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ABSTRACT

This dissertation discusses various problems in analog Joint Source Channel

Coding (JSCC). Analog JSCC is an attractive communication scheme due to its en-

coding/decoding simplicity, and its ability to achieve near-optimal performance using

very short code lengths. JSCC systems have received a renewed interest in recent years

due to, among other factors, the sub-optimality of separation based schemes in many

situations in multi-terminal communications. Different from traditional digital com-

munication systems which utilize a quantizer followed by a source code and a channel

code, analog JSCC systems combine source and channel coding into a single block and

deal with real numbers.

We present original work on the application of space filling curves, a common

scheme in analog coding, to different communication scenarios. We begin by examining

how to extend the use of space filling curves to non-linear channels with Inter-Symbol

Interference (ISI). This type of channel arises when considering acoustic communica-

tions in the underwater environment, where the power amplifier used for communi-

cation is highly non-linear, and multi-path propagation causes ISI. We first study a

simplified version of the acoustic channel assuming a frequency flat (no ISI) response,

developing a scheme to adapt space filling curves to the simplified channel and studying

its theoretical limits. Then, we extend our work to the complete end-to-end acoustic

channel (including ISI), presenting a communication system for the end-to-end channel.

We then investigate the problem of transmitting independent sources over the

Gaussian Multiple Access Channel (MAC). The Gaussian MAC consists of two or

more users communicating information to a central receiver over a shared noisy phys-

ical channel. We introduce an analog CDMA-like access scheme that allows users to

transmit at different rates over the MAC. The developed access scheme is suitable for

xvi



the transmission of analog JSCC encoded sources. The CDMA-like access scheme will

be proven to be optimal for a particular case when the channel degrees of freedom are

assigned amongst the users in a particular way. We will then present a hybrid analog-

digital scheme which is an extension of the analog CDMA-like access scheme. The

hybrid scheme uses analog and digital codes, designed for the point-to-point channel,

and will be proven to be optimal for the entire region of the MAC.

Finally, the dissertation introduces a new communication scheme for the two-

user Gaussian Broadcast channel. The channel consists of a common transmitter wish-

ing to communicate information to two receivers over a noisy Gaussian channel. The

broadcast channel is an interesting case, since in general separation based schemes

cannot achieve the theoretical limits. The new developed scheme is a variant of Scalar

Quantizer Linear Coder (SQLC) systems, and is suitable for transmitting correlated

Bivariate Gaussian sources. The scheme will be analyzed and shown to outperform the

best known separation based schemes.
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Chapter 1

INTRODUCTION

The use of digital communications systems based on the Shannon separation

principle between source and channel coding [1] has led to ubiquitous communications

in our society. In this framework, continuous signals are first acquired and source

encoded. Then, capacity approaching channel codes are utilized. It is well known that

this approach is optimal provided that there are no constraints in terms of complexity

and delays. However, long block lengths are required, and these separated systems are

not very robust to changes in the channel parameters.

Recently, systems based on analog joint source-channel coding have been dis-

cussed in the literature [2, 3, 4, 5]. In this approach, the concatenation of the (vector)

quantizer, source encoder and channel encoder characteristic of digital systems is sub-

stituted by an end-to-end analog encoder. This discrete-time, continuous-amplitude

system directly processes the acquired samples using a non-linear transformation,

whose output is transmitted directly through the channel after proper modulation.

A schematic diagram of canonical digital communication vs analog JSCC systems is

depicted in Figure 1.1. For the same performance, these schemes may present more

robustness and require less encoding/decoding complexity than traditional digital sys-

tems. A more detailed discussion about analog joint source channel coding will be

given in Chapter 2.

Analog JSCC systems, typically, have much simpler encoders and decoders as

compared to their digital counterparts, which leads to a power efficient encoder and

decoder [6]. Recently, there has emerged a class of wireless communications systems

termed “energy harvesting systems” where the decoder harvests the energy of the

transmitted data as well as other sources in the electromagnetic spectrum and use
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Sampling Quantization Source Encoder Channel Encoder Modulation

Sampling Analog Joint Source-Channel Coding

Real numbers Bits Bits Bits

Communication System based on the Separation Principle

Communication System based on Analog Joint Source-Channel coding

Analog source Real numbers

Figure 1.1: Canonical Digital Communications systems based on the separation prin-
ciple vs Analog JSCC systems.

that energy to help in the decoding process [7]. Although we will not be discussing

energy harvesting systems in this dissertation, we give this example to demonstrate the

importance that energy efficiency plays in the design of communication systems. This

will be more true in the future as more Internet of Things (IOT)-type devices enter

the market and become ubiquitous. These devices typically send small data rates to a

smart hub, and have a limited battery, making energy efficiency paramount for these

devices [8]. This casts analog JSCC systems in a very positive light owing to their

encoding/decoding simplicity.

Designing an optimal digital (separated) system is a complex process. For each

desired communication rate, a vector quantizer, a source code, a channel code and a

modulation scheme must all be designed in an optimal manner as shown in Figure 1.1.

For certain channel classes, if each individual component in the system is optimal, then

the end-to-end system is also optimal1. The use of separated systems for transmitting

Gaussian Sources over the AWGN channel was proven optimal by Shannon in his

seminal paper [1]. An interesting remark for such separation based digital system is

that if an optimal scalar quantizer were used (instead of the optimal vector quantizer),

with all remaining system modules optimal, then the system will operate at a 1.6 dB

loss from the optimal system predicted by the theoretical limits [6].

Analog JSCC have also been successfully applied to problems in multi-terminal

1 It is optimal in the asymptotic sense when the code block length goes to ∞, in practice however the
system modules must be tested to ensure that the system is not catastrophic, meaning, for example,
that a small error in the coded bits does not produce total failure/error for the source decoder.
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communications such as communication over the Multiple Access Channel [9, 10, 11,

12], over the Broadcast channel [13, 14], and for OFDM and MIMO channels [15, 16, 17].

Although multi-terminal communications and Information Theory are relatively old

fields2, they have recently received a great deal of interest from the industry. This

interest comes primarily from the wireless community, where the rapid proliferation

of cell phones along with the limited bandwidth (bandwidth crunch), particularly in

dense metropolitan areas, has motivated the industry to actively investigate the theo-

retical limits of the underlying wireless channel. Several other factors have helped the

acceleration of this trend, as more powerful hardware at the user’s equipment and at

the base stations allow for implementation of more complicated algorithms and tech-

niques. The emergence of commercial Software Defined Radio (SDR) and Software

Defined Networks (SDNs) solutions have allowed the wireless network providers great

flexibility to experiment and prototype different access techniques [22].

Current research efforts typically in Network Information Theory focus on spe-

cial configuration for the general multi-user problem as Figure 1.2 shows, such as

Multiple Access Channels, Broadcast Channels, Relay Channels, Interference Chan-

nels, and the Two Way Channel. In the multiple access channel, there are several (two

or more) users communicating data (possibly correlated) to a central receiver. This

is analogous to the uplink scenario for cellular networks where different users (UE)

communicate and send their data to the base station (eNB). In the broadcast channel,

there is one transmitter communicating data to several receivers. Again, in the cellu-

lar setting this corresponds to the downlink where the eNB transmits data to several

UEs. In the relay channel, there is a relay (or several relays) that receive(s) the data

from the transmitter and forward it (after possibly some manipulation) to the receiver.

The receiver also receives the original transmitted data of the transmitter, as well as

the information sent by the relay. In the Interference Channel, there are two or more

users transmitting the information only to their respective receiver, i.e. receiver i is

2 The Capacity region of the Gaussian multiple access channel as well as the Broadcast channel were
found between 1971-1974 [18, 19, 20, 21]
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only interested in the information of transmitter i and nothing else. The Interference

channel can be considered a hybrid between the MAC and broadcast channels. Finally,

there is the two way channel where there are two users wishing to communicate to each

other in both directions. Generally, the communication network topology could be a

combination of any of the above configurations.

(a) (b)

(c) (d)

(e)

Figure 1.2: Different configurations of the general multi terminal communications prob-
lem: (a) Multiple Access Channel; (b) the Broadcast Channel; (c) Interference Channel
(d) Relay Channel; and, (e) Two Way Channel.

This dissertation will present original work on the applications of analog JSCC

to various communications scenarios. Chapter 2 begins by giving an overview and

4



comparison of digital and analog communication systems. In Chapter 3, we will discuss

the problem of data transmission over the underwater acoustic channel, where the

communication channel is highly non-linear and experiences ISI. We will develop a

system that adapts space filling curves for use in the acoustic channel. The proposed

scheme is an example of the flexibility of JSCC systems, and of the simplicity they

provide in the design of encoding/decoding systems. When evaluating the performance

of our proposed JSCC scheme, we are faced with the problem of calculating the Shannon

capacity of channel. For non-standard channels we have to calculate the capacity via

a version of the Blahut-Arimoto algorithm. We first apply the algorithm to obtain the

capacity of a simplified version of the channel that does not include the ISI. We then

extend the analysis and provide a capacity bound for the end-to-end channel (including

the non-linearity and ISI).

In Chapter 4, we propose a hybrid analog-digital scheme for the N -user Mul-

tiple Access Channel that allows the transmission of independent user’s information

over the MAC. The proposed scheme is suitable for any number of users, and for any

source to channel bandwidth ratio. The analog component of the scheme is an orthog-

onal CDMA-like access scheme, which will be proven optimal for particular non-trivial

channel conditions. However, the analog component alone cannot be used optimally

to achieve any desired point in the capacity region. The hybrid scheme combines

traditional analog digital codes designed for the point-to-point channel in an optimal

manner, and will be shown to achieve any point in the convex hull of the capacity

region of the MAC.

In Chapter 5, we consider the two user Gaussian Broadcast Channel. We will

discuss a new class of analog coders named Alternating Sign Scalar Quantizer Linear

Coder (AS-SQLC), suitable for the transmission of Bivariate Gaussian sources over the

two-user degraded broadcast channel. We will improve on our previous work in [13],

where we developed a zero delay (block length equal to one symbol) communication

system that operates very close to the theoretical limits of the channel. The work

in [13] made several simplifications in the design of the system decoder, which led to
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sub-optimal performance. Here, we provide a mathematical analysis of the AS-SQLC

system, and derive the optimal decoder for the proposed system, demonstrating the

performance gain by Monte-Carlo simulations. Finally, we will conclude the disserta-

tion and discuss future research directions in Chapter 6.
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Chapter 2

ANALOG JOINT SOURCE CHANNEL CODING SYSTEMS

Telecommunications play a pivotal rule in our lives today. Telecommunications

was the heart of the first great transformations of the early twentieth century. The

first Radio communication was consummated by Marconi in 1895, and the first general

public radio service commenced in Pittsburgh in 1920 [23]. From that point onward,

many great innovations came to fruition in a relatively short time-frame, such as public

television broadcast, inter-continental public communications, and satellite communi-

cations. The second great revolution that Telecommunications has spurred was in

the 1990s. These were considered by many the golden times (the dot com bubble) of

the telecommunication industry. The World Wide Web was growing exponentially, and

second generation digital cellular phones were ubiquitous. The problem that took com-

munication engineers almost fifty years to solve had also been solved in that decade.

The problem was finding practical channel codes with the power to communicate suf-

ficiently close to the channel capacity, something that had been theorized by Shannon

in his landmark paper in 1948 [1]. The solution to that problem turned out to be the

use of random-like codes such as Turbo codes and LDPC codes. Although Gallager

invented Low Density Parity Check Codes in his thesis in 1963 [24], Turbo codes were

recognized first as the solution to the problem. The invention of Turbo codes and the

rediscovery of LDPC codes would not have been very interesting events in their own

right (although they were for many academics in the field), had it not been for the

rapid growth of Integrated Circuits, which enabled fast efficient implementations of

the capacity achieving codes at progressively cheaper cost and better performance.

In digital communication systems, the data is first sampled and quantized (if it

is a continuous-time, continuous-amplitude waveform such as voice) into a discrete set.
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The resulting bits are input to a source encoder to remove the redundancy, and then

passed to a channel encoder, which adds redundancy to combat the noise introduced

by the transmission medium. This framework has several advantages. First it was

proven asymptotically optimal by Shannon in [1] for point to point AWGN channels.

Second, it decouples system design into individual independent modules. In this way, if

an optimal source code1 is designed, we are able to use it with another optimal channel

code that a different designer has perfected2.

Digital communication systems would not have been that ubiquitous without

great advances in DSP and IC technologies. Up until the early 1980s, Digital commu-

nications was thought to be too complex to merit implementation against pure analog

baseband communications [25]. It was Moore’s law that was the enabler of such dig-

ital implementations, which not only outperformed the analog schemes, but did so

using less transistors. One of the many reasons that analog communications faded was

that they lacked a comprehensive “framework” for system design. Most designs were

ad-hoc and there was no clear concept of source/channel codes. There were modu-

lation schemes such as FM and AM, and although FM did provide noise protection,

it did so at the expense of a larger communication bandwidth, typically much larger

than the original baseband signal to be transmitted. Although in FM systems the

source/channel bandwidth ratio can be controlled via the modulation index parameter

β [26], analog systems do not have the notion of “error free” communications. As a

matter of fact, this was one of the ground breaking promises of Shannon paper’s in

1948 [1]: error free communication at a non-zero information rate with bounded power.

This will be laid out in detail in the following section.

1 In this context, code means an encoder/decoder pair.

2 The source-channel separation theorem holds for infinite block length codes. The combination of
certain practical source/channel codes may lead to “catastrophic” errors, in which a small number of
errors in the channel decoder leads to many errors after source decoding in the original uncoded bits.
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2.1 Framework for Digital Communications

Our model for the point to point channel will be that of a Gaussian Source,

S, emitting i.i.d (independent identically distributed) source symbols with zero mean

and unity variance, that is S ∼ N(0, 1). The ultimate goal is to communicate the

source to a receiver while maintaining some metric of source “goodness” or fidelity

at the receiver. Digital communication systems typically achieve this by first feeding

the Gaussian source into a quantizer, typically a Vector Quantizer where a block of

ksymbol source symbols is fed to the quantizer and a block of ksource = η1ksymbol binary

bits are produced. In this framework η1 is average number of bits per source symbol.

The uniform quantizer is the simplest, with a uniform quantization step [27]. Then

there is the optimal (in the Mean Squared Error sense) scalar Quantizer. And finally,

the optimal MSE vector quantizer, which achieves the best performance [28]. We will

discuss quantization in more detail in 2.3.1.

After quantization, source coding is performed. There are typically two options

for source coding, depending if the system designer chooses to implement a lossless or

a lossy compression scheme. The best lossless compression scheme is to use entropy

coding such as Huffman codes or other powerful practical entropy coding schemes.

The designer might also choose to implement a lossy compression scheme3. Lossy

source coding schemes include the much-celebrated JPEG format, which uses wavelets

as the basis of the lossy transformation. Layer 3 of MPEG is also a well known lossy

compression scheme for audio signals. Even though lossy compression schemes incur

information loss, they are still used because that loss does not significantly affect the

overall picture look or the way audio sounds. These compression schemes exploit the

human visual and auditory sensitivities and limitations to encode a lossy version that

looks almost indistinguishable from the original. In general, lossy compression is used

when certain fidelity needs to maintained in the reconstructed data. Consider, for

3 Lossy compression may be preferable in certain scenarios. It might seem strange for a lossy com-
pression scheme to be preferable over a lossless one. However (finite) quantization is always lossy
for most kinds of sources. Hence, the system designer has the choice of where to insert and control
distortion. Lossy compression is among those tools.
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example, a temperature sensor producing a temperature reading, accurate to the 4th

decimal digit. The user might only care about accuracy to within one decimal digit and

the loss of information of the 3 digits can be tolerated. This is of course a simplified

example and a simple arithmetic rounding function should produce the desired effect.

Source coding takes a block of ksource bits and produces a block of kchannel =

η2ksource bits, where η2 is the average number of bits per source bit. Notice that for

an uncoded system, η2 = 1. Also, for a lossless system η2 is upper-bounded by the

entropy rate of the source. The purpose of source coding is to remove unnecessary or

redundant information in the bit stream.

After source coding, channel coding is performed with the purpose of combating

the noise in the communication channel. Different from source coding, which aims to

remove redundancy, channel codes introduce controlled redundancy in the data stream.

This redundancy is what allows the channel decoder at the receiver to successfully

recover the original uncoded data from the corrupted data received at the receiver

site. The channel encoder takes kchannel bits and produces η3kchannel channel bits.

Prior to Turbo codes, which appeared in 1993 [29], all practical channel codes such as

convolutional codes or Reed-Solomon Block codes operated at a 3-4 dB margin of the

capacity [25]. With the invention of Turbo codes and the rediscovery of Low Density

Parity Check (LDPC) codes, the gap to capacity for the AWGN channel was practically

closed [30]. LDPC and Turbo codes belong to a general class of codes termed “pseudo-

random” codes, which are easily decodable via iterative message passing algorithms.

The last step in digital communication systems is channel modulation. Modula-

tion is the process of mapping the bit stream to channel symbols. The most commonly

used modulation scheme is Quadrature Amplitude Modulation (QAM), where the bit

stream is mapped to a rectangular grid as shown in Figure 2.1. QAM mapping is the

de-facto channel mapper used in communication systems due to its robust performance

and easy implementation. QAM by itself is not the optimal solution to maximize the

channel throughput. However, when combined with a powerful channel code (such as

LDPC or Turbo Codes), the performance is excellent. For a QAM system, the input
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is a block of η4 bits and the output is one channel symbol. A common configuration

for modulation is “Bit Interleaved Coded Modulation” or BICM. In BICM, the output

of the channel encoder is interleaved and then passed to the QAM mapper. Another

common code type of modulation is combining channel coding and modulation into a

single block, as in Trellis Coded Modulation (TCM). TCM is similar to Binary Con-

volutional Codes, but with the difference that the alphabet itself is non-binary. TCM

codes have good performance but can be computationally expensive to decode.

In summary, the combination of quantization, source coding, channel coding

and modulation is required for a digital communication system to convert a stream of

source symbols St, t = 1, 2, · · ·∞, into a stream of channel symbols. For each source

symbol there is on average κ = η1η2η3η4 channel symbols. The value of κ determines

whether the system is a bandwidth compression system (κ > 1), which means there are

less channel symbols than source symbols, a bandwidth expansion system (κ < 1), or

simply a matched source-channel system (κ = 1). Note that for a matched system, the

designer might choose to simply transmit the data directly (uncoded) or to perform

some processing. This will be elaborated later in this chapter.

Notice that the system designer has four parameters to adjust (η1, η2, η3, η4).

Shannon proved that if the individual components of the system are optimally designed,

then the entire system is optimal4. This provides some relief for the designer, but

again, it does not address how the the individual components of the system have to be

designed.

