
	

	 i	

RESTFUL API FOR INTEGRATIVE LITERATURE INFORMATION AND

KNOWLEDGE SERVICE

by

Xu Zhu

A thesis submitted to the Faculty of the University of Delaware in partial

fulfillment of the requirements for the degree of Master of Science in Bioinformatics
and Computational Biology

Summer 2017

© 2017 Xu Zhu
All Rights Reserved

	

	 ii	

RESTFUL API FOR INTEGRATIVE LITERATURE INFORMATION AND

KNOWLEDGE SERVICE

by

Xu Zhu

Approved: __

Cathy H. Wu, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

Kathleen F. McCoy, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved: __

Babatunde Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved: __

Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

	

	 iii	

ACKNOWLEDGMENTS

I wish to thank my adviser, Dr. Cathy H Wu; and my committee members Dr.

Chuming Chen, and Dr. Li Liao for their continuous advice, guidance, and academic

support during the past two years. I must also thank my professional friends and

colleagues, Jia Ren, Gang Li, and M. Joseph Tomlinson IV, who have supported and

helped me throughout my graduate education.

This manuscript is dedicated to my parents, Fanzhu Zhu, Fang Sun and Yu

Zhu for their unconditional love; also to my friend Xi Jiao for her motivating and

inspiring.

	

	 iv	

TABLE OF CONTENTS

LIST OF FIGURES vi
LIST OF TABLES ix
ABSTRACT x

Chapter

1. INTRODUCTION 1

2. BACKGROUND 3

2.1 RESTful API 3
2.2 Related work 5

3. API DESIGN 12

3.1 iLINKS text-mining system 12

3.1.1 Architecture 12
3.1.2 Data sources 15

3.2 API design principles 19
3.3 API endpoints and description 22

4. API IMPLEMENTATION AND DOCUMENTATION 37

4.1 Implementation 37
4.2 Documentation 42

5. EXAMPLE USE CASE 49

6. DISCUSSION AND FUTURE WORK 53

7. CONCLUSION 55

REFERENCES 56

	

	 v	

Appendix

A API CONTENT DATA OBJECT KEYS DEFINITION 62

	

	 vi	

LIST OF FIGURES

Figure 2.1: Example BioC API for PubMed (Endpoint:
https://www.ncbi.nlm.nih.gov/research/bionlp/RESTful/pubmed.cgi
/BioC_json/19330006/unicode) 7

Figure 2.2: Example PubTator REST API (Endpoint:
 https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/RESTfu
l/tmTool.cgi/BioConcept/19894120/PubAnnotation/) 10

Figure 2.3: Example PubTator annotation webpage view (19330006 as PubMed
ID) 10

Figure 3.1: iLINKS Text-Mining System architecture 13

Figure 3.2: API data source and processing steps (Article source – MEDLINE,
text-mining tools – RLIMS-P, miRTex, PubTator; the dashed line
represents no-physical connection.) 15

Figure 3.3: Hieratical API interconnection structure. 23

Figure 3.4: API response for request
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/full
Infos.json/ 26

Figure 3.5: Main objects in PubMed centric full information API (JSON
format). 26

Figure 3.6: ABSTRACT object in PubMed centric full information API (JSON
format). 27

Figure 3.7: RELATION object in PubMed centric full information API (JSON
format). 28

Figure 3.8: ENTITY object in PubMed centric full information API (JSON
format). 28

	

	 vii	

Figure 3.9: Version 1.0 API available biological entity type and role (left-side
green entities and right side blue entities represent of entity roles of
Biological Entity A and B; middle part yellow entities are the types
of Biological Entity; the lines indicate they are signed to the same
biological entity) 30

Figure 3.10: ENTITY object in PubMed centric minimal information API (JSON
format). 32

Figure 3.11: PubMed centric minimal information API (JSON format) 33

Figure 3.12: Main objects in entity centric APIs (JSON format). 35

Figure 3.13: Entity centric entity property API (JSON format), in response to
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/properties.
json/ 35

Figure 3.14: Entity centric entity interaction API (JSON format), in response to
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/interaction
s.json/ 36

Figure 3.15: Entity centric entity proteoform API (JSON format), in response to
http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/proteofor
ms.json/ 36

Figure 4.1: API request and response cycle 38

Figure 4.2: iLINKS relational database general logic structure 39

Figure 4.3: API list in API page
(http://beadle.dbi.udel.edu/ilinks_test/rest/API/) 43

Figure 4.4: API type introduction in API page
(http://beadle.dbi.udel.edu/ilinks_test/rest/API/#A10) 44

Figure 4.5: API description (sample code) in API page
(http://beadle.dbi.udel.edu/ilinks_test/rest/API/#A11) 45

Figure 4.6: API response (JSON format result) in API page
(http://beadle.dbi.udel.edu/ilinks_test/rest/API/#A11) 46

	

	 viii	

Figure 4.7: API example
page(http://beadle.dbi.udel.edu/ilinks_test/rest/example) 47

Figure 4.8: API home page (http://beadle.dbi.udel.edu/ilinks_test/rest/) and
FAQ page (http://beadle.dbi.udel.edu/ilinks_test/rest/faq/) 48

Figure 5.1: Search page in iLINKS text-mining system website
(http://beadle.dbi.udel.edu/ilinks_test/) 50

Figure 5.2: ‘Invalid PubMed ID’ alert (with input ‘1234567890’) and ‘No text-
mining data available’ alert (with input ‘1’) on search page 50

Figure 5.3: Search result display (PubMed-19330006), with ‘gene’ filter on
entity table 51

	

	 ix	

LIST OF TABLES

Table A.1: API data object keys definition. 62

	

	 x	

ABSTRACT

 Biocuration needs efficient and high-quality data sources as well as automatic

literature curation as the result of dramatically increasing the volume of literature in

life science and biology fields. API is a stable and scalable mechanism to deliver

programmable data, which can become the data source for biocuration and data

presentation. RESTful API for Integrative Literature Information and Knowledge

Service (abbreviated to iLINKS) is designed to expose the text-mining data gained

from analyzing PubMed articles to support potential application development. The

iLINKS system integrated three text-mining tools, RLIMS-P, miRTex and PubTator

to capture phosphorylation relation, gene-miRNA relation and biological relation in

general. With the data generated by those text-mining tools, three different types of

APIs are built to deliver PubMed article full information, relation-specific

information, and across-article entity information. Following the best practice of API

design principle as well as the business rules in iLINKS system, the APIs are used to

deliver text-mining results along with PubMed article abstract/full text. API

documentation website is set to help developers to develop applications using the

APIs. An example PubMed ID based search web page can help biocurators quickly

searching for biological entities and relations for a given PubMed article. The

	

	 xi	

RESTful APIs will be widely used for developing other iLINKS applications, which

include Cytoscape knowledge network visualization, and BRAT literature annotation.

1	

Chapter 1

INTRODUCTION

 Biocuration is a data collection process including identification, interpretation,

and integration of biological information, and reformat data into biological databases. [1]

Computational biology is an analytical technique built on biological data from

experiments and literature curation, whose availability and quality will influence the

downstream analysis results and conclusion [2]. The information curated from literature

can also be set as the reference and standard for related computational analysis and high-

throughput data assembly [3]. Since the middle 1990s, the dramatic increase in the

volume of life science literatures has published the urgent need for intelligent tools to

extract information and convert it to consistent format [2]. Providing accessible and

programmable data is another highly demanded function to help researchers gain insight

of the certain topic rapidly, so data integration and presentation are also crucial in

biocuration progresses [3].

API (Application Programming Interface) is a practical and scalable solution for

efficient biocuration data accessing methods. [4] Following the transformation of Web

2.0, REST (Representational state transfer) API became the main trend of building web

APIs. [5] [6] There are three reasons why RESTful API service is suitable to handle the

current difficulties we are facing in biocuration. First, the driver of API is exposing

capabilities, which matches the purposes of curators in terms of delivering data content

and functions. Second, API is a great support for the developers to integrate data or

functions into their applications, which helps to push biocuration into a higher

2	

engineering level comparing to manual curation. Third, from the data providers' point of

view, providing API access can boost their business by having a wider group of

customers and users. So building RESTful APIs for Integrative Literature Information

and Knowledge Service (abbreviated to iLINKS) is chosen as my Master degree thesis

project. (iLINKS Text-mining System, the Center for Bioinformatics & Computational

Biology (CBCB), University of Delaware.)

The thesis is organized as follows: Chapter 1 introduces the motivation of the

thesis and describes the high-level structure of the thesis. Chapter 2 presents the basic

background knowledge for building APIs and related work. Chapter 3 describes the

important role API plays in the iLINKS text-mining system project and presents the API

design principle and API endpoints descriptions. Chapter 4 focuses on API

implementation and documentation. Chapter 5 introduces example use case as searching

and returning data tables populated by the APIs. Chapter 6 discusses the potential

development directions for iLINKS API version 2.0; Chapter 7 concludes the thesis and

highlights the contribution of this thesis project.

3	

Chapter 2

BACKGROUND

As a way to expose the data integrated in iLINKS text-mining database, RESTful

API is chosen as the media to deliver the data to all external users. Different from web

user interfaces (WUI) that has been widely used and viewed by users with a web browser,

API, application program interface, is a programmable data or function delivery service.

