
1. Introduction
Deltas are densely populated areas with high socioeconomic, agricultural, and environmental value (Seto, 2011; 
Syvitski & Saito, 2007; Szabo et al., 2016). Groundwater is the major freshwater resource in deltas and is 
vulnerable to multiple threats, including sea-level rise, overpumping, and extreme climate conditions (Ayers 
et al., 2016; Hosono et al., 2011; Michael & Voss, 2008; van Engelen et al., 2021). In the Bengal Delta, more 
than 150 million inhabitants rely on groundwater as their primary source of water due to its accessibility and 
lower risk of microbial contamination compared to surface water (Bangladesh Bureau of Statistics, 2011). 
However, 27.5 million people are drinking groundwater with high levels of geogenic arsenic in the shallow 

Abstract  Groundwater is the primary source of water in the Bengal Delta but contamination threatens this
vital resource. In deltaic environments, heterogeneous sedimentary architecture controls groundwater flow; 
therefore, characterizing subsurface structure is a critical step in predicting groundwater contamination. Here, 
we show that surface information can improve the characterization of the nature and geometry of subsurface 
features, thus improving the predictions of groundwater flow. We selected three locations in the Bengal Delta 
with distinct surface river network characteristics—the lower delta with straighter tidal channels, the mid-delta 
with meandering and braided channels, and the inactive delta with transitional sinuous channels. We used 
surface information, including channel widths, depths, and sinuosity, to create models of the subsurface with 
object-based geostatistical simulations. We collected an extensive set of lithologic data and filled in gaps 
with newly drilled boreholes. Our results show that densely distributed lithologic data from active lower and 
mid-delta are consistent with the object-based models generated from surface information. In the inactive delta, 
metrics from object-based models derived from surface geometries are not consistent with subsurface data. We 
further simulated groundwater flow and solute transport through the object-based models and compared these 
with simulated flow through lithologic models based only on variograms. Substantial differences in flow and 
transport through the different geologic models show that geometric structure derived from surface information 
strongly influences groundwater flow and solute transport. Land surface features in active deltas are therefore a 
valuable source of information for improving the evaluation of groundwater vulnerability to contamination.

Plain Language Summary  The structure of groundwater aquifers affects how groundwater and
contaminants move through them. In deltas, dynamic river networks are responsible for depositing sediments 
that ultimately form subsurface aquifers. Therefore, the characteristics of the surface river channel network 
should provide information about the structure of the subsurface. We tested this idea using a large set of 
sedimentary data from the Bengal Basin. We created models of the subsurface based on the surface network 
and  showed that the subsurface data reflect the model characteristics in deltas that are actively depositing 
sediment. Using these subsurface models as input for groundwater flow models, we showed that incorporating 
this surface information is important for being able to predict how contaminants move in groundwater.
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(<∼100m) Holocene aquifer (Bangladesh Bureau of Statistics, 2021) and nearly 20 million people are at high 
risk of drinking groundwater contaminated by saltwater intrusion (Rasheed et al., 2016; Shammi et al., 2019). 
Despite the existence of an extensive set of lithologic data, knowledge of the stratigraphic architecture of the 
aquifer is limited. This is due to the complexity of heterogeneous sediments, the connectedness of which is 
critical for understanding recharge, flow, and transport (i.e., Hoque et al., 2014; McArthur et al., 2011; Khan 
et al., 2016; Mozumder et al., 2020). Our motivation here is to investigate whether incorporating information 
from the delta surface could address some of these issues and improve models of subsurface connected-
ness and thus predictions of groundwater contamination risks in deltaic aquifers (Hariharan et al., 2021; Xu 
et al., 2021).

It is clear that subsurface heterogeneity strongly influences groundwater flow and solute transport in the 
Bengal Delta; groundwater vulnerability to contamination is underestimated if heterogeneity is not explicitly 
considered (Khan et al., 2016; Michael & Khan, 2016). Van Geen et al. (2008) suggested that rapid ground-
water flow through aquifers with sandy connections to the surface reduces arsenic concentrations compared 
to aquifer zones beneath low-permeability surface layers. Groundwater arsenic concentrations are affected 
by the presence of paleosols, with paleo-channel and paleo-interfluvial sediments hosting arsenic-polluted 
and arsenic-free groundwater, respectively (Hoque et al., 2012; McArthur et al., 2011). Hoque et al. (2017) 
explained the variable subsurface arsenic distribution by considering aquifers composed of sand and discon-
tinuous silt-clay layers. Recent studies show that clay layers have a substantial effect on arsenic transport 
from Holocene to pre-Holocene aquifer strata (Hoque et al., 2017; Khan et al., 2019; Mihajlov et al., 2020; 
Mozumder et al., 2020). Subsurface heterogeneities also impact salinity distributions. Saline water infiltrates 
into groundwater from salinized tidal channels (Bricheno et al., 2021) and brine ponds (Ayers et al., 2016), and 
paleo-brackish estuarine water is slowly transported into the aquifers from muddy sediments (Ayers et al., 2016; 
Worland et al., 2015). Saline water infiltration from the surface was shown to be limited by low-permeability 
mud deposits (Tasich, 2012), and Ayers et al. (2016) showed that discontinuous silt-mud layers cause highly 
variable salinity distributions in coastal groundwater. Naus et al. (2019) found that paleo-hydrologic processes 
control salinity under thick surface clay layers, and modern processes influence salinity under thin surface 
clay layers. Several large tidal channels are deeper than the clay layers, acting as conduits for vertical saline 
(dry season) or fresh (wet season) water recharge (Ayers et al., 2016). Small-scale heterogeneity such as crab 
burrows can also have a potential effect on contaminant transport, creating flow conduits by penetrating 
pond-bottom clay (Stahl et al., 2014).

