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ABSTRACT

Detecting and classifying cardiovascular diseases and their underlying etiology
are necessary in critical-care patient monitoring. In this thesis, we explore the effec-
tiveness of discriminative dictionary learning algorithms for electrocardiogram (ECG)
classification task and exhibit that they can achieve very competitive performance
compared to traditional methods with lower computational cost. We demonstrate dic-
tionary learning and classification processes simultaneously following the detection of
supraventricular and ventricular heartbeats using a single-lead ECG. Label informa-
tion for each dictionary atom is incorporated to enforce discriminability in sparse codes
during the dictionary-learning process. Such a discriminative label-consistent learning
procedure for adapting both dictionaries and classifier to a specified ECG signal, rather

than employing pre-defined dictionaries is novel.

The effectiveness of the proposed algorithms is demonstrated on real ECG sig-
nals from the MIT-BIH arrhythmia database. The performance of the algorithm is
evaluated in terms of classification accuracy, sensitivity, positive predictive value and
false positive ratio. The results demonstrate a classification accuracy of 94.61% for
Supra Ventricular Ectopic Beats (SVEB) class and 97.18% for Ventricular Ectopic
Beats (VEB) class at sampling rate of 114 Hz on MIT-BIH database. Therefore, a
sampling rate of 114 Hz provided enough discriminatory power for the classification
task. Results illustrated that our approach gave emulous results as compared to the
state of the art models at a lower sampling rate and a set of simple features. Exper-
imental results also illustrate a classification accuracy of 94.48% for SVEB class and

96.95% for VEB class at sampling rate of 360Hz, thereby indicating that our algorithm

Viil



is capable of achieving superior classification performance with substantially higher

efficiency compared to the state of art methods in ECG classification.
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Chapter 1

INTRODUCTION

1.1 Problem Formulation

Cardiac arrhythmias are abnormal heart rhythms that can cause a serious threat
to the patients recovering from acute myocardial infarction [1]. Some types of arrhyth-
mias are life-threatening medical emergencies that can trigger cardiac arrest and sudden
death. Since ECG signals furnish valuable information about the electrophysiology of
the heart diseases and functional aspects of the cardiovascular system, they are con-
sidered useful in diagnosing cardiac disorders and detecting any arrhythmia. Early
automatic detection and classification of ECG patterns is therefore critical in diagnosis

and treatment of patients with life-threatening cardiac arrhythmia [2], [3].

Several algorithms have focused on automatic classification of heartbeats, which
gives valuable results taking advantage of easily recorded cardiac electrical signals.
These methods, however, classify the arrhythmias at higher sampling rate and hence
need a lot of computational time. It thus becomes necessary to enlarge classification
criteria using a set of simple features and at lower sampling rate which would enable
implementation in real time and at lower cost. This calls for a more accurate and ro-

bust which would report lesser false alarms, thereby making it clinically more practical.

Recent works have exhibited the benefits of applying sparse coding in computer
vision and image classification [4], [5]. The objective of this thesis is to propose a
novel sparse-based classification algorithm for ECG signals. The proposed algorithm

demonstrates dictionary learning and classification processes simultaneously following



the detection of supraventricular and ventricular heartbeats using a single-lead ECG.
In addition to using class labels of training data, label information for each dictionary
atom (the columns of the dictionary matrix) is incorporated to enforce discriminability
in sparse codes during the dictionary-learning process. Experimental results indicate
that classifiers built into this learning-based dictionary framework emulated perfor-
mance of state-of-the -art models at a lower sampling rate (114 Hz), a rate found to

provide sufficient discriminatory power for the classification task.

1.2 State of the Art

Accurate, noninvasive diagnosis of CVD has been a challenge for recent years
and various methods have been proposed in the literature for detection and classifica-
tion of ECG beats. Feature extraction methods explored to discriminate heartbeats
include using wave shape [6], [7], [8], [9], [10], Hermite functions [11], wavelet-based
features [12], [13], frequency-based features [14], ECG morphology [15], hermite poly-
nomials [16], higher order cumulant features [17], statistical features [18], [19] and

Karhunen-Loeve expansion of ECG morphology [15].

Classifiers methods employed include support vector machines [10], [20], [18],
self organizing maps with learning vector quantisation [16], k-th nearest-neighbours
rules [21], decision trees [20], artificial neural networks [22], linear discriminants [6],
[7], 9], active learning framework [23] and back propagation neural networks [17]. Al-
though several statistically motivated approaches have been proposed, to the best of
our knowledge a dictionary-learning algorithm has not before been used for ECG clas-
sification tasks. As learning the dictionary from the training samples instead of using
Fourier or wavelet bases has been effective for face recognition, we propose applying
this technique to ECG classification [24]. Incorporating this discriminative learning
procedure with simple features at lower sampling rate gives competitive classification

performance at lower computational cost.



The discriminative learning procedure used here adapts the dictionaries to the
specified task, instead of employing pre-defined dictionaries, and also finds the linear
classifier parameters in the same procedure. To our knowledge, dictionary learning
algorithm and also discriminative learning has not been used before for ECG classifica-
tion tasks. The feature sets used in this experiment are more feasible as they are time
based features derived at a lower sampling rate. This simple set of features at lower
sampling rate gave enough discriminatory performance for classification which is more

practical due to its lower computational cost.

1.3 Summary of Contributions

The main contributions of this thesis are as follows:

e By applying the discriminative dictionary learning algorithms to electrocardio-
gram signal recognition, we first introduce this emerging technique into biomed-

ical signal classification.

e More importantly, we show that dictionary learning algorithm demonstrates the
promising performance compared to human-engineered algorithms at a lower

sampling rate of 114 Hz.

e The algorithm was also able to provide competitive classification performance

compared to state of art methods at a sampling rate of 360 Hz.

1.4 Related Publication to The Described Contributions

The contributions described in this thesis appeared in the following publication.

e Sherin M. Mathews, Luisa F. Polania and Kenneth E. Barner, “Leveraging a
discriminative dictionary learning algorithm for single-lead ECG classification ”,

at Northeast Bioengineering Conference (NEBEC), April 2015.