The consumers of APIs would mainly be developers and engineers. [7] Programming and

developing skills and expertise are required for API endpoints users, but all those steps

are taken to ultimately benefit a larger group of users. Because this thesis project is

exclusively designing APIs to deliver PubMed article text content and text-mining results

as the data objects, in this chapter, RESTful APIs and their applications in

biology/bioinformatics field are firstly demonstrated, then followed by some similar API

designs that are also aiming for exposing PubMed article and text-mining function.

2.1 RESTful API

iLINKS text-mining system processes PubMed articles and stores text-mining

results into a relational database. To present data in a programmable format, and make

the text-mining results available for programmatic access, data in the relational database

are processed and published as APIs. API is a media that allows application/software

to directly interact with the backend database. Some applications can use multiple

APIs from different resources, and good APIs can organize data into building blocks that

are easier to interact. REST (also called RESTful web service) is applied by HTTP

4	

request and mainly doing textual representations access and manipulation, such as GET,

PUT, POST, DELETE and so on. [8] Those textual representations of web

resources could be documents or URL-identified files, which can be read through by a

browser. Many large-scale websites are using RESTful APIs, such as, Google, Amazon,

Twitter and LinkedIn.

Most of the biological databases and sources provide APIs as the external accesses

for part of their data or data processing functions. For example, NCBI (National Center

for Biotechnology Information) has entity-centric databases like Gene, Protein and Probe,

article-centric databases like PubMed and PubMed Central, also with functions like Blast,

and those data and functions are also accessible through NCBI E-Utilities API system. [9]

Other biology-related API sources are like KEGG, tools like PubTator, Cytoscape, and

some APIs provided by research groups like PSAMM API from Computational

Molecular Ecology Lab at the University of Rhode Island. [10] With more and more

APIs offered in biotechnology and bioinformatics field, researchers and developers who

want to build their own web applications or mobile applications can directly use the

information or functions provided by those online biological sources. And with other

general APIs in computer and software engineering field, they can also combine different

APIs from different sources to increase app’s functionality. Ultimately, as part of the

research group, we want to design and build our own APIs for both internal and external

use.

5	

2.2 Related work

 Among the two hundred open source science APIs, there are more than one

hundred API sources are related to biology field, including bioinformatics (58 out of 195),

genetics (44 out of 195) and biology (35 out of 195), according to the data collected by

programmableweb.com. [11] NCBI Entrez API (E-Utilities) is the most popular one with

different functions and databases. One NCBI API access (named BioC API for PubMed)

that provides PubMed article data is directly related to this project. In addition, PubTator

also developed REST API as one of their new features. [12] The three APIs (BioC API

for PubMed, PubTator REST API, and iLINKS API in this project) all use PubMed

articles as data source. The main differences among the three APIs are, BioC API for

PubMed contains only article information, PubTator REST API and iLINKS API contain

text-mining data. The difference between PubTator REST API and iLINKS API are, in

data content aspect, iLINKS API contains the data generated from PubTator and two

other text-mining tools (RLIMS-P and miRTex), but PubTator REST API only has

PubTator text-mining as the data source; in API structure aspect, iLINKS API has three

different API structures but PubTator REST API only has one.

BioC API for PubMed

PubMed has several article presentation views, including common web view,

XML, MEDLINE and plain text. The access URL is defined in this format:

https://www.ncbi.nlm.nih.gov/pubmed/?term={PMID}&report={format}&format=text

6	

Two parameters can be modified by users, one is {PMID}, which should be

replaced with PubMed ID (for example, 19330006), the other is {format} which can be

Summary, Summary (text), Abstract – the PubMed basic page, Abstract (text),

MEDLINE, XML and PMID List.

BioC API for PubMed is a RESTful API developed by Zhiyong Lu team, as part

of the NCBI text-mining service. [13] [14] The data source for this API is PubMed

database, and the API only displays article text and citation information without

integrating any text-mining or natural language processing (NLP) functions. The

endpoint for this API is defined as

https://www.ncbi.nlm.nih.gov/bionlp/RESTful/pubmed.cgi/BioC_{format}/{PMID}/{en

coding}

Three parameters can be customized by users, one is {format} with available

value ‘json’ and ‘xml’, another one is {PMID} for PubMed ID, and the last one is

{encoding} with available value ‘unicode’ or ‘ascii’. It is quite straightforward to know

how this endpoint works, even though there are no testing cases or any other detailed

documentation (with interactive try out).

For sample code (with parameters set as format = json, PMID = 19330006,

encoding = unicode), the request and response are shown below.

Request:

Method:

GET

Endpoint:

7	

https://www.ncbi.nlm.nih.gov/research/bionlp/RESTful/pubmed.cgi/BioC

_json/19330006/unicode

Respond:

Figure 2.1: Example BioC API for PubMed (Endpoint:

https://www.ncbi.nlm.nih.gov/research/bionlp/RESTful/pubmed.cgi/BioC_json/1933000

6/unicode)

8	

The API contains basic document information (no citation information), title text,

and abstract text. Comparing to PubTator API and iLINKS API in this project, this article

text API stores article title and abstract separately, which on one hand is convenient for

displaying the article text (title and abstract structure) on the web page, but on the other

hand requires extra steps if users/developers want to process title text and abstract text

together.

PubTator REST API

PubTator, as introduced in the previous chapter, is an online text-mining tool with

search and annotation functions based on NCBI PubMed database. The text-

mining/annotation data, along with the original article is open for FTP download

(ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/), and PubTator developer team also added

REST API access recently (with brief documentation, without interactive try out). [14]

The data source for this API is still PubMed database, and the biological concepts that

can be recognized by PubTator integrated text-mining tools are gene, disease, specie,

mutation, and chemical component. The endpoint for this API is defined as

https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/RESTful/tmTool.cgi/{bio-

concept}/{PMID}/{format}/

There are three parameters, one is {bio-concept} with available values ‘Gene’,

‘Disease’, ‘Chemical’, ‘Species’, ‘Mutation’ and ‘BioConcept’ (for all included); {PMID}

is simple PubMed ID, and {format} can be ‘PubTator’, ‘BioC’, and ‘PubAnnotation’ (or

‘JSON’).

9	

The sample code (with parameters set as bio-concept = BioConcept, PMID =

19330006, format = PubAnnotation), the request and response are shown below.

Request:

Method:

GET

Endpoint:

https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/RESTful/tmTool.cg

i/BioConcept/19894120/PubAnnotation/

Response: (not full data)

10	

Figure 2.2: Example PubTator REST API (Endpoint:

https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/RESTful/tmTool.cgi/BioConcept/

19894120/PubAnnotation/)

The iLINKS full-information API has similar structure as PubTator REST API,

which consists of article information (source and ID), article text (title and abstract

together), and annotation information (with start and end character positions within the

article text). This structure is simple and convenient to work with when each biological

entity is marked by a unique ID. The API can be directly used by annotation tools such as

Brat Rapid Annotation Tool (http://brat.nlplab.org/).

Figure 2.3: Example PubTator annotation webpage view (19330006 as PubMed ID)

11	

From the aspect of article data display and annotation, PubTator has its built-in

article annotation view, which can be the reference development direction for iLINKS

API usage. This potential usage also influenced the design of iLINKS APIs. [15]

 Regarding three APIs (BioC API for PubMed, PubTator REST API and the

RESTful API for iLINKS text-mining system as this thesis project), they are all PubMed

article centric data access APIs. When comparing BioC API for PubMed and RESTful

API for iLINKS text-mining system, BioC API for PubMed only contains PubMed article

text and article related information and there is no text-miming data included; RESTful

API for iLINKS text-mining system, on the other hand, contains PubMed article text,

article information, and text-miming data. When comparing PubTator REST API and the

RESTful API for iLINKS text-mining system, RESTful API for iLINKS text-mining

system has two special target-specific text-mining tools (RLIMS-P and miRTex) that

PubTator system does not have. And one unique feature the RESTful APIs for iLINKS

text-mining system have is that there is one subtype of APIs that accesses the information

across multiple PubMed articles as they have been integrated into the underlying

relational database. In other words, BioC API for PubMed and PubTator REST API only

have APIs for single PubMed article, but RESTful APIs for iLINKS text-mining system

have APIs that can deliver related information from multiple PubMed articles.

12	

Chapter 3

API DESIGN

API design in general follows some universal design principles and patterns, and

there always is a trade-off between flexibility and usability. Flexibility indicates that API

should contain more than one function and is able to support different use cases; usability

indicates that if the API can serve its basic purpose and be consumed by users properly.

The increase in flexibility will add complexity to API, which may have a negative impact

on the user experience and make the API hard to use. [16] [17] For this project, we are

targeting the specific field - biocuration, so instead of trying to design a mashup API with

multiple functionalities, we want to create simple data delivery APIs. [18] Since data is

the main component of the APIs, in this chapter, the data source is introduced first,

followed by API design principles and API service description.

3.1 iLINKS text-mining system

 Before diving into the API design, we want to present the high-level architecture

of iLINKS text-mining system. The data source of the APIs is also a big component of

the whole pipeline. RESTful API plays an important role in overall data flow. It supports

data manipulation to backend database to keep the system stable using self-checking

method; it also supports potential client application development.

