of the state propagation in the global frame. Let

qR− and qR+
denote the state of the model expressed in the global coordinate frame

before and after completing a right step, respectively. For the left pair, we define

similarly qL− and qL+
.

Letting the right pair go first, the model is initiated at (xG, yG, θ) = qR− . The

touchdown configuration (φtd
1 , φ

td
2 ) defines the position of the points O1 and O2, which

remain fixed for the duration of the step. We propagate the model state in the lo-

cal frame according to (3.2) until φ1 reaches its liftoff configuration, φlo
1 . The model

27



state at the liftoff configuration—expressed in the local frame—is (∆x,∆y,∆θ) =

fR(φlo
1 ;φtd

1 , φ
td
2 ), and is then mapped back to the global frame through the 3×3 homo-

geneous transformation matrix T(qR−), yielding qR+
. The state of the model at the

end of the right step initiates the left step, with qR+
= qL− . From (φtd

3 , φ
td
4 ) we find O3

and O4, solve (3.3) with φ3 = φlo
3 as a terminal condition, and use the homogeneous

transformation T(qL−) to map the (local) model state to qL+
. Then, qL+

is used to

initiate the next (right) pair and the cycle continues; see Figure 3.2.

φtd1

(∆x,∆y,∆θ)T

φlo1

qR
−

qR
+

Right Pair

φtd2

φtd4

φlo3

qL
−

qL
+

Left Pair φtd3

fL(φ3)T(qL
−
)

T(qR
−
)fR(φ1)

(∆x,∆y,∆θ)T

Figure 3.2: Model state propagation. State propagation in the local frame is mapped
to the global frame through the homogeneous transformations T(qR−)
and T(qL−) on SE(2). Note that the end state of a pair is used directly
to initiate the next one.

The closed-form state propagation equations (3.2), (3.3) facilitate step-by-step

state feedback control for miniature legged robots. One control strategy that we ex-

plore later in Section 3.3 is to select liftoff configurations to form a trajectory tracking

controller based on the structure of the sfm. In the remainder of this section we

present strategies for tuning the sfm parameters so that the model generates various

straight-line and curved motion patterns. Subsequently, we apply these strategies to

capture the behavior of a range of miniature legged robots.

28



3.2.3 Generating Motion Patterns with the SFM

Here we provide strategies [71] to generate straight-line and curved model tra-

jectories with the model, and use tools from differential geometry to link curvature

specifications to model parameters. This is useful since—when performing navigation

tasks—it is often the case that some high-level planner prescribes curvature-specific

plans, such as “go straight for 10 sec and then make a 90o right turn.” Deriving such

strategies essentially links the sfm to curvature-parameterized high-level objectives.

3.2.3.1 Generating straight-line paths

In order to generate straight-line paths we select

φtd
SLP = φtd

1 = φtd
2 = φtd

3 = φtd
4 ,

φlo
SLP = φlo

1 = φlo
2 = φlo

3 = φlo
4 = −φtd

SLP ,
(3.4)

where the subscript SLP is used to denote the straight-line path configuration. The

configuration in (3.4) practically suggests that in order to achieve straight-line paths

we need to enforce symmetry among the sweep angles. From (3.4) the sweep angle is

ψSLP = ψ1 = ψ2 = ψ3 = ψ4 = |φtd
SLP − φlo

SLP| = 2φtd
SLP . (3.5)

The initial, and straight-line configurations are illustrated in Figure 3.3(a) and Fig-

ure 3.3(b) respectively.

Figure 3.4 depicts the evolution of the state of the model for the case of straight-

line path generation, and for parameter values in accordance with the configuration

given in (3.4) and (3.5). All plots correspond to a duration of one cycle, having the same

initial geometric center position and body orientation. Without loss of generality we set

d = 13 cm, and l = 3 cm.9 As we increase the value of the sweep angles (equivalently,

φtd
SLP), the model covers more ground in a single cycle, while the waving pattern of

motion—associated with the kinematics of the four-bar mechanism—becomes more

pronounced.

9 These values in fact correspond to the length and half-width of the octoroach.

29



φtd1

φtd2

φtd3

φtd4

(a)

φtd1

φtd2

φtd3

φtd4

ψ1

ψ2

ψ3

ψ4

(b)

ψ1 + ∆ψ

ψ2 + ∆ψ

ψ3 − ∆ψ

ψ4 − ∆ψ

(c)

Figure 3.3: Model configurations to achieve straight-line and curved paths. (a)
The initial configuration is determined by setting the touchdown angles,
φtd
i , i = 1, . . . , 4. (b) Straight-line paths are achieved when the leg touch-

down and liftoff angles are symmetric with respect to the horizontal body
axis (equivalently, all sweep angles are equal). (c) Creating asymmetry,
∆ψ, in the sweep angles enables turning of the model.

-1
x [cm]

y
[c
m
]

0

1

2

3

4

5

6

7

8

9

10

11

1 30 2

(a)

10
y [cm]

θ
[r
ad
]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

5430 21 6 987 11

(b)

Figure 3.4: Evolution of the model’s state when executing straight-line paths. Solid,
dotted, and dash-dotted curves correspond to φtdSLP = π

3
rad (red), φtdSLP =

π
4

rad (black), and φtdSLP = π
6

rad (blue), respectively. (a) Evolution of
the position of the geometric center, G, of the model. Increasing φtdSLP
accentuates the waving motion pattern, and enables the model to cover
longer distances along the y-direction. (b) Evolution of the orientation
of the model, θ, as it moves forward.

30



Figure 3.5 highlights how the model moves along straight-line paths. The pair

of legs that is active—that is, in contact with the ground—is marked with solid lines,

while the respective leg tips (marked with solid disks) remain fixed, forming a pin joint

with the ground. The legs of the active pair rotate around these joints according to the

kinematics of a four-bar linkage until the liftoff configuration is reached. At this instant

(Figure 3.5(b)), the opposite pair of legs becomes active while the formerly active pair

resets to its touchdown configuration. The process is then repeated (Figure 3.5(c)).

(a) (b) (c)

Figure 3.5: The sfm propelling itself in straight-line paths. Solid lines indicate the
active pair, the tips of which are marked with solid disks. (a) The right
pair begins first. Its legs rotate around their tips, which are assumed to
remain fixed to the ground. (b) When the right pair reaches its liftoff con-
figuration, the left pair turns active and the right pair is instantaneously
reseted to its touchdown configuration. (c) Both pairs have completed
their stride, and the model is ready to enter the next cycle.

3.2.3.2 Generating curved paths

We saw that the symmetry of sweep angles results in straight-line paths. Curved

paths can be generated by asymmetric sweep angles. Indeed, as Figure 3.4(b) suggests,

creating asymmetry in the sweep angles between the two pairs (Figure 3.3(c)) leads to

non-zero values for the model’s orientation θ at the end of each step. If the asymmetry

31



is retained, this deviation will keep propagating, thus moving the template along a

curved path. The asymmetry, ∆ψ, is defined by ∆ψ , |ψR − ψL|.
Figure 3.6 presents the evolution of the geometric center of the model when gen-

erating counter-clockwise curved paths for various combinations of touchdown, liftoff

and sweep angles. As before, d = 13 cm, and l = 3 cm, while all paths are ten-cycle

long (i.e. comprise 20 model steps), having the same initial position of the geometric

center and body orientation. Notice that as the asymmetry ∆ψ increases, the produced

paths have smaller radii of curvature.

0

5

10

15

20

25

30

35

40

y
[c
m
]

0

5

10

15

20

25

30

35

40

y
[c
m
]

-30 -25 -20 -15 -10 -5 0 5
x [cm]

-30 -25 -20 -15 -10 -5 0 5
x [cm]

-35-40

(a) (b)

Figure 3.6: Evolution of the position of the model’s geometric center, G when execut-
ing counter-clockwise curved paths. (a) Only the right pair turns active.
In all three cases φtd

1 = φtd
2 = π

3
rad. Solid, dashed, and dash-dotted

curved correspond to φlo
1 = φlo

2 = −π
6

rad (red), φlo
1 = φlo

2 = 0 rad (black),
and φlo

1 = φlo
2 = π

6
rad (blue), respectively. (b) Both pairs are active. We

set φtd
1 = φtd

2 = π
3

rad, φlo
1 = φlo

2 = φlo
3 = φlo

4 = 0 rad, and plot the model’s
response for φtd

3 = φtd
4 = π

6
rad (solid, red), φtd

3 = φtd
4 = π

7
rad (dashed,

black), φtd
3 = φtd

4 = π
8

rad (dash-dotted, blue), and φtd
3 = φtd

4 = π
9

rad
(dotted, magenta).

The model allows for asymmetry to be generated in multiple ways, and as a

result, paths of similar curvature can be achieved through different combinations of

touchdown, liftoff, and sweep angles. For example, consider the limiting case of right

32



pair actuation only, depicted in Figure 3.6(a). In this special case, the generated paths

correspond to sharper turns and have shorter length relative to their counterparts

shown in Figure 3.6(b), in which right and left pair actuation alternate. To resolve

redundancy we need a systematic way for matching prescribed path curvatures to

model parameter values.

3.2.3.3 From model parameters to path curvatures

To support path and motion planning, we first need to characterize the geometric

characteristics of paths produced from the model. Specifically, we are interested in

relating path curvatures to model parameters such as the touchdown and liftoff angles.

This is done by drawing tools from differential geometry of curves and surfaces [40, 146].

From a general point of view, the curvature of curves on a surface can be linked

to surface (Gaussian) curvatures by applying the Gauss-Bonnet theorem [40, Section

4-5]. For our planar problem, the Gaussian curvature is zero, and the Gauss-Bonnet

theorem reduces to
Ns∑
j=0

∫ sj+1

sj

k(s)ds+
Ns∑
j=0

αj = 2π , (3.6)

where Ns is the total number of model steps, sj is the arc length of the j-th step, and

k(s) is the curvature of the curve associated with each step, given by

k(s) =
x′y′′ − x′′y′

((x′)2 + (y′)2)
3
2

.

The quantity αj denotes the instantaneous change in orientation when switching from

step j to step j+1 (Figure 3.7). The integral term in (3.6) provides the contribution of

the curvature of the path followed within a step, while the remaining term accounts for

the instantaneous change in orientation between steps. Then, selecting an appropriate

number of steps allows the sfm to transcribe a closed circular curve, for which

2πR =

∫
c

ds . (3.7)

Combining (3.6) and (3.7) yields

R =

∫
c
ds∑Ns

j=0

∫ sj+1

sj
k(s)ds+

∑Ns
j=0 αj

. (3.8)

33



The path curvature produced by specific values for the touchdown and liftoff angles is

given by taking the inverse of (3.8), that is, kpath = 1/R. In principle, (3.8) allows one

to translate macroscopic requirements regarding desired path curvatures into model

parameters realizing them.

αj < 0

αj+1 > 0
y

x

Figure 3.7: Instantaneous change in orientation when switching between steps. By
convention, the sign of the angle is given by the right hand rule.

3.2.3.4 Reachability properties

Figure 3.8 graphically presents the set of reachable states from an initial state

q0 ∈ C ⊂ R2 × S for a total execution of 10 model steps. Without loss of generality,

we pick q0 = (0, 0, 0) in units of [cm, cm, deg], and set the parameters d and l to 13

cm and 3 cm respectively. All four legs are initiated with the same touchdown angle

(i.e. φtd
1 = φtd

2 = φtd
3 = φtd

4 ). The reachable set gives us insight into the controllability

properties of the model. From the graph produced in Figure 3.8, it follows that this

system is accessible [28]. In fact, we can achieve small-time local accessibility if we

restrict the problem to R2, and treat the orientation θ as a parameter.

3.2.4 Application to Miniature Legged Robots

The aforementioned strategies are helpful in analysis, but in order to ensure

compatibility with the physical hardware, they must be linked to experimental data.

The purpose of this section is to provide the mechanisms through which the sfm can be

34



-20 -10 0 10 20

0

5

10

15

20

x [cm]

y
[c
m
]

Figure 3.8: The set of reachable states produced by the sfm, starting at the initial
state x0 = (0, 0) cm, θ0 = 0o, spanning 10 model steps. Not all possible
combinations of touchdown and liftoff angles are shown; this leads to
some small areas not being covered by the paths.

used to capture salient motion behaviors of a variety of miniature legged robots. Appli-

cation to multiple robots supports the claim that the Switching Four-bar Mechanism

can indeed serve as a template for miniature legged robots operating quasi-statically.

3.2.4.1 Brief description of experimental platforms

We focus on three robots: octoroach [120], a revamped octoroach version

designed in-house, and spidar. The octoroach robots are manufactured through the

Smart Composite Microstructure (scm) fabrication technique [156], while spidar is

a hybrid design that incorporates 3D-printed and laser-cut parts. Despite their dis-

tinct morphological characteristics, all three robots employ a differential-drive steering

method. Essentially, a single dc motor drives all legs at one side, without any explicit

coupling between the two sides. The control inputs are the two motor gains, KL and

KR, that control the leg velocities of the left and the right side, respectively.

The OctoRoACH

The octoroach (Figure 3.9(b)) consists of a rectangular body, two actuators,

and eight legs organized so that all four legs at one side are driven by a single actuator.

35



The robot features an ImageProc 2.2 board [120, Figure 3] for communication and mo-

tor control10 (Atmel AT86RF231 Zigbee transceiver, ADXL345 3-axis accelerometer,

ITG-3200 3-axis gyro, and two motor drivers) while a 3.7 V, 300 mAh lithium polymer

(lipo) battery powers the assembly. The leg drive kinematics [120, Figure 2] combines

a slider-crank linkage responsible for leg abduction and adduction, and a parallel four-

bar mechanism responsible for leg protraction and retraction.11 Due to its mechanical

coupling, the robot follows a gait whose foot-fall pattern consists of two alternating

tetrapods (Figure 3.9(b)). Such metachronal gaits have been studied [19] in the con-

text of an eight-legged arthropod (the Ghost Crab), and are in direct analogy with the

tripod gaits commonly employed by a variety of six-legged animals and robots [58].

(a)

13 68 13 68

24 57 24 57

(b)

Figure 3.9: (a) The octoroach [120] designed and manufactured at the University
of California, Berkeley. Its body size is 130x60x30 mm, it weights 35 g,
and it can reach a maximum speed of 0.5 m/s.(b) The foot-fall pattern
of the robot, which results to an alternating tetrapod gait.

This alternating tetrapod gait is overlaid to the top view of the robot in Fig-

ure 3.10(a). Legs {1, 2, 3, 4} form the “right” tetrapod, and legs {5, 6, 7, 8} form the

10 This particular electronics suite does not allow the robot to move backwards.

11 For definitions of these motions, see Appendix A.

36



“left” tetrapod. For each tetrapod, ipsilateral legs touch the ground at the same in-

stant and rotate in phase with the same angular velocity, depicted in the eight-legged

simplified kinematic model of Figure 3.10(b) [71]. Based on this coupling, we can then

combine ipsilateral legs of each tetrapod into a single “virtual” leg. This reduction

maps the model in Figure 3.10(b) to the sfm template shown in Figure 3.10(c), where

contralateral virtual legs (i.e., {O1, O2}) represent the collective effect of the tetrapod

they replace (i.e., the right tetrapod {1, 2, 3, 4}) [71].

O1

O2

O3

O4

φ1 φ3

φ4 φ2
B

G

A

1

3
6

8

2

4

5

7

A

G

B

α
β

α
β

(a) (b) (c)

1

2

3

4

5

6

7

8

Figure 3.10: Relating the sfm template to the octoroach. (a) The alternating
tetrapod gait superimposed on the robot. (b) An eight-legged kinematic
simplification of the gait mechanism used by the robot [71]. (c) The sfm
template is formed by grouping coupled legs (indicated by the angles
α and β and shown here for the right tetrapod) within a tetrapod into
a single virtual leg that induces the same displacement. That is, legs
{1, 2, 3, 4} reduce to the pair {O1, O2}, while legs {5, 6, 7, 8} reduce to
the pair {O3, O4}.

Revamped OctoRoACH

Following extensive hardware experimentation, we noticed that certain parts of

the octoroach were failing in a consistent manner. Specifically, the housing of the

robot tends to sag fast, while the two middle bars inside the housing—that enable

37



leg abduction-adduction and protraction-retraction (see [120, Figure 2])—bend. Both

effects significantly alter the kinematics of the robot. Additionally, the laminate film

used for the joints (“flexures”) rips easily, while the tips of the legs (made of soft

molded rubber) degrade fast, altering the legs’ friction coefficient and thus affecting

robot performance through increased slipping.

All these motivated us to perform some mild modifications to the original design,

which gave rise to the revamped octoroach shown in Figure 3.11 (left). The updated

design features a support nerve inside the housing (not shown) that holds together the

upper and lower parts of the robot and prevents sagging. Bending of the middle bars is

now prevented by using two additional support bars that form a “bridge” between the

two ends of each middle bar (vertical flaps on the robot). We used Kapton R© Tape to

increase the strength of the joints, while all legs are now 3D-printed.12 As a result, the

revamped octoroach has improved durability, longer life-cycle, and increased payload

capacity without as fast performance degradation.

Figure 3.11: The revamped octoroach compared to the original design. Under
minimal modifications (described in text), the revamped octoroach has
improved durability, longer life-cycle, and increased payload capacity.

12 We use polylactic acid (pla) filament on a MakerBot Replicator 2 3D-printer.

38



SPIDAR

The third robot we consider is spidar, shown in Figure 3.12(a). The purpose is

to show that the sfm is applicable regardless of the morphological characteristics of the

robot. spidar is a low-cost, heavy-duty six-legged miniature robot that uses a rimless-

wheel leg design similar to those employed by Mini-Whegs [106, 87] and star [161]

robots. spidar is made mostly of laser-cut body parts (Acrylic and Delrin R© on a 30 W

VersaLaser 350), together with 3D-printed legs and leg supports (pla on a MakerBot

Replicator 2). Contrary to the octoroach family (e.g. [16, 59, 120, 52, 51]), all spidar

parts are bolted together; doing so effectively decreases the assembly time, facilitates

repairs, and diminishes potential inconsistencies when gluing parts together (as in the

octoroach family). A rigid case houses the electronics; currently, these include an

Arduino Fio (8 MHz ATmega328P) microcontroller with integrated XBee socket for

communications, a dual TB6612FNG motor driver, a 6 V step-up voltage regulator,

and two 3.7 V, 500 mAh lipo batteries—one powers the motors, and the other the

electronics. The electronics suite is protected by the case, yet access ports have been

incorporated to facilitate programming of the Arduino board.

Similarly to octoroach, spidar uses two dc motors, each controlling all legs

of one side. Extending the design of star [161], our design incorporates two servo

motors for independent sprawl control. This way, spidar can combine the benefits of

wheeled and legged locomotion by appropriately adjusting its sprawl posture.13 The

legs of the robot are mechanically coupled so that the front and rear ones at each side

are bound to touch and lift off the ground at the same time instant (Figure 3.12(b)).

This way, we can combine the coupled legs into a single virtual leg that induces the

same displacement as the pair is replaces (cf. Figure 3.10), which in turn leads to the

Switching Four-bar Mechanism template.

13 It has been found [161] that robots in this category behave like wheeled vehicles
when operating in sprawled configurations; on the other hand, more upright postures
can be used to overcome obstacles at the expense of a less smooth behavior.

39



(a) (b)

Figure 3.12: (a) The spidar designed and manufactured in-house, at the University
of Delaware. It measures 140x150x60 mm (including the offset due to
the legs when fully-extended), and weights 350 g. (b) Side view of the
robot where the mechanical coupling of the legs can be easily observed.
The same holds for the other side (not shown), and as a result, the robot
is designed to follow an alternating tripod gait. This gait is mapped
to the sfm by grouping coupled legs into virtual ones, as in the case of
octoroach; see Figure 3.10.

3.2.4.2 Technical approach

This section evaluates the capacity of the sfm for capturing the behavior of

miniature legged robots in the horizontal plane, as observed through planar position

and orientation measurements.14 As noted in Chapter 2, the approach focuses on

developing motion primitives since the latter considerably facilitate motion planning

and control.

Experimental implementation of motion primitives

All three robots are controlled via the two motor gains KL and KR. Due to the

differential-drive steering method that the robots employ, changing the motor gains

14 Selecting these quantities is justified by the focus on robot navigation in low-speed,
quasi-static operation regimes. Yet, one may elect to capture in a model other quan-
tities (such as leg velocities or forces) that may be useful in high-speed locomotion, or
may offer explanation regarding animal locomotion [63]; in such cases, other dynamic
models may be more appropriate than the sfm.

40



results in either straight-line or curved paths. Specifically, three families of motion

primitives are considered: (i) straight-line paths (sl) when KL = KR, (ii) clockwise

turns (cw) when KL > KR, and (iii) counter-clockwise turns (ccw) when KL < KR.

Open-loop state measurements are collected through a vicon motion capture system

(8 cameras for an approximately 5× 5× 2 m3 working volume) at a rate of 30 Hz. The

measured states express the position of the geometric center of a robot (xG, yG) ∈ R2,

and its orientation θ ∈ S (see Figure 3.1(a)). At the beginning of each individual

experimental trial, the robots are placed into a designated start area with an initial

state set at (xG, yG, θ) = (0, 0, 0) [cm, cm, deg]. All trials are conducted on a rubber

floor mat surface and have a duration of 3 sec.

Remark 2 The selected time duration of 3 sec offers a tradeoff between robot path dis-

persion, and path length which in turn affects the computationally complexity of the

problem. Figure 3.13 provides some insight on this choice. The histograms show how

individual experimental paths of the OctoRoACH disperse at different time instances.

After the 3 sec period the path dispersion is high, and as a result, constructing motion

primitives that last longer may not be meaningful in such cases since the variability in

the experimental data becomes unacceptably high. On the other hand, shorter execu-

tion times may increase significantly the computational complexity when concatenating

primitives, which becomes a challenge in the context of motion planning.

Following this procedure, I = 100 experimental trials are observed for each

motion primitive. Figure 3.14 presents the collected paths for each case: top plots

correspond to octoroach, middle plots to the revamped octoroach, and bottom plots

to spidar. Continuous thick curves mark experimental averages and are overlaid on

the body of the collected paths shown with thin curves. Table 3.1 contains the motor

gains that realize the primitives at hand, and the observed final states on average.

Comparing the behavior of the original octoroach with the one designed in-

house, it is observed that the latter demonstrates less variability in its motion. This

result was anticipated since the robot structure is more rigid than the original design,

41



(a) (b)

(c) (d)

Figure 3.13: Path dispersion at (a) 2 sec, (b) 2.5 sec, (c) 3 sec, (d) 3.5 sec for the
octoroach. All primitives start at the origin, and are largely dispersed
at the end of the 3 sec trial as shown in (c). The z axis counts the
number of paths that are inside a particular grid square. Due to the
selected grid size, some paths may appear more than once inside a
square.

