
SPECTRAL SPARSIFICATION FROM FIRST PRINCIPLES

by

Gifan Thadathil

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Honors Bachelor of Science in Computer
Science with Distinction

Spring 2018

c© 2018 Gifan Thadathil
All Rights Reserved

SPECTRAL SPARSIFICATION FROM FIRST PRINCIPLES

by

Gifan Thadathil

I certify that I have read this thesis and that in my opinion it meets the
academic and professional standard required by the University as a thesis
for the degree of Bachelor of Science.

Signed:
Sebastian Cioabă, Ph.D.
Professor in charge of thesis

Approved:
Felix Lazebnik, Ph.D.
Committee member from the Department of Mathematical Sciences

Approved:
Matthew DeCamp, Ph.D.
Committee member from the Board of Senior Thesis Readers

Approved:
Paul Laux, Ph.D.
Director, University Honors Program

ACKNOWLEDGMENTS

At first I would like to thank my thesis committee — Sebastian Cioabă, Felix

Lazebnik, and Matthew DeCamp — for allowing me the opportunity to write this

thesis. In particular, I want to acknowledge Dr. Cioabă for his mathematical insights

and help over the whole process. Despite his insistence on “serious student” behavior,

which I stubbornly refuse to exhibit, he makes an excellent advisor. At last, I would

like to thank friends and family for their endless encouragement and support, namely

in tolerating my disappearances.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vi
ABSTRACT . vii

Chapter

1 A FIRST LOOK . 1

1.1 Introduction . 1
1.2 A Means to Contain Data Explosion 3
1.3 Background . 4

1.3.1 Graphs . 4
1.3.2 Graphs and Matrices . 6
1.3.3 Symmetric Matrices . 7
1.3.4 Properties of the Laplacian . 11
1.3.5 Laplacian Inverse . 15

1.4 Formalizing the Problem . 19

1.4.1 Defining “Sparse” . 20
1.4.2 Defining “Approximate” . 21
1.4.3 Spectral Approximation as Eigenvalue Approximation 22
1.4.4 Spectral Approximation as a Generalization of Cut-Sparsifiers 24

1.5 A Generalization of Expander Graphs 25

2 ALGORITHM DESIGN . 30

2.1 A First Algorithm . 30

2.1.1 Chernoff Bounds . 31
2.1.2 Analysis . 36

2.2 Choosing Edges . 42

iv

2.3 Spectral Sparsification Using Effective Resistances 43

2.3.1 Modeling Resistance Networks 43
2.3.2 Effective Resistances . 47
2.3.3 Combinatorial Intuition for Effective Resistances 49
2.3.4 First Try at Sparsifying with Effective Resistances 55
2.3.5 A Better Algorithm for Sparsifying with Effective Resistances 61

3 FURTHER READING . 70

v

LIST OF FIGURES

1.1 The complete graph (Kn) where n = 8. It is called complete since
every possible edge is in the graph. 1

1.2 An example sparsification of a dense graph by randomly sampling its
edges with probabilities inversely proportional to the degrees of
endpoints. 2

1.3 A weighted butterfly graph to exemplify the basic definitions for
graphs. For example, 1 and 2 are adjacent vertices with an edge (1, 2)
with weight 10 connecting them. Furthemore, vertex 1 has degree 4. 5

1.4 The butterfly graph with its degree, adjacency, and Laplacian
matrices. 7

1.5 A graph with a bottleneck. 26

2.1 The barbell graph with n = 5 . 42

vi

ABSTRACT

Graphs are abstract mathematical objects used to model networks, and spectral

graph theory is the subfield studying matrices, eigenvalues, and eigenvectors associated

with graphs. We consider the spectral graph sparsification: the problem of construct-

ing sparse approximations of dense graphs with respect to spectral characteristics. We

provide an exposition of this problem from the ground up. We explore two motivations

for this problem: as a means to contains data explosion and as a generalization of

expander graphs. From here, we formalize the problem and provide three probabilistic

algorithms to construct spectral sparsifiers. This is done with incremental improve-

ment to demonstrate the intuitions and proof techniques underlying sparsification al-

gorithms. The first algorithm does simple random sampling with fixed probability, and

the other two algorithms make use of effective resistances, of which the latter employs

a law of large numbers technique.

vii

Chapter 1

A FIRST LOOK

1.1 Introduction

Graphs are combinatorial structures used to model networks, and more gen-

erally, relationships between objects. Graph theory is the subfield of mathematics

studying these structures. In this thesis, we consider the problem of spectral graph

sparsification in a principled manner. We shall make explicit, without loss of rigor,

the motivations and intuitions behind this problem, the accompanying definitions, and

some solutions. Along the way, we will comment on the proof techniques we employ.

Since graphs are abstract models, they are simple to define. Figure 1.1 gives

the standard visual representation of a graph. The dots represent objects and the

lines represent relationships between objects. A number of problems — scheduling

Figure 1.1: The complete graph (Kn) where n = 8. It is called complete since every
possible edge is in the graph.

[10], route-finding [12], molecular dynamics [21], web search [20], and data clustering

[27] to name a few — have graph-based solutions. As such, graphs are well studied

objects in mathematics. Indeed, mathematicians have attacked graphs through non-

graph theoretic means as well; algebraic, linear algebraic, probabilistic, and topological

methods have all been used to tease out results.

1

The field of spectral graph theory studies graphs by looking at the eigenvalues

and eigenvectors (generally referred to as the spectra) of their associated matrices.

Surprisingly, this method of analysis can relate a graph’s spectrum to various prop-

erties. If we take advantage of these facts, we arrive at solutions for some problems

that commonly appear in computer science. We will focus on the problem of graph

sparsification from the perspective of spectral graph theory.

Graph sparsification is the problem of approximating a dense graph with a

sparse graph. For now, sparse loosely refers to having relatively few lines. Conversely,

dense refers to having relatively many lines. Figure 1.2 visually demonstrates what

we want our sparsification algorithm to do. When we want to sparsify graphs without

changing its spectrum much, we call this problem spectral graph sparsification.

(a) The original graph. (b) Its sparse version.

Figure 1.2: An example sparsification of a dense graph by randomly sampling its edges
with probabilities inversely proportional to the degrees of endpoints.

As for the remainder of this chapter, Section 1.2 will discuss a practical mo-

tivation for this problem. Section 1.3 then gives the technical background needed to

understand the remainder of the thesis. Section 1.4 will define the problem more for-

mally and define exactly what will constitute a solution. At the end of this chapter,

Section 1.5 will provide a theoretical motivation for this problem. The second chapter

will discuss algorithms to construct sparse graphs from the ground up, and the final

2

chapter will provide a summary of related papers for the interested reader.

1.2 A Means to Contain Data Explosion

There are two perspectives motivating spectral graph sparsification: an applied

and theoretical perspective. To truly appreciate the theoretical perspective, we need

some background, so we will defer that discussion to Section 1.5. The applied perspec-

tive, however, is in our grasp. From this perspective, a practitioner sparisfies graphs

in order to mitigate the computational difficulties arising from data explosion.

Graphs are often treated as data structures in computer science, and so they

are often explicitly or implicitly constructed during software development. In general,

software will perform computations on these graphs. The runtime of these computa-

tions are necessarily dependent on the complexity of the graph. Here, “complexity” is

a catch-all referring to the size of the vertex set, size of the edge set, the graph density,

etc. Furthermore, the storage space for the graphs are inherently dependent on the

graph’s complexity as well. As the complexity of a graph increases, so does the runtime

and storage space. If we are lucky, the increase is only linear or near-linear. If we are

unlucky, the increases can be polynomial (with high degree) or even exponential. Of

course, this does not matter if graphs are relatively simple.

Unfortunately this premise does not hold. Technological improvements have

led to a so-called “Information Explosion.” This has spurred the development of “Big

Data,” a loose term referring to giant, growing data sets too large for traditional

techniques to handle, and the new techniques developed to address this deficiency [13].

It was estimated that in 2014, the world has the capacity to store 4.6 zettabytes 1 of

(optimally compressed) information [15]. Since graphs are major data structures, they

are only becoming more unmanageably complex, and computation speeds and storage

space are becoming greater issues.

1 This is roughly to 4284083843231 gigabytes!

3

These are remedied in part by increasing cloud computing/storage, GPU/parallel

computing, etc. But that only addresses the problem at the hardware level. At the soft-

ware level, the obvious way of addressing this problem is to develop better algorithms,

perform optimizations, etc. Another option is to somehow reduce the complexity of

graphs without too much loss in correctness. This is a sparsification problem. In-

deed, for any algorithm operating on a graph, we can simply add sparsification as

a preprocessing step as needed. In fact, spectral sparsification algorithms have been

used to construct fast solvers for diagonally-dominant systems of linear equations [25].

Moreover, this was the initial motivation behind studying such algorithms.

One could argue that sparsification algorithms are unnecessary since many

graphs appearing in the real-world are small-world graphs, which are very sparse

to begin with [11]. However, we should be able to account for dense graphs on the

off-chance we encounter one. After all, some algorithms involve the construction of

dense graphs. For example, spectral clustering algorithms can construct the complete

graph, which has maximum density. Therefore, we cannot get around needing to spar-

sify graphs. Indeed, spectral clustering performs well on spectral sparsified graphs [8].

We only need to sparsify fast enough to avoid substantial overhead.

1.3 Background

In this section, we give an overview of all technical background needed to un-

derstand the rest of the thesis. First, we will give some basic definitions about graphs.

Then we will discuss three basic matrices we can associate with a graph: the degree,

adjacency, and Laplacian matrices. Since they are all symmetric matrices, we will dis-

cuss some results about symmetric matrices next. Finally, we will discuss the Laplacian

in greater detail.

1.3.1 Graphs

Formally, a graph is a pair G = (V,E), where V is a set of vertices (dots) and

E is a set of edges (lines). We will typically drop the “(V,E)” to simplify notation.

4

We will also typically refer to a vertex with a single letter, for example v, but vertices

are indexed by natural numbers underneath. We will reserve the letter n to denote

the size of the vertex set. An edge is a pair (u, v) connecting vertices u and v, which

are called endpoints of the edge and neighbors of each other. When we do not need

to refer to the endpoints, we will write an edge as e. We will reserve the letter m to

denote the size of the edge set. The number of edges incident to, or connected to,

a vertex is called the degree of that vertex. We will typically use dv to refer to the

degree of vertex v. If all vertices of a graph have degree d, then we call that graphs

d-regular. We also say two vertices u, v are adjacent if they have an edge connecting

them. In this case, we write it as u ∼ v.

1

2

3

4

5

10

2

3.5

1

10 1

Figure 1.3: A weighted butterfly graph to exemplify the basic definitions for graphs.
For example, 1 and 2 are adjacent vertices with an edge (1, 2) with weight 10 connecting
them. Furthemore, vertex 1 has degree 4.

For this thesis, we assume all graphs are simple. A simple graph, has no

loops or multiple edges. A loop is an edge from a vertex to itself, and a graph has

a multiple edge if it contains more than one edge between a pair of vertices. Although

we restrict ourselves to simple graphs, we will consider weighted graphs. A weighted

graph is a triple (V,E,w) where w is a function from E to R, which associates a single

real-valued, non-negative weight to each edge. We will use we or wu,v to denote the

weight of an edge, and use (u, v, wu,v) to refer to a weighted edge. An unweighted

graph can be thought of as a weighted graph where all weights of edges are one and

weights of non-edges are zero. If G = (V,E) is a graph, and G′ = (V,E ′) is a graph

where E ′ ⊆ E, then we say G′ is a spanning subgraph of G. Finally, we say a graph

G is connected if for every two vertices u, v, there exists a path from u to v through

some sequence of edges existing in G.

5

1.3.2 Graphs and Matrices

There are three basic matrices that we will introduce first: the degree, adjacency,

and Laplacian matrices. In the unweighted case, the degree matrix encodes the degrees

of the vertices on diagonal elements, the adjacency matrix encodes when two vertices

are adjacent, and the Laplacian combines both of these. In the weighted case, terms

are simply multiplied by weights.

Note that we will use M(i, j) to refer to the element of matrix M at row i

and column j. To refer to a single row or column of M , we use M(i, ·) and M(·, j)

respectively. We give definitions for the more general weighted case since we switch

between unweighted and weighted graphs. Figure 1.4 exemplifies these definitions with

the unweighted butterfly graph. Finally, if we let G be a weighted graph with n vertices,

we can define the matrices as follows.

Definition 1.1: Degree Matrix

The degree matrix of G is a n× n matrix D indexed by vertices where

D(i, j) =


∑
`:`∼i

wi,` if i = j

0 otherwise.

where di is the degree of vertex i.

Definition 1.2: Adjacency Matrix

The adjacency matrix of G is a n× n matrix A indexed by vertices where

A(i, j) =

wi,j if i ∼ j

0 otherwise.

Definition 1.3: Laplacian Matrix

The Laplacian matrix of G is a n× n matrix L indexed by vertices where

L(i, j) =



∑
`:`∼i

wi,` if i = j

−wi,j if i ∼ j

0 otherwise.

6

We can easily see that L = D − A.

1

2

3

4

5

10

2

3.5

1

10 1

D =


16.5 0 0 0 0

0 20 0 0 0
0 0 12 0 0
0 0 0 4.5 0
0 0 0 0 2

A =


0 10 2 3.5 1
10 0 10 0 0
2 10 0 0 0

3.5 0 0 0 1
1 0 0 1 0

L =


16.5 −10 −2 −3.5 −1
−10 20 −10 0 0
−2 −10 12 0 0
−3.5 0 0 4.5 −1
−1 0 0 −1 2


Figure 1.4: The butterfly graph with its degree, adjacency, and Laplacian matrices.

1.3.3 Symmetric Matrices

A symmetric matrix is a matrix M , for which M = MT . The degree, adja-

cency, and Laplacian matrices are all symmetric. This is true for the degree matrix

since it only has diagonal elements, and it is true for the other two since we consider

undirected graphs (meaning (u, v) is an edge if and only if (v, u) is an edge). The

fact that these matrices are symmetric gives us a whole body of useful results to take

advantage of. One of the key facts about symmetric matrices we will use characterizes

their eigenvalues and eigenvectors.

Theorem 1.1. [26] If M is a real-valued n×n symmetric matrix, then it has n eigen-

values λ1, · · · , λn with corresponding eigenvectors u1, · · · , un. Furthermore, λ1, · · · , λn
are all real numbers, and u1, · · · , un form an orthonormal basis for Rn.

Theorem 1.1 is often given as a lemma to a final spectral theorem for symmetric

matrices. We will not use it directly, but it is useful to know.

Theorem 1.2. [26] If M is a real symmetric matrix, then M is orthogonally diag-

onalizable. That is, we can write M = PDP−1 where D is a diagonal matrix, and P

7

is an orthogonal matrix (meaning P T = P−1). Furthermore, P is the matrix with

eigenvectors of M making up the columns, and D has corresponding eigenvalues on the

diagonal elements.

The spectral theorem is useful because it allow us to derive the eigendecom-

position of a symmetric matrix:

M = PDP−1

= [λ1u1, · · · , λnun]P−1

λ1uiu
T
1 + · · ·+ λnunu

T
n

=
n∑
i=1

λiuiu
T
i . (1.1)

This is a useful representation of symmetric matrices.

