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ABSTRACT

Knowing the location of a protein within the cell is important for understanding

its function, role in biological processes, and potential use as a drug target. While it has

been shown that proteins localize to multiple locations, most computational methods

assign a single location per protein. A few recent systems assign multiple locations to

proteins. However, they typically treat locations as independent of each other.

We present a system for protein multi-location prediction that utilizes inter-

dependencies among locations for predicting multiple locations of proteins. Results

obtained by using this system show that incorporating such inter-dependencies in the

location prediction process improves the classifier’s prediction performance.

In machine learning terms, assigning multiple locations to proteins is a special

case of multi-label classification (MLC), where proteins can be viewed as instances

and locations as instance labels. Improving on the initial system, we introduce an

advanced approach for MLC based on a probabilistic generative model that explicitly

captures dependencies between features and subsets of labels, in addition to repre-

senting inter-dependencies among labels as done by our earlier system. Experimental

results demonstrate improved performance of our system for protein multi-location

prediction as well as for the general problem of MLC.

The most comprehensive current set of multi-localized proteins used to assess

the performance of multi-location prediction systems contains proteins localizing to

only two locations. We present a procedure to construct a more extensive collection

of proteins that localize to multiple locations. This procedure comprises extracting

reliable protein information from up-to-date online repositories and storing relevant

attributes in a relational database.

xiii



Chapter 1

INTRODUCTION

The subcellular location of a protein is important for inferring its biological

function and its role within the cell. While much progress has been made during the

last decade in the development of computational methods for predicting locations of

proteins, most such methods assign a single location per protein. However, research has

shown that proteins localize to multiple locations. In this thesis, we present methods

that are able to assign possibly multiple locations to proteins.

In machine-learning terms, assigning multiple locations to proteins is a multi-

label classification (MLC) task. Simple MLC systems assume that labels are indepen-

dent of one another, while more complex approaches capture label inter-dependencies.

Experiments comparing performance of MLC systems demonstrate that there is much

room for improvement. We show in this thesis that the method presented here can be

used to effectively address the more general problem of MLC.

In Section 1.1, we briefly discuss advantages and shortcomings of existing lo-

cation prediction systems. Section 1.2 examines current approaches for multi-label

classification. In Section 1.3, we present the thesis contributions. Finally, Section 1.4

provides an outline of this thesis.

1.1 Protein Multi-Location

Knowing the location of a protein within the cell is essential for understanding

its function, its role in biological processes, as well as its potential role as a drug tar-

get [3]. Experimental methods for protein localization such as those based on mass

spectrometry [25] or green fluorescence detection [42], although often used in practice,

are time consuming and typically not cost-effective for high-throughput localization.
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Hence, much ongoing effort has been put into developing high-throughput computa-

tional methods [8, 27, 66, 78, 86] to obtain proteome-wide location predictions. Such

methods are fast, and can potentially predict locations of proteins whose actual loca-

tions have not yet been experimentally determined.

Over the last decade, there has been significant progress in the development

of computational methods that predict a single location per protein. The focus on

single location prediction is driven by an (over-)simplifying assumption that proteins

localize to a single location. However, proteins do localize to multiple compartments

within the cell [32, 63, 65, 121], and translocate from one location to another [72].

For instance, GLUT4, an insulin-regulated glucose transporter, which is stored in the

intracellular vesicles of adipocytes, translocates to the plasma membrane in response to

insulin [76, 80]. As another example, the enzyme TREX1, which assists in DNA repair,

is primarily present in the cytoplasm but is also transported to the nucleus in response

to DNA damage [102]. Thus, predicting multiple locations of proteins is important,

since protein movement across locations enables the protein to serve multiple distinct

functions.

While a few recent systems (e.g. [10, 14, 17, 56]) attempt to predict multiple

locations of proteins, their performance leaves much room for improvement. These

systems typically either treat locations as independent and do not attempt to utilize

possible inter-dependencies among locations, or represent dependencies only specific to

location combinations present in the training set. Since proteins localize systematically,

and translocation occurs only among specific locations for the purpose of a particular

subcellular function, our hypothesis is that modeling inter-depedencies among locations

can assist in predicting locations of proteins more accurately.

1.2 Multi-Label Classification

Traditional single-label classification [104] assigns a single label to each instance,

and is addressed by methods such as Support Vector Machines (e.g. [41, 83]) or näıve

2



Bayes (e.g. [81]). Multi-label classification, on the other hand, aims to associate each

instance with possibly multiple labels.

In the context of machine learning, assigning multiple locations to proteins is

a special case of multi-label classification (MLC), where proteins can be viewed as

instances and locations as instance labels. The general problem of MLC is concerned

with all classification tasks that assign multiple labels to instances.

Some of the simplest and most commonly used approaches transform the original

multi-label prediction task into one or more single-label prediction task(s) (e.g. [105]).

However, such approaches typically assume that labels are independent of one another.

More sophisticated approaches for MLC capture inter-dependencies among la-

bels. For example, some methods use multiple binary classifiers, one classifier per

label. To capture label inter-dependencies, the feature-vector used to represent an

input instance given to a classifier includes label assignments obtained from other clas-

sifiers (e.g. [77]). Similar systems that explicitly learn the inter-dependencies employ

Bayesian networks (e.g. [1, 119, 120]). Other approaches include systems that utilize

probabilistic generative models (e.g. [62, 79, 108]), typically built for classifying text.

These systems have not been extensively tested on datasets other than text.

However, current MLC systems do not capture intricate dependencies between

features and labels, and experiments demonstrate that their performance can still be

much improved. We hypothesize that by explicitly modeling dependencies between

features and subsets of labels using sophisticated techniques, the assignment of multi-

labels to instances can be done more accurately. Moreover, thus far, the advanced

methods for MLC that represent label inter-dependencies (e.g. [1, 119]) have not been

employed by any of the work on predicting locations of proteins.

1.3 Thesis Contributions

The primary goal of this research is to develop new methods for protein multi-

location that capture location inter-dependencies. We apply some of these methods to

a number of more general multi-label classification tasks such as predicting emotions of
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songs and predicting labels of scenes. We thus demonstrate that the resulting impact

of our work extends well beyond protein multi-location prediction. Performance of all

methods presented in this thesis have been shown to be either comparable to or better

than that of state-of-the-art systems. Our research contributions are as follows.

1. A protein multi-location prediction system that achieves improved

performance by using location inter-dependencies [89, 90]. We present a sys-

tem that utilizes inter-dependencies among locations for predicting multiple locations

of proteins. The system comprises a collection of Bayesian network classifiers. Each

classifier is used to assign a single location to a protein. Notably, this system does not

capture intricate dependencies and independencies between features and locations. We

evaluate our system on a comprehensive set of multi-localized proteins derived from

the DBMLoc dataset, previously used to assess the performance of multi-location pre-

diction systems. Results obtained by using our system show that utilizing location

inter-dependencies improves the prediction performance.

2. A multi-label classification system that improves upon the perfor-

mance of state-of-the-art prediction systems [91, 92, 94, 95]. Improving on

our initial system, we introduce a prediction method for the general problem of multi-

label classification (MLC). This method utilizes a probabilistic generative model that

explicitly captures dependencies between features and subsets of labels, in addition to

representing label inter-dependencies as done by our initial system. We evaluate this

approach on the same dataset of multi-localized proteins used above to assess the per-

formance of our initial system. The results obtained by the advanced method improve

upon those obtained by our initial simpler classifier as well as by other top systems.

To demonstrate the wide applicability of the generative model based approach in the

general context of MLC, we applied the related system to a number of MLC tasks

using standard multi-label datasets. Prediction results showed that the performance of

our system significantly improves upon results obtained by other current MLC systems

reported in a previously published comprehensive study.
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3. An extensive collection of multi-localized proteins [93]. The most

comprehensive available current set of multi-localized proteins, derived from DBM-

Loc [121], consists of proteins that localize to only two locations. We present a pro-

cedure to construct a database that contains proteins localizing to more than two

locations. This procedure constitutes first extracting reliable protein information from

up-to-date online data sources, and then developing a relational database to store the

information.

1.4 Thesis Overview

In Chapter 2, we review current approaches for protein multi-location prediction

and for multi-label classification. Chapter 3 presents an initial system for protein

multi-location prediction that employs a collection of Bayesian network classifiers. In

Chapter 4, we introduce a sophisticated approach for the general problem of multi-label

classification that is based on a probabilistic generative model. Chapter 5 discusses

results obtained by the new method on a dataset of multi-localized proteins as well

as other standard multi-label datasets. Chapter 6 details a procedure to construct an

extensive collection of multi-localized proteins from online repositories. In Chapter 7,

we present thesis summary and outline directions for future work.
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Chapter 2

RELATED WORK

We survey here research methods for protein multi-location prediction and for

multi-label classification. In Section 2.1, we provide details of the machine learning

techniques used in systems that predict multiple locations of proteins, and discuss their

advantages and shortcomings. Protein multi-location prediction is a special case of the

more general problem of multi-label classification, as pointed out earlier in Chapter 1.

In Section 2.2, we thus also review approaches for multi-label classification, which is

concerned with all classification tasks that predict multiple labels of instances.

2.1 Methods for Protein Multi-Location Prediction

A number of recent location prediction systems attempt to predict multiple

locations of proteins, however their performance leaves much room for improvement.

While most use sequence-derived features (e.g., amino acid composition) and Gene

Ontology terms to represent proteins, and employ machine learning methods to predict

protein locations, a few are based solely on sequence-based similarity. The former class

of methods incorporate one or more of the following classifiers: k-nearest neighbors

(k-NN) [17]), Support Vector Machines (SVMs) [56], and näıve Bayes [10].

For instance, ngLOC [54] uses a näıve Bayes classifier to obtain a probability

distribution over locations for each query protein, where the location probabilities

are computed independently of each other. For the two most probable locations, a

confidence score that reflects the likelihood of the protein localizing to both locations

is computed. If the score is above a certain threshold, both locations are assigned to

the protein. This method is limited to assigning at most two locations to proteins.
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Several methods use variations of k-NN to assign multiple locations to proteins.

For example, a system introduced by Li et al. [56] utilizes multiple binary classifiers,

where each classifier comprises an ensemble of k-NN and SVMs that distinguishes

between a pair of locations and provides a vote for one of the locations. The location

with the highest number of votes is assigned to a query protein. If multiple locations

have the same majority vote, a multi-location prediction is made, in which all the

locations with the majority vote are assigned to the protein.

As another example, WoLF PSORT [46, 47] uses a k-NN classifier that employs

a distance measure based on a weighted sum of the Euclidean and Manhattan distances.

This system assigns a query protein to the location combination that is most common

among the protein’s k nearest neighbors, thus limiting the method to only assigning

multi-locations present in the training set. Furthermore, the performance of WoLF

PSORT was evaluated using an extensive dataset [10] and was found to be significantly

lower than the performances of top performing systems (see e.g. [10, 57]).

Other k-NN-based methods include similar systems introduced by the same

group such as Euk-mPLoc [14] and iLoc-Euk [17]. These two systems both compute a

score for each location, based on the query protein. iLoc-Euk assigns the protein to the

locations with the highest scores; the number of locations assigned is the same as that

associated with the nearest neighbor protein in the dataset. Euk-mPLoc assigns the

query protein to locations whose scores lie within a certain deviation from the highest

score. iLoc-Euk utilizes relevant GO terms as a part of its protein representation, and

to achieve the reported level of performance, the system strongly relies on features

derived from these terms — which are only available for proteins that are already an-

notated. Moreover, iLoc-Euk was not extensively tested against current multi-location

predictors, and the performance of Euk-mPLoc was found to be significantly lower

than that of current systems (see e.g. [10, 57]).

A number of methods similar to iLoc-Euk were proposed by the same group for

localizing subsets of eukaryotic proteins [18, 114], virus proteins [117], and bacterial

proteins [115, 116]. Additional domain-specific systems similar to Euk-mPLoc have
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been introduced as well (Euk-mPLoc 2.0 [15], Hum-mPLoc 2.0 [87], Plant-mPLoc [16],

and Virus-mPLoc [88]).

In contrast to all the above approaches that employ machine learning methods,

KnowPredsite [57] uses similarity between protein sequences to predict multiple loca-

tions of proteins. The collection is built by extracting for each protein in the training

dataset, peptide fragments from its sequence and from similar sequences. Each frag-

ment is annotated with the locations associated with the original protein. The peptide

fragments for a query protein are obtained in a similar manner, and the system uses

the location annotations of matching peptide fragments in the collection to compute

a score for each location. Using the two highest location scores, a confidence score

is computed to determine if the protein should be assigned multiple locations. This

method is restricted to assigning at most two locations to a protein (similar to that

seen earlier for ngLOC [54]).

Notably, none of the above methods incorporate inter-dependencies among loca-

tions into the location prediction process. All the methods assign locations to proteins

without accounting for the influence of one location assignment on another.

Recent work by He et al. [43] attempts to take advantage of correlations among

locations when assigning multiple locations to proteins. As part of the training process,

their classifier (namely, Imbalanced Multi-modal Multi-label Learning) attempts to

learn a correlation measure between pairs of locations, which is later used to make

location assignments. While this system takes into account a simple type of dependency

among locations, namely, pair-wise correlations between locations, it does not account

for more complex inter-dependencies. Furthermore, the system was not tested on any

extensive protein multi-localization dataset.

YLoc+[10] introduces a new class for each combination of locations supported

by the training set, and thus captures only dependencies specific to these location

combinations. The system uses a näıve Bayes classifier to obtain a probability distri-

bution over location combinations for each query protein. The initial distribution is

then transformed into a multinomial distribution over the individual locations. YLoc+
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reports the locations whose probabilities are higher than some threshold as the multi-

location prediction for a query protein. We note that as the number of possible lo-

cation combinations is exponential in the number of locations. Furthermore, training

the näıve Bayes classifier over only location combinations in the training set does not

provide a practical model in the general case of multi-localized proteins that localize

to other multi-locations. While using the most comprehensive set of multi-localized

proteins, the prediction results obtained by YLoc+ were found to be the best among

those obtained by current multi-location prediction systems [10].

All the above systems for protein multi-location prediction address a special case

of multi-label classification. We next review approaches for the more general problem.

2.2 Approaches for Multi-Label Classification

In the context of machine learning, assigning multiple locations to proteins is

a special case of multi-label classification (MLC), where proteins can be viewed as

instances and locations as instance labels. The general problem of MLC is concerned

with all classification tasks that assign multiple labels to instances.

Several basic approaches for MLC transform the original prediction task into

one or more single-label classification task(s). For instance, under the Label Powerset

method [105], each unique combination of labels in the training set is considered as

a class, and the prediction task constitutes assigning each input instance to one of

the classes. This method’s assignments are restricted to label combinations within the

training set, and the classifier learned does not provide a practical prediction model in

the general case of multi-label instances beyond the training set. Moreover, since the

number of classes can be exponential in the number of labels, classifier learning can be

computationally expensive.

Other similar methods include the Ranking by Pairwise Comparison method [105]

and the Binary Relevance method [105]. For the former method, a classifier is trained

to distinguish between each possible pair of labels (one-vs-one). In the case of the

latter, each classification task corresponds to distinguishing a single label from the rest
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(one-vs-all). Thus, Binary Relevance employs a classifier for each label and is a com-

putationally efficient alternative to Ranking by Pairwise Comparison, which utilizes an

exponential number of classifiers.

The number of instances associated with some classes/labels may be significantly

lower than that associated with others. Thus, in the case of the above approaches,

transforming an MLC task into multiple single-label classification tasks can result in the

poor performance of individual classifiers responsible for predicting such classes/labels.

More advanced approaches for MLC typically employ a variant of BR, and

capture dependencies among labels. For example, a classifier chain [77] consists of

multiple binary classifiers like those used in Binary Relevance, one classifier per label,

and the chain is constructed based on an input label ordering. To capture relation-

ships among labels, the feature-vector used to represent an input instance given to a

classifier F includes label assignments obtained from all classifiers preceding classifier

F in the chain. A multi-label assignment for the instance is determined by combining

the predictions obtained from all binary classifiers. A probabilistic variant of Classifier

Chains [22] cannot be practically applied to multilabel datasets that contain more than

a few labels, as it is computationally complex.

Systems based on Classifier Chains that explicitly learn label inter-dependencies

include a chain of Support Vector Machines [120], a chain of näıve Bayes classifiers [119],

and an ensemble of Bayesian networks [1]. The ordering used to construct a chain of

classifiers is fixed using a topological ordering of labels in a Bayesian network.

Among the rest of the approaches for MLC are systems that utilize probabilistic

generative models (see e.g. [62, 79, 108]), typically built for classifying text. These

systems have not been extensively tested against other multi-label classification systems

and on datasets other than text.

Notably, when an instance is associated with multiple labels, a feature-value of

the instance may depend only on a subset of these labels. Current systems do not

model the dependence of features on label subsets. Moreover, performance of these

systems leaves much room for improvement.
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In the rest of this thesis, we present approaches for protein multi-location pre-

diction as well as for the more general problem of multi-label classification. We first

present an initial approach for predicting multiple locations of proteins that captures

location inter-dependencies. Improving on the initial method, we introduce a new

approach for multi-label classification. This new approach represents intricate depen-

dencies between instances and labels, in addition to capturing label inter-dependencies.

Employing our approaches to address a number of multi-label classfication tasks, we

present experiments and results over the most extensive dataset of multi-localized pro-

teins currently publicly available as well as over several multi-label datasets that were

previously used to assess the performance of multi-label classification systems.
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Chapter 3

A DEPENDENCY-BASED SYSTEM FOR PROTEIN
(MULTI-)LOCATION PREDICTION

We present here an initial system that we introduced for predicting locations of

multiply-localized proteins. While proteins move from one location to another and can

localize to multiple locations, we pointed out in the introductory chapter that most

existing location prediction systems assign only a single location per protein. Our

extensive survey of multi-location prediction methods (Chapter 2) points out that a

few recent systems do attempt to assign multiple locations to proteins. However, such

systems typically treat locations as independent and do not attempt to utilize possible

inter-dependencies among locations.

In this chapter, we present a system based on a collection of Bayesian network

classifiers — which we denote by BNCs — that incorporates label inter-dependencies

into the process of assigning locations to proteins. The Bayesian network related

to each classifier corresponds to a single location. Learning the structure of each

Bayesian network classifier takes into account inter-dependencies among locations, and

the prediction process utilizes estimates involving multiple locations. We employ BNCs

to predict locations of proteins by utilizing a comprehensive dataset of single and multi-

localized proteins, and compare the performance of our system with that of current

multi-location prediction systems.

In Section 3.1, we formulate protein multi-location prediction as classification

via Bayesian networks, and present a brief background on Bayesian networks along

with the relevant notations. Section 3.2 discusses the procedures used for learning the

network structure and parameters, and for assigning multiple locations to proteins.

Section 3.3 provides details about the dataset used in our evaluation, the performance
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evaluation measures, and the experimental results. Finally, Section 7.1 summarizes

our findings and outlines possible directions for improving our system.

3.1 Problem Formulation

As is commonly done in the context of classification, and protein location pre-

diction in particular [10, 35, 45], we represent each protein, P , as a weighted feature

vector, ~fP=〈fP
1 , . . . , f

P
d 〉, where d is the number of features. Each feature represents

a characteristic of a protein, such as the presence or absence of a short amino acid

motif [27, 45], the relative abundance of a certain amino acid as part of amino-acid

composition [54], or the annotation by a Gene Ontology (GO) term [48]. We view

each feature vector entry fP
j as a value taken by a random variable Fj with respect to

protein P .

To represent a protein’s locations, let S={s1, . . . , sq} be the set of q possible

subcellular components in the cell. Each protein P localizes to at least one — and

possibly more than one — location. The locations of P are represented by a location

indicator vector, ~lP =〈lP1 , . . . , lPq 〉 of 0/1 values, where lPi =1 if P localizes to si, and

lPi =0 otherwise. As with the feature values, each location vector entry, lPi , is viewed as

a value taken by a random variable Li. Given a dataset consisting of m proteins along

with their location vectors, we denote the dataset as: D={(Pj,~l
Pj) | 1 ≤ j ≤ m}. We

thus view the task of protein subcellular multi-location prediction as that of developing

a classifier (typically learned from a dataset D of proteins whose locations are known)

that given a protein P represented as a feature-vector, ~fP , assigns a (correct) 0/1 value

to each of the entries lPi making up P ’s location-indicator vector, ~lP .

