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ABSTRACT

There are several questions which couldn't be explained by the Standard Model

of particle physics. For example, why the masses of particles of the third family are

larger than those of the corresponding particles of the second family, which are larger

than those of the �rst family? (the fermion mass hierarchy). Moreover, the di�erent

�avors mix with each other in a way described by mixing angles and complex phase

angles. Why the inter-family mixing angles in the leptonic sector are bigger than the

ones in the quark sector is still unknown. The problem of explaining the masses and

mixing angles of the quarks and leptons is the �avor problem.

Another important unanswered question is that what is dark matter?. At this

time, almost nothing is known about the dark matter particles, which constitute about

80% of the matter in the universe by mass. No one knows what kinds of particles dark

matter is made of, what their masses are, and whether or how they mix or interact.

This is the so called dark matter problem. These two questions are the main focus

of this thesis. They touch the most fundamental questions in particle physics which

involve postulating new physics, i.e. beyond the Standard Model physics.

1. The Flavor Problem

My adviser and I proposed a model in which the mixing angles in both quark and

neutrino sectors are controlled by just one single matrix which arises from the mixture

of regular Standard Model fermions with extra vector-like fermions in 5 + 5 multiplets

in SU(5). In the resulting model, all the presently unknown neutrino parameters are

predicted, including Dirac neutrino CP phase. Why the inter-family mixing angles in

the leptonic sector are larger than the ones in the quark sector is also explained.

xii



The model predicts certain mixing angles within GUT fermion multiplets that

are only observable in proton decay. The model also contains certain new scalar parti-

cles. If one of these scalars has mass near the weak scale, it will contribute an observable

amount to such �avor-changing processes as µ→ e+ γ. The branching ratios for pro-

ton decay and �avor-changing lepton decays are calculated. The branching ratios from

these processes could give several independent tests of the model.

Moreover,we have proposed a new version of the model in which the inter-

family hierarchies among the fermion masses are controlled by another matrix. The

combination of this idea with our previous model can give a complete and quite simple

account of the entire �avor structure of the quarks and leptons, including mixing angles

and mass ratios.

2. The Dark Matter Problem

One of the ideas that has attracted enormous interest in recent years is the

idea of asymmetric dark matter. Another is the idea that ordinary matter and dark

matter may have been generated together in the early universe by a single mechanism.

The �rst paper on co-generation of dark matter, and the second on asymmetric dark

matter was co-authored by my thesis adviser S.M. Barr in 1990, with E. Farhi and S.

Chivukula. My adviser and I have proposed a co-generation mechanism that improves

on the one proposed in that 1990 paper. This paper proposed that so-called sphaleron

processes of the Standard Model could be responsible for co-generating dark matter.

We show that sphalerons of a new non-abelian gauge interaction would more easily

co-generate dark matter and also lead to de�nite predictions of the mass of the dark

matter particles.

xiii



Chapter 1

A BRIEF INTRODUCTION TO THE PHYSICS OF THE STANDARD
MODEL AND BEYOND

1.1 QED of A Fermion with Charge Q

There are many kinds of indices in this thesis, in fact seven kinds.

1. Lorentz vector indices, e.g. xµ, ∂µ, γ
µand Aµ

2. Lorentz spinor indices, e.g. ψλ, (γµ)λλ′ and C
λ
λ′

3. Color indices labelling components of triplets of SU(3)

4. Color indices labelling generators of SU(3)

5. electroweak indices labelling components of doublets of SU(2)

6. electroweak indices labelling generators of SU(2)

7. Family indices

If all indices were shown, the equations would look so messy they would be hard to

understand. For example, for a left-handed quark, there are four types of indices on it.

So I shall only show indices when necessary. They should be understood to be there

even they are not shown. Finally, the summation convention are used throughout the

thesis for all kinds of indices, for example, γµAµ = γ0A0 + γ1A1 + γ2A2 + γ3A3.

1.1.1 The Lagrangian Density of QED

In QED, the Lagrangian density is written as

L = Lgauge + Lf, kin + Lf,mass
= −1

4
FµνF

µν +
(
ψiγµDµψ + h.c.

)
−mψψ (1.1)

1



where

ψ ≡ ψλ = four component Dirac spinor

ψ ≡ ψ†γ0

and γµ are 4× 4 gamma matrices having the following properties

{γµ, γν} = 2ηµν , ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


γ0† = γ0, γi† = −γi

γ0, γ1, γ3 are real and γ2 is imaginary. Here we follow the Bjorken and Drell conven-

tions. And

Fµν ≡ ∂µAν − ∂νAµ
∂µ ≡ ∂/∂ xµ

Dµ ≡ ∂µ − i eQAµ

The Lagrangian density is both Lorentz and gauge invariant, as we will be shown in

the following sections.

1.1.2 Gauge Invariance

The gauge transformations of the fermion and gauge �elds are

ψ(xλ) → ψ′(xλ) = eiQα(xλ)ψ(xλ)

Aµ(xλ) → A′µ(xλ) = Aµ(xλ) +
1

e
∂µα(xλ)

2



Then

Dµψ → D′µψ
′ =

(
∂µ − i eQA′µ

)
ψ′

=

(
∂µ − i eQ [Aµ(xλ) +

1

e
∂µα(xλ)]

)
eiQα(xλ)ψ(xλ)

= eiQα (∂µψ + i Q (∂µα)ψ − i eQAµψ − i Q (∂µα)ψ)

= eiQα (∂µ − i eQAµ)ψ

= eiQαDµψ

And

ψ(xλ)→ ψ
′
(xλ) = e−iQαψ(xλ)

therefore ψiγµDµψ and mψψ are both gauge invariant.

Fµν → F ′µν = ∂µA
′
ν − ∂νA′µ

= ∂µ

(
Aν +

1

e
∂να

)
− ∂ν

(
Aµ +

1

e
∂µα

)
= ∂µAν − ∂νAµ
= Fµν

So FµνF
µν is also gauge invariant. We can conclude the Lagrangian density of QED is

gauge invariant.

1.1.3 Lorentz Invariance

The Lorentz transformation of fermion �eld is

ψ → ψ′ = eiθµνσ
µν

ψ

where σµν ≡ i
2

[γµ, γν ] are the generators of Lorentz transformations and θµν are the

transformation parameters, i.e. the magnitudes of the spatial rotations and boosts.

ψ = ψ†γ0 → ψ†e−iθµν(σµν)†γ0

= ψ†γ0e−iθµνσ
µν

= ψ e−iθµνσ
µν

(1.2)

⇒ ψ
′
ψ′ = ψ e−iθµνσ

µν

e+iθµνσµνψ

= ψψ

3



so the mass term is Lorentz invariant. Notice that we went from the second line of

eq. (1.2) to the third line by using the relation σµν†γ0 = γ0σµν . This relation can be

derived from the properties of γµ matrices and the de�nition of σµν . Similarly, it can

be shown that the kinetic term is also Lorentz invariant, but the algebra is slightly

longer because it also involves Lorentz transforming the gauge �eld Aµ.

1.2 More about Dirac Spinors

1.2.1 Charge Conjugation of Spinors

Given a Dirac spinor ψ that transforms as above, one can de�ne a charge con-

jugate spinor ψc as follows:

ψc ≡ i γ2ψ∗.

This can be shown to transform in the same way under Lorentz transformations as ψ

itself:

ψc → ψ′c = i γ2
(
eiθµνσ

µν

ψ
)∗

= i γ2e−iθµνσ
µν∗
ψ∗

= e+iθµνσµν i γ2ψ∗

= e+iθµνσµνψc,

where we have used the fact that −σµνγ2 = γ2σµν∗, which follows from the properties

of the gamma matrices. It will be seen later that ψc has the opposite chirality to ψ.

Under gauge transformations, if ψ → ψ′ = eiQαψ, then

ψc → ψ′c = e−iQαψc

so ψc and ψ also have opposite-sign charge. So if ψ is a left-handed electron, then ψc

is a right-handed positron, etc. Therefore, one can write fermion mass terms using ψc

4



if we de�ne C ≡ i γ2γ0,

m (ψc)T Cψ = m
(
i γ2ψ∗

)T (
i γ2γ0

)
ψ

= −mψ∗Tγ2γ2γ0ψ

= +mψ∗Tγ0ψ

= mψψ

As we will see, there are advantages to writing mass terms this way. For example,

writing Majorana neutrino masses in this way will be less confusing, and so will writing

quark and lepton masses in grand uni�ed theories.

1.2.2 Chirality of Fermions

De�ne γ5 ≡ i γ0γ1γ2γ3 = γ5. We can easily derive the following properties of γ5(
γ5
)2

= 1, γ5∗ = γ5 = γ5T

{
γ5, γµ

}
= 0,

We also de�ne the right-handed and left-handed projection matrices

1 + γ5

2
≡ R,

1− γ5

2
≡ L,

which have the properties

L2 = L, R2 = R,

LR = RL = 0, L+R = I.

We can then de�ne the �elds of the right-handed and left-handed particles as

ψR ≡ Rψ =

(
1 + γ5

2

)
ψ

ψL ≡ Lψ =

(
1− γ5

2

)
ψ (1.3)

=⇒ ψ = ψR + ψL

Note that γ5ψL = −ψL and γ5ψR = −ψR.

5



1.2.3 Chirality and Fermion Kinetic Terms and Gauge Couplings to Fermions

We can rewrite the kinetic terms of the fermions using the de�nitions in eq.

(1.3). First consider a fermion kinetic term with a projection matrix inserted into it:

ψiγµDµ

(
1± γ5

2

)
ψ = ψiγµDµ

(
1± γ5

2

)2

ψ

= ψ†i
(
γ0γµ

)
Dµ

(
1± γ5

2

)(
1± γ5

2

)
ψ

= ψ†
(

1± γ5

2

)
i
(
γ0γµ

)
Dµ

(
1± γ5

2

)
ψ

=

(
1± γ5

2
ψ

)†
γ0i γµDµ

(
1± γ5

2

)
ψ

= ψR i γ
µDµψR for the upper sign

ψL i γ
µDµψL for the lower sign

=⇒ ψiγµDµψ = ψR i γ
µDµψR + ψL i γ

µDµψL

If one thinks of ψ† as creating a fermion and ψ annihilating a fermion, these terms

correspond to the following diagrams

ψR ψRψL

Aµ

ψL

Aµ

Figure 1.1: Fermion and gauge boson coupling

SinceDµ contains an Aµ, so the fermion kinetic terms and gauge boson couplings

to fermions do not change charility.

6



1.2.4 Chirality and Fermion Mass Terms (and Yukawa Couplings)

Now let us consider a fermion mass term with a projection matrix inserted into

it:

mψ

(
1± γ5

2

)
ψ = mψ

(
1± γ5

2

)2

ψ

= mψ†γ0

(
1± γ5

2

)2

ψ

= mψ†
(

1∓ γ5

2

)
γ0

(
1± γ5

2

)
ψ

= m

[(
1∓ γ5

2

)
ψ

]†
γ0

(
1± γ5

2

)
ψ

= mψLψR for the upper sign

mψRψL for the lower sign

=⇒ mψψ = mψLψR +mψRψL

Notice that these terms ��ip� the chirality of the fermion: they destroy a left-handed

fermion and create a right-handed one, or vice versa. Also for so-called �Yukawa cou-

plings� of fermions to spin-0 �elds (scalar �elds), one can write

Y ψψφ = Y ψLψRφ+ Y ψRψLφ,

where the coe�cient Y is called the Yukawa coupling constant. These fermion mass

terms and Yukawa terms can be understood using the following Feynman diagrams

ψL

φ

ψR ψL

φ

ψR

Figure 1.2: Fermion and scalar boson coupling

7



The reason Yukawa terms are called that is that they are similar in form to the

nucleon-pion coupling term NNπ proposed by Yukawa. Now let's consider other way

of writing these mass terms with ψc

(ψc)T C

(
1± γ5

2

)
ψ = (ψc)T C

(
1± γ5

2

)2

ψ

= (ψc)T
(

1± γ5

2

)
C

(
1± γ5

2

)
ψ

=

[(
1± γ5

2

)
ψc
]T
C

(
1± γ5

2

)
ψ

= (ψcR)T CψR for the upper sign

(ψcL)T CψL for the lower sign.

Therefore, one can draw the Feynman diagrams in another way

ψL ψR

φ

ψL ψc
L

φ

ψLψLψL

or

e−L e−R

φ

e−L e+L

φ

e−Le
−
Le
−
L

or

Figure 1.3: Yukawa coupling

There is an intuitive way to understand why the Yukawa coupling of a scalar

�eld to a fermion does not conserve the chirality of the fermion. The Yukawa coupling

gives a Feynman diagram that can describe the scalar decaying into a particle and an

antiparticle, as we show in the last diagram in the Figure 1.3. Since the initial state

in a spin-0 particle, the spins of the two particles in the �nal state must be pointing
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in opposite direction. But also (in the center of momentum frame) the momenta of

the �nal state particles must be pointing in the opposite direction. Therefore, the spin

and momentum must be aligned for both �nal state particles or anti-aligned. That is,

they must be both left-handed or both right-handed. That corresponds to the Yukawa

operator being of the form ψcLCψLφ or ψcRCψRφ.

e− e+

p p

s s
or

s s

Figure 1.4: Handness of fermion

1.3 Complex Fermion Masses

Let's now consider complex fermion masses in QED

Lf,mass = −
(
mψLψR +m∗ψRψL

)
= −

(
mψ†Lγ

0ψR +m∗ψ†Rγ
0ψL

)
We have allowed the coe�cient m (the fermion mass) to be complex, because there is

no reason why it should not be. But the Lagrangian (like the kinetic and potential

energy) should be real. One can see that Lf,mass is real if the coe�cient of the second

term is m∗, because then the second term can be obtained by taking the hermitian

conjugate of the �rst. Let us write m = |m| eiα. Then we can eliminate the phase eiα

from the Lagrangian density by rede�ning �elds. For example, if we de�ne ψ′R ≡ eiαψR

and ψ′L ≡ ψL, then the fermion mass term can be written

Lf,mass = −|m|
(
ψ
′
Lψ
′
R + ψ

′
Rψ
′
L

)
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The fermion kinetic terms keep the same from

Lf, kin = ψRi γ
µDµψR + ψLi γ

µDµψL

= ψ
′
Ri γ

µDµψ
′
R + ψ

′
Li γ

µDµψ
′
L.

So the phase α has no physical meaning. People say it can be �rotated away� or

�absorbed� by rede�nition of fermion �elds. However, suppose we did not rede�ne

the �elds, and the phase α remained in the Lagrangian density. It would make no

di�erence, because it would cancel in the calculation of any physical quantity. As we

will see, some phases cannot be rotated away. Such phases are physical and lead to �CP

violation.� For example, suppose that a fermion had both a mass term and a Yukawa

term coupling it to a real scalar �eld φ. Then

Lf,mass,Y uk = −|m|
(
eiαψLψR + e−iαψRψL

)
− Y

(
eiβψLψR + e−iβψRψL

)
φ. (1.4)

One can de�ne ψ′R = eiαψR, and make α disappear from the mass term but the Yukawa

term would then be

Y
(
ei(β−α)ψLψR + e−i(β−α)ψRψL

)
φ.

Or one could make the phase disappear from the Yukawa term, but it would then be in

the mass term. In this case, the phase (β−α) is physical and leads to CP violation. One

can see that the more interaction terms there are in L, the more complex coe�cients

(more phases) there can be. But the more �elds there are in the theory, the more

phases can be absorbed by rede�ning these �elds. So the net number of �physical

phases� depends both on how many interaction terms there are and how many �elds

there are. This will be important in counting the number of physical phases there are

in the Standard Model.

1.4 Mass Matrices

Now consider QED with N types of fermions, which we will call ��avors.�

ψLm = (ψL1, ψL2, ψL3, · · ·ψLN),

ψRm = (ψR1, ψR2, ψR3, · · ·ψRN).
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The kinetic and mass terms of fermions are

Lf, kin + Lf,mass = ZL
mn

(
ψLmi γ

µ←→D ψLn

)
+ ZR

mn

(
ψRmi γ

µ←→D ψRn

)
+ MmnψLmψRn +M †

mnψRmψLn,

where
←→
D =

−→
D −←−D . One can easily check that for the kinetic terms to be real, ZL and

ZR must be hermitian matrices. One can make ZL → I and ZR → I by a combination

of unitary and scale transformations of the �elds ψLm, ψRn. Let's look at the kinetic

term for the left-handed fermions �rst. Suppressing the �avor indices, one has

ψLZ
Li γµ

←→
D ψL.

Since ZL is hermitian, it can be made real and diagonal by a unitary transformation

VLZ
LV †L = Z̃L = real diagonal

=⇒ ZL = V †LZ̃
LVL

=⇒ ψLZ
Li γµ

←→
D ψL =

(
ψLV

†
L

√
Z̃L
)
i γµDµ

(√
Z̃LVLψL

)
.

Therefore, if we de�ne

ψ′L =
√
Z̃LVLψL,

the term becomes

ψ′Li γ
µDµψ

′
L.

This is called the �canonical form� of the kinetic term, i.e. the form with no matrix ZL.

Similarly, by rede�nition of ψR, the kinetic term of ψR can be brought to canonical

form. After that is done, the fermion mass term will in general still have a non-trivial

matrix in it that is called the �mass matrix.� Since one can always bring kinetic terms

to canonical form, people usually start with them written in canonical form. Let us

therefore do that, but assume that the mass matrix is non-trivial:

ψL i γ
µ←→D ψL + ψR i γ

µ←→D ψR + ψL M ψR + ψR M
†ψL.
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The fermion mass matrix M is not hermitian in general, but there is a theorem that

complex matrices can be made diagonal and real by so-called �bi-unitary� transforma-

tions. So we may write

U †LMUR = M̃ = real and diagonal

=⇒M = ULM̃U †R, M † = URM̃ †U †L,

=⇒ Lf,mass = ψLULM̃U †RψR + ψRURM̃ †U †LψL

De�ne

ψ′L = U †LψL,

ψ′R = U †RψR
=⇒ Lf,mass = ψ′LM̃ψ′R + ψ′RM̃ψ′L

= ψ′M̃ψ′

This is called the �mass basis� because M̃ is real and diagonal, so the ψ′m are the mass

eigenstates, i.e. �elds of de�nite (real) mass. This is also called the �physical basis,�

because we identify the physical particles as those of de�nite mass. Notice that the

unitary transformations UL and UR don't a�ect the kinetic terms, which remain in the

canonical form:

ψ′L i γ
µDµψ

′
L = ψLULi γµDµU †LψL

= ψL i γ
µDµψL,

and similarly for the kinetic term of the right-handed fermions.
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1.5 Non-Abelian Gauge Theory: SU(2)

1.5.1 Review of Abelian Gauge Theory

Let us look at QED again. There is a gauge symmetry of L. The symmetry

transformation is

ψ(xλ) → ψ′(xλ) = eiQα(xλ)ψ(xλ),

Aµ(xλ) → A′µ(xλ) = Aµ(xλ) +
1

e
∂µα(xλ),

Dµψ → D′µψ
′ =
(
∂µ − i eQA′µ

)
ψ′ = eiQαDµψ,

ψ(xλ) → e−iQαψ(xλ).

This allows the kinetic term of gauge �eld Aµ to be written as

ψiγµDµψ →
(
e−iQαψ

)
iγµ
(
eiQαDµψ

)
= ψiγµDµψ

The transformations ψ → eiQαψ form a group whose elements are parameterized by a

single angle 0 ≤ α ≤ 2π.

U(α) = eiQα.

Note that this is a group of 1 × 1 unitary matrices. It is therefore called U(1). It

is abelian because eiQα · eiQβ = eiQβ · eiQα. Suppose we consider the commutator

[Dµ, Dν ]

[Dµ, Dν ]φ = (∂µ − i eQAµ) (∂ν − i eQAν)φ− (µ↔ ν)

= −i eQ (∂µAν − ∂νAµ)φ

≡ −i eQFµνφ

=⇒ Fµν =
i

eQ
[Dµ, Dν ]
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It is easy to check directly that Fµν is gauge invariant. One can also see that (as

operators)

D′µ
(
eiQαφ

)
= D′µφ

′ = eiQαDµφ =⇒ D′µe
iQα = eiQαDµ

=⇒ e−iQαD′µe
iQα = Dµ

=⇒ [Dµ, Dν ] =
[
e−iQαD′µe

iQα, e−iQαD′νe
iQα
]

= e−iQα
[
D′µ, D

′
ν

]
eiQα

=
[
D′µ, D

′
ν

]
In the last step we have used the fact that [Dµ, Dν ] = −ieQFµν has no free derivative
operators in it but only derivatives of �elds.

1.5.2 SU(2) Gauge Theory

Now we will explain how the gauge transformations of QED can be generalized

to �non-abelian� transformations. Consider a doublet of fermions:

ψi =

 ψ1

ψ2

 .

One can consider transformations where this doublet is multiplied by a complex 2 ×
2 matrix U : ψ −→ ψ′ = Uψ. (It will simplify notation not to show the indices

of the matrix U or of the fermion doublet ψ.) We will assume that both the left-

handed and right-handed projections of ψ transform the same way, so ψL −→ UψL

and ψR −→ UψR. If one wants the mass term of the doublet to be invariant under this

transformation, then one must have that

mψψ −→ m(Uψ)Uψ = mψU †Uψ = mψψ.

This implies that U †U = I, i.e. U that is unitary. Let us require not only that U

be unitary, but that it be �unimodular�, that is that detU = 1. The set of all 2 × 2

unimodular unitary matrices is closed under matrix multiplication and form a group

called SU(2). (U stands for unitary, 2 stands for 2 × 2, and S stands for �special,�
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meaning determinant = 1.) Suppose that we demand that the Lagrangian density L is

invariant under �local� SU(2) transformations, i.e. transformations under which U is a

function of space-time location: U(xµ). Such a local transformation is called a �gauge

transformation,� and so such a theory would be said to have SU(2) gauge invariance.

The most general unitary, unimodular 2 × 2 matrix can be written in the fol-

lowing form:

U(αa) = e
i

3∑
a=1

Taαa

,

where αa, a = 1, 2, 3, are three angles, and T a, a = 1, 2, 3, are three 2 × 2 hermitian

traceless matrices, which are called the generators of SU(2) transformations. These

generators can be written in terms of the well-known Pauli matrices:

T a =
1

2
σa.

If the transformations are local, that means that the transformation angles depend on

location, so we may write

U(xµ) = U(αa(xµ)) = e
i

3∑
a=1

Taαa(xµ)
.

Notice that these transformations are like those of QED, but with the charge Q replaced

by the three generators T a, and the single rotation angle α replaced by the three angles

αa.

SU(2) is a non-abelian group, because its elements do not in general commute.

That is, generally U1U2 6= U2U1. That is a result of the fact that the generators of

SU(2) also do not commute with each other. In fact the generators satisfy commutation

relations which are called the �algebra� of the group:

[
T a, T b

]
= iεabcT c

We have seen that the fermion mass terms are invariant under local SU(2) transfor-

mations, but it is non-trivial to construct a kinetic term that is invariant. As with

QED, making the kinetic terms gauge invariant requires replacing the ordinary partial
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derivatives with respect to xµ by �covariant derivatives.� The covariant derivative must

have this property:

Dµψ → D′µψ
′ = U (Dµψ).

In that case,

ψiγµDµψ −→ ψ′iγµD′µψ = ψU †iγµU (Dµψ)

= ψiγµ(Dµψ).

To �nd such a covariant derivative, we will use the analogy of the covariant derivative

of QED to write

Dµ = ∂µ − ig
3∑

a=1

T aAaµ.

Notice that this is the QED covariant derivative with Q→ T a, e→ g, and Aµ → Aaµ.

A notation that makes some equations look simpler is Aµ ≡
3∑

a=1

T aAaµ, so that the

covariant derivative in SU(2) can be written Dµ = ∂µ − igAµ. We have therefore

Aµ ≡
3∑

a=1

T aAaµ

=

 A3
µ

2

A1
µ−iA2

µ

2

A1
µ+iA2

µ

2
−A3

µ

2

 ≡
 W 0

µ

2

W+
µ√
2

W−µ√
2
−W 0

µ

2

 ,

where we have renamed the �gauge �elds�
A1
µ∓iA2

µ√
2
≡ W±

µ and A3
µ ≡ W 0

µ .

Requiring that Dµψ −→ D′µψ
′ = U(Dµψ), as we have seen is needed to write

gauge invariant kinetic terms, implies that

D′µψ
′ = (∂µ − igA′µ)(Uψ) = U(∂µ − igAµ)ψ

=⇒ (∂µU)ψ + U(∂µψ)− igA′µUψ = U(∂µψ)− U igAµψ

=⇒ A′µUψ = U Aµψ −
i

g
(∂µU)ψ

=⇒ A′µU = U Aµ −
i

g
(∂µU)

=⇒ A′µ = U AµU
† − i

g
(∂µU)U † (1.5)
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Notice that eq. (5) also gives the transformation of QAµ in QED (which is analogous

to Aµ =
3∑

a=1

T aAaµ in the non-abelian gauge theory)

QAµ → QA′µ = eiQαQAµe
−iQα − i

e
(∂µe

iQα)e−iQα

= QA−− i
e

(iQ∂µα)

⇒ Aµ → A′µ = Aµ +
1

e
∂µα

which is the same as our previous result.

We now can explain how to write kinetic terms for the gauge �elds Aaµ analogous

to the kinetic term −1
4
FµνF

µν for QED.

From the requirement that D′µψ
′ = D′µUψ = UDµψ (see eq. (1.5)), one has the

operator equation D′µU = UDµ, or D
′
µ = UDµU

−1. Let us de�ne

3∑
a=1

T aF a
µν ≡ Fµν ≡

i

g
[Dµ, Dν ] .

Then Fµν transforms as

Fµν −→
i

g

[
D′µ, D

′
ν

]
=
i

g

[
UDµU

−1, UDνU
−1
]

=
i

g
U [Dµ, Dν ]U

−1 = UFµνU
−1.

This means that the following expression is invariant under gauge transformations:

tr (FµνF
µν) = F a

µνF
b µνtr

(
T aT b

)
= F a

µνF
b µν 1

2
δab =

1

2

3∑
a=1

F a
µνF

a µν ,

where we used the property of Pauli matrices trσaσb = 2δab =⇒ trT aT b = 1
2
δab, and

for simplicity we did not show summation signs except in the last step. A canonically

normalized kinetic term for the gauge �elds of SU(2) is therefore −1
4

3∑
a=1

F a
µνF

a µν .
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We can also see what F a
µν looks like in terms of Aaµ:

T aF a
µν = Fµν = i

g
[Dµ, Dν ] = i

g

[
(∂µ − igT bAbµ), (∂ν − igT cAcν)

]
= i

g

[
−igT a

(
∂µA

a
ν − ∂νAaµ

)
− g2

[
T b, T c

]
AbµA

c
ν

]
= T a

(
∂µA

a
ν − ∂νAaµ + gεabcAbµA

c
ν

)
=⇒ F a

µν = ∂µA
a
ν − ∂νAaµ + gεabcAbµA

c
ν

1.5.3 How Non-Abelian Gauge Interactions Can Turn One Field (Particle)

into Another

Consider the kinetic term of a fermion doublet

ψiγµDµψ =
(
ψ1, ψ2

)
iγµ

∂µ − ig
 W 0

µ

2

W+
µ√
2

W−µ√
2
−W 0

µ

2

 ψ1

ψ2

 . (1.6)

This contains

ψ1iγµ
(
∂µ − ig

(
1

2

)
W 0
µ

)
ψ1 + ψ2iγµ

(
∂µ − ig

(
−1

2

)
W 0
µ

)
ψ2 (1.7)

+ ψ1γµ
g√
2
W+
µ ψ

2 + ψ2γµ
g√
2
W−
µ ψ

1.

from the terms on the �rst line, one sees that W 0
µ acts like the gauge �eld of an abelian

gauge theory (like QED) with gauge coupling constant g, and ψ1 and ψ2 having opposite

charges ±1
2
. One can see from the terms on the second line the very important fact that

W+
µ and W−

µ can turn ψ1 → ψ2 and ψ2 → ψ1 which can be shown diagrammatically

as in the Figure 1.5.

