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Abstract

A constructive approach is presented to treat an initial boundary
value problem for isothermal Navier Stokes equations. It is based on
a characteristics (Lagrangean) approximation locally in time and a
boundary integral equation method via nonstationary potentials. As
a basic problem, the later leads to a Volterra integral equation of the
first kind which is proved to be uniquely solvable and even coercive in
some anisotropic Sobolev spaces. The solution depends continuously
upon the data and may be constructed by a quasioptimal Galerkin
procedure.
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1 Introduction

In this paper, we are concerned with a boundary integral equation approach
to treat problems of non-stationary isothermal viscous compressible flow.
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For definiteness, let us begin with the initial boundary value problem of the
isothermal Navier-Stokes equations governing the flow in a bounded cavity
Ω ⊂ Rn(n = 2, 3) with smooth boundary ∂Ω:

ρ(vt + v · ∇v)− 1

Re
(∆v +

1

3
∇div v) +∇p(ρ) = 0,

ρt + v · ∇ρ+ ρdiv v = 0 (1.1)

together with boundary and initial conditions:

v|∂Ω = g, ρ|t=0 = ρ0, v|t=0 = v0. (1.2)

Here v(x, t) denotes the velocity field, p(x, t) the pressure field, and ρ(x, t) the
density function. The flow is assumed to be isentropic, that is, the pressure
field p(x, t) is a function of ρ according to the relation

p(ρ) =
c0
κM2

ρκ, (1.3)

where c0 is a constant, κ (≥ 1) denotes the adiabatic exponent (e.g., κ = 1.4
for air at standard sea-level), and M is the Mach number, while Re denotes
the Reynolds number of the flow.

Problem (1.1)-(1.2) may be simplified by means of a semi-implicit method
of time discretization on characteristic (Lagrangean) coordinates (see, e.g.,[5]).
Assuming that the density does not vary too much, we may then determine
the approximate velocity field (on small time intervals) from the linearized
parabolic differential system:

Lv := vt − µ∆v − ν∇div v = f (1.4)

v|∂Ω = g, v|t=0 = v0. (1.5)

Alternatively, (1.4) can be obtained from (1.1), by assuming (relatively) small
velocities of the flow with µ = 1/ρ̄Re, and ν = 1/3µ where

ρ̄ =
1

|Ω|

∫
Ω

ρ0dx (1.6)

denotes the mean density of the flow, while the nonhomogeneous term f
contains further information about the density (assumed as - approximately
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- known). Then the approximate density in turn is obtained in term of
Lagrangean coordinates from the linearized equation of continuity

ρt + ρdiv v = 0 (1.7)

ρ|t=0 = ρ0 (1.8)

(on small time steps), which is easily solvable for any given v. This reduction
by approximation on short time interval is justified by employing the conver-
gence analysis of [5]: the procedure is first order consistent, and is convergent
as long as the computations remain stable (in a rather strong sense).

Through out of the paper, we shall refer to the linearized parabolic dif-
ferential system (1.4)-(1.5) as the basic model problem for the viscous com-
pressible flow. Our aim is to provide for a constructive approach to solve the
basic model problem (1.4)-(1.5) via the boundary integral equation method.
The paper is organized as follows: In Section 2, we construct the funda-
mental solution of (1.4) in term which we derive the corresponding Green
formula for (1.4). Section 3 contains the representation of the solution for
the basic problem defined by (1.4) and (1.5) as a sum of a volume, Poisson-
Weierstrass, simple- and double-layer potentials. This reduces the problem
to an equivalent first kind boundary integral equation of the Volterra type.
The main result of the present paper is stated in Theorem1 concerning the
unique solvability of this integral equation. In fact, it is shown that the
corresponding integral operator is even elliptic in some anisotropic Sobolev
spaces. The later implies the quasioptimality of the appropriate Galerkin ap-
proximations. These results extend now the standard variational techniques
for steady-state strongly elliptic boundary integral equations as in [3] and [8]
to the unsteady viscous compressible flow case, by employing the tools due
as in [1], [2] and [7] for the heat equations. The proofs are given in Section
4-6.