Consider a subset of subcellular locations si1 , . . . , sik . Recall that we use the

random variables Li to denote whether a protein is localized or not to location si.

Formally, the locations in the set, si1 , . . . , sik , are considered independent of each other

if for any protein P , the joint probability of P to be in any of these locations can be

13



written as the product of the individual location probabilities, that is:

Pr(Li1 = lPi1 , . . . , Lik = lPik)=
k∏

j=1

Pr(Lij = lPij) .

If the locations are not independent, that is, if for a protein P ,

Pr(Li1 = lPi1 , . . . , Lik = lPik) 6=
k∏

j=1

Pr(Lij = lPij) ,

then we say that these locations are inter-dependent.

Our underlying hypothesis, which is supported by the experiments and the

results presented in this chapter, is that utilizing such location inter-dependencies can

form the basis for an improved approach for location-prediction. Bayesian networks

have been used before in many biological applications [33, 55, 85]. We use them here

to model inter-dependencies among subcellular locations, as well as among protein-

features and locations.

In order to develop a protein subcellular multi-location predictor, we propose

to develop a collection of classifiers, C1, . . . , Cq, where the classifier Ci is viewed as an

“expert” responsible for assigning the 0/1 value, lPi , indicating P ’s non-localization or

localization to si. To calculate location assignments for a protein P , each classifier Ci

utilizes inter-dependencies among estimates of location values of P , l̂Pj (for all other

locations sj, where j 6= i), along with the feature-values of P . We use support vector

machines (SVMs) [41, 83] to compute these estimates. The output of classifier Ci for

a protein P is given by

Ci(P ) =

1 If Pr(lPi = 1 | P, l̂P1 , . . . , l̂Pi−1, l̂Pi+1, . . . , l̂
P
q ) > 0.5 ;

0 Otherwise .

(3.1)

We briefly introduce Bayesian networks here, along with the relevant notations;

see [50] for more details. A Bayesian network consists of a directed acyclic graph

G, whose nodes are random variables, which in our case represent features, denoted

F1, . . . , Fd, and locations, denoted L1, . . . , Lq. We assume here that all the feature
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values are discrete. To ensure that, we use the recursive minimal entropy partition-

ing technique presented by Fayyad and Irani [29] and used by Dougherty et al. [24]

to discretize the features; details about the discretization technique are presented in

Section 3.3.1. This technique was also used in the development of YLoc+ [10].

Directed edges in the graph indicate inter-dependencies among the random vari-

ables. As demonstrated in Figure 3.1, edges are allowed to appear between feature- and

location-nodes, as well as between pairs of location-nodes in the graph. Edges between

location-nodes directly capture the inter-dependencies among locations. We note that

there are no edges between feature-nodes in our model, which reflects an assumption

that features are either independent of each other or conditionally independent given

the locations. While this assumption may oversimplify the underlying biological mech-

anisms, it works well in practice and has proven useful before [10], and it helps speed

up the process of learning the network structure from the data. Further details about

the learning procedure itself are provided later in Section 3.2.

To complete the Bayesian network framework, each node

v ∈ {F1, . . . , Fd, L1, . . . , Lq} in the graph is associated with a conditional probability

table, θv, containing the conditional probabilities of the values the node takes given

its parents’ values, Pr(v | Pa(v)). We denote by Θ the set of all conditional proba-

bility tables, and the Bayesian network is the pair (G,Θ). A consequence of using

the Bayesian network structure is that it represents certain conditional independencies

among non-neighboring nodes [50], such that the joint distribution of the set of network

variables can be simply calculated as:

Pr(F1, . . . , Fd, L1, . . . , Lq) =
d∏

i=1

Pr(Fi | Pa(Fi))

q∏
j=1

Pr(Lj | Pa(Lj)) . (3.2)

Figure 3.1 shows an example of a collection of Bayesian network classifiers,

C1, . . . , Cq, one for each of the q subcellular locations s1, . . . , sq. Each classifier Ci

consists of the graph Gi and its set of parameters Θi, (Θi not shown in the figure).

The task of classifier Ci is to infer the value of the location variable Li. As such, Li

is viewed as unobserved, and is shown as an unshaded node in the figure. The values
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C1C1C1 CqCqCq

F1 L2
. . . F1 L1

F2 L3 F2 L2

...
...

...
...

Fd
... Lq Fd

... Lq−1

L1
. . . Lq

Figure 3.1: An example of a collection of Bayesian network classifiers. The collection
consists of several classifiers C1, . . . , Cq, one for each of the q subcellular locations.
Nodes represent random variables. Directed edges represent dependencies between the
variables. There are edges among location variables (L1, . . . , Lq), as well as between
feature variables (F1, . . . , Fd) and location variables (L1, . . . , Lq), but not among the
feature variables. The latter indicates independencies among features, as well as con-
ditional independencies among features given the locations.
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of feature variables F1, . . . , Fd are given for each protein. Thus, these variables are

viewed as known or observed, and are shown as shaded nodes. Finally, the values of

the location variables for all locations except for Li, {L1, . . . , Lq} − {Li}, are needed

for inferring the value of Li in the classifier Ci. As such, these variables are viewed by

the classifier as though they are observed. Notably, the values of these variables are

not known and therefore need to be estimated.

The structure and parameters of the network for each classifier Ci are learned as

described in the next section. The task of each classifier Ci, is to infer the value of the

variable Li given the values of all other variables F1, . . . , Fd, and {L1, . . . , Lq} − {Li}.

Since, as noted above, the values of the location variables Lj (j 6= i) are unknown at the

point when Li needs to be calculated, we estimate their values, using simple SVM clas-

sifiers. We note that here we set out to show that capturing inter-dependencies among

locations help improve prediction, and the relatively simple estimation procedure that

we use serves sufficiently well. Other methods, such as expectation maximization, can

be used to estimate all the hidden parameters, which we shall do in methods introduced

in the next chapter.

3.2 Model Learning and Inference

As our goal is to assign (possibly multiple) locations to proteins, we use a

collection of Bayesian network classifiers, where each classifier Ci, infers the value (0

or 1) of a single location variable Li – while using estimates of values taken by all

other location variables Lj (j 6= i). The location estimates are assumed to be known

as far as classifier Ci is concerned and are calculated using SVM classifiers as described

in Section 3.2.1. The location inferences from all the classifiers are then combined to

produce a multi-location prediction.

For each location si, a Bayesian network classifier Ci must be learned from the

training data before it can be used. As described in Section 3.1, each classifier Ci

consists of a graph structure Gi and a set of conditional probability parameters, Θi;

i.e., Ci =(Gi,Θi). Thus, our first task is to learn the individual classifiers, i.e. their
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respective Bayesian network structures and parameters. The individual networks can

then be used to assign locations to proteins.

Given a protein P , each classifier Ci needs to accurately infer the location value

lPi , given the feature values of P and estimates of all the other location values l̂Pj (where

j 6= i). That is, each classifier Ci assumes that the estimates of location values, l̂Pj for

all other locations sj (where j 6= i) are already known, and is responsible for inferring

only the value lPi , given all the other location values. For a Bayesian network classifier

Ci, this means calculating the conditional probability:

Pr(lPi = 1 | P, l̂P1 , . . . , l̂Pi−1, l̂Pi+1, . . . , l̂
P
q ) , (3.3)

where l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q are all estimated using simple SVM classifiers. The clas-

sifiers C1, . . . , Cq are each learned by directly optimizing an objective function that is

based on such conditional probabilities, calculated with respect to the training data as

explained in Section 3.2.1.

The procedures used for learning the Bayesian network classifiers and for com-

bining individual location inferences are described throughout the rest of this section.

3.2.1 Structure and Parameter Learning of Bayesian Network Classifiers

Given a dataset D, consisting of a set of m proteins {P1, . . . , Pm} and their

respective location vectors {~lP1 , . . . ,~lPm}, each classifier Ci is trained so as to produce

the “best” inference possible for the location indicator value, lPi (for location si), for

any given protein P and estimates of all the other location indicator values (as shown

in Equation 3.3 above). Based on this aim and on the available training data, we

use Conditional Log Likelihood (CLL) as the objective function to be optimized when

learning each classifier Ci. Classifiers whose structures were learned by optimizing this

objective function have been found to achieve improved prediction performance [38].

The objective function is thus defined as:

CLL(Ci | D) =
m∑
j=1

log Pr(Li = l
Pj

i | ~fPj , l̂
Pj

1 , . . . , l̂
Pj

i−1, l̂
Pj

i+1, . . . , l̂
Pj
q ) .
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Each Pj is a protein in the training set, and each probability term in the sum is the

conditional probability of protein Pj to have the indicator value l
Pj

i (for location si),

given its feature vector ~fPj and the current estimates of all the other location indicator

values l̂
Pj

k (where k 6= i), under the Bayesian network structure Gi for the classifier Ci

(see Equation 3.2).

To learn a Bayesian network classifier that optimizes the above objective func-

tion, we use a greedy hill climbing search. While Grossman and Domingos [38] proposed

a heuristic method that modifies the basic search depicted by Heckerman et al. [44], we

do not employ it for learning structures, but rather use the basic search, as the latter

does not prove to be prohibitively time consuming. Our structure learner starts with an

initial network with no directed edges. In each iteration of the hill climbing algorithm,

a directed edge is either added, deleted, or its direction reversed. An example of each

of the possible steps is shown in Figure 3.2. Notably, we do not allow the introduction

of directed edges that connect two feature variables to one another. This constraint

accounts for the assumption incorporated into the network structure, as discussed in

Section 3.1, of independence or conditional independence among the features given the

locations; it slightly simplifies the network structure and reduces the search space and

the overall learning time.

To find estimates l̂
Pj

k of location indicator values, we compute a one-time esti-

mate for each indicator l
Pj

i from the feature values of the protein ~fPj by using an SVM

classifier (e.g. [41, 83]). We employ q SVM classifiers, SVM1, . . . , SVMq, where each

SVM classifier, SVMi is trained to distinguish a single location si from the rest. We

use the SVM implementation provided by the Scikit-learn library [68] with a Radial

Basis Function kernel.

The rest of the network parameters are estimated as follows. For each Bayesian

network classifier Ci, we use the maximum likelihood estimates calculated from fre-

quency counts in the training dataset, D, to estimate the network parameters. For

each node v in the graph Gi, (where v may either be a feature variable or a location

variable), we denote its n parents as Pa(v)={Pa1(v), . . . , Pan(v)}. For each value x of
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F1 L2

L1

F1 L2

L1

(i) (ii) Adding an edge (F1, L2).

F1 L2

L1

F1 L2

L1

(iii) Deleting an edge (L2, L1). (iv) Reversing an edge (L2, L1) to (L1, L2).

Figure 3.2: Adding, deleting, and reversing an edge in a Bayesian network during
structure learning. The network on the top left (i), is the starting point. Networks
(ii), (iii), and (iv) show the addition, deletion, and reversal of an edge, respectively, as
performed by the greedy hill climbing algorithm for structure learning.
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v and values y1, . . . , yn of its respective parents, the conditional probability parameter

Pr(v=x | Pa1(v)=y1, . . . , Pan(v)=yn) is computed as follows: Let njoint be the num-

ber of proteins in the dataset D for whom the value of variable v is x and the values

of Pa1(v), . . . , Pan(v) are y1, . . . , yn, respectively. Let nmarginal be the number of pro-

teins in the dataset D whose values of the variables denoted by Pa1(v), . . . , Pan(v) are

y1, . . . , yn (regardless of the value of variable v). The maximum likelihood estimate for

the conditional probability is thus:

Pr(v = x | Pa1(v) = y1, . . . , Pan(v) = yn) =
njoint

nmarginal

.

To avoid overfitting of the parameters, we add pseudo-counts to events that have zero

counts (a variation on Laplace smoothing [60]).

To summarize, at the end of the learning process we have q Bayesian network

classifiers, C1, . . . , Cq, like the ones depicted in Figure 3.1 (one for each of the q loca-

tions), and q SVM classifiers, SVM1, . . . , SVMq, used for obtaining initial estimates of

values taken by each location variable for any given protein.

We next describe how these classifiers are used to obatain a multi-location pre-

diction for a protein P .

3.2.2 Multiple Location Prediction

Given a protein P , whose locations we would like to infer, we first use the SVMs

to obtain estimates, l̂P1 , . . . , l̂
P
q , of location indicator values. We then use the learned

Bayesian network classifier Ci and the location estimates obtained from the SVMs

to infer the location indicator value, lPi . The classifier outputs a value of either a 0

or a 1, as shown in Equation 3.5. The entire process is depicted in Figure 3.3. The

conditional probability of lPi given the feature values of the protein P and the estimates

of the location indicator values l̂Pj (where j 6= i) is calculated as:

Pr(lPi = 1 | ~fP , l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q ) =

Pr(lPi = 1, ~fP , l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q )∑

z∈{0,1} Pr(lPi = z, ~fP , l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q )

. (3.4)
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Input to SVMs 

  

€ 

l P = l1
P ,l2

P ,…,lq
P

Predicted Location-Indicator Vector 

Output from Bayesian 
network classifiers 

  

€ 

ˆ l P = ˆ l 1
P , ˆ l 2

P ,…, ˆ l q
P

(Location-
Indicator 
Estimate 
Vector) 

Output from SVMs 

C1 C2 Cq 
…

Input to Bayesian network 
classifiers 

Figure 3.3: Procedure used to assign multiple locations to a protein P . First, SVM
classifiers, SVM1, . . . , SVMq, are used to obtain location estimates, l̂P1 , . . . , l̂

P
q . The

Bayesian network classifiers, C1, . . . , Cq are then used to utilize the inter-dependencies
among the location estimates and infer actual location values, lP1 , . . . , l

P
q .
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The joint probabilities in the numerator and the denominator of Equation 3.4 above

are factorized into conditional probabilities using the Bayesian network structure, Gi

(see Equation 3.2). The 0/1 prediction for each lPi obtained from each Ci becomes

the value of the i’th position in the location-indicator vector 〈lP1 , . . . , lPq 〉 for protein P .

This is the complete multi-location prediction for protein P .

In the next section, we describe our experiments using the Bayesian network

framework and the results obtained.

3.3 Experiments and Results

We implemented our algorithms for learning the Bayesian network classifiers and

for assigning multi-locations to proteins using Python and the machine learning library

Scikit-learn [68]. We applied our system to predict locations of proteins using a dataset

containing single- and multi-localized proteins, previously used for training YLoc+ [10].

We describe the dataset in Section 3.3.1, present experiments and evaluation measures

in Section 3.3.1, and discuss multi-location prediction results in Section 3.3.2.

3.3.1 Data

In our experiments we use a dataset containing 5447 single-localized proteins

(originally published as part of the Höglund dataset [45]), and a collection of 3056

multi-localized proteins (originally published as part of the DBMLoc set [121]). The

combined dataset was constructed and previously used by Briesemeister et al. [10]

in their extensive comparison of multi-localization prediction systems. Notably, the

protein sequences from the Höglund dataset share less than or equal to 30% sequence

identity with each other, while sequences from the DBMLoc dataset share less than

80% sequence similarity with each other.

We report results obtained over the 3056 multi-localized proteins for comparing

our system to other published systems, since the results for these systems are only

available for this subset [10]. For all other experiments described here, we report

results obtained over the combined set of single- and multi-localized proteins. The
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single-localized proteins are from the following locations (abbreviations and number

of proteins per location are given in parentheses): cytoplasm (cyt, 1411 proteins);

endoplasmic reticulum (ER, 198), extra cellular space (ex, 843), golgi apparatus (gol,

150), lysosome (lys, 103), mitochondrion (mi, 510), nucleus (nuc, 837), membrane

(mem, 1238), and peroxisome (per, 157). The multi-localized proteins are from the

following pairs of locations: cyt nuc (1882 proteins), ex mem (334), cyt mem (252),

cyt mi (240), nuc mi (120), ER ex (115), and ex nuc (113). Note that all the multi-

location subsets used have over 100 representative proteins.

Protein Representation. We use the exact same representation of a 30-

dimensional feature vector as used by Briesemeister et al. for YLoc+ [10, 11], described

below. However, we also run experiments in which we do not use annotation-based fea-

tures (items iii and iv in the list below) in the protein representation.

(i) Thirteen features derived directly from the protein sequence data, specifi-

cally, length of the amino acid chain, length of the longest very hydrophobic region,

respective number of Methionine, Asparagine, and Tryptophane, occurring in the N-

terminus, number of small amino acids occurring in the N-terminus, and numerical

values based on: (a) ER retention signal, (b) peroxisomal targeting signal, (c) clusters

of consecutive Leucines occurring in the N-terminus, (d) secretory pathway sorting

signal, (e) putative mitochondrial sorting signal;

(ii) Nine features contructed using pseudo-amino acid composition [13], which

are based on certain physical and chemical properties of amino acid subsequences;

(iii) Two annotation-based features constructed using two distinct groups of

PROSITE patterns, one characteristic of plasma-membrane proteins and the other of

nucleus proteins. For each protein, the value of the respective feature is 1 if the protein

sequence contains at least one PROSITE pattern characteristic of the organelle, 0

otherwise;

(iv) Six annotation-based features based on GO-annotations. Five of these

correspond to five location-specific GO terms [GO:0005783 (endoplasmic reticulum),

GO:0005739 (mitochondrion), GO:0005576 (extracellular region), GO:0042025 (host
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cell nucleus), and GO:0005778 (peroxisomal membrane)], where the feature value is 1

if at least one sequence homologous to the protein’s is associated with the GO term

according to Swiss-Prot (release 42.0), 0 otherwise. The sixth feature indicates the

likely location of the protein given all the GO terms assigned to it (or to its homologues)

in Swiss-Prot.

(See Briesemeister et al. [10, 11] for further details regarding the pre-processing,

feature construction, and feature selection.)

Feature Discretization. To ensure that all feature values are discrete, we

use the minimal entropy partitioning technique as initially presented by Fayyad and

Irani [29] and used by Dougherty et al. [24]. We rephrase the partitioning technique

by using concepts from Information Theory, in particular, the definition of conditional

entropy [19]. Each continuous-valued feature is converted into a discrete-valued feature

by recursively dividing the range of values that the feature obtains into intervals; all

feature values lying within an interval are mapped to a single discrete feature value.

Formally, for a training set of m proteins associated with q locations s1, . . . , sq,

we denote the range of values assigned to feature fi for proteins in the set by [lfi , hfi ],

where lfi is the lowest value in the range and hfi the highest. A discretization boundary

Ti partitions the feature value range [lfi , hfi ] into two intervals, [lfi , Ti] and (Ti, hfi ].

Given a boundary Ti, for each protein Pj in the set (where 1 ≤ j ≤ m), its feature

value for feature fi, denoted f j
i , is mapped to a value dTi

1 if f j
i ∈ [lfi , Ti] and to another

value dTi
2 if f j

i ∈ (Ti, hfi ], where dTi
1 and dTi

2 are two distinct values, chosen from the set

{0, 1, 2, . . .} (e.g. dTi
1 = 0 and dTi

2 = 1).

Each location sk (1≤k≤q), with which a protein Pj may be associated, is viewed

as a value taken by a random variable S. The conditional probability distribution of

S given a value f j
i for feature fj and the discretization boundary Ti is defined as:

Pr(S|f j
i , Ti) =

 Pr(S|f j
i ≤ Ti) if f j

i ≤ Ti ;

Pr(S|f j
i > Ti) if f j

i > Ti .

(3.5)
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The respective conditional entropy is denoted H(S|f j
i , Ti) [19] and defined as:

H(S|f j
i , Ti) =− Pr(f j

i ≤ Ti)

q∑
k=1

Pr(S = sk|f j
i ≤ Ti) log2(Pr(S = sk|f j

i ≤ Ti))

− Pr(f j
i > Ti)

q∑
k=1

Pr(S = sk|f j
i > Ti) log2(Pr(S = sk|f j

i > Ti)) ,

where Pr(f j
i ≤Ti) is estimated as the proportion of proteins in the training set whose

feature value for fi is less than or equal to Ti, Pr(f j
i >Ti) is estimated as the proportion

of proteins whose feature value for fi is greater than Ti, Pr(sk|f j
i ≤Ti) is estimated by

the proportion of proteins associated with location sk among those whose feature value

for fi is less than or equal to Ti, and Pr(sk|f j
i > Ti) is estimated by the proportion

associated with sk among those proteins whose feature value for fi is greater than Ti.

