Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/1/10/e1500797/DC1

Supplementary Materials for

Tuning bad metal and non-Fermi liquid behavior in a Mott material: Rare-earth nickelate thin films

Evgeny Mikheev, Adam J. Hauser, Burak Himmetoglu, Nelson E. Moreno, Anderson Janotti, Chris G. Van de Walle, Susanne Stemmer

> Published 6 November 2015, *Sci. Adv.* **1**, e1500797 (2015) DOI: 10.1126/sciadv.1500797

The PDF file includes:

- Fig. S1. Resistivity as a function of temperature.
- Fig. S2. ρ -*T* data for LaNiO₃.
- Fig. S3. Saturation resistivity and NFL behavior in LaNiO₃.
- Fig. S4. Electron-electron scattering coefficient A.

Figure S1 | **Resistivity as a function of temperature.** (a, c) Temperature derivative of the resistivity as a function of temperature for a 10 u.c. film on YAlO₃, a fully metallic non-Fermi liquid and a 15 u.c. thick film on LSAT, a LFL with a sharp metal-insulator transition near 150 K. The corresponding ρ_{NFL} as a function of T^n are shown in (b) and (d).

Figure S2 | ρ -*T* data for LaNiO₃. Data re-plotted from ref. (*33*). The dashed orange lines are fits to Eqs. (1) and (2).

Figure S3 | **Saturation resistivity and NFL behavior in LaNiO**₃. (a) ρ_{SAT} and $\rho(0)$ extracted from data in Fig. S3. The condition $\rho(0) = \rho_{SAT}$ accurately predicts the transition to an insulator at all temperatures. (b) Extracted exponent *n*, showing that thick LaNiO₃ films are non-Fermi liquids. All data are from ref. (*33*).

Figure S4 | **Electron-electron scattering coefficient** *A***.** (a) *A* as a function of thickness for the LFLs (n = 2). (b) *A* as a function of thickness for all NFL films (n = 5/3). (c) Scaling between *A* and ρ_{SAT} , each curve corresponds to a specific NdNiO₃ thickness, t_{NNO} . (d) *A* as a function of strain for different film thicknesses.