13	

3.1.1 Architecture

Figure 3.1: iLINKS Text-Mining System architecture [19]

14	

Figure 3.1.1 shows an overall architecture of iLINKS text-mining system.

Because this project concentrates on PubMed article text-mining for biocurators to do

annotation and further development, the original data content is retrieved from PubMed

Database (MEDLINE), which covers article information (PubMed ID), and article text

(title and abstract). Then three text-mining tools (RLIMS-P, miRTex, and PubTator) are

applied to the article data to capture biological entity data and biological relation data

(entity A and entity B interact to form a relation). The text-mining output data are

integrated into Oracle relational database.

The text-mining output data are re-organized in the relational database, stored

procedures are used to generate the initial data content for each iLINKS API, and those

stored procedures in the database are called from Web tier directly using Python cursor

function. Next step is to define the URLs/endpoints for APIs and follow up with Django

views to handle the input parameters from URL and pass them to the stored procedure

calling class (Python class). So it forms a complete data flow from API request to API

response.

A Django website is created to document APIs (includes introductions and one

case study utilizing three APIs). In order to serve the purpose of benefiting both internal

and external users and developers to do integrity checking, data monitoring or article

searching, a search web interface is also created that takes one PubMed ID as input and

return article text (title and abstract) and its biological entities and relations. This

interface is also built upon the same Django framework to keep the consistency and

independence. For other on-going application development supported by APIs,

15	

Cytoscape (knowledge network) and BRAT (article annotation) are chosen as two typical

visualization applications, which are under development by other team members.

3.1.2 Data sources

 Because all the APIs' data content is generated in Oracle database by stored

procedures, the data source and data pre-processing need to be described. As shown in

the Figure 3.1.2, the main biological article source is MEDLINE/PubMed, there are three

text-mining tools processing the articles, and the text-mining output data are reformatted

before being loaded into a database.

Figure 3.2 API data source and processing steps (Article source – MEDLINE, text-

mining tools – RLIMS-P, miRTex, PubTator; the dashed line represents no-physical

connection.)

In the figure above, the dashed line from MEDLINE to PubTator represents that

even though MEDLINE is the article source for this tool but we do not need to collect

article data from MEDLINE manually, instead, PubTator has an inner connection with

MEDLINE and the text-mining result can be downloaded directly through its FTP.

16	

In terms of article resource chosen for this project, MEDLINE (Medical Literature

Analysis and Retrieval System Online) is originated in 1964 and contains more than 23

million life science journal citations and abstracts. [20] It covers biology, biochemistry,

medicine, pharmacy, and health care, with the recommendation and selection of the

Literature Selection Technical Review Committee (LSTRC). MEDLINE is the major

component of PubMed database, which is managed by NLM National Center for

Biotechnology Information (NCBI). As the most widely used open bioinformatics

literature resource, The MEDLINE/PubMed Baseline Repository is also chosen as the

first and primary literature source for this thesis project.

In terms of the article text processing method, text-mining tool is one component

of the data processing workflow, which utilizes the natural language processing systems

to capture biological entities and relations in the literatures. In this thesis project, there

are three text-mining tools being used to processing the PubMed abstracts, which are

PubTator developed by NCBI Computational Biology Branch (CBB), RLIMS-P and

miRTex developed by the Center for Bioinformatics & Computational Biology (CBCB),

University of Delaware and the Department of Computer and Information Sciences,

University of Delaware.

RLIMS-P (abbreviation of Rule-based Literature Mining System for

Phosphorylation), is an enhanced text-mining tool, specifically tagging protein

phosphorylation relation by identifying kinase, substrate, and phosphorylation site as

biological entities and also distinguishing the phosphorylation trigger words as biological

relations. It ingrates the natural language processing and information-extracting modules

17	

to process articles and recognize patterns for phosphorylation relations, to which the data

resource is all the articles from MEDLINE/PubMed with PubMed ID, title, and abstract

data. RLIMS-P 2.0 is capable of processing full-length articles from PubMed Central

(PMC OA database), and extract relation information beyond regular expression patterns

and across sentences. The accuracy and overall performances of RLIMS-P 2.0 were

checked by development team using high expression variety articles (abstracts and full-

length articles) data and achieved 0.9 and higher F-scores for capturing kinase, substrate,

and phosphorylation site. Additional evaluation was done using 2013 BioNLP-ST GE

task content and achieved F-score 0.87 on phosphorylation core task. [21] RLIMS-P

output is in JSON format, containing PubMed ID, abstract text, phosphorylation relation

type tagging, biological entity types (kinase, substrate and phosphorylation site) tagging.

miRTex is another text-mining tools used in this project, and similar to RLIMS-P,

miRTex is designed to identify one type of biological relation – the relation between

miRNA and the gene it regulates. Different from RLIMS-P, miRTex can specify the

relation by adding direction and directness features; if miRNA directly regulates the

gene, it is called ‘miRNA-target’ relation; if miRNA indirectly regulates the gene or the

directness is unknown, it is called ‘miRNA-gene’ relation; and if it is gene that regulates

the miRNA, it is called ‘gene-miRNA’ relation. Aside from the capability of capturing

the ‘gene-miRNA’ relation, another design that makes miRTex unique is its precision.

[22] Previous text-mining systems usually use a co-occurrence-based approach or use

machine-learning, but their overall accuracy is not quite satisfying even though they may

achieve a good result in recall. [23] The output data format is similar to RLIMS-P which

18	

makes it convenient for backend developers to do integrity checking and data

reformatting before importing into the database.

PubTator, which is an online open-source texting-mining and annotation tool for

biocuration, is used as the third text-mining tool (also text-mining data resource) in this

project. Different from RLIMS-P and miRTex, PubTator is a web-based system, and its

major task is to provide article annotations dynamically, with searching and selecting

functions. Another difference is that PubTator targets on multiple biological relations and

entity types at the same time, including gene, disease, specie, mutation, and chemical

component. And to be specific, PubTator integrates multiple biological entity tracking

and normalizing tools, which are GeneTUKit [24] for gene identification (with GenNorm

[25] for normalization), DNorm [26] for recognizing diseases, tmVar [27] for tracking

mutations. and SR4GN [28] for tagging species, and a dictionary-based lookup approach

[29] for chemicals. [12] PubTator contains all the content in PubMed (NCBI) database,

which matches the data source for RLIMS-P and miRTex, and it is available through FTP

access. In this project, the combined package for all 5 concepts (Gene, Disease, Species,

Mutation, and Chemical) was downloaded and put into use (named

bioconcepts2pubtator_offsets). The data structure is for this data file is as below:

This format is similar to the data output from RLIMS-P and miRTex, and because

of the similar data set structure, a relational database was built to store all the data with

<PMID>|t|<TITLE>	
<PMID>|a|<ABSTRACT>	
<PMID>	<START	OFFSET	1>	<LAST	OFFSET	1>	<MENTION	1>	<TYPE	1>	<IDENTIFIER	1>	
<PMID>	<START	OFFSET	2>	<LAST	OFFSET	2>	<MENTION	2>	<TYPE	2>	<IDENTIFIER	2>	

19	

the potential for adding more data from different text-mining tools, which includes

pGenN (for Proteoform), DiMex (for Variant), and eFIP for Phosphorylation PPI

(protein-protein interaction).

An Oracle relational database is used to store text-mining results. The text-mining

output data are integrated through pre-processing, including alignment, normalization for

biological entities, and reformatting to fit the staging table in the Oracle database for

direct importing. SQL*Loader, a powerful data parsing engine that can load data from

external files to Oracle database under Linux system, is used to import all the text-mining

data into staging tables in the Oracle database. Later the data in staging tables are mapped

into the productive schema for this relational database, which is mainly composed of

entity, entity-feature, relation, relation-feature and document, document-feature table

structure. In the productive database schema, short strings (for describing words) are

stored in data type VARCHAR, and long strings (like title and abstracts) are stored in

data type CLOB. A separate MongoDB is also in use to store the article full texts and

sentences.

3.2 API design principles

A design principle is crucial for every kind of design and engineering, not just

limited to API design. Simplicity and functionality are, for example, universal principles.

When designing something, the first request would be if it can work, then it would come

to if it is easy to use. For API design, functionality is still the primary requirement; an

API should be able to deliver enough functions or data that can fulfill the needs from API

20	

consumers and all other users (through the entire API usage cycle). For example, in this

project, the API usage cycle would be data import, article text display or processing, and

text-mining data analyzing. So each API should contain those three components so that

when users execute one API, they can get all the data they want at once, instead of

jumping around several APIs. As mentioned at the beginning of this chapter, there is a

simplicity-functionality trade-off in API design. The simplicity can ensure users a good

user experience and also lower the learning curve for API usage and consumption. One

possible solution would be to build granulated APIs. Granulated APIs mean the functions

or data developer wanted to expose through APIs are divided into small reusable sections.

This concept does not violate the requirement of containing enough programmable

capabilities, because, even one API is a small function block, it still needs to be able to

stand alone and support the application actions.

