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ABSTRACT

An extensive collection of unpublished and published AAR, radiometric and
taphonomic characteristic data for mollusk samples from coastal North and South
Carolina have been arranged into arelational database. Organizing over two decades of
regional AAR data is particularly important for ongoing chronostratigraphic studies of
coastal North Carolina, where active study of an extensive Quaternary sequenceis
underway as part of the North Carolina Coastal Geology cooperative.

A relational database design allows for integrated querying of multiple parameter
datasets and ensures the database remains adaptabl e by removing any dependency on
software. We also make use of current data sharing standards for the Microsoft®
Windows® platform, employing data analysis software and GIS. Examination of this
integrated dataset using advanced visualization techniques should improve understanding
of the North Caraolina coastal plain stratigraphy and help refine current
chronostratigraphic estimates for the region. Furthermore, it builds on efforts to hone the
accuracy and applicability of the AAR method as a chronological tool by incorporating
numerous analyses over athoroughly studied region such as the North Carolina coastal

plain.

Xiil



Future endeavors such as web accessibility of the database and possible
incorporation into alarger data repository is assisted with proper design early on. In
addition, a user-friendly database interface has been devel oped for continued

chromatographic data collection for an active AAR laboratory.
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CHAPTER 1
INTRODUCTION
1.1  Statement of Purpose and Objectives

The intention of thiswork is to support a current investigation to define the
Quaternary geologic framework of the northeast portion of the Outer Banks, North
Carolina by organizing aregiona database of amino acid racemization (AAR) analyses
going back sincethe early 1980’'s. Since the spring of 2001, the USGS Coastal and
Marine Geology Program, regional academic institutions including the University of
Delaware Aminostratigraphy Laboratory (UDAL) and public agencies are currently
undertaking an effort to map and characterize a thick Quaternary depositional sequence
underlying the Outer Banks barrier idand-estuarine system. Resolving the complex
stratigraphy underlying the Outer Banks would enhance current understanding of regional
dynamic shore processes as well as aid in the development of aregional sea-level/climate
history along the mid-Atlantic United States. The work from this thesis would not only
be useful for the current USGS cooperative study (Coastal Carolina Project) but also for
future aminostratigraphy studies of Atlantic Coastal Plain sites.

The principal objective of thiswork is to organize extensive unpublished and
published AAR, radiometric, taphonomic characteristic and other data existing for
mollusk samples from coastal North and South Carolina into a database that would
facilitate efficient data handling. Thiswork restructures a dataset that includes
geochronological data, in particular AAR analyses, for coastal plain sitesall along the

1



Eastern United States (see Wehmiller et al., 1988 for an early form of this database).
Restructuring of the database to a relational format became increasingly important as the
database grew in size and complexity.

While most of these data are currently available in spreadsheet form, devel opment
of ardational database structure allows for integrated querying of a multiple parameter
dataset. In addition, utilizing arelational structure allows UDAL to take advantage of
industry standards for data sharing and therefore seamlesdy incorporate the database with
other useful software applications such as a geographic information system (GIS). By
reducing the time to collect and manipulate data, informative data exploration efforts are
enhanced.

Asaresult of the new design, the database could also be made available for
guerying by other interested agencies outside of the Delaware |aboratory, such asthe
Coastal Carolina Project. Efforts to distinguish stratigraphic relationships of
erosional/depositional sequences of the Quaternary section of coastal North Carolinaare
aided by the geochronological data organized within AARDB. Currently, only data for
North Carolina, and some of South Carolina and southern Virginiaareincluded in the
database (AARDB).

Along with the database product, a development plan is also presented hereto aid
others with intentions of improving their database design. Numerous texts on designing
relational databases are available and some examples of these are listed in the Reference
section. Thiswork describes basic relational database principles (Chapter 4) and includes
an in depth description of the devel opment processes undertaken for designing AARDB

(Appendix I).



1.2  Study Area

At present, AARDB contains over 500 sampling sites, the majority of which
are from coastal North Carolina. Figure 1.1 displays al sampling locations currently
stored in the database. Members of UDAL have amassed a collection of mollusk samples
for thisregion since the early 1980's. Numerous AAR analyses currently exist and
sample analyses for this region continue to accrue. The map exhibited in Figure 1.1 is
merely shown to display existing sample locations and the distribution of sampling types
such as collections from beaches, cores, excavations and exposures, aswell as
underwater samples (grab and core samples).

The selection box in Figure 1.1 represents sites of interest for the Coastal Carolina
Project and isdisplayed at a greater scalein Figure 1.2. These exhibited sites are useful
for determining the aminostratigraphy of the Outer Banksregion (Figure 1.2). To
demonstrate the capabilities of the database, data retrieval and application scenarios are
presented for thisregion.

As of the spring of 2003, fourteen Rotosonic drill cores were collected along the
barrier idand estuarine system, thirteen along the barrier idand and one within the
mainland region of Dare County, North Carolina (Figure 1.2, OBX and MLD-01 cores).
A record of middleto late Pleistocene valley incision and deposition sequencesis
represented within the Albemarle Embayment of northeast North Carolina (Riggs et al.,

1992).



Figurell  Genera site map showing all sampling locations currently stored in
AARDB. Sitesareidentified based on the sampling site (Inland Core, Offshore Core,
Underwater Grab, Excavation/Exposure, Surface or Spoil File). Currently all sitesin NC
studied by UDAL are included.
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Figurel.2  Map of northeastern North Carolina. Sampling locations specified from
the selection box of Figure 1.1. These sitesrepresent all the Sites used in statistical and
gpatial analysisfor thiswork.
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The geology of the barrier island region consists of Holocene beach sands perched
on athick sequence of pre-Holocene age basin deposits of the Albemarle Embayment
(Riggset a., 1995). The barrier idand complex that makes up the Outer Banksisthin
compared to the underlying pre-modern sequence of sediments and constitutes the extent
of the sand source for this coastal plain region (Riggs et a., 1995). The underlying
geol ogy influences the dynamic morphology of the current barrier idand-estuarine
system by affecting the shore profile and acting as offshore bathymetric features that
dampen incoming wave energy (Riggs et al., 1995).

Riggs et al. (1992) collected a seismic reflection section (Figure 1.3) offshore of
Englehard, North Carolina, in Pamlico Sound (offshore of MLD-01 in Figure 1.2), in
which eighteen distinct depositional sequences including numerous fluvial paleochannels
were recognized (Riggs et a., 1992). The complex Quaternary record represented in the
Albemarle Embayment is mostly a product of high frequency eustatic sea level changes
caused by global climate variations (Riggs et al., 1992). Age assgnments for these
depositional sequences were broadly deciphered by such methodsas AAR in Riggs et al.
(1992).

Current drilling efforts by the Coastal Carolina Project seek to more thoroughly
characterize these depositional sequences. Data collected from the OBX, MLD-01 and
future cores (see Figure 1.2), along with geophysical imaging of the subsurface, will be
used to differentiate mid to late-Pleistocene valley incision and deposition sequences over

the course of several paleo-sealeve transgressive/regressive events (Thieler et al., 2002).
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CHAPTER 2
AMINO ACID RACEMIZATION GEOCHRONOLOGY
21  Principlesof the AAR Method

P.E. Hare (1962) originally proposed the technique of using racemization of
amino acids in fossl specimens as a chemical dating method (Wehmiller and Miller,
2000). The method takes advantage of the fact that living organisms contain amino acids
that exhibit chirality, that is, isomeric molecules whose mirror images are not
superimposible. Chirality occurs for most amino acids that exhibit asymmetry about a
central carbon atom with four different side-chains (Wehmiller, 1986) (see Figure 2.1).
All living organisms are made up of the “left-handed” (Levo or L-) variety of amino
acids. When an organism dies, its amino acids diagenetically alter to their respective
enantiomers or the “right-handed” (Dextro or D-) variety in aprocess called
racemization. Theratio of the D- amino acid to its “left-handed” enantiomer within a
fossl will increase with time until a point of equilibrium (termed racemic equilibrium) is
reached (usually 1.0), within as much as a few million years (Wehmiller, 1993).

For amino acids with more than one central carbon atom more than two molecular
forms can exist called diastereomers. For example, L-isoleucine undergoes epimerization
(as opposed to racemization) about one of its two central carbon atoms (termed the alpha
carbon) to form its diastereomer D-dloisoleucine (Miller and Brigham-Grette, 1989).

Racemic equilibrium for D-alloisoleucine/L-isoleucine is typically about 1.3.

10



L-isomer D-isomer

H H
H2N NH:2
N
-
HOOC R R COOH

-H Glycine* -CHz CH (CHs)2 Leucine
-CHs Alanine -CH (CHgs) (C2Hs)  Isoleucine
-CH (CHs) Vaine -CH2CH2 COOH  Glutamic Acid
-CH2COOH  Aspartic Acid -CH2 (CsHs) Phenylalanine

*Glycine does not exhibit chirality.

Figure2.1  Genera structure of D and L enantiomers. Common replacement groups
(d9de chains) and their amino acid names are aso listed. Modified from Wehmiller
(1984).

