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ABSTRACT 

Testing Policies That Use Continuous Nutrient Sensing by Drinking Water 
Utilities to Reduce Non-Point Source Pollution under Climate Variability 

 
Keywords: Interpretive strategies, sustainable landscape practices, public 
horticulture institutions, botanical gardens, survey, efficacy, knowledge 

 

More-frequent extreme weather events due to climate change are expected to increase operation costs 
for drinking water utilities, in part from increased non-point source (NPS) pollution from agricultural 
land. High-frequency, high-quality sensors can help utilities better monitor water quality and utilities 
could use this information in programs that subsidize upstream producers to improve the quality of 
water they receive. Such a subsidy could be based on ambient pollution—paying producers directly 
based on their pollution abatement—or targeted production—paying producers to implement specific 
practices that reduce pollution. This distinction has implications for the structure of contracts, 
distribution of payments, and, most notably, allocations of damage from extreme weather events to 
producers and the utility. Under an ambient-based subsidy, risks associated with weather are shared by 
producers. Under a production-targeted subsidy, the utility bears risk posed by severe weather. We use 
an economic experiment involving operational data from a municipal water utility to study producer 
responses to a theoretically equivalent ambient-based and targeted subsidy to improve water quality 
under various weather scenarios. We find that the level of risk associated with weather variability 
affects producers’ behaviors in response to subsidies. The results suggest that both types of subsidies 
lead to improved social welfare and decreased pollution and that production-based subsidies, which can 
be implemented using real-time sensing technologies, minimize the utility’s economic cost and the 
social cost of damage. We also find that both types of subsidies become more effective as weather 
variability and the likelihood of extreme events increase. 

 

Key Points:  

• By offering subsidies to upstream producers for watershed protection, drinking 
water utilities can decrease their costs. 

• High-quality data from continuous water-quality sensors can increase the 
effectiveness of subsidies by targeting individual producers  

• As the likelihood of extreme weather events increases, both ambient pollution and 
targeted production subsidies become more effective 
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Testing Policies That Use Continuous Nutrient Sensing by Drinking Water Utilities 
to Reduce Non-Point Source Pollution under Climate Variability 

 

The primary function of drinking water utilities (DWUs) is taking raw water from a natural 

source, killing bacteria and removing impurities it contains, and distributing the resulting 

drinkable water to customers so that safe and appetizing water flows from their taps. A major 

determinant of the quality of raw water is the level of dissolved organic carbon associated with 

decomposed plant and animal material. High levels of dissolved organic carbon are problematic 

because they negatively affect the taste and smell of the water, are detrimental to the health of 

end-user consumers, and increase the cost of purification for the DWU. Furthermore, adding 

chlorine to kill bacteria in the water can increase the concentration of cancer-causing 

trihalomethanes such as chloroform in municipal drinking water supplies [Delpa et al., 2009], 

requiring use of additional processing such as coagulation and filtration or pumping water from 

reserves, all of which are costly. According to the U.S. Environmental Protection Agency (EPA), 

one of the largest sources of contamination is agricultural and other non-point source (NPS) 

polluters [EPA, 2016] associated with heavy runoff from large storms, prompting concern among 

scientists that increases in extreme weather events related to climate change will lead to higher 

levels of dissolved organic carbon in raw water supplies and higher operation costs for DWUs. 

Policy tools that address NPS pollution can target various outcomes. Output-based 

mechanisms focus on the amount of pollution an individual property produces while input-based 

mechanisms focus on decisions a property owner makes regarding intensity of production, 

fertilizer use, and agricultural management practices that affect how much pollution a property 

will produce. Currently, most programs meant to improve water quality rely on input-based 

subsidies to reduce pollution by altering owners’ land uses and management practices (e.g., 
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reducing use of chemical fertilizers and tillage). These are blunt instruments in that it is not 

always clear how much, if at all, the subsidized inputs result in the desired changes in output (of 

polluted runoff). Output-based mechanisms are attractive because they directly target pollution, 

but the expense and difficulty of directly monitoring NPS pollution from individual parcels have 

generally made output-based policies infeasible. That may change in the future, however, as 

(relatively) inexpensive, high-frequency water-quality sensing technologies are developed that 

can spatially differentiate pollution sources [Miao et al., 2016]. 

Tax/subsidy mechanisms based on ambient levels of pollution are a proposed alternative 

to policies that target individual contributions. Such policies impose taxes and/or provide 

subsidies based on the observable total amount of pollution in a water source (determined by a 

sensor at a downstream location) to motivate agricultural producers whose properties contribute 

to that pollution to reduce their contributions to an exogenous target level that corresponds to a 

socially optimal overall level of pollution [e.g., Xepapadeas, 1992; Cabe and Herriges, 1992; 

Xepapadeas, 1995; Horan et al., 1998; Segerson, 1988]. This type of group output-based policy 

avoids the need for information on individuals’ production of pollution. Mechanisms of this type 

have attractive theoretical properties, and economic experiments have found them to be effective 

in achieving pollution-reduction targets under a variety of conditions [e.g., Spraggon, 2002, 

2004, 2013; Alpı́zar et al., 2004; Poe et al., 2004; Cochard et al., 2005; Vossler et al., 2006; 

Suter et al., 2009; Vossler et al., 2013; Suter et al., 2008].  

Group-output mechanisms are also strategically complex since the amount of pollution 

overall depends on individual landowners’ actions and on factors such as the number and 

intensity of storms that generate runoff. Tax-based policies, for example, can potentially punish 

landowners who incurred additional expense to significantly reduce their contributions of 

pollution while neighboring landowners made no such effort and further punish landowners for 

weather-related contributions beyond their control. Consequently, subsidies that provide 

incentives to reduce pollution are generally preferred.  
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The basis for such subsidies determines how risk is shared by landowners and the DWU. 

Under a targeted subsidy mechanism, the water utility, which is assumed to be risk-neutral, bases 

subsidy payments on each landowners’ level of agricultural production and bears the risk 

associated with weather that would otherwise be borne by risk-averse producers. Under a subsidy 

based on the ambient level of pollution downstream, behavior by the landowners collectively 

determines whether they individually earn a subsidy, and they bear the risk associated with 

weather-related pollution.  

Extreme weather events increase the concentration of NPS contaminants and thus 

degrade water quality. In this study, we use a laboratory-based economic experiment to compare 

the effects of a subsidy based on the ambient level of pollution to the effects of a targeted 

subsidy based on individuals’ agricultural production in reducing NPS pollution at the point of 

intake of a DWU facility under various weather scenarios, thereby reducing the utility’s costs in 

the face of more-frequent and more-extreme weather events, and how the subsidies’ relative 

effectiveness changes as the level of risk posed by weather conditions changes. Producers who 

are risk-averse should tend to prefer a targeted subsidy because they would have less exposure to 

the risk of others’ decisions decreasing or eliminating their subsidy. And if the subsidy is tied to 

their production, they would be less vulnerable to the effects of weather in terms of severe 

storms. The experiment incorporates data from an existing municipal DWU and predictions of 

weather conditions under several climate-change scenarios.  

We aim to understand how to best minimize potential social damage associated with NPS 

contamination of water by examining the performance of two institutional arrangements in the 

context of changes in weather variability. Ultimately, we are interested in understanding the 

interaction of strategic rent-seeking behavior with the mechanism’s structure and assignment of 

risk-sharing to identify ways to improve the design of NPS pollution regulations. This research 

contributes to the literature by comparing the effectiveness of ambient-pollution and targeted-

production subsidies under various weather scenarios and by analyzing the effect of increased 
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risk associated with a greater likelihood of extreme weather events—long-lasting droughts and 

floods—due to climate change. We also evaluate the ability of real-time water-quality sensors 

currently being developed to improve water quality and social welfare, especially in the presence 

of extreme weather events. We find that the effectiveness of targeted subsidies, which could be 

implemented with affordable real-time sensors, increases as extreme weather events increase. 

The measure of effectiveness is the mechanism’s ability to generate the socially optimal levels of 

agricultural production and pollution. 

The experiment involves six homogeneous firms producing the same good at different 

locations along a river. However, the spatial differences do not influence the marginal damage 

produced by each firm. We apply one subsidy that is based on the ambient level of total pollution 

at the DWU intake and one that is based on targeted levels of production by the firms and 

compare the results for three levels of weather variability. The homogeneous firms represent 

agricultural producers, and we study how variability of weather affects their decisions. 

Our results suggest that both types of subsidy increase social welfare by approximately 

38% over no subsidy. Though both types are effective, we find that the targeted subsidy is 

significantly more effective than the ambient-pollution subsidy in reducing pollution and 

increasing social welfare. Furthermore, the effectiveness of the targeted subsidy increases with 

the likelihood of extreme weather events. Using multiple real-time sensors, a targeted subsidy 

could address actual emissions of pollution (rather than using the amount of production as a 

proxy) by detecting the amount of pollution entering the river from each farm.  