The discretization boundary Ti is chosen such that the conditional entropy H(S|f j
i , Ti)

is minimal.

The partitioning into intervals is applied recursively, and terminates when a

stopping condition based on the Minimum Description Length Principle, (see Fayyad

and Irani [29] for details), is satisfied. This recursive partitioning is independently

applied to each of the features.

Exclusion of Annotation-based Features. It has been shown by several

research groups [8, 48, 106] that location prediction performance is improved by incor-

porating features based on GO-annotations associated with each protein (which may

also include location annotation) into the protein representation. However, we note

that an important goal of protein location prediction is to assign locations to proteins

that are not yet annotated; that is, the location prediction tool may serve as an aid in

the protein annotation process. Therefore, it is useful to be able to accurately predict

location of proteins even without using annotation-based features such as PROSITE

patterns and GO terms.

To test the performance of our system with and without such features, we have

constructed several versions of the dataset in which we include/exclude PROSITE-

based and GO-based features. (i) PROSITE-GO — which includes both PROSITE-
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and GO-based features in the protein representation; (ii) No-PROSITE-GO — which

does not include any PROSITE- or GO-based features in the protein representation;

(iii) No-PROSITE — which does not include PROSITE-based features, but includes

GO-based features; and (iv) No-GO — which does not include any GO-based features,

but includes PROSITE-based features, in the protein representation. These datasets

are used as described in Section 3.3.2 to demonstrate that location inter-dependencies

can be used to improve prediction performance, even in the absence of PROSITE-based

and GO-based features.

To compare the performance of our system to that of other systems (YLoc+ [10],

Euk-mPLoc [14], WoLF PSORT [47], and KnowPredsite [57]), whose performance on

a large set of multi-localized proteins was described in a previously published com-

prehensive study [10], we use the exact same dataset, employing the commonly used

stratified 5-fold cross-validation. As the information about the exact 5-way splits used

in previous studies is not available, we ran five complete runs of 5-fold-cross-validation

(i.e. 25 runs in total), where each complete run of 5-fold cross-validation uses a different

5-way split. The use of multiple runs with different splits helps validate the stability

and the statistical significance of the results.

To ensure that the results obtained by using our 5-way splits for cross-validation

can be fairly compared with those reported before [10], we replicated the YLoc+ runs

using our 5-way splits, and obtained results that closely match those originally reported

by Briestmeister et al [10]. (The replicated F1-label score is 0.69 with standard devi-

ation ±0.01, compared to YLoc+ reported F1-label score of 0.68, and the replicated

accuracy is 0.65 with standard deviation ±0.01, compared to YLoc+ reported accuracy

of 0.64.) The total training time for our system is about 11 hours (wall-clock), when

running on a standard Dell Poweredge machine with 32 AMD Opteron 6276 proces-

sors. Notably, no optimization or heuristics for improving run time were employed, as

this is a one-time training. For the experiments described in this chapter, we ran 25

training experiments, through 5 times 5-fold cross validation, where the total run time

was about 75 hours (wall clock).
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We use in our evaluation the adapted measures of accuracy and F1 score pro-

posed by Tsoumakas et al. [105] for evaluating multi-label classification. Some of

these measures have also been previously used to evaluate multi-location prediction

systems [10, 43]. To formally define these measures, let D be a dataset contain-

ing m proteins. For a given protein P , let MP ={si | lPi =1, where 1 ≤ i ≤ q} be

the set of locations to which protein P localizes according to the dataset, and let

M̂P ={si | l̂Pi =1, where 1 ≤ i ≤ q} be the set of locations that a classifier predicts for

protein P , where l̂Pi is the 0/1 prediction obtained (as described in Section 3.2). The

multi-label accuracy and the multi-label F1 score are defined as:

MLacc =
1

|D|
×

∑
P∈D

|MP ∩ M̂P |
|MP ∪ M̂P |

and F1 =
1

|D|
×

∑
P∈D

2|MP ∩ M̂P |
|MP |+ |M̂P |

, respectively.

To evaluate how well our system classifies proteins as localized or not localized

to each individual location si, we use adapted measures of multi-label precision and

recall denoted Presi and Recsi and defined as follows [10]:

Presi =
1

|{P ∈D|si∈M̂P}|
×

∑
P∈D|si∈M̂P

|MP ∩ M̂P |
|M̂P |

;

Recsi =
1

|{P ∈D|si∈MP}|
×

∑
P∈D|si∈MP

|MP ∩ M̂P |
|MP |

.

We use here the terms Multilabel-Precision and Multilabel-Recall to refer to Presi and

Recsi , respectively. Note that Presi captures the ratio of the number of correctly

predicted multi-locations to the total number of multi-locations predicted, and Recsi

captures the ratio of the number of correctly predicted multi-locations to the number of

original multi-locations, for all the proteins that co-localize to location si. Therefore,

high values of these measures for proteins that co-localize to the location si indicate

that the combinations of locations that include si are predicted correctly.

Additionally, the F1-label score used by Briesemeister et al. [10] to evaluate the

performance of multi-location predictors is computed as:

F1-label =
1

|S|
×

∑
si∈S

2× Presi ×Recsi
Presi +Recsi

.
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Finally, to evaluate the correctness of predictions made for each location si, we

use the standard precision and recall measures, denoted by Pre-Stdsi and Rec-Stdsi

(e.g. [86]) and defined as:

Pre-Stdsi =
TP

TP + FP
and Rec-Stdsi =

TP

TP + FN
,

where TP (true positives) denotes the number of proteins that localize to si and are

predicted to localize to si, FP (false positives) denotes the number of proteins that do

not localize to si but are predicted to localize to si, and FN (false negatives) denotes

the number of proteins that localize to si but are not predicted to localize to si.

3.3.2 Classification Results

Table 3.1 shows the F1-label score and the accuracy of our system based on

a collection of Bayesian network classifiers (denoted BNCs) obtained when running

over the PROSITE-GO version of the dataset, which includes both PROSITE- and

GO-based features in the protein representation, in comparison to those obtained by

other multi-location predictors (as reported by Briesemeister et al. [10], Table 3 there),

using the same set of multi-localized proteins and evaluation measures. While the table

shows that our system has a slightly lower performance than YLoc+, the differences in

the values are not statistically significant (as indicated by the standard deviations of

the scores obtained by our system), and the overall performance level is comparable.

Thus our approach performs as effectively as current top-systems, while having the

advantage of directly capturing inter-dependencies among locations — that is, without

introducing a new location-class for each new location-combination.

Tables 3.2 and 3.3 both show the F1 score, the F1-label score, and the accuracy

obtained by the SVM classifiers compared with the corresponding values obtained by

the BNCs, on the combined dataset of both single- and multi-localized proteins. The

SVMs are used for computing estimates of location indicator values and do not cap-

ture location inter-dependencies, whereas the BNCs utilize location inter-dependencies.

Table 3.2 displays the scores obtained over the PROSITE-GO version of the dataset.
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Table 3.1: Prediction results for multi-localized proteins only on the PROSITE-GO
version of the dataset, averaged over 25 runs of 5-fold cross-validation. The table
shows the F1-label score and the overall accuracy ( MLacc ) obtained using the BNCs,
YLoc+[10], Euk-mPLoc [14], WoLF PSORT [47], and KnowPredsite [57]. All values
except ours are taken directly from Table 3 in the paper by Briesemeister et al. [10];
standard deviations are not available there. The highest values are shown in boldface.

Location Prediction System F1-label MLacc

BNCs 0.66 (± 0.02) 0.63 (± 0.01)

YLoc+ 0.68 0.64

Euk-mPLoc 0.44 0.41

WoLF PSORT 0.53 0.43

KnowPredsite 0.66 0.63
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Table 3.2: Prediction results for the combined set of single- and multi-localized pro-
teins on the PROSITE-GO version of the dataset, averaged over 25 runs of 5-fold
cross-validation. The table shows the F1 score, the F1-label score, and the overall accu-
racy (MLacc) obtained using SVMs, which do not capture location inter-dependencies
and using BNCs, which utilize location inter-dependencies. Standard deviations are
shown in parentheses. The highest values are shown in boldface.

F1 F1-label MLacc

SVMs (without using dependencies) 0.77 (± 0.01) 0.67 (± 0.02) 0.72 (± 0.01)

BNCs (using dependencies) 0.81 (± 0.01) 0.76 (± 0.02) 0.76 (± 0.01)
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Table 3.3: Prediction results on the No-PROSITE-GO, No-PROSITE, and No-GO
versions of the dataset for the same combined set of proteins shown in Table 3.2,
averaged over 25 runs of 5-fold cross-validation. The table shows the same measures
obtained using the same systems shown in Table 3.2. Standard deviations are shown
in parentheses. The highest values are shown in boldface.

Dataset F1 F1-label MLacc

SVMs (without using dependencies) No-PROSITE-GO 0.75 (± 0.04) 0.66 (± 0.02) 0.70 (± 0.04)

BNCs (using dependencies) No-PROSITE-GO 0.78 (± 0.05) 0.72 (± 0.07) 0.73 (± 0.05)

SVMs (without using dependencies) No-PROSITE 0.77 (± 0.01) 0.66 (± 0.02) 0.72 (± 0.01)

BNCs (using dependencies) No-PROSITE 0.80 (± 0.01) 0.75 (± 0.02) 0.75 (± 0.01)

SVMs (without using dependencies) No-GO 0.76 (± 0.03) 0.67 (± 0.03) 0.71 (± 0.03)

BNCs (using dependencies) No-GO 0.79 (± 0.04) 0.72 (± 0.08) 0.74 (± 0.04)
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In contrast, Table 3.3 displays the scores obtained over dataset versions that do not

include the respective annotation-based features in the protein representation, namely,

No-PROSITE-GO, No-PROSITE, and No-GO. All the scores in Tables 3.2 and 3.3 ob-

tained using inter-dependencies are higher than those obtained by using SVMs alone

that do not utilize inter-dependencies. All differences in Table 3.2 and those corre-

sponding to No-PROSITE in Table 3.3 are statistically significant (p� 0.001), as mea-

sured by the 2-sample t-test [21] when running over the PROSITE-GO, No-PROSITE,

and No-GO versions of the dataset.

Table 3.3 shows that location inter-dependencies improve multi-location predic-

tion even when annotation-based features, which utilize PROSITE or GO, are not in-

cluded in the feature set representing the protein. Furthermore, we see from Tables 3.2

and 3.3 that the performance of the BNCs do not deteriorate substantially when run-

ning over dataset versions that do not include various annotation-based features. Thus,

BNCs show robustness to the presence/absence of annotation-based features.

Table 5.4 shows per location prediction results obtained by our system when

running over the PROSITE-GO version of the dataset for locations that are associated

with multi-localized proteins: cytoplasm (cyt), extracellular space (ex), nucleus (nu),

membrane (mem), and mi (mitochondrion), on the combined dataset of both single- and

multi-localized proteins. We don’t report results for endoplasmic reticulum here as the

number of multi-localized proteins associated with this location is relatively very small.

For each location si, we show standard precision (Pre-Stdsi) and recall (Rec-Stdsi) as

well as Multilabel-Precision (Presi) and Multilabel-Recall (Recsi). The table shows

values for each of the measures obtained by the SVMs, which do not capture location

inter-dependencies, and by the BNCs, which utilize location inter-dependencies. For

a few locations, such as cytoplasm and membrane, the Multilabel-Precision (Presi)

decreases when using the inter-dependencies. Moreover, the value of this measure does

not improve for locations with relatively a large number of proteins. We note that

our system assigns each protein to all locations whose probability exceeds 0.5 and thus

to more locations that the protein actually localizes, resulting in a lower precision.
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Table 3.4: Per location prediction results for the combined set of single- and multi-
localized proteins on the PROSITE-GO version of the dataset, averaged over 25 runs
of 5-fold cross-validation. Results are shown for the five locations si that have the
largest number of associated proteins (the number of proteins per location is given
in parenthesis): cytoplasm (cyt), extracellular space (ex), nucleus (nuc), membrane
(mem), and mitochondrion (mi). The table shows standard precision (Pre-Stdsi) and
recall (Rec-Stdsi), as well as Multilabel-Precision (Presi) and Recall (Recsi), for each
location si. The various per-location scores are obtained using the SVMs and using
the BNCs. For each location and measure, the highest of the values obtained from the
two methods is shown in boldface. Standard deviations are shown in parentheses.

cyt (3785) ex (1405) nuc (2952) mem (1824) mi (870)

Pre-Stdsi (SVMs) 0.84 (± 0.01) 0.87 (± 0.02) 0.79 (± 0.02) 0.93 (± 0.01) 0.90 (± 0.03)

Pre-Stdsi (BNCs) 0.84 (± 0.01) 0.91 (± 0.02) 0.79 (± 0.03) 0.90 (± 0.01) 0.87 (± 0.03)

Rec-Stdsi (SVMs) 0.85 (± 0.01) 0.64 (± 0.02) 0.72 (± 0.02) 0.79 (± 0.02) 0.62 (± 0.03)

Rec-Stdsi (BNCs) 0.86 (± 0.01) 0.65 (± 0.02) 0.74 (± 0.03) 0.80 (± 0.02) 0.66 (± 0.03)

Presi (SVMs) 0.82 (± 0.01) 0.89 (± 0.02) 0.83 (± 0.01) 0.92 (± 0.01) 0.87 (± 0.03)

Presi (BNCs) 0.81 (± 0.02) 0.91 (± 0.02) 0.83 (± 0.01) 0.90 (± 0.01) 0.89 (± 0.02)

Recsi (SVMs) 0.78 (± 0.01) 0.72 (± 0.02) 0.77 (± 0.01) 0.76 (± 0.01) 0.68 (± 0.02)

Recsi (BNCs) 0.80 (± 0.01) 0.74 (± 0.02) 0.78 (± 0.02) 0.78 (± 0.01) 0.73 (± 0.02)
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Nevertheless, most of the differences are not highly statistically significant (p > 0.01),

as measured by the 2-sample t-test [21]. The Multilabel-Recall (Recsi) increases for

all locations with the use of inter-dependencies where the differences in most cases are

highly statistically significant (p� 0.001).

To demonstrate improved prediction performance of our system across different

locations, we examine the statistically-significant differences in the Multilabel-Recall for

cytoplasm (3785 proteins), membrane (1824), and peroxisome (157). The Multilabel-

Recall for cytoplasm (Reccyt) increases from 0.78 when classifying by SVMs without us-

ing inter-dependencies, to 0.80 when incorporating inter-dependencies. The Multilabel-

Recall for membrane (Recmem) increases from 0.76 to 0.78 under similar conditions.

Even for a location like peroxisome that has fewer associated proteins, the Multilabel-

Recall increases from 0.37 using simple SVMs to 0.65 using our classifier. Our analysis

demonstrates the advantage of using location inter-dependencies for inferring protein

locations, not just for locations that have a large number of associated proteins but

also for locations that are associated with relatively few proteins.

3.4 Summary and Directions for Improvement

We presented a collection of Bayesian network classifiers, taking advantage of

location inter-dependencies, to provide a new method for predicting possible multiple

locations of proteins. The results demonstrate that the performance of our system is

comparable to the current best performing multi-location predictor YLoc+[10]. The

latter indirectly addresses dependencies by creating a class for each multi-location com-

bination. Our results also show that utilizing inter-dependencies significantly improves

the performance of the location prediction system, with respect to SVM classifiers that

do not use any inter-dependencies. Moreover, this improved performance due to the use

of location inter-dependencies is maintained even when the protein representation does

not include PROSITE patterns-based features or GO-based features, thus exhibiting

robustness to the presence/absence of annotation-based features.
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This study constituted a first investigation into the benefit of directly modeling

and using location inter-dependencies. While the location inter-dependencies were only

learned based on one-time estimates of location values, the results already show much

improvement with respect to the baseline SVM classifiers.

In the next chapter, we present a methodology that learns structure and pa-

rameters of the model using iterative techniques. As predicting multiple locations of

proteins is a special case of multi-label classification, we present a generative model to

address the problem of multi-label classification.
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Chapter 4

MULTI-LABEL CLASSIFICATION: USING LABEL
INTER-DEPENDENCIES VIA A GENERATIVE MIXTURE MODEL

Improving on the initial location prediction method introduced in the previous

chapter, we present here a new approach for multi-label classification. Due to the

general applicability of the new approach, we anticipate our work to have impact well

beyond protein location prediction, in domains such as scene identification and text

classification.

The new method utilizes a probabilistic framework that represents

inter-dependencies among labels, and unlike our preliminary method presented in

Chapter 3, captures intricate dependencies between features and labels as well. When

an instance is associated with multiple labels, a feature-value of the instance may de-

pend only on a subset of these labels and thus be conditionally independent of the

others given the label-subset. Our initial system as well as current MLC systems do

not account for such conditional independence. In this chapter, we present a proba-

bilistic generative model that captures dependencies among labels as well as between

features and labels, by means of a Bayesian network. We introduce the concept of

label dependency sets as a basis for a new mixture model that represents conditional

independencies of features from labels given subsets of inter-dependent labels.

In Section 6.1, we provide the motivation for developing a new and improved

method for MLC. In Section 4.2, we introduce relevant notations and present our prob-

abilistic generative model. Section 4.3 discusses procedures used for learning structure

and parameters of the model, and inference techniques applied for multi-label classifica-

tion. Finally, Section 5.3 summarizes our contributions and outlines future directions.
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4.1 Motivation

Multi-label classification (MLC) associates instances with possibly multiple la-

bels, in contrast to single-label classification, where each instance is associated with a

single label. While simple approaches for MLC (e.g. [105]) transform the task into one

or more single-label classification task(s), more advanced approaches (e.g. [1, 22, 62,

77, 79, 108, 119, 120]) capture dependencies among labels. Notably, in the context of

MLC, a feature-value of an instance typically depends on some subset of the instance

labels and thus may be conditionally independent of the other labels given this subset.

For example, the grade feature value of college students who are associated with the

two labels, Topped-Exams and Secured-Jobs is typically High, regardless of any other

labels. Furthermore, dependence of a feature-value on a label is likely to suggest its

dependence on other inter-dependent labels. Current systems do not account for such

intricate dependencies between feature values and labels. Moreover, performance of

current methods leaves much room for improvement. Our hypothesis is that explic-

itly modeling the dependencies between feature values and inter-dependent labels, as

part of the classifier model, can support a more accurate assignment of multi-labels to

instances.

We thus present a probabilistic generative model that captures dependencies

among labels as well as between features and labels, by means of a Bayesian network.

We introduce a mixture model to represent conditional independencies of features

from labels given subsets of inter-dependent labels, and further develop a multi-label

classifier. Unlike previous approaches, our system uses an iterative process to infer

values for multiple labels simultaneously. In each iteration, the Bayesian network is

modified to reflect inter-dependencies among the most recently inferred label values;

the accuracy of the updated label assignments is thus improved by capturing specific

feature-label correlations and dependencies.

In the next section, we describe the model framework, and present our proba-

bilistic generative model.
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4.2 A Dependency-Based Mixture Model for Multi-Label Data

Let D be a dataset containing m instances, and C={c1, . . . , cq} be a set of q

class-labels. Each instance in D is associated with a subset of labels. As others have

done before in the context of multi-label classification (MLC) [1, 22], we represent an

instance I ∈D as a feature vector, ~f I=〈f I
1 , . . . , f

I
d 〉, and I’s labels as a label vector,

~lI =〈lI1, . . . , lIq〉. Here d is the number of features, and lIi =1 if instance I is associated

with label ci, l
I
i =0 otherwise. Each feature value fj is viewed as a value taken by a

feature random variable Fj, and each label-indicator value li is viewed as a value taken

by a label random variable Li. The task of multi-label classification thus amounts to

developing a classifier that takes as input an instance represented by a feature vector,

and outputs a q-dimensional label vector.

4.2.1 Model Framework

We use a Bayesian network framework to model inter-dependencies among labels

as well as between features and labels. Each node represents either a label variable Li

(1 ≤ i ≤ q) or a feature variable Fj (1 ≤ j ≤ d), and each directed edge indicates a

dependence relationship between a pair of variables.