Although the importance of deltaic heterogeneity for groundwater pollution has been demonstrated, representa-
tion of litho-facies architecture is difficult due to scarce lithologic data. Recent studies have shown that linking 
surface morphology and subsurface lithology has the potential to improve the prediction of groundwater contam-
ination (Hariharan et al., 2021; Xu et al., 2021, 2022; van Dijk et al., 2016a). The fluvial sedimentary processes 
that created the shallow subsurface should be similar to current fluvial processes if the time span between them is 
relatively short (Liang et al., 2016; Miall, 2014; Rongier et al., 2017). Researchers have quantitatively considered 
the architecture of fluvial features, such as channels, point bars, crevasse-splays, and their migration processes 
in trying to understand reservoir heterogeneity and connectivity (Colombera & Mountney,  2021; Colombera 
et al., 2017; Donselaar & Overeem, 2008; Gouw & Hijma, 2022). Furthermore, the influence of geomorpho-
logic processes on fluvial deposits is central to process-based reservoir models (Grimaud et  al., 2022; Liang 
et al., 2015), rule-based methods (Colombera et al., 2018), and random-walk simulations (van Dijk et al., 2016b).

The primary objective of this work is to determine whether geomorphological characteristics of the land surface 
can provide useful information to improve models of delta subsurface architecture. A secondary objective is to 
determine how such information impacts the prediction of groundwater flow and solute transport relative to even 
very densely distributed lithologic data. We approach these objectives by creating object-based geostatistical 
models of subsurface structure using information from the modern surface-channel network at three locations in 
the Bengal Delta. Using a set of statistical metrics, we compare the 3D geometrical properties of the object-based 
simulations with a dense network of subsurface lithology data derived from well logs. We then carry out simula-
tions of groundwater flow through the object-based subsurface models and a set of variogram-based subsurface 
models derived from the field observations. We show that incorporation of surface features substantially alters 
predictions of contaminant transport in groundwater. Our findings demonstrate that incorporating surface infor-
mation can substantially improve models of aquifer heterogeneity.
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2. Stratigraphic Setting and Context of the Study Area
The Bengal Delta is situated in a remnant ocean basin where about 20 km thick Himalayan sediments have been 
deposited in deep marine to fluvio-deltaic settings since the Early Miocene (Alam et al., 2003; Atker et al., 2016; 
Goodbred & Kuehl, 2000) (Figure 1; Figure S1 in Supporting Information S1). The modern Ganges and Brahma-
putra Rivers (Figure S1 in Supporting Information S1) contribute to delta development through annual transport 
of nearly one billion tons of sediment from the Himalayas (Goodbred & Kuehl, 2000; Milliman & Syvitski, 1992; 
Wilson & Goodbred, 2015). Development of the modern delta began after the Younger Dryas (∼12 ka), earlier 
than other deltas in the world due to a doubling of the average sediment load delivered under a strengthened 
monsoon and increased river discharge (Goodbred & Kuehl, 2000). Nearly 60% of Holocene delta sediments are 
deposited during this 8–12 ka period under the dominant influence of riverine channel processes, with limited 
preservation of fine-grained fluvial or marine sediments (Wilson & Goodbred, 2015). From mid-Holocene to 
present, moderated rates of sediment delivery and sea-level rise support a more balanced interplay between 
fluvial and tidal processes, resulting in greater preservation of fine-grained floodplain and coastal deposits 
(Goodbred et al., 2003).

Since the mid-Holocene, avulsion and migration of the Ganges and Brahmaputra river channels effectively disperse 
sediment across the Bengal basin to compensate for subsidence and sea-level rise. Field evidence suggests ∼4 
major avulsions for each river in the last 6–8 kyrs, suggesting an avulsion period of 1–2 kyrs (Allison et al., 2003; 

Figure 1.  Geomorphic regions and boreholes in the study area. (a) Borehole locations and data sources (Table S1 in 
Supporting Information S1). The regional study sites are (b) Pirojpur, (c) Barisal, and (d) Khulna. The corresponding Google 
Earth map is shown in Figure S4 in Supporting Information S1. Plots of borehole data on cross sections are shown in Figures 
S1b and S1c in Supporting Information S1.
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Pickering et al., 2014). This avulsion timescale is consistent with the development of channel super-elevation 
and compensational stacking behavior (Reitz et al., 2015), which influence the sand stacking patterns and amal-
gamated sand bodies formed in the upper delta (Bhattacharya, 2011; Miall, 2014; Rongier et  al., 2017). The 
provenance signatures of sandy channel deposits preserved in the delta over this time also suggest that the two 
rivers were not confluent through most of the Holocene (Goodbred et al., 2014), making the present channel 
configuration unique to the past 200 years. In the upper delta, the channels are predominantly braided and sustain 
rapid channel aggradation and migration, favoring the preservation of coarse-grained channel deposits (Pickering 
et al., 2014; Wilson & Goodbred, 2015). In the lower delta, almost all flow and sediments pass through bifur-
cating channels of the Meghna estuary and form a vast turbid river plume on the inner shelf (Atker et al., 2016; 
Barua et al., 1994). Flood-dominant tides then advect suspended river-plume sediments back onshore to form a 
vast muddy tidal delta plain sustained by a dense network of channels and intertidal platform (Allison et al., 1998; 
Rogers et al., 2013). The resulting stratigraphy is mud-dominated and faces higher rates of subsidence due to 
natural compaction and exacerbated by anthropogenic activities (Allison et al., 2003; Atker et al., 2016; Auerbach 
et al., 2015; Grall et al., 2018; Rogers et al., 2013; Steckler et al., 2022). Recent studies (Islam & Gnauck, 2008; 
Passalacqua et al., 2013) divided the study area into four geomorphic regions: active, tidally active, mature, and 
paleo-delta (Figure 1a). Active and tidally active regions are those where delta building is currently ongoing, but 
the former is dominated by fluvial processes and the latter is dominated by tidal processes. In contrast, deltaic 
sedimentation in the mature and paleo-delta regions is sustained only by ephemeral distributaries, with accretion 
rates only ∼1/10 of those in the active delta (Goodbred & Kuehl, 1998).

In this study, we chose three small-scale sites in which to investigate surface-subsurface translation. Barisal 
(Figure 1c) is in the upper active delta, where sediment deposition is mainly controlled by the fluvial system 
and tides. Khulna (Figure 1d) is in the mature (inactive) delta, with a series of small and shallow rivers that have 
a slow deposition rate under current conditions. Pirojpur (Figure 1b) is at the boundary of the lower active and 
mature delta. However, we consider Pirojpur to lie in the lower active delta for three reasons: (a) the location of 
the boundary is approximate (Islam & Gnauck, 2008); (b) the Kacha River is a major local river running through 
the Pirojpur site, causing an active sedimentary environment; and (c) frequent sand-mud transitions in the exist-
ing borehole records indicate active deposition and channel migration.

