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In the United States, irrigation represents the largest consumptive use of 

freshwater and accounts for approximately one-third of total water usage. Irrigation 

impacts soil moisture and can ultimately influence clouds and precipitation through 

land–planetary boundary layer (PBL) coupling processes. This dissertation is a 

collection of three studies that analyze the impact of irrigation on the atmosphere 

using NASA modeling tools the Land Information System (LIS) and the NASA 

Unified Weather Research and Forecasting Model (NU-WRF) framework.  

The first study investigates the effects of drip, flood, and sprinkler irrigation 

methods on land–atmosphere interactions, including land–PBL coupling and 

feedbacks at the local scale. The offline and coupled simulation results show that 

regional irrigation impacts are sensitive to time, space, and method and that irrigation 

cools and moistens the surface over and downwind of irrigated areas, ultimately 

resulting in both positive and negative feedbacks on the PBL depending on the time of 

day and background climate conditions.  

The second study assesses the sprinkler irrigation scheme physics and model 

sensitivity to choice of irrigation intensity and greenness fraction over a small, high 

resolution domain in Nebraska and evaluates the model performance with Cosmic Ray 

Neutron Probe (CRNP) observations. Results show that differences between 

experiments are small at the interannual scale, but become more apparent at seasonal 

and daily time scales. In addition, field-scale heterogeneity resulting from the 

individual actions of farmers is not captured by the model and the amount of irrigation 
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applied by the model exceeds that applied at the two irrigated fields. However, the 

seasonal timing of irrigation and soil moisture contrasts between irrigated and non-

irrigated areas are simulated well by the model.  

The third study assesses the individual and combined impacts of irrigation and 

wind turbines on surface fluxes, near surface temperature, and humidity. Results show 

that irrigation repartitions surface sensible and latent heat fluxes, reduces daytime 

temperatures and increases temperatures at night. Turbines weaken surface sensible 

heat fluxes minimally during the day but enough at nighttime to slightly reduce near 

surface temperature. The simulations that include both turbines and irrigation show 

that wind power production is slightly reduced when irrigation is included and 

irrigation contributes to a greater reduction in daytime surface sensible heat fluxes 

than would be realized with only turbines. Taken together, these three studies 

showcase the dramatic alterations that irrigation induces to the water and energy 

cycles and demonstrates the potential for human impacts on weather and climate.  
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INTRODUCTION 

Irrigation has been shown to modify local hydrology and regional climate 

through a repartitioning of water among the surface, soil, and atmosphere with 

potential to drastically change the terrestrial energy budget in agricultural areas during 

the growing season (Qian et al. 2013). Vegetation cover and soil moisture primarily 

control water and energy fluxes from the surface into the planetary boundary layer 

(PBL), so accurate representation of the land surface characteristics is key to 

determining and predicting atmospheric conditions. Chapter 2 investigates the impacts 

of irrigation methods on offline land surface model spinups and coupled land-

atmosphere interactions. The model sensitivity to method, time, and space is assessed 

and recommendations are made for future modeling studies.  

Irrigation parameterizations are becoming more common in land surface 

models and are growing in sophistication, but there is difficulty in assessing the 

realism of these schemes, due to limited observations (e.g., soil moisture, 

evapotranspiration) and unknown timing of real world application that may impact 

these observations. As a result, most irrigation parameterizations are implemented in 

models without a robust evaluation of the irrigation physics or full understanding of 

the scheme behavior, making definitive conclusions about downstream impacts on 

regional weather, precipitation, and long term climate difficult. Chapter 3 assesses the 
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offline land surface model irrigation scheme physics and evaluates the performance of 

the model with human practice and soil moisture observations available within a small 

area of eastern Nebraska. 

In the United States, the most commonly irrigated regions are often also areas 

that boast great wind power resource potential (NREL, 2016). Wind turbines, 

however, also have the potential to impact local land-atmosphere (L-A) interactions 

within and downwind of the farm. The extraction of kinetic energy by the turbine to 

produce electricity creates a wake in which wind speed is reduced and turbulent 

kinetic energy (TKE) is increased (Baidya Roy et al. 2004). As few observations exist 

within operational wind farms, previous studies have used large eddy simulations 

(LES; Calaf et al. 2011; Lu and Porté-Agel 2011), mesoscale models (Fitch et al. 

2013; Cervarich et al. 2013) and global models (Wang and Prinn 2009)to explore the 

persistence of wind turbine wakes and their impact on near surface vertical mixing, 

surface fluxes, and temperature. Despite the fact that turbines are often located in 

agriculturally productive, potentially irrigated farms, the combined influence of 

turbines and irrigation has not been investigated. Chapter 4 assesses the potential 

impacts of irrigation and wind turbines on land-atmosphere interactions. Chapter 5 

synthesizes and discusses the conclusions of all three studies more generally. 
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IMPACT OF IRRIGATION METHODS ON LAND SURFACE MODEL 
SPINUP AND INITIALIZATION OF WRF FORECASTS 

2.1 Introduction 

Almost 55 million acres of farmland is irrigated in the United States, 

accounting for more than 29 trillion gallons of water usage per year (NASS 2009). 

Most of this irrigation water is applied to the soil surface, creating an anthropogenic 

change to the land that impacts soil moisture but can ultimately influence clouds and 

precipitation through land–planetary boundary layer (PBL) coupling processes. The 

process chain by which soil moisture can impact clouds and precipitation [as defined 

by Santanello et al. (2011a)] involves various pathways of positive and negative 

feedbacks dependent on the relative sensitivities of 1) surface fluxes to soil moisture, 

2) PBL evolution to surface fluxes, 3) entrainment fluxes at the top of the PBL to PBL 

evolution, and 4) the collective feedback of the atmosphere on the surface fluxes. 

The local, direct impacts of irrigation on the surface flux–soil moisture 

component of this process chain are well understood. Modeling and observational 

studies agree that irrigation application reduces temperature and increases humidity 

via the repartitioning of latent heat flux and sensible heat flux (Moore and Rojstaczer 

2002; Adegoke et al. 2003, 2007; Douglas et al. 2006; Bonfils and Lobell 2007; 

DeAngelis et al. 2010; Kueppers and Snyder 2012; Jiang et al. 2014). The ability of a 

numerical model to reproduce irrigation’s modifications to the surface energy balance 

is therefore essential for studies of land-use change impacts on climate (Zaitchik et al. 

Chapter 2 
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2005) and could potentially improve forecast skill in numerical weather prediction 

models (Ozdogan et al. 2010). 

Irrigation-induced cloud and precipitation changes originate at the local scale 

and are regulated by feedbacks within the PBL. However, regional impacts of 

irrigation are more uncertain and vary by geographical area and climatological 

conditions. Past modeling studies have found irrigation can affect regional circulations 

(Chase et al. 1999; Lo and Famiglietti 2013; Huber et al. 2014) or induce remote 

precipitation responses (Im et al. 2014; Harding and Snyder 2012a,b), but others 

suggest that irrigation’s effects on surface climate are localized and do not extend very 

far into non-irrigated areas (Sorooshian et al. 2011). Further contributing to this 

regional-scale uncertainty is the fact that the atmospheric response produced by a 

regional simulation can be affected by differences in the details of irrigation 

representation, such as the timing and frequency of water application (Sorooshian et 

al. 2012). Irrigation’s regional impact could be dependent on the degree to which the 

land and atmosphere communicate changes to one another, as land–atmosphere (LA) 

coupling has been shown to influence precipitation patterns in studies of soil moisture 

feedbacks (Koster et al. 2002; Lawrence and Slingo 2005). Thus, a prerequisite to 

piecing together these regional impacts is an understanding of each irrigation method’s 

effect on land–PBL coupling and feedbacks at the local scale (i.e., the foundation of 

the process chain described above). 

This paper seeks to address this research need by presenting a comprehensive 

assessment of irrigation’s impact on LA interactions using a high-resolution model test 

bed, multiple irrigation methods, and evaluation with a variety of surface observations. 

The purpose of this study is to 1) evaluate the sensitivity of a land surface model 
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(LSM) multiyear spinup to several different irrigation methods and thresholds, 2) 

assess the impacts of irrigated spinups on regional coupled forecasts, 3) determine the 

effects of irrigation on land–PBL coupling, and 4) suggest recommendations for future 

irrigation implementation in LSMs. Previous studies and relevant background 

information are discussed in section 2, followed by a description of the model and data 

in section 3. Results from offline and coupled simulations, diagnosis of land–PBL 

coupling and evaluation with observations are discussed in section 4, with conclusions 

presented in section 5. 

2.2 Background 

2.2.1 Irrigation Methods 

The irrigation method chosen by a farmer is the product of numerous factors, 

including the associated monetary investment and labor intensity, the availability of 

water resources, and the topography of the landscape (S. Howser 2013, personal 

communication). In the central Great Plains states of Nebraska, Kansas, Iowa, and 

Missouri, center pivot sprinkler irrigation systems are by far the most widely utilized 

by farmers. As the method of choice on 68% of farms, sprinklers irrigate 80% of the 

total farmland acreage in this region (NASS 2009). Gravity systems, similar to flood 

irrigation, are inefficient from a water resources perspective, but are inexpensive, 

leading to their use on approximately 31% of farms. The most water-efficient method, 

drip irrigation systems, are costly and labor intensive and, as a result, are used on only 

1% of farms in this area. 

Recently, there has been a push for irrigation parameterizations that 

realistically reflect the variety and complexity of these irrigation practices. A popular 



 6 

representation of irrigation for regional applications forces soil moisture to saturation 

at a defined time interval in a manner similar to that of flood irrigation (Adegoke et al. 

2003; Kueppers et al. 2007; Kueppers and Snyder 2012; Zaitchik et al. 2005; Jiang et 

al. 2014). Other parameterizations represent irrigation from an evapotranspiration (ET) 

or vapor flux perspective (Douglas et al. 2006; Segal et al. 1998; Evans and Zaitchik 

2008), which best represents the water efficiencies of the drip irrigation method, or 

require soil moisture thresholds be exceeded before irrigation application occurs 

(Lobell et al. 2009; Qian et al. 2013; Tuinenburg et al. 2014). Ozdogan et al. (2010) 

simulated sprinkler irrigation by applying water as precipitation when the root-zone 

soil moisture fell below a triggering threshold. In some of the more sophisticated 

treatments of irrigation to date, Leng et al. (2014) used an offline land surface model 

to simulate the effects of irrigation on both surface fluxes and groundwater 

withdrawals while other studies have used an ‘‘irrigation demand factor’’ to prevent 

over irrigating the model soil surface (Pokhrel et al. 2012; Vahmani and Hogue 2014). 

The increasing complexity of these model parameterizations introduces the need to 

systematically assess their impacts on the LA interface. 

The work presented in this paper is the first to comprehensively compare and 

evaluate drip, sprinkler, and flood irrigation parameterizations. As these methods are 

representative of the most common irrigation parameterizations in use today, this work 

should provide value to a range of future irrigation studies. 

2.2.2 Coupled Impacts of Irrigation 

Modeling studies utilizing irrigation parameterizations have shown that 

irrigation can significantly impact the surface energy balance and near-surface 

temperature from local to global scales. Boucher et al. (2004) estimated that irrigation 
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produces a radiative forcing in the range of 0.03–0.1 W m-2 at the global scale because 

of the additional atmospheric water vapor, and it induces surface cooling of up to 

0.8 K over irrigated land areas. Using the Community Atmosphere Model, version 3.3 

(CAM3.3), Lobell et al. (2009) concluded that irrigation significantly reduced the 

model’s warm bias over several heavily irrigated areas in the United States, such as 

California and Nebraska. In a study using the Noah LSM (Chen et al. 1996) over the 

continental United States, Ozdogan et al. (2010) found increases in surface latent heat 

flux of up to 100 W m-2 in California, as well as other regions across the United States, 

when simulating sprinkler irrigation. Similarly, in a study using the Regional 

Atmospheric Modeling System (RAMS), Adegoke et al. (2007) found irrigation 

increased latent heat flux by 36% in Nebraska, decreasing temperatures by 1.28° C 

and increasing dewpoints by 2.38° C. These cross-scale modeling results are 

corroborated by observational studies that have found decreases in surface temperature 

correlated with increasing spatial extent of irrigated agriculture in California (Bonfils 

and Lobell 2007) and the high plains aquifer of the southern Great Plains (Mahmood 

et al. 2013). 

The potential ability of irrigation to mitigate or reinforce wet and dry periods 

through its impact on precipitation has important implications, as these climatological 

extremes can influence farmers’ yields. Observational datasets have shown an 

enhancement of precipitation downwind of heavily irrigated areas in the Great Plains 

and Texas high plains (DeAngelis et al. 2010; Moore and Rojstaczer 2002), but 

irrigation-enhanced precipitation can actually lead to a net water loss as recycled 

precipitation often falls away from the source and is outweighed by ET increases 

(Harding and Snyder 2012a,b; Wei et al. 2013). Simulating the effects of irrigation on 
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precipitation amounts and patterns often yields results that are dependent on the model 

used (Tuinenburg et al. 2014), the antecedent soil moisture conditions (Harding and 

Snyder 2012b), or the region of interest (Kueppers et al. 2008). Irrigation has even 

shown the potential to weaken the Great Plains low-level jet, thus increasing July 

precipitation by almost 50% downwind of irrigated areas (Huber et al. 2014). 

Despite the importance of LA coupling and PBL evolution in the soil 

moisture–precipitation process chain, it can be seen from the aforementioned studies 

that much of the irrigation research to date either restricts analysis to surface flux–soil 

moisture interactions or is motivated to discern precipitation impacts with little regard 

for the PBL feedbacks that connect soil moisture to precipitation. An exception is a 

recent study by Qian et al. (2013), which explored the impacts of irrigation on the 

diurnal cycle of near-surface fluxes, temperature, clouds, and precipitation in the 

southern Great Plains using the Weather Research and Forecasting (WRF) Model 

(Skamarock et al. 2005). Their study showed irrigation repartitions surface fluxes and 

also increases the probability of shallow clouds by decreasing the lifting condensation 

level (LCL) more than the PBL height (PBLH). 

The work presented in this paper takes an even more comprehensive approach 

by using an irrigated LSM spinup to capture soil moisture anomalies and by evaluating 

the model sensitivity to irrigation algorithms that differ in frequency, timing, and 

application. Furthermore, this work diagnoses the LA coupling and feedbacks using a 

high-resolution modeling environment forced by best available surface and satellite 

observations and utilizes the observational datasets necessary to evaluate irrigation 

schemes and coupled impacts. 
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2.3 Methods 

2.3.1 Model and Experimental Design 

This study utilizes NASA’s Land Information System (LIS; Kumar et al. 

2006), version 6.1, to complete offline spinups and generate initial conditions for 

coupled forecasts with the Advanced Research version of the WRF (ARW). LIS is a 

flexible land surface modeling and data assimilation framework that allows users to 

choose from a variety of LSMs that are forced and constrained by best available 

surface and remote sensing observations. The ARW is a community mesoscale 

research model with an Eulerian mass solver, a terrain following vertical coordinate 

system, and multiple physics options (Skamarock et al. 2005). LIS has been fully 

coupled to WRF under the NASA Unified WRF (NU-WRF; Peters-Lidard et al. 2015) 

framework. This model configuration allows for long-term offline land surface model 

spinups using observed atmospheric forcing and creates a better representation of LA 

interactions through the ability to characterize the land surface at the same spatial 

scales as cloud and precipitation processes (Kumar et al. 2006). In this way, the LIS–

WRF configuration has shown skill in studies in which soil moisture anomalies and 

LA interactions play a prominent role (Santanello et al. 2009, 2011a, 2013b). 

