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ABSTRACT

The lattice-Boltzmann method (LBM) is a mesoscopic computational scheme

which solves the hydrodynamic (continuum) flow by using a set of discrete particle (or

model molecular) velocities. The continuum flow evolution such as pressure and hydro-

dynamic velocity emerges as the average behaviors (i.e., moments) of the mesoscopic

model particles which undergo repeated collisions and propagations on a prescribed

lattice. While LBM is now a viable alternative to convectional computational fluid dy-

namics (CFD) methods, it also has its limitations in terms of computational efficiency,

which motivates this thesis work.

In the LBM simulation for fluid flow, the domain is usually discretized with

a square lattice in 2D or a cubic lattice in 3D. Some previous studies were made to

investigate the possibility of establishing a LBM model with non-standard lattice grid,

namely, a rectangular lattice grid in 2D and a non-cubic (cuboid) lattice grid in 3D.

The non-standard lattices are computationally more efficient when simulating a non-

isotropic and inhomogeneous flows, e.g., the turbulent channel flow.

In some previous non-standard lattice LBM developed by others, the Navier-

Stokes equation is not correctly recovered because the resulting viscosity is anisotropic.

The anisotropy is caused by the use of different lattice sizes in different directions; and

it cannot be fixed without additional degrees of freedom. Recently at the University

of Delaware, several new lattice Boltzmann schemes have been developed on a 2D

rectangular grid using the multiple-relaxation-time (MRT) collision model, either by

redesigning some moments to add a new free parameter, or by extending the equilibrium

moments to include higher-order terms. These models can then satisfy all isotropy

conditions as required by the Navier-Stokes equations.
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In this thesis, based on the similar idea used in the successful design of LBM

on a rectangular lattice, we developed a lattice Boltzmann model on a 3D cuboid

lattice, namely, a lattice grid with different grid lengths in different spatial directions.

Using the multi-scale Chapman-Enskog analysis, we designed the moment equations

resulting from our MRT-LBM model, to be fully consistent with the Navier-Stokes

equations. A second-order term is added to the equilibrium moments in order to not

only satisfy all isotropy conditions but also to better accommodate different values of

shear and bulk viscosities. The form of the second-order term and the coefficients of the

extended equilibrium moments are determined through an inverse design process. An

additional benefit of the model is that the shear viscosity can be adjusted, independent

of the stress-moment relaxation parameter, thus improving the numerical stability of

the model.

The resulting cuboid MRT-LBM model is then validated through several bench-

mark simulations, including the transient laminar channel flow, the fully developed sin-

gle phase turbulent channel flow, and the 3D time-dependent, energy-cascading Taylor-

Green vortex flow. In addition, the second-order accuracy of the proposed model is

demonstrated in the simulation of 3D Taylor-Green vortex flow and transient laminar

channel flow.
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Chapter 1

INTRODUCTION

1.1 Introduction of the Lattice Boltzmann Method

Around 1990, a mesoscopic CFD (computational fluid dynamics) method known

as the lattice Boltzmann equation (LBE) was created as a simulation tool for nearly in-

compressible fluid flows [1, 2]. LBE is a fully discrete form in both time and space of the

kinetic Boltzmann equation, with a finite set of discrete molecular velocities [3, 4]. As

a mesoscopic method based on the kinetic Boltzmann equation, the lattice Boltzmann

method (LBM), or lattice Boltzmann model (LB model), has been developed rapidly

in the last three decades. The basic idea of LBM is the realization that, in the contin-

uum and incompressible limits, only a few conserved moments and a few non-conserved

moments are required to reproduce the macroscopic hydrodynamic equations [4, 5, 6],

namely, the continuity and the Navier-Stokes (N-S) equations. Therefore, instead of

solving the N-S equations which have strong nonlinearity, the lattice Boltzmann method

(LBM) solves the distribution functions that represent the number density of model

discrete molecules with prescribed velocities [2, 4]. These discretized velocities are fully

coupled with the lattice grid in the physical space and the time step size, which makes

the numerical implementation of LBM highly efficient when compared to other kinetic

schemes.

In LBE, the collision term is simplified by either the use of the single-relaxation-

time Bhatnagar-Gross-Krook (BGK) [2, 4] model or the linearized multiple-relaxation-

time (MRT) model [7, 8, 9]. LBE could be viewed as a compact discrete representation

of the continuous Boltzmann equations, with a minimal set of discrete particles that

can reproduce the required moments for continuum hydrodyamics [3, 4]. Each time
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step in LBM consists of two sub-steps, namely, collision step and streaming step. In the

collision step, the distribution functions are relaxed locally towards their equilibrium

state. The only nonlinearity occurs in the evaluation of the equilibrium distribution in

the collision operator, and this nonlinearity is fully local in the physical space. Then,

in the streaming step, the updated distribution is advected according to the respec-

tive discrete particle velocity. This advection is exact, implying that LBM has very

little numerical diffusion and dissipation. The macroscopic variables such as pressure,

velocity and velocity gradients are then computed as the moments of the distribution

functions.

In the BGK collision model, all hydrodynamic quantities are relaxed to their

equilibrium state at the same rate [2, 4]. Thus, their relaxation parameters are identical,

which leads to some apparent drawback of this collision model. For example, the

Prandtl number Pr = ν/α in the lattice BGK model is restricted to one [4], where

ν is the shear viscosity and α represents the thermal diffusivity. The viscosity in the

standard lattice BGK model is related to this relaxation parameter. To achieve a high

flow Reynolds number (Re), a small viscosity is usually required. At the same time,

the relaxation parameter is known to be related to the numerical stability. Therefore,

LBM simulation of high Re flows often encounters numerical instability, and there is no

flexibility to separate the physical goal of simulating high-Re flows and computational

goal of creating a robust and stable numerical method [10, 11]

This problem motivated the use of the multiple-relaxation time (MRT) collision

model, where different moments are allowed to relax at different rates through a linear

matrix multiplication [7, 8, 9]. By doing so, one could have more flexibility of assigning

the values of different relaxation parameters, as the relaxation parameters for at least

some moments are decoupled from the fluid viscosity so they can be optimized to

enhance the stability of LBM [10, 11].

Although the method solves more variables than the conventional CFD meth-

ods based on integrating directly the Navier-Stokes (N-S) equations. Several features
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of the LBM are highly valued: simplicity of the algorithm and implementation, ex-

cellent capability of handling complex geometrics [12, 13, 14, 15], highly parallelizable

since the collision process is completely local and the propagation only involves data

communication with neighboring nodes [5, 6, 16]. With these advantages, the LBM

has been developed rapidly in the last three decades and applied extensively for fluid

dynamics simulations in many different areas such as hydrodynamic systems, magneto-

hydrodynamic systems, multiphase and multicomponent fluid flows, chemical-reactive

flows, and flow through porous media [17, 18, 19, 20, 21]. LBM is a highly competitive

method for multiphase flows or flows with complex boundaries [12, 13, 15, 22, 23, 24].

1.2 Different Lattice Grids in the Lattice Boltzmann Method

1.2.1 Standard lattice model

The standard lattice grids are adopted in most previous flow simulations using

LBM, namely, a square lattice in 2D and a cubic lattice in 3D. For 2D problems, the

typical choice of lattice is the D2Q9 lattice [4], where ”D” represents the dimension of

the problem, and ”Q” represents the number of discretized velocity implemented on

the lattice grid. In the D2Q9 lattice, 8 discrete non-zero velocities are directed to the

neighboring nodes, along with a rest particle. For 3D problems, three different types

of standard lattices are usually adopted, namely, D3Q15, D3Q19 and D3Q27 [8, 25],

as illustrated in Fig. 1.1. All these lattice grids share a common feature, namely, the

lattice sizes in different spatial directions are identical, namely, geometrically isotropic.

This feature makes the standard lattice grids to be easily implemented. However, the

computational efficiency of standard lattice is limited when LBM is applied to non-

isotropic and inhomogeneous flows, in particular, wall-bounded turbulent flows. For

example, in the simulation of a fully developed turbulent channel flow, it is suggested

that the domain size in the streamwise direction be made much longer than the trans-

verse direction to reduce the effect of streamwise correlation length [26]. As a result,

a very large number of lattice cells must be used in the streamwise direction to fill

the domain, as the lattice size is governed by the the smallest scale in the wall-normal

3



D3Q15 D3Q19 D3Q27

Figure 1.1: The illustration of three different types of cubic lattice that are commonly
used in the lattice Boltzmann method.

direction which is much smaller than the smallest scale in the streamwise direction.

Therefore, the standard, geometrically-isotropic lattice grid is clearly computationally

inefficient.

1.2.2 Different non-standard lattice models

In order to remove the drawback of standard LBM, several efforts have been

made to incorporate a more general (i.e., nonuniform or anisotropic) grid into LBM.

These efforts could be divided into the following four groups.

The first group utilizes spatial and temporal interpolation schemes to couple

the inherent lattice grid with a general computation grid on which the hydrodynamic

variables are solved [27, 28]. Although such implementations allow more flexibility of

the computational grid structure [29], the accuracy of such two-grid implementations

is still determined by the inherent standard lattice. Furthermore, the interpolations

introduce additional numerical errors and artificial viscosity to the flow system being

solved. The second group chooses to replace the exact streaming operation in LBM with

a finite-difference scheme or other discretization schemes [30, 31], in order to remove

the usual coupling between lattice space and lattice time. This type of implementations

not only causes additional numerical diffusion and dissipation, but could be more

4



complicated and computationally more expensive, e.g., additional data communication

may be required.

Different from the above, the third group incorporates directly a non-standard

lattice grid such as a rectangular grid in 2D, by modifying the kinetic particle velocities

to fit the lattice grid. The use of a rectangular grid immediately introduces anisotropy

which must be corrected by a proper re-design of the collision operator. This approach

preserves all the appealing features of the standard LBM, i.e., the inherent simplicity,

numerical accuracy, and computational efficiency. Bouzidi et al. [32] was the first to

propose a D2Q9 LBM using anisotropic particle velocities to fit a rectangular lattice

grid. Their LBM scheme made use of the MRT collision operator. They modified the

definitions of moments and their model is almost consistent with the Navier-Stokes

equations, except that the shear and bulk viscosities are not strictly isotropic when

the grid aspect ratio differs from one, as shown by Zong [33]. Similar attempts were

made by Zhou who proposed two models with both BGK [34] and MRT [35] collision

operators. However, neither of his models is consistent with the N-S equations [33, 36].

Hegele et al. [37] claimed that, for the standard D2Q9 lattice and D3Q19 lattice, the

degrees of freedom are not enough to remove the anisotropy resulting from the use

of the non-isotropic lattice grid, when the BGK collision operator is used. Thus they

suggested to extend these lattices to D2Q11 and D3Q23, respectively, to recover the N-

S equations. Their D2Q11 model was indeed validated on a rectangular grid using the

2D Taylor-Green vortex flow. Lastly, a D3Q19 model with a cuboid lattice is proposed

by Jiang and Zhang for pore-scale simulation of fluid flow in porous media [38]. In their

model, the anisotropy of viscosity is fixed by adopting different relaxation parameters

in different spatial directions. In their model, the lattice length of the cuboid could be

different in three directions. However, even for a laminar pipe flow, the aspect ratio can

only be in the narrow range from 0.8 to 1.25 due to stability consideration. In addition,

their result cannot match the analytical solution exactly. An apparent deviation could

be observed on the velocity profile especially near the pipe center.
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In the last group of works, the anisotropic problem of viscosity in the non-

standard lattice LB model has recently been fixed by a re-design of the moments that

introduces extra degrees of freedom, or by modifying the equilibrium moments, or

both. Zong et al. [33] extended Bouzidi et al. ’s model by introducing a parameter θ to

reconfigure the two-dimensional energy-normal stress moment sub-space. For a given

grid aspect ratio, a unique θ value is determined to restore the full isotropy condition

required by the N-S equations. An alternative and more general LBM MRT model

on a rectangular grid has been developed by Peng et al. [39] who instead incorporated

stress components into the equilibrium moments to remove the anisotropy in the stress

tensor resulting from the use of a rectangular lattice. Such an approach was previously

used by Inamuro [40] to improve the stability of LBGK model, and later by Yoshino et

al. [41] and Wang et al. [42] to treat non-Newtonian fluid flows. The generality of

the extended-equilibrium approach has also been explored using the simpler BGK

collision model by Peng et al. [43] who in fact showed that even an LBGK model

can be successfully extended to work on a rectangular grid. Such was not thought to

be possible previously. The key in all these three successful models on a rectangular

grid [33, 39, 43] is to combine new constraints and new adjustable parameters to satisfy

all isotropy conditions required by the N-S equations.

