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ABSTRACT

Chromatographic techniques play a central role in separation science for a wide

range of fields. The manufacture and use of devices that operate on the nanoscale

as well as porous-layer open-tube (PLOT) systems are becoming more prevalent due

to their potential to provide more efficient separations. This thesis attempts to model

mass transport phenomena in these systems through simulations utilizing random-walk

techniques. The simulations model the flow of finite tracer particles through porous

and nonporous capillary systems at varying time and length scales. First, the effect of

fluid slip, or a nonzero velocity, at walls is investigated. The impact of retention on the

effects of slip flow is considered, and it is determined that the use of slip flow is limited

in application but can provide improved efficiency to certain nanoscale systems. Next,

PLOT systems are modeled as a central capillary with radially-oriented cylindrical

pores. Pore and solute sizes are varied to gain insight into how these variables effect

elution times from the capillary. The simulations provide the capability to calculate

mass transport rates which would be otherwise impossible using experimental or ana-

lytical methods. These findings underscore the potential of a computer-aided approach

for the design of improved analytical separation systems.

x



SYMBOL GLOSSARY

A(ρ) Function in Aris derivation of Cm term

a, b Numbers for modulus operation

Cm Mobile phase mass transport coefficient

Cs Stationary phase mass transport coefficient

Cr Courant number

dc Capillary diameter

Dm Solute diffusion coefficient in the mobile phase

dp Pore diameter

ds Solute particle diameter

d̄ Average distance traveled in a time step

d′ Distance traveled to wall

e Distance between segment start and pore perimeter

Fr Probability distribution for particle being distance r from origin
for purely convective flow

Ft Arrival time probability distribution of particles for purely convec-
tive flow case

Gz Graetz number

H Height equivalent to a theoretical plate

H Heaviside unit function

i Random walk time step iteration number

I1 First constant in Aris derivation of Cm term

I2 Second constant in Aris derivation of Cm term

xi



IQR Interquartile range of arrival time data

K Size-exclusion distribution coefficient

k Boltzmann constant

k′ Retention parameter

L Length of capillary

Lp Length of pore

Ls Slip length

M1 First moment of simulation arrival time distribution

M2 Second moment of simulation arrival time distribution

N Number of theoretical plates

Np Number of particles

Nr Number of pores per capillary segment

Nz Number of segments in the capillary length

Nz,L Local segment number

P Pressure in capillary

Pa Probability of adsorption

Pe Peclet number

Q Volumetric flow rate

R Retention factor

r Radial distance from cross section origin

rc Capillary radius

rp Pore radius

rs Solute radius

sinc Surface curvature of the angle between pores

s′ Arc length (curvature) of the solute

sL Local curvature between pores

xii



sL,φ Arc length of the local curvature due to the phase offset

T Temperature

t Theoretical mean arrival time of solute particles

td Wall retention delay time

〈td〉 Mean wall retention delay time

t Arrival time of individual solute particle at end of capillary

t0 Minimum theoretical arrival time of solute particles

tj Arrival time of the jth individual particle

ts Time step

t′s Truncated time step when wall collision occurs

u General coordinate of x, y or z

Vc Capillary volume

Vp Pore volume

VR Retention volume

vz(r) Fluid velocity at a point

vz Mean velocity in the flow (z) direction

v∗z Mean velocity in the flow (z) direction accounting for finite particle
size

W Histogram bin width

x̄ Mean distance of random walk

x,y Coordinates in the capillary cross section

z Coordinate in the z flow axis

zL Local z coordinate within any segment

γ Nondimensional variable used for slip flow

ζi Uniformly distributed random number

η Dynamic viscosity of fluid

xiii



θ Angle of solute location in x and y

θc Contact angle

θinc Incremental angle between radial pores

λ Nondimensional ratio of solute particle radius to pore radius

ξx,i, ξy,i, ξz,i Normally distributed random numbers

ρ Normalized radial distance from cross section origin

σ Theoretical standard deviation of arrival time distribution

φ Linear pressure gradient over length of capillary

φinc Phase angle increment between pores in neighboring segments

φL Local phase angle at the local segment

xiv



Chapter 1

INTRODUCTION

1.1 Simulation Approach and Motivation

In this thesis, various mass transport simulations are carried out using a capil-

lary chromatography system to gain insight and solve problems relevant to the field of

separation science and engineering. The system consists of a cylindrical capillary with

idealized cylindrical pores and tracer particles of finite size flowing through. The tech-

nique of the random walk is utilized to model the convective and diffusive contributions

of fluid flow through the capillary.

This approach results in a system that is complex enough to learn fundamental

truths about mass transport in chromatographic systems while also being geometri-

cally simple enough to tailor input parameters and keep computing time low. The

benefits of this generality and flexibility are two-fold. First, the conditions at the sys-

tem boundary could be altered as simulation inputs. In analytical derivations of flow

behavior, this would require deriving the relevant equations each time the boundary

conditions change and introducing simplifying approximations that may not capture

all of the underlying physics. In this simulation system, the boundary condition can be

redefined by changing a single input parameter. Second, this simulation system allows

access to all time and length scales. Each particle is traced on time scales less than

a microsecond, which is impossible to replicate using experiments. In addition, both

long and short tubes could be modeled which exhibit drastically different behavior. In

particular, short tubes are not well-understood with analytical solutions, so simulations

are the ideal method of solving problems on this length scale.
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This thesis focuses mainly on two phenomena using this capillary system. The

first chapter examines the impact of replacing the traditional no-slip boundary condi-

tion of Poiseuille flow with slip at the wall. The second chapter examines a porous-layer

open-tube system that provides understanding of the dynamics of mass transport in

capillary and size-exclusion chromatography. From these simulations, recommenda-

tions regarding the possible design of improved chromatographic materials are made.

1.2 Slip Flow

On the macroscopic level, flow through a capillary is typically treated as having

zero velocity at the wall. This so-called “no-slip” boundary condition leads to the clas-

sical Hagen-Poiseuile flow with a parabolic velocity profile. In reality, this assumption

may not apply, particularly when there is very weak interaction between particles and

the wall. For example, this would be the case for a hydrocarbon-coated silica (hy-

drophobic) and water mobile phase (hydrophilic). This causes particles to “slip” at

the wall and leads to a nonzero velocity at the wall.

The phenomenon of slip has been examined on the long tube scale but there is

no work in the literature concerning short tubes. The capillary model of this thesis

allows simulation of no-slip and slip boundary conditions on both the long and short

tube scales by altering the input parameters of the model. The addition of retention is

also examined to determine the impact of wall-solute interactions on the zone profiles

with slip flow in short tubes.

Slip flow is particularly important on the micro- and nanofluidic scales. Appli-

cations utilizing devices on these length scales are becoming more and more prevalent,

therefore it is critical to gauge the degree to which slip flow impacts the dynamics of

fluid flow in these systems.

1.3 Spiny Model

The capillary model is given a cylindrical pore structure in the second chapter,

creating what is affectionately called the “Spiny” model. This allows simulation of fluid

2



flow through porous-layer open-tube chromatographic systems as well as size-exclusion

chromatography systems. For example, the Spiny model can act as a general pore

model for SBA-15 silica, implementing an open-tube system that allows calculation

of mass transport rates that are impossible to compute using analytical solutions or

lumped-kinetic models.

The ability to trace the location of a particle at any given time makes it possible

to gain a better understanding of how solutes behave in pores. The relationship be-

tween solute size and the residency time in a pore is examined. This is a phenomenon

not discussed in the literature, and other models such as partial differential equation-

based models cannot provide insight on this. Therefore, these simulations provide the

opportunity to gain data and formulate solutions to problems where other approaches

fall short. The Spiny model can serve as a testbed for many analytical separation

engineering problems which can be assessed using a computer-aided design approach.
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Chapter 2

SIMULATION AND THEORY OF OPEN-TUBE DISPERSION IN
SHORT AND LONG CAPILLARIES WITH SLIP BOUNDARIES AND

RETENTION

Chapter Synopsis

Using random-walk techniques, high resolution simulations of zone shape are

conducted in open capillary tubes for short and long tube conditions. Finite size solutes

are used as tracers in this treatment. Slip flow boundary conditions and wall retention

are utilized as needed. These simulations are able to reproduce previous work in short

and long tubes. For the short tube case where dispersion does not asymptotically

approach the classic Taylor-Aris and Golay solutions, the effect of slip flow boundaries

in the transient region shows zone shapes with abbreviated tails where the larger slip

flow values cause zone compression.

The use of slip flow to lower dispersion in capillary-based, wall-coated separa-

tions is shown to favor long tube behavior. This is because slip flow is relevant for

cases where slip lengths are fractions of small capillary tube diameters. Incorporating

slip flow into transport in capillaries favors a very small capillary radius where the

cross-sectional diffusion length is very small and sampling times are fast. The purely

convective zone shape with slip flow boundaries is derived analytically.

Applications for this type of separation, guided by both analytical theory and

simulation, show the potential for nano-sized capillary tubes less than 1µm in diameter

and favor very fast separations.

2.1 Introduction

The study of dispersion in open circular tubes has been the subject of numerous

inquiries in basic fluid mechanics leading to insight into coupled convective and diffusive

4



processes. The original work in this area was the theoretical development of the so-

called “Taylor dispersion” mechanism whereby radial diffusion causes a broadening of

the axial zone concentration profile as a function of fluid velocity [1, 2, 3]. The theory

of Taylor dispersion has been the starting point for more extensive theories of both

gas and liquid chromatography [4, 5, 6] and other forms of separation systems, such as

field-flow fractionation [7, 8].

In all of these cases, the theories were so-called asymptotic or “long time” the-

ories where it is assumed that the tracer probes, introduced at the head of the tube,

sample the velocity field a sufficient number of times so that results are at steady

state. This simplifies the mathematical treatment and is essential for many practical

applications where dispersion is important and limiting, such as in chromatographic

resolution. These long time theories assume that the resulting zone shapes are typically

Gaussian or mildly tailed in shape.