2.2 Analog JSCC Systems

Section 2.1 introduced digital communication systems and presented the four

major components (quantization, source coding, channel coding and modulation).

These four blocks can be replaced by a single analog processing block as shown in

Figure 2.2.

4 Asymptotically, and Shannon only proved this for the point to point channel.
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Figure 2.1: Bit Mapping to 16 QAM.

Sampling Quantization Source Encoder Channel Encoder Modulation

Sampling Analog Joint Source-Channel Coding

Real numbers Bits Bits Bits

Communication System based on the Separation Principle

Communication System based on Analog Joint Source-Channel coding

Analog source Real numbers

Figure 2.2: Canonical Digital Communications Systems based on the separation prin-
ciple vs Analog JSCC systems.

An Analog JSCC system can be described by a function, f , which takes M

source symbols and produces N symbols to be transmitted, that is

f : RM
֌ R

N . (2.1)

The design of an optimal encoding function, f , and the corresponding decoder, for

general values of M,N is still an open question5. Here, κ = M
N

= η1η2η3η4

5 In the non-asymptotic sense. If the ratio of M
N

is kept constant, and letting M,N → ∞, we can use
the digital systems design tools, as explained in Section 2.1.
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Several approaches have been considered to obtain good mappings. These in-

clude the use of Power Constrained channel optimized vector quantization (PCCOVQ),

which is an extension of the Generalized Lloyd Max Algorithm. PCCOVQ was studied

extensively in [31, 32] for Bandwidth expansion and compression, and an example of

PCCOVQ codebook is shown in Figure 2.3. PCCOVQ is very computationally inten-

sive, and training does not guarantee a global optimum. Moreover, decoding is very

expensive as it typically requires searching over the entire codebook or a large subset

of it. Although there are techniques to simplify decoding, they generally do not work

well for higher dimensions of M and N .

Figure 2.3: PCCPVQ codebook for the 2:1 Bandwidth compression case for SNRs of
0, 10, 20, and 50 dB (taken from [31])

2.2.1 Linear Analog Systems

A natural choice for the encoding function f in (2.1) could be an M×N matrix.

Linear systems were studied in [33] and it was demonstrated that for general M and N

they perform well in the low SNR regime, but their performance saturates rapidly as
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the SNR increases. It is interesting to note that when M = N , uncoded transmission

of a Gaussian source is optimal over the AWGN channel [34].

2.2.2 Space filling curves

Space filling curves are another category of analog coding systems. In space

filling curves, the codebook or encoding function is specified by a deterministic algebraic

function. Figure 2.4 shows an example of two such curves for a 2:1 bandwidth reduction

system, M = 2, N = 1. These curves can also be the basis for bandwidth expansion

(M = 1, N = 2). Systems based on the use of space filling curves were proposed

independently by Shannon and Kotelnikov [35, 36]

As the name suggests, the curve tries to fill the space in such a way that any

source point x ∈ R
M is very close to the curve (in terms of some metric, typically

the L1 or L2 norm). This reduces what is typically called the “encoding distortion”.

Moreover, the second objective is to try to separate the encoded data y ∈ R
N as

far as possible so that the channel noise does not distort the original transmitted

symbol too much (this is typically called the channel distortion), while at the same

time meeting a certain power constraint P . The different types of distortion and their

effect on the system performance were analyzed in [32]. Another type of error that

occurs in certain systems based on space filling curves is when a small channel noise

leads to significant degradation in the signal fidelity. This type of error is typically

called “spurious errors” or the “threshold effect”. It is similar to catastrophic errors in

digital systems. The encoding distortion and channel distortion are present in every

space filling curve communication system, and they are in a sense an inherent system

property. Encoding distortion is conceptually similar to quantization in digital systems,

while the channel distortion is similar to channel decoding errors in digital systems.

We will focus our attention on the Archimedean spiral, shown in Figure 2.4 and
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Figure 2.4: Example of space filling curve: Archimedean spiral with ∆ = 1, and
∆ = 0.4. The positive branch is when θ > 0 and the negative branch when θ ≤ 0.
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where ∆ is the distance between two neighboring spiral arms and θ is the angle from the

origin to the point (x, y) on the curve. Figure 2.4 shows two cases when ∆ = 1 and 0.4.

The Archimedean spiral is studied in detail in [37, 38]. ∆ controls the “circumference”

or length of the curve in a given square. Decreasing ∆ makes the curve more dense as

shown in Figure 2.4. The encoding distortion will be made smaller when ∆ is small, as

the curve fills the space better and in fact to achieve better performance at high SNRs,

a smaller ∆ is used [38]. The Archimedean spiral can be used both for bandwidth

expansion and compression systems. In this dissertation, we will focus on bandwidth

compression systems, mainly on 2:1 systems. Note that the Archimedean Spiral shape

is very similar to that of the optimal PCCOVQ shown in Figure 2.3 for a wide range

of SNRs.

2.2.3 Analog vs Digital Tradeoff

Other than the observation that digital systems are ubiquitous, they do offer

some advantages over their analog JSCC counterparts. For instance, we can easily

design practical digital systems that approach capacity [30]. This would require an

involved system design with different parameters, as explained in Section 2.1. Analog

systems on the other hand lack a unifying framework, and every new problem has to be

studied practically from the grounds-up. Although some analog codes, such as those

based on space filling curves, have been well studied, it is far from the richness that

digital codes offer to the system designer. It should also be mentioned that practical

digital systems spend a non negligible portion of the channel degrees of freedom in

channel estimation, and when designed to operate at a near capacity limit, they become

“inelastic” and rigid. In other words, any degradation in the channel conditions (e.g,

SNR), lead to a system breakdown, and the bit error rate would diverge from the

designed point. On the other hand, if the SNR does improve, no higher data rate

or better signal fidelity is achieved (unless the system parameters are re-calibrated).

Figure 2.5 illustrates this idea: Both the digital and analog systems are designed to

operate at SNR = A. When the SNR deviates from that, the digital system either
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breaks or does not perform better. On the other hand, the analog system is robust and

performs well at different SNRs, but not as well as analog systems designed specifically

for that target SNR.

Figure 2.5: Robustness of digital systems vs analog systems. SDR is a performance
metric and will be formally defined in subsection 2.3.3.

As mentioned above, it is possible to design the digital system optimally in a

strict SNR vs SDR sense. However, Figure 2.5 does not show the power required for

encoding and decoding the transmitted messages. Determining the power consumed

by a particular algorithm is not obvious, since IC fabrication technologies changes

every couple of years. In [6], the number of operations for encoding/decoding the

Archimedean spiral was considered and compared with an equivalent all-digital system.

The superiority of the analog approach was shown in terms of encoding and decoding

complexity. Furthermore, the delay (latency) is not represented in Figure 2.5, since a

large block length is typically used for digital systems.

2.3 Theoretical Limits

The theoretical limit of the channel is a fundamental property and does not

change whether an analog or digital system is used. In analog JSCC we are interested

in the end-to-end system performance in terms of distortion that can be achieved for
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a given Signal to Noise Ratio, SNR. This theoretical limit is calculated from the rate

distortion function and the channel capacity.

2.3.1 Rate Distortion Function

Continuous sources take uncountably many values and they cannot be repro-

duced faithfully by a countable number of bits. The Rate Distortion function provides

the minimum number of bits required to represent a given symbol under a given dis-

tortion criteria. The most commonly used criterion for distortion is the Mean Squared

Error (MSE), which is the L2 norm. Shannon characterized the Rate Distortion theory

for Gaussian sources under the mean squared error criterion in [1]. For a Gaussian

source S ∼ N (0, σ2
s), and a target distortion D = E(S− Ŝ)2, where Ŝ is the recovered

source, the rate distortion function is given by

R(D) =
1

2
log2

σ2
s

D
bits. (2.3)

Going from a discrete-time continuous-value symbols to discrete-time discrete-

value symbols is called Quantization and it is typically a lossy process. There are

different types of Quantizers, A scalar quantizer operates on just one source symbol,

while a vector quantizer operates on a vector of source symbols. A uniform quantizer

is one in which the quantization step is uniform (constant), and it is the easiest to

implement. [27] gives an overview of the different types of quantizers. Figure 2.6

shows a plot of the SDR6 achieved by a uniform scalar quantizer for i.i.d. Gaussian

samples [27]. Notice that the performance of scalar quantization improves by adding

more bits, but the gap to the Rate Distortion function gets larger.

The results for the optimal scalar quantizer in Figure 2.6 were obtained using

the Lloyd-Max Algorithm [27]. As can be seen in Figure 2.6, adding 1 more bit to the

scalar quantizer gains about 4 dB in performance, yet the gap to the rate distortion

6 The SDR is the Signal to Distortion Ratio. It is a logarithmic measure of the signal fidelity and is

given by SDR = 10 log10(
σ2

s

D
).
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Figure 2.6: SDR as a function of the compression rate for uniform and optimal scalar
quantization of i.i.d. Gaussian samples.

limit gets larger. An interesting observation is that if everything in the system is

designed optimally and an optimal scalar quantizer (but not the optimal VQ) is used,

then the system operates 3 dB away from R(D) if, for example, the quantizer has a

bit of rate of 2.

2.3.2 Channel Capacity

Channel Capacity is a term first coined by Claude Shannon in the paper that

founded the era of digital communications [1]. Prior to Shannon, telecommunication

engineers relied on analog communications techniques such as AM, FM and their vari-

ants. It was a held belief that to improve the fidelity of the transmitted signal, one had

to increase the operating power or sacrifice bandwidth. In his seminal paper, Shannon

showed that error free communications at a finite power and finite bandwidth with an

information rate R is feasible, as long as such rate was below a fundamental parameter

of the channel, called channel capacity.
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For an AWGN channel, with an average power constraint of P , and noise vari-

ance σ2
n, it is easy to show that the capacity is given by [40]

C(P ) =
1

2
log2(1 +

P

σ2
n

) bits. (2.4)

2.3.3 Optimal Performance Theoretically Attainable

The Optimal Performance Theoretically Attainable (OPTA) connects source

and channel coding to form a complete end-to-end characterization of the system per-

formance. Assume M source symbols are to be communicated over an AWGN channel,

under an average power constraint P . We can use the channel N times to convey our

M source symbols. The question to be answered is: What is the best signal fidelity,

D, that the system can achieve? The answer is provided by the equation

MR(D) ≤ NC(P ), (2.5)

where C(P ) is the capacity of the channel and R(D) is the rate distortion function of

the source. If we further assume that we wish to transmit a Gaussian Source S with

zero mean and variance σ2
s , that is S ∼ N(0, σ2

s ) over an AWGN channel with noise

variance σ2
n and using an average power of P to communicate, then (2.5) reduces to

M

2
log

σ2
s

D
≤ N

2
log (1 +

P

σ2
n

) (2.6)

Equation (2.6) defines a region where communication is feasible. A system operating

at the boundary (when equality is achieved in (2.6)) of this region is optimal and

we typically say that the system achieves the OPTA. Replacing ≤ with equality, and

massaging (2.6) yields

SDROPTA = (1 + SNROPTA)
M
N , (2.7)

where SDR is the Signal to Distortion Ratio. Notice that we are seeking to minimize

the distortion, D. SDR, on the other hand, is the inverse of D. Hence the larger the
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Figure 2.7: OPTA graph (in dB) for κ = 4,2,1,0.5 (top to bottom), when transmitting
i.i.d Gaussian samples over AWGN channels

SDR, the closer the reconstructed source is to the original. Defining κ = M
N

to be the

channel use ratio, we have a bandwidth compression system if κ > 1. If κ < 1, we have

a bandwidth expansion system, and κ = 1 is the matched bandwidth case.

Converting (2.7) into the log domain and assuming that log(1 + x) ≈ log(x) for

large x, yields

SDROPTA (dB) ≈ κSNROPTA (dB) (2.8)

Notice, that SDROPTA (dB) is almost a linear function of the SNROPTA (dB), and the

slope is determined by the channel expansion ratio.

So far we have discussed OPTA for the point-to-point AWGN channel when

transmitting i.i.d Gaussian sources. Similar analysis can be performed for general

correlated and distributed sources, such as the case for the Multiple Access Channel.

We will address OPTA for general channels in the coming chapters.
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Chapter 3

ANALOG JSCC FOR UNDERWATER COMMUNICATIONS

3.1 Introduction

3.1.1 Introduction to Underwater channels

Underwater communications is an old field that has many civilian and military

applications. It is a challenging field for several reasons. First, communications via

Electromagnetic (EM) waves is extremely difficult at sufficiently large distances (more

than 1 Kilometer) because of immense attenuation [41], as Figure 3.1 shows. For

example at a frequency of 100 kHz, the attenuation when communicating at a distance

of 1 Km is about 8000 dB. This renders acoustic communications a very attractive

feasible alternative to EM waves. Acoustic communications uses sound waves and the

typical bandwidth is |0-50 kHz|, much smaller than in typical wireless communication

systems [42].

Traditional techniques developed in wireless communications to combat ISI and

Doppler spread are generally not applicable here. For instance, Orthogonal Frequency

Division Multiplexing (OFDM) assumes linearity of the channel response to effectively

utilize the DFT. However in the underwater channel, as we will see shortly, the acoustic

power amplifier is severely non-linear, making direct application of OFDM techniques

infeasible [43].

In the remainder of this section, we introduce the space filling curves system

used for the underwater acoustic channel, defining the model for the end-to-end chan-

nel that we will use in this chapter. In Section 3.2, we develop a theoretical analysis

of a simplified version of the acoustic channel that does not incorporate the ISI, and

postulate a bound for the end-to-end acoustic channel. Section 3.3 discusses different
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Figure 3.1: Propagation loss of electromagnetic waves in water as a function of the
distance and frequency (taken from [44]).

power allocation methods necessary in obtaining the bound for the end-to-end acoustic

channel. Section 3.4 focuses on designing an analog JSCC communication scheme suit-

able for the non-linear channels under consideration. Simulation results are presented

in Section 4.5. Finally, Section 4.6 concludes the chapter.

3.1.2 Space Filling Curves

The encoding system used in this paper is based on the Shannon Kotelnikov

mappings [35, 36]. In particular, we will utilize the Archimedean Spiral, discussed in

Section 2.2.2 and studied in detail in [37].

The mapping function M∆(x
′, y′) takes any source pair (x′, y′) and projects it

to the closest point on the spiral, that is

θ̂ = M∆(x
′, y′) = argmin

θ
{(x′ ± ∆

π
θ sin θ)2 + (y′ − ∆

π
θ cos θ)2}. (3.1)
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Then, θ̂ is processed by the function Tα(θ̂) = θ̂α. Both parameters (∆, α) are optimized

according to the channel signal to noise ratio, CSNR1[38]. The system diagram of the

encoder is depicted in Figure 3.2.

Source

Encoder

Figure 3.2: System diagram of an encoder based on the 2:1 Archimedean spiral.

3.1.3 Overall Channel Model

The complete system diagram of the end-to-end underwater acoustic channel

studied here is shown in Figure 3.3. As shown in the figure, the first channel block is

the transmit non-linear power amplifier, with gain g in the linear region, which exhibits

saturation effects at the extremes and also near the origin. Then, the output of the

amplifier is sent through the underwater channel, which presents ISI2 and introduces

attenuation, γd, which depends on the distance, d, between the transmitter and the

receiver. The receiver introduces zero mean Gaussian noise, Z, with fixed variance,

σn
2, independent of the distance between the transmitter and receiver. Note that, as

shown later, due to the non-linear nature of the system, the attenuation has to be

considered in its own right and can not be absorbed into the noise variance. Table 3.1

summarizes the specific system parameters obtained from real measurements in [46].

1 CSNR will be formally defined later in (3.2).

2 The specific Channel Impulse Response (CIR) shown in Figure 3.3 was obtained by actual measure-
ments of the underwater acoustic channels considered in [46]. The CIR for underwater channels is
dynamic and changes during the course of the day with temperature, salinity, water speed, and other
factors. In this paper, we only consider one realization of the CIR as shown in Figure 3.3.
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We will use these parameters throughout the chapter. We define the Channel Signal

to Noise Ratio, CSNR, as measured at the receiver side, as

CSNR =
P × γd

σ2
n

, (3.2)

where P is the transmitted power.

Z ~

Figure 3.3: End-to-end channel model including the non-linear amplifier transfer func-
tion at the transmitter, the attenuation profile and the impulse response of the ISI
channel.

Table 3.1: Specific system parameters obtained from [46]

a (amplifier low
cutoff)

b (amplifier high
cutoff)

g (amplifier
gain)

σn
2 (noise variance)

2 20 1
20

√
2 · 1019 108.87 (87.7 dBm)

We will first derive the theoretical limits for a simplified non-linear channel

which does not consider the ISI. We will later study the end-to-end channel comprising

the non-linear amplifier as well as the ISI channel.
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3.2 Theoretical Analysis

3.2.1 Simplified Non-linear Channel (No ISI)

In this section we will first consider the simplified non-linear channel (without the

ISI). We calculate the capacity of this continuous-amplitude non-linear channel using a

modified version of the Blahut-Arimoto algorithm, which was originally designed for a

discrete channel with a finite number of inputs [47], but can be extended to continuous-

amplitude channels. The channel capacity C is defined as C = maxp(x) I(X ; Y ), where

I(X ; Y ) is the mutual information between X , the input alphabet to the channel, and

Y , the output alphabet. The maximization is performed over all probability mass

functions p(x) of the input. Notice that the capacity can be rewritten as [40]

C = max
q(x|y)

max
r(x)

∑

x,y

r(x)p(y|x) log
(q(x|y)
r(x)

)

, (3.3)

where r(x) is chosen to minimize D(p(y)q(x|y) || p(y)r(x)), D(· || ·) is the relative

entropy between two probability distributions, and p(y|x) is the conditional probability
of y given x. Similarly, q(x|y) is the conditional probability of x given y.

The Blahut-Arimoto algorithm proceeds in an iterative manner searching over

two spaces, the space of pdfs r(x) and the space of pdfs q(x|y). The algorithm starts

with an initial r(x) and calculates q(x|y), then recalculates r(x) using q(x|y) and keeps

alternating the calculation between r(x) and q(x|y). Since for a fixed r(x) (3.3) is

convex in q(x|y), and for a fixed q(x|y) (3.3) is also convex in r(x) [40], it is easy to

show that this algorithm converges to the global maximum [48]. The algorithm derives

simple upper and lower bounds on the mutual information obtained at each iteration,

and it stops once the upper and lower bounds are within the tolerance specified (for

example 0.001 information bits).