3. Methods
3.1.  Subsurface Data Acquisition

We compiled lithology from 2,813 boreholes from various databases and reports in the study area (Figure 1a, 
sources are listed in Table S1 in Supporting Information  S1). These boreholes were drilled and recorded by 
geologists and field engineers across Bangladesh. The sampling interval varied from 1.5 to 3 m among different 
sources.

Within that data set, we extracted data from the three study areas discussed above as representative of various 
morphologies within the delta: Pirojpur, Barisal, and Khulna (Figure 1). In Pirojpur and Barisal, data density was 
not sufficient for our study, so we drilled 37 new boreholes (brown squares Figures 1b and 1c). The new borehole 
depths ranged 50–60 m and the sampling interval was 1 m to ensure high resolution (Xu, 2022). The locations of 
the new boreholes were chosen to fill in gaps between the existing data locations and to create telescoping scales 
of spatial resolution. At both sites, the Bangladesh Water Development Board (BWDB, 2013) had drilled two 
existing transects across the river (blue circles in Figures 1b and 1c). Thus, we arranged most of the new bore-
holes between and around these transects (Figures 1b and 1c). No new data were collected at Khulna (Figure 1d) 
because its existing lithologic data (57 boreholes) are densely distributed enough for our analysis.

3.2.  Subsurface Data Analysis

The lithological characterization was visually performed by drillers on site. To minimize errors arising from 
subjective interpretation of different drillers, we categorized lithologic data into two easily distinguished groups: 
sand and mud. Three metrics were quantified in each borehole: sand fraction, maximum sand connection, and 
the number of sand-mud shifts. Sand fraction is the cumulative thickness of sandy intervals divided by the total 
length of each borehole. Maximum sand connection is the thickness of the greatest interval of sand divided by the 
total length of each borehole, which effectively measures the sand connectivity. The number of sand-mud shifts 
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reflects the sediment transitions, which are related to depositional processes such as channel migration and tidal 
effects. We note that maximum sand connection and number of sand-mud shifts are likely interrelated (larger 
sand connectivity means fewer shifts), but they are still useful separately because they are indicative of different 
depositional characteristics.

The drilling method and sampling interval (Table S1 in Supporting Information S1) may influence the metrics 
calculated from lithologic data. The reverse circulation hand-flapper drilling method was used for the new drill-
ings along with the data from Goodbred (2020) (green circles and brown squares in Figure 1). The other bore-
holes were drilled by direct circulation rotary wash boring. Thin clay layers are more easily identified using 
the hand-flapper method than the rotary wash method; thus, clay may be underrepresented in the rotary-wash 
data. In addition, the sampling interval may influence the statistical results since 1 m-interval sampling provides 
higher resolution of sand-mud distributions in the vertical direction than coarser intervals. A test was applied to 
investigate the influence of the drilling method and sampling interval on the lithologic metrics at the Pirojpur 
and Barisal sites (Text S1 in Supporting Information S1). We found that sampling interval influences the litho-
logic metrics, especially the number of sand-mud shifts, at the Pirojpur site but not at the Barisal site. In order 
to ensure enough data in the statistical analysis, all the data, both high-resolution and low-resolution, were used 
in this work. However, in the large-scale analysis, we only considered 3 m-interval boreholes in the calculation 
of sand-mud shifts since the resolution of the sampling interval strongly influences this metric. For example, 
1.5 m-interval sampling may record more sand-mud shifts than 3 m-interval sampling (Text S1 in Supporting 
Information S1). We used all data in the calculation of sand fraction since sampling interval insignificantly influ-
ences it. These three metrics performed well in linking surface properties, subsurface structure, and groundwater 
behavior of synthetic models (Hariharan et al., 2021; Xu et al., 2021).

3.3.  Surface Data Acquisition and Analysis

We characterized surface features by analyzing rivers in the regions around the three study sites (Table 1). Two 
nearby rivers for each site were selected for quantifying surface characteristics. River depths were collected 
from multiple sources (Table 1). The river widths were obtained from Google Earth (Figure S4 in Supporting 
Information S1) by selecting only the width of river reaches around the study sites. We measured the river orien-
tations and amplitudes of river bends on Google Earth within the study sites (in the boxes of Figure 1). The river 
orientations in the study regions were approximated, ignoring small variations in the directions of the different 
reaches. Multiple rivers show different orientations in the Barisal and Khulna sites, so a range of values was 
used (Table 1). We manually identified amplitudes from river bends on Google Earth by measuring the greatest 
distance from channel bend to a point along a hypothetical straight channel. These parameters were used to define 
the geobodies used in geostatistical modeling in Section 3.4.

3.4.  Geostatistical Methods

We used geostatistical techniques in several different ways to analyze the spatial data and create simulations. At 
the large scale, sand fraction and the number of sand-mud shifts within the top 100 m for each lithology were 
interpolated across the delta via Kriging using spherical variograms to fit the data in 2D (Figure S5 in Supporting 
Information S1).

Table 1 
Surface Information in the Three Small-Scale Study Areas

River name Site Type Width (m) Depth (m) Direction Amplitude (m) Sources

Kacha Pirojpur Straight 768–1,168 Max 15 0–3° 600–1,200 BWDB (2011), DevCon-
DPM-KPL (2013)

Baleswar Pirojpur Straight 44–3,000 7 15° 100–500 Ahmad (2014), BWDB (2011)

Arian Khan Barisal Meandering 86–1,940 12 −23°–26° 700–1,500 BWDB (2011)

Kirtankhola Barisal Meandering 321–674 Max 30 32° 800–1,500 BWDB (2011), Ghosh (2020)

Atai Khulna Meandering 150–360 Max 12.8 9° 300–700 BWDB (2011), JICA (1999)

Rupsa Khulna Meandering 322–650 Max 13.2 0°–20° ∼400 BWDB (2011), JICA (1999)