 Industrial standard is a great guide to follow, it is also a principle for API design;

by adapting to the same standard, both providers and consumers of APIs can have a

familiar circumstance to work in and also they can have more support from other groups

and resources. [29] So for the API design in this thesis project, RESTful API is chosen

other than SOAP API, and the reason is RESTful is a simple and popular standard API

type for web application, which has become the most widely used API type. JSON and

XML are set as the two formats for API data format, because they are the most

commonly used API data formats, and they are also the standard API format across all

types of APIs provided by different organizations. Meet the industry standard does not

mean to ignore the special requirement of individual project. For example, in

21	

biology/bioinformatics field, there is a large portion of researchers and scientist working

with the BioC data type. So for the future development of the API version 2.0 (Current

API is in version 1.0), BioC will serve as the third API format. As to API endpoint

design, strict rules need to be followed. The rules include 1) use a noun instead of a verb;

2) use plurals instead of single nouns; 3) versioning should be part of API endpoints; 4)

API format should be specified at the end of each endpoint; 5) API depth should be

controlled into an appropriate range. [30] Those rules may vary partially from one API

project to another, but the ideal status remains the same.

 API documentation and dogfooding (also known as self-checking) may not be

required from all the API providers, but they are highly recommended and demanded

from users and direct consumers. [31] A good API documentation should at least contain

API description, endpoints, method, parameters, request, response, and code samples for

try out. [32] A website dedicated to documenting APIs is built as part of this thesis

project and will be described in detail in the next chapter. On the other hand, as

mentioned in the previous chapter, two related work for building APIs, neither of them

has a complete API documentation. That also makes the APIs here more user-friendly

and competitive. Dogfooding is not always applicable because sometimes the agencies

that published APIs only came up with some use cases but they did not build a real

application using the APIs they provided. However, in this project, a PubMed search web

page is created using three API endpoints. The data in APIs are processed to generate a

search response, which consists of PubMed article text, biological entity information

22	

table, and biological relation information table. This search page will also be described in

more detail in Chapter 5.

3.3 API endpoints and description

Following the design principles described previously, the versioning is included

in the API root URL, which is 'http://beadle.dbi.udel.edu/ilinks_test/rest/v1/'. For current

development progress in the iLINKS text-mining system, this API project is running on

development branch with the embedded URL as '/ilinks_test/'; all current APIs are in

version 1.0, which is also indicated in root URL as '/v1/'. This root URL stays consistent

through all the APIs designed in this thesis project. In terms of URL structure and depth,

there are general patterns for all APIs. (Not all the APIs have the same depth.)

/grandparent/{grandparent_ID}/parent/{parent_ID}/siblingA/{siblingA_ID}/siblingB/{si

blingB_ID}/endfile.format

There are four layers of depth, which are grandparent, parent, sibling, and end

file. There are three main types of APIs, with different concentrations and data coverage.

Figure 3.3.1 stands for the general hieratical structure of how the APIs distinguish from

each other and interconnect with each other.

23	

Figure 3.3: Hieratical API interconnection structure.

We want to distinguish PubMed-centric APIs from Entity-centric APIs because of

their two major data coverage directions. For PubMed centric APIs, users can choose to

return full information or minimal information as two different data content types. For

full information content, there are still three different options ‘fullinfos’ (entities and

relations combined), ‘entities’ and ‘relations’. For minimal information content, the user

can specify the entity type/role or relation type/attribute to narrow the data to a specific

24	

biological topic they are interested in. For the third main type of APIs, they are Entity-

centric, meaning the data are collected according to one specific biological entity (for

example, one protein with Entrez ID 2065). Furthermore, there are three data content

options for users, which are entity property, entity interaction, and proteoform.

API type 1

Using PubMed ID to get all the text-mining data extracted from its title and

abstract. This type of APIs has full coverage on all the information stored in the database

related to single PubMed article. The API consumers and data users can execute this API

to get the article text along with its text-mining result. This design is applicable for

applications like basic data table presentation, document annotation, interaction network,

statistics/metadata generation and so on. Because it contains the full information, it can

be called once and feed many applications at the same time. With this one-stop data

delivery feature, this API can be coordinated in PubMed search functions to generate

article text display and table views. (This example will also be described in detail in

Chapter 5.)

There are three sub-types for this API design, which varies in the data content it

contains, entity data only, relation data only, or full data (with both entity and relation

data). All of them contain basic PubMed information including PubMed ID, source, and

article text (title and abstract together). So the API method and request (extending the

API root URL mention before) will be like below. Here only GET method is allowed and

all data are read-only. ‘/v1/’ is still part of API root URL, showed here to emphasize the

25	

versioning. The section marked as ‘{PubMed ID}’ is expected to be replaced entirely by

the real PubMed ID that the API consumers are interested in. For version 1.0, JSON and

XML are available as format options, which are marked as [format] in the URL.

• GET full data:

/v1/PubMed/{PubMed ID}/fullInfos.[format]/

• GET entity data:

/v1/PubMed/{PubMed ID}/entities.[format]/

• GET relation data:

/v1/PubMed/{PubMed ID}/relations.[format]/

To be more specific, for example, an API consumer has one PubMed ID as

19330006, and he wants to return data in JSON format. The three sub-type of APIs

should be called by the URL as shown below. For XML format data, the consumers can

simply replace ‘.json’ with ‘.xml’ at the end of each URL.

• GET full data:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/fullInfos.j

son/

• GET entity data:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/entities.js

on/

• GET relation data:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/relations.j

son/

26	

 The response viewed in browser is shown in Figure 3.3.2 below.

Figure 3.4: API response for request

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/fullInfos.json/

The data contained in those APIs as multiple arrays/objects, and the definitions is

consistent through all the API design since all the APIs are generated from the same data

source.

For API with full information returned (in JSON format), there are four main

objects:

Figure 3.5: Main objects in PubMed centric full information API (JSON format).

27	

 In the ‘ABSTRACT’ object, there are two key-value pairs storing the article

source (‘SOURCE’) and article text (‘ABSTRACT’).

Figure 3.6: ABSTRACT object in PubMed centric full information API (JSON format).

 In the ‘RELATION’ array, relation records are appended to a list/array in the

JSON API; within each relation object, there are 16 key-value pairs storing biological

relation information and 2 objects storing the information for two biological entities that

interact with each other. Similarly, the ‘ENTITY’ array contains the biological entity

information. Because the initial goal for building the APIs is to feed data to annotation

(BRAT annotation tool), network (Cytoscape) and data tables (jQuery DataTable)

applications. The structural requirements from those applications do have an impact on

how data are organized in those APIs. For example, the jQuery DataTable prefers all data

stored as objects in one array and all have exactly the same keys with each object. And in

order to only provide the necessary data, consumers can decide which objects they want.

The three combinations are:

• GET full data: PMID + ARTICLE + ENTITY + RELATION

28	

• GET entity data: PMID + ARTICLE + ENTITY

• GET relation data: PMID + ARTICLE + RELATION

The pretty formatted API data are shown as below:

Figure 3.7: RELATION object in PubMed centric full information API (JSON format).

Figure 3.8: ENTITY object in PubMed centric full information API (JSON format).

29	

API type 2

Because we have the enhanced text-mining tools dedicated for phosphorylation

relation and miRNA-gene relation (recognizing kinase, substrate, miRNA and target

genes), topic-specific APIs using PubMed ID to get specific data by limiting the entity

type/role or relation type/attribute are designed. This type of APIs has very similar

structural design comparing to the API type 1. However, this API only contains the

minimal information for the biological entities and relations. The purpose of this special

design is to quickly return clean data with specific topics that the users are interested in.

So instead of returning all the potential information captured by text-mining tools, users

are allowed to put filters on the data content, in other words, users can specify the

biological entity type/role, or biological relation type/attribute and request a subset of full

information data.

The relation between Biological entity type and entity role in the current version

1.0 with three text-mining tools (RLIMS-P, miRTex, and PubTator) are shown as below.

Based on the current database status (supporting API version 1.0), there are six biological

entity types available (Protein, Proteoform, Gene, miRNA, Variant, and Unknown - the

yellow rectangles in the middle line). There are four biological entity roles (Kinase,

Interactant, Regulator and Unknown) available for BIOENTITY A and four (Substrate,

30	

Interactant, Target, and Unknown) for BIOENTITY B in the BIENTITY A -

BIORELATION - BIENTITY B relation structure. In the figure below, the BIOENTITY

A is on the left side in green and BIOENTITY B is on the right side in blue; the lines

connecting two rectangles indicates they have been combined to describe one biological

entity.

Figure 3.9: Version 1.0 API available biological entity type and role (left-side green

entities and right side blue entities represent of entity roles of Biological Entity A and B;

middle part yellow entities are the types of Biological Entity; the lines indicate they are

signed to the same biological entity)

The URLs designed for this type of APIs are listed below.

• GET entity data with type filter:

31	

/v1/PubMed/{PubMed ID}/entity_type/{entity type}/entities.[format]/

• GET entity data with type and role filter:

/v1/PubMed/{PubMed ID}/entity_type/{entity type}/entity_role/{entity

role}/entities.[format]/

• GET relation data with type filter:

/v1/PubMed/{PubMed ID}/relation_type/{relation

type}/relations.[format]/

• GET relation data with type and attribute filter:

/v1/PubMed/{PubMed ID}/relation_type/{relation

type}/relation_attribute/{relation attribute}/relations.[format]/

For example, an API consumer still has one PubMed ID as 19330006, and he

wants to return data in JSON format. He also chooses ‘miRNA’ as entity type, ‘regulator’

as entity role, ‘miRNA-Gene’ as relation type, and ‘unknown’ as relation attribute. Then

the APIs should be called by the URL as below.