A number of years ago, “short time” behavior of zone shape and dispersion

was shown to give non-Gaussian zones, with zones forming tails and an unresolved

middle-region with a large hump [9]. Essentially, the zone shape looked like multiple

components were eluting when only one component was present. This work was unique

because not only was this a surprising result, but it required a computer simulation

to produce this. It was subsequently shown how this behavior could be reproduced

mathematically for short tubes with no wall retention [10] and with retentive short

tubes [11]. In both of these cases, the equations were sufficiently complicated to require

computational evaluation.

In all of the cases mentioned above, the fluid flow is assumed to be that of

Poiseuille flow, where the fluid at the tube wall is assumed to be part of a “no-slip”

boundary. A large amount of evidence has been accumulated that suggests that fluid

slippage may occur [12, 13, 14], especially for aqueous solutions near hydrophobic walls.

Various aspects of this so-called “slip boundary” have been investigated including the

correlation of the slip length [15] with fluid wetting. As applications of microfluidic

devices [16] increase, the impact of the slip boundary condition becomes important

5



since certain properties such as zone dispersion have been shown to be affected by

the extent of wall slippage [17]. In this case, a larger degree of slippage, as embodied

in the slip length which is discussed below, reduces dispersion. This reduction is a

desired result in separation applications. It is claimed that the slip flow effect has been

utilized in the high resolution separation of biomolecules [18, 19, 20, 21]. Structured or

patterned surfaces, which are known to exhibit superhydrophobicity, have been made

with large surface slippage [22, 23]. However, in many cases, especially those with

rough or patterned surfaces, the effect may be due to trapped gas and nanobubbles

[24] which can exhibit a substantial slip effect.

Few studies of the fluid motion and dispersion of finite-size colloids have been

studied where wall interactions were included with slip flow. In one study, the axial

dispersion in microchannels was studied where the colloidal size was similar to the tube

dimension [25]. It was found that colloid interactions enhanced the dispersion. Also of

interest is the dispersion due to wall interactions in a capillary when electric fields are

employed as the driving force for flow [26, 27], however, these studies did not include

slip flow or finite-sized solutes. In addition, slow wall adsorption-desorption kinetics

were studied in a stochastic simulation of capillary separations of small molecules [28].

This study did not address finite-sized molecules nor slip flow.

In this paper, we study elements of zone dispersion when slip flow, retention,

and short capillary tubes are present using random-walk simulation techniques. One of

the applications for this is to study very fast separations which can be implemented in

short capillary tubes with a wall coating. Finite tracer particle diameters are utilized

and wall retention is implemented with a probability-based approach described below.

These results suggest that for short tubes, a small amount of wall slip will result in

smaller dispersion. We assume in this treatment that particles are present in dilute

conditions so that particle-particle interactions are neglected and that particle-wall

interactions are assumed to be that of non-interacting hard spheres interacting with

solid boundaries. Inertial effects leading to so-called “lift forces” [29] are not included

in the model. All flow is modeled under creeping flow conditions, i.e. low Reynolds

6



number flows where inertial effects are unimportant.

2.2 Mathematical Development

2.2.1 Slip flow

On the macroscopic level, it is typically assumed that fluid located at the walls

has zero velocity. With this no-slip boundary condition employed, the theoretical

Hagen-Poiseuille velocity profile is parabolic [7, 30] and is described by

vz(r) =
r2
c

4η

[
1−

( r
rc

)2
]
∂P

∂z
(2.1)

where vz(r) is the fluid velocity at a point located radially at r in the direction of flow

(z), rc is the radius of the capillary, η is the dynamic viscosity of the fluid, and P is

pressure. In terms of average velocity, this velocity profile can be written as

vz(r) = 2 vz

[
1−

( r
rc

)2
]

(2.2)

where vz is the mean fluid velocity in the z direction.

The no-slip assumption has proven to be accurate for flows on the macroscopic

level, but it is only an assumption that is not rooted in principle [12]. For the no-

slip boundary condition to apply, attractive forces between the wall and the fluid

molecules must be equal to or greater than the attractive forces between mobile phase

fluid molecules [31]. This is certainly not the case when the walls of the capillary

are hydrophobic and the fluid is hydrophilic. The result is a “slip” boundary with a

nonzero velocity at the wall. A slip boundary can be captured using Navier’s boundary

condition,

Ls
∂vz(r)

∂r

∣∣∣∣
r=rc

= −vz(r)|r=rc (2.3)

where Ls is defined as the slip length. When replacing the no-slip boundary condition

with this new condition in the Navier-Stokes equation, the velocity profile for flow in

the capillary with slip becomes

vz(r) =
r2
c

4η

[
1−

( r
rc

)2

+
2Ls
rc

]
∂P

∂z
(2.4)
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[32]. In terms of average velocity, the velocity profile with slip is now expressed as:

vz(r) =
2vz

1 + 2γ

[
1−

( r
rc

)2

+ γ

]
(2.5)

where γ = 2Ls/rc [17].

Figure 2.1 illustrates the no-slip and slip velocity profiles for capillaries with

equal radii and flows with equal average velocities. The slip length in the figure is

equal to one-half the radius of the capillary for illustrative purposes. While the chosen

slip length was arbitrarily chosen for the figure, it highlights the fact that slip length

must be on the order of rc to have an appreciable impact on the velocity profile relative

to that of no-slip conditions. A slip length such that Ls � rc results in γ approaching

zero and the velocity profile converging to no-slip conditions.

Figure 2.1: Velocity profiles for both no-slip and slip conditions with equal average
fluid velocity. Left: Hagen-Poiseuille pressure-driven flow with zero ve-
locity at the capillary walls. Right: Slip flow with nonzero velocity at
walls. A slip length of Ls = 0.5rc is used for visualization.

Slip lengths for various surface/liquid boundaries reported in the literature are

typically on the order of tens of nanometers [14]. For this reason, the phenomenon

of slip becomes significant on the nanoscale using devices such as carbon nanotubes

with radii on the order of nanometers through tens of nanometers [32, 33, 34] and

with sub-micron silica particles [19, 31]. It also follows that slip would be negligible for

macroscopic flows resulting in the no-slip boundary condition being a valid assumption.

The contact angle between surface and fluid directly impacts slip length as

contact angle is a measurement of attraction between different materials. Huang et

8



al. developed a relationship between slip length and contact angle, θc, using molecular

dynamics simulations stating Ls ∼ (1+cos θc)
−2, which was in accord with experimental

results and supports slip lengths less than 20 nm up to a contact angle of approximately

150o [35]. Thus, larger slip lengths will require very weak interactions between surface

and fluid such as water and a highly hydrophobic material.

An enhancement in flow through a capillary due to the nonzero fluid velocity at

the wall is known to take place in nanoscale fluid mechanics. When a constant pressure

gradient is applied, this enhancement is directly related to γ by

Qslip

Qno−slip
=

vz,slip
vz,no−slip

= 1 + 2γ (2.6)

[14] where Q is the volumetric flow rate through the capillary. This increase in flow rate

could potentially improve the throughput and efficiency of devices used for separation

[32]. At the wall, the fluid velocity is

vz(r)|r=rc = 2γvz,no−slip (2.7)

For the simulations involving slip flow, γ was limited to γ ≤ 0.4 or a flow en-

hancement of vz,slip ≤ 1.8 vz,no−slip. This limit was chosen based on studies summarized

by Lauga and Stone [36] where reported slip lengths ranged from the nanometer scale

to the micron scale and system size ranged from the nanometer to the millimeter scale.

Despite this wide range, values of Ls/rc differed by a factor of 40 from 0.005 to 0.2,

corresponding to 0.01 ≤ γ ≤ 0.4 [36].

Figure 2.2 and Table 2.1 summarize the above concepts by illustrating how

increasing Ls will increase γ which leads to an increase in vz and vz(r)|r=rc . Figure 2.2

shows that the slip velocity profile is equivalent to the no-slip profile shifted up by a

value equal to the slip velocity at the wall given by Eq. 2.7.

2.2.2 Plate height theory

Comparisons of simulation results to long tube theoretical behavior are made

through the theoretical plate height. The general relationship,

H =
Lσ2

t
2 (2.8)

9



Figure 2.2: Velocity profiles for varying slip lengths relative to capillary radius. vz is
enhanced when slip flow occurs relative to no-slip conditions. The profiles
with slip are equivalent to shifting the no-slip profile to the right by the
velocity at the wall given by Eq. 2.7.

Table 2.1: Average velocity with slip flow and velocity at capillary wall for varying
slip lengths as a fraction of average velocity in the axial direction under
no-slip conditions.

Ls γ vz
vz,no−slip

vz(r)|r=rc

vz,no−slip

0 0 1 0
0.05rc 0.1 1.2 0.2
0.1rc 0.2 1.4 0.4
0.2rc 0.4 1.8 0.8
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is used, where H is the height equivalent to a theoretical plate, L is the length of the

capillary, t is the mean arrival time of solute particles at the end of the capillary, and

σ is the standard deviation of the Gaussian concentration density profile in time units.

The simulations provide outputs of the arrival time for each individual particle. For

a given particle size, the first and second moments of the elution profiles are found so

that Eq. 2.8 is equivalently represented as

H =
LM2

M2
1

(2.9)

where M1 is the first moment of the arrival time distribution and M2 is the second

central moment.

The theoretical mean arrival time is simply

t =
L

vz
(2.10)

To relate the second moments from simulation to theory, the theoretical plate

height for open-tube systems with the slip flow boundary condition is determined using

the expression,

H =
2Dm

vz
+ Cm

r2
cvz
Dm

+ Csvz (2.11)

[7, 37] where rc is the capillary radius, and Cm and Cs are the mobile and stationary

phase mass transport coefficients, respectively. Dm is the solute diffusion coefficient in

the mobile phase and is calculated using the Stokes-Einstein equation,

Dm =
kT

3πηds
(2.12)

[38] where k is the Boltzmann constant, T is temperature assumed to be 25oC, η is

the dynamic viscosity of the fluid assumed to be 1 cP, and ds is the effective solute

diameter.