42



Table 3.1: Motion Primitives

Platform
Primitive Motor Gains Final State (average values)

Type (KL, KR)
(
xf [cm], yf [cm], θf [deg]

)

OctoRoACH

SL (40, 40) (2.30, 18.19,−7.29)

CW (60, 20) (7.88, 9.67,−38.40)

CCW (20, 60) (−10.53, 11.38, 42.35)

Revamped
SL (40, 40) (−0.72, 17.02, 2.27)

OctoRoACH
CW (60, 20) (4.50, 9.71,−44.05)

CCW (20, 60) (−4.58, 8.71, 42.96)

SPIDAR

SL (100, 100) (−0.24, 26.77, 4.69)

CW (150, 50) (9.75, 20.33,−54.94)

CCW (50, 150) (−10.64, 20.64, 61.97)

therefore the uncertain effects of body compliance in robot motion are reduced. More-

over, the friction between the 3D-printed legs and the rubber floor mat is higher, thus

the revamped octoroach tends to cover less distance at the same time compared to

the original design. Shorter path lengths are mainly observed when executing curved

paths; this can be associated with the anisotropic surface of the feet and the mat.

spidar behaves very smoothly, and path variability remains low despite the fact that

this robot moves significantly faster than the octoroach robots (see Figure 3.14).

Linking to model parameters

The next step is to identify those parameter values that enable the sfm template

to produce paths that capture the experimental averages. Each experimental trial has

the form of a time series of length T ; in the case considered here, T = 90 since a trial

lasts 3 sec and is observed at a rate of 30 Hz. Then, a motion primitive is defined as

the timed average wave(t), t ∈ 1, . . . , T , of the individual paths it encapsulates (e.g.,

43



-15 -10 -5 0
0

5

10

15

20

x [cm]

y
[c
m
]

-5 0 5
0

5

10

15

20

x [cm]

y
[c
m
]

0 5 10 15
0

5

10

15

20

x [cm]

y
[c
m
]

(a) (b) (c)

-10 -5 0
0

5

10

15

20

x [cm]

y
[c
m
]

(d)

-5 0 5
0

5

10

15

20

x [cm]

y
[c
m
]

(e)

0 5 10
0

5

10

15

20

x [cm]

y
[c
m
]

(f)

-15 -10 -5 0
0

5

10

15

20

x [cm]

y
[c
m
]

(g)

25

30

-5 0 5
0

5

10

15

20

x [cm]

y
[c
m
]

(h)

25

30

0 5 10 15
0

5

10

15

20

x [cm]

y
[c
m
]

(i)

25

30

Figure 3.14: Experimental data for the motion primitives considered here. Individ-
ual paths are shown with thin curves, while experimental averages are
marked with thick curves. The sfm outputs that capture best these ex-
perimental averages are shown with lightly-shaded dashed curves. (a)-
(c) ccw, sl, and cw primitives for the octoroach. Similarly (d)-(f)
for the revamped octoroach, and (g)-(i) spidar.

44



straight-line paths). The shorthand notation M(ξ) is used to describe a model that

is parameterized by the parameter vector ξ ∈ Ξ, while the term out(M(ξ))t denotes a

model-generated path.15 Note that a model-generated path is essentially a time series

that contains the evolution of the state of the model, q(t) = (xG(t), yG(t), θ(t)) ∈ R2×S;

the subscript t highlights this fact. Then, the (nominal) parameter values ξ̄ ∈ Ξ that

result in model paths that capture the experimental averages in a least-squares sense

are identified by solving the optimization problem:

ξ̄ = arg min
ξ∈Ξ

T∑
t=1

‖out(M(ξ))t − wave(t)‖2 . (3.9)

Certain conventions are made before solving (3.9). First, the quantities d and

l are chosen so to match the robots’ actual length and half-width, respectively. Thus,

d = 13 cm, l = 3 cm for both octoroach robots, while for spidar d = 14 cm and

l = 7.5 cm. An additional case (d = 13 cm, l = 3 cm) is also considered for spi-

dar. The latter is used as a first means to test the robustness of the model when

(some) parameter values may vary. The number of model steps for each primitive

is set to Nπ = 10. This number of model steps has been chosen empirically over

the course of data collection and model analysis to provide adequate resolution for

the touchdown and liftoff configurations to capture 3 sec-long experimental data. A

different approach would be to include the leg angular velocities φ̇i as additional pa-

rameters in the optimization problem (3.9).16 It is reminded here that straight-line

motion is generated by activating both left and right pairs of legs, with the same

touchdown and liftoff configurations, that is φtd
1 = φtd

2 = φtd
3 = φtd

4 = φ̄td and

φlo
1 = φlo

2 = φlo
3 = φlo

4 = φ̄lo. Clockwise turns are generated as a variation of the above

configuration, where only the left pair is active i.e., φtd
1 = φtd

2 = φlo
1 = φlo

2 = 0 through-

out the stride. Similarly, counter-clockwise turns are produced by activating only the

right pair: φtd
3 = φtd

4 = φlo
3 = φlo

4 = 0. Experimental data from the octoroach robots

15 Although not crucial here, this notation will be used thoroughly later in Chapter 4.

16 The effect of this different parameterization is in fact evaluated later in Section 4.3.

45



demonstrate a very rapid change of orientation at the beginning of their paths (see

Figure 3.14(a)-(f)). This is captured by including the initial orientation of the model,

θinit, as an additional parameter that needs to be identified based on data.

With these conventions in place, the model parameters to be identified form the

vector

ξ =
[
φ̄td φ̄lo θinit

]
∈ Ξ , (3.10)

and the selection is made by solving (3.9) for each of the cases shown in Figure 3.14.

Table 3.2 contains the nominal model parameters, as well as the model-predicted final

state for each robot at the end of each primitive. Null entries in the third column

of the table indicate that the initial orientation was not included in the parameter

identification problem (3.9). Nominal sfm paths are shown in Figure 3.14 as lightly-

shaded thick dashed curves. Both cases for spidar are very close, so the output of the

first case (d = 14 cm and l = 7.5 cm) is shown only.

Table 3.3 provides an error measure for the quality of fit (εx [cm], εy [cm], εθ [deg])

in the form
1

T

T∑
t=1

|out(M(ξ))t − wave(t)| . (3.11)

Position errors are small in all cases, independently of the platform. The orientation

error, however, seems to depend on the platform. The octoroach robots demon-

strate more variability in their motion, which is observed in experiments through rapid

changes in orientation during a primitive. These discrepancies are caught by the error

measure in (3.11). As a result, the errors in Table 3.2 are in agreement with the visual

observations made based on Figure 3.14 suggesting that the original octoroach de-

sign exhibits more variability than the revamped octoroach, while spidar has more

smooth and less uncertain behavior.

Overall, the model is found to be capable of capturing experimental data well

in all cases. This is achieved by utilizing primarily two physically-relevant parameters:

the touchdown and the liftoff angles. The model’s initial orientation is added as a

46



Table 3.2: Identified Nominal SFM Parameter Values

Platform
Primitive Model Parameters Model-Predicted Final State

Type
{
φ̄td, φ̄lo, θinit

}
[deg]

(
xG [cm], yG [cm], θ [deg]

)

OctoRoACH

SL {65.57, 27.31, 0.00} (2.31, 18.21, 0.00)

CW {38.78, 15.70,−15.00} (7.94, 9.85,−68.58)

CCW {40.40, 11.65, 15.00} (−10.44, 11.37, 76.60)

Revamped
SL {0.06,−39.81, 0.00} (−0.70, 17.04, 0.00)

OctoRoACH
CW {23.96, 4.93,−15.00} (4.53, 9.57,−37.48)

CCW {28.60, 11.30, 15.00} (−4.62, 8.64, 44.33)

SPIDAR SL {8.39,−12.97, 0.00} (−0.17, 26.83, 0.00)

d = 14 cm CW {38.95,−3.87, 0.00} (9.61, 20.42,−55.71)

l = 7.5 cm CCW {26.91, 12.95, 0.00} (−10.96, 20.83, 61.92)

SPIDAR SL {25.06,−28.65, 0.00} (−0.14, 26.80, 0.00)

d = 13 cm CW {25.98, 12.93, 0.00} (9.53, 19.99,−56.89)

l = 3 cm CCW {39.88,−4.28, 0.00} (−10.23, 20.76, 58.01)

parameter only in the case of the turning primitives for the octoroach robots. More-

over, the sfm is able to capture the behavior of spidar equally well in both cases;

this provides some preliminary evidence that the sfm is robust as a model when some

parameters are perturbed. Taken together with the fact that the reported data come

from morphologically distinct robots that operate quasi-statically at different speeds,

the aforementioned results experimentally affirm that the Switching Four-bar Mech-

anism can serve as a template for miniature legged robots in quasi-static operation

regimes. The remainder of this chapter focuses on motion planning, navigation, and

control for miniature legged robots using the sfm template.

47



Table 3.3: Errors in Fit

Platform
Primitive Error in Fit

Type
(
εx [cm], εy [cm], εθ [deg]

)

OctoRoACH

SL (0.14, 0.57, 7.38)

CW (0.11, 0.21, 17.20)

CCW (0.35, 0.37, 19.55)

Revamped
SL (0.08, 0.64, 2.42)

OctoRoACH
CW (0.26, 0.47, 7.26)

CCW (0.21, 0.51, 7.91)

SPIDAR SL (0.15, 0.92, 1.87)

d = 14 cm CW (0.15, 0.66, 1.92)

l = 7.5 cm CCW (0.15, 0.75, 1.26)

SPIDAR SL (0.15, 0.91, 1.89)

d = 13 cm CW (0.14, 0.69, 1.23)

l = 3 cm CCW (0.12, 0.59, 1.96)

3.3 Template-Based Motion Planning, Navigation, Control for Miniature

Legged Robots Using the SFM

The purpose of this section is to show that the sfm is also useful in the context

of motion planning, navigation, and control for miniature legged robots. The system

identification procedure described before plays an important role since it essentially

links the control inputs (that is, the motor gains) of the physical robot to sfm template

parameter values. This information can then be used to link high-level planning policies

to control strategies that can be directly implemented to the physical hardware.

The approach is applied to octoroach and spidar, employs the motion prim-

itives constructed in the previous section for each robot, and consists of three stages.

These stages are (i) trajectory planning (mid level), (ii) trajectory tracking control

48



(low level), and (ii) trajectory re-planning and control. The third stage essentially con-

solidates the mid and low levels, and is needed when the uncertainty that affects the

motion of a robot is too large to be handled solely by a low-level controller. As we will

show shortly, this situation has been observed in the case study of octoroach naviga-

tion. The task is to reach a desired state (position and orientation) at a given static

environment while avoiding obstacles. The desired state is assumed to be given a-priori

by some high-level planner. This assumption is only made for illustration purposes,

and does not limit the generality of the approach; later in Section 3.4 we extend the re-

sults to include visibility-based constraints as an example of a more complex high-level

specification.

3.3.1 Trajectory Planning

In the first stage, the time-parameterized motion primitives are used in a tem-

poral sequence to generate a collision-free reference trajectory between an initial and

the desired state selected by some high-level planner. The construction of suitable se-

quences of primitives is achieved by employing a Rapidly-exploring Random Tree (rrt)

solver [88, Sections 5.5 and 14] and [28, Section 7.2.2].17 Extensions leading to optimal

plans [67] are in principle applicable, but we choose the original rrt solver mainly

due to its popularity, proven efficacy in experiments, and availability of direct software

implementations.

The rrt solver requires a map of the environment (i.e. the configuration space),

the initial and desired states q0 and qd, respectively, as well as the available motion

primitives sl, cw, and ccw for each robot. Since obstacles are present, the con-

figuration space is expressed as C = Cfree ∪ Cobs, where Cfree is used to denote the

obstacle-free portion of the configuration space, while Cobs denotes the obstacle region.

In the core of the approach, the solver uses the primitives to generate new vertices in

17 The rrt is deemed sufficient as we consider a single initial-goal pair configura-
tion. Cases with multiple initial-goal pairs are tackled by employing probabilistic
roadmaps [75] (prms).

49



a graph. The end of each vertex is used as a node from which new vertices branch

out—at first there is only the initial node. Vertices that cross obstacle boundaries are

automatically discarded. Using this approach, the reachability tree can be constructed

by a breadth-first implementation. To reduce, however, the computational cost of a

breadth-first approach, the rrt solver implements a sampling-based approach to select

a node for spanning new vertices. Specifically, a point in the obstacle-free configura-

tion space is sampled,18 and then the node that is closer—according to some distance

metric e.g., the Euclidean metric—to the sampled point, is used to span new vertices.

The process continues until qd has been reached. Note that due to motion constraints

and the discrete nature of robot motion primitives, finding a sequence of primitives

ending exactly at qd is very unlikely; therefore, we consider the target reached when

the trajectory ends within a radius of 15 cm around the target position, with final

orientation in the range of [−45o, 45o]. Table 3.4 summarizes the key steps of the rrt

solver we implement.

Table 3.4: Primitives-Based RRT Planner Steps

1. Read Workspace, q0, qd;
2. Read the sl, cw, and ccw primitives;
3. for i = 1 to k do
4. Sample random point α(i) in free workspace;
5. Find vertex qn closest to α(i);
6. Create sl, cw, and ccw edges from qn;
7. Add collision-free edges;
8. Update vertex list;
9. Exit if a neighborhood of qd is reached;

The solver is implemented in two case studies; first for octoroach and then

for spidar. Figure 3.15 shows sample reference trajectories that steer each robot

from the initial state q0 = (20, 20,−90) [cm, cm, deg], to the goal centered on qd =

18 Here, we sample points from Cfree according to a uniform distribution; however, one
may choose to introduce bias in the sampling to speed up the process.

50



(210, 210,−90) [cm, cm, deg]. The initial and desired states remain the same for both

octoroach (Figure 3.15(a)) and spidar (Figure 3.15(b)). Obstacles are artificially

augmented (lightly shaded regions) to account for platform volume. Any vertices that

cross the boundary of augmented obstacle regions are also discarded. The thin curves in

Figure 3.15 mark the branches of the constructed trees, while the thick curves highlight

the constructed reference trajectories for each robot.19 The reference trajectories shown

in Figure 3.15 are used below in both simulations and experiments.

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

(a)

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

(b)

Figure 3.15: The rrt is combined with the motion primitives generated by the sfm
template for the (a) octoroach and (b) spidar (see Table 3.2). The
solver generates desired trajectories (thick curves) in environments pop-
ulated with obstacles. We discard any edges and vertices that cross the
boundaries of the augmented obstacle regions (lightly shaded areas)
surrounding the actual obstacles (in blue).

Figure 3.16 shows the physical environment that is considered in both the

octoroach and spidar case studies. Experiments are ran on a rubber floor mat and

environment boundaries are created using foam material. The robot is placed manually

19 In Figure 3.15(b) the reference trajectory appears to touch the augmented obstacle
region, but this is an artifact of marking that trajectory as a bold curve.

51



in a designated start position, and the goal is for the platform to reach a rectangular

region marked goal in Figure 3.16. Ground truth information on the geometric center

and the orientation of the platform is recorded using a vicon motion capture system.

Control computations are performed in Python running on a host Linux laptop, while

reference trajectory generation is done using matlab implementations of rrt on the

same machine. These software modules interface with the physical platform through

ros. Control commands (desired motor gains) are sent to the robot at a rate of 3.33

Hz—recall that a primitive lasts 3 seconds and is made up of 10 steps.

START

GOAL

FOAM
OBSTACLES

RUBBER
MAT

Figure 3.16: The physical environment realizing the case studies considered here.
The robot starts at the bottom left corner and is required to navigate
to the top right corner of the environment, while avoiding collisions.

3.3.2 Trajectory Tracking Control

The next stage focuses on the development of a low-level trajectory tracking

controller based on the structure of the sfm template. Figures 3.17 and 3.18 justify

the need for developing a trajectory tracking controller. Specifically, the figures depict

simulation and experimental results of executing the sequence of the primitives cho-

sen by the rrt directly on the system—the octoroach in this case—in an open-loop

fashion. In the simulation results, shown in Figure 3.17, the model is corrupted with

52



noise on a step-by-step basis. In detail, given an initial state and desired values for the

touchdown and liftoff angles,20 the model state propagates deterministically according

to (3.2) or (3.3), depending on whether the step is taken by the right or the left pair,

respectively. Once a step is concluded, the state of the model is perturbed by additive

zero-mean multivariate Gaussian noise with covariance Σ = diag{σ2
x, σ

2
y , σ

2
θ}. The pro-

cess of injecting uncertainty is shown in the flow diagram of Figure 3.19. Overall, we

notice that even for low magnitude of infused uncertainty (σx = σy = 0.25, σθ = 2o

as in Figure 3.17(a)), the probability of following the desired trajectory is substan-

tially small.21 The above result is also observed in open-loop experiments with the

octoroach, as shown in Figure 3.18. The significant levels of noise and motion dis-

turbances, clearly impact performance and render successful execution unlikely, neces-

sitating the closure of a low-level control loop to perform trajectory tracking.

The analytic expressions derived in Section 3.2.2 greatly facilitate the design of

a closed-loop controller, the purpose of which is to minimize the tracking error which is

expected by the simulations, and also observed in experiments. To achieve this, at the

beginning of a step j—right or left—the controller computes the template-predicted

state at the beginning of the next step j+1 and compares it with the desired one

for the model parameters of Table 3.2, selecting those parameter values that minimize

the predicted error at step j+ 1. The selected parameter values are implemented

for the current step and the process repeats. It is emphasized that the controller is

implemented on a step-by-step basis; therefore, we require resolution in the steps that

compose the primitives which comprise reference trajectories.

Let Ns be the template steps in each primitive, and let Nπ be the number of

primitives that compose the reference trajectory. A reference trajectory thus consists

20 We remind here that each primitive consists of 10 model steps by design, while
desired parameter values are shown in Table 3.2 and are selected based on the type of
primitives that compose a reference trajectory.

21 The specific values for σx, σy, and σθ considered in Figure 3.17 are chosen at this
point arbitrarily; however, in Chapter 4 we provide a systematic means for infusing
into a model the uncertainty that is actually observed in experiments.

53



0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

(a) σx = σy = 0.25 cm, σθ = 2o (b) σx = σy = 0.75 cm, σθ = 5o

Figure 3.17: Simulated response of the system commanded to follow the desired
trajectory shown earlier in Figure 3.15(a) (thick red curve), when un-
certainty perturbs its state at the end of every step. In all cases we
simulate 100 trials. (a) Open-loop response of the system with low
magnitude of infused uncertainty scores a 10% success rate. (b) As the
magnitude of the infused uncertainty grows, the system looses track of
the desired trajectory, and the success rate reduces to 2%.

of Ns · Nπ steps; the index j ∈ [1, Ns] denotes a particular step of the trajectory. For

n ∈ {1, . . . , Nπ}, define the mapping

πn : [Ns ·(n−1)+1, Ns ·n]→ R2 × S .

In essence, πn is a sequence of desired states expressed in the global coordinate frame

indexed by j ∈ [Ns·(n−1)+1, Ns·n]. The reference trajectory Π is then defined as the

concatenation

Π , π1π2 . . . πNπ : [1, Ns]→ R2 × S .

Using the above notation, Π[j] = (x′[j], y′[j], θ′[j]) denotes the desired state of

the system at the beginning of step j. Let q[j] = (xG[j], yG[j], θ[j]) be the actual state

54



0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

Figure 3.18: Experimental results with the octoroach commanded to follow the de-
sired trajectory generated by the rrt solver in open-loop. I = 15 trials
are considered. As expected by the simulations, open-loop execution
of the desired trajectory is unsatisfactory. The robot collides with its
environment soon after it starts navigating.

φtd1

(∆x,∆y,∆θ)T

φlo1

qR
−

qR
+

Right Pair

φtd2

φtd4

φlo3

qL
−

qL
+

Left Pair φtd3

fL(φ3)T(qL
−
)

T(qR
−
)fR(φ1)

(∆x,∆y,∆θ)T

++ q̃R
+

q̃ L
+

Figure 3.19: Model state propagation with injected step-by-step uncertainty. The
uncertainty is added at a step’s end state expressed in the global frame,
and is q̃R+

for a right step or q̃ L+
for a left step.

55



at step j. For a parameter pair
(
φ̄td, φ̄lo

)
drawn from Table 3.2, the template-predicted

state of the system at the beginning of the next step is

(xG[j+1], yG[j+1], θ[j+1]) = T (q[j])(∆x,∆y,∆θ) (3.12)

where T (q[j]) is the homogeneous transformation on SE(2) that maps the progression

of the model in the local frame back to the global (see Figure 3.2). ∆x,∆y, and ∆θ are

determined by
(
φ̄td, φ̄lo

)
and are given by the expressions in (3.2) or (3.3) depending

on the active pair (i.e., right or left, respectively).

With the template-predicted state (xG[j+1], yG[j+1], θ[j+1]), the predicted error

at the beginning of the next step is

δx = xG[j + 1]− x′[j + 1] ,

δy = yG[j + 1]− y′[j + 1] ,

δθ = θ[j + 1]− θ′[j + 1] ,

where (x′[j+1], y′[j+1], θ′[j+1]) is the desired state at the beginning of step as given by

the reference trajectory. Through the computation of (xG[j+1], yG[j+1], θ[j+1]), the

predicted error depends on the parameters
(
φ̄td, φ̄lo

)
. The objective of the controller

is to pick
(
φ̄td, φ̄lo

)
from Table 3.2 so that

ρ(q, q′) =

√
[ρθ(θ, θ′)]

2 + αcl [ρx(x,x′)]2 (3.13)

is minimized. In (3.13), ρθ(θ, θ
′) is the SO(2) metric using complex notation (see [88,

Section 5.1.2]), and ρx(x,x′) is the Euclidean metric on R2. Essentially, [ρθ(θ, θ
′)]2 =

(cos(θ)−cos(θ′))2 + (sin(θ)−sin(θ′))2, and [ρx(x,x′)]2 = (δx2 + δy2). The factor αcl is

a relative weight between orientation and planar distance discrepancies that is chosen

empirically; in this setup, αcl = 0.015 offers a good tradeoff in penalizing errors in

orientation and planar distance.

To assess (i) the performance improvement compared to open-loop motion, and

(ii) the sensitivity of the trajectory tracking controller to (process) noise, we first run

closed-loop simulation tests with octoroach. Similarly to the open-loop simulations

56



shown in Figure 3.17, we add noise generated according to a zero-mean normal distri-

bution at the end of each step. This acts essentially as a stochastic perturbation to

the right hand side of (3.12). Figure 3.20 depicts both the closed-loop response of the

system in simulation for the case study of Figure 3.15(a), for varying degrees of infused

uncertainty. In each case we simulate the system 100 times. Figure 3.20 shows the

response of the system for significantly large motion perturbations when the trajectory

tracking control loop is closed. As expected, closing a low-level trajectory tracking loop

drastically improves the chances of the system reaching its target without collisions.

