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An improved Schwarz-Christoffel Toolbox for

MATLAB

TOBIN A. DRISCOLL

University of Delaware

The Schwarz–Christoffel Toolbox (SC Toolbox) for MATLAB, first released in 1994, made possible
the interactive creation and visualization of conformal maps to regions bounded by polygons. The
most recent release supports new features, including an object-oriented command-line interface
model, new algorithms for multiply elongated and multiple-sheeted regions, and a module for
solving Laplace’s equation on a polygon with Dirichlet and homogeneous Neumann conditions.
Brief examples are given to demonstrate the new capabilities.

Categories and Subject Descriptors: G.1.8 [Numerical Analysis]: Partial Differential Equa-
tions—elliptic equations; J.2 [Computer Applications]: Physical Sciences and Engineering—
mathematics and statistics, engineering, physics; G.4 [Mathematical software]: User Inter-
faces—MATLAB

General Terms: Algorithms

Additional Key Words and Phrases: conformal mapping, Laplace’s equation, polygons, Schwarz–
Christoffel

1. INTRODUCTION

The Schwarz–Christoffel (SC) formula is a semi-explicit conformal map from a
standard region to the interior of a polygon. For instance, the map from H , the
upper half of the complex plane, can be written as [Henrici 1974]

f(z) = f(z∗) + c

∫ z

z∗

n−1∏
k=1

(ζ − xk)αk−1 dζ, (1)

where z∗ is a point in H̄ and the real, ordered prevertices x1, . . . , xn−1,∞ map
in counterclockwise order to the vertices of the polygon whose interior angles are
πα1, . . . , παn. Vertices are permitted to lie at infinity, in which case their associated
angles are between −2π and 0. Three of the prevertices may be chosen arbitrarily,
but for a target polygon with n > 3 the rest must be determined from the geometry;
this is called the parameter problem. Once this is solved, values of the map can be
computed by quadrature. Many variations on (1) are possible, for example to use
a different standard region. For details on these, see Driscoll and Trefethen [2002].

The SC formula and its offspring were implemented computationally a number of
times in the twentieth century [Haugeneder and Prochazka 1978; Davis 1979; Reppe
1979; Floryan 1985; Däppen 1987; Howell and Trefethen 1990]. Of particular note
was the Fortran SCPACK [Trefethen 1980], which was released into the public
domain and featured fast and stable implementation of three key steps: numerical
quadrature for (1), solution of the parameter problem, and numerical inversion of
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the map.
The Schwarz–Christoffel Toolbox (SC Toolbox) for MATLAB [Driscoll 1996], first

released to the public domain in 1994, implemented and generalized somewhat the
methods used in SCPACK. In addition to the natural exploitation of the interactive
MATLAB command line, the features of the original SC Toolbox included:

—The ability to map from a disk, half-plane, strip or rectangle, or to the exterior
of a polygon;

—The computation of forward and inverse maps;

—The use of unbounded regions (polygons with infinite vertices);

—Automated visualization of maps;

—A complete graphical interface, including the interactive drawing of polygons.

The SC Toolbox has undergone continuing change and improvement since its
initial release, gradually taking advantage of advances in algorithms, applications,
and MATLAB itself. Compared to the original, the current stable release (2.3)
includes additions that improve robustness, applicability, and convenience:

—A command-line object-oriented interface, with simplified calling sequences and
overloading of familiar MATLAB functions;

—Convenience functions such as Möbius transformations, composite maps, and
additional polygon functions;

—Use of the CRDT algorithm [Driscoll and Vavasis 1998] to allow stable compu-
tations for polygons with multiple elongations;

—Maps to Riemann surfaces;

—A function to solve Laplace’s equation on a polygon with piecewise-constant
Dirichlet and homogeneous Neumann conditions.

In section 2 we discuss how an object-oriented command interface model simplifies
use of the Toolbox. In section 3 we briefly describe the algorithmic additions to the
Toolbox; detailed presentation of the numerical methods can be found elsewhere.
In section 4 we show how SC maps are used to solve Laplace’s equation with high
accuracy and speed. Finally, in section 5 we give a few short examples of code using
the Toolbox to illustrate the new features described here.

2. OBJECT-ORIENTED COMMAND LINE MODEL

Since a toolbox is intended to add functionality to MATLAB, in a sense the tool-
box author is trying to collaborate with many future programmers. Thus it is quite
natural to use an object-oriented (OO) model as an interface. Although MAT-
LAB implements a rather limited OO model, the SC Toolbox benefits greatly from
encapsulation, overloading, and (to a much lesser extent) inheritance.

