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Transcriptome sequencing (RNA-seq) analysis is a highly exploited technique 

for defining transcript abundance and differential expression analysis but is 

underutilized for nucleotide variant detection.  Given the ability of RNA-seq to reveal 

active regions of the genome, detection of RNA-seq SNPs can prove valuable in 

understanding the phenotypic diversity between populations. This dissertation 

showcases the applicability of RNA-seq data in currently unexplored but important 

areas of biological research; such as variant analysis and detection of selection 

signatures in commercial broilers. I have developed a novel computational workflow 

that takes advantage of multiple RNA-seq splice aware aligners to call SNPs using 

RNA-seq data only. Our workflow achieved >97% precision and >99% sensitivity 

when applied to RNA-seq data and the matching whole genome sequencing (WGS) 

data from the Fayoumi line. Furthermore, our results discovered SNPs resulting from 

post-translational events that would have been missed in WGS data. The results 

demonstrate SNP identification from RNA-seq data be reliable and a potential 

resource in determining selection signatures from variant data. The identification of 

regions that have undergone selection is important in understanding the variation 

patterns responsible for the underlying phenotypic changes between populations. 

Modern broilers are characterized from decades of extensive genetic selection for 

traits of economic importance. However, improvement in economic traits also resulted 

in negative complications, such as skeletal abnormalities, inability to adapt to heat 

stress and susceptibility to diseases. These dramatic phenotypic changes imply strong 
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positive selection for the causal loci or polymorphisms controlling these traits. To 

offer insight into the variation patterns responsible for the underlying phenotypic 

changes, we investigated regions of selection using the SNPs derived from our RNA-

seq workflow in commercial broilers. 

Given the vast amounts of data generated by next-generation sequencing 

(NGS) data for the today’s -omics era, the ability to efficiently manage the massive 

throughput from NGS analysis becomes a major challenge, especially when dealing 

with data that range on a terabyte to petabyte scale. Thus, innovative storage solutions 

that address this computational bottleneck are paramount. To this aim, we designed a 

hybrid (Relational & NoSQL) database framework, called TransAtlasDB, that 

addresses the crucial need for a smart and innovative storage solution for archival, 

management and retrieval of large-scale transcriptome analysis data output relevant to 

basic, medical and agriculture research. 
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INTRODUCTION 

1.1 Transcriptome Sequencing (RNA-seq) 

Over the last decade, the application of massively rapid parallel sequencing 

technologies is proved to be the best approach for transcriptome studies. Asides for the 

decreasing cost of sequencing and ease in generating high-throughput sequencing data 

[1], transcriptome sequencing (RNA-seq) is free from many of the limitations of 

previous methods, like quantitative PCR and microarrays [2]. RNA-seq is a powerful 

tool for quantitative research in understanding biological systems [3]. The application 

of RNA-seq is proven to be useful in validating known systems and uncovering novel 

networks in response to differing treatment or environmental conditions [4].  

Depending on the goal and biological questions, different strategies can be 

implemented for RNA-seq analysis; a typical data analysis includes quality control, 

read preprocessing, alignment to a reference or de novo assembly and downstream 

analysis such as transcripts annotation, differential gene expression (DGE), gene 

fusion analysis and alternative splicing [5,6]. So far, RNA-seq is a well-known 

technique for gene enrichment and differential expression analysis [7], but there has 

been little exploration in other areas such as variant detection, and allele specific 

expression [8]. This may be because of the complexity of the transcriptome or high 

false positive rates due to RNA splicing, RNA editing or sequencing errors [9]. 

However, recent studies have proven genomic variants can be accurately detected 

from RNA-seq providing adequate coverage and use of current state-of-the-art-

Chapter 1 
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assemblers [10–12]. Thus, detecting variants from RNA-seq will be beneficial in 

providing an efficient option to validate whole genome sequencing (WGS) or whole 

exome sequencing (WES) variants; in identifying potentially disease-associated 

variations that would not have otherwise been found in genomic data; and in offering 

an additional deliverable of the existing RNA-seq data [11,12].  

 

1.2 Big Data Storage 

A major challenge in transcriptome studies is that the scale of data, which 

includes DNA sequences, transcript quantification, and polymorphism analysis 

generates data on a terabyte to petabyte scale.  This is clearly a problem of dealing 

with “big data”. Storage options available involve online repositories either entailing a 

one-line summary of published projects or archives of actual files; with the former 

being almost useless, the latter requires sophisticated, expensive storage requirements. 

Furthermore, assessing the data in the near future will be tedious, leading to either 

reprocessing the data files or replicating the sample study, wasting time and effort. 

Hence, an innovative storage solution that addresses these limitations, such as hard 

disk storage requirements, efficiency and reproducibility are paramount.   

Databases are an excellent platform for warehousing such large amounts of 

interrelated data. The most commonly used database management systems are the 

relational database management systems (RDBMS), such as MySQL, Oracle, 

MariaDB and PostgreSQL. RDBMS provide a systematic storage of data by 

maintaining the relationship between the data members. They prevent data 

redundancy, enforce data consistency and concurrency, maintain data integrity, 

provide data security, and data sharing among numerous applications and users. Their 
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ease of application development and simplicity makes them the most popular database 

system. However, RDBMS performance significantly declines with increase in 

scalability and user requirements, thus a new class of database known as NoSQL [13] 

has arisen. NoSQL describes a broad class of technologies that provide an alternative 

data storage compared with RDBMS. They follow the non-relational database model 

and are designed to handle terabytes of unstructured data seamlessly [14]. NoSQL 

systems do not use the RDBMS principles; they are schema-less and do not store data 

in tables, instead they assign identification keys to data [15]. The types of NoSQL 

systems include key-value stores (e.g. HBase), document stores (e.g. MongoDB), 

MapReduce framework (Hadoop), and graph databases (e.g. Neo4J) [16].  

The scalability and flexibility of NoSQL technologies to store and manage 

massive volumes of data is beneficial for handling the large complex data from next 

generation sequencing analysis over the traditional relational databases. However, 

NoSQL systems have their drawbacks; they lack data security, they do not provide 

ACID (Atomicity, Consistency, Isolation and Durability) transactional properties data 

consistency and there is no standardized method of performing transactions across the 

different NoSQL databases.  All of these drawbacks make them difficult to adopt [16–

18].  

While NoSQL technologies are better suited to handle such Big Data, 

migrating data to the schema-less world of NoSQL will be difficult for developers to 

accomplish. Hence, software infrastructures have been created to coerce a structured 

query (SQL) environment to interact with a NoSQL database, like DQE – Distributed 

Query Engine and SOS – Save Our Systems [17,19]. These programming 

environments provide a means to combine the structure and uniformity of RDBMS 
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with the scalability and schema flexibility of a NoSQL database.  This strategy 

provides a hybrid architecture that contain both types of technologies (MySQL and 

NoSQL) allowing efficient performance in managing huge amounts of data without 

compromising on either database types limitations. 

 

1.3 Poultry Production – Chicken as a Model Organism 

The poultry industry is a major source of income and important contributor of 

meat and egg production for human consumption [20]. Since poultry is an essential 

resource to the economy, the poultry industry has been undergoing huge growth in 

order to meet the challenges imposed by the growing world population. Consequently 

chickens have become the most widespread livestock irrespective of culture and 

religion [21,22]. Chickens are also extensively used as a model organism for research 

in agriculture, phylogenetics, developmental biology, virology, human diseases and 

many more, thus, the benefits of research in chickens can help in improving chicken 

production, gain knowledge in biology and shed light on diseases and human medicine 

[23,24]. 

The main ancestor of today’s chickens is the red junglefowl (Gallus gallus), 

and minor introgression with other junglefowl species like the grey junglefowl (Gallus 

sonneratii) or the green junglefowl (Gallus varius), which resulted from many 

generations of controlled genetic and phenotypic changes [25–27]. In the process of 

domestication, natural and artificial selection has led to a wide spectrum of 

phenotypically diverse chicken breeds, and this is largely due to selection for 

commercial traits; such as growth, production and reproduction [22].   
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Decades of extensive genetic selection have improved the traits of economic 

importance in commercial birds, such as growth rate, feed efficiency and body 

composition.  For instance, comparison of the modern broilers with the heritage/legacy 

broilers (i.e. broilers that had not been subjected to selection since 1957) found that 

the average body weight of modern broilers at 42 days of age increased by over 400%, 

with concurrent 50% improvement in feed conversion ratio compared to the heritage 

broilers [28,29].  However, improvement in economic traits also resulted in negative 

complications, such as skeletal abnormalities, abdominal fatness , reduced 

reproductive performance, inability to adapt to environmental changes (i.e. heat stress) 

and increased susceptibility to diseases (e.g. Wooden Breast) in commercial broilers 

[30–32]. These dramatic phenotypic changes imply strong positive selection for the 

causal loci or polymorphisms controlling these traits, generating selection signatures. 

Investigating these signatures of selection can aid in identifying variation patterns 

responsible for the underlying phenotypic changes and to better understand the 

biological mechanism controlling these traits [33,34]. 

Publication of the draft chicken genome sequence was a significant 

achievement for biologists for genomics research [35], and ongoing improvements to 

the chicken reference genome, Gallus gallus, has greatly enhanced the insights in 

avian genomics [36]. Furthermore, the availability of the reference genome and 

transcriptome sequences provides the avenue for genome-wide studies in chickens, 

including:  comparative genomics, comparative transcriptomics, functional genomics 

and genome-wide association studies. Genetic factors controlling growth, 

development, reproduction and production have been extensively studied [37,38]. The 

studies show that the different bird breeds differ in many morphological features and 
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phenotypes of commercial relevance, they also differ in adaptations to environmental 

pressures. For example, the Fayoumi breed, indigenous to Egypt, is prized for its 

robustness in harsh environment and disease resistance compared to other breeds [39–

41]. Therefore, identifying the genetic variants between breeds that contribute to these 

differences can provide insights into understanding the biological mechanisms that 

defines phenotypic diversity [42]. With the availability of next generation sequencing 

data and computational tools, it is possible to screen for candidate genes affected by 

selection signatures in the whole genome.  

Using whole-genome resequencing data, several candidate sweeps have been 

confirmed using Z-transformed pooled heterozygosity (ZHp) scores [43]. The statistic 

estimates the reduced heterozygosity in chromosomal regions affected by selection 

and is used for detecting loci that are at or near fixation. Most of the candidate genes 

were identified in regions associated growth, appetite and metabolic regulation, like 

the thyroid stimulating growth hormone (TSHR) [42], Beta-carotene oxygenase 2 

(BCO2/BCDO2) [44,45], and many others. Investigating the selection footprints in the 

genome allows for better understanding of the evolutionary pressures during 

domestication. 

 

1.4 Thesis Aims 

This thesis has three main objectives. First, I aim to expand the current 

applications of transcriptomics, proffering evidences to prove the beneficial uses of 

RNA-seq in other unexplored areas of bioinformatic analysis such as in variant 

detection and annotation analysis. Secondly, I aim to contribute to the understanding 

of genetic diversity influenced by domestication and selection that characterize the 
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commercial broilers, Ross708 and Heritage lines using selection sweeps analysis. 

Thirdly, given the lack of suitable storage solutions for complex analysis output 

typically generated from RNA-seq analysis, I aim to provide a database storage system 

for smart storage for the complex analysis data generated from RNA-seq analysis. 

1.4.1 Thesis Overview 

This thesis is explained in the following chapters: 

Chapter 2 evaluates the identification of variants in RNA-seq data. Our variant 

analysis pipeline (VAP) utilizes stringent mapping and variant calling methodologies 

to ensure accurate detection of RNA-seq SNPs. VAP includes (1) a mapping 

procedure, which consists of the application of three splice aware tools for accurate 

mapping of RNA-seq reads to the reference genome, (2) the variant calling procedure 

using the Genome Analysis Toolkit (GATK) and, (3) the quality control and filtering 

procedures at each stage of the pipeline. Our computational pipeline assessment of 

sensitivity and specificity highlights the ability and importance of SNP discovery from 

RNA-seq data. 

Chapter 3 examines the signatures of selection in commercial broilers, both the 

modern and legacy broiler lines. Identifying the potential selection signatures can help 

identify causal polymorphisms controlling traits. Thus, the candidate genes identified 

may be of great interest for future research into the genetic architecture of traits 

relevant to modern broiler breeding.  

Chapter 4 presents the database storage solution, called TransAtlasDB. 

TransAtlasDB is a hybrid database system for smart storage of the complex analysis 

output generated from the current state-of-the-art open source tools for RNA-seq 

samples metadata, gene expression and quantification analysis and variant analysis. 
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VARIANT ANALYSIS PIPELINE FOR ACCURATE DETECTION OF 
GENOMIC VARIANTS FROM TRANSCRIPTOME SEQUENCING DATA 

2.1 Abstract 

The wealth of information deliverable from transcriptome sequencing (RNA-

seq) is significant, however current applications for variant detection still remain a 

challenge due to the complexity of the transcriptome.  Given the ability of RNA-seq to 

reveal active regions of the genome, detection of RNA-seq SNPs can prove valuable 

in understanding the phenotypic diversity between populations. Thus, we present a 

novel computational workflow named VAP (Variant Analysis Pipeline) that takes 

advantage of multiple RNA-seq splice aware aligners to call SNPs in non-human 

models using RNA-seq data only. We applied VAP to RNA-seq from a highly inbred 

chicken line and achieved >97% precision and >99% sensitivity when compared with 

the matching whole genome sequencing (WGS) data. Over 65% of WGS coding 

variants were identified from RNA-seq. Further, our results discovered SNPs resulting 

from post translational modifications, such as RNA editing, which may reveal 

potentially functional variation that would have otherwise been missed in genomic 

data. Even with the limitation in detecting variants in expressed regions only, our 

method proves to be a reliable alternative for SNP identification using RNA-seq data.  

 

Chapter 2 
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2.2 Introduction 

Detection of single nucleotide polymorphisms (SNPs) is an important step in 

understanding the relationship between genotype and phenotype. The insights 

achieved with next generation sequencing (NGS) technologies provide an unbiased 

view of the entire genome, exome or transcriptome at a reasonable cost [46]. Most 

methods for variant identification utilize whole-genome or whole-exome sequencing 

data, while variant identification using RNA-seq remains a challenge because of the 

complexity in the transcriptome and the high false positive rates [9]. However, having 

access to RNA sequences at a single nucleotide resolution provides the opportunity to 

investigate gene or transcript differences across species at a nucleotide level.  

RNA-seq is applicable to numerous research studies, such as the quantification 

of gene expression levels, detection of alternative splicing, allele-specific expression, 

gene fusions or RNA editing [4]. Workflows have been developed to address 

identifying SNPs from RNA-seq reads in human, including SNPiR and eSNV-detect. 

SNPiR [11] employs BWA aligner and variant calling using GATK 

UnifiedGenotyper, eSNV-detect [47] relies on combination of two aligners (BWA and 

TopHat2) followed by variant calling with SAMtools and Opposum + Platypus [48]. 

Opposum reconstructs RNA alignment files to make them suitable for haplotype-

based variant calling with Platypus [49]. These workflows require adequate sampling 

of RNA-seq reads and accurate mapping of the RNA-seq reads to the reference 

genome to avoid false positive SNP calls. In addition to the limitation of these 

workflows being specifically designed for human samples, they either rely on outdated 

variant calling procedures, or preprocessing RNA-seq data to make it suitable for 

variant calling, thus making it difficult to sufficiently compare their performance.  



 10 

Due to the aforementioned limitations, we designed a workflow, called VAP 

(Variant Analysis Pipeline), to reliably identify SNPs in RNA-seq in non-human 

models. VAP takes into consideration current state-of-the-art RNA-seq mapping, 

variant calling algorithms and the GATK best practices recommended by the Broad 

Institute [50], Our workflow consists of (i) multiple splice-aware reference-mapping 

algorithms that make use of the transcripts annotation data, (ii) variant calling 

following the Genome Analysis Toolkit (GATK) best practices, and (iii) stringent 

filtering procedures. We propose that calculating specificity will estimate the 

likelihood of detecting a true variant in RNA-seq and sensitivity will determine how 

likely RNA-seq is able to detect an expressed SNP if it is present in a transcribed gene 

[51]. Overall the results indicate that RNA-seq can be an accurate method of SNP 

detection using our VAP workflow. 