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200
x [cm]

(a) σx = σy = 1 cm, σθ = 5o (b) σx = σy = 2 cm, σθ = 10o

0

50

100

150

200

250

y
[c
m
]

Figure 3.20: Simulated response of the system commanded to follow a desired trajec-
tory (thick red curve), when uncertainty affects its state at the end of
every step. In all cases we simulate 100 trials. (a) Closed-loop response
of the system using the reported trajectory tracking controller. When
the magnitude of the infused uncertainty is low, the controller enables
the system to follow the desired trajectory, scoring a 100% success rate.
(b) As the magnitude of the infused uncertainty grows, the system ex-
its the region of attraction of the controller and may loose track of the
desired trajectory, with the success rate reducing to 85%.

Next, we test the reported trajectory tracking controller on the physical robot.

This time we use both octoroach, and spidar. The procedure is the same for both

57



robots albeit the difference in the desired reference trajectories and nominal model

parameters implementing the motion primitives of interest; see Figure 3.15, and Ta-

ble 3.2, respectively. The controller picks a model parameter configuration from the

available ones shown in Table 3.2, and this selection is mapped to motor gains through

Table 3.1. We run the test 15 times for each robot, and plot the results in Figure 3.21.

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

(a) (b)

Figure 3.21: Experimental results of closed-loop navigation for the octoroach and
spidar. The desired trajectory is marked with a thick curve (in red)
in both cases. I = 15 paths are collected for each robot. (a) Closed-
loop response of octoroach using the reported trajectory tracking con-
troller. Compared to open-loop execution (cf. Figure 3.18), the con-
troller substantially improves the behavior of the robot and enables it to
follow the desired trajectory for longer; however, the local nature of the
controller inhibits successful completion of the task. (b) Closed-loop
response of spidar using the reported trajectory tracking controller.
The response of the robot is smoother, and application of the controller
yields a 93.3% probability of reaching the target.

It can be readily verified from Figure 3.21 that the reported controller is effective

in the case of spidar, with only one out of 15 trials failing to reach the target.22

22 The performance in open-loop navigation is similar to the observation we made for
octoroach; the robot still collides with its surroundings rapidly.

58



Focusing on the performance of the octoroach, compared to the open-loop case the

controller substantially improves the behavior of the robot and enables it to follow the

desired trajectory for longer. However, the persistence of process noise in conjunction

with the length of the reference trajectory turned out to be insurmountable in all 15

experiments. This also reveals the robustness limits of the controller: beyond a certain

threshold, none of the primitives of Table 3.2 can close sufficiently fast the gap between

the current and desired state on the reference trajectory—which with persistent noise

perturbation, can grow uncontrollably (Figure 3.21(a)). To address this limitation

another loop closure is mandated. Closed at a higher level, this second control loop is

the subject of the next section.

3.3.3 Trajectory Replanning and Control

The main idea in the third stage of the approach is to wrap a control loop around

the reference trajectory generator that works in a receding-horizon fashion, closing at

a period corresponding to δπ < Nπ primitives. Essentially, the system executes the

initial trajectory for δπ primitives, and then recomputes from the current state a new

trajectory to follow for the next δπ primitives. This cycle is repeated until either the

goal is reached, or the system collides. In this implementation, we use the rrt solver to

update the reference trajectory so that the approach essentially reduces to trajectory

replanning. Note, however, that other formal predictive control schemes such as [73]

can also in principle be applied to close this outer control loop. The outer control

loop is applied only to octoroach since the low-level trajectory tracking controller

was successful in steering spidar toward the target at a 93.3% rate.

The octoroach results change drastically when the outer control loop is also

closed. The trajectory is refined every 2 primitives using the rrt solver, and the process

is repeated until the target is reached, or the robot collides with its environment. Using

this trajectory replanning and control scheme leads to an 80% success rate, with only

three out of 15 trials failing to reach the desired state. Figure 3.22 shows the results of

applying this control scheme. Table 3.5 summarizes the trajectory completion rates for

59



each case focused on the octoroach; ol, cl, and rcl stand for open-loop, closed-loop

and replanning-and-control loop, and correspond to Figures 3.18, 3.21(a) and 3.22,

respectively.

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

Figure 3.22: Experimental results with the octoroach. As before, the desired tra-
jectory is marked with a thick curve (in red), and we repeat the trial
for 15 times. The combination of local trajectory tracking control with
the prediction phase enables the robot to successfully complete its task
most of the times (terminal collisions are marked with a cross).

Table 3.5: Trajectory Completion Rates for OctoRoACH

Case OL CL RCL

Trajectory Length Covered (maximum) 52.4% 69.7% 100%

Trajectory Length Covered (minimum) 17.8% 22.1% 61%

Trajectory Length Covered (average) 29.9% 49.8% 95.4%

60



Figure 3.23 illustrates in more detail how the trajectory replanning and closed-

loop control scheme worked in a specific experimental trial, highlighted in blue (color

version) in Figure 3.22. The tree that is constructed from a robot state is shown in thin

curves, while the thick curve marks the reference path selected by the planner. As the

robot moves toward its goal, the root of the tree translates closer to the destination.

Each instance in Figure 3.23 illustrates a new reference trajectory update, calculated

after executing two primitives (approximately 20 robot steps) along the current refer-

ence trajectory. On its way to the goal, process noise pushes the robot in the shaded

region stopping it short of collision with obstacles (Figures 3.23(g)-(h)). In these cases,

the rrt solver is allowed to generate new edges inside the augmented obstacle regions

provided that generated trajectories exit the shaded region after the first primitive.

Note that the behavior can be modified by tuning the control horizon, or activating

(c)

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]
0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

0 50 100 150 200

0

50

100

150

200

250

x [cm]

y
[c
m
]

(e)(d)

(f)

(a) (b)

(i) (j)(g) (h)

Figure 3.23: Illustrative example of how the two-stage trajectory replanning and
control scheme works when applied to the physical robot. (a) The initial
trajectory (thick curve) generated by the rrt solver (see Figure 3.15) is
updated after the first 2 primitives of the plan have been executed, with
the local trajectory tracking controller being active. (b) The updated
trajectory (thick curve) is followed for the first 2 primitives, and updated
again by the solver. (c)-(j) This process is repeated until the desired
state has been reached.

61



the prediction phase only when the error in the trajectory tracking stage grows above

a certain threshold.

3.4 Additional Considerations

The Switching Four-Bar Mechanism (sfm) template offers promise in support-

ing motion planning for miniature legged robots. The reported template integrates

well within an rrt solver which typically defines the benchmark in motion planning.

Figure 3.15 highlighted two particular examples applied to distinct miniature legged

robots. Figure 3.24 below provides further evidence by showing motion plans for the

octoroach when the initial state varies [69]. The solver manages to find a path using

the template-based motion primitives in all cases.

The reported approach is general, and can be used to deal with navigation tasks

that extend beyond reachability, to more complex, dynamic tasks as well. We show

this point through a surveillance task under visibility-based and operational tempo

constraints (see Figure 3.25). We envisage an octoroach equipped with a 360o field-

of-view camera, that needs to monitor an environment populated with obstacles while

maximizing the camera’s visibility polygon. The task is served by a recursive solver as

follows. From an initial node we construct the reachability tree based on the template-

based primitives. One way to account for the operational tempo constraints is to require

that the next node to be visited must be within some prespecified distance from the

starting node. In the case we consider here, we set that distance to be between three–

and six-primitives long. Then, out of all possible nodes, the solver selects the node that

maximizes the visibility polygon. The visibility polygon is constructed by spanning

rays from the position of the camera intersecting the vertices of the obstacles; the

intersection points are marked with an asterisk in Figure 3.25 and define the vertices

of the visibility polygon. The robot then moves to the selected node, and the procedure

repeats. An example with six iterations is shown in Figure 3.25.

As a final remark, we address the case of a purely data-driven approach, without

using any model. The experimentally-constructed motion primitives (i.e. experimental

62



0 40 80 120 160 200 240
0

40

80

120

160

200

240

x [cm]

y
[c
m
]

(a)

0 40 80 120 160 200 240
0

40

80

120

160

200

240

x [cm]

y
[c
m
]

(b)

0 40 80 120 160 200 240
0

40

80

120

160

200

240

x [cm]

y
[c
m
]

(c)

0 40 80 120 160 200 240
0

40

80

120

160

200

240

x [cm]

y
[c
m
]

(d)

Figure 3.24: The sfm integrates within the rrt solver when the initial state varies.
The first case differs in the initial position, while the last three start at
the same position but with different initial orientations. Regardless the
initial state, the solver was always able to find a solution in a matter
of seconds. The curvy final part in cases (a), (c), and (d) is caused
by setting the desired final orientation in the interval [−30, 30]o; this
effect can be rectified by letting the execution time vary. The tree is
constructed using template-predicted octoroach motion primitives.

63



(a) (b)

(c) (d)

Figure 3.25: An example of a more complex task: surveillance under visibility-based
and operational tempo constraints. Our approach works in a recursive
fashion. (a) It first constructs a sub graph of the reachability tree
(thin lines), and selects the node that maximizes the visibility polygon
(highlighted region). (b)-(d) Then the system navigates to the selected
node and the process repeats.

sample means) are used directly for motion planning and navigation. This emulates

the case of a robot shipped with built-in motion primitives. This case study features

64



star [161], since its behavior is considerably smoother and less variable. Figure 3.26(b)

contains the experimental paths gathered during the calibration phase. Thick curves

correspond to the experimental average for each primitive, and are subsequently used

to define motion primitives for the robot. In turn, the primitives are used by the

rrt solver to generate reference trajectories in environments of increasing complexity

(Figure 3.27). The generated sequences of motion primitives are then executed on the

physical robot; the results are gathered in Figure 3.28.

G

θ

x

y

O
(a)

-20 -10 0 10 20
0

10

20

30

40

50

x [cm]

y
[c
m
]

(b)

Figure 3.26: (a) The state of the robot is (xG, yG, θ) ∈ R2 × S. (b) Data collected
from star. Thin curves depict the evolution of the geometric center
of the robot, while the experimental sample means out of a total of 30
paths for each case is shown in thick curves.

With respect to Figure 3.28, 95%, 83%, and 59% of paths for cases (a), (b), and

(c), respectively, were implemented in full before a terminal contact with an obstacle or

the boundary occurred. Similarly, 94.3%, 93.8%, and 75.9% of the planned path length

was covered for each case. Finally, 13.3% of paths succeeded in reaching the goal for

case (a), 10% for case (b), and there were no successful paths for the hardest workspace

case of Figure 3.28(c). Common in all cases is that uncompensated accumulated errors

make actual paths deviate substantially from the planned. These errors can be reduced

65



0 100 200
50

100

150

200

250

x [cm]

y
[c
m
]

50 150

(a)

0 100 200
50

100

150

200

250

x [cm]

y
[c
m
]

50 150

(b)

0 100 200
50

100

150

200

250

x [cm]

y
[c
m
]

50 150

(c)

Figure 3.27: Implementation of the rrt solver for the case study of star. The map
increases in complexity from left to right by adding more obstacles.
(a) The basic map: Many solutions exist, and the resulted shortest
path involves minimal switching among robot actions. (b) A set of
obstacles has been added to block the initial path. The planner has to
respect the motion constraints of the problem; this leads to the “wavy”
motion pattern close to the top left corner. (c) The most complicated
environment considered: Two areas to the right are now inaccessible.

in part by closing a control loop to ensure trajectory tracking, which typically works

well when a model of the system—or a template—can be constructed. An added benefit

of employing a model is the ability to make predictions about cases that have been

observed during the initial calibration phase.

Remark 3 A large number of paths bring the robot in contact with the workspace

boundary. In most of these cases, the robot was able to keep making progress toward

its goal. Moreover, there exist cases where the robot-wall interaction was beneficial.

For instance, Figure 3.28(a) shows that after the impact, the wall compensated for the

accumulated error, and aided STAR in moving closer to the goal. On the contrary, if no

walls were present, the robot would have deviated significantly from its predetermined

path. Such effects and tradeoffs can be studied with suitable stochastic models.

66



0 100 200
50

100

150

200

250

x [cm]

y
[c
m
]

50 150

(a)

0 100 200
50

100

150

200

250

x [cm]

y
[c
m
]

50 150

(b)

0 100 200
50

100

150

200

250

x [cm]

y
[c
m
]

50 150

(c)

Figure 3.28: Experimental implementation of the plans shown in Figure 3.27. (a)
Least complex workspace: 4 paths (in green) reach the desired config-
uration. (b) Medium-complexity workspace: 3 trials reached the goal.
(c) No successful trials were recorder for the hardest workspace.

3.5 Discussion

Overall, we emphasize that data must be used to judge the efficacy of tem-

plates, and generate suitable instances that capture salient robot motion behaviors.

Our experimental results validate this thesis in several distinct case studies. Once con-

structed, such appropriate templates can be used to ensure that the different levels of

the hierarchical framework are compatible with each other.

Unfortunately, compatibility does not always ensure consistency. Our results on

miniature legged robots show that despite elaborate efforts to deal with uncertainty at

a low-level, policies developed in the high level may not work well. This is primarily due

to the fact that we do not know a-priori how the uncertainty may affect the system. For

example, implementing both trajectory replanning and control improves significantly

the behavior of octoroach, as showcased in Figure 3.22. However, there are still cases

in which the robot collides with its environment. These collisions could in principle

have been prevented by using a smaller control horizon, at the expense of increasing

the computational complexity of the navigation task. Selecting the control horizon is

an implementation issue in similar receding-horizon schemes; it ultimately relates to

67



the amount of uncertainty the system is subjected to. Similarly, the case study of

star suggests that collisions may actually be helpful in terms of accommodating for

part of the process uncertainty the robot is subjected to (see Figure 3.28). It is thus

beneficial to be able to quantify the probability of such events to happen, which in

turn can improve the consistency among the tiers of the hierarchical framework.

In particular, to achieve consistency we need to reinforce the mid level with

tools that quantify process uncertainty and provide probabilistic guarantees on im-

plementing high (cyber) level actions to the low (physical) level. We do that in the

following Chapter 4 by properly quantifying and reproducing within templates the

experimentally observed variability.

68



Chapter 4

A DATA-DRIVEN PROBABILISTIC FRAMEWORK FOR
UNCERTAINTY QUANTIFICATION

In the previous chapter, we saw that a combination of templates and motion

primitives ensures realizability without oversimplifications. Application to miniature

legged robots yields good results, however it may be too restrictive since the approach

is purely deterministic. For example, if the volume of obstacles increases, there may

not be adequate physical space to permit replanning. Additionally, as Figure 3.22

depicts, there may still be cases that the robot fails to complete a given task. Thus,

it is important to have guarantees that high-level policies can be implemented in the

physical world despite uncertainty.

In this chapter we develop a methodology that can be used to provide proba-

bilistic guarantees of task accomplishment. The approach reported here allows one to

systematically extend an underlying deterministic model to a stochastic regime, and

validate the outcome of this procedure against experimental data. In particular, given

a model and experimental data, the method provides a way to estimate the magni-

tude of the uncertainty that needs to be infused in the model in order to capture the

range of behaviors observed in experiments, while providing probabilistic guarantees

on the validity of the reported model output. Application of the methodology rein-

forces the mid level by providing probabilistically-valid templates that essentially ensure

consistency among the levels of the hierarchy despite uncertainty. The stochastically-

extended models are capable of capturing and reproducing the variability observed in

experimental trials at user-defined levels of fidelity—this is valuable for planning and

control in the presence of uncertainty.

69



4.1 Extending Deterministic Models to Stochastic Regimes

Robot control algorithms are predominantly model-based, and often a large

part of the effort prior to deployment is devoted to deriving and validating models

that may faithfully represent robot behaviors. By their very nature, robots interact

physically with their environment, and these interactions during field deployment be-

come increasingly uncertain. Examples include vehicles operating in partially-known,

dynamic environments [10]; legged robots moving on rough terrain [138] or fluidiz-

ing ground [121]; quadrotors flying under the influence of uncertain aerodynamic ef-

fects [159, 117]; underwater robots affected by uncertain ocean currents [111]; and

steerable needles interacting with soft tissue [5]. In many of these examples, determin-

istic models have limited ability to predict the behavior of the robot as it operates in

its environment [150, 149, 27].

The main idea is to parameterize appropriately an otherwise satisfactory de-

terministic model of the system, to produce an augmented stochastic model. Then,

randomized algorithms [153, 154, 148] can be used to quantify the extent to which the

resulting stochastic model captures the uncertain system-environment interactions. In

particular, our method hinges on the concept of checking parameterized distributions of

models against available experimental data. The probabilistic validation part involves

a Monte Carlo simulation for estimating the probability that a random model instantia-

tion is statistically consistent with the measurements. Randomized optimization [153]

can then provide approximate near optima for valid model parameters. Thus data

variability is integrated within, and can be reproduced by the model. Essentially, data

statistics are used to quantify the amount of the uncertainty that the model parameters

need to have to capture the variability observed in the experimental data.

4.1.1 Joint Stochastic Model Extension and Probabilistic Validation

The approach combines elements of system identification, model validation and

machine learning, and borrows tools from randomized algorithms to render the prob-

lem analytically tractable. From a general perspective, system identification techniques

70



focus on learning models and fitting parameters to available data, and offer bounds on

the fitting and out-of-sample generalization errors. For instance, linear system identi-

fication approaches assign weights to available data and identify their optimal values

for linear classification, and linear and logistic regression [2]. If state-space models are

required, Linear Time Invariant (lti) system models can be also obtained [95]. The

use of linear models as building blocks supports more powerful nonlinear formulations.

For example, cascade products of linear models can generate neural networks [55], and

suitable nonlinear transformations give rise to kernel methods [57], such as Volterra

models [128, 108]. Genetic algorithms can distill physical laws by selecting nonlinear

terms in ode models [129]; see also [107] for a general overview. However, the models

produced typically treat uncertainty as noise, which is either filtered out completely or

is used to construct worst-case error bounds.

Model validation [140, 115, 141, 157, 147, 118, 11] uses experimental data, a

model of the uncertainty, and a nominal model with its associated error bounds gener-

ated by system identification, to report on whether the proposed model can be trusted.

These techniques result in hard model (in)validation, in the sense that they provide

a yes-or-no answer to the question of whether a model is consistent with available

data. These methods do not provide sufficient insight on the frequency of the events

that result in model invalidation; having this information can be useful for refining the

model. Hard model (in)validation can be relaxed in a probabilistic sense by employing

tools from statistical learning theory [152, 102]. Some applications involve correlation

analysis of residuals [95], prediction error within a robust control framework [49], and

computation of relative weighted volumes of convex sets for parametric uncertainty

models [90]. Another approach employs a probabilistic model validation methodol-

ogy to compare a model-generated output probability density function (pdf) with one

observed through experiments [53]. That approach relies on the availability of ana-

lytic model expressions for uncertainty propagation, and provides sample-complexity

bounds for robust validation inference based on randomized algorithms.

71



Randomized algorithms offer computationally tractable means to tackle prob-

lems in control synthesis [83, 153, 154, 22], neural networks [154], and robustness anal-

ysis [125, 4]. Typically, deriving worst-case (robust) bounds usually requires a large

body of experimental data for theoretical guarantees to hold [153]. However, it has

been found that these bounds can be relaxed at the expense of introducing a probabilis-

tic risk, captured by the notion of the probability of violation [4, 22, 148]. This concept

can be used to allow some design specifications to be violated, albeit with a relatively

small probability. In this way, the sample complexity significantly decreases, at the

cost of accepting a risk of violation. This idea has been used in system identification

to optimally discard sets of small measure from the set of deterministic estimates of

design parameters in [32, 33].

Here we employ the notion of probability of violation to turn deterministic mod-

els into augmented stochastic models, validating that the latter capture the variability

observed in experimental data. The reported approach involves a set-membership char-

acterization of the output pdfs, and applies directly to a wide range of target models,

irrespectively of whether they are phenomenological or derived based on first principles.

To demonstrate the latter, we apply the framework on two distinct problems: (i) to

extend the sfm template to a stochastic regime—see Section 4.3—and (ii) to capture

the ground aerodynamic effects in quadrotor ode models; to keep the development

focused on miniature legged robots, the latter is developed in Appendix C.

The reported approach is conceptually related to [54], where an underlying

model is used to provide prior information when training a target Gaussian Process

model [123] based on the efficient pilco algorithm [37]. However, the predictive ability

of that target model deteriorates significantly when the operating point is shifted even

slightly and enters to an area where no data are available. As shown in [70], and

reported in Appendix C, the method reported here is more robust in the sense that the

resulting stochastic extension can make accurate predictions around different operating

points, provided that the induced operating conditions do not change the nature of the

mechanisms by which uncertainty affects the system; this is attributed to the fact that

72



our approach makes direct use of a deterministic model that relates to the physics of

the underlying process.

4.2 Development of the Framework

The main ingredients of the proposed framework are described in this section.

A general account of the method is first presented in Sections 4.2.1 through 4.2.4. A

tractable algorithm is then formulated, and made concrete once some assumptions on

the underlying statistical distributions are made, in Section 4.2.5. Interspersed between

the stages of the conceptual development, are a number of comments that connect the

discussion to the examples of Section 4.3 and Appendix C.

4.2.1 Overview

Consider a sample space W that includes all possible outcomes generated by

experiments, where observations are collected from a dynamical process of interest.

Each element w ∈ W consists of state observations obtained during a single experiment.

For example, in Section 4.3 w ∈ W will be a motion path for the geometric center of the

miniature legged robot octoroach [120], when it is implementing a specific low-level

controller in open loop.

Suppose that a modelM is available for the dynamical process of interest. The

model is parameterized by λ ∈ N parameters, which are collected in a vector ξ taking

values in Ξ ⊂ Rλ. For example, in Section 4.3 again, M takes the form of a stride-to-

stride map, while in Appendix C it is a set of differential equations modeling vertical

quadrotor flight. As ξ ∈ Ξ varies, a family of models {M(ξ), ξ ∈ Ξ} is generated; we

will refer to each member M(ξ) obtained for a specific ξ ∈ Ξ as a model instantiation

and we will denote out(M(ξ)) its output.

