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When users interact with search engines, in a large number of cases, they first 

formulate a query and examine the results, and then reformulate it one or several more 

times until they either satisfy their information need or give up. Complex search tasks 

fall into those cases. Unlike simpler tasks in which users are looking for a particular 

homepage or a particular single piece of information or an answer to a single specific 

question, complex search tasks often span multiple search queries (i.e. a sequence of 

queries) and can span multiple sessions (i.e. multiple sequences of queries). 

In this thesis, we present several efforts for building more effective and robust 

retrieval systems for complex search tasks in situations where we have only small 

amounts of search history data. We first start by investigating and understanding 

users’ preferences with respect to document comprehensiveness and topical relevance 

grade. 

Then, using our findings from that experiment, we introduce heuristic data 

fusion methods to improve search results in a search session by leveraging most recent 

search history and query logs. 

Next, we go beyond simple average effectiveness by considering risk-

sensitivity as an essential part of our retrieval systems. For that purpose, we present re-

ranking approaches that exploit the “popularity” of documents and we show that they 

produce results with improved robustness and effectiveness over a variety of retrieval 

systems used as baselines. Risk-sensitive ranking (or robustness-aware ranking) 

focuses on improving the robustness of the system by minimizing the risk of 
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obtaining, for any topic, a result subpar with that of the baseline system. In other 

words, robustness refers to the ability of the ranker to reduce and mitigate poor 

performance on certain individual queries while striving to improve the overall 

performance as well. 

Our next endeavor consists in going beyond heuristic retrieval models. For that 

purpose, we propose a probabilistic data fusion framework for retrieval and ranking 

inspired by the well-known probability ranking function, and we use it to solve search 

over sessions, as well as ad-hoc search, novelty and diversity search. 

Finally, in order to achieve high effectiveness for search over a session even in 

the absence of search history, we propose to simulate search interactions that provide 

data similar to what we could have obtained if a user were to have prior interactions 

with the search engine (previous queries, top results returned for previous queries, 

etc.). 



 

 

 

1 

INTRODUCTION 

Information Retrieval (IR) is concerned with finding documents or resources 

relevant to a user’s information need. IR encompasses, among other things, activities 

such as representation, storage, retrieval, evaluation, and ranking of documents, web 

pages, images and videos. At a high level, our efforts revolve around the retrieval of 

documents and the user modeling that it entails. More specifically, our focus is on 

proposing retrieval models aimed at improving users’ satisfaction during complex 

search tasks and search over sessions, even when there is only little search history data 

available. 

Complex search tasks are tasks that are characterized by users interacting with 

a search engine in a session:  formulating a query, viewing some results, reformulating 

based on what they see in those results or the idea of the task they have in mind, 

drifting to related topics, and so on.  We define them in contrast to simple tasks such 

as homepage finding or factual question answering or finding one highly-relevant 

piece of information, all of which are common tasks that search engines tend to be 

very good at already. 

Let us consider vacation planning as an example. A user may enter the 

following search query: “vacation in Sydney.” That user may be interested in finding 

more information about some or all of the following aspects: “cheap flights to 

Sydney”, “Sydney vacation package deals”, “top reasons to vacation in Sydney”, “best 

things to do in Sydney”, “cheap hotels in Sydney” and “car rental in Sydney.” Clearly 
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satisfying several of these aspects of the user’s information need is likely to lead the 

user to engage in many interactions with the search engine, and to provide several 

reformulations of the query. Figure 1.1 illustrates all the possible transitions between 

these queries. In this case, a user can potentially start with any query and proceed with 

any other query from the list, and so on – and possibly re-issuing the same query 

again. 

 

 

 

 

 

 

 

 

Figure 1.1:   Example of queries for completing the complex search 

task about “Vacation in Sydney” 

In our thesis, we conduct several studies aimed at the creation of information 

retrieval systems with strong performance for complex search tasks in situations where 

we have only very small amounts of search history data. First of all, we believe that 

with complex search tasks – and with many IR tasks in general –, the user is central. 

Therefore, it is important to understand users and their preferences in complex search 

tasks and subsequently build systems that account for those preferences. For that 
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reason, we propose to perform a user study to understand users’ preferences in the 

context of complex search tasks. 

Secondly, given the interactive nature of complex search tasks, systems that 

are built to perform retrieval for complex search tasks must be able to leverage users' 

previous interactions with the search engine in the search session to provide more 

effective results. For that purpose, we propose heuristic data fusion models that 

leverage users' search history in order to improve search effectiveness. 

With complex search task systems as well as with many IR systems, it is 

common place for researchers and developers to focus on search effectiveness and 

completely ignore robustness. In our work, we advocate to take robustness into 

consideration and thus propose heuristic robustness-aware reranking models. 

Given that models that are more grounded in well-studied theories have the 

advantage of being better understood and more solid, we propose a general theoretical 

framework for retrieval as an improvement to our heuristic retrieval models. For that, 

we introduce a probabilistic data fusion framework for retrieval and ranking for 

various retrieval tasks including ad-hoc, diversity and session search. 

Finally, in the cases of cold-start in a complex search where there is no search 

history data to leverage, we believe it will be beneficial to generate pseudo search 

history data. Therefore, we propose ways to generate pseudo search history data by 

simulating query reformulations. 

The steps we took are described below. 
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1.1 Understanding Characteristics That Make Documents Desirable to Users in 

the Context of Broad Queries 

In order to understand users’ preferences in complex search task scenarios, we 

can study a similar but simpler task such as novelty and diversity search task which, 

unlike complex search tasks, assumes there is only one query formulation. In both 

scenarios, users are interested in seeing documents that are not only relevant, but also 

cover more aspects (or subtopics) related to the topic of interest. For the purpose of 

understanding users’ preferences, we propose in Chapter 3 to conduct a user study 

where users are asked to prefer one of two documents B and C given a broad query 

and also given that they have already seen a document A. We then answer several 

questions pertaining to the relationship between the “comprehensiveness” of 

documents (i.e. the number of subtopics a document is relevant to) and real users’ 

preference judgments. Using this user study framework, we were able to empirically 

show that users strongly prefer documents with high subtopic coverage (i.e. more 

comprehensive documents), regardless of the topical relevance grade. 

1.2 Using Search History to Improve Current Search Results 

Based on the results of the study described in the previous section, we propose 

a retrieval model that tends to prioritize documents that are likely to be relevant to the 

largest number of subtopics; for each document, this can be naively gauged by 

considering the number of related queries whose rankings a document appears in. 

 On the other hand, it has been observed that during their interactions with 

search engines, many users find themselves reformulating their queries in order to 

satisfy their information need, thus engaging into many interactions (i.e. sequences of 

user queries and resulting search engine rankings) over the same search session. 

Hence, we decided to move away from the traditional assumption that each query is 
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independent, and apply our retrieval model in a context where there are previous 

search interactions – and consequently search history from those interactions. The 

retrieval model we propose is a heuristic data fusion approach that leverage users’ 

search history in this context of search over sessions. In Chapter 4, we describe the 

retrieval data we used in this context of search over sessions, as well as the heuristic 

data fusion method we used for leveraging users’ search history, and the results we 

obtained. 

1.3 Effective and Robust Models for Search and Retrieval 

Although effectiveness is the main and most important measure of the 

performance of information retrieval systems, it is also important to ensure that the 

systems are robust. Robustness refers to the ability of the ranker to reduce and mitigate 

poor performance on individual queries while striving to improve the overall 

performance as well. Robust systems mitigate situations where the improved systems 

fare worse than the baseline on certain queries, even though the average effectiveness 

score is higher than the baseline’s. In order to create robustness-aware effective 

systems, we propose two re-ranking approaches based on exploiting the popularity of 

documents with respect to a general topic. We used each of the runs (i.e. ranked list of 

documents) submitted to a popular information retrieval evaluation conference as 

baseline, and empirically show that our algorithms improve the effectiveness as well 

as the robustness of the systems in an overwhelming number of cases, even though the 

systems used to produce the runs employ a variety of retrieval models. In Chapter 5, 

we describe the dataset we used for risk-sensitive ranking (i.e. robustness-aware 

ranking) as well as the approaches we used to improve robustness of the baseline 

systems along with the results we obtained. 
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1.4 General Theoretical Framework for Retrieval and Ranking for Ad-Hoc, 

Diversity Ranking and Search over Sessions 

The techniques we mentioned in Section 1.2 and detailed in Chapter 4 are 

somewhat ad hoc and lacking in underlying principles that might explain their 

efficacy.  In order to get a more principled effective retrieval method, we propose a 

framework based on a modified version of the well-known Probability Ranking 

Principle [84]. Instead of following the guideline that says that optimal ranking is 

achieved when documents are ranked in decreasing order of probability of relevance, 

we make an amendment as follows: optimal ranking is achieved when documents are 

ranked in decreasing order of probability of relevance and “retrievability”. We argue 

that if we can obtain a set of “possible queries” for an information need, and compute 

the probability of retrievability of documents with respect to each query as well as the 

probability of relevance of each of the documents, we can achieve high effectiveness 

by fusing the rankings over the possible queries. In Chapter 6, we describe in more 

detail the principled approach that we propose to follow. 

1.5 Simulation of Query Reformulations 

In search scenarios where we are in the presence of very little to no search 

history data, we propose to simulate query reformulations that provide data similar to 

what we can obtain when a user has previous interactions with the search engine 

(previous queries, top results returned for previous queries, etc.). Specifically, 

assuming that we have a real user who provides one single query and nothing else, we 

address the question of whether we can generate data that can be considered to be 

similar to search history data, and that leads to results similar to the ones we obtain 

when we leverage real users’ search history. We also investigate whether we can 

improve search effectiveness by leveraging simulated queries, and how that would 
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compare to leveraging real search history. More details on how we simulate query 

reformulations are presented in Chapter 7. 
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RELATED WORK 

2.1 Traditional Ad-hoc Information Retrieval (IR) 

Ad-hoc IR has long focused on improving average overall effectiveness, and 

treats queries as though they are single faceted. Popular state-of-the-art retrieval 

models that have been used in ad-hoc IR include language modeling [81] and Okapi 

BM25 [86]. The Markov Random Field model for term dependencies has been 

proposed by Metzler and Croft [75]. And so were other term proximity models such as 

those described by Buttcher et al. [25] and Tao and Zhai [95]. In recent years, learning 

to rank algorithms have been adopted [24, 69], as well as learning to re-rank 

algorithms [58], novelty and diversity ranking [26] and risk-sensitive ranking [100]. 

In the following lines, we briefly describe some of the most popular relevance 

models. 

 Boolean Retrieval Model 

This is the first and simplest retrieval model. It is based on Boolean logic and 

classical set theory. The user’s query is conceived as a set of terms combined by 

Boolean operators AND, OR, NOT, etc. Each retrieved document in the returned 

unordered list of documents contains those query terms [23]. 

 Vector Space Model 

This model represents documents or queries as a vector of term weights. Each 

term is part of the vocabulary in question, and the relevance score is often computed 

using cosine similarity. The most well-known function for obtaining the term weights 

Chapter 2 
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is TF-IDF [87]. TF (term frequency) is the raw frequency of a term within a document 

[71] while IDF (inverse document frequency) quantifies whether the term is common 

or rare across all documents [92]. 

𝐼𝐷𝐹(𝑡) = log
𝑁

𝑑𝑓𝑡
 

where N is the total number of documents in the collection C, and dft is the 

number of documents in C that contain the term t. 

 Okapi BM25 

BM25 is a TF-IDF-like ranking function based on a probabilistic retrieval 

framework introduced by Robertson and Jones. 

𝑠𝑐𝑜𝑟𝑒(𝐷, 𝑄) = ∑ 𝐼𝐷𝐹(𝑞𝑖) ∙
𝑡𝑓𝑞𝑖,𝐷 ∙ (𝑘1 + 1) 

𝑡𝑓𝑞𝑖,𝐷 + 𝑘1 ∙ (1 − 𝑏 + 𝑏 ∙
|𝐷|

𝑎𝑣𝑔𝑑𝑙

𝑛

𝑖=1

 

where |D| is the length of the document D in words,  avgdl is the average 

document length in the collection, k1 and b are free parameters, and IDF(qi) is often 

defined as: 

𝐼𝐷𝐹(𝑞𝑖) = log
𝑁 − 𝑛(𝑞𝑖) + 0.5

𝑛(𝑞𝑖) + 0.5
 

where N is the total number of documents in the collection, and n(qi) is the 

number of documents containing qi. 

 Query Likelihood Model and the Language Model family 

Language modeling [20, 52, 76, 81] is a probability distribution over words. 

Query likelihood is part of that family of retrieval models.  Each document is assigned 

a score which is the probability of the document being relevant given a query. 

𝑠𝑐𝑜𝑟𝑒(𝐷, 𝑄) = log 𝑃(𝑄|𝐷) = ∑ 𝑙𝑜𝑔
𝑡𝑓𝑞𝑖,𝐷 + 𝜇

𝑡𝑓𝑞𝑖,𝐶

|𝐶|
 

|𝐷| + 𝜇

𝑛

𝑖=1
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where qi is the ith term in query Q, n is the total number of terms in Q, |D| and 

|C| are the document and collection lengths in words respectively, tfqi,D and tfqi,C are 

the document and collection term frequencies of qi respectively, and μ is the Dirichlet 

smoothing parameter [81]. Smoothing is a common technique to estimate the 

probability of unseen words in the documents [37, 80, 109, 110]. Notice that query 

terms are assumed to be generated independently from the language model. 

 Relevance Model and the Mixture of Relevance Model 

Relevance Model [64] is an example of document likelihood model – as 

opposed to query likelihood model – wherein we leverage the set of pseudo-relevant 

documents to obtain more text to use in the estimation of the language model. 

𝑃(𝑤|𝜃𝑄) ∝
1

|𝑅|
∑ 𝑃(𝑤|𝜃𝐷)𝑃(𝑄|𝜃𝐷)

𝐷𝜖𝑅

 

where R is the set of pseudo-relevant document, 𝜃𝐷 is a document language 

model, 𝑃(𝑄|𝜃𝐷) is the query likelihood and w is a possible query term. 

Mixture of Relevance Model is an improvement over relevance modeling 

wherein information in external document collections is leveraged [45]. This has been 

shown to achieve more stable MAP improvement than traditional pseudo-relevance 

feedback across a range of news and web collections. The term generation probability 

function is formally defined by: 

𝑃(𝑤|𝜃𝑄) = ∑ 𝑘𝐶𝑖

𝐶𝑖

𝑃(𝐶𝑖)

|𝑅𝐶𝑖|
∑ 𝑃(𝑤|𝜃𝐷)𝑃(𝑄|𝜃𝐷)

𝐷𝜖𝑅𝐶𝑖

 

where kCi is the normalization factor for the relevance model estimate using 

collection Ci. 

 Markov Random Field (MRF), Weighted Sequential Model (WSD) and 

Positional Language Model (PLM)  
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In reality the independence assumption in the Query Likelihood model is rather 

naive, since related terms are likely to appear in close proximity to each other. 

The Markov Random Field (MRF) model [75] improves it by accounting for 

term proximity. It works by first constructing a graph that contains a document node, 

one node (i.e. random variable) per query term, and edges that define independence 

semantics between the random variables. Then, it models the joint distribution over 

the document random variable and query term random variables. 

𝑃𝛬(𝑄|𝐷) = ∑ 𝜆𝑇𝑓𝑇(𝑐) +

𝑐∈𝑇

∑ 𝜆𝑂𝑓𝑂(𝑐) + ∑ 𝜆𝑈𝑓𝑈(𝑐)

𝑐∈𝑈𝑐∈𝑂

 

where T is the set of 2-cliques containing the document node and a query term 

node, O is the set of cliques involving the document node and two or more query 

terms that appear contiguously in the query, and U is the set of cliques involving the 

document node and two or more query terms that appear non-contiguously within the 

query. f(c) is the feature function over clique c and λ’s are the feature weights. 

The Weighted Sequential Model (WSD) is an extension of the MRF model 

wherein the query concept weights – specifically the lambda parameters of the 

previous equation – are automatically learned [19].  

Like MRF and WSD, the positional language model (PLM) [72] accounts for 

term proximity. The PLM is estimated for each position based on propagated counts of 

words within a document through a proximity-based density function. The document 

relevance score is calculated by scores of its PLMs. PLM can be further improved by 

incorporating pseudo-relevance feedback [73]. 

2.1.1 Data Fusion 

Previous research has shown that combining the evidence of multiple query 

representations helps improve results in information retrieval [Belkin96]. Two such 
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methods are CombSUM and CombMNZ. For each query, CombSUM reranks 

documents based on their cumulative scores over all the various query representations 

(i.e. related queries). CombMNZ, on the other hand, uses the sum of similarity values 

times the number of non-zero similarity values [67]. 

In general, we can fuse rankings from different systems [49, 90] or rankings 

obtained using different document representations in order to improve performance. 

While some fusion techniques use the scores of the documents across the 

ranked lists [14, 97], others use their ranks instead [48, 66], and some others use their 

probability of occurring in a predefined segment of the lists [65, 68]. Bartell et al. 

propose a linear combination method by which the relevance estimates made by 

rankers can be automatically combined for better performance [14]. Aslam and 

Montague [4] propose to use a metasearch model based on Borda Count and another 

one based on Bayesian Count and show that both usually outperform the best input 

system and are competitive with, and often outperform, existing metasearch strategies. 

Montague and Aslam [78] also propose to apply ideas from the Social Choice Theory, 

specifically they employ the Condorcet procedure for data fusion and show it to 

outperform the model based on Borda Count. Lillis et al. propose a method that 

assumes that the performance of the individual input systems on a number of training 

queries is indicative of their future performance, and thus fuses the rankings based on 

probabilities of relevance calculated during this training process [68]. In another 

effort, Wu and McClean propose a group of algorithms to eliminate the effect of 

uneven correlation among component results by assigning different weights to all 

component results or their combinations. They then use the linear combination method 

or a variation to fuse the results [102]. 
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In most cases, using data fusion in IR helps obtain good results. However, that 

positive impact depends on the quality of the input result lists [48, 96, 79, 103]. Thus 

an essential part of our work is dedicated to finding appropriate sources of data to be 

used as various query representations. 

2.1.2 Novelty and Diversity Search and Retrieval 

Another aspect of ad-hoc retrieval is focused on improving diversity and 

novelty search and retrieval. The goal of diversity and novelty retrieval search and 

retrieval is to provide rankings where, not only is document relevance accounted for, 

but also users’ intents as well as the different aspects of the topic being searched on. 

Many of the diversity ranking approaches are inspired by the MMR algorithm 

introduced by Carbonnell and Goldstein [Carbonnell98]. The fundamental idea of 

MMR is to optimize for both document relevance and coverage of intents and/or 

aspects. Differences in implementations lie in how similarities are computed: 

Carbonnell and Goldstein suggest using any similarity function such as cosine 

similarity. Zhai et al. [108] advocate for modifying the language modeling framework 

to incorporate a model of relevance and redundancy. Other researchers utilized the 

correlation between documents as a measure of their similarity in the pursuit of 

diversification and risk minimization in document ranking [100]. Carterette and 

Chandar [27] introduced a greedy result set pruning wherein there are 2 steps: in the 

first step, they rank documents in decreasing order of their similarity to the query; and 

in the second step, they proceed to iteratively prune documents whose similarity to 

any previously selected document is greater than a certain threshold. They also use a 

set-based probabilistic model to maximize the likelihood of covering all the aspects 

[27]. Radlinski and Dumais [82] exploited a commercial search engine to obtain 
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aspects of queries, and proceeded to diversify the ranking using query-query 

reformulations. Santos et al. [88] utilize a query-driven approach wherein they 

explicitly account for aspects by using sub-queries to represent a query. They then 

estimate the relevance of each retrieved document to every identified sub-query, and 

the importance of each sub-query. 

2.1.3 Risk-Sensitive Ranking 

Risk-sensitive ranking (or robustness-aware ranking) focuses on improving the 

robustness of the system by minimizing the risk of obtaining, for any topic, a result 

subpar with that of the baseline system. Most research in Information Retrieval (IR) 

has focused on improving the average effectiveness of systems. However, it is very 

often the case that the improved systems fare worse than the baseline on many of the 

queries, even though the average effectiveness score is higher than the baseline’s. The 

concept of robust ranking appears therefore to be key, when it comes to remedying 

those cases. In this present work, robustness refers to the ability of the ranker to reduce 

and mitigate poor performance on individual queries while striving to improve the 

overall performance as well. 

Research on risk-sensitive ranking is still in its infancy. Perhaps the work most 

related to our approach is Wang et al.’s effort [100] to address robustness by 

proposing a principled learning to rank framework that optimizes for both 

effectiveness and robustness of a retrieval system. Essentially the authors proceeded 

by proposing a learning method that optimizes for both reward and risk with respect to 

a given baseline. While their approach consists in learning to control the tradeoff 

between effectiveness and robustness, our approach is a general re-ranking method 

that can be used on top of any retrieval model (e.g. language model, query expansion, 
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learning to rank, data fusion, or Markov Random Field retrieval models) and that 

consists in re-arranging documents in the original ranking, in order to get a more 

effective and robust final ranking. 

Another major contribution in the literature is that of Dincer et al. [46] that 

focused on uncovering biases inherent to the way TREC Web track evaluated systems 

prior to 2014. The authors argued that, given there were several various retrieval 

methods used by the track participants in building the systems (query expansion, 

learning to rank, etc.), comparing robustness using one single baseline that was created 

with a specific retrieval model creates inherent biases. That is, systems that build on 

top of retrieval models similar to the baseline will have an advantage over others, and 

systems that build on top of retrieval models very different from the baseline will be at 

great disadvantage. The authors proposed several ways to mitigate that issue including 

the use of mean within-topic system effectiveness as a baseline. In the present work, 

our focus is not to show that we can improve robustness with respect to one single 

specific baseline. Rather we focus on showing that, given any ranking obtained using a 

certain retrieval model, we can apply our method to improve the robustness as well as 

the overall effectiveness of the system. For that purpose, we used each and every run 

from TREC Web 2013 and 2014 – as baselines – to empirically show that. 

Wang and Zhu [99] proposed a risk-aware ad-hoc retrieval model that utilized 

the correlation between documents as a measure of their similarity in the pursuit of 

diversification and risk minimization in document ranking. In a similar effort to 

establish a risk-aware framework for retrieval, Zhu et al. [112] proposed to model 

uncertainty and utilized a one-parameter loss function to model the level of risk 

acceptable by a user. Their loss function was applied to a language modeling 
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framework. Our approach, however, is a general re-ranking approach that we apply to 

the ranking of any retrieval model, and that we show to improve average overall 

effectiveness as well as risk-sensitive measures. There are other efforts for ad-hoc 

risk-aware retrieval methods that focus on query expansion cases [40] and pseudo-

relevance feedback cases [74]. 

It is to be noted however that the term robustness as used in our study differs 

from the sense it is given in other work like in Bhattacharjee’s work wherein robust 

ranking means ranking algorithm that is sensitive (or less vulnerable) to spams and 

noise in the training set [21]. 

2.2 Search over Sessions 

A session is a sequence of query reformulations and interactions made by a 

user in order to satisfy an information need. A session consists of a current query and 

the previous interactions that led to the current query. In many search scenarios, users 

tend to provide one or more reformulations of their original query in order to satisfy 

their information need. The TREC Session track was created to investigate such use 

cases. The main goal of that track is to improve the ranking of a current query given 

information about the previous interactions (document Id, title, URL, snippets, clicked 

URLs and dwell time of previous queries) [59, 61]. The track provides test collections 

that contain this data. 

Several approaches have been proposed. Zhang et al. [111] proposed to tackle 

the problem using a relevance feedback model that takes advantage of query changes 

in a session. In Zhang’s work, when computing the relevance score between a current 

query and a document, terms’ weights are increased or decreased depending on 

whether the term was added, retained or removed from previous queries in the session. 
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In a similar approach [51], Guan et al. proposed to model sessions as Markov Decision 

Processes wherein the user agent’s actions correspond to query changes, and the 

search agent’s actions correspond to increasing or decreasing or maintaining term 

weights. 

Raman et al. [83] used related queries to diversify results while maintaining 

cohesion with the current query in order to satisfy the current query as well as future 

queries. They did so using a two-level dynamic ranking where the user’s interaction in 

the first level is used to infer her intent in order to provide a better ranking that 

includes second level rankings. 

Query aggregation has also been used by Guan who identified text nuggets 

deemed interesting in each query and merges them to form a structured query [50]. 

Notable approaches used by TREC participants include the work of Jiang et al. [55] in 

which the authors combined Sequential Dependence Model features in both current 

queries and previous queries in the session for one system, and combined that method 

with pseudo-relevance feedback for other systems. Another notable approach is the 

use of anchor texts for query expansion proposed by Kruschwitz et al. [63] and 

adopted by others. 