 

2.3 Materials and Method 

2.3.1 VAP Workflow 

Figure 2.1 shows the flowchart of the VAP workflow. Read quality was 

assessed using FastQC and preprocessed using Trimmomatic [52] and/or AfterQC 

[53] when required. Pre-processed RNA-seq reads were mapped to the reference 

genome and known transcripts employing three splice-aware assembly tools; TopHat2 

[54], HiSAT2 [55] and STAR [56]. All three programs are open-source and are highly 

recommended for reliable reference mapping of RNA-seq data [57]. SAMtools was 

used to convert the alignment results to BAM format [58]. The mapped reads undergo 

sorting, adding read groups, and marking of duplicates using Picard tools package 
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(https://broadinstitute.github.io/picard/). The SNP calling step uses the GATK toolkit 

for splitting “N” cigar reads (i.e. splice junction reads), base quality score recalibration 

and variant detection using the GATK HaplotypeCaller [59]. Lastly, the filtering steps 

entail assigning priority to SNPs found in all three mapping plus SNP calling steps, to 

minimize false positive variant calls. The priority SNPs were filtered using the GATK 

Variant Filtration tool and custom Perl scripts. SNPs were filtered using the set of read 

characteristics summarized in Table 2.1; low quality calls (QD < 5), or variants with 

strong strand bias (FS > 60), or low read depth (DP < 10) and SNP clusters (3 SNPs in 

35bp window) were excluded from further analysis. Custom filtering was described as 

follows: nucleotide positions with less than 5 alternative allele supporting reads and 

nucleotide positions with heterozygosity scores < 0.10 are eliminated to prevent 
ambiguous SNP calls. Heterozygosity score (𝐻𝑒𝑡) is calculated by 𝐻𝑒𝑡$ =

&&'
('

; where 𝑖 

is the nucleotide base pair, 𝑎𝑎$ is the alternate read depth at the location 𝑖 and 𝑡$  is the 

total number of reads at location 𝑖. After filtering, the variants were annotated using 

the ANNOVAR [60] and VEP [61] software.  
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Figure 2.1 Flow chart of the VAP workflow. FastQ files are QC using FastQC, 
mapped using three aligners. BAM files are pre-processed by Picard and 
GATK, then merged, annotated and filtered to achieve high-confident 
SNPs. 
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Table 2.1 Criteria used in the VAP filtering workflow. 

Criteria Threshold 
GATK - VariantFiltration tool  

ReadRankPosSum (RRPS) RRPS < -8 
Quality by depth (QD) QD < 5 
Read depth (DP) DP < 10 
Fisher’s exact test p-value (FS) FS > 60 
Mapping Quality (MQ) MQ < 40 
SnpCluster 3 SNPs in 35bp 
Mann-Whitney Rank-Sum 
(MQRankSum) MQRankSum < -12.5 

Alternative allele supporting read depth ALTreads < 5 
Alternative allele frequency 𝐻𝑒𝑡 = 	

𝑎𝑎
𝑡 ≤ 0.10 

2.3.2 DNA and RNA Sequencing data 

Raw RNA-seq and whole genome sequencing (WGS) data were obtained from 

previously published works. Both sequencing data sets from highly inbred Fayoumi 

chickens were sequenced on the Illumina HiSeq platform. For RNA-seq, pooled 

samples were collected from the brain and liver generating 117 million 75bp pair-end 

reads are available in the NCBI Sequence Read Archive with accession number 

SRP102082 [62]. For WGS, pooled DNA samples were constructed from individual 

DNA isolates from blood from 16 birds, contributing to 241 million 100bp pair-end 

reads [39]. The transcriptome and whole genome of these samples have been deeply 

sequenced to provide sufficient coverage for accurate identification of variants from 

RNA and DNA of the same line. Having matched RNA and DNA samples allows for 

suitable verification of RNA SNP calls, making our datasets good candidates for 

evaluating the accuracy of our VAP methodology. 
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2.3.3 600K Genotyping data 

Pooled samples from two different projects; Feed Efficiency [63,64] and 

Wooden Breast Disease [65], were genotyped with the ThermoFisher Axiom Chicken 

Genotyping Array [66]. The raw genotyping data (cel files) was analyzed with the 

Gallus gallus 5.0 genome (from Axiom server) using the Axiom Analysis Suite 

Software (version 3.0.1) following the software’s Best Practices Workflow using 

recommended settings for agricultural animals. The final results were exported, 

including a raw VCF of all the genotype calls and a txt file of all variants with >= 97% 

call rate. The txt file was utilized to filter low quality variants from the raw VCF. 

2.3.4 RNA-seq Mapping, Variant Calling and Filtering 

RNA-seq samples were mapped with the three RNA-seq mapping tools; 

TopHat2 (v 2.1.1), HiSAT2 (v 2.1.0) and STAR (v 2.5.2b) 2-pass method using 

default parameters to the NCBI Gallus gallus Build 5.0 reference genome and the 

mapping files were converted to BAM using SAMtools (v 1.4.1). The BAM files were 

processed, and variants were called using Picard tools (v 2.13.2) and GATK (v 3.8-0-

ge9d806836) through the VAP pipeline. We used ANNOVAR (v 2017Jul16) and VEP 

(v 91) to annotate variants on the basis of gene model from RefSeq, Ensembl and the 

UCSC Genome Browser. We retained SNPs found with all three mapping tools and 

those that fulfilled the filtering criteria in Table 2.1. SNPs found in WGS data or 

present in dbSNP (Build 150) are identified as “verified” variants, while those not 

found are tagged as “novel”. The precision of the VAP workflow was determined as 

the number of all known RNA-seq variants divided by the total number of known and 

novel RNA-seq variants (Equation 2.1). 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑9:;<

𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑9:;< + 𝑛𝑜𝑣𝑒𝑙9:;<
 

Equation 2.1 Precision of VAP workflow equation. 

2.3.5 WGS Mapping, Variant Calling and Filtering 

We mapped the WGS data with BWA-mem (v 0.7.16a-r1181) [67] using 

default parameters to the NCBI Gallus gallus Build 5.0 reference genome. Variant 

calling was performed using Picard and GATK HaplotypeCaller, following the 

recommendations proposed by Van der Auwera et al [68] and Yiyuan Yan et al [69]. 

Similar filtering parameters for RNA-seq as previously described were applied using 

the GATK Variant Filtration tool and custom scripts (Table 2.1). To allow a fair 

comparison between RNA-seq and WGS variants, we estimated specificity with the 

fraction of coding exonic variants identified from WGS. 

2.3.6 To Calculate Sensitivity and Specificity of Verified RNA-seq SNPs 

To determine the accuracy of detecting a true variant from RNA-seq using our 

VAP workflow, we calculated the specificity and sensitivity of the verified RNA-seq 

SNPs. Because we are using transcriptome data, we should only be theoretically able 

to detect SNPs at sites expressed in our data. Sensitivity analysis will evaluate the 

accuracy of our pipeline to correctly detect known SNPs using RNA-seq, and 

specificity analysis will assess how likely a SNP is detected by RNA-seq compared to 

WGS. To do this, we further characterized our verified RNA-seq SNPs as “true-

verified” and “non-verified” SNPs. A true-verified SNP (TS) is a SNP with the same 

corresponding dbSNP and/or WGS data, and a non-verified SNP (NS) is where the 

genotype does not match the dbSNP/WGS data. Also, SNPs not detected in RNA-seq 

but found in WGS and validated using dbSNP are called “DNA-verified” SNPs (DS). 
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Sensitivity is calculated as the number of TS divided by the number of TS plus the 

number of PS (Equation 2.2). While specificity is estimated as the number of TS 

divided by the number of TS plus the number of DS (Equation 2.3) [11,51].   

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑆

𝑇𝑆 + 𝑁𝑆
 

Equation 2.2 Sensitivity equation. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑆

𝑇𝑆 + 𝐷𝑆
 

Equation 2.3 Specificity equation. 

2.3.7 Gene Expression Analysis 

Variants in expressed regions were identified by gene quantification analysis 

using StringTie v1.3.3 [70] on the TopHat2, HISAT2 and STAR BAM files. The 

average FPKM (fragments per kilobase of transcript per million fragments mapped) 

was calculated for specificity analysis. 

 

2.4 Results 

2.4.1 The Multi-Aligner Concept 

VAP uses a multi-aligner concept to call SNPs confidently. The application of 

multiple aligners reduces false discovery rates significantly, as shown in the eSNV-

detect pipeline [47,71]. However, we do not assign a confidence hierarchy on 

candidate SNP calls, rather SNP detected from all three aligners are weighted equally, 

thus all consensus SNPs are obtained and filtered based on the filtering criteria listed 
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above. High percentages of similar SNPs were observed between all three tools, which 

shows that using a splice-aware read mapper is appropriate for reference mapping 

using RNA-seq, unlike with BWA. Table 2.2 provides the summary of mapping and 

variant calling statistics from the multiple aligners. 

Table 2.2 Summary from the multiple aligners; read mapping statistics and variant 
calls. 

Tools % Reads 
mapped 

% Reference 
covered Variants SNPs % similar 

SNPs 
TopHat 87.70 23.07 578655 535505 96.12 
HiSAT 90.53 23.44 636948 583547 88.21 
STAR 87.81 23.70 798696 708391 72.66 

2.4.2 SNPs detected in RNA-seq data. 

 

Figure 2.2 Comparison of RNA-seq SNPs identified in the different mapping tools. 
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Our method identified 514,729 SNPs from all 3 aligners before filtering, which 

assures reduction of false positives calls (Figure 2.2). After filtering, 282,798 (54.9%) 

high confidence SNPs remain, of which 97.2% (274,777 SNPs) were supported by 

evidence from WGS or dbSNP v.150 (Figure 2.3). The verified sites exhibited a 

transition-to-transversion (ts/tv) ratio of 2.84 and estimated ts/tv ratio of ~5 for exonic 

regions and thus a good indicator of genomic conservation in transcribed regions. For 

the remaining (novel) 8,021 SNPs, we observed slightly lower ts/tv ratio (2.81) than 

for the verified sites. The variant sites showed a clear enrichment of transitions, 

inclusive of A>G and T>C mutations (73.9%), indicative of mRNA editing and the 

dominant A-to-I RNA editing [72] (Figure 2.4).  

 

 

Figure 2.3 Comparison of the number of RNA-seq SNPs and the percentage found in 
either dbSNP or WGS. 
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Figure 2.4 The mutational profile of RNA-seq variants. 

2.4.3 SNPs Allele Frequencies 

The 282,798 SNPs called, were grouped based on their variant allele 

frequencies (VAF).  VAFs were calculated by dividing the number of reads supporting 

the variant allele by the total number of reads obtained. SNPs were grouped as 

homozygous alternate with  VAF ³ 0.99, and heterozygous with VAF < 0.99. We 

found 264,790 (93.6%) and 18,008 (6.4%) SNPs were classified as homozygous 

alternate and heterozygous, respectively. Not surprisingly, most of the predicted SNPs 

were homozygous to the non-reference allele, suggesting genetic diversity of the 
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Fayoumi breed compared to the reference genome Gallus gallus (Red Jungle Fowl) is 

influenced by polymorphisms [32,73]. This will aid in identifying the variations 

enriched by selection. 

2.4.4 Precision and Sensitivity of RNA-seq SNPs 

A high proportion of SNPs detected in RNA-seq data are true variants. The 

sensitivity of SNP calls are similar for both heterozygous and homozygous sites 

(Figure 2.5). With the high number of calls verified via dbSNP, the precision is much 

higher for homozygous variants compared to heterozygous variants, indicating that a 

high proportion of expected variants can be detected using RNA-seq with adequate 

coverage. The decreased precision in heterozygous SNPs may suggest expression of 

the non-reference allele, and this provides the opportunity to study the effects of 

genetic variation on the different transcriptional events, such as RNA editing, alternate 

splicing and allelic specific expression, which cannot be explained using DNA 

sequencing data [8]. 
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Figure 2.5 Comparison of SNPs identified as homozygous and heterozygous in RNA-
seq. 

2.4.5 Functional classification of variants identified from RNA-seq and WGS 

Thirteen percent of the RNA-seq SNPs were predicted to be within protein-

coding regions while >1% of the WGS SNPs were in coding regions when annotated 

against both the NCBI and ENSEMBL gene database for chicken; the remaining SNPs 

were found in non-coding or regulatory regions (Table 2.3). Due to difficulty in 

annotating and determining the impact of polymorphisms on non-coding or regulatory 

regions, only polymorphisms found on coding regions were further evaluated.  
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Table 2.3 SNPs belonging to different annotation categories. 

 Annotation categories Number (%) Mean 
VAF (± SD) 

No. 
homozygous 

(VAF ³ 0.99) a 
R

N
A

 

Intergenic 162240 (57) 0.99 (0.06) 152732 (94%) 
Up/downstream 11793 (4) 0.99 (0.07) 10817 (92%) 
Intronic 58028 (20) 0.99 (0.05) 55744 (96%) 
Exonic 36702 (13) 0.99 (0.08) 33051 (90%) 
 Non-synonymous 8599 (3) 0.98 (0.11) 7664 (89%) 
 Synonymous 28094 (10) 0.99 (0.07) 25353 (90%) 
 Stop-gain/loss 39 (>1) 0.96 (0.16) 34 (87%) 
Splicing 8 (>1) 1 (0) 8 (100%) 
UTR3/UTR5 13421 (5) 0.98 (0.09) 11895 (88%) 
ncRNA 106 (>1) 0.97 (0.13) 100 (94%) 

W
G

S 

Intergenic 2865498 (82) 0.99 (0.07) 2659382 (92%) 
Up/downstream 30741 (>1) 0.99 (0.08) 28558 (93%) 
Intronic 565323 (16) 0.99 (0.07) 522577 (92%) 
Exonic 34294 (1) 0.98 (0.09) 31875 (92%) 
 Non-synonymous 8946 (>1) 0.97 (0.11) 8283 (86%) 
 Synonymous 25274 (>1) 0.99 (0.08) 23526 (93%) 
 Stop-gain/loss 74 (>1) 0.98 (0.11) 66 (69%) 
Splicing 17 (>1) 0.97 (0.13) 17 (100%) 
UTR3/UTR5 12476 (>1) 0.99 (0.07) 11515 (92%) 
ncRNA 302 (>1) 0.99 (0.07) 277 (91%) 

O
ve

rl
ap

 R
N

A
 &

 W
G

S 
b  Intergenic 125218 (58) 1 (0.04) 112462 (89%) 

Up/downstream 9787 (4) 0.99 (0.04) 6908 (87%) 
Intronic 47894 (22) 1 (0.04) 43636 (91%) 
Exonic 22551 (10) 0.99 (0.05) 19533 (87%) 
 Non-synonymous 5165 (2) 0.99 (0.06) 4486 (87%) 
 Synonymous 17363 (8) 0.99 (0.05) 15030 (86%) 
 Stop-gain/loss 23 (>1) 1 (0.01) 17 (39%) 
Splicing 5 (>1) 1 (0) 5 (100%) 
UTR3/UTR5 9943 (5) 0.99 (0.04) 8475 (85%) 
ncRNA 73 (>1) 0.99 (0.03) 63 (86%) 

a The percentages are in relation to the number of SNPs within the annotation 
category. 
b The percentages are in relation to the number of SNPs within the annotation category 
in RNA. 
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2.4.6 Specificity of RNA-seq SNPs 

To calculate specificity of our VAP methodology, we focused on variants in 

coding regions to allow for fair comparison between RNA-seq and WGS data. 

Approximately 66% of the coding variants identified by WGS were discovered using 

RNA-seq alone (Figure 2.6). Given that RNA-seq required less sequencing effort and 

computational requirements (e.g. 234 million for RNA-seq compared to the 482 

million for WGS sequencing reads used in our case study). Using RNA-seq data is 

advantageous because it enriches for expressed genic regions compared to WGS and 

therefore will increase the power to detect functionally important SNPs impacting 

protein sequence. 

 

Figure 2.6 Overlap of SNPs found in coding regions from RNA-seq and WGS. 66% of 
the coding variants identified in WGS data were found in RNA-seq. 
However, the remaining WGS coding variants were not detected as a 
result of either: lack of expression/transcription (“no transcription”), the 
position was homozygous in RNA (“no variation”), “found but filtered” 
signifying that the position was detected but removed by one of our 
filtering steps, or “filtered” which indicates the position was 
heterozygous but filtered because it didn’t meet the default parameters 
for variant detection. 
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We then compared the RNA-seq SNPs in expressed genes (having FPKM > 

0.1), and the specificity increased from 66% to over 82% (Figure 2.7). This shows that 

a large fraction of genes are expressed at very low levels (Figure 2.8). Overall the 

results prove our methodology can achieve high specificity for variant calling in 

expressed regions of the genome. 

 

 

Figure 2.7 Specificity and the number of RNA-seq SNPs detected in relation to the 
genes expressed (FPKM values). 
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Figure 2.8 Distribution of expression levels for genes with RNA-seq SNPs. 

2.4.7 Comparison of RNA-seq SNPs and 600k Genotyping Panel SNPs 

Given the high accuracy of genotyping arrays for SNP discovery, we compared 

our initially verified RNA-seq SNPs with the 600k chicken genotyping panel. A low 

percentage (10%) of our RNA-seq SNPs overlap with the 600k SNPs (Figure 2.9), 

which is largely due to the limitation in the number of variants the genotyping panel is 

able to capture across different samples. However, 99.9% of the genotyping SNPs 

were found in dbSNP, proving dbSNP is an adequate method for in silico verification 

of our RNA-seq SNPs. 
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Figure 2.9 Comparison of SNP calls between 600k genotyping panel, RNA-seq SNPs, 
WGS SNPs and dbSNP v150, using (a) all autosomal SNPs and (b) 
autosomal SNPs found in exons. 

2.4.8 RNA–DNA differences (RDD) sites 

As mentioned before, our RNA-seq SNPs were notably contributed from 

transitions which may be attributed to mRNA editing. Further classifications of the 

RNA-seq SNPs detected in exons reveal 34% of the exonic SNPs verified by dbSNP 

were not identified in our WGS data. The majority of the RNA SNPs were not found 

in WGS because of the mapping and filtering parameters as shown in Table 2.4. 