Typically, given a collection of I ∈ N samples {w1, ..., wI} obtained experimen-

tally, where each wi ∈ W , one can compute the value ξ̄ ∈ Ξ of the model parameter

vector that results in a model instantiationM(ξ̄), the output out(M(ξ̄)) of which best

reproduces the average of the experimentally observed system behavior. Denoting by

73



wave the average of the set of samples wi for i ∈ {1, .., I}, one way to find ξ̄ is by solving

the least-squares problem

ξ̄ = arg min
ξ∈Ξ

T∑
t=1

‖out(M(ξ))t − wave(t)‖2 . (4.1)

Here, t ∈ 1, . . . , T is used to emphasize that both the output of the model instantiation,

and the experimental data, are expressed in time series form of length T . Later in

Section 4.2.4, this time dependence is made even more explicit.

In many applications, knowing merely the value ξ̄ of the parameter vector that

results in a best-fit model instantiation M(ξ̄), may not be sufficient. For example,

when using a model to plan the motion of a robot in the presence of uncertainty—as

is done for instance by [151] and [112]—one needs to know not only the average path

behavior, but also the paths’ distribution around this average. Only then can one

quantify the probability that the robot collides with obstacles.

In this part of the dissertation we provide a new mid-level tool that extends

deterministic models to a stochastic regime based on experimental data, and provides

probabilistic guarantees of validity in doing so. The resulting stochastic model is

considered valid when (i) it has low probabilistic risk of producing a response that is

not consistent with the experimental data (model fidelity), and (ii) the resulting paths

cover as thoroughly as possible of the area marked by the experimental data (model

expressiveness). Consequently, this procedure inform us about the range of nominal

model parameters, and the uncertainty that needs to be infused in the model, so that

it can jointly reproduce the experimental data on average and capture the observed

variability. The method proposed in this work can be applied to a wide range of models

of physical processes, not necessarily expressed in the form of differential equations.

4.2.2 Quantifying Model Fidelity: The Probability of Violation

Associated with the sample spaceW is a probability measure PW , which reflects

one’s belief regarding how the data of the physical system are distributed in W . For

example, in the case of the octoroach implementing a low-level straight-line motion

74



controller in open loop, one expects the majority of the experimentally produced paths

to be clustered around a straight line, and hence PW should “peak” on this line. It

should be emphasized though, that the proposed method does not depend on the

specific form of PW—which is dictated by the physics of the problem—and it can be

applied irrespectively of how PW is approximated.

Given W and PW , a multisample w is defined as a collection of K ∈ N inde-

pendent and identically distributed (i.i.d.) samples wk, k ∈ {1, ..., K}, drawn from

W according to PW , and is denoted w = {w1, ..., wK}. Thus, the multisample w is

drawn from the Cartesian product WK = W × · · · × W (K-times) according to the

probability measure PWK . In our setting, we generate multisamples by repeating an

experiment K times, assuming that each experiment is independent1 of others and

that all experiments are performed under identical conditions. To provide some in-

tuition, Figure 4.1(a) highlights a multisample of K = 8 sample paths obtained by

implementing a straight-line controller [72] on the miniature legged robot octoroach.

Given a value ξ ∈ Ξ for the model parameters, we are interested in making a

decision as to whether the corresponding model instantiation M(ξ) will be in agree-

ment, at any time, with the experimentally obtained data. To achieve this, we define

a binary-valued decision function g : WK × Ξ → {0, 1} that effectively measures the

extent to which the output out(M(ξ)) of the model instantiation M(ξ) computed for

particular ξ ∈ Ξ is representative of the data that form the multisample w ∈ WK . To

make this statement more precise, we say that the model’s output out(M(ξ)) for ξ ∈ Ξ

is representative of the data forming a multisample w ∈ WK , when this output falls

within a prespecified region at level p ∈ (0, 1) with confidence γ ∈ (0, 1). This region is

evaluated based on the data in w and is centered around the multisample’s mean. The

1 As is often the case, the assumption of independence is difficult to justify in practice.
Note though that certain properties that are relevant to our discussion can be extended
when the sequence of samples is not i.i.d. but satisfies a “mixing” condition [154,
Section 2.5, p. 33]. We will not discuss this issue further, for it requires the introduction
of a number of technical results that would shift the focus of this work; the interested
reader is referred to [154, Chapter 3].

75



x

y Et=60

Et=48

Et=36

Et=24

Et=12

-2.5 0 2.5 5
0

2

4

6

8

10

12

14

16

18

20

x [cm]

y
[c
m
]

(a) (b)

Figure 4.1: (a) A multisample of length K = 8. The sample paths of interest are
marked with dashed curves, and are superimposed on top of the whole
experimental set of paths. The thick solid curve in the center denotes
the average of the eight sample paths, while the thick outline denotes
the corresponding cone of data, explained below in Section 4.2.4.1. (b)
A schematic representation for computing the cone of data and the de-
cision function. For each t ∈ {1, . . . , 60}, the data variability ellipses Et
are centered at the sample mean (marked with disks), while their axes
are constructed based on sample variances of the multisample; see Sec-
tions 4.2.4.1 and 4.2.5. Taking the union of all the ellipses yields the
cone of data for a particular multisample. Then, the decision function g
reports 0 if a model instantiation never crosses the boundary of the cone
of data, as shown with the thick curve, and 1 (“violation”) otherwise (as
shown with the dashed curve crossing the boundary at t = 24).

area covered by the region is called the cone of data and is denoted conep,γ(w). Sec-

tion 4.2.4.1 below provides details on computing conep,γ(w) in a general setting, while

Section 4.2.5 shows how these computations can become tractable by particularizing

on the measure PWK (see Figure 4.1(b)).

The decision function g can now be defined as

g(w, ξ) :=

 0, if out(M(ξ)) ⊂ conep,γ(w)

1, otherwise
. (4.2)

76



Intuitively, the function g is interpreted as a penalty on a model instantiation M(ξ)

for ξ ∈ Ξ whenever M(ξ) produces a behavior that is statistically different from ex-

perimental data w. For a given ξ ∈ Ξ, consider the set

Aξ :=
{
w ∈ WK | g(w, ξ) = 1

}
(4.3)

which contains all the multisamples that violate the condition out(M(ξ)) ⊂ conep,γ(w).

As ξ ∈ Ξ varies, a collection of sets

A := {Aξ, ξ ∈ Ξ}

inWK is generated, each of which contains the “bad” multisamples for the correspond-

ing parameter values ξ. The probability of violation can then be defined by the function

P : Ξ→ [0, 1] given by the rule

P (ξ) := PWK (Aξ) , (4.4)

which provides a measure of the subset Aξ ⊂ WK of multisamples that are statistically

inconsistent with the particular model instantiationM(ξ). More precisely, for a given

value ξ ∈ Ξ of the model’s parameters, P (ξ) expresses the likelihood of generating a

multisample w by samplingWK according to PWK , which—for a desired level p ∈ (0, 1)

at confidence γ ∈ (0, 1)—results in a conep,γ(w) that does not properly contain the

output out(M(ξ)) of the model instantiation M(ξ).

The probability of violation (4.4) provides a means of deciding whether a specific

model instantiationM(ξ) is probabilistically consistent with experimental data. For a

given ξ, a large value for P (ξ) implies that the chance of generating multisamples that

are not in agreement with the particular model instantiationM(ξ) is high, suggesting

that the fidelity of M(ξ) is low.

In addition to quantifying model fidelity, it is also crucial to express multisample

variability. This cannot be achieved with a single model instantiation; instead, we need

to look at distributions of model instantiations over model parameters.

77



4.2.3 Distributions of Models and Model Expressiveness

One way in which a model can capture the dispersion of the experimentally

generated data is through stochasticity in the model’s parameters: their value is the

outcome of a random experiment. In particular, consider a sample space ΩΞ containing

all the possible outcomes of such random experiment and a probability measure PΞ

belonging in a family of measures PΞ. Then, the parameters of the model form a

random vector ξ̃ : ΩΞ → Ξ, the realization of which results in the values ξ ∈ Ξ that

determine the model instantiation M(ξ). With this construction, for each PΞ ∈ PΞ a

distribution of model instantiations DPΞ
= {M,Ξ,PΞ} is defined.

Note that each measure PΞ ∈ PΞ is assumed here to “peak” around the param-

eter value ξ̄ obtained by the solution of the least-squares optimization problem (3.9).

This reflects our intuition that the output of M(ξ̄) is a good representation of the

average of the experimental measurements. One can choose the family of measures PΞ

in a way that reflects their own beliefs on how the stochasticity enters the nominal

model parameters.

The dispersion of the values ξ obtained by sampling the random vector ξ̃ ac-

cording to different measures in PΞ can be different. As a result, the variability of the

outputs produced by the model instantiations M(ξ) generated by sampling a distri-

bution DPΞ
varies across the collection {DPΞ

, PΞ ∈ PΞ}. The problem now reduces to

identifying the distribution D̄PΞ
∈ {DPΞ

, PΞ ∈ PΞ} which captures best the variability

in the experimental data without violating a desired specification on the probability of

violation of the model instantiations contained in D̄PΞ
. The purpose of this section is

to make this statement precise.

We begin by providing a way to evaluate the capacity of a distribution of models

DPΞ
for capturing the experimental data, given PΞ ∈ PΞ. Consider the set

S := {ξ ∈ Ξ | P (ξ) ≥ P0} , (4.5)

which includes the parameter values ξ that result in model instantiations M(ξ), each

corresponding to a probability of violation exceeding P0 ∈ (0, 1). Note that the size of

78



the set S depends on the measure PΞ, implying that the likelihood of model instantia-

tions that satisfy (4.5) is different for different distributions DPΞ
. Given a desired level

α ∈ [0, 1) we require

PΞ(S) ≤ α . (4.6)

Clearly, a lower value of the parameter α corresponds to stricter fidelity standards for

the model instantiations M(ξ) generated by sampling DPΞ
. In fact, selecting α = 0

implies P0 = supξ∈Ξ P (ξ), since the probability that a model instantiationM(ξ) ∈ DPΞ

results in a probability of violation that exceeds P0 is required to be zero. Hence, α = 0

corresponds to the most conservative way of tuning the behavior expressiveness of a

distribution of models DPΞ
; that is, DPΞ

is characterized by the model instantiation

with the worst performance, in the sense that the corresponding parameters maximize

the probability of violation.

In view of (4.5), relaxing α in (4.6) means that we allow a set S ⊂ Ξ of parameter

values to be exceptions to the fidelity rule. The size of S can be explicitly controlled

through (4.6) by selecting α so that [153, Section 3]

sup
ξ∈Ξ\S

P (ξ) ≤ P0 ≤ sup
ξ∈Ξ

P (ξ) ; (4.7)

i.e., P0 is bounded from above by the supremum of the probability of violation over all

parameter values (most stringent characterization) and from below by the supremum

of the probability of violation over “nearly” all parameter values (turning a blind eye

to parameters in S). The implication of (4.7) is that P0 is a probable near maximum

(Type 2 near maximum) over the set Ξ of the probability of violation P (·) to the level

α [154, Definition 11.2, p. 433]; [153, Section 3]. Note that P0 depends both on the

measure PΞ and on the level α; writing P0(PΞ, α) emphasizes this dependence.

Remark 4 While the value of the probability of violation (4.4) defined in Section 4.2.2

for a given ξ ∈ Ξ quantifies the behavior of a single model instantiation M(ξ), the

probable near maximum P0 to the level α of P (·) over a distribution of models DPΞ

provides a measure of how faithfully DPΞ
captures the experimental data. Indeed, for a

79



given level α, the smaller P0 is for a distribution DPΞ
, the more faithful this distribution

is in capturing the data.

We are now ready to provide a precise formulation of the problem described at

the beginning of the section: Given (i) a family of model distributions {DPΞ
, PΞ ∈ PΞ},

(ii) a level α ∈ [0, 1), and (iii) a desired fidelity specification ρ ∈ [0, 1), determine the

distribution D̄PΞ
—or, equivalently, the corresponding measure PΞ ∈ PΞ—that max-

imizes the dispersion of a random vector ξ̃ of model parameters, provided that the

probable near maximum to level α of the probability of violation does not exceed ρ.

Mathematically, this translates to finding the measure PΞ ∈ PΞ that realizes

sup
PΞ∈PΞ

Tr
(

Cov(ξ̃, ξ̃)
)

(4.8)

subject to the constraint

P0(PΞ, α) ≤ ρ , (4.9)

where Cov(ξ̃, ξ̃) is the covariance matrix associated with the random vector ξ̃ and Tr(·)
denotes trace.

Implicit here is the assumption that as the measure PΞ changes to make the

variance on ξ̃ grow, the model instantiations generated by sampling ξ̃ produce outputs

out(M(ξ)) that are more and more dispersed. Hence, the solution of (4.8)–(4.9) is

expected to result in a distribution over the model parameters ξ that allows the corre-

sponding distribution of model instantiations DPΞ
to reproduce, at a given confidence

level, as many experimental behaviors observed as possible—not only the average.

4.2.4 A Randomized Approach for Stochastic Model Extension and Prob-

abilistic Validation

This section provides details on computing the decision function g defined by

(4.2) in a general context, and proposes a randomized approach for estimating the

quantities involved in the implementation of the method via explicit computations.

80



4.2.4.1 Cone of Data and Decision Function

Consider a multisample w = {w1, ...wK} ∈ WK generated experimentally by

executing an experiment K times. Each wk ∈ w has the form of a time series

wk = {(xk,1(t), xk,2(t), ..., xk,L(t))}t∈{1,...,T} ,

where xk,`(t) is a measurement at time t ∈ {1, ..., T}, of the system state indexed

` ∈ {1, .., L}, during the experiment k ∈ {1, ..., K}. Time instants t ∈ {1, ..., T} are

determined based on the sampling frequency of data collection.

We can associate to each multisample, w, a tolerance interval I`,t(w) to which an

experimental trial belongs according to a given probability. A typical way to construct

such intervals is to use information about the underlying distribution; for example, in

Section 4.2.5 below we assume a normal distribution and use the associated critical

values to construct the tolerance intervals [61]. Another possible way is to construct

tolerance intervals based on bootstrap [41]. This class of methods relies on resam-

pling of the original data, and can be used to estimate sample distributions of various

statistics.

Then, the intervals I`,t(w) provide the basis for constructing the L-dimensional

data variability ellipsoid Et(w). At each time instant t ∈ {1, ..., T}, the ellipsoid Et(w)

is centered at the point (x̄1(t), x̄2(t), ..., x̄L(t)), and I`,t(w) for ` ∈ {1, . . . , L} are its

principal axes (see Figure 4.1(b)). Note that the dependence of Et on w appears explic-

itly to highlight the fact that these constructions are specific to a given multisample.

The cone of data corresponding to a multisample w ∈ WK at level p ∈ (0, 1) and

confidence γ ∈ (0, 1) is then the union of all L-dimensional ellipsoids

conep,γ(w) =
T⋃
t=1

Et(w) . (4.10)

Figure 4.1(b) provides a schematic representation of the cone of data associated with

a multisample, for T = 60, for the case of the octoroach robot studied in Section 4.3.

81



To evaluate the decision function g defined by (4.2) for a ξ ∈ Ξ given w, we

need to specify how we check the condition out(M(ξ)) ⊂ conep,γ(w) for the associated

model instantiation M(ξ). We work element-wise through {1, . . . , T}, first by setting

out(M(ξ)) = {out(M(ξ))t}t∈{1,...,T} ,

where for any t ∈ {1, . . . , T}

out(M(ξ))t := (xM,1(t), . . . , xM,L(t)) ,

and then by defining the indicator function

1Et(w)(out(M(ξ))t) :=


1, if out(M(ξ))t ∈ Et(w)

0, otherwise

(4.11)

that checks the inclusion condition at every t ∈ {1, . . . , T}. In this way the decision

function is found as

g(w, ξ) = 1−
T∏
t=1

1Et(w)(out(M(ξ))t) . (4.12)

Note that (4.12) requires the inclusion to hold for all time instants t ∈ {1, ..., T}; if at

any single t out(M(ξ))t /∈ Et(w), the decision function is triggered and the model is

considered to have violated the fidelity specification.

4.2.4.2 Approximating the Probability of Violation

The probability of violation (4.4) is difficult to compute explicitly, even if the

probability measure PWK is analytically available. However, this probability can be

effectively approximated empirically [4]. If WM = {w1, ...,wM} ∈ (WK)M is a collec-

tion of M multisamples of length K, each drawn from WK , the empirical probability

of violation is

P̂ (ξ; WM) =
1

M

M∑
m=1

g(ξ,wm) , (4.13)

where the dependence of P̂ on both the specific collection of multisamples WM =

{w1, ...,wM} ∈ (WK)M and on the parameter values ξ ∈ Ξ that determine the violation

82



set Aξ ∈ A in (4.3) appears explicitly. Note that P̂ (ξ; WM) is a random variable. For

ε > 0, consider [153, Section 4]

q(M, ε,PWK ) := P(WK)M

{
WM ∈ (WK)M :

sup
ξ∈Ξ
|P̂ (ξ; WM)− P (ξ)| > ε

}
.

(4.14)

Then, 1 − q(M, ε,PWK ) is the confidence with which we can say that P̂ (ξ,WM) is

within ε > 0 of the true P (ξ). If q(M, ε,PWK ) → 0 as M → ∞ for any fixed ε, then

the empirical probabilities converge uniformly to their true values, implying that the

collection of sets A has the property of uniform convergence of empirical probabilities

(ucep); see [154, Section 3.1, p. 45]. Establishing the ucep property for the collection

of sets A can be difficult if A is infinite; but as this turns out to be a finite collection

by design, Hoeffding’s inequality [154, Lemma 2.7, p. 26] yields

q(M, ε,PWK ) ≤ 2|A| exp (−2Mε2) , (4.15)

where |A| is the cardinality of A. In fact, since {2|A| exp (−2Mε2)}M∈N is summable

(see [154, Lemma 2.10, p. 31]), P̂ (ξ; WM) not only converges uniformly to P (ξ) with

M , but also almost surely. The inequality (4.15) can be used to provide bounds for

the sample size M that achieves the desired accuracy and confidence specifications.

4.2.4.3 Approximating the Maximum of the Probability of Violation over

a Distribution of Models

We have seen in Section 4.2.3 that the expressiveness of a distribution of model

instantiations DPΞ
= {M,Ξ,PΞ} for a given probability measure PΞ ∈ PΞ can be

characterized by evaluating a probable near maximum P0 at level α, of the probability

of violation P (·) over DPΞ
.

With the probabilistic setting of Section 4.2.3, a collection of N ∈ N samples ξn,

n ∈ {1, ..., N} is drawn according to PΞ, thereby resulting in a parameter multisample

denoted by ξN = {ξ1, ..., ξN}. Note that the parameter multisample ξN is drawn from

the Cartesian product ΞN = Ξ×· · ·×Ξ (N -times) according to the measure PΞN . Then,

83



for a given (fixed) data multisample w ∈ WK , the probability of violation is a random

variable due to its dependence on ξ̃, and {P (ξ1), ..., P (ξN)} are the corresponding

samples of the probability of violation. Now define

P̄0(ξN) := max
n∈{1,..,N}

P (ξn) , (4.16)

and consider the set

S̄ξN :=
{
ξ ∈ Ξ | P (ξ) > P̄0(ξN)

}
, (4.17)

which is defined similarly to S in (4.5), only now we have used P0 instead of P̄0(ξN),

computed on the basis of the parameter multisample ξN . Then, [154, Lemma 11.1, p.

427] asserts that

PΞN
{
ξN ∈ ΞN | PΞ(S̄ξN ) > α

}
≤ (1− α)N . (4.18)

The inequality implies that P̄0(ξN) is an “empirical estimate” of the supremum of the

probability of violation P (·) over DPΞ
. However, P̄0(ξN) is a different type of estimate

compared to P̂ (ξ; WM) in (4.13), because (4.18) does not require P̄0(ξN) to converge

uniformly to the true supremum of P (·). Rather, the claim is that the probability that

the violation set S̄ξN has small measure, is high. Inequality (4.18) is used to specify

the size N of the parameter multisample ξN .

4.2.5 Algorithm and Implementation

The results described in the previous sections did not assume any particular

type of probability distribution. To facilitate computations, however, in what follows,

we will assume that PWK corresponds to a (joint) Gaussian distribution.2 This assump-

tion greatly simplifies the computation of the cone of data associated with a specific

multisample w ∈ WK .

2 We emphasize here that the Gaussianity assumption may not always be the most ap-
propriate choice. In the case of ground mobile robots, for instance, a more appropriate
choice for PWK may be the “banana” distribution [97, 149, 27]—essentially a Gaussian
distribution in exponential coordinates. The Gaussian assumption is imposed here
merely for computational expediency; exploring the different options for constructing
the cone data is out of the focus of this work.

84



Under a Gaussian assumption, each multisample of size K is used to estimate

the average of the population of data. For each ` ∈ {1, ..., L}, let

x̄`(t) =
1

K

K∑
k=1

xk,`(t) ,

be the sample average at a given time instant t ∈ {1, ..., T}, and denote

s`(t) =

√√√√ 1

K − 1

K∑
k=1

(xk,`(t)− x̄`(t))2

the corresponding sample standard deviation. Then, the tolerance interval I`,t(w) for

the `-th variable associated with the multisample w at time instant t ∈ {1, ..., T} is

I`,t(w) = [x̄`(t)− k2 s`(t), x̄`(t) + k2 s`(t)] . (4.19)

The next step is to determine the constant k2 that defines the two-sided tol-

erance intervals that cover at least a proportion p ∈ (0, 1) of the sample size K with

confidence level γ ∈ (0, 1). Let ν = K − 1 denote the associated degrees of freedom,

χ2
1−γ,ν the critical value of the chi-square distribution with ν degrees of freedom that

is exceeded with probability γ, and z(1−p)/2 the critical value of a normal distribution

with cumulative probability (1− p)/2. Then, the constant k2 is given by [61]

k2 =

√√√√ν
(

1 + 1
K

)
z2

(1−p)/2

χ2
1−γ,ν

. (4.20)

The percentiles χ2
1−γ,ν and z2

(1−p)/2 can be found in tables [39] for given values p ∈ (0, 1)

and γ ∈ (0, 1).

To find the appropriate cardinality N of the parameter multisample set ξN , we

first need to set parameters p, γ, α, ρ > 0 and ε, δ > 0, which we collect in Table 4.1.

For computational expediency, each measure PΞ ∈ PΞ is assumed to be associated with

a Gaussian random vector ξ̃ with mean E[ξ̃] = ξ̄ computed by (3.9), and covariance

matrix Cov(ξ̃, ξ̃) = diag(σ2
1, . . . , σ

2
λ), where λ is the number of the parameters. Hence,

there is an array σ = {σ2
1, . . . , σ

2
λ} parameterizing the family of parameter distributions

PΞ = {Pσ
Ξ, σ ∈ Rλ}. The array is determined by solving the optimization (4.8).