 

1. Background and Motivation 

Both human activities and climate change can decrease the quality of surface water [Delpa et al., 

2009]. As average temperatures rise, the amount of dissolved organic matter and other pollutants 

in the water can increase through mechanisms such as drought-rewetting cycles that enhance 

decomposition and flush matter into local waterways [Evans et al., 2005]. In recent years, 
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increases in dissolved organic carbon have been noted in Northern Europe, Central Europe, and 

North America [Evans et al., 2005; Monteith et al., 2007; Worrall et al., 2004; Hejzlar et al., 

2003]. When water containing a high level of dissolved organic carbon is treated with chlorine 

by DWUs, cancer-causing chemicals referred to as trihalomethanes can form, further degrading 

the water. In terms of weather, heavy rains lead to high levels of turbidity and organic matter 

[Delpa et al., 2009] and increase the amount of dissolved carbon and pesticides in rivers and 

streams, making treatment of the water for drinking more challenging and expensive. 

The broader effects of climate change also affect DWUs financially through a cascade of 

effects associated with changes in precipitation patterns, air and water temperatures, sea levels, 

and the frequency of severe storms. Flooding is a likely consequence of all of these changes, 

presenting the potential for physical damage to drinking water infrastructures [Rayburn et al., 

2008], breaching of dams, intrusions of seawater into aquifers, and widespread deposition of 

sediment, debris, and pollution in various waterways used to provide drinking water. In addition, 

climate change can potentially affect the timing of runoff from rain and snowmelt [Rayburn et 

al., 2008] collected in existing reservoirs as well as increase the cost of treating water due to 

increases in disinfection by-products and microbial growth (e.g., algal blooms) and decreases in 

dissolved oxygen that cause noxious odors and discolor the water. Another effect of drought is a 

greater frequency of wildfires that denude hillsides; the resulting erosion, ash, and plant debris 

are deposited in rivers and streams. All of these consequences of climate change require 

significant investments by DWUs to repair, upgrade, and expand their facilities and 

infrastructures [AMWA-NACWA, 2009]. 

The EPA estimated the cost of needed infrastructure upgrade, renewal, and replacement 

programs for drinking water and wastewater for 2007–2027 at $300 billion to $500 billion and 

estimated the net present value cost of climate-change adaptions for drinking water systems 

through 2050 at $362 billion to $692 billion, which includes the cost of capital and operation and 

maintenance [AMWA-NACWA, 2009]. DWUs have been implementing short-term and long-term 



 

 

8 

water conservation policies to reduce the demand for water and/or reallocate their water 

resources for the past 30 years [Hughes and Leurig, 2013]. One such conservation technique 

involves offering farmers financial incentives to irrigate less and to adopt best management 

practices (BMPs) such as restricting fertilizers and tillage that reduce the flow of nutrients into 

waterways. For instance, the New York Watershed Agricultural Council (WAC) with funding 

from the New York State Department of Environmental Protection (NY-DEC) and the U.S. 

Department of Agriculture (USDA) worked to decrease nutrient eutrophication (lack of 

dissolved oxygen in waterbodies) in the Catskills by assisting farmers in implementing BMPs. In 

2011, 102 BMPs, such as fencing, animal waste storage facilities, and conservation crop rotation 

were implemented on small and large farms with WAC support [NY-DEC, 2016]. In addition, 

the City of Syracuse’s Department of Water created the Skaneateles Lake Watershed 

Agricultural Program (SLWAP), which assists farmers in creating individual environmental 

protection plans and then subsidizes their adoption of management practices that reduce runoff 

[Miner and Somers, 2015]. The Skaneateles Lake watershed covers 59 square miles, and 48% of 

the land uses in the watershed are agricultural. Thanks to SLWAP, Skaneateles Lake was named 

the cleanest of the Finger Lakes in 2011 [Miner and Somers, 2015]. 

This research contributes to the literature on the economic effects of climate change for 

DWUs and to the literature related to policy mechanisms that efficiently abate NPS pollution. In 

an early work, Segerson [1988] presented a theoretically optimal tax/subsidy incentive 

mechanism based on ambient levels of pollution in which every polluter pays the same amount. 

The tax (or reduction in subsidy) is equivalent to the full marginal benefit of a reduced level of 

ambient pollution The ambient tax/subsidy transfer is a linear function calculated from estimates 

of the level of ambient pollution and the cost of abating that pollution and is based on the degree 

to which an individual agents abates its pollution emissions. Agents that fail to meet the pollution 

abatement target are subject to a tax penalty equal to the marginal damage of their excess 

pollution, and agents that exceed the pollution abatement target are rewarded with a subsidy 
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equal to the marginal damage avoided. This mechanism decreases the cost for a regulator when 

there is asymmetric information and gives firms the freedom to choose the least costly pollution-

abatement technique that ensures the necessary level of abatement. 

Numerous laboratory experiments focused on mechanisms for reducing NPS pollution 

have been based on Segerson’s [1988] theoretical work. Spraggon [2002], for example, found 

that ambient-based tax/subsidies and taxes were more effective than other mechanisms such as 

group fines. Building on Spraggon’s work, Cochard et al. [2005] studied an NPS pollution 

problem with endogenous externalities, comparing an input tax, an ambient-based tax/subsidy, 

an ambient-based tax, and a group fine, and concluded that the ambient-based tax/subsidy was 

not the best policy because it decreased social welfare and was highly unreliable in reducing 

pollution compared to other instruments. Miao et al. [2016] showed that increasing the frequency 

of ambient monitoring improved emission reductions when firms were differentiated spatially. A 

number of studies [e.g., Spraggon, 2002; Vossler et al., 2006] also included error terms that were 

symmetric to the measured concentration of pollution to mimic uncertainty caused by stochastic 

environmental factors such as weather. 

Suter et al. [2008] compared linear and non-linear ambient-based taxes and concluded 

that both mechanisms achieved the social optimum when communication was not allowed. The 

linear tax followed Segerson [1988]; each firm was charged a constant marginal tax that was 

equal to the marginal damage at the social optimum. The non-linear tax required each polluter to 

pay a tax equal to the total economic damage. In a follow-up study, Suter et al. [2009] compared 

homogeneous and heterogeneous groups. The homogeneous pollution setting consisted of six 

firms that had identical profit and emission functions. The heterogeneous pollution setting 

consisted of three small firms, two medium firms, and one large firm, and each firm had different 

profit and emission functions based on their size. The results showed that an ambient-based tax 

mechanism reduced emission levels significantly in both settings. Furthermore, the distribution 

of firm sizes had a significant impact on observed group decision-making and heterogeneity 
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generated some relatively desirable outcomes and some undesirable outcomes. One particularly 

undesirable outcome was that small firms could go bankrupt due to predatory actions by large 

firms. 

Given the results of prior studies, we chose to apply both ambient-based and production-

targeted policies that use information from high-tech sensors in our experiment. Under the 

ambient-based policy, the regulator uses a downstream sensor to determine the collective 

ambient damage (pollution); under the production-targeted policy, the regulator identifies 

individual parcels’ contributions of pollution using sensors located near each parcel and bases 

the provision of a subsidy on that data.  

 
2. Experimental Design 

In the experiment, participants assumed the role of business owners making production decisions 

regarding parcels along a river. Each firm produced a good that generated income, and the 

production process generated a proportional amount of pollution that entered the river. The 

participants, who were undergraduate students at a large public university on the east coast of the 

United States, represented agricultural producers but were told only that they were business 

owners. In the experiment, the participants had the opportunity to earn money based on the 

decisions they made, and the average amount earned during an experiment session was $30. 

Fooks et al. [2016] involved both students and agricultural producers in a similar experiment and 

found no significant differences in their production decisions.   

The experiment was framed such that the pollution did not affect the participants but 

could cause damage to a hypothetical downstream user external to the experiment. The amount 

of downstream damage depended on the amount of the good produced by each business owner 

and weather conditions, and the firms received a subsidy from a DWU that was based on either 

the measured ambient level of water pollution downstream or on the quantity of the good the 
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firm produced (we did not address tax policies in the experiment). In the model, the utility could 

determine each firm’s production of pollution by way of nearby sensors.  

Six treatments were used in the experiment to examine the effects of weather variability 

and type of subsidy on the effectiveness of an NPS pollution abatement policy. A single session 

involving a weather-variability treatment and no provision of a subsidy provided a baseline for 

comparison. 