Several aspects of the AAR method need to be understood when using it as a
geochronologic tool. A basic assumption of the method is that amino acids diagenetically
alter in a predictable manner (Wehmiller and Miller, 2000); therefore outside influences
on a specimen are considered to by and large alter racemization rates. For example,
temperature changes over the course of a sample’ s taphonomic history will influence
racemization rates. Therefore, regional temperature differences are an important feature
to consider when applying the method (Wehmiller and Miller, 2000).

In addition, enantiomeric ratios will vary between samples of smilar ages but
differing genera (i.e., intergeneric differences). This variance means that regional AAR
studies should utilize a specific genus or establish before hand the intergeneric
relationships of the genera used. Several investigators have worked to establish

intergeneric relationships for regional comparisons among several genera (e.g., Lajoie et
11



a., 1980; Wehmiller, 1980; York, 1990). Wehmiller (1980) concluded that an inverse
relationship exists between the amount of Aspartic Acid found in a particular genus of
mollusk or foraminfera and the relative racemization rate of a particular genus
(Wehmiller, 1980). Consequently, dow racemizing generatend to have a greater relative
abundance of Aspartic Acid (Wehmiller, 1980).

Differences in the apparent racemization rates between amino acids (intrageneric
differences) are another complexity of the AAR method. Intrageneric studies on several
generaidentify relatively “slow” and “fast” racemizing amino acids. Lajoie et a. (1980)
determined the order of apparent racemization rates of five amino acids for several
genera, concluding that Proline racemizes relatively “fast” and Valine racemizes
considerably slower, with Leucine falling between the two with a more moderate
racemization rate (Lgjoie et a., 1980). Furthermore, through regression analysis, smilar
to those performed for intergeneric studies, equivalences have been determined for amino
acids for several genera (e.g., Laoieet al., 1980; Wehmiller et al., 1988; Y ork, 1990).
2.2  Presentation of AAR Data

Despite inherent compl exities, acceptance of the AAR method has been enhanced
by extensive utilization of the technique for a variety of problems (Wehmiller and Miller,
2000). AAR has been successfully applied to problems with calculating rates of tectonic
and geomorphic processes along the Pacific coast of the western United States, aswell as
with framework geological studies deciphering the chronostratigraphy of Atlantic Coastal
Pain sediments (Wehmiller and Miller, 2000) (see Wehmiller, 1993 for examples of such

applications).
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D/L ratios have been presented in several ways, although the most common are
formatsin which D/L values are plotted with temperature (or latitude) or sample age if
AAR results have been calibrated by an independent dating method (Wehmiller and
Miller, 2000). Figures2.2 and 2.3 are taken from Wehmiller and Miller (2000) and
represent an internally consistent relationship between D/L values, temperature and time
(Wehmiller and Miller, 2000).

Since AAR reactions are dependent on temperature, efforts are made to
kinetically modd pathways of racemization for differing effective or average
temperatures experienced by a sample over its taphonomic history (Wehmiller and
Miller, 2000). The smplest way to model the relationship between temperature and
racemization rates is through the equation D/L = k(t)“?, wherek is the forward rate
constant and t istime (Wehmiller and Miller, 2000).

Figure 2.2 graphically displays the exponential relationship between D/L values
and time. Thetrendsin Figure 2.2, aswel asfor Figure 2.3, are kinetic model estimates
from laboratory experiments (Wehmiller and Miller, 2000). Isochrons of temperature, as
shown in Figure 2.2, display how samples of similar ages would have differing D/L
ratios, and therefore exhibit different kinetic trend, when exposed to different temperature
histories. Alternatively, isochrons of D/L ratios (i.e., of the same relative age) could also
be calculated from the kinetic pathways like those exhibited in Figure 2.3. (Wehmiller

and Miller, 2000).
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Figure2.4  Comparing radiocarbon ages with D/L Leucine for northeast NC sites.
D/L values exhibit an increasing trend with age (i.e., increased racemization with age).
However, an overlap is apparent within the early Holocene/l ate Plel stocene time frame.

However, considerable spread between data pointsis common and a consequence
of various sources of analytical uncertainty (see Wehmiller and Miller, 2000 for more
discussion on assessing the confidence of AAR data). Figure 2.4 isaplot of radiocarbon
dated Mercenaria samples from northeastern North Carolina. These samples exhibit a
good trend of increasing D/L value with increasing age and could be used to calibrate a
kinetic model for Mercenaria racemization from the region. Nonethe ess, the age
resolution of such a modd would be limited because of the uncertainty exhibited by the
AAR method. For example, considerable overlap in D/L values exists for samples of
early Holocene to late Pleistocene in age (Figure 2.4). Dealing with the uncertainties of
modeling racemization for determining ages is the focus of continuing research

(Wehmiller and Miller, 2000).
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2.3  Aminostratigraphy

Possibly the most common means to interpret AAR datais by using the D/L ratios
of samplesretrieved in Situ as a relative-age tool for stratigraphic correlation. The
method, first termed aminostratigraphy by Miller and Hare (1980), is qualitative in
contrast to determining geochronology from kinetic pathways of a particular genus.
Aminostratigraphy relies on a smple premise; samples collected from the same region
would be expected to have similar temperature histories. Therefore, differencesin D/L
ratios between samples of the same genus could be attributed to sample age. When these
D/L values are further constrained by discrete lithostratigraphic units then the expectation
would be to find successively older samples with depth.

Use of AAR analyses as a chrononstratigraphic tool can establish the relative age
relationships of geologic units where samples are collected. Units are traditionally
distinguished based on mean D/L values from an exhibited cluster of ratios. Confidence
on whether a cluster congtitutes a particular population or aminozone is normally
determined by the coefficient of variance (CV) displayed by a particular mollusk genus
(Miller and Brigham-Grette, 1989; Wehmiller et al., 1995). Occasionally, studies will
also include more rigorous statistical techniques for determining the viability of an

aminozone (e.g., see York, 1990).
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AAR Spider Diagram of Northeast NC Sites
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Figure25  Spider diagram showing possible aminozones based on the values of
several amino acids. Each data seriesis an analyzed sub-sample with the approximate
sample elevation (MSL) exhibited on theright. The sample from core MLD-01 likely
correlates with the upper Stetson Pit late last-interglacial aminozone (York et a., 1989),
while AAR values from cores OBX-07 and OBX-12 likely represent later (Holocene,
based on radiocarbon data) aminozones. For reference, the earlier Stetson Pit
aminozones from York et al. (1989) are also shown.

Comparing several amino acid ratios has long been useful in AAR laboratories for
interpreting aminostratigraphic results (Wehmiller, per comm., 2003), though normally
just as general guidelines. For example, Figure 2.5 shows a “spider diagram” of AAR
analyses and interprets aminozones in the context of several amino acids. Spider

diagrams are a useful way to interpret multiple amino acid ratios for a particular sample;

however, distinctions made between apparent aminozones are mostly qualitative.
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Of course, a site'saminostratigraphy is often complicated by environmental
factors. For instance, reworking of mollusk shells from older lithologic unitsis common
along the dynamic barrier idand systems of the continental margins (see Wehmiller et d.,
1995; York, 1990; Bart, 2001). Continually submerged/emerged landscapes from
fluctuationsin sealeve (local or eustatic) would tend to exhume fossil mollusks, deposit
them on a beach and then possibly rebury them in a younger geologic unit, all of which
would also obscure their thermal history (Wehmiller et al., 1995).

Nonethel ess, where stratigraphically consistent D/L values are determined, the
aminogtratigraphy of the region can be a useful tool in deciphering the depositional
history of the region (e.g., Toscano and York, 1992; Riggs et al., 1992; Harris, 2000).
Geologic applications of AARDB are presented in this work to show the databases

usefulness for aminogtratigraphic studies along the Atlantic Coastal Plain.
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CHAPTER 3
METHODS
3.1 Database Development

Development of the AARDB was undertaken using relational database principles.
These principles are outlined in Chapter 4 and are mostly derived from Elmasri and
Navathe (2000), Fundamentals of Database Systems. The Reference section at the end of
this report also lists other texts utilized here for designing the database.

Appendix | of thisreport is a description of the database devel opment process as
it was applied for thiswork. Data organization issues common for laboratory data are
discussed in this section and Appendix | could be used as a guide for researchers with
smilar data management goals.

3.2  Statistical Treatment of Data

As part of thiswork, data selected from AARDB were subjected to traditional
satistical methods. These methods include typical exploratory methods on sample
populations but also a multivariate method used for age discrimination of Mercenaria
samples. Procedures and assumptions for the statistical methods utilized here are
described in Davis (1986). Statigtical analyses are mainly presented in this study as
examples of data exploration with the new AAR database. Discussion of the applicability
of particular statistical methods isleft for Chapter 7 (Discussion and Concluding

Remarks) of thiswork.
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In this study, discriminant analysis was investigated as a possible method to
distinguish between aminozones (particularly Holocene versus Pleistocene age shells) of
Mercenaria amino acid ratios. Discriminant analysis seeks to quantify the separation
between two or more groups (Davis, 1986). Six amino acid D/L values (Alanine,
Aspartic Acid, Glutamic Acid, Leucine, Phenylalanine and Valine) are used to determine
adiscriminant function for distinguishing between fossil shells of two age groups (early
Holocene or late Pleistocene). A linear discriminant function is derived from a set of
measurements (several variables) that calculates a discriminant score along a line that
characterizes the discriminant function (Davis, 1986). Figure 3.1 displays how the
discriminant function can be envisioned for two groups from distributions of two
variables (i.e,, bivariate distribution). The discriminant function can successfully
discriminate between two groups even when plotting sample distributions show
considerable overlap.