85



Table 4.1: Key Terminology for Stochastic Model Extension

Description Symbol Equation

Tolerance level for the cone of data p ∈ (0, 1) (4.20)

Confidence for tolerance interval γ ∈ (0, 1) (4.20)

Level of probable near maximum α ∈ [0, 1) (4.6)

Model fidelity specification ρ ∈ (0, 1) (4.9)

Accuracy level ε ∈ (0, 1) (4.14)

Confidence level δ ∈ (0, 1) (4.21)-(4.22)

Tolerance interval for the cone of data k2 (4.20)

Number of parameter multisamples N (4.21)

Number of data multisamples M (4.22)

Length of each data multisample K –

Total number of experimental paths I = M ·K –

Number of state variables L –

Number of model parameters λ –

Based on (4.18), and for δ ∈ (0, 1), N needs to satisfy

(1− α)N ≤ δ

2
⇐⇒ N ≥ log 2

δ

log 1
1−α

, (4.21)

so that with confidence 1− δ
2
, P̄0(ξN) defined by (4.16) is a probable near maximum of

the probability of violation P (·) to a level α. This sampling process results in the finite

collection of sets A := {Aξn , ξn ∈ ξN} with |A| = N . Then, Hoeffding’s inequality

(4.15) links the two sample sizes

2N exp (−2Mε2) <
δ

2
⇐⇒ M ≥ 1

2ε2
ln

(
4N

δ

)
, (4.22)

suggesting that if N parameter multisamples are drawn, then M data multisamples

need to be obtained experimentally in order for P̂ (ξ; WM) to be an empirical estimate

of P (ξ) with confidence 1− δ
2
. Then, we select a measure Pσ

Ξ (through σ) and generate

the parameter multisample ξN = {ξ1, ..., ξN}, sampling ξ̃ according to Pσ
Ξ.

86



With M data multisamples wm ∈WM , and N parameter multisamples ξn ∈ ξN
available, the decision function (4.2) is computed explicitly based on (4.11)-(4.12). For

each ξn, n ∈ {1, . . . , N}, (4.13) results in an empirical probability of violation

P̂ (ξn; WM) =
1

M

M∑
m=1

g(ξn,wm) . (4.23)

Owing to the choice of N and M according to (4.21) and (4.22), we can say

with confidence 1− δ that

P̂0 = max
n∈{1,..,N}

P̂ (ξn; WM) (4.24)

is a probably approximate near maximum (Type 3 near maximum) to accuracy ε and

level α [154, 153, 83] of the probability of violation in (4.4) over the distribution DPΞ
.

The procedure described above relaxes in a probabilistic sense the problem of

maximizing the function P (·), through an explicitly computable quantity P̂0 that char-

acterizes the expressiveness of a given model distribution DPΞ
. The optimization prob-

lem defined by (4.8)–(4.9) is relaxed into the problem of maximizing the variances

σ = {σ2
1, . . . , σ

2
λ} in the model parameters within a family of Gaussian distributions,

which all “peak” at the solution ξ̄ of (3.9) while satisfying the constraint

P̂0 ≤ ρ . (4.25)

The output of the algorithm, summarized in Table 4.2, is the largest σ̄ =

{σ̄2
1, . . . , σ̄

2
λ} thatM(ξ) can afford before violating (4.25). Equivalently, the procedure

determines the measure Pσ̄
Ξ in the form of a Gaussian distributionN (ξ̄, diag{σ̄2

1, . . . , σ̄
2
λ}),

which in turn produces a distribution of models DPσ̄
Ξ

with outputs that cover densely

the distribution of experimental data remaining statistically within that cone at level

p with confidence γ.

Remark 5 In the remaining of the chapter, we select p = 90% and γ = 99%. We

also set ρ at 35% in order to produce less conservative results. The values of α, ε,

and δ directly determine the amount of experimental trials that should be performed,

87



Table 4.2: Probabilistically Valid Stochastic Model Extension Algorithm

1. Require p, γ, α, ρ > 0, ε, δ > 0, and K ∈ N.

2. Calculate k2, N , and M from (4.20), (4.21), and (4.22), respectively.

3. Collect M data multisamples of size K.

4. Identify ξ̄ from (3.9) using all available I = M ·K data.

5. Select σ.

6. Generate ξN = {ξ1, ξ2, . . . , ξN} by sampling ξ̃ ∼ Pσ
Ξ.

7. Calculate out(M(ξ))t for each ξn, n ∈ {1, . . . , N}.

8.
Construct conep,γ(wm) for each wm,m ∈ {1, . . . ,M}
according to (4.10)

9.
Calculate the empirical probability of violation P̂ (ξn; WM)

for each n ∈ {1, . . . , N} according to (4.23).

10.
Select the probably approximate near maximum P̂0

according to (4.24).

11.
If P̂0 ≤ ρ, increase σ and go to step 6,

else return σ̄ and exit.

and different combinations yield the same number of trials; we select α, ε so that the

experimental trials are kept at a reasonable number (about 250), and out of all possible

combinations, we choose the one that maximizes the confidence 1− δ.

4.3 Application to a Miniature Legged Robot

As an example of how the method is used, the developed algorithm is applied

to the Switching Four-bar Mechanism (SFM) template.3 Application of the method

extends the sfm to a probabilistically-valid template which is shown capable of captur-

ing and reproducing the variability observed in octoroach motion behaviors when the

robot navigates at low crawling speeds.

3 To show that the method is general, a second example that focuses on small-scale
aerial vehicles is presented in Appendix C.

88



4.3.1 Stochastic Extension of the SFM

The sfm template is a step-to-step map. Its state propagates in the body-fixed

coordinate frame according to (3.2) or (3.3) depending on the active pair, which can

be right or left, respectively. This local state propagation is then mapped to the global

frame as Figure 3.2 indicates. To illustrate the effect of infusing uncertainty to different

parameter subsets, the model parameterization in this chapter slight differs from the

one presented before in Chapter 3. Specifically, we have chosen to use the leg angular

velocities instead of fixing the number of steps in a primitive to Ns = 10. To facilitate

computations, we set φ̇1 = φ̇2 = φ̇3 = φ̇4 = φ̇. All touchdown angles attain the same

value—i.e. φtd
1 = φtd

2 = φtd
3 = φtd

4 = φtd—while liftoff angles of the legs of the same

pair take on the same values (that is, φlo
1 = φlo

2 = φlo
R, and φlo

3 = φlo
4 = φlo

L). Note that

in cw primitives only the left pair is active necessitating φlo
R = φtd, and similarly ccw

primitives require only the right pair to be active so that φlo
L = φtd.

According to the aforementioned selections, the parameter space is the 5-tuple

ξ = (φlo
R, φ

lo
L , φ̇, φ

td, θinit) ∈ Ξ .

and the step-to-step map is written as M(ξ) : Ξ→ R2 × S. The output of the sfm is

taken here to be the planar position of its geometric center (xG, yG), that is

out(M(ξ)) = (xG, yG) .

To capture the effect of uncertainty in the leg-ground interaction, we extend the sfm

to a stochastic setting by randomizing its parameters. In particular, the parameter

vector ξ needs to become a random vector ξ̃, drawn according to the multivariate

normal distribution

ξ̃ ∼ N (ξ̄, diag(σ2
1, σ

2
2, σ

2
3, σ

2
4, σ

2
5)) , (4.26)

where ξ̄ is found by solving the least-squares optimization problem (3.9), and σi, i =

1, . . . , 5 regulate the amount of noise in the model.

Selecting the model parameters over which stochasticity is introduced depends

on the nature of the model, and its relation to the physical system it describes. In this

89



particular legged robot example, one source of uncertainty is random leg placement

and is associated with randomizing touchdown angles (captured in σ4). Similarly, ran-

domization of angular velocities (captured in σ3) is associated with speed irregularities

caused by random leg-ground contact, while randomizing liftoff angles (captured in

σ1, and σ2) suggests that legs lift off the ground randomly—a phenomenon which is

attributed to random leg-ground contact, and possible surface irregularities.

4.3.2 Application of the Method

We are now ready to apply the Algorithm of Table 4.2, to estimate the model

parameters for the octoroach in three distinct modes of motion: (a) straight line (sl),

(b) 90o clockwise turn (cw), and (c) 90o counter-clockwise turn (ccw).

With respect to Remark 5, we first select p = 0.90, γ = 0.99, α = 0.29, ρ =

0.35, ε = 0.29, and δ = 0.16. Based on these selections, N = 8, and M = 31. Then, we

set the length of every multisample equal to K = 8, which makes the total number of

experimental paths required equal to I = M ·K = 248, for each mode. Using a vicon

motion capture system, we collect experimental measurements of the planar position

of the geometric center of the robot (xG, yG), and its orientation θ. The collection

of K such paths generates a multisample w. The experiments are conducted on a

rubber floor mat surface, for a total time of 3 sec at a sampling rate of 20 Hz, yielding

T = 60. The robot is set into a designated start area with an initial state set at

(xG, yG, θ) = (0, 0, 0) [cm, cm, deg]. Initial pose errors are shown in Table 4.3, and

include measurement noise.

Figure 4.2(a) presents the experimental data. Let Wsl, Wcw, and Wccw de-

note the collections of all planar trajectories of the robot for the sl, cw, and ccw

control modes, respectively. The average for each set is marked wave
sl , wave

cw , and wave
ccw,

respectively (shown with dashed curves). Dashed outlines represent the cone of data

conep,γ(W) for each case at level p = 90% with confidence γ = 99%. The cone of data

is calculated based on k2 = 4.147.4 The deterministic component of the sfm template

4 This quantity is found according to (4.20) with 7 degrees of freedom so that the

90



Table 4.3: Initial pose error statistics

Type
Mean Standard Deviation

[cm, cm, deg] [cm, cm, deg]

CW (−0.156, −0.041, 1.23] [0.177, 0.141, 1.37)

SL (−0.007, 0.027, 0.06] [0.234, 0.054, 1.81)

CCW (−0.322, −0.012, 2.50] [0.156, 0.130, 1.23)

is found by solving (3.9) for each mode of motion; the results are summarized in Ta-

ble 4.4. With these parameter values, the model produces paths that fit best to the

experimental averages (dashed thick curves in Figure 4.2(a)).

Table 4.4: Nominal SFM model parameters

Type
φlo
R φlo

L φ̇ φtd θinit

[deg] [deg] [deg/sec] [deg] [deg]

CW 38.54 13.78 4.64 38.54 −16.19

SL −59.75 −47.19 6.87 0.90 0.00

CCW 14.85 39.59 6.07 39.59 11.86

We investigate here the case where σ1 = σ2 = σ5 = 0, assuming that only

the leg placement and angular velocity are responsible for the uncertainty observed

in the data—in Section 4.3.3 that follows we consider a different model parameter

randomization, and compare with the results obtained in this section. Then, we follow

the steps 5–11 of the Algorithm in Table 4.2 to estimate σ̄3 and σ̄4. The result of the

procedure is reported in Table 4.5.

lower-tail critical value of the chi-square distribution is equal to χ2
0.01,7 = 1.239, and

the critical value of the normal distribution is equal to z0.05 = 1.645.

91



-15 -10 -5 0 5 10 15

0

5

10

15

20

x [cm]

y
[c
m
]

(a)

-15 -10 -5 0 5 10 15

0

5

10

15

20

x [cm]

y
[c
m
]

(b)

Figure 4.2: (a) Experimental data for the three control models considered. Dashed
outlines indicate the cone of data for each case, while experimental av-
erages are shown with dashed thick curves in the interior of each cone.
(b) Output of the stochastic model, tuned according to the values in
Tables 4.4 and 4.5. A set of 248 random model instantiations are plot-
ted over the experimental averages and cones of data. For all cases, the
average behavior of the model, marked with a solid curve, remains very
close to the experimental average (marked with a dashed curve). The
uncertainty ellipses at the final position also match closely.

92



The estimated normal distribution for the random parameter vector ξ̃est for

each robot behavior follows from (4.26), with ξ̄ shown in Table 4.4, (xinit
G , yinit

G ) =

(0, 0) [cm,cm], and σ̄i, i = 1, . . . , 5 found in Table 4.5. The associated family of model

instantiations M(ξ̃est) produces paths that distribute themselves over the area within

the marked cone-like boundaries in Figure 4.2(b) to the maximum possible degree,

while allowing for a ρ = 0.35 probability of leaving at any time t the cone of data

created by taking all 248 paths, for each case.

Table 4.5: Probably approximate near maximum SFM model uncertainty

Type
σ̄1 σ̄2 σ̄3 σ̄4 σ̄5

[deg] [deg] [deg/sec] [deg] [deg]

CW 0.00 0.00 0.39 17.19 0.00

SL 0.00 0.00 0.62 4.30 0.00

CCW 0.00 0.00 0.13 18.91 0.00

4.3.3 Different Ways to Infuse Stochasticity

In this section we demonstrate the applicability of the proposed framework

when a different subset of model parameters is randomized. In particular, we consider

the case where σ3 = σ5 = 0, assuming this time that the leg placement in both the

touchdown and liftoff configurations is responsible for the uncertainty observed in the

data. The parameters of the analysis remain the same as before, and we follow the

steps 5–11 of the Algorithm in Table 4.2 to estimate σ̄1, σ̄2 and σ̄4. The output of the

procedure is reported in Table 4.6.

The random parameter vector ξ̃est follows from (4.26), with ξ̄ shown in Table 4.4,

(xinit
G , yinit

G ) = (0, 0) [cm,cm], and σ̄i, i = 1, . . . , 5 tabulated in Table 4.6. The associated

family of model instantiations M(ξ̃est) produces paths that distribute themselves over

the area within the marked cone-like boundaries in Figure 4.3 to the maximum possible

degree, while allowing for a ρ = 0.35 probability of exiting the cone of data at any time

93



t. Comparing Figure 4.3 to Figure 4.2, we see that the new randomization produces

paths that match the experimentally observed variability as well, albeit the predicted

variability in final position for the straight line mode is more conservative. In essence,

the method reports that both parameter randomization cases are acceptable solutions.

Choosing one over the other ultimately relies on the designer, based on their own beliefs

or assumptions on the sources of uncertainty, and which model parameters can best

reflect these sources.

Table 4.6: Probably approximate near maximum SFM model uncertainty for the
second parametric randomization of Section 4.3.3

Type
σ̄1 σ̄2 σ̄3 σ̄4 σ̄5

[deg] [deg] [deg/sec] [deg] [deg]

CW 0.00 8.88 0.00 0.43 0.00

SL 4.58 4.58 0.00 4.58 0.00

CCW 8.60 0.00 0.00 0.51 0.00

Irrespectively of how parameter randomization is performed, the proposed ap-

proach comes with probabilistic guarantees of model performance. The guarantees

assert that the probability of collecting new experimental paths that will not be cap-

tured by the stochastically-extended model, is bounded. The bound is determined by

the user-defined model fidelity specification ρ. The fidelity specification and the as-

sociated probabilistic guarantees may be then be used is support of motion planning

under uncertainty. In turn this can help in establishing tradeoffs between risk and task

satisfaction under uncertainty within our hierarchical framework. We explore aspects

of this topic in the section that follows.

94



-15 -10 -5 0 5 10 15

0

5

10

15

20

x [cm]

y
[c
m
]

Figure 4.3: Output of the stochastic model, tuned according to the values in Ta-
bles 4.4 and 4.6. 248 random model instantiations are plotted over the
experimental averages and cones of data. Similarly to Figure 4.2(b),
model-predicted statistics follow closely the experimental statistics.

4.4 Outlook: Probabilistically-Valid Templates to Ensure Consistency

The methodology introduced above allows one to quantify and reproduce process

uncertainty within (stochastic) models or templates. The outcome of the approach de-

fines a probabilistically-valid template which offers system-specific probabilistic guaran-

tees. Having such guarantees is important since they can be used to ensure consistency

among the levels of the hierarchical control framework in several ways.

Augmenting obstacles

Probabilistically-valid templates can be useful in augmenting obstacles during

robot motion planning. As it was shown earlier in Chapter 3, augmenting the actual

obstacles is important so that the motion planner generates safe reference trajectories

to reassure that the robot will not collide. A recipe that typically works well in deter-

ministic cases is to augment the obstacles accordingly to the larger dimension of the

robot (as in Chapter 3). However this may not be sufficient when the robot is subject

to process uncertainty. Instead, the obstacle regions should be augmented by linking

95



safety specifications to the user-defined model fidelity and the associated cone of data

predicted by the stochastically-extended model. For example, the work reported pre-

viously suggests that the augmented obstacles regions must be larger for the case of

the octoroach compared to the case of spidar. As a result, the design of reference

trajectories is informed by the actual robot behavior observed in experiments, and is

biased toward improving the chances of avoiding obstacle collisions.

Estimating probabilities of task accomplishment

Probabilistically-valid templates also relate the design of “uncertainty-informed”

reference trajectories to estimating the probability of achieving a desired task. Nav-

igation tasks, for instance, require both obstacle avoidance and goal attainment. To

estimate the probability of collisions and goal attainment, it is important to propagate

the uncertainty with the template at hand. It is customary to propagate the uncertainty

numerically through Monte Carlo simulations. Essentially, candidate reference trajec-

tories are run in simulation multiple times to numerically estimate the probability of

achieving a desired task—e.g., avoiding obstacles and attaining the desired goal. While

effective, this approach tends to become computationally demanding as the number of

candidate trajectories, or their length increase. Thus, a useful probabilistically-valid

template should allow one to propagate the uncertainty analytically as well.

The Switching Four-bar Mechanism is one such template. Foremost, the geo-

metric equations for step-to-step state propagation5 are kinematic, and employ only

one degree of freedom. Additionally, the availability of analytic expressions renders

state propagation direct, fast, and exact. These features speed up computations since,

given the initial state, touchdown configuration, and a desired liftoff configuration, the

next state is determined through a single function evaluation. A careful selection of

where to infuse stochasticity into the model permits analytic uncertainty propagation.

For instance, the randomization approaches analyzed before in Section 4.3 render the

uncertainty propagation non-trivial since the uncertainty has to be propagated through

5 See Appendix B for details on the derivations.

96



the nonlinear state propagation equations (3.2) and (3.3) in the local frame, and then

mapped to the global frame, for each step. This limitation can be circumvented by

infusing stochasticity at the end of each step. The model progresses deterministically

during a step, and the resulting state is perturbed before the next step is initialized

(see Figure 3.19). The probabilistic methodology for extending models to stochastic

settings provides a measure of how large this stochastic perturbation must be to cap-

ture and reproduce the observed uncertain robot behaviors. This last randomization

approach may be particularly suitable for estimating the probability of achieving a

desired task since it permits a direct, analytic way to propagate uncertainty with the

sfm template.

Establishing tradeoffs between risk and task accomplishment

A probabilistically-valid template can also be used to establish tradeoffs between

risk and satisfying a required task. This can be particularly helpful when perform-

ing more complex tasks, such as visibility-constrained surveillance (see Figure 3.25).

Essentially, the probabilistically-valid template quantifies the risk caused by process

uncertainty, and uses this information to evaluate reference trajectories based on the

tradeoffs among competing constraints of the problem. For example, longer paths typ-

ically have less probability of reaching a particular desired state, yet they may offer

greater visibility coverage. Another example is balancing speed of reaching a target

versus safety; going faster also results in higher levels of uncertainty in robot motion.

The probabilistically-valid template then reports back to the high level regarding these

tradeoffs, and informs as to whether a reference trajectory should be revised. In turn,

this process can consolidate low-level execution with high-level task planning under

uncertainty.

4.5 Discussion

To summarize, the probabilistic method presented here focuses on uncertainty

quantification, and offers an intuitive and tractable means to capture and reproduce

97



motion uncertainty with stochastically-extended models. Uncertainty is infused in

model parameters, and a randomized optimization algorithm estimates the magnitude

of the infused uncertainty. The method comes with probabilistic guarantees of model

performance that bound the probability of generating new experimental paths that are

not consistent with a template. The resulting template is termed probabilistically-valid

template.

Probabilistic guarantees of model performance are important for making in-

formed choices on the type of appropriate planners and controllers [24]. In addi-

tion, once the data variability is captured within the model, analytic tools can be

brought to bear for propagating the uncertainty as the physical process evolves [27].

This can be useful in applications such as motion planning in the presence of uncer-

tainty [149, 76, 99, 17, 151, 112], and filtering and estimation [149, 1, 97].

Probabilistically-valid templates are key for consolidating low-level execution

with high-level task planning under uncertainty. Foremost, they can be used together

with uncertainty propagation to estimate the risk in achieving high-level policies based

on the uncertainty exhibited by the real system. They can also be used to establish

performance tradeoffs in the presence of uncertainty and instruct as to how to revise

a high-level policy to meet competing objectives. These points are discussed through

some representative examples that may motivate interesting future research directions.

Last but not least, the reported approach is general and may find applica-

tion in multiple areas in robotics. Indeed, it can support applications in which data

variability plays a significant role, but it is either assumed or provided without any

probabilistic guarantees. Robotics applications in this realm that can benefit from

probabilistically-valid models (and templates) include stochastic control design [135, 7];

Linear Temporal Logic (ltl) control of uncertain vehicles [29]; model verification [145]

and calibration [133]; and needle steering [5], to name a few. Moreover, the method

here can supplement stochastic trajectory optimization techniques like stomp [66], by

identifying—based on data—uncertain terms in the optimization function used therein.

In Appendix C we present results on applying the method to small-scale aerial vehicles.

98



Chapter 5

CONCLUSIONS AND FUTURE DIRECTIONS

We conclude with a short summary of the contributions of this work, and high-

light some new research directions that have been made possible. Taking the contribu-

tions together, we hope that—quoting Aristotle—the “whole is greater than the sum

of its parts.” The contributions of this work may provide the foundations of a general

hierarchical framework for multi-robot planning and control under uncertainty. The

reported results push forward the state-of-the-art on motion planning and navigation

of miniature legged robots, and may also find application in other areas of robotics

where making decision under uncertainty is important.

5.1 Hierarchical Control for Uncertainty in Robot Navigation

The overarching idea in this work is that a three-level hierarchical control frame-

work is effective for dealing with uncertainty in navigation; this claim is validated ex-

perimentally in the domain of miniature legged robots. In the three levels we find a

high level responsible for task planning, a mid level that focuses on trajectory gener-

ation, and a low level that performs trajectory tracking control. The reported results

flesh out aspects of the mid level of the hierarchy, and essentially provide tools that

ensure consistency among the different levels in the presence of uncertainty. A range

of different techniques developed in the low and high levels is thus bridged, by employ-

ing our probabilistically-valid templates which are simple, low-dimensional probabilistic

models validated against experimental data, and which facilitate analysis and control.

99



5.1.1 Selecting Suitable Templates is Key

Appropriate templates can be used to ensure that the different levels of the hier-

archical framework are compatible with each other. Such templates facilitate low-level

trajectory tracking control, and are amenable to primitives-based motion planning.