Classes in MATLAB are defined by directories whose names start with an @

character. A class directory contains function M-files that are known as methods ;
these are (more or less) the only functions that operate on objects of this class.
When a method name duplicates that of a built-in MATLAB function, the function
is said to be overloaded and becomes extended to the class. A class may be allowed
to inherit the methods of a parent class. Each class must have a constructor method,
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Table I. Methods for the polygon class.

polygon Construct a polygon object

vertex,
double, ()

Vertex extraction or
assignment

+, -, * Translation, scaling, rotation

angle Angle extraction modify Graphically edit

display Show vertices truncate Truncate infinite sides

plot, fill Show, graphically linspace
Equispaced points on bound-
ary

size, length,
isempty

Number of vertices intersect
Find intersections with a seg-
ment

diam, isinf Diameter triangulate Triangulate interior

winding,
isinpoly

Winding number
cdt,

plotcdt

Constrained Delaunay trian-
gulation of vertices

Table II. Schwarz–Christoffel map classes.

diskmap Map from the unit disk
hplmap Map from the upper half-plane
stripmap Map from a strip
rectmap Map from a rectangle
extermap Map from the disk to polygon exterior
crdiskmap, crrectmap Map using CRDT (section 3)
riesurfmap Map to a Riemann surface (section 3)

named identically to the class, that is responsible for creating objects of the class.
The resulting object can be assigned to a variable in the MATLAB environment
and may hold auxiliary data needed by the methods. This data is encapsulated,
that is, not normally available to the user except through the interface provided by
the methods.

Polygons play a central role in SC mapping and have a class definition in the
Toolbox. Most often a polygon object is specified by a vector of vertices and
(optionally, if it is bounded) interior angles, or created graphically through the
function polyedit. Simple transformations such as scaling, rotation, and trans-
lation are implemented by overloading the MATLAB binary operators * and + to
pair a polygon with a complex scalar. Other polygon methods are provided for
convenience; a complete list is given in Table I.

The SC Toolbox supports different map variations distinguished by fundamental
domain, numerical algorithm, or other features. Each map type is a MATLAB class,
as listed in Table II, that encapsulates the map parameters. In the typical case a
map is constructed by supplying a polygon and perhaps additional data defining
the map, although one can also create a map from specified prevertices and angles
to an unknown geometry. The core method names associated with each map type
are shown in Table III, although a few types lack some of these or add others. Note
that many built-in MATLAB functions are overloaded to work with these maps.
In addition, the map classes all descend from an scmap class that implements some
tasks common to all map types, such as extraction of the polygon or computational
options, or scaling and translation of the image. Two related classes, scmapinv and
scmapdiff, allow the existence of abstract map inverses or derivatives as named
objects that can then be evaluated.

For the most part, the map classes implement functionality that was available
prior to the support of OO programming in MATLAB. Thus most of the map meth-
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Table III. Core methods for the classes in Table II.

classname Find parameters and construct map
eval, feval Evaluate map at point(s)
plot Plot an automated visualization
evalinv Evaluate the inverse of the map
evaldiff Evaluate the derivative of the map
display Pretty-print
parameters Extract map parameters
accuracy Accuracy estimate

ods are wrappers around older functions, which are still visible to the user in their
original form. This leads to a slightly awkward structure but allows compatability
with legacy code.

Finally, two other classes are occasionally convenient. The moebius class creates,
evaluates, and inverts a Möbius (also called fractional linear) transformation either
from its coefficients or by specifying the images of three points. The composite

class acts as a container for a sequence of SC, Möbius, and MATLAB-native inline
transformations.

3. ALGORITHMIC IMPROVEMENTS

Two major additions have been made to the toolbox’s available algorithms. One
of these is the CRDT algorithm [Driscoll and Vavasis 1998].

CRDT is useful because of the crowding phenomenon, which is a form of ill
conditioning common in computational conformal mapping [Gaier 1972; Menikoff
and Zemach 1980; Krikeles and Rubin 1988]. The canonical example of crowding
is the map from the unit disk to a rectangle of aspect ratio a. In such a map,
some pair of prevertices on the unit circle is separated by a distance that is an
exponentially small function of a. Hence it becomes difficult to compute the map
in the vicinity of such points accurately. A similar phenomenon results from any
elongated part of a target region P .

The CRDT algorithm overcomes crowding by efficiently representing the entire
family of possible maps to P . Members of the family are linked by self-maps of the
disk, and there is at least one family member that is well conditioned for maps to
any particular small subdomain of P .

Since CRDT tends to be more costly than the traditional mapping algorithm,
it is not used in the standard diskmap class of the SC Toolbox. Instead it is
offered in a separate class, crdiskmap, whose interface is essentially identical to
that of diskmap. A related class, crrectmap, creates a “rectified” map as described
in Driscoll and Vavasis [1998]. In this case the disk is an intermediate step to another
polygon whose boundary sides are parallel to the coordinate axes. Such a region is
convenient for grid generation or finite differences.