Representing label inter-dependencies

In the context of multi-label classification, labels may be directly correlated

with one another, regardless of their association with any specific instance. For exam-

ple, drivers that are labeled as Speeding are also likely to be labeled Accident-Prone,

regardless of any specific driver characteristics (features). We represent each uncon-

ditional dependence between a pair of labels ci and cj as a directed edge from label

variable Li to variable Lj. Figure 4.1 shows an example Bayesian network structure

we learn over label variables in the context of the Emotions dataset [103], where in-

stances are songs and labels are emotions. A directed edge in the figure, specifically,

from Amazed-Surprised to Sad-Lonely represents the assertion that knowing that an

instance is associated with the label Amazed-Surprised influences the level of belief

about the instance’s association with the label Sad-Lonely.
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L1

Relaxing-
Calm

L2

Amazed-
Surprised

L3

Angry-
Aggressive

L4

Quiet-
Still

L5

Sad-
Lonely

L6

Happy-
Pleased

Figure 4.1: An example Bayesian network structure over labels (or emotions) that we
learn using the Emotions dataset [103]. Nodes represent random variables; the label
associated with each variable is shown below the corresponding node. Directed edges
represent dependencies between the variables.
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A label may often depend on a small set of a few labels while being conditionally

independent of other labels given this set. To continue the previous example, the label

Accident-Prone is conditionally independent of the label New-Driver given the label

Speeding. To capture such conditional independencies, we introduce the concept of

label dependency sets. A dependency set for a label ci is a minimal set of labels,

ci1 , . . . , cim such that knowing an instance’s association with each of the labels cij in

the set is sufficient to infer the likelihood of the instance to be associated with ci. We

utilize the Bayesian network framework to obtain a practical representation of a label

dependency set. The network structure captures both direct dependencies between

pairs of labels and conditional independencies among certain labels given the others.

More specifically, each label variable Li directly depends on its parents Pa(Li) while

being conditionally independent of its non-descendants given Pa(Li) (for additional

details see [81]); the joint distribution of the label variables is thus given by:

Pr(L1, . . . , Lq)=

q∏
i=1

Pr(Li|Pa(Li)) . (4.1)

Employing the above conditional independence, we refer to a label variable Li and its

parents in the network as the label dependency set for Li. Thus, for each variable Li

(1 ≤ i ≤ q), we define a label dependency set:

LSi ={Li} ∪ Pa(Li) . (4.2)

Representing dependencies between features and labels

An instance’s association with certain labels is clearly correlated with the in-

stance feature values. Additionally, the value of a feature may be correlated with

multiple labels and not just with one. For example, in the Emotions dataset [103] dis-

cussed earlier, where instances are songs that are represented using rhythm and tone

features and labels are emotions, the value of the tone feature is typically Low when a

song is labeled as Sad-Lonely while it is typically High when a song is simultaneously

labeled as both Sad-Lonely and Amazed-Surprised. As another example in a protein

database derived from DBMLoc [121], where instances are proteins represented using
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amino-acid composition based features and labels are subcellular locations of proteins,

the number of residues of amino acid Tryptophan (Trp), is typically High for a protein

that localizes to Membrane only; such an abundance agrees with the well-established

importance of Trp’s role in membrane proteins [82]. In contrast, the number of Trp

residues for a protein that localizes to both Membrane and Cytoplasm is much lower.

As explained earlier while introducing label dependency sets (LDS), the as-

sociation of an instance with certain labels typically provides information about its

association with other labels. For instance, a song that has a High tone feature value

and is labeled as Amazed-Suprised is likely to also be labeled as Sad-Lonely. We rep-

resent the dependence of a feature, Fj, on a subset of inter-dependent labels, LSi (to

which we refer as a label dependency set) by plotting directed edges connecting each

label variable in the set with the feature variable. We thus capture the conditional

dependence among labels in the set LSi given the feature Fj. Figure 4.2 extends the

example presented earlier in Figure 4.1. The dashed arrows from each label, L2, L4, L5

(i.e., Amazed-Surprised, Quiet-Still, and Sad-Lonely), to the feature, F1 (i.e. Tone) in

the new figure capture the dependence of the feature on the subset of inter-dependent

labels comprising the label L5 and its parents, L2 and L4; this label subset is referred

to as the label dependency set, LS5 ={L5} ∪ Pa(L5).

Moreover, when an instance is associated with multiple labels, a feature-value

of the instance may depend only on a subset of these labels. As an example, the tone

feature value of a song that is labeled as Sad-Lonely and Amazed-Suprised is likely to

be High regardless of the song’s association with any other labels. That is, the tone

is conditionally independent of all other labels, given the two labels Sad-Lonely and

Amazed-Suprised. By explicitly representing dependence between a feature and the

labels in an LDS as discussed above, our model captures conditional independence of

the feature from all other labels given the LDS.

We next present a probabilistic generative model that captures the label inter-

dependencies and dependencies between features and labels discussed above.
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L1 L2 L6L5L4L3

F1

Amazed-

Surprised
Quiet-Still

Sad-

Lonely

Tone

Parents of L5

Pa(L5)
Label Dependency Set for L5

LS5 = {L5} U Pa(L5)

= {L2, L4, L5}

Figure 4.2: An example Bayesian network structure over labels (or emotions) and
features (or rhythms/tones) that we learn using the Emotions dataset [103]. (This fig-
ure extends the example shown in Figure 4.1.) Nodes represent label/feature random
variables. The feature associated with the variable F1 is shown below the correspond-
ing node. Label variables corresponding to nodes with thick borders (i.e. L5 and
its parents, L2 and L4) make up the label dependency set LS5; the label associated
with each variable in the set is shown below the corresponding node. Solid directed
edges represent inter-dependencies among the labels. Dashed directed edges capture
dependence between the feature, F1, and the subset of inter-dependent labels in LS5.
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4.2.2 Model Description

Generative models have been used before for multi-label classification (MLC) [62,

79, 108], typically for classifying text. While these models address dependencies among

labels, they do not represent intricate dependencies between feature values and sub-

sets of labels. In contrast, our proposed model captures conditional independencies of

features from labels by directly representing the dependencies between feature values

and label subsets. (In addition, our model is developed in the general context of MLC

— not limited to text.) We next discuss the instance generation process, based on a

Bayesian network structure, and provide further detail about our generative model.

The generation process comprises two steps:

(A) Labels assignment: To generate an instance I, its class-labels are first

determined, i.e., a label value lIi is assigned to each label variable Li (1 ≤ i ≤ q). We

view each label assignment as a Bernoulli event, where lIi=1 when I is associated with

the label ci, and lIi=0 otherwise. Based on the Bayesian network structure, the proba-

bility of Li to be assigned 1 is denoted as: αi = Pr(Li =1|Pa(Li)) while its probability

to be assigned 0 is 1−αi. The order in which label values are assigned is based on the

topological order of label variables, Lt1, . . . , Ltq in the Bayesian network. The assigned

label values form a label-vector ~lI for instance I.

(B) Features assignment: Based on the label-vector ~l, a label dependency

set (LDS) LSFj
is selected for each feature Fj. We expect this set to constitute a small

subset of labels such that Fj’s value depends only on the label subset. We introduce a

Multinomial random variable λFj that takes on a value k ∈ {1, . . . , q} with probability:

θ
~l
j,k = Pr(λFj =k|~l); λFj =k indicates the selection of the k’th LDS. We denote this set

as: LSk = {Lk} ∪ Pa(Lk). We refer to θ
~l
j,k as the mixture parameter as it models the

influence of knowing the labels in each LDS LSk on the belief of the value of feature Fj.

The value for feature Fj is thus selected based on the values taken by the

random variables in the set LSk, denoted as VLSk
. We view each feature value se-

lection as a Multinomial event, where the probability of Fj to take on a value v is:
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φj,k(v) = Pr(Fj =v|λFj =k,VLSk
). Here φj,k(v) denotes the conditional probability of

feature Fj to take on the value v given the label dependency set LSk. In the model, all

feature variables are assumed to take on discrete values. We thus discretize each real-

valued feature in the datasets used for our experiments, as done by earlier studies [1]

(see Chapter 5 for further details regarding discretization). The selected values for all

features together form a complete feature-vector ~f I representing the instance I.

We view the assignment of label values using a coin-toss model, and view the

assignment of feature values based on two die-roll processes. For each feature, one die

roll is used to select an LDS, and another to select a value for the feature. A summary

of the generative process for an instance I is shown in Figure 4.3: First, biased label

coins are tossed in the order Ct1, Ct2, . . . , Ctq (as shown in the top of box A in the

figure). If the coin Cti (1 ≤ i ≤ q) comes up Heads, the label variable Lti is set to 1

(i.e. lIti =1); otherwise Lti is set to 0 (i.e. lIti =0). The probability of Cti to come up

Heads is αi. Collectively, this results in choosing the label-vector ~lI (box A, bottom).

Next, for each feature Fj (1 ≤ j ≤ d), a biased label vector die D
Fj

~lI
is rolled;

if the die lands with the k’th face up, the LDS LSk is selected (box B, top). The

probability of D
Fj

~lI
to land with the k’th face up is θ

~l
j,k. Based on the selected set LSk,

a biased feature die D
Fj

k is rolled; if the die lands with the v’th face up, the feature

value f I
j is set to v (box B, bottom). The probability of D

Fj

k to land with the v’th face

up is φj,k(v).

We note that the process of assigning feature values enforces several indepen-

dence relationships. Having selected LSk as the label dependency set, we denote by Lk

the set of all label variables other than {Lk} ∪ Pa(Lk), i.e., Lk = {L1, . . . , Lq} − LSk.

The value selection — for each feature Fj — is conditionally independent of all labels

in Lk given LSk. Furthermore, the selected feature-value for Fj is also conditionally

independent of all other feature values given the label vector ~lI .

Formally stated, the independence assumptions enforced by our model are:

(i) The feature values f I
1 , . . . , f

I
d of an instance I, are conditionally independent
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Figure 4.3: The generative process for an instance I. First, label coins, Ct1, . . . , Ctq,
are tossed (box A, top); based on the outcomes, label values, lIt1, . . . , l

I
tq, are assigned.

Collectively, these values make up the label-vector ~lI (box A, bottom). For each feature

Fj, the label-vector die D
Fj

~l
is then tossed to select a label dependency set (box B, top);

based on the label values in the selected set LSk, the feature die D
Fj

k is tossed to select
a feature-value f I

j (box B, bottom).

46



of each other given the instance’s label vector ~lI :

Pr(~f I |~lI) =
d∏

j=1

Pr(f I
j |~lI) . (4.3)

Although this assumption over-simplifies feature inter-dependencies, it has been proven

effective [1, 119].

(ii) Given the values taken by a label variable Lk and its parents Pa(Lk) in a se-

lected label dependency set LSk for an instance I, a value f I
j of a feature is conditionally

independent of all other labels of I:

Pr(Fj =f I
j |λFj =k, L1 = lI1, . . . , Lq = lIq) =

= Pr(Fj =f I
j |λFj =k, Lk = lIk,VPa(Lk)) . (4.4)

Figure 4.4 shows a graphical representation of the generative mixture model

presented above. Nodes represent random variables, and directed edges represent de-

pendencies among variables. Label and feature random variables are denoted as circles.

In contrast, the label dependency set, LSk is denoted by a square as its value is de-

terministically assigned based on values taken by the label variable Lk and its parents

Pa(Lk). Notably, the node for LSk represents a set, and as such the directed edge from

LSk to the feature Fj is a short-hand for multiple edges connecting each label variable

in LSk with Fj as described in Section 4.2.1. Variables representing labels and features

are observed, i.e., their values are provided within the training dataset. These variables

are shown as shaded in the figure. The value of the variable λFj is governed by the

mixture parameter θ
~l
j and is not given as part of the dataset. As such, it is latent and

shown as unshaded.

Under all the above mentioned independence assumptions and based on the

structure of our generative model, the joint probability of the label vector ~lI and the

feature vector ~f I is expressed as:

Pr(~lI , ~f I) = Pr(~lI) Pr(~f I |~lI) = (Chain rule)

=

q∏
i=1

Pr(lIi |VPa(Li)) Pr(~f I |~lI) = (Eq. 4.1)
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L1 L2
. . . Lq

λFj

θ
~l
j,k

LSk Fj

j = 1, . . . , d

Figure 4.4: Bayesian network representing the generative mixture model of multi-
label data. Nodes represent random variables. Directed edges represent dependencies
between variables. Label and feature variables are shown as circles, and the label
dependency set (LDS) is shown as a square. Shaded nodes represent observed variables
and unshaded nodes represent latent variables. The variable λFj takes on a value k

with a probability θ
~l
j,k, which indicates the selection of an LDS LSk. The rectangular

plate notation is used to represent replication of features and LDS with the same
dependencies.
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=

q∏
i=1

Pr(lIi |VPa(Li))×
d∏

j=1

Pr(f I
j |~lI) = (Eq. 4.3)

=

q∏
i=1

Pr(lIi |VPa(Li))×
d∏

j=1

q∑
k=1

Pr(f I
j , λ

Fj =k|~lI) =

(marginalizing

over all possible

label dependency sets)

=

q∏
i=1

Pr(lIi |VPa(Li))×
d∏

j=1

q∑
k=1

Pr(f I
j |λFj =k,~lI) Pr(λFj =k|~lI) = (Chain rule)

=

q∏
i=1

Pr(Li = lIi |VPa(Li))

×
d∏

j=1

q∑
k=1

θ
~l
j,k Pr(Fj =f I

j |λFj =k, Lk = lIk,VPa(Lk)) , (Eq. 4.4)

(4.5)

where each term corresponds to a parameter of the model as described below.

(a)
∏q

i=1 Pr(Li = lIi |VPa(Li)) is the factorization of the joint probability

Pr(~lI)=Pr(L1 = lI1, . . . , Lq = lIq), based on the individual q label values, given the con-

ditional independencies encoded in the network;

(b) Pr(Fj =f I
j |λFj =k, Lk = lIk,VPa(Lk)) denotes the conditional probability of a

feature value f I
j (1 ≤ j ≤ d, where d is the total number of features), given the values

taken by a label variable Lk and its parents Pa(Lk); Lk ∪ Pa(Lk) comprises the label

dependency set LSk (under the current generative mixture model);

(c) θ
~lI

j,k denotes the probability that the label dependency set LSk is selected

given a label-vector ~lI for a feature Fj.

4.3 Model Learning and Inference

We next introduce a procedure for learning the structure and the parameters of

our generative model, and present an inference procedure for multi-label classification.

4.3.1 Structure and Parameter Learning

We employ an iterative procedure to learn the Bayesian network structure,

specifically the structure of inter-dependencies among the label nodes shown at the
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top of Figure 4.4, and to estimate the model parameters shown on the RHS of Equa-

tion 4.5. This iterative procedure is summarized in the pseudocode shown in Figure 4.5.

In each iteration, we first learn a label inter-dependency structure using the

BANJO package [96]; we then estimate the model parameters through an Expectation

Maximization process; following that, we infer multi-label values for instances in the

training set. The inter-dependency structure is learned in the first iteration from the

training-set labels, and in subsequent iterations, from the most recently inferred label

values. The model parameters are estimated throughout the learning procedure using

the training-set labels.

We use this iterative process as it modifies the network structure to reflect inter-

dependencies among the most recently inferred label values. We expect such a network

to allow the system to capture specific feature-label correlations and conditional inde-

pendencies, which in turn, may improve the accuracy of the updated label assignments.

As shown in the experimental results reported in the next chapter, this assumption is

indeed supported by the improved performance of our system.

At the end of each iteration we assess the classification performance of our

model over the training set; the iterative procedure is terminated when there is no

improvement in performance between two successive iterations. For assessing model

performance, we utilize the F1-score metric when using a database of multi-localized

proteins, and the Hamming-Loss when using other multi-label datasets; these perfor-

mance measures are described later in Chapter 5, Section 5.1. The number of iterations

needed to learn our model, which we denote by t, may vary across different datasets

and also depends on the number of class-labels q; in our experiments, the number of

iterations did not exceed 10.

We use maximum likelihood estimation to compute the two sets of observed

model parameters (shown in Equation 4.5): (a) The conditional probability of a label lIi

given the values taken by Li’s parents, αi = Pr(Li = lIi |VPa(Li)) and (b) The conditional

probability of a feature value f I
j given the values taken by all variables in each label

dependency set (LDS), LSk (1 ≤ k ≤ q), φj,k(f I
j ) = Pr(Fj =f I

j |λFj =k, Lk = lIk,VPa(Lk)).
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1 Initialize Bayesian network structure using the BANJO package [96], based

on training-set labels;

2 Initialize model parameters, αi and φj,k(v) using maximum likelihood

estimation, and θ
~l
j,k using EM algorithm, based on training-set labels;

3 Set initial inferred label values (i.e. each lIi , i = 1, . . . , q) for each instance

I∈D to 0;

4 Set t to 0 and P to Hamming accuracy (or F1-score) of initial model over

training set;

5 while True do

6 Update Bayesian network structure using BANJO, based on most

recently inferred label values;

7 Update model parameters, αi, φj,k(f I
j ), and θ

~l
j,k, based on training-set

labels;

8 while True do

9 Infer values taken by random variables in each label dependency set

LSk (see Figure 4.6 for details);

10 if Hamming accuracy (or F1-score) of model does not improve then

11 break;

12 end

13 end

14 Set P
′

to Hamming accuracy (or F1-score) of updated model over

training set;

15 if P
′ ≤ P then

16 break;

17 end

18 P ← P
′
; t← t+ 1;

19 end

Figure 4.5: Summary of model learning.
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To estimate the latent parameters, namely, the probability of each label dependency

set, LSk, θ
~l
j,k, for a given label vector ~l and a feature Fj, we developed an Expectation

Maximization algorithm [23]:

Expectation step: For each instance I, we compute the probability of each

LDS LSk, to be selected for feature Fj, that is, λFj =k, given I’s label vector ~l and

feature-value f I
j , as:

Pr(λFj =k|Fj =f I
j ,
~lI) =

θ
~lI

j,k Pr(Fj =f I
j |Lk = lIk,VPa(Lk))

q∑
k=1

θ
~lI

j,k Pr(Fj =f I
j |Lk = lIk,VPa(Lk))

.

Maximization step: Using the probabilities computed in the Expectation

step, we marginalize over all instances in the training set to re-estimate the mixture

parameter, θ
~l
j,k , for each feature Fj and label vector ~l as:

θ
~l
j,k =

∑
vj

∑
{I|~lI=~l,fI

j=vj}

Pr(λFj =k|Fj =f I
j ,
~lI) Pr(Fj =f I

j |~lI)

q∑
k=1

∑
vj

∑
{I|~lI=~l,fI

j =vj}

Pr(λFj =k|Fj =f I
j ,
~lI) Pr(Fj =f I

j |~lI)
,

where vj takes on all possible values for feature Fj.

We denote by ~lILSk
the restriction of the label vector ~lI to only those labels

that are in the set LSk. The conditional probability of a feature Fj to be assigned a

value v given the values taken by the label variables in the label dependency set, LSk,

Pr(Fj =v|VLSk
), is calculated as:

Pr(Fj =v|Lk = lk,VPa(Lk)) = Pr(Fj =v|VLSk
) =

=

∑
{I|~lILSk

=~lLSk
,fI

j=v}

Pr(λFj =k|Fj =f I
j ,
~lI) Pr(Fj =f I

j |~lI)

∑
vj

∑
{I|~lILSk

=~lLSk
,fI

j=vj}

Pr(λFj =k|Fj =f I
j ,
~lI) Pr(Fj =f I

j |~lI)
.

Throughout the estimation process, we apply Laplace smoothing [81] by adding

fractional pseudocounts to observed counts of events to all the parameters to avoid
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overfitting. The process of alternating between the Expectation the Maximization

steps is carried out until convergence is reached. To determine convergence, we test

that changes to the latent parameter values between iterations are smaller than 0.05.

We next present the inference procedure used by our system to assign multiple

labels to instances.

4.3.2 Probabilistic Multi-label Classification

Probabilistic inference in the context of multi-label classification (MLC) amounts

to assigning the most probable label vector ~lI to an instance I based on its feature vec-

tor ~f I . Inferring the conditional probability, Pr(~l|~f) for each label vector ~l requires 2q

calculations, where q denotes the number of labels. To avoid this exponential number

of calculations, some current probabilistic methods for MLC assign a value to each

label li (1 ≤ i ≤ q) such that the conditional probability Pr(li|~f I) is maximized (see

e.g. [1]). Others estimate the joint probability of the labels, Pr(l1, . . . , lq|~f I) and even-

tually infer each label value based on estimates of other labels (see e.g. [22]; [119]).