Note. Direction: the north-south direction is defined as 0°, clockwise is the positive direction.
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In the small-scale study sites, we used object-based simulation techniques to create models of the subsurface using 
parameters (Table 2) from satellite image-derived surface characteristics (Table 1, Figure S4 in Supporting Infor-
mation S1) and sand proportions derived from lithologic data. Object-based simulation is a method that generates 
geologic features as mathematical representations of sand objects, such as channel-like or spherical objects, and 
stochastically places them in the background matrix. These representations allow the geometrical parametrization 
of geologic heterogeneity and connectivity, such as paleo-channels in fluvial and deep-water systems (Deutsch 
& Tran, 2002; Deutsch & Wang, 1996; Haldorsen & Lake, 1984; Pyrcz & Deutsch, 2014). We expect that at the 
local scale of fluvial deposition, preserved subsurface structures may be either sinusoidal (i.e., coarse material 
deposited in channels with varying sinuosity within a mud matrix) or ellipsoidal (i.e., coarse material deposited 
as bars or splays within a mud matrix), depending on the nature of deposition. We created sets of models for each 
site, one with sinusoidal features and one with lower-ellipsoidal features, using the geostatistical software SGeMS 
(Maharaja, 2008; Remy et al., 2009). For parameters with a range of values, we drew from a uniform probability 
distribution in the object-based simulation. In the sinusoid object-based simulations (Figure 2a), the widths and 
thicknesses of sinusoid objects were widths and depths of surface rivers taken from literature values (Table 1) 
and Google Earth (Section 3.3). The orientation and amplitude of objects were river flow direction and meander 
amplitude obtained from Google Earth. In the lower-ellipsoid simulations (Figure 2b), the radius of the objects 
was measured from the amplitudes of river meanders in Google Earth. We did not consider anisotropy of these 
meanders, so Diameter 1 equals Diameter 2 in this study (Figure 2b). The thicknesses of lower-ellipsoid  objects 
were the depths of the surface rivers obtained from literature. The volume of geobodies relative to the whole 
system was set as the sand fraction derived from the lithologic data. These  objects represent sandy fluvial depos-
its, while baffles, clay plugs, and other interfluvial deposits are considered part of the mud matrix since they 
likely have similar low permeability as the mud, relative to sand.

Sand objects were stochastically placed in the mud matrix until the sand proportion was similar to the target 
proportion. The center-point location of each object was drawn randomly from a uniform distribution. The features 
of each object were also drawn randomly from uniform distributions with ranges in Table 1. The resulting 3D 
model constitutes one realization. Ten realizations were generated for each model type (see the test of realization 

Table 2 
The Parameters of Object-Based Models of Three Small-Scale Regions

Site Sand fraction

Sinusoid system Lower-ellipsoid system

Width (m) Depth (m) Direction (°) Amplitude (m) Radius (m) Thickness (m)

Pirojpur 0.40 (700,1500) (7,15) 0 (100,500) (600,1200) (7,15)

Barisal 0.55 (300,1200) (12,30) (−30,30) (700,1500) (700,1500) (12,30)

Khulna 0.55 (200,700) (5,13) (−20,20) (300,700) (300,700) (5,13)

Note. These parameters were determined from surface river information in Table 1, Figure 1, and Figure S4 in Supporting 
Information S1. The dimensions were drawn from uniform distributions across the range of values in parentheses. Direction: 
the north-south direction is defined as 0°, clockwise is the positive direction.

Figure 2.  Parameters of an object in the sinusoid model and lower-ellipsoid model. (a) Plan view and cross-sectional view of 
a sinusoid object. (b) Lower-ellipsoid object. Modified from Maharaja (2008).
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number in Text S2 in Supporting Information S1). The size of each model is 10 km × 10 km × 60 m, and the 
dimension of each discretized cell is 100 m × 100 m × 1 m. To evaluate the model agreement with lithologic 
data, pseudo-boreholes were placed in each object-based model at the exact location where real boreholes exist in 
the field (Figure 1). The lithologic metrics (sand fraction, maximum sand connection, and number of sand-mud 
shifts) and variogram ranges were calculated from these pseudo-boreholes for comparison with field data.

Finally, we used a third geostatistical technique, Sequential Indicator Simulation (SIS), to investigate the impor-
tance of including geometric features in flow and transport simulations, rather than just spatial correlations. We 
compared groundwater flow simulated with the object-based models to that of traditional variogram-based (SIS) 
models. We generated 10 corresponding models for each group of SIS models as benchmarks. Variogram-based 
methods depend on the assumption of spatial correlation between two points in space; thus, they do not produce 
continuous geometric features such as those incorporated with object-based modeling. SIS is a widely used 
variogram-based method to create 3D models of categorical variables based on spatial correlations and lithologic 
data (Caers,  2000; Journel & Alabert,  1988; Juang et  al.,  2004; Seifert & Jensen,  1999). Simulation follows 
a random sequential path in which the facies probability distribution is drawn from indicator kriging, and the 
simulated values act as data points for the next location. Unlike the object-based models, the SIS models we used 
were generated directly using horizontal and vertical variogram models fit to field measurements (Figure S6 in 
Supporting Information S1). While these models replicate the two-point, variogram-based statistics and the  sand/
mud proportions of the areas, they are not able to capture the connectivity of geobody features derived from 
surface characteristics as the object-based models do.

3.5.  Groundwater Modeling and Evaluation

The aim of the groundwater modeling was to investigate the flow and solute transport behavior in different 
stratigraphic geometries. The heterogeneous fields generated by object-based models and corresponding SIS 
models were used in the groundwater flow and solute transport simulation. We froze the sand fraction at 0.5 
(average sand fraction of the three study sites) for all the object-based and SIS models in the groundwater simu-
lations to differentiate the effect of geometry from that of sand content. The other parameters in Table 2 were 
not changed. The lithologic fields were converted to hydraulic conductivity (K), horizontal K values of sand and 
mud were 3.17 × 10 −4 m/s and 9.06 × 10 −8 m/s, respectively. These values were determined from the mean of 
calibrated hydraulic conductivities in the Bengal Delta (Michael & Khan, 2016); the K of sand in this study is 
the geometric mean of K of fine sand (3.17 × 10 −4 m/s) and medium & coarse sand (3.17 × 10 −4 m/s) in Michael 
and Khan (2016). For both materials, anisotropy (the ratio of horizontal to vertical K) was 10. The porosity was 
0.4 for both materials to keep the transport solution consistent, the longitudinal and transverse dispersivity values 
were 1 and 0.1 m, respectively.