2.3 Simulation of Search Interactions 

Keskustalo et al. [62] were among the first to argue for test collections that 

include a model of user query reformulation for the purpose of evaluation over 

sessions. They propose a test collection consisting of multiple query reformulations 

created by selecting terms from a manually-defined space. Reformulations are 

generated according to one of four simulation models derived from observing real 

users' search strategies. They define session success as finding one relevant document, 
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and failure as finding none. With that definition, they could evaluate their simulation 

models/search strategies in terms of the total time (or cost) required to achieve 

success. They conclude by arguing that IR test collections should “model processes 

where the searcher may try out several queries for one topic”; the present work is an 

answer to that. 

In follow-up studies, Baskaya et al. [17 and 15] propose a query modification 

simulation strategy to model how words are selected to form an initial simulated query 

or subsequent queries. They start with a fixed set of terms for each topic, then perform 

all possible permutations and focus on five strategies that users employ for query 

modification. For the purpose of simplicity, the model intentionally disregards the fact 

that users may learn by reading snippets and inspecting documents. Baskaya et al. also 

[16] model scenarios in which the user involved in a search process based on 

relevance feedback can make mistakes by providing erroneous feedback. They showed 

that errors generated under their simulation models can actually provide results as 

good as correct relevance feedback. 

There has been other work on simulating queries and aspects of user behavior. 

Van Dang and Croft [44] showed that anchor text could be used to generate query 

reformulations. Jiang et al. [55] propose a model for how users browse results over a 

session in order to evaluate reformulations. Carterette et al. [30] sample values of 

parameters in parametrized evaluation measures like RBP to simulate sampling users 

for an interactive evaluation. In separate works, Yang and Lad [106] and Kanoulas et 

al. [59a] define session evaluation measures based on an expected utility model of user 

browsing over a session; Jarvelin et al. [54] defined a session evaluation measure 

based on DCG. 
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2.4 Text Retrieval Conference (TREC), NII Testbeds and Community for 

Information access Research (NTCIR) and ClueWeb corpora 

TREC is an annual evaluation conference organized by the National Institute 

of Standards and Technology. The goal is to strive to standardize experimental settings 

and datasets for researchers and developers who are working on some search and 

retrieval tasks. The tasks can vary from year to year, and each year there are several 

organized tasks. In general, for each task, organizers provide information needs as 

well as collections of documents to participants (researchers and developers). Each 

participant will thus create a search system that performs the same task for the track 

they are participating in, and all participants will use the same dataset. Afterwards, 

TREC organizers collect and make available human relevance judgments as well as 

other tools and resources necessary for measuring and understanding the effectiveness 

of the search systems. TREC datasets that are of interest to us for our thesis are the 

2011 and 2012 Session track datasets [60, 61] which we describe in detail in Chapter 

4, the 2013 and 2014 Session track datasets [32, 31] which we describe in detail in 

Chapter 6, and the novelty and diversity and risk-sensitive ranking track datasets 

(TREC Web track 2013 and 2014 datasets) [41], [42] – which we describe in detail in 

Chapters 5 and 6. 

NII Testbeds and Community for Information access Research (NTCIR) is 

another evaluation conference with similar goals as TREC. However NTCIR is 

organized by a different entity, the National Institute of Informatics (NII) in Japan. 

The tracks/tasks organized by NII are not the same as TREC's. But some of the tasks 

share similar subtasks. Relevant to our thesis is the iMine task which, like the TREC 

2013 and 2014 Web tracks, is also a diversification task for IR. More details about the 

iMine dataset is provided in Chapter 6. 
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For all seven datasets - TREC Sessions track 2011, 2012, 2013 and 2014, 

TREC Web track 2013 and 2014, NTCIR IMine 2014, the corpus used for retrieval 

was either ClueWeb09 or ClueWeb12. ClueWeb09 corpus is a set of about 1 billion 

web pages in ten languages that were crawled during the months of January and 

February 2009. ClueWeb12 corpus is a set of of 733,019,372 English web pages that 

were crawled between February 10, 2012 and May 10, 2012. 

The corpus on which the retrieval is performed for the 2011 and 2012 Session 

track tasks is the category B subset of ClueWeb09. The category B subset contains 50 

million documents. For the 2013 and 2014 TREC Web and Session tracks, the 

retrieval corpus is the entire ClueWeb12 corpus. For the NTCIR IMine task, the 

retrieval corpus is the ClueWeb12-B13 subset which contains about 50 million 

documents. 

2.5 Our Contributions 

Our work builds on top of some of these retrieval models in a few ways. 

Before delving into our proposed retrieval models, we present in Chapter 3 our work 

on understanding users’ preferences in the context of complex search tasks. We view 

this study as motivating our models:  it suggests that users value novelty and diversity 

of relevant content (i.e. document comprehensiveness) over the simple presence of 

relevant information.  Thus the models we build aim to fuse information from 

diverse—but related—sources in order to provide users with the most variety of 

relevant information in their search results.  

In Chapter 4, we employ a heuristic data fusion technique to leverage users’ 

search history in the context of search over sessions. First, for each given query, we 

generate related queries from various sources and use those multiple representations of 
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a query to obtain several rankings. Then we combine those multiple rankings using 

simple rank aggregation methods. We then proceed to show that our results are very 

effective.  

In Chapter 5, we go beyond average effectiveness. We propose two reranking 

approaches – based on exploiting the “popularity” of documents with respect to a 

general topic – that improve the effectiveness while improving the robustness of the 

baseline systems. We used several systems as baselines and show that, even though 

these were systems based on a variety of retrieval models, our approaches increase 

their robustness. 

In Chapter 6, we go beyond simple heuristic data fusion methods by proposing 

a principled probabilistic data fusion framework for retrieval and ranking that 

effectively addresses search over sessions as well as ad-hoc search, and novelty and 

diversity search. Our framework is based partially on the well-known Probability 

Ranking Principle, which states that the optimal ranking of documents is achieved 

when sorting them in decreasing order of probability of relevance [84]. We augment 

this principle with the following guideline: optimal ranking is achieved when 

documents are ranked in decreasing order of probability of relevance and 

“retrievability,” instead of relevance only.  

Finally, in Chapter 7, we propose to simulate query reformulations that provide 

data similar to what we can obtain when a user has previous interactions with the 

search engine. This will be considerably helpful in cases where there is very little to 

no actual search history data to leverage. Chapter 8 concludes our work. 

 

  



 

 

 

22 

UNDERSTANDING USERS’ PREFERENCES IN COMPLEX SEARCH 

TASKS 

Users with complex search tasks often start with very broad queries that may 

span several aspects of a topic.  They may want documents that are not only relevant 

to their information need, but also cover a diverse set of aspects of their information 

need. We are interested in their preferences for relevance, diversity, and novelty in the 

sense of a document covering an aspect that is not covered by a previously-ranked 

document. It is essential to understand real users, and use our insights about their 

preferences to inform our retrieval methods for complex search tasks. 

For the purpose of understanding users’ preferences, we conduct a pilot user 

study where users are asked to assign a preference to one of two documents B and C 

given a broad query and also given that they have already seen a document A. We then 

investigate a total of ten questions pertaining to the relationship between the 

“comprehensiveness” of documents (i.e. the number of subtopics a document is 

relevant to) and real users’ preference judgments. The main research questions we 

answer are: Are users inclined to prefer documents with higher comprehensiveness, 

even when the prior document A already covers more aspects than the two documents 

being compared, and even when the less preferred document has a higher relevance 

grade? Furthermore, are users inclined to prefer documents with higher overall aspect-

coverage even in cases where B and C are relevant to the same number of novel 

subtopics. We propose to adopt this user-study framework – the so-called triplet 

Chapter 3 
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framework – because previous studies have shown it to be a good framework for 

collecting judgments for novelty based on preferences [Chandar and Carterette 2012, 

Chandar and Carterette 2012b]. In fact, it was previously used by Chandar and 

Carterette to test different sets of hypotheses pertaining to novelty ranking tasks. We 

regard the present work, which is more focused on document comprehensiveness, as a 

complement to their work. 

3.1 Preference Judgments 

Absolute judgments in IR such as Boolean relevance and graded relevance 

have been used widely in the literature. An alternative is pairwise preference 

judgments, in which an assessor is presented with two documents and gives a 

preference to one document over the other.  Early work on preference judgments in IR 

involved inferring preferences from those absolute judgments [24]. However more 

recently, pairwise (i.e. binary) preference judgments have been adopted as an 

alternative that may offer advantages in terms of alleviating the burden on assessors by 

reducing the complexity of the assessment, rendering the assessment task easier than 

assigning grades and reducing assessor disagreement [29].  

The preference judgment scheme we adopt here, however, is a bit different and 

was first proposed by Chandar et al. [33]. This scheme is based on the so-called triplet 

framework, wherein given a query and a document A that the assessor is to pretend 

contains everything they know about the topics, the assessor chooses the next 

document they would like to see between two documents. 
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3.1.1 Dataset 

 

Figure 3.1:   Screenshot of the HIT Layout 

For our experiments, we use 10 topics from the TREC 2012 Web track dataset 

[38]. The 10 topics selected are a sample of broad topics (i.e. topics good for intrinsic 

diversity tasks as well as complex search tasks). Documents were selected for 

preference assessment from those judged for the Web track.  All documents are 

therefore from the ClueWeb09 collection of millions of web pages. We use the 

publicly available subtopic relevance judgments produced by experienced NIST 

assessors and based on graded relevance. Since topical relevance of documents was 

not explicitly provided, we consider the maximum subtopic relevance grade of a 

document to be its topical relevance (ad-hoc relevance). For each one of the 10 topics, 

we obtained triplets from several users. In the next section, we describe the 

experimental design that yielded the triplets. 
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3.1.2 Experimental Design  

The framework we adopt in this pilot study for preference judgment is based 

on the work of Chandar and Carterette [33]. In the framework, an assessor (i.e. user) is 

shown three documents, one appearing at the top of the page, one appearing at the 

bottom left, and the third appearing at the bottom right. We will refer to the top 

document as DT, and the bottom ones as D1 and D2, in concordance with naming 

conventions of Chandar and Carterette. Given DT and a topic, the assessor is asked to 

choose between D1 and D2. Essentially the assessor would need to indicate their 

preference for the second document they would like to see in a ranking by selecting 

either D1 or D2.  

Since we have graded topical and subtopic relevance judgments for the 

documents, we can use that information to determine what subtopics each document is 

relevant to, as well as the corresponding relevance grades. A document can thus be 

represented as the set of subtopics it has been judged relevant to. For instance, Di = 

{Sj, Sk} means document i is relevant to subtopics j and k. 

We used Amazon Mechanical Turk (AMT) [3] – an online labor marketplace – 

to collect user judgments. AMT works as follows: a requestor creates a group of 

Human Intelligence Task (HITs) with various constraints and workers from the 

marketplace work to complete the tasks. Workers were instructed to assume that 

everything they know about the topic is in the top document, and they are now trying 

to find a document that would be most useful for learning more about the topic. No 

mentions of subtopics, novelty, or redundancy were given to them except as examples 

of properties assessors might take into account in their preferences (along with 

recency, ease of reading, and relevance). Each preference triplet consists of three 

documents, all of which were relevant to the topic; the documents were picked 
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randomly from the data described in the previous section. One document appeared at 

the top followed by two documents below it. The HITs layout design, the quality 

control decisions and the HIT properties were the same as described by Carterette and 

Chandar [34].  Figure 3.1 shows an example of a triplet as it appeared in a HIT. 

In online crowdsourcing marketplaces like AMT, due to the subjective nature 

of this task, it is primordial to ensure that the workers are taking their task seriously, 

and not just randomly clicking for the sake of making quick money. We have a few 

ways of weeding out poor quality preference judgments: Majority vote, trap questions 

and qualifications. 

Majority vote: In order to ensure that the workers are not randomly clicking 

around and that they actually understand the task, one simple yet commonly used 

quality check is to have many workers perform the same HIT and then use some way 

to determine the one(s) that are off. We use majority vote in this case. Each HIT was 

completed by five different workers, and the document that the majority of them agree 

to be preferable is the one we choose to be the preferred one. 

Trap Questions: Another way to avoid poor quality judgments is by slipping 

trap questions in the midst of questions. Essentially, trap questions are questions for 

which we already knew the answers, and which we use to eliminate poor quality 

workers. Specifically, we have “non-relevant document traps” and “identical 

document traps”. In “non-relevant document trap”, one of the documents is not 

relevant to the topic at all, so there is no way a good quality worker would prefer it 

over the relevant document. In “identical document trap,” although the two documents 

being compared are relevant to the topic, one of them is identical to the prior (already 

seen) document. So, there is no reason for a good quality worker to prefer the identical 
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document over the non-identical relevant one that contains new information. Out of 

the five triplets in each HIT, one contains a trap question that is randomly selected. 

Qualifications: On Amazon Mechanical Turk, task requestors can see 

workers’ historical performance (i.e. ratings) on other previous tasks they performed, 

and they can decide and set the acceptable threshold performance that workers must 

have before getting involved in the tasks. We used two qualifications in our 

experiment. We allowed only workers that have an approval rate of 95% or more. This 

is an easy way to eliminate spammers and ill-intentioned workers who randomly click 

around. The other qualification technique we employed was a simple test – the so-

called qualification test. The goal is to ensure that users actually understand the task 

that they will be performing. In our study, we need users to understand what it means 

to select a document with novel information, given the prior known document. For 

that purpose, we initially present the workers with a HIT layout that looks the same as 

the ones they will be using if qualified. On that HIT, there is one “non-relevant 

document trap” and two “identical document traps.” Workers have to correctly 

complete that task before they can proceed. 

3.2 Comprehensiveness Analysis and Results 

In this section, we enumerate some specific questions about relationships 

between document “comprehensiveness”, ad-hoc (i.e. topical) relevance grade, and 

user preferences.  Our goal is to test the degree to which comprehensiveness (in the 

sense of covering more aspects in relevance judgments) is more important to users 

than topical relevance grade; in general, we hypothesize that it is the more important 

of the two factors in their preferences. 
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Table 3.1:  Results for all the questions, all results in the last column are significant (++) at p<0.01, except for Q5 and Q9 

 T 152 T 157 T 158 T 167 T171 T 173 T178 T 184 T 196 T199 All Topics 

Q1 true/false 196/ 22 87/ 13 148/19 97/ 28 181/31 155/30 119/51 157/19 108/53 136/22 1384/288 (82.78% true)++ 

Q2 true/false 0/0 0/0 4/1 10/2 5/0 0/0 1/1 4/4 0/0 6/1 30/9 (76.92% true)++ 

Q3 true/false 10/15 0/0 33/13 18/6 12/1 6/11 14/11 21/14 18/15 12/14 144/90 (61.54% true)++ 

Q4 true/false 40/3 20/2 49/14 31/6 42/15 82/21 37/17 56/8 59/32 41/10 457/128 (78.12% true)++ 

Q5 true/false 0/0 0/0 0/0 0/0 0/0 0/0 1/1 2/2 0/0 6/1 9/4 (69.23% true) 

Q6 true/false 4/1 0/0 21/4 0/0 0/0 2/7 6/1 1/6 5/2 8/6 47/27 (63.51% true)++ 

Q7 true/false 181/21 67/11 97/5 79/24 149/18 73/9 105/50 115/11 49/21 91/11 1006/181 (84.75% true)++ 

Q8 true/false 0/0 0/0 4/2 10/10 5/0 0/0 1/1 2/2 0/0 0/0 22/7 (75.86% true)++ 

Q9 true/false 10/5 0/0 9/24 18/6 12/1 4/4 13/17 16/8 13/13 4/8 99/86 (53.51% true) 

Q10 true/false 15/1 20/2 63/18 20/5 32/13 84/28 18/5 49/16 64/34 59/18 424/140 (75.18% true)++ 

All Q’s T/F 293/68 194/28 400/100 283/87 306/79 406/110 315/155 423/90 316/170 363/91 3622/960++ 
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In the following, D1 > D2 means document D1 is preferred to document D2. R1 

> R2 means document D1 was judged by NIST assessors to have a higher ad-hoc 

relevance grade than document D2. S1 > S2 means document D1 contains more 

subtopics than document D2. S1
new > S2

new means document D1 contains more novel 

subtopics (with respect to the subtopics already seen in DT) than document D2.  

Regardless of whether a document was placed on the left or right of a triplet, we will 

refer to the more comprehensive one as D1. 

3.2.1 Questions Set 1 (Q1 through Q3)  

This first set of questions asks whether a document D1 with higher aspect 

coverage, in general, tends to be preferred by users – regardless of whether D1 covers 

more novel aspects than the document it is being compared to. The three questions are: 

Q1: If S1 > S2 and R1 > R2 then is D1 > D2? This asks if users prefer a document 

with higher aspect coverage and higher ad-hoc relevance grade than a document with 

lower aspect coverage and lower ad-hoc relevance grade. 

Q2: If S1 > S2 and R1 < R2 then is D1 > D2? This asks whether users prefer a 

document with higher aspect coverage but lower ad-hoc relevance grade than a 

document with lower aspect coverage but higher ad-hoc relevance grade. 

Q3: If S1 > S2 and R1 = R2 then is D1 > D2? This asks if, for documents with 

equal ad-hoc relevance grade, users prefer a document with higher aspect coverage 

than a document with lower aspect coverage. 

We expected Q1 to be largely true, and Q2 and Q3 to be more mitigated (or 

possibly inconclusive for Q2) due to the fact that relevance grades are an important 

factor as well. The results in Table 3.1 show that the answer is true for all three 

questions: a document D1 with higher aspect coverage, in general, tends to be 
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preferred by users – regardless of whether D1 covers more novel aspects than the 

document D2 it is being compared to. In fact, even Q2 and Q3 are true far more often 

than we expected them to be. According to the results, when D1 covers more aspects 

than D2 and D1 also has a higher ad-hoc relevance grade than D2, D1 was by far 

preferred by users. In our experiment this happened 1384 times (82.78%), and failed 

to happen 288 times (17.22%). 

The results also confirm Q3 to be true, which means that, for documents with 

equal ad-hoc relevance grade, users prefer the document with higher aspect coverage. 

And this happened 144 times (61.54%), and failed to happen 90 times (38.46%). Q2 is 

also true more often than not, i.e. 30 times (76.92%) against 9 times (23.08%). The 

results, while proving Q2 and Q3 to be true, also suggest that when the least-

comprehensive document has a higher relevance grade than the most-comprehensive 

document, the bias against the least-comprehensive document is reduced. 

3.2.2 Questions Set 2 (Q4 through Q6)  

The second set of questions zooms into special cases where the prior document 

DT (i.e. document shown at the top) has higher aspect coverage than each of D1 and D2 

and asks whether, even then, the document with higher aspect coverage is preferred by 

users. The three questions are: 

Q4: If S1 > S2 given that (ST > S1 and ST > S2) and R1 > R2 then is D1 > D2? 

This asks if, given the prior document has higher aspect coverage than each of D1 and 

D2, users still prefer a document with higher aspect coverage and higher ad-hoc 

relevance grade than a document with lower aspect coverage and lower ad-hoc 

relevance grade. 
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Q5: If S1 > S2 given that (ST > S1 and ST > S2) and R1 < R2 then is D1 > D2? 

This asks if, given the prior document has higher aspect coverage than each of D1 and 

D2, users prefer a document with higher aspect coverage but lower ad-hoc relevance 

grade than a document with lower aspect coverage but higher ad-hoc relevance grade. 

Q6: If S1 > S2 given that (ST > S1 and ST > S2) and R1 = R2 then is D1 > D2? 

This asks if given the prior document has higher aspect coverage than each of D1 and 

D2, for documents with equal ad-hoc relevance grade, users prefer a document with 

higher aspect coverage than a document with lower aspect coverage. 

The results in Table 3.1 show that the answer is yes for questions Q4 through 

Q6. That is, even when the prior document DT has higher aspect coverage than each of 

D1 and D2, the document D1 with higher aspect coverage is preferred by users. And 

here again, whether documents D1 and D2 have the same relevance grade or not, it is 

the one with the highest aspect coverage that gets selected by users as most preferred. 

Although, as we expected, Q5 and Q6 are more mitigated than Q4. Q4 is very often true 

(in 78.12% of qualifying user preferences): given DT with higher aspect coverage than 

D1 and D2, the document D1 with higher aspect coverage and higher ad-hoc relevance 

grade is preferred. Also, Q5 is often true (69.23% of qualifying user preferences, but 

this is not significant): given DT with higher aspect coverage than D1 and D2, the 

document D1 with higher aspect coverage but lower ad-hoc relevance grade is 

preferred. And finally, H6 is also often true (63.51% true and 36.49% false): given DT 

with higher aspect coverage than D1 and D2, the document D1 with higher aspect 

coverage but the same topical relevance grade as the other document, is preferred. 

However, the proportions in which Q5 and Q6 are true are not as strong as that of Q4, 
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which suggests that the bias against the least-comprehensive document is reduced in 

the cases of Q5 and Q6. 

3.2.3 Questions Set 3 (Q7 through Q9)  

This third set of questions focuses on “novel-comprehensiveness”. Given a 

prior document DT, we say that a document D1 is more “novel-comprehensive” than 

D2 if D1 covers more novel subtopics (with respect to the subtopics already seen in 

DT). Here we investigate whether a document D1 with higher novel aspect coverage, in 

general, tends to be preferred by users. The three questions are: 

Q7: If S1
new > S2

new and R1 > R2 then is D1 > D2? This asks whether users prefer 

a document with higher novel-aspect coverage and higher ad-hoc relevance grade than 

a document with lower novel-aspect coverage and lower ad-hoc relevance grade. 

Q8: If S1
new > S2

new and R1 < R2 then is D1 > D2? This asks if users prefer a 

document with higher novel-aspect coverage but lower ad-hoc relevance grade than a 

document with lower novel-aspect coverage but higher ad-hoc relevance grade. 

Q9: If S1
new > S2

new and R1 = R2 then is D1 > D2? This asks if, for documents 

with equal ad-hoc relevance grade, users prefer a document with higher novel-aspect 

coverage than a document with lower novel-aspect coverage. 

The results shown in Table 3.1 show that the answer to questions Q7 through 

Q9 is yes. In fact, Q7 is true in 1006 cases (84.75%), and fails 181 times (15.25%). 

This means when D1 covers more novel aspects than D2 and D1 also has a higher ad-

hoc relevance grade than D2, D1 was by far preferred by users. Q9 is true in 99 cases 

(53.51%), and fails 86 times (46.49%). This means when D1 covers more novel 

aspects than D2 but has the same ad-hoc relevance grade as D2, D1 was still selected by 

users over D2 in more cases, but the gap is not significant. Also, Q8 is true only 
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slightly more often than it is false. It is true 22 times (75.86%), and false 7 times 

(24.14%). These results suggest that when the least novel-comprehensive document 

has less than or equal ad-hoc relevance grade as the most novel-comprehensive 

document, the bias towards the most novel-comprehensive document is reduced. 

3.2.4 Question Q10 

This final question puts an emphasis on cases where the two documents being 

compared are equally “novel-comprehensive” – i.e. cover the same number of new 

subtopics – and posits that even in that case, users are more likely to prefer the one 

that covers the most number of subtopics. 

Q10: If S1 > S2 given that (S1
new = S2

new) then is D1 > D2? This asks whether 

users are more likely to prefer a document that covers the most number of subtopics, 

even when both documents contain the same number of novel-aspects. In other words, 

users are biased towards more comprehensive documents, even in cases where both 

documents have the same number of novel-aspects. 

The result for this question is perhaps the most interesting one. It shows that, 

even when the two documents being compared are relevant to an equal number of 

novel aspects, users are more inclined to choose the one with the highest overall 

subtopic coverage. And this happens in 75.18% of cases (424 times out of 564). 

It should be noted that there are very few cases (17 cases) where the preferred 

document covers more aspects but fewer novel-aspects; and even fewer cases (2 cases) 

where it contains more novel-aspects but fewer aspects. 
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Figure  3.2:  Comparison of proportions in which questions are true/false for three 

cases (considering all-pref, left-pref only and right-pref only). 

It is important to note that, in most cases, the document with higher aspect 

coverage (i.e. more comprehensive) is either more relevant or equally relevant to the 

other document. There were not many cases where one of the document being 

compared is more comprehensive but with lower ad-hoc relevance. So those cases are 

underrepresented, possibly due to the fact that documents with high coverage tend to 

be very relevant. 

But is it the case that users prefer left docs to right docs (or vice versa) even 

when the preferred document has lower aspect coverage? That is, does the position of 

the document have an effect on it being preferred by a user? The results in Figure 3.2 

suggest that is not the case. In fact, the proportions in which the answers to the 

questions are true/false in both situations are relatively close. The triplets were indeed 
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placed randomly in either left or right, that is, they are not placed according to any 

factor. 

3.3 Summary 

In this chapter, we conducted a pilot study in which we have used the triplet 

framework to empirically show that users tend to prefer in large proportions 

documents with high aspect coverage, regardless of the topical relevance grade. We 

asked users to choose, given a prior document DT, between two documents D1 and D2 

the one that is most useful for learning more about the topic. According to the results, 

users overwhelmingly prefer documents that are relevant to the largest number of 

aspects (i.e. highest aspect coverage), even when the prior document DT already 

covers more subtopics than each of D1 and D2. In fact, even in cases where D1 and D2 

are relevant to the same number of novel subtopics, the one that is relevant to the 

largest overall subtopics tends to be preferred.  