Mercenaria with a D/L Leucine range of approximately 0.15 to 0.36 were
employed for the discriminant function calibration sample. This D/L Leucine range was
chosen based on the spread of D/L Leucine for northeast North Carolina Mercenaria
samples of radiocarbon dated late Pleistocene to early Holocene age, as shown in Figure
2.4. Thisdataset was chosen to limit intrageneric variance apparent between Holocene
and al pre-Holocene age samples. For example, Leucine racemization exhibits various
trends compared with other amino acids and these trends can change with age for some

amino acids (see Lgjoie et al., 1980; Kimber et a., 1986; Kimber and Griffin, 1987).
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Figure3.1  Bivariate digtribution plot of two groups (A and B) showing overlap for
both variables (x1 and x2). Groups can be distinguished by projecting the groups onto
the discriminant function line. Ra represents the centroid of Group A, while Rb
represents the centroid of Group B. Ro designates the discriminant index. After Davis,
1986.
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The calibration sample was also chosen to include enough samplesto perform the
calculation, as few samples from the early Hol ocene to late Pleistocene period have been
collected for the Atlantic Coastal Plain (Wehmiller, pers. comm., 2003). In addition, a
test population of Mercenaria was used to assess the calculated discriminant function.
Calculations for the discriminant analysis performed for thiswork, aswell as statistical
tests of significance and the entire discriminant analysis output as performed in MiniTab
verson 13, are contained in Appendix I1.

Spatial analysis, in particular inverse distance welghting method of spatial
interpolation (IDW), is also attempted with data extracted from the database and
exhibited in aGIS. The inverse distance weighting method is a good, general purpose
contouring method that is used here as preliminary exploration of spatial distributions of
D/L ratios. Appendix 11l contains method properties, plots showing predicted versus
actual values and plots of resduals. Thisinformation isuseful for determining the
accuracy of the contouring method.

3.3  SamplePreparation and Laboratory Technique

As part of the Coastal Carolina Project, fossil mollusks collected from cores and
beach transect sites of coastal North Carolina were analyzed using the AAR method for
aminostratigraphic interpretation of barrier idand and estuarine sub-surface deposits of
the Outer Banks. AAR Laboratory procedures undertaken as part of this thesis follow
sample preparation and amino acid extraction techniques described in York (1984), York

(1990) and Wehmiller and Miller (2000).
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Shells were chosen for AAR analysis based on their preservation state and
sometimes on shell color, based on the assumption that dark colored shells tend to have
higher D/L ratios (i.e., tend to berelatively older) (see Wehmiiller et al., 1995). These
shells were then documented; assigning them each a Sample ID and recording them into
the AAR database. Some shells analyzed came from an archived collection so UDAMS
numbers (University of Delaware AMinoStratigraphy geographic location identifier)
were previoudy allocated.

Sampling of these specimens entailed cutting a fragment through the umbo of the
shell, near the valve hinge (Figure 3.2) with arock saw. Samples (i.e., sub-samples) were
collected from the umbo to achieve results consistent with other Mercenaria analyzed
from the Atlantic Coastal Plain (e.g., see Belknap, 1979;Y ork, 1984 and 1990; Bart,
2001). Each fragment cut was then assigned a sub-sample ID (AAR Lab Number) and
recorded in the database. For further documentation, the shell and a 5x8 index card

displaying identification numbers were photographed and stored in the database.

23



Translucent increment
}—Annual growth cycle

Opaque increment

ﬁ
Outer shell layer % \
Middle shell layer )

Inner shell layer !4

Ventral —_ : ; : ,
margin 5cm

Figure3.2  Cross-sectional view of a Mercenaria marking the umbo and the middle
carbonate matrix layer.

Each fragment cut from a valve was trimmed and abraded (i.e., mechanically
cleaned) to remove the surface carbonate layer that may have experienced diagenetic
ateration. Sometimes a small fragment (ca.1.0 gm) needed to be abraded further by a
more delicate tool. For thistask adental rotary drill with carbonundrum grinding disc
was used. Throughout the mechanical cleaning stage, the shell fragment was
continuoudly cooled with tap water to diminish any frictional heat generated from the saw
or rotary drill. Additionally, latex rubber gloves were worn at all timesto avoid direct
contact with human skin. The final carbonate sasmple for each shell represented the
middle shell layer (Figure 3.2) and, again, is cons stent with other workers (e.g., Beknap,

1979; York, 1984 and 1990; Bart, 2001).
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After mechanical cleaning, each cut fragment was transferred to a glass test tube
for adelicate chemical cleaning. This process entailed submerging the fragment in the
test tube with digtilled water and dowly adding dilute hydrochloric acid (HCl). When a
gentle fizzing was achieved the sample was allowed to St in this solution for about one
minute. Then the dilute HCl was decanted and distilled water was again added while
swirling the test tube to ensure athorough rinse. The process was repeated several times
until about 10% to 30% of the fragment had been dissolved, ensuring that no outer
carbonate material remained on the sample (Wehmiller and Miller, 2000). Subsequently,
the test tubes along with shell fragments were covered with aluminum foil and placed in a
vacuum oven on low heat for one hour to dry up any moisture.

Next, the weight of each shell fragment needed to be documented. From this
stage on care was taken not to handle the fragment to avoid possible contamination.
Samples were weighed to the nearest 0.001 grams and transferred (without handling) to
screw cap vias.

At this point the samples need to be completely dissolved in preparation of being
hydrolyzed. Concentrated HCI is added to the fragmentsin the screw cap vialsat 0.1 ml
increments so that the product does not boil over. The amount of HCI added is
proportional to the weight of the dried carbonate material, approximately 3.5 ml/gm of
carbonate for total amino acid analysis. Once the samples were dissolved, the vials were
purged of air by forcing inert Nitrogen gas (N.) into thevias. Thevialswerethen

capped, sealed tightly and placed in a heating block at 110°C for 22 hours.
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Following hydrolysis, the samples were desalted using hydrofluoric acid (HF).
The hydrolyzates were transferred by pipette to plastic centrifuge test tubes.
Approximately 1.25ul/gm of carbonate was added to each test tube and swirled
repeatedly. Then the test tubes were centrifuged for approximatey 25 minutes to
separate calcium fluoride (CaF,). The supernatant liquid was transferred by pipette to
new polycarbonate round bottom test tubes and dried under a stream of N,. Once the
liquid had been thoroughly dried, the resdue in the polycarbonate test tubes were taken
up with 1M HCI, transferred to a screw cap vial and dried again under a stream of No.

To make the derivative containing the amino acids, reagents are added for
esterification and acylation of the amino acids. An anhydrous sampleisrequired for this
step so just prior to making the derivative the vials were placed in a vacuum oven on low
for about one hour. Approximately 0.75 ml of isopropyl/HCI was added to the vials. The
vials were then capped and placed in a heating block at 105°C for one hour. Next, the
samples were dried down under a stream of N, for about five minutes and approximately
1.0 ml of dichloromethane (DCM) and 0.2 ml of trifluoroacetic acid (TFA) were added
for the acylation step. The vials were then capped and allowed to sit in aplastic jar filled
with desiccant for at least 2 hours to complete the reaction.

To compl ete the derivatives and prepare them for storage the reagentsin thevials
were dried down under N,. The liquid was brought down to about 50% of its volume and
then transferred to asmaller screw cap vial. Then the remaining liquid was dried down
with N. Cyclohexane was then added to the vials at about 0.1ml /0.3 gm of carbonate.

The vials are then placed in small jarsfilled with desiccant and stored in a dedicated
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refrigerator to await GC analysis by injection. A sample chromatogram isincluded as

Figure 3.3 to show the relative amino acid peak retention times.

Generally, severa injections were executed to establish mean D/L valuesfor a
particular laboratory aliquot. Therefore, mean values are reported with standard
deviations and the number of injectionsincluded in the calculation. Calculated D/L
values along with smple statistics for samples exhibited in this thesis can be queried

using the database file (aardb.mdb) on the included CD, Appendix 1V.
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Figure3.3  Anexample of a chromatogram from GC analysis from a Pleistocene
shell. Amino acids enantiomers are labeled in thefigure. AAR D/L valuesare
determined by calculating the ratio of the areas from both enantiomers of an amino acid.
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CHAPTER 4
PRINCIPLES OF DATABASE DEVELOPMENT
4.1 Overview of Data M anagement in the Geosciences

Within the geosciences there has been an historical commitment to long-term data
archiving and data management such that today geoscience organizations, whether
governmental or academic, have shown a willingness to embrace new technol ogies and
work them into research. For instance, the International Council for Science (ICS)
established the World Data Center (WDC) in 1957 (Allen, 1988). WDCs are data
repositories of geophysical and solar data that promote efficient data sharing
internationally between researchers (Allen, 1988). In addition, the ICS currently
sponsors and facilitates short courses and degree programs for teaching data management
issues in marine geoscience (Dittert, April 22, 2003). These programs, which are spread
internationally among several universities, seek to educate students on data management
issues within the geosciences (Dittert, April 22, 2003).