The Blahut-Arimoto algorithm can take into account constraints imposed on

the input distribution of X . Let f1, f2, ...fn be functions defined on X and let the

constraints be defined as fi(X) ≤ Ki, i = 1, 2, ..., n. Then, the second maximization

in (3.3) becomes maxr(x)(·) such that r(x) satisfies each one of the constraints, fi.
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In our specific system we have two constraints. First the amplitude constraint,

due to the non-linear nature of the transmit amplifier, is given by f1(X) =
∫

B(x)fX(x)dx ≤
ω, where fX(x) is the pdf of X , ω is any positive real number different from ∞, and

B(x) is defined as

B(x) =























∞ when |x| > b

∞ when |x| < a except at x = 0.

0 otherwise























.

The second constraint is for the transmitted power, P , and is given by f2(X) =

E(X2) =
∫

x2fX(x)dx ≤ P , where E(·) is the expected value operator and P is the

average transmitted power per channel use.

The Blahut-Arimoto algorithm can be extended to continuous channels [49].

The main idea is to discretize the continuous input/output alphabet and then apply the

algorithm on the discrete “samples” of the original continuous pdfs. It is known that for

amplitude constrained Gaussian channels the capacity achieving distribution is discrete.

This was proved in [50] and discussed through simulations in [51]. However, the Blahut-

Arimoto algorithm converges rather slowly since the complexity is O(|X|3), where |X|
is the cardinality of the input alphabet symbols, and our channel is continuous and has

to be finely sampled to guarantee convergence [49]. If the stopping criteria is relaxed to

0.1 bits, the algorithm converges much faster and the distribution obtained is at most

0.1 information bits away from the actual (discrete) capacity achieving distribution.

For a communication range of d, an average transmission power of P and receiver

noise variance of σn2
3, the Blahut-Arimoto algorithm allows us to calculate the capacity,

Cd(
P
σ
n2
), as well as the capacity achieving distribution of the simplified channel. Figure

3.4 depicts the capacity achieving distribution (within 0.1 information bits accuracy)

for two different values of CSNRs when the separation between the transmitter and

receiver, d, is 2 Km, and the non-linear amplifier is defined as in Table 3.1.

Notice that for x = 0 there is no signal in the saturated regions (|x| > b or

3 σn2 is fixed for our system
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Figure 3.4: Capacity achieving distribution for the simplified channel when the sepa-
ration between the transmitter and receiver, d, is 2 Km. CSNR = 18.5 dB (left) and
11 dB (right).

x < a), reflecting our first constraint that inputs in these regions lead to a waste of

energy. It is interesting to note that the fraction of symbols that get mapped to zero

depends on the CSNR under consideration: The less power available, the more zeros

are transmitted. The shape of the pdf in the linear region (a < |x| < b) also depends

on the CSNR, getting narrower as the CSNR decreases. Figure 3.5 shows the capacity,

obtained by the Blahut-Arimoto algorithm, of the simplified non-linear channel when

d = 1 Km.

3.2.2 End-to-end Channel (with ISI)

For the case of the end-to-end channel in which, in addition to the non-linearity,

ISI is considered, calculating the capacity via the Blahut-Arimoto algorithm is not

feasible, since this algorithm only works for memoryless channels4. A possible approach

to calculate the capacity of the end-to-end channel would be to develop an end-to-end

channel model (e.g. a hidden Markov Model) and calculate the capacity of this model.

In this way, we would get rid of the growing exponential complexity of the problem in n.

However, developing good models is not an easy endeavor and we will not pursue this

4 We could consider a block channel of length n as the input to the algorithm, and let n → ∞.
However, this solution is intractable and has exponential complexity in n.
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Figure 3.5: Capacity of the AWGN linear channel, and the simplified non-linear channel
obtained using the Blahut-Arimoto algorithm.

path in this paper. Rather, we focus on obtaining an approximation to bound the end-

to-end channel capacity as explained below. In order to obtain the approximation, we

introduce a set of parallel channels XN = {X1,X2 · · ·Xk} as depicted in Figure 3.6,

where Xi and Yi are the sequences corresponding to the i−th frequency band of X and

Y , respectively. Specifically: Xi = F−1{ΠiF{X}} and Yi = F−1{ΠiF{Y }}, where
Πi is an ideal bandpass filter, and F and F−1 are the Fourier Transform and Inverse

Fourier Transform, respectively. We assume that each sub-channel has a flat frequency

response ofHi, which approximates the original end-to-end channel frequency response,

H , at that particular frequency band. The fidelity of the approximation improves as

the number of sub-channels N increases5.

Consider now the transmission of X = [X1 · · ·XN ] through the system in

Figure 3.6 in such a way that the system is used N times, and at each time i, the ith

frequency component of X, Xi = [0 Xi · · · 0], is transmitted so that

Yi = fi(Xi) +Zi, (3.4)

5 In the limit as N → ∞, the formulation is exact.
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where fi is a non-linear function that depends on the parameters of the end-to-end

channel. We postulate that the capacity of this scheme6, CB, is higher than the capacity

of the original end-to-end channel, and more specifically that an upper bound of the

capacity of the end-to-end channel can be obtained as

CB =

N
∑

i=1

Cd(
Pi γd |Hi|2

σ2
n

), (3.5)

so that each sub-channel in (3.4) has power Pi (
∑

i Pi = P , where P is the transmission

power of the end-to-end channel) and experiences a frequency response of Hi. This

brings us to the question of optimal power allocation amongst the N parallel channels

to maximize CB =
∑

i Cd(
|Hi|2 γd Pi

σi

n2
), where Cd(·) is the capacity of the simplified

non-linear channel (without ISI), calculated using the Blahut-Arimoto algorithm as

explained in Section 3.2.1.

End-to-end 

Acoustic 

Channel

X Y
+

X1

X2

XN

Y1

Y2

YN

2

N

1

Figure 3.6: System used to postulate a bound for the capacity of the end-to-end un-
derwater channel.

6 Notice that if X = [X1 · · ·XN ] is transmitted, the channel non-linearity would induce leakage
between inputs Xj and outputs Yk, for j 6= k. Intuitively, this would lead to performance degradation.
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3.3 Power Allocation for the End-to-end Channel

3.3.1 Optimal Power Allocation Scheme for CB

We can obtain the optimal power allocation, P , that maximizes CB =
∑

i Cd(
|Hi|2 γd Pi

σi

n2
)

by using Lagrange multipliers. First, we form the functional

J(P1, P2 · · · , Pk) =
∑

Cd(
Pi γd |Hi|2

σ2
n

) + λ(
∑

Pi). (3.6)

In order to obtain the optimal power allocation, we differentiate w.r.t Pi in (3.6) and

set the result to zero to obtain

γd |Hi|2
σ2
n

C ′
d(
Pi γd |Hi|2

σ2
n

) = −λ = constant. (3.7)

The constant λ acts as a parameter that needs to be adjusted to satisfy the

total power constraint of the channel. This can be thought of as a necessary condition

to achieve optimality, but it does not give us direct computational steps to come up

with the optimal power allocation. Next, we develop an iterative algorithm that aims

at finding the optimal power allocation for (3.6). The algorithm starts by choosing a

random power allocation (P 1
1 , · · ·P 1

N), where the superscript denotes iteration number,

such that
∑

i P
j
i = P . After each iteration j, we evaluate

λ
j
i =

γd |Hi|2
σ2
n

C ′(
P

j
i γd |Hi|2

σ2
n

) (3.8)

λ̂
j
i = λ

j
i −

N
∑

i=1

λ
j
i

N
.

λ̂
j
i in (3.8) is the deviation from the mean for sub-channel i at iteration j. From (3.7),

we know that the optimal power allocation would make all λj
i ’s equal to a constant

number. We then use a strategy based on λ̂
j
i to adjust the power at the next iteration.

A simple strategy would change the power for each sub-channel i, by a constant amount
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(∆P ), depending on the sign of λ̂j
i , i.e,

P
j+1
i = c

j
i ×

(

P
j
i −∆P sign(λ̂j

i )
)⊕

, (3.9)

where (⊕) forces the power to lie between the power amplifier limits, [a2, b2] and is

given by

(x)⊕ =























a2 x < a2

x a2 < x < b2

b2 x > b2























. (3.10)

The term c
j
i in (3.9) is a normalization parameter to ensure that the power constraint

∑

Pi = P is met in each iteration. We run this algorithm for a fixed large number

of iterations or until the difference in the objective function between two successive

iterations is below a desired tolerance ∆C. For faster convergence, we could adopt

more elaborate strategies, such as making the increment/decrement in power, ∆Pi,

vary depending on how divergent from the mean λ̂
j
i is. It is interesting to note that the

above algorithm is a variant of gradient descent, and we see in Appendix A that the

function CB =
∑

iCd(
|Hi|2 γd Pi

σi

n2
) is concave and does indeed have a global maximum

which can be reached by gradient descent.

Note that the larger the number of channels N , the better approximation to

the original channel. We have run the above algorithm for N = 512, 1024, 2048, 4096

and found out empirically that N = 1024 gives a fairly accurate approximation of

the channel (further increases do not change the results up to four significant digits).

Hence N will be chosen as 1024 in the sequel. Figure 3.7 shows the value of CB =
∑

i Cd(
|Hi|2 γd Pi

σi

n2
) for the end-to-end non-linear ISI channel using the aforementioned

power allocation technique for a communication distance of 0.5, 1, 2 and 4 Km.

3.3.2 Heuristic Power Allocation Scheme for CB

We now describe a much simpler heuristic algorithm for power allocation, which

is a modified version of the water filling solution. The water filling solution is the
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Figure 3.7: Value of CB =
∑

i Cd(
|Hi|2 γd Pi

σi

n2
) for the end-to-end non-linear channel for

d = 0.5, 1, 2 and 4 Km. The capacity of the same channel assuming an ideal linear
amplifier is also shown.

technique used to obtain the optimal power allocation in the case of linear ISI channels

[40]. The non-linear power amplifier has a zero response for any x, where |x| < a.

Hence, it is not possible to have a non-zero information rate with a transmission power

smaller than a2. Moreover, the power amplifier has a maximum range of |b|, and no

extra information can be communicated at P > b2. Hence the Kuhn-Tucker conditions

are modified7 to be
√

(x2)⊕, where ⊕ was defined in (3.10). Interestingly, the results in

(3.7) reflect that, since for P ≅ b2, Cd(·) plateaus and C ′
d goes quickly to zero as shown

in Figure 3.8. Accordingly the optimal strategy does not allocate any power when

P > b2. Figure 3.9 shows, for CSNR = 9.38 dB and CSNR = 22.1 dB, the resulting

power allocation when running the optimal algorithm and compares it with the power

allocation using the heuristic water-filling-like simplified technique, when the distance

between the transmitter and receiver, d, is 1 Km. It is interesting to note that the

7 For linear channels, the condition is (x)+ = max(x, 0)
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gains from the optimal power allocation are 0.1 and 0.3 dB. The gain is particularly

small when the overall transmission power is in the middle region of [a2, b2]. This can

be explained by Figure 3.8, as in this case C ′ is almost identical for both the linear

AWGN channel and the non linear end-to-end acoustic channel.

0 500 1000 1500 2000 2500 3000 3500 4000
P (linear scale)

10-8

10-6

10-4

10-2

100

C
'

Derivative of C d()

Simplified non-linear channel
Linear AWGN channel

Figure 3.8: Rate of change, C ′, for Cd(
P γd
σ
n2

) for the simplified non-linear channel and

the AWGN channel for d = 1 Km.

It is interesting to note that for the channel defined in Figure 3.3, the perfor-

mance gain obtained by optimal power allocation (rather than simply uniform power

allocation) is negligible, in particular at high SNRs. This observation holds for both

the linear ISI channel and the non-linear end-to-end ISI channel. For example, for the

case of 2 Km, the gain at CSNR = 4 dB is just 0.4 dB for the non-linear end-to-end

ISI channel, and only 0.06 dB for the linear ISI channel. The diminishing return of

optimal water-filling allocation was reported in [52] for MIMO channels under different

channel conditions.

We should note that the modified Kuhn-Tucker conditions, along with (3.7)

might not be satisfiable for all P , in particular if P is too small or too large. This is

not surprising given the shape of the power amplifier transfer function. As Figure 3.9

shows, using the heuristic power allocation scheme leads to minor losses in terms of
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Figure 3.9: Optimal power allocation vs allocation obtained by the heuristic (modified
water-filling-like) algorithm for the end-to-end non-linear ISI channel, when the com-
munication distance is 1 Km, for CSNR = 9.3 and CSNR = 22.1 dB. The number of
parallel channels is N = 1024.

performance, yet it does not require the iterative algorithm described earlier.

3.4 Proposed System

Given the non-linear characteristics of the channel, the direct use of the standard

space-filling curves described in Section 3.1.2 will not lead to good performance. The

reason is that standard curves allocate much of the energy in regions close to the

origin, while the non-linear amplifier maps all data points x such that |x| < a (an
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important fraction of the data, since we assume that the mean of the source is zero)

to zero, and thus those points would suffer severe distortion. Hence, it is necessary

to utilize novel transformations so that the channel input follows a distribution close

to the capacity achieving distribution obtained in Section 3.2. We will do this by still

utilizing standard space-filling curves, but changing the shape of the distribution by

applying a Histogram Matching block, a novel transformation that matches the output

of the space-filling encoder to the existing non-linearity.

Figure 3.10 shows the proposed encoder. We assume that the source emits zero-

mean Gaussian i.i.d samples which are encoded by the 2:1 spiral mapping and the

shaping function Tα(θ̂) = θ̂α, as defined in Section 3.1.2. Then, the output is passed

through a Histogram Matching block F (x), which transforms the pdf of the input to

match the channel statistics, aiming at obtaining a distribution for the channel input

close to that discussed in Section 3.2 for the simplified channel. Finally, the output

of the Histogram Matching block is passed through the non-linear amplifier and sent

through the channel.

2:1 Spiral Encoding Histogram Matching Amplifier

F(.)

Figure 3.10: Overall system model of the transmitter.

It is important to remark that for the end-to-end channel we use the capacity

achieving distribution of the simplified channel. The rationale is that we do not know

the capacity achieving distribution of the end-to-end channel, but, intuitively, the non-

linearity has a much more constraining effect on the capacity than the ISI (e.g., if the
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information is transmitted in the saturated regions of the non-linear amplifier, most of

it will be lost).

In order to implement the histogram matching block, we will use the well known

fact that given an input pdf g(x) and a required output pdf h(x), then the function F

that transforms the pdf of the input from g(x) to h(x) is given by F (x) = H−1(G(x)),

where G(r) =
r
∫

−∞
g(x)dx and H(r) =

r
∫

−∞
h(x)dx are the Cumulative Distribution

Functions of g(x) and h(x), respectively. Following the discussion in Section 3.2, we

postulate the following family of distributions as h(x)

h(x) =


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



ǫ1 δ(x) x = 0

c · e−
(x−a)β

2σ2 a < x < b

c · e−
(x+a)β

2σ2 − b < x < −a

ǫ2 δ(|x| − b) |x| = b

ǫ3 δ(|x| − a) |x| = a

0 otherwise
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
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




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

. (3.11)

Notice that in addition to ∆ and α, we have to optimize over five different

parameters (ǫ1, β, σ, ǫ2, ǫ3) to obtain the distribution h(x) that achieves the highest

SDR for a given CSNR (c is a normalization constant so that
∫

h(x)dx = 1, and δ(·)
is the Dirac delta function). The first line in (3.11) reflects the fact that we have a

degree of freedom to use at x = 0. Lines 2 and 3 describe the equation of a generalized

Gaussian with mean a and −a, respectively, parameter β and variance σ2. Lines 4

and 5 accommodate the possibility of a Dirac delta at the amplifier extremities. Line

6 reflects that we do not send any symbol in the saturated regions of the amplifier, as

that would be a waste of energy for the transmitter. Figure 3.11 shows the histogram of

the channel input obtained after we perform the optimization, as well as the histogram

of the output of the space-filling curve, when the distance between the transmitter and

receiver is 1 Km for CSNR = 27 dB.
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Figure 3.11: The histogram matching block modifies the distribution of the input
data. The distance between transmitter and receiver is 1 Km, CSNR = 27 dB, and
the optimized parameters are (ǫ1 = 0.2, β = 2, σ = 5, ǫ2 = 0, ǫ3 = 0).

3.4.1 Decoder Structure

The decoder for the proposed system for the end-to-end channel is composed of

two main components. First, an inner equalizer that deals with the ISI by performing

MMSE detection. Then, an outer decoder that takes the estimate from the equal-

izer as input and performs ML decoding on the histogram matching block, followed

by ML decoding of the 2:1 spiral mapping. This two stage decoder is similar to the

one proposed for linear channels in [53], where it was shown to achieve excellent per-

formance. Obviously, only the outer decoder is required if there is no ISI (simplified

channel). Given the estimate, r, produced by the equalizer, the ML estimate at the

outer decoder is obtained by first calculating

θ̂ML = Tα
−1(F−1(

r

g × γd
)), (3.12)

where g is the amplifier gain and γd is the channel attenuation as defined in Figure

3.3, F is the transfer function of the histogram matching block defined earlier, and Tα

is defined in Figure 3.2. Then, we perform the inverse mapping on θ̂ML to obtain the

ML estimates of the original transmitted source pair (x′, y′).
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As inner equalizer, we consider a Time Domain Equalizer, performing either

MMLS Linear Equalization (MMSE-LE) or MMSE Decision Feedback Equalization

(MMSE-DFE). We assume that the channel impulse response and the noise variance

are known at the receiver. Given the transmitted symbols xk and the received symbols

dk, the Linear MMSE equalizer W is obtained as [54]

ŴLE = arg min
W

E||(xk −WH ∗ dk)||2, (3.13)

where ∗ is the convolution operator. Then, the output of the equalizer, rk = WH ∗dk,

is passed to the inner decoder discussed above.

FFF
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2:1 Spiral re-

encoding
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x(k)

y(k)
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d(k)
v(k)u(k)

s(k)

-

+

Figure 3.12: DFE structure

As shown in Figure 3.12, the DFE equalizer is composed of two filters: the Feed-

Forward Filter (FFF) and the FeedBack filter (FBF). The FFF removes the precursor

ISI (i.e., the ISI before the transmitted symbol) and the FBF deals with the postcur-

sor ISI. The DFE uses the previous symbol estimates r(k) and subtracts their effect

from the current symbol u(k). Note that in digital communication systems there is a

threshold operation that is used to produce one of the (finite) symbols of the constel-

lation. However, in the proposed discrete-time analog processing system, the number

of possible points in the constellation is not finite, and the only possibility to obtain

the source pair estimate (x, y) is to “clean” the estimate v(k). This is done by utilizing

the outer decoder block to obtain a source pair (x, y) from v(k). Then we re-encode

the pair (x, y) utilizing the spiral curve to obtain r(k). The filters F,B are designed

so as to minimize the MSE between the transmitted symbols xk and the input to the

39



outer decoder vk [54], i.e.,

< F̂ , B̂ >MMSE = argmin
F,B

E||xk − vk||2. (3.14)

3.5 Simulation Results

In this section we first present simulation results for the simplified channel (i.e.,

no ISI). Then, we take the ISI into consideration and present the results for the end-

to-end system. The benchmark we use to evaluate our system is the Optimum Perfor-

mance Theoretically Attainable (OPTA), as defined in section 2.3.3.