 

 

 

 

36 

USING DATA FUSION TO LEVERAGE SEARCH HISTORY IN ORDER TO 

IMPROVE CURRENT SEARCH RESULTS 

From the previous chapter, we learned that users engaged in complex search 

tasks tend to prefer documents with high subtopic/aspect coverage, regardless of the 

topical relevance grade. And we can naively gauge this for each document by 

considering the number of related queries (i.e. queries similar to a user’s query for the 

information need) whose rankings a document appears in. Hence we have decided to 

propose and use a data fusion method that promotes documents that are likely to cover 

high numbers of subtopics relevant to the information need. Data fusion for 

information retrieval consists in combining results from multiple different retrieval 

systems. The idea that retrieval could be improved by simply combining results from 

multiple different retrieval systems – a sort of “wisdom of the crowd” for retrieval 

systems – has long been attractive to IR researchers and practitioners. This idea 

produced much work in data fusion methodologies, which use different ways of 

combining retrieval scores from different ranking functions or different rankings of 

documents to produce a final ranking based on input from all available systems. In this 

chapter we present our work on using data fusion to leverage users’ recent search 

history to improve their search results tackling the problem of search over sessions. 

First, we identify useful sources for terms to be used as related queries. For each 

query, we generate related queries from various sources and use those multiple 

representations of a query to obtain several rankings that we combine using simple 

Chapter 4 
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rank aggregation methods. We compare the effects of using each source and show that 

our simple heuristic method is effective. 

4.1 Retrieval Data and Task 

For our experiments, we use the TREC 2011 and 2012 Session track datasets 

[60, 61]. In each, there are several sessions containing one or many interactions. The 

2011 dataset contains 76 sessions while the 2012 dataset contains 98 sessions.  A 

session is a sequence of query reformulations and interactions made by a user in order 

to satisfy an information need. A session consists of a current query and the previous 

interactions that led to the current query. In our datasets, an interaction more 

specifically consists of a query and a ranked list of documents for the query, along 

with titles, URLs and query-biased snippets (produced by Yahoo! BOSS) for each 

document. Also included are clicked documents and the time spent by the user reading 

a clicked document. During the experiment that led to the collection of sessions and 

interactions by the TREC organizers, web pages shown to the users were retrieved 

using Yahoo! BOSS. Thus the retrieved results included pages that were not part of 

the retrieval corpora ClueWeb09; those pages were filtered out before results were 

displayed to the users. 

Session track retrieval task consists in ranking results for the last query 

(current query) in the session using their systems. The corpus on which the retrieval is 

performed for the 2011 and 2012 dataset is the category B subset of ClueWeb09. This 

was the same (sub)set used by the top TREC Session track systems. 

We indexed the collection using Indri, an open-source package for indexing 

and retrieval that implements the inference network model [94]. 
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The 2011 dataset includes subtopic judgments, making it possible to compute 

diversity measures for the 2011 dataset. 

4.2 Retrieval Model 

There are two components to our approach. First, we generate and select 

related queries by leveraging various sources of information from the user’s search 

history, and submit those related queries to the Indri search engine [94]. Finally, we 

aggregate the retrieved results for those queries.  Note that for all our experiments in 

this chapter, we filter retrieved results using Waterloo’s fusion spam classifier with a 

threshold of 0.75 [43] in an effort to exclude spams from our ranked lists. 

4.2.1 Collecting Related Queries  

Using Session-Dependent Data  

The intuition behind using users’ session data is that users may be 

reformulating their queries using pieces of information that were displayed to them 

during their previous interactions with the search engine [107, 44] and such pieces can 

give more insight about the user’s actual  intent, context or topic. Specifically, we use 

the following pieces of information as related queries or alternative queries that users 

could have provided to the search engine in order to satisfy their information need: 

1. The previous queries in the user's session; 

2. The titles of documents ranked for previous queries in the user's 

session; 

3. Entire snippets (free of stop words) for the top 10 documents ranked for 

previous queries in the user's session; 

4. Most significant key-phrases extracted from top-10 ranked documents 

for previous queries in the user's session.  In this case we concatenate 
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the texts of the top 5 key-phrases from each document into one new 

single longer query; 

Titles, snippets and concatenation of key-phrases can be considered to be 

alternative longer queries, more verbose than the usual queries provided by real users 

in most cases. 

Key-phrases were extracted using a model that exploits linguistic and 

statistical methods. The method uses statistical lexical analysis to determine the most 

significant single-word terms, and extracts those terms as well as their immediate 

context to form complex terms. Then it proceeds by clustering similar complex terms 

– using Monge-Elkan distance [77] as the string-similarity measure – and selecting a 

representative for each cluster to be a candidate key-phrase. For selecting a 

representative, a similarity maximization algorithm is used that prefers the key-phrase 

that resembles the remaining key-phrases most closely. Finally, all the candidates are 

analyzed in order to determine confidence scores for each in the context of the 

document in question. The confidence scores are obtained by combining the 

significance of cue tokens in the representing candidate, the scope, as determined by 

the distribution of the candidate cluster over the document, and number of words 

contained in the candidate. 

Xtrak4Me is an open-source library that implements and performs the key-

phrase extraction described above [89]. We also use AlchemyAPI, a black box but 

production-ready key-phrase extraction tool, to ensure that similar results can be 

obtained using other key-phrase extraction algorithms [1]. And given the similarly 

good performances achieved by both the production-ready tool and the academic 

open-source method, it is fair to conclude that decent key-phrase extraction algorithms 
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can provide us with good enough key-phrases to be used as candidate related queries 

for the purpose of our experiment. 

We submit the previous queries, titles, snippets, or key-phrases as queries to an 

Indri index of ClueWeb09 and aggregate results using the methods described below. 

Examples of related queries obtained from some documents in interaction 1 of session 

7 in the 2011 dataset can be seen in Table 4.1 for Xtrak4Me method. The user’s query 

for that interaction was “cosmetic laser treatment”. 

Table  4.1:   Example of related queries obtained using Xtrak4Me method for the 

query “cosmetic laser treatment” 

Xtrak4Me (expanded) from a 

document retrieved during 

search history 

#weight( 0.5 #combine( cosmetic laser 

treatment ) 0.100 laser 0.100 skin 0.100 

treatment 0.100 removal 0.100 acne ) 

Xtrak4Me from a document 

retrieved during search history 

laser skin treatment removal acne 

Xtrak4Me (expanded) from a 

document retrieved during 

search history 

#weight( 0.5 #combine( cosmetic laser 

treatment ) 0.100 cynosure 0.100 

practitioner 0.100 inc 0.100 removal 0.100 

skin ) 

Xtrak4Me from a document 

retrieved during search history 

cynosure practitioner inc removal skin 

 

Using Bing’s Related Queries  

In this method, we use Bing query suggestion service to obtain related queries 

for each current query. We provide queries using Bing API and obtain query 

suggestions in response by the service [22]. We submit them as queries and fuse the 

results like in the previous case. 

Using a combination of Bing related queries and session-dependent data  
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Here our aim is to observe what happens when we add Bing related queries to 

the set of related queries obtained from each source of session-dependent data. 

4.2.2 Aggregation Algorithms  

Previous research has shown that combining the evidence of multiple query 

reformulations helps improve results in information retrieval [18]. Two such methods 

are CombSUM and CombMNZ. For each query, CombSUM reranks documents based 

on their cumulative scores over all related queries. CombMNZ, on the other hand, uses 

the sum of similarity values times the number of non-zero similarity values [67]. 

Additionally, we propose another method, CombCAT with the purpose of 

investigating what happens when we give precedence to documents that appear the 

most in our rankings. In CombCAT, for each query, we first group documents into 

different categories such that documents that appeared in n different rankings are put 

in the same category labeled “categoryn”. Then we proceed with our re-ranking by 

promoting documents that appear in the largest number of rankings. And within the 

same category, documents that have the largest sum take priority over others. Both 

CombMNZ and CombCAT explicitly reward documents that appear in the largest 

number of rankings – though in different ways. 

4.3 Experiments and Results 

4.3.1 Baselines: Language Model (LM) and Pseudo-Relevance Feedback  

The first baseline we are comparing our results to is obtained using Indri’s 

language model (LM) on each of the current queries [94]. Essentially, for each 

session, we submit only the current query (i.e. the last query in the session) to Indri. 
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Then we filter these baseline results using Waterloo’s fusion spam classifier with a 

threshold of 0.75 [43] to exclude spams. 

For the second baseline, we use an adaptation of Lavrenko’s pseudo-relevance 

feedback as implemented in Indri. We run the model with 6 different values for the 

number of documents used in the feedback: 10, 50, 100, 200, 300, 400 and 500. For 

each of the two datasets, we select the run with the maximum nDCG@10 as our 

second baseline. The best feedback size is 50. 

4.3.2 Evaluation Measures  

For traditional measures, we opted for using two of the measures adopted by 

the TREC Session track organizers, namely the primary measure nDCG@10 [53] and 

the second measure ERR@10 [Chappelle09]. Given that a user’s information 

throughout a session might span several aspects of a topic, we deemed it necessary to 

use diversity measures to evaluate our methods. We used α-nDCG@10 [39] and ERR-

IA@10 [Chappelle11] as diversity measures. 

4.3.3 Results 

In the following tables, B is short for Bing, Q for Query, Alch for 

AlchemyAPI, Xtrak for Xtrak4Me and Snip for Snippets. Since nDCG@10 is the 

official score used by TREC Session track organizers, we report nDCG@10 for 

traditional relevance measure and α-nDCG@10 for diversity-focused measure. 

nDCG@10 and ERR@10 results follow similar trends, and so do α-nDCG@10 and 

ERR-IA@10 results. The best nDCG@10 is 0.431 for 2011 (when using Bing+Xtrak, 

as can be seen in Table 4.4) and 0.314 for 2012 (as can be seen the query expansion 

experiment in Table 4.6). These results are on par with TREC Session track systems 
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for 2011 and 2012. To put things in context, in 2012, our best run would be squeezed 

between the best run of the top group and the best run of the second-best team (which 

had nDCG@10 of 0.3221 and 0.3033 respectively). Similarly, in 2011, our best run 

would be squeezed between the best run of the second-best group and the best run of 

the third-best team (which had nDCG@10 of 0.4409 and 0.4307 respectively, and 

were dominated by the top team which reached 0.4540). 

 

 

Figure 4.1:   nDCG@10 using CombCAT, CombSUM and CombMNZ on Session 

track 2012 data 
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Figure 4.2:   ERR@10 using CombCAT, CombSUM and CombMNZ on Session track 

2012 data 

Note: In our tables, + and ++ mean statistically significant at p<0.05 over the 

LM and pseudo-relevance feedback baselines respectively. 

Table  4.2:   nDCG@10 using session-dependent data 

 

LM Query Snippet Xtrak4me Alch 

2012 ndcg@10 0.214 0.249 0.274 0.235 0.244 

% increase 0% 16.49% 27.88%++ 9.86% 13.87% 

2011 ndcg@10 0.318 0.379 0.377 0.391 0.365 

% increase 0% 19% 18% 23%+ 15% 
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Using Bing’s related queries only, we achieved a good improvement over the 

Indri baseline (19.06% nDCG@10 increase) for the 2012 dataset as shown in Table 

4.4. The impact on the 2011 data using Bing only is more moderate (4% nDCG@10 

increase). We get better improvements when we use session-dependent data, as can be 

seen in Table 4.2. In particular, for 2012, we get a peak of 27.88% increase when we 

use snippets as related queries, and for 2011, we get a peak of 23% increase when we 

use Xtrak4Me key-phrases. 

Combining Bing’s related queries with session-dependent data gives even 

better results, as shown in Table 4.4. For the 2012 data, using nDCG@10, we observe 

a peak of 42.5% increase when we use B+Alch and a low of 26.16% increase when we 

use B+Q. In fact for both 2011 and 2012 datasets, combing Bing and any session-

dependent data produces a better result than using that session-dependent data alone. 

This may be because the combinations cover more aspects than the range of aspects 

covered by each source’s queries alone. ERR@10 results follow the same trend as 

nDCG@10. 

Table  4.3:   α-nDCG@10 for 2011  using session-dependent data. 

 

LM Query Snippet XtraK4me Alchemy 

2011 α-ndcg@10 0.374 0.435 0.476 0.474 0.426 

% increase 0% 16.28%+ 27.22%+ 26.90%+ 13.85% 

The 2011 session test set includes relevance judgments for subtopics as well. 

Using that, we were able to compute α-nDCG@10 and ERR-IA@10 diversity 

measures for the 2011 dataset. The trend is similar to that of traditional measures, with 

a peak of 44.72% increase for ERR-IA@10 (and 36.98% α-nDCG@10 increase) when 

combining Bing and XtraK4Me. The results can be seen in Table 4.5. 
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Table  4.4:   nDCG@10 and ERR@10 using Bing and combinations of Bing and 

session-dependent data 

 

LM Bing B+Q B+Snip B+Xtrak B+alch 

2012 ndcg@10 0.214 0.255 0.270 0.299 0.295 0.305 

% increase 0% 19.06% 26.16%+ 39.75%++ 37.83%++ 42.50%++ 

2012 err@10 0.158 0.172 0.175 0.196 0.200 0.203 

% increase 0% 8.54% 10.88% 23.66% 26.19%++ 28.65%++ 

2011 ndcg@10 0.318 0.330 0.378 0.431 0.431 0.420 

% increase 0% 4% 19%++ 36%++ 36%++ 32%++ 

2011 err@10 0.246 0.249 0.289 0.320 0.329 0.322 

% increase 0% 1% 17% 30%+ 34%++ 31%+ 

Table  4.5:   α-nDCG@10 and ERR-IA@10 using Bing and combinations Bing and 

session-dependent data. 

 

LM Bing B+Query B+Snip B+Xtrk B+alch 

2011 α-ndcg@10 0.3737 0.391 0.440 0.510 0.512 0.493 

% increase 0% 4.49% 17.46%++ 36.27%++ 36.98%++ 31.85%++ 

2011 err-IA@10 0.3325 0.349 0.394 0.477 0.481 0.461 

%increase 0% 4.97% 18.34%+ 43.30%++ 44.72%++ 38.62%++ 

Analysis  

Table  4.6:   nDCG@10 for query expansion + CombMNZ 

 

Bing+ 

AlchDoc 

2012 

Bing+ 

XtrakDoc 

2012 

Bing+ 

SnipDoc 

2012 

Bing+ 

AlchDoc 

2011 

Bing+ 

XtrakDoc 

2011 

Bing+ 

SnipDoc 

2011 

no expansion 0.305 0.295 0.299 0.420 0.431 0.431 

w/ expansion 0.314 0.313 0.285 0.422 0.429 0.418 

In this section we show results for experimenting with the sources of information that 

provided the best results in the “Results” section. 

Effects of Query Expansion Prior to Aggregation: 
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In this experiment, instead of using each of the top 10 snippets retrieved by a query as 

related queries, we create 10 queries that contain the query text expanded with the 

terms in the snippet. And we do so using keywords as well. The effect is insignificant: 

slight increase in three cases (Table 4.6 in bold font), but slight decrease in the other 

three cases. 

Effects of the Number of Top Documents Used: 

In general, increasing the number of top documents exploited from 5 to 10 

causes an improvement of the results, albeit not significantly (see Table 4.7). This 

could be because most of the useful data is in the top 5 documents, and only little in 

the next 5. Further investigation would help determine the exact reasons. 

Table  4.7:   nDCG@10 for different cutoffs for top documents 

  

Snip 

2012 

XtrakDoc 

2012 

B+Alch 

2012 

B+AlchDoc 

2012 

Xtrak 

2011 

XtrakDoc 

2011 

B+Xtrak 

2011 

B+XtrakDoc 

2011 

Top 10 

docs 0.274 0.282 0.305 0.314 0.391 0.411 0.431  0.429 

Top 5 

docs 0.255 0.273 0.300 0.313 0.338 0.419 0.421 0.420 

Table  4.8:   nDCG@10 for various ways of exploiting click data 

  

Snip 

2012 

XtrakD

oc 

2012 

B+Alc

h 2012 

B+Alch

Doc 

2012 

Xtrak 

2011 

Xtrak

Doc 

2011 

B+Xtr

ak 

2011 

B+Xtrak

Doc 

2011 

no clicks 0.274 0.282 0.305 0.314 0.391 0.411 0.431  0.429 

clicked only 0.182 0.210 0.291 0.291 0.265 0.345 0.353 0.362 

boost clicked 0.280 0.284 0.305 0.314 0.391 0.416 0.425 0.432 

Effects of Clicked Data: 
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Aggregating using data from clicked documents alone hurts the performance 

significantly. However when we include queries taken from clicked documents twice 

(instead of including them once, as per normal), we get slightly better results than 

when clicks are not exploited at all (Table 4.8). That is, giving more voting rights to 

clicked documents improves performance. Determining by how much the voting rights 

must be increased is left for future work. 

Table  4.9:    2011 Bing+Xtrak4Me between top-10 docs and the docs from previous 

interactions (Best of bing+session specific)  

% of 

overlap 

# of 

queries 

ERR impact on queries nDCG impact on 

queries 

Incr Same Decr Incr Same Decr 

0% 41 22 7 12 19 7 15 

10% 25 17 4 4 17 4 4 

20% 6 2 0 4 3 0 3 

30% 3 2 0 1 2 0 1 

40% 1 0 0 1 0 0 1 

We furthered our analyses to show that we are not merely rearranging, 

promoting and redisplaying documents that were shown in previous interactions of a 

given session. For that, we looked into document overlaps: for each session, there is 

only little or no overlap between our top 10 documents and the documents that are part 

of the previous interactions of the same session. For instance, as shown in Table 4.9, 

out of all 76 queries of the 2011 session dataset, 41 queries returned 10 top documents 

that do not overlap at all with the documents returned by the commercial engine for 

the previous interactions. Also, 21 out of the 41 queries witnessed an increase of 

ERR@10 over the baseline while only 12 witnessed a decrease and 7 remained with 

the same result. 25 returned 1 overlapping document out of 10. Only 1 query returned 

the maximum of 4 documents out of 10 that overlap with previous interaction 
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documents. This suggests that we are not merely redisplaying the documents displayed 

to users in previous interactions when the session data was being collected. 

Table  4.10:   nDCG@10 per task type for 2012 session using session-dependent data 

for CombMNZ 

 
LM Query Snippet XtraK Alchemy 

amorphous 0.2512 0.2707 0.2899 0.2659 0.2217 
% change 0% 7.76% 15.41% 5.85% -11.74% 
factual 0.2215 0.2457 0.2631 0.2287 0.2526 
% change 0% 10.93% 18.78% 3.25% 14.04% 
intellectual 0.2129 0.2546 0.2996 0.247 0.2266 
% change 0% 19.59% 40.72% 16.02% 6.43% 
specific 0.1943 0.2318 0.2654 0.2112 0.2602 
% change 0% 19.30% 36.59% 8.70% 33.92% 

For the 2012 session dataset, the topics are categorized under different types 

depending on their search goal (specific or amorphous goal) and their product type 

(factual or intellectual target). We evaluate our results for each task type and show in 

table 4.10 and 4.11 how the effects of our methods differ on each task type. In general, 

our methods achieve their biggest improvements on the intellectual session searches 

with a peak of 67.5% improvement over the baseline’s nDCG@10 when using the 

combination of XtraK4Me keyphrases and Bing’s related queries (B+Xtrk). Even 

when using session-dependent data only, we achieve a significant peak of 40.72% 

increase of the nDCG@10. Intellectual searches are more difficult than factual 

searches, so our systems perform better on the most difficult product type sessions. 

While the dirichlet-smoothed Language model gets 0.2215 for factual tasks and only 

0.2129 for intellectual, B+Xtrk gets 0.2804 for factual and a very high 0.3408 for 

intellectual tasks comparatively. This may be because our system uncovers hidden 

interesting keywords that were not obvious from intellectual task topic description. 
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However, it is noteworthy that our methods also gets significant improvements on the 

other task types. 

In a related effort, we strive to determine how many tokens introduced by our 

methods are not part of the main query, but are part of the topic description. Stop 

words are excluded from the lists of tokens. As can be seen in Figure 4.4, Snip, Xtrak 

and Alch methods introduce a sizeable number of tokens that were not part of the 

current-query and would have hence been overlooked even though they are potentially 

important (since they are part of the topic description). In fact, Figure 4.3 shows that 

our method is successful at promoting documents that cover two or more aspects of a 

topic. Out of the total 76 sessions, 35 witness Xtrak4Me doing better than the baseline 

in promoting documents that cover two or more aspects, 20 witness the inverse, and 

21 witness no difference.  

Table  4.11:   nDCG@10 per task type for 2012 session using Bing alone and 

combinations of Bing and session-dependent data for CombMNZ. B is 

short for Bing 

 
LM Bing B+Query B+Snip B+Xtrk B+alch 

amorphous 0.2512 0.3064 0.3152 0.3255 0.3391 0.3242 
% change 0% 21.97% 25.48% 29.58% 34.99% 29.06% 
factual 0.2215 0.2309 0.252 0.2804 0.2595 0.2831 
% change 0% 4.24% 13.77% 26.59% 17.16% 27.81% 
intellectual 0.2129 0.301 0.3029 0.3408 0.3566 0.3426 
% change 0% 41.38% 42.27% 60.08% 67.50% 60.92% 
specific 0.1943 0.2165 0.2349 0.2836 0.259 0.2888 
% change 0% 11.43% 20.90% 45.96% 33.30% 48.64% 
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Figure 4.3:   Difference between Xtrak4Me and LM in terms of the number of 

documents that cover 2 or more aspects (y-axis) for all sessions, on the 

2011 dataset. 

 

Figure 4.4:   Number of tokens introduced by Alch, Xtrak, Snip and Bing that are not 

part of the main query, but are part of the topic description on the 2011 

dataset. 

4.4 Summary 

We showed that using a simple data fusion method over a good set of related 

queries helps improve results and we show which sources are useful for collecting 

good related queries. We used a data fusion method that promotes documents that are 

likely to cover high numbers of subtopics relevant to the information need; as well as 

two existing data fusion methods. We found that using Bing’s related queries is a good 

choice, but using session-dependent data is even better. Furthermore we achieve even 

better results by combining Bing related queries to session-dependent queries. 

-10

-5

0

5

10

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769717375

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

Alch

Xtrak

Snip

Bing



 

 

 

 

52 

EFFECTIVE AND ROBUST MODELS FOR SEARCH AND RETRIEVAL 

Most research in Information Retrieval, such as our work in the previous 

chapter, has focused on improving the average effectiveness of systems. However, it is 

very often the case that the improved systems fare worse than the baseline on certain 

queries, even though the average effectiveness score is higher than the baseline’s. The 

concept of robust ranking appears therefore to be key, when it comes to remedying 

those cases. In this present work, robustness refers to the ability of the ranker to reduce 

and mitigate poor performance on individual queries while striving to improve the 

overall performance as well. 

In this chapter, we propose two re-ranking techniques – based on exploiting the 

popularity of documents with respect to a general topic – that, given a baseline or a 

state-of-the-art ranking, improves the average effectiveness of the ranking while 

improving the robustness of the ranking. Both methods merely re-rank the documents 

that were retrieved by the baseline that is being considered, without ever adding any 

new document to the set of retrieved documents. We used each of the runs submitted 

to TREC Web tracks 2013-14 as baseline, and empirically show that our algorithms 

improve the effectiveness as well as the robustness of the systems in an overwhelming 

number of cases, even though the systems used to produce them employ a variety of 

retrieval models. 

We start by describing the task and the datasets used. 

Chapter 5 
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5.1 Retrieval task and Data 

Each of the TREC Web track 2013 and 2014 datasets contains 50 queries [41, 

42]. Those queries were created after perusing candidate topics from query logs from 

commercial search engines. Some queries were faceted (i.e. their topic has several 

possible subtopics), others were non-faceted with single intents, and a few others were 

ambiguous (i.e. queries with several intents). The task of the participants is to provide 

a diversified ranking of no more than 10000 documents per query for the 50 queries. 

Unlike in previous versions of the track that ran from 2009 to 2011 where the 

emphasis was on diversity ranking in addition to ad-hoc ranking, in these two 

versions, the emphasis was on risk-minimization and ad-hoc rankings. However the 

queries and relevance judgments were still suitable for diversity retrieval evaluations, 

and participants were also provided with diversity-based results once the competition 

was over. In this chapter, we use diversity measures to show how effective our method 

is, and we use risk-sensitive measures adopted by TREC Web track organizers to 

show robustness. 

For this experiment, in order to show that our method can be applied to many 

retrieval models, we use many baseline ranked lists (RL). Specifically, we use RLs 

submitted by TREC Web 2013 and 2014 participants, each RL is created by a differ-

ent search system. For the 2013 TREC Web track, there were a total of 60 runs, while 

for 2014, there were a total of 30 ad-hoc runs and 12 risk-sensitive runs. All runs were 

supposed to be risk-sensitive, although some participants did not specifically optimize 

for risk-sensitivity [41, 42]. 