Likewise, government agencies like the USGS and the Federal Geographic Data
Commission (FGDC) havetaken lead rolesin utilizing the latest advances in information
technology and mainstreaming such technologies for public access of geological data.

For example, the National Spatial Data Infrastructure (NSDI), under the auspices of the

FGDC, seeks to improve the accessibility and use of geospatial data through programs
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that share the responsibilities of geospatial data creation and maintenance (National
Research Council, 2001).

During the 1980’ s much of the data management work in the geological sciences
focused on devel oping database management systems within the structure of traditional
geological data banks. Simply due to the multi-variable nature of geologic information,
these data banks often consisted of a collection of records representing observations with
multiple dimensions or columns characterizing the myriad of geological parameters.
Therefore, data management schemas were specialized to meet the needs of a particular
discipline in geology with data processing applications often a component of the system
(seefor example Young, 1982; Coffey et al., 1982; Fletcher, 1987). However, with
changesin data presentation or advancements in software applications, problems of
interoperability and obsolete data structures became apparent.

E.F. Codd s 1970 landmark paper on relational database design discussed these
and other such issues for data management systems of the time. He presented arelational
data modd and its corresponding calculus for shared databases that eiminated their
dependency with application programs. That is, datain a database was finaly
independent of the software used to manage and query the database. Changes within the
busi ness community proceeded from Codd (1970) such that today the relational model is
the standard for all commercia database management systems (Elsmasri and Navathe,

2000).
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However, changes were not apparent in the geoscience community until later. For
example, at the first meeting of the International Geographical Union (IGU) in 1988, the
USGS announced its intention to utilize “new” technologies such as relational database
management systems (RDBMS) in its global database planning efforts (Hill and Walton,
1988). By the mid 1990s, relational databasesin the geological sciences became more
common for multi-user systems, though the relational model was not as prevalent for
single user systems (see for example Gunderson, 1994, noting database vendors and their
capabilities).

Today, with the devel opment of database systems on the personal computer (PC)
platform, such as Microsoft® Access, single-user relational systems have become more
prevalent and are often used as front-ends to database systems stored on a non-PC
platform (Elsmasri and Navathe, 2000). Data from government agencies, research groups
or single researchers can be created on stand-alone databases and connected through data
sharing methods (e.g., Microsoft® Open Database Connectivity (ODBC) standard) and
thus facilitate data sharing within a research community.

4.2  Comparison Between Flat-File and Relational Format

Much of the data collected in geological studies, at least traditionally, have been
stored in flat-file format. A databasein aflat-file format is essentially one data file or
table that can have numerous columns representing data parameters and rows
representing arecord in the database. Such formats are useful because they display data
values for essentially an unlimited number of parameters within a single view and, more
importantly, graphing or manipulating the data is made easy by smply comparing one or

more columns. Additionally, maintaining a flat-file format database usually incurslittle
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overhead cost because the technologies for data storage and application software are
readily available for personal computer formats and are reasonably understandabl e by the
layperson. However, with aflat-file format, data management problemsinflate asa
database becomes more complex. Data relationships are complicated as more parameters
are stored and required for analysis.

Anincrease in data volume al so suggests a need for a RDBMS. For example, a
Microsoft® Excel worksheet has a maximum storage capacity of 65,536 rows by 256
columns; time series data and most geophysical data can quickly exceed such a capacity
after only a few acquisition events. Inefficient querying and obsol ete data al so become
more apparent as the size of the database increases and redundancy increases from data
sharing. Table 4.1 below highlights some major drawbacks and strengths of the flat-file
format as compared with the relational format.

In contrast to the flat-file format, the relational format has more sophisticated
aspects that make it advantageous for data management. Firstly, data are structured in
such away that the semantics, that is, the intention or meaning of the database, are
understood intrinsically (Codd, 1970). Querying of the database takes advantage of
relationships established between data tables. Moreover, data standards and rules are
defined explicitly and enforced to ensure data integrity through an innate, declarative
language, like SQL (Structured Query Language) (Elmasri and Navathe, 2000). SQL is
aso the language used for data querying and has become an industry standard for
database management systems. With a common standard, data sharing between different

software platforms is made smple.
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Table4.1

format. Modified from Hoffman, 2003.

Comparing capabilities of a flat-file database and arelational database

FLAT-FILE DATABASE

RELATIONAL DATABASE

Querying Data Search application exploresthe Uses SQL to efficiently search
entirefileto give aresult. Some several related data tables.
applications allow for data
indexing.
Data Integrity Some enforcement of data Dataintegrity enforced through
standards available through implicit data structure and
popular software though not constraints, which isstored in a
implicit in the database. system catalog or data dictionary
for reference.

Updating Data | Filesare only as current as when Tables are aways current.
the file was last modified. Updates | Updates are performed directly on
are normally executed manually to the contents of atable and

al pertinent fields and associated propagate throughout all related
files. tables.
Data Sharing Although files can be easily Database truly centralized.

shared, concurrency of data
cannot be assured. If an
Applications must be devel oped to
enforce concurrency control for a
centralized file system.

Supports multiple access and
views to data through concurrency
control and recovery subsystems
of aDBMS (Elmasri and Navathe,
2000).

A relational data modd also eliminates storage of redundant or null datathat is

necessary in aflat-file format to maintain associations between several data parameters.

It removes this necessity by the use of a primary key that uniquely identifiesrecordsin a

particular table. Furthermore, arelational database is advantageous because it allows the

casual user of the database to retrieve data with ad hoc queries without knowing how the

data are structured. Quite often for databases stored in aflat-file format, only the

database creator or principal user understands where particular data exists and how to

retrieve pertinent information.
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4.3 TheRelational Data M odel

4.3.1 Overview

Several data models or schemes exist for database systems. Some of the more
notable ones are the hierarchical, network and relational data model. Codd (1970)
presented the relational data modd as an approach to data management that “protected”
users and application programs from disruption of activity if the internal structure of the
data were modified (Codd, 1970). Such modification could occur as a result of dataset
expansion or altering of usual data access paths (Codd, 1970). Codd’srelational model
organized tabular datain aform most efficient for data retrieval and manipulation.
Today, most database management systems utilize the relational model. However, the
hierarchical modd is still used commercialy, including for operating system file

structures (e.g., personal computer file systems).

In presenting the relational data model, we first need an appropriate definition of a
database. A databaseis generally defined as an organized body of related information
(The American Heritage® Dictionary, 2000). Elmasri and Navathe (2000) elaborate on
this definition describing a database as.

?? A callection of logically coherent data.

?? Representing some aspect of the real world.
?? Made for a specific purpose.

Therefore, we can think of a database in terms of differing structural formats (e.g.,
relational, hierarchical, network, etc.) but its essence should exhibit the above

characteristics.
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When creating a database, often the database software is considered as the same
object. However, it is more precise to refer to the database as the physical storage of data
files, while the software used to manage the database as part of a larger database
management system (DBMS). Database softwareis utilized for managing the datain the
database. Likewise a software application that a user interacts with is separate from the
actual database but part of the larger database system. Figure 4.1 illustrates the generd
components of a database system. Whether we are referring to arelational or hierarchical
database, aDBMS s a collection of programs that enables usersto produce and maintain

a database (Elmasri and Navathe, 2000).
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Figure4.1  Diagramatic representation of aDBMS. A DBMSisa collection of
software programs that enable a user to create and maintain a database. After ElImasri and
Navathe, 2000.



4.3.2 TheRelation

A relational databaseis generally thought of as a collection of tables where each
table or relation represents an entity in thereal world. Likewise, arecord in atable
represents a“fact” corresponding to that real world entity and the table name and column
(attribute) heading clarify the meaning of each record (Elmasri and Navathe, 2000).
Within an attribute, a domain is specified and is designated by the data type of its values
and their format (Elmasri and Navathe, 2000). For example, an attribute that contains
employee social security numbers would consist of a data type of al integers with the
form 000-00-0000. The domain of this attribute is therefore, described by an al integer
data type and the special digit format for its set of values. Likewise, specifications such
as whether to alow null values are part of the domain of an attribute.