MODFLOW (Harbaugh,  2005) and MT3DMS (Zheng & Wang,  1999) were used to simulate groundwater 
flow and solute transport, respectively. The size of the groundwater models was 10 km × 10 km × 60 m (100 
cells × 100 cells × 60 cells). We considered three directions of hydraulic gradient in this study: longitudinal (in 
the primary channel direction), transverse, and vertical. The head difference for each of the three cases was 1.0 m, 
resulting in a hydraulic gradient of 0.0001 for the longitudinal and transverse directions, and 0.167 for the vertical 
direction (Figure 3). All the flow simulations were steady-state. Concentration of contaminant was assigned as 
1.0 in each upstream face in the MT3DMS simulations, and the initial concentration of the whole model was 

Figure 3.  Boundary conditions of (a) longitudinal, (b) transverse, and (c) vertical cases. Yellow face is the higher-head and 
solute source boundary, blue is the lower-head boundary, and no-color faces are no-flow boundaries. Red arrow in the figure 
represents the expanding direction of potential geobodies, with an orientation that aligns with longitudinal direction.
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zero. These directions may represent horizontal seawater intrusion (longitudinal and transverse directions) and 
downward migration of salt or arsenic in the vertical direction, neglecting variable density and reactivity. We note 
that these conditions are simplified, since a patchy distribution of elevated concentrations exists throughout the 
Holocene aquifer. However, some research suggests that arsenic is released at or near land surface (e.g., Neumann 
et al., 2010; Pathak et al., 2022; Polizzotto et al., 2008), and these simplified boundary conditions allow direct 
comparison of the influence of heterogeneity on solute transport.

We used five metrics to evaluate the flow and transport behavior. The first metric is effective hydraulic conductiv-
ity (Keff), calculated according to Darcy's law by simulating flow through the model in each direction. It represents 
the overall flow behavior in the model. Contaminated volume is the volume of the model where concentrations 
after 3,000 simulated years were greater than 0.0143 (the drinking water salinity standard 0.5 g/L (EPA, 2009) 
divided by seawater concentration of 35 g/L) in the longitudinal and transverse directions. Contaminated volume 
mainly measures how much of the aquifer is affected by contamination. Farthest contaminant extent is the farthest 
location of the 0.0143 concentration contour in the longitudinal and transverse directions (measured from the 
C = 1 boundary), which measures fast solute transport by horizontal sand connections. Contaminated area at 
depth 30 m and Contaminated area at depth 60 m are the area of concentration greater than 0.1 divided by the 
total planar area at depths of 30 and 60 m for vertical solute transport after the 300-year simulation. Both metrics 
assess vertical contaminant transport affected by sand stacking patterns.

4. Results
4.1.  Large-Scale Analysis

We interpolated sand content and sand-mud shifts calculated from 2813 wells in the upper 100 m across the 
Bengal Delta. In the Kriging interpolation, the range and sill for sand fraction are 1.6 km and 0.04, respectively, 
and for the sand-mud shift interpolation, the range and sill are 0.6 km and 2.8, respectively (see Figure S5 in 
Supporting Information S1). Sand content is spatially variable but tends to decrease downstream (Figure 4a). 
Most of the active southeast delta is less than 60% sand, and several large patches contain less than 40% sand. The 
seaward active delta has more sand-mud shifts than the upper delta, particularly in areas near the Meghna River 
and Estuary (Figure 4b, circled in black).

4.2.  Site-Scale Analysis

The sand fractions of Pirojpur, Barisal, and Khulna are 0.43, 0.55, 0.53, respectively, and the number of shifts of 
the three sites are 4.2, 3.8, and 2.9, respectively (Figure 4b), reflecting differences in their depositional environ-
ments. Detailed results of each subregion are given in subsequent sections.

4.2.1.  Pirojpur Site

The sediment distribution at the Pirojpur site as determined from 44 boreholes (19 newly collected and 25 exist-
ing) is summarized as a fence diagram and cross-sections in Figure S8 in Supporting Information S1. The eastern 

Figure 4.  Sand fraction distribution (a) and number of sand-mud shifts (b) across the Bengal delta. The area within the black 
circle in panel (b) is a zone with frequent sand-mud shifts. The black boxes in both panels are the three small-scale study 
sites.
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part of the area tends to be more mud-dominated than the western part, though data are sparse in some areas. 
The denser data in the center of the study site indicate that sand bodies are more extensive in the NS direction 
(Figure S8 in Supporting Information S1), following the river orientation. This directionality is also evident in the 
variogram ranges, which have a value of ∼7 km in the north-south direction, and ∼4 km in the east-west direction 
(Figure 5a). The vertical variogram range is ∼10 m at this site (Figure 5b).

The sand fraction, maximum sand connection, and number of sand-mud shifts of the sinusoid and lower-ellipsoid 
object-based models derived from surface features (Figures 6a and 6b) are very similar to each other and are not 
significantly different from those of the field data (Table 3). The vertical variogram ranges of the sinusoid models 
are slightly higher than the lower-ellipsoid models, and both models yield variogram ranges that span the vertical 
variogram range of the field data (Figure 5b). For the Pirojpur site, horizontal variograms of the sinusoid models 
display strong anisotropy, as the north-south variogram ranges are 6.5–8.5 km, whereas the east-west ranges are 
3.5–5.0 km (green stars in Figure 5a). These ranges are consistent with the field measurements (green square in 
Figure 5a). Conversely, the lower-ellipsoid systems show horizontal variogram ranges that are nearly isotropic 
and are less consistent with field results (green circles in Figure 5a). Therefore, these results indicate that the 
channelized conceptual model derived from surface information is more representative of the real system than the 
lower-ellipsoid model for the Pirojpur site.