1.3 Mesoscopic Forcing Terms of LBM

As a mesoscopic method with larger degrees of freedom relative to the continuum

description of fluid flow, the LBM has a greater design flexibility than its conventional

CFD counterparts, and such flexibility is yet to be fully explored. This flexibility orig-

inates partially from the fact that the mesoscopic distribution functions contain more

information than the moments governed by the continuity and the N-S equations.

Many fluid dynamics problems could involve external forces that are non-uniform and

time-dependent, especially in turbulent flows or multiphase flows [22, 23, 24]. For

instance, in the simulation of forced homogeneous turbulence, the turbulent kinetic
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Table 1.1: Some previous efforts in developing LB models on non-standard lattices.
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energy is added into the computational domain with non-uniform time-dependent forc-

ing [22, 23]. These forces are often formulated at the continuum level, and as such they

need to be converted into a mesoscopic form. Whether this conversion is designed ap-

propriately affects the accuracy and consistency of the resulting hydrodynamics. For

example, it has been shown that the mesoscopic forcing could affect velocity gradient

and strain-rate components calculated from the non-equilibrium moments [44].

Previously, the mesoscopic representation of a forcing term has been widely

studied with the BGK collision operators in [45, 46, 47, 48, 49, 50, 51]. Advantages

and disadvantages of different forcing implementations based on the BGK model have

also been compared [51, 52, 53]. Guo et al. [51] derived a mesoscopic forcing, based on

a rigorous Chapman-Enskog expansion, that is fully consistent with the N-S equation

and maintains the second-order accuracy of the LBM scheme. Guo’s forcing scheme

has been extended to the LB models with MRT collision operator and standard lattice

grid [44, 54], and rectangular lattice grid [55].

In this thesis, a general form of the mesoscopic forcing terms of the proposed

MRT LB model with cuboid lattice will be derived from a rigorous inverse design

process. The mesoscopic forcing terms will be added to the lattice Boltzmann equation

to represent the macroscopic external forces on the mesoscopic level so that other

mesoscopic quantities will be affected by the external forces.

1.4 Overview of the Thesis

The objective of this thesis is to develop a D3Q19 MRT LBM model on a general

cuboid grid with grid spacing ratios given as δx : δy : δz = 1 : a : b, using a D3Q19

lattice. The basic idea of the approach follows closely the 2D extended-moment method

described in [39].

The remainder of the thesis is organized as follows: The derivation of the pro-

posed cuboid lattice model by the Chapman-Enskog analysis and an inverse design

process is presented in Chapter 2. The most general form of the cuboid lattice model

will be derived based on the requirements of the hydrodynamic equations. Additionally,
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a general non-uniform mesoscopic forcing term will also be added, at the mesoscopic

level, to represent the macroscopic force so that the model could handle a flow with

any kind of external force. Moreover, the correct hydrodynamic equations and isotropic

viscosity will be achieved since the idea of inverse design is applied.

In Chapter 3, careful validations of the model are provided using three different

flows, namely, the transient laminar channel flow, the 3D energy-cascading Taylor-

Green vortex flow [56], and the fully-developed turbulent channel flow. In the transient

laminar channel flow, the results of cuboid lattice model will be compared to the

theoretical results. In the turbulent channel flow and the 3D Taylor-Green vortex

flow, the cuboid model will be compared to the spectral method and theoretical results

when available. Finally, the order of accuracy of this model will be examined by using

the laminar channel flow and the 3D decaying Taylor-Green vortex flow. A second-

order accuracy will be shown for both velocity and stress components calculated by

the proposed cuboid lattice model.

Finally, in Chapter 4 we summarize key conclusions for the proposed MRT LBM

on a cuboid lattice . Possible future directions will also be presented.

9



Chapter 2

INVERSE DESIGN OF D3Q19 MRT LBM ON A CUBOID LATTICE

In this section, we shall design and derive a D3Q19 MRT LBM model on a

cuboid grid that is fully consistent with the N-S equation with a time-dependent and

spatially non-uniform forcing F ≡ (Fx, Fy, Fz).

2.1 Basic Setup of the Proposed Lattice Boltzmann Model

For a cuboid lattice, the lattice spacings can be different in the three spatial

directions. Without loss of the generality, we set the lattice spacing in the x direction

to δx = 1, and assume the grid spacing in y and z directions to be aδx and bδx,

respectively. Thus, a and b are defined as a = δy/δx, b = δz/δx, where δx [m], δy [m]

and δz [m] are the lattice sizes in the three directions, respectively. The physical units

for key quantities are indicated to help validate the unit consistency of our model. A

sketch of the cuboid lattice is shown in Fig. 2.1. Therefore, the corresponding discrete

velocities on the D3Q19 cuboid lattice are

a2

b2

2

y

x

z

Figure 2.1: The illustration of D3Q19 cuboid lattice, the lattice sizes are different in
three spatial directions.
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ei =


(0, 0, 0) c, i = 0

(±1, 0, 0) c, (0,±a, 0) c, (0, 0,±b) c, i = 1− 6

(±1,±a, 0) c, (±1, 0,±b) c, (0,±a,±b) c, i = 7− 18

(2.1)

where c = δx/δt [m · s−1] is the non-zero lattice velocity component in the x direction,

δt [s] is the time step size.

The distribution functions in the cuboid-lattice LBM scheme evolve according to

the same lattice Boltzmann equation (LBE) with the multiple relaxation time (MRT)

collision model, as

fi(x + eiδt, t+ δt)− fi(x, t) = −M−1S [m(x, t)−meq(x, t)] + Φi, (2.2)

where fi is the distribution function associated with the kinetic velocity ei, x and t are

the spatial and time coordinates, respectively. The first term on the right hand side of

Eq. (2.2) describes the MRT collision operator and the second term Φi [kg ·m−3] is used

to represent the mesoscopic forcing term which accounts for the effect of macroscopic

forcing F ≡ (Fx, Fy, Fz) [kg ·m−2 · s−2]. The components of Φi will be designed by an

inverse design analysis.

The transformation matrix M converts the distribution functions fi to the mo-

ments m by m = Mf , and vise versa f = M−1m, where f denotes a vector containing

fi. The equilibrium moments are denoted by m(eq). For simplicity, the moments are

defined in a manner identical to the standard D3Q19 MRT model [8]. Each discrete

velocity ei may have different velocity magnitudes in the three spatial directions. In

order to keep the same simple transformation matrix as in the cubic-lattice D3Q19

model, we first normalize the velocity components differently in different directions,

namely, the transformation matrix and the moments are defined based on the normal-

ized components eix/c, eiy/(a · c), and eiz/(b · c). The similar normalizations were used

by Zhou [35] in his attempt to develop a D2Q9 rectangular-grid model. Therefore,

the normalized components are identical to those in the standard cubic-lattice D3Q19
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model. The transformation matrix is then written as [8]

M
=

                                                    

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

−
30
−

11
−

11
−

11
−

11
−

11
−

11
8

8
8

8
8

8
8

8
8

8
8

8

12
−

4
−

4
−

4
−

4
−

4
−

4
1

1
1

1
1

1
1

1
1

1
1

1

0
1
−

1
0

0
0

0
1
−

1
1
−

1
1
−

1
1
−

1
0

0
0

0

0
−

4
4

0
0

0
0

1
−

1
1
−

1
1
−

1
1
−

1
0

0
0

0

0
0

0
1
−

1
0

0
1

1
−

1
−

1
0

0
0

0
1
−

1
1
−

1

0
0

0
−

4
4

0
0

1
1
−

1
−

1
0

0
0

0
1
−

1
1
−

1

0
0

0
0

0
1
−

1
0

0
0

0
1

1
−

1
−

1
1

1
−

1
−

1

0
0

0
0

0
−

4
4

0
0

0
0

1
1
−

1
−

1
1

1
−

1
−

1

0
2

2
−

1
−

1
−

1
−

1
1

1
1

1
1

1
1

1
−

2
−

2
−

2
−

2

0
−

4
−

4
2

2
2

2
1

1
1

1
1

1
1

1
−

2
−

2
−

2
−

2

0
0

0
1

1
−

1
−

1
1

1
1

1
−

1
−

1
−

1
−

1
0

0
0

0

0
0

0
−

2
−

2
2

2
1

1
1

1
−

1
−

1
−

1
−

1
0

0
0

0

0
0

0
0

0
0

0
1
−

1
−

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1
−

1
−

1
1

0
0

0
0

0
0

0
0

0
0

0
1
−

1
−

1
1

0
0

0
0

0
0

0
0

0
0

0
1
−

1
1
−

1
−

1
1
−

1
1

0
0

0
0

0
0

0
0

0
0

0
−

1
−

1
1

1
0

0
0

0
1
−

1
1
−

1

0
0

0
0

0
0

0
0

0
0

0
1

1
−

1
−

1
−

1
−

1
1

1

                                                    ,

(2.3)

where the row vectors of M are orthogonal with each other, so are those column vectors

in the inverse matrix M−1 [7]. The individual moments thus derived by m = Mf are
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denoted as

m = |ρ̃, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, πxx, pww, πww, pxy, pyz, pxz,mx,my,mz〉 , (2.4)

where ρ̃ [kg ·m−3] is the zeroth-order moment representing local density fluctuation,

namely, ρ̃ = ρ−ρ0 ≡ δρ (ρ and ρ0 are the density and the average density, respectively);

e [kg·m−1 ·s−2] is a second-order moment related to the energy; ε [kg·m·s−4] is a fourth-

order moment associated with the square of energy; jx, jy, jz [kg ·m−2 ·s−1] are the three

first-order moments connected to the momentum in x, y and z direction, respectively;

qx, qy, qz [kg · s−3] are three third-order moments related to the energy flux in x, y

and z direction, respectively; pxx, pww [kg · m−1 · s−2] are two second-order moments

corresponding to the normal stress components; pxy, pyz, pxz [kg · m−1 · s−2] are the

other three second-order moments related to the shear-stress components; mx,my,mz

are all third-order moments that can be regarded as the normal stress flux; πxx and πww

[kg ·m ·s−4] are the fourth-order moments derived from products between energy mode

and normal stress mode. Note that the density has been partitioned as in [4] to better

reproduce the incompressible N-S equations. In summary, in the D3Q19 model, we have

one zeroth-order moment (ρ̃), three first-order moments (jx, jy, jz), six second-order

moments (e, pxx, pww, pxy, pyz, pxz), six third-order moments (qx, qy, qz,mx,my,mz), and

three fourth-order moments (ε, πxx, πww). These are all the independent moments that

can be formed.

As we shall show later, all the moments at the third order or below can be

uniquely determined in our inverse design process, while the three fourth-order mo-

ments are irrelevant to the N-S equations.

The diagonal relaxation matrix S specifies all dimensionless relaxation param-

eters

S = diag(sρ̃, se, sε, sj, sq, sj, sq, sj, sq, sn, sπ, sn, sπ, sc, sc, sc, sm, sm, sm), (2.5)

where sρ̃ is the relaxation parameter for the zeroth-order moment (ρ̃); sj is the relax-

ation parameter for the first-order moments (jx, jy, jz); three relaxation parameters are
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introduced for the six second-order moments: se for energy (e), sn for the normal-stress

moments (pxx, pww), and sc for the shear-stress moments (pxy, pyz, pxz); two relaxation

parameters are used for the six third-order moments: sq for energy flux moments

(qx, qy, qz) and sm for normal-stress flux moments (mx,my,mz); finally, two relaxation

parameters are specified for the three fourth-order moments: sε for energy square mo-

ment (ε) and sπ for the energy-stress coupling terms (πxx, πww). As mentioned in the

Introduction, we need to overcome the anisotropic transport coefficients that are orig-

inated by the anisotropic lattice velocities, in order to reproduce the N-S equations.

