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ABSTRACT

Traditional spectral imaging techniques scan the whole region of interest to ob-

tain a three dimensional set that contains the spatial and spectral information of the

scene. In contrast, compressive spectral imaging systems allow capturing the spatial

and spectral information of the scene using two dimensional sets of random projec-

tions. These systems rely on the theory of compressed sensing (CS), which establishes

that certain signals can be recovered with high probability using far fewer samples

from those dictated by Nyquist. The coded aperture snapshot spectral imaging sys-

tem (CASSI) is an optical imaging architecture that accomplishes compressive spectral

imaging. The reconstruction of the scene is obtained by `1 norm based inverse optimiza-

tion algorithms such as the gradient projections for sparse reconstruction (GPSR). The

computational complexity of the inverse problem grows with order O(KN4L) per itera-

tion, where N2 and L are the spatial and spectral dimensions of the scene, respectively,

and K is the number of snapshots. Many applications deal with high-dimensional

spectral images, and the computational complexity becomes overwhelming since re-

constructions can take up to several hours in desktop architectures. The goal of this

thesis is to obtain a mathematical model for block reconstructions in CASSI, such that

the reconstruction quality is not affected and the computational complexity is reduced.

The results obtained show that the lapped block reconstruction model in CASSI sat-

isfies the premises with complexity O(NB4L) per GPSR iteration, where B � N is

the block size. The proposed approach takes advantage of the structure of the transfer

function of the CASSI system thus allowing the independent recovery of small lapped

blocks of the measurement set. A merging process to reduce the blocking artifacts in

the reconstructed scene is also described. Simulations show the benefits of the new

viii



model in terms of PSNR and reconstruction time. In particular, the data cube recon-

struction can be accelerated by an order of magnitude and the PSNR is improved up

to 5 dB over traditional reconstruction approach.
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Chapter 1

INTRODUCTION

Spectral imaging involves both Spectroscopy and Imaging [17]. Imaging is re-

lated to the acquisition of spatial and temporal data from a scene and, spectroscopy

allows the description of phenomena occurred in data sets containing light intensities

at different wavelengths, usually called spectrums. Spectral imaging provides signals

that include both spatial and spectral information in a single data set. Since this type

of images consists of 3-dimensional sets, they can be represented as data cubes with

one spectral dimension and two spatial dimensions. This representation is illustrated

in Fig.1.1.

Figure 1.1: Spectral Image data set where x and y correspond to the spatial dimen-
sions and λ is the spectral dimension. Each spatial point in the image
contains a full spectrum I(x, y, λ).
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Spectral images are mainly used in applications involving material identification,

anomaly detection, and remote sensing of the environment [30]. More specifically, ob-

jects in a scene can be detected and classified using their spectrum by exploiting the fact

that different materials exhibit different spectral signatures according to their molec-

ular composition, scale and shape [28, 35, 10]. Other applications of spectral images

include analysis of artwork for restoration purposes [15, 24, 21], medical applications

and microscopy [19, 18].

Conventional spectral imaging techniques such as pushbroom [19] and whiskb-

room [20], scan the scene along one or two dimensions and then capture the data along

the remaining dimensions to obtain the data cube. In particular, a pushbroom imag-

ing sensor scans the scene line by line, while a whiskbroom sensor scans pixel by pixel.

The disadvantage of these techniques is that the collected amount of data is linearly

proportional to the desired spatial and spectral resolutions [8, 33].

Compressive spectral imaging senses the spatio-spectral information of a scene

using a small set of 2-Dimensional (2D) focal plane array (FPA) measurements. The

reconstruction of the 3D spectral scene is obtained via compressive sensing inverse al-

gorithms which exploit a sparse representation of the data cube. Let a hyperspectral

signal F ∈ RN×N×L, or its vectorized representation f ∈ RN2L, be represented in the

basis ΨΨΨ. A sparse approximation of f is such that f = ΨθΨθΨθ can be accurately repre-

sented as a linear combination of S � N2L vectors of ΨΨΨ. Compressive spectral imaging

dictates that m & S log (N2L) � N2L random measurements are sufficient for the

recovery of f with high probability. The coded aperture snapshot spectral imager

(CASSI) is an architecture that accomplishes compressive spectral imaging measure-

ments [33]. The spectral image scene is projected onto FPA measurements as linear

combinations of coded and shifted versions of the spectral channels of the underlying

signal. A single FPA measurement in CASSI is represented by y = Hf where H is a

N(N+L−1)×(N2L) matrix that accounts for the effects of the coded aperture and the
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dispersive element [3]. In practice, several FPA projections are captured, each one using

a different coded aperture pattern. The multi-frame approach improves the condition-

ing of the inverse reconstruction problem, making the CASSI system more suitable for

applications involving spectrally or spatially rich scenes [2, 4]. Multiple coded aperture

patterns can be realized by a piezo system [23] or using a digital micromirror device

(DMD) [37, 6]. The compressive projections on the ith snapshot are given by yi = Hif .

The ensemble of outputs for K snapshots y =
[
(y0)T , . . . , (yK−1)T

]T
can be expressed

as y = Hf where H =
[
(H0)T , . . . , (HK−1)T

]T
. The theory of compressed sensing is

then used to reconstruct the underlying signal f = ΨθΨθΨθ.