2 Green’s Representation Formula

System (1.4) forms a (strong coupled) parabolic system in the sense of Petro-
vskij. It does not appear very often in the well known classical mathematical
physics, but it does play an important role for the method of artificial com-
pressibility in computational incompressible flows (see, e.g., [4]). Hence a
potential theory approach to (1.4) would be valuable.
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Let Γµ denote the fundamental solution for the heat operator (∂t − µ∆):

Γµ =

{
(4πµt)−n/2exp(−|x|2/(4µt)) : t > 0,

0 : t ≤ 0.
(2.1)

In terms of Γµ, the fundamental solution of the system (1.4) is a matrix
function Γij of the form:

Γij(x, t) = δijΓµ(x, t) +
∂2

∂xi∂xj
γ(x, t) (t > 0, x 6= 0), (2.2)

where γ is a scalar function satisfying the inhomogeneous heat equation up
to t = 0 (for any x ∈ Rn):

γt − (µ+ ν)∆γ = νΓµ. (2.3)

In fact, we may assume that γ is radially symmetric, and based on the
argument of homogeneity it suggests that γ may be of the from γ(x, t) =
t1−n/2w(r2/t), where w(z) with z = r2/t satisfies the ordinary differential
equation

4(µ+ ν)zw′′ + (z + 2(µ+ ν)n)w′ + (
n

2
− 1)w = ν(4πµ)−n/2e−z/(4µ).

In case n = 2, we have

γ(r, t) =
1

4π

∫ ∞

r2/t

1

z
e−z/(4µ)dz. (2.4)

Multiplying (1.4) by v and integrating by parts, we then obtain the second
Green identity (for sufficiently smooth u, v)∫ t

0

∫
Ω

{(us − µ∆u− ν∇div u) · v − u · (−vs − µ∆v − ν∇div v)}dyds

=

∫ t

0

∫
Ω

(u · v)sdyds−
∫ t

0

∫
∂Ω

σ(u) · v − u · σ(v)doyds, (2.5)

where n̂ denotes the outward unit normal vector, and

σ(u) := ν(div u)n̂+ µ(∇u+∇u>)n̂ (2.6)
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(the superscript > denotes the transpose). Substituting now v by the column
vector Γj of the symmetric fundamental matrix Γij,

v(y, s) = Γj(x− y, t− s) (j = 1, 2, 3)

and using the standard argument in potential theory, we obtain the Green
representation formula

uj(x, t) =

∫ t

0

∫
Ω

Γj(x− y, t− s) · (us − µ∆u− ν∇div u)(y, s)dyds

+

∫
Ω

Γj(x− y, t)u(y, 0)dy +

∫ t

0

∫
∂Ω

Γj(x− y, t− s)σ(u)(y, s)doyds

−
∫ t

0

∫
∂Ω

σy(Γj(x− y, t− s)) · u(y, s)doyds (j = 1, 2, 3) (2.7)

In an analog to the potential theory for the elliptic equations, we now rep-
resent any smooth solution of the basic model problem (1.4)-(1.5) in the
form:

v = Nf + Pv0 + V (σ(v)|∂Ω)−Wg, (2.8)

whereN,P, V,W denote the volume, Poisson-Weierstrass, simple - and double-
layer potentials, respectively. Here the operators are defined in a consecutive
order according to those in (2.7).

We note that although the formula (2.8) here is derived for the bounded
domain Ω, it may be easily extended to unbounded domains with slight
modification.

3 Boundary Integral Equation of the First

Kind

We note that the only unknown appearing on the right hand side of (2.8) is
the vector field σ(v)|∂Ω. For continuous vector fields φ on the boundary one
can show by classical means (see, e.g., [9]) that the simple-layer potential
u = V φ is continuous over the whole space for t > 0. Consequently, from the
representation formula (2.8), if we denote the unknown field σ(v) by ψ, then
we obtain the boundary integral equation of the first kind for ψ:

Aψ = b on ∂ΩT = (0, T )× ∂Ω, (3.1)
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as x ∈ Ω approaches to the boundary ∂Ω, where A = γV (γ the trace on ∂Ω),
and b is the collection of all the known quantities in (2.8). Hence our aim
here is to investigate the solvability of the equation (3.1). We now extend
to the equation (3.1) those approaches in [1], [2] and [7] for treating heat
equation.