A relation is not strictly a table and therefore a database a collection of tables or
flat-files. Moreformally, ardation has characteristics that make it different from atable.
For example, with tables data are physically stored in a certain order. Thereation
concept does not require an order to itsrecords or tuples as atuple can be described by
any ordering of an attribute name and its value (Figure 4.2) (ElImasri and Navathe, 2000).
For thiswork it is sufficient to refer to relations astables. In addition, the term entity is
used to refer to ardation, and therefore, atable. Theseterms are used interchangeably in

thisthess, athough relation is used most often in its formal sense.
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Table.Record = Employees.<(Name,Joshua Parker),(Employeel D,145-79-
0475),(BirthDate, 10-20-1976),(HomePhone,302-831-6602)>

Table.Record = Employees.<(BirthDate,10-20-1976),(Employeel D,145-79-0475),
(HomePhone,302-831-6602),(Name,Joshua Parker)>

Figure4.2  ldentical rows showing that record ordering is not necessary when the
attribute nameis included with its value.

A relation is described by its name as well as by the attributes represented in the
relation. A rdation isdesigned such that an identifying attribute or the primary key is
unique for a particular record in thetable. Therefore, nulls or empty values cannot be
recorded in the primary key because nulls are not unique. However, there may be severa
attributes in atable that could be used as a primary key (termed candidate keys), though
only one or a combination of keysis designated asthe primary key. Primary key and
domain constraints within arelation constitute what are referred to as entity integrity
congtraints of arelational database. They restrict the kinds of data entered into atable
and ensure that each record in atableis unique.

Figure 4.3 displays the components of arelation. There are three candidate keys
displayed in Figure 4.3, Employeel D, SSN, or Name if we assume that no two employees
will have the exact same name. In the example, Employeel D isidentified as the primary

key (designated with an underscore) even though SSN or employee Name could be an

appropriate primary key.
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Relation Name Attributes
Attribute Name

EMPLOYEE| EmployeelD SSN Name HomePhone

M19980715-13 | 145-79-0475 | Joshua Parker | 302-831-6602| 10-20-1976

Tupl M20000118-15 | 149-14-1414 302-831-2903| 04-19-1976

M19951001-17 | 161-59-9211 | Colon Srnils\ 302-295-4555| 12-12-1971

Vaue

Figure4.3  Components of arelation expressed as atable. After Elmasri and Navathe,
2000.

4.3.3 Table Relationships

With a primary key identifying each record within atable, several tables can be
related based on the representation of a primary key in other tables. For instance, Figure
4.4 shows three tables, EMPLOY EE, DEPARTMENT and PROJECT that could be part
of a company database (COMPANY). The primary key for each table is underlined and
associations of unique records between tables are depicted by the existence of aforeign
key in atable. A foreign key in achild tableisthe primary key of a parent table and
exhibits the same domain asthe parent’s primary key. Table EMPLOY EE contains the
attribute DeptI D that references DeptlD in DEPARTMENT (Figure 4.4). Likewise,
DeptID isrepresented in the table PROJECT.

These key associations create the referential integrity inherent in areational
database; that is, they maintain record consistency between tables. Referential integrity

37



ensures that table relationship rules are adhered to. For instance in the example of Figure
4.4, a person existsin the COMPANY database as an employee working under a certain
department; a department, which can have several employees, isresponsible for a
particular project. An employee can only work for departments represented in
DEPARTMENT and PROJECT' s association with DEPARTMENT specifies the job that
an employee works on. Therefore, table relationships allow for updating or modifying

the database within constraints specified by the requirements of the database.
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EMPLOYEE

Employeel D SSN Name HomePhone| BirthDate | DeptlD

M19980715-13 | 145-79-0475 | Joshua Parker | 302-831-6602| 10-20-1976 RandD

M20000118-15 | 149-14-1414 | David Coon |302-831-2903| 04-19-1976 RandD

M19951001-17 | 161-59-9211 | Colon Smiley | 302-295-4555 12-12-1971 Acct

\
DEPARTMENT
DeptID DeptName | MngEmpID | MngStartDate  ProjectID
Admin Admin... |M19911201-19| 12/01/1991 | Hassen Co.
Acct Acctounting.., M19930415-5 | 04/15/1993 CCAir
RandD | Research.. | M19990615-7| 06/15/1999 CCAir
PROJEC'I;

ProjectlD | StartDate | ProjDescrp Status

Hassen Co. | 01/15/2002 . Active

CCAiIr 05/10/2003 e Active

Figure4.4 COMPANY database tables. Tables show how data could be stored with
referential integrity constraints signified by leaders pointing to primary keys. The
primary keys for each table are underlined. After ElImasri and Navathe, 2000.
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4.3.4 Relationship Cardinality

The discussion above on referential integrity alluded to another aspect of
relational databases, the concept of relationship cardinality or the set of all possible
combinations of values between reations (Elmasri and Navathe, 2000). There are
essentialy four cardinality ratio possibilities between tables, one-to-one, one-to-many,
many-to-one and many-to-many. The cardinality ratio between tables for a database
would depend on the specifications of the database established ahead of time.

In our example from Figure 4.4, the requirements of the database may specify that
an employee may not work for more than one department but that a department can
employ several employees. The relationship between DEPARTMENT and EMPLOY EE
would then be one-to-many (1:N). Generally, many-to-many (M:N) relationshipsin a
database schema need to be resolved to some combination of 1:N possibilities. Creating
anew entity that includes the primary keys of both entitiesin the M:N relationship often
solvesthis. An example of thisisgiven in Figure 4.5 as the new entity WORKS_ON,
which resolves the M:N relationship between EMPLOY EE and PROJECT.

Figure 4.5 shows the relation schema for the COMPANY database as it might be
designed. Linesfrom primary keys of parent tablesto foreign keysin child tables
designate tabl e relationships and specify referentia integrity. What is more, notation (1
and N) along these relationship lines signify the cardinality of these relationships and

clarifies their meaning.
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EMPLOYEE

EmployeelD|  SSN Name |HomePhone| BirthDate DeptID
1 N
WORKS ON | N DEPARTMENT
1
Project|D EmplD Hours DeptID DeptName | MngEmpID MngStartDate

N

PROJECT N

ProjDescrp

ProjectlD

Figure4.5 Possiblereational schemafor the COMPANY database used in the text as
an illugtration. Table relationships and cardinality ratios are exhibited. After ElImasri and
Navathe, 2000.
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4.4  Normalization

441 Overview

Designing arelationa databaseis mostly intuitive. Thisis because we can think
of a database as epitomizing an aspect of the real world with table rel ationships resulting
from implicit associations between these entitiesin real life. Despite thisintuition, there
are subtleties involved with organizing a database when the semantics of relations and
thelr relationships are not always clearly understood. Consequently, relational database
design algorithms exist to aid the devel oper in normalizing data and therefore, properly
structuring the database.

Normalization is a process of analyzing the relation schema of a database to
minimize redundancy and diminate anomalies that can occur from updating a database
(Elmasri and Navathe, 2000). Codd (1972) devel oped tests of relation normalization he
called normal formsto specifically address these issues. He developed three norma
forms, first normal form (INF), second normal form (2NF) and third normal form (3NF),
with each successive form relying on the fulfillment of the previous. These forms
propose increasingly stringent qualifications that relations should meet to be considered
normalized (Elmasri and Navathe, 2000). Currently, there are more than three normal
forms but the majority of data normalization can be accomplished through these first
three (ElImasri and Navathe, 2000). These normalization concepts are summarized here

and are applied as a guide to the design of AARDB (Appendix 1).
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4.4.2 First Normal Form

First normal form requires that valuesin attributes be atomic (i.e., indivisible).
Thisfirst requirement smplifies the representation of “facts’, and therefore their
meaning, in table attributes. Figure 4.6 shows an example of normalizing atable
according to INF.

Table SAMPLE (a), which records information pertaining to collected shells, does
not satisfy INF because attribute SampleT ype contains data that are not atomic. Record
JW2001-150 displays several mollusk genera for SampleType, suggesting more than one
sample. Thiswould create problems later when said mollusks are sub-sampled (i.e.,
cutting a shell fragment) and analyzed because Samplel D and related information would
have to be re-entered into table SAMPLE for each mollusk genus analyzed. Solving this
problem requires the creation of a new table (COLLECTION) that holds identification
values for collections of more than one sample mollusk. Therefore, in table SAMPLE,

Samplel D records only unique values (Figure 4.6).
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(@)
SAMPLE

SamplingType SamplelD SampleType
2 Mercenaria,
Beach JwW2001-150
Spisula
Core JwW2001-060 Mulinia
INF
(b) COLLECTION
Collection! D
JwW2001-150
SAMPLE
SamplingType SamplelD SampleType | CollectionlD
Beach JW2001-150-001 | Mercenaria JwW2001-150
Beach JW2001-150-002 | Mercenaria JwW2001-150
Beach Jw2001-150-003 Spisula JwW2001-150
Core JwW2001-060 Mulinia

Figure4.6 lllustration of INF. (a) Table SAMPLE does not comply with INF
because the SampleType field contains multi-value data. (b) SAMPLE complies with
INF by creating a new table, COLLECTION, and specifying distinct SamplelD for
SAMPLE such that SampleTypeisnow indivisible.