The study area is a 500 km by 600 km region of the central Great Plains 

including portions of Nebraska, Kansas, Iowa, and Missouri, shown in Fig. 2.1. This 

area provides a steep irrigation gradient, as the western region is heavily irrigated, but 

minimal irrigation occurs in the eastern section. Present in the domain are three flux 

observation sites from which data will be used to evaluate model results, discussed 

more in section 3c. The Noah LSM, version 3.2, was run offline (uncoupled) within 

the LIS framework at 1-km resolution for 5 years (2005–10) using four different 
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irrigation schemes, discussed further in section 3b, and a control run (no irrigation; 

hereafter Control). In addition to offline sensitivity experiments, each LIS–Noah 

spinup was used to initialize a 2-day WRF forecast to study the relative impacts of 

each irrigation method on the PBL evolution and regional weather forecast. Two 

simulation periods were chosen, one in a wetter-than-normal year and one in a drier-

than-normal year, to evaluate the sensitivity of the model to the background climate 

conditions. The wet and dry years were determined from the domain-averaged Phase 2 

of the North American Land Data Assimilation System (NLDAS-2) soil moisture data, 

which showed 2006 to have the lowest and 2008 to have the highest soil moisture over 

the 5-yr spinup period. The LIS–WRF configuration was run for 48 h at 1-km 

resolution on 30–31 July 2006 (dry) and 25–26 May 2008 (wet). These 2-day periods 

exhibited the driest and wettest soil moisture in the NLDAS-2 forcing data in the dry 

and wet year, respectively, during the irrigation season. 

The LIS–WRF simulations were completed using a single domain with 43 

vertical levels and a time step of 5 s. The Monin–Obukhov surface-layer scheme as 

well as Goddard microphysics and short- and longwave radiation were utilized. To 

allow the model to explicitly resolve convection at 1-km resolution, a cumulus 

parameterization was not used. Initial and boundary conditions were provided by the 

North American Regional Reanalysis (NARR; Mesinger et al. 2006) at 3-hourly 

intervals. The Mellor–Yamada–Janjic (MYJ; Janjic 1994) PBL scheme was used for 

this study, which exhibits oscillatory PBLH estimations in the daytime hours based on 

TKE. Thus, in analysis of the model output, PBLH is estimated using a bulk 

Richardson approach, in which the pressure corresponding to the first model level 

where the bulk Richardson number exceeds 0.25 is assumed to be the top of the PBL 
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(Sivaraman et al. 2013). An additional NU-WRF run without a spinup (hereafter 

referred to as NoSpin) was completed for each case to demonstrate the impact of 

initializing from an LIS spinup versus that of the coarse atmospheric analysis (i.e., 

NARR) data. 

To ensure the land surface states were fully equilibrated by the desired 

initialization time in 2006, a second spinup from 2003 to 2010 was completed and 

compared to the original. The 2005 spinup reached equilibrium in less than a year for 

soil moisture for the top three layers and for all layers with regards to soil temperature. 

Fourth-layer (bottom) soil moisture equilibrated by mid- 2007. However, differences 

in fourth-layer soil moisture in July 2006 are small (less than 0.02 m3 m-3) and 

negligible for the purposes of this study. Therefore, we determined the model to be 

appropriately spun up by the July 2006 WRF initialization time. 

2.3.2 Irrigation Parameterizations 

This study uses three irrigation schemes—flood, sprinkler, and drip—each 

differing in the frequency, type, and timing of water application. These methods are 

implemented in the Noah LSM within the LIS framework. 

The sprinkler method (hereafter referred to as Sprinkler) is derived from 

Ozdogan et al. (2010) but has been modified to employ a user-specified irrigation rate 

as opposed to one based on crop water demand. In this way, the Sprinkler scheme used 

here closely represents the farmer’s perspective of water application and application 

rates. Water is applied uniformly as precipitation at a rate of 5 mm h-1 when the root-

zone moisture availability (RZMA) falls to 10% above the stress point. The irrigation 

water shuts off when the RZMA reaches 80% of the maximum soil moisture. 
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The flood (hereafter Flood) method builds on Evans and Zaitchik (2008) by 

adding a threshold used to evaluate the soil moisture state before triggering irrigation. 

This method applies water to the root zone at 0900 local time (LT) if the root-zone soil 

moisture falls below a threshold with respect to the wilting point (Yilmaz et al. 2014). 

Water is then applied until the top layer is saturated and saturation is sustained for 

30min. To evaluate the model sensitivity to this threshold, two Flood irrigation 

spinups were completed: one using a threshold of 25% above the wilting point and the 

other at 75% (hereafter Flood25 and Flood75, respectively). 

The drip (hereafter Drip) method originates from Evans and Zaitchik (2008) 

and is designed to provide an optimal amount of water—enough to allow for 

transpiration without stress but without any excess water application. Soil moisture 

impacts ET in the Noah land surface model through the canopy resistance. The Drip 

parameterization calculates the canopy resistance and resultant ET twice—once using 

the current soil moisture and the second time assuming no soil moisture stress. The 

unstressed transpiration value is used in the simulation and the difference between the 

two values is the irrigation requirement to avoid stress. This approach results in soil 

moisture being largely unchanged during the simulation, as the water required is 

immediately transpired rather than added to the soil column. 

The irrigation algorithms are applied homogeneously to each 1-km grid cell 

exhibiting an irrigable land-use classification. In this study, the 24-class category U.S. 

Geological Survey (USGS) land-use classification data were used within LIS. This 

dataset contains two irrigable categories: irrigated cropland and pasture (fully 

irrigated) and mixed dryland–irrigated cropland and pasture (partially rain fed). The 

Drip and Sprinkler methods do not distinguish between these categories, but the Flood 
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algorithm uses half (all) of the maximum soil moisture content in calculating the 

irrigation water requirement for partially rainfed (fully irrigated) grid cells. However, 

of the two irrigable land-use categories, only fully irrigated grid cells appear in our 

domain. An additional important criterion needed to activate the methods ensures that 

it is irrigation season by requiring that the gridcell greenness vegetation fraction 

(GVF) exceed 40% of the climatological annual range of GVF, after Ozdogan et al. 

(2010). In LIS–Noah, GVF is derived from satellite-based monthly climatology data 

also at 1-km resolution. 

2.3.3 Evaluation 

Several techniques and observational datasets were employed to evaluate the 

offline and coupled model output. The Land Verification Toolkit (LVT; Kumar et al. 

2012) is a software tool designed to enable robust evaluation of LIS output against 

observations from a variety of sources. This study employs the LVT for analysis of 

LIS–Noah output against observations of fluxes, soil moisture, and soil temperature 

from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement 

Program in the southern Great Plains (ARM-SGP). In addition, the Model Evaluation 

Tools (MET) software is used to compare the coupled LIS– WRF output to point 

observations within the study area (Developmental Testbed Center 2013). MET was 

developed at the National Center for Atmospheric Research (NCAR) through grants 

from the U.S. Air Force Weather Agency (AFWA) and the National Oceanic and 

Atmospheric Administration (MET user’s guide). Additional point data were provided 

by the AmeriFlux group of the DOE’s Oak Ridge National Laboratory and were 

analyzed to create average daily cycles of fluxes to verify those simulated by LIS–

Noah. 
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LA coupling is examined through the use of local-scale land–atmosphere 

coupling diagnostics (LoCo; Santanello et al. 2011b), including mixing diagrams 

(MDs; Santanello et al. 2009, 2011a, 2013b), PBL–evaporative fraction (EF) analyses 

(Santanello et al. 2009), and the concept of the LCL deficit (Santanello et al. 2011a, 

2013b). These tools have proven useful in determining the impact of soil moisture 

perturbations on surface forcing and the subsequent PBL response as well as the 

sensitivity of WRF to various LSM and PBL combinations. This makes LoCo 

diagnostics ideal for intercomparison of the impacts of various irrigation schemes as 

well. 

Mixing diagrams represent the diurnal evolution of near-surface humidity and 

potential temperature using vectors in energy space, allowing for the quantification of 

heat and moisture budgets in the PBL and several related metrics (e.g., Bowen and 

entrainment ratios). These diagrams are constructed using the 2-m temperature and 

humidity at a particular point converted to heat and moisture energy space via 

multiplication by the specific heat of water and the latent heat of vaporization, 

respectively. The resultant values for each daytime hour are plotted, creating the solid 

line shown in the mixing diagrams. The dashed lines are vectors, which represent the 

fluxes of heat and moisture from the surface and atmosphere. In this analysis, we treat 

the residual vector of the mixing diagrams as the atmospheric response vector 

(Santanello et al. 2013a), which is typically dominated by entrainment fluxes but also 

includes horizontal advection. The slope of the surface (atmospheric response) vector 

is exactly equal to the surface (entrainment) Bowen ratio, and the magnitude of the 

vector components are proportional to the surface (entrainment) fluxes of heat, given 

by the y component, and moisture, given by the x component. For a more 
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comprehensive discussion ofmixing diagram theory and LoCo diagnostics, interested 

readers are referred to Santanello et al. (2009) and Betts (1992). 

2.4 Results 

2.4.1 Offline Spinups 

2.4.1.1 Regional and Multi-Year Impacts 

Figure 2.2 shows monthly, domain-averaged differences from Control in top-

layer soil moisture SM, latent heat flux Qle, and sensible heat flux Qh for each of the 

irrigation methods during the 5-yr spinup. The seasonal cycle of irrigation application 

is evident, with peaks in mid-year and decreases toward the end of each year. Of 

particular note is the memory of the soil to the previous growing season’s irrigation 

practices, shown in SM increases that linger through the winter season. However, this 

residual SM anomaly has only a negligible impact on winter fluxes. The 25% 

threshold imposed on the Flood irrigation method is more restrictive than the 75% 

case, requiring the soil dry to a greater degree before irrigation will be triggered. Thus, 

Flood75 results in greater increases in soil moisture than Flood25, while Sprinkler 

irrigation shows the largest changes of all methods. As anticipated, Drip exhibits zero 

changes to soil moisture content because of the nature of the algorithm, as additional 

water is immediately used for transpiration. 

The increased soil moisture repartitions the surface fluxes in the Sprinkler and 

Flood runs, consistent with previous modeling studies’ findings of the impact of SM 

on fluxes (Adegoke et al. 2007; Qian et al. 2013). Flood75 and Sprinkler increase 

latent heat flux by up to 7.0 and 8.0 W m-2, respectively. Although no soil moisture 

changes are noted in the Drip method, the ET modification causes latent heat flux to 
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rise by as much as 3.5 W m-2. Sensible heat flux decreases by a complimentary 

amount for each of the methods. The greatest changes to the energy balance during the 

5-yr spinup occur in 2006, noted as a dry regime for the study area, while the wetter 

regimes of 2007 and 2008 exhibit the smallest changes. Such results are expected as 

dry periods are characterized by a lack of precipitation, low soil moisture values, 

greater plant stress, and decreased evapotranspiration—conditions that will trigger the 

irrigation algorithms to turn on more frequently than in a wet or normal regime. 

Irrigated grid cells are most commonly found in the western third of the 

domain and account for only 4% of the total study area. Thus, impacts are minimized 

in the previous analyses because of the heavy weight of non-irrigated grid cells and 

the averaging of the model output twice—once temporally and a second time spatially 

with a majority of non-irrigated areas. The following section presents analyses for a 

dry (2006) and wet (2008) year spatially to determine the variation of impacts within 

the domain during contrasting antecedent soil moisture conditions. 

2.4.1.2 Spinup Results in a Dry and Wet Regime 

Irrigation impacts vary across the study area and are sensitive to time and 

method. Seasonally averaged changes in SM for the dry and wet regimes are presented 

in Figs. 2.3 and 2.4, respectively. In this case, ‘‘seasonal’’ refers to the irrigation 

season, defined as from 1 May to 30 September, as this is the primary growing season 

in Nebraska (Adegoke et al. 2003). Sprinkler irrigation impacts SM and fluxes the 

most, increasing SM by 0.16– 0.2m3m23 and latent heat flux by at least 100 W m-2  

over most irrigated grid cells. Increases in latent heat flux (Figs. 2.5, 2.6) as a result of 

the Drip algorithm slightly exceed those due to SM effects in Flood25 with increases 

of up to 85 and 50 W m-2 for the two methods, respectively. Complementary decreases 
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in sensible heat flux are apparent in these irrigated areas. The effects of irrigation are 

muted when the background precipitation is greater, as the impacts of each method are 

consistent with those during the dry regime, but are smaller in magnitude. This is 

especially noticeable near the Nebraska–Kansas border (western part of the domain 

near 40°N), where irrigation generally reduces sensible heat flux by 40–50 W m-2 

more in the dry regime as compared to the wet. The energy balance is consistently 

impacted the most in the southwestern part of the domain, regardless of method or 

regime. This feature could potentially indicate that the soil in this region dries out 

more quickly than over the other irrigated areas, or that this area consistently 

experiences less precipitation in relation to the rest of the domain during these two 

regimes. 

LIS–Noah spinups provide initial conditions for the WRF runs in the form of 

soil moisture and soil temperature. It is important to note that although soil moisture is 

not impacted directly by Drip irrigation, the method does have an effect on soil 

temperature. Latent heat flux increases caused by the Drip algorithm impact the land 

surface energy balance calculated by the Noah LSM, which simultaneously solves for 

fluxes and surface temperature. Thus, initial conditions for soil temperature are 

impacted by the Drip method via changes to the latent heat flux and surface 

temperature and are of similar magnitude to impacts seen via Flood25. 

2.4.2 Coupled Results 

Figures 2.7 and 2.8 present the change from Control in the midday 2-m 

temperature T2 and humidity Q2, respectively, for each of the irrigation methods in 

the coupled LIS–WRF simulations. Quiescent synoptic conditions in the dry regime 

forecast period amplify the impact of the irrigation-induced soil moisture perturbations 
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in the coupled run forecast. Evidence of this is apparent in the comparison of Drip, 

which exhibits no direct soil moisture changes and therefore only small forecast 

changes, to Sprinkler, Flood75, and Flood25, which exhibit both direct and indirect 

impacts. Increased soil moisture and latent heat flux at the surface cause sensible heat 

flux and temperature to drop while increasing humidity over irrigated areas in the 

coupled run. Midday T2 decreases by as much as 4 K in the Sprinkler and Flood75 

runs over irrigated grid cells while water vapor mixing ratio increases by up to 4 g kg-

1. 

Although the greatest changes to soil moisture and fluxes occurred in the 

southwestern part of the domain in the spinup results, the greatest impacts in the 

coupled run appear just north of the Nebraska–Kansas border (near 40°N). Southerly 

winds advect the irrigation-cooled and moistened air northward, reducing the 

temperature downwind by 1–2 K and increasing water vapor by 1.5 g kg-1. Thus, the 

maximum impact in southern Nebraska is likely due to a combination of the direct 

impacts, resulting from the densely irrigated area, with the indirect effects stemming 

from its location downwind of other irrigated grid cells. 