To this end, let us introduce the anisotropic Sobolev spaces ([11], Vol 2)

Hr,s(∂ΩT ) = L2(0, T,Hr(∂Ω)) ∩Hs(0, T, L2(∂Ω)) (r, s ≥ 0), (3.2)

where (0, T ) denotes a finite time interval andHr the usual Sobolev-Slobodetski
spaces obtained by interpolation between Hm and L2 (m, integer). We also
need

Hr,s
,0 (∂ΩT ) = L2(0, T,Hr(∂Ω)) ∩Hs

0(0, T, L
2(∂Ω)) (r, s ≥ 0). (3.3)

Here Hr,s and Hr,s
,0 are Hilbert spaces equipped with the natural norm:

||φ||r,s = (||φ||2L2(0,T,Hr(∂Ω)) + ||φ||2Hs(0,T,L2(∂Ω)))
1/2, (3.4)

or alternatively written as

||φ||r,s = (||φ||2r,0 + ||φ||20,s)1/2. (3.5)

For negative exponents we denote by H−r,−s(∂ΩT ) = (Hr,s
,0 (∂ΩT ))∗ the dual

spaces of Hr,s
,0 (∂ΩT ), equipped with the norm

||φ||−r,−s = supψ∈Hr,s
,0

< φ,ψ >

||ψ||r,s
(r, s ≥ 0, r or s positive), (3.6)

where < ·, · > is the duality pairing between H−r,−s and Hr,s
,0 . We adopt the

notations here for the scalar as well as for the vector fields, and we employ
the similar notations for functions on ΩT with ∂Ω replaced by ΩT in the
above definitions.

We are now in a position to state a crucial result of the paper.

Proposition 1 For any λ > 0, the operator e−λtA defines a mapping

e−λtA : H−1/2,−1/4(∂ΩT ) 7→ H1/2,1/4(∂ΩT ) (3.7)

which is continuous and coercive. Here the energy space H−1/2,−1/4(∂ΩT ) is
just the dual of H1/2,1/4(∂ΩT ).
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This result will be proved in Section 4-5. It plays a fundamental role for
the subsequent main theorem, since it implies immediately that the integral
operator A in (3.1) is also an isomorphism. From this, in turn, we obtain by
use of the standard variational arguments (as in [8]) to establish the coercivity
of A. We will carry out the detailed analysis in Section 6.

Theorem 1 The operator

A : H−1/2,−1/4(∂ΩT ) 7→ H1/2,1/4(∂ΩT ) (3.8)

is continuous and coercive. Consequently, the Volterra integral equation (3.1)
in weak form

< φ,Aψ >=< φ, b > for all φ ∈ H−1/2,−1/4(∂ΩT ) (3.9)

has a unique solution ψ ∈ H−1/2,−1/4(∂ΩT ), depending continuously on the
data b ∈ H1/2,1/4(∂ΩT ).

This theorem implies via Céa’s lemma the quasi-optimality of any Galerkin
scheme to solve the basic model problem defined by (1.4)-(1.5) approximately
on small time intervals [0, τ ]. More precisely, let

Hh ⊂ H−1/2,−1/4(∂ΩT ), h ∈ (0, h0],

be a family of finite-dimensional subspaces. Then the Galerkin approximate
ψh ∈ Hh is a solution of the Galerkin equations

< χ,Aψh >=< χ, b > for all χ ∈ Hh. (3.10)

The quasioptimality follows immediately from the coercivity of A from The-
orem1:

||ψh − ψ||−1/2,−1/4 ≤ const. inf
χ∈Hh

||χ− ψ||−1/2,−1/4. (3.11)

In practice, to implement (3.10), one usually uses tensor products

χi(x, t) = pi(t)qi(x), where t ∈ (0, τ), x ∈ ∂Ω,

of low order polynomials pi and piecewise polynomials qi lifted to the pa-
rameter space of the boundary, subordinated to a given decomposition of ∂Ω
into boundary elements.
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4 Continuity of e−λtA

In the next two sections we shall prove Proposition 1. We begin with the
continuity. Since we are concerned with the finite time intervals, it is more
convenient to reformulate the problem (3.1) in the form

A′ψ′ = b′ on ∂Ω× R, (4.1)

where b′ = e−λtb on (0, T ) and b′ = 0 elsewhere. Here A′ = γV ′ and the
simple-layer potential V ′ corresponds to the differential operator

L′u := ut − µ∆u− ν∇div u+ λu on Rn
∞ = Rn × R. (4.2)

The formula
Leλt = eλtL′ (4.3)

follows by definition (see (1.4)). In what follows, it is understood that the
constant λ is fixed and positive.