In the case of the open-tube system with no separation media, there is no

stationary phase mass transport resistance and thus Cs = 0. For no-slip boundary

conditions used in this ideal capillary column, it is established that [7]:

H =
2Dm

vz
+

1

24
(6R2 − 16R + 11)

r2
cvz
Dm

(2.13)
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For the limiting case of no wall retention, the retention factor, R = 1, and Eq. 2.13

reduces to the well-known relationship:

H =
2Dm

vz
+

r2
c vz

24Dm

(2.14)

For a system with input parameters of rc, ds, L, and vz, the approach to validate

the simulation results with long tube theory is as follows: t is calculated from Eq. 2.10,

Dm is calculated from Eq. 2.12, the plate height is calculated from Eq. 2.13, and the

standard deviation of the Gaussian elution profile is calculated from Eq. 2.8. M1 and

M2 from the simulation data are compared with t and σ.

A similar approach to comparing simulation results with long tube theory is

employed with the slip flow boundary condition. Cm is determined via the method laid

out by Martin and Guiochon [37] using the generalized dispersion theory of Aris [2].

Based on this theory,

Cm = I1 − 2RI2 +
R2

4
(2.15)

where I1 and I2 are defined as,

I1 =

∫ 1

0

A2(ρ)

ρ
dρ (2.16)

I2 =

∫ 1

0

ρA(ρ) dρ (2.17)

where ρ = r/rc and

A(ρ) =

∫ ρ

0

2ρ′
vz(ρ)

vz
dρ′ (2.18)

Beginning with Equation 2.5 in terms of ρ [17],

vz(ρ)

vz
=

2

1 + 2γ
(1− ρ2 + γ) (2.19)

which yields

A(ρ) =

∫ ρ

0

2ρ′
2

1 + 2γ
(1− ρ′2 + γ) dρ′ =

ρ2

1 + 2γ
[2(1 + γ)− ρ2] (2.20)

12



and performing the integrations in Eqs. 2.16 and 2.17 results in

I1 =
24γ2 + 32γ + 11

24(1 + 2γ)2
(2.21)

I2 =
2 + 3γ

6(1 + 2γ)
(2.22)

This leads to an expression for Cm under the conditions of slip flow by substituting I1

and I2 into Eq. 2.15:

Cm =
24γ2 + 32γ + 11

24(1 + 2γ)2
− 2R

[
2 + 3γ

6(1 + 2γ)

]
+
R2

4
(2.23)

Finding a common denominator and grouping terms with like orders of γ,

Cm =
24(R2 − 2R + 1)γ2 + 8(3R2 − 7R + 4)γ + (6R2 − 16R + 11)

24(1 + 2γ)2
(2.24)

When Ls = 0, this relation simplifies to the equivalent no-slip expression for Cm in

Eq. 2.13. For the limiting case of no wall retention, Eq. 2.24 simplifies to

Cm =
1

24(1 + 2γ)2
(2.25)

Using the same approach for validating the long tube simulation results with the no-

slip boundary condition presented above, long tube simulation results with the slip

boundary condition are compared to the theoretical Gaussian distribution moments.

The only additional input required is Ls.

2.2.3 Purely convective limit with slip flow

One limit of the arrival time distribution for flow with the slip boundary con-

dition is when diffusion is neglected, or that the movement of fluid is purely due to

convective forces and particles remain on the same streamline from the beginning to

the end of the capillary. Following the approach laid out by Bosworth for Poiseuille

flow in cylindrical vessels [39], a similar derivation is performed for the purely convec-

tive limit with slip flow in the open-tube cylindrical capillary system. Beginning with
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the velocity profile given by Eq. 2.4, and assuming a linear pressure gradient so that

∂P
∂z

= ∆P
L

= φ, the flow rate is calculated as

Q =

∫ rc

0

2πrvz(r)dr =
r4
cπφ

4η

(
2γ +

1

2

)
(2.26)

The expected arrival time for a particle located at r is given by

t(r) =
L

vz(r)
=

4ηL

r2
cφ

[
1 + γ −

(
r
rc

)2
] (2.27)

Considering the element of a hollow cylinder of fluid with inner radius r and outer

radius r + dr, the fraction of the total volume of fluid that enters this element in unit

time is denoted as Fr dr and is equivalent to

Fr dr =
2πrvz(r) dr

Q
=

2r

[
1 + γ −

(
r
rc

)2
]

r2
c

(
γ + 1

2

) dr (2.28)

Similarly, Ft dt is defined as the fraction of total molecules with an arrival time between

t(r) and t(r) + dt and is represented as

Ft dt = Fr
1
∂t
∂r

dt =

r2
cφ

[
1 + γ −

(
r
rc

)2
]3

4ηL
(
γ + 1

2

) dt =
1

t3
16η2L2

r4
cφ

2
(
γ + 1

2

) dt (2.29)

More completely, there is some minimum theoretical arrival time corresponding to the

fastest moving fluid that is located at r = 0 which is denoted as t0. From Eq. 2.27,

t0 =
4ηL

r2
cφ(γ + 1)

(2.30)

Substituting in t0 and adding a Heaviside function, H, to Eq. 2.29 to more accurately

capture the fact that no particles have arrival times less than t0,

Ft = H(t− t0)
t20
t3

(γ + 1)2(
γ + 1

2

) (2.31)

This solution reduces to the no-slip arrival time distribution when γ = 0 [39]. It is

worth noting that in the no-slip case, the distribution depends only on the minimal
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arrival time and not any geometric parameter of the capillary. In other words, two

cylinders with differing dimensions can have the same arrival time distribution if they

are tuned to have the same t0. In the case of slip flow, the presence of γ in the

distribution introduces a dependence on the slip length and capillary radius so that

this geometric independence noted by Bosworth no longer applies.

2.3 Numerical Methods

2.3.1 Random walk principles

The random walk technique used for these simulations is based on combining the

principles of convection and diffusion to model fluid transport through the capillary.

It is a common technique used in molecular and Brownian dynamics simulations [40,

41, 42, 43, 44, 45].

The process consists of adding convective and diffusive contributions to the x,

y, and z Cartesian coordinates with each time step. Typically, a time step, ts, is on

the order of 1× 10−7 seconds or smaller. The new radial and z positions are calculated

with each time step. If at a particular time step zi ≥ L, where i is the ith time step

of the random walk, the particle has reached the end of the capillary. That time is

recorded as the arrival time of each particle, and combining the arrival times of all

particles of a specific diameter yields the elution profile for the given solute size. The

radial position of the particle, r, at the exit position, zi ≥ L, is also recorded.

2.3.2 Starting conditions

For each simulation, at least 20,000 particles and typically 100,000 particles are

used with all particles starting at z = 0. Each particle is placed randomly along the

front face of the capillary radial position. This is performed using a random number

generator to choose numbers between 0 and the boundary of the capillary accounting

for the size of the solute, or (rc−rs), for both x and y starting coordinates. This ensures

that all particles are initialized within the bounds of the capillary so that r ≤
√
x2

0 + y2
0

is satisfied.
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2.3.3 Convection

Convection is limited to only the z direction for the purpose of these simulations.

Velocity is considered as a function of radial position alone in Hagen-Poiseuille flow.

Therefore, the distance in the z direction a particle moves in a given time step due to

convection is solely dependent on ri, or the velocity streamline the particle resides on

at that particular time. Mathematically,

zi+1 = zi + vz(ri) · ts (2.32)

The velocity profile, vz(r), is given by Eqs. 2.2 and 2.5 for no-slip and slip boundary

conditions, respectively. Due to the restriction of convective flow to the z direction,

there are no convective contributions to the x and y coordinates of a particle.

2.3.4 Diffusion

The diffusive contribution of each time step involves the addition of a randomly

distributed number to each of the x, y, and z components of the location of a particle.

This distribution is determined by the Einstein equation [7, 46] which describes the

average distance traveled by a particle in each coordinate, x̄, as x̄ =
√

2Dmts. A particle

is equally likely to move in either direction for a given coordinate, so a random number

is generated for each Cartesian coordinate from a normal distribution with a mean of

zero and a standard deviation of x̄. The diffusive contribution is then represented as

xi+1 = xi + ξx,i

yi+1 = yi + ξy,i

zi+1 = zi + ξz,i

(2.33)

where ξx,i, ξy,i and ξz,i are normally distributed random numbers added to each coor-

dinate at the ith time step.
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2.3.5 Stability

The Courant-Friedrichs-Lewy (CFL) condition is used as a measure of stability

for the simulations [47]. This condition states that the Courant number, Cr, defined

as

Cr =
vz · ts
x̄

(2.34)

should meet the requirement 0 ≤ Cr ≤ 1 for stability. Cr is the ratio of convective

and diffusive contributions with each time step, and a small enough time step must be

chosen to ensure that the CFL condition is satisfied.

2.3.6 Retention

The probability of adsorption, Pa, controls whether a time delay should occur

when a particle collides with a wall. This situation is analogous to an interfacial

hopping model [48] where adsorption does not occur on every wall collision. This

is implemented with a uniformly-distributed random number, ζi, so that if the wall

collision occurs and ζi ≤ Pa, then the particle is considered adsorbed. When adsorbed,

a Poisson (exponentially distributed) deviate is chosen with mean delay time 〈td〉 and

this is added to the current time counter of the particle. The exponentially distributed

number is obtained using the inverse transform sampling theory [49] such that: td =

−〈td〉 ln(ζi).