We can also associate a quadratic function to every n×n symmetric matrix M .

This is called the quadratic form of M . It is a function q from Rn to R given by

q(x) = xTMx =
n∑
i=1

n∑
j=1

M(i, j)xixj.

We can further categorize symmetric matrices by the values xTMx takes. We say

that M is positive semi-definite if xTMx ≥ 0 for all x. Similarly, M is negative

semi-definite if xTMx ≤ 0 for all x. If we enforce a strict > or <, we say M is

positive definite and negative definite respectively. In Proposition 1.7 we show

the Laplacian is positive semi-definite, so we discuss such matrices in greater detail.

In particular, we can show that positive semi-definite behavior transfers over to the

eigenvalues as well.

Theorem 1.3. If M is a positive semi-definite matrix, and λ1, · · · , λn are its eigen-

values, then λi ≥ 0 for all i.

Proof. Let ui be the eigenvector cooresponding to λi. Then

Mui = λiui =⇒ λi =
uTi Mui
uTi ui

.

8

Since the numerator is non-negative by definitions, and the denominator is positive, it

follows that λi ≥ 0. �

The quadratic form does more than just relate to the eigenvalues. In fact, we can

write the smallest and largest eigenvalues as optimization problems on the Rayleigh

quotients of M , which are given by xTMx/xTx. Rayleigh quotients can be thought

of as the quadratic form “normalized” by the length of x.

Theorem 1.4. Let M be a n × n symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn.

Then

λ1 = min
x 6=0

xTMx

xTx
and λn = max

x 6=0

xTMx

xTx
.

Furthermore, the x obtaining the minimum and maximum are the eigenvectors of their

respective eigenvalues.

Proof. We will show the proof for λ1. The proof for λn follows from similar reasoning.

We will prove this by showing λ1 ≥ minx 6=0 x
TMx/xTx and λ1 ≤ minx 6=0 x

TMx/xTx.

Let u1, · · · , un be the eigenvectors for λ1, · · · , λn. If we plug in u1 into the Rayleigh

quotient and note u1 6= 0, we get

uT1Mu1

uT1 u1

=
uT1 λ1u1

uT1 u1

= λ1.

It follows easily that

λ1 ≥ min
x 6=0

xTMx

xTx
.

To show the other inequality, we note that since u1, · · · , un form an orthonormal basis

for Rn, we can write

x =
n∑
i=1

ciui

for all x ∈ Rn where ci ∈ R or all i. Therefore,

xTMx

xTx
=

(
∑n

i=1 ciui)
T
M (

∑n
i=1 ciui)

(
∑n

i=1 ciui)
T

(
∑n

i=1 ciui)

=
(
∑n

i=1 ciui)
T

(
∑n

i=1 ciMui)∑n
i=1

∑n
j=1(ciui)T (cjuj)

.

9

Since u1, · · · , un are orthonormal, uTi uj = 0 and ‖ui‖2 = 1. Using this it follows

xTMx

xTx
=

(
∑n

i=1 ciui)
T

(
∑n

i=1 ciλiui)∑n
i=1 c

2
i

=

∑n
i=1

∑n
j=1(ciui)

T (cjλjuj)∑n
i=1 c

2
i

=

∑n
i=1 c

2
iλi∑n

i=1 c
2
i

≥ λ1

∑n
i=1 c

2
i∑n

i=1 c
2
i

= λ1.

Since the xTMx/xTx ≥ λ1 for all x, we know

min
x 6=0

xTMx

xTx
≥ λ1.

Thus we have λ1 = minx 6=0 x
TMx/xTx as desired. Equality for λn follows through

similar reasoning. �

Corollary 1.4.1. For all x ∈ Rn,

λ1 ≤
xTMx

xTx
≤ λn

with the bounds being met for x = u1 and x = un respectively.

We can extend these results further. Not only are the minimum and maximum

eigenvalues given by optimizations on Rayleigh quotients; every eigenvalue is given by

dual optimizations on Rayleigh quotients.

Theorem 1.5. Courant-Fischer [14]

Let M be a n × n symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn. If Si = {S ⊆

Rn | dim(S) = i }, and Ti = {T ⊆ Rn | dim(T) = n− i+ 1 } are sets of i and n− i+ 1

dimensional subspaces of Rn respectively, then

λi = max
S∈Si

min
x6=0∈S

xTMx

xTx
= min

T∈Ti
max
x 6=0∈T

xTMx

xTx
.

10

1.3.4 Properties of the Laplacian

The definition of the Laplacian given before is simple, but there is a more useful

way to write the Laplacian.

Theorem 1.6. The Laplacian matrix of G can be written as

L =
∑

(u,v)∈E

wu,v(χu − χv)(χu − χv)T

where χi is the characteristic vector for vertex i containing 1 in the ith component

and 0 everywhere else.

Proof. We will only show one direction needed to prove equivalency to the original

definition. We derive this definition from L = D − A. To do this, we will construct a

matrix M and show M = L. Let M initially be the 0 matrix. Let us iterate over each

edge (u, v) in G. We need to do two operations. First we set M(u, v) and M(v, u) to

be −wu,v. Then we add wu,v to M(u, u) and M(v, v). We do each operation for two

elements in the matrix since an edge (u, v) is the same as (v, u). After doing this for

every edge, we have M = L.

From this description, we know M must be the sum of matrices constructed by

iterating over edges. That is,

M =
∑

(u,v)∈E

Mu,v.

Each term Muv in this sum will contain both operations for edge (u, v). We can perform

both operations in one calculation with (χu − χv). Note that (χu − χv) will have 1 in

coordinate u and −1 in coordinate v. If we let Mu,v be the outer product shown in the

theorem statement, we have

Mu,v(i, j) = [wi,j(χu−χv)(χu−χv)T](i, j) =


wu,v if i, j = u, or i, j = v

−wu,v if i = u and j = v or vice versa

0 otherwise.

11

In (1.3.4), we set the diagonal elements Mu,v(u, u) and Mu,v(v, v) to be wu,v, and the

elements Mu,v(u, v) and we set Mu,v(v, u) to be −wu,v with 0 everywhere else. This is

exactly what our two operations do. Thus we have

L =
∑

(u,v)∈E

wu,v(χu − χv)(χu − χv)T .

�

We write the Laplacian in this manner to gain an insightful way of writing the

quadratic form of the Laplacian:

xTLx = xT

 ∑
(u,v)∈E

wu,v(χu − χv)(χu − χv)T
x

=
∑

(u,v)∈E

wu,v(xu − xv)(xu − xv)

=
∑

(u,v)∈E

wu,v(xu − xv)2.

Furthermore, since xTLx is a sum of squares, we know xTLx ≥ 0 for all x, so we know

the following.

Proposition 1.7. L is positive semi-definite.

Still, we are not limited to the Laplacian representations given in Definition 1.3

and Theorem 1.6. We can also write the Laplacian in terms of the oriented incidence

matrix.

Definition 1.4: Oriented Incidence Matrix

An oriented incidence matrix of a graph G is a m×m matrix M . The rows of M are

indexed by edges and the columns are indexed by vertices. M is defined

M((i, j), v) =


1 if v = i

−1 if v = j

0 otherwise

where (i, j) is a directed edge and v is a vertex.

12

Theorem 1.8. If L is the Laplacian matrix of a graph G, and M is the oriented

incidence matrix of a graph, then L = MTWM where W is a m×m matrix with the

edge weights on the diagonal elements.

Proof. From the definition of matrix multiplication, we can write

[MTW](i, j) =
m∑
`=1

MT (i, `)W (`, j).

Using this we can write

[[MTW]M](i, j) =
n∑
k=1

[MTW](i, k)M(k, j)

=
n∑
k=1

m∑
`=1

MT (i, `)W (`, k)M(k, j).

When ` 6= k, we have W (`, k) = 0 since it is a diagonal matrix. Thus we only need to

iterate over k:

[[MTW]M](i, j) =
n∑
k=1

MT (i, k)W (k, k)M(k, j).

Now we consider two cases: when i = j and i 6= j. In the first case, we will get the

diagonal elements of L, and in the second case, we will get the non-diagonal elements.

Suppose i = j, then MT (i, k) = M(k, j) by definition of transposition. Since

M(k, i) is 1 or −1 when vertex i is incident to edge k and 0 when it is not incident,

we add 1 to the sum for each edge incident to i. Therefore [[MTW]M](i, j) = di when

i = j.

Now suppose that i 6= j. If k is incident to only one of i or j, or if k is incident

to neither, then MT (i, k) or M(k, j) or both are 0, so we do not contribute to the

sum. If k is incident to both i and j, then there exists an edge (i, j) in G. This

means MT (i, k) = 1 and M(k, j) = −1, or vice versa. In either case, we would add

−wi,j to the sum. There are no multiple edges, so there can only be one value of k

that produces the edge (i, j). Thus [[MTW]M](i, j) = −wi,j when i ∼ j. If no edge

(i, j) exists, then [[MTW]M](i, j) = 0. Putting both cases together, we notice that the

entries of MTWM is identical to the entries of L. �

13

We now present some basic results regarding the Laplacian’s spectrum. First,

we can relate the spectrum of the adjacency matrix to the spectrum of the Laplacian

matrix in the regular case.

Theorem 1.9. Let G be a d-regular graphs with adjacency matrix A and Laplacian

matrix L. If λ1 ≥ · · · ≥ λn are the eigenvalues of L with corresponding eigenvec-

tors u1, · · · , un, then d − λ1 ≥ · · · ≥ d − λn are the eigenvalues of A with the same

eigenvectors.

Proof. Let vi be the eigenvector of νi. By definition, Avi = νivi. Recall the Laplacian

can be defined as L = D − A. In the regular case, D = dI, so rearranging gives us

A = dI − L. Applying this to the definition of an eigenvalue gives us

Avi = νivi =⇒ (dI − L)vi = νivi =⇒ dvi − Lvi = νivi =⇒ Lvi = (d− νi)vi.

This shows us that d− νi is an eigenvalue of L with eigenvector vi. Because this holds

for all i, the ith largest eigenvalue of A, which is νi will correspond to the ith smallest

eigenvalue of L, which is λi. Thus λi = d− νi and ui = vi. �

To get a better idea of how to calculate the Laplacian’s eigenvalues, we will find

them for the complete graph Kn.

Theorem 1.10. Let Kn be the unweighted complete graph on n vertices, and let L

be the Laplacian of Kn. If λ1, · · · , λn are the eigenvalues of L, then λ1 = 0 and

λ2 = · · · = λn = n.

Proof. First we will show that λ1 = 0. Consider the all-ones vector 1 ∈ Rn with 1 in

every component. It follows that

L1 = 0 = 01.

This holds because the ith component of L1 has the sum of elements in row i of L.

Row i sums to 0 since L(i, i) = di while the di other elements in the row are −1.

14

Thus 0 is a eigenvalue of L with eigenvector 1. We know λ1 = 0 because L is positive

semi-definite and 0 is the smallest non-negative number.

Now let λ 6= λ1 be one of the other eigenvalues, and let u be its eigenvector. Let

v = Lu. Consider the ith component of v:

vi =
n∑
j=1

L(i, j)uj = L(i, i)ui +
∑
j 6=i

L(i, j)uj.

Note that since we have Kn is (n − 1)-regular, L(i, i) = n − 1. Furthermore, each of

L(i, j) = −1 since each edge exists in the graph. So now we have

vi = (n− 1)ui −
∑
j 6=i

uj

= nui − ui −
∑
j 6=i

uj

= nui −
n∑
j=1

uj.

Since L is symmetric, it has an orthonormal basis, so 1Tu = 0, which means
∑n

j=1 uj =

0. At last we have

vi = nui − 0 = nui

which means v = Lu = nu. Therefore n is an eigenvalue of L, and because we let λ

be any eigenvalue other than λ1, without loss of generality it follows that λ2 = · · · =

λn = n. �

1.3.5 Laplacian Inverse

The section header is lie — the Laplacian does not have a proper inverse. This

stems from the fact that 0 is one of its eigenvalues. But it is no issue. We will get

around this by defining a pseudo-inverse, which can still be used to solve for x when we

have Lx = b, albeit with some restrictions in place. Let L be a Laplacian matrix with

eigenvalues λ1, · · · , λn and respective eigenvectors u1, · · · , un. Recall (from equation

1.1) that the Laplacian exhibits the eigendecomposition. The decomposition for the

15

Laplacian is given below. Note that we ignore indexing from 1 since the first eigenvalue

is 0

L =
n∑
i=2

λiuiu
T
i

The definition of the Laplacian’s pseudo-inverse 2 is a clever modification of the eigen-

decomposition. The intution behind it is that the eigenvalues of M−1 are the inverses

of the eigenvalues of M whenever such an inverse exists.

Definition 1.5: Laplacian Pseudo-inverse

The (Moore-Penrose) pseudo-inverse of M is given by

L+ =
n∑
i=2

1

λi
uiu

T
i .

Despite looking like an inverse, it is not readily apparent why L+ should act

like an inverse. This particular fact can be derived from discussion of kernel spaces,

projection matrices, and orthogonal complements. The first fact we need to use is that

L and L+ have the same kernel spaces.

Theorem 1.11. If L is the Laplacian matrix of a connected graph, and L+ is its

pseudo-inverse, then ker(L) = ker(L+)

Proof. Recall that the kernel and image of L are defined as follows:

ker(L) = {x ∈ Rn | Lx = 0 }

im(L) = {Lx | x ∈ Rn }.

Let the eigenvalues of L be λ1 ≤ · · · ≤ λn with corresponding eigenvectors u1, · · · , un.

Consider its eigendecomposition:

L =
n∑
i=2

λiuiu
T
i .

2 The pseudo-inverse can actually be defined for any symmetric matrix since they all
exhibit an eigendecomposition.

16

Recall that 1, the all-ones vector, is the eigenvector corresponding to λ1, the only zero

eigenvalue. This means that ker(L) = span(1). We want to show ker(L+) = span(1)

as well.

Let x ∈ span(1), then we can write x = c1 for some scalar c. It follows that

L+x =
n∑
i=2

1

λi
uiu

T
i x

=
n∑
i=2

1

λi
uiu

T
i c1

=
n∑
i=2

c

λi
uiu

T
i 1.

Due to the orthonormal nature of the eigenvectors L, we know uTi 1 = 0, for all i. This

means each term in the summation becomes zero, so

L+x = 0.

This proves that span(1) ⊆ ker(L+). The argument for the other direction is the same,

just ran in reverse. Take some non-zero x in the ker(L+), the summation terms must

be 0. For this to be the case, it must be orthogonal to all the eigenvectors. Only

something in span(1) could satisfy that. �

Next we need to show that the image and kernel of L are orthogonal comple-

ments.

Theorem 1.12. If L is a Laplacian matrix, then ker(L) and im(L) are orthogonal

complements.

Proof. Recall that we say two subsets V,W ⊆ Rn are orthogonal complements if,

for all v ∈ V and w ∈ W , it holds that vTw = 0. Let x ∈ ker(L), and let x′ ∈ im(L).

By definition, Lx = 0 and Ly = x′ for some y ∈ Rn. We want to show xTx′ = 0. Since

L is symmetric L = LT , so

xTx′ = xTLy = (Ly)Tx = yTLTx = yTLx = yT0 = 0.