Chapter 2

DICTIONARY LEARNING BACKGROUND

2.1 Sparse Representation and Dictionary Learning

Sparse coding finds applications in varied problems in computer vision ¢.e., im-
age classifciation, image denoising [25], image restoration [26], [27]. A sparse signal can
be summarily expressed as a linear combination of a few signal items (called atoms or
bases) from an over-complete dictionary. While sparse representation needs compact
linear combinations of atoms from a given dictionary, dictionary learning intents to
adapt the dictionary to better fit the task-specific model [28]. Strictly speaking, for a
large set of training signals, dictionary learning needs a succinct set of atoms to best
characterize each signal in the training set under defined sparsity constraints. Dictio-

nary learning problem can be formulated as follows:

Let Y be a set of n-dimensional N input signals Y = [y1,y,...,yn] € RN, A
dictionary D to sparsely represent Y and corresponding sparse codes X = [x1, ..., Xy]

are learned by solving the optimization problem

<D,X >=argmin [[Y — DX|3, stV ||zillo < T (2.1)

where T is sparsity constraint factor. Because a good classifier can be obtained by
determining the parameters, model parameters W and dictionary D can be jointly

learned by

<D,W.,X >=arg min (|Y-DXI|3+ _ L{hi, f(z;, W)}+M[WE), .67, l2iflo < T
(2.2)



where L is a classification loss function, h; is label of y; and A; is a regularization

parameter.

A typical technique to minimize the above objective is by iteratively solving for
sparse representations based on the dictionary and updating the dictionary given the

sparse codes, until the constraint is met.

2.2 Motivation and Significance of Dictionary Learning and Sparse Rep-
resentation in ECG Classification
An ECG signal rhythm can be determined by knowing the classification of con-
secutive heartbeats in the signal. Classifying ECG arrhythmia is quite a challenging
task as arrhythmias appear as sequences of heartbeats with unusual timing and wave
shape. Early automatic, precise detection and classification of the beats is hence criti-
cal in diagnosis and treatment of patients with life-threatening cardiac arrhythmia as

it causes a serious threat to the patients recovering from acute myocardial infarction.

Several automatic arrhythmia detection procedures were developed in last ten
years, owing to need of intensive care units for permanent monitoring of the patients.
Existing methods reach good results but furnish only limited information about a sig-
nal by ignoring its hidden nonlinear dynamics and also requires more computational
time It therefore becomes essential to enlarge classification approach by using a smaller
set of features and novel algorithms for classification of arrhythmias to enable real time

implementation [29].

Particularly due to its robustness to missing data and noise, dictionary learning
has been successfully applied to many problems namely infilling missing pixels, image

and speech classification problems. However, little efforts have been made to ECG



classification using this model. It is thus desirable to exploit the capability of dictio-

nary learning for robust arrthymia classification.

In comparison to the state of the art in ECG classification, the most important
novelty of the proposed algorithm is use of dictionary learning algorithm for classi-
fication. The discriminative learning procedure used here adapts the dictionaries to
the specified task, instead of employing pre-defined dictionaries, and also the linear
classifier parameters in the same procedure. Incorporating this discriminative learning
procedure with simple features at lower sampling rate gives competitive classification
performance at lower computational cost. The feature sets used in this experiment
are real time-based as they are time based features derived at a lower sampling rate.
This simple set of features at lower sampling rate gave enough discriminatory perfor-

mance for classification which seems more practical due to its lower computational cost.

To our knowledge, dictionary learning algorithm and also discriminative learn-
ing has not been used before for ECG classification tasks. Benefits of the proposed
algorithm are two fold. First due to the use of a simpler set of features, it has lower
computational cost thereby allowing real-time implementation on a power limited de-
vices such as Holter ECG recorders. In addition, the proposed discriminative dictionary
learning algorithm opens a new window for future research, showcasing the dictionary

learning based methods provide huge potential for accurate ECG data classification.

2.3 State of the Art Algorithms in Dictionary Learning

To scale to large datasets, many dictionary learning (DL) algorithms have been
developed to learn a compact dictionary. Training samples can be manually elected to
formulate the dictionary, whereas a separate dictionary can be learned for each class
with classification being performed based on reconstruction error. In Wright [5], all

training samples of all classes was used as the dictionary to code for query image, and



classification decision was based by evaluating which class leads to the minimal recon-
struction error. Construction of dictionary during training and sparse coding during

testing thereby became typically time consuming for large number of classes.

K-SVD [28] is one of the forefront dictionary learning algorithms, which focuses
on the best sparse representation for the training signals of the learned dictionary, but
does not consider the discrimination capability of the dictionary. The optimization here
is an iterative process shifting between solving sparse representations using Orthogonal
Matching Pursuit (OMP) and updating the dictionary using singular value decomposi-
tion (SVD). Method of optimal directions (MOD) [30] heritages the same sparse coding
as K-SVD, wherein it employs either Orthogonal Matching Pursuit (OMP) or FOCUSS
to solve for sparse codes and updates the dictionary effectively during learning. In [31],
the dictionary and classifier learning methodology was combined to obtain Discrimi-

native K-SVD algorithm .

There are approaches that aim to minimize the residual error of reconstructing
the original signals without utilizing the class information in the training set. Such
techniques are referred as unsupervised dictionary learning; dictionaries learned in such
a fashion can be used for classification tasks; examples include [4], [5], [32]. Recent re-
search [31], [33] , [34] , [35] reveal that dictionaries formulated using supervised learning
resulted in improved classification performances and hence we leverage a supervised
algorithm to learn a compact and discriminative dictionary for sparse coding for ECG

arrthymia classification.



Chapter 3

PROPOSED METHODOLOGY

3.1 Salient Characteristics of an ECG Signal
3.1.1 ECG wave, segments and intervals

An ECG signal furnishes valuable information about the electrophysiology of
the heart diseases and functional condition of the cardiovascular system. As the state
of cardiac heart generally reflects in the shape of ECG waveform, an ECG waveform
is considered to be a quintessential signal of cardiac physiology, helpful in diagnosing
cardiac disorders and detecting any arrhythmia. An ECG wave consists of positive
deflections (peaks) and negative deflections (formations) which makes it symbolic in
diagnosis. A cardiac cycle of a typical heartbeat has a distinctive structure represented

by the P-QRS-T wave form as seen in Fig. 3.1 and described as follows:

QRS
Complex

ST
PR Segment T

P

a\ /\__

PR Interval Q V
S
|

Figure 3.1: ECG cardiac cycle represented by the P-QRS-T wave form [36]
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e P-wave - represents atrial depolarization wherein blood flows from atria to ventricles
[37].

e Q wave - represents the normal left-to-right depolarisation of the interventricular
septum .

e R wave - represents early depolarization of the ventricle as it epitomize the elec-
trical stimulus which passes through the main portion of the ventricular walls

e S wave - represents final depolarization of the ventricles .
e T wave - represents electrical repolarization (recovery) of the ventricles .

e PR segment - represents isoelectric segment between the end of the P wave and
the start of the QRS complex. It corresponds to the time between the end of
atrial depolarization to the outset of ventricular depolarization .

e QRS complex - represents ventricular depolarization which thereby triggers con-
traction of the ventricles. QRS corresponds to simultaneous activation of the
right and left ventricles .

e S-T segment - represents the interval between ventricular depolarization and re-
polarization. It corresponds to the time from the offset of the QRS complex to
onset of the T wave .

e PR interval - represents the conduction through the AV node. It corresponds to
the time needed for an electrical impulse to travel from the sinus node through
the AV node and thereafter entering the ventricles .

e Q-T interval - represents the time from the onset of the Q wave to the offset of
the T wave. It corresponds to the time taken for both ventricular depolarisation
and repolarisation, and therefore roughly estimates the duration of an average
ventricular action potential .