The wet regime simulation period featured precipitation events associated with 

a cold frontal passage, leading to a greater impact of the initial conditions on cloud 

and precipitation patterns than on surface states. Temperature is still reduced by 1–2 K 

and humidity increases by up to 2 g kg-1 near the Nebraska–Kansas border, but 

overall, the direct surface impacts are muted as compared to the dry regime. Irrigation 

causes precipitation to vary in timing and location from Control, but changes to the 

magnitude of total accumulated precipitation over the simulation period are small (Fig. 
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2.9). Sprinkler increases rainfall by only 2.6%, while Drip creates a 1.8% reduction in 

precipitation. 

2.4.3 LoCo Diagnostics 

2.4.3.1 Mixing Diagrams and EF-PBLH 

Figure 2.10 presents mixing diagrams illustrating the diurnal change in 

temperature and humidity for each of the experiments at an irrigated grid cell (Fig. 2.1, 

point A). Point A was chosen as an analysis site as it has an irrigated land-cover 

classification and interannual soil moisture characteristics that are representative of the 

dry and wet regimes. At this site, the NoSpin run is the driest as compared to the 

spinup simulations, which were run with observed forcing, consistent with the idea of 

a dry bias in the warm regimes in the Noah LSM (Chen et al. 2007). The ‘‘shepherd’s 

hook’’ appearance of the mixing diagram evolution is indicative of a moistening of the 

PBL through strong surface evaporation in the morning (staff– handle portion) 

followed by drying due to PBL growth and entrainment in the afternoon (bowed top). 

This evolution is consistent with previous results of LoCo analysis during dry regimes 

(Santanello et al. 2009). 

The Control and Drip irrigation simulations exhibit almost the same diurnal 

evolution of temperature and humidity, suggesting that changes to the SM 

initialization are required to significantly impact T2, Q2, and fluxes. In these runs, the 

surface sensible heat flux is greatest, leading to the most PBL growth and dry air 

entrainment and a PBL that is mostly balanced between surface and 

atmospheric/entrainment inputs. In contrast, the surface provides energy to the 

atmosphere predominately in the form of latent heat for the Flood75, Sprinkler, and 



 20 

Flood25 runs. In fact, negative Bowen ratios in the Flood75 and Sprinkler runs are a 

result of negative sensible heat flux, indicating heat loss from the atmosphere to the 

surface—a common microclimate situation over irrigated fields, referred to as the 

‘‘oasis effect’’ (Oke 1978) or ‘‘sensible heat advection’’ (Brakke et al. 1978). With 

the exception of Drip, the surface sensible heat input is reduced to such an extent in 

the irrigated runs that the entrainment flux of sensible heat, even though reduced 

because of slower PBL growth, becomes the dominant source of heat input to the 

PBL. 

The impact of irrigation on the PBL budget is muted in the wet year. 

Qualitatively, these mixing diagrams indicate strong surface moisture input and a 

much smaller range in temperature and humidity as compared to the dry year. This is 

consistent with the results of Santanello et al. (2013a), where the impacts of different 

LSM choices were maximized during dry regimes and much less during wet. Flood75 

and Sprinkler methods result in more evaporation, but these impacts are not translated 

downstream as the changes to T2, Q2, fluxes, and entrainment are negligible. 

Daily maximum PBLH and daytime mean EF [defined as the ratio of Qle to 

(Qle + Qh)] are integrative metrics of the land surface and PBL and thus allow 

evaluation of the PBL response to changes in surface forcing. Plots of PBLH versus 

EF are shown in Fig. 2.10 for the dry and wet year. In the dry year, EF is proportional 

to the amount of water applied by the irrigation methods (e.g., EF > 1 for Flood75 and 

Sprinkler but nearly unchanged for Drip), while the PBLH decreases in response to 

this surface forcing. The relatively dry surfaces of the Control and Drip runs (low EF) 

force the PBL to grow rapidly, ultimately reaching more than 2 km. Flood25 increases 

EF by about 0.5, reducing PBLH by a few hundred meters. However, the greatest 
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changes occur with Flood75 and Sprinkler, as these methods reduce PBLH by almost 

1 km at this location. This analysis makes apparent the sensitivity of the PBL response 

to irrigation method and the range of impacts of each scheme in the dry year. 

Wet regime impacts to PBLH and EF indicate that irrigation only minimally 

impacts the PBL at this site. The effect of irrigation on EF is dependent on method, 

with small increases for the most water intensive methods (Flood75 and Sprinkler), 

but the differences in EF are quite small compared to the dry regime. As a result, 

PBLH is not affected, as maximum height remains around 1.4km for all runs. 

2.4.3.2 LCL Deficit 

Essential to the development of convective clouds is the requirement of the 

PBLH to exceed the LCL. A comparison of the PBLH and LCL evolution on diurnal 

time scales, referred to as LCL deficit (Santanello et al. 2011a), is analyzed at point A 

as well as spatially over the domain. A negative LCL deficit reveals that the PBLH 

(millibars) has exceeded the LCL, therefore indicating the potential for cloud 

development. Figure 2.11 shows a time series of the LCL deficit at point A for the 

second day of the dry regime coupled runs. In this case, the LCL deficit never 

becomes negative, but Sprinkler and Flood75 steadily decrease the LCL deficit 

throughout the morning hours (during the moistening and PBL growth phase seen in 

the mixing diagrams), allowing both to approach zero around 1000 LT.As the day 

progresses, the LCL rises faster than the PBL, resulting in an increasingly positive 

LCL deficit for all simulations. 

Although the LCL deficit stays positive at this site, there are other regions of 

the domain where irrigation creates a negative LCL deficit in the morning. At 

1000 LT, Sprinkler irrigation reduces the LCL deficit by about 60 mb over irrigated 
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areas in the western portion of the domain (Fig. 2.12, top). This decrease is large 

enough to make the LCL deficit negative over those grid cells. Both PBLH and LCL 

are reduced (higher pressure), but the LCL reduction outweighs that of PBLH, thus 

driving the LCL deficit decrease. Another notable feature is the advection of 

moistened and cooled air northward that lowers the LCL in regions downstream of 

irrigated grid cells (as a function of the advection of the impacts on T2 and Q2). 

However, toward early evening (1700 and 1800 LT), the LCL deficit increases over 

the heavily irrigated areas as the PBL breaks down sooner than in the Control run (Fig. 

2.12, bottom). 

Although irrigation in Flood75 and Sprinkler create a negative LCL deficit in 

the morning, these changes are not reflected in the cloud field, as cloud development 

is not simulated until 1400 LT. Thus, irrigation moves the PBL toward a more 

saturated state in the morning, increasing the proclivity for clouds, but the dry 

conditions are extreme enough to prevent cloud formation. 

At point A in the wet year, the LCL deficit is strongly negative for all methods, 

and although it increases steadily after 0900 LT, it remains negative throughout the 

day. As compared to Control, the irrigation methods only slightly reduce the LCL 

deficit between 1000 and 1300 LT. Spatially, the wet year exhibits large areas of 

sustained negative LCL deficit values that agree with the location of clouds indicated 

by the cloud water mixing ratio, shown in Fig. 2.13. Once again, the LCL deficit is 

reduced over the irrigated areas, but synoptic rather than surface forcing is the catalyst 

for clouds and precipitation on this day. 

Synthesizing the results from the dry and wet year indicates that cloud 

development requires a strongly negative LCL deficit over many hours. Furthermore, 
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in the absence of larger-scale forcing, as in the dry year, irrigation results in both 

positive and negative feedbacks on the PBL depending on the time of day. In the 

morning when the PBL and LCL are shallow, the irrigation perturbation decreases the 

LCL more than PBLH, consistent with the results of Qian et al. (2013), thereby 

increasing the chance for convective cloud development (positive feedback). 

However, the integrative nature of the PBL is such that the memory of reduced heating 

over the course of the day in irrigated areas causes the PBL to collapse sooner, 

reducing the chance of convective cloud development in the late afternoon (negative 

feedback). Advection of moistened and cooled air northward lowers the LCL 

downwind of the irrigated areas while minimally impacting PBLH, thereby creating a 

positive feedback downwind that is present throughout the day. Analyses that do not 

consider the diurnal cycle or changes to background conditions from day to day are 

likely to average across these feedback mechanisms. 

2.4.4 Evaluation against observations 

Because of the inherent human and plot-scale influences on irrigation 

practices, evaluation of irrigation physics in models is not as straightforward as 

traditional model validation of thermodynamic states or fluxes. Here, we survey at 

first order an array of potential validation approaches ranging from point to satellite-

retrieved scales.  

Observations from the ARM-SGP site E4 in Plevna, Kansas, were used to 

assess the offline and coupled simulations using the Land Verification Toolkit and 

LoCo diagnostics, respectively. The land-use category for the grid cell representing 

the E4 location in the model is not irrigable, thereby limiting the comparisons to only 

the Control and NoSpin simulations. LIS–Noah underestimates the July 2006 average 



 24 

daily cycle of Qle by more than 50 W m-2 in the afternoon followed by a smaller 

overestimation during the nighttime hours. As a result, Qh is overestimated in the 

afternoon and underestimated during the early morning hours, causing soil 

temperature to fluctuate more over the daily cycle than what is observed. 

Average daily cycles generated from AmeriFlux towers at a rainfed and an 

irrigated site in Mead, Nebraska, reveal that LIS–Noah overestimates Qh and 

underestimates Qle at each location, in a way similar to that at the E4 site. The model 

grid cell associated with the irrigated Mead site is not of an irrigable land use, again 

preventing an intercomparison of the irrigation methods, but the observations expose 

some insight into the microclimate at these sites. Of particular note is the negative 

sensible heat flux in the observations associated with the oasis effect— the same effect 

noted at Point A with Flood75 and Sprinkler methods. Thus, it is possible that the 

simulation of the fluxes at this site would have been improved if the land use were 

irrigable, allowing the irrigation methods, especially Flood75 or Sprinkler, to activate 

here. 

For a more robust evaluation against observations, the MET toolkit was used to 

match point observations within the domain to the complementary model grid cell 

(together called a pair) and to generate statistics assessing the skill of the coupled LIS–

WRF runs. In the study area, the number of available observations, and therefore pairs, 

varies between 60 and 80 depending on the hour. It should be noted that only one of 

these pairs is located at a grid cell of irrigable land-cover classification. Thus, any 

differences in statistics revealed between the Control and irrigation methods are 

mostly a result of the indirect impacts of irrigation. 
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The most noteworthy feature apparent in the statistical analysis is the fact that 

the coupled runs initialized from any of the LIS spinups consistently show reduced 

daytime RMSE (Fig. 2.14) and MAE for temperature and humidity in the dry year. In 

addition, Sprinkler irrigation reduces the daytime warm temperature bias the most and 

improves the dry bias in Q2. In the wet year, model bias is initially reduced in the first 

6 h by the spinups, but the precipitation events thereafter confound the statistics. The 

impact of simply including any type of spinup is generally dominant over any 

individual irrigation scheme effects because of the non-irrigated land-cover 

classification associated with most of the pairs. Overall, the Plevna, Mead, and MET 

analyses highlight the importance of using an LSM spinup, as well as the difficulties 

inherent in the evaluation of irrigation methods with point observations. 

Observation-based analysis of fluxes within irrigated areas was challenging 

because of the problem of evaluating short model simulations against limited 

observations when the exact timing of real world irrigation applications is unknown. 

Nevertheless, we were able to confirm the realism of the USGS irrigated areas map by 

comparison with county-level freshwater withdrawal data from a USGS report on U.S. 

water use (Hutson et al. 2004). The report confirms the most heavily irrigated areas 

are located in the western part of the domain, as is the case in the land-use 

classification data. We also compared the USGS product to the MODIS-derived, 

contiguous U.S. irrigation map of Ozdogan and Gutman (2008) and found reasonable 

agreement across the simulation domain (not shown), but that the spatial extent of 

irrigated area in the USGS land cover is less than the MODIS-derived dataset. The 

USGS data give an irrigated area of 12,341 km2 for the entire study area, but it is 
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estimated by the Census of Agricultural Farm and Ranch Irrigation Survey that 15 

505 km2 are irrigated in Nebraska alone (NASS 2009). 

Evapotranspiration as a proxy for irrigation is a promising avenue for 

validation as irrigated regions exhibit a markedly different ET signature than 

surrounding areas during dry years. The general pattern of ET produced by LIS–Noah 

is comparable to that of the MODIS–surface radiation budget (SRB; Tang et al. 2009) 

ET product from the University of Washington. However, a single MODIS overpass 

per day is not capable of reproducing the dynamics influencing the model output, and 

the dates of irrigation in the model do not necessarily match the exact dates of 

irrigation in the real world, thereby ruling out a rigorous validation of absolute ET 

magnitudes. The planned spatial expansion of the University of Nebraska– Lincoln’s 

products using the Mapping Evapotranspiration at High Resolution and Internalized 

Calibration (METRIC; Irmak et al. 2011) technique will likely make it a valuable 

high-resolution spatial dataset for validation of ET and irrigation in future studies. 

Although these spatial and satellite-derived products are currently limited, by and 

large, they show more potential for future validation of irrigation schemes at the 

regional scale. 

2.5 Discussion and Conclusions 

This study has used a high-resolution model test bed and several irrigation 

parameterizations and thresholds to assess the impact of irrigation on LA interactions 

during a dry and a wet regime. Irrigation’s ability to mitigate the soil moisture stress 

imposed by dry regimes directly impacts the surface energy budget, PBL growth, and 

ambient weather. The extent to which these irrigation impacts propagate downstream 

is dependent on the LA coupling processes as well as the irrigation method employed. 
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This study has demonstrated that there are several key components necessary to 

effectively represent irrigation in coupled prediction models, including accurate land-

cover classification, GVF, and an appropriate irrigation method and physics. 

Similar impacts, in terms of soil moisture and fluxes (both offline and coupled) 

and feedbacks within the PBL, are expected should these generic irrigation approaches 

be applied to other LSMs. The extent to which an irrigated LSM spinup will impact 

the atmosphere in a coupled simulation is likely dependent on the details of LA 

coupling and model configuration used (physics options, resolution, etc.), but first-

order impacts of introducing water to the land surface should be similar regardless of 

the LSM or coupled model used. 

As the focus of this study is on the intercomparison of irrigation methods 

during the offline period and their cumulative impacts over the 5-yr spinup on the 

WRF initial condition, irrigation was not turned on in the coupled run. This allowed us 

to analyze the impact of the irrigated spinup alone on the physical processes while 

avoiding case study or time-dependent conclusions. The applicability of the coupled 

Drip results may be somewhat limited since the soil moisture remains largely 

unchanged, but this approach provided important results related to when and where, in 

terms of soil moisture and fluxes, the impacts of the Drip algorithm are manifested. 

Future work, especially that including longer-term and seasonal simulations, will use 

coupled irrigation. 