3.5.1 Simplified non-linear Channel (no ISI)

In this section we first present simulation results for the simplified non-linear

channel (without considering the ISI). In our simulations we focus on the transmission

of memoryless Gaussian sources using the proposed system specified in Section 3.4. We

simulated the system for four different separation distances between the transmitter

and receiver (0.5, 1, 2 and 4 Km), and for a wide range of CSNRs (0 to 60 dB). For

each CSNR, we calculated the parameters defined in (2.2), (3.1) as well as (3.11) to

optimize for the SDR, and corroborated, as shown in Figure 3.13, that for a wide range

of CSNRs, the system achieves a performance very close to the OPTA (curve labeled

“OPTA for the simplified non-linear channel”). In particular, the system is only 2 dB

away from the OPTA for all ranges except for very high CSNRs, where it plateaus

earlier than the OPTA. This pattern occurs independently of the separation distance

between the transmitter and receiver, and is caused by the saturation at the extreme

ends of the amplifier where |x| > b (see Figure 3.3). Thus, the maximum throughput

supported by the simplified non-linear channel is bounded.

The OPTA for the AWGN channel (i.e. without the non-linear amplifier) is

also depicted in Figure 3.13 for illustration purposes. As shown in the figures, when

CSNR is not very high the gap between the OPTA for the AWGN channel and the

OPTA for the simplified non-linear channel decreases as the CSNR increases, reflecting
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Figure 3.13: Simulation results for the simplified non-linear channel (no ISI) when the
distance between the transmitter and receiver is 0.5, 1, 2 and 4 Km.

the fact that there is a strong non-linearity near zero which adversely affects the low

CSNR regime. Notice, however, that as we increase the separation distance between

the transmitter and receiver, the performance loss due to the non-linearity becomes

less and less pronounced. The reason is that since the noise variance at the receiver

is fixed, for a given CSNR the energy at the transmitter increases as the attenuation

increases, and thus the region in the non-linear amplifier around 0 has less influence.

3.5.2 End-to-end non-linear ISI Channel

Figure 3.14 presents the results for the end-to-end channel (including ISI and

non-linearity) defined in Figure 3.3. We designed the system as discussed in Section

3.4, for the simplified channel without ISI8. Then, we applied the resulting system

to the end-to-end channel defined in Figure 3.3 and compared the results obtained

8 As explained before, the main constraint in terms of end-to-end system performance is the non-linear
amplifier. This means that the amplifier non-linearity is the main driving factor in system design.
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using MMSE-LE equalization with those of an MMSE-DFE equalizer. The length of

the MMSE-LE equalizer is 10 times the length of channel impulse response shown in

Figure 3.3, which is also the length of the FFF in the MMSE-DFE equalizer. The

length of the FBF is 18. The resulting performance when the distance between the

transmitter and receiver is 0.5, 1, 2 and 4 Km is shown in Figure 3.14. Notice that

the performance obtained with the DFE equalizer is a little bit better than that of

the LE equalizer. In addition to these results, four bounds are also depicted in the

figures: i) the theoretical bound (OPTA) for a pure AWGN channel, ii) the OPTA for

the system in Figure 3.3 when only the ISI is considered (i.e., without considering the

non-linearity), iii) the OPTA for the system in Figure 3.3 when only the non-linearity

is considered (i.e., without considering the ISI), and iv) the postulated upper bound for

the OPTA of the end-to-end non-linear ISI channel in Figure 3.3 (i.e., considering both

the non-linearity and the ISI). It is important to remark that the postulated bound of

the end-to-end system is very close to the OPTA considering only the non-linearity, and

both are far away from the OPTA obtained when the non-linearity is not considered.

This reaffirms the usefulness of designing the system for the simplified channel (i.e.,

considering only the non-linearity but not the ISI channel.)

3.6 Conclusion

We have extended the use of analog joint source-channel coding techniques based

on spiral-like space filling curves to non-linear channels of the type encountered in un-

derwater acoustic communications. We first considered the simplified case of non-linear

channels with no ISI. Then we extended our approach to end-to-end underwater chan-

nels, incorporating the ISI and the amplifier non-linearity. For the simplified non-linear

channel, the capacity is calculated extending the Blahut-Arimoto algorithm, while for

the end-to-end channel we postulated a capacity bound. Optimal and suboptimal

power allocation schemes were discussed. We concluded the paper by presenting sim-

ulation results for the complete communication system. The resulting performance

was shown to be very close to the theoretical limits for a wide range of CSNRs and
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Figure 3.14: Simulation results for the end-to-end channel (including non-linearity and
ISI). The distance between the transmitter and receiver is 0.5, 1, 2 and 4 Km and the
ISI channel response is shown in Figure 3.3.

communication ranges.
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Chapter 4

ANALOG JSCC FOR THE MULTIPLE ACCESS CHANNEL

So far we have discussed techniques of analog coding for the point to point

channel. Multi-Network channels consist of one or more transmitters and one or more

receivers as shown in Figure 4.1. Each transmitter i ∈ M , has a set of Ki sources

or messages, Sikj , that have to be communicated to one or more receivers. Moreover,

the transmitter seeks to guarantee a certain fidelity for each (message, receiver) pair.

The sources being transmitted could in general be independent or correlated (amongst

the same transmitter or across multiple transmitters). The channel transition function

between the transmitters and receivers is also another variable in the characterization.

The problem has many variables and neither the capacity region nor a general well-

performing communication scheme is known.

This chapter discusses the application of analog JSCC systems to the Multiple

Access Channel (MAC), where there are multiple transmitters wishing to communicate

to a common receiver over a shared communication medium. Previous work on analog

joint source-channel coding for the MAC has focused on the two user case and includes

the work in [57], which extends the Nested Quantization digital technique proposed in

[58] to transmitting Multi-variate Gaussian sources over the N -user MAC. A hybrid

digital-analog scheme was proposed in [59] for the transmission of Bivariate Gaussian

sources over the fading MAC. In [60, 61] the authors design an optimal mapping for

transmitting Bivariate Gaussian sources over the MAC and other channels using vari-

ational methods. In this Chapter, we propose a novel hybrid digital analog scheme

that combines an analog CDMA-like access scheme with traditional digital codes. Dif-

ferent from previous works, our scheme utilizes standard analog and digital mappings

which are designed for point-to-point communications (such as space filling curves [2]
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Figure 4.1: General multi-terminal network. Notice that each transmitter has a set of
sources and that have to be communicated to a subset of the receivers with a given
fidelity. The desired fidelity level could be different for each receiver.

and LDPC codes). The proposed hybrid scheme is suitable both for the symmetric

and asymmetric distortions case (where each user in the MAC targets a different dis-

tortion), for different source-channel ratios, and for two or more users. The resulting

performance is very close to the theoretical limits.

This chapter is organized as follows: Section 4.1 introduces the Multiple Access

Channel and discusses the general communication techniques used. Section 4.2 first

presents the analog component of the hybrid scheme: an orthogonal CDMA-like access

scheme suitable for the transmission of analog JSCC systems. Analysis is performed

and the optimality of the purely-analog scheme is proved for several cases of inter-

est. Section 4.3 builds on Section 4.2 and presents the complete hybrid analog-digital

scheme, particularizing the presentation for two users. We will then discuss extensions

of the Hybrid scheme to more than two users users in Section 4.4. In Section 4.5, we

will present the simulation results for the case of two and three users, first considering

the purely analog system, and then the complete hybrid analog-digital scheme. We
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Figure 4.2: The Multiple Access Channel with N users.

will demonstrate the advantages of the hybrid scheme and show that it can achieve

optimality for any point in the capacity region. Finally, Section 4.6 concludes the

chapter.

4.1 The Multiple Access Channel

The N−user Multiple Access Chanel is a channel with N users, each wishing to

transmit data to a common receiver as shown in Figure 4.2. A typical example of this

channel is cell phones communicating to a common base station. This Chapter deals

with the AWGN MAC, where each user i produces information Xi = [xi1 xi2 · · · ] from
an alphabet Xi and sends that over the channel under an average power constraint Pi

lim
Ω→∞

1

Ω

Ω
∑

j=0

xij
2 ≤ Pi i = 1, 2, · · · , N (4.1)

At the receiver, a noise with variance σ2
n (without loss of generality, we assume

σ2
n = 1 in the sequel) is added to the received data, so that at time j, the receiver sees

yj =
∑N

i=1 xij + nj . For such a channel, the maximum rate of communication is given

by [40]

∑

J

Ri ≤
1

2
log2(1 +

∑

J

Pi) ∀i ∈ J, ∀J ⊂ P({1, 2 · · ·N}), (4.2)
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Figure 4.3: Capacity region for the 2-user AWGN Multiple Access Channel.

where P(·) is the power set [40].

Equation (4.2) defines a polyhedron in N dimensions, and each inequality in

(4.2) defines an edge of the polyhedron. Figure 4.3 shows the capacity region for the

two user case. The maximum sum rate is

N
∑

i=1

Ri ≤ CMAC =
1

2
log2(1 +

N
∑

i=1

Pi). (4.3)

Schemes used for communications over the MAC can be broken down into

two main categories: Orthogonal schemes such as Time Division Multiple Access

(TDMA), Frequency Division Multiple Access (FDMA), and Code Division Multiple

Access (CDMA), and non-orthogonal schemes. Among the non-orthogonal schemes, we

will discuss those that are commonly called Successive Interference Cancellation (SIC)

schemes. SIC is being used in 5G systems under the name NOMA (Non-orthogonal

Multiple Access) [62].
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4.1.1 Orthogonal Schemes

TDMA is the most intuitive solution for the MAC. User i fully utilizes the

channel and transmits for a fraction λi of the time, while the remaining N − 1 users

stay quiet, with
∑N

i=1 λi = 1. The TDMA achievable rates are

Ri = λiCi, (4.4)

Ci =
1

2
log(1 + Pi). (4.5)

In FDMA schemes, the two users share the channel degrees of freedoms by

partitioning the channel into into N non over-lapping frequency sub-bands and letting

each user use the allotted sub-band to send data. If user i is allocated λi2π rads1, such

that
∑N

i=1 λi = 1 then the rate achieved by each user is given by

Ri = λi log(1 +
Pi

λi

). (4.6)

Figure 4.3 demonstrates Time and Frequency Division systems for the two user case

(N = 2). It is clear from Figure 4.3 that TMDA is optimal only at the two extrema

of the Capacity region, while FDMA is also optimal at the point where the channel

degrees of freedom are proportionally allocated to the users power, (λ1

λ2
= P1

P2
) [40].

Unlike FDMA and TDMA, CDMA does not separate the users based on time

or frequency, but on code. Similar to FDMA and TDMA, any two CDMA code-words

are also orthogonal. The scheme we use here will be based on Direct Sequence (DS)

CDMA, where an orthogonal matrix is chosen, such as the Walsh-Hadmard matrix2

1 Note that since this is a discrete time system, we are dealing with units of rads and the full spectrum
is contained to 2π rads.

2 Any Hermitian matrix can be used as a basis for CDMA, like the Fast Fourier Transform (FFT)
and Discrete Cosine Transofrm (DCT).
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which is defined recursively by

H1 =
[

1
]

(4.7)

Hi+1 =





Hi Hi

−Hi Hi



 for i = 2, 3, · · · (4.8)

The matrix is Hermitian (Orthogonal), that is HHT = λI, where I is the identity

matrix. In the absence of noise, this allows us to transmit and receive K symbols,

where K is the cardinality of H , over K time samples. Each symbol is modulated by a

row of the matrix H , and is reconstructed by a filter matched to the modulating code.

In matrix notation, if the K symbols we wish to transmit are x, the channel output

over K time samples y3 is given by y = Hx. To reconstruct x, we use the matched

filter to H , which in the absence of noise is G = H−1, so that the reconstructed x̂ is

given by x̂ = H−1y = x.

4.1.2 Non-Orthogonal Schemes

Orthogonal schemes lack the ability to achieve any arbitrary point on the ca-

pacity region, as shown in Figure 4.3. On the other hand, SIC is able to achieve any

point in the capacity region. For example, to achieve point B in Figure 4.3, user 1

sends information at the full rate R1 using a capacity achieving code. The decoder

decodes the information treating the second source transmission as noise, hence the

effective SNR is P1

σ2
n+P2

4. Having decoded user 1 perfectly, the decoder re-encodes the

data of user 1 using the code used by user 1 and subtracts (or cancels) that from the

noisy received signal, y, effectively achieving an SNR of P2

σ2
n
for the second user. The

following equations summarize how to achieve point B in Figure 4.3. f1, f2 are capacity

3 Both x and y are K × 1 vectors

4 This assumes that P2 follows a Gaussian distribution which indeed does when the capacity achieving
distribution is used
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achieving channel codes, and g1, g2 are the corresponding decoders.

x1
f1(·)−−−−−−−−−−−→

designed for P1

P2+σ2
n

y1 user 1 transmission (4.9)

x2
f2(·)−−−−−−−−−→

designed for P2

σ2
n

y2 user 2 transmission (4.10)

z = y1 + y2 + n data at the receiver (4.11)

z = y1 + y2 + n User 1 treats y2 as noise and decodes (4.12)

x̂1 = g1(z) = x1 By the noisy channel coding theorem (4.13)

z∗ = z − f1(x̂) = z − y1 (4.14)

z∗ = y2 + n User 2 decodes (4.15)

x̂2 = g2(z
∗) = x2 (4.16)

Similarly, point C in Figure 4.3 can be achieved by reversing the roles of users

1 and 2 in (4.9) above. Hence, these two SIC systems allow us to achieve the extreme

points (B,C) on the capacity region. Time sharing can then be used on these two

systems to achieve any point in the capacity outer bound, as shown in Figure 4.3.

This demonstrates that there is a great advantage for SIC systems over orthogonal

systems, namely the ability to achieve any point on the MAC capacity region, while

orthogonal systems are only optimal for one point when the channel degrees of freedom

are allocated in proportion to each user available transmission power. In practice,

CDMA has advantages of its own, as it is robust against decoding errors. The reason

is that if the decoding step fails in SIC systems for the digitally encoded data (or if

there are decoding errors), the subsequent decoding steps will fail. This is particularly

more pronounced for SIC systems with a large number of users (system generalizations

for more than two users will be discussed in Section 4.4), where the probability of

decoding failure increases. Moreover, CDMA systems are easier to encode and decode.
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4.2 Proposed CDMA-like Access Scheme

In this section, we introduce the analog component of the proposed hybrid

scheme. For the N users to transmit over the MAC, we propose the utilization of a

K ×K orthogonal codebook, CK×K , with K ≥ N . To that end, we start off with an

orthogonal matrix of size K, such as the Hadamard matrix, and assign mi columns

to user i so that
∑N

i=1mi = K. We then scale each user’s columns by ηi = 1√
mi
.

The scaled columns assigned to user i are denoted by µi

1
µi

2
· · ·µi

mi
. As shown in

(4.17), we group the columns assigned to user i into one submatrix denoted by CK×mi

= [µi

1
µi

2
· · ·µi

mi
], which is the access codebook that user i uses to send the data.

Specifically,

CK×K = [CK×m1|CK×m2 · · · |CK×mN
],

with (4.17)

CK×mi
= [µi

1
µi

2
· · ·µi

mi
] (4.18)

=











ci
1

ci
2

...
ci
K











=











ci1(1) ci1(2) · · · ci1(mi)
ci2(1) ci2(2) · · · ci2(mi)
...

... · · · ...
ciK(1) ciK(2) · · · ciK(mi)











Figure 4.4: The codebook CK×K is obtained by scaling the Hadamard matrix columns
corresponding to user i by the factor ηi = 1√

mi
. The K × K access codebook is

partitioned into N sub matrices, CK x mi
with 1 ≤ i ≤ N , where CK×mi

is the access
code for user i.

In the proposed scheme, each user makes use of K time intervals (with K ≥ N)

to send its information. The data user i transmits over this time frame is xi=[xi
1 x

i
2 · · · xi

mi
].

Note that in general different users may have different channel data rates mi

K
. At time

1 ≤ k ≤ K, user i utilizes code ci
k
=[cik(1) c

i
k(2) · · · cik(mi)], the k

th row of CKxmi
, and
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Figure 4.5: Proposed scheme for two users (N = 2) with K = 8, m1 = 3 and m2 = 5.
The upper branch corresponds to user 1 and the lower to user 2. Note the data of each
user xi

j is fixed for all the signaling times 1 ≤ k ≤ 8.

transmits xici
k

T
, so that the received signal y=[y1 y2 · · · yK ] is given by

yk =
N
∑

i=1

xicik
T
+ zk =

N
∑

i=1

mi
∑

j=1

xi
jc

i
k(j) + zk, 1 ≤ k ≤ K. (4.19)

As noted before, the data to be sent by user i, xi, is repeated during the K

signaling times. Therefore, the overall power received by each user is KPi. Figure 4.5

illustrates the proposed scheme for a two user case (N = 2) with m1 = 3 and m2 = 5,

using the Hadamard matrix in Figure 4.6 to construct the access codes.

Notice that since the input source samples are i.i.d, the proposed scheme is

equivalent to a CDMA system with K users and K spread sequences (the columns of

the matrix CK×K), with the first m1 users of the equivalent scheme corresponding to

the m1 symbols of user 1, the next m2 users of the equivalent scheme corresponding to

the m2 symbols of user 2, and so on. Figure 4.7 shows the equivalent CDMA system

corresponding to Figure 4.5.

Note that the off diagonal entries of CK×KCK×K
T are zero because each µi

j

is a scaled column of an orthogonal matrix. Hence CK×KCK×K
T = D is a K × K

52



H8x8 =
1√
8

























1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

























(4.20)

Figure 4.6: 8×8 Hadamard matrix. Here K = 8, m1 = 3 and m2 = 5. To generate the
matrix C8×8, the first 3 columns are assigned to user 1 and then scaled by 1√

3
. The

remaining 5 columns are assigned to user 2 and scaled by 1√
5
.
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Figure 4.7: Equivalent CDMA system corresponding to Figure 4.5. The first m1 = 3
equivalent users correspond to the 3 different symbols of user 1 in our proposed scheme,
while the next m2 = 5 equivalent users correspond to the 5 different symbols of user 2.
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diagonal matrix with N distinct values (mi entries of value 1
mi
, where 1 ≤ i ≤ N).