Baselines for computing risk-sensitive measures were also made public by the 

track organizers, and include Indri, Terrier, Indri-with-spam-filtering. The idea behind 

using several baselines is to see how truly robust a system is with respect to various 
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baselines, and mitigate the bias that gets introduced when using only one baseline (in 

such a case, there would be bias towards systems that are built on top of a ranker 

similar to the baseline). 

In summary, we used each of the runs submitted to TREC Web tracks 2013-14 

as baseline, and empirically show that our algorithms improve the effectiveness as 

well as the robustness of the systems in an overwhelming number of cases, even 

though the systems used to produce them employ a variety of retrieval models. 

5.2 Retrieval Model 

In order to show that we can improve the ranked list for a given query by 

exploiting a prefetched list of documents sorted by decreasing probability of 

“retrievability” of a document (see below for how we estimate retrievability), we 

proceed as follows: 

a. For obtaining pre-fetched lists of documents ranked by decreasing probability 

of retrievability, we propose to use the method described in section 5.2.1. 

b. In order to obtain a baseline ranked-list for each given query, we use every 

ranked list submitted at TREC Web tracks 2013 and 2014 as baseline. That 

allows us to show that our re-ranking works on a wide-range of systems. 

c. Then at query run-time, we propose to use one of the two algorithms proposed 

in section 5.2.2 for obtaining the final ranked list.  

Finally, we evaluate the effectiveness of each method on each baseline using 

diversity measures and the robustness using risk-sensitive measures. 
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5.2.1 Estimating Document “Retrievability”  

Given a query, we want to estimate how likely a document is to be retrieved. 

That is, we want to estimate its retrievability with respect to the topic. We treat this as 

the popularity of the document with respect to that general topic. 

Suppose q is the observed query, that is, an actual user query. Let 𝒬 represent 

the space of possible queries from which q is one sample. In our experiments, we 

obtain the sample of possible queries by using Bing and Yahoo! Suggestions. We 

submit a query to each service through their APIs and we obtain a list of suggested 

queries. 

Now let us say a document is retrieved if it appears in a top-k ranking of 

documents for some query q. In our experiments, we use k=100. 

We cannot observe that space fully, but we assume that the probability that a 

document is retrieved for a query in that space is approximately the same as the 

probability that a document is retrieved for q: 

𝑃(𝑟𝑒𝑡 | 𝑞′ ∈  𝑄, 𝐷) ~ 𝑃(𝑟𝑒𝑡 | 𝑞 ∈  𝑄, 𝐷) 

Then let us define the probability that a document is retrievable for the 

possible query space as: 

𝑃(𝑟𝑒𝑡 | 𝒬, D) = ∑ 𝑃(𝑟𝑒𝑡 | 𝑞′, 𝐷)𝑃(𝑞′ | 𝒬, D)

𝑞′∈𝒬

 

 If we decide to use uniform weights for P(q’ | 𝒬,D) and if we assume that P(ret 

| q’,D) = 1 if document D appears in top-k ranking for q’ and P(ret | q’,D) = 0 

otherwise, then this equation is proportional to the CombCAT data fusion method that 

we introduced in Chapter 4 [6], which merges retrieval results based on the total 

number of times a document appears. We can think of – and use – this probability of 
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retrieval of a document as a type of popularity score for the document with respect to 

the sample space. 

5.2.2 Reranking 

We propose two different methods for re-ranking the baseline. 

5.2.2.1 Method 1  

Suppose a user provides a query q to our system. Given a pre-fetched ranked 

list in decreasing order of P(ret | q’, D) – which we name MasterList – of documents 

pertaining to the same topic as q, we proceed as illustrated in Algorithm 1 (Figure 5.1) 

and Figure 5.2. 
MasterList = docs ranked in decreasing order of P(ret | 𝒬,D); 
MasterList= MasterList minus docs that appeared in the ranked 

list of only one possible query q’ in our sample space; 

DocsToShuffle = {} 

 

//record docs that must be shuffled 

For each doc_i in baseline 

   If  doc_i is in MasterList 

      Add doc_i to DocsToShuffle; 

 

//proceed to the actual shuffling 

nextIndex = 0; 

For i in baseline.size() 

   If  doc(i) is in DocsToShuffle 

    doc(i)= DocsToShuffle(nextIndex); 

       nextIndex++; 

Figure 5.1:   Algorithm 1 

The idea is to keep, in our final ranked list, all documents that do not appear in 

MasterList, at the same position where they appeared in the baseline ranked list (RL). 

The only documents to be shuffled are the ones that: 

 appeared in both the MasterList and the baseline ranked list; 
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 appeared in the ranked list of more than one possible query q’ from the sample 

space 𝒬. 

The shuffling will be done such that the documents with higher P(ret | 𝒬, D) – 

as recorded in the MasterList – will be ranked higher than the documents with lower 

P(ret | 𝒬, D) in the final ranked list. But again, the documents that are in the baseline 

RL but not in the MasterList, remain at their original rank. 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Resulting ranking is on the right. Documents 

marked with * retain their position since they did 

not appear in MasterList. The ones in bold are the 

intersection between MasterList and baseline 

ranked list. 
 

Figure 5.2:   Illustration of Algorithm 1 

5.2.2.2 Method 2  

Given a query q provided by the user to our system and a MasterList that 

contains a pre-fetched list of documents ranked in decreasing order of P(ret | q’, D), 

we proceed as illustrated in Algorithm 2 (Figure 5.3) and Figure 5.4. 

 

D1 

D2 

D3 

D4 

D5 

Ordered MasterList: {D5, D1, D9, D21, D4, D17} 

D5 

D2* 

D3* 

D1 

D4 
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MasterList = docs ranked in decreasing order of P(ret | 𝒬,D); 
 

MasterList = MasterList minus docs that appeared in the ranked 

list of only one possible query q’ in our sample space; 

 

IntersectDocs ={} 

 

/*record docs that are both in MasterList and in baseline 

ranking */ 

For each doc_i in baselineList 

   If  doc_i is in MasterList 

      Add doc_i to IntersectDocs; 

 

/* Start by first ranking the docs from IntersectDocs in the 

order the appear in (decreasing order of P(ret | q’, D)*/  

nextIndex = 0; 

For i in IntersectDocs.size() 

   doc(i)= IntersectDocs (i); 

 

For j = 1 to  rankCutoff + IntersectDocs.size() 

   If IntersectDocs does not contain baselineList(j) 

      doc(j + IntersectDocs.size()) = (baselineList(j) 

      doc(i) = IntersectDocs (i); 

Figure 5.3:   Algorithm 2 

The essential idea in this method is to ensure that the documents with higher 

P(ret | 𝒬, D) – as recorded in the MasterList – will be ranked higher than the 

documents with lower P(ret | 𝒬, D) in the final ranked list. And, in this method – 

unlike in Method 1 – all the documents that are at the intersection of MasterList and 

the baseline RL will have precedence over all other documents in the baseline RL. 

That is, every document that appeared in the ranked list of more than one possible 

query q’ from the sample space 𝒬, and that also appeared in the baseline RL, will be 

ranked before all other documents. 
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Note: Resulting ranking is on the right. Documents marked in 

bold font are the ones that appeared in both MasterList and 

baseline. Notice how those are ranked (in the same order as in 

MasterList) before all other docs. The remaining docs in 

baseline appear in the same relative order they appeared in 

originally. 

Figure 5.4:   Illustration of Algorithm 2 

5.3 Evaluation Measures 

We use four evaluation measures (two for diversity evaluation and two for 

traditional non-diversity evaluation). For non-diversity measure, we opted for using 

the two measures adopted by TREC Web track organizers: ERR and nDCG. nDCG 

rewards documents with high relevance grades and discounts the gains of documents 

that are ranked at lower positions [53]. ERR is defined as the expected reciprocal 

length of time it takes the user to find a relevant document [36], and it takes into 

account the position of the document as well as the relevance of the documents shown 

above it. For diversity measures, we opted for using α-nDCG and ERR-IA. α-nDCG is 

an extension of  nDCG that rewards novelty and diversity by penalizing redundancy 

D1 

D2 

D3 

D4 

D5 

Ordered MasterList: {D5, D1, D9, D21, D4, D17} 

D5 

D1 

D4 

D2 

D3 
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and rewarding systems for including new subtopics [39]. Similarly, ERR-IA is an 

extension of ERR to compute the expectation of ERR over the different intents [35]. 

As for measuring the robustness of the systems, we adopted the risk-sensitive 

measures proposed by TREC Web track organizers as well [42]. For each run, we 

create two new runs using the re-ranking methods Method1 and Method2 respectively. 

For each query of each new run, we compute the absolute difference (∆) between the 

effectiveness of the new run and that of the baseline provided by the track organizers – 

as mentioned in 4.1, that can be either Indri or Terrier or Indri-with-spam-filtering. 

When the difference is positive the new run has a win over the baseline. When it is 

negative, it has a loss over the baseline, otherwise it is a tie.  

Let ∆(q) = RA (q) – RBASE (q) be the absolute win or loss for query q with 

system retrieval effectiveness RA (q) relative to the baseline’s effectiveness RBASE (q) 

for the same query. We define the risk-sensitive utility measure URISK (q) of a system 

over a set of queries Q as: 

𝑈𝑅𝐼𝑆𝐾(𝑄) =
1

𝑁
 [ ∑ ∆(𝑞)

𝑞∈𝑄+

− (𝛼 + 1) ∑ ∆(𝑞)

𝑞𝜖𝑄−

] 

where Q+ is the set of queries for which ∆(q) > 0 and Q- is the set of queries for 

which the ∆(q) < 0. 

It is important to note that we did not need to apply the guideline given by [46] 

to mitigate bias by using the mean within-topic system effectiveness as a baseline. In 

fact, we focus on showing that, for most rankings obtained using specific retrieval 

models, we can apply our method to improve the robustness of the system as well as 

the overall effectiveness. And we do so by comparing the risk-sensitive measure 

between the original ranking and the baseline to the risk-sensitive measure between 

the new re-ranking and the baseline. 
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5.4 Experiments and Results 

5.4.1 Effectiveness 

Table  5.1:   TREC 2013 results for Method2. Bold font denotes positive difference 

between Method2 and the submitted-run, in terms of ERR-IA@20. + 

denotes statistical significance 

runID 

baselineERR

-IA@20 

ERR-

IA@20 runID 

baselineERR

-IA@20 

ERR-

IA@20 

Clustmrfaf 0.5540 0.5701 udemQlml1FbR 0.4620 0.5769+ 

Clustmrfbf 0.4888 0.5266 udemQlml1R 0.4597 0.5706+ 

cwiwt13cpe 0.4082 0.5575+ UDInfolabWEB1 0.4856 0.6013+ 

cwiwt13cps 0.4726 0.5692+ UDInfolabWEB1R 0.4856 0.6013+ 

cwiwt13kld 0.3274 0.5525+ UDInfolabWEB2 0.5738 0.6013 

Dlde 0.0453 0.2411+ UDInfolabWEB2R 0.5738 0.6013 

ICTNET13ADR1 0.4743 0.5777+ UJS13LCRAd1 0.4265 0.5266+ 

ICTNET13ADR2 0.4925 0.5712+ UJS13LCRAd2 0.4580 0.5266 

ICTNET13ADR3 0.4415 0.5784+ UJS13Risk1 0.4435 0.5266+ 

ICTNET13RSR1 0.5185 0.5799 UJS13Risk2 0.4606 0.5266 

ICTNET13RSR2 0.4847 0.5915+ uogTrADnLrb 0.5123 0.5645 

ICTNET13RSR3 0.5420 0.5777 uogTrAIwLmb 0.5391 0.5516 

mmrbf 0.4980 0.5266 uogTrAS1Lb 0.5041 0.5399 

msr_alpha0 0.3409 0.5449+ uogTrAS2Lb 0.5064 0.5378 

msr_alpha0_95_4 0.3576 0.5624+ uogTrBDnLaxw 0.5297 0.5276 

msr_alpha1 0.3565 0.5713+ uogTrBDnLmxw 0.5252 0.5276 

msr_alpha10 0.3510 0.5607+ ut22base 0.5066 0.6211+ 

msr_alpha5 0.3515 0.5692+ ut22spam 0.4368 0.6241+ 

RMITSC 0.3758 0.4488+ ut22xact 0.5005 0.6211+ 

RMITSC75 0.3762 0.4466+ UWCWeb13risk01 0.2872 0.5767+ 

RMITSCTh 0.3757 0.5531+ UWCWeb13risk02 0.3152 0.5767+ 

udelCombUD 0.4913 0.5701+ webishybrid 0.3516 0.5720+ 

udelManExp 0.5086 0.5682 webismixed 0.4092 0.5798+ 

udelPseudo1 0.4556 0.5701+ webisnaive 0.3658 0.5803+ 

udelPseudo1LM 0.3758 0.5701+ webiswikibased 0.3812 0.5808+ 

udelPseudo2 0.5163 0.5701 webiswtbaseline 0.3733 0.5809+ 

udemFbWikiR 0.4746 0.5703+ wistud.runA 0.4379 0.5830+ 

udemQlm1l 0.4597 0.5706+ wistud.runB 0.4523 0.5642+ 

udemQlm1lFb 0.4014 0.5705+ wistud.runC 0.3870 0.3871 

udemQlm1lFbWi

ki 0.4746 0.5703+ wistud.runD 0.5026 0.5731 
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Effectiveness results, given by diversity measures α-nDCG@20 and ERR-

IA@20, show that our approach is very promising. The results for applying Methdod2 

on the 2013 runs show that, in most cases, there are large improvements. In fact, out of 

the 60 runs, only one of them saw a slight decrease in ERR-IA@20 using Method 2. 

The general trend, indeed, is that Method2 performs well on both datasets – 59 runs 

improved out of 60 for the 2013 dataset, 28 runs improved out of the 30 runs for 2014 

dataset (ad-hoc runs category) and 9 runs improved out of the 12 runs for 2014 dataset 

(risk-sensitive runs category). It is worth noting that the runs from 2014 dataset that 

Method2 failed to improve are all from the same participating group that performed 

the best. This could have to do with the set of documents retrieved for their runs. 

Results for α-nDCG@20 have similar trends as results for ERR-IA, as shown in Table 

5.2. 

Table  5.2:   Summary of effectiveness. This shows, for each measure for each dataset, 

the number of runs for which a given method performs better (on 

average) than another method – and vice versa. Alg1 stands for method1. 

Base is short for baseline 

 α -

nDCG@20 

all 2013 

ERR-

IA@20 

all 2013 

α -

nDCG@20 

adhoc 

2014 

ERR-

IA@20 

adhoc 

2014 

α -

nDCG@20 

risk-runs 

2014 

ERR-

IA@20 

risk-runs 

2014 

# (alg1>base) 57 55 26 27 8 7 

# (alg1<base) 3 5 4 3 4 5 

# (alg2>base) 58 59 27 28 9 9 

# (alg2<base) 2 1 3 2 3 3 

Table 5.2 also shows results produced when applying Method 1. They are very 

close to the ones obtained using Method 2, albeit slightly lower – using ERR-IA@20, 
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55 results improved vs 59 for Method2 on 2013 runs, 27 vs 28 on 2014 ad-hoc runs, 

and 7 vs 9 on 2014 risk-sensitive runs. However, the actual numbers for Method1 

effectiveness (shown in Table 5.5) are much lower than the numbers for Method2. 

5.4.2 Risk analysis  

Summary of risk-sensitive measures shown in Table 5.3 are evidence that our 

methods, overall, improve robustness as well. The effectiveness measure (R) used in 

the delta formula (∆q = RA (q) – RBASE (q)) is ERR@20. We use α=5 for URISK. 

However, robustness does not go up whenever effectiveness goes up. In fact, 

although an overwhelming number of runs witness an improvement of their 

robustness, this number is smaller than the number of runs for which there as 

improvement of the average effectiveness measures, for the 2014 runs. For the 2013 

dataset, the number of improved runs based on risk-sensitive measures is very close to 

the number improved using average effectiveness measures: with respect to Terrier, 

Method1 improved robustness of 56 out of 60 runs and Method2 improved 48 out of 

60. But for the TREC Web 2014 dataset, the number is much lower, especially for the 

runs submitted to the risk-sensitive track. 

There are also stark differences in risk-sensitive measures depending on 

whether Terrier, Indri or Indri-with-spam-filtering is being used. The least significant 

improvements – as well as the most decrease in risk-sensitive measures – again are 

observed on the runs from the 2014 dataset. For instance, using Method1, 10 out of the 

12 runs submitted for the risk-sensitive track see a decrease in risk-sensitivity utility 

measure with respect to Terrier, and 18 out-of-the 30 for the runs submitted to the 

2014 ad-hoc track with respect to Terrier. This is not very surprising since Indri –   
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rather than Terrier – was used to obtain our pre-fetched list of documents sorted by 

popularity. 

Table 5.3:   Summary of Risk-sensitive results (U-ERR). This shows, for each 

measure for each dataset and with respect to a specific baseline, the 

number of runs for which a given method is more robust than another 

method – and vice versa. α=5 

 indri 

all 

‘13 

indri-

filt 

all ‘13 

terrier 

all 

‘13 

indri 

adhoc 

‘14 

indri-

filt 

adhoc 

'14 

terrier 

adhoc 

‘14 

indri 

risk-runs 

‘14 

indri-filt 

risk-runs 

‘14 

terrier 

risk-runs 

‘14 

#(alg1>base) 57 56 56 19 13 12 7 3 2 

#(alg1<base) 3 4 4 11 17 18 5 9 10 

#(alg2>base) 51 55 48 15 22 15 8 7 4 

#(alg2<base) 9 5 12 5 8 15 4 5 8 

#(alg2>alg1) 46 52 39 15 26 27 7 7 7 

#(alg2<alg1) 14 8 21 5 4 3 5 5 5 

Table  5.4:   Risk sensitive measures using indri as baseline for each run on 2013 

datasets. "Alg1.UERR@20" is the risk-sensitive measure, using 

Method1. "Alg1-base.UERR@20" is the difference between Method1 

and the submitted-run, in terms of URISK(ERR@20). α=5 

runID 

base. 

UERR@

20 

alg1. 

UERR@

20 

alg1-

base. 

UERR@

20 

alg2. 

UERR@

20 

alg2-

base. 

UERR@

20 

alg2-

alg1. 

UERR@

20 

clustmrfaf -0.0247 -0.0014 + 0.003 + + 

clustmrfbf -0.1729 -0.1450 + -0.180 - - 

cwiwt13cpe -0.1102 -0.0947 + -0.004 + + 

cwiwt13cps -0.0655 -0.0491 + 0.003 + + 

cwiwt13kld -0.1586 -0.0747 + -0.008 + + 

dlde -0.5465 -0.5444 + -0.410 + + 

ICTNET13ADR1 -0.1166 -0.0232 + -0.017 + + 

ICTNET13ADR2 -0.1221 -0.0184 + -0.017 + + 

ICTNET13ADR3 -0.1790 -0.0369 + -0.018 + + 

ICTNET13RSR1 -0.1291 -0.0431 + -0.007 + + 
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ICTNET13RSR2 -0.1116 -0.0404 + -0.002 + + 

ICTNET13RSR3 -0.0783 0.0066 + -0.017 + - 

mmrbf -0.1727 -0.1441 + -0.180 - - 

msr_alpha0 -0.1967 -0.0261 + -0.025 + + 

msr_alpha0_95_4 -0.1781 -0.0249 + -0.023 + + 

msr_alpha1 -0.1750 -0.0254 + -0.023 + + 

msr_alpha10 -0.1812 -0.0261 + -0.025 + + 

msr_alpha5 -0.1880 -0.0335 + -0.032 + + 

RMITSC -0.0202 -0.0118 + -0.094 - - 

RMITSC75 -0.0213 -0.0140 + -0.103 - - 

RMITSCTh -0.0200 -0.0006 + -0.018 + - 

udelCombUD -0.1267 -0.0032 + 0.003 + + 

udelManExp -0.1002 -0.0087 + -0.006 + + 

udelPseudo1 -0.1933 -0.0040 + 0.003 + + 

udelPseudo1LM -0.2632 -0.0050 + 0.003 + + 

udelPseudo2 -0.1238 -0.0380 + 0.003 + + 

udemFbWikiR -0.0610 -0.0430 + 0.003 + + 

udemQlm1l -0.0570 -0.0107 + 0.004 + + 

udemQlm1lFb -0.0990 -0.0375 + 0.004 + + 

udemQlm1lFbWik

i -0.0610 -0.0430 + 0.003 + + 

udemQlml1FbR -0.1037 -0.0223 + -0.019 + + 

udemQlml1R -0.0570 -0.0107 + 0.004 + + 

UDInfolabWEB1 -0.2053 -0.0722 + -0.039 + + 

UDInfolabWEB1R -0.2053 -0.0722 + -0.039 + + 

UDInfolabWEB2 -0.0897 -0.0425 + -0.039 + + 

UDInfolabWEB2R -0.0897 -0.0425 + -0.039 + + 

UJS13LCRAd1 -0.2446 -0.1838 + -0.180 + + 

UJS13LCRAd2 -0.2116 -0.1603 + -0.180 + - 

UJS13Risk1 -0.2340 -0.1638 + -0.180 + - 

UJS13Risk2 -0.2206 -0.1528 + -0.180 + - 

uogTrADnLrb -0.0425 -0.0416 + -0.030 + + 

uogTrAIwLmb -0.0662 -0.0823 - -0.017 + + 

uogTrAS1Lb -0.0514 -0.0451 + -0.042 + + 

uogTrAS2Lb -0.0673 -0.0738 - -0.044 + + 

uogTrBDnLaxw -0.1671 -0.1460 + -0.180 - - 

uogTrBDnLmxw -0.1641 -0.1245 + -0.180 - - 

ut22base -0.0651 -0.0534 + -0.080 - - 

ut22spam -0.1842 -0.1517 + -0.061 + + 

ut22xact -0.0453 -0.0362 + -0.076 - - 

UWCWEB13RIS

K01 -0.2978 -0.0301 + -0.021 + + 

UWCWEB13RIS -0.2362 -0.0449 + -0.021 + + 
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K02 

webishybrid -0.1240 -0.1055 + -0.008 + + 

webismixed -0.1069 -0.0917 + -0.001 + + 

webisnaive -0.1356 -0.1095 + -0.001 + + 

webisrandom -0.1182 -0.0867 + 0.003 + + 

webiswikibased -0.1255 -0.1052 + -0.001 + + 

webiswtbaseline -0.1333 -0.1048 + -0.001 + + 

wistud.runA -0.1299 -0.0410 + -0.038 + + 

wistud.runB -0.1656 -0.0380 + -0.036 + + 

wistud.runC -0.2830 -0.2900 - -0.286 - + 

wistud.runD -0.0442 0.0232 + -0.001 + - 

Table 5.5:    TREC 2013 results for Method1. Bold font denotes positive difference 

between Method2 and the submitted-run, in terms of ERR-IA@20. + 

denotes statistical significance 

runID 

baselineER

R-IA@20 

ERR-

IA@20 runID 

baselineER

R-IA@20 

ERR-

IA@20 

clustmrfaf 0.5540 0.5994 udemQlml1FbR 0.4620 0.5552 

clustmrfbf 0.4888 0.5574 udemQlml1R 0.4597 0.5221 

cwiwt13cpe 0.4082 0.4356 UDInfolabWEB1 0.4856 0.5943 

cwiwt13cps 0.4726 0.5045 UDInfolabWEB1R 0.4856 0.5943 

cwiwt13kld 0.3274 0.3903 UDInfolabWEB2 0.5738 0.6048 

dlde 0.0453 0.0464 UDInfolabWEB2R 0.5738 0.6048 

ICTNET13ADR1 0.4743 0.5432 UJS13LCRAd1 0.4265 0.4890 

ICTNET13ADR2 0.4925 0.5461 UJS13LCRAd2 0.4580 0.5025 

ICTNET13ADR3 0.4415 0.5541 UJS13Risk1 0.4435 0.5193 

ICTNET13RSR1 0.5185 0.5513 UJS13Risk2 0.4606 0.5436 

ICTNET13RSR2 0.4847 0.4998 uogTrADnLrb 0.5123 0.4895 

ICTNET13RSR3 0.5420 0.5963 uogTrAIwLmb 0.5391 0.5182 

mmrbf 0.4980 0.5592 uogTrAS1Lb 0.5041 0.4968 

msr_alpha0 0.3409 0.5374 uogTrAS2Lb 0.5064 0.4972 

msr_alpha0_95_4 0.3576 0.5568 uogTrBDnLaxw 0.5297 0.5425 

msr_alpha1 0.3565 0.5537 uogTrBDnLmxw 0.5252 0.5532 

msr_alpha10 0.3510 0.5598 ut22base 0.5066 0.5235 

msr_alpha5 0.3515 0.5645 ut22spam 0.4368 0.4657 

RMITSC 0.3758 0.4110 ut22xact 0.5005 0.5424 

RMITSC75 0.3762 0.4113 UWCWeb13risk01 0.2872 0.5541 

RMITSCTh 0.3757 0.4148 UWCWeb13risk02 0.3152 0.5490 

udelCombUD 0.4913 0.5685 webishybrid 0.3516 0.3963 

udelManExp 0.5086 0.5575 webismixed 0.4092 0.4362 
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udelPseudo1 0.4556 0.5705 webisnaive 0.3658 0.4098 

udelPseudo1LM 0.3758 0.5680 webiswikibased 0.3812 0.4274 

udelPseudo2 0.5163 0.5517 webiswtbaseline 0.3733 0.4094 

udemFbWikiR 0.4746 0.5022 wistud.runA 0.4379 0.5707 

udemQlm1l 0.4597 0.5221 wistud.runB 0.4523 0.5642 

udemQlm1lFb 0.4014 0.4797 wistud.runC 0.3870 0.3829 

udemQlm1lFbWi

ki 0.4746 0.5022 wistud.runD 0.5026 0.5806 

5.5 Summary 

We proposed two re-ranking approaches based on exploiting document 

“popularity” across a topic, and show that these methods can help improve average 

overall effectiveness as well as robustness. Using the runs submitted to TREC Web 

track 2013 and 2014 as baselines, we show that, after our re-ranking, overall 

effectiveness gets improved in an overwhelming number of cases, and robustness gets 

improved in a large number of cases but fewer than for overall effectiveness. 
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GENERAL THEORETICAL FRAMEWORK FOR RETRIEVAL AND 

RANKING FOR SEARCH OVER SESSIONS, AD-HOC AND DIVERSITY 

RANKING 

As we have seen in Chapter 4, data fusion has been shown to be a simple and 

effective way to improve retrieval results. But the techniques we have presented are 

somewhat ad hoc and lacking in underlying principles that might explain their 

efficacy.  Retrieval models explicitly derived on principles such as probability theory 

or linear algebra have the advantage of building on well-understood definitions and 

theorems, as well as providing a more general framework to build on. We thus 

propose a framework based partially on the well-known Probability Ranking Principle, 

which says that the optimal ranking of documents is achieved when sorting them in 

decreasing order of probability of relevance [84].  We augment it with the following 

guideline: optimal ranking is achieved when documents are ranked in decreasing order 

of probability of relevance and “retrievability”.  