2.3.7 Particle-wall algorithm

One difficulty in implementing stochastic simulations is what to do when a par-

ticle undergoing random walks moves through a boundary. This subject has been

previously addressed [50] and the three types of actions that were discussed include

rejection, interruption, and specular reflection. In the rejection method, a trial trajec-

tory is rejected when a particle moves through a boundary. New particle coordinates

are chosen until the particle no longer moves through the boundary. This technique is

simple to program but neglects the space nearest to the boundary. Interruption allows

the particle surface to touch the wall and places the particle on the wall along the trial
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trajectory. The modified time step, t′s, is calculated as t′s = ts · (d′/d̄)2 where d′ is the

distance traveled to the wall and d̄2 = 6Dts, where d̄ is the average distance traveled in

one time step. The last method, specular reflection, which is the recommended method

to implement the boundary encounter [50], involves calculating the specular reflection

vector component utilizing the surface normal and the dot product of the incident

vector [51]. A general algorithm for this, in the context of stochastic mass transport

simulations, is discussed by Maier et al. [52]. All three methods are evaluated for error

and tabulated below in section 2.4.4.

2.3.8 Assumptions

Assumptions of this method and model include utilizing a fully-developed flow

profile throughout the column length with no entrance effects. The solute is introduced

as a perfect sheet in the column cross section. Most important, particle-particle inter-

actions and collisions are absent; this is a zero-concentration model. The presence of

both point and finite-size molecules do not perturb the bulk fluid flow. The retention

of molecules on the wall surface is assumed to not affect the slip flow at the wall nor

the flow in the bulk inner regions of the tube.

2.3.9 Programming tools

FORTRAN-95 was used to write all software for the simulations with parallel

programming performed using the message-passing interface (MPI)[53, 54]. Analysis

of arrival time data was performed in MATLAB (Mathworks, Natick, Massachusetts).

2.3.10 Data presentation

The widths of histogram elements used when displaying arrival time curves were

based on the rule described by Freedman and Diaconis [55]. The bin width, W , was

chosen as

W = 2(IQR)N−1/3
p (2.35)
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where IQR is the interquartile range of the arrival time data and Np is the number of

particles used in the simulation.

2.4 Results

2.4.1 Nondimensional characterization of long and short tubes

Simulations were performed to ensure that the algorithm and assumptions used

in the code produced results that were consistent with theoretical behavior. First, the

well-defined behavior of Poiseuille flow with no-slip boundary conditions were examined

and compared to theoretical predictions. This provided validation as well as confirma-

tion of baseline behavior to which results with the slip flow boundary condition could

be compared.

In order to differentiate between long and short tube systems, the nondimen-

sional Graetz number, Gz, was used [56] to characterize these systems. It is the ratio

of characteristic times for diffusion in the radial direction to flow in the z direction and

is defined as

Gz =
r2
c/Dm

L/vz
=

r2
cvz
DmL

(2.36)

Gz � 1 suggests radial diffusion takes place on a much smaller characteristic time

scale than axial flow. Solute particles have time to sample all radial positions within

the capillary due to diffusion allowing full access to all of the Poiseuille velocity profile

shown in Figure 2.1. Therefore, when Gz � 1, the plate height theory described in

section 2.2.2 should allow an accurate method of determining the moments of the arrival

time distribution for these long tube systems. When Gz ≈ 1, deviations from the long

tube Gaussian behavior in the form of tailing [26] typically takes place. Gz � 1

suggests solute particles flow too quickly in the axial direction to sample the entire

velocity profile before reaching the end of the capillary. The result is the failure of

plate height theory and arrival time distributions with non-Gaussian distorted peak

shapes for these short tube systems. In addition, the more familiar Peclet number,

Pe = vzrc/Dm, is used to tabulate the ratio of convective and diffusive contributions

and is included for comparison with the Graetz number.
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2.4.2 Validation of long and short tube behavior with no-slip boundary

conditions

Figure 2.3 presents the peak shapes for simulations run with no-slip boundary

conditions and no retention (R = 1) at a range of Gz values. Each row corresponds to

a particular Gz value. The first column only varies in ds while holding all other system

input values constant as “control inputs”: L = 10 cm, vz = 0.1 cm/s, and the capillary

diameter, dc = 41.8 µm. The second column alters one of the control input values

and adjusts ds accordingly to hold Gz constant. A visual comparison of Figures 2.3b

with 2.3c, 2.3d with 2.3e, and 2.3f with 2.3g demonstrates that peak shape is indeed

retained when Gz is held constant. In other words, Gz is a valid method to quantify

how long or short a tube is despite size and velocity scales that may vary by orders of

magnitude.

Figures 2.3a, 2.3b, and 2.3c are the results of long tube simulations. The first

and second moments of each case are produced in Table 2.2 along with the theoretical

prediction of the moments determined using the plate height theory for no-slip bound-

ary conditions laid out in section 2.2.2. The simulation results of cases a and b show

agreement with theoretical prediction for both first and second distribution moments

within 1.0%.

Table 2.2: Long tube simulations with no-slip boundary condition and comparison
to theoretical distribution. Simulation parameters: L = 10 cm, vz = 0.1
cm/s, and Np = 20, 000 for all cases. The “Figure” column corresponds
to the label of the elution profile in Figure 2.3.

Inputs Results Theory Percent Difference
dc ds M1 M2 t H σ2 In Arrival Time In Variance

Figure Gz (µm) (nm) (s) (s2) (s) (µm) (s2) (%) (%)

a 0.01 41.8 1 99.99 4.21 100 42.5 4.25 -0.01 -1.02
b 0.1 41.8 10 100.18 41.30 100 416.8 41.68 0.18 -0.89
c 0.1 13.2 100 98.74 38.68 100 416.7 41.67 -1.26 -7.18
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Figure 2.3: Arrival time distributions for long tube and short tube systems with no-
slip boundary condition. Each row corresponds to a constant value of Gz.
The simulations of the first column have constant inputs of L = 10 cm,
vz = 0.1 cm/s, dc = 41.8 µm, and Np = 20, 000, with varying values of
ds. Pe values for each case are a) 4.78× 101; b) 4.78× 102; c) 1.51× 103;
d, e, g) 4.78× 103; f) 4.78× 104; h) 4.78× 105.
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The simulation resulting in Figure 2.3c shows a larger difference between simu-

lation and theory; both the first and second moments from simulation are smaller than

those predicted by theory. This can be explained by the finite size of the particles,

which both the definition of Gz as well as plate height theory fail to account for. A

particle that is smaller but is considerable relative to the capillary radius will result

in solutes that cannot sample the entire velocity profile as the finite size prevents the

center of mass from reaching r > (rc − rs). The impact of this is a lesser velocity

gradient and a larger average velocity than would be predicted by theory leading to

smaller first and second moments as supported by the parameters used in making Fig-

ure 2.3c. To check this, the average velocity for the same velocity profile used in case

c was calculated for a capillary where particles are limited to r ≤ (rc − rs) as

v∗z =

∫ rc−rs
0

vz(r) · 2πr dr∫ rc−rs
0

2πr dr
(2.37)

where v∗z is the new average velocity. For no-slip conditions, vz(r) is defined by Eq. 2.2

and Eq. 2.37 becomes

v∗z = vz

[
2−

(rc − rs
rc

)2
]

(2.38)

Plugging in the values from case c yields v∗z = 0.1015 cm s−1 and a new theoret-

ical arrival time of 98.52 s. With this adjustment, the first moment of the simulation of

the simulation only varied by +0.23% compared to the theoretical prediction. There-

fore, the finite size of solute particles is an aspect that needs to be considered in addition

to Gz when fully describing the behavior of a system. Because particles have finite

sizes, it is also a phenomenon that these simulations are able to capture while both

theory and simulations that treat particles as points fail to.

The arrival time distributions of the shorter tube cases in Figures 2.3d-g resem-

ble the expected behavior shown by Figure 1 in the paper of Atwood and Golay [9]. In

their figure, the distributions are computed for various numbers of theoretical plates,

N , which they define as

N =
24πDmL

Q
(2.39)
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Since Q = vzπr
2
c , N = 24/Gz.

The plots in Figure 2.3 correspond to N = 24, N = 2.4, and N = 0.24 for

Gz = 1, Gz = 10, and Gz = 100, respectively. Figures 2.3d and 2.3e correspond

to Gz = 1 and exhibit the anticipated behavior marked by roughly Gaussian peak

shapes but with noticeable tailing. Figures 2.3f and 2.3g correspond to Gz = 10 and

exhibit the characteristic two-humped distributions shown in Figure 1 of the Atwood

and Golay paper by the N = 3 curve. The two humps occur at roughly the expected

average arrival time and at one-half of this value which corresponds to theory [17].

Figure 2.3h does not resemble the expected behavior which would be a single

peak initially followed by hyperbolic decay down to zero as the purely convective limit

is approached. Our simulation shows two humps still which is due to the fact that the

particle diameter is one-quarter of the capillary diameter so that a large fraction of the

velocity gradient is not accessed.

2.4.3 Long tube behavior with slip flow boundary conditions and no wall

retention

Simulations were performed with the slip flow boundary condition now employed

at Gz values on the order of 10−5 and smaller. In these simulations γ was varied

between 0 and 0.4 and the moments of the arrival time distributions were compared

to the theoretical moments now using Eq. 2.25. Note that the input for vz was varied

according to Eq. 2.6. In addition, Eq. 2.5 was substituted into Eq. 2.37 to account for

the finite size of the particle restricting the velocity gradient near the walls. The result

for slip flow is

v∗z =
vz

1 + 2γ

[
2(1 + 2γ)−

(rc − rs
rc

)2
]

(2.40)

The system used was a tube of L = 1 cm and rc = 200 nm with solute particles

of ds = 1 nm and vz,no−slip = 0.1 cm/s. This corresponds to Gz = 9.2× 10−6 for

no-slip conditions. Although the value of capillary radius chosen here appears very

small, this is in the range of values where the slip length is a significant fraction of the

capillary radius. It is in this range that slip lengths are particularly viable and effective.
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Larger slip lengths may be obtainable, but as mentioned in the introduction, these are

probably due to trapped gas and this situation would make for a very irreproducible

system.

Capillary inner diameters as small as 200 nm are commercially available such

as capillaries offered by the Polymicro Technologies division of the Molex Corp. (Lisle,

IL, USA). This scale is also conducive to chip-based microfluidic separation systems.