3.2 Noise in ECG Signal
An ECG signal is usually corrupted by different types of artifacts and noise
which lie within the frequency band of ECG signal. These artifacts alter the character-

istics of ECG signal making it difficult to extract purposive information from the signal.

The corruption of ECG signal is due to following major noises:



e Base-line drift : Base-line drift is caused in chest-lead ECG signals due to coughing

or breathing, or when an arm or leg is moved during limb-lead ECG acquisition.

e Power line interference : Power line interference is caused due to improper grounding
and is indicated as an impulse at 50 Hz/60 Hz harmonics. It also appears as

additional spikes at integral multiples of the fundamental frequency.

e Motion artifacts : Motion artifacts are transient baseline change due to electrode

skin impedance with electrode motion.

Filtering of artifacts and noise is very crucial in the investigation of biomedical
signals, particularly in the case of signals as weak as the electrocardiogram. Methods

of noise reduction have influential effect on performance of all ECG signal processing

systems.
5| HeartBeat s/ RRInterval
¥| Detection ¥l Features
Elaseline_am:l Dictionary Classifier Heart Beat
ECG Lead 5| Powerline [ | Segmented ’—} Learning P Combiner ' Classes
A interference Morphology — Classifier
filtering Features
-
l Heart Beat
Segmentation Heart Beat
Interval —
Features

Figure 3.2: Outline of the Entire Process

3.3 Preprocessing

Each ECG signal is bandpass filtered at 0.110 Hz and sampled at 360 Hz. Pre-
processing forms the first stage in the entire procedure where it utilizes a filtering
unit to remove artifact signal, i.e. baseline wander, power line interference and high

frequency noise, using the method enumerated in [6]. This section describes different

10



types of ECG artifacts and the relevant preprocessing technique used to remove these

artifacts.

3.3.1 Base-line drift

Baseline wander is a low frequency artifact in ECG signal may be caused in
chest-lead ECG signals by coughing or breathing with large movement of the chest,
electrode skin contact or when an arm or leg is moved in the case of limb-lead ECG
acquisition [6]. Eliminating this kind of artifact therefore becomes a primary step in

ECG signal processing before using it for accurate further diagnostic purpose.

To remove baseline wander, we pass the signal through median filters of window
sizes 200ms and 600ms. This removes P-waves, QRS complexes and T-waves leaving
behind the baseline wander. By subtracting the baseline wander from the original

signal, we obtained the filtered signal.

3.3.2 Power line interference

Power line interference is symbolized as a 50 Hz frequency impulse and appears
as additional spikes at integral multiples of the fundamental frequency. Power line
interference is effortlessly observable as the interfering voltage that might completely
obscure the ECG waveform with frequencies in integral multiples of 50 Hz. This strong
interference can be due to improper grounding, loose contacts with patients cable as
well as disconnected electrodes. These transients can also be introduced by an electrical
power systems inducing a rapid pulse on the trace due to switching action. Poor qual-
ity tracings obtained due to electromagnetic interference from the power lines thereby
makes it crucial to suppress these transients. The power-line interference and high-
frequency noise is removed from the baseline corrected ECG using a 12-tap low-pass
filter. The filter is a finite impulse response filter with equal ripple in the pass and stop
bands having 3-dB point at 35 Hz [15].

11



3.3.3 Motion artifacts

Motion artifacts are transient baseline interference introduced due to electrode
skin impedance with electrode motion. Specifically, the electrode motion causes defor-
mations of the skin around the electrode site, which in turn results in variations in the
electrical characteristics of the skin around the electrode. It can result in larger am-
plitude signal in ECG waveform The peak amplitude of motion artifact is 500 percent
of Peak to Peak ECG amplitude and the duration is about 100-500 ms Motion artifact
can thus obscure the ECG waveforms making ECG interpretation quite difficult. An

adaptive filter is used to remove the interference of motion artifacts.

3.4 Feature Extraction Methodology

A pattern recognition system aims to demonstrate a framework that automati-
cally maps an input signal to a class label it belongs, by analyzing the features extracted
from the signal. The two symbolic stages of a pattern recognition system include fea-
ture extraction and classification. Prior to feature extraction, the data is processed
i.e it is filtered followed by detection and segmentation. Thereafter, feature extraction
employs mathematical techniques on input signal to build an association with known
models and also obtain the best discriminative representation of the data by exploit-
ing the underlying signal characteristics. The detailed technique used in each stage is

enumerated as follows:

3.4.1 Detection and Segmentation

The processing stage consists of heartbeat detection and segmentation modules.
For detection, the manually verified heartbeat fiducial point times provided with the
MIT-BIH arrhythmia database were utilized [38]. Heartbeat segmentation program of
Laguna [6] was used, since the the accuracy of the system in determining heartbeat
segmentation points has been validated on the MIT-BIH database and has proved to be
commensurate with the interexpert variation. Heartbeat segmentation stage provides

QRS onset, offset and T-wave offset times; a Boolean value indicating the presence

12



absence of a P-wave and, if present, it gave the P-wave onset and offset time for each

heartbeat fiducial point.

3.4.2 Feature Extraction

Post the processing, the two feature sets (feature set 1 (FS1) and feature set 2
(FS2) are calculated. We settled for the single lead feature extraction method after
it was found that, having more sample values in the feature vector do not produce
significant improvement in performance [8]. It is noted that a lower sampling rate
and smaller feature vector is quite desirable in real time monitoring applications as it

translates to lesser power consumption and lower hardware complexity.