Several numerical algorithms are available to solve the reconstruction prob-

lem, and can be grouped into one of five computational approaches [32]. Algorithms

based on greedy pursuit iteratively find an estimate of the solution by selecting atoms

of a dictionary and the correspondent weighting factors such that the signal can be

represented as a linear combination of these vectors. This approach is implemented

by algorithms such as the Orthogonal Matching Pursuit (OMP) [31], stagewise or-

thogonal matching pursuit (StOMP) [11], and compressive sampling matching pursuit

(CoSaMP) [26]. The second type of algorithms consists of those that solve a convex

optimization problem. This includes interior-point methods such as `1−magic software

and gradient-descent methods like the sparse reconstruction via separable approxima-

tion (SpaRSA) [36], TwIST [7] and GPSR [14]. The third approach uses a Bayesian

framework which finds a maximum a posteriori estimator assuming a prior distribution

of the unknown coefficients of the signal to recover [29]. The other two techniques are

nonconvex optimization [9] and brute force, which attempts to find the solution by

trying all possible support sets. A tutorial review of the algorithms in each of these

class-types and their associated complexity is found in [32]. Some of these algorithms

exhibit better characteristics than others in terms of computational complexity. Typi-

cal computations performed by these algorithms include matrix pseudo inverses, sparse

basis transformations, scalar-vector multiplications, and vector-matrix multiplications.
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Given that the underlying signals are high dimensional, these calculations require a

large number of float point operations. Our work builds on the GPSR algorithm which

has provided a good trade-off between computational complexity and reconstruction

quality. The methods developed here are general and can thus be used with other

reconstruction algorithms. In each iteration of the GPSR algorithm, approximately

O(KN4L) operations are computed where K is the number of measurement shots, N

is the spatial dimensions, and L is the number of spectral channels of the data cube.

Reconstructions of large scenes are indeed overwhelming since they can take hours in

desktop architectures [34, 23].

Previous work in compressive sensing (CS) have addressed this issue by working

with separable sensing operators [27, 12, 16], or fast FPGA and GPU implementa-

tions of the reconstruction algorithms [13]. Instead of relying on hardware solutions,

the methods developed in this paper aim at mitigating the computational complex-

ity by exploiting the physical properties of the CASSI optical sensing phenomena. In

particular, we reconstruct the underlying 3 dimensional scene from a set of recon-

structions obtained from overlapping windowed FPA measurements. The block model

developed is such that the overlapped parallelepiped regions of the underlying signal

f are recovered independently. In this manner, the GPSR reconstruction algorithm

performs O(KB4L) operations per iteration on each B ×B block reconstruction with

KB4L � KN4L. After recovery, the new model permits assembling the individual

parallelepipeds to construct the complete data cube.

The contents of this thesis are organized as follows. First, a description of the

mathematical model of the CASSI system is presented. There, the structure of the

sensing matrix H is described. The block reconstruction model with non-overlapping

and lapped windows are introduced subsequently. The block size and the overlapping

sections are analyzed as a function of the number of shots and the spatial dimensions of

the data cube. Extensive simulations show the improvements on the recovered spectral
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images in terms of PSNR and time for reconstruction with respect to the traditional

approach of recovering the data cube at once. The reconstruction is thus analyzed

using three models: the conventional multi-frame CASSI approach, a block CASSI

model, and a lapped block CASSI model. The reconstruction of the data cube F̂ is

then described for each model. It will be shown that the use of lapped measurement

windows allows both, faster reconstructions and improved reconstruction quality.
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Chapter 2

BACKGROUND: MULTI-FRAME CODED APERTURE SNAPSHOT
SPECTRAL IMAGING (CASSI)

The Coded Aperture Snapshot Spectral Imaging system is an architecture that

captures the spatial and spectral information from a scene in a set of 2D measurements.

The projections in CASSI are attained using a coded aperture and a dispersive element

[33]. The principal components in CASSI are illustrated in Fig. 2.1.

Figure 2.1: CASSI architecture. The input signal f0(x, y, λ) is coded by the coded
aperture T (x, y) and dispersed by the prism. The coded and dispersed
signal f2(x, y, λ) is integrated on the FPA detector.

The underlying analog phenomena in CASSI is often discretized for analysis

and computational purposes. In particular, the spatio-spectral input signal f0(x, y, λ)

is represented by Fj`k where j, ` index the spatial axes and k indexes the spectral axis

λ. The coded aperture T (x, y) is also discretized as Tj`, and a band-pass filter in the

instrument limits the spectral components between λ0 and λL.

A single shot measurement in CASSI is depicted in Fig. 2.2. A discretized data

cube with L spectral bands F = [F0, · · · ,FL−1] is first coded in amplitude by the coded
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aperture Ti. The effect of the dispersive element is depicted in Fig. 2.2 as a spatial

shifting of each spectral band. The coded and dispersed information is integrated along

the spectral axis at the detector. The ith FPA measurement yields N × (N + L − 1)

pixels as [33]

Y i
j` =

∑L−1
k=0 Fj(`+k)(k)T

i
j(`+k) + ωij` i = 0, . . . , K − 1. (2.1)

Figure 2.2: The process of CASSI imaging is depicted. AN×N×L spectral data cube
is spatially coded by the coded aperture and dispersed by the prism. Each
pixel at the detector contains the integration of the spectral information
from the correspondent entries of the data cube.