4.4.3 Second Normal Form

In 2NF, tables should only store data that are entirdly described by the primary
key. 2NF is based on the concept of functional dependency of an attribute in atable with
itsprimary key. Functional dependency isimportant to understand in relational design
and references on database design (e.g., Elmasri and Navathe, 2000) in the References
section of thiswork have thorough discussions on thetopic. To simplify the concept, a
table is said to satisfy 2NF if the primary key of a table uniquely determine the values of
another attributein that table.

Toillustrate this, Figure 4.7 shows a table (SAMPLE LOCATION) with severd
attributes. Thetable' s primary key is Samplel D and the information contained specifies
the type of sample and the location where the sample was collected. UDAMSisa
geographic identifier given to all new sampling sites.

The problem in this exampleis that the primary key does not uniqudy identify all
of the attributesin the table. While a sample will have a specific location, as described
by UDAMS, Lat, Long and L ocalityName, Samplel D does not functionally determine
the location completely. That is, you can have several samples (i.e., Samplel D) for a
specific location. So location information would have to be repeated for each sample
from the same sampling ste.

In order to minimize redundancy, table SAMPLE LOCATION should be
decomposed into two separate tables, SAMPLE and LOCATION (Figure 4.7). Now with
two tables, Samplel D functionally determines the set of attributesin SAMPLE, while

UDAM S uniquely determines the set of location attributes (Figure 4.7).
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(@
SAMPLE LOCATION
SamplelD | SampleType | UDAMS | Lat | Long | LocalityName

2NF

(b)
SAMPLE
SamplelD | SampleType | UDAMS

v

v
LOCATION
UDAMS Lat Long L ocalityName

Figure4.7  Diagram explaining the concept of 2NF. The SAMPLE LOCATION table
consists of fields describing location and sample information. To satisfy 2NF the table
must be decomposed into two tables, one for sample information (SAMPLE) and one for
location information (LOCATION).
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4.4.4 Third Norma Form

A table satisfies 3NF when the primary key functionally determines fully all non-
primary key attributes (i.e., satisfies 2NF) and non-primary key attributes are not
trangtively determined by another non-primary key attribute. A table exhibits transitive
dependency when the primary key and another non-key attribute uniquely determine an
additional attribute. To solve thisissue, the table should be decomposed such that the
trangtively dependent attribute isin a new table along with the attribute that uniquey
determinesit.

Figure 4.8 exhibits the concept of transitive dependency with theinclusion of a
caculated fiedld in table COLLECT SAMPLE. SmplElev_Top records the elevation
(MSL) of a particular sampling and is determined both by the primary key
(Collectionl D) and the depth from which the sample was collected (Smpldint_Top)
within table COLLECT SAMPLE. Furthermore, SmplElev_Top isacalculated fied
that is determined by subtracting SurfaceElevation (table LOCATION) from
Smpldint_Top (Figure 4.8). We could decompose COLLECT SAMPLE such that
SmplElev_Top, aong with those attributes from COLLECT SAMPLE that fully
determineit (Collectionl D and Smpldint_Top), would exist as a new table. However,
that would not solve SmplElev_Top’s dependency on Surfacel ocation. In this
example, to remove the transtive dependency SmplElev_Top should not be used as an
attribute in a base table. Instead, this value should be stored in a database query or view

and calculated by the DBM S whenever it is needed.
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LOCATION

UDAMS Latitude Longitude SurfaceElevation
07500 35.1235 -75.4254 5.35
07555 36.5355 -76.2356 -16.35
Calculated
Vaue
COLLECT SAMPLE
CollectionID | SmplingType | Smpldint_Top | Smpldint_Bot | SmplElev_Top | UDAMS
JW2003-150 | Inland Core 0.5 0.75 4.85 07500
JW2003-151 Inland Core 1 1.25 4.35 07500
JW2003-152 Inland Core 15 1.75 3.85 07500
JW2003-170 | Offshore Core 0.25 0.4 -16.6 07555

!

Functionally Determines

Figure 4.8

Illustrating the concept of transitive dependency. The LOCATION table
consists of fields describing location and position of sampling, while the COLLECT

SAMPLE table records samplings for a particular site. The attribute SmplElev_Top in
COLLECT SAMPLE records the elevation of the sample collected. A transitive
dependency exists for COLLECT SAMPLE because SmplElev_Top isnot fully
determined by Collectionl D but also by Smpldint_Top.
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45 Choosinga DBMS

There are different commercial software packages for different scales of database
system needs. These range from the personal computer platform to high-end database
management systems for large organizations. Choosing the best system requires a clear
understanding of your data management needs, as well as the capabilities of different
software. Initial setup and sustaining costs, storage capacity requirements, and time
available to usersfor learning new software are all aspects that would either deter or
attract a researcher from particular DBMS software. Furthermore, platform
specifications of certain software may also limit one's DBMS choices.

Several aspects were considered in choosing software for UDAL’ s database
needs. First of all, we wanted full relational database functionality because of the
advantages discussed earlier. Secondly, it was determined that our database needs could
be met by a personal computer implementation of arelational database. This
implementation was consdered most effective bearing in mind overhead and personnel
costs and software training time.  Lastly, data sharing options in a Microsoft®
Windows® environment were attractive considering that much of the data analysis
currently performed runs on a Windows® platform.

While there are more robust commercial DBMS, such as Oracle®, utilization of a
high-end database management system is currently deemed unnecessary. However,
upgrading from a personal computer platform to a high-end system isaviable future

option, as the database is software independent.

49



CHAPTER 5
PRESENTATION OF THE AAR DATABASE
51  Overview of MS Access

Microsoft® Access (2000) isthe DBMS used for AARDB. AccessisaPC
platform implementation of arelational database management system (RDBMS). This
chapter presents AARDB as it has been developed in Access for the Windows®
environment.

Table 5.1 lists the specifications of MS Access (2000) found in the software’'s
help files. The maximum size of an Access database isinconsequential as Access allows
for linked tables. In addition, because Access is ODBC (Open DataBase Connectivity)
compliant, several databases (whether MS Access or not) can be linked together
expanding the sze of a database system. ODBC is a data sharing protocol developed by
Microsoft that allows information on a PC to be shared with other database systems
(Hoffman, 2003).

AARDB isasingle-user database that is currently about 10 megabytesin size and
includes records for sitesin North and South Carolina. Its Size is expected to increase, as

samples from all aong the Atlantic Coastal Plain are included
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Table5.1 General specifications for a Microsoft® Access database. Because your
database can include linked tablesin other file, the maximum file size for an Access
databasefileis essentially limited only by available storage capacity.

ATTRIBUTE MAXIMUM
MS Access database (.mdb) file size 2 gigabytes
Number of objects in a database 32,768
Number of Modules 1,000
Number of charactersin an object 64
name
Number of charactersin a password 14
Number of charactersin a user name or 20
group name
Number of concurrent users 255

Normally the user first interacts with the “database window” in MS Access when
adatabase fileis opened. Thiswindow (displayed in Figure 5.1) liststhe available
objects of the database and allows the user to create tables, queries or forms and compile
data into reports for viewing. MS Access has ready to use wizards to aid with creating
tables, queries, forms or reports and the beginning user is generally advised to make use
of such wizards when creating or changing objects in the database. 1n addition, through
the database window (Figure 5.1), the user can develop macros or Visual Basic for
Applications (VBA) procedures to perform functions within the database. Knowledge of
VBA isnot required for developing a database in Access and using Access wizards
makes development of a database smpler.

Because MS Accessis ardational database, it makes use of SQL (Structured
Query Language) for its data definition language (DDL) and data manipulation language
(DML), athough it isa particular dialect of SQL called Access SQL. An example of

SQL isfound in chapter 5.3.2 and in Figure 6.3.
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Figure5.1  View of the Database Window in MS Access. Database objects appear in
the | eft portion of window. Objects stored in the database file are displayed in the right
portion of the Database Window.
5.2  Database Tables

Several tables contain the data that make up AARDB. Below isacomprehensive
list of the base tables and brief descriptions of their purpose. When browsing the

database (using Appendix 11) it may be useful to refer to thislist to understand the

reasoning behind the database structure.
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tblL ocation

This table contains sampling siteinformation. Information includes geographic
identifier (UDAMYS), an informal name of site and positional information, which includes
latitude and longitude (decimal degrees) aswell as elevation (from MSL). Horizontal
datum and vertical datum are also specified.

thlSamplingL og

This table describes important positional information that is used to calculate
elevation of samples and maximum depths of cores. Thisincludes start of sampling
position (i.e., top or bottom of section), length of measured section, thickness of
overburden not considered part of a measured section and an ocean tide factor. Records
in thistable are identified by alocation’ s informal hame aong with any section name.

thl SampleCallection

Specifies sample callection detail s including the sampling type (e.g., surface,
inland cores, offshore cores, excavation/exposure, etc.) collection 1D and the sampling
interval in meters. Thistableis represents the act of sampling as well as the collection
object itsdf. Therefore, both sample bags with multiple shells and single shell
collections are represented in thistable.
thlSample