3.4.2.1 Feature Set 1
Feature Set 1 (FS1) consited of 26 features comprising of RR intervals, heart-
beat intervals and segmented morphology [6] .(see Figure 3.3)

Intervals Features
RR-intervals also known as ”Heartbeat fiducial point intervals” correspond to
the interval between successive heartbeat fiducial points. The following four features

were extracted from RR-intervals:

e Pre-RR-interval - is the RR-interval between a given heartbeat and the preceding
heartbeat.

e Post-RR~interval - is the RR-interval between a given heartbeat and the next
heartbeat.

e Average RR-interval - is the mean of RR-intervals for a recording. This value
remains the same for all heartbeats in a recording.

e Local average RR-interval - is estimated by averaging RR-intervals of ten RR-
intervals surrounding a heartbeat.

13
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Figure 3.3: ECG Cardiac Trace [39]

Heart-beat Intervals Features

Three features were extracted from heart-beat intervals post heartbeat segmen-

tation. (see Figure 3.3)

e QRS duration - is time interval between the QRS onset and QRS offset.
e T-wave duration - is time interval between QRS offset and T-wave offset.

e Boolean variable - is the third variable which indicates the presence or absence of
a P-wave.

Segmented Morphology Intervals Features

Segmented morphology encompasses amplitude values of the ECG signal cal-
culated by a sampling window between QRS onset and offset and a sampling window
between QRS offset and T-wave offset points. Post the determination of fiducial point
(FP), two sampling windows were utilized. The first window was bounded by the
QRS onset and offset. The boundaries for the second window was determined by the
QRS offset and the T-wave offset. Ten evenly spaced sample features were derived
by uniformly sampling the ECG amplitude in the first window (Figure 3.4) and nine
features were derived by uniformly sampling the second window resulting in a total of

19 features [6](Figure 3.4).

14
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Figure 3.4: Segmented Morphology Intervals Features [6]

3.4.2.2 Feature Set 2
Feature Set 2 (FS2) has 22 features which consisted of RR intervals and fixed

interval morphology [6].

RR Intervals Features
RR-intervals also known as ”"Heartbeat fiducial point intervals ” correspond to
the interval between successive heartbeat fiducial points. These are the same four

features that were extracted in Feature Set 1.

Fixed interval morphology Features

To determine the fixed interval morphology features, the sampling windows
were first positioned at the heartbeat fiducial point (FP). Two sampling windows were
formed based on FP. The first window approximately encompassed the QRS-complex
and covered the portion of the ECG between FP-50 ms and 100 ms. Nine samples
of the ECG between FP-50ms and FP+100ms were extracted from this window. The
second window approximately covered the T-wave and started at 150 ms and finished
at 500 ms . The next nine samples between FP+150ms and FP+500ms are extracted

from the second window. Therefore a total of 18 features were used in Feature Set 2.

Therefore the entire feature extraction can be summarized as:

e Feature Set 1 (26) : RR intervals(4), Heart-beat intervals(3), Segmented Morphol-
ogy(19)

eFeature Set 2 (22) : RR intervals(4), Fixed Interval Morphology (18)

15



3.5 Classification Methodology using Label Consistent Dictionary Learn-

ing

The label consistent discriminative dictionary learning algorithm aims to lever-
age the supervised label information of input signals inorder to learn a compact dis-
criminative dictionary for sparse coding. It embodies a discriminative sparse coding
error criterion and an optimal classification performance criterion into the objective
function which is optimized using K-SVD algorithm. The learned dictionary is there-
fore both discriminative and reconstructive, in contrast to traditional constructive
ones [5], [28], [30]. The algorithm performs better by using a simple multiclass lin-
ear classifier, in contrast to other existing approaches [31], [40], [41] which learn one
classifier for each pair of categories and [42], [43] which learn the dictionary and clas-

sifier separately .

To maintain explicit association between dictionary items and the labels, each
dictionary item is chosen such that it represents a subset of the training signals from a
single class, so each dictionary item corresponds to its particular label. The algorithm
is targeted on the effects of adding a label consistency regularization term and a joint
classification error into the objective function in for learning the dictionary. These are

referred as LC-KSVD1 and LC-KSVD2, respectively, as explained in the following.

3.5.1 Label Consistent KSVD 1 (LCKSVD 1)

The classification algorithm explicitly incorporates a label consistency constraint
called “discriminative sparse-code error” and an optimal classification performance cri-
teria into the objective function and optimizes it using the K-SVD algorithm. In addi-
tion to using class labels of training data, label information with each dictionary item
(columns of the dictionary matrix) is used to enforce discriminability in sparse codes
during the dictionary learning process. Thus, the learned dictionary enables the signals
from the same class to have identical sparse codes and signals from different classes to

have non- identical sparse codes, thereby enabling to achieve good accuracy even with
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a simple multiclass linear classifier.

For obtaining discriminative sparse codes Q, for an input training signal Y with
learned D, the objective function for Label Consistent KSVD 1 (LCKSVD1) can
be defined as

<D,A, X >=argmin(|[Y - DX} + a |Q — AX|3)s.t. Vi, ||lzillo < T (3.1)

[EEat]

where A is a linear transformation matrix and « is the scalars controlling the relative
contribution between reconstruction and label consistency regularization. Here, the
linear transformation g (z; A)=Az converts the sparse codes x to be the most dis-
criminative in sparse feature space and hence the term ||Q — AX]|3 corresponds to the
discriminative sparse code error. Discriminative sparse code error compels the signals
of the same class to have identical sparse representations thereby resulting in good

classification performance by using just a simple linear classifier.

3.5.2 Label Consistent KSVD 2 (LCKSVD 2 )

For Label Consistent KSVD 2 (LCKSVD2), the classification error term is in-
cluded in order to make the dictionary optimal for classification. Considering a linear-
predictive classifier f (z; W)=Wz , the objective function for learning a dictionary D

can be defined as

<D,W,X >=argmin(|Y —DX|; + o |Q—AX|5+ 8 |H—-WX|3)s.t. Vi, [lzio < T
o (3.2)
where H = [hy, ha, ..., hy] are the class labels of input signals Y and «, § are the

scalars controlling the relative contribution of the corresponding terms.

Here, the first term corresponds to the reconstruction error, the second one
represents discriminative sparse-code error, and the third term corresponds to the

classification error.
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The objective function can be rewritten as

2

Y D
J/aQ| — | vaA | X (3.3)
vEH| |VAW| |

Let Yoew = (Y% 1/aQt, /BHY)! and Dyew = (DY, /oAt /BW?)! therefore the

optimization of eq 3.3 becomes proportionate to solving :

< Dpew; X >= argmin( || Ypew — DnewX|[3)  s.t. Vi, ||zillo < T (3.4)

new;

This equation can be solved by using KSVD, thereby making the learned dic-
tionary both reconstructive and discriminative, in contrast to traditional purely con-
structive ones. Applying KSVD gives us D = [dy,...,dg] and W = [wy,..., wk].
However matrices D, A, and W cannot be directly used, as they are fs-normalized.
The desired dictionary f), transform parameters A, and classifier parameters W are

therefore computed as in [24].