 

2.1. Experiment Protocol 

Six sessions of the experiment were conducted each involving either 12 or 24 of the 120 

undergraduate student participants recruited through an email announcement. See Table 1 for a 

summary of the experiment characteristics.  

Table 1. Summary of the Experiment Design 

Participants  120 student participants 
Session Setup 12-24 participants split into groups of 6 
Participant Decision  Production level on their parcel (within a given range).  
Key Behavioral Measures i. Individual production by treatment relative to a 

baseline 
Subsidies i. Ambient Subsidy  

ii. Targeted Subsidy (perfect information) 
Time Structure 7 Parts, 5 Rounds/Part 
Average Time 2 hours 
Average Earnings $30  
 

The experiment was conducted using computers running a Willow interface and a Python 

framework. Each desk in the laboratory was equipped with a computer and a privacy divider that 

ensured that the participants’ decisions remained confidential. The room was set up with desks 

arranged into four groups of six. Sessions lasted 90 to 120 minutes, and no communication was 
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allowed between participants, who were randomly assigned to a desk by drawing a number from 

a bag before entering the room.  

The participants were also assigned separately (unrelated to the desk assigned) to six-

member stream groups that collectively emitted pollution to a waterbody. They were not aware 

of the identities of the other members of their stream group. The participants made production 

decisions that determined the amount of pollution emitted into their group’s stream and thus 

determined whether they would earn a subsidy provided as experimental dollars that would be 

converted to U.S. dollars at a rate of 40 experimental dollars per U.S. dollar. 

The session began with participants reading and signing the consent form and then 

spending approximately 15 minutes reading instructions that explained how production decisions 

affected their earnings, the types of subsidies provided, and how the weather scenarios varied 

(see Appendix A). To further assist the participants in understanding how the subsidies varied in 

response to the weather scenarios, they were given time to use a special calculator presented on 

the computer that allowed them to enter hypothetical production decisions for each parcel and 

see the amount of the subsidy under each weather scenario. The calculations changed with the 

weather treatment. The written instructions included training in how to use the calculator and 

required participants to use it to identify the amount of subsidy provided for different levels of 

production. The experiment administrators also made certain that participants knew how to 

correctly operate and understood the calculator.  

Table 2 shows the order of the treatments.  In all cases, the experiments started with two 

sets of practice rounds that did not include weather variation (one with ambient subsidies and 

one with targeted subsidies.  The treatments were represented in a varied order to control for 

potential order effects. Between treatments, the experiment administrators provided a set of 

additional written instructions and an oral presentation that explained the weather variation and 

type of subsidy used in that treatment for the next set of rounds. 
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Table 2. Treatment Conditions 

Treatment  Subsidy Weather Variation 
P Ambient  None 
P Targeted None 
A Ambient Standard 
B Targeted Standard 
C Ambient High 
D Targeted High 
E Ambient Very High 
F Targeted Very High 
G Ambient None 
H Targeted None 
   
Treatment Order PPABCDEFGH 

PPBADCFEHG 
PPHGFEDCBA 
PPGHEFCDAB 

 

 

In each treatment, the administrator computer randomly assigned each participant to a 

six-member stream group and then to a parcel located at a unique location along the group 

stream. However, the parcels were homogeneous and the amount of damage caused was not 

affected by their location. Each treatment consisted of five decision rounds in which the 

participants made a confidential production decision and were then informed of the amount of 

the potential subsidy, the degree of weather variability, the amount of any subsidy they earned in 

the round, and their total net profit for that round. The instructions informed the participants 

what the pollution target was in each scenario and how the subsidies would be calculated.  The 

rounds were independent so production decisions and downstream damage in one round did not 

affect future rounds.  

 

2.2. Model 

In each round of the experiment, participants made individual production decisions that 

generated private incomes and damage (to the water resource). Following Spraggon [2002], we 
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assume that there are N producers i that each produce output 𝑥𝑥𝑖𝑖 and receive income 𝐼𝐼𝑖𝑖(𝑥𝑥𝑖𝑖). The 

private income function takes the form 

𝐼𝐼𝑖𝑖(𝑥𝑥𝑖𝑖) =  γ0 −  γ1(γ2 −  𝑥𝑥𝑖𝑖)2. (1) 

Total output from production by all producers is the sum of all individuals’ production: 

𝑋𝑋 =  � 𝑥𝑥𝑖𝑖
𝑁𝑁

𝑖𝑖=1
 

(2) 

and total income is the sum of all individuals’ incomes: 

𝐼𝐼 =  � 𝐼𝐼𝑖𝑖(𝑥𝑥𝑖𝑖).
𝑁𝑁

𝑖𝑖=1
 

(3) 

Since the producers are identical, production will be symmetric at the equilibrium. 

Therefore, we can use total production in the income function to express total income as a 

function of total production. Then, the total cost of abatement borne by an individual producer is 

𝑇𝑇𝑇𝑇(𝑥𝑥) = 𝐼𝐼(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) − 𝐼𝐼(𝑥𝑥) =  𝐼𝐼(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) −  γ0 +  γ1(γ2 −  𝑥𝑥𝑖𝑖)2 

 

(4) 

and the producer’s marginal cost of abatement is 

𝑀𝑀𝑇𝑇(𝑋𝑋) =  − 2γ1γ2 + 2γ1𝑋𝑋. (5) 

In addition to income to the producer, production also imposes a cost on downstream external 

users. This damage is a quadratic function of total production:  

𝑇𝑇𝑇𝑇(𝑋𝑋) =  δ(β0 + β1𝑋𝑋 +  β2𝑋𝑋2). (6) 

The parameterization of this function is based on real predicted weather scenarios and cost data 

from the water utility serving Wilmington, Delaware, in the United States.  The weather 

scenarios are varied in the treatments as discussed in more detail later. 

The total benefits from pollution abatement at the unregulated optimum is 
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𝑇𝑇𝑇𝑇(𝑋𝑋) = 𝑇𝑇𝑇𝑇(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑇𝑇𝑇𝑇(𝑋𝑋). (7) 

The corresponding marginal benefit of abatement is 

𝑀𝑀𝑇𝑇(𝑋𝑋) = −β1 − 2β2𝑋𝑋. (8) 

We assume that the utility is risk-neutral and that, as a public entity, the utility wants to 

maximize net social welfare by equating the marginal cost and benefit, which leads to optimal 

total production by all six firms: 

𝑋𝑋∗ =
γ1γ2 −  β1 2⁄
γ1 + β1

 . 
(9) 

Each individual producer’s share of production is 

𝑥𝑥𝑖𝑖∗ =  𝑋𝑋
∗
𝑁𝑁� . (10) 

Under this form of the instrument, 𝑋𝑋∗ is the equilibrium when producers believe that total 

production will be less than or equal to the subsidy; 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 is the equilibrium when producers 

believe that 𝑋𝑋∗ is unobtainable.  

 

2.3. Treatments 

The six treatments in the experiment combined the ambient-based and production-targeted 

subsidies with four levels of probability of variability in the weather: (1) none, (2) standard, 

(3) high, and (4) very high (see Table 2) associated with the probability of (a) normal, (b) severe, 

and (c) extreme weather conditions. Extreme weather events are long-lasting droughts and 

floods; the impacts of severe weather have a relatively brief duration. The amount of damage 

done to the downstream user varied with the weather condition in the treatment. We created a 

damage function for each type of weather condition using models that predicted the DWU’s cost 

[AMWA-NACWA, 2009]. In addition, to simplify both the policies (subsidies) and the 

participants’ decisions, we made the marginal damage incurred at the pollution-reduction target 



 

 

16 

equal for all treatments. The parameters for these functions are shown in Table 3. Downstream 

damage is a quadratic function of total production, and the impact of total production on damage 

is shown in Figure 1. Once production exceeds the socially optimal amount, the amount of 

downstream damage increases significantly.  
 

Figure 1.  Downstream Damage vs. Group Production under Different Weather Conditions 

 

 

Damage Function: Extreme Weather 

𝑇𝑇𝑇𝑇 =  δ ∗ (β0𝐻𝐻 +  β1𝐻𝐻 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + β2𝐻𝐻 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃2) (11) 

Damage Function: Severe Weather 

𝑇𝑇𝑇𝑇 =  δ ∗ (β0𝑀𝑀 + β1𝑀𝑀 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + β2𝑀𝑀 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃2) (12) 
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Damage Function: Normal Weather 

𝑇𝑇𝑇𝑇 =  δ ∗ (β0𝐿𝐿 + β1𝐿𝐿 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + β2𝐿𝐿 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃2) (13) 

As shown in Figure 2, standard variability is composed of an 80% chance of normal 

weather, a 10% chance of severe weather, and a 10% chance of extreme weather. High 

variability is composed of a 50% chance of normal weather, a 40% chance of severe weather, 

and a 10% chance of extreme weather. Very high variability is composed of a 50% chance of 

normal weather, a 10% chance of severe weather, and a 40% chance of extreme weather. 