18



W+
µ (Q = +1) W−

µ (Q = −1)W+
µ W−

µ

ψ1(Q = +1/2)ψ2(Q = −1/2) ψ2(Q = −1/2)ψ2(Q = −1/2)ψ2(Q = −1/2) ψ1(Q = +1/2)ψ1(Q = +1/2)ψ1(Q = +1/2) ψ1(Q = +1/2) ψ2(Q = −1/2)ψ2(Q = −1/2)ψ2(Q = −1/2)ψ2(Q = −1/2)

Figure 1.5: charge-current Weak interactions

The generator T 3 corresponds to the gauge �eld A3
µ = W 0

µ . The eigenstates of

T 3(= σ3/2) are just ψ1 and ψ2, with eigenvalues +1
2
and −1

2
, respectively. That is why

these �elds couple to W 0
µ with those charges in eq. (1.7). One can see from the second

line of eq. (1.7) that W+
µ and W−

u must have T 3 charge of +1 and −1 respectively,

and from the �rst line of eq. (1.7) that W 0
µ must have T 3 charge equal to 0. This is

why these gauge �elds are given those names. The (W+
µ ,W

0
µ ,W

−
µ ) form a triplet under

SU(2), and so the SU(2) transformations and generators that act on them are 3 × 3

matrices. But we do not need to discuss that here.

1.6 The Strong Interactions (QCD)

The discussion in the last section can be generalized to larger groups. For

example, consider fermions in triplets

ψa =


ψ1

ψ2

ψ3


that transform by multiplication by 3× 3 unitary matrices with det = 1

ψa → ψa
′
= Ua′

a ψ
a.

this gives a SU(3) gauge theory. Here U can be written as

U(αm) = e
i

8∑
m=1

λmαm
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where λm are 3 × 3, hermitian, traceless matrices, which are the generators of SU(3)

(in the triplet representation). There are eight such matrices and eight parameters

αm needed to parametrize the transformations. There are eight corresponding gauge

�elds Amµ . The strong interactions are described by such an SU(3) gauge theory called

Quantum Chromodynamics (QCD). The quark �elds are triplets, e.g.

ua =


u1

u2

u3

 =


ur

ug

ub


The three components of a quark are usually called the three �colors,� and the index is

sometimes said to take the three values r (red), g (green), and b (blue) instead of 1,2,3.

The eight gauge �elds are called gluon �elds. The SU(3) of QCD is often called SU(3)c

to remind us that the components are colors. We shall not discuss QCD much in the

remainder of this thesis because our focus is more on the electroweak interactions.

One can also consider larger groups than SU(3). Later we shall discuss �grand uni�ed

theories� based on the the gauge group SU(5). There are also grand uni�ed theories

based on other groups, such as SO(10). In the last part of this thesis, grand uni�ed

theories with gauge groups SU(6), SU(7) and E(6) are discussed.

1.7 The Electroweak Interactions

In the Standard Model of particle interactions (SM), the electroweak interactions

are described by a theory very similar to the one we discussed in section 1.5 with two

very signi�cant di�erences: (1) In the SM, the left-handed fermions are in doublets of

SU(2), but the right-handed fermions are in singlets of SU(2) (in other words, they do

not transform at all, ψR → ψR). (2) The gauge group of the electroweak interactions is

actually SU(2)×U(1). Often the groups are called SU(2)L×U(1)Y , where L reminds us

that the SU(2) acts only on left-handed fermions and Y reminds us that the generator

of U(1)Y (called the weak hypercharge) is called Y . The generators of SU(2)L are
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called T a, a = 1, 2, 3, as in section 1.5 (or sometimes T aL). The covariant derivative of

a left-handed fermion doublet is given by

(
∂µ − ig

∑
T aAaµ −

ig
′

2
Y Bµ

) ψ1
L

ψ2
L

 .

For the right-handed fermions that are partners of these one has(
∂µ −

ig
′

2
Y Bµ

)
ψ1
R +

(
∂µ −

ig
′

2
Y Bµ

)
ψ2
R.

In these expressions Y is thought of as an operator, so that it has the value of the weak

hypercharge of the fermion it acts on. For historical reason, often people give the value

of Y/2 for a �eld and call that the weak hypercharge.

Let us now consider the u and d (or �up� and �down�) quarks. For each, both left-

handed and right-handed components are triplets under SU(3)c. (So in the terminology

that will be explained shortly, quarks are �vector-like� under SU(3)c and the gluons

couple to them with a γµ and no γµγ5.) The left-handed parts of the u and d quarks

form an SU(2)L doublet that has Y/2 = +1
6
. This doublet is often called Q or QL:

QL =

 uL

dL

 .

One can see from this why these quarks were called �up� and �down.� The right-

handed parts of u and d are singlets under SU(2)L, and have Y/2 equal to +2
3
and −1

3

respectively. We summarize the quantum numbers of every fermion in the Table 1.1.
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1st 2nd 3rd T 3 Y/2

QL1 =

 uL

LdL

 QL2 =

 cL

sL

 QL3 =

 tL

bL

  1
2

−1
2

 1
6

quarks uR cR tR 0 2
3

dR sR bR 0 −1
3

leptons `L1 =

 νe

eL

 `L2 =

 νµ

µL

 `L3 =

 ντ

τL

  1
2

−1
2

 −1
2

eR µR τR 0 -1

Table 1.1: The quantum numbers of fermions under SU(2)L × U(1)Y

What happens in the SM is that through the Higgs mechanism the group

SU(2)L × U(1)Y is �spontaneously broken� to a subgroup U(1)Q whose generator

is the electric charge Q. In the process W±
µ ≡

A1
µ∓iA2

µ√
2

and a linear combination

Z0
µ ≡

−g′Bµ+gA3
µ√

g2+g′2
get large masses (MW ' 80GeV, MZ ' 91GeV). The remaining

linear combination Aµ =
gBµ+g′A3

µ√
g2+g′2

remains massless and is the gauge �eld of electro-

magnetism.

The generator of the unbroken U(1)Q is the electric charge and turns out to be

given by

Q = T 3 +
Y

2
,

so

Q (uL) =
1

2
+

1

6
=

2

3
,

Q (dL) = −1

2
+

1

6
= −1

3
,

Q (uR) = 0 +
2

3
=

2

3
,

Q (dR) = 0− 1

3
= −1

3
.
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Notice that the electric charges of the quarks come out to be the same for the left and

right-handed components. (So, in the terminology that will be explained in a moment,

the fermions are vector-like under U(1)Q.) How the Higgs mechanism makes W±
µ , Z

0
µ

massive, how A3
µ and Bµ mix to give Aµ and Z

0
µ, and why Q = T 3 + Y

2
is explained in

ref [1]. These things are not directly important for the topics dealt with in this thesis,

which mostly are about the interactions of the W±
µ to the fermions, through they are

very important features of the Standard Model.

Notice that theW±
µ are essentially the same �elds discussed in the SU(2) theory

in section 1.5, except they only couple to the left-handed doublets, not right-handed

singlets. So eq. (1.7) becomes

uLγ
µ g√

2
W+
µ dL + dLγ

µ g√
2
W−
µ uL

= uγµ
g√
2
W+
µ

(
1− γ5

2

)
d + dγµ

g√
2
W−
µ

(
1− γ5

2

)
u (1.8)

= u
g

2
√

2
W+
µ

(
γµ − γµγ5

)
d + d

g

2
√

2
W+
µ

(
γµ − γµγ5

)
u.

This gives the Feynman diagrams shown in the Figure 1.6.

dL(Q = −1/3) uL(Q = 2/3)

W+
µ (Q = +1)

dL

W−
µ

uL

Figure 1.6: charged-current Weak interactions in the quark sector

Notice that the interactions of W±
µ with the fermions contain (γµ− γµγ5). His-

torically, this was called a �V − A� interactions, because γµ is a 4-vector (of 4 × 4

matrices) while γµγ5 is an axial 4-vector because under parity γ5 −→ −γ5. (The rea-

son for this is that under a parity transformation x0 −→ +x0, and xi −→ −xi, where
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i is a spatial index. So γ5 = i γ0γ1γ2γ3 �ips sign.) The V −A structure arises because

only left-handed fermions transform under SU(2)L. If only right-handed fermions did

there would be V + A interactions. Suppose left-handed and right-handed fermions

transformed the same way as in section 5, then one would just get the sum of the two:

ψ
1
γµ

g√
2
W+
µ ψ

2 + ψ
2
γµ

g√
2
W+
µ ψ

1,

as in section 1.5, which is a purely vector or �V � interaction. This is why, for historical

reasons, fermions are called �vector-like� if the left-handed and right-handed compo-

nents transform the same way under the gauge group. So under SU(3)c and U(1)Q

the fermions of the SM are vector-like, as pointed out previously. But, under SU(2)L,

left-handed and right-handed fermions of a given type transform di�erently, so such

fermions are called �chiral,� meaning �handed.�

In the SM, fermions can be divided into two categories: the quarks, which we

just discussed, and the leptons. For the �rst family, the leptons are

`L ≡

 νeL

e−L

 with
Y

2
= −1

2
, e−R with

Y

2
= −1

Notice that we use a script ` to denote the left-handed lepton doublet. In the SM there

is no νeR, but if there were it would have Y = 0 in order to be electrically neutral. As

we will see, such a νR �eld, or equivalently a νcL �eld, is present in many grand uni�ed

models. So the electric charges of the leptons are given by Q = T 3 + Y/2 are

Q (νeL) =
1

2
− 1

2
= 0,

Q (e−L) = −1

2
− 1

2
= −1,

Q (e−R) = 0− 1 = −1,

Q (νeR) = 0− 0 = 0. (if it exists)

The lepton couplings give rise to the Feynman diagrams shown in the Figure 1.7.

24



e−L

W+
µ W−

µ

e−LνeL νeL

Figure 1.7: charged-current Weak interactions in the leptonic sector

The couplings of the quarks and leptons to theW±
µ give rise to the phenomenon

of beta decay, such as n→ p+ e− + νe, as one sees from the Figure 1.8.

d

u

d

d

d

u

W+
µ e−L

νeL

Figure 1.8: beta decay

1.8 Fermion Masses in The Standard Model

1.8.1 Electron Mass

In QED, one can write an explicit mass for the electron

me−Re
−
L +me−Le

−
R = m

(
e+
L

)T
Ce−L +m

(
e+
R

)T
Ce−R.

We have written it in two ways: (1) with e−Land e
−
R, and (2) with e−L and e+

L (the charge

conjugate of e−R). Note that, as mentioned before, e−R and e+
L are really the same degrees
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of freedom. As we will see, the second way of writing the mass terms, with particle

and antiparticle of the same chirality has some advantages.

In the Standard Model, we cannot write such a mass term for the electron

as we do in QED because it would not be invariant under SU(2)L or U(1)Y gauge

transformations. The �eld e−L has T 3
L = −1

2
, Y

2
= −1

2
, whereas e−R has T 3

L = 0, Y
2

= −1.

Consequently, the term
(
e−Le

−
R

)
would have T 3

L = −1
2
, Y

2
= 1

2
.

In the Standard Model, therefore, the mass of the electron must come from a

Yukawa coupling of the electron to some scalar �eld (namely the Higgs �eld). And for

that coupling to be invariant under SU(2)L × U(1)Y , the Higgs �eld must transform

in the right way under those groups. Therefore, let us introduce a complex SU(2)L

doublet of scalar �elds φ =

 φ+

φ0

 which has Y
2

= +1
2
. Thus φ+ has T 3

L = +1
2
and

Q = T 3
L + Y

2
= 1

2
+ 1

2
= 1, and φ0 has T 3

L = −1
2
and Q = T 3

L + Y
2

= −1
2

+ 1
2

= 0. Then

we can write the following SU(2)L × U(1)Y invariant (and Lorentz invariant) Yukawa

term

Yee
−
Rφ
†`L + Ye`Lφe

−
R

= Ye
(
e+
L

)T
Cφ†`L + Ye (`R)T Cφe−R.

Or, writing out the doublets `L and φ, one obtains

Yee
−
R

(
φ−νL + φ0∗e−L

)
+ Ye

(
νLφ

+ + e−Lφ
0
)
e−R

= Ye
(
e+
L

)T
C
(
φ−νL + φ0∗e−L

)
+ Ye

(
(νR)T φ+ +

(
e+
R

)T
φ0
)
Ce−R.

We have used (φ+)
∗ ≡ φ−, (φ−)

∗ ≡ φ+. Suppose that in the ground state (or �vacuum

state�) the neutral component of φ has a non-zero expectation value (called a �vacuum

expectation value� or �VEV�), and call this v/
√

2. Thus 〈0|φ0|0〉 = v/
√

2. By a gauge

transformation, v can be made real. Then the above Yukawa terms give(
Ye

v√
2

)
e−Re

−
L +

(
Ye

v√
2

)
e−Le

−
R =

(
Ye

v√
2

)(
e+
L

)T
Ce−L +

(
Ye

v√
2

)(
e+
R

)T
Ce−R.

One sees that this is e�ectively a mass for the electron, and that its mass is given by

me = Ye〈0|φ0|0〉 = Ye
v√
2
.
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1.8.2 Quark Mass

The d quark obtains a mass in a very similar way to the electron. Consider the

Yukawa term

YddRφ
†QL + YdQLφdR = Yd (dcL)T Cφ†QL + Yd (Qc

R)T CφdR.

Writing out the doublets QL and φ, one obtains

YddR
(
φ−uL + φ0∗dL

)
+ Yd

(
uLφ

+ + dLφ
0
)
dR

= Yd (dcL)T C
(
φ−uL + φ0∗dL

)
+ Yd

(
(ucR)T φ+ + (dcR)T φ0

)
CdR.

because of the VEV of φ∗0, the d quark obtains a mass md = Yd
v√
2
.

To write a Yukawa term to give mass to u quark we need an SU(2) doublet

of scalar �elds that has Y
2

= −1
2
, rather than +1

2
. One can make such a doublet by

�charge conjugating� φ. This done as follows

φc ≡ iσ2φ∗ =

 0 1

−1 0

 φ+

φ0

∗ =

 φ0∗

−φ−

 .

This has opposite weak hypercharge Y to φ, because of the complex conjugation. But

it transforms under SU(2)L in the same ways as φ:

φ −→ φ
′
= Uφ = e

i
3∑
a=1

Taαa

φ = e
i

3∑
a=1

σa

2
αa

φ

=⇒ φc
′
= iσ2φ

′∗ = iσ2U∗φ∗ = iσ2e
−i

3∑
a=1

σa∗
2
αa

φ∗

= e
i

3∑
a=1

σa

2
αa

iσ2φ∗

= Uφc,

where we have used the relation σ2σa∗ = −σaσ2, a = 1, 2, 3.

One can write an SU(2)L × U(1)Y -invariant Yukawa coupling of φc to the u

quarks:

YuuRφ
c†QL + YuQLφ

cuR = Yu (ucL)T Cφc†QL + Yu (Qc
R)T CφcuR.
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Or, writing out the doublets QL and φc:

YuuR
(
φ0uL − φ+dL

)
+ Yu

(
uLφ

0∗ − dLφ−
)
uR

= Yu (ucL)T C
(
φ0uL − φ+dL

)
+ Yd

(
(ucR)T φ0∗ − (dcR)T φ−

)
CuR.

This gives mu = Yu
v√
2
.

One sees that the fermion masses come out proportional to the Yuakwa coupling

constants denoted by Yf , where f is the fermion type: mf = Yfv/
√

2. Or to put it

the other way, the strength of the coupling between the Higgs boson φ and a type of

fermion is proportional to the mass of that type of fermion.

1.8.3 Neutrino Mass

The kinds of fermion masses we have discussed so far, involve a term with both

ψL and ψR (or equivalently ψcL). Since ψL and ψR are not the same degrees of freedom,

and they are each 2-component spinors, they make up together a 4-component �Dirac

spinor.� Such a mass term is therefore called a �Dirac mass term,� and the resulting

mass is called a �Dirac mass.� As we will see, there is another type of mass term called

a �Majorana mass term.�

In the Standard Model, a neutrino cannot have a Dirac mass, because there is

only a νL, but no νR (or equivalently νcL). If there were such a �eld, as in many grand

uni�ed theories, one could obtain a Dirac mass term for a neutrino in the same way

we did for the other types of fermion, through a Yukawa coupling to the Higgs �eld:

YννRφ
c†`L + Yν`Lφ

cνR = Yν (νcL)T Cφc†`L + h.c.

Or writing out the doublets

YννR
(
φ0νL − φ+e−L

)
+ Yν

(
νLφ

0∗ − e−Lφ−
)
νR = Yν (νcL)T C

(
φ0νL − φ+e−L

)
+ h.c.

Because 〈0|φ0|0〉 = v/
√

2, the neutrino gets a Dirac mass from these terms, which we

will call mDν , where the subscript D stands for �Dirac�:

mDν νR νL + h.c. = mDν (νcL)TCνL + h.c.,
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where mDν = Yν
v√
2
.

For a long time, it looked like neutrinos were massless. Analysis of the kine-

matics of tritium beta decay gave an upper limit to the mass of the electron neutrino

that was many orders of magnitude smaller than the electron mass. There were also

strong limits on the muon neutrino's mass. The simplest way to explain the apparent

masslessness of the neutrinos was to say that right-handed neutrinos (or equivalently

left-handed anti-neutrinos) do not exist in nature. That was consistent with the fact

that experiments showed that neutrinos were left-handed and anti-neutrinos were right-

handed. That fact prevents a Dirac mass for neutrinos and seems to force neutrinos to

be exactly massless.

However, another kind of mass term is possible for some fermions, called a

�Majorana mass term.� A Majorana mass term involves a coupling of a fermion ψL to

itself. In other words, one has m(ψL)TCψL rather than m(ψcL)TCψL. Such a term can

be written even if only ψL exists but no ψcL (or equivalently ψR) exists. That means

that a fermion with only a �Majorana mass� has only 2 components, not 4. It is not,

therefore a full Dirac spinor.

Looking at the Majorana mass term m(ψL)TCψL, one sees that it is forbidden

by electromagnetic gauge invariance, unless the electric charge of ψL is zero. Because

neutrinos have zero electric charge, it seems like it may be possible for them to have

Majorana masses. In fact, in most theories of neutrino mass, they do.

One cannot directly write down an explicit Majorana mass term mνTLCνL for

the neutrino, because it would not be invariant under U(1)Y . The left-handed neutrino

has Y/2 = −1/2, so such a term would have Y/2 = −1, and not be invariant.

Similarly, one cannot just write down a Yukawa term to the neutral Higgs �eld

φ0, such as Y νTLCνLφ
0, because that also would not be invariant under SU(2)L×U(1)Y .

Each of the �elds in that term have Y/2 = ±1/2, and all of them are in SU(2)L

doublets, and one cannot multiply three doublets to obtain an invariant term.

There are two ways, however, that neutrinos could get Majorana masses. One

way is that there might exist a new kind of Higgs �eld T that is a triplet under SU(2)L
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and has Y/2 = +1. That would be allowed to couple to neutrinos by a term of the

form Y νTLCνLT . In many grand uni�ed theories, such triplet Higgs �elds do exist, and

they can give very small neutrino masses by means of a mechanism called the Type II

see-saw mechanism.

Another way neutrinos can get a mass is by a term in L that is of higher order

in the �elds. The simplest term that can be written of this type that is SU(2)L×U(1)Y

and Lorentz invariant is
1

MR

(
φc†`L

)T
C
(
φc†`L

)
.

This is called the �Weinberg operator.� By dimensional analysis one can show that the

coe�cient of such a term has dimension of inverse mass. The mass in that coe�cient

is often called MR for reasons that we will explain later. Writing out the doublets `L

and φ in this term, one obtains

1

MR

(
φ0νL − φ+e−L

)T
C
(
φ0νL − φ+e−L

)
When φ0 gets a VEV, it gives

〈φ0〉2
MR

(
νTLCνL

)
=⇒ mν =

v2

2MR

The trouble with terms that are so high order in �elds is that they cause the

theory to be �non-renomalizable.� In other words quantum e�ects would give in�nite

corrections to it. The reason is that if one calculates quantum e�ects arising from

such a term, the answers would have powers of the coe�cient, which means powers

of an inverse mass. That must be compensated by some mass (or energy) in the

numerator. Generally, what appears in the numerator is the energy of virtual particles.

But there is no upper limit in quantum �eld theory to how large the energy of a virtual

particle can be. In quantum theory, one has to sum over all possibilities. That means

including virtual particles of arbitrarily high energy. This gives in�nite (and �non-

renormalizable�) answers.

However, such a term with coe�cient that is an inverse power of mass can

exist in an �e�ective theory� that is only supposed to describe physical processes up
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to some cuto� energy. In grand uni�ed theories, for example, the Standard Model is

an e�ective theory that is a good approximation only when the energies are less than

the �uni�cation scale,� which is typically about 1015 GeV. Above that, one must use

the full grand uni�ed theory. So, in grand uni�ed theories, one can get the Weinberg

operator in the �e�ective theory� that works at energies below the uni�cation scale.

That does not cause in�nities, because one should not allow virtual particles whose

energy is above the uni�cation scale. (Or, if one does, there are other processes that

cancel their contributions.)

In fact, in most grand uni�ed theories, the Weinberg operator does arise in the

e�ective theory. This gives neutrinos mass. We will now explain one way this happens.

1.8.4 Type I See-Saw Mechanism for Neutrino Mass

Many grand uni�ed theories (GUTs) predict that there should exist a right-

handed neutrinos νR or equivalently left-handed anti-neutrinos νcL that do not transform

under SU(2)L × U(1)Y , i.e. they are SU(2)L singlets with Y = 0.

Let us consider a case with one νL and one νcL. Nothing prevents an explicit

Majorana mass term for the νcL, since it is neutral under all gauge symmetries.

MRν
cT
L CνcL

The reason the mass is calledMR is that it gives the right-handed neutrino (left-handed

anti-neutrinos) mass. This mass has no reason to be small. In fact, it should �naturally�

be of order the highest energy scale that appears in the theory (MPl ∼ 1019 GeV or

MGUT ∼ 1015 GeV), because no symmetry forbids such a term or suppresses it.

The νcL can also have a normal Yukawa coupling to νL:

Yν (νcL)T Cφc†`L + Yν (`L)T φcCνcL =⇒ Yν (νcL)T Cφ0νL + Yν (νL)T φ0∗CνcL.

Since φ0 has a VEV, this term gives a Dirac mass term mDν(ν
c
L)TCνL + h.c., with

mDν = Yνv/
√

2.
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There are Yukawa and mass terms involving both νL and νcL, which we may

write in matrix form this way:

(
νL νcL

)T
C

 0 Yνφ
0

Yνφ
0 MR

 νL

νcL

 . (1.9)

Substituting for φ0 its VEV gives a mass matrix for νL and νcL:

(
νL νcL

)T
C

 0 MDν

MDν MR

 νL

νcL

 ,

where MDν = Yν
v√
2
∼= 1

2
Yν × 174 GeV, while MR ∼ 1015 GeV. The determinant of this

matrix is −(mDν)
2, while the largest eigenvalue is almost exactly equal toMR (because

MR � mDν). Therefore, if one diagonalizes this 2×2 matrix, one �nds that the smaller

eigenvalue must be very close to −(mDν)
2/MR. Let us call the two eigenmasses

Mheavy
∼= MR

Mlight
∼= −M

2
D

MR

.

One neutrino is superheavy (MR), but the other is extremely light. The light neutrino

is the one we see experimentally. It is almost exactly equal to νL, because only a

tiny rotation angle is required to diagonalize this matrix. This way of the neutrino

becoming massive is called the see-saw mechanism because the larger Mheavy is the

smaller Mlight is. If we assume that Yν ∼ 1, MR ∼ 1015 GeV, one has Mlight ∼ 10−11

GeV ∼ 10−2 eV. This is in the ballpark of the neutrino masses suggested by neutrino

oscillation experiments. (Neutrino oscillation experiments only give di�erences of the

squares of neutrino masses.)

If we return to eq. (9), we see that by diagonalizing, one gets an e�ective

operators for νL that is of the form

νTLCνL

(
(Yνφ

0)2

MR

)
=

(
Y 2
ν

MR

)
νTLCνL(φ0)2. (1.10)

We recognize this as the Weinberg operator.
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1.9 Quark Mass Matrices and CKM Mixing

We have shown how to write the mass terms for the up and down quarks in

the SM. In reality, however, there are three families of quarks which are shown in the

Table 1.2.

Family Quarks Leptons

I QL1 =

 uL

dL

, ucL, dcL `L1 =

 νeL

e−L

, e+
L

II QL2 =

 cL

sL

, ccL, scL `L2 =

 νµL

µ−L

, µ+
L

III QL3 =

 tL

bL

, tcL, bcL `L3 =

 ντL

τ−L

, e+
L

Table 1.2: quarks and leptons in the standard model

The Yukawa interactions therefore have 3×3 complex Yukawa coupling matrices

Y u, Y d

LY uk = −
3∑

m,n=1

[
Y u
mnQ

T
Lmφ

c∗C ucLn + Y d
mnQ

T
Lmφ

∗C dcLn
]

+ h.c.

When φ0 gets a VEV, 〈φ0〉 = v√
2
, there arise mass matrices Mu, Md

−
3∑

n,m=1

[uTLm (Mu)mnC u
c
Ln + dTLm (Md)mn d

c
Ln + h.c.].

For simplicity, let us now suppress family indices, and just write this as

uTLMuCu
c
L + dTLMdd

c
L + h.c.

One can make the matrices Mu, Md real and diagonal by bi-unitary transformations,

as explained in section 4.

V †uLMuVuR = M̃u = real and diagonal

V †dLMdVdR = M̃d = real and diagonal
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De�ne a new basis (the mass basis or physical basis) of left-handed and right-handed

quark �elds (denoted by tilde) by

uL = V ∗uLũL ↔ ũL = V T
uLuL

ucL = VuRũ
c
L ↔ ũcL = V †uRu

c
L

dL = V ∗dLd̃L ↔ d̃L = V T
dLdL

dcL = VdRd̃
c
L ↔ d̃cL = V †dRd

c
L

Then the mass terms become

ũTLV
†
uLMuC VuR ũ

c
L + d̃TLV

†
dLMdC VdR d

c
L + h.c.

= ũTLM̃uũ
c
L + d̃TLM̃dd

c
L + h.c.

From eq. (1.7), the interactions of the W±
µ bosons with the quarks � the so-called

�charged-current Weak interactions� � can be written as

uLγ
µ g√

2
W+
µ dL + h.c = ũLγ

µ g√
2
W+
µ (V †uLVdL)d̃L + h.c.