Alternatively, the technique of electrospinning could be utilized to produce hollow

nanofibers that would function as capillary systems on this size scale. This method uses

a high voltage electrical driving force which forces a polymer melt or solution through a

spinneret and is capable of producing fibers ranging from several nanometers to several

microns [57]. A wide range of polymers and ceramics can be used which allows the

ability to tailor aspects such as fiber diameter and surface properties [58, 59].

Figure 2.4 displays M1 and M2 for a range of γ values along with the theoretical

expectations from Eq. 2.40. The simulation data closely traces the long tube theory

over the entire range of γ values: M1 and M2 vary in magnitude at most by 0.0078% and

0.77%, respectively. M1 and M2 are reduced to 55.7% and 17.4% of the no-slip values,

respectively, when γ reaches 0.4. The potential benefits of slip flow are highlighted by

the decrease in both moments as shorter arrival times result in higher throughput and

smaller variance results in sharper elution peaks.

2.4.4 Comparison of particle-wall algorithms

The same system in section 2.4.3 was used to compare the three wall collision

methods detailed in section 2.3.7. Table 2.3 summarizes the percent differences between

simulation and theory with each of the three methods for a range of γ values. In

addition, Table 2.3 compares how each collision method compares to theory both when

the finite size of the particle is accounted for (velocity profile given by Eq. 2.40) and

when it is not (velocity profile given by Eq. 2.5).

The rejection method resulted in M1 and M2 consistently lower than the the-

oretical prediction. Both the interruption and specular reflection methods resulted
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in moments that were closer to theory, and specular reflection was slightly closer to

theory than the interruption method when the particle size was accounted for. For all

three values of γ using specular reflection and particle size accounted for, M1 varied

from theory in magnitude by only 0.01% and M2 varied from theory at a maximum of

0.77%. Therefore, the simulations in section 2.4.3 and all subsequent sections utilize

the specular reflection method for handling particle-wall collisions.

Figure 2.4: First (a) and second (b) moments of simulation results for long tube sys-
tem with slip boundary condition and comparison to theory. Simulation
parameters: L = 1 cm, vz,no−slip = 0.1 cm/s, rc = 200 nm, ds = 1 nm,
and Np = 100, 000. This corresponds Gz= 9.2× 10−6 and Pe = 0.46 for
no-slip conditions.
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Table 2.3: Results of wall collision method testing for long tube capillaries with no-slip
and slip conditions. The simulations are compared to theoretical moments
for both the case of accounting for finite size and not accounting for it. For
all trials, L = 1 cm, vz,no−slip = 0.1 cm/s, rc = 200 nm, ds = 1 nm, and
Np = 100, 000. This corresponds to Gz = 9.2× 10−6 and Pe = 0.46 for
γ = 0, Gz = 1.2× 10−5 and Pe = 0.60 for γ = 0.16, and Gz = 1.7× 10−5

and Pe = 0.82 for γ = 0.40. All values reported are the percent differences
in moments between simulation and theory.

γ = 0 γ = 0.16 γ = 0.40
Collision Method Size Accounted? M1 M2 M1 M2 M1 M2

Rejection
No -3.78 -11.1 -2.89 -8.43 -2.14 -5.59
Yes -3.30 -9.72 -2.52 -7.39 -1.87 -4.81

Interruption
No -0.01 -0.53 0.00 -0.23 0.00 0.02
Yes 0.49 0.96 0.37 0.91 0.27 0.85

Reflection
No -0.50 -1.60 -0.38 -0.86 -0.28 -0.06
Yes -0.01 -0.12 -0.01 0.27 -0.01 0.77

2.4.5 Long tube behavior with slip flow boundary conditions and wall re-

tention

Having verified that the simulation and theory are in agreement for long tube

behavior with slip flow boundary conditions, we can use the theory developed in sec-

tion 2.2.2 and specifically Eq. 2.24 to evaluate the effect of slip flow with retention in

the long tube limit. The results are shown in Figure 2.5 at different values of the re-

tention parameter k′ noting that k′ = (1/R)− 1. The retention parameter k′ indicates

the number of eluted column volumes minus 1; hence the void peak gives a k′ ≈ 0.

A number of features are highlighted from this figure. At zero retention condi-

tions, the reduction in Cm as a function of γ is large compared to the no-slip condition.

However, this reduction in the liquid phase plate height, via Equation 2.11, shows

significant reduction at moderate γ values. For example, when γ ≈ 0.1, Cm shows

≈ 30% reduction in mobile phase plate height. At the same slip length, more retained

zones show a much smaller effect. For example, for k′ = 10, the reduction in Cm is
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Figure 2.5: The mobile phase mass transport coefficient normalized to γ = 0 for 4
cases of retention at differing k′ values.

< 10% and this is about the same reduction as that found for k′ = 5. These results

suggest that the main reduction in plate height by utilizing slip flow takes place in the

region where retention is in the range 0 ≤ k′ ≤ 1. This suggests that utilizing slip

flow for chromatographic separations is not routinely applicable to all regions of the

chromatogram.

2.4.6 Short tube behavior with slip flow boundary conditions and no wall

retention

Short tube conditions were simulated for the same rc = 200 nm as in sec-

tion 2.4.3. In order to reach Gz > 10, parameters of L = 1 µm, ds = 20 nm and

vz,no−slip = 1 cm/s were chosen. Note that the length of the capillary here is ultra-

short and would be expected from a thin membrane, micro- or nano-channel, or even

a pore in a chromatographic particle. Further aspects of this will be presented in
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the discussion section below. These parameter values correspond to Gz ranging from

18.3 for no-slip conditions to 33.0 for γ = 0.4. The elution profiles varying γ while

holding all parameters constant are displayed in Figure 2.6. As expected, the velocity

enhancement provided by the increase in γ leads to the distribution shifting towards

shorter elution times and becoming narrower in shape. The second hump of the profile

becomes more pronounced as γ increases.

The dashed lines in Figure 2.6 correspond to no-slip boundary conditions but

with the same enhancement in vz as if there was slip occurring. For small values

of γ, slip and enhanced no-slip curves nearly overlap, meaning that any shift in the

profile is due to the velocity enhancement opposed to the conditions at the wall. As

shown throughout Figure 2.6, as γ gets larger, these two curves diverge, and the slip

conditions result in narrower profiles at earlier times with a more pronounced second

hump. Therefore, the presence of a finite wall velocity impacts zone shape under short

tube conditions, in addition to the overall velocity enhancement that results from slip

flow. This is reminiscent of the reduced dispersion in capillary electrophoresis with

electroosmotic flow [60, 61] where the velocity distribution of fluid is essentially flat

across the capillary as electroosmosis moves the fluid at constant velocity.

A comparison of the decrease in M1 and M2 is provided in Figure 2.7. Similar to

long tube conditions, M2 decreases more than M1 relative to the corresponding no-slip

values. M1 drops to 53.2% of its no-slip value when γ = 0.4 while M2 drops to 10.5% of

its no-slip value. These are comparable to the drops seen under long tube conditions.

Figure 2.7 also illustrates the difference between the enhanced no-slip flow and

flow with slip boundary condition. The difference in M1 between the two cases is

small across the entire range of γ. Conversely, the difference in M2 becomes large as γ

increases. The effect of slip at the wall (opposed to just increased velocity) is therefore

larger for M2 compared to M1 under short tube conditions.
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Figure 2.6: Zone shapes for varying slip lengths under short tube conditions without
retention. Solid lines: slip boundary condition. Dashed lines: no-slip
boundary condition but with the same velocity enhancement as the cor-
responding γ value. Simulation parameters: L = 1 µm, vz,no−slip = 1
cm/s, rc = 200 nm, ds = 20 nm, and Np = 100, 000. Gz and Pe range
from 18.3 and 91.6 for γ = 0 to 33.0 and 165 for γ = 0.4.
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Figure 2.7: First (squares) and second (circles) moments for varying slip lengths
under short tube conditions without retention. Black: slip boundary
conditions. Blue: no-slip boundary condition but with the same velocity
enhancement as the corresponding γ value. Simulation parameters: L =
1 µm, vz,no−slip = 1 cm/s, rc = 200 nm, ds = 20 nm, and Np = 100, 000.
Gz and Pe range from 18.3 and 91.6 for γ = 0 to 33.0 and 165 for γ = 0.4.
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2.4.6.1 Purely convective limit

To test the derivation performed in section 2.2.3, short tube conditions must

be achieved so that convection dominates diffusion. Small tube radii where slip flow

applies is not conducive to these conditions as it allows for fast sampling of the entire

velocity field. This means that diffusion will always be a factor unless velocity is

increased greatly to increase Gz � 1. In addition, L� x̄ for the theory to apply. At

these velocities and capillary lengths, the Reynolds number becomes greater than 100

where these simulations using laminar flow no longer apply.

Figure 2.8 illustrates the theoretical impact of slip flow on the purely convective

limit if these short tube conditions could be met. In practice, these conditions can-

not be met because, as stated previously, the capillary diameters where slip flow is a

significant part of the velocity profile are small and this promotes long tube behavior

even with short-length tubes. This is reflected in the r2
c dependency of the Graetz

number where the radius of the capillary is the controlling parameter as contrasted

to all other parameters in Eq. 2.36 which have a linear dependence. In attempts to

compare simulation and the pure convective theory with slip flow, it was found that for

small-length capillaries, axial diffusion was significant enough to render the compari-

son poor even if the radial Taylor dispersion was not included. From the viewpoint of

practical separations which could use slip flow to reduce dispersion, the length scales

involved favor long tube behavior and this can be a positive driving force for using

slip flow; i.e. very short tubes can give fast and efficient separations without the zone

development experienced with short tubes.

2.4.7 Short tube behavior with slip flow boundary conditions and wall

retention

As mentioned previously, it is difficult to find conditions where slip flow and

short tube behavior are possible. This is due to the dueling requirements of a small

capillary radius to accommodate slip flow and a large enough capillary to promote the

short tube behavior. This is an advantageous situation from an experimental viewpoint
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Figure 2.8: Theoretical impact of slip flow on pure convective limit. The derivation
for this limit is produced in section 2.2.3. A no-slip t0 value of 1 time
unit is used for these curves.
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since short tube zone profiles are undesirable from a high resolution analytical sense.