Interestingly, 28% of these SNPs were not found because the alternate nucleotide was 

not present in the DNA sequence indicating RNA–DNA differences (RDD). 

Consequently, these RDD sites may result from post-transcriptional modification of 

the RNA sequence, such as RNA editing or alternative splicing. 
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Table 2.4 Explanation for the 14,147 RNA SNPs not found in WGS data. 

Reason for absence Number of SNPs 
Position was heterozygous in WGS but filtered because 
it didn’t meet the default parameters for variant 
detection. 

1225 

No reads were mapped to region/position. 1693 
Position was homozygous in WGS 3471 
Position was heterozygous in WGS but removed by our 
custom filtering criteria 7758 

 

RNA editing is the most prevalent form of post-transcriptional maturation 

processes that contributes to transcriptome diversity. It involves the modification of 

specific nucleotides in the RNA sequence without altering its template DNA [72,74]. 

From our dataset, we identified the three non-synonymous RDD mutations on 

CYFIP2, GRIA2 and COG3 previously validated by Frésand et al. in chicken 

embryos[72] (Table 2.5). This demonstrates the VAP methodology ability to detect 

conserved RNA editing phenomena and that it can be used in further discovery of 

novel post-transcriptional editing events. 

Table 2.5 Potentially functional RDD candidates found in Fayoumi. 

Chromosome Position Nucleotide Aminoacid 
change 

Gene Short 
Name VAF 

DNA RDD 
chr 1 167798513 A G I/V COG3 0.524 
chr 4 21653669 A G R/G GRIA2 0.703 
chr 13 11398088 T C K/E CYFIP2 0.375 
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2.5 Discussion 

RNA-seq is instrumental in understanding the complexity of the transcriptome. 

Several methodologies have provided approaches to understanding the varied aspects 

occurring in the transcriptome, but little has been done in its application to identifying 

variants in functional regions of the genome. To this aim, we designed the VAP 

workflow, a multi-aligner strategy using a combination of splice-aware RNA-seq 

reference mapping tools, variant identification using GATK, and subsequent filtering 

that allows accurate identification of genomic variants from transcriptome sequencing. 

Our results show very high precision, sensitivity and specificity, though limited to 

SNPs occurring in transcribed regions.  

Considering the mapping phase of RNA-seq reads is a crucial step in variant 

calling, we devised a reference mapping strategy using three RNA-seq splice-aware 

aligners to reduce the prevalence of false positives. The use of the splice-aware aligner 

allows for accurate assembly of reads because it makes use of both the genome and 

transcriptome information simultaneously for read mapping. 

The ability to call variants from RNA-seq has numerous applications. It 

enables validation of variants detected by genome sequencing. It also uncovers 

potential post-transcriptional modifications for gene regulation (Table 2.5) and allows 

for detection of previously unidentified variants that may be functionally important but 

difficult to capture using DNA sequencing or exome sequencing at lower cost. For 

instance, 87.5% of RNA-seq variants were not found in WGS though well 

characterized in dbSNP (Figure 2.6). Therefore, RNA variants can be used in 

identifying genetic markers for genetic mapping of traits of interest, thus offering a 

better understanding of the relationship between genotype and phenotype. 
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Our VAP methodology shows high precision in calling SNPs from RNA-seq 

data. It is however limited by the RNA-seq experiments; RNA SNPs are detected only 

on the transcripts expressed. Regardless of comprehensive coverage, variant detection 

in some portions of the genome are not guaranteed by RNA-seq because of the 

potential lack of expression. Also, allele-specific gene expression or tissue-specific 

gene expression might hamper the discovery of genomic variants given that the allele 

carrying the variant might not be expressed or the tissues collected might not express 

the genes of interest. In addition, as a result of monoallelic expression (only one 

parental allele is expressed), RNA SNPs might be miscalled as homozygous rather 

than a heterozygous variant, attributing to the large number of homozygous SNPs 

identified in our case study (Figure 2.5).  

SNP genotyping offers a highly accurate and alternative method of SNP 

discovery, and thus offers an additional in silico method of validation of our RNA-seq 

SNPs. However, a low overlap with the 600K chicken genotyping panel was observed 

(Figure 2.9). This low overlap is most likely due to the limitations in genotyping 

panels currently available for any given organism. The genotyping panels are limited 

by the number of variants they are able to capture across different genetic 

backgrounds. [66]. Not surprisingly, the majority of the 600K genotyping variants 

were also identified in dbSNP, proving that dbSNP an excellent choice for in silico 

validation. 

Nevertheless, VAP allows the detection of variants even for lowly expressed 

genes. To obtain higher confidence in variant calls, pooling multiple data sets (i.e. 

RNA-seq from different tissues) can increase the coverage thereby facilitate variant 

discovery in regions of interest that would have otherwise been missed. Our study 
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demonstrates that variants calling from RNA-seq experiments can tremendously 

benefit from an increased number of reads increasing the coverage of genomic regions 

especially for whole genome analysis; nevertheless even our small sample size 

allowed for reliable calling of variants and enriching for variants in exonic regions.  

Despite the limitations of calling genomic variants from RNA-seq data, our 

work shows high sensitivity and specificity in SNP calls from RNA-seq data. SNP 

calling from RNA-seq will not replace WGS or exome-sequencing (WES) approaches 

but rather offers a suitable alternative to either approaches and might complement or 

be used to validate SNPs detected from either WGS or WES. Overall, we present a 

valuable methodology that provides an avenue to analyze genomic SNPs from RNA-

seq data alone.  
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SIGNATURES OF SELECTION IN MODERN BROILERS USING 
TRANSCRIPTOME SEQUECING (RNA-SEQ) DATA 

3.1 Introduction 

Natural and artificial selection during chicken domestication, has led to 

phenotypically distinct livestock breeds. A major contributor for the extreme chicken 

phenotypes has been artificial selection for specific traits of commercial relevance 

including growth rate, egg production, body size and feed efficiency. In the United 

States, commercial chickens have been extensively selected into two groups: layers for 

egg production and broilers for meat production. Modern broilers exhibit enhanced 

growth, especially in the skeletal muscle compared with legacy broilers (i.e. broilers 

that had not been subjected to selection since the 1950s) [28,29,37]. However, the 

selection for commercial traits has led to some unanticipated consequences such as 

reduced resistance to infectious disease, increased skeletal deformities and increased 

mortality [75,76]. These undesirable effects may result from negative pleiotropic 

effects of the alleles under selection [77], alteration of causal polymorphisms due to 

selection for performance to these traits [78,79], or tight linkage of deleterious alleles 

to alleles under selection. Identifying these selection signatures can help researchers 

better understand the biological mechanisms controlling these traits.  

Various statistical methods have been applied to detect selection signatures at 

the genomic level using high-throughput sequencing data or high density SNP chips in 

domestic animals. Methods include Z-transformed pooled heterozygosity scores (ZHp) 

Chapter 3 
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[42,80], iHS (integrated haploytype homozygosity) [81], Wright fixation index (FST) , 

extended haplotype homozygosity (EHH), CLR (composite likelihood ratio) [82], and 

others all designed to assess evidence of selection from individual candidate variants 

[83]. Given the benefits of using transcriptome sequencing (RNA-seq) in both 

quantitative and exploratory studies as described in previous chapters, RNA-seq 

provides the means of identifying SNPs in transcribed regions of the genome. We 

applied the ZHp statistic on the individual variants detected from RNA-seq in both the 

modern broilers (Ross 708 line) and legacy/heritage broilers (Illinois line). This 

statistic identifies chromosomal regions under selection and detecting alleles that have 

swept to fixation or near-fixation [42,45]. Since modern broilers breeding practices 

have a more recent selection history with significant success in phenotypic selection of 

polygenic traits, such as feed efficiency and meat yield. Comparative studies of legacy 

and modern broiler chickens provide an opportunity to identify regions of the genome 

that have undergone selection pressure by this human-directed evolution. 

 

3.2 Materials and Method 

3.2.1 Data Collection 

To obtain the transcriptome, we collected 23 birds each comprising of 3 to 4 

different tissues for the two commercial breeds (Ross and Illinois line), totaling 184 

libraries and 164 libraries in the Ross and Illinois lines respectively (Table 3.1). The 

56 pooled birds were selected based on their overall sequence read distribution and 

read quality using FastQC. 
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Table 3.1 Summary of sequencing data from each tissue of the respective chicken 
breeds; Ross and Illinois. 

Bird 
# 

Ross Iliinois 

# 
Tissues Tissue(s)a # 

Seqsb 

% 
Seq. 
Cov. 

# 
Tissues Tissue(s)a # 

Seqsb 

% 
Seq. 
Cov. 

1 4 K L P S 96.2 22.47 4 B L P S 90.8 21.22 
2 4 K L P S 98.5 23.02 4 B L P S 95.5 22.31 
3 4 B L P S 104.3 24.38 4 B L P S 64.4 15.06 
4 4 B L P S 112.8 26.36 4 B K P S 89.6 20.94 
5 4 K L P S 108.6 25.39 4 B K L S 97.1 22.69 
6 4 K L P S 84.9 19.84 4 B K L S 95.2 22.26 
7 4 K L P S 104.7 24.46 3 B K S 76.7 17.93 
8 4 K L P S 83.9 19.61 3 B P S 64.8 15.15 
9 4 K L P S 99.5 23.25 3 B K S 46.0 10.75 
10 4 K L P S 102.8 24.03 3 B K S 54.5 12.73 
11 4 B K L S 83.5 19.50 3 B K S 47.1 11.01 
12 4 K L P S 101.9 23.82 3 B K S 54.3 12.68 
13 4 A C K P 83.6 19.53 3 B K S 75.7 17.69 
14 4 A B C K 67.2 15.71 3 B K S 59.1 13.81 
15 4 B L P S 91.3 21.33 3 K S P 66.1 15.45 
16 4 A B C K 60.3 14.10 3 C K S 88.7 20.73 
17 4 A B C P 58.0 13.55 4 A C K S 95.4 22.30 
18 4 K L P S 82.9 19.36 4 A C K S 83.1 19.41 
19 4 K L P S 70.4 16.44 4 A C K S 96.9 22.65 
20 4 K L P S 84.8 19.80 4 A C K S 80.2 18.74 
21 4 B L P S 80.5 18.81 4 A C K S 73.2 17.10 
22 4 K L P S 67.2 15.69 4 A C K S 96.1 22.46 
23 4 K L P S 94.8 22.16 4 A C K S 97.1 22.69 

Note: a Tissue names are indicated as follows: A – Abdominal adipose, B – Breast 
muscle, C – Cardiac adipose, K – Kidney, L- Liver, P – Pituitary, S – Spleen. 
b The number of paired end sequences for each pooled-bird (Millions). 

3.2.2 Pre-processing of RNA-seq Reads 

The fastQ reads were pre-processed using AfterQC [53], a python program 

used for automatic filtering, trimming, error removing and quality control of single-

end or pair-end sequencing data. The AfterQC program was used to remove adaptor 
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sequences, error-correct mismatch bases in overlapping pairs, filter low quality and 

abnormal sequences. Abnormal sequences are sequences with short lengths compared 

to the average sequence length, and with too many ambiguous nucleotides (N’s) or 

with polyX (i.e. at least a string of 35 X nucleotides in the given sequence, X is one of 

A/T/C/G).  

3.2.3 SNP Discovery using VAP workflow 

SNPs were detected from the pooled RNA-seq data for each line using the 

VAP workflow and filtering criteria. The pair-end RNA-seq reads were aligned using 

three transcriptome reference assemblers, TopHat2 (v 2.1.1) [54], HiSAT2 (v 2.1.0) 

[55] and STAR (v 2.5.2b) [56]. The RNA-seq reads were mapped to the genome, 

NCBI Gallus gallus Build 5.0 reference genome, and converted to BAM format using 

SAMtools (v 1.4.1) [58]. The BAM files were processed using Picard Package (v 

2.13.2) (https://broadinstitute.github.io/picard/) and variants were detected using 

GATK (v 3.8-0-ge9d806836) [59] and filtered as described in Chapter 2.  

3.2.4 Allele Frequencies and Genotyping 

Following determination of all unique variant sites, we in silico genotyped all 

variant sites using custom Perl scripts. This was done to compare all uniquely aligned 

reads to both the reference and variants alleles and calculate the variant allele 

frequencies (VAF) observed between 0 and 1 (i.e. 0 ≤ VAF ≤ 1). SNPs were divided 

into two groups based on their VAF score; the first group are SNPs with VAF > 0.99 

are tagged as homozygous to the alternate allele (homozygous alternate), because at 

least 99% of the reads mapped to the position had the mutant allele and, the second 

group are SNPs with VAF ≤ 0.99 as heterozygous 
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3.2.5 Selection Sweep Analysis 

Allele counts at SNP positions were used to identify signatures of selection in 

sliding windows. The sliding window approach involves overlapping a fixed window 

by the step size along the chromosomes and summing from sequence data the allele 

counts corresponding to the most and least abundant allele frequencies (𝑛FGH and 

𝑛FI:) for each SNP in the given window. Unlike Rubin et al approach, each SNPs 

allele frequencies was used instead of the number of reads to normalize for gene 

expression bias. The heterozygosity score (𝐻J) for each window is calculated as 

shown in Equation 3.1, where ∑𝑛FGH is the sum of major allele frequencies, and 

∑𝑛FI: is the sum of minor allele frequencies within a window. Each 𝐻J values are Z-

transformed (𝑍𝐻J) as shown in Equation 3.2, where 𝜇𝐻J is the overall average 

heterozygosity and 𝜎𝐻J is the standard deviation of the overall heterozygosity. 

 

𝐻J =
2	∑𝑛FGH	∑𝑛FI:

(	∑𝑛FGH + ∑𝑛FI:	)R
 

Equation 3.1 Heterozygosity score equation. 

 

𝑍𝐻J =
𝐻J −	𝜇𝐻J

𝜎𝐻J
 

Equation 3.2 Z-transformed heterozygosity score equation. 
 

We calculated the heterozygosity in sliding 20-kb windows with a 10-kb 

overlap step along the autosomes. For each window, we calculated the heterozygosity 

score and Z scores (Equations 3.1 and 3.2). Putative selective sweeps were identified 

as windows with 𝑍𝐻J ≤ -3, because windows below this threshold represent the 
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extreme lower end of the distribution. Windows with 𝑍𝐻J ≤ -3 were selected and the 

genes found with exonic SNPs were extracted for annotation analysis. 

3.2.6 Annotation and Functional Analysis 

Annotation analysis was performed using the Ensembl chicken gene set 

(Ensembl release 90) [84] and the NCBI chicken gene set (RefSeq release 86) [85] 

were downloaded and gene-based annotation of putative SNPs were performed using 

ANNOVAR (v 2017Jul16) [60]. Candidate genes and regions of putative sweeps 

identified were compared with chicken QTL database 

(http://www.animalgenome.org/cgi-bin/QTLdb/GG/index) [86]. The genes were 

functionally annotated using DAVID Bioinformatics Resources software version 6.8 

[87], PANTHER version 13.1 [88] and PATHRings[89]. 

 

3.3 Results and Discussion 

3.3.1 Transcriptome-wide detection of SNPs  

Each sequenced reads for our 56 bird samples were aligned to the chicken 

reference genome (Gallus gallus build 5.0) using the VAP workflow, on average 86% 

of the reads mapped to the genome spanning 16% of the reference genome across the 

read mapping tools (Table 3.2). SNPs identified were filtered based on the VAP 

filtering criteria, resulting in 652621 SNPs and 486968 SNPs in the Ross and Illinois 

line respectively. The Ross line is shown to have significantly (25%) more SNPs 

called compared to the Illinois line despite similar reference mapping coverage, this 

suggests larger variability in the Ross genome compared to Illinois (Table 3.3). Each 

SNP was subsequently grouped based on their variant allele frequency, with over 96% 
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having dbSNP information. As expected, a larger number of SNPs were heterozygous 

in Ross compared to Illinois, suggesting more loci in Illinois line have reached 

complete fixation compared to the Ross line (Table 3.4). 

Table 3.2 Read mapping summary statistics from our VAP (Variant Analysis Pipeline) 
for the 56 pooled Ross and Illinois birds. 

Line Tools % reads mappeda % reference covereda 

Ross 
TopHat 87.9 (0.03) 16.4 (2.66) 
HiSAT 86.4 (0.02) 16.1 (2.62) 
STAR 88.1 (2.64) 16.6 (2.70) 

Illinois 
TopHat 86.7 (0.02) 14.9 (2.50) 
HiSAT 86.4 (0.02) 14.7 (2.46) 
STAR 86.0 (0.01) 15.1 (2.50) 

Note: a Average (±SD) scores for each mapping tool. 

Table 3.3 Quality control of identified SNPs. 

Line Ross Illinois 
Total SNPs 2139430 1693401 
N31 684366 552677 
VF2 526025 440277 
AR3 250994 194802 
HS4 560 130 
UN5 24864 18547 
SNPs Used 652621 486968 

Note: 1 SNPs not found in all three assemblers; 2SNPs filtered using GATK Variant 
Filtration tool; 3 SNPs with less than 5 reads supporting alternate allele; 4SNPs with 
VAF < 0.1; 5non-autosomal SNPs on Galgal5. 
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Table 3.4 Comparison of SNPs identified as homozygous-alternate and heterozygous. 