We use our model to also address the problems of novelty and diversity 

ranking. This is motivated by the fact that ideas from data fusion have found their way 

into novelty and diversity ranking as well. Novelty retrieval aims at reducing 

redundancy in search results, while diversity retrieval aims to handle query ambiguity. 

Many methods for novelty and diversity retrieval attempt to identify possible intents 

or subtopics of a query, find documents relevant to those, and then combine them into 

a single ranked list. The difference from traditional data fusion methodologies is that 

the combination procedure attempts to account for possible redundancy. 

Chapter 6 
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In practice, users sometimes solve the novelty/diversity problems themselves 

by simply reformulating their query several times over a session of interactions. In 

those cases the user is the fusion algorithm, mentally keeping track of the relevant 

documents they've seen over the course of the session. In such cases the user is fusing 

results from different query expressions of the same information need from the same 

retrieval engine, rather than fusing results from different retrieval engines for the same 

query. 

What if instead the system was able to use the user's historical interactions 

with it to anticipate the user's needs and produce more relevant documents faster? 

After all, the user described in the previous paragraph may have a perfect 

understanding of their information need, but cannot possibly understand the extent of 

the full corpus as well as the system can. The system could use information from the 

user and other similar users to generate queries to produce results that can be literally 

fused for the user. 

Our theoretical probabilistic framework for data fusion is based on combining 

ranked lists from different queries that users could have entered for their information 

need. If we can identify a set of “possible queries” for an information need, and 

estimate probability distributions concerning the probability of generating those 

queries, the probability of retrieving certain documents for those queries, and the 

probability of documents being relevant to that information need, we have the 

potential to dramatically improve results over a baseline system given a single user 

query. Our framework is based on several component models that can be mixed and 

matched. We present several simple estimation methods for components. Using our 

framework, we were able to achieve significant results that are competitive with, and 
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in some cases outperform the state-of-the-art methods known in the literature, using 

TREC Web 2013 and 2014 [41], [42], NTCIR IMine 2014 [70] and TREC Session 

track 2013 and 2014 datasets [32], [31]. 

6.1 Model 

Our proposed model is a probabilistic framework inspired by both the 

Probability Ranking Principle (PRP) of Robertson [84] and the idea of data fusion. It 

is based on obtaining a collection of “possible queries” for an information need, 

obtaining ranked lists for each of those queries, then fusing ranked results in different 

ways. 

The traditional PRP says that the optimal ranking of documents is in 

decreasing order of their relevance to the user's information need. For a given user 

need expressed as a query q and a particular document D, the probability that D is 

relevant is expressed as P(rel|q, D). In most classical IR settings, the query q is the 

only available evidence about the user's need. 

Language modeling approaches estimate P(rel|q, D) as the probability of 

sampling the query q from a language model computed from the document D and 

other evidence, that is, P(rel|q, D) ≈ P(q|D). In our framework, we suppose instead 

that q has been sampled from larger space of possible queries that a user might have 

chosen for their original information need. Let us denote this space 𝒬. Then we could 

modify the PRP to rank documents in decreasing order of P(rel|𝒬, D). If q is still the 

only available evidence about the user's need, then P(rel|𝒬, D) = P (rel|q, D); the 

PRP is unaffected. But if there is more evidence about the space of possible queries a 

user might have chosen, we could expand the PRP by marginalizing over that space: 
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P(rel|𝒬, D) =  ∑ 𝑃(𝑟𝑒𝑙|𝑞′, 𝐷)𝑃(𝑞′|𝒬, D)

𝑞′∈𝒬

  

The efficacy of this model likely depends on our ability to identify the space Q 

and estimate probabilities of sampling queries from it. Note, however, its similarity to 

the data fusion scoring method CombWSUM: the probabilities P(rel|q’, D) can be 

seen as different retrieval scores being fused, while P(q’|𝒬, D) can be seen as a weight 

for that score. If those weights are uniform, then the formulation is similar to 

CombSUM. 

Now let us consider the probability that a document is retrieved rather than 

relevant. By analogy to the PRP, let us define P(retr|q, D) as the probability that 

document D is retrieved given query q. Just as we can retrospectively take P(rel|q, D) 

to be proportional to a score assigned by a retrieval system, we can retrospectively 

take P(retr|q, D) to be proportional to the rank position of the document. Using the 

same expansion as above, we can say: 

P(retr|𝒬, D) =  ∑ 𝑃(𝑟𝑒𝑡𝑟|𝑞′, 𝐷)𝑃(𝑞′|𝒬, D)

𝑞′∈𝒬

 

This allows us to use as evidence documents that have been ranked by some 

system for a query that is not q but that appears to be related to the same information 

need as q. 

Note here that using uniform P (q’|𝒬, D) and a simple cutoff function for 

P(retr|q’, D) (that is, P(retr|q’, D) = 1 if D is ranked above k for q’ and 0 otherwise), 

the formulation is equivalent to the data fusion method CombCAT [6] described in 

Chapter 4. 

Either of the probabilities P (rel|𝒬, D) or P (retr|𝒬, D) could be used as a 

scoring function by which to rank documents; their similarity to proven data fusion 
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methods demonstrates their effectiveness. What we propose now is combining them 

into a single scoring function P (retr&rel|𝒬, D). 

This model can be decomposed in two different ways. First, assuming that 

relevance and retrievability are conditionally independent given the full query sample 

space and a document, we obtain our first model: 

M1 = P(retr&rel|𝒬, D) = 𝑃(𝑟𝑒𝑡𝑟|𝒬, 𝐷)𝑃(𝑟𝑒𝑙|𝒬, D) (1) 

Second, assuming that relevance and retrievability are conditionally 

independent given a single query and a document, we obtain our second model: 

𝑀2 = P(retr&rel|𝒬, D) 

= ∑ P(retr&rel|q′, D)P(q′|𝒬, D)

𝑞′∈𝒬

 

= ∑ 𝑃(𝑟𝑒𝑡𝑟|q′, 𝐷)𝑃(𝑟𝑒𝑙|q′, D)P(q′|𝒬, D)

𝑞′∈𝒬

        (2) 

We additionally assume that q’ is independent of D (that is, that the user did 

not have document D in mind when formulating query q’, which may indeed be 

unrealistic), so P (q’|𝒬, D) = P (q’|𝒬). 

Both models combine principles of the PRP and data fusion. Their 

effectiveness will rely on careful implementation of several components: 

 the query sample space 𝒬 

 the probability of sampling a query from that space P (q’|𝒬) 

 the probability of relevance P (rel|q’, D)  

 the probability of retrieval P (retr|q’, D) 

In the following section we propose possible implementations of each of these. 
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6.1.1 Model components 

Again, our model depends on our selection of implementations of several 

components. In this section we describe a few easy possibilities for each. 

6.1.1.1 Query sample space Q  

One of the key components of this model is the space of possible queries for an 

information need. This is not information that is typically readily available. It may be 

possible to identify related queries in a large query log, but even that will be biased to 

how users tend to interact with that search engine (for example, large web search 

engines like Google would be biased towards very short keyword queries, while a e-

discovery engine might be biased towards much longer, structured Boolean queries). 

Thus we must approximate such a space in some way. 

We consider two primary sources of information: user search history over a 

session, and query suggestions provided by web search engines. For the former, when 

the last query a user inputs in a session is q, we look back over the history of the 

session and assemble 𝒬 from one of the following sources: 

 Previous queries in the session. These could be seen as a sample of queries 

by the same user from the possible space. 

 Titles of documents ranked for previous queries in the session. These could 

be seen as approximations of verbose queries, and could potentially identify 

new relevant documents that would not be found without longer queries. 

 Snippets of documents ranked for previous queries in the session. Again, 

these could be seen as very verbose queries. 

The TREC Session track provides data for these; we discuss this more in 

Section 6.2.1 below. 
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We can also obtain query suggestions from external sources (e.g. via 

commercial query generation services that provide an API through which we submit a 

query and obtain a list of query suggestions for that query). These give us “indirect” 

access to a large query log, assuming a query log was used to generate them. And 

similar to using snippets from a search session, we can also use snippets generated by 

a commercial search engine for the top 10 documents of a query. Specifically, we 

investigate the following: 

 Query suggestions provided by the Bing API. 

 Snippets of the top-10 documents retrieved from the Yahoo! BOSS API. 

We treat these as “black boxes” for generating a query sample space, giving us 

something like an upper bound on the performance that could be expected. 

6.1.1.2 Query sample probability P (q’|𝒬) 

Once we have a query space 𝒬, we need a way to estimate the probability of 

sampling a particular query q’ from that space. These probabilities become weights on 

the scores of documents retrieved for that query, or weights on whether that document 

was retrieved or not and at what rank. 

For this work, we investigate a few simple heuristics: 

 Uniform probabilities over unique queries. Each unique query has the same 

probability of being sampled. 

 Uniform probabilities over all queries. Each non-unique query has the same 

probability of being sampled. This means that a query that appears twice in 

𝒬 is twice as likely to be sampled as one that appeared only once. 

 Proportional to the similarity between q’ and the space 𝒬. 

 Proportional to position in query suggestion rankings. 
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 The APIs we use to generate query suggestions provide them as a ranking, 

so we can weight them accordingly. For instance, we may assign twice as 

much sampling probability to query suggestions in the top half of the 

ranking as in the bottom half. 

 Proportional to position in the session history. Queries that appear more 

recently may be given more weight than queries that appear further back. 

This can apply to titles and snippets taken from the session history as well. 

The latter two are implemented by binning queries by position (either rank 

position or position in time). The similarity is implemented using cosine similarity. 

We provide more detail in Section 6.2.4 below. 

6.1.1.3 Probability of relevance P(rel|q’, D)  

The probability of relevance is the score of the document for the sampled 

query q’. In general it can be any retrieval function. We have used the language model 

score computed by Indri, since the index of web pages that is available to us was built 

in Indri. Indri computes its retrieval score with a Dirichlet-smoothed language model 

as: 

𝑠𝑐𝑜𝑟𝑒(𝑞′, 𝐷) = ∑ log
𝑡𝑓𝑡,𝐷 +  𝜇

𝑐𝑡𝑓𝑡

|𝐶|

|𝐷| + 𝜇
𝑡∈𝑞′

 

Here tft,D is the frequency of term t in document D, ctft is the frequency of term 

t in the entire collection, |D| is the length of document D in terms, |C| is the length of 

the entire collection (the sum of the lengths of all documents in the collection), and is 

a smoothing parameter to guarantee no term has zero probability. 
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6.1.1.4 Probability of retrieval P(retr|q’, D) 

The probability of retrieval, in our work, is essentially proportional to whether 

a document has been ranked by a system for the query q’ and at what position. We 

consider two possible methods to estimate this probability: 

 A simple binary indicator function I(rankD ≤ k). As mentioned above, we 

can decide that P(retr|q’, D) = 1 if document D appears in the top-k ranking 

for q’ and P(retr|q’, D) = 0 otherwise. 

Discounting by rank. We use a simple linear discount by which the top-ranked 

document is assign probability proportional to 1, then each subsequent document is 

discounted by an additional 1/k. 

6.1.2 Connection to data fusion methods 

We are proposing the models above as a framework from which new retrieval 

models can be produced. In this section we demonstrate how well-known fusion 

algorithms emerge from our framework. 

One of the primary differences between our method and typical fusion methods 

is that we are issuing different queries to a single retrieval system, whereas fusion 

methods traditionally issue the same query to different retrieval systems. 

Thus to connect to existing methods, we rewrite our frame-work so that it sums 

over different rankings rather than different queries. The modified version of M2 (Eq. 

2) looks like this: 

M2 = P(retr&rel|R, D) 

= ∑ P(retr&rel|R, D)P(R|R, D)

𝑅∈R

 

= ∑ 𝑃(𝑟𝑒𝑡𝑟|R, 𝐷)𝑃(𝑟𝑒𝑙|R, D)P(R|R, D)

𝑅∈R
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Note that we have essentially replaced q’ and 𝒬, a query and a set of possible 

queries, with R and R, a ranking and a set of possible rankings, respectively. The 

theoretical frame-work makes no substantive distinction between a query that 

produces a ranked list and a ranked list produced from a query, which means that 

different queries and different retrieval systems can be treated interchangeably. The 

only caveat is that the different queries should be related to the same information need, 

at least as closely as two different retrieval systems retrieved similar documents for the 

same query. 

6.1.2.1 CombSUM 

CombSUM simply sums the scores a document received from different 

retrieval algorithms, then ranks documents in decreasing order of score. Since 

different retrieval algorithms can produce scores on very different scales, typically 

some form of standardization is applied to scores before summing them. 

In our model, CombSUM emerges when P(R|R, D) ∝ 1 (that is, all rankings 

are weighted equally), P(retr|R, D) ∝ 1 for all documents D ranked above some cutoff 

k in ranking R, and P(rel|R, 𝒬, D) is the normalized score given by the system the 

ranking R corresponds to. Then: 

𝑃(𝑟𝑒𝑡𝑟&𝑟𝑒𝑙|R, 𝐷) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑅, 𝐷)

𝑅∈R

 

= 𝐶𝑜𝑚𝑏𝑆𝑈𝑀(R, 𝐷) 

6.1.2.2 CombWSUM  

CombWSUM is very similar to CombSUM except that the scores are 

weighted, typically by some estimate of the average effectiveness of the system that 
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produced the score. In our model, CombWSUM is obtained by using a non-uniform 

probability for P (R|R, D). Then, labeling that probability wR, we have: 

 

𝑃(𝑟𝑒𝑡𝑟&𝑟𝑒𝑙|R, 𝐷) = ∑ 𝑤𝑅 ∙  𝑠𝑐𝑜𝑟𝑒(𝑅, 𝐷)

𝑅∈R

 

= 𝐶𝑜𝑚𝑏𝑊𝑆𝑈𝑀(R, 𝐷) 

6.1.2.3 CombMNZ  

CombMNZ also weights scores, but instead of weighting each individual 

system/document score by a system weight, it weights the sum of document scores 

across systems by the number of systems that gave that document a “non-zero” score 

(technically, the number of systems that ranked the document in the top-k retrieved). 

Let us refer to the number of non-zero scores as MNZ, and the sum of document 

scores as CombSUM as above. Then, using the first model formulation Eq. 1 above: 

 

𝑃(𝑟𝑒𝑡𝑟&𝑟𝑒𝑙|R, 𝐷) = 𝑃(𝑟𝑒𝑡𝑟|R, 𝐷)𝑃(𝑟𝑒𝑙|R, 𝐷) 

= ∑ 𝐼(𝑟𝑎𝑛𝑘𝐷(𝑅) ≤ 𝑘) ∙

𝑅∈R

∑  𝑠𝑐𝑜𝑟𝑒(𝑅, 𝐷)

𝑅∈R

 

= 𝑀𝑁𝑍 ∙ 𝐶𝑜𝑚𝑏𝑆𝑈𝑀(R, 𝐷) 

= 𝐶𝑜𝑚𝑏𝑀𝑁𝑍(R, 𝐷) 

6.2 Experiments and Results 

We performed experiments on five different datasets: the TREC 2013 and 

2014 Session tracks datasets were used to further confirm the strength of our data 

fusion methods for search over sessions; the TREC 2013 and 2014 Web tracks, and 

the NTCIR 2014 iMine track were used to show the strong performance of our model 

on ad-hoc and diversity rankings. All five use the full ClueWeb12 corpus, though the 
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iMine track only used the ClueWeb12-B13 subset of it. We indexed the collection 

using Indri, an open-source package for indexing and retrieval that implements the 

inference network model [94]. 

6.2.1 Data 

TREC Web tracks: Each of the 2013 and 2014 TREC Web track datasets 

contain 50 queries [41], [42] created after perusing candidate topics from query logs 

from commercial search engines. Some topics were faceted (with several possible 

subtopics), others were non-faceted with single intents, and a few others were 

ambiguous (queries with several intents). The task of TREC participants is to provide 

a diversified ranking of no more than 10000 documents per query for the 50 queries. 

Relevance judgments are provided at the level of topic as well as subtopic for 

computing diversity evaluation measures (see below). 

TREC Session tracks: Like the Web track datasets, the Session track datasets 

contain queries. However, those queries are given in the context of user sessions 

consisting one or more interactions with a search engine [32], [31]. Each interaction 

includes a user-submitted query related to the topic, a ranked list of results from a 

search engine for that query, user clicks on those results, and the time spent by the 

user reading the clicked document. Finally, each session ends with a “current query”, a 

query with no search engine results for which participants will provide ranked results, 

possibly using the session history to do so. The 2013 data includes 87 sessions, while 

the 2014 data include 1021 sessions, of which 100 were pooled for judging. The task 

is to leverage session history to rank documents for the last query (current query) in 

the session using the entire ClueWeb12 corpus for retrieval. 
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NTCIR IMine track: IMine is also a diversity-focused task. We use the 

English set, which consists of 50 queries for which the organizers provided query 

suggestions from Bing, Google and Yahoo as well as query “dimensions” generated 

using the method proposed by Dou et al. [47]. The task is to provide a diversified 

ranking of no more than 100 documents per query for the 50 queries, covering as 

many intents as possible [70]. 

6.2.2 Evaluation measures 

Our primary evaluation measure is nDCG, the official measure of the TREC 

Session track and one of the measures for the TREC Web track. For Web track results, 

we also report α-nDCG, a modification of nDCG for measuring diversity of subtopics 

in ranked results. This measure works by penalizing redundancy in documents that 

appear in a ranked list [39]. 

6.2.3 Baselines 

When we report a baseline, it is chosen from among the following: a standard 

Dirichlet-smoothed language model as implemented in Indri [94] and a set of runs 

obtained using Lavrenko & Croft's relevance models, varying the number of 

documents used for feedback. We choose the best-performing system from this set as 

the baseline. 

6.2.4 System Implementations 

As discussed above, we can produce different system implementations from 

the framework by picking and choosing among different component methods. Given 

the large space produced just by the possibilities we have mentioned (which are only a 
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subset of all possible choices), we cannot experiment and report on every 

combination. Here we list select combinations that we experimented with. 

For the “possible queries” 𝒬, we mainly considered previous queries in a user 

session and titles of documents ranked for those queries (for the TREC Session track 

data) and query suggestions and snippets provided by two major search engines (for 

the TREC Session track data and the TREC Web track data). The NTCIR iMine track 

provided query suggestions from major search engines as well. 

For the query sample probability P (q’| 𝒬, D), we used all five of the methods 

described in Section 6.1.1.2 above. Cosine similarity is computed between a query q’ 

and the full set of terms in 𝒬. However, because for many sources of 𝒬 the queries are 

quite short, we found that cosine similarity is not very useful in those cases. It is only 

useful when the queries in the set are relatively long, so we only report it in those 

cases. 

To weight queries based on their distance in time, we use binning. We first 

decide on a number of bins m. Then, from a sequence of n queries making up a 

session, the most recent n/m are placed in the first bin, the next most recent n/m are 

placed in the second bin, and so on. The first bin is then given weight double that of 

the second bin, which receives weight double that of the third bin, and so on. 

For the probability of relevance P(rel|q’, D), we only use Dirichlet-smoothed 

language models. This is because our index of ClueWeb12 was built using indri, and 

that is the default model indri uses. 

For the probability of retrieval P(retr|q’, D), we use the rank-cutoff indicator 

function I(rankD ≤ k) and the linear discounting function described in Section 6.1.1.4. 



 

 

 

 

82 

6.3 Results 

We present results organized by dataset below. Our primary results are those 

for the TREC Session track, since that is the dataset that provides access to session 

history data and thus the most direct additional information about the information 

need. We present results for the TREC Web track to show how our method can be 

adapted when session history is not directly available and to show results for novelty 

and diversity search. We present results for the NTCIR iMine track because that track 

provided suggestions from a commercial search engine (which gives precedent for our 

use of those queries). For each dataset, we break discussion of results out by model 

component. 

6.3.1 Results for TREC Sessions 

Table 6.1 summarizes all results for TREC Session track data. The baseline 

(line no. 1) is a simple Dirichlet-smoothed language model using only the query, 

ignoring session history and any other sources of possible information about the 

session or topic, though possibly using pseudo-relevance feedback as described above. 

The final line (no. 20) in the table is the reported best-performing system among all 

TREC submissions, taken from the respective TREC overview papers [32], [31]. The 

best TREC submission was 32% or 45% better than our baseline for 2013 and 2014 

respectively, but we improve on our own weak baseline by up to 40% or 36% 

(respectively; both at line no. 17) for the “realistic” case of fusing results based on the 

user's history in the session. 

6.3.1.1 Choice of possible queries 𝒬 

Results are grouped by the selection of a source for the set of possible queries 

𝒬. It is clear from 1 that this set has the biggest effect on performance, though how 
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specifically it affects performance depends on the data: for the 2013 Session track 

data, using document titles as a source of possible queries (lines 8 – 14) tends to 

outperform the use of previous queries in the session (lines 2 – 7), while for 2014, 

using document titles performs much worse than the use of previous queries. In both 

cases, however, there is a clear difference between the two sets, with another tier of 

results achieved by drawing from a commercial search engine (the query suggestions 

on lines 18 and 19, and engine snippets on lines 15 – 17); in that tier, snippets clearly 

outperform query suggestions. 

The differences in the effectiveness of previous queries and document titles 

between 2013 and 2014 may be explained by differences in the engine that generated 

search results, differences in the user population, and differences in the amount of 

data. On the first point, the 2014 engine would some-times generate ranked lists that 

were much worse than the 2013 engine. When these poor results are used to generate 

new results for data fusion, it is not surprising that the end result would be worse. On 

the second and third points, the 2014 engine used Amazon Mechanical Turk to 

generate many more sessions and queries than were available in the 2013 data; it may 

be that the greater amount of data leads to greater effectiveness when using previous 

queries alone. 

6.3.1.2 Choice of P(retr|q’, D) 

The next largest effect on performance is from the selection of “retrieval 

probability” P(retr|q’, D). Using the rank-based linear discount function (odd-

numbered lines except lines 1 and 15) outperforms the simple rank-cutoff binary 

function in every case that they can be directly compared. This suggests that weighting 
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documents by rank position in addition to retrieval score can improve data fusion in 

general. 

6.3.1.3 Choice of P (q’|𝒬, D) 

Finally, the method for weighting queries sampled from the space has a 

smaller, yet still clear in some cases, effect on effectiveness. In particular, using a 

uniform distribution over the unique queries (lines 4 & 5, 10 & 11) outperforms a 

uniform distribution over all queries (lines 2 & 3, 8 & 9), meaning that giving more 

weight to duplicates in the set typically results in worse performance. 

 

For the cosine similarity and binning methods, we have few cases where we 

can directly compare effectiveness. Cosine similarity seems to be most useful when 

applied to snippets from a commercial search engine, where they unequivocally 

improve effectiveness over the baseline (by 28% or more at line no. 16). When applied 

to document titles, using cosine similarity to estimate query sampling probability does 

not provide any clear benefit (line 14). 