Irrigation’s greatest impact on temperature and humidity occurs in regions that 

are both densely irrigated and downwind of other irrigated areas, because of the 

combination of direct and advected irrigation effects. In addition, the necessary 

conditions for cloud formation are most likely met if the LCL is low and the PBLH is 
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high. Irrigation lowers both the PBLH and the LCL, resulting in competing effects on 

cloud formation. This study has found that in the absence of more dominant synoptic-

scale forcing, irrigation results in both positive and negative feedbacks on the PBL 

depending on the time of day and the proximity to irrigation. Directly over irrigated 

areas, temperature drops, humidity rises, and the likelihood of surface-forced cloud 

development is increased in the morning, but the earlier PBL collapse breaks down the 

LoCo analyses late in the day. However, the advection of cooled and moistened air 

from irrigated areas reduces the LCL downwind but less directly impacts PBL growth, 

leading to greater chances of convective cloud development downwind of irrigation 

regardless of the time of day. These results may help explain the observational 

findings of Adegoke et al. (2007), who, using GOES infrared and visible images, 

detected peak convective cloud development that occurred 2 h earlier over cropland 

than over forested areas in Michigan on days featuring high pressure and light 

winds ( < 5 m s-1). 

Even with a high-resolution simulation, evaluation of the irrigation methods 

with point observations proved to be difficult because of a number of factors, 

including the underrepresentation of irrigated areas in the USGS landuse classification 

data. Biophysical characteristics that determine transpiration amounts differ between 

crops, but the vegetation parameters in LIS–Noah do not account for different crop 

types. Thus, these land-use category differences not only complicated the point 

observations for the LSM evaluation by turning off irrigation and thus any differences 

between the methods at the Mead sites, but they also likely contributed to the 

underestimation of latent heat (through less ET) simulated by the model. Furthermore, 
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this study used a climatological GVF, but in reality, phenology, and therefore ET, will 

vary based on the background climate conditions. 

As the demand for food and fuel increases with a growing world population, 

the need to efficiently produce high crop yields will likely lead to further expansion of 

irrigated fields. The inclusion of irrigation physics then has the potential to improve 

forecasts, which will offer farmers a better tool to adapt to increasing crop demands. 

This study has shown that regional irrigation impacts are sensitive to time, space, and 

method and that irrigation cools and moistens the surface over and downwind of 

irrigated areas, ultimately resulting in both positive and negative feedbacks on the 

PBL. Future work will address these issues by using real-time GVF and a satellite-

derived map of irrigated area (e.g., Ozdogan and Gutman 2008) and by addressing the 

interaction of irrigation with the assimilation of soil moisture in an LSM. 
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Figure 2.1. LSM and coupled simulations were run in a single domain in the central 
Great Plains of the United States, denoted by the yellow box in the inset. 
Simulation domain has green dots to denote grid cells classified as 
‘irrigated’ according to the USGS land cover data. Stars mark the sites 
used for analysis, including irrigated and rainfed sites in Mead Nebraska 
(blue); ARM-SGP site E4 in Plevna, Kansas (orange); and point A 
(purple). 
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Figure 2.2. Domain-averaged monthly change from Control during the 5-year LIS-
Noah spinup for top-layer (upper 0-10 cm) SM (top), Qle (middle), Qh 
(bottom). 

!
!
!
!
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Figure 2.3. Seasonally averaged (May-September) change in top layer SM content 
during the dry regime of 2006 using (a) Flood25, (b), Flood75, (c) Drip, 
and (d) Sprinkler irrigation methods. 
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Figure 2.4. As in Figure 2.3, but for wet regime of 2008. 
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Figure 2.5. As in Figure 2.3, but for Qle. 
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Figure 2.6. As in Figure 2.4, but for Qle. 
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Figure 2.7. Difference from Control in LIS-WRF simulated T2 using (a) Flood25, (b) 
Flood75, (c) Drip, and (d) Sprinkler methods at 1400 LT 31 Jul 2006 (dry 
regime). All methods decrease T2 over irrigated grid cells, ranging from 
a slight reduction (Drip) to almost 5 K (Sprinkler). 
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Figure 2.8. As in Figure 2.7, but for Q2. 
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Figure 2.9. As in Figure 2.7, but for total accumulated precipitation over the 2-day 
LIS-WRF simulation on 25-26 May 2008 (wet regime). 
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Figure 2.10. MDs for the LIS-WRF simulations during the (top-left) dry regime and 
(top right) wet regime at point A. The line representing the Control 
simulations is boldface. The solid lines are T2 and Q2 plotted in energy 
space from 0700 to 1700 LT. The tail of the surface vector has its tail at 
the final time point above. The entrainment ratio of heat Ah gives the 
proportion of sensible heat input to the PBL by entrainment Hent 
compared to that of the surface Hsfc and similarly for latent heat input 
Ale. (bottom left) Daytime mean evaporative fraction versus daily max 
PBLH at point A on 31 July (dry regime) and (bottom right) 25 May (wet 
regime). Each simulation is represented by a marker of a particular color 
and style. Note there is overlap in the markers in both the dry and wet 
regimes. 

!
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Figure 2.11. Hourly LCL deficit at point A on 31 July (dry regime). 

  



 41 

 

Figure 2.12. Change from Control in LCL deficit using the Sprinkler method at (top) 
1000 and (bottom) 1800 LT 31 July (dry regime). 
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Figure 2.13. (top) The LCL deficit and (bottom) vertically integrated cloud water 
mixing ratio for the LIS-WRF Control simulation at 0800 LT 25 May 
(wet regime). 
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Figure 2.14. Hourly RMSE for (top) T2 and (bottom) Q2 for each of the LIS-WRF 
and the NoSpin simulations generated by the MET toolkit for the dry 
regime. 

!

!
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ASSESSMENT OF IRRIGATION PHYSICS IN A LAND SURFACE 
MODELING FRAMEWORK AND EVALUATION WITH NON-

TRADITIONAL AND HUMAN-PRACTICE DATASETS 

3.1 Introduction 

Irrigation is vital to feeding the world’s population, but demands 

approximately 70% of global freshwater withdrawals (FAO, 2010), thereby altering 

the hydrologic cycle and raising questions about water resources sustainability. As a 

result, irrigation modeling studies have sought to understand the impacts of irrigation 

on ambient weather (Sorooshian et al., 2011, 2012), precipitation (Harding and Snyder 

2012a,b), and regional to global climate (Lo and Famiglietti, 2013; Puma and Cook, 

2010). Although the atmospheric response is often sensitive to the details of the 

irrigation scheme used in modeling studies, the observational data needed to fully vet 

an irrigation scheme (e.g., irrigation timing, practices, and co-located soil moisture) 

are generally not available or prohibitively challenging to acquire. As a result, most 

irrigation parameterizations are implemented in models without a robust evaluation of 

the irrigation physics or full understanding of the scheme behavior, making definitive 

conclusions about downstream impacts on regional weather, precipitation, and long 

term climate difficult.  

The impact of water resources management practices such as irrigation on the 

water cycle is significant enough that the World Climate Research Program (WCRP) 

has identified anthropogenic changes to the continental water cycle as a Grand Science 

Chapter 3 
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Challenge to be addressed over the next 5 to 10 years (Trenberth and Asrar, 2014). In 

response, the Global Energy and Water Cycle Exchanges project’s (GEWEX) 

Hydroclimatology Panel (GHP) and Global Land/Atmosphere System Study (GLASS) 

have begun a joint effort to advance the representation of human water resources 

management in land surface and coupled models (van Oevelen, 2016). To effectively 

meet these challenges, new, non-traditional datasets are needed to evaluate the current 

representation of irrigation in models and to assess the processes by which simulated 

irrigation impacts the water cycle. 

The work presented here touches on each of these issues by comprehensively 

assessing a sprinkler irrigation algorithm in a land surface model (LSM) and 

evaluating the results with both conventional and non-traditional datasets. The paper is 

organized in the following way: Sect. 2 provides relevant background on recent 

irrigation modeling efforts with an emphasis on differences in irrigation schemes and 

previous evaluation efforts, and introduces gridded soil moisture from the Cosmic Ray 

Neutron Probe (CRNP) method as a potential tool for evaluation of land surface model 

irrigation. A description of the experimental design, including the land surface 

modeling framework and the irrigation algorithm, are presented in Sect. 3.  Sect. 4 

describes the results, first in the context of model sensitivity and secondly through an 

evaluation of the model simulations with observations.  A discussion of the results and 

the applicability of this study to future irrigation modeling efforts are discussed in 

Sect. 5, and conclusions are stated in Sect. 6. 
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3.2 Background 

3.2.1 Irrigation Physics 

Irrigation increases soil moisture and therefore has the potential to influence 

local and regional clouds, precipitation, and ambient weather via land-planetary 

boundary layer (PBL) coupling processes (Santanello et al., 2011). By increasing 

latent and decreasing sensible heat fluxes, near surface temperature is reduced within 

irrigated areas (Bonfils and Lobell, 2007; Kanamaru and Kanamitsu, 2008). The 

irrigation-modified land energy balance alters the proportion of heat and moisture 

contributed to the PBL, thereby influencing PBL growth and entrainment (Kueppers 

and Snyder, 2011; Lawston et al., 2015). As a result, the PBL over irrigated areas is 

often shallower and moister, potentially resulting in alterations to convective cloud 

development (Adegoke et al., 2007; Qian et al., 2013). Irrigation applied over large 

areas not only affects local ambient weather, but models indicate that it can also 

modify precipitation patterns in areas remote from the source. Extensive irrigation 

projects, such as the Gezira Scheme in East Africa, have been shown to influence 

regional weather by changing circulation and precipitation patterns (Alter et al., 2015). 

These significant potential impacts of irrigation on temperature, clouds, and 

precipitation necessitate an appropriate representation of irrigation in coupled land-

atmosphere models. This need is has been addressed via irrigation parameterizations 

in LSMs that largely fall into three types of schemes: 1) defined increases to soil 

moisture in one or more soil layers (Kueppers and Snyder, 2011; de Vrese et al. 2016), 

2) the addition of water as pseudo-precipitation to mimic sprinkler systems (Ozdogan 

et al., 2010; Yilmaz et al., 2014), and 3) modifications to vapor fluxes as a proxy for 

increased evapotranspiration resulting from highly efficient (e.g., drip) irrigation 
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(Douglas et al., 2006; Evans and Zaitchik, 2008). These schemes are generally 

dependent on parameter input datasets and user defined thresholds, affording a degree 

of customization, but also introducing uncertainty and potential error. Model 

sensitivity to the selection of datasets and thresholds is not trivial, as differences can 

alter the magnitude of irrigation-induced changes to the water and energy budgets. For 

example, a flood irrigation parameterization with a two different triggering thresholds 

resulted in up to 80 W m-2 difference in average seasonal latent heat flux increase in 

the U.S. Central Great Plains (Lawston et al., 2015). In another case, Vahmani and 

Hogue (2014) tested several irrigation demand factors and irrigation timing in their 

urban irrigation module, finding fluxes, runoff, and irrigation water are sensitive to 

both inputs. Additionally, the same parameterization used in a different model 

(Kueppers et al., 2008; Tuinenburg et al., 2014), or in the same model but at a 

different resolution (Sorooshian et al., 2011) has also produced different coupled 

atmospheric impacts. 

3.2.2 Evaluation of Irrigation in LSMs 

The sensitivity of atmospheric predictions to the details of the irrigation 

scheme makes it imperative to systematically evaluate irrigation parameterization, 

datasets, and thresholds in a controlled modeling study to determine the levels of 

uncertainty in the perturbation and subsequent results. However, datasets required for 

evaluation, such as irrigation amount, irrigation timing, and co-located continuous soil 

moisture observations, are not widely available, making it difficult to evaluate 

irrigation schemes (Kueppers et al., 2007). Modeling studies that have included some 

assessment of the irrigation scheme have used comparisons to annual water 

withdrawals for irrigation (Lobell et al., 2009; Pokhrel et al., 2012), outdoor water use 
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(Vahmani and Hogue, 2014), recommended amounts of irrigation (Sorooshian et al., 

2011, 2012), or predicted irrigation requirements (Ozdogan et al., 2010). Bulk 

estimates, such as these, are often not used for robust evaluation, but rather indicate 

that the simulated results are reasonable.  

In some cases, additional analysis of the observations has been successful in 

converting estimates to quantities usable for comparison. For example, Pei et al. 

(2016) used a potential evapotranspiration ratio to estimate June, July, and August 

irrigation usage from USGS yearly county-level estimates in order to validate 

irrigation amounts in the WRF-Noah Mosaic coupled model. The study found good 

agreement between the amounts simulated and that of the modified observations at 30 

km horizontal resolution. In other cases, county and coarser resolution irrigation 

estimates have been used to constrain the irrigation algorithm output. Leng et al. 

(2013, 2014) calibrated the irrigation scheme in the Community Land Model (CLM) 

to reproduce county and water resources region irrigation water usage, respectively. 

Taken together, these studies exhibit recent progress made in irrigation modeling 

evaluation at regional to continental scales, but the datasets employed are insufficient 

for evaluation at high resolution and shorter (e.g. season to sub-monthly) time-scales. 

As soil moisture is the primary control over fluxes and vegetation health, an 

evaluation of soil moisture sensitivity is equally as important as realistic irrigation 

estimates. Such evaluation is challenging as it demands soil moisture observations that 

are temporally and spatially continuous and at high enough resolution to resolve an 

irrigation signal. Satellite remote sensing has obvious potential to reach these goals, 

but retrievals of soil moisture are generally too coarse (i.e., ~25-40 km spatial 

resolution) and exhibit limited skill, at best, in detecting an irrigation signal (Kumar et 



 49 

al., 2015). At the other spatial extreme, point observations of soil moisture values are 

not representative of the larger area average (Entin et al., 2000). The aggregation of 

these observations into homogeneous, quality controlled datasets, such as the North 

American Soil Moisture Database (NASMD, Quiring et al. 2016) and the International 

Soil Moisture Network (ISMN, www.ipf.tuwien.ac.at/insitu), are promising for LSM 

evaluation more broadly, but in-situ measurements in irrigated fields, needed for 

irrigation scheme evaluation, are still sparse.   

3.2.3 Cosmic Ray Neutron Probe (CRNP) 

A potential solution to fill the gap between point and remote sensing 

observations of soil moisture is the Cosmic Ray Neutron Probe (CRNP), organized 

through the Cosmic Ray Soil Moisture Observing System (COSMOS, Zreda et al., 

2012). CRNP is a new and novel way to obtain high-resolution, semi-continuous soil 

moisture observations, and as a result, has the potential to advance LSM and irrigation 

parameterization development. The CRNP is placed above the ground and measures 

neutrons produced by cosmic rays in the air and soil over a diameter of 300 m (+/- 

150 m), depending on atmospheric pressure and humidity (Desilets and Zreda, 2013).  

The neutron density measured by the probe is inversely correlated with soil moisture 

and can be calibrated using local soil samples to an error of less than 0.03 m3 m-3 

(Franz et al., 2012). The result is reliable, area-average soil water content integrated to 

a depth of 20-40 cm, depending on water content, bulk density, and lattice water, 

available at the same spatial scale as LSMs (Franz et al., 2012). 