Line VAF # SNPs Precision 𝒕𝒔/𝒕𝒗 

Ross 
Heterozygous VAF < 0.99 503394 91.19% 3.02 
Homozygous Alternate VAF ≥ 0.99 149227 97.03% 2.70 
Total 652621 94.13% 2.94 

Illinois 
Heterozygous VAF < 0.99 345028 93.18% 3.02 
Homozygous Alternate VAF ≥ 0.99 141940 96.91% 2.74 
Total 486968 94.26% 2.93 

3.3.2 Nucleotide polymorphisms distribution 

Comparing SNPs identified in both Ross and Illinois line, a large percentage of 

SNPs (55% in Ross and 74% in Illinois) were shared between both lines, while 

294,182 SNPs and 128,529 SNPs were unique to Ross and Illinois lines respectively 

(Figure 3.1). The highest number of SNPs were observed in the first five 

chromosomes, while the lowest number of SNPs were observed on 

microchromosomes (Figure 3.2).  This is consistent with the SNP distribution being a 

function of chromosome sequence length.  Chromosomes 16 and 31 have been 

challenging to sequence due to the highly repetitive nature of these chromosomes, 

consequently SNP call to these have not been further evaluated (Figure 3.3). 

 

 

Figure 3.1 Venn diagram showing the number of shared and unique SNPs between 
Ross and Illinois lines. 
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Figure 3.2 Histogram plot comparing the number of SNPs per chromosome between 
Ross and Illinois lines. 

 

Figure 3.3 Histogram plot comparing percentage normalized SNPs per chromosome 
between Ross and Illinois lines. 
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3.3.3 Consequences of SNPs detected 

17% of the SNPs were predicted to be within protein-coding regions when 

annotated against both the NCBI and ENSEMBL gene database for chicken in both 

lines; the remaining SNPs were found in non-coding or regulatory regions (Table 3.5). 

Table 3.5 Classification of SNPs detected consequences. 

Variant 
Consequences Ross Illinois Overlap in Ross and 

Illinois 
Intergenic 354937 (54.4%) 268469 (41.1%) 190075 (29.1%) 
Up/downstream 32679 (5%) 24327 (3.7%) 19057 (2.9%) 
Intronic 112037 (17.2%) 82274 (12.6%) 53651 (8.2%) 
Exonic 108959 (17%) 79590 (12.2%) 67570 (10.4%) 
    Non-synonymous 26771 (4.1%) 18807 (2.9%) 15137 (2.3%) 
    Synonymous 82069 (12.6%) 60703 (9.3%) 52371 (8%) 
    Stop-gain/loss 119 (<1%) 80 (<1%) 62 (< 1%) 
    Splicing 19 (<1%) 15 (<1%) 10 (< 1%) 
UTR3/UTR5 42016 (6.4%) 30838 (4.7%) 26865 (4.1%) 
ncRNA 292 (<1%) 209 (<1%) 162 (< 1%) 

3.3.4 Proof of Concept: Genes verified with Mutations arising from 
Domestication. 

3.3.4.1 Yellow Skin Phenotype: 

The yellow skin phenotype is found in most domesticated chickens and is 

expressed in homozygotes for the recessive allele. Eriksson et al identified genomic 

SNPs contributing to the reduced expression of the candidate gene, Beta-Carotene 

Oxygenase 2 (BCO2 or BCDO2) [44]. We used the BCDO2 locus to show that our 

approach can reveal an established sweep or fixation. In both the Ross and Illinois 

lines, we observed majority of the SNPs found have very high variant allele frequency 
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scores – homozygous of the mutation in the BCDO2 locus (Table 3.6). This indicates, 

as proposed, complete or near fixation for the yellow skin allele. 

Table 3.6 Partial list of SNPs found in the BCDO2 locus (chr24:6110296-6131259). 

Chromosomal Position Mutation Ross VAF Illinois VAF 

chr24:6113345 G/A 0.95 1.0 
chr24:6113438 G/A 0.94 1.0 
chr24:6113900 T/G 0.96 1.0 
chr24:6116372 T/C 0.95 1.0 
chr24:6116717 T/C 0.93 1.0 
chr24:6121412 A/G 1.0 1.0 

3.3.4.2 Domestication related mutation in the Thyroid Stimulating Hormone 
Receptor (TSHR):  

TSHR is a significant gene that functions in the regulation of metabolic 

processes and reproduction. The TSHR mutation is a nonsynonymous substitution 

resulting in a glycine to arginine shift (Gly558Arg) [42]. In both lines, all SNPS found 

in the TSHR locus are homozygous for the alternate allele, including the candidate 

mutation (Table 3.7). However, due to the stringent filtering criteria, the causal SNPs 

were excluded in the variant filtering step of our VAP workflow; as a result of low 

read depth (DP < 10) and nucleotide positions with less than 5 alternative allele 

supporting reads. Nevertheless our data proves both lines carry the domestic TSHR 

allele [42]. The mutant TSHR gene is shown to affect reproductive traits resulting 

increase metabolic activity and growth [90]. 
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Table 3.7 Exonic mutations identified at the TSHR locus (chr5:40811286-40858950). 

Chromosomal 
position Mutation Consequence Line 

chr5:40857654 C/G nonsynonymous Ross(2); Illinois(2) 
chr5: 40858336 G/A nonsynonymous Ross(2); Illinois(1) 

chr5: 40858944 G/A synonymous Ross(2); Illinois(2) 
Note: SNPs calls are excluded in variant filtering step as a result of (1) low read depth 
(DP < 10) or (2) nucleotide positions have less than 5 alternative allele supporting 
reads. 

3.3.5 Selection Sweeps Detection. 

Selection sweeps were detected using the SNPs variant allele frequencies to 

identify regions with high degree of fixation. We calculated the pooled heterozygosity 

in 20 kb window size with a 10-kb sliding step. To prevent windows containing very 

few SNPs from adding spurious fixation signals, we excluded windows with less than 

10 SNPs. Following this criterion, 44% and 54% of the windows with SNPs < 10 were 

excluded from the Ross and Illinois line respectively. We observed a high degree of 

selection sweeps in the macrochromosomes of the Gallus gallus genome (Figure 3.4). 

 

Figure 3.4 Histogram plot comparing the number of candidate regions under selection 
in Ross and Illinois lines. 
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3.3.5.1 Mean Genome Diversity 

Genome heterozygosity levels were measured across both lines (Table 3.8). 

The highest level of heterozygosity was observed in the Ross (0.34 ± 0.095) line 

whereas it was lowest in the Illinois (0.32 ± 0.103) line. However, both lines reveal 

high variability in heterozygosity scores as opposed to prior studies, and this could 

possibly be as a result of the high amounts of homozygous alternate SNPs (having 

VAF ≥ 0.99) observed, especially in the Illinois line. 

Table 3.8 Genome-wide pool heterozygosity statistics. 

Line Ross Illinois 
Windows 47183 50015 
Total windows (SNPs ≥ 10) 26201 23091 
Heterozygosity level   0.34 ± 0.095 0.32 ± 0.103 
ZHw ≤ -3 272 134 
Sweep regions  198 89 
Genes identified 374 183 

3.3.5.2 Candidate Sweep Regions 

For the Ross line, out of the 26,201 windows analyzed only 272 of them 

passed the threshold of ≤ -3, identifying 198 candidate sweep regions. A total of 375 

genes were identified in the 198 putative sweep regions (Table A.1). No significant 

peaks were observed on chromosomes 15, 16, 17, 22, 23, 24, 27, 30, 31 and 32 (Figure 

3.4). The largest candidate sweep spanning 70-kb which is also the region with the 

lowest ZHw scores (3.57± 0.025) was found on chr1:55.37Mb-55.44Mb. This region 

overlaps with the IGF1, PMCH, PARPBP genes, and has been detected to be under 

selection in prior studies [42,45]. This region is also known for the QTL affecting 

metabolic traits such as body weight, abdominal fat and muscle weight [91,92]. 



 44 

Overall the identified genes are well established as important enhancers to regulate 

growth, reproduction, energy balance, cell proliferation and cell death. Furthermore, 

the genes impacted by SNPs within coding regions in the candidate sweeps were the 

insulin-like growth factor 1 (IGF1) and the PARP1 binding protein (PARPBP) and 

were validated in prior studies (3.9), showing these may likely be the candidate genes 

under selection in this well-known QTL.  

Table 3.9 Exonic nucleotide polymorphisms possibly influencing selection of 
candidate genes in putative sweep on chr1:55.37-55.44Mb. 

Chromosomal 
position Mutation Gene 

Name Consequence VAF dbSNP 
number 

chr1:55374168 A/G IGF1 synonymous 0.944 rs316492824 
chr1:55428867 T/G PARPBP nonsynonymous 1 rs13869806 
chr1:55428935 T/C PARPBP nonsynonymous 1 rs13869807 
chr1:55458271 T/A PARPBP synonymous 1 rs315774625 
chr1:55458294 C/T PARPBP nonsynonymous 1 rs317963948 
chr1:55461367 A/G PARPBP nonsynonymous 1 rs13869828 
chr1:55465970 G/T PARPBP nonsynonymous 1 rs315850110 

Other candidate regions with ZH scores ≤ -3 include: a 60-kb region on 

chr1:54.61-54.67Mb with ZHw score -3.08±0.018 overlapping the membrane 

transporter SLC41A2 and thioredoxin reductase enzyme TXNRD1. One 50-kb region 

on chr8:1.26-1.31Mb (ZHw=-3.20±0.06) overlapping ENSGALG00000001983 

(PRPF38B), STXBP3, NR5A2 genes. Two candidate regions have 40-kb size each on 

chr2:6.41-6.45Mb (-3.34±0.15) consisting of 49 SNPs that impact the PRKAG2 gene 

and chr3:64.19-64.23 (-3.32±0.07) overlapping ENSGALG00000014979 (FRK), 

FAM26E, HDAC2 genes. PRKAG2 functions in regulating energy demand within cells 

and plays an important role in body weight, body weight gain, feed intake and feed 

conversion ratio traits [93], interestingly all the SNPs expect one synonymous SNP at 
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T6436892A (rs317797507), are located in introns of the PRKAG2 gene, this can be as 

a result of low evolutionarily conservation of the gene and may reflect a potential 

isoform of the PRKAG2 transcript [94]. 64 candidate regions have a 30-kb size each, 

and 129 have sizes of 20-kb (Figure 3.5). 

 

 

Figure 3.5 Selection sweeps analysis of the Ross line, including a partial list of 
candidate genes. 

As for the Illinois line, out of the 23,091 windows only 134 of them passed the 

genome-wide threshold, defining 89 candidate sweep regions having 183 genes (Table 

A.1). No significant peaks were observed on chromosomes 12, 13, 14, 16, 18, 19, 20, 

22, 23, 25, 26, 27, 28, 30, 31 and 32 (Figure 3.4). Analyzing candidate sweeps based 

on fragment size, the largest candidate sweep spanning 60-kb was found on 

chr3:62.42-62.48Mb with ZHw scores -3.13±0.016. This region overlaps with the gap 

junction protein alpha 1 (GJA1) and minichromosome maintenance 9 (MCM9) genes. 

GJA1 polymorphisms have been found to be significantly associated with growth traits 
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in chickens, such as body weight and carcass weight [95], the MCM9 functions as the 

MCM8-9 complex in DNA maintenance and repair of interstrand crosslinks [96]. 

Other candidate regions with ZH scores ≤ -3 include: a 50-kb region on chr1:30.83-

30.88Mb with ZHw score -3.07±0.046 overlapping ENSGALG00000033074 (ARID2), 

DBX2 and SCAF11 genes. Six candidate regions have 40-kb size each, 26 regions 

have a 30-kb size each, and 55 have size of 20-kb (Figure 3.6). 

 

 

Figure 3.6 Selection sweeps analysis of the Illinois line, including a partial list of 
candidate genes. 

3.3.5.3 Candidate Genes in Regions Detected across Populations  

Examining the candidate regions under selection, we identified 14 shared 

regions in both Ross and Illinois lines. 33 genes were found overlapping the 14 shared 

regions found on chromosomes 1, 2, 3, 4, 5, 6 and 9. Notably, the majority of the 

shared regions are found on genes involved in growth traits, muscle and organ 

development (Table 3.10).  
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Table 3.10 Candidate Genes detected in the 14 shared regions. 

Coordinatesa Ross Illinois Gened 
Winb ZHwc Winb ZHwc 

chr1:54.55 ~ 54.67 3 -3.08±0.02 2 -3.11±0.05 TXNRD1 
SLC41A2  

chr1:55.37 – 55.44 4 -3.57±0.03 2 -3.13 IGF1  
PARPBP  
PMCH 

chr1:114.18~114.50 1 -3.17 2 -3.034 DMD 
PRRG1  

chr2:53.21~53.53  3 -3.33±0.07 2 -3.14 PDIA4 
SEC61G 

chr2:84.58 – 84.63 1 -3.03 3 -3.07±0.06 BAG1 
MIR32 

chr2:139.36 ~ 141.48 2 -3.49±0.01 2 -3.11 MYC 
1NSMCE2 
2LRRC6  

chr3:24.06 ~ 24.14 2 -3.27±0.02 2 -3.08 COX7A2L 
ZFP36L2 

chr3:62.42 – 62.75 2 -3.04±0.02 7 -3.10±0.05 GJA1 
MCM9 

chr4:35.76 ~ 37.17 3 -3.38±0.13 2 -3.122 2MMRN1  
HPGDS 
SNCA 

chr5:5.23 ~ 5.47 1 -3.26 1 -3.02 1PAX6  
WT1 

chr5:34.25 ~ 34.60 2 -3.22 1 -3.05 COCH 
1NUBPL 
SPTSSA 

chr6:20.32 – 20.34 1 -3.12 1 -3.05 LGI1 
PDE6C 

chr9:8.36 ~ 8.88 2 -3.24±0.04 1 -3.08 MRPL44 
SERPINE2  

chr9:11.80 ~ 12.13 1 -3.15 1 -3.13 2SLC9A9  
ZIC1 
1MIR6611 

Note: a Chromosomal coordinates in megabases (Mb): ‘–‘ represent similar regions 
between Ross and Illinois, whereas ‘~’ represent windows in close proximity between 
lines, such windows were merged. b Number of consecutive ZHw < -3 windows that 
were merged. c average ZHw (±SD) scores  in region. d Gene(s) overlapping putative 
sweep regions: ‘1’ were found only in Ross line, ‘2’ were found only in Illinois line.  
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3.3.5.4 Candidate Genes found in Previous Studies 

We compared the genes in the candidate selection regions with those from two 

previous studies on detecting selective sweeps in domesticated birds (broilers). In the 

Ross line, among the 374 genes identified in putative regions under selection, 41 genes 

were in genomic regions detected by Rubin et al (2010) and Elferink et al (2012). 

While in the Illinois line, 19 out of the 183 genes identified in our study were 

previously detected in prior studies. Table 3.11 lists the genes that overlap with 

previous studies.  

Table 3.11 Genes that overlap with previous studies (Rubin et al., 2010 and Elferink et 
al., 2012). 

Gene Name Line Chromosome Reference 
CHPT1 Ross 1 Elferink et al, 2012 
DBX2 Illinois 1 Elferink et al, 2012 
SIM2 Ross 1 Elferink et al, 2012 
MMP2 Ross 1 Elferink et al, 2012 
SLC41A2 Ross; Illinois 1 Elferink et al, 2012 
TMEM18 Ross 1 Elferink et al, 2012 
IGF1 Ross; Illinois 1 Rubin et al. 2010; 

Elferink et al, 2012 
NUP37 Ross 1 Rubin et al. 2010; 

Elferink et al, 2012 
PARPBP Ross; Illinois 1 Rubin et al. 2010; 

Elferink et al, 2012 
PMCH Ross; Illinois 1 Rubin et al. 2010; 

Elferink et al, 2012 
INHBA Ross 2 Elferink et al, 2012 
TFAP2A Illinois 2 Elferink et al, 2012 
MBOAT1 Ross 2 Rubin et al. 2010 
SEC61G Ross; Illinois 2 Rubin et al. 2010 
TMX3 Ross 2 Rubin et al. 2010 
TRIM55 Ross 2 Rubin et al. 2010 
KIF6 Ross 3 Elferink et al, 2012 
PRKN Illinois 3 Elferink et al, 2012 
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Table 3.11(continued) Genes that overlap with previous studies (Rubin et al., 2010 and 
Elferink et al., 2012). 