 
Figure 2:  Weather Variations 

 

 

 

 

 

 

 

 



 

 

18 

 

 

 

 

Table 3. Equation Parameters  

Parameter    
Weather 
condition  

β1𝐿𝐿 –0.1  
β2𝐿𝐿 0.0018  

β0𝐿𝐿 30  

 
  

β1𝑀𝑀 –0.5  

β2𝑀𝑀 0.0032  
β0𝑀𝑀 40  

 
  

β1𝐻𝐻 –1  
β2𝐻𝐻  0.0051  
β0𝐻𝐻 50  

 
  

δ 1  
    
Ambient 
subsidies  

𝑏𝑏𝑁𝑁 Normal 18.52 
𝑏𝑏𝑆𝑆 Severe 24.85 
𝑏𝑏𝐸𝐸 Extreme 32.76 

𝑀𝑀𝑇𝑇(𝑇𝑇𝑇𝑇∗)  –0.44 
𝑇𝑇𝑇𝑇∗

𝑁𝑁 Normal 53.54 
𝑇𝑇𝑇𝑇∗

𝑆𝑆 Severe 35.99 
𝑇𝑇𝑇𝑇∗

𝐸𝐸 Extreme 11.56 
    
Targeted 
subsidies 

𝑏𝑏𝑁𝑁 Normal 18.52 
𝑏𝑏𝑆𝑆 Severe 24.85 
𝑏𝑏𝐸𝐸 Extreme 32.76 

𝑀𝑀𝑇𝑇(𝑇𝑇𝑇𝑇∗)  –0.44 
𝑥𝑥∗  24 

    
Income  γ0 35  

γ1 0.0075  
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γ2 50  
    

 

2.3.1. Calculating the Ambient-based Subsidies 

The ambient-based subsidies in the treatments are calculated using the total amount of 

downstream damage collectively contributed by the six firms, and each firm receives the same 

amount of subsidy, which is based on the amount of damage relative to the socially optimal 

target level, 𝑇𝑇𝑇𝑇𝑗𝑗∗. When the measured level of damage equals or exceeds the target, the 

participants do not receive a subsidy.  

The target level of damage, 𝑇𝑇𝑇𝑇𝑗𝑗∗, is calculated based on the group’s total production, and 

𝑋𝑋∗ = 144. The group production target is derived from equating the marginal benefit (MB) with 

the marginal cost (MC) across weather conditions (j) as shown in Figure 3. Therefore, under 

normal weather conditions, total group production of 120 units results in $44.35 of damage (see 

Figure 1), which is less than the target damage of $53.54. Therefore, the producers receive 

subsidies of $22.55.  
 

Figure 3.  Marginal Benefit vs. Marginal Cost 
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Following Spraggon [2002], we calculate the ambient-based subsidy as  

𝑆𝑆(𝑋𝑋) =  �
0                                                          𝑃𝑃𝑖𝑖 𝑇𝑇𝑇𝑇 > 𝑇𝑇𝑇𝑇𝑗𝑗∗

𝑀𝑀𝑇𝑇(𝑇𝑇𝑇𝑇) ∗  �𝑇𝑇𝑇𝑇 −  𝑇𝑇𝑇𝑇𝑗𝑗∗ � + 𝑏𝑏𝑗𝑗      𝑃𝑃𝑖𝑖 𝑇𝑇𝑇𝑇 ≤ 𝑇𝑇𝑇𝑇𝑗𝑗∗ 
  

(14) 

where MD is marginal damage, TD is total damage, and b is a bonus included to induce 

production at the target level rather than at the maximum level. The parameters for the equation 

are presented in Table 3. 

 

2.3.2. Calculating the Production-targeted Subsidies 

The production-targeted subsidies are calculated using the individual firms’ production, which is 

observed by the utility via a water-quality sensor next to each parcel. Therefore, the amount of 

any subsidy paid varies according to the firm’s production decision. A firm that chooses to 

produce at or above the target level receives no payment. In our model, the individual target level 

of production is 𝑥𝑥∗ = 24, which corresponds to the total group production target of 𝑋𝑋∗ = 144 and 

is derived from equating MD with MC across weather conditions as shown in Figure 3. 

The targeted subsidy is determined by  

 𝑆𝑆𝑖𝑖(𝑋𝑋) =  �
0                                               𝑃𝑃𝑖𝑖 𝑥𝑥 >  𝑥𝑥∗
𝑀𝑀𝑇𝑇(𝑇𝑇𝑇𝑇) ∗  (𝑥𝑥 −  𝑥𝑥∗) + 𝑏𝑏𝑖𝑖   𝑃𝑃𝑖𝑖 𝑥𝑥 ≤  𝑥𝑥∗   

(15) 

where MD is marginal damage, x is the individual’s production, and b is a bonus. The parameters 

for the equation are provided in Table 3. Again following Spraggon [2002], we include a bonus 

to induce the firm to produce the target level rather than the maximum. 

The individual firm’s profit is calculated as the firm’s income plus the subsidy: 

𝑃𝑃𝑖𝑖(𝑥𝑥𝑖𝑖) =  𝛾𝛾0 −  𝛾𝛾1(𝛾𝛾2 −  𝑥𝑥𝑖𝑖)2 +  𝑆𝑆𝑖𝑖(𝑋𝑋). (16) 

Participants chose to produce 0 to 50, which generated income of $16.25 to $35.00 (see Table 3). 
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2.4. Testable Hypotheses 

The hypotheses tested in this research are summarized in Table 4. The first hypothesis is that the 

degree of variability of weather does not have an impact on the effectiveness of the subsidy 

mechanisms. Effectiveness is measured as the mechanism’s ability to generate the socially 

optimal level of damage. As previously mentioned, weather conditions, which are expected to be 

more severe in the future due to climate change, affect the damage functions in our model. We 

assess how the subsidy mechanisms might perform as weather patterns change. 

The second hypothesis is that changes in risk do not affect production under the targeted 

subsidy. As weather variability increases, the firm is subjected to greater risk under a policy 

based on the level of ambient pollution—it can be penalized for weather-related increases in 

pollution. Under a production-targeted subsidy policy, the level of pollution, which can increase 

due to severe weather events, does not control the firm’s receipt of a subsidy; instead, the utility 

bears the weather-variability risk. Under the targeted subsidy, there is perfect information; the 

utility knows how much the firm is producing from a sensor near the parcel and the firm knows 

the target number of units of production. We expect to find that only the ambient-based subsidy’s 

interactions with weather will significantly affect the production of damage and social welfare. 

The third hypothesis is that the ambient-based and production-targeted subsidies will 

have the same impact on total downstream damage. We want to determine whether one of the 

mechanisms is more effective than the other at reducing total damage to the socially optimal 

level.  

The fourth hypothesis is that the total amount of production from a stream group does not 

change in response to the degree of weather variability. As previously noted, the effects of 

extreme weather events are protracted (droughts, wide-scale flooding) while the effects of severe 

weather events last days to weeks. Each weather condition is represented by a unique damage 

function that is based on actual weather data. We are testing to determine whether the 

firm/participants’ behaviors are influenced by the various damage functions and thus whether 
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severe and extreme weather conditions have different impacts on total production relative to 

normal weather. 

The fifth hypothesis is that ambient-based and production-targeted subsidies have the 

same impacts on total production. We want to determine whether one of the mechanisms is more 

effective than the other in reducing total production to the socially optimal level. 

The sixth hypothesis is that the ambient-based and production-targeted subsidies have the 

same impact on social welfare. We want to determine whether one mechanism is more effective 

than the other at increasing social welfare to close to the socially optimal level. In the model, 

social welfare is measured as the stream group’s total income minus the total amount of 

downstream damage from the group. 

Table 4. Hypotheses 

Hypotheses Result 

1) Climate variability does not affect the 
effectiveness of the subsidy. 

Reject – As weather variation increases, 
subsidies become more effective 
 

(Table 7 Model A1; Table 8 Model A2) 

2) Changes in risk do not affect damage 
under targeted subsidies. 

Reject – Downstream damage decreases when 
there is interaction between weather variability 
and targeted subsidy 
 
(Table 8 Model A2) 

3) Ambient and targeted subsidies have 
the same impact on downstream damage. 

Reject – Downstream damage is higher on 
average when there is a ambient-based subsidy 
instead of a targeted subsidy 
 
(Table 8 Model A2) 

4) Total production does not change in 
response to different degrees of weather 
variability. 