 

For the binning method, we report the maximum effectiveness over number of 

bins. While this may be “cheating” (in the sense that we are optimizing on the testing 

data), we note that the binning methods nearly always give worse effectiveness than 

the uniform probability methods using the same retrieval probability. Thus it seems 

that binning based on session history is not worthwhile. 
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Table 6.1:    TREC Session track results for different combinations of model 

components. * indicates a statistically significant difference over the 

baseline by a paired t-test at the 0.05 level. The biggest improvement for 

each dataset is bolded. 

 

sample space 𝒬  P (q’| 𝒬, D) P (retr|q’, D) 

2013 Session 2014 Session  

no. 

nDCG@1

0 %∆ 

nDCG@1

0 %∆  

1 baseline –  – 0.1474 – 0.1783 –  

2 previous queries Uniform I(rankD ≤  k) 0.1425 -3% 0.1849 4%  

3 previous queries Uniform 

linear 

discount 0.1574 7% 0.1999 12%  

4 previous queries Unique I(rankD ≤  k) 0.1457 -1% 0.1935 9%  

5 previous queries Unique 

linear 

discount 0.1574 7% 0.2057 15%  

6 previous queries bins by time I(rankD ≤  k) 0.1463 -1% 0.1874 5%  

7 previous queries bins by time 

linear 

discount 0.1648 12% 0.1920 8%  

8 document titles Uniform I(rankD ≤  k) 0.1570 7% 0.1521 -15%  

9 document titles Uniform 

linear 

discount 0.1609 9% 0.1587 -11%  

10 document titles Unique I(rankD ≤  k) 0.1599 8% 0.1603 -10%  

11 document titles Unique 

linear 

discount 0.1635 11% 0.1699 -5%  

12 document titles bins by time I(rankD ≤  k) 0.1487 1% 0.1424 -20%  

13 document titles bins by time 

linear 

discount 0.1562 6% 0.1484 -17%  

14 document titles cosine sim I(rankD ≤  k) 0.1538 4% 0.1501 -16%  

15 

external 

snippets Uniform I(rankD ≤  k) 0.1710 16% 0.2001 12%  

16 

external 

snippets Cosine I(rankD ≤  k) 0.2000 *36% 0.2277 *28%  

17 

external 

snippets Uniform 

linear 

discount 0.2063 *40% 0.2427 *36%  

18 

suggested 

queries Uniform I(rankD ≤  k) 0.1589 8% 0.2261 *27%  

19 

suggested 

queries Uniform 

linear 

discount 0.1595 8% 0.2059 15%  

20 TREC best – – 0.1952 *32% 0.2580 *45%  
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6.3.1.4 Additional Analysis: Effects on Task Types 

The TREC Session track topics can be described by whether they are “factual”, 

“intellectual”, “specific”, or “amorphous”, referring to specific goals and products of 

the topic [31]. We investigated performance with different choices of 𝒬 when breaking 

topics out by these categories. Table 6.2 shows the results. Our methods seem to do 

the best job at improving results for “amorphous” and “factual” types, which 

represent, respectively, exploratory and fact-finding information needs. Moreover, 

they improve those types in both Session track datasets, suggesting that the 

improvement is independent of other differences between the datasets. 

Table 6.2:   TREC Session track results broken out by goal and product types. 

  2013 Session   2014 Session  

𝒬 factual intellectual specific amorphous factual intellectual specific amorphous 

Baseline 0.1402 0.1632 0.1608 0.1141 0.1598 0.1958 0.1773 0.1797 

prev. q 

+ titles 0.1912 0.1769 0.1769 0.1954 0.1719 0.1772 0.1537 0.1965 

prev. q 

+ snips 0.2739 0.1813 0.1541 0.2584 0.1307 0.1898 0.1362 0.1876 

titles + 

snips 0.2069 0.1541 0.1750 0.2021 0.1689 0.1604 0.1369 0.1932 

All 

three 0.2119 0.1750 0.1750 0.2135 0.1762 0.1688 0.1427 0.2032 
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6.3.1.5 Additional Analysis: More about query sample space 𝒬 

Table 6.3:   TREC Session track results for different sources of possible queries 𝒬. * 

indicates a statistically significant difference over the baseline by a paired 

t-test at the 0.05 level. The biggest improvement for each dataset is 

bolded. 

 

sample space Q 

2013 Session 2014 Session  

no. nDCG@10 %∆  nDCG@10 %∆   

1 Baseline 0.1474 – 0.1783 –  

2 previous queries 0.1425 -3% 0.1849 4%  

3 document titles 0.1570 7% 0.1521 -15%  

4 Snippets 0.1376 -7% 0.1070 -40%  

5 previous queriesz 0.1740 18% 0.2051 15%  

6 document titlesz 0.1806 23% 0.1583 -11%  

7 snippetsz 0.1803 22% 0.1347 -25%  

8 prev. q + titles 0.1657 12% 0.1679 -6%  

9 prev. q + snips 0.1917 30% 0.1476 -17%  

10 titles + snips 0.1706 16% 0.1400 -21%  

11 All 0.1847 25% 0.1600 -10%  

12 prev. q + titlesz 0.1867 27% 0.1747 -2%  

13 prev. q + snipsz 0.2452 *66% 0.1614 -10%  

14 titles + snipsz 0.1905 29% 0.1645 -8%  

15 allz 0.2004 *36% 0.1723 -3%  

16 rec’ed queries 0.1589 8% 0.2261 *27%  

17 external snips 0.1710 16% 0.2001 12%  

18 rec. q + ext. snips 0.1920 *30% 0.2664 *49%  

19 rec’ed queriesz 0.1556 6% 0.2705 *52%  

20 external snipsz 0.2036 *38% 0.2505 *40%  

21 rec. q + ext. snipsz 0.2256 *53% 0.3169 *78%  

22 TREC best 0.1952 32% 0.2580 45%  

 

 

Here we discuss more findings about the choice of query sample space 𝒬. 

Notably, we show the large increase in performance when we leverage search history 

data from other sessions pertaining to the same topic, in addition to the user’s session 

(all items in Table 6.3 that end with z leverage all sessions on the same topic, including 
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other users’ sessions). We also show empirically that the performance generally 

increases when we combine several sources of information. Since we are only 

investigating the choices of query sample space here, we need to keep the other model 

components fixed. So we simply use the CombCAT implementation here while 

varying only 𝒬. The details are below. 

Lines 2–4 show performance using, respectively, previous queries in the user’s 

session, the titles of documents retrieved for those queries, and the snippets displayed 

for those documents. Note that these three sets are not building on one another; the 

snippet set does not include titles and vice versa for instance. The three lines (i.e. 5–7) 

that follow these previous three lines show performance when using the same three 

items, with the big difference that in this case we use all sessions on the same topic, 

essentially vastly expanding the amount of data available for fusion. In fact, all items 

in Table 6.3 that end with z use all sessions on the same topic. Of course, this requires 

the ability to identify topically-related sessions, which is not always an easy 

problem—in the Session track data both session ID and topic ID are clearly marked, 

but this is not the case in real log data. However this helps determine whether access 

to a large amount of high-quality data about terms that users might think to use in 

queries can give gains in fused results. Here we see that using previous queries as a 

source of possible queries works well for both TREC 2013 and 2014 Session tracks 

(18% and 15% improvements respectively). Using document titles and snippets works 

well for 2013 (23% and 22% improvements) but not for 2014 (-11% and -25%). Note 

that using document titles and snippets for TREC Session 2011 and 2012 worked well 

as well, (see section 4.3.3). One possible reason for this is that the 2014 titles and 

snippets were of a lower quality than those for 2013 as a consequence of how the 2014 
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data was acquired [31]. We also note that none of these results are statistically 

significant, though the differences are large enough and consistent enough that we 

believe they reflect a real effect on performance. 

Lines 8–11 show performance when taking the union of sets from the previous 

three: “prev. q + titles” creates Q using both previous queries in the session as well as 

titles of documents seen by the user for those queries; “prev. q + snips” creates it from 

queries and snippets; and so on. The “all” set unions all three sets. The next four lines 

(12–15) show performance when using the same four items, except that in this case we 

use all sessions on the same topic. Here we see that combining sources unambiguously 

improves results for 2013, while the performance penalty from using the poor-quality 

2014 titles and snippets negates the gain from using previous queries. 

Lines (16–18) use data from sources external to the session, specifically 

snippets and suggested queries from commercial search engines. For these, we 

submitted the last query in the session to Bing and Yahoo! BOSS and obtained query 

suggestions from the former and document snippets from the latter; these then become 

queries to our baseline LM system to produce ranked lists for CombCAT. Here we see 

that each source on its own gives good improvement (particularly for 2014, which 

significantly benefits from the Bing query suggestions), and when both are combined 

they give a substantial and significant performance boost in both datasets of 30% and 

49% respectively. 

The next three lines (19–21) show performance using the same three items 

used in the previous case, except that in this case we use all sessions on the same 

topic. The last line in this group again uses snippets and suggested queries, but this 

time takes input queries from all sessions on the same topic, essentially vastly 
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expanding the amount of data available for fusion. Here we see huge performance 

boosts: 53% and 78% on 2013 and 2014 data respectively. Of course, this requires the 

ability to identify topically-related sessions, which is not always an easy problem—in 

the Session track data both session ID and topic ID are clearly marked, but this is not 

the case in real log data. Nevertheless, this result suggests that access to a large 

amount of high-quality data about terms that users might think to use in queries can 

give huge gains in fused results. 

Finally we compare our results to the best-performing TREC submission. The 

best TREC submission was 32% or 45% better than our baseline for 2013 and 2014 

respectively, but we improve on our own weak baseline by up to 66% or 49% for the 

“realistic” case of fusing results based on the user’s history in the session, or up to 

78% for the less-realistic case of fusing results based on all users’ sessions for the 

same information need. 

6.3.2 Results for TREC Web 

Results from the previous section demonstrate that substantial effectiveness 

gains are possible when using information from the user's recent search history. In 

many retrieval contexts there is no such history; for example, the TREC Web track 

provides only a single query with no session history. Can we obtain similar 

effectiveness improvements with that limitation? 

Table 6.4 summarizes all results when using Bing query suggestions and 

Yahoo! BOSS snippets. (Again, these were submitted as queries to our own LM index 

of ClueWeb12 to provide the input to our fusion methods.) Again we see substantial 

and consistent improvements over our baseline, with our best performance comparable 
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to the best automatic TREC submissions despite the fact that our entire retrieval 

process is based on the weak LM baseline reported in the first line of the table. 

We report both nDCG and the diversity measure α-nDCG to demonstrate the 

effectiveness of our methods for diversity retrieval. As Table 6.4 shows, we 

consistently obtain statistically significant gains for diversity as well as ad hoc 

retrieval. 

6.3.2.1 Choice of possible queries 𝒬 

Again, since we have no session history to draw from, we rely on query 

suggestions and snippets provided by external search engines. Both prove to be 

excellent sources for the set of possible queries, increasing effectiveness over our 

baseline for both 2013 and 2014 (with the 2013 results substantial and statistically 

significant). When used together (by taking the union of the two sets), effectiveness 

increases by up to 50% for the 2013 data, and 22% for the 2014 track. 

We do not see as clear a difference between queries and snippets as we did 

between queries and titles in the Session track experiments above, though there is a 

clear gain from combining them. 

Table 6.4:    TREC Web track results for different combinations of model components. 

* indicates a statistically significant difference over the baseline by a 

paired t-test at the 0.05 level. The biggest improvement in each column is 

bolded. For the best reported TREC result, we report the highest value of 

the measure across all submissions; the system with the highest nDCG is 

not necessarily the same as the system with the highest α-nDCG. 

 

P (q’|𝒬; D) P (retr|q’, D) 

 2013 Web   

𝒬 nDCG@20 %∆   α-nDCG %∆  

baseline – – 0.1863 – 0.4664 –  

suggested queries uniform I(rankD ≤  k) 0.2298 *23% 0.5548 *19%  
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suggested queries uniform 

linear 

discount 0.2421 *30% 0.5695 22%  

suggested queries bins by rank I(rankD ≤  k) 0.2235 20% 0.5447 17%  

external snips uniform I(rankD ≤  k) 0.2443 *31% 0.5797 *24%  

queries+snippets uniform I(rankD ≤  k) 0.2758 *48% 0.6359 *36%  

queries+snippets uniform 

linear 

discount 0.2815 *51% 0.6331 *36%  

TREC best – – 0.3100 66% 0.6280 35%  

 

P (q’|𝒬, D) P (retr|q’, D) 

 2014 Web   

𝒬 nDCG@20 %∆ α-nDCG %∆  

baseline – – 0.2562 – 0.5744 –  

suggested queries uniform I(rankD ≤  k) 0.2558 0% 0.6645 *16%  

suggested queries uniform 

linear 

discount 0.2735 7% 0.6573 14%  

suggested queries bins by rank I(rankD ≤  k) 0.2782 9% 0.6847 19%  

external snips uniform I(rankD ≤  k) 0.2657 4% 0.6268 9%  

queries+snippets uniform I(rankD ≤  k) 0.2997 *17% 0.6677 *16%  

queries+snippets uniform 

linear 

discount 0.3134 *22% 0.6788 18%  

TREC best – – 0.2610 2% 0.6940 21%  

6.3.2.2 Choice of P (retr|q’, D) 

For the Web track we were able to use the same methods as we did for the 

Session track. Again we see that using a linear discount function always improves 

over a simple rank cutoff in cases where they are directly comparable. 

 

6.3.2.3 Choice of P (q’|𝒬, D) 

In most cases we were only able to test the uniform probability over the set. 

For the case of suggested queries, we could also try binning them by their rank 

position in the list. This did turn out to have a positive effect: when the ranked list is 

split in half, with the top half receiving more weight than the bottom half, results 

improve over using no binning. However, the difference in effectiveness from the 

uniform distribution is negligible. 
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Note that using a uniform distribution over unique elements in the set does not 

have any effect for the Web track, since our suggested queries and external snippets 

never have any duplicates that could be removed. 

6.3.3 Results for iMine 2014 

The main difference between the iMine data and the other two sets is that the 

iMine organizers provided ready-made query suggestions that we can use in our 

method. We did not have much opportunity to explore other sources of queries or 

ways of combining them. Table 6.5 shows results, comparing the linear discount to the 

rank-cutoff function, again showing that linear discounting provides a benefit (though 

in this case very small and not significant). 

Table 6.5:   NTCIR iMine 2014 results using the query suggestions provided by the 

organizers of the task. 

𝒬   P (q’| 𝒬, D)     P (retr|q’, D)    α -nDCG 
query 
suggestions uniform  I(rankD ≤ k) 0.6962 
query 
suggestions uniform  linear discount 0.6968 

6.4 Summary 

In this chapter, we propose a probabilistic data fusion framework, PDF, which 

makes a small amendment to the probability ranking function by suggesting to rank 

documents in decreasing order of their probability of relevance and retrieval by 

systems, as opposed to relevance only. We propose a way to estimate the probability 

that documents are retrieved by exploiting various sources of sample possible queries. 

We proceed to show the impacts of different choices for several model components by 
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implementing different instances of our model and empirically show that, when used 

with very rich sources of sample possible queries, they are at least on-par with the best 

reported systems for different search scenarios including ad-hoc search, diversity 

search and search over sessions. Specifically, we show them to be at least competitive 

with the best reported systems for TREC Session track 2013 and 2014, TREC Web 

track 2013 and 2014 as well as NTCIR IMine 2014 dataset. 
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SIMULATION OF SEARCH INTERACTIONS 

We have shown in Chapters 4 and 6 that users’ search history can be leveraged 

to improve current search results. However sometimes we have little to no search 

history available. In such cases, it would be helpful to obtain data similar to search 

history data. One way of doing this is by simulating previous search interactions. 

Thus, in this chapter, we consider and address the problem of generating data similar 

to search history data in the absence of actual search history by simulating previous 

search interactions. In the present study, we focus on generating simulated “related 

queries” that can serve as an additional source of information about the current search 

[6]. For the sake of simplicity in our initial model, we intentionally leave out other 

possible exploitable resources such as clicks and dwell times for future work. We 

hypothesize that users reformulate their queries by leveraging some of the terms and 

keyphrases they find in ranked documents during their search [6], and hence we 

propose simple models for generating such related queries. Our study is thus focused 

on generating “related queries” by leveraging the most significant key-phrases from 

documents in our simulated interactions. 

More specifically, our problem formulation is as follows: suppose we have a 

real user who provides one single query and nothing else.  Can we generate data that 

can be used as substitute for real users’ search history in the absence of the latter, and 

that leads to results similar to the ones we obtain when we leverage real users’ search 

history? 

Chapter 7 
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Our contributions consist in addressing the following: Can we improve search 

effectiveness by leveraging simulated queries, and how does such a method compare 

to leveraging real search history? What are the effects of concatenating the simulated 

queries with the original user query and/or aggregating the resulting rankings with the 

ranking of the user’s original query? And should we explore deeper layers in our 

model? 

7.1 Methodology 

7.1.1 A simple model for generating search history data 

Our task is to generate simulated search history data that can be utilized as a 

substitute for real search history. Our assumption is that a user’s next query 

reformulations are inspired and informed by the information she gets from reading the 

top-ranked documents from the current ranking. This implies that at each phase of our 

query reformulation simulation, there is a document retrieval step first, followed by 

the proper generation of simulated queries. There are two phases in our model, as 

depicted in Figure 7.1: “layer 1” and “layer 2”. Layer 1 begins with a real user query 

and a ranked list of results, which are used to generate simulated possible “next” 

queries.  In layer 2, each of these simulated queries are used to retrieve documents, 

which in turn are used to generate a second set of simulated possible next queries. 
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Figure 7.1:   A somewhat simple model for generating search history data: The 

elliptical shapes with large dashes represent the generated simulated 

queries 

7.1.2 A Somewhat More Complex Model 

Our second model is a little more complex (see Figure 7.2). It starts the same 

as the previous model, using a user query and ranked results to generate simulated 

queries. In addition, the user query is submitted to the general web to obtain a ranking 

of URLs with snippets.  Rather than use the simulated queries to retrieve documents at 

layer 2, we extract keyphrases from the snippets of the web results to use for 

document retrieval.  Then, as in the original model, a second set of simulated queries 

are generated from these retrieved documents.  Thus the models differ only in the 

source of queries used to rank documents at layer 2. 
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Figure 7.2:   A somewhat more complex model for simulating session search data: The 

elliptical shapes with large dashes represent the generated simulated 

queries. The elliptical shapes with dashes represent the keyphrases 

generated in the new steps (they can also be used as simulated queries) 

7.2 Implementation of the Methods 

To implement our models, we need a retrieval engine and methods for 

generating simulated queries from ranked results.  Below we describe three different 

implementations of each of the two models. 



 

 

 

 

99 

7.2.1 Layer 1 simulated query reformulations 

At layer 1, models 1 and 2 are identical.  For the search engine, we use either 

Indri [94], which uses Dirichlet-smoothed language model scoring to rank full-text 

documents, or Yahoo! BOSS [105], which returns a SERP with URLs, titles, and 

snippets.  When we use Indri, we extract keyphrases from each of the top-10 full-text 

documents using JTopia [57], then concatenate the top keyphrases from each 

document to form a simulated query.  When we use BOSS, we select either titles or 

snippets from the top-10 ranked URLs to be used as simulated queries. 

7.2.2 Layer 2 simulated query reformulations 

After layer 1, we have 10 simulated queries from one of three possible 

implementations.  At layer 2, the models diverge.  For model 1, we essentially repeat 

layer 1 for each of the top-4 of the 10 simulated queries: the simulated query is 

submitted to the same search engine, and a new round of simulated queries are 

generated in the same way.  The only difference is that for the BOSS results, we use 

fewer ranked documents (5 instead of 10). 

Model 2 differs by using the original user query a second time, submitting it to 

Yahoo! BOSS (and only Yahoo! BOSS, not Indri) to obtain snippets of top-ranked 

documents from the general web. We use JTopia to extract keyphrases from those 

snippets, and then, unlike model 1 (which uses simulated queries resulting from layer 

1), we submit those keyphrases to our engine of choice. Simulated queries are 

generated from the resulting ranked documents in the same way as in layer 1. 

For each of the implementations of layer 1 and layer 2 simulations, we also 

experiment with a variant in which each simulated query is concatenated with the 

original query. In this way we guarantee that the simulated query contains the user’s 



 

 

 

 

100 

original query, potentially helping to mitigate cases where the simulated query does 

not contain any of the original query terms.  

Additionally, we experiment on the effects of aggregating the ranking resulting 

from the user’s query with the rankings resulting from simulated queries. 

7.3 Experiments and Results 

7.3.1 Dataset and Evaluation Measures 

We use the Session track 2013 dataset [32]. It contains several user sessions 

which contain one or more interactions.  Each interaction consists of a query related to 

a given information need, a ranked list of results from a search engine, user clicks on 

the results, and the time spent by the user reading the clicked document.  Finally, there 

is a “current query”, the last query in the search session. The 2013 data consists of 87 

sessions. 

For the effectiveness measure, we adopted the official primary measure used 

by the TREC Session track organizers, namely nDCG@10.  nDCG is a graded 

relevance measure that rewards documents with high relevance grades and discounts 

the gains of documents that are ranked at lower positions [53]. 

7.3.2 Effectiveness of Simulated Queries: Leveraging Simulated Queries 

We leverage our generated simulated queries by applying the CombCAT rank 

fusion method introduced in Chapter 4 [6]. For each query formulation, each top-k 

ranked document is placed into different bins such that documents that appeared in n 

different rankings are put in the same bin, labeled “categoryn”. Documents are then 

reranked in decreasing number of rankings they appeared in. Each simulated query 
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was submitted to Indri for document retrieval.  We compare to the baseline of simply 

submitting the original user query to the Indri retrieval engine. 

7.3.3 Results 

Table  7.1:    Results for layer 1 of both models on Session track 2013 dataset. Q0x, 

Q1x, Q2x, Q3x and Q4x respectively denote incorporating the real user 

query ranking 0, 1, 2, 3 and 4 times in the set of rankings that are being 

aggregated.  QN denotes the concatenation of the real user query to the 

simulated query.  

 Q0X Q1X Q2X Q3X Q4X 

Resources ndcg %∆ ndcg %∆ ndcg %∆ ndcg %∆ ndcg %∆ 

baseline 0.1147 0.00% 

        Jtopia 0.0746 -34.96% 0.0810 -29.38% 0.1371 19.53% 0.1374 19.79% 0.1376 19.97% 

QNJTopia 0.1007 -12.21% 0.1017 -11.33% 0.1207 5.23% 0.1216 6.02% 0.1204 4.97% 

Titles 0.1465 27.72% 0.1520 32.52% 0.1504 31.12% 0.1474 28.51% 0.1468 27.99% 

QNTitles 0.1420 23.80% 0.1331 16.04% 0.1349 17.61% 0.1330 15.95% 0.1338 16.65% 

Snip 0.1407 22.67% 0.1596 39.15% 0.1533 33.65% 0.1473 28.42% 0.1459 27.20% 

QNSnip 0.1614 40.71% 0.1620 41.24% 0.1573 37.14% 0.1565 36.44% 0.1577 37.49% 

7.3.3.1 Can we improve effectiveness at all by simulating queries and leveraging 

them?  

The results in Table 7.1 show that by applying layer 1 simulations alone, we 

are able to improve the results over the baseline. The highest improvements occur 

when we leverage Q1X+QNSnip (41.24% improvement over the baseline) and 

QNSnip (40.71% improvement over the baseline). It is to be noted that although using 

JTopia alone leads to a significant decrease in effectiveness, using it in addition to user 

query leads to relatively large improvement (19.53%, 19.79% and 19.97% 

improvements respectively for Q2x+Jtopia, Q3x+Jtopia and Q4x+Jtopia). 

We would also like to compare to a stronger baseline that uses real search 

history.  These results are given in Table 7.2.  We can see that using layer 1 alone is 
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not competitive with using real session history, nor is the first model with both layers.  

However, using the second model with both layers gives a substantial improvement 

over using real session data in all cases but the QNSnip method.  This suggests that the 

second model is more than good enough to substitute real session history in the 

absence of no/little real session history data. 

7.3.3.2 When we aggregate the ranking resulting from the user’s query with the 

rankings resulting from simulated queries, does it affect the results? 

The results in Table 7.1 suggest that there is generally a positive impact when 

we aggregate the ranking resulting from the user’s query (userQ) with the rankings 

resulting from leveraging layer 1 simulated queries, as can be seen by comparing 

results across rows. However the results start degrading when we start over-

representing the userQ rankings.  

For instance, in the case of Snip, leveraging Snip+Q1x leads to a performance 

increase of 13.43% over leveraging Snip only (from 0.1407 to 0.1596). This means 

that including the ranking resulting from the actual user query (only once) helps 

improve the result by 13.43% over the effectiveness of simply leveraging Snip. But, 

including those results two times (Snip+Q2x), three times (Snip+Q3x), or four times 

as much voting rights as the simulated query (Snip) leads to 8.96%, 4.69%, or 3.70% 

increases over using Snip only. 