However, there are examples where a binary separation is desirable and zone shape is

important. We used the same set of conditions from section 2.4.6 here to determine

what happens in the case of an extremely short, extremely fast set of conditions with

and without slip flow for illustrative purposes. The results are shown in Figures 2.9

(Pa = 0.1) and 2.10 (Pa = 1.0).

In all cases shown in Figures 2.9 and 2.10, slip flow is helpful in compressing

the tails of these types of zones. This is due to the limited amount of low velocities

which the solute molecules sample. Short tube behavior emphasizes both low and

high velocity regions because molecules cannot diffuse out of these regions fast enough.

However, slip flow limits the extent of available low velocity regions.

When comparing Figures 2.9a and 2.9d with Figures 2.9b and 2.9e, it is seen

that a small amount of retention with a limited probability of adsorption will extend

the tail, and slip flow counteracts this tail extension. This may be helpful where a

fast affinity separation is to be utilized at trace concentration levels and under extreme

speed conditions. It must be realized that this is extremely difficult to implement

because it is assumed that the zone is introduced as a perfect plug of infinitely thin

axial extent; any variation in sample introduction would cause spillover to the column

outlet. At longer retention conditions, shown in Figures 2.9c and 2.9f, the same effect

is shown; zone compression by slip flow boundaries yield zone shapes that do not

include as large a tail. However, when the probability of adsorption is increased to

1.0 in Figure 2.10, a more extreme tailing is shown, especially at the longest average

adsorption time. Under these conditions, slip flow is ineffective at preventing long

tails that resemble column bleed. This is a similar situation to adsorption in capillary

electrophoresis where even small amounts of adsorption completely destroy resolution

[26].
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Figure 2.9: Simulation results for slip flow with retention for Pa = 0.1 and multiple
〈td〉 values. The 〈td〉 values correspond to 2.5% and 7.5% of M1 from
Figure 2.9a (no-slip and no retention). Simulation parameters: L = 1
µm, vz,no−slip = 1 cm/s, rc = 200 nm, ds = 20 nm, and Np = 100, 000.
γ = 0: Gz = 18.3 and Pe = 91.6; γ = 0.2: Gz = 25.6 and Pe = 128.
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Figure 2.10: Simulation results for slip flow with retention for Pa = 1.0 and multiple
〈td〉 values. The 〈td〉 values correspond to 2.5% and 7.5% of M1 from
Figure 2.10a (no-slip and no retention). Simulation parameters: L = 1
µm, vz,no−slip = 1 cm/s, rc = 200 nm, ds = 20 nm, and Np = 100, 000.
γ = 0: Gz = 18.3 and Pe = 91.6; γ = 0.2: Gz = 25.6 and Pe = 128.
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2.5 Discussion

We have surveyed a theoretical and simulation approach to understanding zone

shape and dispersion in capillaries where slip flow boundary conditions are imposed. A

number of important points were determined from these calculations and simulations,

and these will be discussed here. As is now accepted and demonstrated in a number of

cases in this paper, the use of slip flow boundaries to reduce chromatographic dispersion

is limited to very small tube diameters. Very small particles have been recommended

for packed-bed chromatography incorporating slip flow [62]. It is impossible in these

cases to isolate out the source of fluid-surface interaction from surface roughness, which

is also known to be a source of fluid boundary slippage [12, 13, 14, 22, 23]. However,

capillaries with surface modification by hydrophobic coatings used for the preparation

of reversed-phase liquid chromatography particles may facilitate slip flow. In this

regard, long tube behavior is facilitated by slip flow boundaries and this favors the use

of short capillaries when high plate count is necessary.

A number of other effects come out in the analysis. In Figure 2.5, where the

reduction in dispersion is shown as a function of the nondimensional slip length γ

and the retention factor k′, moderate reduction in dispersion is limited to the early

part of the chromatogram where k′ ≤ 1. The larger is γ, the larger is the reduction

in plate height compared to no-slip boundaries. The liquid phase typically would be

pure water to maximize γ. However, gradient elution chromatography, the mainstay of

high resolution chromatography, will lessen γ as organic solvents are introduced into

the mobile phase. This will increase the width of zones as γ is reduced. This brings

into question the general use of slip flow as one that can function in a narrow range

of solvents and probably cannot be used with gradient elution. Even with isocratic

operation, the curves in Figure 2.5 suggest a limited elution range in improving the

dispersion and lowering plate heights for general usage. Nonetheless, the use of slip

flow for very fast, high resolution separations of a limited number of components with

small retention values may be a feasible method for implementing fast capillary-based

separations.
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Chapter 3

PORE-SCALE MASS TRANSPORT SIMULATION OF
POROUS-LAYER OPEN-TUBE (PLOT) COLUMNS WITH
RADIALLY-ORIENTED PORES FOR SIZE-EXCLUSION

CHROMATOGRAPHY

Chapter Synopsis

A stochastic simulation of porous-layer open-tube (PLOT) liquid chromatog-

raphy with radially-oriented cylindrical pores is presented. This simulation facilitates

the study of pore length and pore density for spherical finite-size solutes, allowing the

computer-aided design of these columns for size-exclusion chromatography (SEC) and

bonded-phase chromatography. The entrance effects of finite-size solutes diffusing into

radial pores are probed over a wide range of molecule to pore size ratios.

A fast algorithm is described which is able to locate the solute position within

radially-oriented pores using binning techniques; this algorithm does not require search-

ing. The implementation allows the parallel computing of detailed pore diffusion trajec-

tories while computing the macroscopic peak elution profiles obtained from experiment.

Zone shape, statistical moments, and the number of theoretical plates are com-

puted and described in detail for this column geometry. This allows the evaluation of

radially-oriented pore PLOT columns which can now be made due to recent synthesis

innovations. The algorithm and code are highly parallel and allow for fast execution on

large parallel computers. The use of this approach alleviates having to assume the mass

transport rates for radially-oriented pores, as has been previously reported. The cal-

culation of plate count allows the study of finite-sized solutes which are difficult if not

impossible to explore through chromatographic theory. Size-based separations affected

by varying pore length, average velocity, and efficiency are able to be explained over
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a wide-range of parameters. The choice of pore length is shown to be a compromise

between kinetics (small pore lengths) and thermodynamics (larger pore lengths).

3.1 Introduction

A large effort has been undertaken in the literature for over 50 years in de-

scribing the mechanism and transport properties which take place in gas and liquid

chromatography [4, 6, 63, 64]. The physical description of chromatography is typi-

cally presented through two distinctive effects: phase equilibria, which describes the

change in distribution coefficient with solute molecular structure, and mass transport

effects which dominate the zone width and control chromatographic efficiency and res-

olution. Many questions are still open regarding both of these aspects in relationship

to chromatographic materials and chromatographic separations.

In the case of phase equilibria, detailed molecular simulations have shed light on

how solute molecules interact with the stationary phase in both gas chromatography

[65, 66] and liquid chromatography [67, 68, 69]. For liquid chromatography, the long

established theoretical interpretation, the so-called “solvophobic theory” introduced by

Horváth and coworkers [70], was found to be incorrect [68] as simulation methods were

able to map the thermodynamics of retention across the solvent range of interest.

Particle simulation methods have also been introduced for studying mass trans-

port effects related to chromatography [71]. These simulation methods use particles

as tracers to determine where convective and diffusive forces move solutes. Applica-

tions of these numerical techniques to separation science research include open tubes

[26], packed beds [43], and systems with force fields [72, 73] for colloid and polymer

separations.

In this chapter we show that a model of a porous-layer open-tube (PLOT)

column can capture the essential physical dynamics of mass transport processes which

define this mode of capillary chromatography [74] and size-exclusion chromatography

(SEC) [75]. The model we study here extends naturally to a recently published radially-

oriented pore system [76] which was implemented with packed-bed particles. This type
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of pore system was formulated in the context of a pillar-array column [77] and was

solved numerically for a differential equation-based model [77]. In this study, empirical

values were utilized for the pore mass transport rate. Because we are able to model

the transport at the pore level, we can track individual rates of finite-sized particles

in and out of the radially-oriented pore system and calculate the mass transport in

and out of discrete pores using random-walk simulation technology without assuming

empirical transport rates. Pore-scale modeling was recently demonstrated for packed-

bed particles with detailed fluid mechanics [78] and for a high resolution mass transport

model which was able to explain the movement of finite-size tracers in pore diffusion

with convection [52]. We extend that study here with pores specified in a radially-

directed and ordered configuration utilizing random-walk tracers in a PLOT column

configuration. This allows a number of observations to be made prior to synthesis

of this style of column and furthers the idea of using computer resources to a priori

promote the design and engineering of analytical chromatography columns in silico.

3.2 Computational Method

3.2.1 Model and particle location

The model is composed of two parts. The first is a cylindrical capillary, which

is the main transport region with convection and diffusion. Perpendicular to this path

are radially-projected cylindrical pores where only diffusion can occur. This is shown

schematically in Figure 3.1 and a visualization of this system is shown in Figure 3.2.

The parameters and the corresponding symbols used to generate and describe this

model are summarized in Table 3.1, and a further description of the pore system is had

below.

Random walks are used in this work to model diffusion. This technique is

widely known and is often referred to as Brownian dynamics [40, 41, 42, 43, 44, 45].

This technique is easy to use, especially when boundaries make up a large portion of

the available space. However, collision detection of solute tracers with solid boundaries

must be fast or the method becomes inefficient. The remainder of this section details
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Figure 3.1: Coordinate system of the model. A: x-y plane cross section showing a
radial pore with length Lp and pore radius rp. B: z-axis coordinates where
the pore-capillary interface is shown as filled circles and the incremental
phase, φinc, is shown between successive z segments. C: Radial pore
coordinates between two pores in one radial segment. The pore-capillary
interface is shown as open circles.
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Figure 3.2: The pores and central cylinder comprising the model.