Fail to Reject – The change in production as 
weather variability increases is not 
statistically significant 
 
(Table 7 Model B1; Table 8 Model B2) 



 

 

24 

5) Ambient and targeted subsidies have 
the same impact on total production. 

Reject – Production decreases more on 
average from an ambient subsidy relative to 
a targeted subsidy 
 
(Table 8 Model B2) 

6) Ambient and targeted subsidies have 
the same impact on social welfare. 

Reject – Social welfare is higher on average 
with a targeted subsidy than with an ambient 
subsidy 
 
(Table 8 Model C2) 

  

 
3. Results 

Overall, we find that a well-designed subsidy can dramatically improve water quality and 

increase social welfare to a level that is closer to optimal. Our first hypothesis asks whether the 

effectiveness of the subsidy mechanisms changes under different weather conditions. Since we 

are interested in seeing if the effectiveness of the subsidies changes in response to weather, we 

include interacting terms for the subsidy structure and weather variation: 

 

𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝐷𝐷 = 𝑃𝑃 +  ∂1𝑆𝑆𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 + 𝜕𝜕2𝐻𝐻𝑃𝑃𝐷𝐷ℎ + 𝜕𝜕3𝑉𝑉𝐷𝐷𝑃𝑃𝑉𝑉 𝐻𝐻𝑃𝑃𝐷𝐷ℎ + 𝜕𝜕4𝐴𝐴𝐷𝐷𝑏𝑏𝑃𝑃𝐷𝐷𝑃𝑃𝑇𝑇 +  𝜕𝜕5𝐴𝐴𝐷𝐷𝑏𝑏𝑃𝑃𝐷𝐷𝑃𝑃𝑇𝑇
∗ 𝑆𝑆𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 + 𝜕𝜕6𝐴𝐴𝐷𝐷𝑏𝑏𝑃𝑃𝐷𝐷𝑃𝑃𝑇𝑇 ∗ 𝐻𝐻𝑃𝑃𝐷𝐷ℎ +  𝜕𝜕7𝐴𝐴𝐷𝐷𝑏𝑏𝑃𝑃𝐷𝐷𝑃𝑃𝑇𝑇 ∗ 𝑉𝑉𝐷𝐷𝑃𝑃𝑉𝑉 𝐻𝐻𝑃𝑃𝐷𝐷ℎ 𝜕𝜕8𝑇𝑇𝑇𝑇𝑃𝑃𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝑃𝑃
+  𝜕𝜕9𝑇𝑇𝑇𝑇𝑃𝑃𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝑃𝑃 ∗ 𝑆𝑆𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 +  𝜕𝜕10𝑇𝑇𝑇𝑇𝑃𝑃𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝑃𝑃 ∗ 𝐻𝐻𝑃𝑃𝐷𝐷ℎ +  𝜕𝜕11𝑇𝑇𝑇𝑇𝑃𝑃𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝑃𝑃
∗ 𝑉𝑉𝐷𝐷𝑃𝑃𝑉𝑉 𝐻𝐻𝑃𝑃𝐷𝐷ℎ +∈. 

(17) 

where standard, high, and very high refer to the degree of weather variability. The null 

hypothesis is 

𝐻𝐻0: 𝜕𝜕4 = 𝜕𝜕5 =  𝜕𝜕6 =  𝜕𝜕7 = 𝜕𝜕8 = 𝜕𝜕9 = 𝜕𝜕10= 𝜕𝜕11. 

We expected that both subsidies would lead to less damage than the baseline case of no 

subsidy and no weather variation. Our results, presented in Table 5, support that hypothesis. 

With a production-targeted subsidy, the average damage across the weather variability levels is 
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$35.89; with the ambient-based subsidy, the average damage is $49.21. These values are 

significantly less than average damage in the absence of a subsidy of $123.84. Furthermore, as 

the degree of weather variability increases, the degree of damage under both subsidy 

mechanisms decreases.  

Table 5. Outcomes by Subsidy Type 

 

 
No 
Subsidy 

 
Targeted 
Subsidy  

 
Ambient 
Subsidy  

Mean Damage $123.84 $35.89 $49.21 

Mean Total Production 
 

253.11 
 

114.00 
 

143.28 

Mean Welfare 
 

78.75 
 

130.44 
 

124.10 

 

In Table 6, the data for the two subsidies are pooled, allowing us to examine downstream 

damage with a subsidy in place. Damage under very high weather variability is $29.88, which is 

41% lower than when there is no weather variability ($50.67). The average subsidy received in 

the very high variability scenarios is $23.90 while the average subsidy for no variability is 

$16.37. 

Table 6. Mean Production and Damage and Subsidy under Subsidy Types 

Weather Variation None Standard High 
Very 
High 

Average Individual Production 22.15 21.91 21.27 20.69 

Average Total Production 131.08 131.48 127.65 124.14 

Average Damage $50.67 $45.33 $39.21 $29.88 

Average Subsidy Payment $16.37 $18.73 $20.97 $23.90 
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Thus, we find that, as weather variation increases, both the ambient-based and the 

production-targeted subsidies become more effective at decreasing damage. As shown in 

Figure 4, downstream damage is 33% less for very high weather variability (involving a 40% 

chance of extreme weather) relative to standard weather variability.  

 

 

Figure 4.  Downstream Damage under various Weather Variations under a Subsidy Regime 
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Since our data set provides multiple observations from each individual, a random effects 

model is appropriate for analyzing damage, production, and welfare. Table 7 shows the results of 

the three log-linear (random-effects) models we estimated, which have a baseline of no subsidy 

and no weather variation and allow us to compare percent impacts in the presence of either type 

of subsidy. In model A1, the dependent variable is log(damage); it explains how the independent 

variables—standard weather variability, high or very high weather variability, presence of a 

subsidy, and the interactions of subsidy with standard and high or very high weather 

variability—affect the log of the amount of measured downstream damage. We find that the 

presence of a subsidy policy significantly reduces downstream damage (approximately 63%). 

Also, in response to the interaction of a subsidy with high or very high weather variability, the 

amount of downstream damage (a function of production) decreases significantly. 

 

 

 

 Model A1 Model B1 Model C1 
Dependent Variable Log(Damage) Log(Total Production) Log(Welfare) 
Standard Weather Variation  –0.139 

(0.088) 
–0.084* 
(0.050) 

0.152 
(0.081) 

Higher Weather Variation –0.106 
(0.072) 

–0.062 
(0.041) 

0.141 
(0.100) 

Subsidy –1.00*** 
(0.070) 

–0.728*** 
(0.048) 

0.561*** 
(0.081) 

Subsidy X Standard Weather 
Variation 

–1.64 
(0.134) 

0.081 
(0.068) 

–0.129 
(0.117) 

Subsidy X Higher Weather 
Variation 

–0.699*** 
(0.128) 

0.011 
(0.003) 

–0.047 
(0.094) 

Treatment Round 0.006 
(4.87) 

0.011*** 
(0.003) 

–0.013*** 
(0.004) 
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Table 7. Random Effects Models on Downstream Damage, Total Production, and Social 

Welfare 

Table 8 presents the results of three additional random-effects models that address the 

two types of subsidies separately. These models treat the targeted and ambient-based subsidies 

and their interactions with weather variability as independent variables. Once again, the baseline 

is no subsidy and no weather variability. In model A2, the dependent variable is log(damage), 

and it explains how the independent variables affect the log of the amount of measured 

downstream damage. We find that both subsidy mechanisms significantly reduce damage 

compared to the baseline. Model A2 also shows that, in the presence of a subsidy, downstream 

damage decreases as the likelihood of extreme events increases (higher and very high weather 

variability). In addition, we find that the interaction of the targeted subsidy and high or very high 

weather variability decreases the amount of downstream damage. 

Table 8. Extended Random Effects Models on Downstream Damage, Total Production, and 
Social Welfare 

Constant 4.87*** 
(0.083) 

5.55*** 
(0.040) 

4.26*** 
(0.082) 

Number of Observations 794 794 794 
R2 0.3331 0.6441 0.5923 
** Shows significance at p < 0.05 level. *** Shows significance at p < 0.01 level. Standard 
errors in parenthesis. 

 Model A2 Model B2 Model C2 
Dependent Variable Log(Damage) Log(Total Production) Log(Welfare) 
Standard Weather Variation  –0.140 

(0.088) 
–0.085 
(0.050) 

 

0.152 
(0.115) 

High Weather Variation –0.154** 
(0.077) 

–0.082 
(0.043) 

0.197** 
(0.100) 

Very High Weather Variation –0.060 
(0.077) 

–0.043 
(0.043) 

0.087 
(0.103) 
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Our second hypothesis is that changes in risk due to an increase in extreme weather do 

not affect downstream damage under the targeted subsidy because the utility bears the risk of 

such weather events when the subsidy is based on the individual firm’s production rather than on 

the collective amount of pollution downstream. We expected to find that only interactions of 

weather with the ambient-based subsidy would have a significant effect on damage. Instead, the 

null hypothesis is rejected, and we see that the interactions with weather result in significant 

additional damage (relative to the baseline of no weather variability) under both types of 

subsidies (See model A2 in Table 8). 