A vectorized representation of Yi in Eq. 2.1 can be obtained as

(
yi
)
`

= Y i
(`−rN)r for ` = 0, · · · ,M − 1, i = 0, · · · , K − 1 (2.2)

where r = b `
N
c and M = N(N + L − 1). The data cube F is also represented in

vector form as f =
[
fT0 , · · · , fTL−1

]T
where each spectral band fk can be expressed

as fk =
[
F00k, F10k, · · · , F(N−1)0k, · · · , F01k, F11k, · · · , F(N−1)1k, · · · , F(N−1)(N−1)k

]T
. A

compact vectorized representation of fk is given by

(fk)` = F(`−rN)rk for ` = 0, · · · , N2 − 1, k = 0, · · · , L− 1 (2.3)

7



where r = b `
N
c. The vectorized representation of the ith coded aperture (ti)` is obtained

using the indexing described in Eq. 2.2. These vector representations are then used to

derive the single shot matrix model for CASSI

yi = Hif +ωωωi (2.4)

in which the matrix Hi accounts for the coded apertures and the dispersive element

effects. The sensing matrix for a single measurement shot is then given by

Hi =



ti00 0N(1)×N2 . . . 0N(L−1)×N2

. . . ti00

ti(N−1)(N−1)

. . . . . . ti00

ti(N−1)(N−1)

. . .

0N(L−1)×N2 0N(L−2)×N2 . . . ti(N−1)(N−1)


(2.5)

where 0N(1)×N2 and 0N(L−1)×N2 are N(1)×N2 and N(L−1)×N2 zero-valued matrices,

and the non-zero entries in H correspond to diag (ti), a N2×N2 diagonal matrix whose

entries are the elements of the vectorized coded aperture ti, respectively. When several

measurement shots are available, their outputs can be assembled in a single vector as

y =
[
(y0)T , · · · , (yK−1)T

]T
and the CASSI model for multiple shots [4, 23] can be

written as

y = Hf +ωωω (2.6)

where H =
[
(H0)T , · · · , (HK−1)T

]T
. Figure 2.3 shows an example of the matrix H for

N = 4, L = 3, and K = 2. It can be noticed that the matrix H in Eq. 2.5 is sparse

and highly structured. Each row contains at most L non-zero elements. A summary

of the variables in CASSI model is shown in Table 2.1.
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Figure 2.3: Structure of the matrix H for N = 4, L = 3 and K = 2.

The set of FPA measurements y in Eq. 2.6 is used as an input to the recon-

struction algorithm (GPSR) to recover the entire data cube F̂ =
[
F̂0, · · · , F̂L−1

]
at

once, where F̂k is the reconstruction of the kth spectral band. The underlying signal

is obtained by solving f̂ = ΨΨΨ

(
argmin

θθθ

||y −HΨΨΨθθθ||2 + τ ||θθθ||1
)

, where θθθ is an S-sparse

representation of f on the basis ΨΨΨ and τ is a regularization constant.

The computational complexity per GPSR iteration is described in [14]. It is de-

termined by inner products, vector-scalar multiplications, and vector additions, each

requiring N2L floating-point operations, plus sparse basis transformations and mul-

tiplications by H and HT . Fast wavelet transform algorithms compute N2L oper-

ations, and the cost of multiplying by H and HT is determined by the matrix size

N(N + L− 1)×N2L which is on the order of N4L. If K measurement snapshots are

taken, the computational complexity is in the order of O (KN4L) per GPSR iteration.

One approach to simplify the CASSI reconstruction is to recover one slice F̂j1`k

of the data cube at a time, for ` = 0, · · · , N − 1, k = 0, · · · , L− 1 and a fixed j1. This

is possible as the compressive measurements are coded along the x direction only due

9



Table 2.1: CASSI model variables

Variable Size Description
L Number of spectral bands

N ×N Spatial dimensions of the data cube
K Number of measurement shots

F = [F0, · · · ,FL−1] N ×N × L Data cube

f =
[
fT0 , · · · , fTL−1

]T
N2L Vectorized form of F

Ti N ×N Coded aperture used in the ith shot
ti N2 Vectorized form of Ti

Yi N × (N + L− 1) CASSI output from the ith shot
yi N (N + L− 1) Vectorized form of Yi

y =
[
(y0)T , · · · , (yK−1)T

]T
KN (N + L− 1) Vectorized form of K CASSI outputs

Hi N (N + L− 1)×N2L CASSI matrix for the ith shot

H =
[(
H0
)T

, · · · ,
(
HK−1

)T ]T
KN (N + L− 1)×N2L CASSI matrix for K shots

to the prism dispersion. The drawback however, is that the 3D basis modeling is then

not utilized leading to poor signal reconstruction. The block approach to be described

next, overcomes these limitations.
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Chapter 3

BLOCK RECONSTRUCTION MODEL

The block-model of CASSI exploits the structure of the sensing matrix for re-

covering the underlying data cube from a set of reconstructions attained from smaller

windowed FPA measurements. The windowed observations can be non-overlapping or

lapped. In this approach, the CASSI sensing process is not modified, but a differ-

ent reconstruction methodology is used. A detailed analysis of the relation between

the elements of the sensing matrix H and the set of random projections in the detec-

tor is first developed. The reconstruction of the data cube from the set of windowed

reconstructions is then described.

3.1 Decomposition of the Measurement Set

In this model, the measurement set is decomposed into non-overlapped windows.

Consider a B × B measurement window of the FPA Yi
m,n, as shown in Fig. 3.1, and

let’s trace the energy in the window back through the optical system. After the prism,

the energy collected by the B ×B FPA window is a coded and dispersed square cube

source with L spectral bands. The corresponding energy that is traced back to the

source is no longer a cube but an oblique parallelepiped consisting of L spectral bands,

each one shifted one spatial position in the horizontal axis. Figure 3.1 illustrates how

an oblique parallelepiped block of the data cube, which is amplitude modulated by a

coded aperture of size B × (B + L − 1) and spectrally sheared by the prism, results

on a B × B block of measurements at the detector. In other words, the voxels that

are sensed in a B × B area of the detector emanate from an oblique volume in the

source and not from a cube. Furthermore, the oblique parallelepiped volume, once it
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is sheared by the prism, is transformed into a B ×B cube before it impinges onto the

detector.