�

17

Now we can demonstrate the first inverse-like property of L+. If M−1 is an

inverse for matrix M , it means that M−1M = MM−1 = I by definition. We can show

that L+L and LL+ exhibit something similar. If we try to calculate LL+, we find that

LL+ =

(
n∑
i=2

λiuiu
T
i

)(
n∑
i=2

1

λi
uiu

T
i

)

=
n∑
i=2

n∑
j=2

λi
λj
uiu

T
i uju

T
j .

Since the eigenvectors of L are orthogonal, when i 6= j, we have uTi uj = 0, so we write

LL+ =
n∑
i=2

n∑
j=2

λi
λj
uiu

T
i uju

T
j

=
n∑
i=2

ui‖ui‖2uTi

=
n∑
i=2

uiu
T
i

as the eigenvectors are all normal as well. Identical reasoning tells us that

L+L =
n∑
i=2

uiu
T
i

This demonstrates that we can cancel out the eigenvalue terms, but we are

still left with the outer products of eigenvectors. This term looks nothing like I, but

underneath it functions almost identically to the identity. This is why we call L+ an

inverse as well. The matrix L+L acts like the identity because it is a projection matrix.

We say a square n× n matrix M is a projection matrix if M2 = M .

Theorem 1.13. A projection matrix M is an identity for its image. That is, if x ∈

im(M), then Mx = x.

Proof. Let x ∈ im(P), then My = x for some y ∈ Rn. Therefore

Mx = MMy = M2y = My = x.

�

18

We know L+L is a projection matrix since

(L+L)2 =

(
n∑
i=2

uiu
T
i

)(
n∑
i=2

uiu
T
i

)

=
n∑
i=2

n∑
j=2

uiu
T
i uiu

T
i

=
n∑
i=2

ui‖ui‖uTi

=
n∑
i=2

uiu
T
i

just like before, so L+L is the identity on im(L+L), but it is more as well. Through

similar reasoning as given in Theorem 1.11, we can show that ker(L+L) = ker(L).

Since the kernel and image are orthogonal complements and the matrices have the

same dimensions, we have im(L+L) = im(L). Thus it follows that L+L acts as the

identity on im(L) as well.

Finally, if we have Lx = b, then b ∈ im(L). Since its in the image, b is orthogonal

to 1 ∈ ker(L). If b 6= 0, then x cannot be in ker(L). Because the union of the image

and kernal becomes Rn and x ∈ Rn, x must be in im(L) as well. Since L+L acts as the

identity on im(L), we know

Lx = b =⇒ L+Lx = L+b =⇒ x = L+b.

Thus we can conclude that whenever b ⊥ 1, we can solve for x in Lx = b.

1.4 Formalizing the Problem

Formally, let G be a connected, unweighted, and simple graph. Also let G̃ be a

weighted subgraph of G. We will say that G̃ is a sparsifier of G if G̃ is sparse and

approximate to G. 3 In this section, we will flesh out this definition by considering

what it means to be “sparse” and “approximate.”

So far, we have assumed that our sparsifier only has less edges than the original

graph. It could very well be the case that a sparsifier contains fewer vertices as well.

3 We will use the tilde notation to refer to the sparse versions of objects.

19

However, we will limit ourselves to former case for two reasons. In practice, it is

often the case that we can say a relationship (edge) between two objects (vertices) is

unimportant enough to disregard its existence, but rarely can we disregard an object’s

existence. Furthemore, there are few linear algebraic tools for comparing spectras of

graphs with differing number of vertices. Indeed, if G and H have a different number

of vertices, they will have a different number of eigenvalues and eigenvectors.

1.4.1 Defining “Sparse”

A connected sparse graph can be defined in various, similar ways. The sparsest

connected graph is a tree, which has n vertices and n−1 edges. If we remove any edge

from a tree, it becomes disconnected. Conversly, the least sparse graph is the complete

graph on n vertices, which has an edge between every pair of vertices. This amounts

to
(
n
2

)
edges. So perhaps, we can define the sparsity of G by taking the ratio

m(
n
2

) or
m

n− 1
.

Alternatively, we say G is sparse, if we can provide an upperbound on the

number of edges it has. Perhaps, we can put an upperbound on the maximum or

average degree. Another popular option is to show that the number of edges of G is

O(n) 4 . Any of these definitions work since they are all related, but we will settle with

providing an upperbound on the number of edges since everything else depends on it.

Definition 1.6: c-sparse

We say a graph G is c-sparse if m ≤ c ≤
(
n
2

)
. Note that c can be written as a function

of the graph. For example we can say c = kn for some integer k.

Historically, the goal is to produce sparse graphs where the number of edges is

linear in the size of the vertices. That is, there should be O(n) edges in the sparse

4 A non-negative function f(x) is O(g(x)) if there exists x0 ∈ R and positive k ∈ Rn

such that f(x) ≤ kg(x) for all x ≥ x0. This is a manner of characterizing asymptotic
behavior of functions called Big-O notation.

20

graph. Once we have a concrete analysis of algorithms, we will abstract the complexity

away and characterize the algorithms in terms of asymptotics.

1.4.2 Defining “Approximate”

This is a far more difficult question to answer. It has a variety of answers, and

the correct one to choose — context dependent. This is due to the nature of graphs. For

some mathematical objects, it is easy to define approximation. For example, one real

number approximates another real number if they are close in value. As the complexity

of the object increases, so do the number of ways we can define approximation. For

example, if we wanted to approximate a vector x, we could say y approximates x if

‖y − x‖ is small. Alternatively, we could say y approximates x if their Euclidean

angle is small. Graphs have hidden complexity, and we can define approximation with

respect to many properties. In any case, the notion of approximation we use should be

appropriate for our use-case and capture something in our intuition.

Before, we discuss exactly what our property P (G) is, we will formalize our

notion of similarity. Because we want to compare P (G) to P (G̃), it will be useful to

assume P (G) and P (G̃) are real numbers. This will allow us to use the usual comparison

operations (<, >, etc). Furthermore, many graph properties are real numbers. As with

integers, if P (G̃) is closer in value to P (G), then G̃ is a better approximation of G. We

can mathematically write this as

P (G)− a ≤ P (G̃) ≤ P (G) + b

where a and b are positive and define bounds on how far away P (G̃) can be from P (G).

This is often called absolute error. If we instead write

aP (G) ≤ P (G̃) ≤ bP (G)

then we have relative error. The latter form of approximation is more prevalent, so

we will use it as well. Indeed, the goal is to have a = 1−ε and b = 1+ε with 0 ≤ ε ≤ 1.

Historically, the first notion of approximation was explored by Chew [9]. He

studied graph spanners, which approximate the shortest-path distances between any

21

two vertices in the original graph within a factor of two (a = 1, b = 2). Next, Benczúr

and Karger studied cut-sparsifiers, which approximate the weight of cut-sets over

all possible cuts [5]. The notion of sparsification we will consider, called spectral

sparsification, are a generalization of cut-sparsifiers introduced by Spielman and Teng

[24]. They do not separate the notions of approximation and sparse when discussing

spectral sparsifiers as we have, so our definition of spectral approximation is a slight

modification of the original definition.

Since we want to approximate the spectral characteristics of a graph, a good

first choice for the approximation property is to approximate the eigenvalues of G. Per-

haps, we can generalize, and try to approximate the entire image of the characteristic

polynomial. We will do better, however, by approximating the image of the Laplacian

quadartic form instead.

Definition 1.7:

Let G and H be graphs, and let LG and LH be their Laplacians respectively. We say

that H is (a, b)-spectral approximation to G if and only if for all x ∈ Rn

a(xTLGx) ≤ xTLHx ≤ b(xTLGx)

where a, b are constants with b ≥ a. To simplify notation, this property is sometimes

written as

aLG � LH � bLG.

1.4.3 Spectral Approximation as Eigenvalue Approximation

At first, it is not obvious why we would consider the quadratic form to approx-

imate spectral characteristics over directly approximating the eigenvalues. But if we

recall Courant-Fischer (Theorem 1.5), it becomes rather intuitive.

Theorem 1.14. Let G and H be graphs, and let LG and LH be their Laplacians

respectively. If H is an (a, b)-spectral approximation of G, then

aλGi ≤ λHi ≤ bλGi

22

where λGi and λHi are the ith smallest eigenvalues of LG and LH respectively.

Proof. Since H is a (a, b)-spectral approximation of G

a(xTLGx) ≤ xTLHx ≤ b(xTLGx)

Dividing all the way through by xTx gives us

a
xTLGx

xTx
≤ xTLHx

xTx
≤ b

xTLGx

xTx
(1.2)

for all x ∈ Rn − {0}. Recall that Courant-Fischer (Theorem 1.5) tells us

λGi = max
S∈Si

min
x∈S−{0}

xTLGx

xTx

where Si = {S ⊆ Rn | dim(S) = i } is the set of i-dimensional subspaces of Rn.

Consider some arbitrary S ∈ Si. If xS minimizes

min
x∈S−{0}

xTLGx

xTx

then by (1.2), we have

min
x∈S−{0}

xTLHx

xTx
≤ xTSLHxS

xTSxS
≤ b

xTSLGxS
xTSxS

= b min
x∈S−{0}

xTLGx

xTx
. (1.3)

This tells us that the minimum Rayleigh quotient over S in LH is less than or equal to

b times the minimum Rayleigh quotient over S in LG for all S ∈ Si.

Now let uHi be the eigenvector corresponding to λHi . By Courant-Fischer, we

know there exists S ′ ∈ Si such that

λHi =
(uHi)TLH(uHi)

(uHi)T (uHi)
= min

x 6=∈S′

xTLHx

xTx
.

By (1.3) and Courant-Fischer, this means that

λHi = min
x∈S′

xTLHx

xTx
≤ b min

x∈S−{0}′

xTLHx

xTx
≤ bmax

S∈Si

min
x∈S−{0}

xTLGx

xTx
= bλGi .

This line of reasoning, which utilizes the max-min formulation of Courant-Fischer,

gives us the right side of the inequality. Through similar reasoning with the min-max

formulation of Courant-Fischer, we can get the left side of the inequality. �

23

1.4.4 Spectral Approximation as a Generalization of Cut-Sparsifiers

We can also show that every spectral approximation of G is a cut-sparsifier of

G as well. A cut of G is a partition of V into two sets S and V − S. Since we only

need to choose S for the cut, we will typically refer to a cut by S. We have a proper

cut if 0 < |S| < n, meaning it is not the empty set. When iterating over all possible

cuts, we will typically enforce 0 < |S| < n/2, so we only consider proper cuts and avoid

repeating partitions.

The boundary E(S, V − S) is equal to the set of edges going between the two

sets: E(S, V − S) = { (u, v) | u ∈ S and v ∈ V − S }. The boundary size of a cut is

given by

∂(S, V − S) =
∑

(u,v)∈E(S,V−S)

wu,v.

A cut-sparsifier approximates the boundary. That is, we say H is a (a, b)-cut-sparsifier

of a graph G if for all cuts S

a∂G(S, V − S) ≤ ∂H(S, V − S) ≤ b∂G(S, V − S).

We will show that we can get exactly this inequality when H is an (a, b)-spectral

approximation of G.

Theorem 1.15. If H is a (a, b)-spectral approximation of G, then H is a (a, b)-cut-

sparsifier of G as well.

Proof. Let S be a cut, and define the characteristic vector of S be a vector y where

yi = 1 if vertex i ∈ S and yi = 0 otherwise. Recall that

yTLy =
∑

(u,v∈E)

wu,v(yu − yv)2.

If u, v ∈ S or u, v ∈ V − S, then (yu − yv)2 is 0. If u and v are in different partitions,

then (yu− yv)2 is 1. But such an edge would be in the boundary of S. Therefore yTLy

gives the boundary size of S.

Since H is a (a, b)-spectral approximation of G, it holds that

a(xTLGx) ≤ xTLHx ≤ b(xTLGx)

24

for all x ∈ Rn. Since the characteristic vector y is in Rn it follows that

a∂G(S, V − S) ≤ ∂H(S, V − S) ≤ b∂G(S, V − S).

�

This theorem demonstrates that spectral approximation is a stronger property

5 than that of cut-sparsifiers since we get a property that says something for every

possible x ∈ Rn, not just characteristic vectors.

Now that we have formalized notions of sparseness and approximation, we can

define what it means to be a spectral sparsifier.

Definition 1.8: Spectral Sparisfier

We say that a graph G̃ is a (a, b, c)-spectral sparsifier of a graph G if Ẽ is a (possibly

reweighted) subset of E, G̃ is an (a, b)-spectral approximation of G, and G̃ is c-sparse.

1.5 A Generalization of Expander Graphs

In Section 1.2 we discussed why spectral sparsification is of practical interest.

In this section, we will demonstrate that spectral sparsifiers generalize the notion of

expander graphs, thereby being of theoretical interest as well.

Expanders are informally defined as highly connected, but sparse regular graphs

[16]. They have heavy use in computer science applications. For example consider a

simple network system between computers. We can model this network with a graph

if we let computer systems be vertices and wires between them be edges. We want

to send packets between systems quickly (highly connected), but we do not want to

introduce direct lines between every two systems (sparse). An expander graph would

give us a good layout for the wires in this case.

They can be formally defined in different ways depending on our choice of ex-

pansion parameter. The expansion parameter should be a graph property related to

5 Interestingly, the theorem statement is worded to say that a spectral sparisifer is a
special case of a cut sparsifier, but the approximation property is more general in the
former than in the latter, so we are inclined to say the former generalizes the latter.

25

the connectivity of the graph. By giving k as a lower bound on the expansion parame-

ter, we say that G is “highly connected.” By forcing G to be d-regular, we can say that

G is sparse. Of course, both of these statements only hold practically for appropriately

high and low values of k and d respectively.

Definition 1.9:

A d-regular graph G is an expander graph if it has expansion parameter at least c,

for some choice of expansion parameter.

To choose our expansion parameter, we first need an intuition of what it means

for a graph to be highly connected. Let us consider the most connected of graphs:

the complete graph Kn, which has edges between every two vertices. It would seem

that the number of edges in the graph is a good expansion parameter. This is a naive

choice, however, as most of the edges could be in only some part of the graph as in

Figure 1.5. This graph has 10 vertices, but is 3-regular, so it is fairly sparse. But it

does not appeal to our intuition about highly connected graphs. It is highly connected

left and right of the center, but the left most vertices are not easily connected to the

right most vertices. This is due to the single center edge which acts as a bottleneck.

The graph would be better connected if we removed an edge from the left and right

parts, and added an edges between the parts, so we have more than a single edge going

between the parts.

Figure 1.5: A graph with a bottleneck.

This notion of parts is the same as our notion of cuts discussed in Section 1.4.4.

A definition for our expansion parameter would be to look at how much “bottleneck

factor” appears in the graph. The original and popular definition for the expansion

property is the isoperimetric number.

26

Definition 1.10:

The isoperimetric number (also called the Cheeger constant) of a graph G is

given by

h = min
0<|S|≤n

2

|E(S, V − S)|
|S|

.