Ambient Subsidy –0.905*** 
(0.078) 

–0.627*** 
(0.054) 

0.546*** 
(0.082) 

Targeted Subsidy –1.11*** 
(0.067) 

–0.828*** 
(0.048) 

0.577*** 
(0.082) 

Ambient Subsidy X Standard 
Weather Variation 

–0.052 
(0.151) 

0.083 
(0.085) 

–0.162 
(0.122) 

Ambient Subsidy X High 
Weather Variation 

–0.228 
(0.159) 

0.040 
(0.085) 

–0.139 
(0.105) 

Ambient Subsidy X Very High 
Weather Variation  

–0.830*** 
(0.251) 

0.001 
(0.077) 

0.023 
(0.112) 

Targeted Subsidy X Standard 
Weather Variation 

–0.273 
(0.164) 

0.080 
(0.060) 

–0.096 
(0.116) 

Targeted Subsidy X High 
Weather Variation 

–0.329** 
(0.144) 

0.054 
(0.058) 

–0.124 
(0.101) 

Targeted Subsidy X Very High 
Weather Variation 

–1.40*** 
(0.167) 

–0.048 
(0.072) 

0.049 
(0.105) 

Treatment Round 0.006 
(4.87) 

0.012 
(0.003) 

–0.013** 
(0.004) 

Constant 4.87*** 
(0.083) 

5.55*** 
(0.040) 

4.26*** 
(0.082) 

Number of Observations 794 794 794 
R2 0.4181 0.7201 0.6122 
** Shows significance at p < 0.05 level. *** Shows significance at p < 0.01 level. Standard errors 
in parenthesis. 
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Our third hypothesis is that the ambient-based and production-targeted subsidies have an 

approximately equal ability to reduce downstream damage. To test this, we use equation 17 and 

focus on the null hypothesis:  

𝐻𝐻0: 𝜕𝜕4 = 𝜕𝜕5. 

We find that the null hypothesis is rejected and that there is a significant difference in the 

impacts of the subsidies. Average total downstream damage is $35.89 with the targeted subsidy 

and $49.21 with the ambient-based subsidy.  

We performed a two-tailed paired t-test and found significant differences in the mean 

values for damage under the targeted and ambient-based subsidies (p = 0.000). In addition, we 

performed a chi-squared test and found that the coefficients for the subsidies in model A2 (shown 

in Table 8) are significantly different. Both subsidies result in less downstream damage, but the 

targeted production-based subsidy is more effective than the ambient-based subsidy in 

decreasing pollution. The targeted subsidy is probably more effective because the firms know 

how much they are producing and the amount of the subsidy offered to them for that level of 

production under various weather scenarios. The firms also know that the utility possesses exact 

information about their production because of the individual sensors and can precisely identify 

how much pollution each firm contributes. Consequently, the firms choose to reduce their 

production, resulting in less downstream damage. 

Our fourth hypothesis is that a stream group’s total production is not influenced by the 

degree of weather variability. To test this, we estimate 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 =  𝑃𝑃 + 𝜕𝜕0𝑁𝑁𝑇𝑇𝑃𝑃𝐷𝐷 +  𝜕𝜕1𝑆𝑆𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 + 𝜕𝜕2𝐻𝐻𝑃𝑃𝐷𝐷ℎ + 𝜕𝜕3𝑉𝑉𝐷𝐷𝑃𝑃𝑉𝑉 𝐻𝐻𝑃𝑃𝐷𝐷ℎ+ ∈ 
(18) 

and test a null hypothesis that 

𝐻𝐻0: 𝜕𝜕0 = 𝜕𝜕1 = 𝜕𝜕2 = 𝜕𝜕3 = 0. 

In our analysis of subsidies in general (see Table 7), we find that having a subsidy in place 

reduces total production by 52% on average relative to the baseline of no subsidy and no weather 
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variation (see model B1 in which the dependent variable is log(total_production)). When we 

analyze the targeted and ambient-based subsidies separately (model B2 in Table 8), we see that 

both of the subsidies significantly reduce total production relative to the baseline of no subsidy 

and no weather variation. The dependent variable in the model is log(total production), which 

explains how the independent variables affect the log of the amount of total production. The 

results from model B2 in Table 8 support our hypothesis; the degree of weather variability does 

not influence total production. In general, we find that total production decreases slightly as 

weather variability increases from no variability to standard, high, and higher variability but the 

change is not significant. 

Our results reject our fifth hypothesis that the targeted and ambient-based subsidies 

would have approximately equal effects on total production. We find that the production-targeted 

subsidy is more effective than the ambient-based subsidy, resulting in average individual 

production of 19 units and average total production of 114 units versus 23 and 143.28 units, 

respectively, with the ambient-based subsidy Recall that the socially optimal level is reached 

when total production is 144 units. We performed a two-tailed paired t-test, which identified a 

statistically significant difference in average total production under the two subsidy mechanisms 

(p = 0.000). Because the targeted subsidy involves individual sensors that identify the 

production/damage contributed by each firm, some of the information asymmetry is removed, so 

we expect the targeted subsidy to be more effective.  

Table 9 reports the results of our analysis of the effects of subsidies on social welfare, 

which is measured as a stream group’s income minus its damage. We find that average social 

welfare is 38% higher with a subsidy than without. Figure 5 compares social welfare with and 

without a subsidy in response to changes in weather variability. With a subsidy, the utility comes 

much closer to achieving the socially optimal level of welfare regardless of the degree of weather 

variation. A two-tailed paired t-test shows that the differences are statistically significant 

(p = 0.000). In model C1 (Table 7), the dependent variable is log(welfare), which explains how 
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the independent variables affect the log of the amount of total social welfare. The results of that 

model indicate that both mechanisms significantly increase social welfare relative to the baseline 

of no subsidy and no weather variation.  

 

 

 

 

 

 

 
Figure 5:  Average Social Welfare under different Weather Variations  

 

 

Table 9. Average Social Welfare 
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 Average Social Welfare 

 
Social 

Optimal 
With 

Subsidy 
Without 
Subsidy 

Average Welfare 134.97 127.29 78.75 
No Weather Variation 126.04 119.77 99.52 
Standard Weather Variation 131.99 123.81  101.57 
High Weather Variation 137.26 128.66  104.02 

Very High Weather 
Variation 

144.59 137.00 108.06 

 

 

Our results reject the sixth hypothesis that ambient and targeted subsidies have the 

same impact on social welfare and find, instead, that the targeted subsidy is more effective 

than the ambient-based subsidy in increasing social welfare. We conducted a chi-squared test 

comparing the coefficients for the ambient (0.546) and targeted (0.577) subsidies and found a 

significant difference between the two (p = 0.05). This result is similar to the results for the 

targeted and ambient-based subsidies in response to high and very high weather variability.  

 

4. Conclusions 

We use an economic experiment to test participants’ behavioral responses to two incentives to 

reduce their NPS pollution of a waterway that could be measured by a sensor. One subsidy is 

based on the ambient level of pollution in downstream and the other is based on firms’ 

production. We further extend our analysis by comparing the ability of the subsidy mechanisms 

to reduce damage from pollution in the face of greater variability in weather associated with 

climate change. The results from our experiment show that both the ambient-based and the 

production-targeted subsidies work to reduce pollution and improve social welfare. We also find 

that the targeted subsidy becomes more effective in reducing pollution as the likelihood of 

extreme weather events increases. This occurs because, under the ambient-based policy, the 
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individual producers risk losing some or all of their subsidies because of weather-related 

pollution; the targeted subsidy severs the connection between weather-related pollution and the 

amount of subsidy they receive. Thus, we find that the participants are risk-averse under 

conditions of high weather variability and react to the additional risk associated with more severe 

weather by reducing production to increase the amount of subsidy granted.  

 Utilities that provide drinking water can subsidize upstream users to improve the quality 

of the water on which they rely. The results of our experiment suggest that DWUs might prefer 

to implement targeted (production-based) subsidies to reduce pollution despite the additional 

cost relative to subsidies based solely on the downstream ambient pollution level. We find that 

targeted subsidies are more effective than ambient-based subsidies at reducing production and 

pollution and increasing social welfare. Under ambient-based subsidies, the individual 

contributors to the pollution downstream bear equal risk of losing their subsidies if some 

contributors exceed the target and/or severe weather increases the amount of pollution in the 

stream. Under the targeted subsidy, the individual contributors are not affected by other 

contributors or by more-frequent severe weather events. In effect, the targeted subsidy allows 

regulators to manage NPS pollution much like they manage source-point pollution. 