= ũLγ
µ g√

2
W+
µ VCKM d̃L + h.c.

The ũLm = (ũL, c̃L, t̃L) are the mass eigenstates. that is, the physical u, c, and t

quarks. And the d̃Lm = (d̃L, s̃L, b̃L) are the mass eigenstates, that is, the physical d,

s, and b quarks. Now let us drop the tildes to make the equations look cleaner. The

charged-current Weak interactions in the physical basis then look like the following:

LCC =
(
uL cL tL

)
γµ

g√
2
W+
µ


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




dL

sL

bL

+ h.c.

The matrix appearing in this equation is called the CKM matrix, after Cabibbo,

Kobayashi, and Maskawa. The CKM matrix describes how the W± bosons change

the ��avor� of the quarks.

The reason that the CKM matrix appears in the interactions of the W bosons

is that there is a �mismatch� between the physical up-type quarks and the physical
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down-type quarks. And this mismatch happens because the mass matrices Mu and

Md are independent of each other and not equal to each other, and therefore di�erent

unitary transformations of the up-type quarks and down-type quarks are needed to

diagonalize them. The �weak eigenstates� match, but the mass eigenstates do not.

The CKM matrix is a 3× 3 unitary matrix, and so has 9 parameters. Three of

these are rotation angles, called the �CKM angles.� The remaining 6 parameters are

complex phase angles. But 5 of these complex phases can be �absorbed� or �rotated

away� by rede�ning the six left-handed quark �elds (u, c, t, d, s, b). (One cannot rotate

6 phases away, because rotating all the left-handed quarks by the same phase does

nothing to VCKM .) So there is just one physical phase angle in the CKM matrix,

which is usually denoted δ or δKM , and is called the Kobayashi-Maskawa phase. This

Kobayashi-Maskawa phase can account for all CP-violating e�ects ever seen in the

laboratory. Summarizing, there are three rotation angles and one physical phase in

VCKM .

The CKM matrix has been parametrized in various ways. A popular way is the

Wolfenstein parametrization, which expresses the elements of VCKM in terms of powers

of a small parameter λ and three other parameters:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



=


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

∼


1 λ λ3

λ 1 λ2

λ3 λ2 1

 ,

where λ = 0.226± 0.001, A = 0.814± 0.02, ρ = 0.135± 0.02, and η = 0.349± 0.16.
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From this parametrization, we can observe an interesting pattern, |Vub| ∼ |Vus||Vcb|.
The CKM matrix could also be parametrized as

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1


The component of CKM matrix, for example, Vud acts as vertex coe�cient for setting

the probability that up quark will project into down quark via interacting with W

gauge boson in the weak interaction or vice versa.

W+
µW+
µ

W+
µ

∝

d

d

u

c

Vud

∝ Vcd

Figure 1.9: charged-current Weak interactions with three families

1.10 Lepton Mixing and The PMNS Matrix

As we see from the Table 1.2, there are also three families of leptons. The

Yukawa terms can be written as

−
3∑

m,n=1

[
Y `
mn`

T
mLφ

∗C ecnL +
yνmn
MR

(
`TmLφ

c∗)C (φc†`mL)]+ h.c..

Note that for the neutrinos we have written the Weinberg operator. If we suppress the

family indices this can be written

`TLY
`φ∗CecL + (`TLφ

c∗)
yν

MR

C(φc†`L) + h.c.

36



Writing out the doublets, we �nd that this contains

eTLY
`CecL φ

0∗ + νTL
yν

MR

CνL (φ0)2 + h.c.

If the Weinberg operator comes from the Type I see-saw mechanism, as we explained

in section 1.8, then its coe�cient matrix, which we have written yν/MR here, is equal

to Y T
ν Yν/MR, as one can see by comparing to eq. (1.10).

Because 〈φ0〉 = v√
2
, we will get mass terms of the following form for the leptons

eTLM`C eL + νTLMνC νL + h.c.

The matrices M` can be made real and diagonal by a bi-unitary transformation. The

matrix Mν is di�erent, because it is complex and symmetric. It can also be made real

and diagonal, but by multiplying by the same unitary matrix (transposed) on the right

and left:

V †`LM`V`R = M̃` Note that this is biunitary transformation

V T
νLMνVνL = M̃ν Note this has the same unitary matrix on both sides

Once again we can rede�ne the �elds

eL = V ∗`LẽL ↔ ẽL = V T
`LeL

ecL = V`Rẽ
c
L ↔ ẽcL = V †uRe

c
L

νL = VνLν̃L ↔ ν̃L = V †νLνL

Therefore, the charged-current Weak interactions of the leptons can be written

eLγ
µ g√

2
W−
µ νL + h.c = ẽLγ

µ g√
2
W−
µ (V T

`LVνL)ν̃L + h.c.

= ẽLγ
µ g√

2
W−
µ UPMNS ν̃L + h.c.

The matrix V T
`LVνL ≡ UPMNS is sometimes also called UMNS. The MNS stands for

Maki, Nakagawa, and Sakata. The P stands for Pontecorvo. These were the people

who �rst discussed mixing of leptons.
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Now let us drop the tilde to simplify the expressions. Then we can write the

charged-current Weak interactions of the leptons as

LCC,lepton = (eL, µL, τL) γµ
g√
2
W−
µ


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




ν1

ν2

ν3

+ h.c.

The PMNS matrix is a 3× 3 unitary matrix, and therefore it has 3 rotation angles and

6 complex phases, like the CKM matrix. However, we cannot rotate away as many

phases as we can for the CKM matrix. The reason is that the neutrino mass matrixMν

is a Majorana matrix that couples the 3 left-handed neutrinos to themselves. Therefore,

we cannot rede�ne the phases of the neutrino �elds without makingMν complex, which

would mean that we were not in the physical basis of the neutrinos. So we can only

rede�ne the phases of the 3 charged leptons. That allows us to rotate away only 3 of

the 6 phases in the PMNS matrix. So the PMNS matrix has three �mixing angles,"

which are historically called �neutrino mixing angles,� and three physical phases. One

of these physical phases is analogous to the physical phase in the CKM matrix, and

is called the �Dirac phase.� The other two physical phases are called the �Majorana

phases.�

A standard way to parametrization the PMNS matrix is the following

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23


︸ ︷︷ ︸

atmospheric


c13 0 s13e

−iδ

0 1 0

−s13e
−iδ 0 c13


︸ ︷︷ ︸


c12 s12 0

−s12 c12 0

0 0 1


︸ ︷︷ ︸

solar


eiα1 0 0

0 eiα2 0

0 0 1



1.11 Patterns in The Quark and Lepton Masses and Mixing Angles

In the Standard Model, the masses of the quarks and leptons and the parameters

of the CKM and PMNS matrix are free parameters. The only constraint is that the

CKM and PMNS matrices are unitary. The Standard Model does not predict (or

�post-dict�) any of these parameters; they are known only by experiment. But, as we

will now see, there are very interesting patterns in these parameters. Most particle
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theorists believe that there must be some explanation of these patterns; they are not

just accidental. Because the Standard Model does not explain these patterns, they

must point to some deeper theory.

Experimentally, the magnitudes of CKM matrix elements (they are complex,

because of the KM phase) are given approximately by
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ∼=


0.9742 0.226 0.0036

0.226 0.973 0.042

0.0087 0.041 0.9991

 .

One sees that the o�-diagonal elements are much smaller than the diagonal elements.

Moreover, the mixing between the �rst and third family is much smaller than the other

inter-family mixings. In fact, roughly, |Vub| ∼ |VusVcb|, which is why the Wolfenstein

parametrization looks the way it does.

Experimentally, the magnitudes of the PMNS matrix elements are given ap-

proximately by 
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 ∼=


0.83 0.54 0.15

−0.44 0.47 0.76

0.34 −0.7 0.63


We see that the o�-diagonal elements of the PMNS matrix (i.e. the neutrino mixing

angles) are large, unlike the CKM mixing angles of the quarks. This was a big surprise,

when the neutrino mixing angles started to be measured in 1998. Almost all theorists

had expected that they would be small, like the CKM angles. It is interesting that for

the leptons the mixing of the the �rst and third families is smaller than the others, as

we found also for the quarks which could be observed in the Table 1.3.
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12 angle 23 angle 13 angle

quarks |Vus| = 0.226 |Vcb| = 0.042 |Vub| = 0.0036

leptons |Ue2| ≈ sin θsol = 0.54 |Uµ3| ≈ sin θatm = 0.76 |Ue3| = sin θ13e
iδ` = 0.15

Table 1.3: Inter-family mixing in the quark and leptonic sectors

From the Table 1.4 and Figure 1.10, it is easy to observe that there exists a

�hierarchy� structure of the fermions masses. Note that here we assume that it is a

�normal hierarchy� in the neutrino sector, i.e. that the third family is the heaviest and

the the �rst family is the lightest. (Experiments so far only tell us two di�erences of

the squared masses of neutrinos ∆m2
atmospheric ≡ m 2

3 −m 2
2 and ∆m2

solar ≡ m 2
2 −m 2

1 ).

So another way to �t the data is with a so-called �inverted hierarchy� where the third

family of neutrino is lightest.)

family I family II family III

mu ≈ 2.4 MeV mc = 1.27 GeV mt = 171 GeV

md ≈ 4.8 MeV ms = 104 MeV mb = 4.2 GeV

me = 0.51 MeV mµ = 105 MeV mτ = 1.78 GeV

mν1 ∼ 0 meV mν2 ∼ 7 meV mν3 ∼ 50 meV

Table 1.4: masses of fermions in the Standard Model

There are several noticeable patterns, some of which we have already mentioned:

(1) For each type of fermions, up quarks, down quarks and charged leptons, m3 �
m2 � m1. (We often refer to u, c, t as �up-type quarks� or just as �up quarks.� Similarly,

we often call d, s, b the �down-type quarks� or just as �down quarks.�)
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(2) Inter-family mass ratios for the up-type quarks (U, c, t) are much larger than for

the down-type quarks (d, s, b) and charged leptons (e, µ, τ), which in turn are much

larger than for the neutrinos (if the neutrino masses are hierarchical).

(3) The masses of the charged leptons are roughly similar to the masses of the down-

type quarks.

(4) PMNS angles (also called neutrino mixing angles) are much larger than correspond-

ing CKM angles.

(5) For CKM angles, θ13 ∼ θ12 · θ23.

Why these patterns exist is one of the greatest unsolved problems in particle

physics. They are often called �the Flavor Problem.� Many models have been proposed

to explain these patterns.

ln(m)

up down charged neutrino
lepton

t

c

u

b

s

d

τ

µ

e

ν2
ν1

ν3

Figure 1.10: the hierarchy structure of fermions

1.12 Grand Uni�ed Theories

1.12.1 Minimal SU(5)

In a theory with an SU(5) gauge symmetry, a 5-plet of �elds φα, α = 1 · · · 5,
would transform under a gauge transformation as

φα → φα
′
= Uα′

α φ
α
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or, without indices,

φ −→ φ′ = Uφ,

where U is a 5× 5 unitary, unimodular matrix. The complex conjugate of such a �eld

would be written as (φα)∗ ≡ φα and the complex conjugate of the matrix U would be

written as
(
Uα′
α

)∗ ≡ Uα
α′ . Therefore one has

φα → φα′ = Uα
α′φα,

or without indices

φ∗ −→ φ′∗ = U∗φ∗.

The �eld φα is called a 5 multiplet (or �fundamental� multiplet) and φα is called a 5

multiplet (some call it 5∗).

There are also higher-rank tensor multiplets. For example, there is an anti-

symmetric rank-2 tensor φαβ = −φβα, which is called a 10 multiplet. Its conjugate,

φαβ =
(
φαβ
)∗
, is called a 10. (Notice that upper and lower indices are distinguished

from each other, and that complex conjugation has the e�ect of turning one into the

other. One speaks of a tensor withm upper indices and n lower indices as a rank-(m,n)

tensor or sometimes as just a rank m+ n tensor.) The 10 multiplet transforms under

the SU(5) symmetry as

φαβ → φα
′β′ = Uα′

α U
β′

β φ
αβ

Other important multiplets in SU(5), which will be mentioned in later sections of this

thesis, are the 24, the 45 and the 45.

The 24 multiplet, which is called the �adjoint� multiplet, is a traceless rank-(1,1)

tensor: φαβ . The traceless condition is that
∑

α φ
α
α = 0. The 45 multiplet is a traceless

rank-(2,1) tensor that is antisymmetric in its upper two indices: φαβγ = −φβαγ . The

traceless condition is that
∑

α φ
αβ
α = 0. The 45 multiplet is just the conjugate of the

45 multiplet, and so is a traceless rank-(1,2) tensor that is antisymmetric in its lower

two indices: ψγαβ.
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Consider a 5-plet of SU(5):

φα =



φ1

φ2

φ3

φ4

φ5


.

The SU(5) symmetry group has an SU(3) subgroup that acts upon the �rst three

components of this 5-plet, and an SU(2) subgroup that acts on the last two components.

That is


φ1

φ2

φ3

 is a triplet under the SU(3), but a singlet (i.e. it does not transform)

under the SU(2). And

 φ4

φ5

 is a singlet (does not transform) under SU(3), but is

a doublet under SU(2).

The eight generators of the SU(3) subgroup look like this

T 1
1 T 1

2 T 1
3 0 0

T 2
1 T 2

2 T 2
3 0 0

T 3
1 T 3

2 T 3
3 0 0

0 0 0 0 0

0 0 0 0 0


.

where T ab , a, b = 1, 2, 3, are the elements of 3× 3 traceless hermitian matrices.

The three generators of the SU(2) subgroup look like this

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 T 4
4 T 4

5

0 0 0 T 5
4 T 5

5


.

where T ij , i, j = 4, 5, are the elements of 2× 2 traceless hermitian matrices (which can

be written in terms of the Pauli matrices, as we showed before).
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There is also a U(1) subgroup of SU(5), whose generator is the traceless hermi-

tian matrix that commutes with all the generators of the SU(3) and SU(2) subgroups:

−1
3

0 0 0 0

0 −1
3

0 0 0

0 0 −1
3

0 0

0 0 0 1
2

0

0 0 0 0 1
2


.

Let us call this U(1) generator Y/2. It is clear that the �rst three components of the

5-plet have Y/2 = −1
3
, and the last two components have Y

2
= 1

2
.

So the �rst three components of the 5-plet are an SU(3) triplet, an SU(2)

singlet, and have U(1) charge −1
3
, so one usually denotes it (3, 1,−1

3
). The last two

components of the 5-plet are an SU(3) singlet, SU(2) doublet, and have Y/2 = 1
2
, so

one usually denotes it (1, 2, 1
2
).

One sees that SU(5) has a subgroup SU(3) × SU(2) × U(1). These are just

the gauge groups of the Standard Model. That suggests that the Standard Model can

be �embedded� in an SU(5) gauge theory, and in 1974 Georgi and Glashow discovered

that it can be in a very simple way.

In an SU(5) grand uni�ed theory, there is a 5-plet of scalars whose (1, 2, 1
2
) part

(i.e. the 4 and 5 components in our conventions) is the Higgs doublet of the Standard

Model, which we have been calling φ. This 5-plet is sometimes denoted 5H , where

the subscript H means �Higgs�. The conjugate of the Standard Model Higgs doublet,

which we denoted φc (which has the same degrees of freedom as φ, because it is just

φc ≡ iσ2φ
∗) is simply part of the complex conjugate of 5H , which transforms, of course,

as a 5 of SU(5).
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1.12.2 First Family of Quarks and Leptons in SU(5)

Consider left-handed fermions in a 5 multiplet that will be called 5L and denote

as ψLα. It contains fermions in

5L︸︷︷︸
ψLα

→
(

3, 1, 1
3

)
︸ ︷︷ ︸

ψLa

+
(

1, 2, −1
2

)
︸ ︷︷ ︸

ψLr

5L = ψLα =



ψL1

ψL2

ψL3

ψL4

ψL5


=



dcL1

dcL2

dcL3

e−L

−νeL


.

Notice the remarkable fact that the simple 5-plet has pieces that have just the right

quantum numbers to be the left-handed anti-down quark dcL and the left-handed lepton

doublet `L of the Standard Model! It is important to note that in this equation, the

subscripts 1,2,3 on the left-handed anti-d quark dcL are SU(3) color indices, not family

indices as in some equations in earlier sections. Note also that we will be using lower-

case Greek indices α, β = 1 · · · 5 for SU(5) indices; Latin indices from the beginning

of the alphabet a, b = 1, 2, 3 as color indices; and Latin indices from the middle of the

alphabet r, s = 4, 5 as SU(2) weak isospin indices.

Next consider left-handed fermions in a 10 multiplet that will be called 10L and

denoted ψαβL . It contains

10L︸︷︷︸
ψαβL

→
(

3, 1 −2
3

)
︸ ︷︷ ︸

ψabL

+
(

3, 2, 1
6

)
︸ ︷︷ ︸+

ψarL

(
1, 1, 1

)
︸ ︷︷ ︸

ϕ45
L

10L = ψαβL =
1√
2



0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2

uc2 −uc1 0 −u3 −d3

u1 u2 u3 0 −e+

d1 d2 d3 e+ 0


L
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Again, note the remarkable fact that the 10-plet has components with just the right

quantum numbers to be the remaining quarks and leptons of a family. That is, the

fermions of a Standard Model family (QL = (uL, dL), ucL, d
c
L, `L = (νeL, eL), ecL) �t

perfectly with two multiplets: 10 + 5.

This is a good time to mention an important historical point. When people

knew only about the Standard Model, they were used to writing equations in terms of

the left-handed particles and right-handed particles. This made it di�cult for people

to imagine how to unify the Standard Model particles in larger multiplets, because one

cannot put left-handed and right-handed fermions in the same multiplet of a gauge

group. (Gauge transformations do not change the handedness of a fermion.) But when

one writes equations in terms of left-handed fermions ψL and left-handed anti-fermions

ψcL, the problem disappeared. Notice that the 5-plet contains the left-handed leptons

and left-handed anti-d quark. And the 10-plet contains the left-handed quarks and the

left-handed anti-u quark and left-handed positron. This shows how notation can make

a big di�erence in how we think.

The weak hypercharges of the components of the 10-plet, which are written

above, can be computed as follows. The Y
2
for elements of ψαβL are just the sum of the

Y
2
associated with each index, because ψα

′β′ = Uα′
α U

β′

β ψ
αβ. For a Y

2
rotation

ψα
′β′ =

(
e i

Y
2
θ
)α′
α

(
e i

Y
2
θ
)β′
β
ψαβ = e i[

Y (α)+Y (β)
2

]θψαβ

so Y
2
of ψar = 1

2
− 1

3
= 1

6
, ψab = −1

3
− 1

3
= −2

3
and ψ45 = 1

2
+ 1

2
= 1.

Now the question arises how to write Yukawa coupling of the quarks and leptons

to the Higgs �eld. It is amazing that this can be done with just two kinds of term that

are often called the �10-10-5� term and the �10-5-bar-5-bar� term. The 10-5-bar-5-bar�

term gives mass to the down-type quarks and charged leptons and has the form

Y ψαβL C ψLαφβ =
(
10L5L

)
5H → Y ψ5a

L C ψLaφ5 + Y ψrsL C ψLrφs

= Y dLC d
c
Lφ

0∗ + Y e+
LC e

−
Lφ

0∗

If one puts in three families, Y becomes a matrix, Md = Y/
√

2 and MT
` = Y/

√
2 ⇒

Md = MT
` . (The transpose comes from the fact that we write mass matrices with
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the left-handed fermions on the left that left-handed anti-fermions on the right.) So

�minimal SU(5)� predicts me = md, mµ = ms, mτ = mb. But these relations hold at

the GUT scale MGUT ∼ 1015GeV, and must be �run� using the renormalization group

equation to �nd their values at low energies where they are measured.

The Yukawa terms needed to give mass to the up quarks has the form

Y ψαβL C ψγδL φ
ζεαβγδζ = (10L10L)5H → Y ψ4a

L C ψ
bc
L φ

5ε45abc

= Y uLC u
c
Lφ

0

1.13 Anomalous Violation of B and L in The Standard Model

1.13.1 A Brief Introduction to Anomalies

The Standard Model Lagrangian is invariant under a global U(1) symmetry

that transforms the phases of all the quark �elds in the same way: q −→ q′ = eiαq.

Noether's Theorem implies that there is a conserved �global charge,� which is the quark

number. People usually discuss �baryon number� (B) instead, where B = 1
3
Nq. So, as

a classical theory, the Standard Model conserves B, and ∂µJ
µ
B = 0, where JµB is the

baryon number current.

Similarly, the original Standard Model Lagrangian, without neutrino mass terms,

is invariant under a U(1) that rotates the phases of all lepton �elds by the same amount.

(Majorana neutrino masses, mνTLCνL are not invariant under this symmetry.) There-

fore, ignoring the very small Majorana mass terms of the neutrinos, the Standard

Model conserves �lepton number� L, so ∂µJ
µ
L = 0.

However, it turns out that there are very subtle quantum e�ects called �anoma-

lies� that cause B and L to be violated (i.e. not conserved) in the Standard Model.

Anomalies in quantum �eld theories were discovered in the 1960s by Adler, Bell, and

Jackiw. They discovered that in some quantum �eld theories, certain quantum me-

chanical amplitudes that should be zero because of the conservation of a global charge

are actually not zero. The non-zero contributions to these amplitudes came from Feyn-

man diagrams called triangle diagrams, in which virtual fermions go around a loop that

has three vertices, with the current operator of the global current at one vertex and
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gauge bosons attached at the other two vertices. No one understood in the 1960s why

these amplitudes were non-zero in spite of symmetries predicting that they should be

zero. That is why they were called anomalies. In the 1970s, the explanation was found:

These anomalies arise whenever the �measure of integration� over fermion �elds in the

Path Integral is not invariant, even though the Lagrangian and Action S are invariant.

The anomaly given by the triangle graphs is zero if left-handed and right-handed

fermions going around the loop contribute equally, because they contribute with op-

posite sign � because the anomaly graph has a γ5 at the current vertex. If the

gauge bosons attached at the other two vertices are W±
µ bosons, however, then only

left-handed fermions can be in the loop, and there is a non-zero anomaly (unless the

anomaly cancels for some other reason).

When the triangle graph is calculated for the Baryon number current one �nds

∂µJ
µ
B =

1

3
nQL

g2

32π2
εµνρσF a

µνF
a
ρσ,

where F a
µν is the �eld strength tensor for the gauge �elds of SU(2)L, and nQL stands for

the number of left-handed quark doublets minus the number of left-handed anti-quark

doublets (counting colors, e.g. counting (uL, dL) as three doublets).

Suppose that one calculates the amplitude for some process that goes from a

state A at time Ti to a state B at time Tf . Let us integrate the above equation over

all of space and over all times between Ti and Tf . By the divergence theorem in four

dimensions, the left side of the equation gives a surface term. The �surface� here is the

three-dimensional surface that consists of all of space at Ti and Tf . One obtains

(ˆ
d3xJ0

B

)Tf
Ti

= Bf −Bi =
1

3
nQL

ˆ
d4x

g2

32π2
εµνρσF a

µνF
a
ρσ. (1.11)

So baryon number can change if the integral on the right side of the equation is

non-zero. Now we shall explain why that integral can be non-zero.
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1.13.2 Vacuum �Winding Number�

Let us start by ignoring the Higgs �eld. For simplicity, assume that we can set

it equal to zero everywhere and consider only the gauge �elds of SU(2)L. The �classical

ground state� of the gauge �elds of SU(2)L has F a
µν = 0. One con�guration of �elds

that has F a
µν = 0 is simply the con�guration Aaµ = 0. However, this con�guration is

not unique, because gauge transformations of Aaµ do not change F a
µν . As we saw in

section 1.5.2, a gauge transformation changes Aµ ≡
∑

a T
aAaµ in the following way:

Aµ −→ A′µ = UAµU
−1 − i

g
(∂µU)U−1,

where U(xλ) is an SU(2)L transformation that depends on spacetime location. If we

take Aµ = 0, then

A′µ = − i
g

(∂µU)U−1, (1.12)

is also a �classical ground state.� In fact, it is equivalent by a gauge transformation to

the one that has Aµ = 0. That means that we can describe a classical ground state of

the gauge �elds by a function U(xλ) that maps points in spacetime (xλ) onto elements

of the group, which are represented by 2× 2 unimodular unitary matrices U .

Let us consider a mapping from all the points in three-dimensional space at

some time T to matrices U , such that at all points at spatial in�nity U = I. That is

like identifying the points at spatial in�nity with each other. Topologically speaking,

three-dimensional space with all points at spatial in�nity identi�ed with each other, is

equivalent to the three-sphere S3. (Analogously, an in�nite line with points at in�nity

identi�ed is topologically a circle S1, and a plane with all points at in�nity identi�ed

is topologically a sphere S2.)

We will now show that the space of all 2 × 2 unimodular unitary matrices �

the �group space of SU(2) � is also topologically S3. One can write the most general

2× 2 unimodular unitary matrix in the following way:

U =

 a0 + ia3 ia1 + a2

ia1 − a2 a0 − ia3

 , a 2
0 + a 2

1 + a 2
2 + a 2

3 = 1.
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It is easy to check that this is unitary and has determinant = 1. Each matrix U is

identi�ed by four real numbers a0, a1, a2, a3, the sum of whose squares is 1. Those

numbers could be considered the coordinates of a three-sphere S3 in 4-dimensional

space. So, the �group space� of SU(2) clearly has the topology of S3.

If we consider mappings from S3 to S3, they can be classi�ed by a �winding

number.� This most easily thought about in the one-dimensional and two-dimensional

analogies. Suppose �space� is a circle and �group space� is also a circle (topologically).

One can map all the points of the �rst circle unto one point of the second circle. Or one

can map the points on the �rst circle onto the points of the second circle that have the

same �angle.� So one is �winding� or �wrapping� the �rst circle once around the second

circle. Or one can map the points of the �rst circle onto the points of the second circle

that have N times the angle: then one is �winding� the �rst circle around the other N

times. (Like winding a rubber band around your �nger N times.) The same thing can

be done with two-spheres, like winding a balloon around a basketball N times.

Suppose we imagine a process that begins at time Ti and ends at time Tf , where

at both and Ti and Tf the gauge �eld is in a classical vacuum described by U(xλ)

with U −→ I at spatial in�nity. But suppose that at Ti the mapping (of points in

physical space to points in group space) has winding number Ni, but that at Tf it has

winding number Nf . There is no way for the �eld to remain in a classical vacuum

for all times between Ti and Tf . If it did, that would mean that the mapping went

continuously from one winding number to another as t went from Ti to Tf . But this

not possible, because the initial and �nal con�gurations are topologically di�erent.

That implies that somewhere in between Ti and Tf , the gauge �eld is not in a classical

vacuum con�guration. It must pass through con�gurations that have F a
µν 6= 0. These

con�gurations have positive energy compared to the classical vacuum. In other words,

the process starts and ends in a classical vacuum, but passes over a �potential barrier�

in between.

This can be thought about in the following way. One can imagine that there are

an in�nite number of classical vacuum states of the SU(2)L gauge �elds, labelled by
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their �winding numbers.� They are all equivalent under gauge transformations. This

is like a mechanics problem of a rigid rotator with potential V (θ) = −V0 cos θ. There

are an in�nite number of minima (θ = 2πN) that are all equivalent; but to go from

one to the next one requires going over a potential barrier.

In the SU(2) gauge theory, it turns out that in the process where the winding

number changes by N units between Ti and Tf , the gauge �eld passes through con-

�gurations that have F a
µν 6= 0 and also that the integral

´
d4x g2

32π2 ε
µνρσF a

µνF
a
ρσ, which

appears in eq. (1.11), is just N . In other words, that integral has a topological mean-

ing: it is a winding number. What that means is that in processes that �go over� the

barrier, baryon number is violated.