Table 3.1: Parameters needed to generate the model.

Symbol Units Explanation
e m Distance between segment start and pore perimeter
L m Length of capillary
Lp m Length of pore
Nr Number of pores per capillary segment
rc m Capillary radius
rp m Pore radius
φinc radians Pore placement phase increment
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an efficient scheme for wall collision recognition and describes the solute convection

and diffusion mechanics.

The phase factor, φinc, is used to move the locations of each successive group

of pores in the axial direction. This helps reduce correlation effects between pores to

some extent. This parameter will be shown to be easily incorporated into the pore

detection scheme described below; the staggered pores are shown in Figure 3.1B.

The collision detection of solute particles with the walls of the model is required

for the random-walk simulation and is performed as follows. To detect whether the

solute is in the capillary or the pores, the distance from the capillary cross section origin

to the solute is calculated as r =
√
x2
i + y2

i where xi, yi and zi are the coordinates of the

solute particle at the ith iteration of convection and diffusion. In order for the particle

to be in either the capillary or pores, it must be within the length of the capillary, or

0 ≤ zi ≤ (L− rs), where L is the length of the capillary.

The solute particle of radius rs is inside the capillary when r ≤ (rc − rs). The

requirements for the solute being in a pore is more complicated and will be developed

here noting that pore occupancy requires that r > (rc − rs) as the first criterion for

pore penetration.

The pores are located at specific locations along the capillary perimeter. As

shown in Figure 3.1B, the capillary has radial pores which emanate from the capillary

perpendicular to the z (flow) axis. These pores are axially spaced in z to occur in

segments of length e + 2rp. The concept of segment number is central to the pore

location scheme described here. The total number of these segments, Nz, is

Nz =

⌊
L

e+ 2rp

⌋
+ 1 (3.1)

where e is the distance in z from the start of each segment to the left side of the pore

(referring to Figure 3.1), rp is the pore radius, and b c is the floor function which for

positive values eliminates the fractional value of the number.
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Next, the z location within the present local segment, zL, is determined as

zL = zi mod (e+ 2rp) (3.2)

where a mod b is the modulus function which returns the remainder of the division of a

by b. The particle may be in the pore when e+rs ≤ zL ≤ e+2rp−rs. If this inequality

is not satisfied, the particle cannot be in a pore. Whether or not the particle is in a

pore requires that the specific pore location needs to be identified. This is performed

once the first two criteria described above are satisfied.

The third criterion for pore detection is based on finding the arc location of

the pore within a segment. This scheme requires the calculation of the local segment

number, Nz,L, so as to determine the phase factor value present in the local segment.

This is calculated as

Nz,L =

⌊
zi

e+ 2rp

⌋
+ 1 (3.3)

The arc angle of the solute particle location, θ, is arctan 2(yi, xi) where arctan 2 is

the arc tangent function used to compute angles [79]. The incremental angle between

pores within the same segment is θinc = 2π/Nr. The arc curvature s, the surface

distance as a function of θ, is the product θrc when θ is in radians. The curvature

between pore centers is sinc = θinc rc.

One wants to find the local curvature between pores, sL, if the z range is correct,

so as to test whether the solute is within the pore cross section. This is shown in

Figure 3.1C. First, one must determine the local phase of the curvature offset in the

Nz,L segment. This is simply

φL = φinc · (Nz,L − 1) (3.4)

and can be expressed as a curvature by sL,φ = φL rc. In addition, the arc length of the

tracer, s′ = rc θ.
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The arc length due to the phase offset, sL,φ, must be subtracted off of the tracer

arc length, s′, and normalized with one of the radial segments shown in Figure 3.1C so

that

sL = (s′ − sL,φ) mod sinc (3.5)

Hence, the third criterion for pore occupancy is sL < rp − rs or sL > sinc − rp + rs.

If these criteria are met and the particle did not come out of the pore end, so that

r ≤ rc + Lp − rs, then the particle is within the pore. If the particle is not in the

capillary or in a pore, the trial trajectory is rejected and a new trajectory using new

random numbers is generated, as described below.

3.2.2 Random walk procedures

3.2.2.1 Starting conditions

Each particle is started in the cross section of the capillary tube using uniform

random number generators for 0 ≤ x0 ≤ (rc − rs) and 0 ≤ y0 ≤ (rc − rs) so that

r ≤ (rc − rs); if this criterion is not met new starting conditions are generated. All

particles are started at z0 = 0. Typically ≥ 20, 000 particles are utilized for each

simulation.

3.2.2.2 Diffusion

The time step can be specified using the Einstein equation [46, 7] which relates

the average distance (x̄) traveled by a particle with diffusion coefficient Dm in time

step ts as x̄ =
√

2Dmts so that ts = x̄2/2Dm. This allows the easy implementation of

diffusion in all coordinates

xi+1 = xi + ξx,i

yi+1 = yi + ξy,i

zi+1 = zi + ξz,i

(3.6)
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where the subscripts indicate the iteration number and ξu,i is a normally-distributed

random number with zero mean and standard deviation x̄ in coordinates x, y and z.

3.2.2.3 Convection

The convective contribution of a particle in a complex flow field has been pre-

viously obtained [73, 43, 44]. For the model used here, convection is restricted to the

flow (z) axis as

zi+1 = zi + vz(r) · ts (3.7)

where vz(r) is the Hagen-Poiseuille velocity [80]

vz(r) = 2v̄z

[
1−

( r
rc

)2
]

(3.8)

and v̄z is the average fluid velocity in the capillary due to pressure-driven flow.

3.2.2.4 Stability

The Courant number [47], Cr, gives the nondimensional ratio of the distance

traveled by convection to the average diffusion distance x̄ in time step ts as

Cr =
v̄z · ts
x̄

(3.9)

and is used as a simulation stability metric; simulations are typically run at low Courant

number with 0 < Cr < 1. In addition, the choice of ts is also dictated by the pore

radius.

3.2.2.5 Analysis of arrival time data

The first and second moments of the arrival time of Np particles, M1 and M2,

are obtained from the particle arrival time data, tj, as

M1 =
1

Np

Np∑
j=1

tj (3.10)
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and

M2 =
1

Np

Np∑
j=1

(tj −M1)2 (3.11)

The number of theoretical plates, N , is calculated as

N =
M2

1

M2

(3.12)

3.2.2.6 Assumptions

The method and model assumptions include utilizing a fully-developed flow pro-

file throughout the capillary length with no entrance effects. The solute is introduced

on an infinitely-thin cross section at the head of the column. Particle-particle interac-

tions and collisions are absent. The presence of both point and finite-size molecules do

not perturb the bulk fluid flow. There is no retention in these models although that

could easily be added as could slip flow boundaries. Furthermore, the radial pores are

assumed to possess no convection; the fluid in the pores is stagnant. The region where

pores connect to the main capillary have no recirculation or convective entrance effects;

the stick boundary of the capillary is extended into the radially-oriented pores so that

transport in the pore region is purely diffusive.

3.2.2.7 Programming

All simulation software is written in FORTRAN-95. Parallel operation is imple-

mented using the message-passing interface (MPI) [53, 54]. Data analysis is conducted

with MATLAB (Mathworks, Natick, Massachusetts). Visualization of the model is

conducted using the POVRay scripting language.

3.3 Results

3.3.1 Elution as a function of solute size and pore length

The study of a size-based separation utilizing a PLOT column with radially-

oriented pores was conducted with a pore model similar to that shown in Figure 3.2.
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We focus in on simulations where the solute diameter is studied over the range of the

pore diameter. The nondimensional ratio λ = rs/rp and is varied so that 0 < λ < 1.

Two capillary diameters are studied while varying the pore length in the range of 500

to 2000 nm. The parameters chosen for this simulation are given in Table 3.2 and

represent reasonable parameters if one was to actually implement this system in a

laboratory PLOT column.

Also shown in Table 3.3 is the lag time due to solute particles diffusing into pores.

This is calculated as the difference between the first moment from simulation and the

arrival time from a capillary without pores. The average time of zone elution from a

capillary without pores is given as L/vz. Note that there is no compensation in vz

due to the restriction of the particle’s center of mass exclusion from the full capillary

volume. The number of pores in the capillary perimeter is kept constant for both

capillary diameters used in this study. The parameters chosen for these simulations

are listed here in Table 3.2.

Table 3.2: The input parameters used to model the PLOT column.

Parameter Symbol Value
Number of particles Np 5000

Spacer distance e 10 nm
Pore radius rp 10 nm

Length of capillary L 3 cm
Length of pore Lp 500, 1000, 2000 nm

Capillary diameter dc 5, 10 µm
Phase factor φinc 2◦

Number of radial pores Nr 750
Pore diameter dp 20 nm

Time step ts 4.0× 10−8 s
Average velocity vz 0.2 cm s−1

Solute diameter ds 2, 6.33, 10.67, 15 nm

The arrival time results are shown as histograms in Figure 3.3 at two different

bin sizes for each solute particle diameter ds. The four solute diameters are given
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explicitly in Table 3.3. As can be seen from the first moment of the arrival time, given

in Table 3.3, and with peak centers shown in Figure 3.3, the pore system exhibits a

pronounced size-exclusion effect with larger particles eluting first, followed by smaller

and smaller particles. This is, to our knowledge, the first discrete particle simulation

that explicitly shows SEC in a pore system.

Figure 3.3: The arrival time histograms shown in two different gradations for Lp =
1000 nm and dc = 5µm.