Thus, the proposed scheme is equivalent to K orthogonal Single-Input Single-Output

(SISO) channels and its sum rate, in terms of bits per channel use, is

Rscheme =
1

K

[

N
∑

i=1

mi
∑

j=1

(

1

2
log2

(

1 +
KPi

mi

)

)]

, (4.21)

where we have divided byK because the proposed system uses the MACK times. Note

that the power of each parallel SISO channel is the power of the spreading sequence

µi

j

T
µi

j
= 1

mi
times the overall power KPi received from user i.

From (4.3), the maximum sum rate is

CMAC =
1

2
log2(1 +

N
∑

i=1

Pi) =
1

2
log2

[

1 +

N
∑

i=1

mi
∑

j=1

(
Pi

mi

)

]

. (4.22)

Using the log sum inequality, it can be easily shown that Rscheme and CMAC are equal

if and only if
Pi

mi

=
Pj

mj

∀j 6= i with 1 ≤ i, j ≤ N. (4.23)

This result is not surprising since the equivalent CDMA scheme achieves the MAC

capacity when all the K equivalent users have the same power.

Particularizing the above result for the two-user case (N = 2) gives the optimal

m1 and m2:
P1

m∗

1
= P2

m∗

2
, such that m∗

1 +m∗
2 = K. Solving for the optimal mi, i = 1, 2

yields

m∗
i =

KPi

P1 + P2

i = 1, 2. (4.24)

Since mi is the number of columns assigned to user i, it should be an integer. Even

though the m∗
i ’s may not be integers, if the code size K is chosen large enough (m1, m2)

can be chosen as close to the optimal (m∗
1, m

∗
2) as desired.

We can break up (4.21) to obtain the rate achieved by each user. For example,
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for the two user case, N = 2, we have

R1 =
1

K

( m1
∑

j=1

1

2
log2(1 +

KP1

m1
)

)

(4.25)

R2 =
1

K

( K
∑

j=m1+1

1

2
log2(1 +

KP2

m2
)

)

. (4.26)

Figure 4.8 shows the maximal rates achieved by each user for the two user case

when P1 = 200 and P2 = 400. The MAC capacity region is obtained from (4.2). In the

Figure, we choose K = 32. As indicated in (4.23), there exists a point in the graph in

which the proposed scheme achieves the MAC capacity.
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Figure 4.8: MAC capacity and the proposed scheme capacity for P1 = 200, P2 = 400
and codebook size K = 32. Each point of the curve is obtained from (4.25) and (4.26)
by sweeping m1 from 0 to 32.

Note that Figure 4.8 is similar to the one obtained with an orthogonal FDMA

system. However, the proposed scheme has the advantage of ease of analysis and design,

and the potential to be extended to situations where the users are correlated. We also

note that TDMA or FDMA systems would require the use of different rates in the

analog joint source-channel encoder for each user, while here the rate is incorporated

into the access scheme itself, which facilitates the design.
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4.2.1 Analog Joint Source Channel Coding using the proposed CDMA-like

scheme

The N users are each transmitting an i.i.d Gaussian source, Si, each having

zero mean and a variance of σ2
S. Previous to the access scheme, we assume each user

processes its source using an M : 1 analog joint source channel encoder. To simplify

the analysis we assume that the source-channel communication ratio, M , is common

to all users, although the proposed scheme can be easily generalized for different user

ratios. When M = 1, the source samples, sij, j = 1, . . . , mi are input directly to the

access scheme so that xi
j =

√

Pi

σ2
S

sij, j = 1, . . . , mi, while for M = 2 two consecutive

source symbols (si2j , s
i
2j+1) are encoded by a space-filling curve to generate the channel

symbol xi
j .

Under the Mean Squared Error (MSE) distortion criteria, the rate distortion

function of any of the aforementioned sources is given by [40]

R(Di) =











1
2
log2(

σ2
S

Di
) for Di < σ2

S,

0 otherwise

(4.27)

where Di is average MSE distortion incurred by user i.

Considering optimal power allocation for each of the users as given by (4.23),

the optimal theoretical limit (OPTA) for this problem is given by

M

[

m1

K
log(

σ2
S

D1
) + · · ·+ mN

K
log(

σ2
S

DN

)

]

<
1

2
log(1 + P1 + · · ·+ PN ). (4.28)

By defining

SDR =
m1

K
log10(

σ2
S

D1
) + · · ·+ mN

K
log10(

σ2
S

DN

), (4.29)

(4.28) can be re-written as

SDR <
5

M
log10(1 + P1 + · · ·+ PN). (4.30)
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Notice the change in the base of the logarithm.

Again, it is important to remark that (4.30) does not hold for all combinations

of (P1, P2, · · · , PN), but it does when the power allocation for each user is optimized

according to (4.23). Notice that (4.30) represents the minimum “average” distortion

incurred by the system when user i performs bandwidth compression by a factor of M

and utilizes mi access codes. We will use (4.30) to represent the Optimum Performance

Theoretically Attainable (OPTA) in terms of SDR vs SNR = 10 log10(P1 + · · · +
PN), and compare this optimal performance with simulation results obtained from

the proposed system when, for each SNR value, the power allocation for each user,

SNRi = 10log10Pi, is optimized following (4.23).

4.2.1.1 Uncoded Transmission (M = 1)

As explained before, the source samples, sij, j = 1, . . . , mi, are input directly to

the access scheme so that xi
j =

√

Pi

σ2
S

sij, j = 1, . . . , mi. Notice that with this scheme

user i transmits mi source symbols using K signaling intervals.

At the receiver site, we perform MMSE decoding on the received vector y to

obtain the MMSE estimate of the transmitted vector s comprising user 1 and user 2

data. We observe that the received vector y can be expressed as y = HΓs + z, where

Γ is a diagonal scaling matrix containing either
√

P1

σ2
S

or
√

P2

σ2
S

. The MMSE estimate of

the transmitted data is given by

ŝ = ((HΓ)THΓ+ 2I)−1(HΓ)Ty. (4.31)

Since HTH = I, (4.31) reduces to

ŝ = (ΓTΓ+ 2I)−1(HΓ)Ty, (4.32)

which, given the orthogonalization produced by the CDMA-like access scheme, is just

the result of applying a matched filter.
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4.2.1.2 2:1 Bandwidth Reduction (M = 2)

For the 2:1 Bandwidth reduction case, each user utilizes a space-filling curve to

encode two consecutive source symbols (si2j, s
i
2j+1) into symbol xi

j . Therefore, user i

transmits 2mi source symbols over the K signaling intervals. As analog encoders, we

will utilize the non-linear Archimedean spiral [37, 38] defined parametrically as











u =
∆i

π
θ sin θ

v =
∆i

π
θ cos θ

for θ ≥ 0,











u = −∆i

π
θ sin θ

v =
∆i

π
θ cos θ

for θ < 0, (4.33)

where ∆i is the distance between two neighboring spiral arms in the curve correspond-

ing to user i and θ is the angle from the origin to the point (u, v) on the curve. The

mapping function M∆i
(si2j , s

i
2j+1) takes any source pair (si2j , s

i
2j+1) and projects it to

the closest point on the spiral, that is

θ̂ij = M∆i
(si2j , s

i
2j+1) =

argmin
θ
{(si2j ±

∆i

π
θ sin θ)2 + (si2j+1 −

∆i

π
θ cos θ)2}.

(4.34)

After the mapping, θ̂ij is processed by the function Tαi
(θ̂ij) = (θ̂ij)

αi to produce xi
j .

For each user, both parameters (∆i, αi) are optimized according to the corresponding

power allocation Pi [38], where, for each SNR, Pi, the optimal power allocation, is

chosen according to (4.23).

The decoder is composed of two main components. First, the MMSE outer

detector (similar to the MMSE detector that was used in (4.31)) that decouples the

two users data. Second, the inner decoder after the MIMO detector, which performs

Maximum Likelihood (ML) decoding on the 2:1 spiral compression system. Given

the received vector y, the MMSE estimate of the transmitted vector x is obtained

as in (4.31). Then, the ML estimate of θ for user i is calculated by inverting the

transformation Tαi
(·)

(θ̂ij)ML = Tαi

−1(x̂i
j). (4.35)
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Finally, we perform the inverse mapping on (θ̂ij)ML according to (4.33) to obtain

the ML estimates of the original transmitted source pair (ŝi2j , ŝ
i
2j+1) of each user.

4.3 A Hybrid Analog-Digital System for the MAC

As we have discussed in Section 4.1.2, orthogonal systems such as FDMA,

TDMA or the CDMA-based access scheme only achieve capacity at three points on

the convex hull of the capacity region (and two of them are trivial points as shown

in Figure 4.3). Analog codes are readily usable with such orthogonal schemes, as we

have shown in Section 4.2, but not with SIC because the transmitted waveform of one

of the users must be reproduced exactly as it was transmitted. This is to allow the

decoder to subtract that waveform from the noisy received waveform before proceeding

to decode the second user information. This is possible with digital codes because they

take values from a finite set of possibilities. However, analog codes are continuous in

amplitude and the range they can take is infinite. Hence, the analog waveform cannot

be reproduced faithfully at the decoder and SIC cannot be used with analog codes.

In this section, we build on the work of Section 4.2 and present the complete hybrid

analog-digital system.

4.3.1 Theoretical Analysis

The proposed hybrid analog-digital scheme works by having both users use an

orthogonal access scheme to transmit data, and then having one of the users superim-

pose a digital code to transmit the remaining data. At the receiver, the digital code is

decoded first and subtracted from the received waveform. Then, we proceed to decode

the remaining data stemming from the orthogonal scheme as if the orthogonal scheme

had been used alone from the beginning. We will demonstrate that the combination of

the orthogonal CDMA-access scheme and the superimposed digital code can be used

to achieve any point in the convex hull of the capacity region.

Our examples in this Section will focus on the two user case (N = 2), but the

hybrid scheme can be extended for N > 2, as we show later in Section 4.4. For the
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two users to transmit over the MAC, we utilize the same orthogonal CDMA-based

access scheme of Section 4.2, except that we do not allocate the full power P2 to user

2. Instead, user 2 uses a power of (P2 −∆P2) to communicate over the MAC. Hence,

when the aforementioned orthogonal scheme is used with power P1 for user 1 and power

P2 −∆P2 for user 2, where 0 ≤ ∆P2 ≤ P2, the sum rate is given by

ROrth = R1 +R2 =
m

K

1

2
log2(1 +

KP1

m
)+

K −m

K

1

2
log2(1 +

K(P2 −∆P2)

K −m
) (4.36)

The above equation is illustrated in Figure 4.9. By choosing K = 32, the different

points of the orthogonal scheme are plotted by sweeping m from 0 to 32. User 2 would

then use a digital code with the remaining power ∆P2 to transmit at a rate of RDigital.

The maximum rate of this scheme is given by

RDigital =
1

2
log2(1 +

∆P2

1 + P1 + P2 −∆P2
). (4.37)

We note that the above rate for the digital code treats the orthogonal trans-

missions with power P1 and P2 −∆P2 as noise (along with the channel noise itself, of

course). Equation (4.37) also assumes that the overall noise distribution that the dig-

ital system sees is Gaussian. This is exactly the case here, since a necessary condition

for the analog component to achieve (4.36) is to have a Gaussian distribution for each

of the K orthogonal sub-channels.

If m is chosen so that m
P1

= K−m
P2−∆P2

, then it can be easily shown by the log sum

inequality that ROrth = 1
2
log2(1 + P1 + P2 −∆P2). Then, the total information rates

that user 1 and user 2 can achieve, RSum, is given by

RSum = ROrth +RDigital =
1

2
log2(1 + P1 + P2) = CMAC, (4.38)

This means that this particular decomposition of the channel does not lose capacity.

Moreover, we can achieve any point on the convex hull of the capacity simply by varying
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Figure 4.9: Theoretical limit for the hybrid scheme: The lower curve is obtained by
using the CDMA-like access scheme and sweeping m from 0 to 32. The middle curve
represents the achievable rates by the combination of the CDMA-like access scheme
and the digital code used by user 2.

∆P2 from [0, P2].

4.3.2 Practical Implementation

Note that for the digital part of the system, the Channel Coding theorem states

that as long as the information rate is less than Rdigital, error free communication is

feasible. Hence, to implement the proposed scheme we use a powerful channel code to

transmit at or near the capacity of the channel, and at the decoder we subtract the

waveform that was transmitted. Then, we proceed to decode the orthogonal scheme

data, encoded as described is Section 4.2. Note that the equations in (4.36) are still

valid because the orthogonal scheme is not affected by the digital code since we subtract

the digital code at the decoder. The system diagram of the overall scheme is shown in

Figure 4.10.

4.3.2.1 Analog Encoder

For the analog part of the system, we use the analog coding scheme described in

subsection 4.2.1.1. In particular, we focus here on the uncoded analog scheme (M = 1),
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Figure 4.10: Proposed analog-digital coding scheme for two users.

although the scheme can be extended to general channel bandwidth ratios.

4.3.2.2 Digital Encoder

For the digital part of the system, we use the family irregular of LDPC codes

with a code length of 64,800 bits in the DVB-S2 standard [63]. The reason for this

choice is that this standard supports different code rates (ranging from 1
4
to 9

10
), and

the parity matrices for this family of codes are readily available in MATLAB R©. For

our simulations, we use an orthogonal codebook size of K = 1024. Since we have to

decode the digital code first and subtract it from the received waveforms, we have to

wait at least 64,800 channel realizations before we decode the orthogonal component

of the system (which corresponds to ⌈64,800
1024

⌉ = 64 blocks of the orthogonal scheme.)

4.4 Extension to more than two users

In this section, we demonstrate that both the orthogonal CDMA-based access

scheme and the Hybrid analog digital system are well suited for AWGNMultiple Access

Channels with more than two users. First, we recall the capacity of a general N -user
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AWGN MAC [40]

∑

i∈S
Ri ≤ C

(

∑

i∈J
Pi

)

. (4.39)

Here, J is the power set of (1, 2, · · ·N). The capacity region is a polyhedron in N

dimensions. It has a shape similar to that of Figure 4.3, but expanded in N dimensions

instead of two. For the case of pure analog communication, the orthogonal access

scheme proposed in Section 4.2 is optimal when the channel access codes are allocated

in proportion to each user’s power, that is Pi

mi
=

Pj

mj
∀ i, j ∈ [1, N ]. In order to

achieve any point in the capacity region of (4.39), the hybrid scheme in Section 4.3 can

be extended for N users. First all users should utilize the orthogonal access scheme

with powers (P1, P2−∆P2, P3−∆P3, · · · , Pn−∆Pn), with each user being allocated a

proportional number of access codes according to its power, as described earlier. Then,

users 2 to N , each utilize a capacity-achieving digital code with their remaining ∆Pi

transmission power. Each code is designed to operate at an SNR of

SNRi =
∆Pi

N0 + Panalog +
∑N

j=i+1∆Pj

. (4.40)

By applying the log sum inequality, it can be shown that by properly choosing the

number of channel access codes, mi, and the power for the digital source components

(∆Pi), any point in the capacity region can be achieved. The order of decoding is

important here: first we decode the digital component of user N , treating everything

else as noise. Then, we subtract the re-encoded version from the received waveform

to decode the digital component of user N − 1, treating everything else as noise. We

repeat the process until all digital codes of all users have been decoded. Then, we

decode the analog component of each user, as shown in Section 4.2.
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4.5 Simulation Results

4.5.1 Pure analog CDMA-like scheme

We first consider the purely analog scheme with no digital component. We begin

by presenting the results for different values ofmi when K = 16 and the source symbols

of each user are transmitted either directly (M = 1) or using a 2:1 spiral curve (M = 2).

As described before, in our simulations we utilize the optimal power allocation as given

in (4.23) for an overall system power specification SNR = 10 log10(P1+ · · ·+PN), and

compare the “average” distortion SDR as defined in (4.29) with the theoretical limit

obtained in (4.30). Notice that this limit does not depend on the specific values of mi.

The results for M = 1 and different values of mi are shown in Figure 4.11. Notice

that the proposed scheme is optimal, i.e. it achieves the distortion bound for all SNRs,

irrespectively of the values of mi (when Pi are chosen optimally according to (4.23)).
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Figure 4.11: System performance for M = 1 and different values of mi (using optimal
power allocation) when K = 16. Note that irrespectively of the values of mi, the
scheme achieves the OPTA exactly for the two and three user cases.

The above result is very interesting indeed. It was shown by Gobblick [34] that

for point-to-point communications, uncoded transmission of Gaussian sources through

Gaussian channels is optimal when one source symbol is transmitted per channel use.

The use of the access codes converts the MAC channel into K orthogonal parallel SISO

channels, as (4.21) demonstrates, and the system achieves optimal performance over

the MAC when the Pi’s are chosen according to (4.23).
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Simulation results for the M = 2 case and different values of mi (using optimal

power allocation), with K = 16, are shown in Figure 4.12. Notice that irrespectively

of the values of m1 and m2, our system is only about 1 dB away from the OPTA for a

wide range of SNRs.
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Figure 4.12: System performance for M = 2 and different values of mis (using optimal
power allocation) when K = 16. Notice that irrespectively of the values of mis, the
achieved SDR is only 1 dB away from the OPTA.

4.5.2 Hybrid Analog-Digital Scheme

Second, we present the results of the hybrid scheme described in Section 4.3.

For the analog part, we use the CDMA-like scheme to transmit uncoded (M = 1)

zero mean Gaussian sources with unity variance. The first and second user transmit

m and K −m source symbols, respectively, over K signaling times. Then, the second

user utilizes one of the LPDC digital codes of the DVB-S2 family to transmit an equi-

probable binary sequence (Bernoulli with p = 1
2
) at an information rate of κ5. Note that

the performance of digital systems is typically measured by the Bit Error Rate (BER)

achieved at a particular SNR, while for analog JSCC systems the average distortion (or

SDR) of the source being transmitted is typically measured, as we defined in sub-section

4.2.1. To measure the performance of the hybrid system, we use the equivalent rate

that the analog scheme achieves based on the resulting distortion, which is captured

5 Note that κ above is not necessarily one of the code rates supported by the DVB-S2 standard. We
use puncturing of the nearest lower code rate supported in the standard to get the desired κ.
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by the rate distortion function. For the digital part of the scheme, we use the digital

code rate, κ, at a BER of 10−7, which is a BER typical for digital systems. Hence the

hybrid scheme achieved rates are given by

R1 =
m

2K
log2(

1

D1

)

R2 =
K −m

2K
log2(

1

D2

) + κ (4.41)
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Figure 4.13: Performance of the hybrid analog-digital scheme using a digital code of
rate κ for user 2, and an uncoded analog system (M = 1.)

