RESTFUL API FOR INTEGRATIVE LITERATURE INFORMATION AND

KNOWLEDGE SERVICE

Xu Zhu

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Bioinformatics
and Computational Biology

Summer 2017

© 2017 Xu Zhu
All Rights Reserved

RESTFUL API FOR INTEGRATIVE LITERATURE INFORMATION AND

KNOWLEDGE SERVICE

Xu Zhu

Approved:

Cathy H. Wu, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:

Kathleen F. McCoy, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:

Babatunde Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:

Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

ACKNOWLEDGMENTS

I wish to thank my adviser, Dr. Cathy H Wu; and my committee members Dr.
Chuming Chen, and Dr. Li Liao for their continuous advice, guidance, and academic
support during the past two years. I must also thank my professional friends and
colleagues, Jia Ren, Gang Li, and M. Joseph Tomlinson IV, who have supported and
helped me throughout my graduate education.

This manuscript is dedicated to my parents, Fanzhu Zhu, Fang Sun and Yu
Zhu for their unconditional love; also to my friend Xi Jiao for her motivating and

inspiring.

iii

TABLE OF CONTENTS

LIST OF FIGURES vi

LISTOF TABLES ix

ABSTRACT X
Chapter

1. INTRODUCTION 1

2. BACKGROUND 3

2.1 RESTful AP 3

22 Relatedwork 5

3. APIDESIGN 12

3.1 iLINKS text-mining system_________ 12

3.1.1 Architectore 12

3.1.2 Datasources. 15

3.2 APL design principles. 19

3.3 API endpoints and description__________.__ 22

4. API IMPLEMENTATION AND DOCUMENTATION 37

4.1 Implementation. 37

4.2 Documentation 42

5. EXAMPLEUSECASE 49

6. DISCUSSION AND FUTUREWORK 53

7. CONCLUSION 55

REFERENCES 56

iv

Appendix

A API CONTENT DATA OBJECT KEYS DEFINITION

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3 .4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 3.8:

LIST OF FIGURES

Example BioC API for PubMed (Endpoint:
https://www .ncbi.nlm.nih.gov/research/bionlp/RESTful/pubmed.cgi
/BioC_json/19330006/unicode) 7

Example PubTator REST API (Endpoint:
https://www .ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/RESTfu

1/tmTool.cgi/BioConcept/19894120/PubAnnotation/) 10
Example PubTator annotation webpage view (19330006 as PubMed
00) 10
iLINKS Text-Mining System architecture 13

API data source and processing steps (Article source — MEDLINE,
text-mining tools — RLIMS-P, miRTex, PubTator; the dashed line
represents no-physical connection.) 15

Hieratical API interconnection structure. 23

API response for request
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/full
Infos json/ 26

Main objects in PubMed centric full information API (JSON
format). 26

ABSTRACT object in PubMed centric full information API (JSON
format). 27

RELATION object in PubMed centric full information API (JSON
format). 28

ENTITY object in PubMed centric full information API (JSON
format). 28

vi

Figure 3.9:

Figure 3.10:

Figure 3.11:
Figure 3.12:

Figure 3.13:

Figure 3.14:

Figure 3.15:

Figure 4.1:
Figure 4.2:

Figure 4.3:

Figure 4 4:

Figure 4.5:

Figure 4.6:

Version 1.0 API available biological entity type and role (left-side
green entities and right side blue entities represent of entity roles of
Biological Entity A and B; middle part yellow entities are the types
of Biological Entity; the lines indicate they are signed to the same

biological entity) 30
ENTITY object in PubMed centric minimal information API (JSON
format). 32
PubMed centric minimal information API (JSON format) 33
Main objects in entity centric APIs (JSON format). . 35

Entity centric entity property API (JSON format), in response to
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/properties.
json/ 35

Entity centric entity proteoform API (JSON format), in response to
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/proteofor

S JSON 36
API request and response cycle 38
iLINKS relational database general logic structure 39
API list in API page

(http://beadle.dbi.udel.edu/ilinks_test/rest/API/) . . 43

API type introduction in API page
(http://beadle.dbi.udel.edu/ilinks_test/rest/ AP1/#A10) 44

API description (sample code) in API page
(http://beadle.dbi.udel.edu/ilinks_test/rest/ API/#A11) 45

API response (JSON format result) in API page
(http://beadle.dbi.udel.edu/ilinks_test/rest/ API/#A11) 46

vii

Figure 4.7:

Figure 4.8:

Figure 5.1:

Figure 5.2:

Figure 5.3:

API example
page(http://beadle.dbi.udel.edu/ilinks_test/rest/example) 47

API home page (http://beadle.dbi.udel.edu/ilinks_test/rest/) and
FAQ page (http://beadle.dbi.udel.edu/ilinks_test/rest/faq/) 48

Search page in iLINKS text-mining system website
(http://beadle.dbi.udel.edu/ilinks_test/) 50

‘Invalid PubMed ID’ alert (with input ‘1234567890’) and ‘No text-
mining data available’ alert (with input ‘1°) on search page 50

Search result display (PubMed-19330006), with ‘gene’ filter on
entity table 51

viii

LIST OF TABLES

Table A.1: API data object keys definition.

ix

ABSTRACT

Biocuration needs efficient and high-quality data sources as well as automatic
literature curation as the result of dramatically increasing the volume of literature in
life science and biology fields. API is a stable and scalable mechanism to deliver
programmable data, which can become the data source for biocuration and data
presentation. RESTful API for Integrative Literature Information and Knowledge
Service (abbreviated to iLINKS) is designed to expose the text-mining data gained
from analyzing PubMed articles to support potential application development. The
iILINKS system integrated three text-mining tools, RLIMS-P, miRTex and PubTator
to capture phosphorylation relation, gene-miRNA relation and biological relation in
general. With the data generated by those text-mining tools, three different types of
APIs are built to deliver PubMed article full information, relation-specific
information, and across-article entity information. Following the best practice of API
design principle as well as the business rules in iLINKS system, the APIs are used to
deliver text-mining results along with PubMed article abstract/full text. API
documentation website is set to help developers to develop applications using the
APIs. An example PubMed ID based search web page can help biocurators quickly

searching for biological entities and relations for a given PubMed article. The

RESTful APIs will be widely used for developing other iLINKS applications, which

include Cytoscape knowledge network visualization, and BRAT literature annotation.

xi

Chapter 1

INTRODUCTION

Biocuration is a data collection process including identification, interpretation,
and integration of biological information, and reformat data into biological databases. [1]
Computational biology is an analytical technique built on biological data from
experiments and literature curation, whose availability and quality will influence the
downstream analysis results and conclusion [2]. The information curated from literature
can also be set as the reference and standard for related computational analysis and high-
throughput data assembly [3]. Since the middle 1990s, the dramatic increase in the
volume of life science literatures has published the urgent need for intelligent tools to
extract information and convert it to consistent format [2]. Providing accessible and
programmable data is another highly demanded function to help researchers gain insight
of the certain topic rapidly, so data integration and presentation are also crucial in
biocuration progresses [3].

API (Application Programming Interface) is a practical and scalable solution for
efficient biocuration data accessing methods. [4] Following the transformation of Web
2.0, REST (Representational state transfer) API became the main trend of building web
APIs. [5] [6] There are three reasons why RESTful API service is suitable to handle the
current difficulties we are facing in biocuration. First, the driver of API is exposing
capabilities, which matches the purposes of curators in terms of delivering data content
and functions. Second, API is a great support for the developers to integrate data or

functions into their applications, which helps to push biocuration into a higher

engineering level comparing to manual curation. Third, from the data providers' point of
view, providing API access can boost their business by having a wider group of
customers and users. So building RESTful APIs for Integrative Literature Information
and Knowledge Service (abbreviated to iLINKS) is chosen as my Master degree thesis
project. ILINKS Text-mining System, the Center for Bioinformatics & Computational
Biology (CBCB), University of Delaware.)

The thesis is organized as follows: Chapter 1 introduces the motivation of the
thesis and describes the high-level structure of the thesis. Chapter 2 presents the basic
background knowledge for building APIs and related work. Chapter 3 describes the
important role API plays in the iLINKS text-mining system project and presents the API
design principle and API endpoints descriptions. Chapter 4 focuses on API
implementation and documentation. Chapter 5 introduces example use case as searching
and returning data tables populated by the APIs. Chapter 6 discusses the potential
development directions for iLINKS API version 2.0; Chapter 7 concludes the thesis and

highlights the contribution of this thesis project.

Chapter 2

BACKGROUND

As a way to expose the data integrated in iLINKS text-mining database, RESTful
API is chosen as the media to deliver the data to all external users. Different from web
user interfaces (WUI) that has been widely used and viewed by users with a web browser,
API, application program interface, is a programmable data or function delivery service.
The consumers of APIs would mainly be developers and engineers. [7] Programming and
developing skills and expertise are required for API endpoints users, but all those steps
are taken to ultimately benefit a larger group of users. Because this thesis project is
exclusively designing APIs to deliver PubMed article text content and text-mining results
as the data objects, in this chapter, RESTful APIs and their applications in
biology/bioinformatics field are firstly demonstrated, then followed by some similar API

designs that are also aiming for exposing PubMed article and text-mining function.

2.1 RESTful API

iILINKS text-mining system processes PubMed articles and stores text-mining
results into a relational database. To present data in a programmable format, and make
the text-mining results available for programmatic access, data in the relational database
are processed and published as APIs. API is a media that allows application/software
to directly interact with the backend database. Some applications can use multiple
APIs from different resources, and good APIs can organize data into building blocks that

are easier to interact. REST (also called RESTful web service) is applied by HTTP

request and mainly doing textual representations access and manipulation, such as GET,
PUT, POST, DELETE and so on. [8] Those textual representations of web

resources could be documents or URL-identified files, which can be read through by a
browser. Many large-scale websites are using RESTful APIs, such as, Google, Amazon,
Twitter and LinkedIn.

Most of the biological databases and sources provide APIs as the external accesses
for part of their data or data processing functions. For example, NCBI (National Center
for Biotechnology Information) has entity-centric databases like Gene, Protein and Probe,
article-centric databases like PubMed and PubMed Central, also with functions like Blast,
and those data and functions are also accessible through NCBI E-Ultilities API system. [9]
Other biology-related API sources are like KEGG, tools like PubTator, Cytoscape, and
some APIs provided by research groups like PSAMM API from Computational
Molecular Ecology Lab at the University of Rhode Island. [10] With more and more
APIs offered in biotechnology and bioinformatics field, researchers and developers who
want to build their own web applications or mobile applications can directly use the
information or functions provided by those online biological sources. And with other
general APIs in computer and software engineering field, they can also combine different
APIs from different sources to increase app’s functionality. Ultimately, as part of the
research group, we want to design and build our own APIs for both internal and external

use.

2.2 Related work

Among the two hundred open source science APIs, there are more than one
hundred API sources are related to biology field, including bioinformatics (58 out of 195),
genetics (44 out of 195) and biology (35 out of 195), according to the data collected by
programmableweb.com. [11] NCBI Entrez API (E-Utilities) is the most popular one with
different functions and databases. One NCBI API access (named BioC API for PubMed)
that provides PubMed article data is directly related to this project. In addition, PubTator
also developed REST API as one of their new features. [12] The three APIs (BioC API
for PubMed, PubTator REST API, and iLINKS API in this project) all use PubMed
articles as data source. The main differences among the three APIs are, BioC API for
PubMed contains only article information, PubTator REST API and iLINKS API contain
text-mining data. The difference between PubTator REST API and iLINKS API are, in
data content aspect, iILINKS API contains the data generated from PubTator and two
other text-mining tools (RLIMS-P and miRTex), but PubTator REST API only has
PubTator text-mining as the data source; in API structure aspect, iLINKS API has three

different API structures but PubTator REST API only has one.

BioC API for PubMed
PubMed has several article presentation views, including common web view,
XML, MEDLINE and plain text. The access URL is defined in this format:

https://www .ncbi.nlm.nih.gov/pubmed/?term={PMID } &report={format } &format=text

Two parameters can be modified by users, one is {PMID}, which should be
replaced with PubMed ID (for example, 19330006), the other is {format} which can be
Summary, Summary (text), Abstract — the PubMed basic page, Abstract (text),
MEDLINE, XML and PMID List.

BioC API for PubMed is a RESTful API developed by Zhiyong Lu team, as part
of the NCBI text-mining service. [13] [14] The data source for this API is PubMed
database, and the API only displays article text and citation information without
integrating any text-mining or natural language processing (NLP) functions. The
endpoint for this API is defined as
https://www .ncbi.nlm.nih.gov/bionlp/RESTful/pubmed.cgi/BioC_{format}/{PMID}/{en
coding}

Three parameters can be customized by users, one is {format} with available
value ‘json’ and ‘xml’, another one is {PMID} for PubMed ID, and the last one is
{encoding} with available value ‘unicode’ or ‘ascii’. It is quite straightforward to know
how this endpoint works, even though there are no testing cases or any other detailed
documentation (with interactive try out).

For sample code (with parameters set as format = json, PMID = 19330006,
encoding = unicode), the request and response are shown below.

Request:
Method:
GET

Endpoint:

https://www .ncbi.nlm.nih.gov/research/bionlp/RES Tful/pubmed.cgi/BioC
_Jjson/19330006/unicode

Respond:

"date": "20170414",
"source": "PubMed",
"infons": {},
"documents": [
{
"infons": {},
"passages": [
{

"text": "A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX
in neural stem cell fate determination.",

"offset": 0,

"relations": [],

"infons": {

"type": "title"

Y,

"sentences": [],

"annotations": []

},
{

"text": "MicroRNAs have been implicated as having important roles in stem cell
biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and
may be involved in neural stem cell self-renewal and differentiation. We showed previously
that the nuclear receptor TLX is an essential regulator of neural stem cell self-renewal.
Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell
proliferation and accelerate neural differentiation. Introducing a TLX expression vector
that is not prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and
inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains
led to premature differentiation and outward migration of the transfected neural stem cells.
Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory
loop with TLX, miR-9 provides a model for controlling the balance between neural stem cell
proliferation and differentiation.",

"offset": 113,

"relations": [],

"infons": {

"type": "abstract”

Yy

"sentences": [],

"annotations": []

}
1,
"id": "19330006",
"relations": []
}
1,
"key": "collection.key"

}
Figure 2.1: Example BioC API for PubMed (Endpoint:
https://www .ncbi.nlm.nih.gov/research/bionlp/RESTful/pubmed.cgi/BioC_json/1933000

6/unicode)

The API contains basic document information (no citation information), title text,
and abstract text. Comparing to PubTator API and iLINKS API in this project, this article
text API stores article title and abstract separately, which on one hand is convenient for
displaying the article text (title and abstract structure) on the web page, but on the other
hand requires extra steps if users/developers want to process title text and abstract text

together.