We can think of the isoperimetric number as the number of edges in the most

restrictive bottleneck between two parts of G. The isoperimetric number of Kn is n−1,

so G is more connected if h is closer to n − 1. Despite its intutive definition, compu-

tational issues can arise when using it. The problem of computing the isoperimetric

number is in CO-NP-Hard [16], which means it is NP-Hard to determine whether a

number is not the isoperimetric number of a graph. That is good reason to believe its

NP-Hard to compute the isoperimtric number. To get around this, we can define our

expansion parameter to be the spectral gap.

Definition 1.11:

Let G be a graph with adjacency matrix A, and let ν1 ≥ ν2 ≥ · · · ≥ νn be the eigenvalues

of A. The spectral gap of G is defined as ν1 − ν2. If G is d-regular, then ν1 = d, so

the spectral gap is d− ν2.

The spectral gap is used to approximate the isoperimetric number due to the

following theorem, which shows that the spectral gap can be used to provide lower and

upper bounds to the isoperimetric number.

Theorem 1.16. Alon-Milman [3] Let G be a graph with adjacency matrix A, and let

ν1 ≥ ν2 ≥ · · · ≥ νn be the eigenvalues of A. If h is the isoperimetric number of G, then

d− ν2

2
≤ h ≤

√
2d(d− ν2).

The advantage of the spectral gap is that it is written in terms of the eigenvalues,

which are known to be computable in polynomial time by a number of algorithms. The

problem of constructing expander graphs has been well-studied (see [16] for a survey on

expanders), but it is still an open problem to construct the best expanders of arbitrary

degree. These “best expanders” are called Ramanujan Graphs.

27

Definition 1.12:

A d-regular graph G with adjacency matrix eigenvalues d = ν1 ≥ · · · ≥ νn ≥ −d is a

Ramanujan graph if ν(G) ≤ 2
√
d− 1 where ν(G) = max1<i<n|νi|.

We will demonstrate how spectral sparsification is more general notion than

expansion by showing that Ramanujan graphs are spectral sparsifiers for the complete

graph. If we find algorithms to construct spectral sparsifiers, then we can sparsify

arbitrary graphs.

Theorem 1.17. If G̃ is a Ramanujan graph with n vertices where each edge has weight

n/d, then G̃ is an (a, b, c)-spectral sparsifier for Kn where

a = 1− (2
√
d− 1/d)

b = 1 + (2
√
d− 1/d)

c = nd/2.

Proof. The Laplacian eigenvalues ofKn are 0 with multiplicity 1 and n with multiplicity

n− 1, so

0 ≤ xTLx ≤ n

for all x ∈ Rn. Let us momentarily assume, for the sake of argument, that G̃ is

unweighted. In this setting, we let ν1 ≥ · · · ≥ νn be the eigenvalues of Ã. Therefore

|νi| ≤ 2
√
d− 1 for all i as G̃ is a d-regular Ramanujan graph. We can also write this

as

−2
√
d− 1 ≤ νi ≤ 2

√
d− 1. (1.4)

Therefore, if λ1 ≤ · · · ≤ λn are the Laplacian eigenvalues of G̃, then

d− 2
√
d− 1 ≤ λi ≤ d+ 2

√
d− 1 (1.5)

still assuming that G̃ is unweighted.

Now we continue with the original assumption that G̃ is weighted and all the

weights are n/d. In this setting,

xT L̃x =
∑

(u,v∈Ẽ)

wu,v(xu − xv)2 =
n

d

∑
(u,v∈Ẽ)

(xu − xv)2 =
n

d
(xT Ũx)

28

where Ũ is the Laplacian for G̃ when it is unweighted. We already looked at the

Laplacian eigenvalues in the unweighted setting; by (1.5), we know

d− 2
√
d− 1 ≤ xT Ũx ≤ d+ 2

√
d− 1

for all x ∈ Rn. For the weighted case we only move the interval by the constant n/d,

so we distribute 1/d to get

n

(
1− 2

√
d− 1

d

)
≤ xT L̃x ≤ n

(
1 +

2
√
d− 1

d

)
for all x ∈ Rn. We can rewrite this as(

1− 2
√
d− 1

d

)
xTLx ≤ xT L̃x ≤

(
1 +

2
√
d− 1

d

)
xTLx.

Thus G̃ is a (1− (2
√
d− 1/d), 1 + (2

√
d− 1/d))-spectral approximation of Kn.

Since G̃ is d-regular, it has nd/2 edges, so G̃ is (nd/2)-sparse. It is also necessar-

ily true that the edges of G̃ are a subset of Kn since Kn has every possible edge. Putting

it all together, we can conclude that G̃ is a (1− (2
√
d− 1/d), 1 + (2

√
d− 1/d), nd/2)-

spectral sparsifier for Kn. �

29

Chapter 2

ALGORITHM DESIGN

2.1 A First Algorithm

In the previous sction, we formed a well-defined notion of what it means for a

graph to be a spectral sparsifier of another graph. Now we want to develop algorithms

to construct spectral sparsifiers of arbitrary graphs. In this chapter, we start with a

very simple algorithm for spectral sparsification, demonstrate some proof techniques,

and analyze this first procedure to understand what considerations we should undertake

to design a better algorithm.

Since sparsification amounts to choosing certain edges of a graph, the easiest

way to sparsify a graph is to sample the edges with some probability. In our case, we

will look at each edge of G and choose to include it in G̃ with probability p. Intuitively,

this should get us a sparse graph (for appropriately low values of p). However, this

does not necessarily get us a good spectral sparsifier. Recall that the quadratic form

of the Laplacian can be written as

xTLx =
∑

(u,v)∈E

wu,v(xu − xv)2.

If we only add some of the edges from G to G̃, it is easy to see that xT L̃x will have

fewer terms in the sum and thus be smaller. But a spectral sparsifier approximates,

not underestimates, xTLx with xT L̃x. To make up for this, we reweight the edges we

do keep in G̃. This bumps up the values contributed to the sum by the edges we do

keep. We can derive exactly what choice of weight we should use from trying to satisfy

certain properties.

30

In particular, we want to ensure that we have nice expectations in the quadratic

form. That is, we want E [xT L̃x] = xTLx for all x. If we treat the new weights wu,v as

random variables, it follows from linearity of expectations that

E
[
xT L̃x

]
= xTLx ⇐⇒

∑
(u,v)∈Ẽ

E [wu,v](xu − xv)2 =
∑

(u,v)∈E

(xu − xv)2

This means we need E [wu,v] = 1. This requirement is easily satisfied by reweighting

the edges of G with the following scheme:

wu,v =


1
p

if we choose (u, v) with probability p

0 otherwise

.

The algorithm in full detail is given in Algorithm 1. It iterates over each edge in G

and chooses whether or not to include it in G̃ with probability p. We will prove its

correctness, but first we need to introduce Chernoff bounds, a proof technique essential

to our analysis.

Algorithm 1 Basic Random Sampling

Require: G = (V,E) is a connected, simple graph
Require: p is in (0, 1)

function basic-random-sample(G, p)

Ẽ ← ∅
G̃← (V, Ẽ)
for all (u, v) ∈ E do

includeEdge?← true with probability p
if includeEdge? then

G̃← (V, Ẽ ∪ (u, v, 1/p))
end if

end for
return G̃

end function

2.1.1 Chernoff Bounds

Chernoff bounds are an incredible tool of probability theory. They are used

to bound the probability that a random variable given as the sum of other random

31

variables lies on the tail end of its distribution. Chernoff bounds can be derived by

applying Markov’s Inequality on the exponentiation of random variables.

Markov’s inequality and Chernoff bounds are part of a family of theorems called

“concentration inequalities” that allow one to bound the probability a random variables

is far from some value. Proofs for the inequalities stated here and for many others can

be found in [6]. We will introduce the basic bounds in detail since they are central to

some of our arguments.

Theorem 2.1. Markov’s Inequality

If X is a random variable taking non-negative values, and a > 0 is some constant,

then

Pr [X ≥ a] ≤ E [X]

a
.

Proof. For the sake of generality, we will assume X is continuous as well. In this case

E [X] =

∫ ∞
0

xf(x)dx

where f(x) is the probability density function for X. It follows that

E [X] =

∫ ∞
0

xf(x)dx

=

∫ a

0

xf(x)dx+

∫ ∞
a

xf(x)dx

≥
∫ ∞
a

xf(x)dx

≥
∫ ∞
a

af(x)dx

= aPr [X ≥ a].

Thus we have

Pr [X ≥ a] ≤ E [X]

a
.

�

32

Theorem 2.2. Chernoff Bound on Bernoulli Variables

Let X1, · · · , Xn be independent random Bernoulli variables where Xi = 1 with proba-

bility p and Xi = 0 with probability 1 − p. If X =
∑n

i=1 Xi and µ = E [X] = np, then

for all 0 ≤ ε ≤ 1

Pr [X ≤ (1− ε)µ] ≤ exp

(
−ε

2µ

3

)
and

Pr [X ≥ (1 + ε)µ] ≤ exp

(
−ε

2µ

3

)
.

Proof. We will only prove the part involving (1+ε). The other statement can be proved

through a similar argument. To begin we observe that

Pr [X ≥ (1 + ε)µ] = Pr [exp(tX) ≥ exp(t(1 + ε)µ)]

for any t ≥ 0. By Markov’s inequality, we have

Pr [X ≥ (1 + ε)µ] ≤ E [exp(tX)]

exp(t(1 + ε)µ)
. (2.1)

Due to the definition of X and the independence of Xi, we can calculate the numerator

with

E [exp(tX)] = E [exp(tX1 + · · ·+ tXn)] =
n∏
i=1

E [exp(tXi)].

Since Xi is a Bernoulli variable, it follows that

E [exp(tXi)] = p(exp(t)) + (1− p)exp(0) = 1 + p(exp(t)− 1).

It is a well known result that 1 + x ≤ exp(x) for any choice of x. Using this we can

find that

E [exp(tXi)] = 1 + p(exp(t)− 1) ≤ exp(p(exp(t)− 1)).

33

Combining the E [exp(tXi)], we can write

E [exp(tX)] =
n∏
i=1

E [exp(tXi)]

≤
n∏
i=1

exp(p(exp(t)− 1))

= exp(np(exp(t)− 1))

= exp(µ(exp(t)− 1))

since µ = np. Now that we have bounded E [exp(tX)], we can further bound (2.1)

Pr [X ≥ (1 + ε)µ] ≤ E [exp(tX)]

exp(t(1 + ε)µ)
≤ exp(µ(exp(t)− 1))

exp(t(1 + ε)µ)
. (2.2)

So far we have related the probability that X deviates from its expected value to

some exponential. But we did this by introducing some variable t. In order to get the

bound on the probability to be as tight as possible, we need to find t that minimizes

the upper bound. The minimum is given by t = ln(1 + ε). The proof of this particular

fact is beyond our scope, but it is straightforward task in optimization. Substituting

this value of t in (2.2) gives us

Pr [X ≥ (1 + ε)µ] ≤ exp(µ(exp(ln(1 + ε))− 1))

exp(ln(1 + ε)(1 + ε)µ)

=
exp(µε)

(1 + ε)(1+ε)µ

=

(
exp(ε)

(1 + ε)(1+ε)

)µ
. (2.3)

Often times Chernoff bound theorems are given with this sort of bound, but it is not

particularly easy to use in practice. We will derive a looser, more convenient bound by

finding a lower bound for (1 + ε) ln(1 + ε).

Consider the Taylor series expansion of ln(1 + ε):

ln(1 + ε) =
∞∑
i=1

(−1)i+1 ε
n

i
≥ ε− ε2

2
+
ε3

3
.

34

We can substitute this into the original expression to get

(1 + ε) ln(1 + ε) ≥ (1 + ε)(ε− ε2

2
+
ε3

3
)

= ε+ (ε2 − ε2

2
) + (

ε3

3
− ε3

2
) +

ε4

3

≥ ε+ (ε2 − ε2

2
) + (

ε3

3
− ε3

2
)

= ε+
ε2

2
− ε3

6
.

If we also assume 0 ≤ ε ≤ 1, then ε3 ≤ ε2, so

(1 + ε) ln(1 + ε) ≥ ε+
ε2

2
− ε3

6

≥ ε+
ε2

2
− ε2

6

= ε+
ε2

3
.

Using this as a lower bound in (2.3), we finally have

Pr [X ≥ (1 + ε)µ] ≤
(

exp(ε)

exp(ln(1 + ε)(1 + ε))

)µ
≤
(

exp(ε)

exp(ε+ (ε2)/3)

)µ
= exp

(
−ε

2µ

3

)
as desired. Through similar reasoning we can shown

Pr [X ≤ (1− ε)µ] ≤ exp

(
−ε

2µ

3

)
�

We are not limited to the Chernoff bound given in Theorem 2.2. In reality, the

term “Chernoff bounds” refer to a family of results all bounding the probabilities that

random variables expressed as sums are on the tail ends of their distributions. The

differences lie in the assumed properties of the random variables and the values ε can

take. Theorem 2.2 expects that Xi is a Bernoulli variable. We can extend it to let Xi

take any real value between 0 and 1 and non-negative ε.

35

Theorem 2.3. Chernoff Bound on Small Variables [6]

Let X1, · · · , Xn be independent random variables taking values in [0, 1]. If X =
∑n

i=1Xi

and µ = E [X], then for all ε ≥ 0

Pr [X ≤ (1− ε)µ] ≤ exp

(
− ε2µ

2 + ε

)
and

Pr [X ≥ (1 + ε)µ] ≤ exp

(
− ε2µ

2 + ε

)
.

We can apply a rescaling argument 1 to produce an even more general statement.

Suppose that Xi took values in [0, β]. If we let Yi = Xi/β and have Y =
∑n

i=1 Yi, then

we can apply Theorem 2.3 on Y and substitute with X/β to get

Pr

[
X

β
≤ (1− ε)µ

]
≤ exp

(
− ε2µ

2 + ε

)
Pr

[
X

β
≥ (1 + ε)µ

]
≤ exp

(
− ε2µ

2 + ε

)
where µ = E [Y]. If we notice that E [Y] = E [X]/β, then we easily get a rescaled

Chernoff bound after some substitution and rearrangement.

Theorem 2.4. Chernoff Bound on Non-negative Variables

Let X1, · · · , Xn be independent random variables taking values in [0, β]. If X =∑n
i=1Xi and µ = E [X], then for all ε ≥ 0

Pr [X ≤ (1− ε)µ] ≤ exp

(
− ε2µ

(2 + ε)β

)
and

Pr [X ≥ (1 + ε)µ] ≤ exp

(
− ε2µ

(2 + ε)β

)
.

2.1.2 Analysis

To analyze BASIC-RANDOM-SAMPLE, we will make use of Chernoff bounds.

We need to be careful about our analysis, however. There are few aspects of Chernoff

1 Rescaling arguments can often extend results that put constraints on objects in the
hypothesis to analogous results with looser constraints. Although, the object x in
question should be representable in the form cx where c is some scalar.

36

bounds that make it difficult to use. To begin, the bounds it gives are awkward. It is

more beneficial to write the bounds in terms of the input graph. To do this, we must

choose X and find β in a way that simplifies the resulting bounds. We can also bound

the bounds until we get something in appropriate terms. We have to be careful though

since Chernoff bounds typically give loose bounds to begin with since they hold over

arbitrary random variables. Despite their troublesome behavior, they are still a useful

theoretical tool. To demonstrate the tricks of Chernoff bounds, we prove the following

guarantee on our simple algorithm.