Figure 3.1: Each B × B window at the detector results from sensing a B × B × L
oblique parallelepiped block of the data cube. The CASSI sensing process
is not modified.

The energy impinging on an adjacent window at the FPA can be traced back to

the source in a similar manner, such that entire FPA measurement Yi ∈ RN×(N+L−1)

can be expressed as an N ′ × V ′ ensemble of B ×B windows as

Yi =


Yi

0,0 Yi
0,1 · · · Yi

0,V ′−1

...
...

. . .
...

Yi
N ′−1,0 Yi

N ′−1,1 · · · Yi
N ′−1,V ′−1

 (3.1)

where the set of Yi
m,n matrices are non-overlapping blocks of Yi. The total number of

blocks in the set is N ′ = N
B

and V ′ = dN+L−1
B
e, with B determining the block size used

in the new model. More on the selection of B will be described shortly.

Now consider the sensing process of one parallelepiped block of the data cube,

expressed in vectorial form as

yimn = Hi
mnfmn +ωωωimn (3.2)
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where (yimn)` = (Y i
mn)(`−rB)r for ` = 0, · · · , B2− 1, i = 0, · · · , K − 1 and r = b `

B
c. The

parallelepiped volume in the data cube can be expressed in matrix form as

(Fmn)j,`,k = (F)mB+j+1,nB+`+k+1,k (3.3)

for k = 0, · · · , L − 1 and j, ` = 0, · · · , B − 1. Hence, fmn in Eq. 3.2 is a vectorized

representation obtained as (fmnk)` = (Fmn)(`−rB)rk where ` = 0, · · · , B2 − 1, k =

0, · · · , L − 1 and r = b `
B
c. The matrix Hi

mn in Eq. 3.2 is a B2 × B2L sub-matrix

of Hi obtained by choosing the rows and columns that affect each windowed FPA

measurement. More specifically, the (`, j) element in the (m,n) sub-matrix is given by

(
Hi
mn

)
`,j

=
(
Hi
)
r`,rj

(3.4)

where r` = (nB + α)N+mB+`−Bα+1 and rj = r`+u(N2−N). Fig. 3.2 illustrates

the procedure used to obtain the Hi
mn sub-matrices from Hi. Here, a portion of the

matrix in Fig. 2.3 is shown and, six sub-matrices are obtained from Hi for N = 4,

L = 3 and B = 2. Accordingly N ′ = 2 and V ′ = 3. The colors of the non-zero values

are intended to identify the elements that correspond to each sub-matrix.

The set of windowed measurements from sequential FPA shots can then be as-

sembled as in the CASSI model to obtain ymn =
[
(y0

mn)
T
, · · · ,

(
yK−1
mn

)T]T
and the cor-

respondent matrices Hi
mn are assembled as Hmn =

[
(H0

mn)
T
, · · · ,

(
HK−1
mn

)T]T
. Thus,

the multi-shot non-overlapping block CASSI model can be rewritten as

ymn = Hmnfmn +ωωωmn. (3.5)

Notice that in this model, the matrices in Eq. 3.4 preserve the structure of Hi

in Eq. 2.5 with dimensions considerably smaller. The number of non-zero elements in

the complete CASSI sensing matrix is KN2L when K measurement shots are taken.

For the same number of shots in the block model, each matrix has at most KN2L/C2

13



Figure 3.2: Procedure to obtain the Hi
mn matrices from Hi for N = 4, L = 3 and

B = 2. The non-zero elements are colored, where each color corresponds
to a different sub-matrix Hi

mn. The resultant B2 × B2L matrices are
obtained by selecting the correspondent rows for each block and removing
the zero-valued columns.

non-zero elements with C = N
B

.

3.2 Data Cube Reconstruction from Non-overlapping Measurement Win-

dows

Each individual set of windowed measurements ymn from Eq. 3.5 is now inputted

to the GPSR algorithm to recover an oblique parallelepiped F̂mn ∈ RB×B×L within the

data cube. More specifically, a vectorized representation of the underlying signal F̂mn

is recovered by solving

f̂mn = Ψ′Ψ′Ψ′
(

argmin
θ′θ′θ′
||ymn −HmnΨ

′Ψ′Ψ′θ′θ′θ′||2 + τ ||θ′θ′θ′||1
)

(3.6)

where θ′θ′θ′ is a sparse representation of f̂mn in the basis Ψ′Ψ′Ψ′. It can be noticed that

the inverse problem for the block reconstruction is the same as that in the traditional

approach. However, the sensing matrix in the block reconstruction Hmn is a portion of

the complete matrix H, as shown in Eq. 3.4. Similarly, the matrix of the sparsifying

basis Ψ′Ψ′Ψ′ is a smaller version of ΨΨΨ since the signal under analysis Fmn is a portion of

14



Table 3.1: CASSI block reconstruction model variables

Variable Size Description
B ×B Dimensions of FPA windows

N ′ = N
B , V ′ = dN+L−1

B e Number of windows

Fmn =
[
Fmn0, · · · ,Fmn(L−1)

]
B ×B × L

(m,n)th oblique parallelepiped
in the data cube

fmn =
[
fTmn0, · · · , fTmn(L−1)

]T
B2L Vectorized form of F

Yi
m,n B ×B

(m,n)th CASSI measurement window
in the ith shot

yi
mn B2 Vectorized form of Yi

m,n

ymn =
[
(y0

mn)T , · · · , (yK−1
mn )T

]T KB2 Vectorized CASSI measurement window
for K shots

Hi
mn B2 ×B2L Block CASSI matrix for the ith shot

Hmn =
[(
H0

mn

)T
, · · · ,

(
HK−1

mn

)T ]T
KB2 ×B2L Block CASSI matrix for K shots

* In all equations equations i = 0, · · · ,K − 1, m = 0, · · · , N ′ − 1, n = V ′ − 1.

the data cube F.