Gene Name Line Chromosome Reference 
ENSGALG00000014848 Illinois 3 Elferink et al, 2012 
FRK Ross 3 Elferink et al, 2012 
NKAIN2 Illinois 3 Elferink et al, 2012 
SP3 Ross 3 Elferink et al, 2012 
CRIM1 Illinois 3 Rubin et al. 2010 
ESR1 Ross 3 Rubin et al. 2010 
ESRRG Ross 3 Rubin et al. 2010 
GPR137B Ross 3 Rubin et al. 2010 
CHRM3 Illinois 3 Rubin et al. 2010; 

Elferink et al, 2012 
PSMD1 Ross 4 Elferink et al, 2012 
PCDH10 Ross 4 Rubin et al. 2010 
RAB28 Ross 4 Rubin et al. 2010 
KLHL2 Ross 4 Rubin et al. 2010; 

Elferink et al, 2012 
KATNBL1 Ross 5 Elferink et al, 2012 
PAX6 Ross 5 Elferink et al, 2012 
NUBPL Ross 5 Rubin et al. 2010; 

Elferink et al, 2012 
CH25H Ross 6 Rubin et al. 2010 
EXOC6 Ross 6 Rubin et al. 2010 
PKP4 Ross 7 Elferink et al, 2012 
CCDC93 Ross 7 Rubin et al. 2010 
C8H1ORF146 Ross 8 Rubin et al. 2010 
ENSGALG00000009458 Illinois 9 Elferink et al, 2012 
ZIC1 Ross; Illinois 9 Elferink et al, 2012 
AGTR1 Ross 9 Rubin et al. 2010 
NCBP2 Ross 9 Rubin et al. 2010 
FAM96A Illinois 10 Elferink et al, 2012 
TCF25 Illinois 11 Elferink et al, 2012 
SPIRE2 Illinois 11 Elferink et al, 2012 
FANCA Illinois 11 Elferink et al, 2012 
DEXI Ross 14 Elferink et al, 2012 
TVP23A Ross 14 Elferink et al, 2012 
NUBP1 Ross 14 Elferink et al, 2012 
ENSGALG00000001031 Ross 19 Elferink et al, 2012 
RAB22A Ross 20 Elferink et al, 2012 
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Table 3.11(continued) Genes that overlap with previous studies (Rubin et al., 2010 and 
Elferink et al., 2012). 

Gene Name Line Chromosome Reference 
SDHD Illinois 24 Rubin et al. 2010; 

Elferink et al, 2012 
CPAMD8 Ross 28 Elferink et al, 2012 
MYO9B Ross 28 Rubin et al. 2010 

3.4 Conclusion 

Using transcriptome sequencing (RNA-seq) data to determine regions of 

selection in the genome, we identified established mutations due to domestication 

(such as the TSHR and BCDO2 locus) using the variant allele frequencies (VAF) 

derived from our variant calling pipeline. A significant contribution from our study is 

the successful application of RNA-seq to identify regions of recent selection in 

commercial birds using heterozygosity scores. Although our data consisted of over 

20% SNPs with VAF ≥ 0.99 (i.e. homozygous to the alternate allele), we were able to 

detect well established selection sweeps such as the IGF1, PARPBP and PMCH locus, 

and also uncover novel candidate regions and possibly novel isoforms contributing to 

the recent selection in modern broilers such as the PRKAG2 gene. Our findings 

suggest that selection in broiler birds has had a significant impact on the genes 

controlling traits related to growth and development, such as body weight, muscle 

mass and feed efficiency. Overall this study provides a useful benchmark that further 

analyses of identified genes under selection may reveal significant insights into 

understanding the traits that characterizes these distinct lines.  
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 TRANSATLASDB: AN INTEGRATED DATABASE CONNECTING 
EXPRESSION DATA, METADATA AND VARIANTS 

(Adetunji, M. O., Lamont, S. J., & Schmidt, C. J. (2018). TransAtlasDB: an integrated 
database connecting expression data, metadata and variants. Database : the journal of 

biological databases and curation, 2018, bay014.) 

4.1 Abstract 

High-throughput transcriptome sequencing (RNA-seq) is the universally 

applied method for target-free transcript identification and gene expression 

quantification, generating huge amounts of data. The constraint of accessing such data 

and interpreting results can be a major impediment in postulating suitable hypothesis, 

thus an innovative storage solution that addresses these limitations, such as hard disk 

storage requirements, efficiency and reproducibility are paramount. By offering a 

uniform data storage and retrieval mechanism, various data can be compared and 

easily investigated. We present a sophisticated system, TransAtlasDB, which 

incorporates a hybrid architecture of both relational and NoSQL databases for fast and 

efficient data storage, processing and querying of large datasets from transcript 

expression analysis with corresponding metadata, as well as gene-associated variants 

(such as SNPs) and their predicted gene effects. TransAtlasDB provides the data 

model of accurate storage of the large amount of data derived from RNA-seq analysis 

and also methods of interacting with the database, either via the command-line data 

management workflows, written in Perl, with useful functionalities that simplifies the 

complexity of data storage and possibly manipulation of the massive amounts of data 

Chapter 4  
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generated from RNA-seq analysis or through the web interface. The database 

application is currently modeled to handle analyses data from agricultural species, and 

will be expanded to include more species groups. Overall TransAtlasDB aims to serve 

as an accessible repository for the large complex results data files derived from RNA-

seq gene expression profiling and variant analysis. 

 

4.2  Introduction 

RNA-seq provides a comprehensive view of the transcriptome, and can be 

used for abundance estimation, and identification of allele-specific expression profiles, 

alternative splicing, splice junction, novel transcripts and nucleotide polymorphisms 

[97,98]. The majority of studies adopt RNA sequencing for gene and transcript 

expression profiling between samples or single cells, by counting the number of 

mapped reads to a given gene or transcript as an estimation of expression levels [7,99–

101]. While RNA-seq is primarily applied for gene expression analysis, RNA-seq is 

also a form of exome sequencing and recent studies have used RNA sequencing to 

detect sequence variation in genes expressed in the sample [11,51]. Several algorithms 

have been developed to estimate transcript-level expression and the widely accepted 

methodologies make use of the Tuxedo Suite of programs, which includes TopHat and 

Cufflinks [102,103], or the faster and more memory efficient, HISAT and StringTie 

[104]. TopHat [54,105] and HISAT [55] are reference RNA-seq read mapping 

algorithms, while Cufflinks [106] and StringTie [70] estimate abundance and 

differential expression from the alignment files. Another method for differential 

expression analysis is to count the number of reads overlapping genomic features of 

interest, using quantification programs like featureCounts [107] and htseq-count [108] 
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or pseudo-alignments programs like kallisto [109] or Salmon [110]. Read counts are 

required for a wide range of count-based statistical methods for differential expression 

or differential binding analyses such as DESeq2 [111], edgeR [112]. Although RNA-

seq is generally applied to gene expression analysis, recent studies have performed 

comparative analysis of RNA-seq with exome sequencing for variant detection 

analysis and the popularly used variant callers include SAMtools [113] and the 

Genome Analysis Toolkit (GATK) [59]. The different data files generated from RNA-

seq analyses are typically large and complex, and can be a computational bottleneck, 

and expensive to store, especially with analyses that involve different sample groups 

[114].  

Current storage programs involve centralizing publicly available datasets from 

related projects on the web. Such programs either entail a one-line summary of 

published projects, archives of actual files, or an integrative framework of various 

transcriptome analysis tools or biological databases [115–118]. Though these storage 

options provide a great resource for comparative analysis of related published works, 

they do not address the limitations most scientists working with “big data” experience, 

which is storage of the numerous, large analyses result files. Furthermore, assessing 

such data files in the near future will be a tedious process, leading to either 

reprocessing the data files or replicating the sample study, wasting time and effort. 

Thus, there is a need for an organizational framework allowing efficient storage of the 

different data results and uncomplicated access for retrieval of needed information in a 

meaningful way to answer biological questions. Given the lack of a uniform standard 

for data storage and management, resources and techniques for organizing and 

intelligently interpreting essential information are highly desirable.  
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We have created a sophisticated system, TransAtlasDB for efficiently storing, 

organizing and integrating the samples metadata, gene expression profiling and variant 

analyses results from sequenced samples. This system is a standalone database 

application that incorporates both classes of database technologies for both archiving 

and retrieving of various transcriptome analyses results. It serves as an organism-

independent sample metadata and transcriptome analysis organizational framework 

and repository for gene-expression analysis and gene-associated variants, such as 

single nucleotide polymorphism (SNPs) and insertions and deletions (InDels). In 

addition, the application provides an extensive array of tools for uniform data storage 

and extraction mechanisms for convenient access to investigate potential patterns or 

research interests across different RNA-seq analysis. TransAtlasDB is designed for (i) 

archiving sample information; (ii) storing gene expression and variant analysis results; 

(iii) archiving metadata from the different analysis; (iv) validating data entry; (v) 

generating data tables for reporting; (vi) downloading viewed data tables; (vii) security 

and integrity of information; (viii) speed and performance in accessing large amounts 

of data; and (ix) uniform and lossless framework minimizing redundancy.  

 

4.3 System Architecture 

The main objective of this system is to create a platform for storing gene 

expression profiling and variant information from transcriptome analysis in a unified 

format, while maintaining data integrity and a consistent environment for data 

exploration.  

The system is developed as a client-server architecture and implemented on a 

Unix/Linux system. As shown in Figure 4.1, the system architecture can be divided 
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into three layers: User, Application, and Storage Layer. The User Layer offers two 

modes of interacting with the databases: (i) A PHP interactive web environment with 

basic access to the databases through the hypertext transfer protocol, and (ii) A 

command-line Perl suite for interacting with the database. The interactive suite 

contains preconfigured queries of interest and allowances for custom queries as a 

print-out or export in user-friendly file formats. In addition, savvy users can interact 

directly with either database. The Application Layer is composed of a suite of Perl 

scripts and provides an abstraction with a set of procedures for the underlying 

complexities of parsing, validating, storing, and extracting data. This layer is 

composed of three major components: data validation, data deposition, and data 

extraction. The data validation component ensures all data files slated for storage or 

extraction are present, the data deposition component executes valid syntaxes for data 

storage, while the data extraction component functions as a post-processing service for 

data retrieval and fulfills requests from the User Layer.  

The Storage Layer is responsible for storing and organizing data using design 

principles for databases with complex data. Similar to many biological web 

repositories, we applied a traditional relational data store, and due to its availability, 

simplicity, and flexibility, we chose the open source, SQL compliant relational 

database management system, MySQL (My Structured Query Language) [119]. This 

layer has been designed to organize data relationally, employing parent-child key 

relationships and enabling an efficient management of the stored data sets. Storing 

data in relational databases (RDBs) provide the convenience of maintaining 

consistency, data integrity and eliminating redundancy. However, data query 

performance of RDBs decreases with increased data storage. Given the large amounts 
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of data that transcriptome studies can generate, it is inevitable that query performance 

will degrade unless alternative solutions are identified. A potential solution involves 

partitioning the database across a set of machines, which requires often-expensive 

hardware and will ultimately be cumbersome and expensive to maintain, and, most 

importantly, not expedient to improving querying performance [120]. The 

requirements for our platform led us to implement a different type of database 

technology referred to as NoSQL. NoSQL (Not Only Structured Query Language) 

describes a class of technologies that provides an alternative approach to data storage 

compared to relational systems; most importantly they do not use relations (tables) as 

its storage structure and have a schema-less approach to handling large data. Due to 

the schema-less approach for data storage, NoSQL databases compromises on 

consistency within the database, and data duplication is allowed which threatens data 

integrity. Thus, some level of expertise and external protocols are required to adopt 

some form of data integrity. Regardless, NoSQL database solutions have shown 

significant advantages on indexing and querying performance with massive amounts 

of rapidly growing data compared to traditional RDB [18,121]. To ensure availability, 

simplicity, and accessibility for TransAtlasDB, we employed the open source FastBit 

NoSQL database technology. The FastBit NoSQL database implements a compressed 

bitmap indexing algorithm for efficient querying of large read-only datasets. It is an 

append-only and column oriented data store [122]. In addition, FastBit has a structured 

query language (SQL) interface, which guarantees synonymous access to stored data 

across both database systems. The FastBit SQL algebra provides a unique advantage 

for simultaneous data archival and retrieval of both the SQL-relational system and 

FastBit NoSQL system without having to learn another querying language and in turn, 
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the SQL-relational database will enforce data consistency. Consequently, the storage 

layer is a hybrid model that makes use of both MySQL and the FastBit NoSQL 

database technology. 

TransAtlasDB hybrid architecture is the only independent database system that 

adopts a novel approach to database storage by the successful integration of both 

database technology types; RDB and NoSQL. This integration addresses the 

limitations of using either database systems for the organization and storage of big 

data, such as the decline in query performance with increasing data stored in relational 

databases stored is resolved using NoSQL fast access algorithm, and the lack of data 

integrity and structure with using NoSQL databases is resolved using relational 

database management systems. Thus, the database is designed to store smaller data 

sets such as sample information of transcriptome libraries and metadata details from 

transcriptome analysis in the relational database, while larger data sets such as the 

variants detected will be stored in the NoSQL system and both records can be queried 

interchangeably with the benefits of maintaining data integrity and not compromising 

on querying performance for massive data sets.  
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Figure 4.1 The Architecture of TransAtlasDB. 

4.3.1 System Requirements 

The TransAtlasDB database systems were developed using the MySQL Server 

(v5.5.53) and FastBit (v2.0.3), and designed to work on Unix/Linux operating 

systems. The software toolkit was written in Perl programming language (v5.18), with 

required modules listed and freely available on CPAN. The alignment/BAM file 

mapping parameters were reviewed using the SAMtools package (v1.3.1) [58]. 

The toolkit and database application were extensively tested by independent 

parties on the Linux Ubuntu Server (v14.04.5), Ubuntu Desktop (v16.04.2), and Mac 

OSX (v10.11) operating systems with the latest available MySQL server (v5.7.18), 

FastBit software (v2.0.3), SAMtools package (v1.5.1) and Perl programming language 
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(v5.22.1). The web interface was written in PHP (v7.1.4), developed using Apache 

(v2.4.18) and is compatible with most web browsers. 

TransAtlasDB source code is available on GitHub at 

https://modupeore.github.io/TransAtlasDB, and detailed instructions on installation 

and execution are distributed with the source code.  

 

4.4 Data Types 

4.4.1 Input Data 

TransAtlasDB accepts input data from the different software required for 

differential expression and variant detection analysis. The current version accepts 

outputs from the Tuxedo Suite – TopHat2 or HISAT2, Cufflinks or StringTie, kallisto, 

Salmon, htseq-counts or featureCounts, SAMtools/BCFtools or GATK. Thus, the 

following information is required for successful utilization of TransAtlasDB; (a) 

Sample Information, (b) Alignment information, (c) Expression information and, 

optionally, (d) Variant information.  

The Sample information, or metadata, is the reference point of the 

corresponding results from RNA-seq data and therefore important for data archival 

and retrieval of the various transcriptome analyses. TransAtlasDB preferably accepts 

the sample information using the FAANG (www.faang.org) sample submission 

spreadsheet template1 to BioSamples (https://www.ebi.ac.uk/biosamples) as EMBI-

                                                
 
1 
https://www.ebi.ac.uk/seqdb/confluence/display/FAANG/Submission+of+samples+to
+BioSamples 
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EBI BioSamples has the best support for sample archive. The FAANG sample 

submission spreadsheet template provides a detailed questionnaire for each sample 

and hence our database system was modeled to accept the FAANG excel template. 

However, the required fields in the spreadsheet are the Animal and Specimen sheets; 

with the Animal-‘Sample Name’, Animal-‘Organism’, Specimen-‘Sample Name’ and 

Specimen-‘Organism Part’ column filled. The database system also accepts a tab-

delimited file with the minimum required columns of ‘Sample Name’, ‘Derived from’, 

‘Organism’, and ‘Organism Part’, additional columns ‘Sample description’, ‘First 

name’, ‘Middle Initial’, ‘Last name’, and ‘Organization’ are also accepted. Definition 

of accepted columns is given in Table 4.1. Otherwise, the sample information can be 

manually inserted using SQL insert statements. 

Table 4.1  Column names requirement status for Sample information tab-delimited 
file. 

Header Status Description 

Sample name required Sample identification number 
Sample description optional Sample description  
Derived from required Animal identification number 
Organism required Organism name 
Organism Part required Tissue name 
First Name optional Person’s first name 
Middle Initial optional Person’s middle Initial 
Last Name optional Person’s last name  
Organization optional Organization 

 

The Alignment information is comprised of the alignment BAM file, summary 

statistics file and optionally the bed files obtained from RNA-seq read mappers, 

TopHat2 or HISAT2. The Expression information consists of the genes normalized 
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abundance files generated using Cufflinks, Stringtie, Kallisto or Salmon containing 

either or both normalization procedures; FPKM (Fragments Per Kilobase of transcript 

per million) and TPM (Transcripts per million), and actual feature read counts using 

HtSeq-count, featureCounts or STAR quantMode option. The Variant information 

includes the variant VCF (variant call format) file [123] from variant callers, such as 

GATK [59], SAMtools[113], and many more. Table 4.2 provides an overview of 

applicable programs accepted in TransAtlasDB. 

Table 4.2 List of programs accepted in TransAtlasDB. 