• GET entity data with type filter:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/entity_typ

e/miRNA/entities.json/

• GET entity data with type and role filter:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/entity_typ

e/miRNA/entity_role/regulator/entities.json/

• GET relation data with type filter:

32	

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/relation_t

ype/miRNA-Gene/relations.json/

• GET relation data with type and attribute filter:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/19330006/relation_t

ype/miRNA-Gene/relation_attribute/unknown/relations.json/

In terms of the minimal data subset, for each biological entity or relation object,

the sentence (mentioning this entity/relation), entity/relation filter values, offsets, and one

unique entity/relation tracking ID are included. Aside from this, the PMID and

ABSTRACT objects remind the same. So the sample response according to the requests:

Figure 3.10: ENTITY object in PubMed centric minimal information API (JSON format).

33	

Figure 3.11: PubMed centric minimal information API (JSON format)

API type 3

Using normalized ID (Entrez ID) to get full data across articles. This is a special

design utilizing the data in the database. Instead of focusing on each single PubMed

article, this type of APIs collects related data from all the articles from PubMed. This

design can provide users the text-mining data from all different articles, which will have

a higher coverage on the knowledge and may discover the hidden relations. With the

similar purpose, eGIFT (http://biotm.cis.udel.edu/eGIFT/) offers a gene-searching base to

extract information from all kinds of text sources. Similar to eGIFT, the APIs in this

section contains sentences text and some basic feature descriptions for biological

entity/relation; the difference would be the approach to gain the knowledge. If the user

wants direct visualized result, with clickable interface, eGIFT would be a great option,

34	

however, eGIFT does not provide API services, so if the user wants a programmable data

access, this type 3 API will be a better choice. [33] There are three options for API users

depending on how they are looking for protein/gene properties, interactions or

proteoforms information.

The URLs designed for this type of APIs are listed below.

• GET full property data related to one entity:

/v1/Entrez/{Entrez ID}/properties.[format]/

• GET full interaction data related to one entity:

/v1/Entrez/{Entrez ID}/interactions.[format]/

• GET full proteoform data related to one entity:

/v1/Entrez/{Entrez ID}/proteoforms.[format]/

 For example, if one user wants to get the data for the gene with Entrez ID 2065,

the three URLs would be:

• GET full property data related to one entity:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/properties.json/

• GET full interaction data related to one entity:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/interactions.json/

• GET full proteoform data related to one entity:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/proteoforms.json/

 Because this type of APIs is entity centric, the main data objects in each APIs are

only two, one is Entrez ID, the other could be one of ‘PROPERTY’, ‘INTERACTION’

and ‘PROTEOFORM’.

35	

Figure 3.12: Main objects in entity centric APIs (JSON format).

 According to the feature of each subtype API, key-value pairs are selected and

organized into one data object for one mention of the target gene/protein. Supporting

description for all the keys in three major types of APIs are appended at the end of the

thesis. Here are the sample responses with parameter Entrez ID set as 2065.

Figure 3.13: Entity centric entity property API (JSON format), in response to

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/properties.json/

36	

Figure 3.14: Entity centric entity interaction API (JSON format), in response to

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/interactions.json/

Figure 3.15: Entity centric entity proteoform API (JSON format), in response to

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/Entrez/2065/proteoforms.json/

37	

Chapter 4

API IMPLEMENTATION AND DOCUMENTATION

API building is supposed to be a back-end engineering task, however, without a

good front end interface for API documentation, the API design is not complete. And as

one of the API design principles, dogfooding and self-checking is usually required for

each API provider. So in this chapter, all the API building techniques will be described in

detail in implementation section followed by example use case and API documentation

website.

4.1 Implementation

The relational database used in iLINKS system is Oracle Database 12c Enterprise

Edition Release 12.1.0.2.0 - 64bit Production. The APIs are implemented using Django

REST framework (version 3). The test web site is implemented in Django Framework

(version 1.10.5, released on 01/04 2017). The figure below indicates the data flow from

user request to the response returned by the server. Request (with input parameters) is

passed to server to invoke a specific call of stored procedures in Oracle database. The

data table generated by the stored procedure is rendered into data object (in JSON or

XML format) and sent back to the user as API response. The typical request and response

38	

cycle takes less than 700 milliseconds.

Figure 4.1: API request and response cycle

Starting from the database (the bottom section in the figure), instead of using

Django REST framework default database (sqlite3), Oracle database is chosen because of

its scalability (handling a large quantity of data), security, and availability. In fact, most

of the projects in the Center for Bioinformatics & Computational Biology (CBCB),

University of Delaware, that require databases, are using Oracle database. As described

in Chapter 3.1, one Oracle relational database is built to store the text-mining data and

PubMed article text. [Dr. Sheng-Chih Chen, NCI Text-mining Integration System project.]

In general, the database logic structure is shown in figure below.

39	

Figure 4.2: iLINKS relational database general logic structure

The database consists of three major sections, biological entity (BIOENTITY),

biological relation (BIORELATION), and document and data information (DOCUMENT,

PUBMENT_ABS); each section contains several tables for basic information and

features (or text content). 10 stored procedures are used to generate the initial data tables,

in other words, the data for the APIs. Stored procedures are chosen in this project for two

reasons. One, stored procedure itself is stable and scalable in terms of handling different

kinds of data attribute and the procedures that return tables providing a stable data output

for downstream development and analysis, which can ensure the modifications on the

database being handled within the database and will not affect the frontend applications.

The other reason is that Oracle database stored procedure has been tested out for the

40	

applicability in connecting to the webserver and passing data (on iPTMnet data integrity

checking project), which is especially crucial in this project.

 The stored procedures are called from Python using cx_Oracle module, which

should be imported in advance, followed by ‘cx_Oracle.connect’ function (to connect to

the relational database) and ‘cursor.callproc’ function to get the data from stored

procedures. [36] Within the same Python class, data retrieved from database are firstly

stored as Python dictionary, then rendered into JSON and XML (format) data objects.

To render data objects into JSON format, we use Django REST framework JSON render

decorator ‘@renderer_classes((JSONRenderer,))’; to render data objects into XML

format, we use Python package ‘dicttoxml’ (version 1.7.4), which requires installation in

advance. [36] [37] There are 10 Python functions in this data generation class, which

match the 10 APIs described in the previous chapter (three types of APIs). This

functionality does not belong to Django framework, instead, it is created manually as a

method to connect data tier and web tier. In other words, if considering this API design as

a three-tier architecture, (data tier, logic tier and presentation tier), using stored

procedures can help API developers to put most of the business logic inside the database.

[38] [39] This method not only meets the requirements in this project, but also provides

one option or reference for other developers who want to build database-oriented

applications. [40]

 In Django Framework, there are two files (urls.py and views.py) set to design

URL patterns and imply views to handle request and response. [41] [42] Those two files

41	

are also utilized in this project for API endpoint building and parameters passing. For

example, for PubMed centric full information API with URL:

http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/{PubMed ID}/fullInfos.[format]/

The URL created in urls.py file would be:

urlpatterns = format_suffix_patterns([

url(r'^v1/PubMed/(?P<pmid>[0-9]+)/fullInfos.(?P<api_format>[-\w]+)/',fullInfo,

name='fullInfo'),

])

Here ‘(?P<pmid>[0-9]+)’ allows integer/number input and stores the URL input

value in the parameter named ‘pmid’; ‘(?P<api_format>[-\w]+)’ allows letters input and

stores string value in the parameter named ‘api_format’. When a HTTP request is made

using the pattern of URL, Python function ‘fullInfo’ is invoked to process the request by

passing the parameters to database connection class, which will call certain stored

procedures to generate data object. For error checking, if the input for ‘pmid’ is not

integer there would be a 404 error (page not found) indicating the input is not valid; 404

error will also happen when other parts of the URL are not correct. If the input value for

‘api_format’ is not valid, a customized error message will be returned to users. For

example, use puts ‘api_format’ as ‘abc’, the error message will be:

{

 "ERROR_MESSAGE":"Input format abc is not correct or available",

 "ERROR_TYPE":"Wrong format input",

 "HTTP Status Code":"404 Not Found"

42	

}

In API version 1.0, JSON and XML format is available, so the input for

‘api_format’ could be ‘json’ or ‘xml’; in other words, the user can have two options in

this API with URLs like:

• http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/{PubMed ID}/fullInfos.json/

• http://beadle.dbi.udel.edu/ilinks_test/rest/v1/PubMed/{PubMed ID}/fullInfos.xml/

4.2 Documentation

 According to the survey hosted by programmableweb.com (an open source for

publishing API, current has over 17,000 APIs and thousands of application, available

through https://www.programmableweb.com/) in 2013, an accurate and complete

documentation has been selected as the most important factor for API development. [43]

[44] [45] So for the APIs in this thesis project, we built the documentation website for

iLINKS RESTful APIs. The website consists of four sections, ‘Home’, ‘API’, ‘Example’

and ‘FAQ’. For API version 2.0, the ‘What is new’ section will be include in home page

tracking the differences between two versions.