In this work, we follow the same idea as in [39], namely, the equilibrium moments are

extended to include a higher-oder term as m(eq) = m(eq,0) + εm(eq,1), where ε is a small

parameter that is proportional to the Knudsen number. The higher-order term εm(eq,1)

will be expressed in terms of stress components.

2.2 The Chapman-Enskog Expansion and the Inverse Design Analysis

Next, a detailed Chapman-Enskog analysis will be performed to design the com-

ponents of the equilibrium moment m(eq) and the mesoscopic forcing term Φ. Following

the standard procedure, the Taylor expansion with respect to time and location is ap-

plied to fi(x + eiδt, t+ δt) in Eq. (2.2). After multiplying by M/δt, we obtain(
I∂t + Ĉα∇α

)
m +

δt
2

(
I∂t+ Ĉα∇α

)2

m = −S

δt

(
m−m(eq)

)
+ Ψ, (2.6)

where I is an identity matrix, Ψ ≡ MΦ/δt denotes the moments associated with the

forcing term, ∂t stands for the time derivative, ∇α with α = x, y, or z denotes the

spatial derivatives, and Ĉα ≡Mdiag(eiα)M−1. The following multiscale expansion is
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now applied to m, m(eq), ∂t, ∇α, and Ψ [50, 51] :

m = m(0) + ε m(1) + ε2m(2) + ..., (2.7a)

m(eq) = m(eq,0) + ε m(eq,1), (2.7b)

∂t = ε ∂t1 + ε2∂t2, (2.7c)

∇α = ε ∇1α, (2.7d)

Ψ = ε Ψ(1). (2.7e)

Once again, the most significant difference here is that the multiscale expansion

is also applied to the equilibrium moments m(eq). Substituting Eq. (2.7) into Eq. (2.6)

and rearranging the equation according toO(ε), we obtain the following three equations

O(1) : m(0) = m(eq,0), (2.8a)

O(ε) :
(
I∂t1 + Ĉα∂1α

)
m(0) = −S

δt

(
m(1) −m(eq,1)

)
+ Ψ(1), (2.8b)

O(ε2) : ∂t2m
(0) +

(
I∂t1 + Ĉα∂1α

)[(
I− S

2

)
m(1) +

S

2
m(eq,1) +

δt
2

Ψ(1)

]
= −S

δt
m(2).

(2.8c)

Each equation in Eq. (2.8) is a vector equation containing 19 scalar-moment

equations. Based on the ordering of moments we defined in Eq. (2.4), the first row of

Eq. (2.8b) and (2.8c) should correspond to the continuity equation. The 4th, 6th and

8th row of Eq. (2.8b) and (2.8c) should correspond to the hydrodynamic momentum

equations in x, y and z directions, respectively.

Since density is a conserved moment, we set ρ̃(0) = ρ̃(eq,0) = δρ and sρ̃ = 0.

Therefore, ρ̃(k) = 0 for k ≥ 1. The first row of Eq. (2.8b) thus becomes

∂t1δρ+ ∂1xj
(0)
x + a∂1yj

(0)
y + b∂1xj

(0)
z =

sρ̃
δt
ρ̃(eq,1) + Ψ

(1)
1 , (2.9)

which should reproduce the continuity equation at O(ε) to the leading order

∂t1δρ+ ∂1x(ρ0u) + ∂1y(ρ0v) + ∂1z(ρ0w) = 0. (2.10)
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Therefore, by comparing Eq. (2.9) with Eq. (2.10), we obtain j
(0)
x = ρ0u,

j
(0)
y = ρ0v/a, j

(0)
z = ρ0w/b. Since the density should not be affected by the forcing, we

must have Ψ
(1)
1 = 0, and thus ρ̃(eq,1) = 0.

Likewise, the 4th, 6th and 8th row of Eq. (2.8b)

∂t1 (ρ0u) + ∂1x

(
10

19
c2δρ+

1

57
e(0) +

1

3
p(0)
xx

)
+ a∂1y

(
p(0)
xy

)
+b∂1z

(
p(0)
xz

)
= −sj

δt

(
j(1)
x − j(eq,1)

x

)
+ Ψ

(1)
4 ,

(2.11a)

∂t1

(ρ0v

a

)
+ a∂1y

(
10

19
c2δρ+

1

57
e(0) − 1

6
p(0)
xx +

1

2
p(0)
ww

)
+ ∂1x

(
p(0)
xy

)
+b∂1z

(
p(0)
yz

)
= −sj

δt

(
j(1)
y − j(eq,1)

y

)
+ Ψ

(1)
6 ,

(2.11b)

∂t1

(ρ0w

b

)
+ b∂1z

(
10

19
c2δρ+

1

57
e(0) − 1

6
p(0)
xx −

1

2
p(0)
ww

)
+ ∂1x

(
p(0)
xz

)
+a∂1y

(
p(0)
yz

)
= −sj

δt

(
j(1)
z − j(eq,1)

z

)
+ Ψ

(1)
8 ,

(2.11c)

must match the following Euler momentum equations

∂t1(ρ0u) + ∂1x

(
p+ ρ0u

2
)

+ ∂1y (ρ0uv) + ∂1z (ρ0uw) = F (1)
x , (2.12a)

∂t1(ρ0v) + ∂1y

(
p+ ρ0v

2
)

+ ∂1x (ρ0uv) + ∂1z (ρ0vw) = F (1)
y , (2.12b)

∂t1(ρ0w) + ∂1z

(
p+ ρ0w

2
)

+ ∂1x (ρ0uw) + ∂1y (ρ0vw) = F (1)
z . (2.12c)

In Eq. (2.12) the pressure is expressed as p = δρc2
s for isothermal flows, where

cs [m · s−1] is the speed of sound. Consistency of the left hand sides of Eq. (2.11) and

Eq. (2.12) leads to the following results

e(0) = 19δρ(c2
s +

c2
s

a2
+
c2
s

b2
− 30

19
c2) + 19ρ0(u2 +

v2

a2
+
w2

b2
), (2.13a)

p(0)
xx = δρ(2c2

s −
c2
s

a2
− c2

s

b2
) + ρ0(2u2 − v2

a2
− w2

b2
), (2.13b)

p(0)
ww = δρc2

s

b2 − a2

a2b2
+ ρ0(

v2

a2
− w2

b2
), (2.13c)

p(0)
xy =

ρ0uv

a
, p(0)

xz =
ρ0uw

b
, p(0)

yz =
ρ0vw

ab
. (2.13d)
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And a comparison of the right hand sides of Eq. (2.11) and Eq. (2.12) yields

− sj
δt
j(1)
x +

sj
δt
j(eq,1)
x + Ψ

(1)
4 = F (1)

x , (2.14a)

− sj
δt
j(1)
y +

sj
δt
j(eq,1)
y + Ψ

(1)
6 =

F
(1)
y

a
, (2.14b)

− sj
δt
j(1)
z +

sj
δt
j(eq,1)
z + Ψ

(1)
8 =

F
(1)
z

b
. (2.14c)

Next, we proceed to compare the moment equations on the order of O (ε2) with

the N-S equations on the order of O (ε2). For simplicity, we define

A ≡
(

I− S

2

)
m(1) +

S

2
m(eq,1) +

δt
2

Ψ(1), (2.15)

which simplifies Eq. (2.8c) to

O
(
ε2
)

: ∂t2m
(0) + (I∂t1 + Ĉα∂1α)A = −S

δt
m(2). (2.16)

Since we have shown that ρ
(1)
1 = ρ

(eq,1)
1 = 0 and Ψ

(1)
1 = 0, it follows that the first

element of A, namely, A1, should also be zero. Then the 1st row of Eq. (2.16) reads

∂t2δρ+ ∂1xA4 + ∂1yA6 + ∂1zA8 = 0. (2.17)

The above equation should match with the continuity equation atO (ε2), namely,

∂t2δρ = 0. Therefore, A4 = A6 = A8 = 0, and the following three constraints are thus

obtained

A4 =
(

1− sj
2

)
j(1)
x +

sj
2
j(eq,1)
x +

δt
2

Ψ
(1)
4 = 0, (2.18a)

A6 =
(

1− sj
2

)
j(1)
y +

sj
2
j(eq,1)
y +

δt
2

Ψ
(1)
6 = 0, (2.18b)

A8 =
(

1− sj
2

)
j(1)
z +

sj
2
j(eq,1)
z +

δt
2

Ψ
(1)
8 = 0. (2.18c)

Eqs. (2.14) and (2.18) together lead to

j(1)
x = −F (1)

x δt/2, j(1)
y = −F (1)

y δt/2a, j(1)
z = −F (1)

z δt/2b. (2.19)

The next order equilibrium moments j
(eq,1)
x,y,z and the forcing term Ψ

(1)
4,6,8 are not

easily separable since they are coupled in both Eqs. (2.14) and (2.18). However, they
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do not appear in our later derivation. For convenience, we can simply set j
(eq,1)
x,y,z = 0,

which then leads to Ψ
(1)
4 = (1 − 0.5sj)F

(1)
x , Ψ

(1)
6 = (1 − 0.5sj)F

(1)
y /a and Ψ

(1)
8 =

(1− 0.5sj)F
(1)
z /b.

Now the 4th, 6th and 8th rows of Eq. (2.8c)

∂t2(ρ0u) + ∂1x

(
A2

57
+
A10

3

)
+ a∂1yA14 + a∂1zA16 = −sj

δt
j(2)
x , (2.20a)

∂t2

(ρ0v

a

)
+ ∂1y

(
aA2

57
− aA10

6
+
aA12

2

)
+ ∂1xA14 + b∂1zA15 = −sj

δt
j(2)
y , (2.20b)

∂t2

(ρ0w

b

)
+ ∂1z

(
bA2

57
− bA10

6
− bA12

2

)
+ ∂1xA16 + a∂1yA15 = −sj

δt
j(2)
z , (2.20c)

are compared to the N-S equations O(ε2), namely,

∂t2(ρ0u)− ∂1x

[
µV∇1u + µ

(
4

3
∂1xu−

2

3
∂1yv −

4

3
∂1zw

)]
−µ∂1y (∂1yu+ ∂1xv)− µ∂1z (∂1zu+ ∂1xw) = 0,

(2.21a)

∂t2(ρ0v)− ∂1y

[
µV∇1u + µ

(
4

3
∂1yv −

2

3
∂1xu−

2

3
∂1zw

)]
−µ∂1x (∂1yu+ ∂1xv)− µ∂1z (∂1zv + ∂1yw) = 0,

(2.21b)

∂t2(ρ0w)− ∂1y

[
µV∇1u + µ

(
4

3
∂1zw −

2

3
∂1yv −

2

3
∂1xu

)]
−µ∂1y (∂1yw + ∂1zv)− µ∂1x (∂1zu+ ∂1xw) = 0,

(2.21c)

where ∇1u ≡ ∂1xu + ∂1yv + ∂1zw, µ [kg · m−1 · s−1] and µV [kg · m−1 · s−1] are the

dynamic shear and bulk viscosity, respectively. In order for Eq. (2.20) to be consistent

with Eq. (2.21), we must set j
(2)
x = j

(2)
y = j

(2)
z = 0. Furthermore, A2, A10, A12, A14,

A15 and A16 can be determined in terms of viscosity coefficients and velocity gradients
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as

A2 = −19µ

3

(
ω1 +

ω2

a2
+
ω3

b2

)
− 19κ1µ

V∇1u, (2.22a)

A10 = −µ
3

(
2ω1 −

ω2

a2
− ω3

b2

)
− (3− κ1)µV∇1u, (2.22b)

A12 = −µ
3

(ω2

a2
− ω3

b2

)
− κ2µ

V∇1u, (2.22c)

A14 = −µ
a

(∂1yu+ ∂1xv) , (2.22d)

A15 = − µ

ab
(∂1yw + ∂1zv) , (2.22e)

A16 = −µ
b

(∂1zu+ ∂1xw) , (2.22f)

where ω1 = 4∂1xu− 2∂1yv− 2∂1zw, ω2 = 4∂1yv− 2∂1xu− 2∂1zw, ω3 = 4∂1zw− 2∂1yv−

2∂1xu, κ1 = 1/a2 + 1/b2 + 1 and κ2 = 1/a2− 1/b2. Recall that in Eq. (2.15) we defined

A as functions of equilibrium moments m(eq,1) and non-equilibrium moments m(1) and

the mesoscopic forcing terms Ψ. Re-arranging Eq. (2.8b), m(1) can be obtained in

terms of equilibrium moments and the forcing term as

m(1) = δtS
−1
[
Ψ(1) −

(
I∂t1 + Ĉα∂1α

)
m(eq,0)

]
+ m(eq,1). (2.23)

Substituting Eq. (2.23) into Eq. (2.15), we can express A as functions of equi-

librium moments and forcing components as

A = δtS
−1Ψ(1) + m(eq,1) −

(
S−1 − I

2

)(
I∂t1 + Ĉα∂1α

)
m(eq,0), (2.24)

and it is important to recognize that, from Eq. (2.24), the six components of m
(eq,1)
i

involved in Eqs. (2.20) and (2.22) are all related to the second-oder moments.