The trace operator γ is a continuous map

γ : H1,1/2(Rn
∞) → H1/2,1/4(∂Ω∞) (4.4)

(see [11],Vol.2, 9f). Hence the adjoint operator is a continuous map

γ∗ : H−1/2,−1/4(∂Ω∞) → H−1,−1/2(Rn
∞), (4.5)

which extends the inner product of L2(∂Ω∞) to elements φ ∈ H−1/2,−1/4(∂Ω∞)
such that

< γ∗φ,w >=< φ, γw >=

∫
R

∫
∂Ω

φ · w dodt for all w ∈ H1,1/2(Rn
∞).

This suggests to identify the simple-layer potential of density φ with the
volume potential of density γ∗φ:

V ′φ = N ′γ∗φ.

By interpreting the volume potential as inverse of the operator L′ in (4.2) on
Rn
∞, the boundary integral operator A′ may be factorized as

A′ = γL′−1γ∗. (4.6)

Hence the continuity is a consequence of the following lemma.
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Lemma 1 The mapping defined by the operator L′:

L′ : H1,1/2(Rn
∞) → H−1,−1/2(Rn

∞) (4.7)

is an isomorphism.

Proof. Let W denote the space

W := H1,0(Rn
∞) ∩H1(R, H−1(Rn)). (4.8)

We divide the proof into following three steps:
First, we show that

L′ : W → H−1,0(Rn
∞) (4.9)

is an isomorphism. We proceed as follows. Consider the formal adjoint of L′:

L∗v = −vt − µ∆v − ν∇div v + λ v (4.10)

and evidently the mapping L∗ : W → H−1,0 is continuous. With β =
min{µ, λ} > 0, the energy estimate

< L∗v, v >≥ β||v||21,0 for all v ∈ W. (4.11)

is easily shown. Hence from a variant of the Lax-Milgram projection lemma
[10], it follows that for any f ∈ H−1,0, there is a unique solution u ∈ H1,0 of
the equation

< L∗v, u >=< f, v > for all v ∈ W. (4.12)

Hence ut exists in the sense of distributions and, since W = H1,0, we see that

ut = f + µ∆u+ ν∇div u− λu ∈ H−1,0. (4.13)

Consequently, u ∈ W and we obtain the estimate

||u||W ≤ const.||f ||−1,0 (4.14)

from Lions’ projection lemma. This completes the proof of (4.9).
Next, we extend L′ to H1,0 by transposition:

L′u = f in W ∗ ⇔ < L∗v, u >=< f, v > for all v ∈ W.

Here we will show that the mapping

L′ : H1,0(Rn
∞) → W ∗ (4.15)

9



is an isomorphism. Clearly the mapping L′ : H1,0 → W ∗ is continuous.
Moreover, we already know that

T : W → H−1,0 (with v 7→< L∗v, · >)

is an isomorphism and hence the adjoint map

T ∗ : H1,0 → W ∗ (with u 7→< L∗·, u >)

is also an isomorphism. Then for any given f ∈ W ∗, there is a unique solution
u ∈ H1,0 of the equation

< L∗v, u >=< f, v > for all v ∈ W. (4.16)

Moreover, ||u||1,0 ≤ const.||f ||W ∗ holds. That is, (4.15) is verified.
Finally, we see that (4.7) now follows by interpolation between (4.9) and

(4.15). We have

[W,H1,0]1/2 = [H1,0 ∩H1(R, H−1(Rn)), H1,0]1/2

= H1,0 ∩ [H1(R, H−1(Rn)), H1,0]1/2

= H1,0 ∩H0,1/2 = H1,1/2(Rn
∞) (4.17)

([11], Vol.1, p.233 and p.255). On the other hand, from ([11], Vol.1, p.29),
we see that

[H−1,0,W ∗]1/2 = ([W,H1,0]1/2)
∗ = H−1,−1/2(Rn

∞). (4.18)

The Interpolation Theorem ([11], Vol.1, p.27) implies (4.7), and this com-
pletes the proof of Lemma 1.