If temperature is high enough, thermal �uctuations can make the �elds go over

the barrier. If temperature is low, then the only way to get across the barrier is by

quantum-mechanical tunnelling. At zero temperature, these tunneling processes are

called �sphalerons.� But people often call even the thermal processes that go over the

barrier sphalerons. At low temperature, the Higgs �eld is non-zero (it has a VEV),

so calculating a true sphaleron process (i.e. tunneling at low temperature) requires

looking at con�gurations where both F a
µν = 0 and φ 6= 0. Those are the actual

�sphaleron con�gurations.� At very high temperature, the expectation value of the

Higgs �eld is zero. So to discuss processes where thermal �uctuations cause the �eld

to go over the barrier and violate baryon number, the Higgs �eld can be ignored.

The number of baryons that are created or destroyed in a �sphaleron� process (a

true sphaleron or a thermal process) depends on the coe�cient nQL . That coe�cient

is the number of left-handed quark doublets in the model (minus the number of right-

handed quark doublets, if there are any).

The discussion above can be extended to lepton number, or any global charge.

For example, if the are fermions in SU(2)L doublets that carry a global charge X,

then to calculate the amount by which an SU(2)L sphaleron violates X, one has to

count every left-handed fermion doublet of SU(2)L (minus the right-handed doublets)

weighted by the X charge of each.
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Chapter 2

A SIMPLE GRAND UNIFIED RELATION BETWEEN NEUTRINO
MIXING AND QUARK MIXING

2.1 Introduction

In this chapter, we will discuss a model in which all �avor mixing is caused by

the mixing of the three usual chiral fermion families, which are in 10 + 5 multiplets

of SU(5), with extra vector-like fermions in several pairs of 5′ + 5
′
multiplets. As we

shall see, this simple assumption, along with the assumption that there is an abelian

family symmetry, can lead to the result that both VCKM and UMNS are generated by a

single matrix. The entire 3×3 complex mass matrix of the neutrinos Mν is then found

to have a simple expression in terms of two complex parameters and an overall scale.

Thus, all the presently unknown neutrino parameters are predicted.

As noted in chapter 1, experiment has shown that the angles of the MNS matrix,

which describes the mixing among the left-handed leptons [2], are much larger than

the corresponding angles of the CKM matrix of the quark sector [3, 4], which describe

mixing among the left-handed quarks. This was unexpected. Since grand uni�cation

relates quarks and leptons by putting them in the same multiplets, theorists had ex-

pected that the leptonic mixing angles would be comparable in magnitude to the quark

mixing angles. However, this expectation was somewhat simplistic. In SU(5), the left-

handed quarks are related to the right-handed leptons within the 10-plets, so that the

CKM angles should be related to the mixing angles of the right-handed leptons, which

are not observable in the Standard Model. Similarly, the left-handed leptons are re-

lated to the right-handed quarks within the 5-plets, so that the MNS angles should be

related to the mixing angles of the right-handed quarks, which are not observable in the

Standard Model. If there is more mixing among the 5-plets of di�erent families than
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among the 10-plets, the disparity between the MNS and CKM mixing angles would be

explained. This idea can be implemented in models based on any grand uni�ed group,

since all such groups contain SU(5) as a subgroup. Several ways of implementing this

basic idea have been proposed in the literature [5, 6, 7, 8, 9, 10, 11, 12, 13].

In section 2.2, we will propose a model in which there are three 10+5 families of

fermions and N 5′ + 5
′
vector-like fermions. (The possible existence of such additional

vector-like fermions has been much discussed in the literature in a variety of contexts

[14, 15, 16, 17, 18, 19, 20, 21, 22].) The central idea of the model proposed here is

that all inter-family mixing is caused by the mixing between the 5 multiplets of the

usual fermions and the 5
′
multiplets of the extra vector-like fermions. And both quark

mixing and lepton mixing are controlled in this model by a single matrix, which we will

call A. In section 2.3, we will show that this matrix can be determined from the masses

and mixing angles of the quarks alone, and this allows the entire 3 × 3 complex mass

matrix Mν of the known neutrinos (which contains 9 real physical observables) to be

predicted in terms of just two complex parameters and an overall mass scale. We will

also discuss the model's predictions of the quantities which are still unknown and the

post-predictions of the quantities which have been measured, but still not precisely. In

section 2.4, we will propose a new way to generalize the model which might completely

explain the �avor problem. Also how the model could be embedded in a larger group

SO(10) and E6 without e�ecting the predictions of the model is discussed.

2.2 The Model of Flavor Mixing

There are three families of fermions denoted by 10i + 5i, i = 1, 2, 3, and extra

vector-like fermions denoted by 5′A + 5
′
A, A = 1, . . . , N . (N can be as small as 2.) It is

assumed that in the absence of the vector-like pairs, the Yukawa couplings and mass

matrices of the three families would be �avor diagonal, due to discrete symmetries,

K1 × K2 × K3 × K
′
, that distinguish the three families from each other. All �avor

mixing is indirectly caused by mass terms that mix the 5i and 5
′
A. The Yukawa term
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of the model are:

LY uk = Yi (10i10i) 〈5H〉+ yi
(
10i5i

)
〈5H〉+

Ỹi (10i10i) 〈45H〉+ ỹi
(
10i5i

)
〈45H〉+ (2.1)

λi
MR

(
5i5i
)
〈5H〉〈5H〉+

Y ′AB

(
5′A5

′
B

)
〈1H〉+ yAi

(
5′A5i

)
〈1′Hi〉

where the subscript H denotes Higgs multiplets. The Yukawa terms in eq. (2.1) are

the most general allowed by the abelian �avor symmetry K1 ×K2 ×K3 ×K ′, Ki is a

Z2 symmetry under which 10i, 5
′
i and 1′Hi are odd and all other �elds even. The role of

the K1×K2×K3 symmetry is to prevent direct mixing among the usual chiral fermion

families. K ′ is a ZN symmetry (N > 2) under which 5′A → e2πi/N5′A, 5
′
A → e2πi/N5

′
A,

1H → e−4πi/N1H and 1′Hi → e−i2π/N1′Hi. One of the roles played by the K ′ symmetry

is to forbid the Higgs �elds that break SU(5) at the superlarge scales from coupling to

the fermions. (Typically, these include adjoint Higgs multiplets (i.e. 24-plets), which

would be allowed by SU(5) to couple to 5′A5
′
B, 5′A5i, etc. This would introduce several

more parameters into the model of fermion masses and reduce its predictivity.)

The �rst four terms in eq. (2.1) are the standard Yukawa terms of SU(5) grand

uni�cation, and are the minimal terms needed to give mass to the known quarks and

leptons. (As already noted in the original Georgi-Glashow paper on SU(5) uni�cation,

the presence of a 45-plet of Higgs �elds avoids the unrealistic relations between down

quark and charged lepton masses that would arise if only the VEV of a 5-plet of Higgs

�elds gave mass to the Standard Model fermions [23].) The �fth term is the standard

dimension-5 Weinberg operator that gives the left-handed neutrinos Majorana masses

in either the type-I or type-II seesaw mechanisms [24].

The last two terms in eq. (2.1) are the only ones peculiar to this model. The

�rst of these simply gives masses to the vector-like fermions, and the second gives

masses that mix these vector-like fermions with the three families. The Higgs �elds in

these two terms are gauge singlets, so that their VEVs would naturally be superlarge.

All that matters for the purposes of the model is that the masses coming from these
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two terms be roughly of the same scale, which we shall call M∗. We assume that these

masses are much heavier than the weak scale, and we will refer to them as �heavy.�

This scale should be large enough to explain why the extra vector-like fermions have

not yet observed in the experiments. Any fermions whose masses are less than or at

the weak scale (i.e. the Standard Model fermions) we will call �light.� Note that the

Yukawa matrices in the last two terms of eq. (2.1) are in general not diagonal. The

reason for this is that the 5
′
A and 5′A transform trivially under the family symmetry

K1 × K2 × K3, which therefore does not constrain the form of Y ′AB and yAi. This is

how the extra vector-like 5
′
+ 5′ multiplets cause family mixing in the model.

First, let us examine the mass matrix of the down quarks that emerges from eq.

(2.1). There are left-handed anti-down quarks in both 5i and 5
′
A, which will be denoted

dci and D
c′
A, respectively. There are left-handed down quarks in 10i and 5′A, which will

be denoted di and D
′
A, respectively. There is a (3 +N)× (3 +N) mass matrix for the

down quarks

Ldmass =
(
di D′A

) (md)iδij 0

∆Aj MAB

 dcj

Dc′
B

 (2.2)

where (md)i = yi〈5H〉+ ỹi〈45H〉, MAB = Y ′AB〈1H〉, and ∆Aj = y′Aj〈1′Hj〉. In this thesis,

we follow the convention that Dirac mass matrices are multiplied from the left by the

left-handed fermions and from the right by the right-handed fermions (or, equivalently,

the left-handed anti-fermions).

The (3+N)×(3+N) matrix in eq. (2.2) can be block-diagonalized by multiplying

it from the right by a unitary matrix V whose elements are of order one (since the

elements of the matrices ∆ and M are of the same order) and from the left by a

unitary matrix whose angles are of order md/M � 1 and which therefore can be

neglected. One can write the (3 +N)× (3 +N) unitary matrix V as

V =

 A B

C D

 , (2.3)
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Figure 2.1: Diagrams showing how the mass terms ∆that mix the 5i with the 5
′
A lead

to insertions of the matrix A on external 5 fermion lines.

where A is 3× 3, D is N ×N , B is 3×N , and C is N × 3. This gives md 0

∆ M

V =

 md 0

∆ M

 A B

C D

 ∼=
 mdA mdB

0 M̃

 . (2.4)

If we de�ne T ≡ M−1∆, it is easy to show that the blocks of V may be writ-

ten A =
[
I + T †T

]−1/2
, B =

[
I + T †T

]−1/2
T †, C = −T

[
I + T †T

]−1/2
, and D =[

I + TT †
]−1/2

.

The o�-diagonal block mdB in eq. (2.4) can be removed by a rotation from

the left that is of order md/M̃ , which is negligible, as already noted. The block-

diagonalization separates out the light (i.e. electroweak scale or smaller) fermions,

which are the fermions of the Standard Model, from the heavy fermions. The upper-

left 3×3 block in eq. (2.4) therefore is the �e�ective� mass matrix of the three observed

down quarks, which we will denote simply Md:

Md = md A (2.5)

In other words, the net e�ect of the mixing of the three families with the heavy vector-

like fermions is to multiply the diagonal mass matrix md from the right by a non-

diagonal matrix A. This can be understood diagramatically from the Figure 2.1.

One can identify the e�ective mass matrices of the light charged leptons and

neutrinos by a similar process of block-diagonalization. By doing so, one �nds that

factors of A appear in these e�ective matrices corresponding to fermions that are in

the 5 multiplet of SU(5). Since the mass matrices for the up quarks, down quarks,
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charged leptons and neutrinos come, respectively, from (10 10) 5H , (10 5)5H , (5 10)5H

and (5 5)5H5H terms, the e�ective mass matrices for these types of fermions end up

having the form

Mu = mu

Md = mdA (2.6)

M` = ATm`

Mν = ATmνA

where the �underlying� mass matrices mu, md, m`and mν are all diagonal and given by

(mu)ij = δij

(
Yiv5 + Ỹiv45

)
, (md)ij = δij (yiv5 + ỹiv45), (m`)ij = δij (yiv5 − 3ỹiv45),

and (mν)ij = δijλi(v
2
5/MR). These underlying mass matrices mu, md, m`, and mν are

diagonal because of the family symmetry K1×K2×K3. On the other hand, the matrix

A has no special form, because the extra vector-like multiplets transform trivially under

the family symmetry. If we assume that the matrices we called M and ∆ in eqs. (2.2)

and (2.4) are of the same order (for example, the GUT scale), then the elements of

T ≡ M−1∆ are of order 1, and one expects that all the elements of A will also be of

order 1.

Before moving to the next section, we would like to discuss the renormalization

e�ects on the matrix A, which could be di�erent for di�erent types of fermions. At the

uni�cation scale, the same 3× 3 matrices ∆ and M appear in the (N = 3)× (N + 3)

mass matrices of the charged leptons and the down quarks. But, due to gluon loops,

the ∆ and M of the down quarks should run more strongly between the uni�cation

scale and the scale M∗ than the corresponding matrices of the leptons. The crucial

point, however, is that A depends on the ratio T ≡M−1∆; and since gauge boson loops

cause ∆ and M to run in the same way, these e�ects cancel out in A. Moreover, the

renormalization e�ects due to Yukawa couplings (which are small for the 5 fermions)

can be neglected. Thus, it really is the same matrix A (if one neglects very small

e�ects) that appears in Md, M`, and Mν . This result makes the model simple and

predictive.

57



2.3 The Predictions and Post-Predictions of The Model

First let us discuss the quark sector. The up quarks are already in the �physical

basis� or �mass basis,� since Mu = mu is diagonal. The down quark mass matrix is not

diagonal, because it is has the form

Md = mdA = µd


δd 0 0

0 εd 0

0 0 1




A11 A12 A13

A21 A22 A23

A31 A32 A33

 (2.7)

where µd is the 33 element of the diagonal matrix md.

The matrix A, like any matrix, can be written in the following form

A = DA∆U , (2.8)

where A∆ has the form

A∆ =


1 b ceiθ

0 1 a

0 0 1

 , (2.9)

with a, b, and c real, and where U is unitary and D is diagonal. This is evident,

because A can be made to have triangular form by multiplying from the right by a

unitary matrix, and then the diagonal elements of that triangular matrix can be scaled

to be 1 by multiplying from the left by a diagonal matrix. We can take a and b real,

because the phases in the 12 and 23 elements of A∆ can be absorbed into U and D,
while leaving its diagonal elements real.

By eqs. (2.7) and (2.8), the e�ective mass matrix of the observed down quarks

is given by Md = mdDA∆U , with md = µd diag(δd, εd, 1). The unitary matrix U can

be absorbed into rede�ned right-handed down quarks. (It is important to note that

since this is a transformation of right-handed quarks, it will have no e�ect on the

CKM matrix.) The diagonal matrix D can be absorbed into a rede�ned diagonal mass
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matrix: md ≡ mdD. The phases in md can then be absorbed into rede�ned left-handed

down quarks. Finally, therefore, one may write

Md = mdA∆

= µd


δd 0 0

0 εd 0

0 0 1




1 b ceiθ

0 1 a

0 0 1



= µd


δd δdb δdce

iθ

0 εd εda

0 0 1

 . (2.10)

To reach the physical basis of the down quarks, the matrixMd must be diagonal-

ized. As will be seen below, the rotations required to do this are small. Therefore, the

eigenvalues Md are to a very good approximation just equal to its diagonal elements,

so that µd
∼= mb, εdµd

∼= ms, and δdµd
∼= md.

We may therefore write

Md
∼=


md mdb mdce

iθ

0 ms msa

0 0 mb

 . (2.11)

The diagonalization of this matrix requires a �bi-unitary tranformation� of both

the left-handed and right-handed down quarks. The unitary transformation of the

right-handed quarks does not a�ect the CKM matrix (and anyway these rotation an-

gles are quadratic in small ratios of quark masses and thus negligible). The unitary

transformation of the left-handed down quarks is just the CKM mixing matrix, since

the mass matrix Mu is already diagonal. (See the discussion of CKM mixing in the

Introduction.) We then have

Md
∼= V ∗CKM


md 0 0

0 ms 0

0 0 mb

 . (2.12)
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Comparing eq. (2.11) and eq. (2.12), it is easy to show that

|Vcb| ≈
ams

mb

=⇒ a ∼= mb

ms

|Vcb| ∼ 2

|Vus| ≈
bmd

ms

=⇒ b ∼= ms

md

|Vus| ∼ 4 (2.13)

|Vub| ≈
ceiθmd

mb

=⇒ θc ∼= mb

md

|Vub| ∼ 3, θ ∼= δCKM

Turning to the lepton sectors, one sees that the mass matrix of the charged

leptons can be writte

M` = ATm` =


A11 A21 A31

A12 A22 A32

A13 A23 A33




δ` 0 0

0 ε` 0

0 0 1

µ` (2.14)

The hierarchy among the charged lepton masses tells us that δ` � ε` � 1. So,

the diagonal matrix m` is hierarchical, just as md and mu are. By comparing eqs.

(2.7) and (2.14), we see how this model explains the disparity between the neutrino

mixing angles and quark mixing angles. Because Md = md A, whereas M` = ATm`,

the mass matrix of the down quarks has a hierarchy among the rows, whereas the

charged lepton mass matrix has a hierarchy among the columns. Since rotations of

the left-handed fermions (which are the ones relevant to the CKM and MNS mixing

angles) are rotations among the rows, we see that small quark mixing angles and large

lepton mixing angles arise. (This is a realization of the basic idea of �lopsided� models

[5, 6, 7, 8, 9, 10, 11, 12, 13].)

We can make the matrix A in this equation have the same form as given in eq.

(2.8) by doing the same combination of rotations to the left-handed leptons as we did

to the right-handed down quarks, followed by analogous re-scalings and re-phasings. If

we do the same rotations to the left-handed charged leptons and left-handed neutrinos,
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no MNS mixing is induced at this stage. We get

M ` = AT∆m`

=


1 0 0

b 1 0

ceiθ a 1




δ` 0 0

0 ε` 0

0 0 1

µ`

=


δ` 0 0

δ`b ε` 0

δ`ce
iθ ε`a 1

µ`
∼=


me 0 0

mµb mµ 0

mτce
iθ mτa mτ

 . (2.15)

This is not diagonal, but to a very good approximation it can be diagonalized by

rotations done only to the righthanded charged leptons. Rotations of the left-handed

charged leptons are also required, but they are rotations by angles that are proportional

to squares of small lepton mass ratios, and can be neglected. Thus, to a very good

approximation, the charged lepton mass matrix in eq. (2.15) is in the mass basis of

the left-handed charged leptons. In this basis, the e�ective mass matrix of the three

light neutrinos Mν has the form Mν = AT∆mνA∆ which is given by

M ν
∼=


1 0 0

ms
md
|Vus| 1 0

mb
md
|Vub|eiδ mb

ms
|Vcb| 1




qeiβ 0 0

0 peiα 0

0 0 1




1 ms
md
|Vus| mb

md
|Vub|eiδ

0 1 mb
ms
|Vcb|

0 0 1

µν

(2.16)

where qeiβ,peiα and the overall scale µν are free parameters of the model, δ is the

Kobayashi-Maskawa CP-violating phase, and the Vij are the CKM matrix elements.

Since we only have the freedom to re-phase the left-handed neutrinos, there are three

physical phases in eq. (2.16), rather than one as in the other mass matrices. The extra

two phases are the ones called α and β in eq. (2.16).

The mass matrix Mν shown in eq. (2.16) contains all the information about

the masses, mixings and CP-violating phases of the neutrinos. There are nine physical

observables involved: the three neutrino masses, the three MNS angles, the Dirac CP
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phase, and the two majorana CP phases of the neutrinos. These are all determined by

the �ve model parameters in eq. (2.16): µν , pe
iαand qeiβ.

Since �ve neutrino observables have already been measured (θsol, θatm, θ13, ∆m2
12

and ∆m2
23), we can use them to determine the �ve model parameters, and then predict

the four as-yet-unmeasured neutrino observables. Since the equations are non-linear

(they involve trigonometric functions), there is no guarantee that they can �t the �ve

measured neutrino properties with �ve adjustable parameters. (To put it another way,

the adjustable parameters α and β are bound within the range [0, 2π).) Nevertheless,

good �ts are obtained. This is only true, however, if some of the measured neutrino

properties have values that lie within a smaller range than that presently allowed by

experiment. For example, although the current experimental range of the atmospheric

neutrino mixing angle is θatm = 45 ± 6.5◦[25], the model only obtains good �ts for

θatm . 43◦ with values near 40◦preferred, as we shall see. The �ts also prefer a value

of θsol greater than or equal to 34◦, i.e. greater than the present experimental central

value. The quark properties are also constrained: the best �ts are obtained with

ms/md > 20, and δ greater than or equal to its present experimental central value.

Thus, in addition to predicting the four as-yetunmeasured neutrino observables, the

model places non-trivial and testable constraints on the values of quantities that have

been measured.

In the Table 2.1, we show a representative �t in which all the input quark

parameters and the neutrino observables obtained as output are in their experimentally

allowed ranges (and in most cases at their central values). The experimental values

are taken from the 2012 Review of Particle Properties [25], except for δlep(the neutrino

Dirac CP phase) where we use the result of a recent global analysis of neutrino data

[26]. For mb/ms we have used the renormalization group results of [27] to obtain

ms(mb) from ms(2GeV), which is given in [25].

Note that the model's prediction for δlepis 1.15π radians, which accords remark-

ably well with the one-sigma range found in [26] of 1.1π+0.3π
−0.4πrad. The value of (Mν)ee(to

which the amplitude of neutrinoless double beta decay is proportional) is much smaller
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Quantity Values in �t Experiment

µν 0.1428 eV �
peiα 0.1525e−2.734i �
qeiβ 0.01405e−0.352i �

mb/ms 52.9 52.9± 2.6
ms/md 19 17 to 22
|Vus| 0.2252 0.2252± 0.0009
|Vcb| 0.0409 0.0409± 0.0011
|Vub| 0.00415 0.00415± 0.00049
δ 1.30 rad 1.187+0.175

−0.192rad

θsol 34.1◦ 33.89◦ +0.976◦

−0.971◦

θatm 40◦ 45◦ ± 6.5◦

θ13 9.12◦ 9.122◦ +0.609◦

−0.647◦

δm2
23 2.32× 10−3eV2 2.32+0.12

−0.08 × 10−3eV2

δm2
12 7.603× 10−5eV2 (7.5± 0.2)× 10−5eV2

δlep 1.15πrad 1.1π+0.3π
−0.4πrad

(Mν)ee 0.0020 eV

Table 2.1: A �t to the quark and neutrino data. µν , pe
iαand qeiβare model parame-

ters. δlepis the neutrino Dirac CP phase, and (Mν)eethe mass that comes
into neutrinoless double beta decay.
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Figure 2.2: The result of �ts with the values of quark parameters given in Table
I, θsol = 34.2◦, and θ13 = 9.12◦. The curves are the relation of r
(≡ δm2

12/δm
2
23) to the predicted δlep for di�erent values of θatm. The

horizontal lines are the one-sigma limits for r.

than the experimental limits, which tend to be in the range of a few tenths of an eV

to several eVs for di�erent experiments [25]. This prediction of the model is not very

sensitive to variation of the model's input parameters.

Figures 2.2 - 2.4 show the degree of sensitivity of the δlep prediction to the values

of θatm,θsol and δ (the quark CP phase). In the Fgure 2.2, we have �xed the values of

all the quark mass ratios and CKM parameters, and of θsol and θ13, but have allowed

θatm and the ratio ∆m2
12/∆m

2
23 (which we henceforth call r) to take di�erent values.

The curves are the relation of r to the predicted δlep for di�erent values of θatm. The

horizontal lines are the one-sigma limits for r. One sees that δlep is predicted to be

roughly 1.15π radians and that values of θatm . 41◦are preferred.

In the Figure 2.3, we have done a similar thing, but this time �xing θatmto be

40◦and allowing θsol and r to vary. One can see a preference for values of θsol equal

or above the present experimental central value. In the Figure 2.4, we have allowed

the quark CP phase δ and r to vary. One sees that the best-�t value of δlep is rather

insensitive to the assumed values of the measured quark and neutrino properties, but

the width of the range of δlepvalues that give good �ts is quite sensitive.
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Figure 2.4: The result of �ts with the values of quark parameters other than δ given
in Table I, θsol = 34.2◦, and θ13 = 9.12◦, and θatm = 40◦. The curves are
the relation of r (≡ δm2

12/δm
2
23) to the predicted δlep for di�erent values

of the quark phase δ.
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2.4 Conclusions

The model proposed here gives an account of how the CKM and MNS �avor

mixings arise, but does not explain the mass hierarchy among the families, since the

hierarchies in the diagonal matricesmu, md, m` andmν are simply assumed. There are,

however, several simple ways in which the present model could be extended to give an

explanation of the mass hierarchy. One way is to combine the structure in this model

with the structure assumed in []. In that paper, the mass hierarchies were explained by

the three usual families mixing with extra vector-like 10 + 10 fermion pairs in a way

analogous to the mixing with 5+5 assumed here. Combining the structures of the two

models would be appealing since it would mean that the vector-like fermions would

comprise entire family-antifamily pairs. (It has been pointed out that this can lead

in a simple way to uni�cation of gauge couplings in non-SUSY models [22].) We will

discuss a way to combine these two ideas which might be able to provide a complete

explanation to the �avor problem in chapter 6.

It should be noted that the present model could be embedded in many grand

uni�ed schemes. For example, in an SO(10) model, the ordinary families could be in

three 16 multiplets, while the vector-like fermions could be in three 10 multiplets. In

E6, one gets the extra vectorlike fermions �for free", since the 27 contains 16+ 10+ 1

of SO(10). Di�erent patterns of breaking of the grand uni�ed group could be assumed

without a�ecting the predictions for fermion masses and mixings. For example, in many

uni�ed models, an adjoint Higgs �eld does some of the breaking of the uni�cation group.

If that adjoint Higgs multiplet does not transform under the K ′ symmetry mentioned

after eq. (2.1), it would not couple renormalizably to (5
′
A5
′
B) or (5′A5

′
i) and hence not

contribute to the matrices ∆ and M in eq. (2.4) and the matrix A. Consequently,

except for negligible higher-order corrections, the matrix A would not �know" that the

uni�cation group is broken, and the same A would appear in both the quark and lepton

sectors, as is necessary for the model to be predictive.

In conclusion, if all �avor changing in both the quark and lepton sectors arises

as a consequence of the mixing of the usual families with extra vector-like fermions
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that are in 5 + 5 of SU(5), a testable relationship arises between the quark and lepton

mixing. This relationship allows the prediction of the four as-yet-unmeasured neu-

trino observables as well as testable constraints on several quantities that have been

measured. Measurement of the Dirac CP phase of the neutrinos δlep, as well as more

precise determinations of such quantities as θatm, θsol, |Vub|, ms/md and δ (the quark

CP phase) would provide stringent tests of the model.
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Chapter 3

PROTON DECAY AND THE ORIGIN OF QUARK AND LEPTON
MIXING

3.1 Introduction

In the last chapter, we discussed a highly predictive model that relates the MNS

mixing of the leptons [2] and the CKM mixing of the quarks [3, 4] by positing a single

source for all �avor violation, namely mixing between the three �usual� fermion families

with �extra� vector-like fermions in 5′+5
′
multiplets of SU(5). This was shown to lead

to several testable predictions including neutrino masses and CP-violating phases.

Just as the CKM and MNS angles specify how fermion mass eigenstates are

arranged within the multiplets of the electroweak SU(2)L group, there are mixing

angles that specify how the fermions are arranged within the multiplets of the grand

uni�cation group. Since the model we discussed in the last chapter posits a single

source for all �avor mixing, it predicts these grand uni�ed mixing angles also. Proton

decay branching ratios depend on these angles, and so discovery of proton decay and

measurement of those angles would provide further non-trivial tests of the model. We

extract the predictions for proton decay coming from the exchange of the grand uni�ed

gauge bosons, which would dominate in a non-supersymmetric version of the model.