A comparison of Eq. (2.22) and Eq. (2.24) now allows us to design m(eq) and

Ψ so that the hydrodynamic equations can be satisfied. It is also important to note

that the forcing term is introduced to reproduce the macroscopic force, without other

impacts on the N-S equations. Therefore, we abide by two basic considerations: (a) all

terms that contain macroscopic force F and mesoscopic forcing terms Ψ should balance

and (b) they should be treated separately. In other words, the model should still work

properly if the forcing terms are not present in the LBE and the N-S equations. These
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considerations lead to a set of constraints that allow us to derive the most general

mesoscopic forcing formulation. The details are presented in Min et al. [55] when the

general forcing formulations for three D2Q9 models (on both the square and rectangular

lattice grids) are considered. The similar inverse design process is conducted here. The

final results for our D3Q19 cuboid-grid model based on the above considerations are

q
(0)
x = γc2ρ0u,

q
(0)
y = (a2κ3 − 4) c2ρ0v/a,

q
(0)
z = (b2κ3 − 4) c2ρ0w/b,

m
(0)
x = 0,

m
(0)
y = 0,

m
(0)
z = 0,

(2.25)



εm
(eq,1)
2 = ρ0δtc

2 (h11∂xu+ h12∂yv + h13∂zw) ,

εm
(eq,1)
10 = ρ0δtc

2 (h21∂xu+ h22∂yv + h23∂zw) ,

εm
(eq,1)
12 = ρ0δtc

2 (h31∂xu+ h32∂yv + h33∂zw) ,

εm
(eq,1)
14 = ρ0δtc

2λ (∂yu+ ∂xv) /a,

εm
(eq,1)
15 = ρ0δtc

2 [s∗cκ3 (a2b2 − a2) /10 + λ] (∂zv + ∂yw) /(ab),

εm
(eq,1)
16 = ρ0δtc

2 [s∗cκ3 (b2 − a2) /10 + λ] (∂xw + ∂zu) /b,

(2.26)

where κ3 = (γ + 4), s∗e = (2− se) /(2se), s∗n = (2− sn) /(2sn), and s∗c = (2− sc) /(2sc).

Note that γ is the coefficient in q
(0)
x , the energy flux in the x direction. In the current

model, γ is an adjustable parameter. However, in the MRT LBM model on the cubic

lattice, γ is not adjustable [8, 7]. Previously, in several LBM models on a rectangular

grid [32, 33, 35, 39, 55], γ is indeed shown to be a free parameter. The coefficients for
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other two energy flux moments, q
(0)
y and q

(0)
z , are not free but depend on γ because

they are constrained by isotropy requirements, namely, to achieve necessary balance of

the transport coefficients associated with different velocity gradients in Eq. (2.22d) to

Eq. (2.22f).

It is reminded that the formulations of six m
(eq,1)
i moments shown in Eq. (2.25)

and (2.26) are derived from the consistency and isotropy considerations with the N-S

equations. However, they also bring in additional benefits. For example, λ and hij

are the coefficients in εm
(eq,1)
i as indicated in Eq. (2.25) and (2.26). Some of these

coefficients provide a benefit to adjust both shear and bulk viscosity which in this

model are given as

µ = ρ0δtc
2

[
a2s∗c (4 + γ)

10
− λ
]
, (2.27a)

µV = ρ0δtc
2

[
s∗e

15 (1− κ1c
2
s) + (4 + γ) (1 + a2 + b2)

15κ1

− h11 + h12 + h13

57κ1

]
. (2.27b)

We can conclude from Eq. (2.27) that the relaxation time sc, se are no longer uniquely

determined by viscosity since λ and hij are also adjustable. Therefore, for given physical

shear and bulk viscosities, we could set sc, se to any value between 0 and 2. This is not

possible in the standard LBM MRT model.

It is also important to note that the expressions of both the shear and bulk

viscosities in Eq. (2.27) are consistent with the expressions in the standard D3Q19

MRT LBM with the cubic lattice [8] if we set a = b = 1, γ = −2/3, κ1 = 3, and all

extended equilibrium moments to zero, namely, hij = λ = 0.

The consistency and isotropy considerations specify the value of the coefficients

hij in εm
(eq,1)
2,10,12 shown in Eq. (2.25) and (2.26). They are determined explicitly as

hij = gij +


19s∗e

(
κ3
5
− κ1

c2s
c2

+ 1
)

19s∗e

(
a2κ3

5
− κ1

c2s
c2

+ 1
)

19s∗e

(
b2κ3

5
− κ1

c2s
c2

+ 1
)

s∗n

(
6−γ

5
− κ3

c2s
c2

)
s∗n

(
a2κ3
10
− κ3

c2s
c2
− 1
)

s∗n

(
b2κ3
10
− κ3

c2s
c2
− 1
)

−s∗nκ2
c2s
c2
−s∗n

(
a2κ3
10

+ κ2
c2s
c2
− 1
)

s∗n

(
b2κ3
10
− κ2

c2s
c2
− 1
)


,

(2.28)
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where gij are calculated as

gij =
1

ρ0δtc2



38(κ1−3)
3

µ− 19κ1µ
V 38(a2κ1−3)

3a2
µ− 19κ1µ

V 38(b2κ1−3)
3b2

µ− 19κ1µ
V

−2κ1+6
3

µ− κ3µ
V 4b2κ1−6

3b2
µ− κ3µ

V 4a2κ1−6
3a2

µ− κ3µ
V

2κ2
3
µ− κ2µ

V −a2+2b2

a2b2
µ− κ2µ

V 2a2+b2

a2b2
µ− κ2µ

V


,

(2.29)

where κ1 = 1/a2 + 1/b2 + 1, κ2 = 1/a2 − 1/b2, κ3 = 2− 1/a2 − 1/b2. The notation gij

is introduced here only because otherwise the expressions for hij would be too long to

be written within a line. We find that hij are functions of the aspect ratios a and b,

shear and bulk viscosities µ and µV , relaxation parameters se, and sn, sound speed cs,

and γ. The expressions for hij are derived based on the requirements in Eq. (2.22) and

they work together to achieve two goals:

1. There could be three shear viscosity coefficients and three bulk viscosity coef-

ficients in Eq. (2.22a)(2.22b)(2.22c) and these viscosity coefficients would be

different in different directions if we set hij = 0, as shown clearly in [33] for some

2D rectangular-grid models. Thus, hij are used to achieve the isotropy condi-

tions, namely, all shear viscosity coefficients are constrained to a same value, and

all bulk viscosity coefficients are made identical. This was our original motivation

of extending the equilibrium moments as in Eq. (2.7b).

2. After the key model parameters, a, b, µ, µV , se, sn, cs, and γ are chosen, we can

always find a solution for hij such that Eq. (2.22) holds true and shear (and

bulk) viscosity are consistent in different equations.

2.3 Summary of the Cuboid Lattice Model

We shall now summarize the derived model details that are needed to implement

the model. First, the equilibrium moments at both the leading order and the next order
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are summarized as

m(eq) =



δρ

δρ (19κ1c
2
s − 30) + 19ρ0

(
u2 + v2

a2
+ w2

b2

)
,

ε(eq,0)

ρ0u

γc2ρ0u

ρ0v/a

a2κ3−4
a

c2ρ0v

ρ0w/b

b2κ3−4
b

c2ρ0w

δρκ3c
2
s + ρ0

(
2u2 − v2

a2
− w2

b2

)
π

(eq,0)
xx

δρκ2c
2
s + ρ0

(
v2

a2
− w2

b2

)
π

(eq,0)
ww

ρ0uv/a

ρ0uw/b

ρ0vw/ab

0

0

0



+ρ0δtc
2



0

h11∂xu+ h12∂yv + h13∂zw

0

0

0

0

0

0

0

h21∂xu+ h22∂yv + h23∂zw

0

h31∂xu+ h32∂yv + h33∂zw

0

λ (∂yu+ ∂xv) /a[
a2s∗cκ3(b2−1)

10
+ λ

]
∂zv+∂yw

ab[
s∗cκ3(b2−a2)

10
+ λ

]
∂xw+∂zu

b

0

0

0



,

(2.30)

εj(1)
x = −Fxδt/2, εj(1)

y = −Fyδt/2a. εj(1)
z = −Fyδt/2b. (2.31)

where the first array on the right represents the equilibrium moments at the lead-

ing order m(eq,0), the second array on the right represents the equilibrium moments
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at the next order m(eq,1), namely, the extended equilibrium moments. As before,

κ1 = 1/a2 + 1/b2 + 1, κ2 = 1/a2 − 1/b2, κ3 = 2 − 1/a2 − 1/b2, s∗e = (2− se) /2se, s∗n =

(2− sn) /2sn, s
∗
c = (2− sc) /2sc. The essential key adjustable parameters are γ, λ,

hij and c2
s. The coefficients hij are defined by Eq. (2.28) and (2.29). Further-

more, ε(eq,0), π
(eq,0)
xx and π

(eq,0)
ww are not constrained by the N-S equations, therefore,

theoretically they can be set to any value. Usually we choose ε(eq,0) = αc4δρ +

βρ0c
2 (u2 + v2) , π

(eq,0)
xx = ωxxc

2p
(eq,0)
xx , π

(eq,0)
ww = ωwwc

2p
(eq,0)
ww , where the values of α, β, ωxx, ωww

could be determined through a linear stability analysis [8, 7]. Other extended equi-

librium moments and forcing terms in Eq. (2.30) that are not constrained by the N-S

equations are simply set to zero for simplicity. The potential use of these terms as a

way to optimize numerical stability of the current model can be a topic of investigation

in the future.

It is also important to note that the cuboid model would reduce to the standard

D3Q19 MRT LBM indicated in [8] when both aspect ratios a and b are set to 1, and

the equilibrium moments are not extended, namely, hij = λ = 0. Also, the exact

definitions of all equilibrium moments in [8] could be recovered from Eq. (2.30).

Our derivation shows that m
(1)
1 = Ψ

(1)
1 = 0, thus the presence of forcing does not

affect the local density fluctuation and the calculation of pressure is not affected. Also,

according to the multi-scale expansion in Eq. (2.7a), m4 = j
(0)
x + εj

(1)
x = ρ0u− Fxδt/2.

Therefore, the computation of hydrodynamic velocity is affected by the forcing, i.e.,

ρ0u = M4ifi + Fxδt/2. The same applies to the velocity in the y and z direction.