4.2.2.  Barisal Site

We used 29 boreholes to reveal the sediment distribution at the Barisal site, including 18 newly drilled and 11 exist-
ing (BWDB, 2013). The data cluster on the southwest side of the site (Figure S9b in Supporting Information S1) 

Figure 5.  Variogram ranges of field measurement and object-based models in Pirojpur, Barisal, and Khulna. (a) Horizontal 
variogram ranges, including north-south direction and west-east direction. (b) Vertical variogram ranges. Please see the 
variogram model of three sites in Figure S6 in Supporting Information S1.
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shows a sand geobody that spans the vertical section with some thin mud layers in the middle. This sand geobody 
gradually pinches out to the west and east. The northeast group of boreholes shows discontinuous geobodies 
(Figure S9c in Supporting Information S1). The horizontal variogram in the Barisal site presents a weaker aniso-

tropy than the Pirojpur site, as the north-south variogram range in Barisal is 
4.3 km and the west-east range is 3.6 km (Figure 5a). The vertical variogram 
suggests that geobodies are thicker than at the Pirojpur site, with a range of 
∼16 m (Figure 5b).

Two object-based models (Table  2) were conceptualized for the Barisal 
site based on river depth and amplitude (Table  1). Due to river sinuosity 
(Figure  1c), the sinusoid models of Barisal are more tortuous than Piro-
jpur, and lower-ellipsoid geobodies are larger (Figures 6c and 6d). Similar 
to the Pirojpur site, the sand fraction, maximum sand connection, number 
of sand-mud shifts, and vertical variogram ranges of pseudo boreholes are 
consistent with those of the field measurements (Figure 5b and Table 3). The 
horizontal variogram ranges (Figure 5a) show that, unlike the Pirojpur site, 
both lower-ellipsoid and sinusoid systems correspond with field measure-
ments at the Barisal site.

4.2.3.  Khulna Site

The Khulna site, located in the mature (inactive) delta, exhibits a differ-
ent sediment distribution from other sites based on 56 existing boreholes 
(BWDB,  2013; DPHE & JICA,  2010; LGED & BRGM,  2005). The field 
data interpolation is shown in Figure S10 in Supporting Information S1. The 

Figure 6.  Object-based models simulated using surface feature statistics. Sinusoid (a) and lower-ellipsoid (b) models for 
Pirojpur site; sinusoid (c) and lower-ellipsoid (d) models for Barisal site; and sinusoid (e) and lower-ellipsoid (f) models for 
Khulna site.

Table 3 
Statistical Test Data for Metrics Calculated From Field Measurements and 
Object-Based Models

Site Metrics
Sinusoid 
system

Lower-ellipsoid 
system

Pirojpur Sand fraction 8.9 × 10 −1 9.34 × 10 −1

Max sand connection 2.2 × 10 −1 3.9 × 10 −1

Number of sand-mud shifts 8.5 × 10 −2 2.6 × 10 −1

Barisal Sand fraction 8.7 × 10 −1 9.1 × 10 −1

Max sand connection 2.6 × 10 −1 1.3 × 10 −1

Number of sand-mud shifts 2.1 × 10 −1 8.2 × 10 −2

Khulna Sand fraction 9.4 × 10 −1 7.5 × 10 −1

Max sand connection 2.3 × 10 − 6 1.6 × 10 − 6

Number of sand-mud shifts 2.3 × 10 − 22 3.4 × 10 − 22

Note. The test statistic (p-value) was calculated with a two-sample t-test. 
Numbers in bold font indicate significant difference (p-value <0.05). The 
plots of these metrics are in Figure S7 in Supporting Information S1.
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horizontal variograms in the Khulna site are both ∼5  km, indicating that sand continuity is nearly isotropic 
(Figure 5a). The vertical variogram range for Khulna is the greatest of the three sites, ∼18 m (Figure 5b).

The results of the object-based models for Khulna show that surface information is insufficient to predict subsur-
face architecture. Due to smaller rivers (Figure  1d and Table  1), object-based simulations generated smaller 
features at the Khulna Site (Figures 6e and 6f) with significant discrepancies between the modeled and observed 
ranges of variograms, both in the vertical (Figure 5b) and horizontal directions (Figure 5a). The maximum sand 
connection and number of sand-mud shifts of the object-based models are also significantly different from those 
measured in the field (Table 3). Consequently, the subsurface structure of Khulna is not well predicted by the 
surface-based information.

4.3.  Flow and Transport Simulations

The results of Section 4.2 show that Pirojpur sinusoid models, Barisal sinusoid models, and Barisal ellipsoid 
models are consistent with field measurements of sand distribution. Therefore, these conceptualizations, along 
with equivalent SIS models (Figure S11 in Supporting Information S1) for the three study sites were used in 
the groundwater modeling and the simulated contaminant distributions are shown in Figure S13 in Supporting 
Information S1. Keff, Contaminated volume, Farthest contaminant extent, Contaminated area at depth 30 m, and 
Contaminated area at depth 60 m show the effect of the geometry of subsurface heterogeneity on groundwater 
contamination (Figure 7), and therefore the value of surface information for solute transport prediction.

Results show that geobody geometry has a substantial influence on flow behavior (Keff) in the three directions 
(Figures 7a–7c). In the longitudinal direction, aligned with the channels, the Keff values of the Pirojpur sinusoid 
models (∼12.5 m/d) and Barisal sinusoid models (∼10.0 m/d) are much larger than those of the Barisal ellipsoid 
models (5.3–9.3 with mean of 7.5  m/d). Furthermore, the Pirojpur sinusoid models with straighter channels 
resulted in a higher Keff than the tortuous channels in the Barisal sinusoid models. The longitudinal Keff of corre-
sponding SIS models shows a similar result: Pirojpur values (∼11.7 m/d) are slightly greater than Barisal values 
(∼10.2 m/d); although the differences are small, they are statistically significant. SIS models of Pirojpur have a 
lower Keff than the object-based models, due to the less connected features in variogram-based distributions. The 
longitudinal Keff of Barisal SIS models (∼10.2 m/d) is not significantly different from the Barisal sinusoid models 
(∼10.0 m/d). This indicates that the tortuous-channel system (BS in Figure 7a) has a similar flow connectivity to 
the variogram-based distribution (BI in Figure 7a).