Currently, targeted subsidies are difficult and/or expensive to implement. Advanced 

sensors are needed to measure individual contributions of pollution. Our research shows that NP 

pollution targets will be easier to reach once advanced sensors that can predict or measure 

individual activity at a micro level are readily available. There is a political need for further 

research and development to advance such technologies. 

In addition, the results of this study show that both types of subsidies work to reduce 

pollution and production and increase social welfare, particularly under extreme weather 

conditions. To draw more general conclusions regarding the relationship between the type of 

subsidy offered and improvements in water quality, several of our assumptions could be 

modified in future studies. For instance, spatial dimensions could be incorporated to further 
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characterize the relationship between production and ambient damage. Conducting the 

experiment with farmers could determine whether their experience with production decisions and 

subsidies would affect their decisions. This study could also be extended to analyze an entire 

watershed by increasing the number of firms and amount of land. We assumed that the firms 

were homogeneous; future studies could relax that assumption and study heterogeneous agents 

by differentiating the size and capacity of the firms. Finally, it could be interesting to allow 

communication between the participants in the experiment.  
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Appendix A – Experiment Instructions 

 

Welcome to an experiment in decision-making. In the course of the experiment, you will have 
several opportunities to earn cash. Throughout the experiment, your earnings will be recorded as 
experimental dollars. At the end of this experiment, we will convert your experimental dollars 
into actual US dollars at a rate of one US dollar per 40 experimental dollars. This money will be 
given to you as you leave and it is yours to keep. The more experimental dollars you earn the 
more US dollars you will receive at the end of the experiment.  
 
Please read these instructions carefully and do not communicate with any other participants 
during the experiment.  
 

What you need to know to make decisions: 

There are a number of parts in today’s experiment. Each part will have five rounds. Each round 
is independent, meaning that decisions during one round do not affect future rounds. The only 
value that gets carried across rounds is your cumulative profit, which will be used to calculate 
your cash earnings at the end of the experiment.  

 
In each part, you will be assigned to a group 
with five other people.  
Each member of your group will be playing 
the role of a business owner who operates on 
a parcel of land along a river. The parcels are 
labeled Parcel 1 through 6, as displayed on 
the map in Figure 1. 
Parcel 1 is the furthest upstream and Parcel 6 
is the furthest downstream in the group. The 
parcel that you operate during each part will 
be indicated to you on your computer screen.  
Your parcel and group will remain the same 
for each part of the experiment, but may 
change for different parts.  
 

How to make decisions: 

Each round, you must choose how much you 
want to produce on your parcel. This 
production level must be between 0 and 50 

Figure 1. Stream Flow 
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units. The more you produce the more revenue your business makes. Revenue can be as low as 
$16.25 and as high as $35.00, as shown in Figure 2 to the right.   

Figure 2. Production and Revenue 
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At the same time, the more you produce on your parcel the more byproduct you create. This 
byproduct does not affect you or others in your group, however, too much byproduct causes 
damage to the downstream user. The amount of downstream damage depends on the 
byproduct released by all six parcels, and varies between $0.91 and $208.2. 

 

The amount of damage that reaches the downstream user also depends on the weather 
condition as shown in Figure 3.  

 

 

    Figure 3. Production and Downstream Damage 

 

 

There are three weather types: normal, severe, or extreme.  

• The downstream damage depends on the weather type and total group production as 
shown in figure 3. 
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• In each part, you will be told the weather variation. This weather variation explains the 
likelihood of experiencing each weather type. 

 

There are Four Weather Variations: 

• With no weather variation you will experience normal weather. 
• With standard weather variation you will likely experience normal weather. 
• With high weather variation you have a higher chance of experiencing severe weather. 
• With very high weather variation you have a higher chance of experiencing extreme 

weather. 
 

Other than location, all business owners are identical, meaning that each individual faces the 
same decisions. In some parts of today’s experiment, your profit will be equal to your revenue 
plus a subsidy. This subsidy will be paid to you by the downstream user who is willing to pay 
you to decrease production and, therefore, downstream damage.  This subsidy is determined 
based on either the group damage created from all business owners relative to a target or the 
damage created from your parcel alone relative to a target.  

 

Group Damage: 

• Group damage is the average amount of damage that reaches the downstream user from 
all six parcels.  

• If the group damage is greater than or equal to the target, there will be no subsidy. 
• The target for group damage is achieved when total group production is 144.  

 

Example 1: If total group production is greater than 144. There will be no subsidy because 
group damage is equal to the target. 

 

Example 2: If total group production adds up less than 144.  In this case a subsidy will be paid to 
everyone in the group. The size of the subsidy depends on the weather condition.  

 

 

Your Individual Production: 

• Your individual production is how much you produce on your parcel.  
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• If your individual production is greater than or equal to the target, there will be no 
subsidy. 

• The target for individual production is 24.  
  

Example 3: If your individual production is 24, There will be no subsidy because individual 
production is equal to the target. 

 

Example 4: If your individual production is less than 24, There will be a subsidy regardless of 
what everyone else in your group produces. 

 

Summary 

• Each Round you will make a production decision between 0 and 50.  
• The more you produce the more revenue you will generate. 
• The more you produce the more byproduct you will create. 
• Byproduct impacts downstream users negatively and varies depending on the weather 

conditions. 
• Downstream users may pay you a subsidy to reduce the byproduct. 
• The subsidy will either be determined by group damage or individual production. 
• In each round, Profit = Revenue + Subsidy. 
• Your cash earnings at the end of the experiments equal the combination of profits from 

each round. 
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Practice 

 

A calculator is provided on your computer that will allow you to determine the average subsidy 
for any set of production decisions for the six parcels. Subsidies will defer depending on the 
weather type.  

 

The calculator will be available to you throughout the experiment and will update throughout 
the parts so that you can try out different strategies. You can enter production decisions for 
each parcel by typing it directly into the column labeled “Production”, you can also change 
production by using the slider for each parcel, or the one slider for all of the parcels.  

 

Please use the calculator to fill out the table below.  

  Subsidy 

Example If every parcel 
produces:  

Normal  
Weather  

Severe  
Weather  

Extreme 
Weather  

A 0 $ $ $ 
B 15 $ $ $ 
C 35 $ $ $ 
D 50 $ $ $ 
 

There are six practice rounds that will give you an opportunity to familiarize yourself with the 
software. These first six rounds are for practice only and will not result in any earnings.  

 

In the first three practice rounds, there is a subsidy that 
will be offered based on the average amount of damage 
that reaches the downstream user from all six parcels. 
Everyone in your group will receive the same subsidy. 
There will be a large subsidy for minimal damage, but 
the subsidy gets smaller as average group damage 
increases. If the group damage level is greater than the 
target, there will be no subsidy.  
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Your group of six parcels is experiencing no weather variation. With no weather variation, you 
have a 100% experiencing normal weather.  

 

Example 1: If everyone produces 20 then your normal weather subsidy will be $22.55.   

 

Example 2: If five parcels produce 20 and one parcel produces 50, your normal weather subsidy 
is $0.   

 

Note how, in this part, your production decision will 
influence the profits of everyone in your group and the 
production decisions of others affect your profit. 

 

Practice 

 

There are three practice rounds that will give you an opportunity to familiarize yourself with the 
software. These next three rounds are for practice only and will not result in any earnings.  

 

In these practice rounds, there is a subsidy that will be offered based on individual production. 
The subsidy may be different for different members of your group. If your production is greater 
than the target production for individuals, there will be no subsidy. The target for individual 
production is 24.  

 

 

Your group of six parcels is no weather 
variation. With very no variation, you have a 
100% chance of experiencing normal weather.  

 

Example 1: If everyone else produces 35, but 
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you produce 15 then your normal weather subsidy will be $22.47. Everyone else will have a 
normal weather subsidy of $0. Your subsidy is more than everyone else because you produced 
less. 

 

Example 2: If everyone else produces 20, but you produce 35 then your normal weather subsidy 
will be $0. Everyone else will have a normal weather subsidy of $20.28. Your subsidy is less than 
everyone else because you produced more.   

 

 

 

You can test these scenarios on the calculator. Note how, in this part, others’ production does 
not influence your profit. Your subsidy is more than everyone else because you produced less.  
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In this part, there is a subsidy that will be offered based on the average amount of damage that 
reaches the downstream user from all six parcels. Everyone in your group will receive the same 
subsidy. There will be a large subsidy for minimal damage, but the subsidy gets smaller as 
average group damage increases. If the measured group damage level is greater than the 
target, there will be no subsidy. The target for group damage is achieved when total group 
production is 144.  