Information Programs 
Alignment Information 
 TopHat2 
 HiSAT2 
 STAR 
Expression Information 
 Cufflinks 
 Strintie 
 Kallisto 
 Salmon 

ReadCount information 
 htseqcount 
 featureCounts 
 STAR quantMode 
Variant Information 
 GATK 
 SamTools 

Variant Annotation Information 
 VEP 
 Annovar 
Sequence files details (optional)  
 FastQC 
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Optionally, the functional annotations of variants predicted by different 

bioinformatics tools can also be provided in a tab-delimited format. TransAtlasDB 

currently accepts variant effect annotations from two annotation software; Ensembl 

Variant Effect Predictor, commonly known as VEP [124], and ANNOVAR [60]. The 

input data should be stored in a single folder for each sample (Figure 4.2). 

 

 

Figure 4.2 Directory structure layout for each sample. Output files (suffix) required 
from the specified software for the different RNA-seq analyses data 
types. 
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4.4.2 Output Format 

TransAtlasDB outputs user-defined queries as a tab-delimited table. This table 

is the default output format which is accepted by most text editors or statistics tools 

such as Microsoft Excel, R and JMP software. Aside from the tab-delimited format for 

exporting results, the variant information can be generated as a VCF output. Predicted 

functional annotations and sample metadata are added in the INFO field of the VCF 

file, using the key “CSQ” and “MTD” respectively. Data fields are separated by “|”; 

the order of fields is written in the VCF header. VCFs produced by TransAtlasDB 

follow the standard VCF version 4 file format, and can be used for further downstream 

analysis or visualization using various variant viewers such as the University of 

California Santa Cruz (UCSC) Genome Browser [125], Integrative Genomics Viewer 

(IGV) [126], and other programs that accept VCF files. 

 

4.5 Database Structure 

The database system is structured using the RDB for the metadata information, 

alignment information, expression information and summary of the variant 

information, and NoSQL for the variant information. To maintain a coherent archive, 

the relational approach has been applied to design the basic database concept. The 

sample information is mapped into the relational table and the sample name will serve 

as the unique identification number (Id). The Id is used as the primary key for rapid 

indexing and enforcement of uniqueness, and the table data can be parsed using binary 

searching procedures across the different data types. The database design ensures 

mutual table relationships, and centralized checking of the foreign key constraints 

enforces the referential data consistency and integrity across tables. The parent-child 
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relationships are specified by matching the primary key of the parent table to the child 

tables. 

4.5.1 Relational Database (MySQL) Schema 

The database model (Figure 4.3) is divided into four sections corresponding to 

the different type of data required: sample information, alignment information, 

expression information and variant information. This forms a logical and simple 

organization of the data. The schema contains twenty-one (21) tables, six (6) views, 

and four (4) stored procedures, which are relevant to the organization of the different 

required data sets; the sample (Sample table) and additional information about the 

sample are stored in the Sample sub-tables. Transcriptome analysis results stored in 

the alignment summary and statistics (MapStats table), and the mapping metadata 

(Metadata table) are one-row descriptions for each sample and alignment details. The 

expression information summaries are stored in the GeneStats table, while the gene 

expression levels are stored in the NoSQL database. Variant details are organized in 

the VarSummary, VarResult and VarAnnotation tables. Table 4.3 provides a brief 

description of the TransAtlasDB RDB schema.   
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Table 4.3 Description of MySQL database schema. The MySQL schema consists of 
(A) 23 tables, (B) 6 views and (C) 4 stored procedures relevant for the 
organization of the different data sets generation from transcriptome 
analysis. 

Attributes Description 
TABLES  
Animal Animal information 
AnimalStats Additional information on Animal 
Breed Organism Breed 
CommandSyntax Analysis data commands 
DevelopmentalStage Organism developmental stage 
GeneStats Expression information summary 
HealthStatus Organism health status 
MapStats Alignment information and statistics 
Material Type of Sample 
Metadata Alignment information summary 
Organism Organism information 
Organization Organization of scientist 
Person Scientist information 
ReadCounts Raw counts details 
Sample Sample information 
SampleOrganization Cross reference of Sample and Organization 
SamplePerson Cross reference of Sample and Person 
SampleStats Additional information on Sample 
Sex Sex of Organism 
Tissue Organism part 
VarAnnotation Variant annotation information 
VarResult Variant information 
VarSummary Variant information summary 
VIEWS  
vw_nosql Sample details  
vw_nosql Prototype of NoSQL template 
vw_sampleinfo Summary analysis and statistics of each sample 
vw_seqstats Sequencing Metadata of all RNAseq analysis 
vw_vanno Variant annotation details 
vw_vvcf Prototype of VCF template 
PROCEDURES  
usp_vall Variants information in organism 
usp_vchrom Variants information of a chromosome 
usp_vchrposition Variants information of a chromosomal region 
usp_vgene Variants information of a gene 
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Figure 4.3 Schema of the TransAtlasDB Relational Database system. The MySQL 
tables are grouped by data stored (i.e. Sample Information, Alignment 
Information, Expression Information, and Variants Information). 

4.5.2 Non-Relational Database (NoSQL) Schema 

In order to prevent poor query performance in the RDB due to the large 

volumes of data stored, our current system implements the NoSQL database, FastBit, 

for archiving of both the gene-expression analysis and gene-associated variant analysis 

results, using custom transfer protocols from MySQL to the FastBit system. FastBit 

stores data as tables with rows and columns and makes an index for each column 
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instead of each row as in RDBs. Thus, the expression and variant information are 

organized with the same corresponding field names as depicted in the relational 

database (Table 4.4). This naming scheme allows a fluid interchangeable interaction 

with both the MySQL and FastBit platform.  

Table 4.4 Fields in FastBit system for querying. FastBit fields are similar to the (A) 
variant information tables, (B) expression information tables and (C) 
gene counts information in the RDB, allowing synonymous access to 
queries data across both systems. 

Fields Type Description 

A.   
 sampleid text Sample Id 
 chrom key Reference chromosome 
 position int Reference Position 
 refallele char Reference allele 
 altallele char Alternate allele 
 quality double Variant Quality 
 dbsnpvariant text dbSNP membership number 
 variantclass key Type of variant 
 zygosity key Genotype 
 source text Source of annotation 
 consequence text Variant consequence 
 geneid text Gene Id (from NCBI or Ensembl) 
 genename text Gene short name 
 transcript text Transcript Id (if provided) 
 feature text Feature annotation 
 genetype text Location of variant 
 proteinposition int Relative position of aminoacid in protein 
 aachange text Aminoacid change 
 codonchange text Alternative codon with the variant 
 organism text Organism name  
 tissue text Tissue 
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Table 4.4 (continued) Fields in FastBit system for querying. FastBit fields are similar 
to the (A) variant information tables, (B) expression information tables and (C) gene 
counts information in the RDB, allowing synonymous access to queries data across 
both systems. 

Fields Type Description 
B.   
 sampleid text Sample Id 
 chrom key Gene/Feature chromosome 
 start int Gene/Feature start position 
 stop int Gene/Feature end position 
 genename text Gene short name (if available) 
 geneid text Gene Id(s) associated with the 

gene/feature 
 coverage double Estimated absolute depth of read 

coverage for the gene/feature 
 tpm double TPM of the Gene/Feature 
 fpkm double FPKM of the Gene/Feature 
 

fpkmconflow double 
The lower bound of the 95% confidence 
interval on the FPKM of the 
Gene/Feature 

 
fpkmconfhigh double 

The upper bound of the 95% confidence 
interval on the FPKM of the 
Gene/Feature 

 fpkmstatus char Quantification status for the 
Gene/Feature 

 genename text Gene short name 
 tissue text Tissue 
C.   
 sampleid text Sample Id 
 genename text Gene short name (if available) 
 readcount Int Read counts per Gene  
 organism text Organism name  
 tissue text Tissue 
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4.6 Package Toolkit 

4.6.1 Package Components 

TransAtlasDB system provides a command-line toolkit and can be used on 

diverse hardware systems where standard Perl modules and the Perl-DBD module are 

installed. The toolkit contains a suite of Perl scripts for handling the varied and large 

amounts of data generated from gene expression profiling and variant detection 

analysis. The suite serves several purposes: data entry into and data retrieval from the 

database(s); data browsing, double entry data validation, and verification of the 

different data files specified; completeness of data import; generation of complex 

reports and exports dynamic user-defined queries; and extracts subsets of data in tab 

delimited format. This suite provides semi-automated solutions that simplify the 

complexity of data storage and data querying methods by creating a user-friendly data 

management workflow. A brief outline of the package design is provided in Table 4.5. 

Table 4.5 Scripts within the TransAtlasDB toolkit. 

File Name module Description 
INSTALL-tad.pL  Database installation module 
connect-tad.pL  MySQL & FastBit re-connection application 
tad-import.pl   
 metadata Database sample import module 
 data2db Database import module 
 delete Database sample delete module 
tad-interact.pl  Database interactive module with pre-

configured database queries 
tad-export.pl   
 query User database queries 
 db2data Database retrieval module 
example/  Folder with sample files 
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Additionally, the package offers a simple and quick installation procedure for 

setting up the database systems (via INSTALL-tad.pL). The detailed description of the 

source code and suite functionality with an example of usage are accessible via 

https://modupeore.github.io/TransAtlasDB/tutorial.html. The basic hardware and 

software requirements, short instruction of the installation and some test files are 

distributed within the package directory. 

4.6.2 Toolkit Usage 

TransAtlasDB Perl toolkit (Table 4.5) is a user-friendly framework that inputs, 

organizes, validates, archives and process complex transcriptome analyses data. The 

summaries of every transaction will be stored in log files for future reference. A 

pictorial representation of the procedures for data import and export are shown in 

Figure 4.4 and Figure 4.5 respectively. 

4.6.2.1 Installation of TransAtlasDB 

The TransAtlasDB database system and necessary components need to be 

installed to a local disk using INSTALL-tad.pL. The MySQL server and FastBit 

software should have been previously installed and added to the systems’ or users’ 

executable path. Only the ‘–password’ argument is required if the user has admin 

privileges to the MySQL server. Otherwise, additional arguments, such as the ‘–

username’, ‘–databasename’ will be needed. The NoSQL folder-name and location 

can be optionally specified; if not done, a default folder ‘transatlasfb’ will be created 

in the working directory. The installation module needs to be carried out once per 

local disk to prevent database access conflict. However, if such conflict arises user 

settings can be viewed and, if needed, corrected (via connect-tad.pL). 
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4.6.2.2 Import Data using tad-import.pl 

The sample information or sample metadata consists of the relevant details 

needed to uniquely identify each specimen used for RNAseq. The sample metadata 

can be imported (via the ‘–metadata’ argument) from either the FAANG sample 

submission spreadsheet or a tab-delimited file (Figure 4.4[a]). The sample name must 

be unique for each sample and should follow the sample-naming-scheme of the 

FAANG BioSamples group – short species code, laboratory or institute short name, 

and alphanumeric sample ID – separated by underscore. For instance, the sample 

name, GGA_UD_1004, represents Gallus gallus species from University of Delaware 

with sample ID 1004. The sample information is also the reference point for the 

resulting data from transcriptome analysis with such sample. 

After importing the sample metadata, the transcriptome analysis results can be 

inserted using the ‘–data2db’ argument (Figure 4.4[b]). The transcriptome profiling 

data or variant analysis data can be imported together (‘–all’ flag) or separately (‘–

gene’ or ‘–variant’ flag) with data files in the directory structure presented in Figure 

4.2. The variant functional-annotations predicted from either VEP or ANNOVAR can 

also be imported using additional flag (‘–vep’, ‘–annovar’ respectively) and must be in 

their default tab-delimited format. If VEP, the filename should end with ‘.vep.txt’, or 

else if ANNOVAR, the file having suffix ‘.multianno.txt’ will be accepted.  

Be aware that analysis results for a sample can only be imported once to ensure 

data integrity, nonetheless, previously imported data can be cautiously deleted using 

the ‘–delete’ argument followed by sample name.  
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Figure 4.4 Data import procedure using tad-import.pl and available options for (A) 
samples metadata and (B) RNAseq data respectively. 

4.6.2.3 Export Data using tad-export.pl 

The export module offers two methods of extracting data from the database. 

One method allows users to execute direct data manipulation language (DML) SQL 

statements to the relational database (using the ‘–query’ argument). For instance, 

executing the query ‘show tables’ will retrieve all the rows currently in the database, 

which can be stored as a tab-delimited file. 

The second method (via ‘–db2data’ argument) consists of four options that are 

of research interest: (1) Average expression values of specified genes organized by the 

different tissues. (2) Gene expression profiles across the different samples of the same 

organism. Specific samples can be selected. (3) Variant distribution of all, or selected 
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chromosomes for individual samples in the database. (4) Variants and predicted 

functional annotations found in the organism or selected genes or chromosomes. The 

exported results can be written as a tab-delimited table or VCF output for variants 

(Figure 4.5). 

 

Figure 4.5 Data export procedure using tad-export.pl and available options either 
executing a MySQL query syntax or choosing from the four defined 
(avgfpkm, genexp, chrvar, and varanno) options. 

If uncertain how to proceed with the export module, the interaction module 

(via tad-interact.pl) provides an easy-to-use menu-driven interface. The menu offers 

seven choices of exploratory research interest and provides a detailed description of 
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what can be done from the module. With little effort, it is self-explanatory to use. The 

interaction module only displays a small subset of results, nevertheless, further 

instructions on how to export the complete results will be displayed.  

4.6.3 Web Portal & Use Cases 

The PHP web environment provides another user-friendly access to the 

TransAtlasDB database system. The web portal provides detailed overview of the 

samples currently archived in the system, and options to query and export requested 

data from the database system.  It relies on the perl command-line toolkit for 

interacting with the databases.  

The use cases below are some examples of how biological inferences can be 

derived from the various RNAseq analysis data files stored in our TransAtlasDB 

system using the web environment. These examples can also be retrieved in the 

command-line toolkit provided.  

TransAtlasDB web interface is comprised of five sections: (i) About page 

gives a summary of the samples archived in the database. (ii) Data Import page 

provides two methods of importing the samples metadata; either by uploading a 

sample file (FAANG spreadsheet or template tab-delimited file) or by manual entry. 

Storing the large data files such as the gene expression profiling and variants analysis 

results can only be done using the Perl toolkit as explained above.  (iii) SQL Query 

page executes specified SQL queries to both databases. (iv) Metadata page displays 

the samples stored in the database and an overview of each sample storage-status as 

well as the analysis summary where applicable. The samples can be exported as a tab-

delimited file. (v) Gene Expression page; the gene expression data can be viewed 

based on the individual sample-gene expression or average expression profiles of 
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multiple genes across all samples and tissues. By specifying one or more genes by 

their gene symbols, a fuzzy search is performed based on the characters specified. (vi) 

Variant page; variants can be viewed through querying gene symbols or chromosomal 

regions. 

4.6.3.1 SQL queries 

TransAtlasDB allows for the execution of SQL data query language (DQL) to 

both the MySQL relational database and FastBit NoSQL database using the 

appropriate SQL DQL syntaxes. This feature provides users unrestricted access to 

both database content without the limitation of having to interact with the command 

line. Select statements performed on either database will return a table of records 

based on the select expression. For instance, viewing the mapping metadata of all 

samples stored in TransAtlasDB; executing ‘select * from Metadata’ will provide all 

records stored in the Metadata table (Figure 4.6[A]). FastBit provides an interactive 

bitmap index search (ibis) which are identical to SQL DQL statements but recognizes 

a limited number of attributes compared to the relational database. Select statements 

executed to the NoSQL directories will not require the FROM clause to be specified, 

rather the NoSQL directories can be selected from the drop-down menu provided. 

Figure 4.6[B] displays the gene-information records for this statement: ‘select 

sampleid, chrom, start, stop, genename where organism like "Canis familia%" and 

genename != "NULL" order by chrom limit 10’. 
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Figure 4.6 Performing SQL DQL via the web interface to the (A) relational and (B) 
nonrelational database. 

4.6.3.2 Summary of TransAtlasDB content and Analyses metadata 

Descriptive tables of the database content and status of the analyses data 

import can be displayed to provide users a way to quickly visualize samples already 

archived in the database and get the current status of all the samples archived in the 

database. Summary tables can be viewed in the About page (Figure 4.7), and Analyses 

data import status tables can be viewed in the Metadata page (Figure 4.8).  
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Figure 4.7 Various summary tables displaying database content in the About page. 

 

Figure 4.8 Various summary tables displaying database content in the About page. 

4.6.3.3 Investigating gene expression levels & variants. 

Based on the example data files provided, two Gallus gallus samples from the 

Pituitary gland, were previously imported into TransAtlasDB. Consider examining a 

summary of the Optineurin (OPTN) gene from the samples in the database (Figure 

4.9[A]) on close inspection the summary of OPTN reveals identical minimum, average 

and maximum fpkm values indicating the gene may have identical fpkm values across 

all samples. Further exploration based on individual samples reveals OPTN may not 

be expressed in one of the samples, GGA_UD_1014, despite being obtained from the 
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same tissue, Pituitary gland (Figure 4.9[B]). These results can be exported as a tab-

delimited file and adapted into statistical packages such as R or JMP for further 

analysis.  