D=1[d/||dlls - d/||dklls ] (3.5)
A=lay/||du]l ... ax/||dell2 ] (3.6)
W = [wy/||dulz .. wx/||dx]2 ] (3.7)

This regression-based classification scheme only involving matrix multiplication
is more efficient than other approaches that first must map computed sparse coeffi-

cients to each class and then use the reconstruction error for classification.

For testing data vector y;, we first compute the sparse representation x; by using

orthogonal matching pursuit algorithm to solve the problem

x; = argmin ||y; — ﬁx,”% s.t. Vi, ||zillo < T (3.8)

T
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Thereafter using the linear predictive classifier W, we estimate the label 7 of the vector

Yi a
j =argmax (W,x;) s.t. |lzillo <T (3.9)
J

where Wj. denotes the j th row of W

In contrast to most existing dictionary learning approaches that reckon on it-
eratively solving sub-problems to approximate a global solution, the label consistent
dictionary learning approach is able to learn the single compact dictionary, discrimi-
native coding parameters and classifier parameters and the universal multiclass linear

classifier simultaneously.
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Chapter 4

EVALUATION OF PROPOSED METHODOLOGY

4.1 MIT - BIH Database
For the evaluation experiments, we used the acclaimed MIT/Beth Israel Hos-

pital (BIH) Arrhythmia Database available at MIT medical data storage Physionet [38]:

Briefly, MIT-BIH Arrhytmia database [38] incorporates 48 half-hour ECG record-
ings, each containing two ECG lead signals digitized at 360 samples per second with
11-bit resolution over 10 mV range. Twenty-three recordings were randomly selected
from a set of 4,000 24 hour ambulatory ECG data collected from a mixed population
including both inpatients and outpatients at the medical center. The remaining 25
recordings were selected from the same set to include less common but clinically sym-
bolic arrhythmias. All recordings have been annotated by two or more cardiologists
and contain modified limb lead II. Second lead is usually modified lead V1, occasion-
ally V2 or V5 and in one instance V4. In our experiment, we focused on using lead
A only. In 45 recordings, lead A is modified lead II and for the other three is lead
V5 [8]. According to the AAMI recommended practice, the 4 paced beats are excluded
in this experimental evaluation process for the reason that these beats do not possess

sufficient signal quality for reliable processing [6], [7].

4.2 AAMI Standard

MIT-BIH heartbeat types are combined according to Association for the Ad-
vancement of Medical Instrumentation (AAMI) recommendation. AAMI standard em-
phasize the problem of classifying ventricular ectopic beats (VEBs) from the non- ven-

tricular ectopic beats . The normal and arrhythmia beats are remapped to the five
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Remapped Classes Mapped in accordance to AAMI Standard
Classes
Normal Left Bundle | Right Bundle Atrial Nodal
Branch Branch
Class N Beat Block Block Escape Escape
(NOR) (LBBB) (RBBB) Beat (AE) | Beat (NE)
Atrial Aberrated | supra Nodal
atrial ventricular
Class S Premature premature premature premature
beat (AP) beat (aAP) | beat (SP) beat (NP)
Premgture Ventricular
Ventricular
Class V : escape beat
contraction (VE)
(PVC)
Fusion of
Class F normgl b
ventricular
beat (Fvn)
Fusion of
paced paced & unclassified
Class Q beat (P) normal beat | beat (U)
(fPN)
Table 4.1: MIT-BIH arrhythmia database heartbeat mapped to AAMI heartbeat
classes

AAMI heartbeat classes using the mapping in [6]. Each class includes heartbeats of

one or more types as shown in Table (6.1). The AAMI recommended practice was used
to combine the MIT-BIH heartbeat types into following five heartbeat classes which

were used in all subsequent processing.

1. Class N corresponding to beats originating in the sinus node (normal and bundle

branch block beat types),
2. Class S corresponding to supraventricular ectopic beats (SVEBs),
3. Class V corresponding to ventricular ectopic beats (VEBSs),

4. Class F corresponding to beats that result from fusing normal and VEBs,
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5. Class Q corresponding to unknown beats including paced beats

4.3 Evaluation Metrics

The MIT -BIH database containing a series of manually verified QRS detec-
tion points is utilized in this study. After the four recordings containing paced beats
were removed as in [7], the remaining 44 recordings were divided into two equal-sized
datasets containing ECG data from 22 recordings. The first dataset (DS1) was used
to train the classifier and to set parameters values for optimizing performance of the
classifier. The second dataset (DS2) is employed for an independent and unbiased per-

formance evaluation of the heartbeat classification system (see Fig. 4.1).

48 ECG 44 ECG Training
Recordings Recordings SetDS1

Removal of

. Testing
4 Paced Recordings

Set DS2

Figure 4.1: MIT-BIH database division into training and testing sets

For the validation of the algorithms on the MIT-BIH database ,the following perfor-
mance metrics were used : accuracy (Acc), sensitivity (Se), positive predictive value

(PPV), and false positive rate (FPR).
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TP+TN

A A = 4.1
ceuracy(ACC) = N T FP T FN (4.1)
TP
Positive PredictiveValuc(PPV) — ——L (4.3)
ositiver/reaiwctirvev atue _TP+FP .
FalsePositiveRate(FPR) — —1 L (4.4)
atsefr~ositivelrvate _TN+FP .

where TP is the true positive which corresponds to the number of heartbeats
belonging to particular class A that are accurately classified to same class; FN is false
negative which corresponds to the number of heartbeats belonging to particular class A
that are inaccurately classified to differnt class B; FP is false positive which corresponds
to the number of heartbeats belonging to class B that are inaccurately classified to class
A; TN is true negative which corresponds to the number of heartbeats belonging to

class B that are accurately classified to same class B.