The characteristics of the CRNP, including the non-contact, passive data 

collection, make the CRNP portable and able to collect data while in motion. Desilets 

et al. (2010) first used a roving CRNP in Hawaii to obtain transects of soil moisture at 
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highway speeds. More recently, Franz et al., (2015) mounted a large CRNP instrument 

to the bed of a pickup truck and completed roving surveys during the growing season 

of 2014 in a 12 x 12 km area of eastern Nebraska. The instrument collected ~300 

neutron counts every minute and was driven at a maximum speed of 50 km per hour, 

allowing for high-resolution maps to be generation via geostatistical interpolation 

techniques. The spatial locations of each neutron measurement are given by the 

midpoint of successive rover locations and together are spatially interpolated via 

kriging to 250 m resolution. The surveys were completed every 3-4 days from May to 

September. In addition, 3 fixed probes were located inside the domain continuously 

recording soil moisture. Franz et al. (2015) used the fixed and roving data with a 

simple merging technique to produce 8-hour soil moisture products at 1, 3, and 12 km 

resolutions. 

The work presented here uses the data and products gathered and generated in 

Franz et al. (2015) for evaluation of a sprinkler irrigation algorithm in a LSM 

environment, described in Sect 3. Specifically, the data are available for the 2014 

growing season and include: timing and amount of irrigation water applied at two sites 

(one maize, one soybean), soil water content from a stationary COSMOS probe at 

these two irrigated sites, plus a rainfed site of mixed soybean and maize, and lastly, 

high-resolution gridded soil moisture at 3-4 day temporal resolution during the 

growing season (May to Sept) from the CRNP rover. The integration of human 

practice data (irrigation amount), physical observations (soil moisture point and spatial 

observations), and model simulations to evaluate the sprinkler algorithm and its 

impacts on soil moisture is a key and novel feature of this study. The main goals of 
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this work are first to assess the physics of the simulated sprinkler irrigation, and 

secondly to evaluate the realism of the irrigation amounts and impacts to soil moisture. 

3.3 Methods 

3.3.1 Models and experiment design 

NASA’s Land Information System (LIS; Kumar et al., 2006) is used in this 

study to systemically assess the performance of the Sprinkler irrigation scheme. LIS is 

a land surface modeling and data assimilation system that allows users to choose from 

a suite of land surface models which can then be run offline while constrained and 

forced by best available surface and satellite observations. LIS can be fully coupled to 

the Weather Research and Forecasting model (WRF, Skamarock et al. 2005) in the 

NASA Unified WRF (NU-WRF, Peters-Lidard et al. 2015) framework. This 

configuration, LIS-WRF, has been used at the regional scale to assess the downstream 

impacts of irrigation on the PBL, but the performance of the irrigation scheme was not 

assessed (Lawston et al. 2015).  

In this study, the Noah land surface model (Chen et al., 2007) version 3.3, was 

run offline within the LIS framework at 1 km spatial resolution over a 15 x 15 km area 

in eastern Nebraska, near the town of Waco. The size and location of the domain were 

designed to encompass the study area of Franz et al. (2015) to make use of the CRNP 

rover data, human practice information, and point and spatial observations yielded by 

their work, as discussed in Sect. 2. 

The LIS simulations were run for 6 years (1 Jan 2009 to 31 Dec 2014) yielding 

daily output. The long-term simulation output was used to initialize restart-simulations 

for the growing seasons of 2012 and 2014 to produce hourly output for more detailed 
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investigation during these periods, and the 3-5 year spinup periods, respectively, were 

shown to be sufficient for this region (Lawston et al. 2015). The analysis focuses on 

these two years (i.e., 2012 and 2014) to evaluate the irrigation algorithm during 

contrasting antecedent soil moisture conditions (e.g., relatively dry and wet, 

respectively), and to assess the performance of the scheme using the CRNP 

observations available in 2014. 

To capitalize on the controlled nature of the study area and the irrigation 

scheme’s dependence on greenness vegetation fraction (GVF) and irrigation intensity, 

discussed in detail in section 3.2, four types of simulations were completed and will 

hereafter be referred to as the 1) Control, 2) Standard, 3) Tuned, and 4) SPoRT 

simulations. The Control run is the only simulation that has the irrigation scheme 

turned off. The Standard simulation differs from Control only in that the sprinkler 

irrigation scheme is turned on and the Global Rainfed, Irrigated, and Paddy Croplands 

(GRIPC; Salmon et al., 2015) dataset is used to supply irrigation intensity at 1km 

resolution needed for the sprinkler algorithm. The GRIPC dataset prescribes irrigation 

intensity that is unrealistically high, as only 5% of the gridcells have intensity less than 

100%. To correct for this overestimation, the Tuned simulation uses an irrigation 

intensity map created by reducing the GRIPC irrigation intensity according to a land 

use map generated from ground truth observations (Franz et al. 2015), thereby more 

accurately reflecting irrigation patterns in the study area (i.e. observationally tuned; 

Figure 1). The SPoRT run makes use of the GRIPC irrigation intensity dataset, like the 

Standard run, but uses a real-time GVF product from NASA-Marshall’s Short Term 

Prediction, Research, and Transition Center (SPORT; (Case et al., 2014). This is in 
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contrast to the other runs that use climatological GVF from the National Centers for 

Environmental Prediction (NCEP).  

The SPoRT GVF is created using NDVI from MODIS satellite data and as 

such reflects the vegetation response to temperature and precipitation. In this way, the 

SPoRT GVF dataset captures interannual variability in vegetation that is missed by 

climatological GVF (Figure 2). Additionally, SPoRT GVF has higher spatial 

resolution (i.e., 3 km vs. ~16km for climatology) and has been shown to improve the 

simulated evolution of precipitation in a severe weather event as compared to GVF 

from climatology when using LIS coupled to a numerical weather prediction model 

(Case et al., 2014). The use of the SPoRT GVF dataset can be viewed as a middle-of-

the-road approach between a simple representation of vegetation (e.g., climatology) 

and more sophisticated, but computationally-expensive methods, such a dynamic 

vegetation or crop growth models (e.g. Harding et al., 2015; Lu et al., 2015). As the 

SPoRT dataset is not available prior to 2010, the long-term SPoRT simulation uses 

climatological GVF for 2009-2010, and the SPoRT GVF dataset is incorporated in 

December 2010 and used throughout the rest of the simulation. 

Additional datasets common to all simulations include Moderate Resolution 

Imaging Spectroradiometer – International Geosphere Biosphere Program (MODIS-

IGBP) land cover, State Soil Geographic (STATS-GO) soil texture, University of 

Maryland (UMD) crop type, and National Land Data Assimilation System – Phase 2 

(NLDAS2; Xia et al., 2012) meteorological forcing that includes bias corrected 

radiation and gauge-based precipitation.    
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3.3.2 Irrigation scheme 

The preferred method of irrigation in Nebraska is the center pivot sprinkler 

system (NASS, 2014), and as such, we evaluate the sprinkler irrigation algorithm in 

LIS. The sprinkler scheme is described in Ozdogan et al. (2010) and was preliminarily 

tested and compared against two other irrigation schemes (drip and flood) available in 

LIS in Lawston et al. (2015). Sprinkler applies irrigation as precipitation when the root 

zone moisture availability falls below a user-defined threshold. In this study, we use a 

threshold of 50% of the field capacity, after Ozdogan et al. (2010).  

In an effort to reproduce appropriate timing and placement of irrigation, a 

series of model checkpoints must be passed to allow for irrigation triggering. These 

checkpoints essentially boil down to four main questions:  

1) Is the land cover irrigable?  

2) Is there at least some irrigated land? 

3) Is it the growing season? 

4) Is the soil in the root zone dry enough to require irrigation? 

The first two questions invoke direct tests against the static datasets (land 

cover and irrigation intensity, respectively), while the remaining two questions require 

additional calculations involving one or more time-varying datasets. The growing 

season, addressed in question three, is a function of the gridcell GVF as described in 

Ozdogan et al. (2010) and results in a season that spans roughly June through 

September in the study area. The last question, the determination of irrigation 

requirement, is dependent on two main features – the soil moisture and the definition 

of the root zone. Soil moisture is influenced by the meteorological forcing (e.g., how 

much rain falls and where) and soil texture (e.g., how long the moisture sticks around), 

while the root zone is the product of the maximum root depth (as defined by crop 
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type) scaled by the GVF to mimic a seasonal cycle of root growth. Taken together, this 

means that the irrigation scheme is primarily controlled by six datasets:  land cover, 

irrigation intensity, soil texture, crop type, meteorological forcing, and GVF.  

For this limited study area, the land cover, crop type, and soil texture are 

homogenous throughout the domain (croplands, maize, and silt loam, respectively), 

meaning any heterogeneity in irrigation amounts and impacts can be attributed to only 

the meteorological forcing, GVF, and irrigation intensity. As the meteorological 

forcing is the same for all simulations, the experimental design leverages the unique 

characteristics of the controlled domain to assess the sensitivity of the irrigation 

algorithm specifically to changes in irrigation intensity and GVF; two important and 

common datasets in irrigation modeling. The irrigation algorithm is assessed first in 

the context of its physical response to forcing at the interannual, seasonal, and daily 

scales, and secondly, the results are evaluated against available observations in the 

growing season of 2014 (i.e., model performance).  

3.4 Results 

3.4.1 Model results at the interannual scale 

Figure 3.3 shows the domain and monthly averaged irrigation amount applied 

for each of the three irrigation runs over the full six-year period. Interannual 

variability in the background precipitation (i.e., summer drought or pluvial periods) is 

reflected in the irrigation requirement, with dry seasons, such as 2012, exhibiting large 

irrigation demand, while wet seasons like 2011 and 2014 result in markedly less water 

applied. The average irrigation amount varies little between the experiments at this 

scale, around 1 mm day-1, but a few features of the dataset differences are apparent. 
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The irrigation algorithm scales the amount of water applied by multiplying with the 

irrigation fraction value. The GRIPC irrigation dataset has greater irrigation intensity 

values everywhere in the domain, and as a result, the Standard run always applies 

more water than Tuned. The SPoRT run is less consistent in relation to the other 

methods; at times applying more water than both methods (e.g. July 2012), at others 

applying less (e.g. Sep 2012). This behavior is determined by the relative magnitude 

of the SPoRT GVF as compared to climatological GVF (Figure 3.2), as the GVF 

scales the root zone such that more water is applied by the irrigation scheme to more 

mature crops.  

Figure 3.4 shows the percent change from control in soil moisture for each of 

the irrigation runs and each model soil layer. Irrigation increases soil moisture in all 

soil layers and all simulations. The spinup of the model is visible in the bottom soil 

layer behavior, shown ramping up through the first year of the simulation and then 

gradually equilibrating by July 2010. Increases in the third soil layer are quite 

consistent annually with a near doubling of the soil moisture when irrigation is turned 

on. The top and second layer fluctuations resemble the irrigation amount time series, 

indicating that the top two layers are more sensitive to the amount of irrigation water 

applied. These layers respond more quickly to irrigation, while percolation, and 

therefore time, is needed to impact the deeper soil layers. Differences between the 

irrigation runs are virtually undetectable in the top and second layers, but the 

cumulative impact of the differences in irrigation amounts and timing are reflected in 

differences in the third soil layer. The third and fourth layers are deeper and thicker 

(0.6 m and 1.0 m thickness, respectively) and as such are able to hold more water than 

the top and second layers (0.1 and 0.3 m thickness).  
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3.4.2 Model results at the seasonal scale 

Figure 3.5 shows the average daily change from control in latent (Qle) and 

sensible (Qh) heat fluxes (left axis) as well as the daily precipitation amount from the 

NLDAS-2 meteorological forcing data (right axis) for May-October 2012 and 2014. 

Limited rainfall throughout the 2012 season resulted in the triggering of irrigation 

frequently throughout the growing season, including a stretch through July and August 

where irrigation was triggered somewhere in the domain every day (not shown). The 

2014 growing season featured much more frequent precipitation, limiting consistent 

irrigation to late July and early August. The flux impacts follow the timing of 

irrigation triggering, steadily growing throughout the summer in 2012, up to 200 W m-

2, and emerging during dry down periods in 2014. Sharp decreases in flux impacts in 

the time series are the result of individual precipitation events, as the soil is not dry 

enough to trigger irrigation during and immediately following heavy rainfall events. In 

2012, the SPoRT GVF is greater than climatology in June, resulting in more water 

applied and greater flux impacts in SPoRT than Tuned or Standard early in the season. 

However, in September, the SPoRT GVF detects the (negative) vegetation response to 

the July drought and irrigation amount and flux impacts are reduced. These seasonal 

scale impacts illustrate that the NLDAS-2 forcing (e.g. precipitation) data, via changes 

to soil moisture, drives the irrigation timing during the growing season and that the 

behavior of the irrigation scheme is consistent with expectations of human triggering 

of irrigation during dry and wet periods. 

3.4.3 Model results at the local scale 

At the interannual and seasonal scale, irrigation amounts and impacts are 

driven primarily by background rainfall regime, given by the forcing precipitation, 
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with only small changes evident between the methods. At the diurnal scale, however, 

the choice of greenness and irrigation intensity datasets becomes more influential to 

irrigation impacts. Figure 3.6 shows the change from control in domain average latent 

heat flux for each of the irrigation runs for three diurnal cycles in July 2012 and the 

differences from control in latent heat flux at noon, spatially. All irrigation runs result 

in large increases to the latent heat flux, but while Tuned and Standard are relatively 

close in magnitude, the SPoRT run increases latent heat flux by more than 100 W m-2 

more than Standard during peak heating. Spatially, the SPoRT simulation has a larger 

change from control everywhere in the domain as compared to Standard and Tuned, 

which exhibit similar magnitude of differences and spatial heterogeneity.  The impacts 

on surface fluxes indicate that the choice of dataset, especially GVF, will likely impact 

coupled simulations, such as those with LIS-WRF.  

In summary, the landcover, GVF, soil texture, meteorological forcing, 

irrigation fraction, and crop type all influence irrigation amounts in ways that are 

physically consistent with expectations for crop water use. For example, it is expected 

that the irrigation requirement is greatest for densely irrigated areas of mature crops 

with dry soil; the model reproduces this scenario by applying the greatest amount of 

water to gridcells that have high GVF (i.e., more mature crops and deeper roots), low 

soil moisture (from lack of precipitation), and high irrigation intensity.  

3.4.4 Model performance 

3.4.4.1 Evaluation of irrigation amounts and CRNP soil moisture evaluation 

The simulation of irrigation amounts and timing as well as impacts on soil 

moisture are evaluated for the growing season of 2014 using field observations near 
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Waco, Nebraska, as described in Sect. 2.2. Figure 3.7 shows daily irrigation and 

rainfall amounts (right axis), as well as the volumetric soil water content (left axis) 

from the in-situ  CRNP (solid black line) and all model simulations (green lines) at the 

rainfed and irrigated maize sites. The precipitation data confirm that 2014 was a 

relatively wet growing season, as was originally noted in the examination of Fig. 3.5b. 

The soil at the rainfed site gradually dries out between July 15 and August 5, the only 

consistent rain-free period of the summer (Fig. 3.7a). The dry down timing is 

simulated well in the Control and Tuned simulations, as irrigation is not included in 

Control and is prohibited at the rainfed site in Tuned, as defined by the edited 

irrigation intensity map (i.e., 0% for this gridcell). In contrast, the Standard and 

SPoRT simulations consider the rainfed gridcell to be 100% irrigated, as given by the 

GRIPC dataset, and as a result, both runs incorrectly trigger irrigation at this site, 

increasing SM during the dry down period. 