What makes this model so predictive is the combination of SU(5) symmetry,

which relates the quarks and leptons, and abelian �avor symmetries, which forbid

�avor violation in the sector of the �usual� fermion multiplets, which consists of three

families of 10 + 5 multiplets. One of the interesting features of the model is that even

though it uni�es quarks and leptons, it explains in a simple and natural way why the

CKM mixing angles of the former are much smaller than the MNS mixing angles of the

latter, as we saw in the previous chapter. The point is that ultimate source of all �avor
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violation is the mixing among 5 multiplets, which contain the left-handed leptons, but

not the left-handed quarks. This is the basic idea that underlies so-called �lopsided

models� [5, 6, 7, 8, 9, 10, 11, 12, 13], of which the present model is a particularly

simple and predictive example.

This model is also very closely related to a model proposed in 1984 as a solution

to the Strong CP Problem [16, 17, 18]. In that model, CP is assumed to be a symmetry

of the Lagrangian that is spontaneously broken by the VEVS of the singlet scalars 1′Hi

that produce the o�-diagonal mass matrix ∆. In fact, the model proposed here has

the same structure as the model originally proposed by A.E. Nelson in [16], except

that here the 3 × 3 mass matrices of the ordinary three families are required to be

�avor diagonal by family symmetries. Therefore, the mechanism for solving the Strong

CP Problem proposed there can easily be implemented in the present model. If it

is, then further predictions result, though they would require measuring proton decay

branching ratios to less than 1 percent accuracy. That the mechanism can be tested

at all, however, is quite striking and surprising, as the relevant physics happens at

the GUT scale. Again, what makes that possible here is the powerful combination of

SU(5) symmetry and abelian �avor symmetry.

In section 3.2, we will go into more detail in our treatment of complex phases

than we did in [28] as this is necessary to determine the relative phases of certain proton-

decay amplitudes. In section 3.3, we derive the predictions for the SU(5) mixing angles

and proton decay branching ratios. In section 3.4, we see that by embedding the model

in SO(10), which is very simply done, even more interesting proton decay predictions

result. The most interesting proton decay predictions are shown in eqs. (3.25) - (3.27).

69



3.2 The Complex Phases of The Model in Proton Decay

As we have already introduced in the chapter 2, the Yukawa terms of the model

are

LY uk = Yi(10
U
i 10

U
i )〈5H〉+ y

i
(10Ui 5

U
i )〈5H〉

+ Ỹ
i
(10Ui 10

U
i )〈45H〉+ ỹi(10

U
i 5

U
i )〈45H〉

+ (λi/MR)(5
U
i 5

U
i )〈5H〉〈5H〉

+ Y ′
AB

(5EA5
E
B)〈1H〉+ y′

Ai
(5EA5

U
i )〈1′Hi〉,

(3.1)

Here we have used a somewhat di�erent notation than in the last chapter. The �usual�

chiral multiplets 10 + 5 are here given a superscript U and the �extra� vector-like

fermions in 5 + 5 are given a superscript E. This will help keep track of the multiplets

being discussed, as it will be necessary to carry out a series of changes of basis. The

subscript H denotes Higgs multiplets. The last two terms give SU(5)-invariant masses

to extra vector-like fermions in the 5E and 5
E
multiplets which are denoted as 5′ and

5
′
in the chapter 2, so that these masses can be much larger than the weak scale and

possibly even the GUT scale. It does not matter to the analysis in this chapter what

the scale of these SU(5)-invariant masses are.

The Yukawa terms in eq. (3.1) that involve only the usual fermion multiplets

give rise to mass matrices mu, md, m`, and mν that are �avor diagonal

u
10U
i

(mu)ij u
c

10U
j

, d
10U
i

(md)ij d
c

5Uj

, `
5Ui

(m`)ij `
c

10U
j

, ν
5Ui

(mν)ij ν5Uj

(3.2)

However, the fermions in 5
U
i , i = 1, 2, 3, are not simply the observed Standard Model

fermions. The 5
U
i and the 5

E
A mix, with some linear combinations of them becoming

�heavy�, and the three combinations orthogonal to them remaining �light�. We denote

these respectively by 5
H
and 5

L
. To identify these heavy and light multiplets one must

look at the heavy fermion masses. From the last two terms in eq. (3.1), these are seen

to have the for

5EA

(
[y′
Ai
〈1′Hi〉] 5Ui + [Y ′

AB
〈1H〉] 5EB

)
≡ 5EA

(
∆
Ai
5
U
i +M

AB
5
E
B

)
, (3.3)

One sees that 5
H ∝ (∆5

U
+ M5

E
). One can easily write the light 5

L
as the linear

combinations orthogonal to these. The light 5
L
are the standard model fermions we
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observed in the experiments. One can then invert to write the �usual" multiplets 5
U

as linear combinations of 5
L
and 5

H
. The result turns out to be (suppressing indices)

5
U

= A5
L

+B5
H
, (3.4)

where A and B are the same complex matrices given in the last chapter. (A is 3×3 and

B is 3×N , where N is the number of �extra" 5 multiplets.) For the 10 multiplets, there

are no heavy mass terms or mixing with �extra� multiplets, so the �usual� multiplets

are simply the same as the light multiplets: 10U = 10L. If we rewrite eq. (4.5) in

terms of the light fermion multiplets using eq. (3.4), and suppress indices for clarity,

we obtain

uT
10L

mu u
c

10L
, dT

10L
md A dc

5L
, `T

5L
AT m` `

c

10L
, νT

5L
AT mν A ν

5L
(3.5)

Note that the matrix A appears next to the fermions that are in 5 multiplets, because

A re�ects the e�ects of the mixing of those multiplets. The terms in eq. (3.5) give the

e�ective mass matrices of the three families of Standard Model fermions, which we will

denote by capital M : Mu, Md, M`, and Mν .

So far the analysis is the same as presented in the last chapter. There we saw

that

Mu = mu, Md = mdA, M` = ATm`, Mν = ATmνA, (3.6)

where mu, md, m`, and mν are the diagonal and hierarchical �underlying� mass matri-

ces, and A is a matrix that can be brought to the form

A = D A∆ U , (3.7)

where D is a complex diagonal matrix, U is unitary and

A∆ =


1 b ceiθ

0 1 a

0 0 1

 . (3.8)

Here a and b have been made real by absorbing phases into D and U .
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It will be important to keep track of complex phases for the later analysis of

proton decay, let us de�ne D ≡ eiΦD, where D and Φ are real diagonal matrices, and

similarly mu ≡ eiΦumR
u , md ≡ eiΦdmR

d , m` ≡ eiΦ`mR
` , mν ≡ eiΦνmR

ν , where Φu, m
R
u ,

etc. are real diagonal matrices.

It will be convenient to de�ne a ��avor basis� of SU(5) multiplets (denoted by

superscript F ) by 5
F ≡ U5L and 10F ≡ ei(Φ+Φd)10L. (There are three families of these,

but we are suppressing the family indices.) Therefore, if we use eq. (3.7) to rewrite

the expressions in eq. (3.5), we can absorb the factors of U and some of the phases

into rede�ned fermion multiplets, as follows.

uT
10L

mu u
c

10L
= uT

10L
(eiΦumR

u ) uc
10L

= uT
10F

mR
u e

i(Φu−2Φd−2Φ)uc
10F

= uT
10F

mu e
iΘucuc

10F
, where mu ≡ mR

u , Θuc ≡ Φu − 2Φd − 2Φ,

dT
10L

(md A) dc
5L

= dT
10L

(eiΦdmR
d ) (eiΦDA∆U) dc

5L
= dT

10F
(mR

dD) A∆ dc
5F

= dT
10F

(md A∆) dc
5F
, where md ≡ mR

dD,

`T
5L

(AT m`) `
c

10L
= `T

5L
(UTAT∆DeiΦ) (eiΦ`mR

` ) `c
10L

= `T
5F
AT∆ (DmR

` ) ei(Φ`−Φd) `c
10F

= `T
5F

(AT∆m`) e
iΘ`c `c

10F
, where m` ≡ DmR

` , Θ`c ≡ Φ` − Φd,

νT
5L

(AT mν A) ν
5L

= νT
5L
UT AT∆ (e2i(Φν+Φ)D2mR

ν ) A∆ U ν
5L

= νT
5F
AT∆ e2i(Φν+Φ)(D2mR

ν ) A∆ ν
5F

= νT
5F

(AT∆ eiΘνmν A∆) ν
5F
, mν ≡ D2mR

ν , Θν ≡ Φν + Φ.

(3.9)

This gives the mass matrices of the three Standard Model families in the 10F , 5
F
basis
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as

Mu = mue
iΘuc , Md = mdA∆, M ` = AT∆m`e

iΘ`c , Mν = AT∆(eiΘνmν)A∆.

(3.10)

Note that so far no transformations have been done that contribute to CKM or MNS

mixing. To get to the 10F ,5
F
basis from the 10L,5

L
basis, we have done a transforma-

tion by U to the 5 multiplets, i.e. to (i) the left-handed anti-down quarks (right-handed

quarks), which does not a�ect CKM mixing, and (ii) the left-handed charged leptons

and neutrinos, which, because it was the same for the charged leptons and neutrinos,

does not a�ect MNS mixing.

The parameters that come into the quark and lepton masses and the CKM and

MNS mixing have been reduced to the matrix A∆; the four real diagonal matrices

mu, md, m`, and mν ; and two relative phases in Θν . The phases in Θuc and Θ`c only

a�ect right-handed fermions, and for that reason do not a�ect the MNS and CKM

angles. (This is why they were not discussed explicitly in the last chapter.) But they

do matter, as will be seen, for proton decay.

Now, as usual, we have to diagonalize above mass matrices as by �bi-unitary�

transformations, which means going from the SU(5) ��avor basis� to the �mass basis�

of the Standard Model fermions, i.e. the basis where the 3× 3 e�ective mass matrices

of the Standard Model fermions are real and diagonal. We will denote the fermions in

this basis with a tilde. The matrix Mu is already diagonal. It can be made real by

rede�ning the phases of the anti-up quarks as follows: ũ ≡ u10F and ũc ≡ eiΘucu10F .

(Here and in the following we are not showing family indices.) The matrixMd = md A∆

has the form

Md = md A∆ = µd


δd 0 0

0 εd 0

0 0 1




1 b ceiθ

0 1 a

0 0 1

 = µd


δd δdb δdce

−iθ

0 εd εda

0 0 1

 .

(3.11)

The matrix Md must be diagonalized by a bi-unitary transformations. The unitary

matrix that transforms it from the left is just the CKM matrix (since Mu is already
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diagonal), and the one that transforms it from the right is very close to being the

identity matrix, as was explained in chapter 2. Thus we may write

Md = md A∆
∼= V ∗

CKM


md 0 0

0 ms 0

0 0 mb

 . (3.12)

The mass eigenstates for the down quarks are therefore given by d̃ = V †
CKM

d10F ⇒
d10F = V

CKM
d̃, whereas for the anti-down quarks, one has simply d̃c ∼= dc

5
F .

The diagonalization ofM ` proceeds in an analogous way, except transposed. So

the non-negligible rotation in this case is done from the right, i.e. to the left-handed

anti-leptons `c, whereas a negligible transformation is needed of the left-handed leptons

`. We can thus write AT∆ m` = m` V`c . Therefore the mass eigenstates of the anti-

leptons are ˜̀c = V`ce
iΘ`c `c10F ,

˜̀ ∼= `
5
F . (See eq. (3.9).) Since negligible rotation of

the left-handed charged leptons is needed to diagonalize M `, the MNS mixing comes

almost entirely from the diagonalization of the neutrino mass matrix Mν , which is

given by

M ν = AT∆(eiΘνmν)A∆

∼=


1 0 0

ms
md
|Vus| 1 0

mb
md
|Vub|eiδ mb

ms
|Vcb| 1




qeiβ 0 0

0 peiα 0

0 0 1




1 ms
md
|Vus| mb

md
|Vub|eiδ

0 1 mb
ms
|Vcb|

0 0 1

µν ,

(3.13)

where we have pulled out an overall factor µν to scale the 33 element of mν to 1. Since

the transformation to diagonalize Mν is to a very good approximation just the MNS

matrix, one has ν̃ = U †
MNS

ν
5
F ⇒ ν

5
F = U

MNS
ν̃.

We can now write the content of the SU(5) multiplets that contain the Standard

Model fermions, in the 10F , 5
F
basis. Using the facts that u10F = ũ, uc10F =
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ũc, d10F = V
CKM

d̃, dc
5
F = d̃c, `c10F = V`c ˜̀c, `

5
F = ˜̀, and ν

5
F = U

MNS
ν̃, one has

10FI =

e−iΘ`cV`c ˜̀c,

 ũ

V
CKM

d̃

 , e−iΘuc ũc


I

, 5
F
I =


d̃c U
MNS

ν̃

˜̀



I

,

(3.14)

where I is the family index. So, for example, if I = 1, we see that the SU(5) partners of

the physical ũL are (i) the physical ũcL times the phase e−i(Θuc )11 , (ii) the CKM linear

combination of the physical down quarks, namely VCKM d̃ = (Vudd̃L+Vuss̃L+Vubb̃L), and

(iii) the linear combination of the physical anti-leptons ((V`c)11ẽc+(V`c)12µ̃c+(V`c)13τ̃ c)

times the phase e−i(Θ`c )11 .

3.3 Proton Decay Angles for SU(5) Modes

In this section, we will consider proton decay caused by the exchange of the

superheavy gauge bosons of SU(5). These obviously only make transitions within the

irreducible multiplets of SU(5). From eq. (3.14), therefore, we see that the only mixing

matrices that enter into such proton decay amplitudes are U
MNS

, V
CKM

, and V`c . The

CKM and MNS matrices can be measured at low-energy, and are fairly well known.

The matrix V`c cannot be measured at low energy, but is predicted by the model, since

it comes from diagonalizing AT∆m`. A∆ is known and determined by the masses and

mxings angles of quarks. The diagonal matrix m` can be determined from the masses

of the charged leptons. One �nds that to an excellent approximation

V`c =


1 −me

mµ
b −me

mτ
ceiθ

me
mµ
b 1 −mµ

mτ
a

me
mτ
ce−iθ mµ

mτ
a 1

 ≈


1 −0.02 −0.001eiδKM

0.02 1 −0.12

0.001e−iδKM 0.12 1

 ,

(3.15)

Since the τ lepton is too heavy to be involved in proton decay, only the 12 element of

V`c , which we shall call ζ, enters the proton decay amplitudes. (ζ ∼= 0.02.)

As can be seen from eq. (3.14), this model gives quite de�nite predictions

for all the mixing angles that come into SU(5) fermion multiplets and thus into the
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amplitudes for proton decay via the exchange of the superheavy SU(5) gauge bosons.

In particular, one sees that the only mixings that come into those amplitudes are the

CKM and MNS elements and the (small) 12 element of V`c .

While this is a de�nite and (in principle) testable prediction, it is not very

distinctive of this model, as all models will involve the CKM and MNS mixing. The

one non-zero parameter that comes into proton decay that is distinctive of this model

is ζ. Because ζ is small, however, it would be very hard to measure even if proton

decay is seen. On the other hand, if ζ is measured, then, as we will show, it would

allow a test of a well-known mechanism [] for solving the Strong CP Problem that is

otherwise almost impossible to test.

If we embed this model in SO(10), as is quite natural and simple to do, one

�nds predictions for proton decay branching ratios that are quite distinctive of this

model. In fact, they would allow an independent measurement of the parameter b

and a combination of a and c, which are also determined by low-energy physics. We

shall consider the SO(10) embedding of the model and the resulting proton decay

predictions in the section 3.4. First, we shall �nd the proton-decay operators coming

from the exchange of the SU(5) gauge bosons.

Let us denote the superheavy gauge bosons of SU(5) by W a
i , where a = 1, 2, 3 is

an SU(3)c color index and i = 4, 5 is an SU(2)L weak index. The W a
i could be the X

or Y bosons and also mX = mY is assumed. The relevant couplings are (ψ)ac��W
a
iψ

ic +

(ψ)aj��W
a
iψ

ij + (ψ)i��W a
iψa, in Standard Model notation. Dropping the color and weak

indices and putting in the family indices I one has ucI��WQI +QI��W`cI +LI��WdcI , where

QI =

 u

d


I

and LI =

 ν

e


I

. Here the family indices refer to the 10F , 5
F
basis,
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shown in eq. (3.14). These terms give the d = 6 operators

g2
5

2M2
5

(
QIγµu

c
I

) (
LJγ

µdcJ
)
− g2

5

2M2
5

(
QIγµu

c
I

) (
QJγ

µ`cJ
)

=
g2
5

2M2
5

[(
dIγµu

c
I

)
(νJγ

µdcJ) + (uIγµu
c
I)
(
`Jγ

µdcJ
)]

− g2
5

2M2
5

[
(uIγµu

c
I)
(
dJγ

µ`cJ
)

+
(
dIγµu

c
I

)
(uJγ

µ`cJ)
]
.

(3.16)

Referring to eq. (3.14), and keeping only the fermions light enough to be decay products

of a nucleon, the relevant operators are

g2
5

2M2
5

(
[cos θC d̃+ sin θC s̃]γµũ

c
)(

νeγ
µd̃c + νµγ

µs̃c
)

+
g2
5

2M2
5

(
ũγµũ

c
) (
ẽγµd̃c + µ̃γµs̃c

)

− g2
5

2M2
5

(
ũγµũ

c
) (

[cos θC d̃+ sin θC s̃]γ
µ[ẽc + e−iα1ζµ̃c]

)

− g2
5

2M2
5

(
ũγµũ

c
) (

[− sin θC d̃+ cos θC s̃]γ
µ[−e−iα2ζẽc + µ̃c]

)

− g2
5

2M2
5

(
[cos θC d̃+ sin θC s̃]γµũ

c
) (
ũγµ[ẽc + e−α1ζµ̃c]

)
,

(3.17)

where α1 and α2 are the 11 and 22 elements of the diagonal matrix of phases Θ`c .

Collecting like terms (and doing a Fierz transformation [] of the last term in eq. (3.17))

we obtain:

g2
5

2M2
5

(
[cos θC d̃+ sin θC s̃]γµũ

c
)(

νeγ
µd̃c + νµγ

µs̃c
)

+
g2
5

2M2
5

(
ũγµũ

c
) (
ẽγµd̃c + µ̃γµs̃c

)

− g2
5

2M2
5

(
ũγµũ

c
) [

2cθ(d̃γ
µẽc) + (2sθ − e−iα2ζ)(s̃γµẽc) + (2e−iα1ζ − sθ)(d̃γµµ̃c)− cθ(s̃γµµ̃)

]
,

(3.18)

where sθ ≡ sin θC = Vus, cθ ≡ cos θC , and where we have dropped terms of order ζsθ

(≈ 0.004) or smaller.
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The phases α1 and α2 are unknown free parameters of the model. They enter,

however, only in the small terms proportional to ζ, and thus their e�ect would not be

signi�cant unless the proton decay branching ratios were measurable to better than a

percent accuracy. If the O(ζ) terms could be measured precisely enough, however, it

would allow a test of a well-known mechanism for solving the Strong CP Problem, as

we will now explain. The model we are describing here implements in a very simple

way the mechanism for solving the Strong CP Problem proposed in [16, 17, 18]. Indeed,

it is the model proposed in Nelson's paper, except that here we have imposed a �avor

symmetry to make the Yukawa terms involving the �usual" fermion multiplets diagonal.

To solve the Strong CP Problem (assuming no supersymmetry) all that is needed is

to impose CP as an invariance of the Lagrangian that is spontaneously broken by the

Higgs �elds we denoted 1′hI in eq. (3.1). What would happen in that case is that the

phases matrices Φu, Φd, Φ`, and Φν would all vanish. (The phase matrix Φ would

not vanish, however, as it comes from the matrix A that arises ultimately from 〈1′hI〉.)
One can see from eq. (3.9), that Θ`c is given by Φ` − Φd and therefore would vanish.

Thus the mechanism for solving the Strong CP Problem [16, 17, 18] predicts that

α1 = α2 = 0.

3.4 Proton Decay Angles in The SO(10) Embedding of The Model

More interesting predictions for proton decay arise if the model is embedded in

SO(10). This embedding is very simple. The �usual� fermion multiplets are contained

in spinors of SO(10), while the �extra� vector-like fermion multiplets are contained in

vectors of SO(10):

10U + 5
U ⊂ 16U , 5E + 5

E ⊂ 10E. (3.19)
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Then the Yukawa terms in SO(10) are

LY uk = Y
I
(16UI 16

U
I )〈10h〉

+ Ỹ
I
(16UI 16

U
I )〈126h〉

+ (λ
I
/MR)(16UI 16

U
I )〈16h〉〈16h〉

+ Y ′
AB

(10EA10
E
B)〈1h〉+ y′

AI
(10EA16

U
I )〈16hI〉.

(3.20)

The analysis presented in the previous section goes through without change. Now,

however, there are additional superheavy gauge bosons in SO(10) that mediate proton

decay, namely those that make transitions between the 10U and 5
U
within the spinors

16U . These new gauge bosons are X ′ and Y ′ in SO(10) which transform as (3, 2, 1
6
) +

conj. under the Standard Model gauge group SU(3)c × SU(2)L × U(1)Y , and can be

denoted by W ai and Wai, where a is a color index and i is a weak index. These new

gauge bosons have coupling to the 10U and 5
U
in the 16U of the form ψαβ��W γδψηε

αβγδη

(where α, β, etc. are SU(5) indices), which contains (ψbc��W aiψj − ψbj��W aiψc)εijabc.

Translating this into the notation of the Standard Model, one has

(uc)a��W ai(L)jε
ij + (Q)jb��W ai(d

c)cε
abcεij. (3.21)

The fermions in these operators are in the �usual" multiplets 10U + 5
U ⊂ 16U . Let us

make this explicit, but suppress the SU(5) indices for clarity: uc10U��WL
5
U +Q10U��Wdc

5
U .

Using eqs. (3.4) and (3.9), this can be rewritten in terms of the �elds in the multiplets

10F and 5
F
shown in eq. (3.14):

uc10U��WL
5
U +Q10U��Wdc

5
U

−→ uc10L��WAL
5
L +Q10L��WAdc

5
L

= uc10L��WDA∆(UL
5
L) +Q10L��WDA∆(Udc

5
L)

= ei(Φd+Φ)
[
uc10F��W [DA∆]L

5
F +Q10F��W [DA∆]dc

5
F

]
(3.22)

The gauge bosons in eq. (3.22) form a weak doublet with electric charges 1
3

and −2
3
, which we will denote W(1/3) and W(−2/3). First, let us consider the couplings
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of W(1/3), which will give the proton decay modes with charged leptons. Writing out

the terms in the last line of eq. (3.22), referring to eq. (3.14), and keeping only those

quarks and leptons that are lighter than a nucleon, one has

ei(Φu−Φd)1 [ũc��W (1/3)D1

∑
J=1,2(A∆)1J

˜̀
J + ũ��W (1/3)D1

∑
J=1,2(A∆)1J d̃

c
J ]

= ei(Φu−Φd)1D1[ũc��W (1/3)(ẽ+ bµ̃) + ũ��W (1/3)(d̃
c + bs̃c)],

(3.23)

where DJ stands for the JJ element of the diagonal matrix D. The couplings in eq.

(3.23) give the d = 6 nucleon decay operators(
g2
10

2M2
10

(D1)2
)

([ẽ+ bµ̃]γµũ
c) (ũγµ[d̃c + bs̃c])

= κ
(

g2
5

2M2
5

)
(ũγµũ

c) ([ẽ+ bµ̃]γµ[d̃c + bs̃c]),

(3.24)

where the second line was obtained by a Fierz transformation, and we have de�ned the

real parameter κ ≡ (D1)2 g
2
10/M

2
10

g2
5/M

2
5
.

Combining these SO(10) operators with the SU(5) operators given in eq. (3.18),

we can compute the proton-decay rates for the two-body decay modes having charged

leptons in the �nal state, namely p→ π0e+, p→ π0µ+, p→ K0e+, and p→ K0µ+. If

we consider the three ratios of these four rates, most of the unknown quantities cancel

out. Using the results of [29] we obtain

Γ(p→ π0µ+)

Γ(p→ π0e+)
=

(bκ)2 + |sθ − 2e−iα1ζ|2
(1 + κ)2 + (2cθ)2

, (3.25)

Γ(p→ K0e+)

Γ(p→ π0e+)
= R

(bκ)2 + |2sθ − e−iα2ζ|2
(1 + κ)2 + (2cθ)2

, (3.26)

Γ(p→ K0µ+)

Γ(p→ π0e+)
= R

(1 + b2κ)2 + c2
θ

(1 + κ)2 + (2cθ)2
, (3.27)

with

R ≡ 2

(
1− m2

K

m2
p

)2
(

1 + mp
mB

(D − F )

1 +D + F

)2

= 0.105± 0.005 (3.28)
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where D and F are chiral lagrangian parameters found in [30] to be D + F = 1.267±
0.003 and D − F = −0.341± 0.016 and mB = 1150 MeV is an average baryon mass.

One sees that if the small e�ects of ζ are neglected, the three measurable ratios

given in eqs. (3.25)-(3.27) depend in the SU(5) model (κ = 0) on no unknown model

parameters, giving three testable predictions. In the SO(10) model they depend on

only the one unknown model parameter κ, giving two testable predictions. The SO(10)

version is more interesting, however, in that the value of b can be extracted in two

independent ways from these two predictions and compared to the value of b obtained

from �tting the CKM mixing, which is b = ms
md
Vus. This is a highly non-trivial test of

the model. And, indeed, this is one of the few models in the literature (maybe the only

one) where proton decay allows a direct test of a model of quark and lepton masses

and the mechanism of �avor mixing.

Let us now turn to the operators involvingW(−1/3), which give the nucleon decay
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modes with neutrinos.

ei(Φu−Φd)1 [ũc��W (−2/3)D1

∑
J=1,2,3(A∆)1JνJ ]

+ ei(Φd+2Φ)1 [[cθd̃+ sθs̃]��W (−2/3)D1

∑
J=1,2(A∆)1J d̃

c
J ]

+ ei(Φd+2Φ)2 [[−sθd̃+ cθs̃]��W (−2/3)D2

∑
J=1,2(A∆)2J d̃

c
J ]

= ei(Φu−Φd)1 [ũc��W (−2/3)D1(νe + bνµ + ce−iθντ )]

+ ei(Φd+2Φ)1 [[cθd̃+ sθs̃]��W (−2/3)D1(d̃c + bs̃c)]

+ ei(Φd+2Φ)2 [[−sθd̃+ cθs̃]��W (−2/3)D2s̃
c]

−→ ei(Φu−Φd)1D1[ũc��W (−2/3)(νe + bνµ + ce−iθντ )]

+ ei(Φd+2Φ)1D1[cθd̃��W (−2/3)d̃
c + (sθ + λcθ)s̃��W (−2/3)d̃

c

+ (cθb− λsθ)d̃��W (−2/3)s̃
c + (sθb)s̃��W (−2/3)s̃

c],

(3.29)

where λ is a complex number with magnitudeD2/D1, and phase (Φd+2Φ)2−(Φd+2Φ)1.

Both the magnitude and phase of λ are free parameters in this model, even if the

mechanism of [16, 17, 18] is implemented.