We conclude that we obtain better results by aggregating the ranking resulting 

from the user’s query with the rankings resulting from leveraging layer 1 simulated 

queries once, but in most cases only once (except notably for JTopia and QNJTopia). 
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7.3.3.3 Does concatenating the simulated queries with the original query impact 

the results? 

Comparing the QN variants in Table 7.1 clearly suggests that, in general, 

concatenating the original query to the simulated query improves the results. For 

instance, when we go from using Snip to using QNSnip, the results improve from 

0.1407 to 0.1614 (14.71% improvement). Results improve by 34.99% from JTopia to 

QNJTopia. It is worth noting that when leveraging Titles, the nDCG went down from 

0.1465 to 0.1420. But that negative change is negligible (3.07% decrease) compared to 

the 14.71% and 34.99% increase. 

7.3.3.4 Is there any added value in going down to layer 2 and deeper? 

Table 7.2 shows that, for our first model, layer 2 provides no benefit and in 

fact hurts effectiveness.  This was somewhat foreseeable, in that the queries generated 

in layer 2 are drifting further away from the original intent. 

The second model, however, benefits greatly from the addition of the second 

layer.  Using layer 1 results as strong baselines for the purpose of comparison, the 

increases in effectiveness from layer 1 to “Complex L1+L2” are in fact 29.22%, 

34.30%, 31.49% and 18.59% respectively for Titles, QNTitles, Snip, QNSnip.  

Table  7.2:    Comparing Layer1 to “Simpler L1+L2” as well as “Complex L1+L2” 

Resources L1 ndcg 

Simpler L1+L2 

 ndcg             %∆ 

Complex  L1+L2 

 ndcg                

%∆ 

Real search history 

ndcg                 %∆ 

Titles 0.1465 0.1085 -25.94% 0.1893 29.22% 0.1598 9.08% 

QNTitles 0.1420 0.1265 -10.92% 0.1907 34.30% 0.1722 21.27% 

Snip 0.1407 0.1323 -5.97% 0.1850 31.49% 0.1715 21.89% 

QNSnip 0.1614 0.1326 -17.84% 0.1914 18.59% 0.1963 21.62% 
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7.4 Summary of initial simulation attempt 

Here we address the problem of simulating a user who is reformulating queries 

based on terms and keyphrases s/he encountered during the search process, in order to 

obtain data similar to search history data that studies leverage for improved 

effectiveness. In the current study, we assumed a real user provides one single query 

and nothing else prior to that event, and proposed ways to simulate and generate such 

data that can be considered to be similar to search history data given that they provide 

results similar to the ones we obtain when we leverage real users’ search history. 

7.5 Pilot Study: Towards more human-like simulations of query reformulations 

A lot of the simulated queries generated in the initial attempt, described above, 

are full sentences or very short paragraphs (i.e. titles or snippets). In an effort to 

generate query reformulations that look even more like the ones users/humans 

typically enter (i.e. less verbose), we conducted a pilot study in which we proposed 

another query reformulation model that uses topical language models to generate and 

filter a space of possible queries, updating language models based on results seen 

earlier in the session. 

7.5.1 Framework and Data 

The simulated users (i.e. query simulation modules) simulate queries of the 

types actual users might provide. The search engine receives queries from a simulated 

user. Then it returns ranked results to the simulated user, and in return the simulated 

user simulates interactions, a decision to abandon or not, and a query reformulation.  

We have selected a fixed set of 30 topics (a sample of the TREC 2014 Session 

track topics [31]) for which to generate sessions. We will use the TREC term run, 

which typically means the ranked results for every topic in a set, for the ranked results 
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for every query in every session on every topic in the set. The simulation side can run 

multiple user simulations at the same time to generate M sessions per topic, so a final 

run will consist of ranked results for each query in each of the M sessions on each of 

the 30 topics. 

The simulated users (i.e. query simulation modules) generate the following 

information: 

1) a first query for each session on each topic – with a fixed set of 30 topics, 

there will always be 30xM queries for the first round of retrieval. 

2) after receiving ranked lists of document IDs for queries: 

(a) titles, URLs, and snippets for the top-10 ranked documents for each 

(b) clicks and dwell times on ranked documents; 

(c) for each session, a decision to stop the session or continue; 

(d) for each continuing session, a query reformulation. 

7.5.2 Model 

To simulate these query reformulations, we use a two-phase process by which 

we first generate queries by sampling from a language model, then score them based 

on their discriminative power among topics. The language “model” we use is actually 

a series of binomial models with parameters P(w ∈ Q|T,I, S{1…i-1}), i.e. the probability 

of a term w being in a query Q given information about a topic T, the current point in 

the session i (a discrete number from i - 1 to imax), and the history of the session up to 

that point S{1…i-1}. 

A key component of our model is that it models query length conditional on 

topic. Some topics lend themselves more naturally to longer queries. Topic #2, for 

instance, is looking for information about Dulles International Airport in Washington, 
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DC. Dulles is an extremely important term for queries on this topic; it appears in 

almost every real user query. Airport is also an important term appearing in most user 

queries. Because most queries will contain those two terms by default, queries on this 

topic should include 3 – 4 terms to find the specific information requested in the topic 

description (nearby hotels, parking, shuttles to the airport, buses, etc.). For topic #10, 

on arguments for instituting a tax on “junk food”, most queries include the phrase 

“junk food tax” and therefore have minimum length of 3.  

Therefore our model starts by marginalizing over query lengths (we suppress 

the subscript on S for space reasons): 

𝑃(𝑤 ∈  𝑄|𝑇, 𝐼, 𝑆{1…𝑖−1}) = ∑ 𝑃(𝑤 ∈ 𝑄

𝑙𝑚𝑎𝑥

𝑙=1

|𝑇, 𝑖, 𝑆{1…𝑖−1}, 𝑙)𝑃(𝑙|𝑇) 

7.5.2.1 Topical Language Model 

The basis of our query generation model will be a binomial model for term 

presence in queries of length l for a topic, that is, P(w ∈ Q|T, l) independent of the 

session variables. The maximum-likelihood estimate of this probability is simply the 

number of times the term appears in topic-related queries in the training data divided 

by the total number of queries in that data. 

𝑃𝑀𝐿(𝑤 ∈ 𝑄|𝑇, 𝑙) =
𝑞𝑓𝑤,𝑙,𝑇

𝑞𝑐𝑙,𝑇
 

Here qfw,l,T is the query frequency, the number of queries of length l term w 

appears in for topic T, and qcl,T T is the total number of queries of length l recorded 

for topic T. 

These binomial distributions could only be used to generate queries that 

recombine terms in previously-seen queries. To make it possible to generate queries 
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using “new” terms (not seen in our source of user queries), we smooth the maximum-

likelihood model with additional text data. 

For the first query in the session (i = 1), we augment using terms in the topic 

description shown to users before they begin their search. The rationale for this is that 

empirically, many of the terms users use in their queries also appear in the topic 

description (this could be because they use the topic description for guidance, or 

because the topic descriptions tend to include many of the terms users would naturally 

use – the direction of causality is not clear). 

𝑃(𝑤 ∈ 𝑄|𝑇, 𝑙, 𝑖 = 1) =
𝑞𝑓𝑤,𝑙,𝑇 + 𝜇

𝑡𝑜𝑤,𝑇

|𝑇𝑑𝑒𝑠𝑐|

𝑞𝑐𝑙,𝑇 + 𝜇
 

where tow,T = 1 if term w appears in the topic description of T and tow,T = 0 

otherwise, and |Tdesc| is the number of unique terms in the topic description. 

For each subsequent query (i > 1), we include more information about the 

session history in the model. In particular, terms from titles and snippets of documents 

seen by the user in previous results: 

𝑃(𝑤 ∈ 𝑄|𝑇, 𝑙, 𝑖) =
𝑞𝑓𝑤,𝑙,𝑇 + 𝜇

𝑠𝑓𝑤,𝑇

|𝑆|

𝑞𝑐𝑙,𝑇 + 𝜇
 

Here sfw,T = 1 if term w appears in the topic description of T, or in the title of 

any document retrieved by the previous query (the one at i – 1), or in the snippet of 

any document retrieved by the previous query, and |S| is the number of unique terms in 

titles and snippets retrieved. 

Note that this still limits query generation to terms seen in real user queries 

(which will have high probability) and terms seen in topic descriptions and 

titles/snippets of retrieved documents (which will have much lower probability 

distributed uniformly across unique terms). 
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7.5.2.2 Sampling Queries 

First we sample a query length ` from a distribution P(L|T) derived from 

training data. Then we iterate over terms in the language model in order of decreasing 

probability, flipping a coin to determine whether to add the term or not, until we have 

a query of length l. 

Table 7.3:    Top 4 most-frequent terms appearing in queries for three topics with their 

binomial occurrence model probability P (w ∈ Q), their multinomial 

language model probability P (w|Q), and their frequency in queries 

sampled using the procedure in Section 7.5.2.2. 

  in training data sampled 

topic term P (w ∈ Q) P (w|Q) P (w ∈ Q’) 

2 dulles 0.95 0.29 1.00 

 airport 0.95 0.29 0.99 

 hotel 0.13 0.04 0.17 

 metro 0.12 0.04 0.19 

11 milestone 0.71 0.14 0.87 

 culture 0.66 0.12 0.85 

 development 0.61 0.11 0.87 

 infant 0.44 0.07 0.55 

48 evaluate 0.98 0.28 1.00 

 employee 0.93 0.27 0.95 

 to 0.30 0.09 0.10 

 how 0.19 0.06 0.00 

 

 

Note that this procedure gives greater probability for the highest-frequency 

terms in real queries to appear in sampled queries. Essentially we boost the 

probabilities of the most common terms above what they would be otherwise. This is 

meant to mitigate a problem with language models, that their probabilities tend to 
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underestimate the importance of common terms while overestimating the importance 

of rare terms. Table 7.3 shows examples of terms in our topics, their binomial model 

probabilities, their multinomial language model probabilities, and their frequency of 

occurrence when sampling using our approach. 

At each step i of the session, we generate N candidate queries. One query will 

be sampled from the set to be returned as the simulated reformulation. 

7.5.2.3 Scoring Sample Queries 

After generating N candidates, each one is scored according to the probability 

that each word in the query could generate the topic that the query is meant for. This is 

a way of scoring candidate queries by their ability to discriminate among the topics. 

𝑃(𝑇|𝑤) =
𝑞𝑡𝑓𝑤,𝑇 + 𝑠𝑡𝑓𝑤,𝑇 + 𝜇

1
|𝑇|

𝑞𝑓𝑤 + 𝑠𝑡𝑓𝑤 + 𝜇
 

where qtfw,T is the total number of times w appears in queries on topic T, qtf,w 

is the total number of times w appears in all queries on any topic, and |T| is the total 

number of unique topics. stf,w,T and stf,w are the “session frequencies” of the term (in 

topic and across topics, respectively), and include the counts of the term in the topic 

description and in titles and snippets of documents retrieved for previous queries. 

Each candidate query Qj is scored as: 

𝑃(𝑄𝑗) = ∏ 𝑃(𝑤|𝑇) ∝  ∏ 𝑃(𝑇|𝑤)𝑃(𝑤) 

where P(w) is a prior probability of term w, which for now we treat as uniform. 

The scores are then renormalized into a proper probability distribution, i.e. 

𝑃𝑛𝑜𝑟𝑚(𝑄𝑗|𝑇) =
𝑃(𝑄𝑗|𝑇)

∑ 𝑃(𝑄𝑘|𝑇)𝑁
𝑘=1

 

and one candidate is sampled from this distribution to be the simulated reformulation. 
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7.5.2.4 Session abandonment 

At this stage of the simulation development, we do not model “abandonment” 

in the sense of a user stopping a session due to success or frustration or any other 

reason real users might decide to stop. We simply sample a session length from a 

distribution t to existing user data. 

Let imax be the length of a session (that is, the number of rounds of querying in 

the session). We will define: 

𝑃(𝑖𝑚𝑎𝑥) =  
# 𝑜𝑓 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑚𝑎𝑥

# 𝑜𝑓 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠
 

To model “abandonment”, we simply sample a session length from this 

distribution, and the session will stop after that many rounds of querying. 

7.5.2.5 Summary of the model 

We have described a two-stage approach by which queries are first generated 

from a series of binomial distributions, then scored using a topical discriminator. The 

first part generates candidates that are practically guaranteed to contain the most 

important terms and phrases (as observed in real user queries), while the second part 

ensures that there will still be variety in other terms included in queries. 

We use TREC 2013 and 2014 Session track data to fit distributions P(imax), 

P(l|T) for each topic T in our set, P(w ∈  Q|l, T) for each query length for each topic 

T. The full steps are as follows: 

1. For each topic T: 

a. Sample imax and loop from i = 1 to imax: 

i. Update P(w ∈ Q|l, T, i) using text in the topic description and results 

for query i –  1 

ii. For j = 1 to N: 
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A. Sample a query length 

B. Sample a query Qj by sampling 1/0 from P(w ∈ Q|l,T,i) 

until l terms sampled 

C. Score query by P(T|Qj) 

iii. Sample one query Qsim from P(Q|T) to send to search engine 

iv. Receive retrieval results from the search engine 

b. Loop back to step (a) to simulate another session for the same topic 

 

We note that instead of using our two-stage process, we could sample queries 

directly from a traditional multinomial language model. However, the queries such a 

model generates tend to not look much like real queries: rare terms appear too 

frequently, terms that frequently appear together in real queries rarely occur together 

in sampled queries, etc. Some of these problems could be resolved using n-gram 

models and better smoothing, but our more heuristic approach seems to work well. 

7.5.3 Experiments and Results 

Finally we turn to evaluating simulated queries. There is an aspect of human 

judgment to it (i.e. do the queries look like queries a person would enter?) but it may 

not be the most important factor. We care most about whether the queries we generate 

are “good” for evaluating retrieval systems, and in particular, whether they are good 

for evaluating systems that use features derived from session history. 
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Figure 7.3:   Comparison of six retrieval systems across six rounds of a session using 

non-simulated queries 

 

Figure 7.4:   Comparison of six retrieval systems across six rounds of a session using 

simulated queries 

To that end, in this section we will evaluate simulated queries indirectly by 

evaluating retrieval systems that take them as input. All of our systems are based on 

Indri and an index of ClueWeb12 that has been filtered using spam scores from the 

Waterloo spam classifier [43]. Two of them (LM and MRF) are ad hoc systems that 

treat each query as an independent event and do not make any use of session history. 
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Four of them (CombCAT-*) fuse different sources of data derived from the session 

history that emanated from the query simulations’ results; these use the CombCAT 

fusion method that has been successful in the TREC Session track and which we 

introduced in Chapter 4 [6], [6b]. This method takes strings of text from various 

sources in the session history, uses those strings as a query, then fuses the results from 

all strings based on the frequency with which documents occur. 

One of the query simulation modules running was providing user queries 

sampled uniformly from those submitted for the Session track; since they were being 

sampled randomly they are not based on session history. We refer to this as non-sim. 

Another model was the one described in Section 7.4.2, which uses terms from 

previously-ranked documents to generate queries. We refer to this as sim. 

We evaluate all runs by precision@10 using TREC Session track relevance 

judgments. 

We look at the ability of simulated queries to rank systems by relative 

effectiveness. Our goal is to determine whether simulated queries can distinguish 

between systems of different effectiveness over the session more efficiently than non-

simulated queries. 

Table 7.4:    Overall precision@10 averaged across all sessions and all rounds in each 

session for each of our six systems. 

Rank Run non-sim P10 Run sim P10 

1 CombCAT-YST 0.1566 CombCAT-Q 0.2345 

2 CombCAT-Q 0.1452 CombCAT-YS 0.2003 

3 CombCAT-YS 0.1415 MRF 0.1830 

4 MRF 0.1082 CombCAT-YST 0.1721 

5 LM 0.1001 LM 0.1579 

6 CombCAT-IT 0.0863 CombCAT-IT 0.1001 
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Table 7.4 presents averages of the precision@10 numbers shown in Figure 7.3 

across all six rounds in the session. The rank correlation between the two is 0.6, 

mainly because the CombCAT-YST drops from rank 1 with non-simulated queries to 

rank 4 with simulated queries. 

We note the following: 

 the fact that simulated queries produce higher precision@10 is evident in 

these two plots; 

 the differences between systems are more pronounced with simulated 

queries than with non-simulated queries; 

 the same system is more-or-less consistently at the bottom in both cases: 

CombCAT-IT, which uses titles of previously-ranked documents as queries, 

then fuses results for the current round. 

 the baseline LM ad hoc system is consistently among the lower-performing 

systems in both cases; 

 the top system is not the same: for non-simulated queries, CombCAT-YST 

appears better, while for simulated queries CombCAT-Q performs better. 

Overall, our conclusion is that non-simulated queries and simulated queries 

provide similar overall session evaluation results. 

 It is difficult to say that one ranking is more “correct” than the other, but we 

note that the differences between systems are larger with simulated queries than with 

non-simulated queries. This suggests that even if non-simulated and simulated queries 

agree on the relative ordering of systems, using simulated queries magnifies the 

differences. 
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Table 7.5:    Examples of sequences of queries for six topics in our set. For each topic 

we show an actual user session of queries and a simulated session 

topic query type queries 

2 non-sim dulles airport → dulles airport location → dulles hotels 

2 sim airport dulles hotels stop → airport dulles park → airport cheap 

dulles stop → airport dulles hotels metro→ airport dulles metro near 

→ airport dulles hotels metro 

3 non-sim jobs from business phds → business phd 

3 sim benefits business cost master → benefits business phd → business 

mba phd→ business cost master phd→ benefits business phd worth 

→ business doctoral phd 

11 non-sim infants development culture→  infant development "cultural effects" 

→ infant OR child development intitle:culture → infant OR child 

development milestones→ infant OR child development milestones 

research 

11 sim culture developmental infant milestones → culture infant milestones 

→ infant milestones → culture developmental infant milestones → 

culture developmental milestones 

15 non-sim internet phone services → internet phone services review → guide 

internet phone services → voip providers 

15 sim providers reviews voip → services voip → cheapest internet phone 

services → providers reviews voip→ features voip → providers 

reviews voip 

48 non-sim employee evaluation → evaluate employees 

48 sim employee evaluation → employee evaluation performance → 

employee evaluation guide→ employee evaluation 

60 non-sim malaria impact on economy africa → malaria economy africa → 

malaria economy → malaria donations 

60 sim africa aids charity hiv malaria → charity hiv → aids charity → 

africa aids charity → charity hiv → africa aids charity  ght hiv 
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Finally, we return to the question of whether our simulated sessions “look like” 

real user sessions. Table 7.5 shows some examples of real user sessions and simulated 

sessions for a random selection of our 30 topics. 

Note that simulated queries often use very similar terms and phrases as actual 

user queries (though sometimes the ordering of terms in a phrase is lost in the 

simulated queries). Topic 11 shows an example of a user trying different possible 

features of a query language such as phrasing with quotes, boolean OR, and looking 

for a term in the title; none of this can be captured by the simulation as it currently 

exists. 

We do not draw any broad conclusions from this table; we only show it to give 

a sense of what our simulated queries and sessions look like compared to actual 

sessions. 

7.6 Summary 

In this chapter, we strived to generate data similar to search history data that 

retrieval models for search over session, such as the one we presented in Chapter 4, 

leverage for improved effectiveness. We addressed the problem by simulating a user 

who reformulates queries based on terms and keyphrases s/he encountered during the 

search process. We assumed that a real user provides one single query and nothing 

else prior to that event, and proposed ways to simulate and generate data that can be 

considered to be “similar” to search history data. We concluded that our generated 

query reformulations are similar to real search history data because they provide 

results as similarly effective as the ones we obtain when we leverage real users’ search 

history. We furthered our study by proposing to generate shorter and less verbose 
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simulated queries that look more like the kind of query reformulations real users are 

likely to provide to a search engine. This query reformulation model used topical 

language models to generate and filter a space of possible queries, updating language 

models based on results seen earlier in the session. 
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CONCLUSION AND FUTURE WORK 

This work is an effort with the ultimate goal of building more effective and 

robust retrieval systems for complex search tasks in situations where there are only 

small amounts of search history data. We started this thesis by conducting an 

experiment aimed at understanding users’ preferences when examining results 

returned for their broad queries which are typical in the context of complex search 

tasks. Our focus was to investigate their preferences with respect to the 

comprehensiveness of a document and the relevance grade of the document. We 

achieved this by using the so-called triplet framework via Amazon Mechanical Turk to 

empirically show that users tend to prefer in large proportions documents with high 

aspect coverage, regardless of the topical relevance grade. When asked to choose 

between two documents D1 and D2, the one that is most useful for learning more about 

the topic, given a prior document DT, users overwhelmingly preferred comprehensive 

documents (i.e. documents with highest subtopic coverage). In fact, they preferred 

comprehensive documents even when the prior document DT already covers more 

subtopics than each of D1 and D2. Likewise, even in cases where D1 and D2 are 

relevant to the same number of novel subtopics, the one that is relevant to the largest 

overall subtopics was most often preferred. 

Using those results as a guiding principle, we introduced a heuristic data fusion 

retrieval model that tends to prioritize documents that are likely to be relevant to the 

largest number of subtopics. We simply gauged this by assuming that a document is 

Chapter 8 
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potentially relevant to a larger number of subtopics than another document if it 

appears in more rankings than the other. In addition to that simple heuristic data fusion 

retrieval model – that we called CombCAT – we used two existing data fusion 

methods, CombSUM and CombMNZ. We empirically showed that using Bing’s 

related queries is a good choice, but using session-dependent data is even better. 

Furthermore we found that we achieved even better results by combining Bing related 

queries to session-dependent queries. 

In an effort to build retrieval models that are not only effective, but also robust, 

we conducted an experiment wherein our retrieval systems strive to mitigate situations 

where the improved systems fare worse than the baseline on certain queries. We 

proposed two re-ranking approaches based on exploiting document “popularity” 

across a topic, and show that these methods can help improve average overall 

effectiveness as well as robustness. Using the runs submitted to TREC Web track 

2013 and 2014 as baselines, we show that, after our re-ranking, overall effectiveness 

gets improved in an overwhelming number of cases, and robustness gets improved in a 

large number of cases but fewer than for overall effectiveness. Our future efforts on 

robustness-aware systems may focus on establishing a principled framework for better 

exploiting the “popularity” of documents as well as other features to improve 

robustness of systems. 

Given that our retrieval models thus far are heuristic, and considering that 

retrieval models explicitly derived on principles such as probability theory or linear 

algebra have the advantage of building on well-understood definitions and theorems, 

as well as providing a more general framework to build on; we proposed a 

Probabilistic Data Fusion framework (PDF) which derives on the well-known 
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Probability Ranking Principle (PRP). PDF, makes a small amendment to the PRP 

function by suggesting to rank documents in decreasing order of their probability of 

relevance and retrieval by systems, as opposed to relevance only. We proposed a way 

to estimate the probability that documents are retrieved by exploiting various sources 

of sample possible queries. We proceeded to show the impacts of different choices for 

several model components by implementing different instances of our model and 

empirically show that, when used with very rich sources of sample possible queries, 

they are at least on-par with the best reported systems for different search scenarios 

including ad-hoc search, diversity search and search over sessions. Specifically, we 

show them to be at least competitive with the best reported systems for TREC Session 

track 2013 and 2014, TREC Web track 2013 and 2014 as well as NTCIR IMine 2014 

dataset. Future work for this investigation will involve experimenting with different 

various values for each component. For instance, we will experiment with a query 

sampling probability that uses language model-style smoothed generation to allow the 

estimation for very short queries. We may try probabilities that account for training 

based on clicked documents, or that simply increase the voting rights of a possible 

query q’ by the number of documents that were clicked when the ranking for q’ was 

displayed to the user. We will also investigate the impact of using other discount 

functions for P(retr|q’, D), for instance a logarithmic discount (like nDCG) or a 

geometric discount (RBP). 

Finally, our last effort consisted in generating data similar to search history 

data by simulating query reformulations, in the absence of query reformulations. This 

is important because in some situations, there is little to no search history data 

available to be leveraged by the system. Our approach was to simulate a user who is 
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reformulating queries based on terms and keyphrases s/he encountered during the 

search process, in order to obtain data similar to search history data that studies 

leverage for improved effectiveness. We assumed that a real user provides one single 

query and nothing else prior to that event, and proposed ways to simulate and generate 

such data that can be considered to be similar to search history data given that they 

provide results similar to the ones we obtain when we leverage real users’ search 

history. Furthermore, in an effort to generate query reformulations that look even more 

like the ones users typically enter (i.e. less verbose), we conducted a pilot study in 

which we proposed another query reformulation model that uses topical language 

models to generate and filter a space of possible queries, updating language models 

based on results seen earlier in the session. 