PubTator REST API

PubTator, as introduced in the previous chapter, is an online text-mining tool with
search and annotation functions based on NCBI PubMed database. The text-
mining/annotation data, along with the original article is open for FTP download
(ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/), and PubTator developer team also added
REST API access recently (with brief documentation, without interactive try out). [14]
The data source for this API is still PubMed database, and the biological concepts that
can be recognized by PubTator integrated text-mining tools are gene, disease, specie,
mutation, and chemical component. The endpoint for this API is defined as
https://www .ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/RESTful/tmTool.cgi/{bio-
concept}/{PMID}/{format}/

There are three parameters, one is {bio-concept} with available values ‘Gene’,
‘Disease’, ‘Chemical’, ‘Species’, ‘Mutation’ and ‘BioConcept’ (for all included); {PMID}
is simple PubMed ID, and {format} can be ‘PubTator’, ‘BioC’, and ‘PubAnnotation’ (or

‘JSON’).

The sample code (with parameters set as bio-concept = BioConcept, PMID =

19330006, format = PubAnnotation), the request and response are shown below.

Request:

Method:

GET

Endpoint:

https://www .ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/RESTful/tmTool.cg

1/BioConcept/19894120/PubAnnotation/

Response: (not full data)

P WN PR

»{

"sourcedb": "PubMed",
"sourceid": "19894120",
"text": "Lipopolysaccharide increases the expression of multidrug resistance-associated

protein 1 (MRP1) in RAW 264.7 macrophages. Multidrug resistance-associated protein 1
(MRP-1) is a ubiquitously expressed member of the ATP-binding cassette transporter
family. MRP-1 is one of the primary transporters of glutathione and glutathione
conjugates. This protein also transports antiretroviral therapeutics, such as HIV-1
protease inhibitors (PI). We hypothesized that inflammatory mediators that activate
macrophages would modify the expression and activity of MRP-1 in macrophages. Real
-time PCR assays, western blots, and calcein efflux assays were used to show that
exposure of macrophage cell line RAW 264.7 to lipopolysaccharide (LPS) increased
expression of MRP-1 at the levels of mRNA, protein, and functional activity.
Treatment of macrophages with LPS resulted in 2-fold increases of MRP-1 expression or
functional activity. LPS-mediated increases in calcein efflux were repressed by the
MRP-specific inhibitor MK-571. These results suggest that the effectiveness of HIV-1
PI therapy may be compromised by the presence of opportunistic infections.",

"denotations": [

{
"obj": "Species:11676",
"span": {
"begin": 405,
"end": 410
}
1,
{
"obj": "Species:11676",
"span": {
"begin": 1066,
"end": 1071
}
1,

Figure 2.2: Example PubTator REST API (Endpoint:

https://www .ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/RESTful/tmTool.cgi/BioConcept/
19894120/PubAnnotation/)

The iLINKS full-information API has similar structure as PubTator REST API,
which consists of article information (source and ID), article text (title and abstract
together), and annotation information (with start and end character positions within the
article text). This structure is simple and convenient to work with when each biological

entity is marked by a unique ID. The API can be directly used by annotation tools such as

Brat Rapid Annotation Tool (http://brat.nlplab.org/).

% Disease 4 Sp

Curatable Bioconcepts
i Go back || ~ Not Curatable PubTator (
TBD

S @ Mutation |2 Chemical

PMID:19330006 A feedback reg y loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination
Publication: Nature structural _ molecular biology; 2009 Apr ; 16(4) 365-71 [PMC] [Full text links

- (Chemical) (Disease’ (Species) Mutation Clear Reset i]

TITLE:

A feedback regulatory loop involving microRNA-9 and nuclear receptor [l in neural stem cell fate determination.
ABSTRACT:

MicroRNAs have been implicated as having important roles in stem cell biology. MicroRNA-9 (miR-9) is expressed specifically in
neurogenic areas of the brain and may be involved in neural stem cell self-renewal and differentiation. We showed previously that
the nuclear receptor - is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses

expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a - expression
vector that is not prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and inhibited precocious
differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the

loop with [l

, miR-9 provides a model for controlling the balance between neural stem cell proliferation and differentiation.

(i} © Concept View Mention View Add bio-relation annotation to the table below.

Entity type Entity mention Concept ID Nomenclature Delete
Disease proliferation deficiency €565054 MEDIC Delete
Gene TLX

G790 NCBI Gene Delete

Figure 2.3: Example PubTator annotation webpage view (19330006 as PubMed ID)

10

From the aspect of article data display and annotation, PubTator has its built-in
article annotation view, which can be the reference development direction for iLINKS
API usage. This potential usage also influenced the design of iLINKS APIs. [15]

Regarding three APIs (BioC API for PubMed, PubTator REST API and the
RESTful API for iLINKS text-mining system as this thesis project), they are all PubMed
article centric data access APIs. When comparing BioC API for PubMed and RESTful
API for iLINKS text-mining system, BioC API for PubMed only contains PubMed article
text and article related information and there is no text-miming data included; RESTful
API for iLINKS text-mining system, on the other hand, contains PubMed article text,
article information, and text-miming data. When comparing PubTator REST API and the
RESTful API for iLINKS text-mining system, RESTful API for iLINKS text-mining
system has two special target-specific text-mining tools (RLIMS-P and miRTex) that
PubTator system does not have. And one unique feature the RESTful APIs for iLINKS
text-mining system have is that there is one subtype of APIs that accesses the information
across multiple PubMed articles as they have been integrated into the underlying
relational database. In other words, BioC API for PubMed and PubTator REST API only
have APIs for single PubMed article, but RESTful APIs for iLINKS text-mining system

have APIs that can deliver related information from multiple PubMed articles.

11

Chapter 3

API DESIGN

API design in general follows some universal design principles and patterns, and
there always is a trade-off between flexibility and usability. Flexibility indicates that API
should contain more than one function and is able to support different use cases; usability
indicates that if the API can serve its basic purpose and be consumed by users properly.
The increase in flexibility will add complexity to API, which may have a negative impact
on the user experience and make the API hard to use. [16] [17] For this project, we are
targeting the specific field - biocuration, so instead of trying to design a mashup API with
multiple functionalities, we want to create simple data delivery APIs. [18] Since data is
the main component of the APISs, in this chapter, the data source is introduced first,

followed by API design principles and API service description.

3.1iLINKS text-mining system

Before diving into the API design, we want to present the high-level architecture
of iILINKS text-mining system. The data source of the APIs is also a big component of
the whole pipeline. RESTful API plays an important role in overall data flow. It supports
data manipulation to backend database to keep the system stable using self-checking

method; it also supports potential client application development.

12

3.1.1 Architecture

.

é Data Tier
/—

Data processing:
Article Source:
PubMed Database
Text-mining Tools: l SQL*Loader
RLIMS-P
miRTex
PubTator

Data Storage: Oracle Database

A

==l

‘ Web Tier

ALY

Django Framework

e

API Documentation Website RESTful API Web Service
A
e

e API type 1: PubMed Centric — Full Information Return
/v1/PubMed/{PubMed ID}/fulllnfos.[format]/

/v1/PubMed/{PubMed ID}/entities.[format]/
/v1/PubMed/{PubMed ID}/relations.[format]/

e API type 2: PubMed Centric — Minimal Information Return
/v1/PubMed/{PubMed ID}/entity_type/{entity type}/entities.[format]/
/v1/PubMed/{PubMed ID}/entity_type/{entity type}/entity_role/{entity role}/entities.[format]/
/v1/PubMed/{PubMed ID}/relation_type/{relation type}/relations.[format]/

/v1/PubMed/{PubMed ID}/relation_type/{relation type}/relation_attribute/{relation attribute}/relations.[format]/

e API type 3: Entity Centric — Specific Information Return
/v1/Entrez/{Entrez ID}/properties.[format]/

/v1/Entrez/{Entrez ID}/interactions.[format]/
/v1/Entrez/{Entrez ID}/proteoforms.[format]/

k —

~
PubMed Searching Website

~

JSON / XML

~

~

(_- Client Tier i 7

Code Samples: Python, cURL, HTTP
Application:
Annotation: BRAT Annotation Tool
Network: Cytoscape

URL access in browser:

G

Figure 3.1: iLINKS Text-Mining System architecture [19]

13

Figure 3.1.1 shows an overall architecture of iLINKS text-mining system.
Because this project concentrates on PubMed article text-mining for biocurators to do
annotation and further development, the original data content is retrieved from PubMed
Database (MEDLINE), which covers article information (PubMed ID), and article text
(title and abstract). Then three text-mining tools (RLIMS-P, miRTex, and PubTator) are
applied to the article data to capture biological entity data and biological relation data
(entity A and entity B interact to form a relation). The text-mining output data are
integrated into Oracle relational database.

The text-mining output data are re-organized in the relational database, stored
procedures are used to generate the initial data content for each iLINKS API, and those
stored procedures in the database are called from Web tier directly using Python cursor
function. Next step is to define the URLs/endpoints for APIs and follow up with Django
views to handle the input parameters from URL and pass them to the stored procedure
calling class (Python class). So it forms a complete data flow from API request to API
response.

A Django website is created to document APIs (includes introductions and one
case study utilizing three APIs). In order to serve the purpose of benefiting both internal
and external users and developers to do integrity checking, data monitoring or article
searching, a search web interface is also created that takes one PubMed ID as input and
return article text (title and abstract) and its biological entities and relations. This
interface is also built upon the same Django framework to keep the consistency and

independence. For other on-going application development supported by APIs,

14

Cytoscape (knowledge network) and BRAT (article annotation) are chosen as two typical

visualization applications, which are under development by other team members.

3.1.2 Data sources

Because all the APIs' data content is generated in Oracle database by stored
procedures, the data source and data pre-processing need to be described. As shown in
the Figure 3.1.2, the main biological article source is MEDLINE/PubMed, there are three
text-mining tools processing the articles, and the text-mining output data are reformatted

before being loaded into a database.

RLIMS-P:
Kinase-Substrate
Relation Oracle Database
Pre-Processing:
: . alignment,
MEDLINE Ge?ﬁ;?ém normalization for
(PubMed) Relation biological entities,
and reformatting
PubTator:
General
Relation

Figure 3.2 API data source and processing steps (Article source — MEDLINE, text-
mining tools — RLIMS-P, miRTex, PubTator; the dashed line represents no-physical

connection.)

In the figure above, the dashed line from MEDLINE to PubTator represents that
even though MEDLINE is the article source for this tool but we do not need to collect
article data from MEDLINE manually, instead, PubTator has an inner connection with

MEDLINE and the text-mining result can be downloaded directly through its FTP.

15

In terms of article resource chosen for this project, MEDLINE (Medical Literature
Analysis and Retrieval System Online) is originated in 1964 and contains more than 23
million life science journal citations and abstracts. [20] It covers biology, biochemistry,
medicine, pharmacy, and health care, with the recommendation and selection of the
Literature Selection Technical Review Committee (LSTRC). MEDLINE is the major
component of PubMed database, which is managed by NLM National Center for
Biotechnology Information (NCBI). As the most widely used open bioinformatics
literature resource, The MEDLINE/PubMed Baseline Repository is also chosen as the
first and primary literature source for this thesis project.

In terms of the article text processing method, text-mining tool is one component
of the data processing workflow, which utilizes the natural language processing systems
to capture biological entities and relations in the literatures. In this thesis project, there
are three text-mining tools being used to processing the PubMed abstracts, which are
PubTator developed by NCBI Computational Biology Branch (CBB), RLIMS-P and
miRTex developed by the Center for Bioinformatics & Computational Biology (CBCB),
University of Delaware and the Department of Computer and Information Sciences,
University of Delaware.

RLIMS-P (abbreviation of Rule-based Literature Mining System for
Phosphorylation), is an enhanced text-mining tool, specifically tagging protein
phosphorylation relation by identifying kinase, substrate, and phosphorylation site as
biological entities and also distinguishing the phosphorylation trigger words as biological

relations. It ingrates the natural language processing and information-extracting modules

16

to process articles and recognize patterns for phosphorylation relations, to which the data
resource is all the articles from MEDLINE/PubMed with PubMed ID, title, and abstract
data. RLIMS-P 2.0 is capable of processing full-length articles from PubMed Central
(PMC OA database), and extract relation information beyond regular expression patterns
and across sentences. The accuracy and overall performances of RLIMS-P 2.0 were
checked by development team using high expression variety articles (abstracts and full-
length articles) data and achieved 0.9 and higher F-scores for capturing kinase, substrate,
and phosphorylation site. Additional evaluation was done using 2013 BioNLP-ST GE
task content and achieved F-score 0.87 on phosphorylation core task. [21] RLIMS-P
output is in JSON format, containing PubMed ID, abstract text, phosphorylation relation
type tagging, biological entity types (kinase, substrate and phosphorylation site) tagging.
miRTex is another text-mining tools used in this project, and similar to RLIMS-P,
miRTex is designed to identify one type of biological relation — the relation between
miRNA and the gene it regulates. Different from RLIMS-P, miRTex can specify the
relation by adding direction and directness features; if miRNA directly regulates the
gene, it is called ‘miRNA-target’ relation; if miRNA indirectly regulates the gene or the
directness is unknown, it is called ‘miRNA-gene’ relation; and if it is gene that regulates
the miRNA, it is called ‘gene-miRNA’ relation. Aside from the capability of capturing
the ‘gene-miRNA’ relation, another design that makes miRTex unique is its precision.
[22] Previous text-mining systems usually use a co-occurrence-based approach or use
machine-learning, but their overall accuracy is not quite satisfying even though they may

achieve a good result in recall. [23] The output data format is similar to RLIMS-P which

17

makes it convenient for backend developers to do integrity checking and data
reformatting before importing into the database.