Unsure of the reason for different expression of the OPTN gene between the 

two samples, the variants can be examined by specifying the gene name (Figure 

4.9[C]) or chromosomal region (Figure 4.9[D]). Multiple synonymous SNPs were 

found along the OPTN genomic region in sample GGA_UD_1014, while 

GGA_UD_1004 had only one synonymous SNP. The large number of SNPs in the 

GGA_UD_1014 sample, though synonymous, may have an effect on gene expression 

or mRNA stability and serves as a potential avenue for further analysis. These results 

can also be exported as a tab-delimited file for statistical analysis or as a VCF file to 

be used for downstream analysis or visualization. 
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Figure 4.9 Use Cases via the web interface. (A) Genes summary expression levels 
across all samples. (B) Genes fpkm expression level for each sample. (C) 
Variants found in the OPTN gene. (D) Variants found around the 
chromosomal region of the OPTN gene. 
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4.7 Future Developments 

The limitless resource potential of TransAtlasDB provides numerous options 

for expansion to integrate data files from other transcriptomic analyses studies and 

other next generation sequencing platforms like Exome sequencing. The database 

system is currently being extended to integrate analyses data files from human cancer 

studies. 

 

4.8 Conclusion 

The TransAtlasDB system should serve as a useful management platform for 

samples metadata and data derived from transcriptome analyses. Users can expertly 

store sample information and RNAseq analyses results and retrieve needed data based 

on specified query either using the Perl toolkit or web environment provided. 

TransAtlasDB provides the abstract layer with methods for data manipulation with 

minimum efforts to install a running system. TransAtlasDB adopts a hybrid 

infrastructure containing both types of database technologies; the relational database 

system maintains data in an organized form that eliminates data redundancy and 

enables efficient data management while the NoSQL system provides fast indexing 

and query performance that scales beyond the capabilities of relational databases. This 

makes TransAtlasDB a sophisticated database system capable of storing, organizing, 

and maintaining massive and complex transcriptome analyses data without 

compromise in performance whilst enforcing data integrity. The modular architecture 

of the system makes it possible to expand and integrate other analysis procedures 

potentially needed in the future. The database application is currently modeled to 

handle analyses data files from agricultural species and will be expanded to include 



 81 

more species groups. A major advantage is that the platform can be installed locally, 

where users can personalize the hardware/software environment and data to import for 

storage, organization, access, and exchange of biological data. The modular 

architecture of the toolkit also enables addition of any extensions needed by the user. 

It is believed TransAtlasDB will be a useful and user-friendly environment for 

transcriptome analyses database storage. 
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GENOMIC REGIONS IN CANDIDATE SWEEPS 

Table A.1 Genomic regions identified as candidate sweeps in Ross and Illinois lines. 
Consecutive 10 kb sliding windows with ZH scores < -3 were merged. 

Coordinatesa Line Winb SNPsc ZHwd Hete GENESf 
chr1:1.18-1.20 Ross 1 53 -3.031 0.053 NET1, TUBAL3 
chr1:3.45-3.47 Ross 1 18 -3.582 0.001 K123, MIR29A 
chr1:4.10-4.12 Ross 1 44 -3.254 0.032 IL2RA, LOC419112 
chr1:9.05-9.07 Ross 1 10 -3.18 0.039 SEMA3A, SEMA3E 
chr1:11.38-11.40 Ross 1 10 -3.476 0.011 GNAI1 
chr1:13.75-13.78 Ross 2 46 -3.116 0.025 ORC5, PUS7 
chr1:18.74-18.76 Illinois 1 18 -3.073 0.007 *BRD1 

chr1:30.63-30.66 Illinois 2 39 -3.024 0.009 *ENSGALG00000009638, 
DBX2, SCAF11 

chr1:30.73-30.76 Illinois 2 29 -3.132 0.001 DBX2, SCAF11 

chr1:30.83-30.88 Illinois 4 38 -3.024 0.001 *ENSGALG00000033074, 
DBX2, SCAF11 

chr1:36.34-36.37 Illinois 2 34 -3.093 0.003 *ENSGALG00000010177, 
TBC1D15, TSPAN8 

chr1:37.81-37.83 Illinois 1 33 -3.122 0.002 *KRR1, GLIPR1L 

chr1:40.03-40.05 Ross 1 14 -3.158 0.041 *ENSGALG00000010939, 
MYF5 

chr1:44.90-44.93 Ross 2 16 -3.127 0.002 CRADD, SOCS2 
chr1:48.34-48.36 Ross 1 10 -3.074 0.049 EMP1 
chr1:48.82-48.84 Illinois 1 12 -3.044 0.01 ATF7IP, MIR6581 
chr1:54.55-54.58 Illinois 2 23 -3.073 0 SLC41A2, TXNRD1 
chr1:54.61-54.67 Ross 3 98 -3.074 0.046 SLC41A2, TXNRD1 
chr1:55.37-55.44 Ross 4 57 -3.539 0 *IGF1, *PARPBP, PMCH 
chr1:55.41-55.44 Illinois 2 14 -3.132 0.001 *PARPBP, IGF1, PMCH 
chr1:55.48-55.51 Ross 2 29 -3.116 0.029 *NUP37, CHPT1 
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chr1:57.85-57.88 Illinois 2 36 -3.044 0.009 *CHRM2, MIR490, PTN 
chr1:58.72-58.74 Illinois 1 13 -3.073 0.007 C7orf73, DNM1L 
chr1:60.04-60.07 Ross 2 26 -3.158 0.037 RAD52, WASHC1 

chr1:60.39-60.42 Ross 2 36 -3.264 0.012 *ENSGALG00000012988, 
RAD52, WASHC1 

chr1:64.44-64.46 Illinois 1 17 -3.073 0.007 CAPZA3, SLCO1C1 
chr1:65.58-65.60 Ross 1 10 -3.19 0.038 MIR6608-1, RECQL 
chr1:69.76-69.78 Ross 1 12 -3.074 0.049 PRR5 

chr1:76.29-76.32 Illinois 2 16 -3.122 0.002 *ENSGALG00000031659, 
OVST, PHC1 

chr1:76.49-76.52 Ross 2 14 -3 0.046 CD86, MIR6606 

chr1:78.95-78.98 Ross 2 17 -3.021 0.054 *ENSGALG00000035228, 
HSD3B1, WDR3 

chr1:79.97-79.99 Ross 1 10 -3.518 0.007 COX17, MIR6609 
chr1:83.42-83.44 Ross 1 30 -3.021 0.054 CD200R1, CD200R1L 
chr1:84.18-84.20 Ross 1 23 -3.116 0.045 ST3GAL6, TBX19 
chr1:88.59-88.62 Illinois 2 16 -3.054 0.008 CD200L, MIR7446 
chr1:92.43-92.46 Ross 2 23 -3.095 0.034 GJA5, GJA8 

chr1:92.56-92.58 Ross 1 10 -3.275 0.03 *ENSGALG00000015494, 
GPR89B, POU1F1 

chr1:92.85-92.87 Ross 1 24 -3.497 0.009 *POU1F1, CHMP2B 

chr1:101.33-101.35 Ross 1 15 -3.233 0.034 C1H21ORF91, 
MIR155HG 

chr1:104.95-104.97 Illinois 1 14 -3.024 0.012 *ENSGALG00000032882, 
C1H21ORF59, MIR1738 

chr1:106.79-106.81 Ross 1 19 -3.021 0.054 *ENSGALG00000016044, 
CHAF1B, DYRK1A 

chr1:109.20-109.23 Ross 2 14 -3.391 0.01 *ENSGALG00000016157, 
MX1, UBASH3A 

chr1:110.26-110.28 Ross 1 15 -3.317 0.026 C1H21ORF33, PDXK 
chr1:110.45-110.48 Ross 2 14 -3.317 0.02 ICOSLG, MIR222 
chr1:111.11-111.14 Ross 2 32 -3 0.043 EFHC2, NDP 
chr1:114.18-114.21 Illinois 2 39 -3.034 0.011 DMD, PRRG1 
chr1:114.48-114.50 Ross 1 32 -3.169 0.04 DMD, PRRG1 
chr1:118.54-118.57 Ross 2 17 -3.317 0.026 ACOT9, PHEX 
chr1:121.38-121.40 Ross 1 22 -3.063 0.05 RBBP7, REPS2 
chr1:123.28-123.31 Illinois 2 14 -3.034 0.011 EGFL6, TMSB4X 
chr1:133.88-133.90 Illinois 1 23 -3.073 0.007 *IL1R1 
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chr1:137.47-137.49 Illinois 1 37 -3.093 0.005 *ENSGALG00000016828, 
LAMP1, TMCO3 

chr1:163.97-164.00 Ross 2 13 -3.211 0.036 OLFM4, TDRD3 
chr1:166.63-166.65 Ross 1 15 -3.116 0.045 DNAJC15, TNFSF11 
chr1:167.85-167.87 Illinois 1 10 -3.044 0.01 *SPERT, LCP1 
chr1:168.98-169.01 Illinois 2 18 -3.054 0.009 FNDC3A, RB1 
chr1:173.38-173.41 Ross 2 14 -3.021 0.05 NBEA 
chr1:175.13-175.15 Ross 1 15 -3.18 0.039 HMGB1, USPL1 
chr1:187.82-187.84 Ross 1 11 -3.582 0.001 NOX4 
chr1:188.84-188.86 Ross 1 10 -3.169 0.04 FZD4, MIR1664 
chr2:1.21-1.23 Illinois 1 14 -3.054 0.009 ADCYAP1R1, GHRHR 
chr2:1.74-1.77 Illinois 2 10 -3.015 0.013 VIPR1 
chr2:6.41-6.45 Ross 3 49 -3.19 0.01 *PRKAG2 
chr2:16.77-16.79 Ross 1 16 -3.063 0.05 PRTFDC1 
chr2:20.06-20.09 Ross 2 15 -3.243 0.013 RSU1 
chr2:20.72-20.74 Illinois 1 16 -3.005 0.014 ABCB1, RPP38 

chr2:21.90-21.93 Illinois 2 21 -3.093 0.004 *ENSGALG00000009062, 
FZD1, MIR466 

chr2:22.94-22.96 Illinois 1 20 -3.132 0.001 *ENSGALG00000009479, 
CDK6, VPS50 

chr2:31.18-31.20 Ross 1 29 -3.148 0.042 *ENSGALG00000010949, 
IGF2BP3, NUPL2 

chr2:34.23-34.26 Ross 2 19 -3.158 0.041 BTD, DPH3 
chr2:45.31-45.34 Ross 2 17 -3.18 0.039 MIR1607, PDCD6IP 
chr2:46.03-46.05 Ross 1 16 -3.317 0.026 ELMO1, MIR128-2 
chr2:48.21-48.23 Illinois 1 31 -3.093 0.005 FKBP9, LSM5 
chr2:50.00-50.02 Ross 1 11 -3.031 0.053 INHBA, VPS41 
chr2:50.22-50.25 Ross 2 24 -3.444 0.014 INHBA, VPS41 
chr2:52.29-52.31 Ross 1 11 -3.486 0.01 SEC61G 
chr2:53.21-53.23 Ross 1 13 -3.412 0.017 PDIA4, SEC61G 
chr2:53.29-53.32 Illinois 2 17 -3.141 0 PDIA4, SEC61G 
chr2:53.50-53.53 Ross 2 13 -3.296 0.028 PDIA4, SEC61G 
chr2:59.14-59.16 Ross 1 14 -3.243 0.033 MBOAT1, SOX4 
chr2:60.32-60.35 Ross 2 29 -3.391 0.012 DEK, ID4 
chr2:61.07-61.09 Ross 1 34 -3.127 0.044 JARID2, SIRT5 
chr2:63.85-63.89 Illinois 3 41 -3.073 0.003 BLOC1S5, TFAP2A 
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chr2:65.11-65.13 Ross 1 32 -3.285 0.029 LY86 
chr2:65.79-65.81 Ross 1 23 -3.031 0.053 LYRM4, TUBB2B 
chr2:66.22-66.24 Ross 1 22 -3.349 0.023 LYRM4, TUBB2B 

chr2:68.00-68.02 Ross 1 10 -3.222 0.035 *ENSGALG00000012873, 
OVALX, VPS4B 

chr2:79.40-79.43 Ross 2 19 -3.412 0.016 CCT5, PAPD7 
chr2:80.22-80.25 Ross 2 18 -3.349 0.023 NSUN2, ZPBP 

chr2:84.49-84.51 Illinois 1 36 -3.141 0 *ENSGALG00000013138, 
BAG1, GALNT1, MIR32 

chr2:84.58-84.62 Illinois 3 28 -3.005 0.002 BAG1, MIR32 
chr2:84.61-84.63 Ross 1 18 -3.031 0.053 BAG1, MIR32 

chr2:88.12-88.14 Illinois 1 23 -3.122 0.002 *ENSGALG00000013196, 
IRX1, MIR1816 

chr2:90.21-90.23 Illinois 1 20 -3.141 0 CARMIL1 
chr2:93.97-93.99 Illinois 1 26 -3.015 0.013 *RTTN 
chr2:95.00-95.03 Ross 2 15 -3.582 0.001 CDH19, TMX3 
chr2:96.75-96.77 Ross 1 15 -3.476 0.011 MC2R, MC5R 

chr2:99.00-99.02 Ross 1 11 -3.021 0.054 *ENSGALG00000038316, 
LAMA1, TWSG1 

chr2:103.53-103.55 Ross 1 21 -3.211 0.036 *ENSGALG00000015064, 
GATA6, MIR1597 

chr2:105.33-105.35 Illinois 1 12 -3.034 0.011 CDH2, TTR 

chr2:115.25-115.27 Ross 1 27 -3.106 0.046 *ENSGALG00000038395, 
MTFR1, TRIM55 

chr2:115.92-115.94 Ross 1 11 -3.275 0.03 CPA6 
chr2:116.39-116.42 Ross 2 13 -3.095 0.036 CPA6, MIR1569-2 

chr2:127.81-127.84 Ross 2 43 -3.148 0.008 *ENSGALG00000034050, 
CPQ, RPL30 

chr2:130.54-130.56 Ross 1 23 -3.412 0.017 *ENSGALG00000033520, 
DCAF13, DPYS 

chr2:136.08-136.10 Illinois 1 17 -3.015 0.013 MIR1467-2, TNFRSF11B 
chr2:136.52-136.54 Ross 1 14 -3.222 0.035 MAL2, NOV 
chr2:139.36-139.39 Ross 2 17 -3.486 0.009 MYC, NSMCE2 
chr2:141.45-141.48 Illinois 2 32 -3.112 0.003 LRRC6, MYC 
chr2:142.05-142.07 Ross 1 23 -3.01 0.055 *WISP1 

chr2:149.22-149.24 Illinois 1 14 -3.024 0.012 *ENSGALG00000039346, 
FK1L, PUF60 

chr3:6.17-6.20 Illinois 2 11 -3.005 0.012 NRXN1, OTOR 
chr3:8.48-8.50 Illinois 1 22 -3.054 0.009 FAM179A, YPEL5 
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chr3:9.03-9.05 Ross 1 11 -3.529 0.006 B3GNT2, PPP1R21 
chr3:15.06-15.08 Ross 1 12 -3.063 0.05 BMP2, MIR1756B 
chr3:16.46-16.48 Illinois 1 10 -3.063 0.008 EIF4A3, HNRNPLL 
chr3:19.15-19.17 Ross 1 24 -3 0.056 LYPLAL1 
chr3:19.96-19.99 Ross 2 26 -3.148 0.038 ESRRG, GPATCH2 
chr3:24.06-24.09 Ross 2 43 -3.264 0.029 COX7A2L, ZFP36L2 
chr3:24.11-24.14 Illinois 2 14 -3.083 0.006 COX7A2L, ZFP36L2 

chr3:25.41-25.43 Ross 1 11 -3.158 0.041 *ENSGALG00000009967, 
PPM1B, THADA 

chr3:29.13-29.16 Ross 2 22 -3.486 0.009 *ENSGALG00000010057, 
GLP1R, LOC421419 

chr3:32.56-32.58 Illinois 1 12 -3.015 0.013 CEBPZ, CRIM1 

chr3:37.34-37.36 Illinois 1 14 -3.122 0.002 *ENSGALG00000010812, 
CHRM3, MIR135B 

chr3:38.05-38.08 Ross 2 14 -3.031 0.053 GPR137B, NTPCR 
chr3:40.00-40.02 Ross 1 11 -3 0.056 ACTA1, EXOC8 

chr3:40.24-40.26 Illinois 1 17 -3.005 0.014 *ENSGALG00000011101, 
ACTA1, PDCD2 

chr3:40.44-40.46 Illinois 1 15 -3.015 0.013 *ENSGALG00000011111, 
ACTA1, PDCD2 

chr3:45.27-45.30 Illinois 2 15 -3.122 0.002 *PRKN, IGF2R, QKI 

chr3:45.39-45.42 Illinois 2 26 -3.044 0.005 *ENSGALG00000020003, 
IGF2R, QKI 

chr3:46.33-46.36 Ross 2 11 -3.063 0.05 *ENSGALG00000012256, 
MIR1734, SF3B5 

chr3:46.63-46.65 Illinois 1 23 -3.044 0.01 EPM2A 

chr3:49.48-49.50 Ross 1 10 -3.18 0.039 
*ENSGALG00000013505, 
*ENSGALG00000042638, 
ESR1, VIP 