The terms in eq. (3.29) allow us to write down the d = 6 nucleon decay operators

that come from the exchange of W(−2/3):

ei(−Φu+2Φd+2Φ)1κ

(
g2

5

2M2
5

)[
cθd̃γµd̃

c + (sθ + λcθ)s̃γµd̃
c + (cθb− λsθ)d̃γµs̃c + (sθb)s̃γµs̃

c
]

[ν∗γ
µũc] ,

(3.30)

where ν∗ ≡ (νe + bνµ + ce−iθντ ). This can be compared to the operator containing the

neutrino �elds coming from the exchange of SU(5) gauge bosons, given in eq. (3.18),
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which after Fierzing is(
g2

5

2M2
5

)[(
cθd̃γµd̃

c + sθs̃γµd̃
c
)

(νeγ
µũc) +

(
cθ d̃γµs̃

c + sθ s̃γµs̃
c
)

(νµγ
µũc)

]
. (3.31)

There are two measurable two-body decays of the proton that involve neutrinos,

p → π+ν and p → K+ν, since the �avor of the neutrino is not observable in practice.

Thus, two more ratios of rates can be measured. In the SU(5) version of the model,

these do not depend on any additional model parameters, so two predictions result for

the neutrino modes. In the SO(10) version of the model, an additional complex model

parameter enters, namely λ. For some ranges of |λ|, the phase of λ doesn't make much

di�erence, so there would be one prediction for the neutrino modes. One can see form

the de�nition of ν∗ that this prediction would test the values of the parameters a and

c that are given in eq. (2.13).

3.5 Conclusions

To sum up, in the SU(5) version of the model, there are �ve measurable ratios

of rates for the two-body proton decays, and so there are �ve predictions if the e�ects

of the small parameter ζ can be neglected. These �ve predictions do not test the values

of the quantities a, b, and c. On the other hand, if the e�ects of ζ could be measured

with enough precision, the values of the phases α1 and α2 could be determined. If

they are consistent with 0 or π, then it would support the mechanism for solving the

Strong CP Problem proposed in []. In the SO(10) version of the model, the same �ve

measurable ratios of proton decay rates depend (if ζ is neglected) on two unknown

model parameters, κ and λ. If the value of the latter is such that its phase does not

matter, then there are three predictions. These do test the quantities a, b, and c, and

thus would provide a highly signi�cant discriminant between this model and others.
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Chapter 4

A SINGLE SOURCE FOR ALL FLAVOR VIOLATION

4.1 Introduction

In this chapter, we are going to discuss another way to test the model proposed

in the chapter 2. This model was shown to give several predictions for quark and lepton

masses and mixing angles and for mixing angles within grand uni�ed multiplets that

are observable in proton decay. Here it is shown that the same master matrix A controls

the �avor-changing processes mediated by a Standard-Model-singlet scalar that exists

in the model, giving predictions for τ → µγ, τ → eγ, and µ → eγ. Therefore, certain

parameters of the model may be measurable in three independent ways: by precise

determination of neutrino and quark properties, by proton decay branching ratios, and

through �avor-changing lepton decays.

In section 4.2, we will show how the model leads to predictions for �avor chang-

ing in the lepton sector. In section 4.3, we will analyze the �avor-changing e�ects that

arise from the exchange of a Standard-Model-singlet scalar that exists in the model.

4.2 The Model with A Single Source for All Flavor Violation

We will start our discussion again from the Yukawa terms of the model

LY uk = Yi(10i10i)〈5H〉+ yi(10i5i)〈5H〉
+ Ỹi(10i10i)〈45H〉+ ỹi(10i5i)〈45H〉
+ (λi/MR)(5i5i)〈5H〉〈5H〉
+ Y ′AB(5A5B)〈1H〉+ y′Ai(5A5i)〈1′Hi〉,

(4.1)

where the subscript H denotes Higgs multiplets. Repeated indices (i, A, or B) are

summed over. Note that the vacuum expectation values of 1′Hi spontaneously break
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the abelian family symmetries; so that the last term in eq. (4.1), which mixes the 5i

and 5
′
A, does not respect the family symmetries and can give �avor violation. It is

important for the predictivity of the model that the last two terms in eq. (4.1) involve

only SU(5)-singlet Higgs �elds, as otherwise the master matrix would be di�erent for

quarks and leptons. This can be ensured by another abelian symmetry that prevents

the SU(5) adjoint Higgs �eld from coupling in these terms [28].

Let us recall that [Y ′AB〈1H〉] ≡MAB and [y′Ai〈1′Hi〉] ≡ ∆Ai and �rst examine the

down-type quarks. These have a (3 +N)× (3 +N) mass matrix of the form

(
d(10), D(5′)

) md 0

∆ M

 dc
(5)

Dc
(5
′
)

 , (4.2)

The block diagonalization is carried out by a bi-unitary transformation of the (3 +

N)× (3 +N) mass matrix: md 0

∆ M

 −→
 I G

−G I


︸ ︷︷ ︸

∼=UL

 md 0

∆ M

 A B

C D


︸ ︷︷ ︸

∼=UR

=

 Md 0

0 M ′

 . (4.3)

Here the elements of G are small and UL is approximately diagonal, because the ele-

ments of md are very small compared to those of M and ∆. In earlier chapters, we

could neglect the matrix G, but for the calculations we will do in this chapter, it must

be included. One can give exact expressions for the matrices A, B, C, D, and G, which

will be useful in section 4.3. De�ning T ≡M−1∆, one can write

A ≡ [I + T †T ]−1/2,

B ≡ [I + T †T ]−1/2T † = AT † = T †[I + TT †]−1/2 ≡ T †D

C ≡ −T [I + T †T ]−1/2 = −TA = −[I + TT †]−1/2T ≡ −DT
D ≡ [I + TT †]−1/2

G ≡ −M−1†D2†Tm†d.

(4.4)

Since the elements of ∆ and M are of the same order, the elements of T are of O(1),

and the matrices A, B, C, D have o�-diagonal elements of O(1). As we showed in
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earlier chapters, one can write the e�ective 3× 3 mass matrices of the Standard Model

up-type quarks, down-type quarks, charged leptons, and neutrinos a

Mu = mu, Md = mdA, M` = ATm`, Mν = ATmνA, (4.5)

where A is of the form A = D A∆ U . And as discussed before, the matrix U can be

absorbed into rede�ned right-handed down quarks and the left-handed lepton doublets.

Similarly, the phases in D can be absorbed into rede�ned �elds. The diagonal real

matrix |D| can be absorbed into rede�nitions of the original diagonal mass matrices

as follows: md ≡ md|D|, m` ≡ m`|D|, mν ≡ mν |D|2, and mu ≡ mu. After these

rede�nitions, the mass matrices of the three light families take a new form and eq.

(4.5) can be rewritten a

Mu = mu, Md = mdA∆, M ` = AT∆m`, Mν = AT∆mνA∆. (4.6)

4.3 Flavor Changing from Singlet Scalar Exchange

In this section we consider the e�ects of the scalar �eld 1H that couples to

the vector-like fermions to produces the N × N mass matrix MAB = Y ′AB〈1H〉. We

will henceforth call this singlet Higgs �eld Ω = 〈Ω〉 + Ω̃. The exchange of the Ω̃ will

mediate �avor-changing processes. For these e�ects to be observable in practice, in this

chapter, we must assume that the scale M∗, which characterizes the mass and vacuum

expectation value of Ω, is not too much larger than the weak scale. We will assume

that it is of order 1 TeV to several TeV.

Let us look �rst at the Yukawa couplings of Ω̃ to the down-type quarks. In the

same notation of eq. (4.2), the Yukawa couplings of Ω̃ to the down-type quarks is given

by (
d(10), D(5′)

) 0 0

0 M/〈Ω〉

 dc
(5)

Dc
(5
′
)

 Ω̃, (4.7)
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When one block-diagonalizes to separate the light and heavy fermion stats, this Yukawa

matrix is transformed by the unitary matrices UL and UR as in eq. (4.3): 0 0

0 M/〈Ω〉

 −→
 I G†

−G I


︸ ︷︷ ︸

∼=U†L

 0 0

0 M/〈Ω〉

 A B

C D


︸ ︷︷ ︸

∼=UR

=
1

〈Ω〉

 G†MC G†MD

MC MD

 .

(4.8)

So the e�ective Yukawa coupling of Ω̃ to the three light down-type quarks d, s, and b,

is given by di(G
†MC)ijd

c
j (Ω̃/〈Ω〉). Remarkably, the e�ective Yukawa coupling matrix

here, G†MC/〈Ω〉, which we will call Yd, can be written simply in terms of the master

matrix A. Using eq. (4.4), one obtains

Yd〈Ω〉 ∼= G†MC ∼= (−mdT
†D2M−1)M(−TA)

= mdT
†D2TA

= mdT
†(I + TT †)−1TA

= mdT
†T (I + T †T )−1A

= md(A
−2 − I)A3 = md(A− AA†A).

(4.9)

In going from line 3 to line 4, we have used the fact that (I+TT †)−1T = T (I+T †T )−1,

as can easily be seen by expanding out the expressions is parentheses as power series.

In the last line, we have used the fact that A ≡ (I+T †T )−1/2, and that A is hermitian.

Let us rewrite this expression in terms of the triangular matrix A∆, since that is the

matrix whose elements are known. Since A = DA∆U , we hav

Yd〈Ω〉 = md(A− AA†A)

= md[DA∆U − (DA∆U)(U †A†∆D∗)(DA∆U)]

= mdDA∆ [I − A†∆|D|2A∆] U .
(4.10)

The factor U on the right will be absorbed by the re-de�nition of the right-handed down-

quark �elds. Doing this re-de�nition, and using the fact that mdDA∆ = mdA∆ ≡Md,

the Yukawa coupling matrix takes the form

Yd〈Ω〉 = Md[I − A†∆|D|2A∆]. (4.11)
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The mass matrixMd is diagonalized by a bi-unitary transformation to give V †dLMdVdR =

Mphys
d = diag(md,ms,mb). As we have shown in the previous chapters, the matrix VdL

should be the CKM matrix, while the matrix VdR di�ers from the identity matrix by

terms of order O(m2
s/m

2
b), O(mdms/m

2
b), and O(m2

d/m
2
b), which can be neglected. It

is clear then that in the physical basis of the down quarks

Y phys
d

∼= 1

〈Ω〉M
phys
d [I − A†∆|D|2A∆]. (4.12)

Obviously, only the second term in the brackets leads to �avor changing. Let us

parametrize the unknown matrix D as diag(δ, ε, ζ). The �avor-changing Yukawa cou-

pling matrix of the Ω̃ to the physical down-type quarks is of the form di(Y
FC
d )ijd

c
jΩ̃,

wher

Y FC
d = −1

〈Ω〉


md 0 0

0 ms 0

0 0 mb




1 0 0

b 1 0

ce−iθ a 1



|δ|2 0 0

0 |ε|2 0

0 0 |ζ|2




1 b ceiθ

0 1 a

0 0 1



= −1
〈Ω〉


md 0 0

0 ms 0

0 0 mb




∆dd ∆ds ∆db

∆sd ∆ss ∆sb

∆bd ∆bs ∆bb

 ,

(4.13)

where

∆ds = ∆sd = |δ|2b,
∆db = ∆∗bd = |δ|2ceiθ,
∆sb = ∆∗bs = |ε|2a+ |δ|2bceiθ.

(4.14)

Note that the �avor-changing (i.e. o�-diagonal) elements of Y FC
d depend only on two

unknown combinations of parameters: |δ|2/〈Ω〉 and |ε|2/〈Ω〉. Note also that ∆ds and

∆sd are real in the physical basis of the quarks, so that the εK parameter of the

K0 −K0 system, does not put constraints on �avor changing coming from the singlet

scalar exchange.
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The charged-lepton sector is identical except for a left-right transposition. So

writing the �avor-changing Yukawa coupling matrix of the Ω̃ to the physical charged

leptons as `+
i (Y FC

` )ij`
−
j Ω̃, one �nds

Y FC
` = 1

〈Ω〉


me 0 0

0 mµ 0

0 0 mτ




1 0 0

b 1 0

ce−iθ a 1



|δ|2 0 0

0 |ε|2 0

0 0 |ζ|2




1 b ceiθ

0 1 a

0 0 1



= 1
〈Ω〉


me 0 0

0 mµ 0

0 0 mτ




∆ee ∆eµ ∆eτ

∆µe ∆µµ ∆µτ

∆τe ∆τµ ∆ττ

 ,

(4.15)

where

∆eµ = ∆µe = |δ|2b,
∆eτ = ∆∗τe = |δ|2ceiθ,
∆µτ = ∆∗τµ = |ε|2a+ |δ|2bceiθ.

(4.16)

The �avor-changing Yukawa couplings come into the processes `1 → `2γ through-

two loop diagrams, as shown in [31, 32]. The speci�c diagrams that dominate in this

model have the vector-like fermions running around the loop that gives an e�ective Ω̃-

photon-photon coupling. The resulting branching ratios for the �avor-changing lepton

decays can be expressed in terms of the quantities given in eq. (4.16) as follows [33]:

BR(`1 → `2γ) ∼= 24
(α
π

)3
(

v

〈Ω〉

)4

|∆`1`2 |2. (4.17)

One prediction is that

BR(τ → eγ)

BR(µ→ eγ)
∼=
∣∣∣∣∆eτ

∆eµ

∣∣∣∣2 =
∣∣∣c
b

∣∣∣2 =

(
mb

ms

)2 ∣∣∣∣VubVus

∣∣∣∣2 ≈ 1. (4.18)

If one assumes that the expression for ∆µτ in eq. (4.16) is dominated by the |δ|2 term,

then one would also have the prediction

BR(τ → µγ) ∼= |c|2BR(µ→ eγ) ∼= 16 ·BR(µ→ eγ). (4.19)
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Given the present limit [34] that BR(µ → eγ) < 5.7 × 10−13, this would gives a

prediction that BR(τ → µγ) < 10−11. This is well below even what is expected to be

observable at a super-c-τ factory [35]. On the other hand, the branching ratio for this

decay can be much larger if ∆µτ in eq. (4.16) is dominated by the |ε|2 term. As we will

show below, there is an approximate theoretical bound that |ε|2 < 1/2. This would

give

BR(τ → µγ) ≤ 1.5× 10−9

(
1 TeV

〈Ω〉

)4

. (4.20)

The �avor-changing processes involving quarks do not get large enough contributions

from the exchange of the singlet scalar Ω̃ to stand out from Standard Model contribu-

tions. For instance, the coe�cient of (sd)(sd) operators is found from eqs. (4.13)-(4.14)

to be of order m2
s

〈Ω〉2M2
Ω̃

b2|δ|4 < 10−15(GeV)−2
(

1 TeV
M∗

)4

, where we have used an upper

bound on |δ|2 that is derived below. (From the �rst line of eq. (4.24) one �nds that

|δ|2 must be less than (1 + b2)−1 ∼ 1/17.)

Let us now consider the parameters δ, ε, ζ. While the matrix D = diag(δ, ε, ζ)

is not known a priori, it is nevertheless possible to derive strict upper bounds on the

parameters |δ|, |ε|, and |ζ| from the properties of the master matrix A. From the fact

that A ≡ (I + T †T )−1/2 and that A = DA∆U , one has that

A A† = DA∆A
†
∆D∗ = (I + T †T )−1

(DA∆A
†
∆D∗)−1 − I = T †T.

(4.21)

Computing the matrix on the left side of the above equation, one obtains
1/|δ|2 −b/(δ∗ε) (ab− ceiθ)/(δ∗ζ)

−b/(δε∗) (1 + b2)/|ε|2 −(a+ ab2 − bceiθ)/(ε∗ζ)

(ab− ce−iθ)/(δζ∗) −(a+ ab2 − bce−iθ)/(εζ∗) (1 + a2 + |ab− ceiθ|2)/|ζ|2

−I = T †T.

(4.22)

For any matrix T , there is an inequality that must be satis�ed by the elements of T †T .

namely

|(T †T )ij|2 ≤ (T †T )ii(T
†T )jj, ∀ i, j. (4.23)
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This is obvious if we write Tij = (~t(j))i, where ~t(i), i = 1, 2, 3, are three complex vectors.

Then the inequality is just seen to be the statement that |~t∗(i) · ~t(j)| ≤ |~t(i)| |~t(j)|. From
this inequality with (i, j) = (1, 2), (1, 3), and (2, 3), respectively, one obtains after a

little algebra

(1 + b2)|δ|2 + |ε|2 ≤ 1,

(1 + a2 + |ab− ceiθ|2)|δ|2 + |ζ|2 ≤ 1 + a2,

(1 + a2 + |ab− ceiθ|2)|ε|2 + (1 + b2)|ζ|2 ≤ 1 + b2 + c2.

(4.24)

using the values of a, b, c and θ given in eq. (2.13), the third equation of eq. (4.24)

gives an upper bound on |ε|2 of approximately 1/2.

In this chapter, we have assumed that the scale M∗ of 〈Ω〉 is in the low TeV

range, otherwise the �avor-changing e�ects from exchanges of Ω̃ would be hopelessly

small. But then one must run the Yukawa couplings Y ′AB and y′Aj shown in the last

line of eq. (4.1) from the GUT scale down to the scale M∗. If these ran di�erently for

the leptons and quarks, it would make the matrices ∆ and M in eq. (4.2) di�erent for

quarks and leptons, and thus also make the master matrix A di�erent for quarks and

leptons. That could destroy the predictivity of the model. If one considered only gluon

loops in the running there is no problem, as the e�ect would be to increase ∆ and M

by the same factor for quarks relative to leptons. This factor would cancel in the ratio

T = M−1∆, and therefore also in A = [I + T †T ]−1/2. However, the gluon loops could

do the following: they could increase the Yukawa couplings Y ′AB and y′Aj for quarks

so much that the e�ect of these Yukawas on their own running could be much more

signi�cant for quarks than for leptons. That would make the forms of the matrices ∆

and M � and therefore the form of A � di�erent for quarks and leptons.

There are two ways to avoid this problem. One is that all the Yukawas Y ′AB

and y′Ai remained small for the whole range from MGUT to M∗. This has a drawback,

however. If these Yukawa couplings Y ′AB are small compared to 1, then the VEV 〈Ω〉
would have to be large compared to a TeV to make the vector-like fermions in 5′ + 5

′
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heavy enough not to be seen. That would suppress �avor-changing e�ects from Ω̃

exchange.

A cleaner way to avoid the problem is to assume the following two conditions:

(a) The Yukawa couplings y′Ai that generate the mass matrix ∆ are small compared to

1, and the VEV of the Higgs �elds 1′Ai correspondingly large compared to a TeV. (That

would have the additional advantage of making �avor changing from the exchange of

these scalars negligible.) (b) The Yukawa coupling matrix Y ′AB is proportional to the

identity matrix, which could be the result of a �avor symmetry that acted on the

vector-like families. Then even if gluon loops drove Y ′AB to be of order 1 at low scales,

that would not a�ect the form of Y ′AB.

Another theoretical issue raised by M∗ being near the weak scale is that the

spontaneous breaking of the family symmetry group GF would cause cosmological

domain walls. This breaking is done by the VEVs 〈1Hi〉. To avoid overclosing the

universe, these domain walls would have to be �in�ated away". One simple possibility

is that GF is actually broken at a scale much higher than M∗ but only induces a VEV

for 1Hi that is of order M∗. For example, consider the terms L(σ) = −1
2
M2σ2 + ψψσ,

where the scalar �eld σ and fermion bilinear ψψ are odd under a Z2 and M is of

order the GUT scale. Let the fermion bilinear get a condensate 〈ψψ〉 = Λ3, where

Λ ∼ (M2M∗)
1/3, which is many orders of magnitude bigger than M∗. The Z2 will be

broken at the scale Λ, whereas 〈σ〉 = Λ3/M2 ∼M∗.

4.4 Conclusions

The model of �avor symmetry and �avor violation proposed in [28] has the

virtue that it is (i) conceptually simple, (ii) explains some of the qualitative features of

the quark and lepton spectrum (e.g. the MNS angles being much larger than the CKM

angles), and (c) is highly predictive. As such, it can provide a kind of �benchmark" for

seeing how large various kinds of �avor-changing processes might be expected to be.

The model is of the �lopsided" type [5, 6, 7, 8, 9, 10, 11, 12, 13], which tends to

give relatively large �avor-changing e�ects. In models with symmetric mass matrices,
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which are very common in the literature, o�-diagonal Yukawa couplings Yij are typically

proportional to
√
mimj/v. In lopsided models, however, Yij and Yji are very di�erent

in magnitude from each other, being proportional tomi/v andmj/v. This is the reason

for the name �lopsided", and why the �avor-changing e�ects tend to be relatively large.

It is likely, then, that the �avor-changing Yukawa couplings given in eqs. (4.13)-

(4.16) (with the bounds in eq. (4.24)) are typical of what would expect for a new scalar

�eld. We see that if the scale of new physics M∗ is of order 1 TeV, there is good hope

of eventually seeing the processes τ → µγ, τ → eγ, and µ → eγ. One also sees from

this model, that observing such processes can con�rm or rule out speci�c models of the

origin of �avor and �avor violation.
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Chapter 5

MODEL OF QUARK AND LEPTON MIXING AND MASS
HIERARCHY

5.1 Introduction

It is shown that an idea proposed in the paper by Babu and Barr in 1996 that

relates in a qualitatively correct way the inter-family mass hierarchies of the up quarks,

down quarks, charged leptons, and neutrinos, can be combined with the idea which

relates quark mixing and neutrino mixing discussed in the chapter 2. In this chapter,

we will propose a possible way combining these two ideas. In the resulting model,

the entire �avor structure of the quarks and leptons can be expressed in terms of two

master matrices: a diagonal matrix H that gives the inter-family mass ratios, and an

o�-diagonal matrix A that controls all �avor mixing.

The �avor problem has two aspects: (a) explaining the pattern of mixing angles

for the quarks and the leptons and (b) explaining the pattern of inter-family mass

hierarchies for the up-type quarks, down-type quarks, charged leptons, and neutrinos.

We will show in this chapter that an idea for explaining the mass hierarchies proposed

in 1996 by K.S. Babu and S.M. Barr [5] can be successfully combined with the idea

discussed in chapter 2 [28] for explaining the mixing angles. We shall refer to these as

the �BB idea� and the �BC idea� respectively. The two ideas are actually complemen-

tary, and by combining them a model emerges that is simpler and more explanatory

than either by itself.

The BB idea was based on the observation that the inter-family mass hierarchy

is strongest for the up quarks (u, c, t), is intermediate for the down quarks (d, s, b)

and charged leptons (e, µ, τ), and seemingly is weakest for the neutrinos(ν1, ν2, ν3). It

was noted in [5] that this can be explained if the mass matrices of these four types of
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fermions have the forms Mu = HmuH, Md = Hmd, M` = m` and Mν = mν , where

H is is a diagonal matrix with a hierarchy among its elements, and where mu, md, m`

and mν are matrices with no special form, i.e. with all elements of the same order.

Moreover, it was shown how these insertions of the hierarchy matrix H can arise in a

simple and natural way from mixing between the three chiral families of usual fermions

and extra vector-like fermions in 10′ + 10
′
multiplets.

The BC idea was based on the observation that inter-family mixing is weaker for

the left-handed quarks than for the left-handed leptons, and that this can be explained

if the fermion mass matrices have the form Mu = mu, M = mdA, M` = ATm`, and

Mν = ATmνA, where A is a �master matrix� that controls all inter-family mixing, and

where the matrices mu, md, m`, and mν are diagonal and hierarchical and therefore

have no mixing. Moreover, it was shown in [28] how these insertions of the master

matrix A can arise in a simple and natural way from mixing between the three chiral

families of usual fermions and extra vector-like fermions in 5′ + 5
′
multiplets.

These two ideas are clearly similar in a number of respects. In the BB idea

one matrix H controls all the inter-family mass hierarchies, while in the BC idea one

matrix A controls all inter-family mixing. In both ideas, these master matrices arise

from the mixing of the three chiral families with vector-like fermions. And the forms

of the fermion mass matrices that arise in both schemes are products of diagonal,

hierarchical matrices with non-diagonal, non-hierarchical matrices.

In section 5.2, we shall brie�y review the BB idea. In section 5.3, we will show

how BB idea can be combined with BC idea. In section 5.4, we deal with the question

of introducing breaking of SU(5) into the fermion mass matrices so as to avoid the well-

known minimal SU(5) relations md = me, ms = mµ and mb = mτ at the uni�cation

scale. In section 5.5, we show that the relative magnitudes of the various inter-family

mass hierarchies (of the up quarks, down quarks, charged leptons, and neutrinos) come

out to be of the right magnitude in the combined scheme without parameters having

to be tuned to unnatural values.
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5.2 Brief Review of The BB Idea

The BB idea was that every fermion 10 multiplet in a Yukawa term is accom-

panied by a factor in the mass matrix of a hierarchical, diagonal matrix H, which one

can write as H = diag(α, β, 1)h, where α � β � 1. This can happen as the result

of the mixing of the 10 multiplets in the usual three chiral families, which we denote

by 10Ui + 5
U
i , with extra vector-like 10 multiplets, which we denote by 10Ei + 10

E
i

(i = 1, 2, 3). Let the �underlying" Yukawa terms that give electroweak-breaking quark

and lepton masses be of the form

(10Ui Y
u
ij10

U
j 5H + (10Ui Yij5

U
j )5H + (10Ui yij5

U
j )45H + (5

U
i Y

ν
ij5

U
j )5H5H/MR. (5.1)

The role of the term with the 45H of Higgs �elds is to give di�erent contributions to

the mass matrices of the down quarks and charged leptons [23, 14] and thus avoid the

�bad" predictions of minimal SU(5) that me = md, and mµ = ms at the GUT scale.

Suppose that 10Ui and 10Ei mix in a family-diagonal way to produce a light linear

combination 10L
i that contains Standard Model fermions and an orthogonal linear

combination 10Hi that is superheavy. Then one can write

10Ui = cos θi10
L
i + sin θi10

H
i . (5.2)

Substituting this into eq. (5.1), one obtains for the e�ective Yukawa terms of the

Standard Model fermions

(10L
i cos θiY

u
ij cos θj10

L
j)5H+(10L

i cos θiYij5
U
j )5H+(10L

i cos θiyij5
U
j )45H+(5

U
i Y

ν
ij5

U
j )5H5H/MR.

(5.3)

Therefore, the e�ective quark and lepton mass terms of the Standard Model quarks

and leptons can be written

Mu = H mu H,

Md = H md,

M` = m` H,

Mν = mν ,

(5.4)
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where

H =


cos θ1 0 0

0 cos θ2 0

0 0 cos θ3

 ≡


α 0 0

0 β 0

0 0 1

h, (5.5)

and where (mu)ij = Y u
ijv5, (md)ij = Yijv5 + yijv45, (m`)ij = Yijv5 − 3yijv45, and

(mν)ij = Y ν
ij (v

2
5/MR). These four �underlying� mass matrices mu ,md, m`, and mν are

not assumed to have any special form, and therefore for each of them one expects all

the elements to be roughly of the same order. From eqs. (5.4) and (5.5) one has

Mu ∼


α2 αβ α

αβ β2 β

α β 1

 µu, Mν ∼


1 1 1

1 1 1

1 1 1

 µν

Md ∼


α α α

β β β

1 1 1

µd, M` ∼


α β 1

α β 1

α β 1

 µ`,

(5.6)

where �∼� means that the various elements are of the given order of magnitude. This

obviously gives

mu : mc : mt ∼ α2 : β2 : 1

md : ms : mb ∼ α : β : 1

me : mµ : mτ ∼ α : β : 1

mν1 : mν2 : mν3 ∼ 1 : 1 : 1.