The website is available at http://beadle.dbi.udel.edu/ilinks_test/rest/.

API page

The ‘API’ page is main page for API documentation, which has clickable API list

as a guideline and each type of APIs has its introduction section followed with tables for

attribute definition and detailed API description.

43	

In the API list, parameters are marked in different colors, which are consistent

through the entire page; users can use the color mark as a reference of where to put the

input value for each parameter and how many parameters are there in each API. Also this

API list has all the endpoints/URLs for APIs, users can simply click on each API or type

description to jump to the section they want.

Figure 4.3: API list in API page (http://beadle.dbi.udel.edu/ilinks_test/rest/API/)

For each type of APIs, there is a brief introduction of its design and data content.

Data Model part is used to show all the attributes (key-value pairs) mentioned in the APIs.

For example, type 1 API would contain ‘ABSTRACT’, ‘ENTITY’ and ‘RELATION’,

three objects (each has multiple key-value pairs), so the abstract, entity and relation data

are described in three tables in this part. There are duplications in three types of APIs,

44	

because all the API data is generated from the same database, but with different structure.

The duplications are kept to ensure users’ convenience. This page will be updated

according to the modifications in API version 2.0, but the general structure will remain

the same.

Figure 4.4: API type introduction in API page

(http://beadle.dbi.udel.edu/ilinks_test/rest/API/#A10)

For each API, endpoint, method, parameters, request, response and sample code

are provided. Because the APIs in this project are designed as read-only, GET is the only

access method available. User can replace the parameter with the value they are

interested in or use the example value to try out the API call. API can be checked through

browser by typing in the URL (user can also click on the sample request URL). Aside

45	

from that, users can also try Python function, cURL (Linux command), or HTTP request

to access the API. In order to give users a clear view of how the API looks like, pretty

printed (with line break and indentation) API data are also provided. User can click on

the GET button to see the API in JSON and XML format.

Figure 4.5: API description (sample code) in API page

(http://beadle.dbi.udel.edu/ilinks_test/rest/API/#A11)

46	

figure 4.6: API response (JSON format result) in API page

(http://beadle.dbi.udel.edu/ilinks_test/rest/API/#A11)

Example page

Flowing the API design principle, dogfooding is implemented on this page. At the

top of this page, related resources and APIs are listed with clickable links. We use three

APIs (from two types) to generate this example page. With these three APIs, user can

have PubMed article text, text-mining result in Entity table and Relation table, and one

special section to highlight the main entity in this article (across article mentions are

listed in entity property table and entity interaction table). User can click on the ‘Across

article mention’ button to expand or hide tables. The overlay of this page is also the

guide for building the iLINKS web site search page (presented in next chapter).

47	

Figure 4.7: Example page (http://beadle.dbi.udel.edu/ilinks_test/rest/example/)

48	

Home page and FAQ page

Both ‘Home’ and ‘FAQ’ pages are served as informational page, ‘Home’ page

contains the background and overall pipeline of iLINKS text-mining system; ‘FAQ’ page

is about frequently asked questions about iLINKS RESTful APIs.

Figure 4.8: API Home page (http://beadle.dbi.udel.edu/ilinks_test/rest/) and FAQ page

(http://beadle.dbi.udel.edu/ilinks_test/rest/faq/)

49	

Chapter 5

EXAMPLE USE CASE

 As part of iLINKS text-mining system website, a PubMed ID search page is built

for external users to get the text-mining data in table format and for internal users to do

integrity checking. Because this page is populated by the data returned from the APIs,

this web page also serves as one self-checking mechanism for the API design and

implementation. API developer can be sure that the APIs worked as expected. For

external users and API consumers, the design and implementation of this page can also

be used as an example and reference for them to develop their applications. The API

testing website, together with API documentation web site, all developed using Django

framework, which is open for plugging in new applications populated by the APIs, and

also leaves potential API upgrade. Other than that, this all-in-one framework makes it

easy to move to Docker or AWS (Amazon Web Services).

The PubMed ID search page contains two sections, one is search input box, the

other is search result, which consists of PubMed source link, PubMed article text, text-

mining data (biological entity table, biological relation table). The search input is first

validated before passing to other functions. The input data type is limited to integer

numbers because PubMed ID is an integer number. [46] If the input is not a valid

PubMed ID (not found in the database), an alert box will pop out indicating 'Invalid

PubMed ID!', there will be no search result shown in the result section. We also check if

there are text-mining data for input PubMed article available in the database, in other

50	

words, if the 'ENTITY' and 'RELATION' are not detected by our text-mining tools, 'No

text-mining data available!' alert message will pop up.

Figure 5.1: Search page in iLINKS text-mining system website

(http://beadle.dbi.udel.edu/ilinks_test/)

Figure 5.2: ‘Invalid PubMed ID’ alert (with input ‘1234567890’) and ‘No text-mining

data available’ alert (with input ‘1’) on search page

51	

Figure 5.3: Search result display (PubMed-19330006), with ‘gene’ filter on entity table

52	

 The PubMed source link is linking back to the original page in PubMed website

for the article, which is added here for users to double check if their PubMed IDs are

correct. Under the search box, the link for PubMed home page is also provided for users

who are not quite sure about the PubMed ID they want to search. The article text (titles

and abstract combined) is displayed after the source link, in which article title is the first

sentence of the paragraph. The two tables are shown above (entity table and relation table)

are both jQuery DataTable, which has its basic functions including page length (number

of rows per page), previous/next page, sorting (alphabet or number order), and a search

function within the table for any text content. These plugins provide users an easy-to-use

interface to check the data and find the information they want. With jQuery DataTable as

a base, there are more modifications and style changes can be done later on to fit different

development purposes.

 The ‘RESTful API’ tab in the navigation bar will redirect the users to the API

documentation website introduced in the previous chapter.

53	

Chapter 6

DISCUSSION AND FUTURE WORK

 These APIs designed and implemented in this thesis project fulfilled the purpose

of transferring data and providing a stable, scalable working environment/base for

downstream application development. During the progress of designing and generating

APIs, we did integrity checking constantly. As the result, the APIs not only provide the

necessary functionalities for rest of the team project, they also helped other team

members to improve their data processing and storing mechanisms. This API

implementation also becomes a guideline and reference for other API building projects.

Actually, as the iLINKS text-mining system project continues, intermediate step APIs

(for internal checking) and the APIs for potential applications (Cytoscape and BRAT)

will be built in the future.

The RESTful APIs for iLINKS text-mining system has served a crucial role in

delivering data and supporting other application development. As iLINKS text-mining

system project progresses, the APIs should move on to the next version with a wider data

source, better-organized data content and a higher coverage on biological concepts. For

version 1.0, the data source is PubMed article, but in version 2.0, full-length article will

be processed and integrated into APIs. More text-mining tools will be introduced into the

project to process articles and capture different biological concepts. Because of the larger

amount of text content and a more complex text-mining data output, an upgrade in API

structure design is needed in order to ensure the data quality of the APIs and the accuracy

of their downstream applications. Data normalization and simplification would be two of

54	

the approaches to organizing new data in the database. Web tier API generation also need

to have the ability to handle more parameters and potential errors by adding more

parameter checking and exceptions reporting.

In API implementation, Flask can be used to as another option for implementing

APIs. Flask is very similar to Django framework, which also has a Python based model–

view–controller (MVC) architecture. [47] However, Django framework is an opinionated

framework, which has some assumptions and pre-built structures, Flask, on the other

hand, is a micro web-development framework. [48] [49] This feature makes Flask

quicker than Django, but the performance will also depend on other factors. [50] Also

because Flask has a much simple structure, the learning curve will be much lower than

learning Django framework; this becomes important when the project is hosted at school

and constantly needs new students to get involved. Flask-RESTful is an extension from

Flask that can help to build RESTful APIs quickly and effortlessly. [51]

For the client-side code, React (a JavaScript library for creating interfaces) can be

a good choice for the iLINKS text-mining system project to support client-side

application development. [52] As to store the text-mining data and article text, Mango

Database could also be an option. [53]

In API version 2.0, the documentation should be updated accordingly. We can

choose to either update the documentation built for version 1.0 APIs or redo the

documentation using Swagger UI to have a more standardized interface. [54]

55	

Chapter 7

CONCLUSION

 In conclusion, the RESTful APIs played an important role in not only the iLINKS

text-mining system but also the biocuration field for three reasons. First, the APIs

achieved the goal of helping the biocuration for PubMed articles with programmable data

access methods. The APIs built in this project can be consumed by developers to develop

different kinds of applications for biocuration; the search website supported by the APIs

can be a go-to tool for all biocurators who want to read the PubMed article and get the

extracted biological entity and relation information. Second, with the functionality

supported by the APIs, iLINKS text-mining system is capable of providing biological

entity and relationship by PubMed ID based search, Cytoscape network visualization, and

BRAT annotation. Other potential application development will also benefit from these

APIs. Third, with the support of these RESTful APIs, the entire data processing pipeline

can be broken down into functional building blocks and reassembled.