When this happens, we are able to ensure low-level realizability without oversimplify-

ing the dynamics of the physical system at hand. We show this point by performing

real-time navigation with miniature legged robots in obstacle-cluttered environments.

5.1.2 Experimental Data Guarantee Low-Level Implementation of High-

Level Policies despite Uncertainty

To ensure that the results based on the proposed approach are not overly re-

strictive, a data-driven probabilistic framework is also developed. The aim of this

framework is to capture the uncertainty that is observed in experimental data, and

infuse it back into a model so that the latter can capture the variability observed in

the targeted robot behavior it reproduces. The parameters of an appropriate determin-

istic model are turned into random variables, the statistics of which are identified and

validated against experimental data. The resulting stochastic model may then be used

to quantify risk and restore performance guarantees in the presence of uncertainty.

5.1.3 Miniature Legged Robots Fit Well in the Framework

Miniature legged robots offer a great testbed to test and develop the aforemen-

tioned key tools of the framework. Uncertainty—associated with various manufacturing

variabilities, uncertain mechanical properties of structural material, and inherently un-

certain leg-ground interactions—affects the behavior of these robots in a natural and

immediately visible way. Due to the stringent size and weight specifications that limit

reliance on extensive feedback control, noise cannot be fully suppressed, but hopefully

can be managed if appropriately quantified. The reported results meet this challenge.

100



5.2 Dealing with Uncertainty in Robot Planning, Navigation, and Control

The tools provided in this dissertation are key components for a general hierar-

chical framework for dealing with uncertainty in robot navigation and control; however,

further investigation is needed to accomplish the goal.

5.2.1 Extending Low-Level Control to Bio-Inspired Templates

We need to extend low-level control approaches to bio-inspired legged locomo-

tion templates. Indeed, research on control of wheeled vehicles has contributed several

important and efficient techniques; it would be beneficial to port these techniques

to the domain of small-scale legged robots. However, it is still not clear how exist-

ing bio-inspired templates can be adjusted to facilitate the application of wheel-based

control techniques (e.g., model predictive navigation [73]). The Switching Four-bar

Mechanism (sfm) template developed here is a first step to enabling the application

of kinematic control approaches to small-scale legged locomotion. Porting dynamic

control approaches remains an open problem.

5.2.2 Dealing with Uncertainty in Perception and the Environment

Robot performance in real-world settings depends on the interactions of action,

perception, and the environment (Figure 1.1), all of which introduce different types

of uncertainty. The results reported in this dissertation shed some light on how to

deal with action uncertainty through probabilistically-valid templates. Uncertainty in

perception may be tackled through multi-sensor data fusion, more delicate reasoning on

the nature of obstacles, features, and other points of interest, or learning. The latter

may also be used to deal with uncertainties in dynamically-changing environments,

using for example Grammatical Inference [36] as in [26, 46]. It is conceivable that we

can incorporate all three components into a single, unifying framework.

101



5.2.3 Uncertainty in Planning, Navigation, and Control of Multi-Robot

Systems

A research direction that could be developed in parallel is the extension of the

proposed framework to cases that involve multiple, possibly heterogeneous, robots. The

interactions among robots add to the complexity of the overall problem, however they

may be treated through game-theoretical approaches. Adding this research directions

to the framework touches on a more general problem of how to tackle uncertainties in

Cyber-Physical Systems.

5.3 Uncertainty in Multi-Robot Cyber-Physical Systems

Modern Cyber-Physical Systems (cpss) that include robots in real-world appli-

cations are rapidly gaining momentum (for example in hospitals). The proposed hier-

archical approach is anticipated to provide novel modules for harnessing uncertainty in

multi-robot cpss. One such example is drawn from the area of miniature legged robots;

robots may act as remote sensors in human-in-the-loop systems for search-and-rescue

missions. This dissertation lays foundations for realizing the full potential of miniature

legged robots in real-worlds applications.

5.4 Frontiers in Robotics, Control, and Small-Scale Animal Locomotion

This work can be cast within the context of biorobotics [63]. In particular, the

findings here suggest that control-oriented approaches may drive new design paradigms

for miniature legged robots, and may provide intuition on the mechanisms that uncer-

tainty affects the locomotion of small-scale animals.

102



REFERENCES

[1] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun. Discriminative
training of kalman filters. In Robotics: Science and Systems, pages 289–296. MIT
Press, 2005.

[2] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin. Learning From Data.
AMLBook, 2012.

[3] A. P. Aguiar and J. P. Hespanha. Trajectory-Tracking and Path-Following of
Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty.
IEEE Transactions on Automatic Control, 52(8):1362–1379, 2007.

[4] T. Alamo, R. Tempo, and E. F. Camacho. Randomized Strategies for Prob-
abilistic Solutions of Uncertain Feasibility and Optimization Problems. IEEE
Transactions on Automatic Control, 54(11):2545–2559, 2009.

[5] R. Alterovitz, M. Branicky, and K. Goldberg. Motion Planning Under Uncer-
tainty for Image-guided Medical Needle Steering. The International Journal of
Robotics Research, 27(11-12):1361–1374, 2008.

[6] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions
of hybrid systems. Proceedings of the IEEE, 88(7):971–984, 2000.

[7] R. P. Anderson and D. Milutinović. A Stochastic Optimal Enhancement of Feed-
back Control for Unicycle Formations. Robotica, 32(2):305–324, 2014.

[8] S. B. Andersson and D. Hristu. Symbolic feedback control for navigation. IEEE
Transactions on Automatic Control, 51(6):926–937, 2006.

[9] E. Andrada, C. Rode, and R. Blickhan. Grounded running in quails: Simulations
indicate benefits of observed fixed aperture angle between legs before touch-down.
Journal of Theoretical Biology, 335:97–107, 2013.

[10] G. Aoude, B. Luders, J. M. Joseph, N. Roy, and J. P. How. Probabilistically Safe
Motion Planning to Avoid Dynamic Obstacles with Uncertain Motion Patterns.
Autonomous Robots, 35:51–76, 2013.

[11] C. Baier and J. P. Katoen. Principles of Model Checking. The MIT Press, 2008.

103



[12] A. T. Baisch, O. Ozcan, B. Goldberg, D. Ithier, and R. J. Wood. High speed
locomotion for a quadrupedal microrobot. The International Journal of Robotics
Research, 33(8):1063–1082, 2014.

[13] A. T. Baisch, P. Sreetharan, and R. J. Wood. Biologically-inspired locomotion of
a 2g hexapod robot. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5360–5365, 2010.

[14] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas.
Symbolic planning and control of robot motion [Grand Challenges of Robotics].
IEEE Robotics Automation Magazine, 14(1):61–70, 2007.

[15] M. Binnard and M. R. Cutkosky. A design by composition approach for layered
manufacturing. ASME Journal of Mechanical Design, 122(1):91–101, 2000.

[16] P. Birkmeyer, K. Peterson, and R. S. Fearing. DASH: A dynamic 16g hexapedal
robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2683–2689, 2009.

[17] L. Blackmore, M. Ono, and B. Williams. Chance-Constrained Optimal Path
Planning with Obstacles. IEEE Transactions on Robotics, 27(6):1080–1094, 2011.

[18] R. Blickhan. The Spring-Mass Model for Running and Hopping. Journal of
Biomechanics, 22(11-12):1217–1227, 1989.

[19] R. Blickhan and R. J. Full. Locomotion energetics of ghost crab. II. Mechanics of
the center of mass during walking and running. Journal of Experimental Biology,
130(1):155–174, 1987.

[20] R. Blickhan and R. J. Full. Similarity in Multilegged Locomotion: Bouncing
Like a Monopode. Journal of Comparative Physiology A: Neuroethology, Sensory,
Neural, and Behavioral Physiology, 173:509–517, 1993.

[21] C. Y. Brown, D. E. Vogtmann, and S. Bergbreiter. Efficiency and effectiveness
analysis of a new direct drive miniature quadruped robot. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 5631–5637,
2013.

[22] G. C. Calafiore, F. Dabbene, and R. Tempo. Research on Probabilistic Methods
for Control System Design. Automatica, 47(7):1279–1293, 2011.

[23] G. A. Cavagna, N. C. Heglund, and C. R. Taylor. Mechanical work in terrestrial
locomotion: two basic mechanisms for minimizing energy expenditure. Ameri-
can Journal of Physiology- Regulatory, Integrative and Comparative Physiology,
233:243–261, 1977.

104



[24] A. Censi, D. Calisi, A. De Luca, and G. Oriolo. A bayesian framework for optimal
motion planning with uncertainty. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1798–1805, 2008.

[25] J. G. Cham, S. A. Bailey, J. E. Clark, R. J. Full, and M. R. Cutkosky. Fast and
Robust: Hexapedal Robots via Shape Deposition Manufacturing. The Interna-
tional Journal of Robotics Research, 21(10-11):869–882, 2002.

[26] J. Chandlee, J. Fu, K. Karydis, C. Koirala, J. Heinz, and H. G. Tanner. In-
tegrating grammatical inference into robotic planning. In Jeffrey Heinz, Colin
de la Higuera, and Tim Oates, editors, Proceedings of the 11th International
Conference on Grammatical Inference, volume 21, pages 69–83, 2012.

[27] G. S. Chirikjian. Stochastic Models, Information Theory, and Lie Groups, Vol-
ume 2: Analytic Methods and Modern Applications. Birkhauser, 2012.

[28] H. Choset, W. Burgard, S. Hutchinson, G. Kantor, L. E. Kavraki, K. Lynch, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementation.
MIT Press, 2005.

[29] I. Cizelj and C. Belta. Control of noisy differential-drive vehicles from time-
bounded temporal logic specifications. The International Journal of Robotics
Research, 33(8):1112–1129, 2014.

[30] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[31] N. J. Cowan, M. M. Ankarali, J. P. Dyhr, M. S. Madhav, E. Roth, S. Sefati,
S. Sponberg, S. A. Stamper, E. S. Fortune, and T. L. Daniel. Feedback control as
a framework for understanding tradeoffs in biology. Integrative and Comparative
Biology, 54(2):223–237, 2014.

[32] F. Dabbene, M. Sznaier, and R. Tempo. A probabilistic approach to optimal
estimation - part I: Problem formulation and methodology. In Proceedings of the
51th IEEE Conference on Decision and Control, pages 190–195, 2012.

[33] F. Dabbene, M. Sznaier, and R. Tempo. A probabilistic approach to optimal
estimation - part II: Problem formulation and methodology. In Proceedings of
the 51th IEEE Conference on Decision and Control, pages 196–201, 2012.

[34] N. Dantam and M. Stilman. The motion grammar: Linguistic perception, plan-
ning, and control. In Proceedings of Robotics: Science and Systems, 2011.

[35] A. De, K. S. Bayer, and D. E. Koditschek. Active sensing for dynamic, non-
holonomic, robust visual servoing. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 6192–6198, 2014.

105



[36] C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, 2010.

[37] M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In Proceedings of the International Conference on
Machine Learning, 2011.

[38] F. Delmotte, T. R. Mehta, and M. Egerstedt. A software tool for hybrid control.
IEEE Robotics Automation Magazine, 15(1):87–95, 2008.

[39] W. J. Dixon and F. J. Massey. Introduction to Statistical Analysis. McGraw-Hill
Companies, 4th edition, 1984.

[40] M. P. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,
Englewood Cliffs, NJ, 1976.

[41] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. CRC Press,
1994.

[42] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pages 995–1072. 1990.

[43] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic
motion planning for dynamic robots. Automatica, 45(2):342–352, 2009.

[44] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning for
nonlinear systems with symmetries. IEEE Transactions on Robotics, 21(6):1077–
1091, 2005.

[45] R. A. Freeman and P. V. Kokotovic. Robust Nonlinear Control Design: State-
Space and Lyapunov Techniques. Birkhäuser, 1996.

[46] J. Fu, H. G. Tanner, J. N. Heinz, K. Karydis, J. Chandlee, and Koirala C.
Symbolic planning and control using game theory and grammatical inference.
Engineering Applications of Artificial Intelligence, 37:378–391, 2015.

[47] R. J. Full and D. E. Koditschek. Templates and anchors: neuromechanical
hypotheses of legged locomotion on land. Journal of Experimental Biology,
202:3325–3332, Dec. 1999.

[48] F. Garcia Bermudez, R. Julian, D. W. Haldane, P. Abbeel, and R. S. Fearing.
Performance analysis and terrain classification for a legged robot over rough
terrain. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 513–519, 2012.

[49] M. Gevers, X. Bombois, B. Codrons, G. Scorletti, and B. D. O. Anderson. Model
Validation for Control and Controller Validation in a Prediction Error Identifi-
cation Framework – Part I: Theory. Automatica, 39(3):403–415, 2003.

106



[50] H. Geyer, A. Seyfarth, and R. Blickhan. Compliant leg behaviour explains basic
dynamics of walking and running. Proceedings of the Royal Society B: Biological
Sciences, 273(1603):2861–2867, 2006.

[51] D. W. Haldane, C. S. Casarez, J. T. Karras, J. Lee, C. Li, A. O. Pullin, E. W.
Schaler, D. Yun, H. Ota, A. Javey, and R. S. Fearing. Integrated manufacture
of exoskeletons and sensing structures for folded millirobots. AMSE Journal of
Mechanisms and Robotics, 7(2):021011–1–021011–19, 2015.

[52] D. W. Haldane, K. Peterson, F. Garcia Bermudez, and R. S. Fearing. Animal-
inspired design and aerodynamic stabilization of a hexapedal millirobot. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 3279–3286, 2013.

[53] A. Halder and R. Bhattacharya. Probabilistic Model Validation for Uncertain
Nonlinear Systems. Automatica, 50(8):2038–2050, 2014.

[54] J. Hall, C. E. Rasmussen, and J. Maciejowski. Modelling and control of nonlinear
systems using gaussian processes with partial model information. In Proceedings
of the 51st IEEE Conference on Decision and Control, pages 5266–5271, 2012.

[55] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper
Saddle River, NJ, 1999.

[56] K. L. Hoffman and R. J. Wood. Towards a multi-segment ambulatory micro-
robot. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1196–1202, 2010.

[57] T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel Methods in Machine Learn-
ing. Annals of Statistics, 36(3):1171–1220, 2008.

[58] P. Holmes, R. J. Full, D. E. Koditschek, and J. Guckenheimer. The Dynam-
ics of Legged Locomotion: Models, Analyses, and Challenges. SIAM Review,
48(2):207–304, 2006.

[59] A. M. Hoover, S. Burden, X-Y. Fu, S. Sastry, and R. S. Fearing. Bio-inspired
design and dynamic maneuverability of a minimally actuated six-legged robot.
In Proceedings of the IEEE International Conference on Biomedical Robotics and
Biomechatronics, pages 869–876, 2010.

[60] A. M. Hoover, E. Steltz, and R. S. Fearing. RoACH: An autonomous 2.4g crawl-
ing hexapod robot. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 26–33, 2008.

[61] W. G. Howe. Two-sided tolerance limits for normal populations - some improve-
ments. Journal of the American Statistical Association, 64:610–620, 1969.

107



[62] D. Hristu-Varsakelis, M. Egerstedt, and P. S. Krishnaprasad. On the structural
complexity of the motion description language MDLe. In Proceedings of the 42nd
IEEE Conference on Decision and Control, pages 3360–3365, 2003.

[63] A. Ijspeert. Biorobotics: Using robots to emulate and investigate agile animal
locomotion. Science, 346(6206):196–203, 2014.

[64] D. L. Jindrich and R. J. Full. Many-Legged Maneuverability: Dynamics of Turn-
ing in Hexapods. The Journal of Experimental Biology, 202:1603–1623, 1999.

[65] B. Johnson and H. Kress-Gazit. Analyzing and revising synthesized controllers for
robots with sensing and actuation errors. The International Journal of Robotics
Research, 34(6):816–832, 2015.

[66] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. STOMP:
Stochastic trajectory optimization for motion planning. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 4569–4574,
2011.

[67] S. Karaman and E. Frazzoli. Sampling-based optimal motion planning for non-
holonomic dynamical systems. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pages 5041–5047, 2013.

[68] K. Karydis, Y. Liu, I. Poulakakis, and H. G. Tanner. A Template Candi-
date for Miniature Legged Robots in Quasi-Static Motion. Autonomous Robots,
38(2):193–209, 2015.

[69] K. Karydis, Y. Liu, I. Poulakakis, and H. G. Tanner. Navigation of miniature
legged robots using a new template. In 23rd Mediterranean Conference on Control
and Automation, pages 1112–1117, 2015.

[70] K. Karydis, I. Poulakakis, J. Sun, and H. G. Tanner. Probabilistically Valid
Stochastic Extensions of Deterministic Models for Systems with Uncertainty.
The International Journal of Robotics Research, 34(10):1278–1295, 2015.

[71] K. Karydis, I. Poulakakis, and H. G. Tanner. A switching kinematic model for
an octapedal robot. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 507–512, 2012.

[72] K. Karydis, I. Poulakakis, and H. G. Tanner. Probabilistic validation of a stochas-
tic kinematic model for an eight-legged robot. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 2562–2567, 2013.

[73] K. Karydis, L. Valbuena, and H. G. Tanner. Model predictive navigation for
position and orientation control of nonholonomic vehicles. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 3206–3211,
2012.

108



[74] K. Karydis, D. Zarrouk, I. Poulakakis, R. S. Fearing, and H. G. Tanner. Planning
with the STAR(s). In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3033–3038, 2014.

[75] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, 1996.

[76] G. Kewani, G. Ishigami, and K. Iagnamma. Stochastic mobility-based path plan-
ning in uncertain environments. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1183–1189, 2009.

[77] S. Kim, J. E. Clark, and M. R. Cutkosky. iSprawl: Design and Tuning for High-
speed Autonomous Open-loop Running. The International Journal of Robotics
Research, 25(9):903–912, 2006.

[78] E. Klavins. A computation and control language for multi-vehicle systems. In
Proceedings of the 42nd IEEE Conference on Decision and Control, pages 4133–
4139, 2003.

[79] M. Kloetzer and C. Belta. A fully automated framework for control of linear
systems from temporal logic specifications. IEEE Transactions on Automatic
Control, 53(1):287–297, 2008.

[80] M. Kloetzer and C. Belta. Automatic deployment of distributed teams of robots
from temporal logic motion specifications. IEEE Transactions on Robotics,
26(1):48–61, 2010.

[81] D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with
boundary. Advances in Applied Mathematics, 11(4):412–442, 1990.

[82] N. J. Kohut, A. M. Hoover, K. Y. Ma, S. S. Baek, and R. S. Fearing. MEDIC:
A legged millirobot utilizing novel obstacle traversal. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 802–808, 2011.

[83] V. Koltchinskii, C. T. Abdallah, M. Ariola, P. Dorato, and D. Panchenko. Statis-
tical learning control of uncertain systems: it is better than it seems. Technical
Report EECE-TR-00-001, University of New Mexico, 2000.

[84] Y. Koren and J. Borenstein. Potential field methods and their inherent limitations
for mobile robot navigation. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1398–1404, 1991.

[85] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal logic based reactive
mission and motion planning. IEEE Transactions on Robotics, 25(6):1370–1381,
2009.

109



[86] M. Lahijanian, S. B. Andersson, and C. Belta. Temporal logic motion planning
and control with probabilistic satisfaction guarantees. IEEE Transactions on
Robotics, 28(2):396–409, 2012.

[87] B. G. A. Lambrecht, A. D. Horchler, and R. D. Quinn. A small, insect-inspired
robot that runs and jumps. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1240–1245, 2005.

[88] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,
U.K., 2006.

[89] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proceed-
ings of the IEEE International Conference on Robotics and Automation, pages
473–479, 1999.

[90] L. H. Lee and K. Poolla. On Statistical Model Validation. Journal of Dynamic
Systems, Measurement, and Control, 118(2):226–236, 1996.

[91] C. Li, A. M. Hoover, P. Birkmeyer, P. B. Umbanhowar, R. S. Fearing, and
D. I. Goldman. Systematic study of the performance of small robots on con-
trolled laboratory substrates. In Proceedings of the SPIE Conference on Micro-
and Nanotechnology Sensors, Systems, and Applications II, volume 7679, pages
76790Z–13, 2010.

[92] C. Li, A. O. Pullin, D. W. Haldane, H. K. Lam, R. S. Fearing, and R. J. Full. Ter-
radynamically streamlined shapes in animals and robots enhance traversability
through densely cluttered terrain. Bioinspiration & Biomimetics, 10(4):046003,
2015.

[93] C. Li, T. Zhang, and D. I. Goldman. A terradynamics of legged locomotion on
granular media. Science, 339:1408–1412, 2013.

[94] D. Liberzon. Calculus of Variations and Optimal Control Theory: A Concise
Introduction. Princeton University Press, 2011.

[95] L. Ljung. System Identification: Theory for the User. Prentice-Hall, 1999.

[96] S. G. Loizou and K. J. Kyriakopoulos. Automatic synthesis of multi-agent motion
tasks based on LTL specifications. In Proceedings of the 43rd IEEE Conference
on Decision and Control, volume 1, pages 153–158, 2004.

[97] A. W. Long, K. C. Wolfe, M. Mashner, and G. S. Chirikjian. The Banana
Distribution is Gaussian: A Localization Study with Exponential Coordinates.
In Robotics: Science and Systems, 2012.

[98] G. A. D. Lopes and D. E. Koditschek. Visual Servoing for Nonholonomically
Constrained Three Degree of Freedom Kinematic Systems. The International
Journal of Robotics Research, 26(7):715–736, 2007.

110



[99] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea. A simple learning
strategy for high-speed quadrocopter multi-flips. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 1642–1648, 2010.

[100] P. Martin, E. Johnson, T. Murphey, and M. Egerstedt. Constructing and im-
plementing motion programs for robotic marionettes. IEEE Transactions on
Automatic Control, 56(4):902–907, 2011.

[101] A. Mathis, J. Russell, T. Moore, J. Cohen, B. Satterfield, N. Kohut, X.-Y. Fu,
and R. S. Fearing. Autonomous navigation of a 5 gram crawling millirobot in a
complex environment. In Proceedings of Adaptive Mobile Robotics: 15th Interna-
tional Conference on Climbing and Walking Robots and the Support Technologies
for Mobile Machines, pages 121–128, 2012.

[102] S. Mendelson. A Few Notes on Statistical Learning Theory. In S. Mendelson
and E. J. Smola, editors, Advanced Lectures in Machine Learning, volume 2600,
pages 1–40. Springer Verlag, 2003.

[103] R. Merz, F. B. Prinz, K. Ramaswami, M. Terk, and L. E. Weiss. Shape deposition
manufacturing. In Proceedings of the Solid Freeform Fabrication Symposium,
1994.

[104] R. Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989.