At the irrigated maize site, irrigation is applied during the rain-free period in 

mid- July and early August and during a second, shorter stint late in August (red bars, 

Fig. 3.7b). The model simulations generally overestimate the amount of irrigation 

water at the irrigated site, applying an average of 8-15 mm day-1(not shown), while the 

observations show that the irrigated field generally received 5 mm day-1 .  In contrast 

to the rainfed site, the CRNP observations show SM increases or remains steady in 

mid-July through early August due to irrigation by the farmer at the maize site. 

The triggering of irrigation during the dry down period is simulated well by the 

model as evidenced by the soil moisture differences between the Control and irrigated 

runs at the irrigated maize site (i.e. dry down versus steady SM levels, respectively). 

The SM given by the irrigated simulations matches the CRNP observations more 
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closely than Control during the dry down period. This indicates that the combination 

of NLDAS-2 forcing and the triggering thresholds are sufficient to activate irrigation 

during rain-free periods, even in a wet year. Each irrigated LIS simulation applies 

enough irrigation water to maintain the SM levels, with small but inconsequential 

variations in the day to day to variability.  

The soil water content observations are consistently greater than that of the 

model at both the rainfed and irrigated sites. However, it is common for soil moisture 

probes, other observations (e.g., satellite) and land surface models to exhibit different 

soil moisture climatologies that are largely a function of different representative 

depths of the soil (e.g. in model vs. CRNP). The spikes in soil moisture shown in the 

probe observations are represented well by the model, once again indicating the 

accuracy of the NLDAS-2 meteorological forcing data, even at this local scale. 

Overall, these results show that the irrigation scheme simulates well the irrigated 

versus rainfed soil moisture differences when the irrigation location is specified 

properly by the irrigation intensity dataset (in this case, the Tuned simulation).  

3.4.4.2 Evaluation with CRNP gridded product 

In order to assess whether soil moisture heterogeneity due to irrigation across 

the domain is captured accurately, simulations are evaluated against the CRNP 

gridded soil moisture product. The gridded product from Franz et al. (2015) uses the 

spatiotemporal statistics of the observed soil moisture fields, as obtained via the 

CRNP rover, and a spatial regression technique to create a 1-km, 8-hour gridded soil 

moisture product for the growing season (May – Sept, 388 values). In this study, we 

modify the spatial regression technique to treat irrigated and non-irrigated areas 

differently by using the CRNP (irrigated) rainfed data in the regression for (irrigated) 



 61 

non-irrigated gridcells. This results in a gridded soil moisture product that retains the 

spatiotemporal differences of the rainfed and irrigated areas.  

The LIS-simulated soil moisture variability in time and space is evaluated 

using a comparison of the cumulative distribution functions (CDFs) generated from 

the LIS simulations and the modified COSMOS product, shown in Figures 3.8-3.9. 

Analyzed first is the CDF of all soil moisture values in the domain for two separate 

days, July 25 and July 30, during which irrigation was applied at the irrigated maize 

site (Fig. 3.8). As this CDF provides information about the variability of soil moisture 

spatially in the study area at one particular time, it is hereafter referred to as a ‘spatial 

CDF’ (Fig. 3.8). Also examined is a CDF of the domain-averaged soil moisture values 

from May 5 to Sept 22 at 8-hour intervals (the same as the COSMOS product; 388 

values), hereafter referred to as the ‘temporal CDF’ (Fig. 3.9).  

The spatial CDFs (Figs 3.8a-b) show uniformly dry soil in the control 

simulation while the irrigated runs exhibit a step-like behavior as a result of irrigation 

triggering and dry down timing across the domain. The different levels of steps within 

the irrigated simulations are a result of the input parameter datasets, as triggering and 

timing is dependent on these datasets The model distributions do not match the CRNP 

CDF, which instead shows a majority of soil moisture values that are wetter than the 

control simulation, but drier than the irrigated simulations and exhibit a smoother 

distribution. These CDFs suggest that the model, even with the irrigation algorithm 

turned on, is not able to accurately simulate the small-scale (i.e. field scale) 

heterogeneity in soil moisture values that is present in the CRNP data. The 

heterogeneity at this time and space scale results from the individual decisions made 

by farmers on and immediately preceding this date, and as such, is not captured by the 
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strict soil moisture deficit based rules imposed by the irrigation algorithm, nor by the 

uniform land cover, soil type, and slowly varying irrigation fraction and GVF datasets 

at 1km resolution. 

In contrast, the bulk temporal variability in soil moisture in both irrigated and 

non-irrigated areas during the growing season is simulated well by the model 

(Fig. 3.9). The temporal CDF shows that the model matches the COSMOS distribution 

more closely when the irrigation algorithm is turned on (Fig. 3.9a). Furthermore, when 

irrigated and non-irrigated areas are averaged separately, the irrigated (Control) 

simulations match the distribution of irrigated (non-irrigated) areas well (Fig. 3.9b). 

These results suggest that if this domain were one gridcell in a larger, coarser 

resolution domain (e.g. 15 km spatial resolution), the variation in the gridcell soil 

moisture (given here by the domain average) over the growing season would be 

representative of observations. That is, the heterogeneity and smaller scale processes 

resolved in the high-resolution domain, though unable to reproduce specific field-scale 

behavior, appropriately scale up to coarser resolution. At coarser time and space 

resolutions, the decisions made by individual farmers become less important, in favor 

of the larger scale features (e.g. timing of precipitation during the growing season), 

that influence and drive the collective behavior of human practices in this region. 

3.5 Discussion 

Although the exact response to irrigation physics is likely dependent on the 

LSM and irrigation scheme used, the results of this study are still applicable to 

irrigation modeling development as a whole. In particular, this study demonstrates the 

importance of supplying a land surface model with high-quality input datasets. Of 

primary importance are the datasets that control irrigation triggering (e.g., landcover, 
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meteorological forcing, irrigated area), as the details of irrigation application are 

relevant only after irrigation is triggered in realistic locations and at the correct time 

during the season. Once reasonable timing and placement have been established, the 

datasets that regulate the amount of water applied (e.g., irrigation intensity, root depth, 

GVF) become important. These datasets may require a certain degree of 

customization, depending on the available information about irrigation practices and 

land use in the study area, to ensure an appropriate amount of water is applied.  

The root systems of crops generally mirror the vegetative state above ground 

(i.e., GVF), and as such, the model represents root growth by scaling the maximum 

root depth by the GVF (Ozdogan et al. 2010) and applying a proportional amount of 

irrigation water. Although the crop type is uniform maize for the limited domain, as 

given by the UMD crop dataset, Franz et al. (2015) shows a mix of maize and 

soybeans in the study area. An additional run was completed in which a tuned crop 

type map was supplied to the model to distinguish between maize and soybean 

gridcells based on the land use map of Franz et al. (2015) and the maximum root depth 

was altered to be 1 m for maize and 1.2 meters for soybean. The results of this analysis 

showed very little differences between this simulation and the others, indicating that 

the model is quite insensitive to the maximum root depth change and that the scaling 

by GVF tends to be more important than small changes (up to 20% in this case) in 

maximum root depth. However, models that contain a more complex treatment of 

crops may have a greater dependency on crop root depth.  

The method for determining the start and end of the growing season, based on 

the 40% annual range in climatological GVF, proved to be reliable for this study area 

and climate. However, in arid or semi-arid regions, the 40% threshold applied to a 
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small annual range in GVF can result in a year round irrigation season that may not be 

representative of regional irrigation practices.  Thus, where the annual range in GVF is 

small (e.g., southern California), more tailoring may be needed to ensure that 

irrigation occurs only during the local irrigation season. 

This study shows model sensitivity to the irrigation intensity dataset, in terms 

of where and how much irrigation water is applied. Historically, the Global Map of 

Irrigated Areas (GMIA; Döll	and Siebert, 1999) has been the most widely used 

irrigation dataset in irrigation modeling studies (Bonfils and Lobell, 2007; Boucher et 

al., 2004; Guimberteau	et	al.	2012;	among	many	others) as it was the first reliable 

global irrigation map, making use of cartographic and FAO statistics. However, 

progress in satellite remote sensing and ease of access to required datasets will likely 

result in a growing number of options for irrigation intensity datasets in the coming 

years. As such, the results of this study, detailing the potential effects of choice of 

irrigation intensity dataset on irrigation amounts will likely become more relevant with 

the expansion in choices of irrigation-related datasets. 

3.6 Conclusions 

This study provided an assessment of the sprinkler irrigation physics and 

model sensitivity to irrigation intensity and GVF datasets in a LSM framework, and 

evaluated the results with novel point and gridded soil moisture observations. For all 

experiments, model results show that irrigation increases soil moisture and latent heat 

flux, and decreases sensible heat flux. Differences between experiments are small at 

the interannual scale, but become more apparent in analysis at seasonal and 

particularly diurnal time scales. The irrigation scheme uses GVF as a proxy for plant 

maturity and scales the amount of water applied accordingly to represent differences 
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in irrigation scheduling based on growth stage. This behavior and the impacts of 

irrigation on soil moisture and fluxes are physically consistent with expectations of 

irrigation effects on the land surface. 

The evaluation with CRNP observations revealed both limitations and 

strengths of the irrigation algorithm. The field-scale heterogeneity resulting from the 

individual actions of farmers is not captured by the model and the amount of irrigation 

applied by the model exceeds that applied at the two irrigated fields. However, the 

timing of irrigation during the growing season (i.e., late July to early August), which 

coincided with a stretch of limited rainfall, is simulated well by the scheme. 

Additionally, the smaller scale processes resolved in the small domain appropriately 

scale up to coarser time and space resolution, indicating the scheme could be used 

reliably at coarser resolution (e.g. 15 km) in this region. The model skill is due in large 

part to the accuracy of NLDAS-2 meteorological forcing, land cover, and irrigation 

intensity datasets, which are all critical to reproducing the seasonal timing and location 

of irrigation triggering. Overall, these results underscore the importance of supplying a 

LSM with high-quality datasets.  

This study has also shown that CRNP distributed soil moisture data can be 

valuable in LSM and irrigation parameterization evaluation. The ability to compare 

the LSM output for the irrigated and control runs against soil moisture at irrigated and 

non-irrigated sites, as well as against a gridded soil moisture dataset, afforded a unique 

opportunity to evaluate the performance of the scheme in a way that would not have 

been possible without these data. The CRNP observations provide valuable 

information about the impact of irrigation on soil moisture, how it changes over time, 

and in the future could possibly be used to help identify where and when irrigation 
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occurs. Irrigation timing information is particularly valuable at the scales of this study 

and larger, where the ability to obtain such information from each farmer is 

unrealistic. The USDA census of agriculture contains some of the most detailed 

information on the state of agriculture in the U.S., including estimates of irrigated 

acreage, irrigation method, and crop cultivated. However, the census occurs only once 

every five years and lacks irrigation timing information. CRNP soil moisture and in 

the future, high resolution soil moisture and evapotranspiration from satellites, could 

serve as a proxy to determine seasonal timing of irrigation as well as help identify 

irrigation acreage between census years. 

The flexibility of the LIS framework, and in particular the ability for the user 

to choose the irrigation scheme, parameters, and model of choice, makes LIS a 

premiere framework for irrigation studies. However, the general conclusions of this 

study, as they pertain to irrigation scheme impacts and sensitivity to dataset changes, 

are applicable to irrigation modeling more broadly. The continued evaluation and 

improvement of irrigation parameterizations, as discussed here, is an important step 

towards better understanding human influences on the water cycle and the impacts of 

such activities in a changing climate.  

3.7 Data availability 

Fixed and mobile cosmic-ray neutron probe data is available in Franz et al. 

(2015) or by request from Trenton Franz.  
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Figure 3.1 (Top) Comparison of the GRIPC irrigation intensity given by Salmon et 
al. (2015, left) used in the Standard and SPoRT simulations and the 
observationally tuned irrigation intensity (right) used in the Tuned 
simulation. (Bottom) Average July 2012 greenness vegetation fraction 
given by NCEP climatology (left) used in the Standard and Tuned 
simulations and (right) SPoRT real-time dataset used in the SPoRT run. 
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Figure 3.2 Domain and monthly averaged GVF from the NCEP climatological GVF 
dataset, used in the Standard run, the SPoRT GVF dataset used in the 
SPoRT run, and the difference between the two (SPoRT – Climatology). 
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Figure 3.3 Domain and monthly averaged irrigation amount for each irrigation 
simulation. 

 



 70 

 

Figure 3.4 Change from control (IRR  - CTRL) in soil moisture for each experiment 
(line style) and each layer (line color). Layer designations are the Noah 
LSM default layers Layer 1 (top layer) is 0 to 10 cm depth, layer 2 is 10 
to 40 cm (delta Z = 30cm), layer 3 is 40 cm to 1 m (delta Z = 60 cm) and 
layer 4 is 1 m to 2 m (100 cm depth). 
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Figure 3.5 May to September 2012 (top) and 2014 (bottom) domain average daily 
change from control (IRR-CTRL) in latent (blue) and sensible (red) heat 
fluxes for each irrigation simulation (left axis) and domain average daily 
accumulated precipitation from the NLDAS2 forcing data (right axis). 
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Figure 3.6 Domain average change in latent heat flux for three diurnal cycles in July 
2012 (top). Change in latent heat flux (IRR-CTRL) at noon on July 6, 
2012 for each irrigation simulation (bottom).  
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Figure 3.7 Volumetric soil water content at the rainfed (top) and irrigated maize 
(bottom) sites (left axis). The black solid line shows observations from 
the CRNP probe, the gray and green lines show the LIS control and 
irrigation simulations, respectively. Dark gray bars show accumulated 
daily precipitation from the Automated Daily Weather Network in York, 
Nebraska and pink bars show the accumulated irrigation amount at the 
irrigated maize and soybean sites (right axis). 
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Figure 3.8 Spatial CDF for 25 July 2014 (top) and 30 Jul 2014 (bottom), two dates 
when irrigation was applied at the irrigated maize and soybean sites in 
practice and in the model simulations. 
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Figure 3.9 Temporal CDF of normalized domain averaged (top) and irrigated/non-
irrigated spatial average (bottom) SWC values from May 5 to Sept 16 
from the COSMOS observational product (black) and the model 
simulations (colors). 
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ASSESSMENT OF IRRIGATION AND WIND TURBINE WAKE EFFECTS 
ON LAND-ATMOSPHERE INTERACTIONS IN A DESERT REGIME 

4.1 Introduction 

Irrigation has been shown to modify local hydrology and regional climate 

through a repartitioning of water among the surface, soil, and atmosphere with 

potential to drastically change the terrestrial energy budget in agricultural areas during 

the growing season(Qian et al. 2013). Vegetation cover and soil moisture primarily 

control water and energy fluxes from the surface into the planetary boundary layer 

(PBL), so accurate representation of the land surface characteristics is key to 

determining and predicting atmospheric conditions.  

In the United States, the most commonly irrigated regions are often also areas 

that boast great wind power resource potential (NREL, 2016). The small spatial 

footprint of turbine design and installation allows farmers to grow crops close to the 

base of the turbines and the supplemental income gained from leasing the land to a 

utility company can provide an economic safety net in years of low crop yield 

(UCS, 2016). Wind turbines, however, also have the potential to impact local land-

atmosphere (L-A) interactions within and downwind of the farm. The extraction of 

kinetic energy by the turbine to produce electricity creates a wake in which wind 

speed is reduced and turbulent kinetic energy (TKE) is increased (Baidya Roy et al. 