Therefore, the pressure and velocity in this model should be calculated according to

p = δρc2
s, (2.32a)

u = (fieix + Fxδt/2) /ρ0, (2.32b)

v = (fieiy + Fyδt/2) /ρ0, (2.32c)

w = (fieiz + Fzδt/2) /ρ0. (2.32d)

where ei is the discrete particle velocity given by Eq. (2.1), and eix, eiy, eiz represents

the x, y and z component of ei, respectively. Putting all the above results together for
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the forcing term, we have

Ψ = εΨ(1) =



0

38(1− 0.5se)(uFx + vFy/a
2 + wFz/b

2)

Ψ3

(1− 0.5sj)Fx

Ψ5

(1− 0.5sj)Fy/a

Ψ7

(1− 0.5sj)Fz/b

Ψ9

2(1− 0.5sn)(2uFx − vFy/a2 − wFz/b2)

Ψ11

2(1− 0.5sn)(vFy/a
2 − wFz/b2)

Ψ13

(1− 0.5sc)(vFx + uFy)/a

(1− 0.5sc)(vFx + uFy)/ab

(1− 0.5sc)(vFx + uFy)/b

Ψ17

Ψ18

Ψ19



. (2.33)

A few observations about the mesoscopic forcing term can now be made: (1) The

components of the mesoscopic forcing term are related to macroscopic forcing field F =

(Fx, Fy, Fz), macroscopic velocity, and relaxation parameters. The mesoscopic forcing

terms Ψ are added to Eq. (2.2) as Φ = M−1Ψδt to realize the effect of macroscopic

forcing at the mesoscopic level; (2) nine of the 19 components: Ψ3, Ψ5, Ψ7, Ψ9, Ψ11,
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Ψ13, Ψ17, Ψ18, and Ψ19, are not constrained by the N-S equations and thus they can be

specified freely. Basically, only the components associated with 0th, 1st, and 2nd order

moments are determined by the continuity and N-S equations. This flexibility could

be used to potentially improve the numerical stability, namely, we can design the nine

irrelevant components in the forcing term to enhance numerical stability.

The above completes the description of the MRT LBM model details on a cuboid

lattice, with a general nonuniform forcing. We should now provide a few general com-

ments on how to use this model in a typical application of solving a 3D viscous flow.

First, all physical parameters of a flow problem are gathered, namely, viscosity coeffi-

cients µ and µV , macroscopic forcing field F, domain size, and the initial condition and

boundary conditions of the flow, etc.. They determine the length scale L, character-

istic velocity U0, and the flow Reynolds number. Next, key parameters of the cuboid

model and numerical settings are specified, including grid aspect ratios a and b, speed

of sound cs, the coefficient in the x−component energy flux γ, relaxation parameters S.

In the proposed cuboid model, in principle, the relaxation parameters can be set to any

value between 0 and 2 as long as the code is stable, because enough degrees of freedom

are introduced so the relaxation parameters are not uniquely related to the physical

viscosity coefficients. The parameter λ is then calculated according to Eq. (2.27a).

With Eqs. (2.28) and (2.29), hij are then determined from µ, µV , a, b, cs, relaxation

parameters, and γ. Thus, all equilibrium moments m(eq) can now be specified using

Eq. (2.30). The mesoscopic forcing term Ψ is also known from Eq. (2.33). Therefore,

we could evolve the flow step by step according to the lattice Boltzmann equation, Eq.

(2.2). In the cuboid model, the additional equilibrium moments εm(eq,1) contain strain-

rate components. Thus, we need to compute them every time step. These strain-rate

components can be calculated from the non-equilibrium moments so they all have a

second-order accuracy. The method of calculating strain-rate components is given in

the Appendix.
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Chapter 3

NUMERICAL VALIDATIONS OF THE PROPOSED CUBOID
LATTICE MODEL

In this section, the D3Q19 MRT lattice Boltzmann method on a cuboid lattice

grid derived in Sec. 2 will be validated using three different benchmark cases: the

transient laminar channel flow, the three-dimensional decaying Taylor-Green vortex

flow, and the turbulent channel flow. Furthermore, the order of numerical accuracy of

this model will be examined.

3.1 Transient Laminar Channel Flow

First, we use the two-dimensional, transient, laminar channel flow to validate

the cuboid model as the analytical solution for this time-dependent flow is available.

The laminar channel flow is a wall-bounded flow with two parallel flat walls. In the

simulation, the mid-link bounce back scheme is applied to fulfill the no-slip boundary

condition. The wall boundary is placed half lattice away from the boundary fluid nodes.

On each link cutting the wall, the inward post-streaming non-equilibrium distribution

of a boundary node is set to the pre-streaming distribution in the opposite direction,

namely, fī (xB, t+ δt) = f̃i (xB, t) where xB is the location of a boundary node, f̃i

represents the post-collision (pre-streaming) distribution function with particle velocity

ei, which points into the wall. fī represents the post-streaming distribution function

in the direction opposite to ei.

The domain is three-dimensional, with periodic boundary conditions in both

the streamwise and the spanwise directions. In the code, x, y, and z represent the

transverse, streamwise, and spanwise direction, respectively. All simulation results

from the cuboid D3Q19 model are compared to the analytical solution.
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In Table 3.1, the parameter settings of the cuboid model with four different

aspect ratios are listed. In the most extreme case, the aspect ratio a = δy/δx =

δstreamwise/δtransverse and b = δz/δx = δspanwise/δtransverse are set to 20, thus the lattice

in this case looks like a square plate. The channel height H of all cases is set to

H = 40δtransverse. Since the flow is laminar, there is no variation in streamwise and

spanwise directions. We only need to resolve the flow in the transverse direction

and in time. The computational domain size for all cases is set to Nx × Ny × Nz =

40 × 2 × 2. The maximum streamwise velocity Vmax is set to 0.1 and the speed of

sound cs is set to 0.6325 so the maximum Mach number is much smaller than 1/3.

The kinematic shear and bulk viscosities are set to 0.1333 so the steady-state Reynolds

number Re = VmaxH/ν is 30. The adjustable parameter γ depends on the aspect ratio

as this parameter was found to affects the numerical stability of the cuboid model. For

all cases, all relaxation parameters in Eq. (2.5) are set to 1.2.

The flow starts from rest, and a uniform and constant body force Fy [kg·m−2·s−2]

is applied in the streamwise direction to drive the flow to its steady state with the long-

time maximum velocity Vmax at the channel centerline. The external body force Fy

according to the steady-state solution is

Fy =
8ρ0νVmax

H2
. (3.1)

On the developing stage, the theoretical solution of velocity for the laminar

channel flow could be solved by separation of variables. The result is given as

vtheory
Vmax

=
∞∑
n=1

32

k3
n

[
1− exp

(
−k

2
nνt

H2

)]
sin

[
kn (x− 0.5)

H

]
, (3.2)

where kn = (2n−1)π. t is the physical time of the flow, which is the current time step in

the simulation. In the above equation, x represents the coordinate of a specified point.

Thus (x− 0.5) is the position of this point in the physical space since the physical

position is located at the center of lattice, which is half grid from the boundary. In

the simulation, it is impossible to sum infinite terms to get the theoretical solution

of velocity. Therefore, only 300 terms are summed in our simulation, which is quite

enough according to our test.
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Table 3.1: Parameter settings of the laminar channel flow with cuboid lattice grids.

Cases Aspect ratio H Vmax ν νV cs γ Re

1 a = b = 2 40 0.1 0.1333 0.1333 0.6325 −3.0 30
2 a = b = 4 40 0.1 0.1333 0.1333 0.6325 −3.8 30
3 a = b = 10 40 0.1 0.1333 0.1333 0.6325 −3.97 30
4 a = b = 20 40 0.1 0.1333 0.1333 0.6325 −3.98 30

tν/H2

v/Vmax

Figure 3.1: The time evolution of the streamwise velocity v at x/H = 0.4875 (close to
the channel centerline). All quantities are normalized as indicated.
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v/Vmax

x/H

Figure 3.2: The streamwise velocity profiles at six different times, tν/H2 =
0, 0.0248, 0.0537, 0.0958, 0.166, and 1.24. All quantities are normalized as indicated.

dv

dx

H

Umax

x/H

Figure 3.3: The profiles of velocity gradient dv/dx at six different times, tν/H2 =
0, 0.0248, 0.0537, 0.0958, 0.166, and 1.24. All quantities are normalized as indicated.
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In Fig. (3.1), the time evolution of the streamwise velocity v at x/H = 0.4875

is shown for all cases. The theoretical velocity at this location is also plotted as

the benchmark. Under the constant uniform external force, the streamwise velocity

increases with time. The steady-state velocity is reached at roughly tν/H2 = 0.5 (see

Fig. 3.1), when the the external force is balanced by the viscous shear stress. Since

the location we selected is x/H = 0.4875, which is very close to the center of channel,

the ratio v/Vmax at the steady state is very close to one. Results from all aspect ratios

are in excellent agreement with the theory at all times.

In Figs. (3.2) and (3.3), the streamwise velocity profiles and the profiles of ve-

locity gradient dv/dx are shown, respectively. There are six different curves in the plots

and they represent the profiles at six different times: tν/H2 = 0, 0.0248, 0.0537, 0.0958,

0.166, 1.24, respectively. All results are compared to the theoretical velocity profiles at

the corresponding time and again an excellent agreement is observed, regardless of the

aspect ratios used.

3.2 3D Decaying Taylor-Green Vortex Flow

The 3D Taylor-Green vortex flow was proposed by Taylor and Green [56] to

study the production of small eddies from large eddies. They solved the three-dimensional

time-dependent flow analytically using a short-time perturbation expansion, making

this an ideal benchmark for any 3D numerical method. In the 3D Taylor-Green flow, the

kinetic energy of the flow decreases in time, and at the same time, is transferred from

the initial large-scale eddy to newly-created small-scale eddies. The energy-cascading

feature is not present in the 2-D Taylor-Green vortex flow [33] often used to validate

numerical methods in 2D. We have also solved the 3D Taylor-Green vortex flow by a

highly-accurate pseudo-spectral method. Both the short-time analytical solution and

the spectral solution will be used to validate the present cuboid-lattice model.

Specifically, we consider the 3D Taylor-Green vortex flow with the following

31



initial velocity field
u = U0cos (2πx/L) sin (2πy/L) sin (2πz/L) ,

v = −U0sin (2πx/L) cos (2πy/L) sin (2πz/L) ,

w = 0,

(3.3)

where u, v and w represent the velocity in the x, y, z directions, respectively. U0 is the

characteristic velocity of the flow at the initial time. The domain size is L, which is

the same in the three directions. Periodic boundary condition is assumed in all three

directions.

Taylor and Green [56] obtained the short-time perturbation solution as follows.

First, a Poisson equation of the pressure could be derived by combining the continuity

equation with the N-S equations. Based on the initial velocity given in Eq. (3.3),

the pressure field could be solved from the Poisson equation. Next, the pressure is

then substituted back to the N-S equations to determine the time derivative of velocity

at the initial time, which can be integrated to obtain the first approximation of the

short-time solution. The above process (velocity - pressure - time derivative of velocity

- new velocity) is regarded as one perturbation iteration. Then, the new velocity field

becomes the starting solution for the next iteration. After a few iterations, the short-

time theoretical solution of the 3D Taylor-Green vortex flow can be obtained, with

the time dependence expressed through mode coefficients as polynomials in time. The

final three-dimensional time-dependent perturbation solution of the velocity field, the

average kinetic energy, and the average dissipation rate are presented in [56]. Some key

parameter settings of this flow are listed in Table 3.2. The aspect ratio of the cuboid

lattice is set to a = δy/δx = 0.8 and b = δz/δx = 0.8. The domain size L is set to

Lx = Ly = Lz = 64 and 128, respectively. The number of lattices in each direction

is chosen according to the aspect ratio a = δy/δx and b = δz/δx to keep the physical

domain size identical. Since the flow is decaying, Re0 represents the initial Reynolds

number defined as Re0 = 2πU0L/ν. In this test case, results of cuboid model are

compared with results of the corresponding MRT-LBM with cubic lattice and spectral
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Table 3.2: Parameter settings of the 3D decaying Taylor-Green vortex flow.