PubTator, which is an online open-source texting-mining and annotation tool for
biocuration, is used as the third text-mining tool (also text-mining data resource) in this
project. Different from RLIMS-P and miRTex, PubTator is a web-based system, and its
major task is to provide article annotations dynamically, with searching and selecting
functions. Another difference is that PubTator targets on multiple biological relations and
entity types at the same time, including gene, disease, specie, mutation, and chemical
component. And to be specific, PubTator integrates multiple biological entity tracking
and normalizing tools, which are GeneTUK:it [24] for gene identification (with GenNorm
[25] for normalization), DNorm [26] for recognizing diseases, tmVar [27] for tracking
mutations. and SR4GN [28] for tagging species, and a dictionary-based lookup approach
[29] for chemicals. [12] PubTator contains all the content in PubMed (NCBI) database,
which matches the data source for RLIMS-P and miRTex, and it is available through FTP
access. In this project, the combined package for all 5 concepts (Gene, Disease, Species,
Mutation, and Chemical) was downloaded and put into use (named

bioconcepts2pubtator_offsets). The data structure is for this data file is as below:

<PMID>|t|<TITLE>

<PMID>|a|<ABSTRACT>

<PMID> <START OFFSET 1> <LAST OFFSET 1> <MENTION 1> <TYPE 1> <IDENTIFIER 1>
<PMID> <START OFFSET 2> <LAST OFFSET 2> <MENTION 2> <TYPE 2> <IDENTIFIER 2>

This format is similar to the data output from RLIMS-P and miRTex, and because

of the similar data set structure, a relational database was built to store all the data with

18

the potential for adding more data from different text-mining tools, which includes
pGenN (for Proteoform), DiMex (for Variant), and eFIP for Phosphorylation PPI
(protein-protein interaction).

An Oracle relational database is used to store text-mining results. The text-mining
output data are integrated through pre-processing, including alignment, normalization for
biological entities, and reformatting to fit the staging table in the Oracle database for
direct importing. SQL*Loader, a powerful data parsing engine that can load data from
external files to Oracle database under Linux system, is used to import all the text-mining
data into staging tables in the Oracle database. Later the data in staging tables are mapped
into the productive schema for this relational database, which is mainly composed of
entity, entity-feature, relation, relation-feature and document, document-feature table
structure. In the productive database schema, short strings (for describing words) are
stored in data type VARCHAR, and long strings (like title and abstracts) are stored in
data type CLOB. A separate MongoDB is also in use to store the article full texts and

sentences.

3.2 API design principles

A design principle is crucial for every kind of design and engineering, not just
limited to API design. Simplicity and functionality are, for example, universal principles.
When designing something, the first request would be if it can work, then it would come
to if it is easy to use. For API design, functionality is still the primary requirement; an

API should be able to deliver enough functions or data that can fulfill the needs from API

19

consumers and all other users (through the entire API usage cycle). For example, in this
project, the API usage cycle would be data import, article text display or processing, and
text-mining data analyzing. So each API should contain those three components so that
when users execute one API, they can get all the data they want at once, instead of
jumping around several APIs. As mentioned at the beginning of this chapter, there is a
simplicity-functionality trade-off in API design. The simplicity can ensure users a good
user experience and also lower the learning curve for API usage and consumption. One
possible solution would be to build granulated APIs. Granulated APIs mean the functions
or data developer wanted to expose through APIs are divided into small reusable sections.
This concept does not violate the requirement of containing enough programmable
capabilities, because, even one API is a small function block, it still needs to be able to
stand alone and support the application actions.

Industrial standard is a great guide to follow, it is also a principle for API design;
by adapting to the same standard, both providers and consumers of APIs can have a
familiar circumstance to work in and also they can have more support from other groups
and resources. [29] So for the API design in this thesis project, RESTful API is chosen
other than SOAP API, and the reason is RESTful is a simple and popular standard API
type for web application, which has become the most widely used API type. JSON and
XML are set as the two formats for API data format, because they are the most
commonly used API data formats, and they are also the standard API format across all
types of APIs provided by different organizations. Meet the industry standard does not

mean to ignore the special requirement of individual project. For example, in

20

biology/bioinformatics field, there is a large portion of researchers and scientist working
with the BioC data type. So for the future development of the API version 2.0 (Current
API is in version 1.0), BioC will serve as the third API format. As to API endpoint
design, strict rules need to be followed. The rules include 1) use a noun instead of a verb;
2) use plurals instead of single nouns; 3) versioning should be part of API endpoints; 4)
API format should be specified at the end of each endpoint; 5) API depth should be
controlled into an appropriate range. [30] Those rules may vary partially from one API
project to another, but the ideal status remains the same.

API documentation and dogfooding (also known as self-checking) may not be
required from all the API providers, but they are highly recommended and demanded
from users and direct consumers. [31] A good API documentation should at least contain
API description, endpoints, method, parameters, request, response, and code samples for
try out. [32] A website dedicated to documenting APIs is built as part of this thesis
project and will be described in detail in the next chapter. On the other hand, as
mentioned in the previous chapter, two related work for building APIs, neither of them
has a complete API documentation. That also makes the APIs here more user-friendly
and competitive. Dogfooding is not always applicable because sometimes the agencies
that published APIs only came up with some use cases but they did not build a real
application using the APIs they provided. However, in this project, a PubMed search web
page is created using three API endpoints. The data in APIs are processed to generate a

search response, which consists of PubMed article text, biological entity information

21

table, and biological relation information table. This search page will also be described in

more detail in Chapter 5.

3.3 API endpoints and description

Following the design principles described previously, the versioning is included
in the API root URL, which is 'http://beadle.dbi.udel.edu/ilinks_test/rest/v1/'. For current
development progress in the iLINKS text-mining system, this API project is running on
development branch with the embedded URL as '/ilinks_test/'; all current APIs are in
version 1.0, which is also indicated in root URL as '/v1/'. This root URL stays consistent
through all the APIs designed in this thesis project. In terms of URL structure and depth,
there are general patterns for all APIs. (Not all the APIs have the same depth.)
/grandparent/{grandparent_ID }/parent/{parent_ID}/siblingA/{siblingA_ID}/siblingB/{si
blingB_ID}/endfile format

There are four layers of depth, which are grandparent, parent, sibling, and end
file. There are three main types of APIs, with different concentrations and data coverage.
Figure 3.3.1 stands for the general hieratical structure of how the APIs distinguish from

each other and interconnect with each other.

22

, e :
I 1 (Full Information Return) 1 1
| | I
I v 1 I
1 N (/PubMed/{PubMed ID}fullinfos.[format)/ | | I
| \\ N 1 1
: S (/PubMed/{PubMed IDYentities.[format)/) : 1

APl typel | S I :
] S N (/PubMed/{PubMed IDY/relations.[format]/) 1 I
| (pusttea contr St
1 I Minimal Information Return

11
I ; 1]
L \ /PubMed/{PubMed ID}/entity_type/{entity type}/entities.[format]/ 11
1 \
| \ 11
1 \ /PubMed/{PubMed ID}/entity_type/{entity type}/entity_role/{entity : :
1 \ role}/entities.[format]/
I \ 11
\ 11
I \ (/PubMed/{PubMed ID}/relation_type/{relation type}/relations.[format]/] 11
| \ 1
1 1 /PubMed/{PubMed ID}/relation_type/{relation 11
1 1 type}/relation_attribute/{relation attribute}/relations.[format]/ ; :
I L e —— I
-]
I Y :
AP type3 i i = :)
i i (Specmc Information Return) 1 |
| 11
1 \\ (/Entrezl{Entrez ID}/properties.[format]/] 1 |
I N I :
: \\ [/Entrez/{Entrez ID}Iinteractions.[format]/J : |
I S 11
b I
1 ~ (/Entrezl{Entrez ID}/proteoforms.[format]/) 1

Figure 3.3: Hieratical API interconnection structure.

We want to distinguish PubMed-centric APIs from Entity-centric APIs because of
their two major data coverage directions. For PubMed centric APIs, users can choose to
return full information or minimal information as two different data content types. For
full information content, there are still three different options ‘fullinfos’ (entities and
relations combined), ‘entities’ and ‘relations’. For minimal information content, the user

can specify the entity type/role or relation type/attribute to narrow the data to a specific

23

biological topic they are interested in. For the third main type of APIs, they are Entity-
centric, meaning the data are collected according to one specific biological entity (for
example, one protein with Entrez ID 2065). Furthermore, there are three data content

options for users, which are entity property, entity interaction, and proteoform.

API type 1

Using PubMed ID to get all the text-mining data extracted from its title and
abstract. This type of APIs has full coverage on all the information stored in the database
related to single PubMed article. The API consumers and data users can execute this API
to get the article text along with its text-mining result. This design is applicable for
applications like basic data table presentation, document annotation, interaction network,
statistics/metadata generation and so on. Because it contains the full information, it can
be called once and feed many applications at the same time. With this one-stop data
delivery feature, this API can be coordinated in PubMed search functions to generate
article text display and table views. (This example will also be described in detail in
Chapter 5.)

There are three sub-types for this API design, which varies in the data content it
contains, entity data only, relation data only, or full data (with both entity and relation
data). All of them contain basic PubMed information including PubMed ID, source, and
article text (title and abstract together). So the API method and request (extending the
API root URL mention before) will be like below. Here only GET method is allowed and

all data are read-only. ‘/v1/’ is still part of API root URL, showed here to emphasize the

24

versioning. The section marked as ‘{PubMed ID}’ is expected to be replaced entirely by
the real PubMed ID that the API consumers are interested in. For version 1.0, JSON and
XML are available as format options, which are marked as [format] in the URL.
e GET full data:
/v1/PubMed/{PubMed ID}/fulllnfos.[format]/
e GET entity data:
/v1/PubMed/{PubMed ID}/entities.[format]/
e GET relation data:
/v1/PubMed/{PubMed ID}/relations.[format]/

To be more specific, for example, an API consumer has one PubMed ID as
19330006, and he wants to return data in JSON format. The three sub-type of APIs
should be called by the URL as shown below. For XML format data, the consumers can
simply replace ‘.json” with ‘.xml’ at the end of each URL.

e GET full data:
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/fulllnfos]
son/

e GET entity data:
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/entities.js
on/

e GET relation data:
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/relations.

son/

25

The response viewed in browser is shown in Figure 3.3.2 below.

‘ C' ® beadle.dbi.udel.edufilinks_test/rest/v1/PubMed/19330006/fullinfos.json/ Q %

{"PMID":"19330006", "RELATION" : [{"SENTENCE_TEXT":"Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural
differentiation”,"R_ENTITIY B":

{"ENTITY_B_TYPE":"Gene", "ENTITY_B_CHAR_END

92, "ENTITY_B_CHAR_START":490,"ENTITY_B_ROLE":"target","ENTITY_B_INTERNAL_ID":190523,"ENTITY_B_NAME":"TLX"},"DIRECTION":1,"SEN_CHAR_END":596,"RELATION_

INTERNAL_ID":37969, "BIORELATION TYPE" : "niRNA-Gene", "PREFERRED_IERY" :null,'BIORELATION TERM TYPE': ,"DATA_SOURCE_NAME" : "miRTex" , "R_ENTITIY_A"

{"ENTITY_A_INTERNAL_ID":190532, "ENTITY_A_ROLE regulator",”BNTITY A_TYPE": "mi ITY_A_CHAR_START": NTITY_A_CHAR_END":477,"ENTITY_A NAME'":'miR-

9"}, "NOUN_REL_ONTOLOGY_TERM" : "n: END": +"(direct,unknown), (nullarg,0),

(rel_type,M2G)" , "REL_(om-omcy 'mua TRNA2GENE" , "RELATION_CHAR_START 79, "BIORELATION_TERM_NAME "}],"ABSTRACT" : {"SOURCE"

feedback latory loop i and nuclear receptor TLX in neural stem cell fate i have been implicated as having important roles in stem cell biology.
(miR-9) is ifically in ic areas of the brain and may be involved in neural stem cell self-renewal and diffe t We showed i that the nuclear

receptor TLX is an essential regulator of neural stem cell self-remewal. Here we show that miR-9 TLX to ragulate neural stem cell proliferation and accelerate

neural differentiation. Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR-9-i proliferation and inhibited precocious differentiation. In utero

electroporation of miR-9 in embryonic brains led to differentiation and outward of the neural stem cells. Moreover, TLX represses expression of the miR-9 pri-

miRNA. By forming a negative regulatory loop with TLX, MiR-9 provides a model for controlling the balance between neural stem cell proli and differenti "}, "ENTITY