[105] J-M. Mongeau, B. McRae, A. Jusufi, P. Birkmeyer, A. M. Hoover, R. S. Fearing,
and R. J. Full. Rapid Inversion: Running Animals and Robots Swing like a
Pendulum under Ledges. PLoS ONE, 7(6):e38003, 2012.

[106] J. Morrey, B. G. A. Lambrecht, A. Horchler, R. Ritzmann, and R. D. Quinn.
Highly mobile and robust small quadruped robots. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol-
ume 1, pages 82–87, 2003.

[107] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[108] T. Ogunfunmi. Adaptive Nonlinear System Identification: The Volterra and
Wiener Model Approaches. Signal and Communication Technology. Springer-
Verlag, New York, NY, 2007.

[109] C. D. Onal, M. T. Tolley, R. J. Wood, and D. Rus. Origami-Inspired Printed
Robots. IEEE/ASME Transactions on Mechatronics, PP(99):1–8, 2014.

[110] D. Panagou and H. G. Tanner. Modeling of a Hexapod Robot; Kinematic
Equivalence to a Unicycle. Technical Report UDMETR-2009-001, University
of Delaware, 2009.

111



[111] A. A. Pereira, J. Binney, G. A. Hollinger, and G. S. Sukhatme. Risk-aware Path
Planning for Autonomous Underwater Vehicles using Predictive Ocean Models.
Journal of Field Robotics, 30(5):741–762, 2013.

[112] M. Pivtoraiko, D. Mellinger, and V. Kumar. Incremental micro-UAV motion
replanning for exploring unknown environments. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 2452–2458, 2013.

[113] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57, 1977.

[114] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic models
for nonlinear control systems. Automatica, 44(10):2508–2516, 2008.

[115] K. Poolla, P. Khargonekar, A. Tikku, James Krause, and K. Nagpal. A Time-
domain Approach to Model Validation. Transactions on Automatic Control,
39(5):951–959, 1994.

[116] I. Poulakakis and J. W. Grizzle. The Spring Loaded Inverted Pendulum as
the Hybrid Zero Dynamics of an Asymmetric Hopper. IEEE Transactions on
Automatic Control, 54(8):1779–1793, 2009.

[117] C. Powers, D. Mellinger, A. Kushleyev, B. Kothmann, and V. Kumar. Influence
of aerodynamics and proximity effects in quadrotor flight. In Proceedings of the
International Symposium on Experimental Robotics, volume 88 of Springer Tracts
in Advanced Robotics, pages 289–302, 2012.

[118] Stephen Prajna. Barrier Certificates for Nonlinear Model Validation. Automatica,
42(1):117–126, 2006.

[119] J. Proctor and P. Holmes. Steering by Transient Destabilization in Piecewise-
Holonomic Models of Legged Locomotion. Regular and Chaotic Dynamics,
13(4):267–282, 2008.

[120] A. O. Pullin, N. J. Kohut, D. Zarrouk, and R. S. Fearing. Dynamic turning of
13 cm robot comparing tail and differential drive. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 5086–5093, 2012.

[121] F. Qian, T. Zhang, C. Li, P. Masarati, A. M. Hoover, P. Birkmeyer, A. O. Pullin,
R. S. Fearing, and D. I. Goldman. Walking and running on yielding and fluidizing
ground. In Robotics: Science and Systems, pages 345–352, 2012.

[122] M. H. Raibert. Legged Robots that Balance. MIT Press, Cambridge, MA, 1986.

[123] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing. MIT Press, 2006.

112



[124] J. B. Rawlings. Tutorial overview of model predictive control. IEEE Control
Systems Magazine, 20(3):38–52, Jun. 2000.

[125] L. R. Ray and R. F. Stengel. A Monte Carlo Approach to the Analysis of Control
System Robustness. Automatica, 29(1):229–236, 1993.

[126] P. Roy, P. Tabuada, and R. Majumdar. Pessoa 2.0: a controller synthesis tool for
cyber-physical systems. In Marco Caccamo, Emilio Frazzoli, and Radu Grosu,
editors, Hybrid Systems: Computation and Control, pages 315–316, 2011.

[127] U. Saranli, M. Bühler, and D. E. Koditschek. RHex: A Simple and Highly Mobile
Hexapod Robot. The International Journal of Robotics Research, 20(7):616–631,
2001.

[128] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. Krieger
Publishing, Malabar, FL, 2006.

[129] M. Schmidt and H. Lipson. Distilling Free-Form Natural Laws from Experimen-
tal Data. Science, 324:81–85, 2009.

[130] J. Schmitt and P. Holmes. Mechanical models for insect locomotion: dynamics
and stability in the horizontal plane - I. Theory. Biological Cybernetics, 83(6):501–
515, 2000.

[131] J. Schmitt and P. Holmes. Mechanical models for insect locomotion: dynamics
and stability in the horizontal plane - II. Application. Biological Cybernetics,
83(6):517–527, 2000.

[132] W. J. Schwind. Spring Loaded Inverted Pendulum Running: A Plant Model. PhD
thesis, University of Michigan, 1998.

[133] N. Seegmiller, F. Rogers-Marcovitz, G. Miller, and A. Kelly. Vehicle model
identification by integrated prediction error minimization. The International
Journal of Robotics Research, 32(8):912–931, 2013.

[134] J. E. Seipel, P. J. Holmes, and R. J. Full. Dynamics and stability of insect loco-
motion: a hexapedal model for horizontal plane motions. Biological Cybernetics,
91(2):76–90, 2004.

[135] S. Shah, C. D. Pahlajani, N. Lacock, and H. G. Tanner. Stochastic receding
horizon control for robots with probabilistic state constraints. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages 2893–
2898, 2012.

[136] S. Shah, C. D. Pahlajani, and H. G. Tanner. Optimal navigation for vehicles
with stochastic dynamics. IEEE Transactions on Control Systems Technology,
23(5):2003–2009, 2015.

113



[137] S. Shah and H. G. Tanner. Bounding the uncertainity in nonlinear robust model
predictive control using sphere covering. In 19th Mediterranean Conference on
Control and Automation, pages 807–812, 2011.

[138] A. Shkolnik, M. Levashov, I. R. Manchester, and R. Tedrake. Bounding on rough
terrain with the LittleDog robot. The International Journal of Robotics Research,
30(2):192–215, 2011.

[139] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2013.

[140] R. S. Smith and J. C. Doyle. Model Validation: a Connection Between Robust
Control and Identification. Transactions on Automatic Control, 37(7):942–952,
1992.

[141] R. S. Smith and G. E. Dullerud. Continuous-time Control Model Validation using
Finite Experimental Data. Transactions on Automatic Control, 41(8):1094–1105,
1996.

[142] O. J. Sordalen and O. Egeland. Exponential stabilization of nonholonomic
chained systems. IEEE Transactions on Automatic Control, 40(1):35–49, 1995.

[143] A. J. Spence, S. Revzen, J. E. Seipel, C. Mullens, and R. J. Full. Insects Running
on Elastic Surfaces. Journal of Experimental Biology, 213:1907–1920, 2010.

[144] A. Stager, K. Karydis, and H. G. Tanner. A Passively Sprawling Miniature
Legged Robot. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 3134–3139, 2015.

[145] J. Steinhardt and R. Tedrake. Finite-time regional verification of stochastic non-
linear systems. The International Journal of Robotics Research, 31(7):901–923,
2012.

[146] J. J. Stoker. Differential Geometry. Wiley-Interscience, New York, NY, 1969.

[147] M. Sznaier and M. C. Mazzaro. An LMI Approach to Control-oriented Identi-
fication and Model (In)validation of LPV Systems. Transactions on Automatic
Control, 48(9):1619–1624, 2003.

[148] R. Tempo, G. Calafiore, and F. Dabbene. Randomized Algorithms for Analy-
sis and Control of Uncertain Systems: With Applications. Springer Publishing
Company, Inc., 2nd edition, 2012.

[149] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005.

[150] A. Timcenko and P. Allen. Modeling dynamic uncertainty in robot motions. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 531–536, 1993.

114



[151] J. van den Berg, P. Abbeel, and K. Goldberg. LQG-MP: Optimized path plan-
ning for robots with motion uncertainty and imperfect state information. The
International Journal of Robotics Research, 30(7):895–913, 2011.

[152] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.

[153] M. Vidyasagar. Randomized Algorithms for Robust Controller Synthesis using
Statistical Learning Theory. Automatica, 37(10):1515–1528, 2001.

[154] M. Vidyasagar. Learning and Generalization With Applications to Neural Net-
works. Springer-Verlag, London, UK, 2nd edition, 2003.

[155] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon temporal
logic planning. IEEE Transactions on Automatic Control, 57(11):2817–2830,
2012.

[156] R. J. Wood, S. S. Avadhanula, R. R. Sahai, E. E. Steltz, and R. S. Fearing. Micro-
robot Design Using Fiber Reinforced Composites. ASME Journal of Mechanical
Design, 130(5):1–11, 2008.

[157] D. Xu, Z. Ren, G. Gu, and J. Chen. LFT Uncertain Model Validation with
Time- and Frequency-domain Measurements. Transactions on Automatic Con-
trol, 44(7):1435–1441, 1999.

[158] A. A. Yumaryanto, J. An, and S. Lee. A cockroach-inspired hexapod robot actu-
ated by LIPCA. In Proceedings of the IEEE Conference on Robotics, Automation
and Mechatronics, pages 1–6, 2006.

[159] S. Zarovy, M. Costello, A. Mehta, G. Gremillion, D. Miller, B. Ranganathan,
J. S. Humbert, and P. Samuel. Experimental study of gust effects on micro air
vehicles. In AIAA Conference on Atmospheric Flight Mechanics, pages AIAA–
2010–7818, 2010.

[160] D. Zarrouk and R. S. Fearing. Compliance-based dynamic steering for hexapods.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3093–3098, 2012.

[161] D. Zarrouk, A. O. Pullin, N. J. Kohut, and R. S. Fearing. STAR - a sprawl
tuned autonomous robot. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 20–25, 2013.

[162] T. Zhang, F. Qian, C. Li, P. Masarati, A. M. Hoover, P. Birkmeyer, A. O. Pullin,
R. S. Fearing, and D. I. Goldman. Ground fluidization promotes rapid running of
a lightweight robot. The International Journal of Robotics Research, 7(32):859–
869, 2013.

115



Appendix A

KEY TERMINOLOGY IN LEGGED LOCOMOTION

For the convenience of the reader, we present here a collection of key terms in

legged locomotion that are used in this dissertation.

abduction Motion of the legs on the coronal plane that moves them farther

from the center of the body

adduction Motion of the legs on the coronal plane that brings them closer to

the center of the body

contralateral On opposite sides

coronal Vertical plane dividing a body into the front and back halves

cycle Periodic motion of the legs

duty factor Percentage of the total cycle during which a particular leg touches

the ground

gait Pattern of movement of the legs

ipsilateral On the same side

protraction Motion of the legs on the sagittal plane that moves them further

away from the center of the body

retraction Motion of the legs on the sagittal plane that brings them closer to

the center of the body

sagittal Vertical plane dividing a body into a right and left half

stance phase Portion of the cycle during which a particular leg touches the ground

116



swing phase Portion of the cycle during which a particular leg is lifted off the

ground and moves forward

117



Appendix B

DERIVATION OF CLOSED-FORM EXPRESSIONS

We present here the steps to derive the closed-form expressions (3.2) for the

right pair; due to symmetry, the expression for the left pair follows directly (see (3.3)).

The target equations are repeated here:

∆x = |O1G
′| sin

(
ω′ − |∆θ|

)
− |O1G| sinω , (B.1a)

∆y = |O1G
′| cos

(
ω′ − |∆θ|

)
− |O1G| cosω , (B.1b)

∆θ = φlo
1 − φtd

1 + ∠AO1A
′ . (B.1c)

where for clarity of presentation we have dropped the dependence on φ1, and |O1G
′| ,

r(φ1), |O1G| , r(φtd
1 ), ω′ = ω(φ1), and ∠AO1A

′ , χ(φ1).

With reference to Figure B.1, the unprimed quantities correspond to locations

in the configuration of the mechanism at the beginning of a left pair step (touchdown),

and the primed quantities mark the new locations at the end of the step (liftoff). In

this context, the vector of displacement of the geometric center of the model in the

body frame, GG′, as well as the difference in the orientation of the long body axis

between beginning and end of step, ∆θ, can be expressed in terms of φ1 ∈ [φtd
1 , φ

lo
1 ] as

follows:

Derivation of (B.1a) and (B.1b)

Non-primed symbols correspond to touchdown and primed ones to liftoff. With

reference to Figure B.1, the vector-loop equation in triangle 4A′O1G
′ using complex

118



notation yields

RGG′ = RO1G′ −RO1G

= (RO1A′ +RA′G′) ej|∆θ| − (RO1A +RAG)

=
[
|O1G

′| ej(π
2
−ω′)
]

ej|∆θ| − |O1G| ej(π
2
−ω) . (B.2)

The displacement along the x and y axes is then found by substituting e±jθ = cos θ ±
j sin θ and taking the real and imaginary parts of (B.2), respectively, that is

∆x= |O1G
′|
[

cos(|∆θ|) sin(ω′)−sin(|∆θ|) cos(ω′)
]
−|O1G| sin(ω) ,

∆y= |O1G
′|
[

cos(|∆θ|) cos(ω′)+sin(|∆θ|) sin(ω′)
]
−|O1G| cos(ω) .

To evaluate the above quantities, we need to calculate |O1G|, ω, |O1G
′|, ω′, as

well as ∆θ. First, let |O1A| = |O1A
′| = l, and |AG| = |A′G′| = d/2 (see Figure 3.1(a)).

Then, application of the cosine and sine laws to 4AO1G gives the quantities |O1G|
and ω, while |O1G

′| and ω′ are found by applying the trigonometric laws to 4A′O1G
′.

We have

|O1G| =
√
l2 +

d2

4
− l d cos

(π
2
− φtd

1

)
,

ω = arcsin

(
l sin(π

2
− φtd

1 )

|O1G|

)
,

|O1G
′| =

√
l2 +

d2

4
− l d cos

(π
2
− φlo

1

)
,

ω′ = arcsin

(
l sin(π

2
− φlo

1 )

|O1G′|

)
.

Derivation of (B.1c)

The expression for ∆θ is

∆θ = ∠A′C ′O1 − ∠ACO1

=
(π

2
+ φlo

1 − ∠A′O1C
′
)
−
(π

2
+ φtd

1 − ∠AO1C
)

= φlo
1 − φtd

1 + (∠AO1O2 − ∠A′O1O2)

= φlo
1 − φtd

1 + ∠AO1A
′ ,

119



O1

O2

G

G′

A

A′

B′

B

φtd
1

φtd
2

φlo
1

∆θ

x

y

ω

ω′

φlo
2

C ′ C

Figure B.1: Geometric analysis of sfm. Bold thick lines and unprimed symbols anno-
tate the right pair configuration at touchdown, while dashed thick lines
and primed letters describe the mechanism at the liftoff configuration.
Thin dashed-dotted lines outline the various triangles we refer to in text.
Due to the no-slip assumption, the mechanism pivots around the touch-
down points, O1 and O2. Points C and C ′ denote the intersection of the
torso of the model and the segment O1O2.

which requires knowledge of ∠AO1A
′. To find the latter, we first calculate the length

|O1O2| and the angle φlo
2 .

The vector-loop equation for the mechanism is

RO1O2 = RAB +RBO2 −RAO1 ,

120



which can be expressed in complex number notation as

|O1O2| ej(∠AO1O2−φtd
1 ) = d ej(π/2) + l ej(φ

td
2 ) − l ej(π−φtd

1 ) .

Then, substituting e±jθ = cos θ ± j sin θ and separating real and imaginary parts, we

write the above equation as

|O1O2| cos(∠AO1O2 − φtd
1 ) = l cos(φtd

2 ) + l cos(φtd
1 )

|O1O2| sin(∠AO1O2 − φtd
1 ) = d+ l sin(φtd

2 )− l sin(φtd
1 ) .

Squaring both equations, adding them, and then solving for |O1O2| yields

|O1O2| =√
2l2 +d2 + 2l

(
l cos(φtd

1 +φtd
2 ) +d(sin(φtd

2 )− sin(φtd
1 ))
)
.

To find the angle φlo
2 we turn our attention to 4O1B

′A′. Applying the laws of

sines and cosines produces

|O1B
′| =

√
l2 + d2 − 2l d cos

(π
2
− φlo

1

)
,

∠O1B
′A′ = arcsin

(
l sin(π

2
− φlo

1 )

|O1B′|

)
.

From the cosine law applied to 4O1B
′O2 we have

∠O1B
′O2 = arccos

( |O1B
′|2 + l2 − |O1O2|2

2|O1B′|l

)
.

Then, φlo
2 is calculated as

φlo
2 = ∠O1B

′O2 − ∠O1B
′A′ − π

2
. (B.3)

We are now ready to calculate ∠AO1A
′ which is needed for finding ∆θ in (B.1c).

We can write

∠AO1A
′ = arctan2

(
sin(∠AO1A

′)

cos(∠AO1A′)

)
= arctan2

(
sin(∠AO1O2 − ∠A′O1O2)

cos(∠AO1O2 − ∠A′O1O2)

)
,

121



or equivalently

∠AO1A
′ = arctan2

(
sin(∠AO1O2)cos(∠A′O1O2)−cos(∠AO1O2)sin(∠A′O1O2))

cos(∠AO1O2)cos(∠A′O1O2)+sin(∠AO1O2)sin(∠A′O1O2))

)
.

Application of the trigonometric laws to 4AO1O2 and 4A′O1O2 gives

cos(∠AO1O2) =
|O1O2|2 + l2 − |AO2|2

2|O1O2|l
,

sin(∠AO1O2) =
|AO2|
|O1O2|

sin(∠O1AO2) ,

cos(∠A′O1O2) =
|O1O2|2 + l2 − |A′O2|2

2|O1O2|l
,

sin(∠A′O1O2) =
|A′O2|
|O1O2|

sin(∠O1A
′O2) .

The last quantities remaining to be found are |AO2|,∠O1AO2, |A′O2|, and ∠O1A
′O2.

We first write

∠O1AO2 =
π

2
− φtd

1 + ∠BAO2 ,

∠O1A
′O2 =

π

2
− φlo

1 + ∠B′A′O2 .

Then, application of the trigonometric laws to 4ABO2 and 4A′B′O2 finally gives

|AO2| =
√
l2 + d2 − 2l d cos

(π
2

+ φtd
2

)
,

∠BAO2 = arcsin

(
l sin(π

2
+ φtd

2 )

|AO2|

)
,

|A′O2| =
√
l2 + d2 − 2l d cos

(π
2

+ φlo
2

)
,

∠B′A′O2 = arcsin

(
l sin(π

2
+ φlo

2 )

|A′O2|

)
,

where φlo
2 is found by (B.3), while φtd

1 and φtd
2 are known.

In sum, (B.1a), (B.1b), and (B.1c) determine the local state progression as a

function of the input angle. For the case of the left pair, (B.1a) and (B.1c) are negated,

and (B.1b) is the same.

122



Appendix C

UNCERTAINTY QUANTIFICATION IN SMALL-SCALE AERIAL
VEHICLES

This appendix provides an example of applying the reported method for prob-

abilistic model validation and stochastic extension to a system represented by a set of

differential equations. The example considered here is the steady-state response of a

small-scale quadrotor during hover. The performance of small-scale rotorcraft vehicles

while operating in close proximity to rigid surfaces (e.g., ground, ceiling, etc.) can be

considerably affected by uncertain aerodynamic effects that are difficult to incorporate

in low-dimensional models such as those typically used for control [117].

For clarity, here only a very small fraction of the dynamics of the physical system

is excited, and thus the associated analysis allows no direct generalizations to other

flying regimes; yet the case still provides an adequate example of how our method can

be applied to nominal deterministic models of dynamical systems that come in the

form of differential equations. Further, this example shows that the method can also

work if the stochasticity is injected through an exogenous stochastic disturbance input,

rather than through the model’s parameters. Merely calculating a sample variance and

using it directly to estimate the stochastic disturbance does not provide probabilistic

guarantees of fidelity.

C.1 The Nominal Model

In applying the method to the altitude control of small scale quadrotor, we

isolate the vertical dynamics component and characterize the observed data variability

at steady state. Constraining the motion along the vertical direction is achieved by

the support structure of Figure C.1.

123



Nylon
Cords

Support
Frame

Wooden
Floor

Figure C.1: The experimental setup. Our support structure aids in restraining the
motion along the vertical direction only. The driving strings are com-
posed of nylon cords; they provide strong support and minimal friction,
while minimizing the fluctuations on the normal to the motion plane.
We also added a wooden floor to artificially generate the ground effect.

A simplified quadrotor model for motion on the vertical plane and ignoring the

actuator dynamics, can be expressed as [99]

m ÿ = −f sinφ

m z̈ = f cosφ−mg

I φ̈ = τ

(C.1)

where f and τ are the thrust and pitch moments, respectively, m and I are the mass

and moment of inertia of the vehicle, and g is the acceleration of gravity. The support

structure forces φ = 0, and with the addition of a gravity compensation term

f = mg +mu ,

124



the model (C.1) reduces to a double integrator

z̈ = u . (C.2)

The input u is then determined by a proportional-integral-derivative (pid) con-

troller

u = KP e+KI

∫
e dt +KD ė , (C.3)

where e = (r − z) is the position error, and r is the desired hovering height. For the

purposes of this work, we consider four distinct altitudes shown in Table C.1. The pid

gains (KP , KI , KD) are selected empirically and their values are given in Table C.2. In

order to avoid unrealistic control efforts, the pid output is saturated within the region

−2 ≤ u ≤ 7; the same saturation interval is used in our experiments as well.

Table C.1: Quadrotor hovering altitudes

Case
I II III IV

(Low) (Mid-low) (Mid-high) (High)

r [m] 0.02 0.11 0.20 0.50

Table C.2: PID gains

KP KI KD

4.00 4.50 5.00

Figure C.2(a) depicts the model-predicted closed-loop trajectories plotted against

collected experimental data. It can be verified that the deterministic closed-loop con-

trol model is able to predict quite accurately on average the experimentally-observed

steady-state response of the system in all four cases. In the following sections we will

employ the Algorithm of Table 4.2 to show how the deterministic closed-loop system

can be extended to a stochastic setting to capture the data variability in steady state.

125



C.2 Stochastic Extension

Contrary to the case study of Section 4.3, here we introduce stochasticity

through an exogenous random excitation term that acts as stochastic perturbations

on the nominal closed-loop dynamics (C.2). This shows that the method is also ap-

plicable when a system is perturbed by noise, and can be used to identify such noise

terms in practice, while providing probabilistic guarantees on the reported outcome.