From the experiments conducted in Chapters 4 and 6, we can conclude the 

following about the effectiveness of our retrieval framework: 

 Overall, our data fusion retrieval framework works well when we 

leverage session-dependent data: As can be seen in Table 4.2, for 2011 

TREC Sessions dataset, we get 23% ndcg@10 increase over the 

baseline when we leverage most significant key-phrases from 

previously retrieved top documents; for 2012 Sessions dataset, we get 

28% improvement when we leverage snippets; for 2013 and 2014 

respectively, we get peaks of  12% and 15% improvement when we 

leverage. However, as we explained in section 6.3.1.1, we note that 

there is underperformance in several settings when we exploit titles for 

the 2014 dataset, and that the difference between 2014 dataset and the 

other datasets can be explained by differences in the engine that 
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generated search results, differences in the user population, and 

differences in the amount of data. 

 One source of related queries that consistently works well across all 

datasets is external query logs: As can be seen in Table 6.1, for 2014 

and 2013 TREC Sessions datasets respectively, we get 36% and 40% 

ndcg@10 increase over the baseline when we leverage external 

snippets; on the same datasets, we obtain 27% and 8% improvements 

when we leverage Bing suggestions. As can be seen in Table 4.4, for 

2012 and 2011 TREC Sessions datasets respectively, we get 19% and 

4% ndcg@10 increase over the baseline when we leverage Bing 

suggestions. 

 Additionally, we found that combining different sources and exploiting 

them as related queries tends to bring upon better improvements than 

exploiting individual sources. For the 2011 and 2012 Sessions data 

respectively, we reach peaks of 36% and 42.5% ndcg@10 increase 

when we combine Bing and most significant keyphrases. 

 Finally, another conclusion about the effectiveness of our retrieval 

framework is that it is very helpful to leverage information from other 

users who searched the same topic. For example, on the 2014 and 2013 

datasets respectively, we get 78% and 66% improvements over the 

baseline systems which are much larger than the improvements of 36% 

and 40% respectively that we obtain without leveraging other users' 

search sessions. 

 



 

 

 

 

123 

1. AlchemyAPI. http://www.alchemyapi.com. 2014. 

2. Alzghool, M., & Inkpen, D. (2010). A novel class-based data fusion 

technique for information retrieval. Journal of Emerging Technologies in 

Web Intelligence, 2(3), 160-166. 

3. Amazon mechanical turk. http://www.mturk.com. 2012. 

4. Aslam, J. A., & Montague, M. (2001, September). Models for metasearch. 

In Proceedings of the 24th annual international ACM SIGIR conference on 

Research and development in information retrieval (pp. 276-284). ACM. 

5. Aslam, J., Callan, J., Manmatha, R., Sanderson, M., & Voorhees, E. 

(2002). Metasearch: Data fusion and distributed retrieval. In Workshop on 

Challenges in Information Retrieval and Language Modeling. 

6. Bah, A., & Carterette, B. (2014, December). Aggregating results from 

multiple related queries to improve web search over sessions. In Asia 

Information Retrieval Symposium (pp. 172-183). Springer International 

Publishing. 

7. Bah, A., & Carterette, B. (2015, December). Improving Ranking and 

Robustness of Search Systems by Exploiting the Popularity of Documents. 

In Asia Information Retrieval Symposium (pp. 174-187). Springer 

International Publishing. 

8. Bah, A., & Carterette, B. (2016, October). Fusing Search Results from 

Possible Alternative Queries. To Appear In 2015 IEEE/WIC/ACM 

International Conference on Web Intelligence and Intelligent Agent 

Technology. 

9. Bah, A., & Carterette, B. (2016, September). Generating Pseudo Search 

History Data in the Absence of Real Search History. In International 

Conference on Database and Expert Systems Applications (pp. 410-417). 

Springer International Publishing. 

REFERENCES 



 

 

 

 

124 

10. Bah, A., & Carterette, B. (2016, September). PDF: A Probabilistic Data 

Fusion Framework for Retrieval and Ranking. In Proceedings of the 2016 

ACM on International Conference on the Theory of Information Retrieval 

(pp. 31-39). ACM. 

11. Bah, A., Carterette, B., & Chandar, P. (2014). Udel@ NTCIR-11 IMine 

Track. In NTCIR. 

12. Bah, A., Chandar, P., & Carterette, B. (2015, August). Document 

Comprehensiveness and User Preferences in Novelty Search Tasks. In 

Proceedings of the 38th International ACM SIGIR Conference on Research 

and Development in Information Retrieval (pp. 735-738). ACM. 

13. Bah, A., Sabhnani, K., Zengin, M., & Carterette, B. (2014). University of 

delaware at TREC 2014. In TREC. 2014. 

14. Bartell, B. T., Cottrell, G. W., & Belew, R. K. (1994, August). Automatic 

combination of multiple ranked retrieval systems. In Proceedings of the 

17th annual international ACM SIGIR conference on Research and 

development in information retrieval (pp. 173-181). Springer-Verlag New 

York, Inc.. 

15. Baskaya, F. (2014). Simulating Search Sessions in Interactive Information 

Retrieval Evaluation. Tampere University Press. 

16. Baskaya, F., Keskustalo, H., & Järvelin, K. (2011, April). Simulating 

simple and fallible relevance feedback. In European Conference on 

Information Retrieval (pp. 593-604). Springer Berlin Heidelberg. 

17. Baskaya, F., Keskustalo, H., & Järvelin, K. (2012, August). Time drives 

interaction: simulating sessions in diverse searching environments. In 

Proceedings of the 35th international ACM SIGIR conference on Research 

and development in information retrieval (pp. 105-114). ACM. 

18. Belkin, N. J., Kantor, P., Fox, E. A., & Shaw, J. A. (1995). Combining the 

evidence of multiple query representations for information retrieval. 

Information Processing & Management, 31(3), 431-448. 

19. Bendersky, M., Metzler, D., & Croft, W. B. (2010, February). Learning 

concept importance using a weighted dependence model. In Proceedings of 

the third ACM international conference on Web search and data mining 

(pp. 31-40). ACM. 



 

 

 

 

125 

20. Berger, A., & Lafferty, J. (1999, August). Information retrieval as 

statistical translation. In Proceedings of the 22nd annual international ACM 

SIGIR conference on Research and development in information retrieval 

(pp. 222-229). ACM. 

21. Bhattacharjee, R., & Goel, A. (2007, January). Algorithms and incentives 

for robust ranking. In Proceedings of the eighteenth annual ACM-SIAM 

symposium on Discrete algorithms (pp. 425-433). Society for Industrial 

and Applied Mathematics. 

22. Bing. http://www.bing.com. 2014. 

23. Blair, D. C., & Maron, M. E. (1985). An evaluation of retrieval 

effectiveness for a full-text document-retrieval system. Communications of 

the ACM, 28(3), 289-299. 

24. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., 

& Hullender, G. (2005, August). Learning to rank using gradient descent. 

In Proceedings of the 22nd international conference on Machine learning 

(pp. 89-96). ACM. 

25. Büttcher, S., Clarke, C. L., & Lushman, B. (2006, August). Term proximity 

scoring for ad-hoc retrieval on very large text collections. In Proceedings 

of the 29th annual international ACM SIGIR conference on Research and 

development in information retrieval (pp. 621-622). ACM. 

26. Carbonell, J., & Goldstein, J. (1998, August). The use of MMR, diversity-

based reranking for reordering documents and producing summaries. In 

Proceedings of the 21st annual international ACM SIGIR conference on 

Research and development in information retrieval (pp. 335-336). ACM. 

27. Carterette, B., & Chandar, P. (2009, November). Probabilistic models of 

ranking novel documents for faceted topic retrieval. In Proceedings of the 

18th ACM conference on Information and knowledge management (pp. 

1287-1296). ACM. 

28. Carterette, B., Bah, A., & Zengin, M. (2015, September). Dynamic Test 

Collections for Retrieval Evaluation. In Proceedings of the 2015 

International Conference on The Theory of Information Retrieval (pp. 91-

100). ACM. 

29. Carterette, B., Bennett, P. N., Chickering, D. M., & Dumais, S. T. (2008, 

March). Here or there. In European Conference on Information Retrieval 

(pp. 16-27). Springer Berlin Heidelberg. 



 

 

 

 

126 

30. Carterette, B., Kanoulas, E., & Yilmaz, E. (2011, October). Simulating 

simple user behavior for system effectiveness evaluation. In Proceedings of 

the 20th ACM international conference on Information and knowledge 

management (pp. 611-620). ACM. 

31. Carterette, B., Kanoulas, E., Hall, M., & Clough, P. (2014). Overview of 

the TREC 2014 session track. In TREC. 

32. Carterette, B., Kanoulas, E., Hall, M., Bah, A., & Clough, P. (2013). 

Overview of the TREC 2013 session track. In TREC. 

33. Chandar, P., & Carterette, B. (2012). What qualities do users prefer in 

diversity rankings. In Proceedings of the 2nd Workshop on Diversity in 

Document Retrieval. 

34. Chandar, P., & Carterette, B. (2012, August). Using preference judgments 

for novel document retrieval. In Proceedings of the 35th international 

ACM SIGIR conference on Research and development in information 

retrieval (pp. 861-870). ACM. 

35. Chapelle, O., Ji, S., Liao, C., Velipasaoglu, E., Lai, L., & Wu, S. L. (2011). 

Intent-based diversification of web search results: metrics and algorithms. 

Information Retrieval, 14(6), 572-592. 

36. Chapelle, O., Metlzer, D., Zhang, Y., & Grinspan, P. (2009, November). 

Expected reciprocal rank for graded relevance. In Proceedings of the 18th 

ACM conference on Information and knowledge management (pp. 621-

630). ACM. 

37. Chen, S. F., & Goodman, J. (1996, June). An empirical study of smoothing 

techniques for language modeling. In Proceedings of the 34th annual 

meeting on Association for Computational Linguistics (pp. 310-318). 

Association for Computational Linguistics. 

38. Clarke, C. L., Craswell, N., & Soboroff, I.: Overview of the trec 2012 web 

track. In TREC (2012) 

39. Clarke, C. L., Kolla, M., Cormack, G. V., Vechtomova, O., Ashkan, A., 

Büttcher, S., & MacKinnon, I. (2008, July). Novelty and diversity in 

information retrieval evaluation. In Proceedings of the 31st annual 

international ACM SIGIR conference on Research and development in 

information retrieval (pp. 659-666). ACM. 



 

 

 

 

127 

40. Collins-Thompson, K. (2009, November). Reducing the risk of query 

expansion via robust constrained optimization. In Proceedings of the 18th 

ACM conference on Information and knowledge management (pp. 837-

846). ACM. 

41. Collins-Thompson, K., Bennett, P., Diaz, F., Clarke, C. L., & Voorhees, E. 

M.: Trec 2013 web track overview. In TREC 2013. 

42. Collins-Thompson, K., Bennett, P., Diaz, F., Clarke, C. L., & Voorhees, E. 

M.: Trec 2014 web track overview. In TREC 2014. 

43. Cormack, G. V., Smucker, M. D., & Clarke, C. L. (2011). Efficient and 

effective spam filtering and re-ranking for large web datasets. Information 

retrieval, 14(5), 441-465. 

44. Dang, V., & Croft, B. W. (2010, February). Query reformulation using 

anchor text. In Proceedings of the third ACM international conference on 

Web search and data mining (pp. 41-50). ACM. 

45. Diaz, F., & Metzler, D. (2006, August). Improving the estimation of 

relevance models using large external corpora. In Proceedings of the 29th 

annual international ACM SIGIR conference on Research and development 

in information retrieval (pp. 154-161). ACM. 

46. Dinçer, B. T., Ounis, I., & Macdonald, C. (2014, April). Tackling biased 

baselines in the risk-sensitive evaluation of retrieval systems. In European 

Conference on Information Retrieval (pp. 26-38). Springer International 

Publishing. 

47. Dou, Z., Hu, S., Luo, Y., Song, R., & Wen, J. R. (2011, October). Finding 

dimensions for queries. In Proceedings of the 20th ACM international 

conference on Information and knowledge management (pp. 1311-1320). 

ACM. 

48. Fox, E. A., & Shaw, J. A. (1994). Combination of multiple searches. NIST 

SPECIAL PUBLICATION SP, 243-243. 

49. Garofolo, J. S., Auzanne, C. G., & Voorhees, E. M. (2000). The TREC 

Spoken Document Retrieval Track: A Success Story. NIST SPECIAL 

PUBLICATION SP, 500(246), 107-130. 

50. Guan, D. (2013). Structured Query Formulation and Result Organization 

for Session Search (Doctoral dissertation, Georgetown University). 



 

 

 

 

128 

51. Guan, D., Zhang, S., & Yang, H. (2013, July). Utilizing query change for 

session search. In Proceedings of the 36th international ACM SIGIR 

conference on Research and development in information retrieval (pp. 453-

462). ACM. 

52. Hiemstra, D. (1998). A linguistically motivated probabilistic model of 

information retrieval. In Research and advanced technology for digital 

libraries (pp. 569-584). Springer Berlin Heidelberg. 

53. Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of 

IR techniques. ACM Transactions on Information Systems (TOIS), 20(4), 

422-446. 

54. Järvelin, K., Price, S. L., Delcambre, L. M., & Nielsen, M. L. (2008, 

March). Discounted cumulated gain based evaluation of multiple-query IR 

sessions. In European Conference on Information Retrieval (pp. 4-15). 

Springer Berlin Heidelberg. 

55. Jiang, J., He, D., & Han, S. (2012). On Duplicate Results in a Search 

Session. In TREC. 

56. Jiang, J., He, D., Han, S., Yue, Z., & Ni, C. (2012, October). Contextual 

evaluation of query reformulations in a search session by user simulation. 

In Proceedings of the 21st ACM international conference on Information 

and knowledge management (pp. 2635-2638). ACM. 

57. JTopia. https://github.com/srijiths/jtopia. 2015 

58. Kang, C., Wang, X., Chen, J., Liao, C., Chang, Y., Tseng, B., & Zheng, Z. 

(2011, February). Learning to re-rank web search results with multiple 

pairwise features. In Proceedings of the fourth ACM international 

conference on Web search and data mining (pp. 735-744). ACM. 

59. Kanoulas, E., Carterette, B., Clough, P. D., & Sanderson, M. (2011, July). 

Evaluating multi-query sessions. In Proceedings of the 34th international 

ACM SIGIR conference on Research and development in Information 

Retrieval (pp. 1053-1062). ACM. 

60. Kanoulas, E., Carterette, B., Clough, P. D., Sanderson, M.: Overview of 

the trec 2011 session track. In TREC'11 (2011) 

61. Kanoulas, E., Carterette, B., Clough, P. D., Sanderson, M.: Overview of 

the trec 2012 session track. In TREC (2012) 



 

 

 

 

129 

62. Keskustalo, H., Järvelin, K., Pirkola, A., Sharma, T., & Lykke, M. (2009, 

October). Test collection-based IR evaluation needs extension toward 

sessions–a case of extremely short queries. In Asia Information Retrieval 

Symposium (pp. 63-74). Springer Berlin Heidelberg. 

63. Kruschwitz, U. (2012). University of Essex at the TREC 2012 Session 

Track. In TREC. 

64. Lavrenko, V., & Croft, W. B. (2001, September). Relevance based 

language models. In Proceedings of the 24th annual international ACM 

SIGIR conference on Research and development in information retrieval 

(pp. 120-127). ACM. 

65. Lebanon, G., & Lafferty, J. (2002, July). Cranking: Combining rankings 

using conditional probability models on permutations. In ICML (Vol. 2, pp. 

363-370). 

66. Lee, J. H. (1995, July). Combining multiple evidence from different 

properties of weighting schemes. In Proceedings of the 18th annual 

international ACM SIGIR conference on Research and development in 

information retrieval (pp. 180-188). ACM. 

67. Lee, J. H. (1997, July). Analyses of multiple evidence combination. In 

ACM SIGIR Forum (Vol. 31, No. SI, pp. 267-276). ACM. 

68. Lillis, D., Toolan, F., Collier, R., & Dunnion, J. (2006, August). Probfuse: 

a probabilistic approach to data fusion. In Proceedings of the 29th annual 

international ACM SIGIR conference on Research and development in 

information retrieval (pp. 139-146). ACM. 

69. Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations 

and Trends in Information Retrieval, 3(3), 225-331. 

70. Liu, Y., Song, R., Zhang, M., Dou, Z., Yamamoto, T., Kato, M. P., ... & 

Zhou, K. (2014). Overview of the NTCIR-11 IMine Task. In NTCIR. 

71. Luhn, H. P. (1957). A statistical approach to mechanized encoding and 

searching of literary information. IBM Journal of research and 

development, 1(4), 309-317. 

72. Lv, Y., & Zhai, C. (2009, July). Positional language models for 

information retrieval. In Proceedings of the 32nd international ACM SIGIR 

conference on Research and development in information retrieval (pp. 299-

306). ACM. 



 

 

 

 

130 

73. Lv, Y., & Zhai, C. (2010, July). Positional relevance model for pseudo-

relevance feedback. In Proceedings of the 33rd international ACM SIGIR 

conference on Research and development in information retrieval (pp. 579-

586). ACM. 

74. Lv, Y., Zhai, C., & Chen, W. (2011, July). A boosting approach to 

improving pseudo-relevance feedback. In Proceedings of the 34th 

international ACM SIGIR conference on Research and development in 

Information Retrieval (pp. 165-174). ACM. 

75. Metzler, D., & Croft, W. B. (2005, August). A Markov random field model 

for term dependencies. In Proceedings of the 28th annual international 

ACM SIGIR conference on Research and development in information 

retrieval (pp. 472-479). ACM. 

76. Miller, D. R., Leek, T., & Schwartz, R. M. (1999, August). A hidden 

Markov model information retrieval system. In Proceedings of the 22nd 

annual international ACM SIGIR conference on Research and development 

in information retrieval (pp. 214-221). ACM. 

77. Monge,  A.,  and Elkan,  C.   (1996, August). The field-matching problem: 

algorithm and applications.  In Proceedings of the Second International 

Conference on Knowledge Discovery and Data Mining. (pp. 267-270). 

ACM. 

78. Montague, M., & Aslam, J. A. (2002, November). Condorcet fusion for 

improved retrieval. In Proceedings of the eleventh international conference 

on Information and knowledge management (pp. 538-548). ACM. 

79. Ng, K. B., & Kantor, P. B. (2000). Predicting the effectiveness of naive 

data fusion on the basis of system characteristics. Journal of the American 

Society for Information Science, 51(13), 1177-1189. 

80. Ponte, J. (2001). Is information retrieval anything more than smoothing. In 

Proceedings of the Workshop on Language Modeling and Information 

Retrieval (pp. 37-41). 

81. Ponte, J. M., & Croft, W. B. (1998, August). A language modeling 

approach to information retrieval. In Proceedings of the 21st annual 

international ACM SIGIR conference on Research and development in 

information retrieval (pp. 275-281). ACM. 



 

 

 

 

131 

82. Radlinski, F., & Dumais, S. (2006, August). Improving personalized web 

search using result diversification. In Proceedings of the 29th annual 

international ACM SIGIR conference on Research and development in 

information retrieval (pp. 691-692). ACM. 

83. Raman, K., Bennett, P. N., & Collins-Thompson, K. (2013, July). Toward 

whole-session relevance: exploring intrinsic diversity in web search. In 

Proceedings of the 36th international ACM SIGIR conference on Research 

and development in information retrieval (pp. 463-472). ACM. 

84. Robertson, S. E. (1977). The probability ranking principle in IR. Journal of 

documentation, 33(4), 294-304. 

85. Robertson, S. E., Walker, S., Beaulieu, M., & Willett, P. (1999). Okapi at 

TREC-7: automatic ad hoc, filtering, VLC and interactive track. Nist 

Special Publication SP, 253-264. 

86. Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., & 

Gatford, M.: Okapi at TREC-3. In TREC. 1994. 

87. Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for 

automatic indexing. Communications of the ACM, 18(11), 613-620. 

88. Santos, R. L., Macdonald, C., & Ounis, I. (2010, April). Exploiting query 

reformulations for web search result diversification. In Proceedings of the 

19th international conference on World wide web (pp. 881-890). ACM. 

89. Schutz, A. T. (2008). Keyphrase extraction from single documents in the 

open domain exploiting linguistic and statistical methods. Dissertation, 

National University of Ireland. 

90. Shaw, J. A., & Fox, E. A. (1995). Combination of multiple searches. NIST 

SPECIAL PUBLICATION SP, 105-105. 

91. Shokouhi, M., White, R. W., Bennett, P., & Radlinski, F. (2013, July). 

Fighting search engine amnesia: Reranking repeated results. In 

Proceedings of the 36th international ACM SIGIR conference on Research 

and development in information retrieval (pp. 273-282). ACM. 

92. Sparck Jones, K. (1972). A statistical interpretation of term specificity and 

its application in retrieval. Journal of documentation, 28(1), 11-21. 



 

 

 

 

132 

93. Sparck Jones, K., Walker, S., & Robertson, S. E. (2000). A probabilistic 

model of information retrieval: development and comparative experiments: 

Part 2. Information Processing & Management, 36(6), 809-840. 

94. Strohman, T., Metzler, D., Turtle, H., & Croft, W. B. (2005, May). Indri: A 

language model-based search engine for complex queries. In Proceedings 

of the International Conference on Intelligent Analysis (Vol. 2, No. 6, pp. 

2-6). 

95. Tao, T., & Zhai, C. (2007, July). An exploration of proximity measures in 

information retrieval. In Proceedings of the 30th annual international ACM 

SIGIR conference on Research and development in information retrieval 

(pp. 295-302). ACM. 

96. Vogt, C. C., & Cottrell, G. W. (1998, August). Predicting the performance 

of linearly combined IR systems. In Proceedings of the 21st annual 

international ACM SIGIR conference on Research and development in 

information retrieval (pp. 190-196). ACM. 

97. Vogt, C. C., Cottrell, G. W., Belew, R. K., & Bartell, B. T. (1996). Using 

Relevance to Train a Linear Mixture of Experts. In TREC (Vol. 5, No. 2, 

pp. 503-515). 

98. Walker, S., Robertson, S. E., Boughanem, M., Jones, G. J., & Jones, K. S. 

(1997, November). Okapi at TREC-6 Automatic ad hoc, VLC, routing, 

filtering and QSDR. In TREC (pp. 125-136). 

99. Wang, J., & Zhu, J. (2009, July). Portfolio theory of information retrieval. 

In Proceedings of the 32nd international ACM SIGIR conference on 

Research and development in information retrieval (pp. 115-122). ACM. 

100. Wang, L., Bennett, P. N., & Collins-Thompson, K. (2012, August). Robust 

ranking models via risk-sensitive optimization. In Proceedings of the 35th 

international ACM SIGIR conference on Research and development in 

information retrieval (pp. 761-770). ACM. 

101. Wu, S. (2009). Applying statistical principles to data fusion in information 

retrieval. Expert Systems with Applications, 36(2), 2997-3006. 

102. Wu, S., & McClean, S. (2006). Improving high accuracy retrieval by 

eliminating the uneven correlation effect in data fusion. Journal of the 

American Society for Information Science and Technology, 57(14), 1962-

1973. 



 

 

 

 

133 

103. Wu, S., & McClean, S. (2006). Performance prediction of data fusion for 

information retrieval. Information processing & management, 42(4), 899-

915. 

104. Wu, S., Bi, Y., & Zeng, X. (2011, January). The linear combination data 

fusion method in information retrieval. In Database and Expert Systems 

Applications (pp. 219-233). Springer Berlin Heidelberg. 

105. Yahoo ! Boss. https://developer.yahoo.com/search/boss/. 2015 

106. Yang, Y., & Lad, A. (2009, September). Modeling expected utility of 

multi-session information distillation. In Conference on the Theory of 

Information Retrieval (pp. 164-175). Springer Berlin Heidelberg. 

107. Yue, Z., Jiang, J., Han, S., & He, D. (2012, October). Where do the query 

terms come from?: an analysis of query reformulation in collaborative web 

search. In Proceedings of the 21st ACM international conference on 

Information and knowledge management (pp. 2595-2598). ACM. 

108. Zhai, C. X., Cohen, W. W., & Lafferty, J. (2003, July). Beyond 

independent relevance: methods and evaluation metrics for subtopic 

retrieval. In Proceedings of the 26th annual international ACM SIGIR 

conference on Research and development in informaion retrieval (pp. 10-

17). ACM. 

109. Zhai, C., & Lafferty, J. (2001, September). A study of smoothing methods 

for language models applied to ad hoc information retrieval. In 

Proceedings of the 24th annual international ACM SIGIR conference on 

Research and development in information retrieval (pp. 334-342). ACM. 

110. Zhai, C., & Lafferty, J. (2002, August). Two-stage language models for 

information retrieval. In Proceedings of the 25th annual international ACM 

SIGIR conference on Research and development in information retrieval 

(pp. 49-56). ACM. 

111. Zhang, S., Guan, D., & Yang, H. (2013, July). Query change as relevance 

feedback in session search. In Proceedings of the 36th international ACM 

SIGIR conference on Research and development in information retrieval 

(pp. 821-824). ACM. 

112. Zhu, J., Wang, J., Cox, I. J., & Taylor, M. J. (2009, July). Risky business: 

modeling and exploiting uncertainty in information retrieval. In 

Proceedings of the 32nd international ACM SIGIR conference on Research 

and development in information retrieval (pp. 99-106). ACM. 