[{"ENTITY_CHAR_END":492,"DATA_SOURCE_NAME":'miRTex","SITE_CHAR_END":null,"BIOENTITY TYPE":"Gene","DESCRIPTION":"gene","PREFERRED_NAME":null,”ATTRIBUTE_TYPE":null,"SITE_CHAR START":null,"SITE":nul
1,"SEN_CHAR_START":455,"NORMALIZED_SOURCE_ID":"(Entrez,4179)","BIOENTITY NAME":"TLX","ENTITY_INTERNAL_ID":190523, "zunry CHAR_START":490, "SEN_CHAR_END":596, "SENTENCE_TEXT":"Here we show that miR-
9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation’},
{"ENTITY_CHAR_END":393,"DATA_SOURCE_NAME':"miRTex", :null, "BIOENTITY_TYPE":"Gene","DESCRIPTION": "gene" ," PREFERRED_NAME
| "SEN_CHAR_START" :344, "NORMALIZED_SOURCE_ID":" (Entrez,4179)", "ammwm(NAME": "nuclear receptor TLX","ENTITY_INTERNAL_ID":190524,"ENTITY_CHAR_START":374,"SEN_CHAR_END"
Showed previously that the nuclear recepfor TLX is an essential regulator of neural stem cell self-renewal}
{"ENTITY_CHAR_END":71, "DATA_SOURCE_NAME' CHAR_END":null, "BIOENTITY_TYPE":"Gene" , "DESCRIPTION"
"SEN_CHAR_START" :0, "NORMALIZED_SOURCE_ID":" (Entrez,4179)","BIOENTITY_NAME":'nuclear receptor TLX',"ENTITY INTERNAL_ID":190525,"ENTITY_CHAR START":52,"SEN_CHAR_END":
regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination"},
{"ENTITY_CHAR_END":477,"DATA_SOURCE_NAME" ull, "BIOENTITY_TYPE":"miRNA","DESCRIPTION" : "miRNA" ,"PREFERRED_NAME':null,"ATTRIBUTE_TYPE":null,"SITE_CHAR_START":null,"SITE":nu
11, "SEN_CHAR_START':455, "NORMALIZED_SOURCE_ID ":"miR-9", "ENTITY_INTERNAL_ID":190532,"ENTITY_CHAR_START":473,"SEN_CHAR_END":596,"SENTENCE_TEXT":"Here we show that miR-9
TLX to regulate neural stem cell proliferation and lerate neural differentiati
{"ENTITY_CHAR_END":201,"DATA_SOURCE_NAME': "miRTex","SITE_CHAR END":null,"BIOENTITY_TYPE":'miRNA","DESCRIPTION":"miRNA","PREFERRED_NAME":null,"ATTRIBUTE_TYPE":null,"SITE_CHAR START":null,"SITE":nu
11, "SEN_CHAR_START" :192, "NORMALIZED SOURCE_ID" :null, "BIOENTITY NAME":'MicroRNA-9", ENTITY INTERNAL m":wuszu,"zm-xn CHAR_START":192,"SEN_CHAR_END":342,"SENTENCE_TEXT":"MicIORNA-9 (miR-9) is
specifically in areas of the brain and may be involved in neural stem cell self-renewal and differentiation"},
{"ENTITY_CHAR_END":793,"DATA_SOURCE_NAME':"miRTex","SITE_CHAR END":null,"BIOENTITY_TYPE":'miRNA","DESCRIPTION":"miRNA","PREFERRED_NAME":null,"ATTRIBUTE_TYPE":null,"SITE_CHAR START":null,"SITE":nu
11 "SEN_CHAR_START":761, "NORMALIZED_SOURCE_ID":null,"BIOENTITY NAME":"miR-9","ENTITY_INTERNAL_ID":190533,"ENTITY CHAR START":789,"SEN_CHAR END":906,"SENTENCE_TEXT":"In utero electroporation of
R-9 in embryonic brains led to premature dxiferentxatxon and outward migration of the transfected neural stem cells'),

ND" 39 ull, "BIOENTITY_TYPE":"miRNA","DESCRIPTION": "miRNA","PREFERRED_NAME":null,"ATTRIBUTE_TYPE":null,"SITE_CHAR_START":null,"SITE":nu

"miR-9", "ENTITY_INTERNAL ID":190527,"ENTITY CHAR START":950,"SEN_CHAR END":965,"SENTENCE_TEXT':'Moreover, TLX represses

:null, "ATTRIBUTE_TYPE" :null,"SITE_CHAR_START":null,"SITE":null
453, "SENTENCE_TEXT" : "We

"gene", "PREFERRED_NAME" :null, "ATTRIBUTE_TYPE' :null,"SITE_CHAR_START":null,"SITE":null,
11, "SENTENCE_TEXT":"A feedback

ull, "BIOENTITY _NAME

expression of the miR-9 pri-miRNA"},
{"ENTITY_CHAR Bun"~45,"m\n\ SOURCE_NAME" : "miRTex" , "SITE_CHAR_END":null,"BIOENTITY_TYPE":"miRNA","DESCRIPTION":"miRNA","PREFERRED_NAME":null,"ATTRIBUTE_TYPE":null,"SITE_CHAR_START":null,"SITE":nul
1,“sBu CHAR_START" null, "BIOENTITY_NAME" : "microRNA-9" , "ENTTTY_INTERNAL ID':190528,ENITTY CHAR_START":37,"SEN CHAR END':111,"SENTENCE_TEXT":"A feedback regulatory loop
volving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination'},
(“zmmy CHAR_END":1019, "DATA_SOURCE_NAME': "miRTex" , "SITE_CHAR_END":null,"BIOENTITY_TYPE":"miRNA","DESCRIPTION":"miRNA","PREFERRED_NAME":null,"ATTRIBUTE_TYPE":null,"SITE_CHAR_START":null,"SITE":n
ull,"SEN_CHAR_START":967, "NORMALIZED_SOURCE_ID" :null,"BIOENTITY_NAME":"miR-9","ENTITY_INTERNAL_ID":190526,"ENTITY_CHAR_START":1015,"SEN_CHAR_END":1124,"SENTENCE_TEXT":"By forming a negative
regulatory loop with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and differentiation"},
{"ENTITY_CHAR_END":659,"DATA_SOURCE_NAME": "miRTex","SITE_CHAR END":null,"BIOENTITY_TYPE":'miRNA","DESCRIPTION":"miRNA","PREFERRED_NAME":null,"ATTRIBUTE_TYPE":null,"SITE_CHAR_START":null,"SITE":nu
NORNALTZED_SOURCE_TD" :null, " "BIOENTITY_NAME':’miR-9","ENTITY_INTERNAL ID':190531,"ENTITY cinR sTaR 59, "SENTENCE_TEXT": "Introducing a TLX expression
prone to miR-9 lation rescued mil liferation defici and inhibited ,
{"ENTITY_CHAR END':208, "DATA_SOURCE NAME': 'miRTex',"SITE_CHAR END':null,"BIOENTITY TYPE':’miRNA',"DESCRIPTION':'miRNA","PREFERRED NAME':null, "ATTRIBUTE TYPE':null,SITE_CHAR START':null,"SITE":nu
11, "SEN_CHAR_START":192, "NORMALIZED SOURCE_ID":null,"BIOENTITY NAME':'miR-9","ENTITY INTERNAL ID':190529, "ENTITY CHAR START":204, SEN CHAR END':342,"SENTENCE TEXT":'MicTORNA-9 (miR-9) is
1ly in areas of the brain and may be involved in neural stem cell self-renewal and differentiation’},
{'ENTITY_CHAR_END':684, "DATA_SOURCE NAME':'miRfex","SITE CHAR END':null,"BIOENTITY IyPE’:'niRNA",'DESCRIPTION": miRNA’, 'PREFERRED NAME':null, 'ATTRIBUTE TYPE":null, "SITE CHAR START':null,"SITZ' iny
11,"SEN_CHAR_START":598, "NORMALIZED_SOURCE_ID":null,"BIOENTITY_NAME":"miR-9","ENTITY_INTERNAL ID":190534,"ENTITY_CHAR_START":680,"SEN_CHAR_END":759,"SENTENCE_TEXT":"Introducing a TLX expression
vector that is mot prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation”}]}

Figure 3.4: API response for request

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/fulllnfos.json/

The data contained in those APIs as multiple arrays/objects, and the definitions is
consistent through all the API design since all the APIs are generated from the same data
source.

For API with full information returned (in JSON format), there are four main

objects:

1-{
2 "PMID": "19330006",
3 "RELATION":
39» "ABSTRACT":
43 "ENTITY": [E&3]
261

Figure 3.5: Main objects in PubMed centric full information API (JSON format).

26

In the ‘“ABSTRACT’ object, there are two key-value pairs storing the article

source (‘SOURCE’) and article text (“ABSTRACT").

1-(
2 "PMID": "19330006",
3» "RELATION": [@&=3],
39~ "ABSTRACT": {
49 "SOURCE": "medline",
41 "ABSTRACT": "A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell
fate determination. MicroRNAs have been implicated as having important roles in stem cell biology.
MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in
neural stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX
is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX
expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation.
Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR-9-induced
proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in
embryonic brains led to premature differentiation and outward migration of the transfected neural stem
cells. Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory loop
with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and
differentiation."
42 1,
43» "ENTITY": [@&=3]
261 }

Figure 3.6: ABSTRACT object in PubMed centric full information API (JSON format).

In the ‘RELATION?’ array, relation records are appended to a list/array in the
JSON API; within each relation object, there are 16 key-value pairs storing biological
relation information and 2 objects storing the information for two biological entities that
interact with each other. Similarly, the ‘ENTITY’ array contains the biological entity
information. Because the initial goal for building the APIs is to feed data to annotation
(BRAT annotation tool), network (Cytoscape) and data tables (jQuery DataTable)
applications. The structural requirements from those applications do have an impact on
how data are organized in those APIs. For example, the jQuery DataTable prefers all data
stored as objects in one array and all have exactly the same keys with each object. And in
order to only provide the necessary data, consumers can decide which objects they want.
The three combinations are:

e GET full data: PMID + ARTICLE + ENTITY + RELATION

27

e GET entity data: PMID + ARTICLE + ENTITY

e GET relation data: PMID + ARTICLE + RELATION

The pretty formatted API data are shown as below:

1-({
2 "PMID": "19330006",
3~ "RELATION": [
4~
5 "SENTENCE_TEXT": "Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem
cell proliferation and accelerate neural differentiation",
6" "R_ENTITIY_B": {&=3},
14 "DIRECTION": 1,
15 "SEN_CHAR_END": 596,
16 "RELATION_INTERNAL_ID": 37969,
17 "BIORELATION_TYPE": "miRNA-Gene",
18 "PREFERRED_TERM": null,
19 "BIORELATION_TERM_TYPE": "Trigger",
20 "DATA_SOURCE_NAME": "miRTex",
21» "R_ENTITIY_A": {&3},
29 "NOUN_REL_ONTOLOGY_TERM": "na",
30 "RELATION_CHAR_END": 488,
31 "SEN_CHAR_START": 455,
32 "ATTRIBUTE_KEY_VALUE": "(direct,unknown), (nullarg,@), (rel_type,M2G)",
33 "REL_ONTOLOGY_TERM": "regulates",
34 "TM_RELATION_TYPE_NAME": "MIRNA2GENE",
35 "RELATION_CHAR_START": 479,
36 "BIORELATION_TERM_NAME": "suppresses"
37 }
38 1,
39» "ABSTRACT": {&=3},
43» "ENTITY": [E&3]
261 3}

Figure 3.7: RELATION object in PubMed centric full information API (JSON format).

1-{

2 "PMID": "19330006",

3» "RELATION": [@&=3],

39» "ABSTRACT": {&=3},

43~ "ENTITY": [

44 - {

45 "ENTITY_CHAR_END": 492,

46 "DATA_SOURCE_NAME": "miRTex",

47 "SITE_CHAR_END": null,

48 "BIOENTITY_TYPE": "Gene",

49 "DESCRIPTION": "gene",

50 "PREFERRED_NAME": null,

51 "ATTRIBUTE_TYPE": null,

52 "SITE_CHAR_START": null,

53 "SITE": null,

54 "SEN_CHAR_START": 455,

55 "NORMALIZED_SOURCE_ID": "(Entrez,4179)",

56 "BIOENTITY_NAME": "TLX",

57 "ENTITY_INTERNAL_ID": 190523,

58 "ENTITY_CHAR_START": 490,

59 "SEN_CHAR_END": 596,

60 "SENTENCE_TEXT": "Here we show that miR-9 suppresses TLX expression to negatively regulate neural
stem cell proliferation and accelerate neural differentiation”

61 b

62 » {&3,

Figure 3.8: ENTITY object in PubMed centric full information API (JSON format).

28

API type 2

Because we have the enhanced text-mining tools dedicated for phosphorylation

relation and miRNA-gene relation (recognizing kinase, substrate, miRNA and target

genes), topic-specific APIs using PubMed ID to get specific data by limiting the entity

type/role or relation type/attribute are designed. This type of APIs has very similar

structural design comparing to the API type 1. However, this API only contains the

minimal information for the biological entities and relations. The purpose of this special

design is to quickly return clean data with specific topics that the users are interested in.

So instead of returning all the potential information captured by text-mining tools, users

are allowed to put filters on the data content, in other words, users can specify the

biological entity type/role, or biological relation type/attribute and request a subset of full

information data.

The relation between Biological entity type and entity role in the current version

1.0 with three text-mining tools (RLIMS-P, miRTex, and PubTator) are shown as below.

Based on the current database status (supporting API version 1.0), there are six biological

entity types available (Protein, Proteoform, Gene, miRNA, Variant, and Unknown - the

yellow rectangles in the middle line). There are four biological entity roles (Kinase,

Interactant, Regulator and Unknown) available for BIOENTITY A and four (Substrate,

29

Interactant, Target, and Unknown) for BIOENTITY B in the BIENTITY A -

BIORELATION - BIENTITY B relation structure. In the figure below, the BIOENTITY

A is on the left side in green and BIOENTITY B is on the right side in blue; the lines

connecting two rectangles indicates they have been combined to describe one biological

entity.