The full data cube F̂ is assembled by tiling the reconstructed oblique paral-

lelepipeds. The relation between F̂mn and the complete reconstruction F̂ is the same

as that in Eq. 3.3. Thus, the full data cube can be obtained by

F̂k =


F̂00k . . . F̂0(V ′−1)k

...
. . .

...

F̂(N ′−1)0k . . . F̂(N ′−1)(V ′−1)k

 (3.7)

where k = 0, · · · , L− 1 indexes the spectral bands and F̂ =
[
F̂0, · · · , F̂L−1

]
.

In terms of reconstruction computational complexity, the number of operations

per iteration in the GPSR algorithm depends on the underlying signal size and the

size of the measurement vector. In particular, the GPSR in CASSI performs approxi-

mately O(KN4L) operations per iteration to recover a N ×N × L data cube using K

FPA measurements. Similarly, recovering a B × B × L oblique parallelepiped within

the data cube requires O(KB4L) operations per iteration. Thus, the reconstructions

from (N ′)2 measurement blocks take O
(
K N4

(N ′)2
L
)

operations. Furthermore, the block
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reconstruction model can be distributed in multiple processor architectures. Assuming

the number of cores is commensurate to the number of measurement windows, then

the number of operations per core is O
(
K N4

(N ′)4
L
)

. A summary of the variables of the

CASSI block reconstruction model is presented in Table 3.1. A comparison between

the features for the traditional and CASSI block reconstruction models is presented in

Table 3.2.

Table 3.2: CASSI reconstruction models comparison

Feature CASSI model CASSI block model
Model in matrix notation y = Hf +ωωω ymn = Hmnfmn +ωωωmn

Spatial dimension of the data cube N B � N
Spectral dimension of the data cube L L
Number of CASSI shots K K
Number of non-zero elements in H KN2L KB2L
Size of sensing matrix KN(N + L− 1)×N2L KB2 ×B2L
Number of GPSR operations per iteration O(KN4L) O(KB4L)

Figure 3.3 shows the reconstruction of a spectral band using the block CASSI

reconstruction model. There, it can be observed that assembling small parallelepiped

data cubes recovered separately causes undesired block artifacts in the block bound-

aries. The next section addresses this issue by using vertical and horizontal overlapping

pixels between measurement windows. This approach improves the quality of the re-

constructions making the artifacts unnoticeable.

Figure 3.3: (a) Original spectral slice. (b) Reconstruction of a spectral band using the
non-overlapping block-model of CASSI. Horizontal and vertical artifacts
can be noticed on the block boundaries.
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Chapter 4

LAPPED BLOCK RECONSTRUCTION MODEL

The lapped block model uses overlapped FPA windowed measurements. Then,

a set of overlapped oblique parallelepipeds within the data cube is recovered. The full

cube reconstruction process is described next.

4.1 Decomposition of the Measurement Set

Let ∆ be the number of overlapping columns or rows between consecutive FPA

measurement windows. Figure 4.1 shows an example of this approach in which two

consecutive blocks horizontally and vertically share a set of ∆B elements. Lapped

elements between windows cause that some entries of the matrix H affect more than

one window. Equation 3.4 can then be rewritten for the block model with overlapping

pixels by properly selecting the indices of rows and columns in the matrix Hi that

affect a specific window. The (`, j)th element of the sub-matrix related to the (m,n)th

window is given by

(
Hi
mn

)
`,j

=
(
Hi
)
r′`,r

′
j

(4.1)

with r′` = r` − (m + nN) ·∆ and r′j = r′` + u · (N2 − N). The number of overlapping

windows used is N ′ × V ′, where N ′ = d N
B−∆
e and V ′ = dN+L−1

B−∆
e.

4.2 Data Cube Reconstruction from Lapped Measurement Windows

The use of lapped measurement windows leads to an overlap in the reconstructed

set of parallelepipeds. Given the set of windowed measurements {ymn}N
′−1,V ′−1

m=0,n=0 , a

compressed sensing reconstruction algorithm is used to recover {f̃mn}N
′−1,V ′−1

m=0,n=0 . This

procedure is realized as described in Table 4.1.
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Figure 4.1: Example of the block-CASSI model using ∆ overlapping rows and
columns in the FPA measurement windows. Left: Horizontal overlap-
ping, Right: Vertical overlapping.

Table 4.1: Individual block data cube reconstruction from Lapped Windows

Inputs {Yi}K−1
i=0 , K,B,∆

Initialization N ′ = d N
B−∆e, V

′ = dN+L−1
B−∆ e

Split measurement set Yi =
[
Yi

0,0, · · · ,Yi
N ′−1,V ′−1

]
Group blocks from different shots Ym,n =

[
Y0

m,n, · · · ,YK−1
m,n

]
Vectorize measurements ymn =

[(
y0
mn

)T
, · · · ,

(
yK−1
mn

)T ]T
Use GPSR algorithm to recover

f̃m,n =

[(
f̃0,0

)T
, · · · ,

(
f̃N ′−1,V ′−1

)T]T
individual oblique parallelepipeds
within the data cube

Rearrange the results F̃m,n =
[
F̃0,0, · · · , F̃N ′−1,V ′−1

]

Once the individual parallelepipeds are obtained, these are merged to assemble

the full data cube. The merging process is critical since this will help in reducing the

block reconstruction artifacts, improving the quality of the reconstructions.