These methods typically infer each label value by utilizing a fixed set of feature-label

dependencies captured by their respective models.

In contrast, our system iteratively infers values for sets of multiple labels by cap-

turing in each iteration specific feature-label dependencies based on the most recently

inferred label values. We assign values to label variables in each label dependency

set (LDS) LSi (see Section 4.2.1 for the LDS definition), such that the conditional

probability Pr(VLSi
|~f I) is maximized.

To ensure that our method is practically applicable, we set a limit on the max-

imum number of parents, p, per label variable in the network. In the experiments

described here, we restrict the dependency-set size to three (i.e. we set p=2) because

the mean number of labels per dataset is at most three; the number of inference cal-

culations is thus 2p+1q=23q=8q, where q ranges between 6 and 27. To gauge the

influence of changes to the values of p on classifier performance, we ran experiments by

varying the maximum number of parents in the range 1-3 using Emotions and Scene
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datasets, which have a relatively low number of labels. While increasing the value of p

leads to a notable increase in the Subset accuracy measure of the classifier, there is no

significant improvement in the classifier’s Hamming accuracy measure (see Chapter 5,

Section 5.1 for details about these measures). We anticipate that higher values of p

can further improve classifier performance when running experiments on datasets with

higher numbers of labels.

As our system considers multiple dependency structures between features and

labels, we expect that setting a relatively low bound on the dependency-set size con-

sidered in each structure, as we do here, will still allow the system to capture the

significant dependencies and independencies among features and label subsets, even in

larger datasets. Moreover, unconditional direct dependencies are not the only ones our

model captures. While each label depends on two parent-labels—thus conditionally

independent of other labels, indirect inter-dependencies are still captured throughout

the network structure. As demonstrated by the results presented in the next chap-

ter (Section 5.2), our utilization of label subsets of even a small size still significantly

improves the performance of our system compared to that of current systems.

Given a feature vector ~f I of an instance I, our task is to predict its label

vector ~lI , which involves assigning a 0/1 value to each of its labels lIi (1 ≤ i ≤ q).

According to our probabilistic model, since the value of each label variable Li depends

only on values of its parent nodes Pa(Li) in a Bayesian network setting, for each Li,

we infer the values of variables in the label dependency set, LSi = {Li}∪Pa(Li). To

infer these label values, we follow an iterative process, which is summarized in the

pseudocode shown in Figure 4.6. In each iteration, for all possible value assignments,

li and VPa(Li) to the label variable Li and its parents, respectively, we calculate the

conditional probability: Pr(Li = li,VPa(Li)|~f I ,VI
Li

).1 The value assignment to Li and to

its parents, Pa(Li), that maximizes this probability is used as their current estimates.

We note that label dependency sets do overlap, that is, the value of the same label

1 Recall that Li denotes the set of all label variables other than Li and Pa(Li) and
that the values taken by the variables in Li is denoted as VLi

.
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1 foreach label dependency set LSi = Li ∪ Pa(Li) do

2 foreach value assignment to Li and to Pa(Li) do

3 Calculate conditional probability: Pr(Li = li,VPa(Li)|~f I ,VI
Li

)1;

4 end

5 Select value assignment that maximizes the above conditional

probability;

6 Update inferred values for labels in LSi if classification performance

over training set improves;

7 end

Figure 4.6: Summary of label inference.
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variable Li may be inferred multiple times, once for each dependency set in which it

participates. As such, once the value of Li is inferred within an iteration, it is only

going to be updated during the same iteration if this improves the overall predictive

performance of the model. While we currently use the standard inference techniques for

Bayesian network models [81], there is much room for optimization by using methods

for approximate inference that consider only the likely label combinations and fewer

label sets, which we shall pursue in the future.

4.4 Discussion

We presented a probabilistic generative mixture model that captures inter-

dependencies among labels as well as dependencies between features and labels. Unlike

other approaches for multi-label classification (MLC), our model represents conditional

independencies of feature values from labels given subsets of other labels, particularly

by introducing the concept of label dependency sets.

While employing relatively small label dependency sets, we show in the next

chapter through our experiments that the performance of our system can still improve

upon that of other current MLC systems. In the future, we plan to develop approxi-

mate methods for inference by considering only the likely label combinations and fewer

subsets of labels to enable the practical use of larger label dependency sets.

In the next chapter, we report results obtained by employing our generative

model to perform multi-label classification using a diverse collection of datasets.
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Chapter 5

USING THE GENERATIVE MIXTURE MODEL FOR IMPROVED
MULTI-LABEL CLASSIFICATION

Employing the probabilistic generative model introduced in the previous chap-

ter, we present here experiments and results over several multi-label datasets. We first

apply the MLC system based on our model to predict locations of proteins by utilizing

a dataset of multi-localized proteins. We call the location prediction system as MDLoc.

To demonstrate the wide applicability of the model in the general context, we then ap-

ply the MLC system to a number of other MLC tasks. For the latter experiments, we

use a collection of four standard multi-label datasets described in Section 5.1.

Section 5.1 provides details about the multi-label datasets we use and about the

performance evaluation measures. In Section 5.2, we discuss the experimental results.

Finally, Section 5.3 concludes and outlines future directions.

5.1 Datasets and Performance Measures

We introduce here two sets of experiments whose results are presented in Sec-

tion 5.2. In the first set, we employ a protein dataset previously used by Briesemeister

et al. [10] to compare the performance of multi-location prediction systems. In the

second set, we utilize a collection of multi-label datasets previously used by Alessandro

et al. [1] to assess the performance of multi-label classification (MLC) systems. Details

of these experiments are provided next.

For the first set of experiments, we use the same protein dataset that we al-

ready presented earlier in Chapter 3. The dataset contains single-localized proteins,

originally published by Höglund et al. [45], and a collection of multi-localized proteins,

originally published as part of the DBMLoc dataset [121]. Each protein is represented
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by 30 features, and the 9 possible subcellular locations correspond to 9 class-labels. We

compare the performance of our system to that of state-of-the-art multi-location predic-

tion systems as reported by Briesemeister et al. [10], in their assessment of the YLoc+

system [10], including Euk-mPLoc [14], WoLF PSORT [47], and KnowPredsite [57].

According to the methods used in the previous assessment [10], we employ minimal

entropy partitioning technique [29] for feature discretization, and stratified 5-fold cross-

validation for training/testing the classifiers.

In the second set of experiments, we use the following multi-label datasets:

Emotions (72 features, 6 labels), Scene (294 features, 6 labels), Yeast (103 features, 14

labels), and Genbase (1186 features, 27 labels). We assess the performance of our system

by comparing it with that of current MLC systems reported by Alessandro et al. [1] in

their study including: ensemble of Bayesian networks, namely, EBN-J / EBN-M [1],

ensemble of chain classifiers [77] using Näıve Bayes (denoted ECC-NB) and using J48

(denoted ECC-J48 ), and Binary Relevance using Näıve Bayes (denoted BR-NB) [105].

As per the methodology used in the previous study of MLC systems [1], we discretize

each real-valued feature into four bins, select features using a correlation-based feature

selection technique [111], and employ the stratified 10-fold cross-validation for evalu-

ating system performance. Table 5.1 summarizes the main distinguishing properties of

the compared systems.

Under our current unoptimized implementation, wall clock time for model learn-

ing using training instances and inferring multi-labels of test instances combined is on

the order of several minutes for datasets with a few labels, (lowest being ≤10 minutes

for Emotions), and on the order of hours for datasets with more labels, (highest being

∼20 hours for Yeast). We note that while the run-time of the prototypical system

grows quadratically with the number of labels, it grows only linearly with the dataset

size. For example, the run-time for the protein multi-location dataset (containing 8503

instances, with only 9 labels) is about 0.25 of the run-time for the smaller Yeast dataset

(2417 instances) that has 13 labels.

Throughout the experiments, we use the exact same evaluation measures applied
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Table 5.1: Characteristics of current systems for multi-label classification.

MLC system
Captures

dependencies
among labels

Captures conditional
independence b/w labels

and features (given
subsets of other labels

Employs a
generative

model
for data

Our system Using a
probabilistic

graphical model

Using label
dependency sets

and a mixture model

Using
Bayesian
network

EBN-M/EBN-J
Do not capture
such conditional

independenceECC-NB Using
classifier
chains

Using näive
Bayes

ECC-J48 No generative
model used

BR-NB No label inter-dependencies
represented

Using näive
Bayes
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in the corresponding previous work as described next. For a given instance I, let

M I ={ci | lIi =1, where 1 ≤ i ≤ q} be the set of labels associated with I according to

the dataset, and let M̂ I ={ci | l̂Ii =1, where 1 ≤ i ≤ q} be the set of labels assigned to

I by a classifier, where each l̂Ii is a 0/1 label assignment. The Hamming (Hacc) and the

Subset (Sacc) accuracies used for the evaluation of multi-label prediction systems [1]

are computed as:

Hacc =1− 1

|D|
×

∑
I∈D

1

|C|
|M I∆M̂ I | and Sacc =

1

|D|
×
∑
I∈D

I(M I =M̂ I) ,

where ∆ is the symmetric difference between M I and M̂ I . The Hamming-Loss is thus

given by: 1 −Hacc. Additionally, the Multi-label accuracy (MLacc) and F1-label score

used for evaluating multi-location prediction systems [10] are computed as described

earlier in Chapter 3:

MLacc =
1

|D|
×

∑
I∈D

|M I ∩ M̂ I |
|M I ∪ M̂ I |

and F1-label=
1

|C|
×

∑
ci∈C

2× Preci ×Recci
Preci +Recci

,

where Preci and Recci for label ci are adapted measures of multi-label precision and

recall proposed by Briesemeister et al. [10], and are computed as:

Preci =
1

|{I∈D|ci∈M̂ I}|
×

∑
I∈D|ci∈M̂I

|M I ∩ M̂ I |
|M̂ I |

, and

Recci =
1

|{I∈D|ci∈M I}|
×

∑
I∈D|ci∈MI

|M I ∩ M̂ I |
|M I |

.

Furthermore, to evaluate the correctness of predictions made for each location, the

standard precision and recall measures for location si also presented earlier in Chap-

ter 3, denoted by Pre-Stdsi and Rec-Stdsi , are defined as:

Pre-Stdsi =
TP

TP + FP
and Rec-Stdsi =

TP

TP + FN
,

where TP (true positives) denotes the number of proteins that localize to si and are

predicted to localize to si, FP (false positives) denotes the number of proteins that do

not localize to si but are predicted to localize to si, and FN (false negatives) denotes

the number of proteins that localize to si but are not predicted to localize to si.
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Next, we report results obtained by employing our generative mixture model to

assign multiple labels to instances using the above datasets.

5.2 Classification Results

We present in this section two sets of results. The first set of results was obtained

based on the protein multi-location dataset, and the second set was obtained using the

standard multi-label datasets.

5.2.1 Protein Multi-location Prediction

We compare the performance of our system that is based on the generative model

we presented in Chapter 4 (denoted MDLoc) with that of existing location prediction

systems over the set of multi-localized proteins derived from DBMLoc [121]. We also

report experiments using the combined set of single and multi-localized proteins. Our

analysis includes an examination of the per-location break-up of the results. Addition-

ally, we focus on several specific examples demonstrating the benefit of incorporating

location inter-dependencies into our prediction system.

Table 5.2 shows the F1-label score and the accuracy obtained by MDLoc com-

pared to those obtained by current multi-location predictors (YLoc+, Euk-mPLoc,

WoLF PSORT, and KnowPredsite as reported by [10] in Table 3 ) and by our pre-

liminary system based on a collection of Bayesian network classifiers (denoted BNCs,

presented in Chapter 3), using the same set of multi-localized proteins and evaluation

measures. The table shows that MDLoc performs better than the current systems,

which includes a top-performing system, YLoc+, which captures dependencies specific

to location combinations in the training set. In contrast, MDLoc represents inter-

dependencies among locations by means of a Bayesian network as well as captures

dependencies between features and various combinations of inter-dependent locations.

To illustrate the use of location inter-dependencies, consider the protein Se-

curin which is included in our dataset and localizes to both the cytoplasm (cyt) and

the nucleus (nuc). Securin, initially present in the cytoplasm, translocates to the
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Table 5.2: Prediction results for multi-localized proteins only, averaged over 25 runs
of 5-fold cross-validation. The table shows overall F1-label scores and overall accuracy
(MLacc) obtained using MDLoc, YLoc+[10], Euk-mPLoc [14], WoLF PSORT [47], and
KnowPredsite [57]. All values except ours are taken directly from Table 3 in the paper
by Briesemeister et al. [10]; standard deviations are not available there. The highest
values are shown in boldface.

Location Prediction System F1-label MLacc

MDLoc 0.71 (± 0.02) 0.68 (± 0.01)

YLoc+ 0.68 0.64

Euk-mPLoc 0.44 0.41

WoLF PSORT 0.53 0.43

KnowPredsite 0.66 0.63
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Table 5.3: Per location prediction results for the same set of multi-localized proteins
shown in Table 5.2, averaged over 25 runs of 5-fold cross-validation. The table shows
Multilabel-Precision (Presi) and Recall (Recsi), as well as standard precision (Pre-
Stdsi) and recall (Rec-Stdsi), for each location si. The various per-location scores are
obtained using our system, MDLoc, and a top location prediction system, YLoc+ [10].
Results for YLoc+ were reproduced using our 5-way splits. The p-values indicate
statistical significance of the differences between the MDLoc scores and the YLoc+

scores. The highest values are shown in boldface. Standard deviations are shown in
parentheses.

Location
MDLoc YLoc+

p-value
MDLoc YLoc+

p-value

Recsi Presi

cyt (2374) .750 (± .012) .712 (± .009) �.001 .911 (± .008) .893 (± .010) �.001

nuc (2115) .776 (± .014) .728 (± .011) �.001 .929 (± .008) .924 (± .008) .03

mem (586) .527 (± .022) .543 (± .018) .01 .807 (± .036) .764 (± .029) �.001

ex (562) .547 (± .035) .573 (± .026) .01 .833 (± .044) .740 (± .053) �.001

mi (360) .519 (± .026) .536 (± .031) .04 .832 (± .042) .765 (± .033) �.001

Rec-Stdsi Pre-Stdsi

cyt (2374) .817 (± .021) .786 (± .020) �.001 .942 (± .009) .935 (± .009) .01

nuc (2115) .746 (± .028) .684 (± .015) �.001 .904 (± .014) .914 (± .014) .02

mem (586) .588 (± .042) .614 (± .042) .04 .794 (± .039) .730 (± .047) �.001

ex (562) .385 (± .058) .401 (± .037) .3 .830 (± .046) .771 (± .055) �.001

mi (360) .388 (± .062) .429 (± .060) .03 .784 (± .057) .670 (± .055) �.001
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nucleus and plays in response to DNA damage [7, 53]. While MDLoc assigns the

protein to both the cytoplasm and the nucleus, YLoc+ assigns it to the nucleus only.

Our system utilizes the dependence between nucleus and cytoplasm (represented as a

directed edge between the two locations) along with various dependencies between pro-

tein features and locations to make an accurate multi-location prediction. Dependence

between a pair of locations reflects correlation of one location with another, and in this

case, it is well known that proteins shuttle between the nucleus and the cytoplasm to

aid DNA repair [34]. MDLoc’s benefit from capturing the dependence between cyto-

plasm and nucleus is also reflected in its significantly higher Multilabel-Precision and

Multilabel-Recall (Presi and Recsi , respectively) for the cyt and nuc proteins as shown

in Table 5.3.

As another example, consider Transforming Growth Factor alpha (TGF-alpha),

a protein that initiates cell growth [31] and is known to localize to both the extracellular

space (ex) and the plasma membrane (mem). MDLoc correctly assigns both locations

to the protein. Here MDLoc employs the well-known dependence between extracellular

space and plasma membrane, as protein movement between subcellular compartments

and the extracellular space occur via the plasma membrane [101]. Again, the value

of utilizing location inter-dependencies is demonstrated in MDLoc’s significantly im-

proved precision in terms of Multilabel-Precision (Presi) on the ex and mem proteins

(while still retaining a similar level of recall, Recsi , to that of YLoc+).

As an example for MDLoc’s ability to handle proteins whose location combi-

nations is not included in the training set, consider Transmembrane emp24 domain-

containing protein 7 (emp24). It localizes to the endoplasmic reticulum and transports

secretory proteins to the golgi complex [6].1 MDLoc assigns emp24 to both the endo-

plasmic reticulum and the golgi complex, whereas YLoc+ assigns it to the endoplasmic

reticulum only. MDLoc makes use of the dependency that captures correlation be-

tween the endoplasmic reticulum and the golgi complex, both of which play a role in

1 The tables shown do not include endoplasmic reticulum and golgi complex proteins,
as the number of proteins from either of these locations in the dataset is very small.
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producing intracellular responses to extracellular signals [58]. We thus see that MDLoc

is not restricted to predicting only location combinations in the training set.

We next compare results obtained per location by our system with those ob-

tained by a top-performing current system as well as by our initial system. We show

results for locations that have relatively a large number of associated multi-localized

proteins. Our comparison reports for each location si, the Multilabel-Precision (Presi)

and Multilabel-Recall (Recsi) as well as the standard precision (Pre-Stdsi) and recall

(Rec-Stdsi).

Table 5.3 shows per-location prediction results obtained using MDLoc compared

to those obtained using YLoc+[10] for multi-localized proteins. Prediction results for

the other current systems are not shown here as they are not publicly available. For

the cytoplasm and the nucleus, which have a large number of proteins, the precision

and recall values obtained using MDLoc are significantly higher in most cases than

those obtained using YLoc+. For locations with much fewer proteins, while the recall

values when using MDLoc are marginally lower than when using YLoc+, MDLoc’s

precision values are typically significantly higher than those of YLoc+. We note that

YLoc+ assigns each protein to all the locations whose probability exceeds a pre-defined

threshold; as such, the number of locations it assigns exceeds that to which the protein

actually localizes resulting in a lower precision. In contrast, MDLoc does not simply

assign a protein to the most probable location, but rather, it simultaneously considers

a set of locations and assigns each protein to the set whose overall probability is the

highest, leading to a higher precision.

Table 5.4 shows the per-location prediction results obtained by MDLoc, in com-

parison to those obtained by BNCs on the combined dataset of both single- and multi-

localized proteins. While MDLoc’s precision values are somewhat lower than those of

BNCs, MDLoc’s recall is typically higher. MDLoc simultaneously infers the probability

of a set of locations; in contrast, BNCs use an independent Bayesian network structure

to infer the probability of each location separately. As such, the likelihood of BNCs to

correctly assign the combination of several locations to a protein is much lower than
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Table 5.4: Per location prediction results for the combined set of single- and multi-
localized proteins, averaged over 25 runs of 5-fold cross-validation. The table shows the
same measures shown in Table 5.3 obtained using our two systems, MDLoc and BNCs.
The p-values indicate statistical significance of the differences between the MDLoc
scores and the BNCs scores. The highest values are shown in boldface. Standard
deviations are shown in parentheses.

Location
MDLoc BNCs

p-value
MDLoc BNCs

p-value

Recsi Presi

cyt (2374) .825 (± .009) .795 (± .011) �.001 .819 (± .013) .809 (± .018) .03

nuc (2115) .830 (± .010) .784 (± .017) �.001 .822 (± .014) .832 (± .013) .02

mem (586) .780 (± .020) .737 (± .022) �.001 .864 (± .020) .912 (± .019) �.001

ex (562) .822 (± .012) .780 (± .014) �.001 .872 (± .014) .900 (± .012) �.001

mi (360) .773 (± .013) .730 (± .025) �.001 .861 (± .024) .885 (± .023) .001

Rec-Stdsi Pre-Stdsi

cyt (2374) .867 (± .015) .861 (± .014) .1 .854 (± .014) .840 (± .011) .001

nuc (2115) .808 (± .021) .736 (± .031) �.001 .783 (± .020) .786 (± .026) .6

mem (586) .715 (± .030) .652 (± .024) �.001 .839 (± .028) .906 (± .022) �.001

ex (562) .842 (± .017) .805 (± .017) �.001 .882 (± .014) .900 (± .015) �.001

mi (360) .719 (± .028) .664 (± .034) �.001 .843 (± .026) .873 (± .034) .001
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its probability to correctly assign a single location, which directly translates into a rel-

atively low recall measure. When using MDLoc, the increase in recall values for almost

all cases is higher than the decrease in the precision values, except in the case of the

extracellular space (ex). Notably, proteins in the extracellular space all originate from

or are bound toward another location within the cell and as such predicting them as

extracellular is challenging for most prediction systems.