(5.7)

This reproduces well, in a qualitative way, the strengths of the inter-family mass hierar-

chies of the di�erent types of fermions. Also from inspection of eq. (5.6) it is apparent

that

UMNS ∼


1 1 1

1 1 1

1 1 1

 , VCKM ∼


1 α/β α

α/β 1 β

α β 1

 . (5.8)

This gives O(1) MNS mixing angles and small CKM mixing angles, with |Vub| ∼
|VusVcb|, which also is qualitatively correct. On the other hand, since there are no
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constraints on the forms of the four underlying 3 × 3 mass matrices mu, md, m`, and

mν , the BB idea in this form has many free parameters and can only make qualitative

post-dictions rather than precise quantitative predictions.

5.3 Combining The BB and BC Ideas

In the BB idea, all the inter-family mass hierarchies come from the single matrix

H, while in the BC idea all the inter-family mixing comes from the single matrix A.

The question naturally arises whether these two ideas can be combined in such a way

that the whole �avor structure can be accounted for with only the matrices A and H,

thereby producing a more predictive and explanatory model. The answer is yes, as we

shall now show by describing a speci�c model that does this.

The fermion content of the model consists of the following SU(5) multiplets:

(10Ui + 5
U
i )i=1,2,3 + (10EA + 10

E
A)A=1,2,3 + (5

E
m + 5Em)m=1,2,...N . (5.9)

Yukawa terms involving only 10Ui and 5
U
i will give rise to �underlying� mass matrices

that get multiplied by factors of the matrices H and A. In order for H and A to account

for all the �avor structure, both the hierarchies among the masses and the pattern of

mixing angles, the underlying mass matrices should have a trivial �avor structure, i.e.

they should be proportional to the identity matrix.. This can be the case if there is

an SO(3) family symmetry under which the 10Ui and 5
U
i transform as triplets. The

underlying Yukawa terms would then have the form

Yu(10
U
i 10Ui ) 5H + Yd(10

U
i 5

U
i ) 5H + Yν(5

U
i 5

U
i ) 5H5H/MR. (5.10)

Note that unlike eq. (5.1) there is no term here with the 45H of Higgs �elds. Since all

the underlying Yukawa terms must be �avor-independent, due to the SO(3) symmetry,

adding a term with the 45H in eq. (5.10) would still leave the down quark and charged

lepton mass matrices proportional to each other at the GUT scale. Therefore, the

group-theoretical factors needed to avoid the �bad� minimal SU(5) relation Md = MT
`

must appear in either the H or A matrices. In the model we are describing, they will

appear in the H matrix, as will be seen.
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The matrix A arises, in exactly the manner explained earlier, from the mixing

of the 5
U
i with the �extra" 5Em, which are assumed not to transform under any �avor

symmetry. Let there be at least two Standard-Models-singlet Higgs �elds that are

triplets under SO(3), denoted by 1niH , where n labels the Higgs triplet and i is the

SO(3) index. Then one can write the following mass and Yukawa terms for the fermion

5 multiplets:

Mmn(5Em 5En ) + ymn(5Em 5
U
i ) 〈1niH 〉

= 5′m(Mmn5
′
m + ∆mi5

0
i ),

(5.11)

where ∆mi =
∑

n ymn〈1niH 〉. We assume that the matricesM and ∆ are superheavy and

of the same order. (For example, they may both be of order the GUT scale.) These

terms will make N linear combinations of the 5 �elds superheavy and leave three

linear combinations light. These light linear combinations, which contain Standard

Model quarks and leptons, will be denoted 5
L
i . The superheavy combinations will be

denoted by 5
H
m.

It is easily seen that if A ≡ [I + T †T ]−1/2 and B ≡ [I + T †T ]−1/2T †, where

T = M−1∆, then 5
U

= A5
L

+ B5
H
. Exactly as in the BC model, when substituted

into eq. (5.10), this leads to factors of A in the e�ective mass matrices of the Standard

Model quarks and leptons.

The factors ofH in those matrices arise, as in the BB scheme, from the mixing of

10Ui with the 10EA. In order for H to come out diagonal, the 10EA+10EA must transform

under a �avor symmetry. A simple possibility is an abelian symmetry Z
(1)
2 ×Z(2)

2 ×Z(3)
2 ,

such that 10′A and 10
′
A are odd under Z

(B)
2 if A = B and even otherwise. Let there be

three Standard-Model-singlet Higgs �elds 1AiH , which are triplets under SO(3). Then

the following mass and Yukawa terms of the fermion 10 multiplets are allowed

10EA (YA1H + yA24H)10EA + 10EA
(
Y ′A1

Ai
H + y′A24

Ai
H

)
10Ui . (5.12)

The role of the adjoint Higgs �elds 24H and 24AiH is to introduce SU(5) breaking into the

quark and lepton mass matrices, through H, and thus avoid the �bad" minimal SU(5)
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prediction that the down quark masses equal the charged lepton masses at the GUT

scale. It is notationally simpler, however, to explain the mixing of the 10 multiplets

without considering the e�ects of the adjoint �elds in eq. (5.12), so we will �rst discuss

the unrealistic case where the VEVs of the 24H are set to zero (which we will call

the �minimal model�) and then later discuss the realistic case where their VEVs are

non-zero.

If certain coe�cients in the Higgs potential are positive then the VEVs of 1AiH

will be orthogonal to each other in SO(3) space:
∑

i〈1AiH 〉〈1BiH 〉 = cAδAB. (In particular,

if the coe�cients of the terms
(∑3

i=1 1
Ai
H 1BiH

)2
are positive it will ensure this orthog-

onality.) Without loss of generality, one can then choose a basis in SO(3) space such

that the axes are aligned with the VEVs of the three singlet VEVs. That is, so that

〈1AiH 〉 = sAδ
Ai. De�ning, YA〈1H〉 ≡ MA and Y ′A〈1AiH 〉 ≡ ∆Aδ

Ai, eq. (5.12) with adjoint

VEVs set to zero gives

10EA
(
MA10

E
A + ∆Aδ

Ai10Ui
)
. (5.13)

The three linear combinations of 10 multiplets appearing with the parentheses in eq.

(5.13) are superheavy and will be denoted 10HA , whereas the three linear combinations

(−∆A10
E
A + MAδ

Ai10Ui ) that are orthogonal to them contain Standard Model fermions

and will be denoted 10L
i. This gives

10Ui = cos θi 10
L
i + sin θi δ

Ai 10HA , (5.14)

where cos θi ≡ δAiMA/
√
|MA|2 + |∆A|2 and sin θi ≡ δAi ∆A/

√
|MA|2 + |∆A|2. Substi-

tuting this into eq. (5.10), one �nds that every factor of 10i in the e�ective Yukawa

couplings of the Standard Model fermions is accompanied by a factor of cos θi, as in

eq. (5.3). We will assume a hierarchical pattern |∆1/M1| � |∆2/M2| � 1� |∆3/M3|.
Then we can de�ne a matrix H by

H ≡


cos θ1 0 0

0 cos θ2 0

0 0 cos θ3

 ≡


α 0 0

0 β 0

0 0 γ

 , (5.15)
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where α � β � γ ∼= 1. Substituting 5
U

= A5
L

+ B5
H
and eq. (5.14) into eq. (5.10)

and using eq. (5.15), the e�ective mass matrices of the Standard Model quarks and

leptons can then be written

Mu = (H2) µu

Md = (H A) µd −→ Md = (H D) A∆ µd,

M` = (AT H) µd −→ M` = AT∆ (D H) µd,

Mν = (AT A) µν −→ Mν = AT∆ (D2) A∆ µν ,

(5.16)

This is the basic result of the model. Other than certain overall mass scales (µu, µd,

and µν) all the �avor structure of the quarks and leptons is controlled by two matrices:

a mixing matrix A and a hierarchy matrix H. In going to the last expressions in each

line of eq. (5.16), we have used A = DA∆U and absorbed U by �eld rede�nitions

(as explained previously). We write the matrix D as D = diag(δ, ε, 1)d and absorb

the factors of d into rede�ned mass scales µ′d and µ
′
ν . One therefore ends up with the

following result (for the �minimal" version of the model):

Mu =


|α|2 0 0

0 |β|2 0

0 0 1

 µu,

Md = MT
` =


|αδ| 0 0

0 |βε| 0

0 0 1




1 b ceiθ

0 1 a

0 0 1

 µ′d,

Mν =


1 0 0

b 1 0

ceiθ a 1




δ2 0 0

0 ε2 0

0 0 1




1 b ceiθ

0 1 a

0 0 1

 µ′ν .

(5.17)

Of course, the form obtained for Mν is the same as before. The parameters called

peiθp and qeiθqare here called ε2 and δ2in this chapter. It should be noted that in eq.

(5.17), the phases of δ, ε, α, and β do not matter for the matrices Mu, Md, and M`,
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as they can be absorbed into the fermion �elds. But for the neutrino mass matrix Mν

the phases of δ and ε do make a di�erence, and have to take de�nite values to �t the

neutrino masses and mixing angles.

One easily sees from eq. (5.17) that in this �minimal model� one has, to very

good approximation, the following �postdictions�:

mu : mc : mt = |α|2 : |β|2 : 1,

md : ms : mb = me : mµ : mτ = |αδ| : |βε| : 1,

q2 : p2 : 1 = |δ|2 : |ε|2 : 1.

(5.18)

From �tting the neutrino masses and mixing angles [], one can determine |ε| =
√
p ∼=

√
0.1525 = 1

2.56
and |δ| =

√
q ∼=

√
0.0141 = 1

8.44
. And one can obtain the values

of |α| and |β| directly from the up quark mass ratios: |β| =
√
mc/mt = 1

17.8
and

|α| =
√
mu/mt = 1

393
. (We take the fermion masses here and in the following equation

to be the masses at 2×1016 GeV as run up to that scale using the MSSM renormalization

group equations with tan β = 10 [36].) From these values one has the following result:

minimal model hierarchy |αδ| : |βε| : 1 = 1
3,579

: 1
49.2

: 1

actual lepton ratios me : mµ : mτ = 1
3,679

: 1
17.5

: 1

actual quark ratios md : ms : mb = 1
1142

: 1
60.1

: 1.

(5.19)

One sees that the minimal model works surprisingly well, in fact better than in the

BB idea taken by itself, where the inter-family mass ratios of the charged leptons

and of the down quarks are α : β : 1, as shown in eq. (5.7). (That would give

me/mτ ∼ md/mb ∼ α ∼ 1
393

, which is o� by an order of magnitude for the electron.)

Thus the factors of δ and ε, which come from combining the BB and BC ideas, give

more realistic down quark and charged lepton mass hierarchies.
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The combined model we are describing (so far in a minimal form) is more ex-

planatory than the BC model. In the BC model the inter-family mass hierarchies of

the up quarks, down quarks, charged leptons, and neutrinos are completely unrelated,

being determined by four diagonal matrices whose elements are free parameters. In the

combined model, these hierarchies are all related, and related in a way that we have

just seen is qualitatively correct. The 12 parameters in the four hierarchical diagonal

matrices of the BC model are replaced by just 7 parameters in the minimal model:

|α|, |β|, |δ|, |ε|, µu, µ′d, and µ′ν . This would be a huge increase in predictivity, but

of course it is too predictive, since the minimal model gives the �bad" minimal SU(5)

prediction that the charged lepton masses are equal to the down quark masses at the

GUT scale. To cure this problem requires that group-theoretical factors re�ecting the

breaking of SU(5) appear in the fermion mass matrices. The simplest way for this to

happen is through the matrix H as a result of the adjoint Higgs �elds in eq. (5.12)

getting non-zero VEVs. We shall now look at this in detail.

5.4 The Group-Theoretical Factors that Distinguish Md from M`

As can be seen from eq. (5.19) [and below from eg. (5.21)], the group-theoretical

factors must enhance the muon mass and the d quark mass by about a factor of about

3 or 4, while having little e�ect on the other quark and lepton masses. Again using the

results of [] with quark and lepton masses run up to 2 × 1016 GeV, using the MSSM

renormalization group equations, and normalizing those masses to the b quark mass,

one has

(md,ms,mb) /mb =
(

1
1142

, 1
60.14

, 1
)
,

(me,mµ,mτ ) /mb =
(

1
2,967

, 1
14.1

, 1.24
)
.

(5.20)

Then using the values of |αβ| and |βε| given in eq. (5.19), one has(
md
|αδ| ,

ms
|βε| ,mb

)
/mb = (3.13, 0.817, 1) ,

(
me
|αδ| ,

mµ
|βε| ,mτ

)
/mb = (1.21, 3.49, 1.24) .

(5.21)
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The ratios given in eq. (5.21), which are all predicted to be equal to 1 in the minimal

model, must be accounted for by the group-theoretical factors.

Seemingly, the simplest way to do this is through the coupling of adjoint Higgs

�elds to the 10 multiplets of fermions, as shown in eq. (5.12). Let us �rst just consider

the e�ect of the VEV of the 24H , which couples as 10EA(yA24H)10EA. If we de�ne κA

by yA〈24H〉
YA〈1H〉

= κAYf/2, where f stands for the fermion type u, uc, d, or `c, and Yf is

the weak hypercharge of f , then the e�ect is that in eq. (5.13), MA gets replaced by

MA(1+κAYf/2). Assuming that |∆1/M1| � |∆2/M2| � |∆3/M3| ∼ 1, then the angles

de�ned after eq. (5.14) are di�erent for di�erent fermion types and given approximately

by

cos θf1
∼=

∣∣∣M1

∆1
(1 + κ1Yf/2)

∣∣∣
� cos θf2

∼=
∣∣∣M2

∆2
(1 + κ2Yf/2)

∣∣∣
� cos θf3

∼=
[
1 +

∣∣∣∆3

M3

∣∣∣2 (1 + κ3Yf/2)−2

∣∣∣∣−1/2

∼= 1,

(5.22)

where Yf/2 is the weak hypercharge of the fermion of type f . Then the matrix H

de�ned in eq. (5.15) is replaced by matrices Hf , which are di�erent for di�erent types

of fermion in the 10 multiplets:

Hf ≡


cos θf1 0 0

0 cos θf2 0

0 0 cos θf3

 , (5.23)

and the fermion mass matrices have the forms

Mu = (HuHuc) µu

Md = (Hd A) µd −→ Md = (Hd D) A∆ µd,

M` = (AT H`c) µd −→ M` = AT∆ (D H`c) µd,

Mν = (AT A) µν −→ Mν = AT∆ (D2) A∆ µν ,

(5.24)
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If we consider the masses of the charged fermions of the second and third fami-

lies, there are four mass ratios (mc
mt
, ms
mb
, mµ
mτ

, and mτ
mb
) that must be �t using the param-

eters in eq. (5.22), and there are four such parameters, namely |∆3/M3|, κ3, |∆2/M2|,
and κ2.

Consider �rst the ratio mτ/mb. As is well-known this is predicted in minimal

SU(5) to be 1 at the GUT scale, as is also the case in the minimal version of the present

model. In reality, however, this ratio is not exactly 1, though it is near to 1 (especially

in the MSSM). In fact, for tan β = 10 it is 1.24 at the GUT scale as shown in eq.

(5.20). With the group-theoretic factors of eq. (5.22) one sees that it is given by

1.24 =

(
mτ

mb

)
MGUT

=
cos θ`

c

3

cos θd3
=

√√√√√√1 +
∣∣∣∆3

M3

∣∣∣2 (1 + 1
6
κ3

)−2

1 +
∣∣∣∆3

M3

∣∣∣2 (1 + κ3)−2
, (5.25)

which is indeed close to but not exactly 1, for ∆3/M3 < 1. We can also write (putting

in the values given in eq. (5.21)):

0.817 =
ms/mb

ε
√
mc/mt

=

√
1 + 1

6
κ2

1− 2
3
κ2

(
1 + |∆3

M3
|2(1 + 1

6
κ3)−2

1 + |∆3

M3
|2(1− 2

3
κ3)−2

)1/4

, (5.26)

and

3.49 =
mµ/mb

ε
√
mc/mt

=
1 + κ2√

(1 + 1
6
κ2)(1− 2

3
κ2)

(
1 + |∆3

M3
|2(1 + 1

6
κ3)−2

1 + |∆3

M3
|2(1− 2

3
κ3)−2

)1/4

. (5.27)

eqs. (5.25) to (5.27) contain three equations with three unknowns κ2, κ3, and |∆3/M3|.
They are solved by the values κ2 = 11.2, κ3 = −2, and |∆3/M3| = 0.86. The remaining

ratio mc/mt can then be �t by the choice |∆2/M2| = 110.

Fitting the �rst family masses is more involved. There are three additional

masses to be �t (me, md, and mu), but the expressions in eqs. (5.22) have only two

additional parameters (κ1 and |∆1/M1|. Indeed, it turns out that there is no �t. It

is for this reason that one must include the e�ect of the term containing 24AiH in eq.

(5.12). Actually, only one such adjoint Higgs �eld is required to obtain a good �t,
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namely 241i
H . However, as the expressions are somewhat complicated looking, we do

not show them.

One sees, then, that introducing the group-theoretic factors required to break

the well-known minimal SU(5) mass degeneracies means that the model ends up with

as many free parameters as there are in the BC model of [28]. Thus combining that

model with the BB idea leads to no increase in the number of precise quantitative

predictions. However, there is a gain in explanatory power, in that the inter-family

mass hierarchies of the di�erent types of fermions are related to each other in a way

that is qualitatively correct.

5.5 The Typical Values of δ and ε

We now turn to a discussion of the values of δ and ε, the elements of the diagonal

matrix D. It is a nontrivial condition for the viability of the model that the same values

of |δ| and |ε| give realistic results both for the neutrino properties and for the mass

hierarchies of the down quarks and charged leptons. As we have seen, the model clears

this hurdle. The �t to the neutrino properties obtained in [28] gives |δ| ∼= 1
8.44

and

|ε| ∼= 1
2.56

, and these values also give realistic mass hierarchies, as shown in eq. (5.18).

The question arises whether these are natural values for |δ| and |ε| to have. Why

should there be any hierarchy in the elements of D? And why should that hierarchy

be parallel to the hierarchy in H, with the diagonal elements increasing from the �rst

to the third family? And why should they have these particular values? It turns out

that the values of |δ| and |ε| needed for good �ts are indeed natural, in the sense that

they lie in the middle of the range of values that are most �likely" given the values of

the elements of the triangular matrix A∆, as we will now show.

The matrix D = diag(δ, ε, 1) arises from bringing the matrix A to the form A =

DA∆U , as previously explained. The matrix A, in turn, is de�ned by A ≡ (I+T †T )−1/2,

where T = M−1∆, andM and ∆ are the matrices appearing in eq. (5.11). It is natural

to assume that the matrices M and ∆ are both roughly of order the grand uni�cation
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scale, but there is no symmetry reason why M and ∆ should have any special form.

Consequently, the matrix T has no reason to have any special form either.

Suppose that the elements of T are treated as random complex variables all of

which have the same probability distribution. For each choice of T , one can compute

the matrix A, and from that determine the matrices D and A∆. Not surprisingly, one

�nds that the elements of D are correlated with those of A∆. In fact, simple arguments

show that if the elements of A∆ that we have called a and b are large, then typically

|δ| ∼ 1/ab and |ε| ∼ 1/a. Since �tting the CKM angles gives a ∼ 2 and b ∼ 4, the

most likely values are |δ| ∼ 1/8 and |ε| ∼ 1/2.

This is con�rmed by a numerical search treating the elements of T as random

variables. We have randomly generated one million matrices T whose elements are

given by Tij = 10rijeiθij , with −1 < rij < +1 and 0 < θij < 2π with uniform probability

distribution. We compute the matrices A∆ and D for each randomly generated T , and

require that the parameters in A∆ (i.e. a, b, c, and θ) agree with the values in eq.

(2.13) within experimental limits. For those that meet this requirement, we plot the

values of |ε|−1 and |δ|−1 in the Figure 5.1. One sees that there indeed tends to be a mild

hierarchy |δ| < |ε| < 1. The dark cross in the Figure 5.1 represents the values that give

the best �t to the neutrino properties according to [28]: (|ε|−1, |δ|−1) = (2.56, 8.44). It

is apparent from the Figure 5.1 that these lie in the most probable range.

5.6 Conclusions

We have shown that an idea proposed to explain the relative strengths of the

interfamily mass hierarchies of di�erent types of fermions [5] can be combined with an

idea proposed to explain the relative strengths of interfamily mixing angles [28]. The

former idea was based on all interfamily mass hierarchies coming from a single master

hierarchy matrix H, the latter was based on all interfamily mixing angles coming from

a master mixing matrix A. In both ideas, the master matrix arose from the mixing of

the three usual fermion families of the standard model with extra vector-like fermions.
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Figure 5.1: The values of (|ε|−1, |δ|−1) that come from randomly generated matrices
T that give realistic A∆. The dark cross represents the values that give
the best �t to neutrino properties: (|ε|−1, |δ|−1) = (2.56, 8.44).
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As we have shown in this paper, the two ideas dovetail together quite natu-

rally. Moreover, we have shown that a certain conceptual simpli�cation arises from

the combination of the two ideas: in the combined model, all the standard model mass

matrices can be expressed in terms of only the two master matrices, with some group-

theoretic factors (analogous the well-known Georgi-Jarlskog factors [14]) to avoid the

well-known bad minimal SU(5) relations between the charged lepton masses and down

quark masses. If it were not for the need to introduce these group-theoretic factors,

the combined model would have several fewer free parameters than the model of [28]

and many fewer than that of [5]. The way that we introduced the group-theoretical

factors in this paper made the number of free parameters to be the same as in [28].

There may be a simpler way to introduce these group-theoretic factors, leading to an

even more predictive model, a possibility that deserves further study.

We have also shown that the typical interfamily mass hierarchies that arise

in the combined model are qualitatively correct. Speci�cally, given the mass hierar-

chy among the up quarks
(
u, c, t

)
and the known CKM mixing parameters, the

strengths of all the other interfamily mass hierarchies, namely those of
(
d, s, b

)
,(

e, µ, τ
)
and

(
ν1, ν2, ν3

)
, are predicted up to group-theoretical factors of or-

der 1, and come out to be of the right magnitude. This is a very nontrivial and un-

expected result, which perhaps lends some credibility to the basic approach proposed

here.
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Chapter 6

COGENERATION OF DARK MATTER AND BARYONS BY
NON-STANDARD-MODEL SPHALERONS IN UNIFIED MODELS

6.1 Introduction

In this chapter, we will discuss an asymmetric dark matter model with a new

sphaleron process besides the one we have already explained in section 1.13. The

central idea of the model is that sphalerons of a new gauge interaction can convert a

primordial asymmetry in B or L into a dark matter asymmetry. From the equilibrium

conditions for the sphalerons of both the electroweak and the new interactions, one

can compute the ratios of B, L, and X, where X is the dark matter number, thus

determining the mass of the dark matter particle fairly precisely. Such a scenario can

arise naturally in the context of uni�cation with larger groups. An illustrative model

embeddable in SU(6)× SU(2) ⊂ E6 is described in detail as well as an equally simple

model based on SU(7).

The fact that the number densities of dark matter and ordinary baryonic matter

are comparable [37] has suggested to many authors that they may have a common

origin, that is that the dark matter and baryonic matter may have been generated by

the same processes, or that one of them may have been generated from the other. This

idea is sometimes called �cogeneration" of dark matter and ordinary matter. There

is a rapidly growing literature studying various ways that this might have happened

[38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

The �rst papers to propose this possibility [50, 38] were based on the idea that

primordial asymmetries in baryon and lepton number (B, L) were partially converted

into an asymmetry in some other global quantum number (call it X) by sphaleron pro-

cesses [51, 52, 53] when the temperature of the universe was above the weak interaction
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scale. Assuming X to be conserved (or nearly so) at low temperatures, the lightest

particles carrying this quantum number would be stable and could play the role of dark

matter. What would result from such a scenario is �asymmetric dark matter" [54, 50].

A very interesting idea �rst proposed in [55] is that a primordial asymmetry in

B or L (or both) is partly converted into an X asymmetry (and thus a dark matter

asymmetry) by sphalerons of some new non-abelian gauge interaction. In this paper

we point out that this mechanism arises very naturally in grand uni�ed models. In a

previous paper [50], it was noted by one of us that grand uni�ed models with groups

larger than SU(5) provide a natural context for the emergence of dark matter. The

larger fermion multiplets of such models typically contain fermions that are Standard

Model singlets, which could play the role of dark matter. Uni�ed models can also

have accidentally conserved global charges (analogous to B−L in SU(5) models) that

could be the charge X carried by dark matter. It was also noted in [50] that larger

uni�cation groups can have additional non-abelian subgroups whose sphalerons could

convert B and L asymmetries into an X asymmetry. Here we show that simple models

can indeed be constructed that realize this possibility. Most of this paper is devoted

to an example based on an SU(5) × SU(2) that is embeddable in E6. At the end of

the paper we note that a similar and equally simple model can be constructed based

on SU(7). These models exploit all the features of grand uni�cation favorable to the

genesis of dark matter that were emphasized in [50].

In the section 6.2, we will introduce a model in which includes a new gauge group

SU(2)∗ and the new interaction whose sphalerons are responsible for cogenerating

the dark matter which is di�erent from the electroweak group SU(2)L. The particle

contents of the model are also introduced. In the section 6.3, we will show that the

present ratio of the number densities of dark matter particles and baryons, nDM/nB,

can be calculated thermodynamically from just the particle content of the model and is

independent of the nature of the primordial asymmetry. This allows one to determine

the mass of the dark matter particle, which is given simply by mDM = mp
ΩDM
ΩB

nB
nDM

. In

the section 6.4, we will explain why a massless fermion S and a very light scalar �eld
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σ are needed in the model to make the dark matter purely asymmetric. We will also

discuss possible ways to detect the dark matter particles in collider experiments.

6.2 The Model

The model we propose is based on the gauge group GSM × SU(2)∗, which can

be embedded in larger groups in the following way:

E6 ⊃ SU(6)× SU(2) ⊃ SU(5)× SU(2) ⊃ GSM × SU(2). (6.1)

We will denote the SU(2) factor in eq. (6.1) by SU(2)∗ in order to distinguish it from

the electrweak SU(2), which we will call SU(2)L. The particle content of the model

is exactly what would arise from such an embedding. In particular, each family of

fermions consists of the 27 particles that make up the fundamental representation of

E6

27 −→ (15, 1) + (6, 2) −→ (10, 1) + (5, 1) + (5, 2) + (1, 2)

=

`c,
 u

d

 , uc
+

 `

ν

 , dc
+

 `I

νI

 , dcI
+ (χI),

(6.2)

where I = 1, 2, and the decomposition in eq. (6.2) corresponds to the sequence of

groups in eq. (6.1). The index I in eq. (6.2) stands there and through the paper for

the index of the extra SU(2)∗ group. Note that each family automatically contains

particles, denoted χI , that are singlets under GSM but non-singlet under SU(2)∗ and

thus able to play the role of dark matter, illustrating the point made in [50].