Theorem 2.5. Let G be a connected and unweighted simple graph, 2/3 ≤ p < 1 be some

probability, and let m be sufficiently large. If G̃ is the output of BASIC-RANDOM-

SAMPLE(G, p), then G̃ is a (0, 5,mp + 1)-spectral sparsifier of G with probability at

least 1/2.

Proof. We know BASIC-RANDOM-SAMPLE terminates since the algorithm sim-

ply iterates over all edges in G, of which there is a finite number. We also know Ẽ is

a subset of E since we are choosing edges from E.

To show that G̃ is a spectral approximation of G, we will use Chernoff bounds

to bound the probability of whether G̃ is not a spectral approximation of G. This

naturally gives us a bound on the probability that G̃ is a spectral approximation of G.

In particular, we want to use Chernoff bounds to show

(1− ε)xTLx ≤ xT L̃x ≤ (1 + ε)xTLx

for some value of ε. This may seem odd because in the end we need to show

0 ≤ xT L̃x ≤ 9xTLx

and ε = 8 gives us a lower bound of −7 not 0. Since L̃ is positive semi-defininite,

any value of ε ≥ 1 is useless with regards to the lower bound since 0 will always be a

lower bound. It turns out that we need ε ≥ 1 to get even an upper bound, so we only

consider the upper bound part of Chernoff bounds.

37

Given the way Chernoff bounds are written, it seems natural to select xT L̃x as

our random variable. Let X = xT L̃x. Since we can write

xT L̃x =
∑

(u,v)∈E

wu,v(xu − xv)2

we will let Xu,v = wu,v(xu−xv)2. But notice that our choice is currently inappropriate.

We can make xT L̃x arbitrarily high by simply letting one component of x be arbitrarily

high and setting all others zero. Therefore we will not be able to find an appropriate

β and will not be able to apply Chernoff bounds.

To resolve this, we restrict ourselves to x ∈ Rn such that ‖x‖2 = 1. If we

show G̃ is a spectral approximation of G in this restricted domain, then we can apply

a rescaling argument to generalize to the entire domain. From here, there are two

tasks we need to complete before applying Chernoff bounds: first, we must calculate

E [xT L̃x], and then we need to find an upper bound β for the values of wu,v(xu − xv)2.

We have done the former task already. By reweighting the graph with probability

1/p, we forced E [xT L̃x] = xTLx. The second task requires some more thought, but

amounts to finding exactly how high wu,v(xu − xv)2 can become given our restriction

on x. The highest wu,v can become is 1/p, which happens when edge (u, v) is included

in G̃. To derive the highest (xu − xv)2 can become, we need to

maximize (xu − xv)2 subject to
n∑
i=1

x2
i = 1.

Suppose there exists some xi 6= 0 where i 6= u 6= v. This choice of x will never

obtain the maximum since we can always get a bigger value for (xu − xv)2 by setting

xi = 0 and adjusting xu to be larger in order to satisfy
∑n

i=1 x
2
i = 1. Thus we know the

vector x obtaining the maximum must have xu and xv as the only non-zero coordinates.

This allows us to simplify the task; now we only need to

maximize (xu − xv)2 subject to x2
u + x2

v = 1

38

With this problem, finding the maximum amounts to locating the point on the unit

circle that maximizes the squared difference of its coordinates. This is obtained for

xu = 1/
√

2 and xv = −1/
√

2. Thus we know

wu,v(xu − xv)2 ≤ 1

p

(
2√
2

)2

=
4

p2
=

2

p
= β.

After applying the Chernoff bounds given in Theorem 2.4, we discover

Pr
[
xT L̃x ≥ (1 + ε)xTLx

]
≤ exp

(
−ε

2p(xTLx)

(2 + ε)2

)
.

for all ε ≥ 0. If we remove xTLx from the numerator, we can get the bounds into a

better form:

Pr
[
xT L̃x ≥ (1 + ε)xTLx

]
≤ exp

(
− ε2p

(2 + ε)2

)
.

If xT L̃x ≥ (1 + ε)xTLx, then G̃ is not a spectral approximation of G. If we take

opposite probabilities, then we find

Pr
[
xT L̃x ≤ (1 + ε)xTLx

]
≥ 1− exp

(
− ε2p

(2 + ε)2

)
. (2.4)

Remember that (2.4) only applies for unit vectors x. To generalize to y ∈ Rn,

we apply a rescaling argument. Note that y = cx for some scalar c and unit vector x.

We know

0 ≤ xT L̃x ≤ (1 + ε)xTLx.

with at least some probability. If we multiply throughout by c2, it follows that

0 ≤ yT L̃y ≤ (1 + ε)yTLy

with at least the same probability. Now that we have shown that spectral approxima-

tion is possible, we need to simplify the probability bound.

For certain values of ε and p, the bound becomes useless. For example, with

ε = p = .5, the bound becomes around .02, which merely tells us that it is possible

for G̃ to be a spectral sparsifier. Therefore, we need to restrict ourselves to useful

values of ε and p. Furthermore, it will be best to write ε in terms of p, so we have

39

only one parameter affecting the algorithmic guarantees. Since p is proportional to

sparseness, we want to keep p low, and since ε is inversely proportional to the quality

of the approximation, we want to keep ε low as well. However, making ε large is the

easiest way to arrive at a relatively large bound. This is because ε2 resides in the

numerator of the exponent — we have a balancing act with keeping ε neither too low

nor too high. Let us write ε = kp for some constant k. With this choice of ε, increasing

p will give us larger ε, but to ensure that we do not have to increase p too much, we can

use k to bump up ε. Therefore, we have reduced our problem to finding an appropriate

value for k.

Suppose we want G̃ to be a spectral sparsifier with “better than random” prob-

ability, which is 1/2. With this constraint, let us try some values of p and k. If p = 2/3

and k = 5, then the bound in (2.4) is a little over 1/2. In this case ε = kp = 10/3 ≤ 4,

so we can conclude that, with probability at least 1/2, G̃ is a (0, 5)-spectral approxi-

mation of G when p ≥ 2/3.

Now that we have shown G̃ is a spectral sparsifier of G, we only need to put an

upper bound on the number of edges in G̃. We will do this using the Chernoff bound

given in Theorem 2.2. Let Xu,v now be a random Bernoulli variable indicating whether

edge (u, v) was chosen to be in G̃. That is, Xu,v = 1 with probability p and 0 with

probability 1− p. If we let X be the number of edges in G̃, it follows that

X = m̃ =
∑

(u,v)∈E

Xu,v.

Taking expectations, we can easily see E [X] = mp. By Theorem 2.2, it follows that

Pr [m̃ ≥ (1 + ε)mp] ≤ exp

(
−ε

2mp

3

)
.

Taking opposite probabilities, we have

Pr [m̃ ≤ (1 + ε)mp] ≥ 1− exp

(
−ε

2mp

3

)
.

We want ε to be very low here, so we are close to m̃ ≤ mp, but it cannot be 0.

Otherwise, the bound would become 0 — hardly useful. In order to have (1+ε)mp ≤ m

40

at the least, we need to set ε ≤ (1 − p)/p. Of course, we want to set ε much lower

than (1 − p)/p, so we have something much lower than m. To make it lower, we let

ε = (1− p)/(`p) where ` is some constant. In this setting, we begin with

Pr

[
m̃ ≤

(
1 +

1− p
`p

)
mp

]
≥ 1− exp

(
−(1 + (1− p)/(`p))2mp

3

)
.

This is difficult to work with in both places: the bound on m̃ and the bound on the

probability. We will loosen both of those bounds to simplify our expressions. If we let

` = m, then we can loosen the bound on m̃ as follows:(
1 +

1− p
`p

)
mp =

(
(`− 1)p+ 1

`

)
m

=

(
(`− 1)p

`
+

1

`

)
m

≤
(
p+

1

`

)
m

= mp+
m

`

= mp+
m

m

= mp+ 1.

We will not explicitly loosen the bound on the probability. Instead we notice that m is

in the numerator of the exponent. Thus for sufficiently large m, the bound is at least

1/2. Finally, we conclude that G̃ is (mp + 1)-sparse for p ≥ 2/3 and sufficiently large

m. �

It is not difficult to see that BASIC-RANDOM-SAMPLE performs very

poorly since the approximation is within a factor of 5, p is not allowed to be very

low, and we need m to be large. Using popular parlance, we would say this spec-

tral sparsification algorithm runs in O(m) time and produces O(m) sized sparsifiers.

The goal within the mathematical community is to construct spectral sparsification

algorithms running in O(m) time that create O(n) sized sparsifiers. A running time

of O(m) is the best we can do since that amounts to looking at each edge once, and

sparsifier of size O(n) are the best we can do since that amounts to having nearly as

41

many edges as a tree. This algorithm’s saving grace might be its O(m) time, but its

approximation is too poor. In the next section, we consider why this may be the case.

2.2 Choosing Edges

In the last section, we learned that sampling edges with fixed probability will

produces poor guarantees. In this section, we explore what manner of choosing edges

does work. The issues with the naive algorithm becomes apparent if we consider corner

case graphs such as the barbell graph shown in Figure 2.1. The barbell graph is a graph

with 2n vertices generated by combining two Kn graphs and joining them with a single

edge.

Figure 2.1: The barbell graph with n = 5

If we let G be a barbell graph, and if we gave it to BASIC-RANDOM-SAMPLE

with probability p, then G̃ will be disconnected with probability p. It is pertinent

that a spectral sparsification algorithm does not disconnect the graph. Not only is

this intuitively a property we want any algorithm to maintain, but disconnecting the

graph is an easy way for G̃ to not be a spectral approximation of G. This is because the

number of connected components in a graph is given by the multiplicity of the Laplacian

eigenvalue 0. For connected G, the multiplicity is 1, but if G̃ is disconnected, then the

multiplicity becomes 2, which means one of the eigenvalues is not guaranteed to be

approximated. Therefore, we must choose edges such that we avoid disconnecting the

graph. Intuitively, we can think of this as choosing the important edges of the graph.

42

This is exactly why a probabilistic approach is natural for spectral sparsification: we

can assign probabilities in proportion to the importance of the edge.

The task now is to determine a property that represents how important an edge

is to the connectivity of a graph. From the discussion on cuts given in Section 1.5, it

would seem that such edges lie on the boundary of cuts with low isoperimetric number.

Indeed, this intuition can produce nice spectral sparsifiers. It was the basis of the first

spectral sparsification algorithm introduce by Spielman and Teng in their seminal paper

[24]. In this thesis, we will consider effective resistances to assign importance to an

edge. Similar to conductance, we can use effective resistances to target edges appearing

in bottlenecks.

2.3 Spectral Sparsification Using Effective Resistances

Effective resistance can be roughly described as the overall resistance given by an

edge if we treat the graph as a simple electrical network. They were used in the second

major spectral sparsification algorithm [23]. We consider it, though, because this line

of attack is simpler, has clear physical and combinatorial intuitions, and demonstrates

how we can analyze the Laplacian by looking at its related matrices.

2.3.1 Modeling Resistance Networks

Mathematics and physics have often influenced the development of each other.

The case is no different within graph theory. The idea here is to make a weighted graph

model a specific type of electrical network called a resistance network. Such networks

only contain resistors and sources of electric potentials. We will view the vertices as the

sources of electric potentials and the edges as wires, which exhibit different resistances

via the weights. To keep things simple, let an edge with weight 1 have resistance 1.

Since edges model wires, the lack of an edge would be analogous to having no wire,

so the electrons would never flow. This should represent an infinite resistance, and

resistances should increase as weights decrease. Thus if e is an edge then

re =
1

we

43

where re is the resistance of the edge, and we is its weight. Now that we know how

components of a graph map onto a physical resistance network, we have to ensure

the graph behaves like an actual circuit. To do this, we encode two electrical laws as

constraints on the model.

Once the laws are in place, we will inject negative current into a vertex s and

extract, the same valued but positive, current through a vertex t. We can think of this

as having a battery with two wires, one attached to the positive side of the battery and

another attached to the negative side. We inject current into the graph by attaching

the negative end wire to s and the positive end wire to t to complete the circuit.

Our model will also assign electric potentials to vertices and currents to edges.

The goal is to find assignments of electric potentials and currents that satisfy the

electrical laws. We will learn that we can derive appropriate assignments for any value

of current we inject. Once this ground work is laid, we will have a clear definition of

effective resistances. Then we explore why we set sampling probabilities proportional

to it.

The two laws, we are going to satisfy are Ohm’s law and Kirchhoff’s current

law. Ohm’s law tells us that

V = IR =⇒ I =
V

R

where V is the voltage between two nodes, I is the amount (with direction) of current

flow, and R is the resistance of the wire. If we let p be a vector of size n denoting

energy potentials at each vertex, then Ohm’s law tells us

ia,b =
pa − pb
ra,b

= wa,b(pa − pb)

where ia,b denotes the current from a to b. Note that this naturally reflects the con-

vention that current flows from high electric potential to low. That is if pa > pb, then

the current will be positive, otherwise it will be negative. Furthermore

ia,b = −ib,a.

44

Let i be the vector of size m containing all the currents flowing across edges.

Since i only contains a component for each edge once, we need to choose between using

the current over (a, b) or (b, a). We will fix i to have positive values, so whenever ia,b is

positive, we use (a, b). In addition, we call a the head and b the tail. If ia,b is negative,

we use (b, a), and call b the head and a the tail. Recall how the Laplacian can be

written as L = MTWM where

M((a, b), c) =


1 if c = a

−1 if c = b

0 otherwise

and W is a diagonal m×m matrix with W (e, e) = we.

Surprisingly, we can use the oriented incidence matrix to construct a linear

algebraic representation of Ohm’s law. The rows of M have a single 1 and a single -1

wherever the head and tail are respectively, so we can write row (a, b) of M as χa−χb
which are the characteristic vectors of a and b respectively. It follows that

WMp = W
[
(χa − χb)Tp

]
where Mp =

[
(χa − χb)Tp

]
is a vector with m components indexed by the edges of G.

The value of component (a, b) is equal to (χa − χb)Tp = pa − pb, so

WMp = W
[
pa − pb

]
.

Since W is diagonal, we simply multiply each row of the vector by the corresponding

diagonal entry. This allows us to write Ohm’s law as

WMp =
[
wa,b(pa − pb)

]
=
[
ia,b

]
= i.

Kirchhoff’s current law states: if a is a vertex and (a, u1), · · · , (a, uk) are its

incident edges where a is a head, and (uk+1, a), · · · (uda , a) are the edges where a is a

tail, then the sum of currents is zero, i.e.

ia,u1 + · · ·+ ia,uk + ia,uk+1
+ · · ·+ ia,uda =

∑
u∈N(a)

ia,u = 0 (2.5)

45

where N(a) is the set of neighbors of a. Note that for our purposes a 6= s, t. For s and

t, the law still holds, the −k units of current injected into s leave s within its edges,

but that initial injection is not portrayed by an edge. A similar situation happens with

t. Thus when we sum of currents of edges incident to s and t, they will be k and −k

respectively since s is always a head and t is always a tail.