2004). As few observations exist within operational wind farms, previous studies have 

used large eddy simulations (LES; Calaf et al. 2011; Lu and Porté-Agel 2011), 

Chapter 4 
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mesoscale models (Fitch et al. 2013; Cervarich et al. 2013) and global models (Wang 

and Prinn 2009)to explore the persistence of wind turbine wakes and their impact on 

near surface vertical mixing, surface fluxes, and temperature. While several mesoscale 

modeling studies found enhanced vertical mixing near the surface (Baidya Roy and 

Traiteur 2010), LES studies have shown reduced vertical mixing near the ground 

(Calaf et al. 2010; Xie and Archer 2015), highlighting a need for further study of 

turbine impacts on microclimate.  

Despite the fact that turbines are often located in agriculturally productive, 

potentially irrigated farms, the combined influence of turbines and irrigation has not 

been investigated. As the realization of climate change continues to spur renewable 

energy initiatives, it is likely that turbines will further encroach on agricultural areas. 

The sign and magnitude of turbine impacts on microclimate is particularly important 

in agriculturally productive farms, as fluxes of heat, moisture, and carbon dioxide are 

critical for crop development and yield (Rajewski et al. 2013).  As such, it is vital to 

quantify the impact of turbines on the transfer of energy and moisture, especially in 

irrigated regions where artificially increased soil moisture already presents complex L-

A interactions.  

The main objective of this study is to better understand the impacts of 

irrigation and turbines, individually and in concert, on surface heat and moisture 

fluxes and near surface meteorology. This goal is achieved via a series of high 

resolution model simulations using newly developed physics modules that explicitly 

represent irrigation and wind turbine wake effects. Section 2 describes relevant 

previous studies related to irrigation and wind turbine wake effects with an emphasis 

on turbine impacts in agricultural regions and the potential mechanisms by which 



 78 

turbines and irrigation may interact. Section 3 details the model set up and 

experimental design, and Section 4 presents an analysis of the simulation results, first 

in the context of irrigation and turbines individually, and then the combined impacts. 

A discussion of the limitations of the study and the role of the results in the context of 

the literature base is included in Section 5. Finally, conclusions are presented in 

Section 6. 

4.2 Background 

4.2.1 Irrigation 

Irrigation makes it possible to grow the food necessary to feed the world’s 

population, but also results in alterations to the energy and water cycles. Wet soil 

resulting from irrigation increases the potential for evaporation (latent heat), thus 

repartitioning the surface energy balance. Flux changes due to irrigation have been 

detected at a range of spatial scales and increases in latent heat can reach up to 100 W 

m-2  locally (Ozdogan et al. 2010), 9 W m-2  regionally (Douglas et al. 2006), or 0.03 

to 0.1 W m-2  globally (Boucher et al. 2004). These changes are met with a 

complimentary decrease in sensible heat flux and a reduction in daytime surface 

temperature. Cooling effects due to irrigation have been well documented and can 

have far-reaching implications when discussed in the context of global climate change. 

Past expansion of irrigation coincides with greenhouse gas increases and therefore 

could potentially be masking the full warming signal due to greenhouse gas increases 

(Kueppers et al. 2007; Lobell et al. 2009; Cook et al. 2010).  

For large areas of irrigated acreage, modifications to the surface energy 

balance can be significant enough to impact local and regional circulations and 
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precipitation patterns. In the summer months, decreases in surface temperature and 

increases in near surface humidity result in a reduction in PBL height of up to 1500 m 

and a lowering of the lifting condensation level (cloud base) (Kueppers et al. 2007; 

Qian et al. 2013). These alterations to the PBL can affect atmospheric stability and 

influence precipitation patterns and intensity (Alter et al. 2015a; Douglas et al. 2009; 

DeAngelis et al. 2010). Irrigation has been shown to result in a net water deficit as the 

loss due to increased evapotranspiration outweighs that of the return due to the 

positive feedback on precipitation, and most recycled precipitation falls away from the 

source (Harding and Snyder 2012; Wei et al. 2013).  

4.2.2 Wind Turbines 

Global models typical represent the kinetic energy extraction of turbines 

through increased aerodynamic surface roughness. Results of these simulations have 

shown up to a 1°C warming (Wang and Prinn 2009), changes in global circulation 

patterns (Keith et al. 2004; Kirk-Davidoff and Keith 2008), and even modifications to 

the development and path of North Atlantic cycles (Barrie and Kirk-Davidoff 2010). 

However, parameterizations that represent turbines as an elevated momentum sink and 

source TKE, as opposed to surface roughness approximation, generally produce 

results more consistent with wind tunnel experiments (Fitch et al. 2013). 

Regional studies using the elevated source/sink parameterization have most 

often found increased vertical mixing near the surface due to the expansion of the 

turbine wakes (Fitch et al. 2012). A nighttime surface warming due to the mixing of 

warming air down to the ground has been show in mesoscale models (Baidya Roy et 

al. 2004; Cervarich et al. 2013) and is supported by remote sensing observations (Zhou 

et al. 2012; Slawsky et al . 2015). In contrast, fine-scale simulations show reduced 



 80 

vertical mixing near the ground and weaker surface fluxes in stable conditions (Calaf 

et al. 2010, 2011; Lu and Porté-Agel 2011; Xie and Archer 2015). Literature also 

varies on the turbine impacts on daytime temperatures. Results range from cooling 

(Baidya Roy and Traiteur 2010), to warming (Walsh-Thomas et al. 2012), to no 

significant temperature impact (Rajewski et al. 2013; Cervarich et al. 2013; Slawsky et 

al. 2015). The range of outcomes may be due in part to the variability of background 

atmospheric stability conditions, with more instability leading to a greater degree of 

cooling (Baidya Roy 2011).  

As a result of the potential for turbines to impact surface energy and moisture 

fluxes and the frequent co-location of wind turbines and agriculturally productive 

sites, a few recent studies have investigated the interaction between wind turbines and 

agriculture. The Crop Wind Energy Experiment (CWEX; Rajewski et al. 2013) field 

campaign took place in Iowa in the summers of 2011 and 2012 in an effort to 

determine whether turbines can create measurable changes to the microclimate over 

crops and to investigate the potential implications of those changes, if they exist, on 

crop growth and yield potential. Up to six flux towers and two Windcube lidar 

instruments were deployed in cornfields near two lines of 1.8 MW wind turbines.  

Results from two daytime case studies, one during a southwesterly flow event 

and the other during a frontal passage, indicate that turbines modify fluxes of heat and 

carbon dioxide, both important quantities for crop development. In each case, daytime 

average upward latent and sensible heat fluxes and downward CO2 flux at 4.5 m were 

increased at a downwind tower as compared to an upwind flux tower. The CWEX data 

also reveal that fluxes of water can be enhanced by a factor of five in the lee of the 

turbines when wind flow is perpendicular to the row of turbines during the day, but 
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impacts are negligible for other wind directions (Rajewski et al. 2014). These 

observational results partially support those of the modeling studies (Baidya Roy et al. 

2004; Baidya Roy and Traiteur 2010) finding enhanced vertical mixing near the 

ground during stable conditions. 

CWEX indicated that turbines can effect agriculture, but the reverse may be 

true as well; that is, crop management also may also impact wind energy. Using the 

WRF model and the Fitch turbine parameterization, Vanderwende and Lundquist 

(2016) explored the impact of crop height on wind energy production. The reduced 

surface drag of soybeans (e.g. short crop) as compared to maize (i.e., taller and greater 

surface roughness) reduced rotor-layer wind shear and increased hub-height wind 

speed by a statistically significant amount. The crop type switch resulted in 14% 

increase in wind farm energy output and demonstrates the importance of taking into 

account agricultural land management practices in the discussion of wind energy 

topics. 

4.2.3 Turbines and Irrigation 

Despite the fact that efforts to determine the effects of wind turbines on 

agriculture have been gaining interest, and that in some regions agricultural production 

is virtually inseparable from irrigation (e.g., used on 80% of farms cultivating 

vegetables, orchards, or berries; NASS, 2012), the combined impacts of irrigation and 

turbines on microclimate have not been addressed. In cases where turbines and 

irrigation result in the same type of atmospheric impacts, the combined effect could 

amplify the influence of what would be given individually. For example, turbines and 

irrigation individually can reduce daytime temperature, making it possible that the 

combined impact is an even greater cooling in daytime temperature. Even more 
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consequentially, irrigation and turbines individually have been linked to drought. Pei 

et al. (2016) showed that irrigation may have worsened the 2012 U.S. High Plains 

drought and according to Abbasi et al. (2016), an unprecedented drought in Mongolia 

developed faster in areas with operational wind turbines.  

However, the impacts of irrigation on the atmosphere and the sensitivity of 

turbine wake effects to atmospheric properties makes it likely that non-linear 

feedbacks due to the interaction of turbine wakes and irrigation exist. For example, 

irrigation can increase atmospheric stability (Alter et al. 2015b), which may increase 

the longevity of turbine wake effects, change the sign of surface flux and temperature 

changes, and alter the amount of power produced by turbines. Irrigation has also been 

shown to induce or alter mesoscale circulations (de Vrese et al. 2016), thereby 

impacting wind speed and direction, and potentially power production. Similarly, a 

turbine-induced increase in moisture flux away from the surface (e.g. near surface 

drying; Rajewski et al. 2014) may increase the irrigation requirement. The interactions 

and potential feedbacks between irrigation and turbines make it necessary to address 

these issues in a coupled modeling environment that includes model physics that 

explicitly represent both irrigation and wind turbines, as is done in this study for the 

first time.  

4.3 Methods 

4.3.1 Model Configuration and Study Area 

This study uses NASA’s Land Information System (LIS; Kumar et al. 2006) 

version 7.1 coupled to NASA’s Unified Weather Research and Forecasting  (NU-

WRF; Peters-Lidard et al., 2015) model, version 8. NU-WRF contains all features of 
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NCAR’s standard WRF model, but includes additional physics options, the ability to 

run coupled simulations with LIS, and make it possible to spinup the land surface 

through offline LIS simulations on the same grid used by WRF.  The Fitch wind farm 

parameterization (WFP; Fitch et al. 2012) and WRF model together have shown skill 

in reproducing turbine-induced power deficits at the scale of wind farms and has been 

identified as an appropriate framework to investigate downstream impacts of wind 

farms (Fitch et al. 2013; Jimenez et al. 2015). In addition, LIS features three irrigation 

parameterizations that can be used offline and in coupled simulations with WRF. The 

sprinkler irrigation scheme, first tested and compared to other irrigation in Lawston et 

al. (2015) and evaluated in Lawston et al. (2016) is used in this study. These features 

of the LIS and NU-WRF modeling systems, as they relate to simulating irrigation and 

turbines, make this system the ideal framework for investigating the combined impacts 

of irrigation and turbines.  

The offline LIS and coupled LIS-WRF simulations use a nested domain 

configuration of 9, 3, and 1 km spatial resolution (Figure 4.1) centered on the border 

of Oregon and Washington in the Pacific Northwest United States. Each running 

domain contains 249 x 315 grid points and uses the MODIS International Geosphere 

Biosphere Program (IGBP) landcover dataset for the land use classification 

information and NCEP climatological greenness. The atmospheric boundary and 

initial conditions are provided by the North American Mesoscale forecast system 

(NAM) at 6-hourly intervals.  

The Fitch scheme represents turbines by introducing an elevated momentum 

sink and modifying the turbulent kinetic energy (TKE) to include additional TKE 

produced by wind turbines (Fitch et al. 2012). The Mellor-Yamada after Nakanishi-
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Niino (MYNN; Nakanishi and Niino 2006) 2.5 closure PBL scheme was used, as it is 

a requirement for the Fitch turbine parameterization. The latitude and longitude of 

each turbine in the study area was obtained from the USGS Windfarm product 

(available via: eerscmap.usgs.gov/windfarm), totaling 2735 turbines. The turbines are 

placed only in the innermost domain using the actual latitude and longitude 

(Figure 4.2), resulting in the placement of multiple turbines per gridcell in some cases. 

The characteristics of the turbines are defined using the WRF default wind turbine 

specifications and include a hub height of 75 m, 85 m rotor diameter, 0.130 standing 

thrust coefficient, and 2.0 MW nominal power. The LIS-WRF simulations use and 42 

vertical levels.  

The sprinkler irrigation parameterization, described in detail in Lawston et al. 

(2016) and Ozdogan et al. (2010), applies irrigation water as precipitation in the 

morning when the soil moisture availability drops below a user defined threshold. In 

this study, we use a triggering threshold of 50% of field capacity. Several other 

thresholds were tested with 50% of field capacity giving a reasonable seasonal cycle 

of irrigation application. The Global Rainfed and Irrigation Paddy Cropland (GRIPC; 

Salmon et al. 2015) irrigation intensity dataset is used to determine the location of 

irrigation triggering and to scale the amount of water applied by the scheme.  

This study area was chosen as it features both sweeping areas of irrigation and 

large wind farms (Figure 4.2). There are areas of semi-isolated irrigation in the north-

central portion of the domain (along 119°W), as well as irrigated areas downwind of 

turbines (along the Washington-Oregon border). There are 76 gridcells that are both 

irrigated and contain at least one turbine. Furthermore, the direct impacts of irrigation 

have been shown to be greatest in dry antecedent soil moisture conditions, suggesting 
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irrigation impacts will be strong in this semi-arid climate. This region also contains 

several observational points, which will be used in a future study to validate the model 

simulations. 

4.3.2 Experimental Design 

The Noah land surface model, version 3.3 (Chen et al. 2007) was run offline 

(uncoupled) within the LIS framework for three years to allow for the spinup of land 

surface states and fluxes. The offline runs were forced with meteorological data from 

the National Land Data Assimilation System – Phase 2 (NLDAS-2, Xia et al. 2012) 

and Global Data Assimilation System (GDAS) forcing for international areas in the 

outer domains. Two offline simulations were completed; a control simulation (no 

irrigation) and an irrigated spinup. These simulations were analyzed to confirm proper 

functioning of the irrigation scheme and are used to provide the initial conditions for 

the coupled LIS-WRF runs.   

Four categories of LIS-WRF coupled runs are initialized from the offline 

control and irrigated simulations. The control spinup was used to initialize a coupled 

control run (no irrigation, no turbines; hereafter referred to CTRL) and a turbine run 

(no irrigation, turbines; WIND). The irrigated spinup was used to initialize a 

simulation without turbines (irrigation, no turbines; IRR) and one with turbines 

(irrigation, turbines; WIND_IRR). This matrix of simulations allows for analysis of 

the individual impacts of irrigation and turbines in this region (IRR-CTRL and WIND-

CTRL, respectively) as well as the combined impacts (WIND_IRR – CTRL) as 

simulated by the modeling system.  