A collection of (4.6), (4.5), (4.7) and (4.4) yields

A′ : H−1/2,−1/4(∂Ω∞) → H1/2,1/4(∂Ω∞) continuously. (4.19)

As can be seen, this implies the continuity of A and hence of e−λtA. The
later can be seen as follows. Let E denotes the extension by zero in time,
and R be the restriction to the interval (0, T ). Clearly R = E∗ is valid, and
from (4.3), we may write

L−1eλt = eλtL′−1. (4.20)

The continuity of A then follows from the composition

A = RγL−1γ∗E = eλtRA′Ee−λt (4.21)

(see (4.6)). Hence we have shown that

A : H−1/2,−1/4(∂ΩT ) → H1/2,1/4(∂ΩT ) continuously, (4.22)

and the same holds for eλtA.
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5 Coercivity of e−λtA

We begin with the operator A′ in (4.6) and we need first the lemma.

Lemma 2 Let D ⊂ Rn be a bounded domain with smooth boundary ∂D.
Then to any f ∈ H−1,0(D∞) ∩ (H1,1/2(D∞))∗ and g ∈ H1/2,1/4(∂D∞), the
problem

ut −∆u = f in D∞, γu = g on ∂D∞ (5.1)

has a unique solution

u ∈ W (D∞) = H1,0(D∞) ∩H1(R, H−1(D)) (5.2)

and the solution depends continuously upon the (vector) data.

This is a variant of assertion (15.38) stated in [11](Vol.2, p.84) without a
complete proof. We will include the proof below in four steps:

(1) We will show that for any f ∈ L2(D∞) and g ∈ H3/2,3/4(∂D∞), there
is a unique solution u ∈ H2,1(D∞) of (5.1), depending continuously on the
data. For this, the Trace Theorem ([11], Vol.2, p.9) guarantees that there
exists a function v ∈ H2,1(D∞) with γv = g such that the difference w = v−u
satisfies

wt −∆w = φ := vt −∆v − f ∈ H0,0(D∞); γw = 0 (5.3)

in the infinite cylinder D∞. By applying the Fourier transform of (5.3)
with respect to t and making use of the Agmon-Nirenberg estimate of the
transformed function ŵ, we obtain

||w||22,0 = ||ŵ||22,0 =

∫
R
||(iτ −∆)−1φ̂(·, τ)||2H2(D)dτ

≤ const.

∫
R
||φ̂(·, τ)||2L2(D)dτ = const.||φ||20,0. (5.4)

Hence from the differential equation (5.3)

||w||2,1 ≤ const.||φ||0,0 (5.5)

follows and this implies the desired result

||u||2,1 ≤ ||v||2,1 + ||w||2,1 ≤ const.(||f ||0,0 + ||g||3/2,3/4). (5.6)
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(2) By transposition of the problem adjoint to that treated in step (1),
we get a unique weak solution u ∈ L2(D∞) of (5.1) for any f ∈ (H2,1(D∞))∗

and g ∈ (H1/2,1/4(∂D∞))∗. Again, u depends continuously upon the data.
(3) By interpolation between the isomorphisms in steps (1) and (2), we

see that for any

f ∈ (H1,1/2(D∞))∗ = ([H2,1(D∞), H0,0(D∞)]1/2)
∗

= [H0,0(D∞), (H2,1(D∞))∗]1/2

(cf.[11], Vol.1, p.29) and for any

g ∈ H1/2,1/4(∂D∞) = [H3/2,3/4(∂D∞), H−1/2,−1/4(∂D∞)]1/2

(cf. [11], Vol.2, p.70), there is a unique solution

u ∈ H1,1/2(D∞) = [H2,1(D∞), H0,0(D∞)]1/2

of the problem (5.1) depending continuously upon the data (cf. [11], Vol.2,
p.78).

(4) Now from u ∈ H1,1/2(D∞), it follows that

∆u ∈ H−1,0(D∞) and hence ut = f + ∆u ∈ H−1,0(D∞).

This proves Lemma 2.

Lemma 3 The trace operator

γ : W (Rn
∞) → H1/2,1/4(∂Ω∞) (5.7)

is continuous and onto.

Proof. Let B denote a n-dimensional ball containing Ω properly. By Lemma
2, with f = 0, there is a vector field u ∈ W ((B \ Ω̄)∞) such that

γ∂B u = 0, γ∂Ω u = g ∈ H1/2,1/4(∂Ω∞).