Let F̃m,n be the matrix representation of the recovered oblique parallelepiped

within the data cube obtained from the inverse of ymn. The relation between overlapped

measurement windows, and the recovered lapped oblique parallelepipeds within the

data cube is depicted in Fig. 4.2.
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Figure 4.2: Vertically overlapped measurement windows lead to vertically overlapped
oblique parallelepipeds within the data cube. Horizontally overlapped
measurement windows and their reconstructions have a similar relation.

Each spectral band of the recovered portion can be expressed as

F̃m,n,k =


Am,n,k

Cm,n,k Bm,n,k Dm,n,k
Em,n,k

 (4.2)

where Amnk, Cmnk,Dmnk and Emnk are regions recovered from adjacent measurement

windows. More specifically, Amnk is also obtained from F̃m−1,n, Cmnk is also contained

in F̃m,n−1, and so on. In contrast, Bmnk is the portion of the window that did not use

overlapped pixels for the recovery; therefore, it is contained only in F̃m,n. Figure 4.3

presents a general description for the overlapped structure in Eq. 4.2. This methodol-

ogy is also well suited for the special cases occurred in the image boundaries as depicted.

The merging process is realized such that duplicated regions of consecutive

blocks are averaged and assembled with the set {Bm,n,k}N
′−1,V ′−1

m=0,n=0 as shown in Fig.

4.4. Other approaches such as median or myriad filters [25, 22] are also valid alter-

natives for reducing blocking artifacts and can be explored in future work. Let the

average between overlapped regions of consecutive blocks be defined as
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Figure 4.3: Left: Subdivision of the kth spectral band of a recovered block of the
data cube. Shaded regions correspond to ∆

2
columns or rows on each

side. Pixels in those regions are duplicated since they are reconstructed
by the (m,n)th block and one of its four neighbors. Right: Special cases
for the blocks in the boundaries of the image.

E ′m(m+1),n,k =
Em,n,k +A(m+1),n,k

2
, D′m,n(n+1),k =

Dm,n,k + Cm,(n+1),k

2
(4.3)

for m = 0, · · · , N ′ − 1 and n = 0, · · · , V ′ − 1. From Fig. 4.4, it can be seen that the

portion of each oblique parallelepiped for the merging process is given by

F̂m,n,k =

Bm,n,k D′m,n(n+1),k

E ′m(m+1),n,k

 . (4.4)

Finally, the kth spectral band F̂k of the complete data cube can be assembled

as

F̂k =


F̂0,0,k F̂0,1,k . . . F̂0,V ′−1,k

...
...

. . .
...

F̂N ′−1,0,k F̂N ′−1,1,k . . . F̂N ′−1,V ′−1,k

 (4.5)

for k = 1, · · · , L and the complete reconstruction is given by F̂ =
[
F̂0, · · · , F̂L−1

]
.
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Figure 4.4: Tiling in the reconstruction of a spectral band. The shaded zones show
the average of the overlapped regions on consecutive parallelepipeds.

The data cube merging process is summarized in Table 4.2. The block size and number

Table 4.2: Summary: Merging process for Lapped Block CASSI model

Inputs: {F̃m,n,k}N
′−1,V ′−1,L−1

m=0,n=0,k=0 , N ′, V ′, L

for k = 0, · · · , L− 1
for m = 0, · · · , N ′ − 1
for n = 0, · · · , V ′ − 1

Extract Bm,n,k from F̃m,n,k

Average the duplicated regions: E ′m(m+1),n,k and D′m,n(n+1),k

Use the template for assembling F̂m,n,k =

[
Bm,n,k D′m,n(n+1),k

E ′m(m+1),n,k

]
end

end

Assemble the kth spectral band F̂k =

 F̂0,0,k . . . F̂0,V ′−1,k

...
. . .

...

F̂N ′−1,0,k . . . F̂N ′−1,V ′−1,k


end

Output: F̃ =
[
F̃0, · · · , F̃L−1

]

of overlapping pixels determine the total number of blocks and thus, the amount of

reconstructions needed to obtain the whole 3D scene. The selection of these parameters

gives a trade-off in terms of the quality of the reconstructed images and the time that

it takes to recover each parallelepiped.
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Chapter 5

SIMULATION RESULTS

Simulations were conducted to test the performance of the lapped block recon-

structions using CASSI measurements. Three test data cubes F with spatial resolution

of 256×256, 512×512 and 1024×1024 pixels and L = 24 spectral bands in the range of

452nm to 667nm were used. The 256×256 test data cube and its center frequencies are

shown in Fig. 5.1. The 512×512 and 1024×1024 data cubes are shown in Fig. 5.2 and

Fig. 5.3, respectively. A fourth data cube with spatial resolution of 512×512 pixels and

L = 32 spectral bands was used to analyze the lapped block reconstruction approach

for an increase in the spectral resolution. This database is a portion of the Moffett

field aerial view captured by AVIRIS[1], ranging from 447nm to 737nm. An RGB rep-

resentation of this database is presented in Fig. 5.8 (a). In all the experiments, the

sensing process is simulated using random boolean coded apertures T ij` ∈ {0, 1} with

transmittance of 50% pixels. Then, compressed sensing reconstructions were obtained

using the GPSR algorithm [14] with the lapped block reconstruction model procedures

in Tables 4.1 and 4.2. These results are compared with the traditional full data cube

recovery from the CASSI model in Chapter 2. Both approaches used the same number

of iterations. However, it is observed that the lapped block reconstruction converges

faster. The regularization parameter for the GPSR algorithm was selected such that

each simulation uses the value that results in the best reconstruction. In the lapped

block reconstructions, the same value of τ was used for recovering all the blocks. A