In the transverse direction, the Keff of object-based models is lower than the corresponding SIS models because 
the channel structures that align with the longitudinal direction and the ellipsoid structures limit the sand connec-
tivity in the transverse direction (Figure 7b). Among object-based models, tortuous channels tend to form more 
connections in the transverse direction. Therefore, Barisal sinusoid models have the largest transverse Keff of 
5.4–8.9 with mean 7.7 m/d. The straighter channels of Pirojpur sinusoid models result in connected mud barriers 
that limit flow in the transverse direction; thus, they have the lowest transverse Keff of 4.7–7.2 with mean 5.9 m/d.

The vertical Keff (<0.05 m/d) is 2–3 orders of magnitude less than horizontal values in Figure 7c compared to 
5–15 m/d in Figures 7a and 7b). The flow in the vertical direction relates to the sand geobody thickness. The 
Pirojpur site has the thinnest geobodies (Table 2); thus, the vertical Keff of Pirojpur models (∼3.3 × 10 −4 m/d) 
is significantly lower than the Barisal Keff (∼1.5  ×  10 −2  m/d) and Khulna sites (∼5.5  ×  10 −3  m/d) for both 
object-based and SIS models. Barisal sinusoid (4.2 × 10 −3 to 3.2 × 10 −2 with mean of 1.5 × 10 −2 m/d) and ellip-
soid models (5.3 × 10 −3 to 3.7 × 10 −3 with mean of 1.6 × 10 −2 m/d) show higher variability than the SIS models 
(3.1 × 10 −3 to 2.8 × 10 −2 with mean of 8.7 × 10 −3 m/d). A possible reason is that the random geobody stacking 
in object-based simulations may cause occasional large vertical sand connections. The vertical sand distribution 
is based on the channel thickness in the object-based models, which is similar to the SIS models, thus the vertical 
Keff of object-based models and SIS models are not significantly different.

Transport behavior is also influenced by the geometry of heterogeneity. Contaminated volume in the longitudinal 
and transverse directions shows a similar result as the Keff, indicating that the effect of geologic structure on the 
general transport behavior (nonpreferential) is similar to the flow behavior (Figures 7d and 7e). Farthest contam-
ination extent represents preferential transport behavior (Figures 7f and 7g). In the longitudinal direction, prefer-
ential transport is not significantly different among the different conceptualizations, with a farthest contamination 
extent of 7,000–8,000 m except for Barisal ellipsoid models (4,100–7,700 m with mean of 6,400 m) (Figure 7f), 
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which are less connected. However, in the transverse direction, Barisal ellipsoid models have a greater farthest 
contamination extent (6,200–7,700 with mean of 7,000 m) than other object-based models (4,000–7,100 m with 
mean of 5,700 m) (Figure 7g). Vertical contamination is demonstrated by contaminated area at 30 m and contam-
inated area at 60 m (Figures 7h and 7i). These metrics show that the vulnerability to vertical contamination 
predicted by SIS models is different from the one predicted by object-based models except contaminated area at 
60 m of the Pirojpur site. Generally, the Pirojpur site is less vulnerable to vertical contamination than the Barisal 
and Khulna sites (Figures 7h and 7i).

Figure 7.  Flow and transport simulation results: (a–c) are effective hydraulic conductivity in three directions. (d, e) are contaminated volume in the longitudinal and 
transverse directions. (f, g) are farthest contamination extent in the longitudinal and transverse directions. (h, i) are contaminated areas at depths of 30 and 60 m. Labels 
above each box represent the result of the two-sample t-test; the same label means that two groups of data are not statistically different, while different labels indicate that 
two groups of data are significantly different (p-value <0.05). “A/B” indicates this group of data is insignificantly different compared to data labeled with “A” or “B.”
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5. Discussion
This study demonstrates that surface information can be used to improve both the subsurface conceptualization 
and predictions of flow and transport, indicating a linkage between fluvial geomorphology and subsurface heter-
ogeneity. We demonstrate a methodology to incorporate this surface information quantitatively into models of 
subsurface architecture using object-based geostatistical methods in which geobody geometries are derived from 
surface channel information. The results show that three of the object-based models fit well with the field meas-
urements in the active delta (Figure 5 and Table 3), and that the different geometrical conceptualizations derived 
from surface characteristics are distinguishable using dense lithologic data. In typical systems where such dense 
lithologic data are unavailable, surface information may be invaluable in developing quantitative models of the 
subsurface and predicting groundwater flow and solute transport. This method demonstrates the opportunity to 
take advantage of abundant and accessible surface data from satellite or other sources, potentially overcoming the 
typical challenge of scarce subsurface data.

We demonstrate the use of surface features using two geometry types—channels and ellipsoids—that are common 
conceptualizations for deltaic systems. This idea may be extended to other systems in which surface features 
can be identified in subsurface architecture, such as fluvial (e.g., van Dijk et al., 2016a), volcanic (e.g., Kreyns 
et al., 2020), or fractured (Schuite et al., 2015) systems. In our analysis, we limit the modeling to single objects, 
but future work may incorporate multiple objects, which would likely be appropriate in our Barisal site, for exam-
ple, where both sinusoidal and ellipsoid models fit the data. The geostatistical approach could also be extended 
by incorporating an understanding of the kinematics of a system—how channels move at the surface relative to 
previous locations. This could be incorporated into object-based modeling by specifying object affinity, or how 
likely channels are to be close to or far from other channels. Other geostatistical techniques that are able to simu-
late continuous geobodies, such as multiple-point geostatistics, could also be employed (Hermans, 2014; Michael 
et al., 2010; Strebelle & Journel, 2001).