Protein

Kinase_A Substrate_B

Proteoform

I\
/|

Interactant_A Interactant_B

Gene

Regulator_A miRNA Target_B

Variant

Unknown_A Unknown_B

[/1N
L/

Unknown

Figure 3.9: Version 1.0 API available biological entity type and role (left-side green
entities and right side blue entities represent of entity roles of Biological Entity A and B;
middle part yellow entities are the types of Biological Entity; the lines indicate they are

signed to the same biological entity)

The URLs designed for this type of APIs are listed below.

e GET entity data with type filter:

30

/v1/PubMed/{PubMed ID}/entity_type/{entity type}/entities.[format]/

e GET entity data with type and role filter:

/v1/PubMed/{PubMed ID}/entity_type/{entity type}/entity_role/{entity
role}/entities.[format]/

e GET relation data with type filter:

/v1/PubMed/{PubMed ID}/relation_type/{relation
type}/relations.[format]/

e GET relation data with type and attribute filter:

/v1/PubMed/{PubMed ID}/relation_type/{relation
type}/relation_attribute/{relation attribute }/relations.[format]/

For example, an API consumer still has one PubMed ID as 19330006, and he
wants to return data in JSON format. He also chooses ‘miRNA’ as entity type, ‘regulator’
as entity role, ‘miRNA-Gene’ as relation type, and ‘unknown’ as relation attribute. Then
the APIs should be called by the URL as below.

e GET entity data with type filter:
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/entity_typ
e/miRNA/entities.json/

e GET entity data with type and role filter:
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/entity_typ
e/miRNA/entity_role/regulator/entities.json/

e GET relation data with type filter:

31

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/relation_t
ype/miRNA-Gene/relations.json/

e GET relation data with type and attribute filter:
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/relation_t

ype/miRNA-Gene/relation_attribute/unknown/relations.json/

In terms of the minimal data subset, for each biological entity or relation object,
the sentence (mentioning this entity/relation), entity/relation filter values, offsets, and one
unique entity/relation tracking ID are included. Aside from this, the PMID and

ABSTRACT objects remind the same. So the sample response according to the requests:

1- 4

2 "PMID": "19330006",

3» "ABSTRACT": {&=3},

7~ "ENTITY": [

8~ {

9 "ENTITY_CHAR_END": 1019,

10 "ENTITY_INTERNAL_ID": 190526,

11 "BIOENTITY_TYPE": "miRNA",

12 "SENTENCE_TEXT": "By forming a negative regulatory loop with TLX, miR-9 provides a model for
controlling the balance between neural stem cell proliferation and differentiation”,

13 "BIOENTITY_ROLE": "regulator",

14 "SEN_CHAR_START": 967,

15 "ENTITY_CHAR_START": 1015,

16 "SEN_CHAR_END": 1124

17 1,

18+ {&3},

28 {3,

38» {3,

43 {3,

58 » {3,

63+ {&3,

78> {&3,

88 {=3}

98 1

29 [}

Figure 3.10: ENTITY object in PubMed centric minimal information API (JSON format).

32

1-[f

2 "PMID": "19330006",

3~ "RELATION": [

4~ {

5 "RELATION_INTERNAL_ID": 37969,

6 "BIORELATION_TYPE": "miRNA-Gene",

7 "SENTENCE_TEXT": "Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem

cell proliferation and accelerate neural differentiation",

8 "SEN_CHAR_START": 455,

9 "RELATION_CHAR_END": 488,
10 "SEN_CHAR_END": 596,
11 "ATTRIBUTE_VALUE": "unknown",
12 "RELATION_CHAR_START": 479
13 }
14 1,
15+~ "ABSTRACT": {
16 "SOURCE": "medline",
17 "ABSTRACT": "A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell

fate determination. MicroRNAs have been implicated as having important roles in stem cell biology.
MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in
neural stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX is
an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX
expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation.
Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR-9-induced
proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in
embryonic brains led to premature differentiation and outward migration of the transfected neural stem
cells. Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory loop
with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and
differentiation.”

18 }

19 3

Figure 3.11: PubMed centric minimal information API (JSON format)

API type 3

Using normalized ID (Entrez ID) to get full data across articles. This is a special
design utilizing the data in the database. Instead of focusing on each single PubMed
article, this type of APIs collects related data from all the articles from PubMed. This
design can provide users the text-mining data from all different articles, which will have
a higher coverage on the knowledge and may discover the hidden relations. With the
similar purpose, eGIFT (http://biotm.cis.udel.edu/eGIFT/) offers a gene-searching base to
extract information from all kinds of text sources. Similar to eGIFT, the APISs in this
section contains sentences text and some basic feature descriptions for biological
entity/relation; the difference would be the approach to gain the knowledge. If the user

wants direct visualized result, with clickable interface, eGIFT would be a great option,

33

however, eGIFT does not provide API services, so if the user wants a programmable data
access, this type 3 API will be a better choice. [33] There are three options for API users
depending on how they are looking for protein/gene properties, interactions or
proteoforms information.

The URLs designed for this type of APIs are listed below.

e GET full property data related to one entity:
/v1/Entrez/{Entrez ID}/properties.[format]/
e GET full interaction data related to one entity:
/v1/Entrez/{Entrez ID}/interactions.[format]/
e GET full proteoform data related to one entity:
/v1/Entrez/{Entrez ID}/proteoforms.[format]/
For example, if one user wants to get the data for the gene with Entrez ID 2065,
the three URLs would be:
e GET full property data related to one entity:
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/properties.json/
e GET full interaction data related to one entity:
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/interactions.json/
e GET full proteoform data related to one entity:
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/proteoforms.json/
Because this type of APIs is entity centric, the main data objects in each APIs are
only two, one is Entrez ID, the other could be one of ‘PROPERTY’, ‘INTERACTION’

and ‘PROTEOFORM’.

34

"PROPERTY": [&3], "Entrez_ID": "2065", "Entrez_ID": "2065",
"Entrez_ID": "2065" "INTERACTION": [&=3] "PROTEOFORM": [E3]

H Y H|

Figure 3.12: Main objects in entity centric APIs (JSON format).

According to the feature of each subtype API, key-value pairs are selected and
organized into one data object for one mention of the target gene/protein. Supporting
description for all the keys in three major types of APIs are appended at the end of the

thesis. Here are the sample responses with parameter Entrez ID set as 2065.

1-({

2~ "PROPERTY": [

3~ {

4 "DATA_SOURCE_NAME": "RLIMS-P",

5 "CHAR_START": 754,

6 "BIOENTITY_TYPE": "Proteoform",

7 "DESCRIPTION": "protein with PTM sites",

8 "PREFERRED_NAME": null,

9 "ATTRIBUTE_TYPE": "phosphorylation",

10 "SITE_CHAR_START": 726,

11 "ENTITY_INTERNAL_ID": 435068,

12 "SENTENCE_ID": 4,

13 "SEN_CHAR_START": 668,

14 "SITE": "tyrosine",

15 "BIOENTITY_NAME": "Erbb3",

16 "CHAR_END": 758,

17 "SITE_CHAR_END": 733,

18 "SEN_CHAR_END": 850,

19 "PMID": "18381441",

20 "SENTENCE_TEXT": "FGFR2-amplified cell lines also contained elevated phosphotyrosine in EGFR, Her2,
and Erbb3, but the elevated phosphorylation in EGFR could not be inhibited by gefitinib or
erlotinib”

21 1,

22> {&3},

Figure 3.13: Entity centric entity property API (JSON format), in response to

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/properties.json/

35

1-[{

2 "Entrez_ID": "2065",

3~ "INTERACTION": [

4~ {

5 "ENTITY_A_CHAR_START": 1081,

6 "NOUN_REL_ONTOLOGY_TERM": "phosphorylation",

7 "ENTITY_B_DESCRIPTION": "protein",

8 "SEN_CHAR_END": 1153,

9 "ENTITY_B_NAME": "Akt",
10 "RELATION_INTERNAL_ID": 420365,
11 "BIORELATION_TYPE": "Kinase-Substrate",
12 "SEN_CHAR_START": 1004,
13 "ENTITY_A_CHAR_END": 1085,
14 "RELATION_CHAR_END": 1109,
15 "ENTITY_A_BIOENTITY_TYPE": "Protein",
16 "ENTITY_B_INTERNAL_ID": 782439,

17 "ENTITY_B_BIOENTITY_TYPE": "Protein",

18 "REL_ONTOLOGY_TERM": "phosphorylates",

19 "RELATION_CHAR_START": 1@95,

20 "BIORELATION_TERM_NAME": "phosphorylation",
21 "ENTITY_A_INTERNAL_ID": 782440,

22 "ENTITY_A_DESCRIPTION": "protein",

23 "DATA_SOURCE": "RLIMS-P",

24 "SENTENCE_TEXT": "SNDX-275 in combination with trastuzumab resulted in a dramatic reduction of erbB3

and its phosphorylation (P-erbB3), and inhibition of Akt signaling”,

25 "ENTITY_B_CHAR_END": 1142,

26 "ENTITY_B_CHAR_START": 1140,

27 "ENTITY_A_NAME": "erbB3",

28 "PMID": "21497990"

2 1,

30 {&3,

Figure 3.14: Entity centric entity interaction API (JSON format), in response to

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/interactions.json/

1-(

2 "Entrez_ID": "2065",

3. "PROTEOFORM": [

4~ {

5 "DATA_SOURCE_NAME": "RLIMS-P",

6 "CHAR_START": 754,

7 "BIOENTITY_TYPE": "Proteoform",

8 "DESCRIPTION": "protein with PTM sites",
9 "PREFERRED_NAME": null,

10 "ATTRIBUTE_TYPE": "phosphorylation",

11 "SITE_CHAR_START": 726,

12 "ENTITY_INTERNAL_ID": 435068,

13 "SENTENCE_ID": 4,

14 "SEN_CHAR_START": 668,

15 "SITE": "tyrosine",

16 "BIOENTITY_NAME": "Erbb3",

17 "CHAR_END": 758,

18 "SITE_CHAR_END": 733,

19 "SEN_CHAR_END": 850,

20 "PMID": "18381441",

21 "SENTENCE_TEXT": "FGFR2-amplified cell lines also contained elevated phosphotyrosine in EGFR, Her2,
and Erbb3, but the elevated phosphorylation in EGFR could not be inhibited by gefitinib or
erlotinib”

22 1,

23» {&3,

Figure 3.15: Entity centric entity proteoform API (JSON format), in response to

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/proteoforms.json/

36

Chapter 4

API IMPLEMENTATION AND DOCUMENTATION

API building is supposed to be a back-end engineering task, however, without a
good front end interface for API documentation, the API design is not complete. And as
one of the API design principles, dogfooding and self-checking is usually required for
each API provider. So in this chapter, all the API building techniques will be described in
detail in implementation section followed by example use case and API documentation

website.

4.1 Implementation

The relational database used in iLINKS system is Oracle Database 12c Enterprise
Edition Release 12.1.0.2.0 - 64bit Production. The APIs are implemented using Django
REST framework (version 3). The test web site is implemented in Django Framework
(version 1.10.5, released on 01/04 2017). The figure below indicates the data flow from
user request to the response returned by the server. Request (with input parameters) is
passed to server to invoke a specific call of stored procedures in Oracle database. The
data table generated by the stored procedure is rendered into data object (in JSON or

XML format) and sent back to the user as API response. The typical request and response

37

cycle takes less than 700 milliseconds.

Request: Execute endpoint Response: Return data object
with input parameters in JSON or XML format
Client

Server

Call views to find the
matching content class
function and handle the

paramesters

Pass data object to
views

Extract data from database
and render it into JSON or
XML format

Call the currect stored
procedures in API content
connection class

Server

Database

Relational database: processe selected
stored procedure to generate data table

Figure 4.1: API request and response cycle

Starting from the database (the bottom section in the figure), instead of using
Django REST framework default database (sqlite3), Oracle database is chosen because of
its scalability (handling a large quantity of data), security, and availability. In fact, most
of the projects in the Center for Bioinformatics & Computational Biology (CBCB),
University of Delaware, that require databases, are using Oracle database. As described
in Chapter 3.1, one Oracle relational database is built to store the text-mining data and
PubMed article text. [Dr. Sheng-Chih Chen, NCI Text-mining Integration System project.]

In general, the database logic structure is shown in figure below.

38

PubMed article text content

Document & Data information

Text-mining data

PubMed artice information

Biological Entity Biological Relation

o i Two interaction entitis o i
Entity information form one relation Relation information

Specific Entity feature information Specific relation feature information

Figure 4.2: iLINKS relational database general logic structure

The database consists of three major sections, biological entity (BIOENTITY),
biological relation (BIORELATION), and document and data information (DOCUMENT,
PUBMENT_ABS); each section contains several tables for basic information and
features (or text content). 10 stored procedures are used to generate the initial data tables,
in other words, the data for the APIs. Stored procedures are chosen in this project for two
reasons. One, stored procedure itself is stable and scalable in terms of handling different
kinds of data attribute and the procedures that return tables providing a stable data output
for downstream development and analysis, which can ensure the modifications on the
database being handled within the database and will not affect the frontend applications.

The other reason is that Oracle database stored procedure has been tested out for the

39

applicability in connecting to the webserver and passing data (on iPTMnet data integrity
checking project), which is especially crucial in this project.

The stored procedures are called from Python using cx_Oracle module, which
should be imported in advance, followed by ‘cx_Oracle.connect’ function (to connect to
the relational database) and ‘cursor.callproc’ function to get the data from stored
procedures. [36] Within the same Python class, data retrieved from database are firstly
stored as Python dictionary, then rendered into JSON and XML (format) data objects.
To render data objects into JSON format, we use Django REST framework JSON render
decorator ‘@renderer_classes((JSONRenderer,))’; to render data objects into XML
format, we use Python package ‘dicttoxml’ (version 1.7.4), which requires installation in
advance. [36] [37] There are 10 Python functions in this data generation class, which
match the 10 APIs described in the previous chapter (three types of APIs). This
functionality does not belong to Django framework, instead, it is created manually as a
method to connect data tier and web tier. In other words, if considering this API design as
a three-tier architecture, (data tier, logic tier and presentation tier), using stored
procedures can help API developers to put most of the business logic inside the database.
[38] [39] This method not only meets the requirements in this project, but also provides
one option or reference for other developers who want to build database-oriented
applications. [40]

In Django Framework, there are two files (urls.py and views.py) set to design

URL patterns and imply views to handle request and response. [41] [42] Those two files

40

are also utilized in this project for API endpoint building and parameters passing. For

example, for PubMed centric full information API with URL:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/{PubMed ID}/fulllnfos.[format]/

The URL created in urls.py file would be:

urlpatterns = format_suffix_patterns([
url(r'Av1/PubMed/(?7P<pmid>[0-9]+)/fulllnfos.(?P<api_format>[-\w]+)/' fulllnfo,

name='"fulllnfo'),

Here ‘(7P<pmid>[0-9]+)’ allows integer/number input and stores the URL input
value in the parameter named ‘pmid’; ‘(?P<api_format>[-\w]+)” allows letters input and
stores string value in the parameter named ‘api_format’. When a HTTP request is made
using the pattern of URL, Python function ‘fulllnfo’ is invoked to process the request by
passing the parameters to database connection class, which will call certain stored
procedures to generate data object. For error checking, if the input for ‘pmid’ is not
integer there would be a 404 error (page not found) indicating the input is not valid; 404
error will also happen when other parts of the URL are not correct. If the input value for
‘api_format’ is not valid, a customized error message will be returned to users. For
example, use puts ‘api_format’ as ‘abc’, the error message will be:

{
"ERROR_MESSAGE":"Input format abc is not correct or available",
"ERROR_TYPE":"Wrong format input",

"HTTP Status Code":"404 Not Found"

41

In API version 1.0, JSON and XML format is available, so the input for
‘api_format’ could be ‘json’ or ‘xml’; in other words, the user can have two options in
this API with URLSs like:

e http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/{PubMed ID }/fulllnfos.json/

e http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/{PubMed ID}/fulllnfos.xml/

4.2 Documentation

According to the survey hosted by programmableweb.com (an open source for
publishing API, current has over 17,000 APIs and thousands of application, available
through https://www .programmableweb.com/) in 2013, an accurate and complete
documentation has been selected as the most important factor for API development. [43]
[44] [45] So for the APIs in this thesis project, we built the documentation website for
iLINKS RESTful APIs. The website consists of four sections, ‘Home’, ‘API’, ‘Example’
and ‘FAQ’. For API version 2.0, the “What is new’ section will be include in home page
tracking the differences between two versions.