chr3:49.52-49.54 Ross 1 11 -3.486 0.01 *ENSGALG00000042638, 
ESR1, VIP 

chr3:50.37-50.40 Ross 2 37 -3.169 0.037 RGS17, TIAM2 
chr3:50.43-50.46 Ross 2 23 -3.412 0.014 RGS17, TIAM2 
chr3:54.81-54.84 Ross 2 22 -3.19 0.032 IFNGR1, PERP1 

chr3:55.98-56.00 Ross 1 15 -3.296 0.028 *ENSGALG00000013962, 
MYB, SGK1 

chr3:59.12-59.15 Illinois 2 14 -3.093 0.005 ECHDC1, MIR1660 
chr3:59.21-59.25 Illinois 3 23 -3.054 0.001 ECHDC1, MIR1660 
chr3:60.05-60.07 Illinois 1 33 -3.132 0.001 HDDC2, NCOA7 
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chr3:61.07-61.11 Illinois 3 82 -3.083 0.003 *ENSGALG00000014848, 
FABP7, NKAIN2 

chr3:62.42-62.48 Illinois 5 57 -3.102 0 GJA1, MCM9 
chr3:62.72-62.75 Illinois 2 21 -3.024 0.012 GJA1, MCM9 
chr3:62.72-62.75 Ross 2 21 -3.031 0.051 GJA1, MCM9 
chr3:64.19-64.23 Ross 3 28 -3.254 0.02 *FRK, FAM26E, HDAC2 
chr3:67.27-67.29 Illinois 1 15 -3.093 0.005 FIG4, MIR6699 
chr3:67.51-67.53 Illinois 1 12 -3.005 0.014 FIG4, MIR6699 
chr3:69.70-69.73 Ross 2 11 -3.518 0.007 ASCC3, HACE1 
chr3:75.53-75.56 Ross 2 12 -3.095 0.047 EPHA7, LYRM2 
chr3:76.69-76.71 Illinois 1 19 -3.083 0.006 *RARS2, ORC3 

chr3:82.67-82.69 Ross 1 15 -3.19 0.038 *ENSGALG00000015951, 
B3GAT2, MIR30C2 

chr3:88.47-88.49 Illinois 1 10 -3.063 0.008 *ENSGALG00000046637, 
ELOVL5, TINAG 

chr3:92.38-92.41 Ross 2 25 -3.116 0.004 ACP1, TMEM18 
chr3:93.90-93.93 Ross 2 11 -3.053 0.047 TMEM18, TSSC1 
chr3:98.07-98.10 Ross 2 27 -3.349 0.023 E2F6, TRIB2 
chr3:98.47-98.50 Ross 2 12 -3.19 0.038 DDX1, TRIB2 
chr3:111.28-111.30 Ross 1 12 -3.391 0.019 PTCHD4 
chr4:12.59-12.61 Ross 1 10 -3.095 0.047 MIR1573, UPRT 
chr4:23.51-23.54 Ross 2 11 -3.275 0.03 ETFDH, NPY1R 
chr4:24.00-24.02 Ross 1 16 -3.465 0.012 KLHL2 
chr4:26.75-26.77 Ross 1 10 -3.349 0.023 LOC422426, PCDH10 
chr4:31.63-31.65 Illinois 1 11 -3.044 0.01 LSM6, SLC10A7 
chr4:32.16-32.18 Ross 1 30 -3.423 0.016 EDNRA 

chr4:35.76-35.79 Illinois 2 16 -3.122 0.002 *ENSGALG00000010391, 
HPGDS, SNCA 

chr4:36.24-36.27 Ross 2 17 -3.307 0.026 HPGDS, SNCA 
chr4:37.15-37.17 Ross 1 28 -3.539 0.005 HPGDS, SNCA 
chr4:47.50-47.52 Ross 1 14 -3.084 0.048 GPAT3, MIR1730 
chr4:51.26-51.28 Ross 1 20 -3.053 0.051 *IL8L1 
chr4:51.91-51.93 Ross 1 23 -3.01 0.055 CENPC 
chr4:61.08-61.10 Illinois 1 30 -3.005 0.014 H2AFZ, NFKB1 
chr4:63.49-63.51 Illinois 1 52 -3.112 0.003 CNOT7, MIR1605 
chr4:66.63-66.65 Ross 1 11 -3.074 0.049 SGCB, TEC 
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chr4:69.49-69.51 Ross 1 13 -3.296 0.028 MIR6586, PDS5A 

chr4:70.37-70.39 Ross 1 13 -3.031 0.053 *ENSGALG00000014337, 
RELL1 

chr4:73.57-73.60 Ross 2 22 -3.444 0.014 CCKAR 
chr4:78.60-78.62 Ross 1 15 -3.169 0.04 RAB28, WDR1 
chr4:83.66-83.69 Ross 2 27 -3.497 0.005 LOC422894, MXD4 
chr4:89.61-89.63 Ross 1 17 -3.106 0.046 HTR7L, MIR1684 
chr4:90.02-90.04 Ross 1 16 -3.264 0.031 ADAM33, GFRA4 
chr5:5.23-5.25 Ross 1 11 -3.264 0.031 PAX6, WT1 
chr5:5.45-5.47 Illinois 1 11 -3.024 0.012 *WT1 

chr5:8.84-8.87 Ross 2 17 -3.243 0.032 *ENSGALG00000005632, 
EIF4G2, LYVE1 

chr5:11.87-11.89 Ross 1 31 -3.042 0.052 *ENSGALG00000006172, 
FTL, NUCB2 

chr5:11.91-11.93 Ross 1 20 -3.053 0.051 *ENSGALG00000006172, 
FTL, NUCB2 

chr5:12.10-12.13 Ross 2 36 -3.476 0.009 FTL, NUCB2 
chr5:13.65-13.67 Illinois 1 11 -3.015 0.013 CD81, MIR6642 
chr5:14.29-14.31 Illinois 1 33 -3.024 0.012 BRSK2, CTSD 
chr5:21.21-21.23 Illinois 1 11 -3.132 0.001 API5, C5H11orf74 
chr5:24.14-24.16 Ross 1 11 -3.211 0.036 SLC35C1, ZFYVE19 
chr5:28.20-28.22 Ross 1 10 -3.338 0.024 ACTN1, EXD2 
chr5:29.29-29.32 Ross 2 11 -3.561 0.003 GPHN 
chr5:29.34-29.37 Ross 2 63 -3.169 0.028 BMF, GPHN 
chr5:29.84-29.87 Ross 2 23 -3.158 0.026 KATNBL1, THBS1 
chr5:34.25-34.27 Illinois 1 13 -3.054 0.009 COCH 

chr5:34.57-34.60 Ross 2 34 -3.222 0.035 *ENSGALG00000009983, 
COCH, SPTSSA 

chr5:43.98-44.00 Ross 1 14 -3.465 0.012 CALM1, TTC7B 
chr5:48.59-48.61 Illinois 1 17 -3.132 0.001 YY2 

chr5:50.34-50.36 Ross 1 10 -3.137 0.043 *ENSGALG00000011505, 
CKB, EIF5 

chr5:54.32-54.34 Ross 1 10 -3.455 0.013 *ENSGALG00000011893, 
HIF1A, SIX1 

chr6:0.69-0.72 Ross 2 14 -3.275 0.03 BICC1, PHYHIPL 
chr6:6.60-6.62 Ross 1 30 -3.095 0.047 * PCDH15 
chr6:9.52-9.54 Ross 1 20 -3.529 0.006 MINPP1, RNLS 
chr6:9.60-9.62 Ross 1 16 -3.222 0.035 MINPP1, RNLS 
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chr6:11.23-11.25 Ross 1 13 -3.095 0.047 *ENSGALG00000004345, 
DNAJB12, P4HA1 

chr6:17.19-17.21 Ross 1 10 -3.434 0.015 MIR6577, PAX2 
chr6:17.45-17.47 Illinois 1 10 -3.122 0.002 NDUFB8, SCD 
chr6:19.27-19.30 Ross 2 18 -3.042 0.052 CH25H, FAS 
chr6:20.32-20.34 Illinois 1 13 -3.054 0.009 LGI1, PDE6C 
chr6:20.32-20.34 Ross 1 19 -3.116 0.045 LGI1, PDE6C 
chr6:20.58-20.60 Ross 1 10 -3.095 0.047 EXOC6 

chr6:20.79-20.83 Illinois 3 96 -3.112 0.002 *ENSGALG00000038924, 
*MARCH5, KIF11 

chr6:21.15-21.17 Ross 1 12 -3.476 0.011 BLNK, DNTT 
chr6:28.51-28.53 Ross 1 22 -3.243 0.033 GFRA1, MIR1815 

chr6:30.39-30.41 Illinois 1 21 -3.024 0.012 *ENSGALG00000009466, 
*MCMBP, FGFR2 

chr6:31.87-31.89 Ross 1 10 -3.243 0.033 BUB3, OAT 

chr7:5.80-5.82 Illinois 1 43 -3.024 0.012 
*ENSGALG00000004196, 
*ENSGALG00000031157, 
MIR6691-1, USP40 

chr7:6.13-6.15 Ross 1 13 -3.285 0.029 TWIST2 
chr7:12.20-12.22 Ross 1 15 -3.084 0.048 FZD5, METTL21A 
chr7:17.10-17.13 Ross 2 16 -3.031 0.05 OLA1 
chr7:17.35-17.38 Ross 2 11 -3.317 0.026 PPP1R9B, SP3 
chr7:17.96-17.98 Illinois 1 17 -3.083 0.006 DLX1, HAT1 

chr7:18.64-18.66 Ross 1 16 -3.444 0.014 *ENSGALG00000035605, 
SP5, SSB 

chr7:21.75-21.77 Illinois 1 13 -3.015 0.013 RBMS1 
chr7:29.04-29.06 Ross 1 27 -3.116 0.045 *CCDC93 
chr7:36.30-36.32 Ross 1 33 -3.031 0.053 KCNJ3, MIR6546 

chr7:36.42-36.44 Ross 1 27 -3.412 0.017 *ENSGALG00000041257, 
KCNJ3, MIR6546 

chr7:36.55-36.57 Ross 1 11 -3.434 0.015 ACVR1, PKP4 

chr8:1.26-1.31 Ross 2 91 -3.158 0.033 *ENSGALG00000001983, 
*STXBP3, NR5A2 

chr8:1.42-1.44 Ross 1 11 -3.233 0.034 *ENSGALG00000002145, 
NR5A2, STXBP3 

chr8:1.78-1.80 Ross 1 11 -3.158 0.041 MIR181A1, NR5A2 
chr8:3.75-3.77 Ross 1 14 -3.455 0.013 HSD17B7, RGS4 
chr8:14.33-14.35 Ross 1 10 -3.338 0.024 C8H1ORF146, TGFBR3 
chr8:15.73-15.76 Illinois 2 20 -3.044 0.008 LMO4, ZNF326 
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chr8:16.77-16.79 Ross 1 13 -3.031 0.053 MIR1761, SAMD13 
chr8:28.44-28.46 Illinois 1 18 -3.122 0.002 *LEPR 
chr9:8.36-8.38 Illinois 1 21 -3.073 0.007 MRPL44, SERPINE2 
chr9:8.85-8.88 Ross 2 12 -3.211 0.03 MRPL44, SERPINE2 
chr9:10.55-10.57 Illinois 1 38 -3.034 0.011 *TRPC1, MIR1458 
chr9:10.79-10.81 Ross 1 11 -3.529 0.006 SLC9A9 
chr9:11.80-11.82 Illinois 1 10 -3.132 0.001 SLC9A9, ZIC1 
chr9:12.11-12.13 Ross 1 19 -3.148 0.042 MIR6611, ZIC1 
chr9:12.42-12.45 Ross 2 45 -3.031 0.045 *AGTR1, NCBP2 

chr9:15.26-15.28 Ross 1 19 -3.338 0.024 *ENSGALG00000007691, 
NCL, PSMD1 

chr9:16.36-16.38 Ross 1 12 -3.264 0.031 B3GNT5, LAMP3 
chr9:17.96-17.98 Ross 1 10 -3.243 0.033 PIK3CA, TBL1XR1 

chr9:20.39-20.42 Illinois 2 13 -3.122 0.002 *ENSGALG00000009458, 
MIR551B, TERC 

chr10:1.75-1.77 Ross 1 12 -3.285 0.029 ADPGK, MIR1623 

chr10:4.06-4.08 Ross 1 19 -3.095 0.047 *ENSGALG00000003487, 
IDH3A, RPS27L 

chr10:8.70-8.74 Illinois 3 92 -3.063 0.004 
*ARPP19, 
*ENSGALG00000042839, 
*FAM214A, MYO5A 

chr10:14.93-14.96 Ross 2 15 -3.402 0.018 NR2F2, RGMA 
chr10:17.01-17.04 Ross 2 19 -3.476 0.009 MEF2A 
chr10:19.72-19.75 Illinois 2 34 -3.132 0.001 FAM96A, MORF4L1 

chr10:20.24-20.27 Ross 2 14 -3.434 0.014 *ENSGALG00000008425, 
CKMT1A 

chr11:0.37-0.39 Ross 1 25 -3.211 0.036 SLC7A6OS, TLR21 
chr11:2.42-2.44 Ross 1 11 -3 0.056 CBFB 
chr11:4.28-4.30 Ross 1 17 -3.423 0.016 FTO, MMP2 

chr11:11.45-11.47 Ross 1 14 -3.021 0.054 *ENSGALG00000033720, 
*NAE1, RRAD 

chr11:14.04-14.06 Ross 1 11 -3.296 0.028 MIR6595, NUDT7 

chr11:18.56-18.59 Ross 2 42 -3.529 0.006 *ENSGALG00000026534, 
BANP, CIDEC 

chr11:19.05-19.08 Illinois 2 29 -3.122 0.001 *ENSGALG00000000521, 
*TCF25, FANCA, MC1R 

chr12:5.20-5.22 Ross 1 11 -3.359 0.022 *ENSGALG00000044299, 
ACAD9, RAB43 

chr12:16.50-16.52 Ross 1 21 -3.042 0.052 *ENSGALG00000007798, 
MIR1711, PPP4R2 
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chr13:6.15-6.18 Ross 2 18 -3.497 0.009 GABRG2, TENM2 
chr13:7.77-7.79 Ross 1 20 -3.455 0.013 GABRB2, MIR146A 
chr13:17.36-17.38 Ross 1 14 -3.169 0.04 ARHGAP26, FGF1 

chr14:9.14-9.16 Ross 1 12 -3.201 0.037 *ENSGALG00000007216, 
DEXI, NUBP1 

chr14:10.08-10.10 Ross 1 10 -3.307 0.027 *ENSGALG00000042981, 
PMM2, USP7 

chr14:14.39-14.41 Ross 1 12 -3.285 0.029 *MCHR2 
chr15:8.24-8.26 Illinois 1 21 -3.132 0.001 DDT, TBX6 
chr17:8.48-8.50 Illinois 1 11 -3.015 0.013 LHX3, PMPCA 
chr18:0.50-0.52 Ross 1 11 -3.412 0.017 MYH1A, MYH1G 

chr18:0.80-0.82 Ross 1 14 -3.106 0.046 
*ENSGALG00000032178, 
MIR1748, MYH1G, 
MYOCD 

chr18:2.14-2.16 Ross 1 10 -3.296 0.028 STX8 
chr18:3.84-3.86 Ross 1 14 -3.201 0.037 SEPT9 

chr19:0.58-0.60 Ross 1 23 -3.042 0.052 *ENSGALG00000001031, 
MIR1698-2, SUPT4H1 

chr20:10.48-10.50 Ross 1 24 -3.486 0.01 *BPIFB3, BPIFB2, 
MAPRE1 

chr20:11.49-11.51 Ross 1 10 -3.031 0.053 PMEPA1, RAB22A 
chr20:11.65-11.67 Ross 1 14 -3.55 0.004 PMEPA1, RAB22A 
chr21:1.67-1.69 Illinois 1 15 -3.122 0.002 SKI 

chr21:5.85-5.88 Ross 2 19 -3.455 0.013 *ENSGALG00000026658, 
EPHB2, GUCA2A 

chr24:6.13-6.15 Illinois 1 53 -3.054 0.009 *IL18, *SDHD, HSPB2, 
NCAM1 

chr25:2.43-2.46 Ross 2 14 -3.158 0.041 CRP, FCRL2 

chr26:1.74-1.76 Ross 1 12 -3.328 0.025 *ENSGALG00000038399, 
MIR6618, SNRPE 

chr26:1.94-1.96 Ross 1 26 -3.201 0.037 *NFASC 

chr28:4.23-4.25 Ross 1 10 -3.307 0.027 *ENSGALG00000003742, 
MYO9B, TMEM38A 

chr33:0.04-0.06 Ross 1 11 -3.402 0.018 MIR1668 
Note: a Coordinates of region in megabases (Mb). b Number of consecutive ZHw < -3 
windows that were merged. c Number of SNPs identified in region. d The lowest ZHw 
observed for a 10kb window in the region. e The lowest heterozygosity (Hw) observed 
for a 10kb window in the region. f Gene(s) overlapping putative sweep regions: *= 
SNP(s) impact the coding regions of the gene.  
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