The form of Kirchhoff’s law in (2.5) has positive terms and negative terms. Since

we limited our representation of currents to positive terms, we can rewrite Kirchhoff’s

law as ∑
b s.t.
ab∈E

ia,b −
∑
b s.t.
ba∈E

ib,a = 0

for a 6= s, t. Note the first sum is for when a is a head (a to b has positive current) and

the second for when a is a tail (b to a has positive current). If we consider s and t as

well, then we get, for arbitrary vertex a, that

∑
b s.t.
ab∈E

ia,b −
∑
b s.t.
ba∈E

ib,a =


k if a = s

−k if a = t

0 otherwise

.

Let iext be a vector with n components representing the external current flowing to each

vertex. That is, we have k in coordinate s and −k in coordinate t and 0 everywhere

else like above since only s and t interact with external current. Thus we write our

slightly modified version of Kirchhoff’s law with

MT i = iext.

To summarize, Ohm’s law and Kirchhoff’s law give us the following constraints:

i = WMv

MT i = iext.

Putting these together, we get

MT i = MTWMp = Lp = iext

46

We have combined both constraints into one: Lp = iext. Given a graph and some choice

of −k current to inject, we can derive satisfying electric potentials at each vertex by

solving for v. Once we have the potentials, we can use Ohm’s law to solve for the

currents and voltages from there. Recall the pseudo-inverse L+ that we discussed in

Subsection 1.3.5. We can use that to solve for p since iext ⊥ 1:

p = L+iext.

It is important to note that this solution is not unique. There are other solutions that

can satisfy both laws as well. This will become important later when we make use of

this fact.

The experienced reader may ask why Kirchhoff’s voltage law is missing from

this discussion. In fact, it is not. It is just hidden away in the other two laws. The

voltage law states that the sum of voltages on edges contained in a cycle must be zero.

Consider some cycle a, b1, · · · , bk, a. The sum of voltages is given by

(pa − pb1) + · · ·+ (pbk − pa) = (pa − pa) + (pb1 − pb1) + · · ·+ (pbk − pbk) = 0

In our model, we inject current into one vertex and extract it out of another. We use

Ohm’s law and Kirchhoff’s current law to solve for the potential differences along each

edge. The above equality shows that the sum of potential differences must be equal

to zero on any cycle. If one wants to find the actual potential at the vertices, we can

arbitrarily pick one, and solve for the others. This is demonstrated in the proof for

Theorem 2.8.

2.3.2 Effective Resistances

In our model, we are allowed to inject and extract currents into single vertices

such that the amount injected is equal to the amount extracted. The effective re-

sistance between vertices a and b is defined as the voltage between a and b when −1

unit of current is injected at a and extracted from b. We can write this as

Ra,b = pa − pb = (χa − χb)Tp = (χa − χb)TL+iext = (χa − χb)TL+(χa − χb).

47

We noticed before that (χa − χb) is row (a, b) of M , so we can further write

Ra,b = (χa − χb)TL+(χa − χb) = Ma,bL
+MT

a,b

where Ma,b is a row vector given by row (a, b) of M . In short, we can represent

all effective resistances of G in a matrix calculated by R = ML+MT . This is an

m×m matrix indexed by edges on both sides with R((a, b), (a, b)) holding the effective

resistance for (a, b). We abuse notation, and let Ra,b denote the effective resistance as

well.

It may seem odd that we call pa−pb an “effective resistance” when it is actually

a voltage. The name comes from the fact that pa−pb is the resistance of the edge if we

treated the entire network as an edge between a and b. Suppose we remove all edges

but (a, b). By Kirchhoff’s law, each edge we remove only causes the current moving

through (a, b) to increase. When we are left with only (a, b), its current is 1 since we

injected −1 unit of current into a. By Ohm’s law, we have

1 =
pa − pb
ra,b

which means ra,b = pa − pb. Thus the resistance of the edge when the entire network

is treated as an edge is effectively pa − pb. Furthermore, injecting any other amount

of current leaves the resistance unchanged. If we look at these two laws in a slightly

different way, it becomes more clear why one would sparsify according to effective

resistances.

Suppose we inject −1 units of current into a. This means a will always be

the head in each of its edges. If (a, b1), · · · , (a, bda) are the edges incident to a, then

Kirchhoff’s law states

ia,b1 + · · ·+ ia,bda = k.

Ohm’s law allows us to rewrite this as

wa,b1(pa − pb1) + · · ·+ wa,bda (pa − pbda) = k.

Now let us assume a has small degree. This essentially means there exists a bottleneck

on the flow of current between a and the rest of the graph. With smaller degree, there

48

are fewer edges, which means each of the voltage terms 2 in the sum should be higher on

average. This is why we bother considering the resistance model of a graph. It allows

us to look at the flow of electrons, and use voltage calculations to see exactly where the

bottlenecks are. There are many different voltages that can be induced depending on

where we inject and extract current. The effective resistance simply provides a natural

one that takes the connectivity of the graph into account.

2.3.3 Combinatorial Intuition for Effective Resistances

There is a rich connection between the study of electrical network models and

random walks. We will show in particular that the effective resistance of an edge is

exactly equal to the probability that the edge appears in a uniformly random spanning

tree. A spanning tree is a spanning subgraph that is also a tree. Suppose our graph

has a bottleneck, which corresponds to the boundary edges of some cut. This cut

separates the vertices in the two parts. Any spanning tree must must have an edge

crossing this bottleneck, otherwise it would not contain every vertex. Since there are

relatively fewfew edges in a bottleneck, each edge has a relatively high probability of

appearing in a random spanning tree. This is the main reason we decide to sparsify

with respect to effective resistances. The higher the effective resistance, the more

likely that edge appears in random spanning tree, which further means the more likely

it appears in a bottleneck. Such edges are more important to the connectivity of the

graph and must be sampled with higher probability.

A direct link between effective resistances and random spanning trees does not

exist though. In order to make the link, we will take advantage of the connection

between random walks and random spanning trees, and we will take advantage of

the connection between effective resistances and random walks. To keep our analysis

simple, we will limit ourselves, to the unweighted case. The connection between ran-

dom walks and random spanning trees is given by the Aldous-Broder algorithm for

2 Note that only one of the voltage terms will be the effective resistance, depending
on where we take the current out.

49

generating random spanning trees [1, 7].

Algorithm 2 Aldous-Broder Spanning Tree Generator

Require: G = (V,E) is a connected, simple graph
Require: s ∈ V

function aldous-broder-gen(G, s)
E ′ ← ∅
V ′ ← ∅
T ← (V ′, E ′)
currV ertex← s
prevV ertex← null
while V ′ 6= V do

nextV ertex← chooseAtRandom(neighbors(currV ertex))
prevV ertex← currV ertex
currV ertex← nextV ertex
if currV ertex 6∈ V ′ then

V ′ ← V ′ ∪ currV ertex
E ′ ← E ′ ∪ (prevV ertex, currV ertex)
T ← (V ′, E ′)

end if
end while
return T

end function

The Aldous-Broder algorithm takes a graph G and starts a random walk at s.

The function chooseAtRandom() is assumed to choose an element from the given set

with uniform probability. The algorithm walks from vertex to vertex at random, i.e.

if we are at vertex u, then we move to one of its neighbors (gotten from neighbors())

with probability 1/du. As it walks, we build a spanning tree. Every time we walk

to a vertex we have not seen before, we add the edge we traversed to get there into

the spanning tree. We are done building the spanning tree once we have seen every

vertex. It is a fact that this algorithm produces not just a random spanning tree, but

a uniformly random spanning tree.

Theorem 2.6. If G is an unweighted graph, s is some starting vertex in G, and T

is the result of ALDOUS-BRODER-GEN(G, s), then T is a spanning tree chosen

uniformly at random from the set of spanning trees on G.

50

Since we are adding edges to the spanning tree when we first see a vertex, an

edge (s, t) appears in T if and only if a random walk reaches t for the first time via

the edge (s, t). Therefore, the probability an edge (s, t) appears in a uniform random

spanning tree is equal to the probability that a random walk reaches t for the first time

via the edge (s, t). The connection between random walks and effective resistances tells

us that this probability is given exactly by the effective resistance.

Theorem 2.7. If G is an unweighted graph, then the probability that a random walk

started at s reaches t via the edge (s, t) is equal to Rs,t.

Proof. Let C be the event that a random walk started at s reaches t via the edge (s, t).

We want to find Pr [C]. There are two ways for C to happen. In the first case C1, we

simply traverse (s, t) on the first step. In the other case C2, we walk to some other

neighbor of s and randomly walk until we see s again and traverse (s, t). Since these

two cases are independent from each other

Pr [C] = Pr [C1] + Pr [C2].

The probability of walking to any neighbor of s is 1/ds, so Pr [C1] = 1/ds.

Finding the probability of C2 is harder. There are three steps to obtaining C2. First

we need to walk from s to one of its neighbors v where v 6= t. Then we need to

randomly walk but reach s before ever reaching t. Because we are at s again, the third

step is to simply start a new random walk and see if we reach t via (s, t). The first step

happens with probability 1/ds as well, and let qs,t(v) be the probability that a random

walk starting at v reaches s before t. The third step, we know happens with Pr [C].

Breaking it down like this, we can write

Pr [C2] =
∑
v∈N(s)

1

ds
qs,t(v)Pr [C]

Combining this with C1, we can recursively write

Pr [C] = Pr [C1] + Pr [C2] (2.6)

=
1

ds
+
∑
v∈N(s)

Pr [C]

ds
+ qs,t(v). (2.7)

51

By Lemma 2.8, we know qs,t(v) = pv in the setting described in the statement of the

lemma. With this new information, we can write (2.6) as

Pr [C] =
1

ds
+
∑
v∈N(s)

Pr [C]

ds
+ pv.

Solving for Pr [C], it follows that

Pr [C] =
1/ds

1−
∑

v∈N(s)

pv/ds

=
1

ds −
∑

v∈N(s)

pv

=
1∑

v∈N(s)

1−
∑

v∈N(s)

pv

=
1∑

v∈N(s)

1− pv

=
1∑

v∈N(s)

ps − pv
.

The last equality is true because in the setting of Lemma 2.8, ps = 1. By Ohm’s law

and the fact G is unweighted, we can write the denominator in terms of currents:

Pr [C] =
1∑

v∈N(s)

is,v
.

In the setting of the lemma, we also know that we have injected s with a −1/Rs,t

unit current. By Kirchhoff’s law, the input current (that was injected) and the output

current (going out of incident edges) must be equal. Thus the denominator is equal to

1/Rs,t. Finally, we can write

Pr [C] =
1

1/Rs,t

= Rs,t

as desired. �

Lemma 2.8. Let G is an unweighted graph, and define qs,t(v) to be equal to the prob-

ability that a random walk started at v reaches s before t. Finally, let pv be the unique

52

energy potential at v induced by treating G as a resistance network, injecting −1/Rs,t

units of current at s, extracting the same amount from t, and constraining p with

ps = 1, pt = 0. In this setting qs,t(v) = pv.

Proof. To show that qs,t(v) = pv, we will construct recursive formulations of both

quantities, and show that their formulations are identical as well as their base cases.

This will demonstrate that they must be equal since they are calculated in the same

fashion.

Recall that Kirchhoff’s current law states∑
u∈N(v)

iv,u = 0.

Ohm’s law tells us that each term iv,u is given by wv,u(pv−pu). Since G is unweighted,

we can drop the weight and get∑
u∈N(v)

pv − pu = 0 =⇒
∑

u∈N(v)

pv =
∑

u∈N(v)

pu.

Note that the left hand sums up pv exactly dv times, so

dvpv =
∑

u∈N(v)

pu

=⇒ pv =
1

dv

∑
u∈N(v)

pu. (2.8)

This contains our recursive formulation of pv, which can be used regardless of what

amount of current is injected. To get the base cases, we perform a little trick by

injecting a certain amount of current. Recall that we find Rs,t by setting iext to have

1 and −1 in s and t respectively. Let peff be the potential vector carrying ps and pt

obtaining Rs,t. We calculate peff with peff = L+i, and then define Rs,t = peff
s − peff

t .

53

Suppose we injected −1/Rs,t instead. It follows that

ps − pt =

(
L+iext

1

Rs,t

)
s

−
(
L+iext

1

Rs,t

)
t

=
1

Rs,t

(peff
s − peff

t)

=
1

Rs,t

Rs,t

= 1.

By injecting −1/Rs,t, we have the constraint ps − pt = 1. Suppose we add

ps = 1 and pt = 0 as our base cases. These can be thought of as additional constraints

on p. This may cause the p we have derived to no longer satisfy Lp = (1/Rs,t)iext,

which encodes both laws. Therefore we need to show there exists p′ satisfying our

constraints such that Lp′ = iext. Thankfully, this amounts to only checking if there

exists a solution satisfying the system of equations generated by (2.8). There are n− 2

unknown potentials, and (2.8) gives an equation to find each one, so there are n − 2

equations in the system as well, so there exists a unique solution p′.

To summarize, if we inject −1/Rs,t units of current into s, then there exists a

potentials vector p′ such that

p′s = 1

p′t = 0 (2.9)

p′v =
1

dv

∑
u∈N(v)

p′u.

Now we need to show that we can get an identical recursive formulation of

qs,t(v). Since qs,t(v) represents the probability that a random walk started at v reaches

s before t, it is clear that qs,t(s) = 1 since it starts at s, and qs,t(t) = 0 since it already

reached t before any other vertex. For v 6= s, t, we can derive a recursive definition for

qs,t(v).

Let us start a walk on v. Any walk that reaches s before t must make a first

move to one of the neighbors of v. Suppose v has k neighbors, and let qis,t(v) be

54

the probability of starting a random walk at v, moving to the ith neighbor of v, and

reaching s before t. Due to mutual exclusiveness, we can write

qs,t(v) =
k∑
i=1

qis,t(v).

Now consider any qis,t(v). Making the transition from v to its ith neighbor

happens with probability 1/dv. We will call this neighbor ui. Once we are at ui, we

want to randomly walk and reach s before t. Notice that continuing a random walk

is the same as starting a new one, and the probability of starting at ui and seeing s

before t is given by qs,t(u). Therefore

qs,t(v) =
∑

u∈N(v)

1

dv
qs,t(u) =

1

dv

∑
u∈N(v)

qs,t(u).

Since we have the base cases qs,t(s) = 1 and qs,t(v) = 0, the recursive formulation is

identical to the one given in (2.9), so they are the same quantity. �

2.3.4 First Try at Sparsifying with Effective Resistances

In Section 2.1, we noticed that sampling edges would be an appropriate means

of sparsifying a graph since we expect to only choose a subset of the original edges. In

Section 2.2, we learned that we have to be careful about choosing edges. In particular,

we learned that we should choose edges with probability proportional to how “impor-

tant” they are to the overall connectivity of the graph. In the previous two subsections,

we demonstrated how effective resistances have hidden connections to random walks

and spanning trees, which make it an excellent choice for setting our edge probabilities.

In this subsection, we put this knowledge to use and make a modification to

BASIC-RANDOM-SAMPLE that sets edge probabilities equal to the maximum of

1/2 and the effective resistance for that edge. We put a lower bound on the probabili-

ties, so that the Chernoff bound does not produce unwieldy results. The algorithm in

full detail is given below in Algorithm 3.