The other algorithmic addition to the Toolbox is the map to a Riemann sur-
face [Gilbarg 1949]. Let P be a surface on s sheets bounded by a polygon. The
map to P is a modification of (1):

f(z) = f(z∗) + c

∫ z

z∗

s−1∏
b=1

(ζ − zb)(ζ − z̄b)

n−1∏
k=1

(ζ − xk)αk−1 dζ, (2)

where z1, . . . , zs−1 are the preimages of the branch points of P . Unlike other map
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classes, riesurfmap does not support an inverse map at this writing, because of
the difficulty in finding all values of the multivalued inverse. The primary utility of
this map type is in support of the Laplace solver described in section 4.

4. SOLVING LAPLACE’S EQUATION

The most common and powerful application of conformal mapping is in the solution
of Laplace’s equation, which appears throughout engineering and physics [Henrici
1986; Costamagna 1987; Schinzinger and Laura 1991]. At a basic level, conformal
mapping can be used to simplify the geometry and facilitate discretization. How-
ever, for a very important class of boundary values, much more is possible. The
following description is loosely based on sections 5.1–5.3 of Driscoll and Trefethen
[2002].

Let P be a domain with polygonal boundary Γ. Let Γ = Γ1 ∪ · · · ∪ Γn be a
finite disjoint partition in which Γk is connected and bounded by endpoints wk and
wk+1. (Throughout this discussion we assume circular indexing, so for instance
wn+1 = w1 and Γ0 = Γn.) Each Γk may be thought of as a logical, but not
necessarily geometric, side of Γ. Let KD be a subset of indices from 1 to n and let
KN be its complement. We solve the boundary value problem

∆u = 0 in P, (3a)

u = uk on Γk, k ∈ KD, (3b)

∂u

∂n
= 0 on Γk, k ∈ KN . (3c)

The boundary conditions are piecewise constant with prescribed values (Dirichlet)
or zero normal derivative (homogeneous Neumann). These are the conditions that
are preserved by conformal mapping.1 For the following discussion (but not for the
coded algorithm) we assume that no two neighboring indices appear in KN and
that neighboring Dirichlet sides have different assigned values; in other words, we
choose our logical sides as coarsely as possible.

The solution can be computed in two overall stages. The first stage is an ordi-
nary SC map f(z) from the upper half-plane to the interior of P . The preimages
x1, . . . , xn−1,∞ of the logical vertices w1, . . . , wn of Γ are determined by the solu-
tion of a geometrically derived set of nonlinear equations.

In the second stage of the solution we further transform the upper half-plane
via map g(z) to a special region R. This region is constructed so that under the
composite map h = g ◦ f−1 from P to R, each Γk for k ∈ KD is transformed to a
vertical side of R, and each Γk for k ∈ KN is transformed to a horizontal side of
R. There are infinitely many ways to do this, but when g is chosen so that Re h
is bounded and Re h = uk on Γk for k ∈ KD, then it follows immediately that
u = Re h is the unique bounded solution to (3).

It is not hard to show that the second-stage transformation g is in fact another
SC map. Let κ = |KD|. If κ < 2 the solution is constant; otherwise there exists a

1In fact, a slightly more general form, in which the derivative is zero at a specified angle to Γk, is
also preserved and admits a direct solution. See Driscoll and Trefethen [2002] for details. However,
(3) is general enough for many applications.
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unique real polynomial p of degree no greater than κ − 2 such that

g′(z) = cp(z)

n−1∏
k=1

(z − xk)βk , (4)

where βk = −1 if k − 1 and k both belong to KD and βk = −1/2 otherwise.
The terms in the product simply ensure the appropriate transitions between logical
sides, while p(z) introduces geometric flexibility to R needed to impose the Dirichlet
values. Finally, c represents a global rotation: c = 1 if n − 1 ∈ KN and c = i
otherwise.

Furthermore, the coefficients of p can be determined by the solution of a set
of linear equations. By substituting each monomial 1, . . . , zκ−2 for p in (4) and
integrating between consecutive Dirichlet sides, one can create a square matrix M .
Since the real part of g is prescribed on the Dirichlet sides, the coefficients are
found by inverting Re M . This process can be thought of as a generalization of the
classical conformal modulus problem for quadrilaterals in the case κ = 2 [Henrici
1986] and has appeared before in different guises [Widom 1969; Versnel 1983; Lax
and Levermore 1983; Embree and Trefethen 1999].