The resulting rates are shown in Figure 4.13 for several cases of interest. Note

that the results provided in Figure 4.13 show that the hybrid system is not optimal

(it does not touch the capacity region for κ > 0). This stems from the fact that

the LDPC code operates at about 1.5 dB away from capacity at BER= 10−7 (which

translates to a loss of 0.08-0.2 bits depending on the specific code used). The loss

observed in Figure 4.13 results purely from the sub-optimality of the digital code,

since transmission of Gaussian sources is optimal for the AWGN channel [34] and we

showed in the previous subsection that for M = 1, the analog system is optimal. To
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corroborate this conclusion, Figure 4.14 shows the results assuming that the digital

code is optimal (i.e., it achieves the bound in (4.37)).
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Figure 4.14: Performance of the hybrid analog-digital scheme using an optimal digital
code and an uncoded analog system (M = 1). Note that the performance is tangent
to the MAC capacity meaning it is optimal for that specific rate pair.

Figure 4.15 presents the simulation results for a system with 3 users having

P1 = 10, P2 = 12, and P3 = 15, and utilizing the orthogonal access scheme to trans-

mit uncoded (M = 1) zero mean Gaussian sources with unity variance over K = 128

signaling times. For clarity, we only show one face of the capacity Polyhedron repre-

senting the maximum sum rate bound (R1 + R2 +R3 <
1
2
log(1 + P1 + P2 + P3)). We

notice that the scheme is optimal (tangent to the MAC Capacity) at one point where

Pi

mi
=

Pj

mj
. It can easily be shown that the hybrid scheme can achieve any point in the

capacity region by proper choice of digital codes for any two of the three users in the

system, as described in Section 4.4.

4.6 Conclusion

We have proposed the use of a CDMA-like access scheme for the transmission

of independent users through a MAC using analog joint source-channel coding. The

proposed access scheme allows for the use of different rates for each user, and achieves
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Figure 4.15: Performance of the analog-digital scheme for three users (N = 3) when
transmitting uncoded analog sources (M = 1). Note that the performance is tangent
to the MAC capacity meaning it is optimal for that specific rate pair.

the theoretical limit when the power is allocated optimally to each user. The sources are

encoded by standard space-filling curves optimized for point-to-point AWGN channels.

Simulation results show the optimality of the practical analog coding schemes when

each user transmits the source symbols directly through the channel. The resulting

performance when 2:1 spiral mappings are used to encode each source lies within 1 dB

of the theoretical limit. We have also demonstrated a new hybrid analog-digital scheme

that combines the use of orthogonal schemes with successive interference cancellation.

We have proven analytically, assuming optimal coding, that the scheme achieves the

MAC capacity at any desired rate pair by adjusting the power allocated to the SIC

system. Finally, we have shown that practical systems based on this idea present a

performance very close to the theoretical limits.
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Chapter 5

ANALOG JSCC FOR THE BROADCAST CHANNEL

5.1 Introduction

In this chapter, we continue with another important channel, the Broadcast

Channel. In the Broadcast channel, there is one transmitter that wishes to commu-

nicate a set of messages to N receivers, where each receiver is interested only in a

particular subset of the messages, M . A general framework for the Broadcast channel

is shown in Figure 5.1. The channel is very common in cellular communication systems

where there is a Base Station that wishes to transmit some common and private mes-

sages to the user equipment (cell phones for example) such as, signal strength, network

information, base station location and phone call data.

The remainder of this chapter is organized as follows: Section 5.2 introduces

the broadcast channel and discusses theoretical limits. We discuss the performance of

separation-based schemes for the Broadcast channel in Section 5.3. Section 5.4 intro-

duces the Alternating Sign-Scalar Quantizer Linear Coder (AS-SQLC) scheme, which

is a modified version of the SQLC scheme, suited for the transmission of independent

Gaussian sources. Section 5.5 explains and analyzes the advantage of the modified

scheme over the classic SQLC scheme. In Section 5.6, we set the theoretical framework

to analyze the distortion of the AS-SQLC scheme. In Section 5.7, we generalize the

AS-SQLC scheme to transmit correlated Bivariate Gaussian Sources and derive the

globally optimal decoding functions. We present the simulation results in Section 5.8,

and discuss future work and conclude the Chapter in Section 5.9
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Figure 5.1: General framework for the Broadcast channel. There is one transmitter
which has a set of messages or sources. The transmitter wishes to communicate each
message to a subset of the receivers with a given fidelity. The desired fidelity level may
be different for each receiver.

5.2 The Broadcast Channel

The broadcast channel was first considered by Cover in [65]. The problem for-

mulation is the following: Suppose you have a central transmitter and several receivers.

The central transmitter wishes to communicate a common message to all the receivers,

as well as a private message to each receiver1. Cover showed in [65] that time sharing is

strictly suboptimal for the broadcast channel in the general case2. He showed that the

optimal way to achieve the channel capacity for Gaussian sources is via superposition

coding. Next, we give a concrete example (taken from [40]) about the sub-optimality

1 One might even consider a more general case where the central transmitter has W messages and
each receiver is interested in a particular subset of the messages.

2 Time Sharing or Frequency Sharing or CDMA or any other orthogonal scheme can achieve the
capacity of the Broadcast Channel in special cases. For example for the two user Gaussian broadcast
with the two receivers having the same noise variance, time sharing is optimal, as will be shown in
Appendix B.
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of time sharing in general for broadcast channels, showing the need to employ a super-

position coding based system.

Dutch and Spanish speaker: Suppose you speak both Dutch and Spanish and

you wish to communicate to two persons, one who only speaks Dutch and the other

person only Spanish. Furthermore, suppose that each language has 220 words, and

assume that there are no common words in Spanish and Dutch. Also assume that the

speaker can speak at a rate of one word per second in any language, hence the speaker

can speak at rate of 20 bits/second. If the speaker chose to communicate to the Dutch

speaker half of the time and to the Spanish speaker half of the time (by speaking a

word to the Spanish speaker and then a word to the Dutch speaker alternatively), then

he would be communicating to each listener at a rate of half a word per second or

equivalently 10 bits/second to each listener. Can he do better? In fact, yes. We note

that we can communicate information via the order in which the speaker interleaves

the words to each listener. This is possible because each listener can determine if

the spoken word is either Spanish or Dutch (we have assumed that the two language

alphabets are disjoint3). We can choose any order of the words as shown in Figure 5.2

below. Thus, in effect we can communicate that extra information of order. If we look

at four consecutive time slots, there are four possible different orderings. Hence, we can

communicate two extra bits in these four time slots(seconds). Thus we added an extra

0.5 bits of information and the overall communication rate would be 20.5 bits/second4.

Next, we formalize the above argument. However, note that this characteriza-

tion is the one typically used when working with discrete digital systems, as will be

shown in the next section. Since we are considering analog joint source channel coding

systems here, we will give an alternate characterization of the broadcast channel that

is specific to the case in which we are interested in sending analog Gaussian sources.

3 I believe that the authors in [40] chose Spanish and Dutch in their example because Spanish and
Dutch sound very different from each other, at least they do to the author.

4 In fact by considering a larger word block length instead of four in the above example, it can be
shown that in the limit of taking the block length to ∞, we can communicate at most 1 bit using the
described scheme. Thus bringing the total number of transmitted bits to 21 bits/second [40].
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Dutch DutchSpanish Spanish

Spanish Dutch

Figure 5.2: Different orderings of four messages in a four time slot communication
system. Each order represents a message from a codebook.

We shall still consider the digital (discrete-values) version of the Broadcast channel

because some of the arguments are similar and it is clearer to see the techniques in the

digital domain.

5.2.1 Formal Characterization of the Discrete Broadcast Channel

Before we proceed, we discuss the terminology to be used in the rest of the

chapter: A random variable will be denoted by capital letters X, Y . Samples will be

denoted as lower-case letters x, y. A vector (x(1), x(2), · · · , x(n)) will be denoted by

xn.

The following theoretical formulation is largely based on Cover’s [40]. A two-

user broadcast channel consists of an input alphabet X , two output alphabets Y1 and

Y2, and a probability transition function p(y1, y2|x) for x ∈ X , y1 ∈ Y1 and y2 ∈ Y2.
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We shall consider memoryless broadcast channels in which

p(yn1 , y
n
2 |xn) =

n
∏

i=1

p(y1(i), y2(i)|x(i)), (5.1)

where i ∈ N is the time index. The broadcast channel has one encoding function, f ,

and two decoding functions, g1 and g2. The encoding function f is defined as

f = {1, 2, 3, · · · , 2nR1} × {1, 2, 3, · · · , 2nR2} → X n, (5.2)

where Ri is user i information rate and it has units of bits per channel use. We define

the decoding functions as

g1 : Yn
1 → {1, 2, · · ·2nR1} (5.3)

g2 : Yn
2 → {1, 2, · · ·2nR2} (5.4)

This means that the encoding function, f , takes as input a pair of two messages, one

intended for user 1 and the other intended for user 2. At the decoders side, decoder i

receives yni ∈ Yi and estimates user i transmitted message among the possible choices

of {1, 2, · · ·2nRi}. We define the average probability of error as

P (n)
e = P

(

{g1(yn1 ) 6= W1}||{g2(yn2 ) 6= W2}
)

, (5.5)

where (W1,W2) are assumed to be uniformly distributed over 2nR1 × 2nR2. We say

that a rate (R1, R2) is achievable for the broadcast channel if there exists a sequence

of ((2nR1, 2nR2), n) codes (functions (f, g1, g2)) with lim
n→∞

P
(n)
e = 0.

A broadcast channel is said to be physically degraded if p(y1, y2, x) = p(y1|x)p(y2|y1).
The channel is also said to be stochastically degraded if its conditional marginal distri-

butions are the same as that of a physically degraded broadcast channel, i.e., if there
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exists a distribution p′(y2|y1) such that

p(y2|x) =
∑

y1

p(y1|x)p′(y2|y1). (5.6)

Since the capacity only depends on the marginal distributions, the capacity of the

physically degraded broadcast channel is the same as that of the stochastically degraded

channel, hence hereinafter we shall assume physical degradedness5.

5.2.2 Broadcasting Gaussian sources over the Gaussian Broadcast Channel

In this section, we will formally define the Gaussian Broadcast channel for trans-

mitting a bivariate Gaussian source. Let (S1,S2) be a stationary, memoryless bivariate

Gaussian distribution with zero mean and Covariance matrix C given by

C =





1 ρ2

ρ2 1



 , (5.7)

with 0 ≤ ρ ≤ 1, where we are assuming that each source has unity variance. Figure

5.3 shows the pdf of the Bivariate Gaussian source when ρ2 = 0 and ρ2 = 0.9.

The encoder function f takes (Sn
1 ,S

n
2 ) and produces Xn, the channel input.

The output of the broadcast channel Y i is given by

Y i(k) = X(k) +Zi(k), i = 1, 2, and k ∈ N+, (5.8)

where Y i(k) is the channel output observed by the i− th receiver at time k and Zi(k)

is the zero mean independent Gaussian noise with variance Ni experienced by user i

at time k. Without loss of generality, we assume N2 ≥ N1.

5 Physical degradedness means that the second received source can be obtained by getting the second
source and actually (physically) modifying it via another channel between the first and second receiver.
Statistical degradedness means the second source distribution looks like it was obtained by physical
degradedness but in fact it may not. The Gaussian channel is always physically degraded.
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Figure 5.3: Bivariate Gaussian probability density function for ρ2 = 0 (left) and ρ2 =
0.9 (right).

The decoding functions gi of the broadcast channel take Y n
i and produce an

estimate Ŝ
n

i of the original transmitted source symbol Sn
i . Note that the function gi is

only required to produce an estimate of the source for user i, although it can be helpful

in the decoding if one of the users has an estimate about the other user’s data. The

Gaussian Broadcast channel for Gaussian sources is shown in Figure 5.4.

Figure 5.4: Broadcasting a Bivariate Gaussian source over the Gaussian Broadcast
Channel.
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To calculate the distortion between the original source symbol Si and the de-

coded source symbol Ŝi, we use the Mean Squared Error criteria given by

Di(s
n
i , ŝ

n
i ) =

1

n

n
∑

j=1

(si(j)− ŝi(j))
2, i = 1, 2. (5.9)

We also operate under an average transmit power constraint P defined as

1

n

n
∑

j=1

x2(j) ≤ P. (5.10)

Next we give the definition of achievability of a given distortion pair (D1, D2)

Definition A distortion pair (D1, D2) ∈ R+×R+ is achievable under power constraint

P if for any ǫ > 0 there exists an A ∈ N+ such that ∀n ≥ A, there exists a broadcast

channel code (functions f, g1, g2) achieving a distortion pair of (d1, d2) such that Di ≥
di + ǫ for i = 1, 2.

The collection of all the achievable distortion pairs under power constraint P for a

given bivariate source is denoted by D(P, ρ,N1, N2). Such collection can be fully char-

acterized by determining the following function

D2(P, ρ,N1, N2, D1) = min
(D1,d2)∈D(P,ρ,N1,N2)

d2. (5.11)

The function in (5.11) basically says that to get the region D(·), we should fix D1 and

search for the minimum achieved d2 given that D1. [66] gives such optimal distortion

region for the two-user Gaussian Broadcast channel. The bound consists of three

regions, and the authors in [66] proved that only a hybrid analog digital scheme could

achieve the optimal performance. The authors claim that this is the first case in

the literature of Network Information Theory that a hybrid scheme was shown to be

required to achieve optimality. They have shown that using optimal digital codes, based

on the separation principle (analyzed in [67]), is strictly suboptimal in certain regions.

Similarly, uncoded (analog) transmission was analyzed thoroughly in [68] and again
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shown to be strictly suboptimal in certain regions. This is indeed a very interesting

result and reinforces the points discussed in the introduction about the challenges

facing pure digital communication systems. Uncoded transmission, in which a linear

combination of S1 and S2 is transmitted directly, is optimal under certain conditions.

Figure 5.5 depicts these regions visually.

Figure 5.5: Optimal coding schemes and associated regions as described in [13]. Note
that the maximum distortion incurred can not be larger than 1 because we are working
with sources of variance 1.

A final observation about the Broadcast channel is that feedback indeed in-

creases the capacity region [69] for certain classes of Broadcast Channels. This is true

for most settings in Multi-Terminal communications, and it should not come as a sur-

prise. On the other hand, we observe that feedback does not increase the capacity

for point to point communications6 [40]. This exemplifies the fact that point to point

communication is a very special case of the general communication problem, and hence

many simple schemes that are generally not optimal for the networked case could be

optimal for the point to point case.

5.3 Separation Based solutions

This section explores the theoretical limits of separation based schemes7. It was

shown in [66] that only a hybrid joint scheme achieves OPTA. We will discuss the

gap in performance that separate source-channel coders incur compared to the optimal

hybrid coding system.

6 Although feedback does not increase capacity for point to point communications, it can reduce the
error exponent as well as the complexity of the encoding/decoding significantly.

7 The results in this section apply to any separation based scheme, whether it is digital, analog or a
hybrid scheme.
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We first begin with a simple scheme, Scheme A8, which encodes S1 and S2 as

if they were independent, resulting in a distortion region given by

D1 ≥
(

1 +
αP

(1− α)P +N1

)−1

(5.12)

D2 ≥
(

1 +
(1− α)P

N2

)−1

, (5.13)

for α ∈ [0, 1]. The second scheme we consider, scheme B, decomposes S2 into S2 =

ρS1 + E, where S1 ⊥ E. The scheme, first introduced in [70], would then treat S1

and E as two new independent sources, resulting in a distortion region given by

D1 ≥
(

1 +
αP

(1− α)P +N1

)−1

(5.14)

D2 ≥ (1− ρ2)

(

1 +
(1− α)P

N2

)−1

+ ρ2
(

1 +
αP

(1− α)P +N1

)−1

, (5.15)

for α ∈ [0, 1]. Scheme B decorrelates S2 with S1 and encodes the difference, E. The

third scheme, Scheme C, improves on scheme B by decorrelating S2 with the quantized

first source, Ŝ1, and not with S1 itself. This is an improvement since it is a more

accurate representation at the decoder site, since the decoder can only decode and

obtain Ŝ1. Remember that the decoder for S2 needs to decode the common message

before decoding S2. The distortion achieved by scheme C is given by

D1 ≥
(

1 +
αP

(1− α)P +N1

)−1

(5.16)

D2 ≥ [1− ρ2(1−D1)]

(

1 +
(1− α)P

N2

)−1

, (5.17)

for α ∈ [0, 1].

None of the above schemes are optimal for the general case, although they

progressively provide better performance. The authors in [67] claim that successive

coding is the optimal scheme for separate Broadcast channel coding. The previous

8 Following the notation in [67].

78



schemes (A,B,C) encoded S1 as the common message and in the refinement layer they

encoded some version of S2. Successive coding performs encoding for both (S1, S2) at

the common layer, as well as the refinement layer jointly [71]. The distortion region

achieved by successive coding does not have a closed form expression and is given

parametrically by

R1(α) =
1

2
log

1− ρ2

D1(1− α2δ)− (ρ− αδ)2
(5.18)

R2(α) =

[

1

2
log

1− α2δ

D2

]+

,

where

α ∈
[

ρ,min(
1

ρ
,
ρ

δ
, α∗)

]

(5.19)

δ = 1−D1

α∗ =

√

1−D2

δ

This scheme was proved to be the best separation based scheme for the two-user Gaus-

sian Broadcast channel in [71]. We shall benchmark our proposed communication

system against the optimal successive coding scheme given by (5.18, 5.19). Figure

5.6 shows the performance of the three schemes A, B and C as well as the optimal

separation based schemes of (5.18).

5.4 Analog Mappings for The Broadcast Channel

As explained earlier, we are searching for an encoding function, g(.), that takes

the data intended for the first user, s1, and the second user, s2, to produce the channel

output, x. Each receiver observes a corrupted version of x and each employs a decoding

function gi to obtain its data, si.

Several schemes have been proposed for the Broadcast channel in the literature:

The authors in [72, 61] used calculus of variation techniques to design the optimal

encoder and decoder pairs, which performs well but is complex to design and train. The
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Figure 5.6: Different Separation Based schemes for different values of ρ. Notice that
the optimal separation based scheme is equivalent to Scheme C.
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authors in [73] performed optimizations on particular analog mappings, and designed

a “distortion balancing” framework in which target users’ distortions can be easily

achieved. The “distortion balancing” scheme performs well and is less complex than

the schemes [72, 61]. In this Chapter, we consider an analog mapping scheme, with

little encoding and decoding complexity, which offers excellent performance that will

be shown to outperform the best separation-based scheme. The proposed scheme is

a variant of the Nested Quantization and the Scalar Quantizer Linear Coder (SQLC)

[58, 57] techniques, and is termed Alternating-Sign SQLC.