The website is available at http://beadle.dbi.udel.edu/ilinks_test/rest/.

API page
The ‘API” page is main page for API documentation, which has clickable API list
as a guideline and each type of APIs has its introduction section followed with tables for

attribute definition and detailed API description.

42

In the API list, parameters are marked in different colors, which are consistent
through the entire page; users can use the color mark as a reference of where to put the
input value for each parameter and how many parameters are there in each API. Also this
API list has all the endpoints/URLSs for APIs, users can simply click on each API or type

description to jump to the section they want.

Home . Example FAQ
* % * MENU * x »x

API LIST

API type 1: Using PubMed ID to get all the text mining data extracted from its title and abstract.
GET full data: /v1/PubMed/ {PubMed ID}/fullinfos.[format]/
GET entity data: /v1/PubMed/{PubMed ID}/entities.[format]/
GET relation data: /v1/PubMed/ {PubMed ID} /relations.[format]/

API type 2: Using PubMed ID to get specific data by limiting the entity type/role or relation type/attribute.
GET entity data with type filter: /v1/PubMed/{PubMed ID}/entity_type/{entity type}/entities.[format]/
GET entity data with type and role filter: /v1/PubMed/ {PubMed ID} /entity_type/{entity type}/entity_role/{entity role}/entities.[format]/
GET relation data with type filter: /v1/PubMed/{PubMed ID}/relation_type/{relation type}/relations.[format]/

GET relation data with type and attribute filter: /v1/PubMed/ {PubMed ID} /relation_type/{relation type}/relation_attribute/{relation attribute}/relations.[format]/

API type 3: Using normalized ID (Entrez ID) to get full data across articles.
GET full property data related to one entity: /v1/Entrez/{Entrez ID}/properties.[format]/
GET full interaction data related to one entity: /v1/Entrez/{Entrez IDY/interactions.[format]/

GET full proteoform data related to one entity: /v1/Entrez/{Entrez ID}/proteoforms.[format]/

Figure 4.3: API list in API page (http://beadle.dbi.udel.edu/ilinks_test/rest/ AP1/)

For each type of APIs, there is a brief introduction of its design and data content.
Data Model part is used to show all the attributes (key-value pairs) mentioned in the APIs.
For example, type 1 API would contain ‘ABSTRACT’, ‘ENTITY” and ‘RELATION’,
three objects (each has multiple key-value pairs), so the abstract, entity and relation data

are described in three tables in this part. There are duplications in three types of APIs,

43

because all the API data is generated from the same database, but with different structure.
The duplications are kept to ensure users’ convenience. This page will be updated
according to the modifications in API version 2.0, but the general structure will remain

the same.

Home . Example FAQ

APl type 1:
Description:

PubMed articles (titles and abstracts) are processed by text-mining tools to extract bio-entities (protein, gene, miRNA and so on), and bio-relations (phosphorylation, miRNA-target
gene relation and so on). Related properties for each bio-entity and bio-relation are also saved in the database. Here we offer full information API, together with bio-entity data subset API
and bio-relation data subset API.

Data Model:

Basic Entity Relation

Entity
ENTITY /NORMALIZED_SOURCE_ID tuple in Python Biological entity normalization in form (source, ID) for example, (Entrez, Entrez ID)
ENTITY/BIOENTITY_NAME string. Biological entity tagging name (not the exact word phrased in the article).
ENTITY / PREFERRED_NAME string, Caution: Current status (V1.0) is blank, saving for upcoming text-mining tools.
ENTITY/BIOENTITY_TYPE string. Biological entity type. V1.0 APIs contain Gene, Protein, Proteoform, and miRNA.
ENTITY/DESCRIPTION string. Short description for each biological entity type. (constant across articles).
ENTITY / DATA_SOURCE_NAME string. Text-mining tools or open text-mining resources.
ENTITY/ENTITY_CHAR_START integer The number of characters the referring biological entity is started.
ENTITY/ENTITY_CHAR_END integer The number of characters the referring biological entity is ended.
ENTITY/ATTRIBUTE_TYPE string. V1.0 APIs contain proteoform information for biological entities.
ENTITY/SITE string. Phosphorylation site.
ENTITY /SITE_CHAR_START integer The number of characters the referring phosphorylation site is started.
ENTITY /SITE_.CHAR_END integer The number of characters the referring phosphorylation site is ended. ED
CNITITV / CENTENIAE TEVT o BT T TP T

Figure 4 .4: API type introduction in API page

(http://beadle.dbi.udel.edu/ilinks_test/rest/ API/#A10)

For each API, endpoint, method, parameters, request, response and sample code
are provided. Because the APIs in this project are designed as read-only, GET is the only
access method available. User can replace the parameter with the value they are
interested in or use the example value to try out the API call. API can be checked through

browser by typing in the URL (user can also click on the sample request URL). Aside

44

from that, users can also try Python function, cURL (Linux command), or HTTP request
to access the API. In order to give users a clear view of how the API looks like, pretty
printed (with line break and indentation) API data are also provided. User can click on

the GET button to see the API in JSON and XML format.

Home . Example FAQ

GET full data:
Endpoint definitions and methods:
Endpoint: http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/{PubMed ID}/fullinfos.json/
Method: GET
Parameter:
PubMed: {PubMed ID}
Type: integer
Example value: 19330006
Sample Requests and Response: | Copy URL | Copy API
GET |http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/ 19330006 /fulllnfos.json/

Code Samples:

Python cURL HTTP

Try out by replacing the {PubMed ID} with the PubMed ID you are interested in.
import requests
url = "http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/ 19330006 /fulllnfos.json/"
headers = {
'cache-control': "no-cache",

'postman-token': "537a006b-bfle-1982-7d3b-562b64452afc"
}

response = requests.request("GET", url, headers=headers)

print(response.text)

Figure 4.5: API description (sample code) in API page

(http://beadle.dbi.udel.edu/ilinks_test/rest/ API/#A11)

45

Home . Example FAQ

Sample Requests and Response: | Copy URL | Copy API
GET |http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/ 19330006 /fullinfos.json/

JSON XML

JSON format

Endpont: http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/ 19330006 /fullInfos.json/

{
"PMID": "19330006",
"RELATION": [
{
"SENTENCE_TEXT": "Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and
“R_ENTITIY_B": {
“ENTITY_B_TYPE": "Gene",
“ENTITY_B_CHAR_END": 492,
“ENTITY_B_CHAR_START": 490,
“ENTITY_B_ROLE": "target",
“ENTITY_B_INTERNAL_ID": 190523,
“ENTITY_B_NAME": "TLX"

"DIRECTION": 1,
"SEN_CHAR_END": 596,
"RELATION_INTERNAL_ID": 37969,
"BIORELATION_TYPE": "miRNA-Gene",
"PREFERRED_TERM": null,
"BIORELATION_TERM_TYPE": "Trigger",
"DATA_SOURCE_NAME": "miRTex",
"R_ENTITIY_A": {
"ENTITY_A_INTERNAL_ID": 190532,
"ENTITY_A_ROLE": "regulator",
"ENTITY_A_TYPE": "miRNA",
"ENTITY_A_CHAR_START": 473,
"ENTITY_A_CHAR_END": 477,
"ENTITY_A_NAME": "miR-9" .
}H |
"NOUN_REL_ONTOLOGY_TERM": "na",

HDEI ATTAM FUAD EMRN. 400

figure 4.6: API response (JSON format result) in API page

(http://beadle.dbi.udel.edu/ilinks_test/rest/ API/#A11)

Example page

Flowing the API design principle, dogfooding is implemented on this page. At the
top of this page, related resources and APIs are listed with clickable links. We use three
APIs (from two types) to generate this example page. With these three APIs, user can
have PubMed article text, text-mining result in Entity table and Relation table, and one
special section to highlight the main entity in this article (across article mentions are
listed in entity property table and entity interaction table). User can click on the ‘Across
article mention’ button to expand or hide tables. The overlay of this page is also the

guide for building the iLINKS web site search page (presented in next chapter).

46

ILINKS TEXT MINING APl @CBCB

AP! information

PubMed ID 06
API Type 1 - GET full data: htip:/beadle.dbi.udel.edu/iink
API Type 3 - GET full property data related to one entity: http:/beadle
API Type 3 - GET full interaction data related to one entity
DataTable: jQuery plu

esty

A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination.

MicroRNAs have been implicated as having important roles in stem cell biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in neural
stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX
expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR--induced
proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural
stem cells. Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory loop with TLX, miR-9 provides a model for controlling the balance between neural stem
cell proliferation and differentiation

TLX - Entrez ID : 4179

Across articles mentions

Show 10 +|entries Search:
NORMALIZED ATTRIBUTE
NAME SENTENCE TYPE SOURCE SoUCERD e SITE
VicroRNA g MICFORNA-D (miR-9) s expressed specifcll in neurogenic areas of the brainand maybe Lo o
involved in neural stem cell seff-renewal and differentiation
microRa.g A feedback reguiatory loop invalving microRNA-9 and nuclear eceplor TLX nnewral stem oo
cell fate determination
_— Here we show that miR-9 suppresses TLX expression to negatively regulate newral stem o
cellproliferation and accelerate neural differentiation
— In ero slectroporation of miR-9 n embryonic brans led to premature diferentiaionand oL
outward migration of the transfected neural stem cels
miR-9 Moreover, TLX represses expression of the miR-9 pri-miRNA mANA miRTex
e By forming a negative reguiatoryloop with TLX, miR-9 provides a model forcontroling the
balance between neural stem cell prolferation and differentiation
e Introducing a TLX expression vector that is not prone fo miR-9 reguiation rescued miR9- oL
induced proliferation deficiency and inhibited precocious ifferentiation
e MicroRNA-9 (miR-9) is expressed specifcally in neurogenic areas of he brainand maybe oo
involved in neural stem cell seff-renewal and differentiation
Introducing a TLX expression vector that is not prone to miR-8 regulation rescued miR-9-
¥ RNA RT
DY induced proliteration deficiency and inhibited precocious differentiation meN mikTox
pucloer We showed previously that the nuclear receptor TLX is an essential regulator of neural
receptor P! y P 8 LI L Gene miRTex (Entrez.4179)
stem cell self-renewal
NORMALIZED ATTRIBUTE
NAME SENTENCE TYPE SOURCE Soonoter i SITE

Showing 1 to 10 of 12 entries E -

Show 10 +|entries Search:
NAME SENTENCE TERM SOURCE ATTRIBUTE _KEY_VALUE TYPE DIRECTION
MRANA- Here we show that miR-9 suppresses TLX expression to negatively regulate (direct.unknown), (nullarg,0),
T
Gene neural stem cell proliferation and accelerate neural differentiation Criaees Whiks (rel_type,M2G) Trigger J
NAME SENTENCE TERM SOURCE ATTRIBUTE_KEY_VALUE TYPE DIRECTION

Showing 1o 1 of 1 entries D -

contact us: xuzhu@udel.edu

Figure 4.7: Example page (http://beadle.dbi.udel.edu/ilinks_test/rest/example/)

47

Home page and FAQ page
Both ‘Home’ and ‘FAQ’ pages are served as informational page, ‘Home’ page
contains the background and overall pipeline of iLINKS text-mining system; ‘FAQ’ page

is about frequently asked questions about iLINKS RESTful APIs.

ILINKS TEXT MINING API @CBCB

ILINKS TEXT MINING APl @CBCB

v rEAQTTt

Question List

Introduction

Background

o calnformation, and reforma data info
erature curation, whose avaiablty and qualty wil nfuence
con) anal dhigh-

ficcuraton, is a data.
ology s an analytcaltechnigue buit on biolgi

phasized the urgent need forinteligent tols to extract
 functons to help research gain insigt o the certain

16905,

Wha s the background and mofivaton for tis project?

RESTHI API
xposing capabi

First,the pupose APl are
i developers o ntsgrate dala or

' data providers'point of view
mining system is chosen as my Master

What s the data source for all LINKS APIs?

Overview of the pipeline

The figure below shows an overall pipefine fo i project forbulding ILINKS textmining resuft AP!

:i Data Tier
s

Data processing: Data Storage: Oracle Database.
Article Souree:
PubMed Database
Text-mining Tools: [sovioader
RLIMS-P. - .
miRTex.
PubTator

Web Tier i L

Django Framework
A

Wha are the textmining tools used in this project

API Documentation Website RESTHul API Web Service PubMed Searching Website it

on Return e

What s the o used i this project?

_ I cient Tier

Code Samples: Python, cURL, HTTP.

Application e e e
Annotation: BRAT Annotation Tool
Network: Cytoseape

URL access in browser

Wha type of AP is used for ILINKS APIs?

[) cle tex i and absiract). T
descrption data, biologicalreation descripton data (ent A and enty B ineracting o form a reation). The text-mining ouput data are sored In Oracl relaional database.