Each real root of p creates a slit in the image R. By comparison to (2), we
see that each complex conjugate pair of roots creates a branch point in R, which
becomes multiple-sheeted. Note that this is possible only if κ > 3. This eventuality
creates no serious computational obstacles and simply means that u assumes some
values at more than one place in P .

In summary, finding the data needed to compute the solution to (3) requires
solving the standard SC parameter problem of size n, followed by a linear system
solution that takes an insignificant amount of time by comparison. Once the data
have been found, computation of u at a particular point of P requires one SC
formula inversion and one forward SC evaluation.

In the Toolbox, the user calls the function lapsolve with a polygon or map
object and a vector of boundary data. The result is of class composite and can be
evaluated at points in P . The triangulate method for polygons makes it easy to
quickly visualize the solution using the built-in trisurf or trimesh functions.

5. USAGE EXAMPLES

Once its file archive has been downloaded and extracted, the SC Toolbox can be
made available to MATLAB by adding its top-level directory to the MATLAB path
(for example, using addpath or pathtool within MATLAB).

The Toolbox is distributed with many sources of help: a user’s guide in PDF
format, online help accessible from the MATLAB command line using help or doc,
and a group of tutorials that can be run by typing scdemo. Most of the functions
of the Toolbox can be used from the graphical interface that is started by typing
scgui. In the rest of this section we give a few examples of using the Toolbox from
the command line, with an emphasis on the additions described in this paper.

Basic maps. Two examples of the basic process are shown in Figures 1 and 2.
Whether the command-line or the graphical interface is used, the overall process is
the same. First, a polygon is defined—that is, a polygon object is constructed. In
these examples the vertices are specified numerically, but often one would instead
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p = polygon([1 0.6 1 1i -1 -1i -0.4i -1i]);

f = center( diskmap(p), 0 );

plot(f)

eval(f,[0 0.1])

ans =

-0.0000 + 0.0000i 0.0377 - 0.0547i

eval( diff(f), 0)

ans =

0.3896 - 0.5526i

Fig. 1. Commands to construct and use a map from the disk, and the resulting visualization.

p = polygon([-1+1i -1-1i 2-1i 2 0 1i]);

f = rectmap(p,[1 3 4 6]); % specify corners

plot(f,8,4)

rectangle(f)

ans =

1.5708

1.5708 +11.1798i

-1.5708 +11.1798i

-1.5708

Fig. 2. Commands to construct and use a map from a rectangle.

draw them using polyedit, which can snap to a grid, discretize lengths and angles,
and cope with infinite vertices. Second, the parameter problem is solved and the
results are stored in a new map object. Finally, the map object can be evaluated,
differentiated, inverted, or visualized.

CRDT maps. In this example (Figure 3) both diskmap and rectmap would fail
due to multiple elongations in the target polygon. After crdiskmap succeeds, one
can find a conformally equivalent rectified region with the aid of a graphical interface
(not shown).

Laplace’s equation. Laplace’s equation is solved on a regular hexagon, with two
homogeneous Neumann sides and κ = 4 Dirichlet sides. (Figure 4). The boundary
conditions can also be specified interactively using a graphical interface (not shown)
that opens when they are not supplied in the call to lapsolve. The result of
lapsolve is a composite object consisting of the inverse of an SC map, a map
to a Riemann surface, and extraction of the real part. The image of the Riemann
surface map is the region R from section 4; in this example it has two sheets (the
upper left corner is covered twice). On an 800-MHz PC, finding the composite map
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arc = exp(i*pi*(0:10)/20);

p = polygon([0 fliplr(arc) 1.1*arc ...

2i -0.1+2i -0.1]);

plot(p)

f = crdiskmap(p);

fr = crrectmap(f); % opens a GUI

plot( rectpoly(fr) )

Fig. 3. Use of a CRDT map to rectify a polygon with multiple elongations.

p = polygon( exp(i*pi*(0:5)/3) );

u = lapsolve( p, [1 0 NaN 2 0 NaN] );

[tri,x,y] = triangulate(p,0.1);

ut = u(x+i*y);

trimesh(tri,x,y,ut)

[ class(u{1}), ’ , ’ class(u{2})]

ans =

scmapinv , riesurfmap

u{3}

ans =

Inline function:

ans(z) = real(z)

plot(polygon(u{2}))

−101
−1 0 1

0

1

2

0 1 2

−1

0

1

Fig. 4. Solution of Laplace’s equation on a hexagon. Shown are the solution and the derived
conformally equivalent image whose real part leads to the solution (arrows added to designate
sides going to infinity).

took about half a second and evaluating at the 407 points in the triangulation took
about 1.5 seconds. The results should be accurate to around six digits.
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