In this algorithm, erList represents a list, indexed by edges, of effective resis-

tances calculated by resistances(). To calculate the effective resistances: first calculate

55

Algorithm 3 Simple Sparsification by Effective Resistances

Require: G = (V,E) is a connected, simple graph
function simple-sparsify-by-er(G, ε)

Ẽ ← ∅
G̃← (V, Ẽ)
eRList← resistances(G)
m← |E|
for all (u, v) ∈ E do

edgeProb← max(eRList[(u, v)], 1/2)
includeEdge?← true with probability edgeProb
if includeEdge? then

G̃← (V, Ẽ ∪ (u, v, 1/edgeProb)
end if

end for
return G̃

end function

L+ using any algorithm that finds eigenvalues and eigenvectors, and then compute

ML+MT through usual matrix multiplication. This can all be done in polynomial

time.

We will apply the same sort of analysis as in Theorem 2.5, but with an ad-

ditional layer of complexity to garner better results. First, we will demonstrate that

R is a projection matrix and prove some other useful properties. By showing R is

a projection matrix, we can represent it with RR. Additionally, it allows us to map

arbitrary x ∈ Rn onto some y in the image of R. We will then apply Chernoff Bounds

to (yTRWRy)/(yTRRy) where W contains the new weights of G̃. We then work back-

wards from our mapping to get back xT L̃x and xTLx. Finally, we will demonstrate

how our Chernoff bound results in R transfer over to L.

We begin by letting pe equal the sampling probability assigned to edge e. That

is

pe = max

(
(2 +

√√
2 lnn)

ln(n)
,R(e, e)

)
according to our algorithm. We begin by again noting that L = MMT . Furthermore,

L̃ = MTWM where W is a m×m matrix indexed by edges, where diagonal elements

56

are given by

Me,e =


1
pe

with probability pe

0 with probability 1− pe
.

All other elements in W are 0. It is easy to check that E [M] = I, and thus E
[
L̃
]

= L,

so we have maintained expectations as before. Now we give some useful properties of

R.

Lemma 2.9. If R = ML+MT is the matrix containing effective resistances of a graph
G on its diagonal elements, then:

1. R is a projection matrix

2. im(R) = im(M)

3. The eigenvalues of R are 1 with multiplicity n−1 and 0 with multiplicity m−n+1.

4. R(e, e) = ‖R(·, e)‖2 where R(·, e) denotes column e of R.

Proof.

1. Observe that

R2 = (ML+MT)(ML+MT)

= ML+(MTWM)L+MT

= ML+LL+MT .

Recall that L+L is a projection matrix, so it acts as an identity on its image,
which is L+. This means for all x ∈ im(L+), it follows that L+Lx = x. Each
column of L+ is in its image as well (because of the standard basis vectors), so

R2 = ML+LL+MT

= W 1/2ML+MTW 1/2

= R.

By definition, this equality makes R a projection matrix.

2. Let x ∈ im(R). Then Ry = x for some y ∈ Rm. It follows

Ry = x

=⇒ ML+MTy = x

=⇒ (MTM)L+MTy = MTx

=⇒ (MTM)L+MTy = MTx

=⇒ LL+MTy = MTx.

57

If we let z = L+MTy, it follows that z ∈ im(L+) = im(L+L) due to MTy. Since
L+L acts as an identity on its image, we can write

Ry = x

=⇒ Lz = MTx

=⇒ ML+Lz = ML+MTx

=⇒ Mz = ML+MTx

=⇒ Mz = Rx
=⇒ Mz = x.

The last line tells us that x ∈ im(M).

The other direction is easier to show. First note that ker(M) = span(1) since
M1 = 0. Let x ∈ im(M), then there exists some y such that My = x. Further-
more, we can choose y ⊥ 1, so y ∈ im(L+L).

Rx = ML+MTx

= ML+MTMy

= ML+Ly

= My

= x.

Thus we have im(R) = im(M) since x ∈ im(R).

3. Since R is a projection matrix, so its eigenvalue are 0 and 1. We also know
ker(M) = ker(L) has 1 dimension. Furthermore, im(M) has n − 1 dimensions.
Because im(R) = im(M), im(R) has n − 1 dimension as well. Since the non-
zero eigenvalues are produced by eigenvectors in im(R), the eigenvalue 1 has
multiplicity n− 1. The remaining m− n+ 1 eigenvalues must then be 0.

4. Since R = R2, and R is symmetric, it follows

R(e, e) = (RR)(e, e) = (R(·, e))TR(·, e) = ‖R(·, e)‖2.

�

Now consider the matrix RWR. This is essentially the effective resistances

matrix R scaled by the new weights. We consider it because we can relate it directly

to L̃. Let x ∈ Rn, and y = Mx. Since L̃ = MTWM , we can write

xT L̃x = xTMTWMx = (Mx)TW (Mx) = yTWy.

58

We also know im(R) = im(M) and R is a projection matrix, so xT L̃x = yTRWRy.

Similarly, we can show xTLx = yTRRy. We will make use of the direct relationship

between these two quadratic forms in order to show that G̃ is a spectral approximation

of G.

Theorem 2.10. Let G be a connected, unweighted, and simple graph. If G̃ is the output

of SIMPLE-SPARSIFY-BY-ER(G), then G̃ is an (0, 1+
√

7)-spectral approximation

of G with probability at least 1/2.

Proof. Proving this theorem will be a fairly straight forward application of Chernoff

bounds. The random variable we consider is

X =
yTRWRy
yTRRy

=
yTWy

yTy

where y ∈ im(R). Notice that we can write X =
∑

e∈E Xe where

Xe =
yTWey

yTy

and We is a m × m matrix indexed by edges where every element is 0, except for

We(e, e), which is equal to W (e, e) = 1/pe. We will apply the Chernoff bound given in

Theorem 2.4. First we need to compute the expected value and get an upper bound

on the values of Xe. It follows that

E [Xe] = E

[
yTWey

yTy

]
= pe

(
y2
e

yType

)
+ (1− pe)(0) =

y2
e

yTy
.

Thus we can easily see

E [X] =
∑
e∈E

E [Xe] =
∑
e∈E

y2
e

yTy
=
yTy

yTy
= 1.

To find the upper bound, we need to notice that We is a diagonal and symmetric

matrix. Because it is symmetric, the maximum value of yTWey is given by its largest

eigenvalue. Because it is diagonal, the eigenvalues are given by the diagonal elements.

Since there is only one non-zero diagonal element, namely 1/pe, it is clear that yTWey

takes values in [0, 1/pe]. But we need an upper bound over all possible e. We can easily

59

do this by giving a lower bound for pe. If p is this lower bound, and we apply Chernoff

bounds, we would get a bound of

1− exp

(
− ε2p

(2 + ε)

)
.

We can simplify things by making sure p = (2 + ε)/k for some k ≥ 2 + ε. This changes

our problem to finding nice values for ε and k. Note that the bound

1− exp

(
−ε

2

k

)
is just above 1/2 if we have ε2/k = 7/10. Therefore, we can get an easy spectral

approximation if we let ε =
√

7 and k = 10. In this case p = (2 +
√

7)/10 ≤ 1/2. This

is why write in the algorithm that the edges are chosen with probability at least 1/2.

After applying Theorem 2.4, we know

Pr

[
yTWy

yTy
≥ (1 + ε)

]
≤ exp

(
− (2 + ε)ε2

(2 + ε) lnn

)
.

Multiplying through with yTy and simplifying gives us

Pr
[
yTWy ≥ (1 + ε)yTy

]
≤ exp

(
− ε2

lnn

)
.

After taking the opposite probability, we have

Pr
[
yTWy ≤ (1 + ε)yTy

]
≥ 1− exp

(
−ε

2

k

)
(2.10)

Since we let ε =
√

7 and k = 10, we have

Pr
[
yTWy ≤ (1 + ε)yTy

]
≥ 1− exp

(
− 7

10

)
≥ 1/2 (2.11)

If we choose arbitrary x ∈ Rn, we can always find y ∈ im(R) such that xT L̃x =

yTWy and xTLx = yTy. From here, we can apply (2.11) and work backwards to get

0 ≤ xT L̃x ≤ (1 + ε)xTLx

We conclude, with probability at least 1/2, that G̃ is a (0, 1 +
√

7)-spectral approxi-

mation of G. �

60

This shows some improvement over BASIC-RANDOM-SAMPLE. First, we

removed a parameter, which makes it easier to use. Second, our probabilities of choos-

ing edges are near 1/2 rather than 2/3, which means we expect to get a more sparse

graph. Finally, 1 +
√

7 ≈ 3.65 so we have a slightly better approximation as well.

Nevertheless, it is still not a good enough approximation, especially on the lower end.

We can do better — we only need to employ more powerful proof techniques.

2.3.5 A Better Algorithm for Sparsifying with Effective Resistances

The law of large numbers is a statistical theorem that essentially states the

sample average will become closer to the population average as we take more samples.

In terms of sparsifying graphs, we can think of the experiment as sampling a single

edge from the graph. Since we ensure that E [xT L̃x] = xTLx, the law of large numbers

should tell us that sampling a single edge many times will cause xT L̃x to become closer

to xTLx. While Chernoff bounds can put bounds on the probability that we are far

away from the expected value, the law of large numbers can make sure we are close to

the expected value. In particular, we will make use of a theorem that is similar to the

law of large numbers, except that it applies only to symmetric rank 1 matrices.

Because we are now sampling a single edge from the graph many times with

replacement rather than iterating over the edge set and sampling each edge, our algo-

rithm will have some modifications. The major change we need to make is our choice of

probabilities. In SIMPLE-SPARSIFY-BY-ER we set probabilities equal to effective

resistances (with some care to ensure probabilities did not get too low). This will not

work here because we are sampling a single edge from the entire edge set. If we set

the probability distribution over E to be equal to effective resistances, then the sum

would not be 1, making it an invalid probability distribution. In order to account for

the edge importance information provided by effective resistances while ensuring the

probabilities sum to 1, we will simply set

pe =
R(e, e)

n− 1
.

61

Since we are not using Chernoff bounds in our analysis, we will not need to

introduce a lower bound on the probabilities. Furthermore, the denominator of n− 1

comes from the fact that the sum of effective resistances is equal to n− 1. This is easy

to see since ∑
e∈E

R(e, e) = Tr(R) = n− 1

since R has n − 1 non-zero eigenvalues. This exhibits a connection with random

spanning trees since any spanning tree has n− 1 edges.

Algorithm 4 Sparsification by Effective Resistances with Repeated Sampling [23]

Require: G = (V,E) is a connected, simple graph
Require: q is a positive integer denoting the number of times to sample edges

function sparsify-by-er(G, q)

Ẽ ← ∅
G̃← (V, Ẽ)
eRList← resistances(G)
edgeProbs← eRList/(n− 1)
m← |E|
loop q times

e← sample(E, edgeProbs)

G̃← (V,adjust-weight(Ẽ, e))
end loop
return G̃

end function
function adjust-weight(Ẽ, (u, v))

if (u, v) ∈ Ẽ then

w ← weight of edge (u, v) ∈ Ẽ
Ẽ ← Ẽ − (u, v, w)
(u, v, w′)← (u, v, w + 1/qpe)

Ẽ ← Ẽ ∪ (u, v, w′)
else

Ẽ ← (u, v, 1/qpe)
end if

end function

Before, we reweighted edges with 1/pe to ensure E [W] = I, and thus E [xT L̃x] =

xTLx. We did this assuming we only look at each edge once, however. Now that we

62

might look at edges multiple times, it is necessary to change our reweighting scheme. 3

Instead, we will change the edge weights as we sample them more times. In particular,

we reweight edges with

W (e, e) =
qe
qpe

where qe is the number of time edge e was sampled out of the q total samplings. We

can think of this as telling us how much of edge e is included into G̃. It is easy to check

that expectations are maintained with this reweighting scheme. The algorithm in full

detail is given in Algorithm 4.

To prove guarantees on this theorem, we will not analyze the quadratic form di-

rectly. Instead, we will analyze the spectral norm of the difference between RWR and

RR. If we can show this spectral norm is small, then we have a spectral-approximation.

This is due to the relationship between eigenvalues and the quadratic form as demon-

strated by Courant-Fischer.

Definition 2.1: Spectral Norm

The spectral norm of a matrix M with eigenvalues λ1, · · · , λn is equal to maxi|λi|.

Lemma 2.11. If ‖RWR−RR‖ ≤ ε with 0 ≤ ε ≤ 1, then G̃ is a (1− ε, 1 + ε)-spectral

approximation of G.

Proof. Since the eigenvalues for symmetric matrices are given by the Rayleigh quo-

tients, and R and W are symmetric, the assumption above for RWR−RR is equiv-

alently given by

‖RWR−RR‖ = sup
y 6=0∈Rm

|yT (RWR−RR)y|
yTy

= sup
y 6=0∈Rm

|yTR(W − I)Ry|
yTy

≤ ε.

3 Applying the old reweighting scheme to the new problem will cause the computation
of expected value to become troublesome due to the inclusion-exclusion principle.

63

If we restrict ourselves to y ∈ im(R) = im(M), then

sup
y 6=0∈im(M)

|yTR(S − I)Ry|
yTy

≤ ε.

Since y ∈ im(R) and R is a projection matrix, we know Ry = y. Furthermore, we

can write that y = Mx for some x ∈ Rn because y ∈ im(M). Using these two facts it

follows

‖RWR−RR‖ = sup
y 6=0∈im(M)

|yTR(W − I)Ry|
yTy

= sup
y 6=0∈im(M)

|yT (W − I)y|
yTy

= sup
x∈Rn

|(Mx)T (W − I)(Mx)|
(Mx)T (Mx)

= sup
x∈Rn

|(xTMT)(W − I)(Mx)|
xTMTMx

= sup
x∈Rn

|xTMTWMx− xTMT IMx|
xTLx

= sup
x∈Rn

|xT L̃x− xTLx|
xTLx

= sup
x∈Rn

|xT (L̃− L)x|
xTLx

≤ ε.

The above line of reasoning tells us that the spectral norm of L̃ − L is exactly equal

to the spectral norm of RWR−RR. Because we assumed that the spectral norm in

the latter is small, the results transfer over to the former. If we also note that, for any

particular choice of x, it holds that

|xT (L̃− L)x|
xTLx

≤ sup
x∈Rn

|xT (L̃− L)x|
xTLx

.

64

we can derive that

xT L̃x = xTLx+ xT L̃x− xTLx

= xTLx+ xT (L̃− L)x

= xTLx

(
1 +

xT (L̃− L)x

xTLx

)

≤ xTLx

(
1 +
|xT (L̃− L)x|

xTLx

)
≤ xTLx(1 + ε).

Similarly, we can show (1 − ε)xTLx ≤ xT L̃x. Thus G̃ is a (1 − ε, 1 + ε)-spectral

approximation of G as desired. �

Now that we can use the spectral norm to show that we have a spectral ap-

proximation, we only need to show that the spectral norm truly is small. We make

use of a law of large numbers theorem to show this. The theorem, given in Theorem

2.12, is complicated but can be broken down. We have some set of vectors S and we

can sample them with different probabilities as described in probability distribution p.