While eqs. (6.1) and (6.2) show that our model is naturally uni�ed in a larger

group, this is not essential to the mechanism of cogeneration. Henceforth in this

paper we will discuss the model as if its gauge group is just GSM × SU(2)∗ without

any assumption about whether this is uni�ed at some high scale. Nevertheless, it is

convenient as a notational �shorthand� to refer to fermions and scalars by the SU(5)×
SU(2)∗ multiplets in which they would be contained if the model were further uni�ed,

and we shall often do this.
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In SU(5)×SU(2)∗ language, then, each family consists of (10, 1)+(5, 1)+(5, 2)+

(1, 2). Besides the (1, 2) = χI already mentioned, there are other non-Standard Model

fermions contained in each family, namely the half of the fermions in the (5, 2) and

the fermions in (5, 1). This is a vector-like 5 + 5 pair, which we call �extra� vector-like

fermions, as in previous chapters of this thesis.

The spontaneous breaking of SU(2)∗, at a scale M∗, is accomplished by the

vacuum expectation value (VEV) of a (1, 2) multiplet of Higgs �elds that we shall

denote ΩI . This Higgs �eld also gives mass to the �extra fermions" by means of the

following Yukawa coupling

(5, 2)(5, 1)〈(1, 2)Ω〉 (6.3)

It was said above that the fermions χI that transform as (1, 2) play the role of

dark matter. But more precisely, there are three families of these SU(2)∗ doublets, or

altogether six �avors of them, and it is the lightest of them that is stable and composes

the dark matter. To give these six fermions mass we introduce six partners for them

that are singlets under all the gauge groups. We denote these by χca, a = 1, .., 6. The

Yukawa terms that give them mass are

Ya(χIχ
c
a)〈ΩI〉. (6.4)

The value of the scale M∗ at which SU(2)∗ is broken by 〈ΩI〉 does not matter very

much as far as the mechanism for generating a dark matter asymmetry is concerned. It

should certainly be large enough that the SU(2)∗ gauge bosons and the �extra� fermions

in (5, 1) and (5, 2) would not already have been detected. On the other hand, the dark

matter particles, which will later be seen to have mass around 1 GeV, obtain mass from

the VEV of ΩI . Therefore, the larger the VEV of ΩI is, the smaller must be its Yukawa

coupling to the dark matter particles. We know that some Yukawa couplings in nature

are very small (those of e, u, and d are of order 10−5). If one does not wish Yukawa

couplings to be smaller than 10−5, say, one would need M∗ to be less than about

100 TeV. We imagine, therefore, that M∗ is somewhere between 1 TeV and 100 TeV.

Moreover, as will be discussed later, if M∗ is larger than about 100 TeV, the SU(2)∗
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gauge interactions will be too slow to keep the �dark sector� of particles in thermal

equilibrium with the Standard Model particles long enough to avoid problems with

primordial nucleosynthesis (The energy trapped in massless particles of the dark sector

can cause the universe too expand too rapidly in the era of primordial nucleosynthesis).

It should be noted that since the ΩI is in a pseudo-real representation of the

gauge group and since we will not give it any global charge that would distinguish from

its conjugate Ω̃I ≡ iσ2Ω∗I , the symmetries of the model allow Ω̃I to couple in the same

ways that ΩI can. For example, there are both (χIχ
c
a)〈ΩI〉 and (χIχ

c
a)〈Ω̃I〉 Yukawa

terms, and similarly there are both hh′IΩI and hh′IΩ̃I terms in the Higgs potential.

(These facts imply that the chemical potential of the Ω �elds zero, which is relevant to

our later discussion.)

To break the electroweak gauge group and give mass to all the Standard Model

quarks and leptons, there must be more than one SU(2)L doublet of Higgs �elds. The

masses of the up quarks come from a Higgs doublet, which we shall denote h, that would

be contained in (5, 1) of SU(5)×SU(2)∗. In that language, it has Yukawa couplings of

the type (10, 1)(10, 1)〈(5, 1)h〉, which contains in particular uuc〈h〉. The down quarks

and charged leptons obtain mass from a pair of Higgs doublets, which we denote h′I ,

that would be contained in (5, 2) of SU(5)× SU(2)∗. These have Yukawa couplings of

the form (10, 1)(5, 2)〈(5, 2)h〉, which contains in particular ddcI〈h′I〉 and `c`I〈h′I〉. The

neutrinos can obtain mass from the dimension-5 e�ective operator νIνJ〈h′I〉〈h′J〉/MR.

It does not matter for our purposes whether this operator arises from the Type I or

Type II see-saw mechanism.

Finally, two more types of particle are contained in the model: some number

(p) of gauge singlet fermions that will be denoted S and a gauge singlet boson that

will be denoted σ. These will play the role, as will be seen, of enabling the dark

matter particles to annihilate with their antiparticles e�ciently enough to leave only

�asymmetric dark matter.� It means that we need the annihilation rate still be bigger

than the Hubble expasion rate even when T ∼ 1 GeV. (i.e. ΓDM ≥ H). This puts

a constraint on the mass and coupling of the scalar σ, which will be discussed in the
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section 6.4.

The complete fermion and scalar content of the model is displayed in the Table

6.1. In the last two columns of the Table 6.1, we give the charges of the �elds under two

global symmetries, U(1)X and U(1)W . The chargeX is the crucial one for the model. It

is the asymmetry in X that is responsible for the existence of stable dark matter. The

charge W plays the role of constraining the couplings of the singlet �elds S and σ that

are responsible for the annihilation of dark matter particles with their anti-particles.

In particular, the global U(1)W invariance means that these �elds interact only by the

Yukawa term y(χcS)σ. This term allows the annihilation process χc +χc −→ S+S to

occur by the exchange of a σ boson in the t channel. The σ boson is assumed to have

no vacuum expectation value, and therefore the S fermions are massless. In this way,

essentially all the dark matter anti-particles annihilate with dark matter particles into

massless particles, whose energy is red-shifted away as the universe expands, leaving

only the dark matter particle excess, i.e. the �asymmetric dark matter.� The global

symmetries U(1)X and U(1)W can arise as accidental symmetries of the low energy

theory even if GSM × SU(2)∗ is uni�ed in a larger group, as will be discussed later.

6.3 The Genesis of The Dark Matter Asymmetry

Now that the particle content and couplings of the model have been de�ned, we

turn to the process by which the dark matter asymmetry is generated. The sphalerons

of SU(2)∗ create one each of every left-handed fermion that is a doublet of SU(2)∗,

namely (for each family) the three colors of dcI , the leptons νI and `I , and the X-bearing

particles χI . Thus, for the SU(2)∗ sphaleron processes ∆X = ∆B = 1
2
∆L. (We follow

the loose but common practice of referring to processes that involve the anomaly of

some group G as �sphaleron processes� or �sphalerons� even if they happen at a tem-

perature far above the scale at which G is broken rather than through tunneling.) The

sphalerons of the electroweak SU(2)L give ∆X = 0 and ∆B = ∆L. All other processes

at low energy conserve B, L, and X. (There might be grand uni�ed interactions that
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name GSM × SU(2)∗ SU(5)× SU(2)∗ SU(6)× SU(2)∗ E6 X W

3×
(
u
d

)
(3, 2,+1

6
; 1) (10, 1) (15, 1) 27 0 0

3× uc (3, 1,−2
3
; 1) (10, 1) (15, 1) 27 0 0

3× `c (1, 1,+1; 1) (10, 1) (15, 1) 27 0 0

3×
(
`
ν

)
(1, 2,+1

2
; 1) (5, 1) (15, 1) 27 0 0

3× dc (3, 1,−1
3
; 1) (5, 1) (15, 1) 27 0 0

3×
(
`1,2

ν1,2

)
(1, 2,−1

2
; 2) (5, 2) (6, 2) 27 0 0

3× dc1,2 (3, 1,+1
3
; 2) (5, 2) (6, 2) 27 0 0

3× χ1,2 (1, 1, 0; 2) (1, 2) (6, 2) 27 +1 0
χc1,...,6 (1, 1, 0; 1) (1, 1) (1, 1) 1 −1 0

p× S (1, 1, 0; 1) (1, 1) (1, 1) 1 0 +1
Ω1,2 (1, 1, 0; 2) (1, 2) (6, 2) 27 0 0
h (1, 2,+1

2
; 1) (5, 1) (15, 1) 27 0 0

h′1,2 (1, 2,−1
2
; 2) (5, 2) (6, 2) 27 0 0

σ (1, 1, 0; 1) (1, 1) (1, 1) 1 +1 −1

Table 6.1: The fermion and scalar content of the model.

violate these quantum numbers, and such interactions might have played a role in gen-

erating a primordial asymmetry in one or more of them. But when the temperature is

far below the grand uni�cation scale, we can neglect these interactions.)

There are four cosmological eras that need to be considered: (a) The era when

some primordial asymmetry of B, L, or X (or some combination of them) was gener-

ated. This could have been by means of grand uni�ed interactions; but in any case we

assume that it happened when the temperature was much higher than the scale M∗ at

which the SU(2)∗ interactions are broken. It does not matter for us which of the many

mechanisms that have been proposed for baryogenesis or leptogenesis is responsible for

this, or what the relative values were of the asymmetries in B, L, and X that were

produced in this primordial era. (b) The era after the primordial asymmetries were

generated, but when the temperature is still greater than T∗, where T∗ is the tem-

perature below which the SU(2)∗ sphalerons processes e�ectively cease. (c) The era
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when TW < T < T∗, where TW is the temperature below which the SU(2)L sphaleron

processes e�ectively cease. (TW has been estimated to be about 200 GeV [52, 53].)

And (d), the era when T < TW .

In era (b), when both kinds of sphaleron processes (SU(2)∗ and SU(2)L) are

active, the ratios of X, B, and L are determined by thermodynamics. The point is

that the requirement of equilibrium for the two kinds of sphaleron processes gives two

conditions on the two independent ratios of these quantum numbers. At the end of era

(b), when T falls below T∗ and the SU(2)∗ sphaleron processes e�ectively cease, the

ratio of X to B −L is frozen, because all other processes conserve both B −L and X.

In the next era, when TW < T < T∗, the SU(2)L sphaleron processes continue

to violate B and L, though conserving B−L, and the ratio of B to L changes to a new

value that can be computed from the requirement that the SU(2)L sphalerons are in

equilibrium. The ratio of B to L becomes frozen when the temperature falls below TW ,

since after that point all processes conserve both B and L. Consequently, from that

point on, down to the present, X, B, and L remain in constant ratios to each other.

Finally, when the temperature falls below the mass of the lightest X-bearing

particle (which is the dark matter particle), virtually all the particles with non-zero X

annihilate with their anti-particles into massless S fermions, except the residue that

cannot annihilate due to the asymmetry in X.

We now turn to the thermodynamic calculation of the ratios of X, B, and L,

which parallels the calculations in [56, 50]. We start with era (b) when there is already

some primordial asymetry and when T > T∗. We assume that in this era the SU(2)∗

symmetry may be treated as unbroken. Thus the particles within an irreducible multi-

plet of GSM×SU(2)∗ all have equal chemical potentials, and the chemical potentials of

the gauge bosons vanish. Finally, we assume that the scattering processes involving the

Yukawa interactions and scalar self-interactions are in equilibrium. For the processes

in thermal equilibrium, the sum of initial state chemical potentials is equal to the sum

of �nal state chemical potentials. This gives relations among the chemical potentials

that allow one to write all of them in terms of just �ve, namely µQ, µL, µχ, µh, and µσ,
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which are respectively the chemical potentials of the quark doublets (u, d), the lepton

doublets (νI , `I), the χI , and the scalar �elds h and σ. In particular, we have

µΩ = µΩ̃ ⇒ µΩ = 0,

µL + µL + µΩ = 0 ⇒ µL = −µL,
µh + µh′ + µΩ = 0 ⇒ µh′ = −µh,
µuc = −µQ − µh,
µdc = −µQ − µh′ ,
µ`c = −µL − µh′ ,
µdc + µdc + µΩ = 0 ⇒ µdc = −µdc = µQ − µh,
µχ + µχc + µΩ = 0 ⇒ µχc = −µχ,
µχc + µS + µσ = 0 ⇒ µS = µχ − µσ.

(6.5)

These relationships come from the scattering processes allowed by certain Yukawa in-

teractions and scalar interactions. The eighth line is from the Yukawa interaction

(χ
I
χca)ΩI . The �rst line comes from the fact that both the terms (χ

I
χca)ΩI and

(χ
I
χca)Ω̃I exist. The second and seventh lines are from the interactions (5, 2)(5, 1)(1, 2)Ω.

The third line is from the interaction (5, 2)h′(5, 1)h(1, 2)Ω. The fourth line is from

the interaction (10, 1)(10, 1)(5, 1)h. The �fth and sixth lines are from the interaction

(10, 1)(5, 2)(5, 2)h′ . Finally, the last line can be derived from the interaction term χcSσ.

The next step is to realize that the electric charge Q and the global charge W

are conserved by all interactions, and therefore the conditions Q = 0 and W = 0 must

be satis�ed. These two conditions will allow us to solve for the chemical potentials of

the scalars, µh and µσ, in terms of those of the fermions, µQ, µL, and µχ. In computing

the density of Q and W , we assume that all the particles of the model have masses

small compared to M∗ and thus to T . (When T ∼ T∗, the mass of Ω may perhaps not

be negligible compared to T , but this will not matter for what follows since µΩ = 0.)

Moreover, when the number density of particles of type i, which we call ni, is low [], it

will be linearly related to its chemical potential,

ni ∝
µi
T
. (6.6)
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We will show the derivation of eq. (6.6) in the appendix. The condition for electric

charge to vanish is then

0 = Q ∝ 6µL(−1) + 3µ`c(+1) + 3µL(+1)+

9µQ(+2
3
) + 9µuc(−2

3
) + 9µQ(−1

3
) + 18µdc(+

1
3
) + 9µdc(−1

3
)+

(b(0)/f(0))[µh(+1) + 2µh′(−1)]

⇒ 0 = −12µL + 24µh ⇒ µh = 1
2
µL

(6.7)

where in each term the �rst number is the number of states of that type, the number

in parentheses is the charge of that type,

f(x) ≡ 1
4π2

´∞
0
y2dy[cosh2(1

2

√
y2 + x2)]−1 and b(x) ≡ 1

4π2

´∞
0
y2dy[sinh2(1

2

√
y2 + x2)]−1

are integrals over the Fermi and Bose distribution functions and x = m/T . Since

we are assuming that the particle masses are small compared to T∗, we have that

b(x)/f(x) ∼= b(0)/f(0) = 2. In obtaining the last line of eq. (6.7), we have used the

relations given in eq. (6.5). In a similar way we have, from the vanishing of W

0 = W ∝ pµS(+1) + (b(0)/f(0))µσ(−1) ⇒ µS = 2
p
µσ

⇒ µχ − µσ = 2
p
µσ ⇒ µσ =

(
p
p+2

)
µχ,

(6.8)

where to get the last line of eq. (6.8), we have used the last relation in eq. (6.5). We

remind the reader that the integer p in eq. (6.8) is the the number of massless S �elds.

(See Table 6.1) The minimal model would therefore simply have p = 1.

The �nal step in analyzing era (b), is to use the equilibrium conditions for the

two types of sphalerons to relate the chemical potentials of the fermions, µQ, µL, and

µχ. For the sphaleron processes of SU(2)L, as we have already explained in the section

1.13, only the left-handed doublet fermions will be produced. Therefore, the condition

for equilibrium of the SU(2)L sphalerons is simply

0 = 9µQ + 6µL + 3µL ⇒ µQ = −1

3
µL, (6.9)
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where the number in front of each term is the number of fermion doublets of that type

produced by a sphaleron, and where we have used µL = −µL from eq. (6.7). For the

SU(2)∗ sphalerons, for the similar reason, the equilibrium condition is

0 = 6µL + 9µdc + 3µχ = 6µL + 9(−µQ + µh) + 3µχ

⇒ 0 = 21
2
µL − 9µQ + 3µχ ⇒ 0 = 27

2
µL + 3µχ

⇒ µχ = −9
2
µL,

(6.10)

where in the middle steps in eq. (6.10) we have used eqs. (6.7) and (6.9) to eliminate

µh and µQ.

So, �nally, we have from eqs. (6.7) - (6.10) all the chemical potentials in terms

of just one, µL. We are now in a position to compute the ratio of X to B − L at the

end of era (b). Again assuming that the particles that carry B, L, and X are light

compared to T∗, one has

B ∝ 1
3

(18µQ − 9µuc − 18µdc + 9µdc) = 18µQ − 6µh = −9µL,

L ∝ 12µL − 6µL − 3µ`c = 21µL − 3µh = 39
2
µL,

X ∝ 6µχ − 6µχc + (b(0)/f(0))µσ = 12µχ + 2µσ = −9
(

7p+12
p+2

)
µL.

(6.11)

Consequently,
X

B − L =
6

19

(
7p+ 12

p+ 2

)
, (6.12)

which, by a very strange coincidence, is simply equal to 2 in the minimal case, where

p = 1. This is the ratio of X to B − L that exists also at the present era.

In order to obtain the present ratio of X to B, which is our aim, we need to

consider what happened in era (c), when the present ratio of B to L was established.

We assume that in era (c), where T > TW > MW , the electroweak symmetry is unbro-

ken and therefore the chemical potential of the W bosons vanishes and the chemical

potentials are equal for all particles within any Standard Model multiplet.
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In era (c), we no longer have to consider the quantum number X or the chemical

potentials of the X-bearing particles, as they do not a�ect the ratio of B to L. The

important chemical potentials are µQ, µL, and µh. The chemical potentials of the other

quarks and leptons are given in terms of these by the relations in eq. (6.5), which are

still valid in era (c) for the particles of the Standard Model. Eq. (6.9), which gives the

relation arising from the equilibrium of SU(2)L sphaleron processes, is also still valid.

The strategy is the same as the calculation done in era (b), but simpler. The

�rst step is to use the condition that the universe has Q = 0 to derive a formula for

µh in terms of µQ and µL. This relation is di�erent from that for era (b), given in eq.

(6.7), because in era (b) the charge density included the contributions from the �extra�

quarks and leptons in (5, 1) and (5, 2), namely the `, ν, dc and the half of the `1,2, ν1,2

and dc1,2 with which they mate to obtain mass. Those fermions are light compared to

T in era (b); but in era (c) (or at least near the end of that era) we can neglect them

because we assume that they are heavy compared to the electroweak scale and thus

highly Boltzmann suppressed.

Therefore the only particles that one must consider in computing the electric

charge density are all the fermions of the Standard Model and the three electroweak

Higgs doublets h, and h′1,2. The relations given in eq. (6.5) that involve only the

chemical potentials of these are still valid. All the Standard Model fermions may

be treated as massless (since we are assuming that SU(2)L is unbroken in this era).

However, the masses of h and h′1,2 must be taken into account. We therefore de�ne the

quantity ch ≡ [b(mh/TW ) + b(mh′1
/TW ) + b(mh′2

/TW )]/b(0).
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Given all this, one has

0 = Q ∝ 3µL(−1) + 3µ`c(+1)

9µQ(+2
3
) + 9µuc(−2

3
) + 9µQ(−1

3
) + 9µdc(+

1
3
)+

(b(0)/f(0))chµh(+1)+

⇒ 0 = −6µL + 6µQ + (12 + 2ch)µh

⇒ 0 = −8µL + (12 + 2ch)µh ⇒ µh = 4
6+ch

µL,

(6.13)

where we have used the SU(2)L sphaleron equilibrium condition µQ = −1
3
µL, given in

eq. (6.9). Now that we have both µh and µQ in terms of µL, we may compute the ratio

of B to L. Again, this gives a result di�erent from eq. (6.9), because of the di�erent

relation between temperature and mass that holds in era (c). One obtains

B ∝ 1
3

(18µQ − 9µuc − 9µdc) = 12µQ = −4µL

L ∝ 6µL − 3µ`c = 9µL − 3µh = 9µL − 3 4
6+ch

µL = 42+9ch
6+ch

µL,

(6.14)

Therefore, when T falls below TW , the ratio L/B is frozen at

L

B
= −3

4

(
14 + 3ch
6 + ch

)
. (6.15)

Combining this with eq. (6.12) gives

X

B
=

6

19

(
7p+ 12

p+ 2

)(
66 + 13ch
4(6 + ch)

)
, (6.16)

which for the minimal case p = 1 reduces to

X

B
=

66 + 13ch
2(6 + ch)

. (6.17)

For the allowed range 0 < ch < 3 this varies between 5.5 and 5.833. If, as seems

reasonable, one assumes that one linear combination of the three electroweak Higgs
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doublets (the �Standard Model Higgs doublet�) is much lighter than the others, one

would expect ch ∼= 1, giving X/B ∼= 5.64. A value of X/B ≈ 5.6 implies that the dark

matter particle has a mass close to 1 GeV. [Since the Standard Model Higgs doublet will

get the VEV, in the section 1.1.1, we know the mass parameter in the Higgs potential

µ =
√
v2λ and λ ≤ 1. This means µ can't be too large but other linear comninations

could be. Therefore, only one will contribute to ch.]

Besides the dark matter particle itself, there are �ve other �avors of χ(χc)

particles. These are, by de�nition, heavier than the dark matter particle and will all

have decayed or annihilated by the time the temperature reaches 1 GeV. It is important

that the energy released in these decays and annihilations does not get trapped in the

dark sector (i.e. the sector of χ, χc, σ, and S), as otherwise the thermal energy of the

massless S particles at the time of primordial nucleosynthesis might cause the universe

to expand too fast, leading to an excessive primordial Helium abundance. However, as

long asM∗ < 100 TeV, the particles of the dark sector are kept in thermal contact with

the Standard Model particles by SU(2)∗ gauge interactions and do not �overheat".

6.4 Asymmetric Dark Matter Particle and Possible Ways to Detect

In order for the dark matter to be almost purely asymmetric, there must be an

e�cient mechanism for dark matter particles and their antiparticles to annihilate into

massless particles. This is why we introduced the massless S fermion(s) and the scalar

σ. Given the Yukawa coupling y(χcS)σ, which was mentioned earlier, the exchange of a

σ allows the annihilation process χc+χc −→ S+S. In order to have the density of dark

matter anti-particles very small compared to the density of dark matter particles, mσ/y

must be less than about 10 GeV. Of course, this involves �ne-tuning in the absence of

supersymmetry or some other symmetry or mechanism that would make such a small

scalar mass natural.

In computing the ratios of B, L, and X above, we made certain assumptions

about the SU(2)L and SU(2)∗ dynamics. In particular, we assumed that at the temper-

ature when the anomalous processes of one of these interactions become cosmologically
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negligible, the interaction in question may be treated as still unbroken. It is possible to

make other assumptions []. The result for the B, L, X ratios would not greatly change.

But to get an exact result one would need to understand the sphaleron dynamics and

the details of the SU(2)L and SU(2)∗ phase transitions well.

The whole scenario depends on there being a global charge X that is conserved

except for the SU(2)∗ anomaly (and possibly GUT-scale interactions). The question

is why there should be such a global U(1)X and whether it is compatible with grand

uni�cation. The answer is that it can arise as an accidental symmetry of the low-

energy theory. And, despite appearances, this can easily happen even in a grand

uni�ed version of this model. For example, consider an embedding of the model into

SU(5) × SU(2)∗. Suppose that all the Yukawa couplings allowed by SU(5) × SU(2)∗

exist, except for (5, 2)(1, 2)(5, 1)h. (In other words, the following Yukawa couplings

exist: (10, 1)(10, 1)(5, 1)h, (10, 1)(5, 2)(5, 2)h, (5, 1)(5, 2)(1, 2)h, and (1, 2)(1, 1)(1, 2)h.

This is easily ensured by a discrete global symmetry that commutes with SU(5) ×
SU(2)∗. For instance, one can have a ZN symmetry under which (10, 1) → ω(10, 1),

(5, 1)h → ω∗2(5, 1)h, (5, 2)h → ω∗(5, 2)h, with all other multiplets transforming trivially.

It is easy to show that with the coupling (5, 2)(1, 2)(5, 1)h missing, the global U(1)X

shown in the Table 5.1 arises as an accidental symmetry of the low-energy theory.

If the model like the one we have discussed is correct, how would one observe

dark matter in the laboratory? It would be very di�cult to produce or detect it

directly, since it interacts with the Standard Model particles only by the SU(2)∗ gauge

interactions, which are much more feeble than the weak interactions, because broken

at a much higher scale. On the other hand, the �extra� quarks and leptons that are

in (5, 1) and (5, 2) could be directly produced in accelerators through their Standard

Model interactions. These then could decay into a combination of Standard Model

particles and the dark particles χ(χc) by means of their SU(2)∗ gauge interactions.

Each �extra� fermion in (5, 2) is a partner in an SU(2)∗ doublet with a Standard model

fermion, to which it can be converted by emitting an SU(2)∗ gauge boson. That boson,

in turn, can decay into χ+χ). The �extra� fermions can also decay by ordinary charged
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weak interactions entirely into Standard Model particles. The point is that the �extra"

fermions mix slightly with the Standard Model fermions of the same color and charge.

For example, the dc mix with the left-handed d, s, and b quarks with mixing angles

that are of order md,s,b/mdc , and similarly for the �extra" leptons.

The model described above is an illustration of a general idea that could be

implemented in other ways. For example, one can construct an SU(7) uni�ed model

that is in many ways quite similar to this. The fermions can be placed in three families,

each consisting of 21 + 7 + 7 + 7, which is the simplest way to incorporate a family in

SU(7). Under the SU(5) × SU(2)∗ subgroup, each family decomposes into (10, 1) +

(5, 2) + (1, 1) + 3 × (5, 1) + 3 × (1, 2). As in the model described earlier in this paper

there would be (1, 2) fermions, which could be the dark matter, and �extra fermions"

in 5 + 5 of the SU(5). A di�erence with the model described earlier, which would

be phenomenologically signi�cant, is that the extra vector-like fermions in the SU(7)

model would not be paired in SU(2)∗ doublets with ordinary Standard Model quarks

and leptons. Both components of each (5, 2) get large mass with (5, 1) multiplets.

Nevertheless, there would be mixing between the �extra fermions" and the Standard

Model (SM) fermions. As in the model described earlier, those mixing angles would

be of order the ratio of the masses of the SM fermions and extra fermions. The result

would be that a heavier extra fermion would predominantly decay into a lighter extra

fermion plus a dark matter pair, as its decays into a SM fermion plus dark matter pair

would be suppressed by these small mixing angles. The lightest extra quark (or lepton)

would have no choice, however, but to decay into SM quarks (or leptons). This would

predominantly happen through the weak interactions, since, as in the model described

earlier, the dc would mix slightly with the left-handed d, s, and b, and similarly for the

leptons.

6.5 Conclusions

We have shown that it is possible to construct simple uni�ed models in which

the sphalerons of a new interaction convert asymmetries of B and L into a dark matter
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asymmetry. Since there are two kinds of sphaleron process involved, the equilibrium

conditions allow one to compute the ratios of B, L, and X (the dark matter number)

independently of the nature of the primordial asymmetry, e.g. whether it was an

asymmetry in B or in L. Since one can compute the ratio of X to B in such models,

one obtains a prediction for the mass of the dark matter particle. The dark matter

particles in the scenario we describe does not have Standard Model gauge interactions

and so would not be easily detectable in a direct way. However, such models generically

give rise to extra vectorlike pairs of quarks and leptons that transform like 5 + 5 of

SU(5). These could be directly produced, and decay into Standard Model fermions plus

dark matter particle-antiparticle pairs. The phenomenology of such models remains to

be explored.

These models predict the number density of dark matter a priori but not their

mass, leaving mass of the dark matter particle to be inferred from the measured dark

matter density. It would be interesting to see if a model could be constructed which

predicts a priori both the number density and mass of the dark matter particles.
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