Cases Aspect ratio L Nx ×Ny ×Nz Re0 U0 ν νV c2s γ

1 a = b = 0.8 64 64× 80× 80 300 0.10186 0.0035 0.0035 0.3 -1.5
2 a = b = 0.8 128 128×256×128 300 0.05093 0.0035 0.0035 0.3 -2.0

method. The relaxation parameter of both cases are set to se = 0.8, sε = 0.6, sq =

0.8, sn = 0.8, sc = 0.8, sπ = 0.8, sm = 1.95 to obtain a better stability. The results of

cuboid model are compared with results of the corresponding MRT-LBM with cubic

lattice and spectral method.

Four statistics of the flow are calculated and compared to the results of other

models and the short-time theory, the average kinetic energy E = 〈u2
i 〉/2, averaged

total dissipation rate D = 2ν〈(Sij −∇ · uδij/3)2 + νV (∇ · u)2〉, where Sij is the strain

rate, νV is the bulk viscosity and ∇·u is the divergence. The effect of bulk viscosity is

considered since the usual LBM simulation is not fully incompressible so the divergence

of the flow is not strictly zero. If the flow is fully incompressible, then the total

dissipation rate would reduce to D = 2ν〈S2
ij〉. The velocity skewness Su and flatness

Fu are calculated. The velocity skewness and flatness are defined as

Su =

〈
1
3

[
(∂xu)3 + (∂yv)3 + (∂zw)3]〉〈

1
3

[
(∂xu)2 + (∂yv)2 + (∂zw)2]〉3/2

, (3.4a)

Fu =

〈
1
3

[
(∂xu)4 + (∂yv)4 + (∂zw)4]〉〈

1
3

[
(∂xu)2 + (∂yv)2 + (∂zw)2]〉2 , (3.4b)

where Su and Fu represent the velocity skewness and flatness, respectively. The velocity

skewness and flatness are high order statistics and thus could be used to evaluate the

accuracy of the small scale structure of the simulation.

From Fig. 3.4 to Fig. 3.5, the results of two cuboid cases are compared to the

corresponding MRT-LBM with cubic lattice, and spectral method, and the theoretical

solution of 3D Taylor-Green vortex flow. On the one hand, it is proved by examining

the resolution parameter kmaxη that the flow could be well resolved in the spectral

method with a 1283 of grids [57, 58], where kmax = L/3 is the spectral truncation
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2πU0t/L

E(t)

E(0)

(a)

2πU0t/L

D(t)

D(0)

(b)

Figure 3.4: The time evolutions of (a) the average kinetic energy Ek, (b) the average
dissipation rate ε. The results of two cuboid cases in Table 3.2 are compared to those
of the two MRT-LBM cases with the cubic lattice and two different resolutions, the
spectral method, and the short-time theory.
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2πU0t/L

Su

(a)

2πU0t/L

Fu

(b)

Figure 3.5: The time evolutions of (a) the velocity-derivative skewness, and (b) the
velocity-derivative flatness. The results of two cuboid cases in Table 3.2 are compared
to those of the two MRT-LBM cases with the cubic lattice and two different resolutions,
the spectral method, and the short-time theory.
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radius in the spectral method, L is the domain size and η is the Kolmogorov length.

On the other hand, in the spectral method, the combination of second-order time

integration accuracy and spectral accuracy in space yields an overall order of accuracy

that is higher than two. Meanwhile, LBM is a second-order accurate method as proved

in [45]. Thus, the 1283 spectral method is used as the benchmark case since it is the

most accurate one among all test cases and the flow is well resolved in this case.

In Fig. (3.4) and Fig. (3.5), all curves are matched at the beginning, including

the short-time theory of the Taylor-Green vortex flow. But the theoretical solutions of

3D Taylor-Green vortex flow are only valid for a short time. For low order statistics

like kinetic energy and dissipation rate, the short-time theory is valid for about 2 non-

dimensional time. For higher order statistics like velocity skewness, the theory of 3D

Taylor-Green vortex flow is valid for about 1.5 non-dimensional time and the lifetime

of theoretical velocity flatness is less than 1.

In the first plot of Fig. (3.4), the kinetic energy decays monotonically. The

time evolution of normalized kinetic energy of all models are matched with a good

agreement, which means the large structure is adequately captured by all models with

two different resolutions. Meanwhile, the result of high resolution cases is slightly better

than low resolution cases comparing to the 1283 spectral method, which is expected.

The second plot of Fig. (3.4) shows the time evolution of the normalized dissipation

rate of the flow. The results from all models are identical until two non-dimensional

times, which is expected since all simulations are initialized with the same profile and

there are only large flow structures in the initial field so the flow is well resolved at the

beginning of all cases. As indicated in [56], small-scale flow structure like small eddies

will be created from large eddies. Therefore, to fully resolve the flow, the number of

lattice grids should also be increased. For a quantity like dissipation rate which is

related to the small-scale structure of the flow, it is easy to tell that the result of 1283

cubic and cuboid LBM is much better than the corresponding 643 cases. Different

from the evolution of kinetic energy, the dissipation of the flow first increases due to

the production of small-scale structure and then decreases since the flow is decaying
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and the Reynolds number is reducing.

Fig. 3.5 shows the time evolution of the velocity-derivative skewness and flatness

of different models. Recall that in Fig. 3.4, the difference of kinetic energy between

different resolutions are small. Here we observe that all high resolution cases are

significantly better than low resolution cases comparing to the 1283 spectral method.

This is because the velocity-derivative skewness and flatness are high-order quantities

and are more sensitive to the fluid motion at small scales. The above results mean that

643 is not enough to fully resolve the flow. Another reason of the discrepancy between

different models is that the system is highly non-linear. Therefore, a small error would

increases rapidly over time and leads to a different local structure. If the time of

simulation is long enough, even the whole domain would be affected by the difference

of local flow structures. For example, the results of two spectral simulations at different

resolutions are only matched till 3.5 non-dimensional times. Therefore, results of the

proposed cuboid lattice model are still reasonable comparing to the spectral method

and the LB models with cubic lattice.

In Fig. 3.6, the velocity profiles on the line x/L = 1/4, y = z, at the non-

dimensional time 2πU0t/L = 5, is plotted for the cuboid case 1 in Table 3.2 and a

MRT-LBM with 643 cubic lattices. The velocity profiles of two models are matched

exactly. The velocity profiles at other times and on some other lines are also examined

(but not shown here), and in all cases the results of the cuboid model are in excellent

agreement with MRT-LBM results on a cubic lattice.

In summary, the D3Q19 MRT lattice Boltzmann model with a cuboid lattice

presented in this paper has been validated by simulating the laminar channel flow and

a 3D decaying Taylor-Green vortex flow. All results of the cuboid model are compared

to the analytical solutions or results from other models, showing a good agreement

with corresponding benchmark data from spectral simulation or analytical solutions.
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ya/L ya/L

u/U0 v/U0

(a) (b)

ya/L

w/U0

(c)

Figure 3.6: The velocity profiles on a line x/L = 1/4 and y = z at the non-dimensional
time 2πU0t/L = 5. (a) Velocity in the x direction, (b) velocity in the y direction, and
(c) velocity in the z direction. Results of the cuboid model are compared to results of
the corresponding MRT-LBM with 643 cubic lattice. All quantities are normalized as
indicated.
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3.3 Single Phase Turbulent Channel Flow

The final test case is the turbulent channel flow, which is a canonical wall-

bounded turbulent flow [26, 59, 60]. This is a time-dependent and three-dimensional

flow. The flow is also highly inhomogeneous and anisotropic, especially in the near-wall

region. Like the laminar channel flow, the turbulent channel flow is also bounded by two

parallel flat walls. Again, x, y, and z represent the transverse, streamwise, and spanwise

direction, respectively. At a sufficiently high flow Reynolds number, the flow may

transit from a laminar flow to a turbulent flow. In this paper, we only focus on the fully

developed stage of turbulent channel flow which have been documented extensively,

both in terms of direct numerical simulations and experimental measurements [26, 61,

62].

In this first simulation of a turbulent channel flow using the cuboid model, the

domain size is set to 2H×4H×2H, where H here is the channel half width. Although

this domain is not very wide in the streamwise and spanwise directions, reasonable

flow statistics can still be obtained as shown in our previous studies of particle-laden

turbulent channel flows [63]. The periodic boundary condition is applied to both the

streamwise (y) direction and the spanwise (z) direction. In the transverse (x) direction,

again the mid-link bounce back (as described in Sec. 3.1) is applied to satisfy the no-

slip boundary condition. In this simulation, 2D domain decomposition [20] is used to

parallelize the code, and an efficient one-step two-array approach is used to integrate

the collision and streaming sub-steps.

The simulation of turbulent channel flow could be divided into three stages:

1. The initial excitation of turbulent fluctuations. Starting from an initial flow field,

a non-uniform time-dependent perturbation force field is applied to the flow, in

addition to the physical constant body force, to promote and accelerate velocity

fluctuations in the flow.

2. Rapid transition to turbulent flow. Once velocity fluctuations in all the three di-

rections have reached a certain level, the perturbation force field is then switched
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off. The constant body force can now sustain the turbulent fluctuations and the

flow gradually evolves to a fully developed turbulent channel flow.

3. The fully developed turbulent channel flow. At this stage, the flow is statistically

stationary, although the local flow structures continue to evolve in time. A sim-

ulation over a sufficiently long period of time can then be used to obtain average

flow statistics such as the mean and turbulent r.m.s. velocity profiles.

In this simulation, the perturbation force is applied for 3 eddy turnover times.

The eddy turnover time is defined as H/uτ , where the friction velocity is uτ =
√
τw/ρ0,

and τw is the average wall shear stress. The friction Reynolds number Reτ = uτH/ν is

set to 180, where ν is the kinematic shear viscosity. The wall length unit is defined as

δτ = ν/uτ . All quantities with superscript + are normalized by uτ and δτ . The values

of key parameters used for the turbulent channel flow are listed in Table 3.3. The two

aspect ratios are set to a = δy/δx = 1.25 and b = δz/δx = 1, and δx = 1 in lattice units.

The half channel width H is set to 100δx. The domain size is 2H × 4H × 2H, Since

δy/δx = 1.25, thus for the same physical domain size the number of lattice nodes in

the streamwise direction is 80% of the number used in the standard LBM model using

the cubic lattice. Namely, the grid resolution for the cuboid lattice is 199× 320× 200,

compared to 199× 400× 200 in the cubic lattice model [63].

The kinematic shear viscosity ν was set to 0.0036. The bulk viscosity νV is set

to 0.1 to help maintain the numerical stability. This leads to a frictional velocity uτ =

0.00648. All relaxation parameters in Eq. (2.5) are set to 1.2. When simulating the

turbulent channel flow with the cuboid model, we found that the numerical instability

could occur for larger lattice aspect ratio. The reason for the numerical instability and

methods to enhance numerical stability of the cuboid model should be studied in the

future.

In Fig. (3.7a), the streamwise velocity v averaged over the whole domain is

shown as a function of time. The result from the standard LBM model with the

cubic lattice (taken from Wang et al, [63]), using the same physical parameters, initial

40



Table 3.3: Parameter settings of the turbulent channel flow.

Aspect ratio Reτ H Domain size Nx, Ny, Nz ν νV uτ cs γ

a = 1.25, b = 1 180 100 2H, 4H, 2H 199, 320, 200 0.0036 0.1 0.00648 0.6325 -0.8

flow field, and perturbation forcing is shown for comparison. The time evolutions of

the averaged streamwise velocity based on the two models are identical for about 1.5

eddy turnover times. Then they become different at a given time due to inherent

nonlinearity. Nevertheless, the evolutions remain similar qualitatively. Both reach the

stationary stage after about 40 to 60 eddy turnover times. Thus, the statistic from 63

to 117.7 eddy turnover times are used to calculate the mean profiles at the stationary

stage. The mean velocity averaged over 63 < tuτ/H < 117.7 is 15.57 based on the

cuboid model, compared to 15.67 from the cubic model. Both are within 0.5% of the

value of 15.63 based on the spectral method [61]. All averaged profiles to be shown

below are obtained time-averaging over the time interval of 63 < tuτ/H < 117.7.