Suppose that we sampled q of them to get y1, · · · , yq. Furthermore, suppose we can

upper bound the lengths of all vectors in S by M and upper bound E [yyT], which

is the average outer product matrix definable by vectors in S. If this is all the case,

then we can upper bound the expected difference between our average sample outer

product matrix and the average outer product matrix over the entire population. In

particular, as q increases, the upper bound becomes smaller, which means the differ-

ence between the average sample matrix and the average population matrix becomes

smaller. Therein lies the connection to the law of large numbers.

Lemma 2.12. [22] Let p be a probability distribution over a subset of S ⊆ Rm such

that supy∈S‖y‖ ≤ M , and ‖E [yyT]‖ ≤ 1. If y1, · · · , yq are independent samples drawn

from p, then

E

[∥∥∥∥∥1

q

q∑
i=1

yiy
T
i − E [yyT]

∥∥∥∥∥
]
≤ min

(
CM

√
log q

q
, 1

)

65

where C is some constant.

With this lemma, we are now ready to show that we can produce high quality

spectral sparsifiers.

Theorem 2.13. Let G be a connected, unweighted, and simple graph. Furthermore,

let 1/
√
n ≤ ε ≤ 1 and q = 9C2n log n(1/ε2). If G̃ is the output of SPARSIFY-BY-

ER(G, q), then G̃ is an (1 − ε, 1 + ε)-spectral approximation of G with probability at

least 1/2.

Proof. We begin by noting that RWR =
∑

e∈EW (e, e)R(·, e)R(·, e)T . Note that the

outer product of columns of R create rank 1 matrices. We can then write

RWR =
∑
e∈E

W (e, e)R(·, e)R(·, e)T

=
∑
e∈E

qe
qpe
R(·, e)R(·, e)T

=
1

q

∑
e∈E

qe
R(·, e)
√
pe

R(·, e)T
√
pe

If we let Y be a random variable where

Y =
1
√
pe
R(·, e)

with probability pe, then we can further write

RWR =
1

q

∑
e∈E

qe
R(·, e)
√
pe

R(·, e)T
√
pe

=
1

q

q∑
i=1

yiy
T
i

where y1, · · · , yq are sampled with replacement from Y independently. Essentially,

instead of iterating over each edge and adding some y ∈ Y exactly qe times, we instead

iterate over each sample and add the corresponding yi to the sum. This will effectively

produce the same sum.

66

If we let p = Y and notice that Y takes values that are vectors in some subspace

of Rm, then we can see that we are almost ready to apply Theorem 2.12. It just remains

to bound the lengths and spectral norm. To bound the norm, we notice

‖y‖ =

∥∥∥∥ 1
√
pe
R(·, e)

∥∥∥∥
=

1
√
pe
‖R(·, e)‖

=
1
√
pe

√
R(·, e)TR(·, e)

=
1
√
pe

√
R(e, e)

=

√
n− 1

R(e, e)

√
R(e, e)

=
√
n− 1.

This means we have M =
√
n− 1. To get an upper bound on the spectral norm, we

first note that

E [yyT] =
∑
e∈E

pe

(
1
√
pe

)2

R(·, e)R(·, e)T =
∑
e∈E

R(·, e)R(·, e)T =
∑
e∈E

RR = R.

Since the non-zero eigenvalues of R are 1, that means ‖R‖ = 1. After applying

Theorem 2.12, we learn

E [‖RWR−RR‖] ≤ min

(
C
√
n− 1

√
log q

q
, 1

)
. (2.12)

For the sake of argument, let us assume we can bound the above expectations

by δ. In order to apply Theorem 2.11, we need to show ‖RWR−RR‖ ≤ ε. But (2.12)

only gets us the expected value of the norm. In order to get a bound on the norm

itself, we make use of Markov’s Inequality.

Pr [‖RWR−RR‖ ≥ ε] ≤ E [‖RWR−RR‖]
ε

.

If we take opposite probabilities, we get

Pr [‖RWR−RR‖ ≤ ε] ≥ 1− E [‖RWR−RR‖]
ε

.

67

Furthermore, since we assumed we bounded the expectation above by δ, we can write

Pr [‖RWR−RR‖ ≤ ε] ≥ 1− δ

ε
.

The goal now is to actually find a bound δ. which produces a nice value for

the probability bound. In particular, we will show demonstrate that δ = ε/2 truly is

an upper bound for the expectation. If we achieve this, then our probability bound

becomes 1/2. Therefore, we need choose q such that

C
√
n− 1

√
log q

q
≤ ε

2
. (2.13)

There are many choices of q that could work, but we want to keep the number of

samples low to get bounds on the number of edges in G̃. Therefore, we would want

to find the minimum such q. Given a particular graph with n vertices and value for ε,

we can find the minimum using optimization algorithms. A closed form solution, or at

least a bound on it, will be harder to get, and is out of the scope of this thesis.

Instead, we can work backwards from (2.13), make some guesses for what q

should be, check if those values of q work, make modifications, and repeat. After doing

this, if we set q = 9C2n log n/ε2 and enforce that ε ≥ 1/
√
n, then we find that

E [‖RWR−RR‖] ≤ min

(
C
√
n− 1

√
log q

q
, 1

)

≤ C
√
n− 1

√
log(9C2n log n/ε2)

9C2n log n/ε2

≤ ε

√
C2(n− 1) log(9C2n log n/ε2)

9C2n log n

≤ ε

√
(n− 1) log(9C2n log n/ε2)

9n log n
.

It remains to show that the term under the square root is less than or equal to 1/2. If

68

we enforce that ε ≥ 1/
√
n, then

E [‖RWR−RR‖] ≤ ε

√
(n− 1) log(9C2n log n/ε2)

9n log n

≤ ε

√
(n− 1) log(9C2nn log n)

9n log n

= ε

√
(n− 1) log(9C2n2 log n)

n log n9

≤ ε

√
log(9C2n2 log n)

log n9
.

It is easy to see that with sufficiently large n that the term under the square root will

be less than or equal to 1/2 since the denominator grows faster than the numerator.

Thus we know

E [‖RWR−RR‖] ≤ ε

2

and furthermore

Pr [‖RWR−RR‖ ≤ ε] ≥ 1

2

If we apply Theorem 2.11, then it follows that with probability at least 1/2 that

G̃ is a (1− ε, 1 + ε)-spectral approximation of G as desired. �

69

Chapter 3

FURTHER READING

We have introduced spectral graph sparsification as a consequence of two mo-

tivations. In terms of applications, sparsification is a preprocessing step used to speed

up computations on considerably large graphs. In terms of theory, sparsification can

be seen as a generalization of the well-studied expander graphs (and cut-sparsifiers).

Historically, Spielman and Teng were first motivated to build sparsifiers in order to

construct approximate solvers for symmetric, diagonally-dominant systems of linear

equations [24]. The first major spectral sparsification algorithm iterated over all edges

and probabilistically chose whether to include them in the sparse output. However, the

edge probabilities were set with respect to the conductance of the given graph. Con-

ductance is a graph property that generalized the isoperimetric number to also take

into account the degree sums of vertices in the two parts of a cut. The algorithm ran in

O(m logcm) time and generated sparsifiers with O(n logc n) edges for some constant c.

1. The second major algorithm is the one given by Spielman and Srivistava [23], which

we explain in detail, that probabilistically sparsifies with respect to effective resistances.

The authors further demonstrate that we can sparsify well with approximated effective

resistances and with some other optimizations. In this environment, the algorithm ran

in O((m/ε2) logc(m/ε2)) time and produced sparsifiers with O((n log n)ε2) edges. Both

algorithms produce nearly linear sparsifiers in nearly linear time. The latter is simpler

but slower depending on ones choice of ε.

Batson, Spielman, and Srivistava [4] prove the existence of linearly sized (in

the edges) sparsifiers, and they provide a simple deterministic algorithm to compute

1 All algorithms discussed here produce sparsifiers nearly spectrally identical to the
given graph.

70

them. Their technique is similar to using effective resistances. Namely, they also

reduce the problem to sparsifying R, but they do not make use of repeated sampling

and the law of large numbers. To prove the existence of these sparsifiers, they make

of a proof technique named the barrier method, which also makes use of a physical

model. In particular, it views eigenvalues as charged particles lying on a slope with

barriers on either side of the eigenvalues. They essentially sparsify the identity matrix

first in a deterministic way, and use R to transfer the results over the Laplacian. To

sparsify the identity, they consider one of its decompositions and adjust each term in

the decomposition such that the eigenvalues do not change too much. Controlling the

eigenvalues is done by the “barrier functions.” Their algorithm runs in O(mn3/ε2)

time, which fails to beat the nearly linear time algorithms prior to it. That being said,

it does produce linearly sized sparsifiers, obtaining the goal.

Koutis, Levin, and Peng [17] modify the algorithm for sparsifying by effective

resistances to calculate approximate effective resistances in a faster way than in the

original algorithm. Furthermore, they provide two other algorithms using looser ap-

proximations of effective resistances that run much faster. Their best algorithm runs in

O(m) time and produces O(n log n/ε2) assuming the input graph is dense. This meets

the goal for the runtime, but also produces nearly linear sized sparsifiers. Allen-Zhu,

Liao, and Orecchia [2] provide an advanced algorithm for constructing linearly sized

sparsifiers proved to exist by Batson, Spielman, and Srivistava. The benefit of this

algorithm is that it produces linearly sized sparsifiers, but it runs in nearly quadratic

time. This is a few orders of magnitude of improvement over Batson, Spielman, and

Srivistava’s elementary algorithm.

Generalizing some of the techniques introduced by Allen-Zhu, Liao, and Orec-

chia [2], Lee and Sun [19] introduce an algorithm to generate O(qn/ε2) sized sparsifiers,

but in nearly linear time. Here, q is a variable proportional to the accuracy of the final

sparsifier. They make use of effective resistances and the barrier method technique to

prove their results, but they use a probabilistic variant of what Batson, Spielman, and

Srivistava [4] did. The best algorithm to date was also introduced by Lee and Sun [18].

71

In a later paper, they improve on their previous result to produce an O(n/ε2) sized

sparsifier in O((m/εk) logc(m/εk)) time. Here k and c are some constants. In their

paper, they consider the more general problem of sparsifying positive semi-definite

matrices.

Generally speaking, the development of spectral sparsification started in the

realm of spectral graph theory but moved into the realm of linear algebra as it became

clear that tackling the more general problem was more fruitful. As such, there is

a parallel transition from using graph-theoretic techniques like effective resistances

to purely linear algebraic techniques. As for the current state of the problem: the

latest algorithms are almost practically efficient. It remains for many of these to be

implemented and examined empirially..

72

BIBLIOGRAPHY

[1] D. Aldous, The random walk construction of uniform spanning trees and uniform labelled trees,

SIAM Journal on Discrete Mathematics (1990).

[2] Z. Allen Zhu, Z. Liao, and L. Orecchia, Spectral sparsification and regret minimization beyond

matrix multiplicative updates (2015).

[3] N. Alon and V.D. Milman, λ1 isoperimetric inequalities for graphs, and superconcentrators, Jour-

nal of Combinatorial Theory, Series B (1985).

[4] J. Batson, D. Spielman, and N. Srivastava, Twice-ramanujan sparsifiers, SIAM Journal on Com-

puting (2012).

[5] A. Benczúr and D. Karger, Approximating s-t minimum cuts in Õ(n2) time, Proceedings of the

twenty-eighth annual acm symposium on theory of computing, 1996.

[6] S. Boucheron, G. Lugosi, and O. Bousquet, Concentration inequalities, Springer Berlin Heidelberg,

2004.

[7] A. Broder, Generating random spanning trees, 30th annual symposium on foundations of com-

puter science, 1989.

[8] A. Chakeri, H. Farhidzadeh, and L.O. Hall, Spectral sparsification in spectral clustering, 2016

23rd international conference on pattern recognition (icpr), 2016.

[9] P Chew, There is a planar graph almost as good as the complete graph, Proceedings of the second

annual symposium on computational geometry, 1986.

[10] E.G. Coffman and R.L. Graham, Optimal scheduling for two-processor systems, Acta Informatica

(1972).

[11] R. Cont and E. Tanimura, Small-world graphs: Characterization and alternative constructions,

Advances in Applied Probability (2008).

[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to algorithms, third edition, MIT

Press, 2009.

73

[13] A. De Mauro, M. Greco, and M. Grimaldi, A formal definition of big data based on its essential

features, Library Review (2016).

[14] G. Golub and C. Van Loan, Matrix computations (3rd ed.), Johns Hopkins University Press, 1996.

[15] M Hilbert, Quantifying the data deluge and the data drought, SSRN Electronic Journal (2015).

[16] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bulletin of the

American Mathematical Society (2006).

[17] I. Koutis, A. Levin, and R. Peng, Faster spectral sparsification and numerical algorithms for SDD

matrices, ACM Trans. Algorithms (2012).

[18] Y. Lee and H. Sun, An sdp-based algorithm for linear-sized spectral sparsification, Proceedings of

the 49th annual acm sigact symposium on theory of computing, 2017.

[19] Y.T. Lee and H. Sun, Constructing linear-sized spectral sparsification in almost-linear time, 2015

ieee 56th annual symposium on foundations of computer science, 2015.

[20] B. Pavel, A survey on pagerank computing, Internet Mathematics (2005).

[21] F. Pietrucci and W. Andreoni, Graph theory meets ab initio molecular dynamics: Atomic struc-

tures and transformations at the nanoscale, Physical Review Letters (2011).

[22] M. Rudelson and R. Vershynin, Sampling from large matrices: An approach through geometric

functional analysis, J. ACM (2007).

[23] D. Spielman and N. Srivastava, Graph sparsification by effective resistances, SIAM Journal of

Computing (2011).

[24] D. Spielman and S Teng, Spectral sparsification of graphs, SIAM J. Comput. (2011).

[25] D. Spielman and S.H. Teng, Nearly linear time algorithms for preconditioning and solving sym-

metric, diagonally dominant linear systems, SIAM Journal on Matrix Analysis and Applications

(2014).

[26] G. Strang, Introduction to linear algebra, Wellesley-Cambridge Press, 2016.

[27] U. Von Luxburg, A tutorial on spectral clustering, Statistics and Computing (2007).

74

	Table of Contents
	List of Figures
	Abstract
	1 A First Look
	1.1 Introduction
	1.2 A Means to Contain Data Explosion
	1.3 Background
	1.3.1 Graphs
	1.3.2 Graphs and Matrices
	1.3.3 Symmetric Matrices
	1.3.4 Properties of the Laplacian
	1.3.5 Laplacian Inverse

	1.4 Formalizing the Problem
	1.4.1 Defining ``Sparse''
	1.4.2 Defining ``Approximate''
	1.4.3 Spectral Approximation as Eigenvalue Approximation
	1.4.4 Spectral Approximation as a Generalization of Cut-Sparsifiers

	1.5 A Generalization of Expander Graphs

	2 Algorithm Design
	2.1 A First Algorithm
	2.1.1 Chernoff Bounds
	2.1.2 Analysis

	2.2 Choosing Edges
	2.3 Spectral Sparsification Using Effective Resistances
	2.3.1 Modeling Resistance Networks
	2.3.2 Effective Resistances
	2.3.3 Combinatorial Intuition for Effective Resistances
	2.3.4 First Try at Sparsifying with Effective Resistances
	2.3.5 A Better Algorithm for Sparsifying with Effective Resistances

	3 Further Reading