Moreover, MDLoc assigns some proteins hitherto known to localize only to a

single location into multiple locations. It is likely that at least some of these additional

predicted locations are indeed correct and can be the subject of an experimental valida-

tion. For instance, Calreticulin (Cal) is currently annotated by SwissProt as localized

to the endoplasmic reticulum only. However, MDLoc assigns the protein to both the

endoplasmic reticulum and the extracellular space, and work by Gold et al. [37] suggests

that Cal indeed relocates from the endoplasmic reticulum to the extracellular space.

To demonstrate improved prediction performance of our system across locations

regardless of the number of associated proteins, we examine the statistically significant

differences in the Multilabel-Recall for the location with the highest number of multi-

localized proteins (cytoplasm, 2,374 proteins) and for the location with the lowest

number (endoplasmic reticulum, 115 proteins). The Multilabel-Recall for cytoplasm

(Reccyt) increases from 0.80 when classifying using BNCs, to 0.83 when classifying using

MDLoc. Similarly, the Multilabel-Recall for endoplasmic reticulum (RecER, not shown

in Table 5.4) increases from 0.64 to 0.69. This analysis demonstrates the advantage of

using MDLoc for predicting protein locations, not just for locations that have a large

number of associated proteins but also for locations that are associated with relatively

few proteins.

Table 5.5 shows the prediction results per location combination obtained using

MDLoc in contrast to those obtained using BNCs for all location combinations, using

multi-localized proteins only. For each location-combination in the dataset, we show

the number of proteins with correct predictions for both locations, as well as for the

first of the two locations, and for the second, separately. For almost all combinations,
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Table 5.5: Per location-combination prediction results for multi-localized proteins
only, obtained using one run of 5-fold cross-validation. For each combination of two
locations, the table shows the number of proteins with correct predictions for both
locations, for the first of the two locations, and for the second of the two locations,
using MDLoc and using BNCs. The highest values are shown in boldface.

Location
Combination

MDLoc BNCs MDLoc BNCs MDLoc BNCs

Both locations
correct

1st location
correct

2nd location
correct

cyt nuc (1882) 1253 (66.6%) 976 (51.9%) 1603 (85.2%) 1578 (83.8%) 1481 (78.7%) 1240 (65.9%)

ex mem (334) 34 (10.2%) 16 (4.8%) 87 (26%) 60 (18%) 258 (77.2%) 246 (73.7%)

cyt mem (252) 31 (12.3%) 15 (6%) 186 (73.8%) 174 (69%) 82 (32.5%) 68 (27%)

cyt mi (240) 36 (15%) 25 (10.4%) 164 (68.3%) 165 (68.8%) 99 (41.3%) 85 (35.4%)

nuc mi (120) 15 (12.5%) 11 (9.2%) 43 (35.8%) 37 (30.8%) 67 (55.8%) 64 (53.3%)

ER ex (115) 35 (30.4%) 16 (13.9%) 66 (57.4%) 66 (57.4%) 51 (44.3%) 27 (23.5%)

ex nuc (113) 51 (45.1%) 54 (47.8%) 73 (64.6%) 68 (60.2%) 72 (63.7%) 68 (60.2%)
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the number of proteins whose location is correctly predicted by MDLoc is significantly

higher than the corresponding number when using BNCs. For instance, the number

of multi-localized proteins correctly assigned to the location-combination is cytoplasm

and nucleus increases significantly from 976 when using BNCs, to 1253 when using

MDLoc. The increase shows that location inter-dependencies learned using MDLoc

help to improve predictions for multi-localized proteins.

5.2.2 The General Case of Multi-label Classification

The second set of experiments are performed over the standard multi-label

datasets. We compare the performance of our system based on a generative model

with that of current multi-label classification (MLC) systems.

Table 5.6 shows the Hamming and the Subset accuracies (Hacc and Sacc, respec-

tively) of our system compared to that obtained by current MLC systems (as reported

by Alessandro et al. [1], Tables 2, 3, 4, 6 there), obtained over the same multi-label

datasets and using the same evaluation measures. The results show that our system

has higher Hacc and Sacc than all other systems over all datasets except Genbase. The

differences in the improved performance values are statistically significant (p � 0.05,

according to the 2-sample t-test [21]). Over the Genbase dataset, our system has the

same Hacc as the others and a slightly lower Sacc, although the latter difference is not

statistically significant. This decrease in the performance of our system can be at-

tributed to the fact that instances in the Genbase dataset are typically associated with

much fewer labels than those in the other datasets. As a result, our system captures

fewer dependencies and independencies among labels and features in this dataset.

5.3 Summary

We presented multi-label classification (MLC) experiments over a diverse col-

lection of datasets by employing our generative model presented in Chapter 4. The

experiments show that utilizing the intricate dependence and independence structure
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Table 5.6: Prediction results over standard multi-label datasets, obtained using one
run of 10-fold cross-validation. The table shows Hamming and Subset accuracies, Hacc

and Sacc, obtained using multi-label classification (MLC) systems, namely, our system,
EBN-M/EBN-J [1], ECC-J48 [77], ECC-NB [77], and BR-NB [105]. All values except
ours are taken directly from Tables 2, 3, 4, 6 in Alessandro et al. [1]. Highest values
are shown in boldface. Standard deviations are shown in parenthesis.

MLC System
Emotions Scene Yeast Genbase

Hacc

Our system .793 (± .021) .898 (± .010) .786 (± .007) .998 (± .001)

EBN-M / EBN-J .780 (± .022) .880 (± .010) .773 (± .008) .998 (± .001)

ECC-J48 .780 (± .027) .883 (± .008) .771 (± .007) .998 (± .001)

ECC-NB .781 (± .026) .835 (± .007) .703 (± .009) .996 (± .001)

BR-NB .776 (± .023) .826 (± .008) .703 (± .011) .996 (± .001)

Sacc

Our system .319 (± .036) .610 (± .030) .158 (± .029) .956 (± .022)

EBN-M / EBN-J .263 (± .062) .575 (± .030) .127 (± .018) .965 (± .015)

ECC-J48 .260 (± .038) .531 (± .038) .132 (± .023) .934 (± .015)

ECC-NB .295 (± .060) .294 (± .022) .102 (± .023) .897 (± .031)

BR-NB .261 (± .049) .276 (± .017) .091 (± .020) .897 (± .0031)
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among features and labels captured by our model contributes to improved accuracy in

multi-label classification, compared to a variety of state-of-the-art systems.

Our system incorporates location inter-dependencies into the process of assign-

ing locations for proteins. We showed examples of such dependencies that our model

utilizes to achieve improved performance over current top systems such as YLoc+ [10].

Moreover, our system improves upon the performance of current MLC systems while

performing a number of MLC tasks, such as predicting emotions of songs, predict-

ing labels of scenes, thus demonstrating the model’s wide applicability in the general

context of multi-label classification.

Unlike current MLC systems, our model captures dependencies between feature

values and subsets of labels and conditional independencies of feature values from cer-

tain labels given subsets of other labels. As an example, in the Emotions dataset [103],

the tone feature of songs depends on the class labels Quiet-Still, Sad-Lonely, Amazed-

Surprised, and Angry-Aggressive. Typically, songs labeled as belonging to the first two

classes have a Low tone while those in the last two classes have a High tone. Our sys-

tem directly captures the conditional independence of the tone feature from the first

two labels given the other two labels. In contrast, current systems do not attempt to

capture such subtle and informative dependencies and independencies.

In the next chapter, we present a procedure to construct an extensive collection

of multi-localized proteins. The set of multi-localized proteins we used earlier in our

experiments is limited to proteins localizing to only two locations and does not contain

information from many up-to-date repositories.
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Chapter 6

AN EXTENSIVE COLLECTION OF MULTI-LOCALIZED PROTEINS

The set of multi-localized proteins that we used in the experiments presented

earlier in Chapters 3 and 5 is limited to proteins that localize to only two locations.

This set is derived from the DBMLoc dataset and is the most comprehensive collection

of multi-localized proteins currently available. However, protein information stored

in the DBMLoc-derived set is not up-to-date, and it does not contain details about

underlying cell characteristics such as tissue, cell line, and disease.

In this chapter, we present a procedure we have devised to construct a database

that contains eukaryotic proteins from complex multicellular organisms, in addition

to those from other simpler organisms. The procedure allows us to extract reliable

information about proteins localizing to multiple locations, including cell characteristics

from a number of online repositories that store up-to-date experimental evidence for

the locations.

In Section 6.1, we provide further details about existing repositories that store

information about multi-localized proteins. Section 6.2 briefly reviews sources of pro-

tein information that are currently available. Section 6.3 describes the methodology

used to construct a new database of multi-localized proteins, and provides a summary

of the contents in this database.

6.1 Motivation

Subcellular locations of proteins are determined using experimental methods,

and may also be predicted using similarity search and machine learning methods. Lo-

cations obtained through experimental methods are typically highly reliable. While
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several databases contain information about proteins, very few of them store entries of

eukaryotic proteins that localize to multiple compartments.

Organelle DB [112, 113] stores information about single and multiple locations

of eukaryotic proteins. However, some protein locations are not experimentally veri-

fied. Furthermore, while protein-entries stored in this repository are related to model

organisms such as yeast, roundworm, fruit fly, mouse, and arabidopsis, information

about human proteins is not available.

The most comprehensive current set of multi-localized proteins, which was de-

rived from the DBMLoc dataset [121], contains information about prokaryotic and

eukaryotic proteins that localize to only two locations. This set contains DBMLoc

proteins whose sequences share less than 80% sequence similarity with each other, and

was built by Briesemeister el al. [10] to assess the performance of several multi-location

prediction systems. We note that the initial release of the complete DBMLoc dataset

(containing 10,470 proteins as reported by Zhang et al. [121]) is no longer publicly

available at the time of writing this thesis. While DBMLoc contains protein-records

from a number of databases, including Organelle DB, the dataset does not contain in-

formation from recently published repositories and from data stores that are constantly

updated. Moreover, many proteins locations stored in DBMLoc are not experimentally

determined but are based on locations of interacting proteins.

Notably, functions of proteins may depend on underlying cell characteristics

including tissue, cell line, and disease. However, none of the above mentioned databases

stores information about these cell characteristics.

We thus present a procedure to build a database that stores reliable information

about eukaryotic proteins found in complex multicellular organisms in addition to those

found in much simpler organisms. Relevant characteristics of the cell are also stored.

Our procedure extracts entries corresponding to multi-localized proteins from organisms

including human, mouse, and Arabidopsis, using five up-to-date repositories.

We next discuss these repositories and explain the reasons behind using them

to construct our database.
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6.2 Protein Data Sources

Several current databases store information about locations of proteins. Some of

these store protein locations that are determined using experimental methods such as

mass spectrometry [25] and green fluorescence detection [42]; namely, the Human Pro-

tein Reference Database [74], the Human Protein Atlas (HPA) [107], LOCATE [30, 97],

and SUBA3 [100]. Others store protein locations inferred using computational methods

such as similarity search (e.g. DBSubLoc [39]) and machine learning based approaches

(e.g. eSLDB [4]). UniprotKB [2] is the most comprehensive publicly available protein

database that stores locations obtained using experimental methods as well as using

computational approaches. While experimental methods are most reliable for identify-

ing protein locations, inferring locations of proteins via computational methods is not

considered to be as reliable.

As our goal is to construct a database that stores reliable information about

multi-localized proteins, we use in this work only resources that contain experimen-

tally verified locations of proteins. Since locations of proteins depend on underlying

characteristics of the cell, we also utilize resources that contain details about cell char-

acteristics such as tissue, cell line, and cell type, as well as references to the literature

that validates the information we store. A preliminary collection of protein resources

that are publicly available was established in an earlier study [67]. We select from there

the following repositories for our study: SUBA3 [100], the Human Protein Reference

Database (HPRD) [74], the Human Protein Atlas (HPA) [107], LOCATE [30, 97], and

UniprotKB [2]. We focus on these five sources to construct our database of multi-

localized proteins, as these sources contain experimentally verified information about

eukaryotic proteins that is up-to-date.

SUBA3 stores experimentally determined locations for Arabidopsis proteins. On

the other hand, both HPRD and HPA store subcellular locations exclusively for human

proteins. For most of the human proteins stored in HPRD, the locations have been

obtained through manual curation of experimental data in the literature. Additionally,

HPRD integrates experimentally verified location annotations obtained from Human
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Proteinpedia [52], a distributed protein annotation system. HPA stores locations for

proteins in normal and cancer tissues obtained through immunofluorescence, which is

a microscopy-based experimental method.

LOCATE stores subcellular locations of mouse and human proteins. The loca-

tion annotations in LOCATE have been obtained through manual curation of the liter-

ature as well as through experimental methods. Finally, UniprotKB contains informa-

tion of proteins from several organisms. We utilize a particular section of UniprotKB,

namely, Swiss-Prot [9], that typically stores locations of proteins that are experimen-

tally validated and/or manually curated.

6.3 Database Construction

The construction procedure for our protein database constitutes two main steps:

1) Extraction of protein information from the online repositories discussed above; 2)

Development of the database to store protein information. We describe the details of

each step in the following sections.

6.3.1 Protein Extraction

We downloaded each of the five public databases mentioned above, and ex-

tracted experimentally verified locations of proteins as well as details about underlying

cell characteristics such as tissue, cell line, and disease. Table 6.1 summarizes the in-

formation extracted from all the data sources. The methodology used for extracting

relevant data is explained below.

SUBA3 [100]: This online data repository was constructed using The Ara-

bidopsis Information Resource (TAIR) [99], and provides information about Arabidop-

sis proteins. We downloaded 10,253 Arabidopsis proteins and their experimentally

determined locations from SUBA3 as a delimited text file. The file consists of pro-

tein attributes including identifiers, descriptions, molecular weights, expression levels,

locations that are experimentally verified or that are computationally predicted, and

experimental data that have been manually curated from literature sources.
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Table 6.1: Summary of the information extracted from protein data sources.

Data Sources Details
Number of

Proteins
Extracted Attributes

SUBA3

Arabidopsis proteins
extracted from the
Arabidopsis informa-
tion resource

10,253

Protein name; Swiss-Prot ID; Arabidopsis
gene ID; Gene name; Subcellular locations;

Amino-acid sequence; PubMed IDs

HPRD

Human proteins
extracted from a
number of external
sources

21,463

Protein name; Swiss-Prot ID; RefSeq ID;
OMIM ID; Entrez gene ID; Gene name;
Primary & alternate subcellular locations;
Amino-acid sequence; PubMed IDs

HPA

Human proteins from
normal and cancer
tissues detected
using immunohisto-
chemistry

9,963

Protein name; Swiss-Prot ID; Ensembl
gene ID; Gene name; Main & additional
subcellular locations; Tissues & cell types;
Cell lines and locations; Amino-acid se-
quence

LOCATE

Human and mouse
proteins detected
using immunofluo-
rescence

Mouse – 20,678
and

Human – 21,292

Protein name; Swiss-Prot ID; Entrez pro-
tein ID; RefSeq ID; Ensembl gene ID; En-
trez gene ID; Gene name; Subcellular loca-
tions; Cell lines and locations; Amino-acid
sequence; PubMed IDs

Uniprot-KB /
Swiss-Prot

Proteins from a num-
ber of organisms ag-
gregated from a num-
ber of sources

145,763

Protein name; Swiss-Prot ID; Ensembl
protein ID; RefSeq ID; Ensembl gene ID;
Gene name; Subcellular locations; Amino-
acid sequence; PubMed IDs
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We extracted the following attributes for each protein: name, Swiss-Prot ID,

Arabidopsis gene ID (AGI), gene name according to TAIR, locations and relevant

experimental methods, amino-acid sequence, and PubMed IDs of articles that identify

experimental methods used to determine protein locations. For proteins whose entries

miss information, we used the UniProtKB/Swiss-Prot resource [9] to retrieve gene

names based on their Swiss-Prot IDs, and the TAIR [99] to retrieve Swiss-Prot IDs

and/or amino-acid sequences based on their AGIs.

The Human Protein Reference Database (HPRD) [70, 74]: This online

database stores information about Human proteins. HPRD utilizes a number of ex-

ternal resources to aggregate protein information. For example, the Online Mendelian

Inheritance in Man (OMIM) repository [40], which is a knowledge base of human genes

and genetic disorders, is used to associate proteins with disease annotations; the RefSeq

database [75] is used to link proteins from other databases; the Entrez database [59]

is used to retrieve gene information of proteins. Furthermore, HPRD integrates a dis-

tributed annotation system that allows scientists to submit experimental data. The

annotation system is used by researchers to populate HPRD with new proteins.

We downloaded 21,463 human proteins and their experimentally determined

locations from HPRD as XML files. In addition to the protein attributes mentioned

above, each file contains primary and alternate subcellular locations, functions, disease

associations, tissue expressions, and references to published literature that describe

experiments identifying protein locations. While primary locations hold a protein’s

most widely known locations, alternate holds the protein’s lesser known locations. For

example, HPRD stores cytoplasm as the primary location of GRB2, a growth factor

protein, and nucleus as the protein’s alternate location. It is well known that GRB2

localizes to the cytoplasm. However, only a careful search revealed that the protein

also localizes to the nucleus [69].

We extracted the following attributes for each protein: name, IDs (e.g. Swiss-

Prot ID, RefSeq ID), gene IDs (e.g. OMIM ID, Entrez ID), gene name, primary and
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alternate locations, amino-acid sequence, and PubMed IDs of articles that identify pro-

tein locations. For proteins that miss Swiss-Prot IDs, we utilized the UniProtKB/Swiss-

Prot resource [9] to retrieve this information based on their RefSeq IDs.

The Human Protein Atlas (HPA) [107]: This online database also stores

information about Human proteins. HPA stores expression and localization profiles

of human proteins in normal as well as in cancer tissues. Additionally, the database

contains high-resolution images obtained from expression studies that employ experi-

mental methods such as immunohistochemistry [110].

We downloaded 9,963 human proteins and their experimentally determined lo-

cations from HPA as an XML file. In addition to protein attributes listed earlier, this

file contains classes (assigned based on functions, disease associations, evidence), main

and other subcellular locations, tissue expressions, cell lines, and tissue images. Main

locations of a protein store locations with the strongest staining evidence, whereas

other locations store those supported by much weaker staining.

We extracted the following attributes for each protein: name, Swiss-Prot ID,

Ensembl gene ID, gene name, main and other locations, tissues and cell types, cell lines

and locations, and amino-acid sequence. For proteins whose entries miss information,

we used the HUGO Gene Nomenclature Committee (HGNC) resource [84] to retrieve

gene names, and the UniProtKB/Swiss-Prot database [9] to retrieve sequences based

on their Swiss-Prot IDs and/or gene names.

LOCATE [30, 97]: This online repository stores information about both

Mouse and Human proteins. LOCATE contains locations of proteins determined using

experimental imaging methods such as immunofluorescence. The database also stores

locations obtained from manually curated literature reviews. Furthermore, some of the

localization data in LOCATE is obtained from external resources such as LIFEdb [5],

Mouse Genome Informatics [28], UniProt [2], and ENSEMBL [49].

We downloaded proteins and their locations that are either experimentally de-

termined or are manually curated from LOCATE as two XML files. One file consists

of 20,678 mouse proteins, and the other file consists of 21,292 human proteins. Manual
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location annotations of proteins were constructed using experimental evidence reported

in peer-reviewed publications.

We extracted the following attributes for each protein: name, IDs (e.g. Swiss-

Prot ID, Entrez ID, RefSeq ID), gene IDs (e.g. Ensembl ID, Entrez ID), gene name,

subcellular locations, cell lines and locations, amino-acid sequence, and PubMed IDs of

articles that identify protein locations. For proteins whose entries miss information, we

used the HGNC resource [84] to retrieve gene names based on a combination of their

Swiss-Prot IDs, RefSeq IDs, Ensembl gene IDs, and Entrez gene IDs. Furthermore, we

used the UniProtKB/Swiss-Prot database [9] to retrieve protein and gene IDs.