The mappings we consider here are based on a variant of Nested Quantization,

NQ [58], called Scalar Quantizer Linear Coder, SQLC, which was proposed in [9] for

the Multiple Access Channel (MAC). In SQLC, the first symbol, s1, is passed through

a uniform quantizer of step 2∆ to produce v1. The second symbol, s2, is scaled by α

and clipped to force it to lie in the interval [−∆,∆] to produce v2. The sum of v1 + v2

is sent through the channel after scaling it by a factor, β, which controls the power of

the transmission system. That is

v1 = 2∆⌈ s1

2∆
⌋ (5.20)

v2 = L±∆(αs2) (5.21)

η = v1 + v2 (5.22)

x = β η, (5.23)

where ⌈·⌋ rounds its argument to the nearest integer, α controls the spread of the

second symbol and L±∆[·] forces its output to lie within the interval [−∆,∆]. That is

L±∆(λ) =



























λ if −∆ ≤ λ ≤ ∆

∆ if λ > ∆

−∆ if λ < −∆

(5.24)
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Note that ⌈ s1
2∆

⌋ in (5.20) produces an integer (positive, negative or zero). This

integer is then scaled by 2∆ to produce v1. A system diagram of the AS-SQLC encoder

is shown in Figure 5.7.

+

Figure 5.7: Encoder for an AS-SQLC system.

Each user of the Broadcast channel channel employs a channel decoder to decode

the AS-SQLC scheme. The standard decoder, discussed in [13], receives y = x + z9,

where z ∼ N (0, Ni), and performs MMSE decoding on z to obtain the MMSE estimate

of η as

η̂ =
β

Ni + β2
y. (5.25)

Then, the decoder quantizes η̂ according to (5.20) to obtain an estimate of the quan-

tized first symbol, v̂1, as v̂1 = 2∆⌈ η̂

2∆
⌋. The second symbol estimate is obtained by

subtracting v̂1 from η̂, that is v̂2 = η̂ − v̂1. The transmitted symbol pair is estimated

from (v̂1, v̂2) as

9 Since there are two decoders, we should use a subscript for each of the users received data, yi, and
noise zi. We will drop the superscript for simplicity, and note that the decoder is identical at the two
users’ sites, and is only parametrized by the noise variance Ni.
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ŝ1 = v̂1 (5.26)

ŝ2 =
1

α
v̂2. (5.27)

The system diagram of the decoder is shown in Figure 5.810.

-

Figure 5.8: The decoder of AS-SQLC systems. There are two instances of the decoder,
one at each user site. The decoder is parametrized by the received noise variance, Ni.

SQLC can be thought as equivalent to projecting the source pair (s1, s2) onto

a space filling curve of dimension 1 to produce (v1, v2), as shown in Figure 5.9. As

Figure 5.9 shows, we project the source (s1, s2) to the nearest branch of the SQLC

curve. If the noise moves that projected symbol to a different branch, the resulting

distortion is typically severe. This effect is typically referred to as the threshold effect

[13, 14], in which a small noise in the input causes a big distortion in the decoded

symbol, and is caused by the discontinuity of the SQLC curve [13]. A modification of

SQLC termed Alternating Sign SQLC was described in [13] to alleviate this problem.

AS-SQLC works as SQLC with the difference in how v2 is generated: rather than using

10 It is important to remark that (5.27) is suboptimal. In the next section, we discuss how to perform
optimal decoding on the second source.
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Figure 5.9: Space filling curve corresponding to the proposed SQLC system. Source
symbols (s1, s2) are projected onto the curve to produce (v1, v2).

(5.21), in AS-SQLC the second user symbol is generated according to

v2 = κ L±∆(αs2) (5.28)

where

κ =











+1 when ⌈ v1
2∆

⌋ is even

−1 when ⌈ v1
2∆

⌋ is odd .

(5.29)

At the decoder, we use the same procedure as in SQLC, with the difference on how ŷ2

is obtained. Specifically, ŷ2 is obtained by multiplying the estimate by the factor κ as

follows

v̂2 = κ (η̂ − v̂1) (5.30)
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where

κ =











+1 when ⌈ v̂1
2∆

⌋ is even

−1 when ⌈ v̂1
2∆

⌋ is odd.

(5.31)

This is equivalent to projecting the source pair (s1, s2) onto the space filling curve

shown in Figure 5.10. Note that this space filling curve is continuous and s2 does not

experience any threshold effect. The complete system diagram including the transmit-

ter and receiver is shown in Figure 5.11.
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−+−+ +

Figure 5.10: Space filling curve for AS-SQLC. The two sources (s1, s2) are projected
onto the curve and the resulting pair is transmitted as indicated in the text. Notice
the continuity of the curve, eliminating the threshold effect.

It is interesting to remark the difference between the space filling curve in Figure

5.10 and standard space filling curves designed for point to point communication, such

as Shannon-Kotelnikov mappings (see [38] and [37]). Standard space filling curves are

designed for a symmetric distortion case. For example, the 2:1 Archimedes spiral,

discussed in Section 2.2.2, transmits two source symbols, which can be regarded as
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each of the user’ data in the Broadcast channel. The Archimedes spiral is designed

to minimize the average distortion of both symbols. That is, the distortion incurred

by user 1, D1, is usually the same as the distortion incurred by user 2, D2. However,

the proposed space filling curve for the broadcast channel shown in Figure 5.10 has

the advantage of being able to control the distortions incurred by each user. This is

achieved by changing the quantization step, ∆. If ∆ is small, source 1, s1, will be finely

quantized and the resulting distortion, D1, will be small. At the same time, since ∆ is

small, source 2, s2 will be “squeezed” and fit within the small interval [−∆
2
, ∆
2
] so that

D2 will be large. On the other hand, if ∆ is large, source 1 is quantized coarsely and

incurs in a large distortion. At the same time, s2 is spread over a longer interval and

D2 will be smaller.

AS- C 

oder

+

+

C 

Decoder

C 

Decoder

Good Channel

Bad Channel

Figure 5.11: Complete system diagram of the AS-SQLC system.

5.5 Rationale of AS-SQLC

In this section, we discuss the rationale for the use of AS-SQLC over standard

SQLC. Intuitively, there should be a performance gain as the threshold effect would
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be eliminated, and we will quantify this gain here. As explained in Section 5.4, SQLC

systems send a discrete component s1 and an analog component s2. As shown in Figure

5.12(a), in SQLC the analog component experiences a threshold effect due to the way

the separation between the discrete and analog components is handled. On the other

hand, when using AS-SQLC, the analog source does not experience a threshold effect

(Figure 5.12(b)).
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Figure 5.12: Distribution of v̂2, when v2 = 1.5. (a) SQLC; (b) AS-SQLC. Notice the
disappearance of the threshold effect in 5.12(b).

Next, we calculate the achievable information rate for both schemes (SQLC and

AS-SQLC) by calculating the mutual information between the transmitted source, S2,

and the received symbol at the input to the second source decoder, V̂2. This is given

by

I(S2, V̂2) = h(V̂2)− h(V̂2|S2)
∫

v̂2
f(v̂2) log(

1
f(v̂2)

)

−
∫

s2

∫

v̂2
f(s2, v̂2) log(

f(s2)
f(s2,v̂2)

), (5.32)

for v̂2 ∈ V̂2 = [−∆,∆] and s2 ∈ S2 = [−∆,∆]. An example of the distribution of V2

for different values of ∆ and α is shown in Figure 5.13.

The mutual information in (5.32) depends on three factors, ∆, α and N2. Eval-

uating (5.32) analytically is difficult because of the highly non-linear nature of the
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Figure 5.13: Distribution of V2 for two different values of α. Increasing α makes the
distribution more uniform but increases the percentage of data that gets clipped.

channel due to the potential clipping and reversing of the received symbol. Thus, we

evaluated (5.32) via Monte Carlo techniques. The results are shown in Figure 5.14.
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Figure 5.14: Information rates obtained by the SQLC and the AS-SQLC systems.

As shown in Figure 5.13, increasing α increases the spread of S2 so that the
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interval [−∆,∆] is filled in more uniformly, while at the same time it increases the

percentage of S2 that gets clipped. For SQLC systems, increasing α has the initial

effect of increasing the information rate of the system since the sources are spread more

uniformly in [−∆,∆]. However, further increases in α put more symbols near the edge

at ±∆, and causes these symbols to experience the threshold effect, which significantly

decreases the information rate. On the other hand, the AS-SQLC system does not suffer

from the threshold effect and we continue to see information rate improvements with

α, as the symbols spread more uniformly over [−∆,∆]. Of course, the improvement

plateaus for high values of α (increases of α above 2.0, not shown in Figure 5.14, results

in a decrease in the information rate, as more data symbols are clipped to ±∆). Note

the SQLC and AS-SQLC schemes are identical in the treatment of the first source S1,

and the above analysis was only needed for S2.

5.6 Distortion Analysis and Optimal Decoder

The distortion measure used here is the mean squared error distortion (MSE).

The MSE distortion experienced by the second source S2 is given by

D2 =
1√
2π

∫

s2
e−

s22
2

∫

z2

1√
2πN2

e
− z22

2N2 (s2 −Ψ(v̂2))
2dz2ds2, (5.33)

where ŷ2 is shown in Figure 5.8, and Ψ(·) is the decoding function. We now discuss

how to obtain the integration regions for (5.33), which are key to obtaining the optimal

decoding function, Ψ. In [13] ŝ2 was chosen for simplicity to be

ŝ2 = Ψ(v̂2) =
1

α
ŷ2. (5.34)

However, (5.34) is not the optimal decoding rule that minimizes (5.33). Our aim is to

calculate the optimal decoding rule, Ψ. We begin by obtaining a direct relationship

between v̂2 and s2. To that end, we observe that the relationship depends on the
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branch where the noise allocates the received symbol. Hence

v̂2 =



























L±∆(αs2) + n if −∆ < L±∆(αs2) + n < ∆

2∆−L±∆(αs2)− n if ∆ < L±∆(αs2) + n < 3∆

−2∆− L±∆(αs2)− n if − 3∆ < L±∆(αs2) + n < −∆,

(5.35)

and so on for every branch.

Following (5.35), we can break (5.33) into several branches and eliminate the

non-linearity resulting from the quantization of the received symbol x. Specifically,

we can break the non-linearity resulting from the clipping function by considering the

three regions of L±∆
2
(·) separately (similar to (5.24)), so that D2 is given by

D2 = D∆
2 +Dcenter

2 +D−∆
2 , (5.36)

where Dcenter
2 is the distortion incurred by s2 ∈ [−∆

α
, ∆
α
], D∆

2 is the distortion experi-

enced by s2 >
∆
α
, and D−∆

2 is the distortion experienced by s2 < −∆
α
.

Dcenter
2 = 1√

2π

∫
∆
α

−∆
α

e−
s22
2

∫ ∆−αs2

−∆−αs2

1√
2πN2

e
− z22

2N2 (s2 −Ψ(v̂2))
2dz2ds2 +

1√
2π

∫
∆
α

−∆
α

e−
s22
2

∫ 3∆−αs2

∆−αs2

1√
2πN2

e
− z22

2N2 (s2 −Ψ(v̂2))
2dz2ds2

1√
2π

∫
∆
α

−∆
α

e−
s22
2

∫ −∆−αs2

−3∆−αs2

1√
2πN2

e
− z22

2N2 (x2 −Ψ(v̂2))
2dz2ds2 + · · · (5.37)

The terms in (5.37) correspond to the case over the main branch and the two

cases over the neighboring branches. The dots mean that we should add other neigh-

boring branches to get a better estimate of (5.37). To obtain D∆
2 and D∆

2 , we simply

perform the outer integration on s2 over [∆
α
,∞] and [−∞,−∆

α
], respectively, rather

than over [−∆
α
, ∆
α
], and also replace αs2 in the inner integral. Note that although all

the terms in (5.37) contain ŷ2, its value is different and its specific realization is given

according to (5.35).
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Once we have expressed D2 as a sum of linear terms, we have to find the decision

function Ψ that minimizes that distortion. Obtaining the optimal decoding function

is a classical variational problem that can be solved by variational techniques. A

similar problem was studied in [74, 60, 61], where the authors jointly designed the

encoder/decoder pair and proved that their solution was a local minima but not a

global one. Here, the encoding function is specified in (5.10). This greatly simplifies

the process of finding the optimal decoding function. Indeed, the decoding function

is nothing but a map that takes an observed symbol v̂2 ∈ [−∆,∆] and produces a

decision Ψ(v̂2). Notice that if we choose the value of Ψ(b) = q, then this choice has

no effect on how we should proceed in choosing the optimal Ψ(a) when b 6= a11. This

means that we fix the received symbol v̂2 = b and find the optimal Ψ(b), which is a

single number rather than an entire function, and repeat the procedure for all values

of b.

Once we have fixed the received symbol to be v̂2 = b, we need to integrate over

all admissible values of s2 and n in (5.36). To that end, note that once a value of s2

is chosen, then z2 is determined by which branch b is in (since we do not know which

branch b lies in, we have a sum in (5.37)). For instance, if |αs2| < ∆ and b lies in the

first branch, then from (5.35) z2 = b− αs2.

Hence given that we received b, the goal is to find the value of q that minimizes

the distortion at this point. Equation (5.36) can be written as

D2 = min
q

∑

S2

∑

noise branches

1√
2π

∫

S2

e−
s22
2

∫

Rz2

1√
2πN2

e
− z22

2N2 (s2 − q)2dz2ds2, (5.38)

where Rz2 is an integration region to determine the probability of the noise, z2

Rz2 = [z2 − ǫ, z2 + ǫ] for ǫ > 0. (5.39)

11 This was not the case in [74], since there it is was necessary to obtain the optimal encoding function
as well, which made the problem global.
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Setting the derivative of (5.38) (w.r.t q) to 0, we obtain the optimal value of q as

q̂ =

∑∑

1√
2π

∫

e−
s22
2

∫

1√
2πN2

e
− z22

2N2 dz2ds2

∑∑

1√
2π

∫

e−
s2
2
2

∫

1√
2πN2

e
− z2

2
2N2 x2dz2ds2

. (5.40)

The optimal function Ψ is shown in Figure 5.15(a) when SNR=8 dB, ∆ = 1

and α = 1.2, while Figure 5.15(b) shows the optimal Ψ for SNR=20 dB, ∆ = 1 and

α = 1.2. The optimal decoding function differs in several ways from the simple detector

given in (5.27). First, the difference depends on the operating SNR. When all other

parameters are fixed, increasing the SNR has the tendency to “dampen” the decoding

function and flatten it out near ±∆ as evident in Figure 5.15(b). Also increasing α

has the effect of “stretching” the function as seen in Figure 5.15(a).
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Figure 5.15: Optimal detector function Ψ vs the suboptimal function in [13]. (a) SNR=
8 dB, ∆ = 1.0, α = 1.2; (b) SNR= 20 dB, ∆ = 1.0, α = 1.0.

5.7 AS-SQLC Generalization to Correlated Sources

This section shows how AS-SQLC can be generalized for correlated sources. We

will modify the scheme in Section 5.4 by adding a pre-encoding block at the transmitter

(and a corresponding decoder at the receiver). The pre-encoding block is a 2×2 matrix,

H = [a b ; c d], that is applied to [S1 S2]
′ before the AS-SQLC encoder to produce
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[W1 W2]
′ = H · [S1 S2]

′. The system diagram described in section 5.4 can be

thought of as a special case of this system when H is set to the identity matrix, I.

The generalized system diagram is shown in Figure 5.16.
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Figure 5.16: Complete system diagram of the generalized AS-SQLC system for trans-
mitting correlated sources.

The intuition behind having a pre-encoder is captured by observing that the

Bivariate Gaussian source can be written as a combination of 3 different mutually

independent i.i.d single Gaussian normal sources E, I1, I2. Specifically,

S1 = ρE +
√

1− ρ2 I1 (5.41)

S2 = ρE +
√

1− ρ2 I2. (5.42)

If we use H = [1 0;−1 1], then W1 = S1 and W2 =
√

1− ρ2 I2−
√

1− ρ2 I1. The

power of W2 is 2(1− ρ2), while S2 has a power of 1. When the correlation, ρ, is very

high, W2 has much less power than S2
12. Thus, W2 can potentially communicate the

extra necessary information, that along with S1, required by the receiver to faithfully

reconstruct S2 at a lower power cost. This argument is not very quantitative, but it is

12 If H = I is used, then we would not see the power reduction in W2, since it will have the same
power as S2.
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meant to show that we can save energy on encoding S2 in the refinement layer. This

line of thinking here is similar to that of scheme C in section 5.3, namely, trying to

encode the marginal (S2|S1). Our proposed analog scheme is not completely successful

in that regard because, given S1, we only need to encode
√

1− ρ2 I2, yet we also

capture
√

1− ρ2 I1. This is not a problem produced by the choice of the pre-encoding

matrix H , but rather inherent to the system architecture, where we are operating

algebraically on the sources (scheme C and other Information Theoretic constructs

assume statistical processing of the data that involves the law of large numbers). We

cannot fully exploit the statistical properties of the source since by construction our

system is a zero delay one. Another reason that justifies the use of the precoding

matrix H is that, as mentioned before, AS-SQLC is very suitable for asymmetric

sources (or rather achieving asymmetric distortion criteria). The pre-coding matrix

gives the system designer extra parameters to configure the source distribution for the

AS-SQLC scheme input. Without the precoding matrix H , the two inputs to the

AS-SQLC (at the quantization and refinement layer) would be indeed symmetric.

5.7.1 Distortion Analysis and Decoder Design

In this subsection, we generalize the distortion analysis performed in Section

5.6 to the case of correlated sources. Moreover, Section 5.6 only derived the optimal

decoder for the analog source branch, S2, and not for S1. Here, we derive the optimal

decoder for both components. Again we use the MSE as the distortion metric we want

to minimize

D1 =

∫

z1

∫

s1

∫

s2

p(z1, s1, s2)(g1(f(s1, s2) + z1)− s1)
2ds2ds1dz1 (5.43)

D2 =

∫

z2

∫

s1

∫

s2

p(z2, s1, s2)(g2(f(s1, s2) + z2)− s2)
2ds2ds1dz2, (5.44)

where the output of f(·, ·) is subject to an average power constraint P . This general

problem formulation will lead us to jointly find an encoding function and two decoding

functions (f, g1, g2). This is a non trivial variational problem and was addressed in [72].
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The solution in [72] used practical iterative methods to find an optimal (f, g1, g2). For

a fixed encoding function, f , a (locally) optimum (g1, g2) would be found, then for a

fixed (g1, g2) a (locally) optimum f would be found. The algorithm iterates for a fixed

number of iterations or until a certain criteria is met.