Thistable holds information describing particular samples. Thisincludes sample
ID, which is usually an appended version of callection 1D, and sample type (normally

sample genus). All fidd notes about an individual sample are recorded in thistable.
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tbl SubSample

Sub-samples that are created from a sample (or a sub-sample) arerecorded in this
table and described by a unique identifier. The creation date, position where sub-sample
was collected, and any related literature references are stored in this table.

thl SubSamplingProcedure

This table describes the purpose of creating a sub-sample, whether for
chromatographic analysis or another analysis. Fieldsinclude a procedure identifier, brief
description of procedure, aswell asthe fraction to be analyzed (e.g., total or free amino
acid content).

tbl AnalysisProcedure

Describes the method of analysis used to obtain results from sub-samples.
Includes method identifier, laboratory performing the procedure, accuracy limits of
analysis method as well as the units measured for the particular analyss.
tbl Laboratory

Contains reference information of the laboratory that created a sub-sample and/or
performed an analysis. Information includes lab name, address and contact person.

tblChromatogram

This table contains information describing chromatograms that result from
chromatographic analysis of sub-samplesfrom UDAL. Chromatograms are described by
the date of analysis, the method used for analysis (e.g., Gas Chromatography or High

Pressure Liquid Chromatography) and the analysis device sinternal run number.



tblDL Ratio

Thistable stores the calculated D/L ratios for amino acids, asinterpreted from a
chromatogram. Distinction is made for ratios calculated from chromatogram peak areas
or heights. Raw amino acid abundance is currently not stored in this database.
tbl OtherResult

Thistable contains finalized results of various types of analyses other than those
that produce chromatograms from UDAL. Thisincludes radiometric and isotopic data
performed on samples collected by UDAL. Although this table stores somewhat of a
hodgepodge of data, AARDB’ s conceptual design allows for later partitioning of these
data as separate entities (see Appendix 1). Currently, chromatographic data for which no
chromatograms were recorded in the database (e.g., data from students theses or
dissertations) are also included in this table.

tbl TaphonomicCharacter

Within this table taphonomic characteristics of samples are recorded for severa
taphonomic parameters. Currently taphonomic parameters are characteristics described
in Kowalewski et al. (1995).
tblimage

All sample or sample callection (i.e., sSingle or group) image names are stored
within the database. Only the image names are stored to alow for the DBMSto retrieve
images even if the image path varies. Images are stored separately in afolder within the

same directory as the database file.
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thl I nterpretativeResul t

Thistable includes any results of analysis that are not measured values but
interpretations of other results (e.g., aminozone designations). The information contained
in this table may duplicate information that can be retrieved from any related literature
reference such as from an appendix of a student’ sthesis or dissertation.

thlLookupTable

This table contains parameters used by several tablesto restrict the data input
choices of theuser. The table consists of three attributes; Choice, which holds parameter
values, Category, which identifies the type of parameter, and an attribute for a brief
description of the parameter. These choices appear as a drop-down menu on forms or the
table themsaves. All parameter choices are stored in thistable in order to maintain
referential integrity of some non-key attributes and to simplify database programming.
tbl Reference

Thistable stores any literature reference where sub-sample analysis results were
published. Several references can be stored for an individual sample or many samples
can correspond to a particular reference.

ThbIProject

Currently, no information is stored in thistable but is available for futureuse. A
project name and contact information are recorded here. Information in this table would
be related to site location information, where several site locations may exist for one

project.
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DataDictionary

Thisiswhere the database metadata is stored. All attribute names along with
their table name, data type and description are recorded in thistable. Thistableis useful
as documentation of the database. Currently, thistable must be updated manually.

thl Sampl eColl ectionlnfo and thl SampleCollectionT apho

These two tables contain information on shell samples of a collection from beach
transect surveys. Taphonomic characteritic data on these shells are maintained in this
way because these data are currently not duplicated by thl TaphonomicCharacter.

5.3  Database Structure

5.3.1 CoreTables

Therelational schema for this database is presented in Figure 5.3. To view the
database schemain Access, one can choose the Rel ationships button on the Database tool
bar (Figure 5.2) or go to Tools/Relationshipsin the Menu bar (Figure 5.2) (see Appendix
I1). The schema represents the conceptual organization of the database tables. If the
tables are properly normalized (refer to Principles of Database Development chapter)
than practically any data selection scenario can be achieved through the table
relationships.

Several tables make up AARDB and numerous rel ationships are established
between tables. Several branching tables are not shown in Figure 5.3 as only the core
tables and their relationships are exhibited. Thereader isreferred to Appendix 1V to

view the complete table relationship structure of AARDB.

57



AARDB

JEiIe Edit Miew Insert | Tools ‘Window Help

D@ &R ¥ owdling..  F7
fe—]

s= aardb : Databa Cnline Collaboration *
open e Design 2 ﬂ Relationships. ..

analyze
Objects | | Diescripkion
| Database Lklkies  F liew
| Security F lioard
gl Oleries
E | Skarkup... h data
BH  Forms
Cuskomize. ..
RRihe Dpkions...
a Fages o
T ™ e e )

Figure5.2  Screen capture displaying how to view table reationships, either by using
the menu option Tools/Reationships... or by choosing the table relationship symbol on
the database toolbar (circled in the figure).

Figure 5.3 exhibits the referential integrity constraints of the core database tables.
The database schemaiis set up such that parent to child relationships flow from left to
right. Each parent table exhibitsa 1:N relationship with its child and one can follow the
schema order from a sampling site location to sub-sample results (Figure 5.3). At
tbl SubSampl e the schema forks, where the child entities of thl SubSample are both
tbl Chromatogram and thl OtherResult (Figure 5.3). From thlChromatogram, AAR D/L

ratios are stored in table thi DL Ratio.
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Figure5.3  Tablerdationshipswindow in MS Access. Only core tables of AARDB
are shown with referential integrity designated by joining lines. 1 and the infinity symbol
designate cardinality ratio for 1:N relationships.
Two methods tables that reference procedures performed on sub-samples are also
apart of the database schema. They are thl SubSamplingProcedure and
tbl AnalysisProcedure and the distinction between them is evident from their participation
in table relationships (Figure 5.3). One table contains information regarding the sub-
sampling process (e.g., the laboratory responsible), while the other table
(tbl AnalysisProcedure) stores information pertaining to the actual analysis method used.
The logic behind the database design is easily understood from the relationship
schema. At a particular sampling site, the spatial coordinates are recorded (i.e., latitude,
longitude and e evation) and designated a unique geographic identifier (UDAMS). Next,
sampling information for that siteis recorded including the name of the collector, the
type of sampling (i.e., whether a core, surface sample, etc.), and the sasmpled interval of
the collected sample. Then specifics of individual samplesincluding the genus of the

sample (SampleType) are recorded for each collection made. Subsequently in thelab, as
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samples are cut and sub-samples created, unique identifiers are given for each sub-sample
and pertinent sub-sampling information is also recorded (e.g., position where sub-sample
was taken). As sub-samples are analyzed, whether by UDAL or another laboratory, these
data are recorded as AAR D/L ratios or other results such as radiometric ages. These
results are relatable to specific sub-samples or to a particular mollusk sample, which
allows results of several analyses to be compiled for sampling sites.

5.3.2 Minor Tables

Besides the core tables presented above, the database al so contains minor tables,
that is, tablesthat are called less frequently for standard database queries executed in
AARDB. Nonetheless, these minor tables are still base relations and contain normalized
raw data.

Figure 5.4 shows AARDB table relationships with tblSamplingLog and its N:1
relationship with tblLocation. Information stored in thlSamplinglLog is used to calibrate
the elevation of collected sasmplesfor a particular Ste. Each site location can have a
surface elevation stored in the database (tbl Location) but for samples collected at depth
calculations need to be made to determine a sampl€e' s elevation.

For a collection event, the sampling interval in metersisrecorded in
tblCollectSample. However, a sampled interval is arelative measure, generally from the
top of a measured section, so this value must be subtracted from the site’ s surface
elevation to calculate sample elevation. Sometimes further information is needed to
obtain a sample eevation such as atide correction (tbl SamplingLog) for samples

collected offshore.
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A data select query can contain a smple algorithm to subtract the necessary
factors in tblCollectSample and thl SamplingLog from a sit€' s surface elevation to
calculate the devation of particular samples. For example, for samples collected at
depth, the SQL agorithm to retrieve sample e evation would look like the following:

SELECT [tblLocation.SurfaceElevation_m] —
[ tbl SamplingLog.OverBurdenThickness m| — [ tblCollectSample.Sampledinterval Top_m]
AS SmplElev FROM . . .

In the SQL sdlection above, each factor found in tblSamplingLog is subtracted
from the surface elevation recorded in tblLocation. SmplElev isthe name assigned to the
new attribute calculated from the query. Alternatively, if arecord does not exist in
tblSamplingLog, a particular sampl€ s eevation would smply be calculated by

subtracting the sampled interval from the surface elevation.
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Figure5.4  Minor tables and their relationship with thblLocation and thl Sample.
Important spatial information is recorded in thl SamplingLog, while thlInterpretiveResult
contains interpretive information on samples such as aminozone designation or geologic
unit.