4.4 Experimental Results and Discussion

Classification was performed on extensively used MIT-BIH arrhythmia database
[38] to detect two types of heartbeat arrhythmias Ventricular Ectopic Beats (VEB) and
Supra Ventricular Ectopic Beats (SVEB). In agreement with the AAMI recommended
practice, four recordings containing paced beats were removed from 48 recordings and
the data from 44 recordings were divided into two sets training (DS1) and test data
(DS2). Classifier training was achieved using DS1 and performance assessment was
determined using DS2. We have reported the ECG classification results at sampling
rate of 360 Hz in tables 4.2 - 4.10 .
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Record Beats . Beats . Beats . Beats . Beats . Total Beats
number Belonging | Belonging | Belonging | Belonging | Belonging | in Each
to Class N | to Class S | to Class V | to Class F | to Class QQ | Record

100 2252 14 7 0 0 2273
103 2056 26 2 0 0 2084
105 2241 87 206 38 0 2572
111 2101 16 7 0 0 2124
113 1638 118 39 0 0 1795
117 1512 23 0 0 0 1535
121 1710 145 8 0 0 1863
123 1289 229 0 0 0 1518
200 1660 118 775 48 0 2601
202 1274 804 54 4 0 2136
210 1424 117 1005 104 0 2650
212 2712 30 6 0 0 2748
213 2844 9 310 88 0 3251
214 1734 38 392 98 0 2262
219 1538 7 448 91 0 2154
221 1589 171 412 255 0 2427
222 1620 723 135 5 0 2483
228 1544 82 330 97 0 2053
231 1563 8 0 0 0 1571
232 439 1165 173 3 0 1780
233 1332 50 1145 552 0 3079
234 2688 47 13 5 0 2753

Table 4.2: Classification results per record for FS1 + LCKSVD at sampling rate of 360

Hz

Reference/Algorithm N S \Y F | Q
N 38123 | 2502 | 2367 | 1267 | O
S 142 | 1384 | 303 8 0
\Y 187 210 | 2727 | 97 | O
F 307 0 66 15 0
Q 1 1 4 1 |0

Table 4.3: Classification results for FS 1 + LCKSVD at sampling rate of 360Hz

In accordance with AAMI recommendations, the classification performance for

each recording and the gross performance figures were calculated using either feature set

1 or feature set 2 for feature extraction and label consistent discriminative dictionary

learning algorithm at 360 Hz. Table 4.2 reports the gross classification performance
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Record Beat§ Bea‘@ Beat§ Bea‘@ Beat§ thal Beats
number Belonging | Belonging | Belonging | Belonging | Belonging in Each
to Class N | to Class S | to Class V | to Class F | to Class Q Record
100 2236 36 1 0 0 2273
103 2067 17 0 0 0 2084
105 2391 64 96 21 0 2572
111 2108 10 6 0 0 2124
113 1631 153 11 0 0 1795
117 1473 62 0 0 0 1535
121 1849 12 2 0 0 1863
123 1477 41 0 0 0 1518
200 1972 70 558 1 0 2601
202 1468 607 53 8 0 2136
210 2401 60 188 1 0 2650
212 2712 26 10 0 0 2748
213 2961 10 261 19 0 3251
214 1940 45 250 27 0 2262
219 1870 162 121 1 0 2154
221 1827 74 413 113 0 2427
222 1626 785 71 1 0 2483
228 1653 59 341 0 0 2053
231 1557 12 1 1 0 1571
232 402 1013 365 0 0 1780
233 2224 26 702 127 0 3079
234 2707 38 3 5 0 2753

Table 4.4: Comparsion of classification results for FS2 + LCKSVD at sampling rate

of 360 Hz

Reference/Algorithm | N S \Y% F | Q
N 41534 | 2048 | 362 | 315 | O
S 108 | 1239 | 485 5 |0
\Y4 266 94 12556 | 5 |0
F 341 0 47 0 [0
Q 3 11 3 1o lo

Table 4.5: Classification results for FS2 + LCKSVD at sampling rate of 360 Hz

for each recording using feature Set 1 and LCKSVD algorithm at a sampling rate of

360Hz; table 4.3 reports the per class classification performance for each defined AAMI

class using feature Set 1 and LCSKVD algorithm at a sampling rate of 360Hz. Table
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Reference/Algorithm N S \Y% F Q
N 86.13% | 5.65% | 5.34% | 2.86% | 0%
S 7.72% | 75.34% | 16.49% | 0.43% | 0%
\Y% 5.80% | 6.51% | 84.66% | 3.01% | 0%
F 79.12% 0% 17.01% | 3.86% | 0%
Q 14.28% | 14.28% | 57.14% | 14.28% | 0%

Table 4.6: Classification results in % for FS 1 + LCKSVD at sampling rate of 360Hz

Reference/Algorithm N S \Y% F Q
N 93.84% | 4.62% | 0.81% | 0.71% | 0%
S 5.87T% | 67.44% | 26.40% | 0.27% | 0%
\Y% 17.57% | 2.91% | 79.35% | 0.15% | 0%
F 87.88% 0% 12.11% 0% 0%
Q 42.85% | 14.28% | 42.85% 0% 0%

Table 4.7: Classification results in % for FS 2 + LCKSVD at sampling rate of 360Hz

4.4 reports the gross classification performance for each recording using feature Set
2 and LCKSVD at a sampling rate of 360Hz; table 4.5 reported the per class classi-
fication performance for each defined AAMI class using feature Set 2 and LCSKVD
algorithm at a sampling rate of 360Hz. The predicted per class classification results
using algorithms FS1 - LCKSVD and FS2 - LCKSVD in table 4.3 and table 4.5 are
reported in percentiles (%) in table 4.6 and 4.7. Classification results observed in ta-
ble 4.2 and table 4.4 are satisfactory when compared to the per record classification
results in [6]. Table 4.5 reports the complete per class classification performance for
each defined AAMI class using Feature Set 2 and LCSKVD algorithm at a sampling
rate of 360Hz. The gross classification performance per class indicates the number of
classes that are misclassified. In table 4.3, 2502 normal (N) beats were misclassified
as SVEB (S) beats, and, 1267 N beats were misclassified as fusion (F) beats. Likewise
in table 4.5, 2048 normal (N) beats were misclassifed as SVEB (S) beats, and 315 N
beats were misclassified as fusion (F) beats. As compared to results in [6], the number
of misclassified heartbeats are reduced. Therefore, the results give competitive perfor-
mance as compared to state of art algorithm [6] and [8]. Tables 4.8 and 4.9 illustrates

the accuracy over the five remapped classes using FS1 and LCKSVD and FS2 and
LCKSVD methodology at sampling rate of 360 Hz.
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Classes | Class N | Class S | Class V | Class F | Class Q
Acc % | 86.37% | 93.63% | 93.62% | 96.48% | 99.99%