Before moving on fo the RESTIul AP web service bulding, the fest mining nized in
data tables o form th iital data content ILINK i the datab called
Another step done in web server side is o

stored procedure caling class (Python
accessing (through Teminal) and also browser

APis and follow up with Django views 1o handie the inpu,
te data flow fom AP request o AP response. At this poit, a
ng (trough URL).

How RESTIul APIs contrbute 1o this project?

potont entation. So within the
d one case study utiizing tree APIs). n org
ed web i e Publes

L. T aca s also bt upon ' Django framework to keep th
other on-going application development fod by APls, Cytoscape (knowlecge network) and BRAT (a iotaton) are chosen as two fypial ap
processed by olherteam members

erate the APIs, a Django web

However, it camot be a complete
d sirale AP eneiting the iternal user and
ce txt itle and abs

P
incuding iiroduc
nitoring, a searchin

tion directon, which s

xuzhu@udeledu

Figure 4.8: API Home page (http://beadle.dbi.udel.edu/ilinks_test/rest/) and FAQ page

(http://beadle.dbi.udel.edu/ilinks_test/rest/faq/)

48

Chapter 5

EXAMPLE USE CASE

As part of ILINKS text-mining system website, a PubMed ID search page is built
for external users to get the text-mining data in table format and for internal users to do
integrity checking. Because this page is populated by the data returned from the APIs,
this web page also serves as one self-checking mechanism for the API design and
implementation. API developer can be sure that the APIs worked as expected. For
external users and API consumers, the design and implementation of this page can also
be used as an example and reference for them to develop their applications. The API
testing website, together with API documentation web site, all developed using Django
framework, which is open for plugging in new applications populated by the APIs, and
also leaves potential API upgrade. Other than that, this all-in-one framework makes it
easy to move to Docker or AWS (Amazon Web Services).

The PubMed ID search page contains two sections, one is search input box, the
other is search result, which consists of PubMed source link, PubMed article text, text-
mining data (biological entity table, biological relation table). The search input is first
validated before passing to other functions. The input data type is limited to integer
numbers because PubMed ID is an integer number. [46] If the input is not a valid
PubMed ID (not found in the database), an alert box will pop out indicating 'Invalid
PubMed ID!', there will be no search result shown in the result section. We also check if

there are text-mining data for input PubMed article available in the database, in other

49

words, if the 'ENTITY' and 'RELATION' are not detected by our text-mining tools, 'No

text-mining data available!' alert message will pop up.

ILINKS TEXT MINING PROJECT

RESTful API

Welcome to iLINKS text-mining system website!

iLINKS text-mining system processes PubMed articles to get text-mining results. You can type in the PubMed ID of the article you are interested in and can generate the biological
entity/relation data tables for you.

Get the text-mining result for PubMed article:

Q

PubMed ID should be an number, you can check if you PubMed ID is correct by going to NCBI PubMed.

Center for Bioinformatics and Computational Biology

205 Delaware Biotechnology Institute « 15 Innovation Way « Newark, DE 19711, USA

Phone: 302-831-0161 * Email: bioinformatics@udel.edu *+ © 2016

Figure 5.1: Search page in iLINKS text-mining system website

(http://beadle.dbi.udel.edu/ilinks_test/)

beadle.dbi.udel.edu says: beadle.dbi.udel.edu says:

Invalid PubMed ID! No text-mining data available!

Figure 5.2: ‘Invalid PubMed ID’ alert (with input *1234567890’) and ‘No text-mining

data available’ alert (with input ‘1’) on search page

50

XT MINING PROJECT

RESTful API

Welcome to iLINKS text-mining system website!

ILINKS text-mining system processes PubMed articles to get text-mining results. You can type in the PubMed ID of the article you are interested in and can generate the biological

entity/relation data tables for you.

Get the text-mining result for PubMed article:

19330006 Q

PubMed ID should be an number, you can check if you PubMed ID is correct by going to NCBI PubMed.

https://www.ncbi.nim.nih.gov/pubmed/?term=19330006

A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. MicroRNAs have been implicated as having important roles in stem cell
biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in neural stem cell self-renewal and differentiation. We showed previously that the
nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and

g a TLX vector that is not prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and inhibited precocious
miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses

neural X
differentiation. In utero electroporation of
expression of the miR-9 pri-miRNA. By forming a negative regulatory loop with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and differentiation.

Search: | gene

Show 10 4+ entries
NORMALIZED ATTRIBUTE
NAME SENTENCE TYPE SOURCE SOURCESID ee SITE
nuclear We showed previously that the nuclear receptor TLX is an essential regulator of neural
receptor P v P 9 Gene miRTex (Entrez,4179)
stem cell self-renewal
X
el A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural
receptor guatory loop 9 P Gene miRTex (Entrez,4179)
stem cell fate determination
X
X Here we show that miR-9 X to negatively regulate neural one J—)
stem cell and neural
NORMALIZED ATTRIBUTE
NAME SENTENCE TYPE SOURCE SITE
SOURCE&ID TYPE
Showing 1 1o 3 of 3 entries (filtered from 12 total entries)
Show 10 4 entries Search:
NAME SENTENCE TERM SOURCE ATTRIBUTE_KEY_VALUE TYPE DIRECTION
MRNA- Here we show that miR-9 sup X to negatively T GhES (drectunknown), (wllag0), g
Gene regulate neural stem cell and neural (rel_type,M2G)
NAME SENTENCE TERM SOURCE ATTRIBUTE_KEY_VALUE TYPE DIRECTION

Showing 1to 1 of 1 entries

Center for Bioinformatics and Computational Biology
205 Delaware Biotechnology Institute * 15 Innovation Way + Newark, DE 19711, USA

informatics@udel.edu * © 2016

Phone: 302-831-0161 + Emai

Figure 5.3: Search result display (PubMed-19330006), with ‘gene’ filter on entity table

51

The PubMed source link is linking back to the original page in PubMed website
for the article, which is added here for users to double check if their PubMed IDs are
correct. Under the search box, the link for PubMed home page is also provided for users
who are not quite sure about the PubMed ID they want to search. The article text (titles
and abstract combined) is displayed after the source link, in which article title is the first
sentence of the paragraph. The two tables are shown above (entity table and relation table)
are both jQuery DataTable, which has its basic functions including page length (number
of rows per page), previous/next page, sorting (alphabet or number order), and a search
function within the table for any text content. These plugins provide users an easy-to-use
interface to check the data and find the information they want. With jQuery DataTable as
a base, there are more modifications and style changes can be done later on to fit different
development purposes.

The ‘RESTful APT’ tab in the navigation bar will redirect the users to the API

documentation website introduced in the previous chapter.

52

Chapter 6

DISCUSSION AND FUTURE WORK

These APIs designed and implemented in this thesis project fulfilled the purpose
of transferring data and providing a stable, scalable working environment/base for
downstream application development. During the progress of designing and generating
APIs, we did integrity checking constantly. As the result, the APIs not only provide the
necessary functionalities for rest of the team project, they also helped other team
members to improve their data processing and storing mechanisms. This API
implementation also becomes a guideline and reference for other API building projects.
Actually, as the iLINKS text-mining system project continues, intermediate step APIs
(for internal checking) and the APIs for potential applications (Cytoscape and BRAT)
will be built in the future.

The RESTful APIs for iLINKS text-mining system has served a crucial role in
delivering data and supporting other application development. As iLINKS text-mining
system project progresses, the APIs should move on to the next version with a wider data
source, better-organized data content and a higher coverage on biological concepts. For
version 1.0, the data source is PubMed article, but in version 2.0, full-length article will
be processed and integrated into APIs. More text-mining tools will be introduced into the
project to process articles and capture different biological concepts. Because of the larger
amount of text content and a more complex text-mining data output, an upgrade in API
structure design is needed in order to ensure the data quality of the APIs and the accuracy

of their downstream applications. Data normalization and simplification would be two of

53

the approaches to organizing new data in the database. Web tier API generation also need
to have the ability to handle more parameters and potential errors by adding more
parameter checking and exceptions reporting.

In API implementation, Flask can be used to as another option for implementing
APIs. Flask is very similar to Django framework, which also has a Python based model-
view—controller (MVC) architecture. [47] However, Django framework is an opinionated
framework, which has some assumptions and pre-built structures, Flask, on the other
hand, is a micro web-development framework. [48] [49] This feature makes Flask
quicker than Django, but the performance will also depend on other factors. [50] Also
because Flask has a much simple structure, the learning curve will be much lower than
learning Django framework; this becomes important when the project is hosted at school
and constantly needs new students to get involved. Flask-RESTful is an extension from
Flask that can help to build RESTful APIs quickly and effortlessly. [51]

For the client-side code, React (a JavaScript library for creating interfaces) can be
a good choice for the iLINKS text-mining system project to support client-side
application development. [52] As to store the text-mining data and article text, Mango
Database could also be an option. [53]

In API version 2.0, the documentation should be updated accordingly. We can
choose to either update the documentation built for version 1.0 APIs or redo the

documentation using Swagger Ul to have a more standardized interface. [54]

54

Chapter 7

CONCLUSION

In conclusion, the RESTful APIs played an important role in not only the iLINKS
text-mining system but also the biocuration field for three reasons. First, the APIs
achieved the goal of helping the biocuration for PubMed articles with programmable data
access methods. The APIs built in this project can be consumed by developers to develop
different kinds of applications for biocuration; the search website supported by the APIs
can be a go-to tool for all biocurators who want to read the PubMed article and get the
extracted biological entity and relation information. Second, with the functionality
supported by the APIs, iLINKS text-mining system is capable of providing biological
entity and relationship by PubMed ID based search, Cytoscape network visualization, and
BRAT annotation. Other potential application development will also benefit from these
APIs. Third, with the support of these RESTful APIs, the entire data processing pipeline
can be broken down into functional building blocks and reassembled.

This thesis describes the design and implementation of the RESTful APIs in detail
along with application examples. For the wide variety of readers, the technical
background and related works are also included. The thesis aims to deliver a clear
description of the API building process and also serves as a reference in APIs
development in the biocuration field. The API documentation website is at

http://beadle.dbi.udel.edu/ilinks test/rest/.

55

10.

RESERENCES

Burge, Sarah et al. “Biocurators and Biocuration: Surveying the 21st Century
Challenges.” Database: The Journal of Biological Databases and Curation2012
(2012): bar059. PMC. Web. 13 May 2017.

Bourne, Philip E, and Johanna McEntyre. “Biocurators: Contributors to the World
of Science.” PLoS Computational Biology 2.10 (2006): e142. PMC. Web. 14 May
2017.

Howe, Authorship Doug et al. “Big Data: The Future of
Biocuration.” Nature455.7209 (2008): 47-50. PMC. Web. 13 May 2017.

Christensson, Per. "API Definition." TechTerms. Sharpened Productions, 20 June
2016. Web. 06 July 2017. <https://techterms.com/definition/api>.

Graham, Paul (November 2005). "Web 2.0". Retrieved 2006-08-02. I first heard
the phrase 'Web 2.0' in the name of the Web 2.0 conference in 2004.

"Web Services Architecture". World Wide Web Consortium. 11 February 2004.
3.1.3 Relationship to the World Wide Web and REST Architectures. Retrieved 29
September 2016.

Nations, Daniel. "Understanding the Purpose of Web Applications." Lifewire.
Lifewire, 17 Oct. 2016. Web. 08 July 2017. <https://www lifewire.com/what-is-a-
web-application-3486637>.

Berners-Lee, Tim; Fielding, Roy T.; Nielsen, Henrik Frystyk. "Method
Definitions". Hypertext Transfer Protocol -- HTTP/1.0. IETF. pp. 30-32. sec. 8.
RFC 1945.

Sayers E. A General Introduction to the E-utilities. In: Entrez Programming
Utilities Help [Internet]. Bethesda (MD): National Center for Biotechnology
Information (US); 2010-. Available from:

https://www .ncbi.nlm.nih.gov/books/NBK25497/

Steffensen JL, Dufault-Thompson K, Zhang Y. PSAMM: A Portable System for

the Analysis of Metabolic Models. PLOS Comput Biol. Public Library of
Science; 2016;12: €1004732. doi:10.1371/journal .pcbi.1004732.

56

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Santos, Wendell. "195 Science APIs: Springer, EPA and NCBI."
ProgrammableWeb. ProgrammableWeb, 28 Mar. 2012. Web. 28 June 2017.
<https://www.programmableweb.com/news/195-science-apis-springer-epa-and-
ncbi/2012/03/28>.

Wei, Chih-Hsuan, Hung-Yu Kao, and Zhiyong Lu. “PubTator: A Web-Based
Text Mining Tool for Assisting Biocuration.” Nucleic Acids Research 41.Web
Server issue (2013): W518-W522. PMC. Web. 12 June 2017.

Chih-Hsuan Wei, Robert Leaman, Zhiyong Lu; Beyond accuracy: creating
interoperable and scalable text-mining web services. Bioinformatics 2016; 32
(12): 1907-1910. doi: 10.1093/bioinformatics/btv760

Wei, Chih-Hsuan. "NCBI Text Mining Web APIs." National Center for
Biotechnology Information. U.S. National Library of Medicine, 16 Feb. 2016.
Web. 28 June 2017. <https://www .ncbi.nlm.nih.gov/research/bionlp/APIs/>.

Wei CH et. al., PubTator: A PubMed-like interactive curation system for
document triage and literature curation, in Proceedings of BioCreative 2012
workshop, Washington DC, USA, 145-150, 2012

Lidwell, William, and Kritina Holden, Jill Butler (2010). Universal Principles of
Design, Revised and Updated: 125 Ways to Enhance Usability, Influence

Perception, Increase Appeal, Make Better Design Decisions, and Teach through
Design. London: Rockport Publishers. pp. 102—-103. ISBN 1592535879

Mitra, Ronnie. "5 Universal API Design Principles." API Design and Strategy.
API Academy, 12 Dec. 2015. Web. 28 June 2017.
<http://www .apiacademy .co/resources/5-universal-api-design-principles/>.

Benslimane, Djamal, Schahram Dustdar, and Amit Sheth. "Services mashups: The
new generation of web applications." IEEE Internet Computing 12.5 (2008).