The comparison of flow simulation with object-based versus variogram-based (SIS) models shows that these two 
approaches represent the subsurface quite differently in terms of conducting groundwater flow. This is true even 
though the SIS simulations are based on variograms derived from densely distributed data. In the straight-river 
system, relative to the object-based models, the variogram-based models underestimate the rate of flow and 
transport along the river axis and overestimate rates across the river axis. The opposite situation may occur in 
meandering channel systems, and contaminants may move more slowly through high-tortuosity sand channels 
or point-bar deposits. Similarly, in the vertical direction, deeper channels may be more likely to connect, thus 
creating more fast-transport paths to depth. Since we do not have dense flow measurements to compare with these 
results, we cannot be certain which one is more accurate, and these data would be nearly impossible to obtain. 
The same is true for solute measurements—even if an extremely dense data set were obtained, complex boundary 
conditions and reactions would make direct validation nearly impossible. However, the pattern of groundwater 
flow produced by the object-based model is more consistent with some of the effects discussed earlier in this 
paper (e.g., rapid flow through connected sands) than in the SIS model. Existing data from the Bengal Delta and 
other locations have shown that these effects can be critically important in controlling groundwater flow and 
contamination (e.g., Khan et al., 2019; Mozumder et al., 2020). It follows that the use of surface information can 
benefit groundwater management. Near large rivers, thick sand bodies may occur, leading to deeper arsenic distri-
butions. Thus, groundwater managers may consider deeper pumping wells for extracting safe water. In contrast, 
areas with smaller river channels may not support fast vertical transport.

Although its value is supported by field borehole data, this surface-subsurface translation approach has limita-
tions. First, we show in our analysis of the Khulna site that subsurface modeling based on surface information is 
less effective in an inactive delta setting. There, the fluvial processes and sediment supply that constructed most 
of the aquifer near Khulna shifted eastward in the late Holocene (Allison et al., 2003), being replaced by tidal 
channels and a finer-grained sediment supply derived from the nearshore river plume (Rogers et al., 2013). Thus, 
the tidal channel characteristics at the surface of the modern Khulna region are not similar to those of the fluvially 
dominated system that deposited the subsurface sediment. Therefore, incorporation of surface information for 
subsurface simulation should be limited to systems in which the active depositional processes are similar to those 
that deposited the aquifer sediments. The approach may be ineffective in mature deltas, or at depths in which 
sediments were deposited under a different set of external forcings or allogenic processes. Second, we directly use 
the parameters of surface features and then stochastically arrange features in the subsurface model, which carries 

Accepted Manuscript 
Version of Record at: https://doi.org/10.1029/2022JF006775



Journal of Geophysical Research: Earth Surface

XU ET AL.

10.1029/2022JF006775

14 of 18

the assumption that in active deltas, the depositional processes and boundary conditions that created the aquifer 
are the same as those acting on the surface. This neglects changes in climate, sediment load, and neo-tectonics, 
for example, Therefore, this method is best applied to shallow strata such that the fluvial processes at the time of 
deposition were similar to current processes. Furthermore, anthropogenic modifications in the past centuries may 
have changed the surface morphology and sediment supply; these factors should be considered when applying 
this method.

At a larger scale of the delta, the influence of the surface environment on the subsurface is also evident. More sand-
mud shifts occur in the downstream and near-river regions, an observation that may result from multiple factors 
and warrants future study. Among the factors that may contribute to the observed downstream increase in aquifer 
mud fraction and number of sand-mud shifts are fining of the fluvial sediment load through mass extraction (Paola 
& Martin, 2012), changes in driving forces such as river channel migration, subsidence, tidal effects, and anthropo-
genic modifications (Hanebuth et al., 2013; Jarriel et al., 2020; Karpytche et al., 2018; Wilson & Goodbred, 2015), 
and stratigraphic bias from nonuniform channel occupation (Grimaud et al., 2017) or preservation effects (Straub 
& Esposito, 2013). Short-timescale channel migration can be directly observed from Landsat in the last 30 years 
(Jarriel et al., 2020, 2021), indicating an active depositional environment that promotes frequent sand-mud shifts, 
consistent with our data. However, for these surface dynamics and sand-mud switches to be reflected in the deeper 
aquifer sediments, as they are near Barisal and the modern river, they must be preserved in the stratigraphic record. 
Such preservation is strongly influenced by larger-scale patterns of river avulsion and burial timescales set by sedi-
mentation and subsidence (e.g., Reitz et al., 2015). In all, our results show that predicting subsurface aquifer prop-
erties from land-surface morphology is possible, but also that this approach may be complicated by the implicit 
integration of processes that may be nonuniform or nonsteady and operating at differing scales.

6. Conclusions
The aim of this study was to explore the applicability of using land surface characteristics, which are readily 
measured, to predict subsurface structure, groundwater flow, and solute transport, which are difficult to measure 
directly. Based on analysis of an extensive set of lithologic data in the Bengal Delta and simulations of subsurface 
permeability distributions guided by the surface channel geometry, we find that:

1. �At the large scale of the Bengal Delta, sand proportion tends to decrease seaward, and there are more sediment 
shifts (between sand and clay) near major rivers and estuaries in the active delta. These results demonstrate the 
potential to use the position within a delta when predicting subsurface architecture.

2. �Information obtained from surface channel networks can be used to develop models of subsurface heteroge-
neity that are consistent with lithologic data, indicating a linkage between surface features and subsurface
structure in actively developing deltas. In the active delta with relatively straight rivers (Pirojpur site), the
conceptualization of slightly sinuous channel geobodies fits well with subsurface lithologic field measure-
ments. In the active delta with meandering rivers (Barisal site), both a tortuous channel conceptualization and
a lower-ellipsoid conceptualization from surface data are consistent with field measurements. Field data in
the inactive, mature delta (Khulna site) are not consistent with models generated from surface information.

3. �The geometry of subsurface features, as derived from surface information, is critical for the prediction of ground-
water flow and contaminant transport. Horizontal flow and transport are influenced by the geobody connec-
tions and the flow direction relative to the geobody extent, and vertical transport is primarily influenced by the
geobody thickness. Channel connections and disconnections are important in mediating groundwater flow; these 
cannot be modeled without explicitly accounting for the geometry and spatial arrangement of channel bodies.

These findings demonstrate that in areas with active sedimentation, geomorphological characteristics on the land 
surface can be critical sources of information that, in addition to other lithological and geophysical data, can be 
used to develop models of subsurface heterogeneity that enable more accurate prediction of contaminant migra-
tion in groundwater systems.

Data Availability Statement
Simulation of groundwater flow is conducted using MODFLOW (Harbaugh, 2005). Solute transport is simulated 
by MT3DMS (Zheng & Wang, 1999). Lithologic data obtained in this work and example numerical model input 
files are available at (Xu, 2022): https://doi.org/10.4211/hs.22d8fe3a93e14d26a2477fa9406a8eba.
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