Three, two-day periods were chosen from the month of July 2015 as the case 

studies for the coupled LIS-WRF runs. The selected case studies, 1-3 July, 16-18 July, 
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and 23-25 July, (hereafter referred to as case 1, 2, 3, respectively) are rain-free days, 

span the month of July, and represent a range of soil moisture perturbations, as 

indicated by analysis of the irrigated and control spinup simulations (Figure 4.3). Case 

1 follows soon after a rain event, and as a result had the smallest soil moisture 

perturbation at initialization, around 0.04 to 0.1 m3 m-3 (i.e., ~30%) increase in top 

layer soil moisture. In contrast, a persistent rain-free period in mid-July resulted in 

consistent irrigation application throughout the month, increasing top layer soil 

moisture by about 0.14 and 0.17 m3 m-3 (i.e. ~55% and 70%) in cases 2 and 3, 

respectively.  

The LIS-WRF simulations are run for a total of two days and 6 hours. As the 

impacts of both irrigation and turbines have been shown to depend on atmospheric 

conditions (i.e. radiation, stability), this study focuses on the impacts of each of these 

perturbations throughout the diurnal cycle. The first six hours are considered a period 

of atmospheric spinup and are ignored, and the remaining 48 hours of each simulation 

are analyzed. This results in two diurnal cycles per case, for a total of 6 diurnal cycles. 

The impact of irrigation on surface latent and sensible heat fluxes (hereafter referred to 

as Qle and Qh, respectively), near surface temperature (T2), and humidity (Q2) is 

analyzed first, followed by the turbine impacts on these quantities, and lastly the 

combined impacts. 

4.4 Results 

4.4.1 Irrigation Impacts 

Figure 4.4 shows the change from control (IRR – CTRL) in Qle and Qh over 

irrigated gridcells, plotted in the lighter blue and red colors, respectively, for all six 
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daily cycles from the three case. The darker shades of red and blue represents the case 

average. The wet soil resulting from irrigation repartitions the surface Qle and Qh. 

Latent heat flux increases by 70 to 115 W m-2 at midday, while Qh is reduced by 

approximately the same amount. These plots confirm that in this moisture-limited 

regime, the addition of irrigation water has a large and immediate impact on 

evaporation. Case 3 (case 1), which exhibited the greatest (smallest) increase in soil 

moisture at initialization, also features the greatest (smallest) increase in Qle and 

decrease in Qh.  

Figure 4.5 shows the change from control in near surface (2 m) humidity and 

temperature over the irrigated gridcells for each diurnal cycle and the case average. 

Irrigation supplies more moisture, resulting in increased humidity at all times of day 

and in all cases. Overnight, the humidity increase is steady, with a small uptick soon 

after sunrise, possibly due to turbulent eddies mixing the stable humid area. Another 

peak in specific humidity occurs soon after sunset in 4 of the 6 diurnal cycles. The 

temperature is cooler over irrigated areas by up to 0.8 K during the day as a result of 

increased evaporation and changes to soil properties. Wet soil has a higher heat 

capacity and thermal conductivity than dry soil, making it slower to heat up during the 

day, contributing to the reduced daytime temperature. At night, the temperature is 

warmer by an average of 0.2 to 1.2 K over irrigated areas as the heat stored in the wet 

soil during the day is slowly released overnight. Figure 4.8 shows the contrasts in day 

and nighttime temperature differences spatially for case 3. Locally temperature can 

increase by up to 3-4 K at night and decrease by a similar amount during the day. 

Irrigation cooled air is mixed and advected a short distance (~5-10 km depending on 

atmospheric conditions; not shown).  
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4.4.2 Turbine Impacts 

Figure 4.7 shows the average latent and sensible heat fluxes in the CTRL 

simulation as well as the difference from CTRL in fluxes when turbines are included 

(WIND – CTRL) for each diurnal cycle and the case average. These plots represent 

the spatial average of gridcells containing at least one turbine. The CTRL fluxes show 

that in this semi-arid region, limited moisture keeps latent heat fluxes small, while the 

sensible heat fluxes are large, reaching an average of 500 W m-2 at midday (Fig 4.7a). 

During the day, a negative difference in Qh between WIND and CTRL indicates 

weaker fluxes in the turbine simulation, as Qh is positive in the daytime. (Fig 4.7b). At 

night, when Qh is negative, fluxes are smaller again in the turbine simulation, 

resulting in a positive Qh difference. Thus, these results indicate that the inclusion of 

turbines in the simulation weakens surface sensible heat fluxes within the farm. The 

turbine impacts to latent heat flux within the farm are negligible.  

The magnitude of the Qh changes are small (4 to 5 W m-2) but should be 

considered in the context of the proportion of the total Qh throughout the diurnal 

cycle. During the day, when Qh is great (~ 500 W m-2), the reduction due to turbines 

in the latent heat flux is negligible. However, at night when Qh is small (~ 40 W m-2), 

the percent change due to turbines can reach up to 12%. The proportional difference in 

fluxes is reflected in the near surface temperature changes, shown in 4.8. During the 

day, the negligible change in Qh results in no substantial temperature change. 

However, at night the weakened Qh due to turbines results in a cooling at 2 m. These 

results are the first to suggest cooling at night due to turbines in a mesoscale modeling 

environment. No substantial changes to Q2 are shown in in the wind farm area as a 

result of the turbines, likely due to the fact that there is limited moisture available to 

perturb. 
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4.4.3 Combined Impacts 

The combined impacts to T2 and Q2 resulting from the WIND_IRR simulation 

are assessed and compared against an approximation of the impacts given by the linear 

sum of the individual turbine and irrigation impacts. Figure 4.9a shows the difference 

from control in T2 over all irrigated and turbine gridcells as given by the WIND_IRR 

simulation. The relative impacts of irrigation on T2 are greater than those due to 

turbines and as a result the diurnal changes in T2 more closely resemble those seen 

over irrigated areas (Fig. 4.5b). Although turbines, when analyzed independently of 

irrigation, resulted in a small nighttime cooling, that impact is swamped by the larger 

contribution of nighttime warming due to irrigation (e.g. ~0.4 K average). Figure 4.9b 

shows the difference between the WIND_IRR impacts to T2 (WIND_IRR – CTRL) 

and the linear sum of the WIND and IRR impacts (WIND-CTRL and IRR –CTRL, 

respectively). The comparison of these two quantities gives and indication of the 

nonlinear impacts revealed in the WIND_IRR simulation that are not captured by the 

linear sum approximation. The difference, in this case, is close to zero and varies little 

throughout the day, indicating that the nonlinear impacts on temperature are small.   

The WIND_IRR difference from control in Q2, shown in Figure 4.10a, shows 

a consistent increase, around 0.5 g kg-1, and also resembles the IRR impacts more 

closely than the turbine impacts, due to the addition of moisture in the irrigated run. 

Although turbines showed very little impact on Q2 independently (Fig 4.8b), the 

combined impact of irrigation and turbines results in a greater increase in Q2 than with 

irrigation alone and greater than that estimated by the linear sum of the two 

perturbations (Fig 4.10b).  These results imply that the weaker surface sensible heat 

fluxes induced by the turbines may reduce drying near the surface, resulting in greater 

values of Q2 in the combined run. 
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 To date, no mesoscale modeling studies of turbine impacts have included 

irrigation, and as such, we assess the effects of the inclusion of irrigation on the 

turbine runs by comparing the WIND_IRR and WIND simulations. Figure 4.11 shows 

the difference (WIND_IRR – WIND) in Qh (x-axis) compared with the difference in 

power output (y-axis). The color of each dot denotes the hour in local time of each 

data point. These results show that during the day, irrigation reduces sensible heat flux 

is to an even greater degree than would have otherwise occurred in the turbine 

simulation only.  The largest reductions occur at the midday, when irrigation diverts 

radiation that would have been used for Qh into Qle. This figure also indicates that 

there is small reduction in daytime power production by the turbines when irrigation is 

included.  

4.5 Discussion 

This is the first mesoscale modeling study to show a turbine-induced reduction 

of surface sensible heat fluxes and nighttime cooling. However, single and infinite 

wind farms in large eddy simulations (LES) have shown reduced vertical mixing at the 

surface and weaker surface fluxes (Lu and Porté-Agel 2011; Xie and Archer 2015; 

Calaf et al. 2010, 2011). Using the same WFP used here in an idealized setting in 

WRF,  Fitch et al. (2013) found warming in nighttime T2 and that turbines 

strengthened nighttime (negative) Qh. However, they noted that their results could 

have been impacted by the prescribed skin temperature, and therefore, represented an 

upper bound on the nighttime warming. They suggest that feedbacks impacting 

surface skin temperature could reduce the warming and expressed a need for future 

studies with fully coupled models to investigate this and other feedbacks, as done here. 

In addition, the characteristics of the turbines (i.e. thrust and power coefficient) needed 
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for the WFP are not publicly available for manufactured turbines and as such, this 

study used the default WRF settings, which may impact the model response (Fitch 

2016).  

The small sample size used in this study (i.e., three cases and six diurnal 

cycles) precludes broad conclusions about combined impacts of turbines and irrigation 

at other times of the year or in different climate regimes. However, the impacts of each 

case are generally of consistent sign, despite spanning the month of July and a range 

of soil moisture perturbations. As such, these results are likely applicable for most 

calm conditions in mid-summer in this study area.  

4.6 Conclusions 

This study used a high-resolution mesoscale modeling environment with 

parameterizations for irrigation and turbines to assess the individual and combined 

impacts of each perturbation in a semi-arid region. Results show that irrigation 

repartitions surface sensible and latent heat fluxes, reduces daytime temperatures and 

increases temperatures at night. Turbines weaken surface sensible heat fluxes 

minimally during the day but enough at nighttime to slightly reduce near surface 

temperature. The simulations that include both turbines and irrigation show that wind 

power production is slightly reduced when irrigation is included and irrigation 

contributes to a greater reduction in daytime surface sensible heat fluxes than would 

be realized with only turbines. The linear sum of the turbine and irrigation impacts can 

be used to approximate the combined impact of irrigation and turbines on temperature 

but doesn’t perform as well for humidity, suggesting that non-linear processes play a 

stronger role in near surface humidity impacts in this typically moisture-limited 

regime. 
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Figure 4.1 The nested domain configuration for the LIS-WRF simulation. Each 
domain contains 249 x 315 grid points. The spatial resolution of each 
nest is 9 km, 3 km, and 1 km, for the outermost, middle, and innermost 
domains, respectively.  
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Figure 4.2 Locations of individual turbines (red) overlaid on the irrigation intensity 
map (shades of blue) in the innermost (1 km resolution) domain. The 
locations of surface based temperature (orange) and wind profiling 
(purple) instruments are also noted and will be used in future studies to 
validate the model results. 
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Figure 4.3 Change from control (IRR – CTRL) in top layer soil moisture at the time 
of initialization for each of the coupled LIS-WRF cases. 
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Figure 4.4 Change from control (IRR – CTRL) in surface latent (blue) and sensible 
(red) fluxes averaged over all gridcells with irrigation intensity greater 
than zero. Light colors show the six diurnal cycles for the three cases. 
The darker shades of blue and red are the case averages of latent and 
sensible heat fluxes, respectively. 
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Figure 4.5 As in Figure 4.4, but for (a) near surface humidity (b) and near surface 
temperature. 
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Figure 4.6 Change from control (IRR – CTRL) in near surface temperature at 2 am 
(top) and 10am (bottom) on the first day of case study 3. 
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Figure 4.7 Hourly surface latent (blue) and sensible heat (red) fluxes in CTRL 
averaged over all gridcells containing at least one turbine (top). As in 
(top) but for change from control (WIND – CTRL). 
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Figure 4.8 As in Figure 4.7 but for near surface temperature (top) and humidity 
(bottom). 
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Figure 4.9 Change from control in T2 resulting from the simulation that includes 
both turbines and irrigation (WIND_IRR – CTRL) averaged over 
gridcells that are irrigated added to the average over turbine gridcells 
(top) Difference between WIND_IRR impacts (WIND_IRR – CTRL) 
and the sum of the linear impacts of irrigation and turbines individually 
(bottom; IRR – CTRL and WIND – CTRL, respectively). 
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Figure 4.10 As in Figure 4.9, but for near surface humidity. 
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Figure 4.11 Scatterplot of the hourly difference in sensible heat flux in the simulation 
that contains both irrigation and turbines as compared to only using 
turbines and the corresponding difference in power produced. All 
differences are (WIND_IRR – WIND) and color of the dots indicates the 
hour of the day of each data point. 
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CONCLUSIONS 

These three studies showcase the dramatic effects that human-induced changes 

to the land surface can have on surface fluxes of latent and sensible heat and 

downstream impacts on near surface temperature, humidity, and ultimately the 

evolution of the planetary boundary layer. The first study showed that regional 

irrigation impacts are sensitive to time, space, and method and that irrigation cools and 

moistens the surface over and downwind of irrigated areas, ultimately resulting in both 

positive and negative feedbacks on the PBL. However, with a high-resolution 

simulation, evaluation of the irrigation methods with point observations proved to be 

difficult because of a number of factors, including the underrepresentation of irrigated 

areas in the USGS landuse classification data. Biophysical characteristics that 

determine transpiration amounts differ between crops, but the vegetation parameters in 

LIS–Noah do not account for different crop types. Thus, these land-use category 

differences not only complicated the point observations for the LSM evaluation by 

turning off irrigation and thus any differences between the methods at the Mead sites, 

but they also likely contributed to the underestimation of latent heat (through less ET) 

simulated by the model. 

The second study addressed evaluation issues that arose in the first study by 

assessing the sprinkler irrigation physics and model sensitivity to irrigation intensity 

and GVF datasets in a LSM framework, and evaluating the results with novel point 

and gridded soil moisture observations. For all experiments, model results show that 

Chapter 5 
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irrigation increases soil moisture and latent heat flux, and decreases sensible heat flux. 

Differences between experiments are small at the interannual scale, but become more 

apparent in analysis at seasonal and particularly diurnal time scales. The irrigation 

scheme uses GVF as a proxy for plant maturity and scales the amount of water applied 

accordingly to represent differences in irrigation scheduling based on growth stage. 

This behavior and the impacts of irrigation on soil moisture and fluxes are physically 

consistent with expectations of irrigation effects on the land surface. The continued 

evaluation and improvement of irrigation parameterizations, as discussed here, is an 

important step towards better understanding human influences on the water cycle and 

the impacts of such activities in a changing climate. 

The third study used a high resolution mesoscale modeling environment with 

parameterizations for irrigation and turbines to assess the individual and combined 

impacts of each perturbation in a semi-arid region. Results show that irrigation 

repartitions surface sensible and latent heat fluxes, reduces daytime temperatures and 

increases temperatures at night. Turbines weaken surface sensible heat fluxes 

minimally during the day but enough at nighttime to slightly reduce near surface 

temperature. The simulations that include both turbines and irrigation show that wind 

power production is slightly reduced when irrigation is included and irrigation 

contributes to a greater reduction in daytime surface sensible heat fluxes than would 

be realized with only turbines. The linear sum of the turbine and irrigation impacts can 

be used to approximate the combined impact of irrigation and turbines on temperature 

but doesn’t perform as well for humidity, suggesting that non-linear processes play a 

stronger role in near surface humidity impacts in this typically moisture-limited 

regime.  
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Taken together, these studies suggest that human impacts to land use can be 

considerable and should be included in the context of climate change projections. As 

the demand for food and fuel increases with a growing world population, the need to 

efficiently produce high crop yields will likely lead to further expansion of irrigated 

fields. The inclusion of irrigation physics then has the potential to improve forecasts, 

which will offer farmers a better tool to adapt to increasing crop demands. 
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