The mean streamwise-velocity profiles are compared in Fig. 3.7(b), where x+ is

the distance from the channel wall in wall units. At a given x, the streamwise velocity

is averaged over the y − z plane. Only the profiles over half of the channel are shown

since they are symmetric. The linear viscous sublayer and the logarithmic region can

be clearly identified. The result from the cuboid model is in excellent agreement with

that from the cubic model, and they both agree with the spectral benchmark data

taken from the literature [61, 62, 64, 65] except that the streamwise velocity of the

proposed cuboid lattice model is slightly smaller than other models near the center of

channel.

The corresponding profiles for the averaged Reynolds stress −〈u′v′〉/u2
τ are

shown in Fig. 3.8(a), and these of root-mean-square (r.m.s.) fluctuation velocities

are presented in Fig. 3.8(b). The results of the cuboid model are compared with the

results from the standard cubic-lattice model and spectral benchmark data. Clearly,

the cuboid model reproduces the same statistics and profiles of the cubic model. They
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tuτ/H

〈V +〉

(a)

x+

〈v+〉
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Figure 3.7: (a) The streamwise velocity averaged over the whole domain when the flow
reaches the stationary stage. (b) Profiles of mean streamwise velocity as a function
of x+ when the flow reaches the stationary stage. All quantities are normalized as
indicated.
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both are in reasonable agreement with the spectral benchmark data. There are also

some differences in the streamwise and spanwise r.m.s. velocity profiles, which is related

to the use of different domain size as discussed in Wang et al. [63, 66].

In summary, the cuboid lattice model is used to simulate the fully developed

turbulent channel flow. The statistics of the fully developed flow are compared with the

results from the cubic-lattice model in [63, 66] and previous spectral simulation data.

All results are in good agreement. For the same physical domain size, the cuboid-lattice

model with δy = 1.25δx uses 20% less grid points in the streamwise direction when

compared to the cubic-lattice model. With proper optimization of model parameters,

we believe that larger aspect ratios could be used to further reduce the computational

cost.

3.4 The Order of Accuracy of the Cuboid Model

It has been known that the lattice Boltzmann method has a second-order accu-

racy in space and time [33, 39, 45]. The order of accuracy of the proposed cuboid model

can be examined using the results for the transient laminar channel flow and the 3D de-

caying Taylor-Green vortex flow presented in Sec. 3.1 and 3.2. To examine the accuracy

with the laminar channel flow, we use Case 2 in Table 3.1 (a = b = 4) with four different

grid resolutions: 10×2×2, 20×4×4, 40×8×8, and 80×16×16. Other parameters are the

same as in Table 3.1 and all results are compared to the theoretical solution. To study

the accuracy with 3D Taylor-Green vortex flow, we choose Case 1 in Table 3.2 (a = b =

0.8) with 5 different resolutions: 32×40×40, 64×80×80, 128×160×160, 256×320×320,

and 512 × 640 × 640. Due to the anisotropy of lattice sizes of the cuboid model, it is

impossible to match the node points in the cuboid model with other models like the

spectral method based on the cubic grid. The short-time theory of 3D Taylor-Green

flow could be a great benchmark tool for average statistics like the average kinetic en-

ergy, but it is only valid at short times. However, the order of accuracy must be based

on local errors at the exact same locations. Therefore, we instead use the results of the

cuboid model at 512×640×640 as the benchmark when computing local errors for the

43



x/2H

− 〈u
′v′〉
u2τ

(a)

x/2H

〈u+
rms〉

(b)

Figure 3.8: (a) The Reynolds stress −〈u′v′〉/u2
τ profiles and (b) the r.m.s. velocity

profiles. All quantities are normalized as indicated.
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other 4 lower resolutions. Using the results of the cuboid grid at the highest-resolution

as a benchmark has another benefit, namely, the initial flow conditions are identical at

the mesoscopic level due to the same initialization method used.

In order to measure the order of accuracy, the L1 and L2 errors are calculated

as

εL1 (t) =

∑
x,y,z |qn (x, y, z, t)− qb (x, y, z, t)|∑

x,y,z |qb (x, y, z, t)|
, (3.5a)

εL2 (t) =

√∑
x,y,z |qn (x, y, z, t)− qb (x, y, z, t)|2√∑

x,y,z |qb (x, y, z, t)|2
. (3.5b)

where qn(x, y, z, t) and qb(x, y, z, t) represent the numerical value and corresponding

benchmark value of a quantity at location (x, y, z) and time t. For each quantity, the

L1 and L2 error norms for velocity at different grid resolutions are calculated according

to Eq. (3.5). The order of accuracy could be estimated based on either L1 or L2 error

norms. Assume the error norm calculated from one given resolution is ε0(t), as we

increase the resolution by a factor of m in each direction, the new error norm should

be smaller and is denoted by εm(t). Then the order of accuracy n is estimated as

n(t) = logm

(
ε0(t)

εm(t)

)
. (3.6)

The order of accuracy is first checked by laminar flow at tν/H2 = 1. Only

the streamwise velocity v are examined because the other two velocity components

are always zero in the laminar channel flow. The results are compiled in Table 3.4,

showing that the order of accuracy is between 1.6 to 1.8. That is because the laminar

channel flow can be easily well resolved. Thus, increasing the grid resolution has a

less significant effect on the error norm especially when the resolution is already high

enough.

For the case of the 3D decaying Taylor-Green vortex flow, the results of error

norms computed from each velocity component are compiled in Table 3.5 and Table

3.8, for L1 and L2 error norm at two different times, 2πU0t/L = 3 and 5, respectively.

The results clearly demonstrated that the order of accuracy is around 2. In addition,
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Table 3.4: The order of accuracy of the cuboid model evaluated with results from the
transient laminar channel flow. The theoretical solutions are used as the benchmark.
Results are calculated at tν/H2 = 1. The streamwise velocity v is examined.

Resolutions v (L1) order v (L2) order

10× 2× 2 1.658E-2 (−) 1.521E-2 (−)
20× 4× 4 4.577E-3 1.857 4.183E-3 1.862
40× 8× 8 1.354E-3 1.757 1.236E-3 1.759

80× 16× 16 4.426E-4 1.613 4.040E-4 1.613
Averaged 1.742 1.745

Table 3.5: The L1 error norm and the order of accuracy of the cuboid model evaluated
with the 3D decaying Taylor-Green vortex flow. Results of the cuboid model with a
resolution of 512 × 640 × 640 are used as the benchmark to compute the error norms
of the cuboid model at lower grid resolutions. Results are calculated at 2πU0t/L = 3.

Resolutions u/v/w (L1) order u/v/w

32× 40× 40 2.805E-2 / 2.263E-2 / 4.009E-2 (−)
64× 80× 80 6.162E-3 / 4.309E-3 / 8.224E-3 2.187 / 2.393 / 2.286

128× 160× 160 1.172E-3 / 8.336E-4 / 1.583E-3 2.394 / 2.370 / 2.377
256× 320× 320 2.352E-4 / 2.101E-4 / 3.224E-4 2.317 / 1.988 / 2.287

Averaged 2.299 / 2.250 / 2.316

Table 3.6: The L2 error norm and the order of accuracy of the cuboid model evaluated
with the 3D decaying Taylor-Green vortex flow. Results of the cuboid model with a
resolution of 512 × 640 × 640 are used as the benchmark to compute the error norms
of the cuboid model at lower grid resolutions. Results are calculated at 2πU0t/L = 3.

Resolutions u/v/w (L2) order u/v/w

32× 40× 40 3.439E-2 / 2.458E-2 / 4.336E-2 (−)
64× 80× 80 7.242E-3 / 4.881E-3 / 9.262E-3 2.248 / 2.332 / 2.227

128× 160× 160 1.356E-3 / 1.010E-3 / 1.904E-3 2.417 / 2.273 / 2.282
256× 320× 320 2.541E-4 / 2.341E-4 / 3.930E-4 2.416 / 2.109 / 2.276

Averaged 2.360 / 2.238 / 2.262
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Table 3.7: The L1 error norm and the order of accuracy of the cuboid model evaluated
with the 3D decaying Taylor-Green vortex flow. Results of the cuboid model with a
resolution of 512 × 640 × 640 are used as the benchmark to compute the error norms
of the cuboid model at lower grid resolutions. Results are calculated at 2πU0t/L = 5.

Resolutions u/v/w (L1) order u/v/w

32× 40× 40 1.001E-1 / 1.043E-1 / 1.128E-1 (−)
64× 80× 80 2.104E-2 / 2.005E-2 / 2.485E-2 2.250 / 2.379 / 2.182

128× 160× 160 4.143E-3 / 3.279E-3 / 4.641E-3 2.344 / 2.612 / 2.422
256× 320× 320 6.619E-4 / 5.503E-4 / 8.162E-4 2.646 / 2.575 / 2.508

Averaged 2.413/2.522/2.370

Table 3.8: The L2 error norm and the order of accuracy of the cuboid model evaluated
with the 3D decaying Taylor-Green vortex flow. Results of the cuboid model with a
resolution of 512 × 640 × 640 are used as the benchmark to compute the error norms
of the cuboid model at lower grid resolutions. Results are calculated at 2πU0t/L = 5.

Resolutions u/v/w (L2) order u/v/w

32× 40× 40 1.261E-1 / 1.239E-1 / 1.210E-1 (−)
64× 80× 80 2.969E-2 / 2.876E-2 / 3.465E-2 2.087 / 2.107 / 1.804

128× 160× 160 6.044E-3 / 5.222E-3 / 6.706E-3 2.296 / 2.461 / 2.369
256× 320× 320 1.049E-3 / 8.904E-4 / 1.237E-3 2.526 / 2.552 / 2.439

Averaged 2.303 / 2.373 / 2.204
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the L1 and L2 error norms with different aspect ratios are also compared to study if

the error norms are dependent on the aspect ratio. Four laminar flow cases listed in

Table 3.1 are used at the same resolution of 40 × 2 × 2. The L1 and L2 error norms

of streamwise velocity v are compared in Fig. 3.9. We can conclude that, in this case,

the error norms are independent of the aspect ratio since all curves essentially overlap

with one another.

3.5 Summary

In this chapter, the D3Q19 multiple-relaxation time lattice Boltzmann cuboid

model is validated by three different benchmark cases: the transient laminar channel

flow, the 3D energy-cascading Taylor-Green vortex flow and the single phase turbulent

channel flow.

Firstly, In the simulation of laminar channel flow, four different aspect ratios

of the cuboid lattice grid are tested, namely, a = b = 2, a = b = 4, a = b = 10,

a = b = 20, where a = δy/δx, and b = δz/δx represents the ratio of lattice length

in different directions. In the most extreme case where both a and b are set to 20,

the shape of the cuboid lattice is like a plate. Thus, the number of lattice in the

wall normal direction (transverse direction) of the channel is much larger than the

streamwise direction and the spanwise direction so that the wall normal direction is

fully resolved and the number of nodes on the other two directions could be greatly

reduced since the flow is homogeneous in the streamwise and spanwise directions of

the laminar channel flow. The velocity profiles and the strain rate profiles obtained

by the proposed cuboid model agree well with the theoretical solutions of the laminar

channel flow. All results are matched perfectly.