UniProtKB/Swiss-Prot [9]: This online repository stores protein informa-

tion from a number of organisms, and references several existing databases. Protein

locations in Swiss-Prot are typically validated experimentally or retrieved from manu-

ally curated literature sources. We downloaded 145,763 eukaryotic proteins and their

highly reliable locations from Swiss-Prot as an XML file, and extracted the following

attributes for each protein: name, IDs (e.g. Swiss-Prot ID, Ensembl ID, RefSeq ID),

Ensembl gene ID, gene name, subcellular locations, amino-acid sequence, and PubMed

IDs of articles that identify protein locations. While proteins may be associated with

multiple Swiss-Prot IDs, we select only the primary IDs of proteins.

Protein locations in Swiss-Prot are associated with qualifiers that capture reli-

ability of the annotations. For example, “Potential” indicates that the annotation was

computationally predicted; “Probable” suggests that the annotation may be supported

by indirect experimental evidence; “By Similarity” indicates that the annotations are

based on locations of proteins with similar amino-acid sequences. To ensure that the

annotations we extract are reliable, protein locations that are non-experimentally ob-

tained and are associated with the above qualifiers are excluded.

Data Extraction. We implemented Python programs to extract protein in-

formation from the five repositories described above. We extracted data from different

sources that were available in the form of XML files and delimited text files, and

aggregated only attributes relevant to our study.

79



In the next section, we describe the procedure used to construct a collection of

multi-localized proteins.

6.3.2 Database Design and Implementation

To develop a database of proteins, we identified entities in the protein data and

relationships among these entities, and designed an entity-relationship model for the

data. We implemented the model as a MySQL relational database, and inserted protein

information aggregated from the sources discussed in Section 6.3.1 into the database.

Details about the entities and the relationships represented and about the database

schema are presented next.

Entities and relationships

As we are building a database of proteins, a protein is the most basic entity

in our study. Other entities included in the database are gene, sequence, location,

publication, tissue, and cell line. We store information about these entities per protein.

It is known that specific sub-sequences of nucleotides in genes by mechanisms such as

alternative splicing code for different proteins. Thus, a gene can be associated with

one or more proteins, and a protein can be associated with one or more genes. We

describe the relationship between any two entities by specifying the maximum number

of times an instance of one entity type can be associated with instances of a related

entity type, which is referred to as the relationship cardinality. The cardinality of the

relationship between genes and proteins, is denoted as many-to-many since instances

in each of these two entities can be associated with many instances in the other.

A protein consists of a sequence of amino acids. Furthermore, different forms of

the same protein comprise sequences that are similar to each other and are known as

isoforms of the protein. As each protein can be associated with one or more sequences,

proteins and sequences share a one-to-many relationship. This relationship is manda-

tory since a protein is always associated with at least one sequence. Similarly, proteins

and locations also share a mandatory one-to-many relationship, since we consider in
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this study only proteins whose locations are available. In contrast, proteins share op-

tional one-to-many relationships with other entities including tissues, cell lines, and

publications since we store information about these entities only when available.

Figure 6.1 shows the entity relationship diagram for our data model. Entities are

represented as rectangles, and relationships between entities are shown as dotted lines.

The relationship cardinality is shown by combinations of a single slash and a crow’s-

feet. For instance, a single slash closest to Protein and a crows-feet closest to Sequence

together indicate a one-to-many relationship between the two entities; two crow’s-feet

closest to the entities, Gene and Protein indicate a many-to-many relationship. An

optional relationship is shown using an oval. For instance, the relationship between

entities, Location and Tissue is optional as tissue information is not available for all

proteins in the dataset.

Relational schema

Utilizing the entity relationship model described above, we created one table per

entity (primary keys are given in parenthesis): Protein (database id), Gene (gene id),

Sequence (seq id), Location (location id), CellLine (cellline id), Tissue (tissue id), and

Publication (publication id).

Each one-to-many relationship between a pair of entities is captured using a

foreign key in the table corresponding to one entity that references the primary key in

the table corresponding to a related entity. For example, seq id is a foreign key in the

tables, Location and Publication, and references in each case the primary key in the

table, Sequence. As another example, location id is a foreign key in CellLine, Tissue,

and Publication, and references in each case the primary key in Location.

We created an additional table, CodedBy (database id and gene id), to capture

the many-to-many relationships between the entities, Protein and Gene. This table

provides a mapping between primary keys in the Gene and Protein tables. Detailed

table definitions are provided in Table B.1 in Appendix B.
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Figure 6.1: Entity relationship diagram for the protein database. Entities are rep-
resented as rectangles. Relationships between entities are shown as dotted lines. The
relationship cardinality is shown by combinations of a single slash and a crow’s-feet.
A single slash and a crow’s-feet together indicate a one-to-many relationship, and two
crow’s-feet indicate a many-to-many relationship. An optional relationship is shown
using an oval.
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Data Loading

We implemented the relational schema using MySQL. The implementation in-

cluded the development of Python programs to create an empty database with tables

defined according to the schema presented in Appendix B, to aggregate protein infor-

mation extracted from various data sources in a unified format, and to insert values

for protein attributes into the tables. While proteins extracted from external sources

initially localized to several hundreds of locations, we focused on subcellular loca-

tions found in cells of multicellular eukaryotic organisms. Moreover, as location names

were not consistent across all the sources, we standardized by mapping the names to

the following 12 main subcellular compartments: cell wall, chloroplast, cytoplasm, en-

doplasmic reticulum, extracellular, golgi apparatus, lysosome, mitochondrion, nucleus,

peroxisome, plasma membrane, and vacuole. Note that cell wall, chloroplast, and vac-

uole are only relevant to plant cells. We mapped location names that did not corre-

spond to these 12 compartments to more general categories such as membrane bound

and non-membrane bound organelles. For example, plastids such as chromoplasts and

amyloplasts, cytoplasmic vesicles, and acrosome are enclosed by a membrane and fall

into the former membrane-bound category. On the other hand, ribosomes and lipid

droplets are particles present in the cytoplasm and referred to as non-membrane bound

organlles. The mapping from location names to standardized compartments is given

in Table C.1 in Appendix C. Furthermore, a summary of the information about multi-

localized proteins aggregated from online sources is given in Table 6.2. This table

provides for each data source, the number of sequences associated with two, three, and

four or more locations.

To obtain non-redundant protein sequences, we grouped sequences that are al-

most identical to each other and selected one representative sequence per group; the

rest were discarded. Specifically, we used the UCLUST algorithm [26] to efficiently

cluster tens of thousands of protein sequences. In this approach, each sequence in the

input set is considered as a non-redundant sequence and the centroid of a new cluster

if it does not share above a certain identity that is input (different identity thresholds
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Table 6.2: Summary of the protein sequences stored in our database.

Data Sources
Number of Protein Sequences

Associated with
two locations

Associated with
three locations

Associated with
four or more locations

SUBA3 2,250 800 492

HPRD 4,927 1,849 867

HPA 4,122 1,370 209

LOCATE (Mouse) 4,735 702 104

LOCATE (Human) 5,736 1,550 611

Uniprot-KB/Swiss-Prot 32,691 5,096 1,704

Our Database 54,461 11,367 3,987
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were tried as mentioned below) with any of the centroids of existing clusters; otherwise,

the sequence is assigned to a cluster with the most similar centroid. Similar clustering

methods have been previously used to exclude sequences/sub-fragments that are simi-

lar to each other or sequences with minor variations [98]. We note that the higher the

identity threshold, lower is the number of sequences within a cluster and thus higher

is the number of clusters. Additionally, employing a high identity threshold results in

cluster centroids containing sequences of splice variants, whereas using a low identity

threshold outputs centroids relating to sequences of proteins that are structurally dif-

ferent [98]. In our analysis, we tried high (i.e. 80%, 70%) as well as relatively low

(i.e. 50%) identity cut-offs. Table 6.3 provides information about the non-redundant

sequences obtained after executing the sequence elimination pipeline using different

identity thresholds (i.e. 50%, 70% and 80%) on our protein collection and on the

DBMLoc-derived set. We decided to use an 80% identity threshold so that the cluster

centroids correspond to non-redundant sequences of both unique proteins and protein

isoforms found in different organisms. The resulting cluster centroid sequences were

stored in our database.

Comparison between our database and DBMLoc

The number of protein sequences associated with multiple locations in our

database (54,461) is significantly higher than that in the DBMLoc-derived set [121]

(3,056). Moreover, Table 6.3 shows that our database contains significantly more dis-

similar sequences associated with multi-locations than DBMLoc. We note that a large

fraction of the DBMLoc sequences (1,761) is absent in our database. Many such se-

quences are missing in our collection as they are associated with locations that are

not experimentally verified. For example, for Paralemmin-1, a human protein that

plays a role in cell formation [36], DBMLoc assigns the multi-locations, cytoplasm and

membrane, based entirely on locations of other interacting proteins. Additionally, lo-

cations of about one-third of the DBMLoc protein sequences that are present in the

UniProtKB/Swiss-Prot [9] repository we downloaded are outdated as they are no longer
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Table 6.3: Summary of non-redundant protein sequences present in our protein col-
lection and those stored in the DBMLoc-derived set.

Data
Sources

Identity
Threshold

Number of Protein Sequences

Associated with
two locations

Associated with
three locations

Associated with
four or more locations

Our Collection
80%

26,272 4,878 1,371

DBMLoc 2,334 0 0

Our Collection
70%

22,743 4,318 1,185

DBMLoc 2,257 0 0

Our Collection
50%

17,642 3,537 936

DBMLoc 2,088 0 0
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present in Swiss-Prot. Thus, DBMLoc sequences with outdated locations are not in-

cluded in our database. Furthermore, for some proteins, our database stores sequences

homologous to those present in DBMLoc. As another example, the sequence stored

for Nuclear mitotic apparatus protein 1 in our database is almost identical (sequence

identity=99%) to that stored in DBMLoc for the same protein.

Figure 6.2 shows a comparison between the organism-wise distribution of pro-

teins in our database and that of proteins in the DBMLoc-derived dataset. DBMLoc set

predominantly contains yeast and mouse proteins. On the other hand, in our database,

proteins from organisms such as yeast, mouse, Arabidopsis, and human are more uni-

formly distributed. Moreover, our database stores a more comprehensive collection of

proteins from other eukaryotic organisms (e.g. plants, birds, fish) than DBMLoc, since

our protein database was populated using several extensive online repositories.

Thus, the database of proteins that we have constructed is the most comprehen-

sive resource of proteins localizing to more than two locations. We anticipate that this

protein collection will help researchers to study protein movement across subcellular

compartments for better understanding the functions of proteins, and to substantially

evaluate the performance of current multi-location prediction systems.

In the next chapter, we present a summary of the thesis contributions and

outline directions for future research.
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Figure 6.2: Comparison between organism-wise distribution of proteins in our
database and that of proteins in the DBMLoc-derived dataset.
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Chapter 7

CONCLUSIONS

This chapter summarizes the contributions made throughout the thesis and

outlines directions for future research. Section 7.1 presents a summary of the machine

learning methods that we introduced for protein multi-location prediction as well as for

multi-label classification. The section also provides an overview of the protein database

that we constructed. Section 7.2 discusses challenges posed by the introduced methods,

and identifies directions for future work.

7.1 Thesis Summary and Contributions

In this work, we addressed the problem of protein multi-location prediction.

While several location prediction systems already exist, most assume that proteins

localize to a single location only. A few recent systems have attempted to predict

multiple locations of proteins. Such systems typically treat locations as independent,

even though proteins localize to possibly multiple inter-dependent locations. The goal

of our research is to utilize location inter-dependencies in methods to achieve improved

multi-location prediction performance.

Assigning multiple locations to proteins is a special case of multi-label classifi-

cation (MLC), where proteins are the instances and locations are labels. The general

problem of MLC is concerned with all classification tasks that assign multiple labels to

instances. It is also our goal to apply the methods we develop to perform a number of

MLC tasks and demonstrate the widespread impact of our work well beyond protein

location prediction.

We addressed our goals by developing new machine learning based methods.

Improved performance of these methods was shown by carrying out experiments in the
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context of protein multi-location prediction as well as in the general context of MLC.

The main contributions of the work are:

1. A first system for protein multi-location that improves prediction

performance by using location inter-dependencies [89, 90]. We presented an

initial system that incorporates inter-dependencies among locations into the prediction

process. The system was based on a collection of Bayesian network classifiers, where

each classifier was used to assign a single location per protein. Learning the structure of

each Bayesian network classifier took into account inter-dependencies among locations,

and the prediction process utilized these dependencies. Our system did not model the

intricate dependencies and independencies between features and locations.

We assessed the performance of our initial system on a dataset of single- and

multi-localized proteins. This dataset includes the most comprehensive set of multi-

localized proteins currently available, which is derived from the DBMLoc dataset. We

showed that the results obtained by using our system which employs inter-dependencies

significantly improves upon those obtained by SVM classifiers which do not use any

inter-dependencies. The performance of our system on multi-localized proteins was

comparable to that of a top system (YLoc+), but did not improve upon its performance.

2. An advanced system for multi-label classification that achieves

improved performance over state-of-the-art prediction systems [91, 92, 94,

95]. We presented a probabilistic generative model that captures dependencies between

features and sets of labels, in addition to representing inter-dependencies among labels

as was done by our initial classifier. We introduced the concept of label dependency

sets as a basis for a mixture model that explicitly represents dependencies between

feature values and subsets of labels. Unlike the initial system, our advanced method

used an iterative process to learn inter-dependencies among label estimates as well

as among actual labels. In each iteration, the dependency structure was modified to

reflect dependencies among the most recently inferred label values.

By employing the generative model to assign multiple locations to proteins,

we improved upon the prediction results obtained by our initial simpler classifier as
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well as by other top systems. The performance evaluation was carried out using the

same comprehensive set of multi-localized proteins used in the assessment of our initial

classifier. We also applied our model to a number of other MLC tasks in domains such

as scene identification and song classification. We showed using experimental results

that the performance of our system significantly improves upon results obtained by

other current MLC systems reported in a previously published comprehensive study.

3. An extensive collection of proteins localizing to multiple loca-

tions [93]. The dataset of proteins that we used for assessing the performance of

multi-location prediction systems comprises the most comprehensive current set of

multi-localized proteins derived from DBMLoc. However, this set is limited to pro-

teins that localize to only two locations. We thus extracted proteins specifically from

online repositories that store experimentally verified information that is up-to-date,

and constructed a more extensive set of multi-localized proteins. This new set con-

tains 15,354 protein sequences (6,279 non-redundant sequences) associated with three

or more locations. We designed a database for storing and efficiently accessing the

protein information.

7.2 Future Work

This thesis work was concerned primarily with protein multi-location prediction.

While there are several systems that assign single/multiple locations to proteins, few

methods attempt to combine location assignments obtained by a collection of similar

classifiers (e.g. BaCelLo [71]). Moreover, currently there is no method to combine

assignments from many different state-of-the-art systems. A direction for future work

is to develop a unified approach that utilizes a weighted combination of location as-

signments from current systems to output more accurate assignments. The weights

may reflect the quality of the assignments.

Experiments comparing the performance of current multi-location prediction

systems typically utilize an earlier set of multi-localized proteins that was considered
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the most comprehensive. From our newly constructed extensive database, we are cur-

rently extracting proteins that localize to multiple locations and that share relatively

low pairwise similarity. We anticipate that such a set of proteins can be used to substan-

tially evaluate the performance of current systems. Furthermore, we plan to develop

an interface for our database that allows users to query the resource over the web us-

ing unique protein identifiers. This functionality will help researchers to study protein

movement across subcellular compartments for better understanding the functions of

proteins.

While the performance of the probabilistic generative mixture model that we

developed improves upon current multi-location systems as well as on other multi-label

classification methods, we note that there are still a number of avenues to improve our

system. For example, we employed dependency sets containing at most three labels in

this study, and as a result, our model captures relatively simple label dependency struc-

tures. Exploring more complex dependency structures can be an interesting line for

future research. However, the significant increase in the number of label dependencies

may lead to prohibitively large inference times.

To reduce inference time, models that utilize trees to approximate the depen-

dency structures instead of representing all the inter-dependencies like our current

model does (e.g. latent tree models [12, 64, 109]) can be employed. In tree models, the

leaf nodes represent observed variables and the rest of the nodes represent hidden vari-

ables. Given all the hidden variables, the observed variables are independent of each

other. It would be interesting to utilize simpler structures captured by these models

and examine if such a design can indeed lead to a more practical approach while still

addressing most of the dependencies and independencies.

Moreover, as discussed in Chapter 4, we currently use exact inference tech-

niques [81], which makes applying our method to datasets containing a large number

(i.e. 100s) of labels impractical. Thus, another direction for future research is to

develop approximate methods for label inference. Several methods for approximate
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inference have been proposed in the literature. These approaches can be broadly clas-

sified into search-based algorithms (see e.g. [61, 73]), model reduction methods (e.g.

the mini-buckets scheme [20]), and stochastic sampling techniques (e.g. variational

methods [51], importance sampling [118]). We anticipate that complementary aspects

of these methods can be used together to devise an efficient inference technique that

considers only the label combinations likely to be associated with the instances.

An important extension to our generative model is to use the Dirichlet distribu-

tion for characterizing the mixture parameter. Such a methodology can be utilized to

place more emphasis on certain dependencies between labels and features in the model.