Table 4.8: Accuracy for all classes using FS 1 + LCKSVD at sampling rate of 360Hz

Classes | Class N | Class S | Class V | Class F | Class Q
Acc % | 92.47% | 94.48% | 96.95% | 98.56% | 99.99%

Table 4.9: Accuracy for all classes using FS 2 + LCKSVD at sampling rate of 360Hz

Method Rate SVEB VEB

(Hz) [ Acc | Se | PPV [FPR| Acc | Se | PPV | FPR
FS14+LCKSVD | 360 | 93.63 | 75.34 | 33.78 | 5.66 | 93.62 | 84.66 | 50.52 | 5.75
FS24+LCKSVD | 360 | 94.48 | 67.44 | 36.64 | 4.47 | 96.95 | 79.35 | 75.11 | 1.81
Chazel et al [6] | 360 | 94.6 | 75.9 | 385 | 4.7 | 974 | 77.7 | 81.9 | 1.2
Chazel et al [8] | 360 | 93.6 | 61.2 | 31.2 5.2 954 | 724 | 62.3 3.0
Chazel et al [8] | 360 | 94.4 | 73.5 | 37.0 | 48 | 97.8 | 87.6 | 80.3 | 1.5

Table 4.10: Comparison of classification results at sampling rate of 360 Hz

We have also reported and compared the results of the classification tasks with
state of art methods in table 4.10. Columns 1 indicates the methodology used; column
2 corresponds to the sampling rate; columns 3-8 indicate the gross classifier perfor-
mance in terms of Acc (Accuracy), Se (Sensitivity), PPV (Positive predictive value)
and FPR (False positive rate). Row 1 reports the overall classification accuracy result
using Feature Setl and LCKSVD. The independent performance assessment of this
configuration resulted in an accuracy of 93.64%, a sensitivity of 75.34%, a positive pre-
dictivity of 33.78%, and an FPR of 5.66% for the SVEB class. For the VEB class, the
accuracy was 93.62% , the sensitivity was 84.66%, the positive predictivity was 50.52%,
and the FPR was 5.75%. These results give competitive performance as compared to

previously reported results for automated heartbeat classification systems in [6] and [§] .

We also conducted the analysis using LCKSD algorithm at a lower sampling
rate and have reported the classification results in tables 4.11 - 4.17. Similar to pre-
vious results, table 4.11 and table 4.13 represent the classification performance per

recording at 114Hz using Feature Set 1 - LCKSVD and using Feature Set2 - LCKSVD
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respectively. On the other hand, table 4.12 and table 4.14 represents the per class
classification performance at 114Hz for each defined AAMI class using Feature Set 1
- LCKSVD and using Feature Set2 - LCKSVD respectively. The predicted per class
classification results using algorithm FS1 - LCKSVD and FS2 - LCKSVD in table 4.12
and table 4.14 are reported in percentile (%) in table 4.15 and 4.16.

The gross classification performance per class table indicates the number of
classes that are misclassified. In table 4.12, 2444 normal (N) beats were misclassified
as SVEB (S) beats, and, 1147 N beats were misclassified as fusion (F) beats. Likewise
in table 4.14, 1975 normal (N) beats were misclassifed as SVEB (S) beats, and, 404 N
beats were misclassified as fusion (F) beats. As compared to results in [44], the number
of misclassified heartbeats have decreased. However the reference paper [44] did not
include per record classification results so as to compare our results with. Tables 4.17
and 4.18 illustrate the accuracy over the 5 remapped classes using FS1 and LCKSVD
and FS2 and LCKSVD methodology at sampling rate of 360 Hz.

Comprehensively, the results do demonstrate that discriminative dictionary
learning are better suited for the detection of VEB and SVEB type arrhythmia at
lower sampling rate. Also, increasing the sampling rate to 360 Hz did not produce
significant gain in performance. It therefore follows that a sampling rate of 114 Hz
was found to provide enough discriminatory power for the classification task. It was
observed that varying the sampling rate had minimal impact on the performance and
it can be deduced that our approach emulated the performance of the state of the art

models at a lower sampling rate and a set of simple features.
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Record Beat§ Beats Beats Beats Beats thal Beats
number Belonging | Belonging | Belonging | Belonging | Belonging in Each
to Class N | to Class S | to Class V | to Class F | to Class Q Record
100 2265 1 7 0 0 2273
103 2072 5 4 3 0 2084
105 1084 1253 125 110 0 2572
111 2103 3 18 0 0 2124
113 1526 51 218 0 0 1795
117 1518 17 0 0 0 1535
121 1859 0 4 0 0 1863
123 662 824 32 0 0 1518
200 1351 634 202 414 0 2601
202 1311 297 114 414 0 2136
210 1513 728 255 154 0 2650
212 1299 1415 28 6 0 2748
213 2353 342 311 245 0 3251
214 405 541 802 514 0 2262
219 669 457 373 655 0 2154
221 853 787 407 380 0 2427
222 2076 260 128 19 0 2483
228 1696 17 310 30 0 2053
231 1559 1 10 1 0 1571
232 1403 98 276 3 0 1780
233 499 697 675 1208 0 3079
234 2653 64 7 29 0 2753

Table 4.11: Classification performance on each recording of DS2 using the AAMI

recommended measures using FS1 +LCKSVD at sampling rate of 114 Hz

Reference/Algorithm | N S \Y% F 1 Q
N 38584 | 2444 | 2087 | 1144 | 0
S 86 1380 | 363 8 0
\Y 284 378 | 2448 | 111 | O
F 334 0 20 34 10
Q 2 o | 4 ] 1 ]o0

Table 4.12: Classification results for FS1 + LCKSVD at sampling rate of 114 Hz

We have also compared our classification results with state of art methods in

Table 4.19. Columns 1 indicates the methodology used; column 2 corresponds to the

sampling rate; columns 3-8 indicate the gross classifier performance in terms of Acc

(Accuracy), Se (Sensitivity), PPV (Positive predictive value) and FPR (False positive
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Record Beats . Beats . Beats . Beats . Beats . Total Beats
number Belonging | Belonging | Belonging | Belonging | Belonging | in Each
to Class N | to Class S | to Class V | to Class F | to Class QQ | Record
100 1049 1223 1 0 0 2273
103 1782 302 0 0 0 2084
105 2026 65 437 44 0 2572
111 2056 11 57 0 0 2124
113 1238 557 0 0 0 1795
117 308 1227 0 0 0 1535
121 1862 0 1 0 0 1863
123 1223 292 3 0 0 1518
200 1824 59 711 7 0 2601
202 1737 44 14 341 0 2136
210 2416 29 194 11 0 2650
212 2270 478 0 0 0 2748
213 2298 129 269 555 0 3251
214 532 104 1553 73 0 2262
219 1471 625 49 9 0 2154
221 1651 93 392 291 0 2427
222 1412 1061 3 7 0 2483
228 1694 55 297 7 0 2053
231 613 956 1 1 0 1571
232 1616 160 4 0 0 1780
233 1463 236 746 634 0 3079
234 2046 681 6 20 0 2753