 

 

Your group of six parcels is experiencing standard weather variation. With standard weather 
variation, you have a 10% chance of experiencing extreme weather, a 10% chance of 
experiencing severe weather, and an 80% chance 
of experiencing normal weather. 

 

Example 1: If everyone produces 20 then your 
normal weather subsidy will be $22.55.   

 

Example 2: If five parcels produce 20 and one 
parcel produces 50, your normal weather subsidy 
is $0.   

 

You can test these scenarios on the calculator.  
Note how, in this part, your production decision 
will influence the profits of everyone in your 
group and the production decisions of others 
affect your profit.      
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In this part, the subsidy will be based on individual production. The subsidy may be different 
for different members of your group. If your production is greater than the target production 
for individuals, there will be no subsidy. The target for individual production is 24.  

 

 

 

Your group of six parcels is experiencing standard weather variation. With standard weather 
variation, you have a 10% chance of experiencing extreme weather, a 10% chance of 
experiencing severe weather, and an 80% chance 
of experiencing normal weather.  

 

 

Example 1: If everyone else produces 35, but you 
produce 15 then your normal weather subsidy will 
be $22.47. Everyone else will have a normal 
weather subsidy of $0. Your subsidy is more than 
everyone else because you produced less. 

 

Example 2: If everyone else produces 20, but you 
produce 35 then your normal weather subsidy will 
be $0. Everyone else will have a normal weather 
subsidy of $20.28. Your subsidy is less than 
everyone else because you produced more.   

 

You can test these scenarios on the calculator. Note how, in this part, others’ production does 
not influence your subsidy.  
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In this part, there is a subsidy that will be offered based on the average amount of damage that 
reaches the downstream user from all six parcels. Everyone in your group will receive the same 
subsidy. There will be a large subsidy for minimal damage, but the subsidy gets smaller as 
average group damage increases. If the measured group damage level is greater than the 
target, there will be no subsidy. The target for group damage is achieved when total group 
production is 144.  

 

 

Your group of six parcels is experiencing high weather variation. With high weather variation, 
you have a 10% chance of experiencing extreme weather, a 40% chance of experiencing severe 
weather, and a 50% chance of experiencing normal weather.  

 

 

Example 1: If everyone produces 20 then your 
severe weather subsidy will be $28.70.   

 

Example 2: If five parcels produce 20 and one 
parcel produces 50, your severe weather subsidy 
is $0.   

 

You can test these scenarios on the calculator.  
Note how, in this part, your production decision 
will influence the profits of everyone in your 
group and the production decisions of others affect your profit.    
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In this part, the subsidy will be based on individual production. The subsidy may be different 
for different members of your group. If your production is greater than the target production 
for individuals, there will be no subsidy. The target for individual production is 24.  

 

Your group of six parcels is experiencing high weather variation. With high weather variation, 
you have a 10% chance of experiencing extreme weather, a 40% chance of experiencing severe 
weather, and a 50% chance of experiencing normal weather. 

 

 

Example 1: If everyone else produces 35, but you produce 15 then your severe weather subsidy 
will be $28.80. Everyone else will have a severe weather subsidy of $0. Your subsidy is more 
than everyone else because you produced less.  

 

 

Example 2: If everyone else produces 20, but you 
produce 35 then your severe weather subsidy will 
be $0. Everyone else will have a severe weather 
subsidy of $26.61. Your subsidy is less than 
everyone else because you produced more.   

 

You can test these scenarios on the calculator. 
Note how, in this part, others’ production does 
not influence your profit.  
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In this part, there is a subsidy that will be offered based on the average amount of damage that 
reaches the downstream user from all six parcels. Everyone in your group will receive the same 
subsidy. There will be a large subsidy for minimal damage, but the subsidy gets smaller as 
average group damage increases. If the measured group damage level is greater than the 
target, there will be no subsidy. The target for group damage is achieved when total group 
production is 144.  

 

Your group of six parcels is experiencing very high weather variation. With very high weather 
variation, you have a 40% change of experiencing extreme weather, a 10% chance of 
experiencing severe weather, and a 50% chance of experiencing normal weather.  

 

Example 1: If everyone produces 20 then your 
extreme  weather subsidy will be $36.38.   

 

Example 2: If five parcels produce 20 and one 
parcel produces 50, your extreme weather 
subsidy is $0.   

 

You can test these scenarios on the calculator.  
Note how, in this part, your production decision 
will influence the profits of everyone in your 
group and the production decisions of others 
affect your profit.   
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In this part, the subsidy will be based on individual production. The subsidy may be different 
for different members of your group. If your production is greater than the target production 
for individuals, there will be no subsidy. The target for individual production is 24.  

 

Your group of six parcels is experiencing very high weather variation. With very high weather 
variation, you have a 40% change of experiencing extreme weather, a 10% chance of 
experiencing severe weather, and a 50% chance of experiencing normal weather.  

 

Example 1: If everyone else produces 35, but you 
produce 15 then your extreme weather subsidy 
will be $36.71. Everyone else will have an 
extreme weather subsidy of $0. Your subsidy is 
more than everyone else because you produced 
less.  

 

Example 2: If everyone else produces 20, but you 
produce 35 then your extreme weather subsidy 
will be $0. Everyone else will have an extreme 
weather subsidy of $34.52. Your subsidy is less 
than everyone else because you produced more.   

 

You can test these scenarios on the calculator. 
Note how, in this part, others’ production does not influence your profit. Your subsidy is more 
than everyone else because you produced less.  
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In this part, there is a subsidy that will be offered based on the average amount of damage that 
reaches the downstream user from all six parcels. Everyone in your group will receive the same 
subsidy. There will be a large subsidy for minimal damage, but the subsidy gets smaller as 
average group damage increases. If the measured group damage level is greater than the 
target, there will be no subsidy. The target for group damage is achieved when total group 
production is 144.  

 

 

Your group of six parcels is experiencing no weather variation. With no weather variation, you 
have a 100% experiencing normal weather.  

 

Example 1: If everyone produces 20 then your 
normal weather subsidy will be $22.55.   

 

Example 2: If five parcels produce 20 and one 
parcel produces 50, your normal weather subsidy 
is $0.   

 

You can test these scenarios on the calculator.  
Note how, in this part, your production decision 
will influence the profits of everyone in your 
group and the production decisions of others 
affect your profit.   
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In this part, the subsidy will be based on individual production. The subsidy may be different for 
different members of your group. If your production is greater than the target production for 
individuals, there will be no subsidy. The target for individual production is 24.  

 

 

Your group of six parcels is no weather variation. With very no variation, you have a 100% 
chance of experiencing normal weather.  

 

Example 1: If everyone else produces 35, but you 
produce 15 then your normal weather subsidy 
will be $22.47. Everyone else will have a normal 
weather subsidy of $0. Your subsidy is more than 
everyone else because you produced less. 

 

Example 2: If everyone else produces 20, but you 
produce 35 then your normal weather subsidy 
will be $0. Everyone else will have a normal 
weather subsidy of $20.28. Your subsidy is less 
than everyone else because you produced more.   

  

You can test these scenarios on the calculator. 
Note how, in this part, others’ production does 
not influence your profit. Your subsidy is more 
than everyone else because you produced less.  
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The Department of Applied Economics and Statistics carries on an extensive and coordinated program 
of teaching, organized research, and public service in a wide variety of the following professional 
subject matter areas: 

 

Subject Matter Areas 

Agricultural Policy Environmental and Resource Economics 

Food and Agribusiness Management and Marketing International Agricultural Trade 

Natural Resource Management Price and Demand Analysis 

Rural and Community Development  Statistical Analysis and Research Methods 

  
 

The department’s research in these areas is part of the organized research program of the Delaware 
Agricultural Experiment Station, College of Agriculture and Natural Resources. Much of the research is 
in cooperation with industry partners, the USDA, and other State and Federal agencies. The 
combination of teaching, research, and service provides an efficient, effective, and productive use of 
resources invested in higher education and service to the public. Emphasis in research is on solving 
practical problems important to various segments of the economy. 
 
The mission and goals of our department are to provide quality education to undergraduate and 
graduate students, foster free exchange of ideas, and engage in scholarly and outreach activities that 
generate new knowledge capital that could help inform policy and business decisions in the public and 
private sectors of the society. APEC has a strong record and tradition of productive programs and 
personnel who are engaged in innovative teaching, cutting-edge social science research, and public 
service in a wide variety of professional areas. The areas of expertise include: agricultural policy; 
environmental and resource economics; food and agribusiness marketing and management; 
international agricultural trade; natural resource management; operations research and decision 
analysis; rural and community development; and statistical analysis and research methods. 
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