A plot of the first moment, M1, and the second moment, M2, both as functions

of pore length Lp, is given in Figure 3.4. A plot of the plate count, also as a function

of pore length Lp, is shown in Figure 3.5. More of the size-exclusion effect is shown
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Table 3.3: The first and second moments, M1 and M2, from the pore length and
solute diameter study.

dc ds λ Lp M1 M2 Plates Pore lag time Vp/Vc
µm nm nm s s2 per meter s
5 2.00 0.10 500 18.19 0.055 201607 3.19 0.20
5 2.00 0.10 1000 22.00 0.139 116356 7.00 0.40
5 2.00 0.10 2000 31.38 0.633 51882 16.38 0.80
5 6.33 0.32 500 17.55 0.140 73484 2.55 0.20
5 6.33 0.32 1000 20.61 0.332 42609 5.61 0.40
5 6.33 0.32 2000 28.16 0.180 147123 13.16 0.80
5 10.67 0.53 500 16.67 0.180 51562 1.67 0.20
5 10.67 0.53 1000 18.72 0.383 30507 3.72 0.40
5 10.67 0.53 2000 23.78 1.595 11812 8.78 0.80
5 15.00 0.75 500 15.74 0.181 45533 0.74 0.20
5 15.00 0.75 1000 16.72 0.296 31533 1.72 0.40
5 15.00 0.75 2000 19.15 0.991 12333 4.15 0.80

10 2.00 0.10 500 16.52 0.124 73145 1.52 0.10
10 2.00 0.10 1000 18.21 0.211 52302 3.21 0.20
10 2.00 0.10 2000 22.03 0.543 29779 7.03 0.40
10 6.33 0.32 500 16.23 0.354 24761 1.23 0.10
10 6.33 0.32 1000 17.57 0.563 18285 2.57 0.20
10 6.33 0.32 2000 20.65 1.347 10558 5.65 0.40
10 10.67 0.53 500 15.79 0.518 16052 0.79 0.10
10 10.67 0.53 1000 16.73 0.715 13047 1.73 0.20
10 10.67 0.53 2000 18.75 1.488 7879 3.75 0.40
10 15.00 0.75 500 15.37 0.614 12815 0.37 0.10
10 15.00 0.75 1000 15.80 0.737 11287 0.80 0.20
10 15.00 0.75 2000 16.78 1.208 7771 1.78 0.40
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in Figure 3.4 with respect to the first moment. As pore length (and pore volume) is

increased for the 5µm capillary, the separation in elution time between zones increases.

The 2000 nm length pore results show a much larger separation between zone

centers as opposed to the 1000 nm length pores. This figure also shows a diminished

separation span for the 500 nm length pores. For the 10µm capillary diameter simu-

lations, the range of the elution times is much more compressed in range, compared to

the 5µm capillary. This is due to the ratio of the pore volume to the capillary volume,

denoted as Vp/Vc in Table 3.3, which shows this ratio to be twice that for the 5µm

capillary as the 10µm capillary.

SEC is controlled by the solute distribution between the pore volume and the

interstitial volume for packed beds, which is a thermodynamic quantity. Here, the

interstitial volume is the same as the capillary volume. The larger this ratio, the

more is the separation time between different solute particle sizes. This can be shown

easily through the equation that governs retention in SEC, adapted to the symbols and

geometry of the PLOT column

VR = Vc +K Vp (3.13)

where VR is the retention volume and K is the size exclusion distribution coefficient

such that 0 ≤ K ≤ 1. For K = 0, the solute is fully excluded from the pores and for

K = 1, the solute has full access to capillary and pores. Dividing Eq. 3.13 by Vc gives

VR
Vc

= 1 +K
Vp
Vc

(3.14)

which shows that the larger is the term Vp/Vc, the larger will be the relative retention

volume VR/Vc at constant K noting that K is a complex function of λ [75]. VR/Vc− 1

is just the chromatographic retention parameter k′ and Vp/Vc is equivalent to the

chromatographic phase volume. For these separations, Eq. 3.13 reveals that Vc ≤

VR ≤ Vc + Vp, illustrating the restricted elution range characteristic of SEC.
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Figure 3.4: The first and second moments from the pore length and solute diameter
study. Two capillary diameters are utilized in this study: circles represent
dc = 5µm and squares represent dc = 10µm.
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Figure 3.5: Plates per meter from the pore length and solute diameter study. Two
capillary diameters are utilized in this study: circles represent dc = 5µm
and squares represent dc = 10µm.
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The separation of these particles is also dependent on mass transport kinetics. A

good example of the balance between thermodynamics and kinetics was illustrated for

SEC with superficially porous particles (SPPs) and with fully porous particles (FPPs).

This compromise was the subject of a recent study looking at SEC with SPPs and

FPPs [81] where it was shown that SPPs have faster kinetics. The thermodynamic

advantage of more pore volume, contained in FPPs, can be compensated by the faster

diffusion time of the thin shells present in SPPs.

A very similar situation exists here with respect to optimizing the pore length in

this system. Longer pores would clearly favor the thermodynamics and shorter pores

would favor kinetics. However, longer pores also have longer analysis time.

As can be seen in Table 3.3, many of the plate count numbers are very high

and are highly dependent on the conditions chosen for simulation. For the smallest

solute, ds = 2 nm, and the smallest pore length, Lp = 500 nm, the plate count is over

200,000 plates per meter, a very high number for any SEC-based separation. However,

the plate count drops almost linearly with increasing pore length. This suggests that

smaller pore lengths are advantageous with respect to fast diffusional exchange with

the capillary, albeit at a thermodynamic penalty due to loss of pore volume. This also

highlights that there is an optimum pore length, at fixed capillary diameter, which

can balance the two competing effects here. However, this is a multiple-objective

optimization problem because one effect loses when the other gains and some overall

objective function needs to be established other than a subjective optimization.

3.4 Discussion

The findings here have highlighted the types of results that are possible with

this class of separation system. The PLOT column has seen a resurgence of usage

in proteomics analysis but is hindered in a number of ways that are now discussed.

In a practical sense, the PLOT column can run with extremely low flow rates that

are possible and necessary when mass spectrometry is used as a detection scheme as

ionization is most efficient at extremely low volumetric flow rates.
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The mass transport resistance in the fluid phase will always be a limitation in

the PLOT geometry. This is due to the relatively large capillary inner diameters that

have been utilized in PLOT column design. We have used a small capillary diameter

of 5µm and this could be reduced, albeit with practical limitations in polymerizing

the radially-oriented pore system. However, with chromatographic particle media now

available in ≤ 2µm diameters, the reduction in liquid phase mass transport resistance

heavily favors packed beds. In the packed-bed format, columns with particles of these

diameters are exceedingly difficult to pack efficiently without voids into cylindrical

columns. Since the application of the pore systems in a PLOT column is mostly

chemical, there are distinct advantages to this configuration besides having a very

uniform pore diameter.

Although the PLOT column with radially-oriented pores appears to be an in-

teresting separation geometry, there is a problem with respect to the efficiency of phase

utilization. As the pore length increases, the volume of the region containing the pores

becomes more vacant and less occupied with pores. For short pores this is not a prob-

lem. However, short pores have limited mechanical stability because with this type

of pore, the region between pores can be so small as to be fragile. This is somewhat

alleviated with longer pores but then the space utilization of the pores becomes less

efficient. This is never a problem with packed beds, even with beds of SPPs, because

the pore density remains constant within any volumetric element of the column. How-

ever, this is not the case with radially-oriented pores and questions remain about the

efficient utilization of the space in this configuration. PLOT columns with layers of

porous particles keep the phase volume constant within the cylindrical volume element

of the chromatographic phase.

Many so-called “lab on a chip” designs used in microfluidic environments have

the same issue whereby the effective use of the chip does not promote effective phase

utilization because of the reduced spatial height dimension. This is one of the issues

whereby the microfluidic devices are closer to two-dimensional systems than three-

dimensional albeit they are three-dimensional with a reduced length scale in their
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height.

Rectangular channels can easily be modeled with the particle locator algorithm

described here. This geometry is actually simpler because the dimensions are straight

and not curved. Nonetheless, this geometry would be difficult to effectively utilize in all

three dimensions; it is envisioned that pores would be laterally-oriented and not above

or below the rectangular channel. The flow velocity profile in rectangular channels has

been known for a long time [82].

These types of random-walk simulations allow probing the nanoscale details

such as pore diffusion in almost-molecular dimensions and at the same time comput-

ing at length scales that are realistically large enough to mimic real-world devices like

chromatography columns. In some respects this is due to the ease of parallelization. In

this regard, this approach is similar to packed-bed simulation with periodic boundary

conditions [43, 44, 83, 52], but this simulation does not use these boundary conditions.

It is not necessary as the pore structure can be calculated exactly at any point along the

column length. Nonetheless, due to the extremely small pore diameters that are pos-

sible with this problem, exceedingly small time steps must be employed to resolve the

pore structure; this is a limitation of any method that attempts to compute over such

a large multi-length scale range. This is common to chromatography where resolution

of pores and macroscopic lengths must be computed simultaneously [78, 52]. Nonethe-

less, this type of problem is computable with high-performance parallel computers and

can offer insight without the limitations of assuming near-equilibrium conditions [6].

This is one step closer to providing the capabilities of designing analytical separation

systems via a computer-aided design approach.
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Chapter 4

CONCLUSIONS

The work included in this thesis provides fundamental insight into mass trans-

port within porous and nonporous materials using highly parallel supercomputer simu-

lations. Both chapters examine a phenomenon that is applicable to real-world devices.

These include nanoscale devices where slip may improve efficiency as well as SBA-15

silica and SEC columns which are modeled effectively by the Spiny model.

The results of these simulations are able to solve problems related to separation

science and engineering which would otherwise be impossible using experimental or

theoretical techniques. One major conclusion from this work is that improvements

in dispersion due to slip flow are limited to a narrow range of applications and are

counteracted by retention at boundaries. The Spiny model was then able to produce

a clear size-exclusion effect in a pore system. These results are the first of their kind

for a discrete particle simulation.

The findings of this thesis extend pass the realm of the theoretical and demon-

strate the potential of computer-aided design for improved chromatographic materials

and devices. For example, these simulations could allow optimization of parameters

such as wall coatings in the case of slip and pore length in the case of PLOT systems.

These models are easily tailored based on the particular system so that a more informed

design can be implemented prior to actually developing such devices. Therefore, a

computer-aided approach using simulations is a powerful tool that can be wielded in

the future of separation system engineering.
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