We extend u to a vector field u ∈ W ((Rn\Ω)∞) with the help of the extension
operator (of the Lemma 12.2 in [11], Vol.1, p.75). Applying this operator once
more, we find that u ∈ W (Rn

∞) with γu = g. This implies the surjectivity of
γ and its continuity is obvious.
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From Lemma 3, we conclude that the injectivity of dual operator γ∗ from
H−1/2,−1/4(∂Ω∞) onto a closed subspace of W ∗(Rn

∞) implies that

const.||φ||−1/2,−1/4 ≤ ||γ∗φ||W ∗(Rn
∞) ≤ const.||φ||−1/2,−1/4 (5.8)

for all φ ∈ H−1/2,−1/4(∂Ω∞). As a result, the coercivity of A′ follows. More
precisely, from (4.6), we see that

< φ,A′φ > =< φ, γL′−1γ∗φ >

=< L′L′−1γ∗φ, L′−1γ∗φ >, since γ∗φ ∈ H−1,−1/2(Rn
∞)

≥ β||L′−1γ∗φ||21,0 from (4.11) with L′ instead of L∗

≥ const.||γ∗φ||2W ∗(Rn
∞) from (4.15)

≥ const.||φ||2−1/2,−1/4 from (5.8) (5.9)

Summarizing (4.19) and (5.9) now gives the first part of the following lemma.

Lemma 4 The operator

A′ : H−1/2,−1/4(∂Ω∞) → H1/2,1/4(∂Ω∞)

is continuous and coercive. The same holds for the operator

e−λtA : H−1/2,−1/4(∂ΩT ) → H1/2,1/4(∂ΩT ) (5.10)

for any fixed λ > 0.

It still remains to establish the coercivity of the operator e−λtA. We proceed
as follows. For any φ ∈ H−1/2,−1/4(∂ΩT ), we have

< φ, e−2λtAφ > =< e−λtφ,RA′Ee−λtφ > from (4.21)

=< Ee−λtφ,A′Ee−λtφ >

≥ const.||Ee−λtφ||2H−1/2,−1/4(∂Ω∞) from (5.9)

= const.||e−λtφ||2H−1/2,−1/4(∂ΩT )

≥ const.||φ||2−1/2,−1/4, (5.11)

the last estimate following by duality.
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6 Proof of Theorem1

The proof extends the standard variational technique to the unsteady integral
equation. First, we will show that

< φ,Aφ >≥ const.||Aφ||2H1/2,1/4(∂ΩT ) (6.1)

for all φ ∈ H−1/2,−1/4(∂ΩT ). For this, the well-known jump relation of the
simple-layer potential V φ may be written (cf. [9], 395 ff.)

[σ(V φ)] = φ on ∂ΩT , (6.2)

where the square brackets denote the difference between the interior and
exterior trace: [σ] := σi − σe (see (2.6)). In the following, const. denotes a
generic positive constant, and integrals are understood in a weak sense. By
inserting (6.2) into (6.1), we obtain with u = V φ,

< φ,Aφ > = < [σ(u)], Aφ > (6.3)

= {1

2

∫
Rn

|u(x, T )|2dx+

∫ T

0

∫
Rn

∑
i,k

(
∂ui
∂xk

+
∂uk
∂xi

)2dxdt}.

By Korn’s inequality,

< φ,Aφ >≥ const.||u||2H1,0(Rn
T ) (6.4)

is implied by (6.3). Now since u solves the differential equation (1.4) with
f = 0, an argument repeated the one employed in Section 4 shows that

||u||H1,1/2(Rn
T ) ≤ const. ||u||H1,0(Rn

T ). (6.5)

This together with the trace theorem ([11], Vol.2, 9f) gives (6.1).
Next, from the Proposition 1, an elementary argument shows that A is

an isomorphism. This means we have the estimates

const.||φ||−1/2,−1/4 ≤ ||Aφ||1/2,1/4 ≤ const.||φ||−1/2,−1/4 (6.6)

from which together with (6.1) follows the coercivity of A. This completes
the proof of Theorem 1.
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Limites, Berlin etc. 1961.

[11] Lions, J.L., and Magenes, E., Non-homogeneous Boundary Value Prob-
lems and Applications, Vol.1-2, Berlin etc. 1972.

15