3D representation basis ΨΨΨ = ΨΨΨC ⊗ΨΨΨ2D was used, where ΨΨΨC is the Cosine basis and

ΨΨΨ2D is a 2D Wavelet Symmlet 8 basis. Using the 3D representation basis, only the

3% of the coefficients are needed to preserve the 99.64% of the signal’s energy. Each

data cube was approximated using a sparsity ratio S/v = 0.065, where v = N2L, by
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setting to zero the v − S least significant coefficients of its sparse representation and

using this data cube as the signal under analysis. For this approximation, the data

cubes F are represented as a v-long vector using Eq. 2.3. The block size in all the

experiments must be a dyadic value, such that the Wavelet representation of the signal

can be computed. All simulations were conducted and timed using an Intel Core i7

3960X 3.30GHz processor, and 32 GB RAM memory.

5.1 Lapped Block Reconstructions

In this experiment, the test data cubes are recovered using different block-sizes

and amount of overlap between measurement blocks. The parameters used in this sim-

ulations for each data cube are presented in Table 5.1.

Table 5.1: Parameters for lapped block reconstructions

Data cube Block-size B Overlap ∆

256× 256
32 12
64 24

512× 512
64 24
128 30

1024× 1024
128 32
256 40

Figure 5.4 shows the results for PSNR as a function of the number of FPA

measurements for the lapped block CASSI model and the traditional full data cube

reconstruction. Figures 5.4 (a) and (b), show that the lapped block reconstruction

outperforms the results of the traditional CASSI reconstruction for the 256× 256 and

512×512 data cubes. The results for the 1024×1024 data cube are slightly different as

the new approach points to better PSNR when more than 6 shots were used. However,

the use of smaller block-sizes for this data cube can lead to PSNR improvements such

as those in Fig. 5.4 (a) and (b). Notice that the results for the traditional CASSI

reconstructions using more than 12 shots in Fig. 5.4 (c) are not shown. For these cases,

the computational burden is such that the workstation used for the simulations was
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456nm 465nm 474nm 483nm

492nm 501nm 510nm 519nm

528nm 537nm 546nm 555nm

564nm 573nm 582nm 591nm

600nm 609nm 618nm 627nm

636nm 645nm 654nm 663nm

Figure 5.1: 24 spectral band data cube with wavelengths ranging from 452nm to
667nm. Each spectral slice has a spatial resolution of 256× 256 pixels.
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456nm 465nm 474nm 483nm

492nm 501nm 510nm 519nm

528nm 537nm 546nm 555nm

564nm 573nm 582nm 591nm

600nm 609nm 618nm 627nm

636nm 645nm 654nm 663nm

Figure 5.2: 24 spectral band data cube with wavelengths ranging from 452nm to
667nm. Each spectral slice has a spatial resolution of 512× 512 pixels.
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456nm 465nm 474nm 483nm

492nm 501nm 510nm 519nm

528nm 537nm 546nm 555nm

564nm 573nm 582nm 591nm

600nm 609nm 618nm 627nm

636nm 645nm 654nm 663nm

Figure 5.3: 24 spectral band data cube with wavelengths ranging from 452nm to
667nm. Each spectral slice has a spatial resolution of 1024× 1024 pixels.
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not capable to obtain the reconstructions. Many commercial hardware architectures

are capable to recover small data cubes, but solving the problem for larger spatial

resolutions is time and computationally demanding such that these reconstructions are

not attainable. The lapped block reconstruction approach provides the framework to

solve these problems. Similar results were obtained for the 512 × 512 × 32 data cube

as shown in Fig. 5.4 (d).

In general, simulations show that the lapped block reconstructions result in an

improvement of up to 5 dB over the traditional reconstruction approach. Figure 5.5

illustrates a comparison of the reconstructed quality of the 256× 256× 24 data cube.

Zoomed versions of the results for the 512×512×24 and 1024×1024×24 data cubes us-

ing B = 64, ∆ = 24 and B = 128, ∆ = 24, are shown in Fig. 5.6 and 5.7, respectively.

Reconstructions for the aerial view of Moffet field are shown in Fig. 5.8. In addition,

the spectral reconstruction for three pixels from Fig. 5.5 is presented in Fig. 5.9.

It can be noticed that the lapped block reconstruction provides a more accurate ap-

proximation of the spectral information of the source than the complete reconstruction.

5.2 Lapped Block Reconstructions from Noisy Measurements

Reconstructions from noisy measurements were obtained for both, traditional

approach and the lapped block reconstruction method. In this experiment, zero-mean

Gaussian noise was added to the set of FPA measurements y in Eq. 2.6. The variance

of the noise was selected such that a desired signal to noise ratio (SNR) was achieved.

The SNR can be expressed as SNR = 10 log10

(
σ2
y

σ2
n

)
, where σ2

y is the variance of the

FPA measurement set y, and σ2
n is the variance of the noise.

Simulation results for 20 dB and 25 dB of SNR using the 256×256×24 database

are presented in Fig. 5.10. These results show that despite of the presence of those levels

of noise in the measurement set, the lapped block reconstruction approach overcomes

the results of the full data cube reconstruction.
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Figure 5.4: Reconstruction (Rec.) PSNR for the full data cube reconstruction and
by the lapped block CASSI reconstruction for the (a) 256× 256× 24, (b)
512× 512× 24, (c) 1024× 1024× 24, and (d) 512× 512× 32 data cubes.
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Figure 5.5: (a) Original 256× 256× 24 data cube. Reconstructions for 6 FPA mea-
surement shots using: (b) Traditional reconstruction approach, 28.1 dB;
(c) Lapped block approach with block size B = 64 and overlap ∆ = 24,
31.46 dB. (d), (e) and (f) are zoomed versions of (a), (b) and (c), respec-
tively.