In this work, defining label dependency sets based on a Bayesian network struc-

ture has proven useful to capture intricate dependencies and independencies between

features and labels. A natural line for future research is to directly learn subsets of

labels that are most likely to strongly influence feature values. Employing such label

subsets in a mixture model framework could be used to effectively integrate features

from different sources, e.g. from text and non-text data, and to improve multi-label

classification performance.
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Appendix A

PROGRAM SOURCE CODES

A.1 Bayesian network classifiers

Server: redtape.cis.udel.edu

Home Directory: /eecis/shatkay/Projects/rsimha/BNCs

(refer to Readme file under the home directory for the full command sequence)

A.1.1 To discretize protein multi-location dataset

COMMAND

Splits dataset into multiple folds

python discretizer/process arff.py

PARAMETERS

Parameter values are set at the beginning of code file, process arff.py

nfolds: specifies number of folds dataset is split into (e.g. nfolds=5,10); in this study,

nfolds is set to 5

infilename: specifies name of dataset file as 〈filename〉.arff that contains protein fea-

tures and locations in ARFF format

(e.g. discretizer/multiloc animals dbm model features.arff)

outfilename: specifies name of training/test dataset file created for each fold; each line

contains features and locations of a protein separated by commas; filename format:

〈basename〉 fold[1-5] [train/test];

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go fold1

train and discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite

go fold1 test)
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COMMAND

Discretizes protein features wrt each location

python discretizer/disc split/split[1-5]/disc fold[1-5]/discretize.py

PARAMETERS

Parameter values are set at the beginning of code file, discretize.py

nlabels: specifies number of locations; in this study, nlabels is set to 9

filename train: specifies name of training dataset file in the format:

〈basename〉 fold[1-5] train

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 train)

filename test: specifies name of test dataset file in the format: 〈basename〉 fold[1-5] test

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 test)

outfile train: specifies name of training dataset file with discretized features wrt a label;

filename format: 〈basename〉 fold[1-5] train label[0-8]

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 train label0)

outfile test: specifies name of test dataset file with discretized features wrt a label; file-

name format: 〈basename〉 fold[1-5] test label[0-8]

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 test label0)

A.1.2 To assign multiple locations to proteins

COMMAND

Predicts multiple locations of proteins

python classifier/split[1-5]/fold[1-5]/label[0-9]/classify multilabel.py
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PARAMETERS

Parameter values are set at the start of code file, classify multilabel.py

fold: specifies fold number and is set to an integer between 1 and nfolds; e.g. if nfolds=5,

then fold=1, 2, 3, 4, 5

nlabels: specifies number of locations; in this study, nlabels is set to 9

filename train: specifies name of training dataset file with discretized features wrt a

label; filename format: 〈basename〉 fold[1-5] train label[0-8]

(e.g. classifier/split1/fold1/label0/hogdbm with prosite go fold1 train label0)

filename test: specifies name of test dataset file with discretized features wrt a label;

filename format: 〈basename〉 fold[1-5] test label[0-8]

(e.g. classifier/split1/fold1/label0/hogdbm with prosite go fold1 test label0)

A.2 Generative model for protein multi-location prediction: MDLoc

Server: redtape.cis.udel.edu

Home Directory: /eecis/shatkay/Projects/rsimha/MDLoc

(refer to Readme file under the home directory for the full command sequence)

A.2.1 To discretize protein multi-location dataset

COMMAND

Splits dataset into multiple folds

python discretizer/process arff.py

PARAMETERS

Parameter values are set at the beginning of code file, process arff.py

nfolds: specifies number of folds dataset is split into (e.g. nfolds=5,10); in this study,

nfolds is set to 5

infilename: specifies name of dataset file as 〈filename〉.arff that contains protein fea-

tures and locations in ARFF format
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(e.g. discretizer/multiloc animals dbm model features.arff)

outfilename: specifies name of training/test dataset file created for each fold; each line

contains features and locations of a protein separated by commas; filename format:

〈basename〉 fold[1-5] [train/test];

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go fold1

train and discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 test)

COMMAND

Discretizes protein features

python discretizer/disc split/split[1-5]/disc fold[1-5]/discretize single.py

PARAMETERS

Parameter values are set at the beginning of code file, discretize single.py

nlabels: specifies number of locations; in this study, nlabels is set to 9

filename train: specifies name of training dataset file in the format:

〈basename〉 fold[1-5] train

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 train)

filename test: specifies name of test dataset file in the format: 〈basename〉 fold[1-5] test

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 test)

outfile train: specifies name of training dataset file with discretized features; filename

format: 〈basename〉 fold[1-5] train single

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 train single)

outfile test: specifies name of test dataset file with discretized features; filename format:

〈basename〉 fold[1-5] test single
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(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 test single)

A.2.2 To assign multiple locations to proteins

COMMAND

Predicts multiple locations of proteins

python classifier/split[1-5]/fold[1-5]/exec.new.py

PARAMETERS

Parameter values are set at the beginning of code file, exec.new.py

fold: specifies fold number and is set to an integer between 1 and nfolds; e.g. if nfolds=5,

then fold=1, 2, 3, 4, 5

nlabels: specifies number of locations; in this study, nlabels is set to 9

N ROUND DIGITS: number of digits rounded to after the decimal point

SMOOTHING PARAM: fractional pseudocounts added to observed counts of events

to all the parameters

filename train: specifies name of training dataset file with discretized features; filename

format: 〈basename〉 fold[1-5] train single

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 train single)

filename test: specifies name of test dataset file with discretized features; filename for-

mat: 〈basename〉 fold[1-5] test single

(e.g. discretizer/hogdbm with prosite go/split1/fold1/hogdbm with prosite go

fold1 test single)

A.3 Generative model for multi-label classification

Server: redtape.cis.udel.edu

Home Directory: /eecis/shatkay/Projects/rsimha/GenModelMLC

(refer to Readme file under the home directory for the full command sequence)
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A.3.1 To discretize multi-label datasets

COMMAND

Splits dataset (e.g. emotions, scene, yeast, genbase) into multiple folds and

discretizes features

python discretizer/〈dataset name〉/process arff.py

PARAMETERS

Parameter values are set at the beginning of code file, process arff.py

nfolds: specifies number of folds dataset is split into (e.g. nfolds=5,10); in this study,

nfolds is set to 10

nlabels: specifies number of labels; in this study, nlabels varies from 6 till 27 based on

the dataset used

infilename: specifies name of dataset file as 〈dataset name〉.arff that contains features

and labels in ARFF format (e.g. discretizer/emotions/emotions.arff)

outfilename: specifies name of training/test dataset file created for each fold; each line

contains discretized features and labels of an instance separated by commas; filename

format: 〈dataset name〉 fold[1-5] [train/test];

(e.g. discretizer/emotions/files/emotions fold1 train and

discretizer/emotions/files/emotions fold1 test)

A.3.2 To assign multiple labels to instances

COMMAND

Predicts multiple labels of instances

python classifier/〈dataset name〉/split1/fold[1-10]〉/exec-mlc.py

PARAMETERS

Parameter values are set at the beginning of code file, exec-mlc.py

fold: specifies fold number and is set to an integer between 1 and nfolds; e.g. if

nfolds=10, then fold=1, 2, 3, 4, 5, 6, 7, 8, 9, 10
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nlabels: specifies number of labels; in this study, nlabels varies from 6 till 27 based on

the dataset used

N ROUND DIGITS: number of digits rounded to after the decimal point

SMOOTHING PARAM: fractional pseudocounts added to observed counts of events

to all the parameters

filename train: specifies name of training dataset file with discretized features; filename

format: 〈dataset name〉 fold[1-5] train

(e.g. classifier/emotions/split1/fold1/emotions fold1 train)

filename test: specifies name of test dataset file with discretized features; filename for-

mat: 〈dataset name〉 fold[1-5] test

(e.g. classifier/emotions/split1/fold1/emotions fold1 test)

A.4 An extensive set of multi-localized proteins

Server: redtape.cis.udel.edu

Home Directory: /eecis/shatkay/Projects/rsimha/JEPSLD

(refer to Readme file under the home directory for the full command sequence)

A.4.1 To extract protein information from external sources

COMMANDS

Extract protein information from online sources (e.g. HPA, HPRD, LO-

CATE, Swissprot, and Suba3)

python data-extractor/HPA/ExtractData.py

python data-extractor/HPRD/ExtractData.py

python data-extractor/LOCATE/ExtractDataMouse.py

python data-extractor/LOCATE/ExtractDataHuman.py

python data-extractor/Swissprot/ExtractData.py

python data-extractor/Suba3/ExtractData.py
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COMMON PARAMETERS

Parameter values are set at the beginning of each code file

infilename: specifies name of source data file that contains protein information (e.g.

data-extractor/HPA/Data/proteinatlas.xml.gz)

outfile: specifies name of the output file created for an external source that contains

various protein and gene relevation information in comma-delimited format; (e.g. data-

extractor/HPA/Out/HPADataFile)

locToStdLoc: stores a mapping from locations to standardized subcellular compart-

ments (e.g. data-extractor/HPA/Data/LocationConversions)

OTHER FILE-SPECIFIC PARAMETERS

Parameter values are set at the beginning of each code file

HPA:

geneNameNoSidToSequence: stores a mapping from gene names to relevant combina-

tions of swissprot IDs and protein sequences

sidGeneNameToSequence: stores a mapping from combinations of gene names and swis-

sprot IDs to relevant protein sequences

LOCATE:

idtypeToId: stores a mapping for each ID type (e.g Ensembl Protein ID, Ensembl Gene

ID, Refseq ID, Entrez Gene ID) from respective IDs to combinations of swissprot IDs

and gene names

Suba3:

idToGenename: stores a mapping from Arabidopsis IDs to gene names

A.4.2 To create MySQL database and load data

COMMANDS

Creates MySQL tables

source data-loader/JEPSLD-Table-Scripts.sql
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Loads protein information into several MySQL tables

python data-loader/PopulateJEPSLD.py

A.4.3 To extract non-redundant sequences

COMMANDS

Extracts protein sequences from database

python database-analyzer/ExtractSequencesFromDB.py

Clusters similar sequences

.database-analyzer/SequenceAlign/usearch8.1.1861 i86linux32 -cluster fast JEPSLDSeq

-id 〈identity-threshold〉 -centroids JEPSLDSeq-Centroids-〈identity-threshold〉

-uc JEPSLDSeq-Clusters-〈identity-threshold〉

Computes statistics of non-redundant protein sequences in database

python database-analyzer/SequenceAlign/ExtractInfoCentroids-JEPSLD.py

PARAMETER

Parameter values are set at the beginning of each code file

fname: specifies name of output file obtained by running USEARCH in the previous

step (e.g. database-analyzer/SequenceAlign/JEPSLDSeq-Centroids-80)
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Appendix B

RELATIONAL SCHEMA OF PROTEIN DATABASE

Table B.1: Table definitions.

Table Name Column Names Column Constraints

Gene

gene id
gene name
entrezgene id
ensemblgene id
agi id

Primary key, int, Not Null
Unique key, Varchar(50)
Unique key, Varchar(10)
Unique key, Varchar(20)
Unique key, Varchar(20)

Protein

database id
protein id
id source
protein name
organism

Primary key, int, Not Null
Unique key, Varchar(20), Not Null
Unique key, Varchar(20), Not Null
Varchar(50)
Unique key, Varchar(50), Not Null

CodedBy
gene id

database id

Primary key, int, Not Null, Foreign
key to the Gene table
Primary key, int, Not Null, Foreign
key to the Protein table

Sequence

seq id
sequence
database id

resource db

Primary key, int, Not Null
Varchar(5000), Not Null
int, Not Null, Foreign key to the
Protein table
Varchar(20), Not Null
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Table B.1 (continued): Table definitions.

Table Name Column Names Column Constraints

Location

location id
seq id

location
method
description

Primary key, int, Not Null
Unique key, int, Not Null, Foreign
key to the Sequence table
Unique key, Varchar(50), Not Null
Unique key, Varchar(50)
Unique key, Varchar(50)

Tissue

tissue id
seq id

tissue
tissue status
cell type

Primary key, int, Not Null
Unique key, int, Not Null, Foreign
key to the Sequence table
Unique key, Varchar(30), Not Null
Unique key, Varchar(30)
Unique key, Varchar(30)

CellLine

cellline id
location id
seq id

cell line
cell type

Primary key, int, Not Null
Unique key, int, Not Null, Foreign
key to the Location table
Unique key, int, Not Null, Foreign
key to the Sequence table
Unique key, Varchar(30), Not Null
Unique key, Varchar(30)

Publication

publication id
pubmed id
alt source
seq id

location id

Primary key, int, Not Null
Unique key, Varchar(100)
Unique key, Varchar(100)
Unique key, int, Not Null, Foreign
key to the Sequence table
Unique key, int, Not Null, Foreign
key to the Location table
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Appendix C

LOCATION MAPPING

Table C.1: A mapping from locations to standardized subcellular compartments. The
leftmost column shows locations of proteins extracted from external sources. The mid-
dle column provides the mapped compartment for locations. The rightmost columns
lists organisms in which the compartments can be found.

Locations
Standardized
Compartment Organisms

barrier septum, cell septum, cell wall, primary cell
wall

cell wall plant, fungal

chloroplast, chloroplast envelope, chloroplast
inner membrane, chloroplast intermembrane
space, chloroplast membrane, chloroplast nu-
cleoid, chloroplast outer membrane, chloroplast
stroma, chloroplast thylakoid, chloroplast thy-
lakoid lumen, chloroplast thylakoid membrane,
plastid thylakoid membrane, plastoglobule

chloroplast plant

actin cytoskeleton, actin filament, actin patch,
calyx, cell cortex, cytoplasm, cytoplasmic, cyto-
plasmic puncta, cytoskeleton, cytoskeleton (actin
filaments), cytoskeleton (cytokinetic bridge), cy-
toskeleton (intermediate filaments), cytoskeleton
(microtubule end), cytoskeleton (microtubules),
cytosol, host cytoplasm, host cytosol, intermedi-
ate filament, microtubule, microtubule cytoskele-
ton, microtubule organizing center, midbody, per-
inuclear puncta, perinuclear region, perinuclear
theca, sarcoplasm, spindle, spindle pole, spindle
pole body

cytoplasm
animal, plant,

fungal
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Table C.1 (continued): Location to standardized compartment mapping.

Locations
Standardized
Compartment Organisms

endoplasmic reticulum, endoplasmic reticulum lu-
men, endoplasmic reticulum membrane, endoplas-
mic reticulum-like, host endoplasmic reticulum,
rough endoplasmic reticulum, rough endoplasmic
reticulum lumen, rough endoplasmic reticulum
membrane, sarcoplasmic reticulum, sarcoplasmic
reticulum lumen, sarcoplasmic reticulum mem-
brane, smooth endoplasmic reticulum membrane

endoplasmic
reticulum

animal, plant,
fungal

apical lamina, apoplast, axon, axoneme, base-
ment membrane, bleb, brush border, cell pro-
jection, cell surface, cilium, cilium axoneme, cil-
ium membrane, dendrite, dendritic spine, den-
dritic spine membrane, exosome, extracellular, ex-
tracellular matrix, extracellular region, extracel-
lular space, filopodium, filopodium membrane,
filopodium tip, growth cone, host extracellular
space, hyaline layer, interphotoreceptor matrix,
invadopodium, invadopodium membrane, kinocil-
ium, lamellipodium, lamellipodium membrane,
microvillus, microvillus membrane, phagocytic
cup, photoreceptor outer segment, podosome, po-
dosome membrane, pollen coat, ruffle, ruffle mem-
brane, secreted, stereocilium, stereocilium mem-
brane, surface film, uropodium

extracellular
animal, plant,

fungal

cis-golgi network, cis-golgi network membrane,
golgi, golgi, golgi apparatus, golgi apparatus lu-
men, golgi apparatus membrane, golgi cis cis-
terna, golgi lumen, golgi medial cisterna, golgi
membrane, golgi stack, golgi stack membrane,
golgi trans cisterna, golgi trans face, golgi vesi-
cle, golgi-like, medial-golgi, trans-golgi network,
trans-golgi network membrane

golgi apparatus
animal, plant,

fungal
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Table C.1 (continued): Location to standardized compartment mapping.

Locations
Standardized
Compartment Organisms

lysosome, lysosome lumen, lysosome membrane,
lysosomes

lysosome animal

inner mitochondrial membrane, mitochondria, mi-
tochondrial inner membrane, mitochondrial in-
termembrane space, mitochondrial matrix, mito-
chondrial membrane, mitochondrial outer mem-
brane, mitochondrial-like, mitochondrion, mito-
chondrion envelope, mitochondrion inner mem-
brane, mitochondrion intermembrane space, mito-
chondrion matrix, mitochondrion membrane, mi-
tochondrion nucleoid, mitochondrion outer mem-
brane, outer mitochondrial membrane, photore-
ceptor inner segment

mitochondrion
animal, plant,

fungal

cajal body, centromere, chromosome, gem, host
nucleus, kinetochore, nuclear, nuclear envelope,
nuclear matrix, nuclear membrane, nuclear pore
complex, nuclear speck, nucleoli, nucleolus, nu-
cleoplasm, nucleus, nucleus but not nucleoli, nu-
cleus envelope, nucleus inner membrane, nucleus
lamina, nucleus matrix, nucleus membrane, nu-
cleus outer membrane, nucleus speckle, pml body,
telomere

nucleus
animal, plant,

fungal

acrosome, acrosome inner membrane, acrosome
lumen, acrosome membrane, acrosome outer
membrane, amyloplast, amyloplast inner mem-
brane, amyloplast membrane, apicoplast, au-
tophagosome, autophagosome lumen, autophago-
some membrane, azurophil granule, chromaf-
fin granule, chromaffin granule lumen, chromaf-
fin granule membrane, chromoplast, chromoplast
membrane, chromoplast stroma, clathrin-coated
vesicle, clathrin-coated vesicle membrane

other
membrane

bound
organelles

animal, plant,
fungal
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Table C.1 (continued): Location to standardized compartment mapping.

Locations
Standardized
Compartment Organisms

coated vesicle, copi-coated vesicle, copi-coated
vesicle membrane, copii-coated vesicle, copii-
coated vesicle membrane, cvt vesicle membrane,
cytoplasmic granule, cytoplasmic granule lu-
men, cytoplasmic granule membrane, cytoplas-
mic membrane-bound vesicle, cytoplasmic vesi-
cle, cytoplasmic vesicle lumen, cytoplasmic vesi-
cle membrane, cytoplasmic vesicles, dense-core
vesicle, early endosome, early endosome mem-
brane, early endosomes, endocytic vesicle, en-
doplasmic reticulum-golgi intermediate compart-
ment, endoplasmic reticulum-golgi intermediate
compartment membrane, endosome, endosome
lumen, endosome membrane, endosomes, er-
golgi intermediate compartment, er-golgi trans-
port vesicle, ergic, esterosome membrane, etio-
plast, etioplast membrane, intracellular vesi-
cle, late endosome, late endosome membrane,
late endosomes, melanosome, melanosome lumen,
melanosome membrane, multivesicular body, mul-
tivesicular body membrane, organellar chro-
matophore thylakoid membrane, perinuclear vesi-
cle, phagosome, phagosome membrane, phrag-
moplast, plastid, plastid inner membrane, plas-
tid membrane, plastid outer membrane, plas-
tid stroma, preautophagosomal structure, preau-
tophagosomal structure membrane, recycling en-
dosome, recycling endosome membrane, secre-
tory granule, secretory vesicle, secretory vesi-
cle lumen, secretory vesicle membrane, secretory
vesicles, synaptic vesicle, synaptic vesicle mem-
brane, synaptic vesicles, transport vesicle, un-
known granules, vesicle, vesicles, zymogen granule

other
membrane

bound
organelles

(continued)

animal, plant,
fungal

a band, centriolar satellite, centriole, centrosome,
h zone, i band, lipid droplet, lipid particle, lipid
particles, m line, myofibril, p-body, ribosome, sar-
comere, z line

other
non-membrane

bound
organelles

animal, plant,
fungal
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Table C.1 (continued): Location to standardized compartment mapping.

Locations
Standardized
Compartment Organisms

glyoxysome, glyoxysome membrane, peroxisomal
matrix, peroxisomal membrane, peroxisome, per-
oxisome matrix, peroxisome membrane, peroxi-
somes

peroxisome
animal, plant,

fungal

adherens junction, aleurone grain membrane,
apical cell membrane, apical membrane, apical
plasma membrane, apicolateral cell membrane,
basal cell membrane, basolateral cell membrane,
basolateral membrane, basolateral plasma mem-
brane, caveola, cell junction, cell junctions, cell
membrane, cell outer membrane, clathrin-coated
pit, cleavage furrow, coated pit, desmosome, en-
domembrane system, focal adhesion, focal adhe-
sions, gap junction, gap junctions, growth cone
membrane, hemidesmosome, host cell membrane,
host membrane, immunological synapse, integral
to membrane, integral to plasma membrane, lat-
eral cell membrane, membrane, membrane associ-
ated, membrane associated unknown, membrane
fraction, membrane raft, myelin membrane, perib-
acteroid membrane, plasma membrane, plasma
membrane-like, plasmamembrane, plasmamem-
branecpebtanz, plasmodesma, postsynaptic cell
membrane, postsynaptic density, presynaptic cell
membrane, sarcolemma, synapse, synaptosome,
target cell membrane, tegument membrane, tight
junction, unknown membrane

plasma
membrane

animal, plant,
fungal

aleurone grain, lytic vacuole, parasitophorous vac-
uole membrane, peribacteroid space, prevacuo-
lar compartment, prevacuolar compartment mem-
brane, protein storage vacuole, protein storage
vacuole membrane, symbiosome, vacuole, vacuole
lumen, vacuole membrane

vacuole plant, fungal
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Appendix D

PERMISSIONS

Chapter 3 is based on the two papers:

• Ramanuja Simha and Hagit Shatkay, “Protein (Multi-)Location Prediction: Us-
ing Location Inter-dependencies in a Probabilistic Framework,” in Proceedings of
the International Workshop on Algorithms for Bioinformatics, September 2013.
See Appendix D.1 for documentation of permission to republish this paper.

• Ramanuja Simha and Hagit Shatkay, “Protein (Multi-)Location Prediction: Us-
ing Location Inter-dependencies in a Probabilistic Framework,” in Algorithms for
Molecular Biology 9(1), 2014. See Appendix D.2 for documentation supporting
that the paper is available under the Creative Commons license.

Chapters 4 and 5 are based on the two papers:

• Ramanuja Simha, Sebastian Briesemeister, Oliver Kohlbacher, and Hagit Shatkay,
“Protein (Multi-)Location Prediction: Utilizing Interdependencies via a Gener-
ative Model,” in Bioinformatics 31(12), 2015 (Intelligent Systems for Molecular
Biology 2015 Proceedings). See Appendix D.3 for documentation supporting that
the paper is available under the Creative Commons license.

• Ramanuja Simha and Hagit Shatkay, “Improved Multi-Label Classification using
Inter-dependence Structure via a Generative Mixture Model,” to appear in the
European Conference on Artifical Intelligence, August 2016. See Appendix D.4
for documentation supporting that the paper is freely available online.
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