Table 4.13: Classification performance on each recording of DS2 using the AAMI

recommended measures using FS2 + LCKSVD at sampling rate of 114 Hz

Reference/Algorithm N S \Y F | Q
N 41535 | 1975 | 345 | 404 | O
S 134 | 1265 | 423 | 15 | 0
\Y 494 130 2591 6 | O
F 298 1 87 2 0
Q 4 1| 2 o0 lo

Table 4.14: Classification results for F'S2 + LCKSVD at sampling rate of 114 Hz

rate). Row 1 and 2 demonstrate the overall classification accuracy at 180Hz using

Feature Setl -LCKSVD and Feature set 2- LCKSVD respectively. Row 3 and row 4

demonstrate the overall classification accuracy at 114Hz using Feature Set1 -LCKSVD
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Reference/Algorithm N S \Y% F Q
N 87.17% | 5.52% | 4.71% | 2.58% | 0%
S 4.68% | 75.12% | 19.76% | 0.43% | 0%
\Y 8.81% | 11.73% | 76.0% | 3.44% | 0%
F 86.08% 0% 5.15% | 8.76% | 0%
Q 28.57% 0% 57.14% | 14.28% | 0%

Table 4.15: Classification results in % for FS 1 + LCKSVD at sampling rate of 114Hz

Reference/Algorithm N S \Y% F Q
N 93.84% | 4.46% | 0.77% | 0.91% | 0%
S 7.29% | 68.86% | 23.02% | 0.81% | 0%
\Y 15.33% | 4.03% | 80.44% | 0.18% | 0%
F 76.80% | 0.25% | 22.42% | 0.51% | 0%
Q 57.14% | 14.28% | 28.57% | 0% | 0%

Table 4.16: Classification results in % for FS 2 + LCKSVD at sampling rate of 114Hz

and Feature set 2- LCKSVD respectively. Independent performance assessment of this
configuration(i.e FS1 +LCKSVD) resulted in an accuracy of 93.4%, a sensitivity of
75.12%, a positive predictivity of 32.84%, and an FPR of 5.89% for the SVEB class.
For the VEB class, accuracy was 93.51% , sensitivity was 76%, positive predictivity
was 49.97%, and FPR was 5.27%. Using Feature Set 2 -LCSKVD algorithm, we obtain
higher performance for both SVEB and VEB class. For the SVEB class, accuracy
was 94.61% , sensitivity was 68.86%, positive predictivity was 37.52%, and FPR was
4.39% and for the VEB class, accuracy was 97.18% , sensitivity was 80.44%, positive
predictivity was 70.13%, and FPR was 1.65%. These results illustrate competing per-
formance in terms of accuracy and sensitivity when compared to previously reported
results for automated heartbeat classification systems in [44]. Classification results in
comparsion to the state of the art algorithm is plotted for VEB and SVEB class in
Fig 4.2 and Fig 4.3 respectively. Experimental results indicate that classifiers built in
this dictionary learning based framework provided competitive performance. In addi-
tion, the proposed discriminative dictionary learning algorithm opens a new window

for future research, showcasing the dictionary learning based methods provide huge

potential for accurate ECG data classification.
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Classes

Class N

Class S

Class V

Class F

Class Q

Ace %

87.17%

93.4%

93.51%

96.74%

99.99%

Table 4.17: Accuracy for all classes using FS 1 + LCKSVD at sampling rate of 114Hz

Classes | Class N | Class S | Class V | Class F | Class Q
Ace % | 92.64% | 94.61% | 97.18% | 98.36% | 99.99%
Table 4.18: Accuracy for all classes using FS 2 + LCKSVD at sampling rate of 114Hz
o FS2 + LCKSVD FS1 + LCKSVD Chazel [6] Chazel [8] Chazel [8]
Figure 4.2: Classification results for SVEB Class
- F52 + LCKSVD FS1+LCKSVD  LDA_Basil QDA Basil ANN_Basil Chazel [6] Chazel [8] Chazel [B]
Figure 4.3: Classification results for VEB Class
Method Rate SVEB VEB
(Hz) | Acc Se | PPV | FPR | Acc Se | PPV | FPR
FS1+LCKSVD | 180 | 93.17 | 77.57 | 32.33 | 6.22 | 93.04 | 73.8 | 47.65 | 5.62
FS24+LCKSVD | 180 | 94.68 | 64.07 | 37.22 | 4.14 | 96.81 | 78.85 | 73.79 | 1.94
FS1+LCKSVD | 114 | 93.4 | 75.12 | 32.84 | 5.89 | 93.51 | 76 | 49.97 | 5.27
FS24+LCKSVD | 114 | 94.61 | 68.86 | 37.52 | 4.39 | 97.18 | 80.44 | 70.13 | 1.65
LDA Basil [44] | 114 - - - - 93.4 | 75.8 | 61.9 | 4.8
QDA _Basil [44 114 - - - - 83.1 97 35.2 | 184
ANN Basil [44] | 114 - - - - 96.9 | 79.7 | 746 | 1.9

Table 4.19: Comparsion of classification results for LCKSVD at sampling rate of 180
and 114 Hz
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Chapter 5

CONCLUSION

Experimental results indicate that classifiers built using this dictionary learning
approach demonstrate a classification accuracy of 94.61% for Supra Ventricular Ec-
topic Beats (SVEB) class and 97.18% for Ventricular Ectopic Beats (VEB) class at
sampling rate of 114 Hz on MIT-BIH database. The dictionary learning learning based
framework provided emulous performance as compared to the state of the art methods.
Also, a sampling rate of 114 Hz was found to provide enough discriminatory power for
the classification task. In short, our approach emulated the performance of the state of
the art models at a lower sampling rate and a set of simple features. In addition, the
proposed discriminative dictionary learning algorithm opens a new window for future
research, showcasing the dictionary learning based methods provide huge potential for
accurate ECG data classification. Future work would be to examine other types of em-
bedding to represent the ECG recordings to serve as a feature vector and combination

of better dictionary learning algorithms for robust performance.
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