Then, the cuboid model is validated by the 3D energy-cascading Taylor-Green

vortex flow. This flow is a non-homogeneous anisotropic flow with energy being trans-

ferred from the large scales to the small scales, which makes it a better benchmark case

than the previous laminar channel flow to validate the cuboid lattice model. The 3D

Taylor-Green vortex flow could be solved analytically by using the perturbation theory
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Figure 3.9: (a) The L1 error norm and (b) the L2 error norm of the streamwise velocity
v in the laminar channel flow simulations. Results from four different aspect ratios are
compared.
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and solving the Poisson equation of pressure [56], but the theoretical solution of the

3D Taylor-Green vortex flow is only valid for a short time. Four different flow statistics

are calculated, namely, the kinetic energy, dissipation rate, velocity-derivative skewness

and flatness. The result of the cuboid model are compared to the spectral method and

the D3Q19 MRT LBM with cubic lattice gird. The results of cuboid model are in a

good agreement with the spectral benchmark data. In addition, we found that 643

is not enough to fully resolve the 3D Taylor-Green vortex flow especially when more

small eddies are created during the evolution of the flow.

The fully-developed turbulent channel flow is the third benchmark case to val-

idate the cuboid lattice model. In this case, a constant body force is applied to drive

the flow, and a time-dependent perturbation force is added to excite the turbulence.

The flow statistic is averaged over a time interval after the flow is fully developed. The

velocity profile, Reynolds stress profile and root-mean-square (RMS) velocity profiles

of the cuboid model are calculated and compared to the results of spectral method

and the MRT lattice Boltzmann method on a cubic lattice. All results are in excellent

agreement.

Finally, we examined the order of accuracy of the cuboid model by computing

the L1 and L2 error norms of velocity in the laminar channel flow and the 3D Taylor-

Green vortex flow. In the laminar channel flow, the numerical velocity are compared

to the short-time analytical solution. The results shows that the cuboid lattice LBM

model is about 1.7 order accurate. In the 3D Taylor-Green vortex flow, the theoretical

solution of the flow is only valid for a short time so it cannot be used as the benchmark

to calculate the error norm. Therefore, a cuboid case with a resolution of 512×640×640

is used as the benchmark to check the error of other low resolution cases. Based on the

result of 3D Taylor-Green vortex flow, the cuboid lattice model is second order accurate.

In the laminar channel flow, the error norm of four cases with different aspect ratios

are compared and they are close to each other. Thus, at least in a linear flow like

laminar channel flow, increasing the aspect ratio would not lead to the deterioration

of result.
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Chapter 4

CONCLUSION AND FUTURE WORKS

4.1 Summary and Conclusions

In this thesis, a D3Q19 multiple-relaxation time lattice Boltzmann model on a

cuboid lattice grid has been developed through an inverse design analysis based on the

multiscale Chapman-Enskog expansion. In this cuboid model, the lattice grid-lengths

in the three spatial directions could be set to different values, namely, the aspect ratios

a and b, defined as a = δy/δx, b = δz/δx, are input parameters of the cuboid model,

where δx, δy and δz are the grid sizes in the three directions, respectively. In the

model, the equilibrium moments are extended to include additional higher-order terms

in order to address the anisotropy problem of viscosity coefficients resulting from the

use of the cuboid lattice. This extension allows the proposed cuboid model to adopt

the same transformation matrix of the standard cubic model between the particle

distributions and physical moments. A mesoscopic forcing term is also added to the

lattice Boltzmann equation to realize the effect of macroscopic time-dependent and

spatially non-uniform forcing.

To recover the correct hydrodynamic equations, the Chapman-Enskog expansion

has been used to develop all constraints for the cuboid model. These constraints are

then applied to design the leading-order and higher-order equilibrium moments, and

mesoscopic forcing terms. This inverse design process ensures a consistent and general

cuboid model.

Based on the inverse design analysis shown in Chapter 2, 16 of the 19 leading-

order equilibrium moments, 6 of the 19 higher-order equilibrium moments, and 10

of the 19 mesoscopic forcing terms can be determined directly from the constraints
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resulting from the hydrodynamic equations. Clearly, further studies are needed to

optimize those free terms that are not constrained by the hydrodynamic equations, in

order to achieve a better numerical stability. It is also found that the higher-order

equilibrium moments offer two functions: (i) to resolve the anisotropy of viscosity

coefficients associated with the use of the anisotropic lattice structure, and (ii) to

adjust both shear and bulk viscosities independent of the relaxation parameters. By

construction, the higher-order equilibrium moments affect the stress components of the

hydrodynamic flow.

The cuboid model is then validated by three different benchmark cases, namely,

the transient laminar channel flow, the 3D energy-cascading Taylor-Green vortex flow,

and the fully developed turbulent channel flow.

Firstly, the proposed cuboid model is validated by a transient laminar channel

flow. The highest aspect ratios of the cuboid lattice grid is set to a = δy/δx = 20, and

b = δz/δx = 20. As a validation, the velocity and the strain rate profiles of the proposed

cuboid lattice model are compared with the theoretical solutions of the laminar channel

flow. All results are in perfect agreement. The second numerical validation is the

3D energy-cascading Taylor-Green vortex flow. In this flow, a short-time theoretical

solution could be obtained by using the perturbation theory and solving the Poisson

equation for pressure [56]. Additionally, while the flow is decaying, the energy will be

transferred from the large-scale structure to the small-scale structures, which makes

the 3D Taylor-Green vortex flow highly anisotropic, non-homogeneous and non-linear.

In summary, the 3D Taylor-Green vortex flow is a great benchmark case to examine the

proposed cuboid lattice model. The kinetic energy, dissipation rate, velocity-derivative

skewness and flatness of the cuboid model are calculated and compared to the spectral

method and the D3Q19 MRT LBM on a cubic lattice. The results of cuboid model

are in good agreement with the benchmark data from either the short-time analytical

solution or spectral simulations. The third benchmark case is the fully-developed

turbulent channel flow. A time-dependent, non-uniform perturbation force is applied

to excite the turbulence. All flow statistics are calculated and averaged over a time
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interval after the flow is fully developed. The results of the proposed cuboid lattice

model are in an excellent agreement with the spectral method and the MRT lattice

Boltzmann method with a cubic lattice.

Finally, the order of accuracy of the cuboid model is examined via the L1 and L2

error norms. Two numerical cases are used to measure the order of accuracy, namely,

the transient laminar channel flow and the 3D Taylor-Green vortex flow. In the laminar

channel flow, the numerical results are compare to the theory, while in the 3D Taylor-

Green vortex flow, the theoretical solution of the flow is only valid for a short time so

it cannot be used as the benchmark to calculate the error norm. Therefore, a cuboid

case with a resolution of 512×640×640 is used as the benchmark to compute the error

of accuracy for other low resolution cases. Based on our results, the proposed cuboid

lattice model is indeed a second order scheme.

With the proposed cuboid-lattice model, a smaller number of lattice points can

be used to achieve the same result for an anisotropic flow such as the turbulent channel

flow. This is because, compared to the standard cubic lattice, a relatively coarser lattice

grid can be used in the direction where the flow variables vary more gradually (i .e., , the

streamwise direction of a channel or pipe). Thus, the overall computational efficiency

can be improved. In a simple flow like laminar channel flow, the performance of the

proposed cuboid model is excellent. When some some complex flows such as turbulent

channel flow and 3D Taylor-Green flow are considered, the cuboid lattice model suffers

from the trouble of instability. Additional stability analysis are required to improve

the stability of the proposed cuboid lattice model.

4.2 Future Works

The initial motivation of developing a lattice Boltzmann model with a cuboid

lattice is to reduce amount of lattice grids so that a relatively coarser lattice grid

can be used in the direction where the flow variables vary more gradually, and the

simulation will be more computational efficient. For this purpose, it is desired to have

arbitrary aspect ratios, a and b. According to the derivation of the proposed cuboid
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lattice model in Chapter 2, the aspect ratio of the lattice could be set to any value and

a correct Navier-Stokes equation can always be recovered. However, this is not true

in the real simulation and the code became numerically unstable. In the simulation

of laminar channel flow, the aspect ratio of the lattice grid could be easily raised to

a = δy/δx = 20 and b = δz/δx = 20 so the lattice is very anisotropic and the code is

still stable. However, in the simulation of turbulent channel flow and 3D Taylor-Green

vortex flow, the aspect ratio can currently only be varied from 0.8 to 1.25 due to the

complexity of flow structure.

In this thesis, no analysis has been performed to understand the numerical in-

stability, and use such to optimize the free parameters. Through a literature survey,

several alternative ways to improve the stability of LBM could be found. The first

way is to apply the linear stability analysis [7, 67, 68, 69], in which the lattice Boltz-

mann equation is linearized by representing the distribution function or moment as a

mean part and a perturbation part. The value of adjustable parameters are optimized

through a von Neumann analysis [67, 70]. The second alternative method is the selec-

tive viscosity filtering [70] which damps out unphysical instabilities by adding different

filtering approaches. Thirdly, the viscosity counteracting approach [71, 72] should be

studied as well. In the viscosity counteracting approach, an extra viscosity is added to

the original one to increase the apparent viscosity in high Reynolds number simulation,

by correcting the added viscosity using an external forcing term [71, 72].

Our main remaining task is to find out the origin of instability for our proposed

cuboid model by performing the linear stability analysis [7, 67, 68, 69]. Or enhance

the stability of the proposed cuboid lattice model by using other methods mentioned

above [70, 71, 72].
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Appendix A

CALCULATION OF VELOCITY GRADIENTS

As mentioned in Sec. 2, the added part of equilibrium moments, m
(eq,1)
i , is

composed of a set of 9 coefficients hij, λ, and the strain-rate tensor (∂βuα + ∂αuβ)/2.

Therefore, we need to update the strain-rate components at each time step and apply

them in the collision term. By design, all the strain-rate components can be calculated

based on the non-equilibrium moments. The derivation is a bit tedious, we only present

the final results here.

First, from Eq. (2.23) we observe that m(1) is related to equilibrium moments

and forcing. To separate the two, we define an array Gi as the part of m(1) without

any forcing involved. According to our derivation, we shall have Gi = Mijfj−m(eq,0)
i +

δtΨi/ (2− si), where M,m
(eq,0)
i ,Ψi and si are defined in Sec. 2. Then, the strain-rate

components can be calculated according to

∂xu = (C1B4 − C2B2) / (B1B4 −B2B3) ,

∂yv = (C2B1 − C1B3) / (B1B4 −B2B3) ,

∂zw = [G2/ (ρ0δtc
2)− r11∂xu− r12∂yv] /r13,

∂yu+ ∂xv = G14/c1,

∂zv + ∂yw = G15/c2,

∂zu+ ∂xw = G16/c3,



B1 = r11r23 − r13r21,

B2 = r12r23 − r13r22,

B3 = r23r31 − r21r33,

B4 = r23r32 − r22r33,

C1 = (r23G2 − r13G10) / (ρ0δtc
2) ,

C2 = (r23G12 − r33G10) / (ρ0δtc
2) ,

(A.1)

where c1 = ρ0δtc
2λ/a − aρ0δtc

2κ3/ (10sc), c2 = ρ0δtc
2 [0.1s∗cκ3 (a2b2 − a2) + λ] /(ab) −

abρ0δtc
2κ3/ (10sc),
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c3 = ρ0δtc
2 [0.1s∗cκ3 (b2 − a2) + λ] /b− bρ0δtc

2κ3/ (10sc), s
∗
c = (2− sc) /(2sc), and κ3 =

γ + 4. Other parameters have been defined in Sec. 2. The coefficients rij are given as

rij = hij +



(
κ1

c2s
c2
− 9+γ

5

)
19
se

(
κ1

c2s
c2
− 9+aγa

5

)
19
se

(
κ1

c2s
c2
− 9+bγb

5

)
19
se(

κ3
c2s
c2
− 6−γ

5

)
1
sn

(
κ3

c2s
c2

+ 6−aγa
5

)
1
sn

(
κ3

c2s
c2

+ 6−bγb
5

)
1
sn

κ2
c2s
c2

1
sn

(
κ2

c2s
c2
− 6−aγa

10

)
1
sn

(
κ2

c2s
c2

+ 6−bγb
10

)
1
sn


(A.2)

where κ1 = 1/a2 +1/b2 +1, κ2 = 1/a2−1/b2, κ3 = 2−1/a2−1/b2, γa = a (γ + 4)−4/a,

γb = b (γ + 4)− 4/b and hij are defined in Eq. (2.28).
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