Here, we follow a simple approach, fixing the encoding function f based on the

AS-SQLC scheme described in Section 5.7. Given the encoding function, we obtain

the decoding functions (g1, g2). Note that the AS-SQLC scheme has three different

parameters (∆, α,H), and we will search over all possible values 13 (∆, α,H) to find

the corresponding D1, D2. Hence we will have a table of (∆, α,H, D1, D2), and we can

perform a table lookup to decide which encoder parameters to use for a given (D1, D2).

The analysis done in Section 5.6 assumed that the first step in decoding was

to simply decode ŝ1 using a simple MMSE inverse to the quantization process. The

decoder would map the received symbol to the nearest quantization “center”. The

optimal decoder for s2 was then derived. That analysis also assumed no correlation

between s1 and s2. In this section, we generalize that analysis and we come up with

the generalized optimal decoder for both s1, s2 and for general ρ.

We can denote f(s1, s2) + zi by hi in (5.43). Moreover, we can replace the inte-

grand over zi by one over hi (notice that the noise is linear and it is a mere translation

of the original integrand). Moreover, as discussed earlier, for a fixed f , we can minimize

D1 and D2 independently. Hence, from (5.43), the optimal attainable distortion can

be written as

D
opt
i = min

gi

∫

hi

∫

s1

∫

s2

p(hi, s1, s2)(gi(hi)− si)
2ds2ds1dhi, (5.45)

for i = 1, 2. Equation (5.45) is searching for a function that takes a received symbol hi

and gives out a single number. This is very similar to what we did in Section 5.6 but

instead of integrating over one variable (s2 previously), we are integrating over both

13 Note that it is not technically possible to search over all values of (∆, α,H) since they are continuous
variables. We will be sampling the domain of each variable at adequately finer steps.

95



(s1, s2) jointly. Similar to Section 5.6, we can obtain a map of received and optimal

decoded values. Hence for a particular received symbol, hi = ζi, the corresponding

optimal decoded value gi(ζi) = q, obtained by setting the derivative of (5.45) to zero,

is given by

gi(t) = q =

∫

s1

∫

s2
p(s1, s2)p(ζi|s1, s2) s2 ds2ds1

∫

s1

∫

s2
p(s1, s2)p(ζi|s1, s2) ds2ds1

. (5.46)

Notice that we have broken p(ζi, s1, s2) into p(s1, s2)p(ζi|s1, s2). The first term, p(s1, s2)

is the probability distribution of a normally distributed jointly Gaussian source with

a correlation of ρ. The latter term, p(ζi|s1, s2), can be obtained by noting that ζi is

given by14

ζi = ∆⌈as1 + bs2

∆
⌋ + κL±∆(α(cs1 + ds2)) + zi = µ+ zi (5.47)

Hence p(ζi|s1, s2) follows a Gaussian distribution with mean, µ, as shown in (5.47), and

variance Ni. Notice that we did not break (5.46) into parts similar to (5.36), but instead

the equation for ζi in (5.47) implicitly takes care of that. Yet, the problem formulation

in Section 5.6 was carried out to shed light into the system behavior. Figure 5.17 shows

the complete system diagram when the optimal decoders are used at both receivers.

Notice that the encoder remains unchanged.

5.7.2 Optimal Decoders

Figure 5.18 shows the optimal decoding functions when the source correlation

is zero. Figure 5.18(a) shows the case when the system encoding parameters are set to

∆ = 1.5 and α = 1.2, while Figure 5.18(b) uses ∆ = 2.0 and α = 1.5. All remaining

parameters are fixed for the systems in subfigures (a) and (b) to P = 1, N1 = 0.02, N2 =

10N1. As we can see from Figure 5.18, the optimal decoding function, g1, for the first

source s1 is very similar in both systems (a) and (b), while the shape of the optimal

decoding function, g2, for the second source s2 strongly depends on ∆ and α. The

optimal decoding function takes into account the different folds of the Gaussian noise

14 µ is a constant given (s1, s2).
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Figure 5.17: Complete system diagram of the AS-SQLC system with optimal decoders.

distribution that happen around ±k∆, as well as the fact that source x2 gets clipped

at ±∆.
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Figure 5.18: Optimal decoders for P = 1, N1 = 0.04, N2 = 10N1, ρ
2 = 0,H = I. (a)

uses ∆ = 1.5 and α = 1.2 as encoding parameters, while (b) uses ∆ = 2.0 and α = 1.5.
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Figure 5.19 shows the optimal decoding functions when the source correlation

is 0.9. Figure 5.19(a) shows the case when H is set to I and 5.19(b) demonstrates the

case when H = [1 0 ; −1 1]. All remaining parameters are fixed for the systems in

(a) and (b) to P = 1, N1 = 0.02, N2 = 10N1,∆ = 1.5, α = 1.2. Notice that x̂2 is less

clipped in Figure 5.19(b), which leads to less spurious errors. Moreover, the decoder

utilizes the high source correlation properly, as apparent form the observation that x̂1

in Figure 5.19(b) is very close to x̂2. In fact, the system in Figure 5.19(b) performs

about 3 dB better than the system in Figure 5.19(a).
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Figure 5.19: Optimal decoders for P = 1, N1 = 0.04, N2 = 10N1, ρ
2 = 0.9. 5.19(a)

uses the identity matrix as the precoding matrix H , while 5.19(b) uses [1 0 ; −1 1] as
H .

Next, we highlight the effect that different system parameters have on the shape

of the optimal decoders. In Figure 5.20, we have two optimal decoder function pairs for

two cases: the first case considers N1 = N2 = 0.1, and is shown in Figure 5.20(a). The

second case considers N1 = N2 = 0.01 and is shown in Figure 5.20(b). All remaining

system parameters are exactly the same. Notice that as the noise variance increases,

the optimal decoding function appears as “stretched” and not very “sharp” as opposed

to the low noise case. This is expected because when the noise increases, the optimal
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MMSE detector strongly weighs in the effect of neighboring signal points, hence it

appears as a “smoothing filter”, as seen in Figure 5.20(b).
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Figure 5.20: Optimal decoders for P = 1, ρ2 = 0.4,∆ = 1,H = [1 0 ; −0.9 1]. (a)
considers N1 = N2 = 0.01, while for (b) considers N1 = N2 = 0.1.

Finally, we demonstrate the effect that the source correlation ρ2 has on the shape

of the optimal decoders. Figure 5.21 presents the results for a system with parameters

P = 1, N1 = N2 = 0.1,∆ = 1,H = [1 0 ; −0.4 1]. The only difference between Figure

5.21(a) and 5.21(b) is the value of the source correlation, ρ2, which is set to ρ2 = 0.4

in (a), and ρ2 = 0.9 in (b). We can see in Figure 5.21(b) that the shape of the optimal

decoding function for the second source x̂2 follows quite closely the decoded value of

ŝ1 when ρ2 increases. This is explained by the observation that there is more relevant

information in ŝ1 about s2.

5.8 Simulation Results

In this section, we present the simulation results of the complete Broadcast

system. To recap, we will be sending a Bivariate Gaussian source (X1, X2) with zero

mean and a covariance matrix C = [1 ρ2 ; ρ2 1] using the AS-SQLC scheme. We will
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Figure 5.21: Optimal decoders for P = 1, N1 = N2 = 0.1,∆ = 1. (a) has a source
correlation, ρ2 = 0.4, while (b) has a source correlation ρ2 = 0.9. Notice that the

second source ŝ2 in 5.21(b) closely follows the decoded values of x̂1 has ρ2 = 0.9.

use the system described in Figure 5.16, which has parameters H ,∆, α, to transmit

the users’ data and perform simulations on different values of (H ,∆, α).

Figures 5.22, 5.23 and 5.24 show different combinations of system parameters

and source correlation values. The “Theoretical limit” curve shown in the figures is

obtained as explained in Section 5.2.2, while the “Optimal Separation Scheme” curve is

obtained as explained in Section 5.3. As explained in Section 5.2.2, an instance of the

Broadcast channel is characterized by (P,N1, N2, ρ
2). For each instance, we perform a

global search to find the parameters (H ,∆, α) achieving the best performance (using

the näıve decoding method described in Figure 5.16). The “Näıve decoding” curves

in Figures 5.22 to 5.24 show the results of the näıve decoding method. Note that

each point on the “näıve decoding” curve potentially has different system parameters

(H ,∆, α). Then, for each point on the “näıve decoding” curve, we perform optimal

decoding (as described in Figure 5.17) using the same system parameters (H ,∆, α).

The results of the optimal decoding method are marked as “Optimal decoding” in the

figures.
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Figure 5.22: System performance under different conditions: (a) ρ2 = 0.8, N1 =
0.004, N2 = 10N1, P = 1, (b) ρ2 = 0.4, N1 = 0.004, N2 = 4N1, P = 1.
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Figure 5.23: System performance under different conditions: (a) ρ2 = 0.7, N1 =
0.008, N2 = 20N1, P = 1, (b) ρ2 = 0.2, N1 = 0.002, N2 = 20N1, P = 1.
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Figure 5.24: System performance under different conditions: (a) ρ2 = 0, N1 =
0.01, N2 = N1, P = 1, (b) ρ2 = 0, N1 = 0.01, N2 = 2N1, P = 1.
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It is interesting to note that the AS-SQLC scheme is suitable for a wide range

of source correlation values ρ2, and noise variances N1, N2. Figure 5.24 shows that the

proposed AS-SQLC works well for the case when there is great divergence in the noise

variances. Specifically, when the difference between N1 and N2 is high, the scheme can

beat the best known separation based system. This holds true across different source

correlation values. On the other hand, as shown in Figure 5.24(b), when N1 = N2

the separation based scheme is optimal and outperforms the AS-SQLC scheme. We

should note, however, that the equal noise case is not very interesting in the Broadcast

channel, since it can easily be shown that a variant of time sharing on an optimal

point to point scheme can achieve the upper bound15. In general, the separation based

scheme is not optimal even when ρ = 0, as shown in Figure 5.24(a). In this case the

proposed AS-SQLC scheme outperforms the separation based scheme by 1-5 dB. We

also note that the gain from the optimal decoding method is more pronounced for

higher source correlation values. For example, in Figure 5.22 the largest gain is in

Figure 5.22(a), where ρ2 = 0.8, is 5 dB, while for Figure 5.22(b) the gain is only 3 dB

when ρ2 = 0.4,.

We would like to remark that the results of the proposed systems in Figures 5.22

to 5.24 could be improved. The reason is that we have used a brute force approach by

trying all combinations for ∆, α,H for the näıve decoding, which allowed us to find

the best SDR2 for each SDR1 (we performed binning to within 0.5 dB).Then, we used

the system parameters of those optimal näıve points to calculate the optimal decoding

function for those parameters, and hence obtain the optimal decoding results as shown

in Figures 5.22 to 5.24. It is possible that the system could perform better, since the

best parameters for the optimal decoder may be different than the best parameters for

the näıve decoder.

15 See Appendix B.

104



5.9 Conclusion

We have discussed the optimization of the decoding functions for analog joint

source-channel coding systems based on non-linear mappings for the transmission of

independent and correlated Gaussian messages over the two user Gaussian Broadcast

Channel. We have introduced an optimization procedure that allows us to obtain opti-

mized decoding functions in an easier manner, and assessed the performance improve-

ments through simulation results. In general, we have corroborated that optimization

is more critical when the SNR is low and when data clipping is more pronounced (small

∆, large α). For the case of correlated sources, we have shown through Monte-Carlo

simulation that the proposed scheme, and the optimal decoding technique, outperform

any separation based scheme.
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Chapter 6

CONCLUSION AND FUTURE WORK

This dissertation has studied the application of analog joint source channel cod-

ing in different environments. We first studied the non-linear acoustic underwater

channel and showed how to adapt space filling curves to channel non-linearity. We

derived the capacity for a simplified non-linear channel using the Blahut-Arimoto algo-

rithm, and postulated a capacity bound for the end-to-end non-linear acoustic channel.

We showed, via Monte Carlo simulations, that the proposed communication system

provides excellent performance.

We then moved to the Multiple Access Channel. We proposed an analog CDMA-

like communication scheme suitable for the transmission of analog codes over the MAC

for an arbitrary number of users. The scheme was proven to achieve the theoretical

limits for the special case when the users’ communication rates (degrees of freedom)

are allocated proportionally to the communication power each user utilizes. We then

proposed a hybrid analog-digital scheme, which is an extension of the CDMA-like

access scheme. The hybrid scheme uses analog and digital codes to communicate over

the MAC, and was proven optimal for any point in the MAC region. In future work,

we will study how to extend the scheme to transmit correlated Gaussian sources for

different scenarios, such as MIMO and fading channels.

We then moved to the Broadcast channel, where we developed an analog scheme,

AS-SQLC, for the transmission of Bivariate Gaussian sources. We derived an optimal

decoding method for AS-SQLC systems, which offers significant performance gains,

particularly at low SNR. We demonstrated that the AS-SQLC scheme, with the help

of the optimal decoding functions, can outperform the best separation based scheme.
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In future work, we will look for faster ways to arrive at the optimal AS-SQLC system

parameters, and extend the scheme to broadcast channels with fading.

In summary, we have shown that analog JSCC system can be successfully used,

in different scenarios, with impressive results. The relative ease and simplicity of de-

signing the encoders and decoders was demonstrated. Although analog JSCC systems

are a viable alternative to canonical digital systems, they lack a comprehensive frame-

work similar to that of digital codes. For instance, there is still no known analog JSCC

technique that works well for arbitrary source/channel bandwidth ratios, even for the

point-to-point channel. In the future, we will investigate the application of JSCC to

other channels that have gained recent interest, such as relay channels and wiretap

channels.
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Appendix A

POWER ALLOCATION

In this appendix, we corroborate that the algorithm derived in Section 3.3.1

converges to the global maximum. We will first see that the function

f(P1, P2, · · · , PN) =

N
∑

i=1

Cd(
|Hi|2 γd Pi

σi
n2

) + λ

N
∑

i=1

Pi (A.1)

is concave. We first notice that Cd(x) is concave in x. This is clear from Figure 3.8, in

which we can see that the second derivative, C ′′, will always be negative. The function

f(P1, P2, · · · , PN) is a multivariate function and to show that a point is a local maxima

we have to form the Hessian matrix K, which is an N ×N matrix with entries

Kij =
∂2f

∂Pi ∂Pj

. (A.2)

It is clear from (A.1) that the off diagonal entries are all zero and that the diagonal

entries are ( |Hi|2 γd
σi

n2
)2C ′′( |Hi|2 γd Pi

σi

n2
). These diagonal entries are all negative for any value

of Pi ∈ [a2, b2] since C ′′(x) is itself negative. For a point (P1, P2, · · · , PN) to be a

maximum, the eigenvalues of the Hessian have to be negative [75]. Since our Hessian

matrix is diagonal, it is clear that all eigenvalues (diagonal elements) are negative and

thus the local maxima we find is also a global maxima. One final technicality to note is

that our optimization region is convex, meaning that Pi belongs to the interval [a2, b2].

This is a necessary condition to guarantee convergence to the global minima/maxima.
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Appendix B

SIMPLE SCHEMES FOR THE BROADCAST CHANNEL

In this appendix, we discuss simple schemes for the Broadcast channel. In the

simplest scheme, the broadcast channel can be converted into a point to point com-

munication system by ignoring one of the sources and transmitting only the remaining

source. In this case, the Broadcast channel becomes a single point-to-point channel for

the user intended to receive that information. For example, ignoring user 1 and trans-

mitting only S1, user 2 achieves a distortion of Dmin
2 and user 1 achieves a distortion

of Dmax
1 . Similarly we can get Dmin

1 and Dmax
2 , where

Dmax
1 =

(1− ρ2)P +N1

P +N1

, Dmin
2 =

N2

P +N2

(B.1)

Dmin
1 =

N1

P +N1

Dmax
2 =

(1− ρ2)P +N2

P +N2

(B.2)

.

Then, we can use time sharing to obtain linear combinations of the extremal

distortions: Since the uncoded scheme is optimal at the two extreme points, we can

transmit source 1 a fraction ζ of the time and achieve Dmin
1 , while at the same time

source 2 would be achieving Dmax
2 [68]. Also, for the 1− ζ fraction of time that source

1 is not being transmitted, source 2 is being transmitted over the channel, achieving

a distortion of Dmin
2 , while the distortion of source 1 is Dmax

1 . Hence the set of time

sharing solutions can be expressed parametrically with respect to ζ as

D1(ζ) = ζDmin
1 + (1− ζ)Dmax

1 (B.3)

D2(ζ) = (1− ζ)Dmax
2 + ζDmin

2 (B.4)
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We denote this scheme as Näıve time sharing, since at the times where one

source is being transmitted the other source is experiencing maximal distortion. We

note that we can actually devise a smarter time sharing solution that performs much

better, at the cost of a more complicated system design.

In this smart time sharing solution, we perform time sharing on the extreme

rates of the broadcast channel capacity region C1 and C2
1. Using similar arguments to

(B.3), the time sharing rates that can be achieved are given by:

R1(ζ) = ζC1 (B.5)

R2(ζ) = (1− ζ)C2. (B.6)

Since in this dissertation we focus on transmitting one Gaussian source to each

user using the channel once (κ = 1), we must perform source compression (bandwidth

reduction) on the original sources to keep the source/channel bandwidth at unity. For

example, if ζ = 1
3
, then, in three time slots, the first source will be transmitted in

one of the time slots, while the second source would occupy the remaining two time

slots. Hence, for source 1 we must use a 3 : 1 compression system that takes three

Gaussian source symbols and produces one symbol. Similarly source 2 utilizes a 3 : 2

compression system, that produces two symbols. Then, the encoded two symbols are

transmitted in the two allocated time slots. This is demonstrated in Figure B.1.

3:1 3:2 3:2
3 Time Slots

(a)

 
 Time Slots

(b)

Figure B.1: Smart time sharing: (a) shows the case when ζ = 1
3
and, (b) shows the

case when ζ = 1
4
.

1 For an AWGN channel, Ci =
1

2
log2(1 +

P
Ni

).
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Figure B.2: OPTA curves for P = 1, N1 = 0.002, N2 = 10N1 and ρ = 0: (a) depicts
the log scale; and, (b) depicts the linear scale.

The performance of the smart time sharing system is shown in Figure B.2,

where we used a time-frame of 1024 time-slots. Note that the smart time sharing
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system requires re-design of the complete system at every optimal distortion pair, a

task that is not to be taken lightly. Again note the sub-optimality of the smart time

sharing scheme: although it requires complete system re-design at each point, it is still

suboptimal in general. Smart time sharing is only optimal for a symmetric Broadcast

channel (when the two users’ receiver noise variances are equal, N1 = N2).
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