 This thesis describes the design and implementation of the RESTful APIs in detail

along with application examples. For the wide variety of readers, the technical

background and related works are also included. The thesis aims to deliver a clear

description of the API building process and also serves as a reference in APIs

development in the biocuration field. The API documentation website is at	

http://beadle.dbi.udel.edu/ilinks_test/rest/.

56	

RESERENCES

1. Burge, Sarah et al. “Biocurators and Biocuration: Surveying the 21st Century
Challenges.” Database: The Journal of Biological Databases and Curation2012
(2012): bar059. PMC. Web. 13 May 2017.

2. Bourne, Philip E, and Johanna McEntyre. “Biocurators: Contributors to the World

of Science.” PLoS Computational Biology 2.10 (2006): e142. PMC. Web. 14 May
2017.

3. Howe, Authorship Doug et al. “Big Data: The Future of

Biocuration.” Nature455.7209 (2008): 47–50. PMC. Web. 13 May 2017.

4. Christensson, Per. "API Definition." TechTerms. Sharpened Productions, 20 June

2016. Web. 06 July 2017. <https://techterms.com/definition/api>.

5. Graham, Paul (November 2005). "Web 2.0". Retrieved 2006-08-02. I first heard

the phrase 'Web 2.0' in the name of the Web 2.0 conference in 2004.

6. "Web Services Architecture". World Wide Web Consortium. 11 February 2004.

3.1.3 Relationship to the World Wide Web and REST Architectures. Retrieved 29
September 2016.

7. Nations, Daniel. "Understanding the Purpose of Web Applications." Lifewire.
Lifewire, 17 Oct. 2016. Web. 08 July 2017. <https://www.lifewire.com/what-is-a-
web-application-3486637>.

8. Berners-Lee, Tim; Fielding, Roy T.; Nielsen, Henrik Frystyk. "Method

Definitions". Hypertext Transfer Protocol -- HTTP/1.0. IETF. pp. 30-32. sec. 8.
RFC 1945.

9. Sayers E. A General Introduction to the E-utilities. In: Entrez Programming

Utilities Help [Internet]. Bethesda (MD): National Center for Biotechnology
Information (US); 2010-. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK25497/

10. Steffensen JL, Dufault-Thompson K, Zhang Y. PSAMM: A Portable System for

the Analysis of Metabolic Models. PLOS Comput Biol. Public Library of
Science; 2016;12: e1004732. doi:10.1371/journal.pcbi.1004732.

57	

11. Santos, Wendell. "195 Science APIs: Springer, EPA and NCBI."
ProgrammableWeb. ProgrammableWeb, 28 Mar. 2012. Web. 28 June 2017.
<https://www.programmableweb.com/news/195-science-apis-springer-epa-and-
ncbi/2012/03/28>.

12. Wei, Chih-Hsuan, Hung-Yu Kao, and Zhiyong Lu. “PubTator: A Web-Based

Text Mining Tool for Assisting Biocuration.” Nucleic Acids Research 41.Web
Server issue (2013): W518–W522. PMC. Web. 12 June 2017.

13. Chih-Hsuan Wei, Robert Leaman, Zhiyong Lu; Beyond accuracy: creating

interoperable and scalable text-mining web services. Bioinformatics 2016; 32
(12): 1907-1910. doi: 10.1093/bioinformatics/btv760

14. Wei, Chih-Hsuan. "NCBI Text Mining Web APIs." National Center for

Biotechnology Information. U.S. National Library of Medicine, 16 Feb. 2016.
Web. 28 June 2017. <https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/>.

15. Wei CH et. al., PubTator: A PubMed-like interactive curation system for
document triage and literature curation, in Proceedings of BioCreative 2012
workshop, Washington DC, USA, 145-150, 2012

16. Lidwell, William, and Kritina Holden, Jill Butler (2010). Universal Principles of

Design, Revised and Updated: 125 Ways to Enhance Usability, Influence
Perception, Increase Appeal, Make Better Design Decisions, and Teach through
Design. London: Rockport Publishers. pp. 102–103. ISBN 1592535879

17. Mitra, Ronnie. "5 Universal API Design Principles." API Design and Strategy.

API Academy, 12 Dec. 2015. Web. 28 June 2017.
<http://www.apiacademy.co/resources/5-universal-api-design-principles/>.

18. Benslimane, Djamal, Schahram Dustdar, and Amit Sheth. "Services mashups: The

new generation of web applications." IEEE Internet Computing 12.5 (2008).

19. Petersen, Jeremy. "Benefits of using the n-tiered approach for web

applications." URL: http://www. adobe. com/devnet/coldfusion/articles/ntier.
html (2001).

20. NIH. "MEDLINE Fact Sheet." U.S. National Library of Medicine. National

Institutes of Health, 5 Dec. 2013. Web. 28 June 2017.
<https://www.nlm.nih.gov/pubs/factsheets/medline.html#>.

58	

21. Torii, Manabu et al. “RLIMS-P 2.0: A Generalizable Rule-Based Information
Extraction System for Literature Mining of Protein Phosphorylation Information.”
IEEE/ACM transactions on computational biology and bioinformatics / IEEE,
ACM 12.1 (2015): 17–29. PMC. Web. 12 June 2017.

22. Li, Gang et al. “miRTex: A Text Mining System for miRNA-Gene Relation

Extraction.” Ed. Andrey Rzhetsky. PLoS Computational Biology 11.9 (2015):
e1004391. PMC. Web. 12 June 2017.

23. Bagewadi, Shweta et al. “Detecting miRNA Mentions and Relations in

Biomedical Literature.” F1000Research 3 (2014): 205. PMC. Web. 12 June 2017.

24. Huang, Minlie, Jingchen Liu, and Xiaoyan Zhu. “GeneTUKit: A Software for

Document-Level Gene Normalization.” Bioinformatics 27.7 (2011): 1032–1033.
PMC. Web. 12 June 2017.

25. Wei, Chih-Hsuan, and Hung-Yu Kao. “Cross-Species Gene Normalization by

Species Inference.” BMC Bioinformatics 12.Suppl 8 (2011): S5. PMC. Web. 12
June 2017.

26. Leaman, Robert, Rezarta Islamaj Doğan, and Zhiyong Lu. “DNorm: Disease

Name Normalization with Pairwise Learning to Rank.” Bioinformatics 29.22
(2013): 2909–2917. PMC. Web. 12 June 2017.

27. Wei, Chih-Hsuan et al. “tmVar: A Text Mining Approach for Extracting

Sequence Variants in Biomedical Literature.” Bioinformatics 29.11 (2013): 1433–
1439. PMC. Web. 12 June 2017.

28. Wei, Chih-Hsuan, Hung-Yu Kao, and Zhiyong Lu. “SR4GN: A Species

Recognition Software Tool for Gene Normalization.” Ed. Jan Aerts. PLoS ONE
7.6 (2012): e38460. PMC. Web. 12 June 2017

29. "Ubiquitous standards" Principles — API Design Guide 0.1 documentation.
AusDTO, 02 June 2017. Web. 08 July 2017.
<http://apiguide.readthedocs.io/en/latest/principles/standards.html>.

30. "Use RESTful service URLs." Building and using APIs — API Design Guide 0.1
documentation. AusDTO, 02 June 2017. Web. 08 July 2017.
<http://apiguide.readthedocs.io/en/latest/build_and_publish/use_RESTful_urls.ht
ml>.

59	

31. "Dogfooding" Principles — API Design Guide 0.1 documentation. AusDTO, 02
June 2017. Web. 08 July 2017.
<http://apiguide.readthedocs.io/en/latest/principles/dogfood.html>.

32. Johnson, Tom. "Documenting APIs: A guide for technical writers." Documenting
APIs: A guide for technical writers | Document REST APIs. I'd Rather Be
Writing, 27 Mar. 2016. Web. 08 July 2017.
<http://idratherbewriting.com/learnapidoc/>.

33. Tudor, Catalina O, Carl J Schmidt, and K Vijay-Shanker. “eGIFT: Mining Gene

Information from the Literature.” BMC Bioinformatics 11 (2010): 418. PMC.
Web. 5 July 2017.

34. Christie, Tom. "Django REST Framework." Home - Django REST framework.
N.p., 18 Aug. 2015. Web. 08 July 2017. <http://www.django-rest-
framework.org/>.

35. "Database Cloud Service | Database as a Service (DbaaS) | Oracle Cloud." Cloud
Service | Oracle Cloud. N.p., n.d. Web. 08 July 2017.
<https://cloud.oracle.com/database>.

36. Christie, Tom. "Renderers." Renderers - Django REST framework. N.p., 18 Aug.
2015. Web. 08 July 2017. <http://www.django-rest-framework.org/api-
guide/renderers/>.

37. "Dicttoxml 1.7.4." Dicttoxml 1.7.4: Python Package Index. Python Software
Foundation, 08 July 2016. Web. 08 July 2017.
<https://pypi.python.org/pypi/dicttoxml>.

38. Piotrowski, Przemyslaw. "Calling database stored procedures and other
interesting aspects of advanced Python programming." Mastering Oracle Python,
Part 5: Stored Procedures, Programming Python. Oracle, Mar. 2010. Web. 08 July
2017. <http://www.oracle.com/technetwork/articles/prez-stored-proc-
084100.html>.

39. Eckerson, Wayne. "Three tier client/server architecture: Achieving scalability,

performance and efficiency in client server applications." Open Information
Systems 10.1 (1995).