5.3 Time for Reconstruction

Since block reconstructions manipulate smaller matrices, the reconstruction

time needed for each block in Eq. 4.2 is much lower than that of the traditional

approach. However, the block size provides a trade-off between the time required for

reconstruction and the quality of the reconstructed images. The selection of the block

size depends both on the spatial and spectral dimensions of the data cube since smaller

blocks may not contain enough information across all spectral bands to provide accu-

rate reconstructions. Moreover, the use of smaller block sizes clearly leads to a larger

number of blocks to recover, in consequence, more processors are required in order to

accelerate the reconstruction. Also, smaller block sizes degrade the image quality. On

the other hand, the use of larger block sizes increases the reconstruction time of an
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Figure 5.6: (a) Original zoomed versions of the 512 × 512 × 24 data cube. Recon-
structions for 6 FPA measurements using: (b) Traditional reconstruction,
31.09 dB; (c) Lapped block reconstruction with block size B = 64 and
overlap ∆ = 24, 33.45 dB. (d),(e), and (f) are zoomed versions of (a),
(b), and (c), respectively.

individual block but could lead to a reduction in the time for recovering all the blocks

depending on the number of processors available.

Figure 5.11 presents the reconstruction time for the experiments conducted in

Section 5.1. It can be noticed that block recovery is up to 4 times faster than recovering

the 256×256×24 data cube at once, and up to 5 times for the 512×512×24 data cube.

For larger spatial dimensions, such as 1024× 1024× 24, the blocked approach is up to

9 times faster, and for a large number of FPA measurements, the reconstructions can

take several days for the traditional approach. These simulation results also show that

increasing the spectral resolution leads to an increase of the reconstruction time with

respect to a data cube with the same spatial dimensions. However, the lapped block
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Figure 5.7: (a) Original zoomed version of the 1024 × 1024 × 24 data cube. Recon-
structions for 6 FPA measurements using: (b) Traditional reconstruction,
32.99 dB, and (c) Lapped block reconstruction with B = 128 and ∆ = 32,
33.17 dB.

Figure 5.8: (a) Original RGB and zoomed version of the 512 × 512 × 32 data cube.
Reconstructions for 10 FPA measurement shots using: (b) Traditional
reconstruction approach, 30.99 db, and (c) Lapped block approach with
block size B = 64 and overlap ∆ = 24, 31.84 dB.

reconstruction approach is still faster than the complete reconstruction. In addition,

Fig. 5.11 shows the average time to recover only one block using a single processor.

This can be used for designing multi-processor and parallel schemes to recover the less

number of blocks per processor and thus, reduce the reconstruction time for specific

applications.
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Figure 5.9: Spectral reconstruction of the highlighted pixels in (a) for (b) pixel B,
(c) pixel C, and (d) pixel D.
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Figure 5.10: Reconstruction (Rec.) PSNR from noisy measurements, for the
256 × 256 × 24 full data cube reconstruction and by the lapped block
reconstruction. (a) SNR = 20 dB and (b) SNR = 25 dB.
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Figure 5.11: Reconstruction (Rec.) time as a function of the number of FPA mea-
surements. Results for the traditional reconstruction and lapped block
reconstruction approaches are shown. The average time for recovering
an individual block using a single processor (One block) is also presented
for (a) 256× 256, (b) 512× 512 and, (c) 1024× 1024 spatial dimensions
of the data cubes with L = 24 spectral bands and (d) 512 × 512 × 32
data cube.
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Chapter 6

CONCLUSIONS

The mathematical model for block reconstructions in CASSI system has been

developed. The structure of the compressed measurements in CASSI is suitable for

recovering independent oblique parallelepipeds within the underlying data cube. Two

variations of the block reconstruction model were described: the first one uses non-

overlapping windows in the mesurement set and the second uses lapped windows.

Blocking artifacts can appear in the reconstructions when non-overlapping measure-

ment windows are used. However, the artifacts are significantly reduced when lapped

measurement windows are used. A merging process for lapped windows was proposed.

This process is based on averages but other alternatives such as median filters can be

used.

The proposed block reconstruction method is well suited for multi-processor architec-

tures in which each block is recovered by a single processor. The computational cost

of recovering a data cube from (N ′)2 = bN
B
c2 measurement windows is reduced by a

factor of (N ′)2 per iteration of the GPSR, since the complexity of the block recon-

struction approach has complexity O
(
K N4

(N ′)2
L
)

instead of the O(KN4L) complexity

of the traditional reconstruction model. Also, simulations for different variations of

the spatial and spectral dimensions of the data cube, block size, number of overlapping

pixels and presence of noise in the measurement set, show that the proposed model

leads to a reduction of the reconstruction time and improvements of the image quality.

In particular, the lapped reconstructions result in an improvement of up to 5 dB over

the traditional approach, and the reconstruction time is reduced up to an order of

magnitude.

The results of this work have been recently published in [5].
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6.1 Future Work

This work does not include and analysis for spectral images in which the number

of bands exceeds the spatial resolution. Additional work, taking into account the block

size, is required for this type of signals since the windows in the boundaries of the FPA

measurement might not contain enough information to obtain a good reconstruction

of the corresponding parallelepiped.

A more precise discretization model for CASSI system has been recently pub-

lished in [6]. The development of a lapped reconstruction model for the higher-order

CASSI is an interesting area to continue this work.
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