The closed-loop stochastic model of the system is now

z̈ + ξ̃ = u ,

where u is calculated by the same pid controller as in (C.3) and then saturated in

the region −2 ≤ u ≤ 7, with ξ̃ ∼ N (0, σ2
ξ ), and the variance σ2

ξ to be determined by

the Algorithm of Table 4.2. In essence, ξ̃ here corresponds to a zero-mean Gaussian

process corrupting the control effort, and the task of the method is to find the variance

σ2
ξ that captures the data variability in steady state under prespecified fidelity specifi-

cations. Figure C.3 summarizes schematically the closed-loop control stochastic model

we consider here.

C.3 Application of the Method

In this section we apply the proposed methodology to determine σ2
ξ at steady

state for each of the four cases shown in Table C.1. We select the same problem

parameters as in the previous case study: p = 0.90, γ = 0.99, α = 0.29, ρ = 0.35, ε =

0.29, and δ = 0.16, giving N = 8, M = 31 with K = 8, and k2 = 4.147 to construct the

cone of data for each multisample. We collect closed-loop altitude measurement data

from a total of 248 experimental trajectories, for each height. Trials for the first three

cases last 15 sec; for the fourth, 20 sec, because the system enters its steady state at the

end of the 15th second. The feedback loop refreshes at 30 Hz, at the same frequency as

our motion capture system. The initial pose errors are not significant since the support

structure ensures that the start position remains unchanged in all trials.

126



0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [sec]

z
[m

]
0.4

0.5

0.6

z
[m

]

t [sec]
15 16 17 18 19 20

(a)

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [sec]

z
[m

]

0.4

0.5

0.6

z
[m

]

t [sec]
15 16 17 18 19 20

(b)

Figure C.2: (a) Experimentally collected paths for a quadrotor aerial vehicle tasked
to hover at four distinct altitudes (0.02 m, 0.11 m, 0.20 m, and 0.50 m,
respectively). Individual paths are enclosed within the respective cone-
of-data areas (marked with the dashed curves), while the experimental
averages are shown in solid thick curves. For the fourth case, the steady
state is achieved at t = 20 sec. For clarity purposes, we show the last
5 sec in the add-on window on the top right corner of the figure. The su-
perimposed solid thick curves correspond to the model-predicted outputs
according to (C.3). (b) The output of the stochastically perturbed con-
trol architecture depicted in Figure C.3, where the values of σξ for each
case have been estimated by the proposed framework, and are shown
in Table C.3. A set of 248 random model instantiations are plotted on
top of the experimental averages and cones of data. We are now able to
capture the data variability during the steady-state response.

Figure C.2(a) presents the experimentally observed trajectories. Let Wl, Wml,

Wmh, Wh indicate the collections of the trajectories for the low, mid-low, mid-high,

and high hovering altitude, respectively. Let w denote an element in these sets. The

average for each case is denoted by wave
l , wave

ml , wave
mh , wave

h , respectively, shown in solid

thick curves. Dashed curves mark the cone of data for each case. The additional 5 sec

for the highest altitude case are shown as an add-on figure on top of Figure C.2(a).

The results of the application of the proposed method are summarized in Ta-

ble C.3. Figure C.2(b) depicts 248 randomly generated model paths for each case,

127



parameterized according to the values in Tables C.2 and C.3. Focusing on the steady-

state response of the system only, we can verify that the stochastically extended control

scheme of Figure C.3 is capable of capturing the data variability, and that the resulting

paths match closely their experimental counterparts. We highlight in Figure C.2(b) the

steady-state part of system responses to emphasize that our focus is in this particular

regime. The induced ground effect is evident in the behavior of the quadrotor closest

to the ground, where it appears as if the generated airflow creates an aerodynamic

“cushion” below the platform. This has a stabilizing effect on the platform, as indi-

cated by the reduction in the amplitude of the vehicle’s residual oscillations at steady

state.

Table C.3: Probably approximate near maximum quadrotor model uncertainty

Case
I II III IV

(Low) (Mid-low) (Mid-high) (High)

σ̄ξ 0.08 0.13 0.17 0.30

PID
er u

+
-

z
+ 1

s2

ξ̃

-

Figure C.3: Schematic representation of the closed-loop control stochastic model for
the steady-state vertical dynamics component during quadrotor hover-
ing. The input r denotes the desired hovering height, while the gains of
the pid controller have been tuned a-priori, and remain the same with
those used in our data collections. In ξ̃ ∼ N (0, σ2

ξ ), the variance σ2
ξ is

estimated using the proposed algorithm.

128



Note that the control architecture of Fig C.3 does not capture the ripples during

the transient phases. These ripples could be attributed, at least in part, to the nonlinear

coupling between the pitch angle φ and the actuator input f (cf. (C.1)) which are

currently ignored by assuming that φ ≡ 0. Thus the simplified deterministic model is

incapable of reproducing this transient, irrespectively of how stochasticity is infused.

Using a full nonlinear model such as (C.1) may enable one to capture this transient

behavior, however doing so falls outside the scope of the present paper.

C.4 Discussion

This section discusses an alternative way to perturb the nominal closed-loop

dynamics (C.2), and provides some insight on the predictive ability of the augmented

stochastic architecture shown in Figure C.3.

We first perturb the output of the model with an exogenous random term—

modeled again as a zero-mean Gaussian process process—shown in Figure C.4.1 Then,

we apply the proposed method with all parameters retaining the same values as in

Section C.3. The results are summarized in Table C.4, and Figure C.5(a) depicts

248 randomly generated model paths for each case, parameterized according to the

values found in Tables C.2, and C.4. The modified stochastic extension also captures

the data variability once the steady state has been reached, but system responses are

somewhat different (qualitatively) from the experimental data due to “chattering” (see

Figure C.5(a)). Overall, however, the methodology does not promote any one option

over another; instead, it reports that both are possible solutions. The designer has

then to select which solution to keep, based on their own beliefs or assumptions on the

possible sources of uncertainty.

Next, we examine how the stochastic architecture of Figure C.3, with variance

parameter σ2
ξ specified by data corresponding to a single desired hovering altitude, can

be used to predict the steady-state response of the vehicle both temporally, and across

1 Infusing stochasticity in this way may also have practical significance in the case of
uncertain or noisy state measurements.

129



PID
er u

+
-

z1
s2

+

ξ̃

+

Figure C.4: Schematic representation of the modified closed-loop control architec-
ture. As before, the input r denotes the desired hovering height, and the
pid gains have been tuned a-priori.

Table C.4: Probably approximate near maximum quadrotor model uncertainty when
the excitation term affects the model output

Case
I II III IV

(Low) (Mid-low) (Mid-high) (High)

σ̄ξ 0.002 0.004 0.005 0.007

different operating points. In detail, we use as training data those corresponding to

case II (i.e., ztrain = 0.11 m), with σ̄ξ,train = 0.13 (from Table C.3). Then, we use

the same model, with the same statistics for randomized exogenous forces, but with

different inputs (desired hovering altitudes) to predict the steady-state responses in the

remaining cases of Table C.1.

Figure C.5(b) presents the results. As expected, the data variability observed in

steady state is captured faithfully when the desired reference point does not change too

much (i.e., zpred = 0.2 m). However, when the desired reference point induces different

operating conditions in which the nature of the environmental interaction with the

physical system changes, the resulting stochastic model may offer a rough prediction,

albeit collecting more experimental data for these set points is recommended. For

example, when the set point is zpred = 0.02 m, we get a more conservative picture of

130



what is happening since the ground effect becomes evident, manifesting itself as a form

of a stabilizing aerodynamic cushion under the vehicle (compare with Figure C.2).

The same setup is also used to make temporal predictions that extend for addi-

tional 15 s for cases I – III, and 10 s for case IV. As before, provided that the induced

operating conditions do not vary significantly, the stochastically extended architecture

is able to make accurate temporal predictions, with the caveat that these predictions

come with no probabilistic guarantees.

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [sec]

z
[m

]

0.4

0.5

0.6
z
[m

]

t [sec]
15 16 17 18 19 20

(a)

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t [sec]

z
[m

]

(b)

Figure C.5: (a) The output of the stochastically perturbed control architecture de-
picted in Figure C.3, where the values of σξ for each case have been
estimated by the proposed framework, and are shown in Table C.3. A
set of 248 random model instantiations are plotted against the exper-
imental averages and cones of data. (b) Training data and exogenous
excitation statistics correspond to the second case only (ztrain = 0.11 m,
and σ̄ξ,train = 0.13). The stochastically extended control architecture
(Figure C.3) is then used to predict the steady-state response of the
system under different inputs, as well as extend these predictions tem-
porally. Provided that the operating conditions do not vary significantly,
the stochastic extension is able to make accurate predictions, both tem-
poral, and for different reference points.

131



Appendix D

REPRINT PERMISSIONS

This dissertation includes results published by the author in conference proceed-

ings [73, 71, 72, 74, 69] and journals [68, 70]. Reprint permissions to reuse material

from these works in this present dissertation have been granted by the respective pub-

lishers, and are attached in the following pages.

132



11/22/2015 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Model predictive navigation for
position and orientation control
of nonholonomic vehicles

Conference
Proceedings:

Robotics and Automation
(ICRA), 2012 IEEE
International Conference on

Author: Karydis, K.; Valbuena, L.;
Tanner, H.G.

Publisher: IEEE
Date: 14-18 May 2012
Copyright © 2012, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant: 

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an
IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line © 2011 IEEE. 
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior author’s approval. 

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication
title, and month/year of publication] 
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a
License from RightsLink. 

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single
copies of the dissertation.

   

 
Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 

133



11/22/2015 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: A switching kinematic model for
an octapedal robot

Conference
Proceedings:

Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ
International Conference on

Author: Karydis, K.; Poulakakis, I.;
Tanner, H.G.

Publisher: IEEE
Date: 7-12 Oct. 2012
Copyright © 2012, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant: 

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an
IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line © 2011 IEEE. 
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior author’s approval. 

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication
title, and month/year of publication] 
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a
License from RightsLink. 

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single
copies of the dissertation.

   

 
Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 

134



11/22/2015 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Probabilistic validation of a
stochastic kinematic model for
an eight-legged robot

Conference
Proceedings:

Robotics and Automation
(ICRA), 2013 IEEE
International Conference on

Author: Karydis, K.; Poulakakis, I.;
Tanner, H.G.

Publisher: IEEE
Date: 6-10 May 2013
Copyright © 2013, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant: 

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an
IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line © 2011 IEEE. 
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior author’s approval. 

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication
title, and month/year of publication] 
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a
License from RightsLink. 

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single
copies of the dissertation.

   

 
Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 

135



11/22/2015 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Planning with the STAR(s)
Conference
Proceedings:

Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ
International Conference on

Author: Karydis, K.; Zarrouk, D.;
Poulakakis, I.; Fearing, R.S.;
Tanner, H.G.

Publisher: IEEE
Date: 14-18 Sept. 2014
Copyright © 2014, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant: 

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an
IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line © 2011 IEEE. 
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior author’s approval. 

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication
title, and month/year of publication] 
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a
License from RightsLink. 

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single
copies of the dissertation.

   

 
Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 

136



11/22/2015 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Navigation of miniature legged
robots using a new template

Conference
Proceedings:

Control and Automation (MED),
2015 23th Mediterranean
Conference on

Author: Karydis, K.; Yan Liu; Poulakakis,
I.; Tanner, H.G.

Publisher: IEEE
Date: 16-19 June 2015
Copyright © 2015, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant: 

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an
IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line © 2011 IEEE. 
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior author’s approval. 

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication
title, and month/year of publication] 
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a
License from RightsLink. 

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single
copies of the dissertation.

   

 
Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 

137



11/22/2015 RightsLink Printable License

https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisherID=62&publisherName=Springer&publication=0929-5593&publicationID=6179&rightID=1… 1/3

SPRINGER LICENSE
TERMS AND CONDITIONS

Nov 22, 2015

This is a License Agreement between Konstantinos Karydis ("You") and Springer
("Springer") provided by Copyright Clearance Center ("CCC"). The license consists of your
order details, the terms and conditions provided by Springer, and the payment terms and
conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

License Number 3754410309190

License date Nov 22, 2015

Licensed content publisher Springer

Licensed content publication Autonomous Robots

Licensed content title A template candidate for miniature legged robots in quasi-static
motion

Licensed content author Konstantinos Karydis

Licensed content date Jan 1, 2014

Volume number 38

Issue number 2

Type of Use Thesis/Dissertation

Portion Full text

Number of copies 1

Author of this Springer article Yes and you are the sole author of the new work

Order reference number None

Title of your thesis /
dissertation

A Data-Driven Hierarchical Framework for Planning, Navigation, and
Control of Uncertain Systems: Applications to Miniature Legged
Robots

Expected completion date Dec 2015

Estimated size(pages) 166

Total 0.00 USD

Terms and Conditions

Introduction
The publisher for this copyrighted material is Springer Science + Business Media. By
clicking "accept" in connection with completing this licensing transaction, you agree that the
following terms and conditions apply to this transaction (along with the Billing and Payment
terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time
that you opened your Rightslink account and that are available at any time at
http://myaccount.copyright.com).
Limited License
With reference to your request to reprint in your thesis material on which Springer Science

138



11/22/2015 RightsLink Printable License

https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisherID=62&publisherName=Springer&publication=0929-5593&publicationID=6179&rightID=1… 2/3

and Business Media control the copyright, permission is granted, free of charge, for the use
indicated in your enquiry.
Licenses are for one-time use only with a maximum distribution equal to the number that
you identified in the licensing process.
This License includes use in an electronic form, provided its password protected or on the
university’s intranet or repository, including UMI (according to the definition at the Sherpa
website: http://www.sherpa.ac.uk/romeo/). For any other electronic use, please contact
Springer at (permissions.dordrecht@springer.com or
permissions.heidelberg@springer.com).
The material can only be used for the purpose of defending your thesis limited to university-
use only. If the thesis is going to be published, permission needs to be re-obtained (selecting
"book/textbook" as the type of use).
Although Springer holds copyright to the material and is entitled to negotiate on rights, this
license is only valid, subject to a courtesy information to the author (address is given with
the article/chapter) and provided it concerns original material which does not carry
references to other sources (if material in question appears with credit to another source,
authorization from that source is required as well).
Permission free of charge on this occasion does not prejudice any rights we might have to
charge for reproduction of our copyrighted material in the future.
Altering/Modifying Material: Not Permitted
You may not alter or modify the material in any manner. Abbreviations, additions, deletions
and/or any other alterations shall be made only with prior written authorization of the
author(s) and/or Springer Science + Business Media. (Please contact Springer at
(permissions.dordrecht@springer.com or permissions.heidelberg@springer.com)
Reservation of Rights
Springer Science + Business Media reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted in the course of this
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.
Copyright Notice:Disclaimer
You must include the following copyright and permission notice in connection with any
reproduction of the licensed material: "Springer and the original publisher /journal title,
volume, year of publication, page, chapter/article title, name(s) of author(s), figure
number(s), original copyright notice) is given to the publication in which the material was
originally published, by adding; with kind permission from Springer Science and Business
Media"
Warranties: None
Example 1: Springer Science + Business Media makes no representations or warranties with
respect to the licensed material.
Example 2: Springer Science + Business Media makes no representations or warranties with
respect to the licensed material and adopts on its own behalf the limitations and disclaimers
established by CCC on its behalf in its Billing and Payment terms and conditions for this
licensing transaction.
Indemnity
You hereby indemnify and agree to hold harmless Springer Science + Business Media and
CCC, and their respective officers, directors, employees and agents, from and against any
and all claims arising out of your use of the licensed material other than as specifically
authorized pursuant to this license.
No Transfer of License
This license is personal to you and may not be sublicensed, assigned, or transferred by you

139



11/22/2015 RightsLink Printable License

https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisherID=62&publisherName=Springer&publication=0929-5593&publicationID=6179&rightID=1… 3/3

to any other person without Springer Science + Business Media's written permission.
No Amendment Except in Writing
This license may not be amended except in a writing signed by both parties (or, in the case
of Springer Science + Business Media, by CCC on Springer Science + Business Media's
behalf).
Objection to Contrary Terms
Springer Science + Business Media hereby objects to any terms contained in any purchase
order, acknowledgment, check endorsement or other writing prepared by you, which terms
are inconsistent with these terms and conditions or CCC's Billing and Payment terms and
conditions. These terms and conditions, together with CCC's Billing and Payment terms and
conditions (which are incorporated herein), comprise the entire agreement between you and
Springer Science + Business Media (and CCC) concerning this licensing transaction. In the
event of any conflict between your obligations established by these terms and conditions and
those established by CCC's Billing and Payment terms and conditions, these terms and
conditions shall control.
Jurisdiction
All disputes that may arise in connection with this present License, or the breach thereof,
shall be settled exclusively by arbitration, to be held in The Netherlands, in accordance with
Dutch law, and to be conducted under the Rules of the 'Netherlands Arbitrage Instituut'
(Netherlands Institute of Arbitration).OR:
All disputes that may arise in connection with this present License, or the breach
thereof, shall be settled exclusively by arbitration, to be held in the Federal Republic of
Germany, in accordance with German law.
Other terms and conditions:
v1.3
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.

140



11/22/2015 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Title: Probabilistically valid stochastic
extensions of deterministic
models for systems with
uncertainty:

Author: Konstantinos Karydis, Ioannis
Poulakakis, Jianxin Sun, Herbert
G. Tanner

Publication: International Journal of Robotics
Research

Publisher: SAGE Publications
Date: 05/28/2015
Copyright © 2015, © SAGE Publications

  Logged in as:
  Konstantinos Karydis

 

Gratis Reuse

Without further permission, as the Author of the journal article you may:
post the accepted version (version 2) on your personal website, department’s
website or your institution's repository. You may NOT post the published version
(version 3) on a website or in a repository without permission from SAGE.
post the accepted version (version 2) of the article in any repository other than those
listed above 12 months after official publication of the article.
use the published version (version 3) for your own teaching needs or to supply on
an individual basis to research colleagues, provided that such supply is not for
commercial purposes.
use the accepted or published version (version 2 or 3) in a book written or edited by
you. To republish the article in a book NOT written or edited by you, permissions
must be cleared on the previous page under the option 'Republish in a Book/Journal'
by the publisher, editor or author who is compiling the new work.

When posting or re-using the article electronically, please link to the original article and
cite the DOI.
All other re-use of the published article should be referred to SAGE. Contact information
can be found on the bottom of our ‘Journal Permissions’ page.

    

 
Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 

141


	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 The Challenge of Dealing with Uncertainty in Robot Navigation
	1.1.1 Objective and Significance

	1.2 A Data-Driven Hierarchical Control Framework for Robot Navigation under Uncertainty
	1.2.1 Justification for a Hierarchical Approach: Divide et Impera
	1.2.2 Components of the Framework
	1.2.3 Consistency Conditions and the Role of Models and Data

	1.3 Focus on Miniature Legged Robots
	1.3.1 Justification
	1.3.2 Potential of Miniature Legged Robots
	1.3.3 Challenges for Effective Navigation and Control at Small Scales

	1.4 Contributions
	1.5 Intellectual Merits and Broader Impact
	1.6 Dissertation Layout

	2 Elements of the Hierarchical Control Framework
	2.1 High-Level Discrete Task Planning
	2.2 Low-Level Control
	2.3 Mid-level Integration
	2.3.1 Control and Planning through Motion Primitives
	2.3.2 What is Missing?
	2.3.3 Need for Appropriate Models and Data to Achieve Consistency

	2.4 Discussion

	3 Templates in Robot Motion Planning, Navigation, and Control
	3.1 Templates for Robotic Legged Locomotion in the Miniature Scale
	3.1.1 Bio-Inspired Templates
	3.1.2 Use of Car-Like Templates in Legged Locomotion
	3.1.3 Need for more Templates at the Miniature Scale

	3.2 The Switching Four-Bar Mechanism (SFM) Template
	3.2.1 Description of the Model
	3.2.2 Analysis and Closed-Form Expressions
	3.2.2.1 State propagation during a step in the local frame
	3.2.2.2 State propagation between steps in the global frame

	3.2.3 Generating Motion Patterns with the SFM
	3.2.3.1 Generating straight-line paths
	3.2.3.2 Generating curved paths
	3.2.3.3 From model parameters to path curvatures
	3.2.3.4 Reachability properties

	3.2.4 Application to Miniature Legged Robots
	3.2.4.1 Brief description of experimental platforms
	3.2.4.2 Technical approach


	3.3 Template-Based Motion Planning, Navigation, Control for Miniature Legged Robots Using the SFM
	3.3.1 Trajectory Planning
	3.3.2 Trajectory Tracking Control
	3.3.3 Trajectory Replanning and Control

	3.4 Additional Considerations
	3.5 Discussion

	4 A Data-Driven Probabilistic Framework for Uncertainty Quantification
	4.1 Extending Deterministic Models to Stochastic Regimes
	4.1.1 Joint Stochastic Model Extension and Probabilistic Validation

	4.2 Development of the Framework
	4.2.1 Overview
	4.2.2 Quantifying Model Fidelity: The Probability of Violation
	4.2.3 Distributions of Models and Model Expressiveness
	4.2.4 A Randomized Approach for Stochastic Model Extension and Probabilistic Validation
	4.2.4.1 Cone of Data and Decision Function
	4.2.4.2 Approximating the Probability of Violation
	4.2.4.3 Approximating the Maximum of the Probability of Violation over a Distribution of Models

	4.2.5 Algorithm and Implementation

	4.3 Application to a Miniature Legged Robot
	4.3.1 Stochastic Extension of the SFM
	4.3.2 Application of the Method
	4.3.3 Different Ways to Infuse Stochasticity

	4.4 Outlook: Probabilistically-Valid Templates to Ensure Consistency
	4.5 Discussion

	5 Conclusions and Future Directions
	5.1 Hierarchical Control for Uncertainty in Robot Navigation
	5.1.1 Selecting Suitable Templates is Key
	5.1.2 Experimental Data Guarantee Low-Level Implementation of High-Level Policies despite Uncertainty
	5.1.3 Miniature Legged Robots Fit Well in the Framework

	5.2 Dealing with Uncertainty in Robot Planning, Navigation, and Control
	5.2.1 Extending Low-Level Control to Bio-Inspired Templates
	5.2.2 Dealing with Uncertainty in Perception and the Environment
	5.2.3 Uncertainty in Planning, Navigation, and Control of Multi-Robot Systems

	5.3 Uncertainty in Multi-Robot Cyber-Physical Systems
	5.4 Frontiers in Robotics, Control, and Small-Scale Animal Locomotion

	References
	A Key Terminology in Legged Locomotion
	B Derivation of Closed-Form Expressions
	C Uncertainty Quantification in Small-Scale Aerial Vehicles
	C.1 The Nominal Model
	C.2 Stochastic Extension
	C.3 Application of the Method
	C.4 Discussion

	D Reprint Permissions