Petersen, Jeremy. "Benefits of using the n-tiered approach for web
applications." URL: http://www. adobe. com/devnet/coldfusion/articles/ntier.
html (2001).

NIH. "MEDLINE Fact Sheet." U.S. National Library of Medicine. National

Institutes of Health, 5 Dec. 2013. Web. 28 June 2017.
<https://www .nlm.nih.gov/pubs/factsheets/medline.html#>.

57

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Torii, Manabu et al. “RLIMS-P 2.0: A Generalizable Rule-Based Information
Extraction System for Literature Mining of Protein Phosphorylation Information.”

IEEE/ACM transactions on computational biology and bioinformatics / IEEE,
ACM 12.1 (2015): 17-29. PMC. Web. 12 June 2017.

Li, Gang et al. “miRTex: A Text Mining System for miRNA-Gene Relation
Extraction.” Ed. Andrey Rzhetsky. PLoS Computational Biology 11.9 (2015):
€1004391. PMC. Web. 12 June 2017.

Bagewadi, Shweta et al. “Detecting miRNA Mentions and Relations in
Biomedical Literature.” FI000Research 3 (2014): 205. PMC. Web. 12 June 2017.

Huang, Minlie, Jingchen Liu, and Xiaoyan Zhu. “GeneTUKit: A Software for
Document-Level Gene Normalization.” Bioinformatics 27.7 (2011): 1032—-1033.
PMC. Web. 12 June 2017.

Wei, Chih-Hsuan, and Hung-Yu Kao. “Cross-Species Gene Normalization by
Species Inference.” BMC Bioinformatics 12.Suppl 8 (2011): S5. PMC. Web. 12
June 2017.

Leaman, Robert, Rezarta Islamaj Dogan, and Zhiyong Lu. “DNorm: Disease
Name Normalization with Pairwise Learning to Rank.” Bioinformatics 29.22
(2013): 2909-2917. PMC. Web. 12 June 2017.

Wei, Chih-Hsuan et al. “tmVar: A Text Mining Approach for Extracting
Sequence Variants in Biomedical Literature.” Bioinformatics 29.11 (2013): 1433—
1439. PMC. Web. 12 June 2017.

Wei, Chih-Hsuan, Hung-Yu Kao, and Zhiyong Lu. “SR4GN: A Species
Recognition Software Tool for Gene Normalization.” Ed. Jan Aerts. PLoS ONE
7.6 (2012): e38460. PMC. Web. 12 June 2017

"Ubiquitous standards" Principles — API Design Guide 0.1 documentation.
AusDTO, 02 June 2017. Web. 08 July 2017.
<http://apiguide.readthedocs.io/en/latest/principles/standards.html>.

"Use RESTful service URLs." Building and using APIs — API Design Guide 0.1
documentation. AusDTO, 02 June 2017. Web. 08 July 2017.
<http://apiguide.readthedocs.io/en/latest/build_and_publish/use_ RESTful_urls.ht
ml>.

58

31.

32.

33.

34.

35.

36.

37.

38.

39.

"Dogfooding" Principles — API Design Guide 0.1 documentation. AusDTO, 02
June 2017. Web. 08 July 2017.
<http://apiguide.readthedocs.io/en/latest/principles/dogfood.html>.

Johnson, Tom. "Documenting APIs: A guide for technical writers." Documenting
APIs: A guide for technical writers | Document REST APIs. I'd Rather Be
Writing, 27 Mar. 2016. Web. 08 July 2017.
<http://idratherbewriting.com/learnapidoc/>.

Tudor, Catalina O, Carl J Schmidt, and K Vijay-Shanker. “eGIFT: Mining Gene
Information from the Literature.” BMC Bioinformatics 11 (2010): 418. PMC.
Web. 5 July 2017.

Christie, Tom. "Django REST Framework." Home - Django REST framework.
N.p., 18 Aug. 2015. Web. 08 July 2017. <http://www .django-rest-
framework.org/>.

"Database Cloud Service | Database as a Service (DbaaS) | Oracle Cloud." Cloud
Service | Oracle Cloud. N.p., n.d. Web. 08 July 2017.
<https://cloud.oracle.com/database>.

Christie, Tom. "Renderers." Renderers - Django REST framework. N.p., 18 Aug.
2015. Web. 08 July 2017. <http://www .django-rest-framework.org/api-
guide/renderers/>.

"Dicttoxml 1.7.4." Dicttoxml 1.7.4: Python Package Index. Python Software
Foundation, 08 July 2016. Web. 08 July 2017.
<https://pypi.python.org/pypi/dicttoxml>.

Piotrowski, Przemyslaw. "Calling database stored procedures and other
interesting aspects of advanced Python programming." Mastering Oracle Python,
Part 5: Stored Procedures, Programming Python. Oracle, Mar. 2010. Web. 08 July
2017. <http://www .oracle.com/technetwork/articles/prez-stored-proc-
084100.html>.

Eckerson, Wayne. "Three tier client/server architecture: Achieving scalability,
performance and efficiency in client server applications." Open Information
Systems 10.1 (1995).

59

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Linthicum, David S. Next generation application integration: from simple
information to Web services. Addison-Wesley Longman Publishing Co., Inc.,
2003.

"Documentation." URL dispatcher | Django documentation | Django. Django
Software Foundation, 1 Sept. 2016. Web. 08 July 2017.
<https://docs.djangoproject.com/en/1.10/topics/http/urls/>.

"Documentation." Writing views | Django documentation | Django. Django
Software Foundation, 1 Aug. 2016. Web. 08 July 2017.
<https://docs.djangoproject.com/en/1.10/topics/http/views/>.

Johnson, Tom. "Most important factor in APIs is complete and accurate
documentation." I'd Rather Be Writing - Tom Johnson. I'd Rather Be Writing, 15
Jan. 2015. Web. 08 July 2017. <http://idratherbewriting.com/2015/01/15/most-

important-factor-in-apis-is-complete-and-accurate-documentation/>.

DuVander, Adam. "API Consumers Want Reliability, Documentation and
Community." ProgrammableWeb. N.p., 07 Jan. 2013. Web. 08 July 2017.
<https://www .programmableweb.com/news/api-consumers-want-reliability-
documentation-and-community/2013/01/07>.

"Search the Largest API Directory on the Web." ProgrammableWeb. N.p., n.d.
Web. 08 July 2017. <https://www .programmableweb.com/category/all/apis>.

"PMCID - PMID - Manuscript ID - DOI Converter." National Center for
Biotechnology Information. U.S. National Library of Medicine, n.d. Web. 09 July
2017. <https://www .ncbi.nlm.nih.gov/pmc/pmctopmid/#converter>.

Ronacher, Armin. "Welcome to Flask." Welcome to Flask — Flask
Documentation (0.12). Flask, n.d. Web. 09 July 2017.
<http://flask.pocoo.org/docs/0.12/>.

Bitra, Tejaswi. "What does it mean by a 'opinionated' framework or library?"
Quora. Quora, 11 Jan. 2017. Web. 9 July 2017. <https://www .quora.com/What-
does-it-mean-by-a-opinionated-framework-or-library>.

"Web Frameworks for Python." WebFrameworks - Python Wiki. Python Software

Foundation, 07 July 2017. Web. 09 July 2017.
<https://wiki.python.org/moin/WebFrameworks>.

60

50.

51.

52.

53.

54.

Klenov, Kirill. "Python frameworks' benchmarks." N.p., 09 June 2016. Web. 09
July 2017. <http://klen.github.io/py-frameworks-bench/>.

Burke, Kevin. "Flask-RESTful." Flask-RESTful — Flask-RESTful 0.2.1
documentation. Flask, 18 Mar. 2013. Web. 09 July 2017. <https://flask-
restful.readthedocs.io/en/0.3.5/>.

"React - A JavaScript library for building user interfaces." Facebook.github.io.
Facebook Open Source, 14 June 2017. Web. 09 July 2017.
<https://facebook.github.io/react/>.

"The MongoDB 3.4 Manual." The MongoDB 3.4 Manual — MongoDB Manual
3.4. MongoDB, 29 Nov. 2016. Web. 09 July 2017.
<https://docs.mongodb.com/manual/>.

"SWAGGER UIL." Swagger. SmartBear Software, n.d. Web. 09 July 2017.
<https://swagger.io/swagger-ui/>.

61

APPENDIX

A API CONTENT DATA OBJECT KEYS DEFINITION

ATTRIBUTE
PMID
ABSTRACT / SOURCE

ABSTRACT / ABSTRACT

ENTITY /
NORMALIZED_SOURCE_ID

ENTITY / BIOENTITY_NAME
ENTITY / PREFERRED_NAME

ENTITY / BIOENTITY_TYPE

ENTITY / DESCRIPTION

ENTITY /
DATA_SOURCE_NAME
ENTITY /
ENTITY_CHAR_START
ENTITY /
ENTITY_CHAR_END
ENTITY / ATTRIBUTE_TYPE

ENTITY / SITE
ENTITY / SITE_CHAR_START

ENTITY / SITE_CHAR_END

ENTITY / SENTENCE_TEXT

TYPE
integer
string

string

tuple in
Python

string
string

string

string
string
integer
integer
string

string

integer
integer

string

62

DESCRIPTION
PubMed ID - as parameter.

Article/paper source -
MEDLINE/PubMed for iLINKS API
version 1.0.

Article/paper abstract (including title -
the first sentence).

Biological entity normalization in form
(source, ID) for example, (Entrez,
Entrez ID)

Biological entity tagging name (not the
exact word phrased in the article).
Caution: Current status (V1.0) is blank,
saving for upcoming text-mining tools.
Biological entity type. V1.0 APIs
contain Gene, Protein, Proteoform, and
miRNA.

Short description for each biological
entity type. (constant across articles).
Text-mining tools or open text-mining
resources.

The number of characters the referring
biological entity is started.

The number of characters the referring
biological entity is ended.

V1.0 APIs contain proteoform
information for biological entities.
Phosphorylation site.

The number of characters the referring
phosphorylation site is started.

The number of characters the referring
phosphorylation site is ended.

The sentence contains tagged biological
entities and biological relations.

ENTITY / SEN_CHAR_START
ENTITY / SEN_CHAR_END

ENTITY /
ENTITY_INTERNAL_ID

RELATION /
BIORELATION_TERM_NAME
RELATION /
PREFERRED_TERM
RELATION /
BIORELATION_TERM_TYPE
RELATION /
RELATION_CHAR_START
RELATION /
RELATION_CHAR_END
RELATION /
BIORELATION_TYPE
RELATION /
REL_ONTOLOGY_TERM
RELATION /
NOUN_REL_ONTOLOGY_TER
M

RELATION / DIRECTION

RELATION /
TM_RELATION_TYPE _NAME
RELATION /
ATTRIBUTE_KEY_VALUE
RELATION /
DATA_SOURCE_NAME
RELATION /
SENTENCE_TEXT

RELATION /
SEN_CHAR_START
RELATION / SEN_CHAR_END

integer
integer

integer

string
string
string
integer
integer
string
string

string

integer

string
string
string
string
integer

integer

63

The number of characters the referring
sentence is started.

The number of characters the referring
sentence is ended.

Biological entity tracking ID, unique for
each entity, identical to
BIOENTITY _ID for internal use.
Biological relation tagging term (not the
exact word phrased in the article).
Caution: Current status (V1.0) is blank,
saving for upcoming text-mining tools.
Complimentary information for
biological relation term.

The number of characters the referring
biological relation is started.

The number of characters the referring
biological relation is ended.

Biological relation tagging type (not the
exact word phrased in the article).
Complementary phrasing for
BIORELATION_TERM.
Complementary phrasing for
BIORELATION_TERM.

Biological relation direction, 1 for
BIOENTITY_A to BIOENTITY_B, 2
for BIOENTITY_B to BIOENTITY_A,
0 for unknown.

Text-mining tools in using biological
relation type tags.

Supporting descriptions for biological
relations.

Text-mining tools or open text-mining
resources.

The sentence contains tagged biological
entities and biological relations.

The number of characters the referring
sentence is started.

The number of characters the referring
sentence is ended.

RELATION /
RELATION_INTERNAL_ID

RELATION /R_ENTITIY_A/
ENTITY_A_INTERNAL_ID

RELATION /R_ENTITIY_A/
ENTITY_A_NAME
RELATION /R_ENTITIY_A/
ENTITY_A_TYPE

RELATION /R_ENTITIY_A/
ENTITY_A_ROLE

RELATION /R_ENTITIY_A/
ENTITY_A_CHAR_START
RELATION /R_ENTITIY_A/
ENTITY_A_CHAR_END
RELATION /R_ENTITIY_B/
ENTITY_B_INTERNAL_ID

RELATION /R_ENTITIY_B/
ENTITY_B_NAME
RELATION /R_ENTITIY_B/
ENTITY_B_TYPE

RELATION /R_ENTITIY_B/
ENTITY_B_ROLE

RELATION /R_ENTITIY_B/
ENTITY_B_CHAR_START
RELATION /R_ENTITIY_B/
ENTITY_B_CHAR_END

integer

integer

string

string

string

integer
integer

integer

string

string

string

integer

integer

Biological relation tracking ID, unique
for each entity, identical to
BIORELATION_ID for internal use.
Biological entity A tracking ID, unique
for each entity, identical to
BIOENTITY _ID for internal use.
Biological entity A tagging name (not
the exact word phrased in the article).
Biological entity A type. V1.0 APIs
contain Gene, Protein, Proteoform, and
miRNA.

Biological entity A role. V1.0 APIs
contain Kinase, Interactant, Regulator,
and Unknown.

The number of characters the referring
biological entity A is started.

The number of characters the referring
biological entity A is ended.
Biological entity B tracking ID, unique
for each entity, identical to
BIOENTITY _ID for internal use.
Biological entity B tagging name (not
the exact word phrased in the article).
Biological entity B type. V1.0 APIs
contain Gene, Protein, Proteoform, and
miRNA.

Biological entity B role. V1.0 APIs
contain Substrate, Interactant, Target,
and Unknown.

The number of characters the referring
biological entity B is started.

The number of characters the referring
biological entity B is ended.

Table A.1: API content data object keys definition.

64