60	

40. Linthicum, David S. Next generation application integration: from simple
information to Web services. Addison-Wesley Longman Publishing Co., Inc.,
2003.

41. "Documentation." URL dispatcher | Django documentation | Django. Django
Software Foundation, 1 Sept. 2016. Web. 08 July 2017.
<https://docs.djangoproject.com/en/1.10/topics/http/urls/>.

42. "Documentation." Writing views | Django documentation | Django. Django
Software Foundation, 1 Aug. 2016. Web. 08 July 2017.
<https://docs.djangoproject.com/en/1.10/topics/http/views/>.

43. Johnson, Tom. "Most important factor in APIs is complete and accurate
documentation." I'd Rather Be Writing - Tom Johnson. I'd Rather Be Writing, 15
Jan. 2015. Web. 08 July 2017. <http://idratherbewriting.com/2015/01/15/most-
important-factor-in-apis-is-complete-and-accurate-documentation/>.

44. DuVander, Adam. "API Consumers Want Reliability, Documentation and
Community." ProgrammableWeb. N.p., 07 Jan. 2013. Web. 08 July 2017.
<https://www.programmableweb.com/news/api-consumers-want-reliability-
documentation-and-community/2013/01/07>.

45. "Search the Largest API Directory on the Web." ProgrammableWeb. N.p., n.d.
Web. 08 July 2017. <https://www.programmableweb.com/category/all/apis>.

46. "PMCID - PMID - Manuscript ID - DOI Converter." National Center for
Biotechnology Information. U.S. National Library of Medicine, n.d. Web. 09 July
2017. <https://www.ncbi.nlm.nih.gov/pmc/pmctopmid/#converter>.

47. Ronacher, Armin. "Welcome to Flask." Welcome to Flask — Flask
Documentation (0.12). Flask, n.d. Web. 09 July 2017.
<http://flask.pocoo.org/docs/0.12/>.

48. Bitra, Tejaswi. "What does it mean by a 'opinionated' framework or library?"
Quora. Quora, 11 Jan. 2017. Web. 9 July 2017. <https://www.quora.com/What-
does-it-mean-by-a-opinionated-framework-or-library>.

49. "Web Frameworks for Python." WebFrameworks - Python Wiki. Python Software
Foundation, 07 July 2017. Web. 09 July 2017.
<https://wiki.python.org/moin/WebFrameworks>.

61	

50. Klenov, Kirill. "Python frameworks' benchmarks." N.p., 09 June 2016. Web. 09
July 2017. <http://klen.github.io/py-frameworks-bench/>.

51. Burke, Kevin. "Flask-RESTful." Flask-RESTful — Flask-RESTful 0.2.1
documentation. Flask, 18 Mar. 2013. Web. 09 July 2017. <https://flask-
restful.readthedocs.io/en/0.3.5/>.

52. "React - A JavaScript library for building user interfaces." Facebook.github.io.
Facebook Open Source, 14 June 2017. Web. 09 July 2017.
<https://facebook.github.io/react/>.

53. "The MongoDB 3.4 Manual." The MongoDB 3.4 Manual — MongoDB Manual
3.4. MongoDB, 29 Nov. 2016. Web. 09 July 2017.
<https://docs.mongodb.com/manual/>.

54. "SWAGGER UI." Swagger. SmartBear Software, n.d. Web. 09 July 2017.
<https://swagger.io/swagger-ui/>.

62	

APPENDIX

A API CONTENT DATA OBJECT KEYS DEFINITION

ATTRIBUTE TYPE DESCRIPTION
PMID integer PubMed ID - as parameter.
ABSTRACT / SOURCE string Article/paper source -

MEDLINE/PubMed for iLINKS API
version 1.0.

ABSTRACT / ABSTRACT string Article/paper abstract (including title -
the first sentence).

ENTITY /
NORMALIZED_SOURCE_ID

tuple in
Python

Biological entity normalization in form
(source, ID) for example, (Entrez,
Entrez ID)

ENTITY / BIOENTITY_NAME string Biological entity tagging name (not the
exact word phrased in the article).

ENTITY / PREFERRED_NAME string Caution: Current status (V1.0) is blank,
saving for upcoming text-mining tools.

ENTITY / BIOENTITY_TYPE string Biological entity type. V1.0 APIs
contain Gene, Protein, Proteoform, and
miRNA.

ENTITY / DESCRIPTION string Short description for each biological
entity type. (constant across articles).

ENTITY /
DATA_SOURCE_NAME

string Text-mining tools or open text-mining
resources.

ENTITY /
ENTITY_CHAR_START

integer The number of characters the referring
biological entity is started.

ENTITY /
ENTITY_CHAR_END

integer The number of characters the referring
biological entity is ended.

ENTITY / ATTRIBUTE_TYPE string V1.0 APIs contain proteoform
information for biological entities.

ENTITY / SITE string Phosphorylation site.
ENTITY / SITE_CHAR_START integer The number of characters the referring

phosphorylation site is started.
ENTITY / SITE_CHAR_END integer The number of characters the referring

phosphorylation site is ended.
ENTITY / SENTENCE_TEXT string The sentence contains tagged biological

entities and biological relations.

63	

ENTITY / SEN_CHAR_START integer The number of characters the referring
sentence is started.

ENTITY / SEN_CHAR_END integer The number of characters the referring
sentence is ended.

ENTITY /
ENTITY_INTERNAL_ID

integer Biological entity tracking ID, unique for
each entity, identical to
BIOENTITY_ID for internal use.

RELATION /
BIORELATION_TERM_NAME

string Biological relation tagging term (not the
exact word phrased in the article).

RELATION /
PREFERRED_TERM

string Caution: Current status (V1.0) is blank,
saving for upcoming text-mining tools.

RELATION /
BIORELATION_TERM_TYPE

string Complimentary information for
biological relation term.

RELATION /
RELATION_CHAR_START

integer The number of characters the referring
biological relation is started.

RELATION /
RELATION_CHAR_END

integer The number of characters the referring
biological relation is ended.

RELATION /
BIORELATION_TYPE

string Biological relation tagging type (not the
exact word phrased in the article).

RELATION /
REL_ONTOLOGY_TERM

string Complementary phrasing for
BIORELATION_TERM.

RELATION /
NOUN_REL_ONTOLOGY_TER
M

string Complementary phrasing for
BIORELATION_TERM.

RELATION / DIRECTION integer Biological relation direction, 1 for
BIOENTITY_A to BIOENTITY_B, 2
for BIOENTITY_B to BIOENTITY_A,
0 for unknown.

RELATION /
TM_RELATION_TYPE_NAME

string Text-mining tools in using biological
relation type tags.

RELATION /
ATTRIBUTE_KEY_VALUE

string Supporting descriptions for biological
relations.

RELATION /
DATA_SOURCE_NAME

string Text-mining tools or open text-mining
resources.

RELATION /
SENTENCE_TEXT

string The sentence contains tagged biological
entities and biological relations.

RELATION /
SEN_CHAR_START

integer The number of characters the referring
sentence is started.

RELATION / SEN_CHAR_END integer The number of characters the referring
sentence is ended.

64	

RELATION /
RELATION_INTERNAL_ID

integer Biological relation tracking ID, unique
for each entity, identical to
BIORELATION_ID for internal use.

RELATION / R_ENTITIY_A /
ENTITY_A_INTERNAL_ID

integer Biological entity A tracking ID, unique
for each entity, identical to
BIOENTITY_ID for internal use.

RELATION / R_ENTITIY_A /
ENTITY_A_NAME

string Biological entity A tagging name (not
the exact word phrased in the article).

RELATION / R_ENTITIY_A /
ENTITY_A_TYPE

string Biological entity A type. V1.0 APIs
contain Gene, Protein, Proteoform, and
miRNA.

RELATION / R_ENTITIY_A /
ENTITY_A_ROLE

string Biological entity A role. V1.0 APIs
contain Kinase, Interactant, Regulator,
and Unknown.

RELATION / R_ENTITIY_A /
ENTITY_A_CHAR_START

integer The number of characters the referring
biological entity A is started.

RELATION / R_ENTITIY_A /
ENTITY_A_CHAR_END

integer The number of characters the referring
biological entity A is ended.

RELATION / R_ENTITIY_B /
ENTITY_B_INTERNAL_ID

integer Biological entity B tracking ID, unique
for each entity, identical to
BIOENTITY_ID for internal use.

RELATION / R_ENTITIY_B /
ENTITY_B_NAME

string Biological entity B tagging name (not
the exact word phrased in the article).

RELATION / R_ENTITIY_B /
ENTITY_B_TYPE

string Biological entity B type. V1.0 APIs
contain Gene, Protein, Proteoform, and
miRNA.

RELATION / R_ENTITIY_B /
ENTITY_B_ROLE

string Biological entity B role. V1.0 APIs
contain Substrate, Interactant, Target,
and Unknown.

RELATION / R_ENTITIY_B /
ENTITY_B_CHAR_START

integer The number of characters the referring
biological entity B is started.

RELATION / R_ENTITIY_B /
ENTITY_B_CHAR_END

integer The number of characters the referring
biological entity B is ended.

Table A.1: API content data object keys definition.