Another aspect of AARDB isthe collection of physical characteristic data for
each archived mollusk sample. At present, over 1,200 individual Mercenaria and
numerous Mercenaria collections have been characterized with taphonomic attributes
such as abrasion, fragmentation and color. Thisinformation, especially when coupled

with geochronologic data such as AAR ratios or radiometric ages, could be useful for

taphonomic studies of macrofossils along the Atlantic Coastal Plain.
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The database includes thl TaphonomicCharacter that records taphonomic
characterigtics for individual samples (Figure5.5). Alsoincluded are taphonomic
characteristics for entire shell collections amassed from beach transects,
tbl Sampl eCollectioninfo and thl SampleCollectionTapho. The latter two tables record
collection totals for a particular taphonomic characteristic. Of course, totals for specific
characteristics can be calculated from tbl TaphonomicCharacter (see section 6.2.4) but
tbl SampleCollectionTapho represents a large dataset that is currently not duplicated in
tbl TaphonomicCharacter and so is maintained in the database.

Images of many individual shells and shell collections are also stored in the
database for viewing. Table tbllmages records the image file name for a collection or
individual sample (Figure 5.5). These images can be called from the database or viewed
through user formswithin MS Access.

A number of table relationships exist at the sub-sample level because several
aspects of the database are expressed at the sub-sample levd (e.g., sub-sampling
procedures and analysis results). Figure 5.6 shows how these relationships are structured
within the database.

Often sub-samples can be generated from other sub-samples. To account for this
arecursive relationship needs to be established within thl SubSample such that the
precursor and its progeny are recorded and relatable. In Figure 5.6 thistable is shown as
a copy of tbl SubSample (tbl SubSample 1) with a 1:N relationship with tbl SubSample.
That is, for every sub-samplein thl SubSample, unlimited sub-samples can be created and

stored. Thisis often the case when a sub-sampleis analyzed using several methods.
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Keeping track of numerous analyses and sub-analyses is made smple by relating a sub-

sample with its precursor (Suckow and Ingolf, 2001) (Figure 5.6).
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Figure5.5  TablethlCallection and thlSample 1:N re ationships with thlimage and
tbl TaphonomicCharacter. Digital images exist for both sample collections and individual
samples.
54  AARDB User Interface

5.4.1 Enteringthe AARDB

On entering the database, the user is confronted with a switchboard and two
options, Data Select or Data Input (Figure 5.7). Thisform helpsto simplify usage of
AARDB by constraining the user’s main tasks, either querying the database or

performing data entry. More experienced MS Access users can still browse through

database objects by opening Access' s Database Window (Figure 5.7).
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Figure57 AARDB Main Switchboard. Two options are given to the user, Data
Select or Data Input. Experienced MS Access users can navigate through the main
Database Window as well as shown in the figure.
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5.4.2 Using Data Input Forms

Choosing the Data Input option on the main switchboard will open up an input
forms switchboard to the right of the screen (Figure 5.8). This toolbar makes use of
toggle buttons to open or close data entry forms. The mgjority of data entry operations

are possi ble by the options presented on this toolbar (Figure 5.8).
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Figure5.8  Dataentry forms. Switchboard on right allows the user to choose the data
input form. The Locations button is depressed and brings up the site location form that is
linked to thlLocation. Also available through this form isthe option to edit datain
tbl SamplingLog.

Figure 5.8 shows a screen capture of some data input forms opened for data entry
or browsing. The input forms switchboard to the right of the screen shows that the

Locations button is depressed, opening the Location form. Thisform islinked to

tblLocation and is used to browse, edit or update datain thistable. Also shown in Figure
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5.8, the Location form is coupled to aform that is linked to thlSamplingLog. So that for
a selected record in Location, the corresponding information in thl SamplingLog can be
edited or displayed (Figure 5.8).

Datainput forms are designed to aid the user entering data into the database.
Because there are many tables existing in arelational database, it may not be apparent to
the average user where information should be recorded, even though areationa designis
said to beintuitive. Therefore, it is suggested to use the data input forms for entering
datainstead of directly through the database tables. Furthermore, data entry restrictions
that cannot be enforced by database integrity constraints are possible by coding these
restrictionsin aform.

5.4.3 Queryingthe Database

Database queries retrieve data as specified by the user. They also represent
database views, which are representations of the database but cannot be updated as if one
were browsing the database tables. Queries can be formulated to bring up very specific
information and so can be quite complex, including various rel ationships between
numerous tables.

To query AARDB, the standard query design interface in Accessis useful for
most queries (Figure 5.9). Access also has query-building wizards to aid the less
experienced user. For users more comfortable with SQL, MS Access has an SQL View

to formulate queries (Figure 5.9).
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Figure59  Designing aquery in MS Access. Creating a query in design view entails
adding tables of interest (circled in black) to the design window and then dragging an
attribute of interest to the Field editor. Creating a query using SQL is possible by aright
mouse click on the design window, which brings up an options menu.

Besides the normal database tools provided in Access, several user-friendly forms
have been created to aid the user in retrieving data from AARDB. On choosing Data
Select from the main switchboard (Figure 5.6) new options are presented to the user
(Figure 5.10). These options open up forms to help the user browse or query the
database. For example, the Main Parameter Query option opens up aform with multiple
controls to specify query parameters (Figure 5.11). The user can fill in these controls
with the desired constraints or leave them blank, signifying no constraints. Controls are

ordered smilar to how the data exists in the database (Figure 5.11).
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The Main Parameter Query is based on a stored query in AARDB that calcul ates
mean D/L ratios for amino acids (stored as vtblAARMeanRatios Crosstab). Specifying
desired parameters off of a stored query cuts down on the query execution time and
simplifies the background Visual Basic coding necessary to execute the query. However,
the user can still choose to add options to their query such as cal culating sample e evation
or retrieving radiometric and taphonomic data. These extra options combine the stored
mean D/L ratios query with the base relations, thl SamplingLog, thlOtherResult and
tbl TaphonomicCharacter, respectively. Another option, including standard deviations of
D/L ratios, builds off of a different stored query, vtbl AARMeanRatios.

Similar to Mean Parameter Query, Raw D/L Ratio Query (Figure 5.10) brings up
aform that can retrieve raw D/L ratios and laboratory notes from the database. Controls
on thisform are used to constrain or ignore parameters for the query.

All formulated queries can be saved in the database by means of the File menu/
Save As... option. Stored queries or database tables can either be opened from the List
Queries and Tables option (Figure 5.12) on the Data Select switchboard (Figure 5.10) or
through the List Saved Queries button on some forms (e.g., Figure 5.11). Because the
SQL statement is only saved, the database view opened from a query always displays the
most current data. Therefore, saved queries would represent the most commonly
executed inquiries of the database.

5.4.4 DataAnalysis
Several data analysis options are provided in MS Access. Access allows you to create
reports with graphs and charts for queried data, although, the functionality of these

featuresislimited. Another option would be to export data to other data analysis
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software. Access allows the user to export a query to other Microsoft® Office products
through the Tools menu/ Office Links option or data can be shared between software

applications through an ODBC connection.

B Switchboard Data Select

University of Delaware AAR

Database

Main Parameter List (Jueries and
Query — Tables
Raw DfL. Ratio View and Search
= Query — Images
| Main Board Discriminant Function
— Query

Figure5.10 Thisfigures shows the Data Select switchboard and the options available
tothe user. Currently, two user-friendly forms are available to devel op a database query
(Main Parameter Query and Raw D/L Ratio Query) and other forms for browsing
AARDB. Discriminant Function Query isaform set up to query AAR records
specifically for analysisin a preset Microsoft® Excel worksheet as an example of
Automation.
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Figure5.11 Main parameter query giving the user the option to query the database by
filling in the form with the desired constraints. The figure displays the option to retrieve
general D/L datistics (mean, standard deviation and number of analysis for a sub-

sample). Most data querying tasksin AARDB can be accomplished through this form.
However, more complex querying may require building a query in MS Access' built-in

query builder.
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Figure5.12 List Queries and Tables option on the Data Sdlect switchboard brings up a
sdlection form that shows query and table objectsin AARDB.

Data analysis options presented in this thesis are reserved for the next chapter. In
this section data export and analysis are performed in Microsoft® Excel and ESRI’s
ArcGIS® through automation. Automation allows MS Access to use objects in other
software (or vice versa) viaa common language, VBA, to perform data analysis tasks.
The Discriminant Function Query option in the Data Select switchboard (Figure 5.10) is
an example of automating data export from Access and analyzing the data in Microsoft®

Excd.
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CHAPTER 6
CASE STUDY: STATISTICAL AND SPATIAL TREATMENT OF DATA
6.1 Introduction

This section applies the functionality of AARDB to studying the
aminostratigraphy of the northeastern portion of coastal North Carolina (Figure 1.2).
Work is currently underway by the Coastal Carolina Project to characterize the
framework geology of the Outer Banks barrier idand-estuarine system. A combination
of geophysical, geochemical litho- and bio-stratigraphic tools has been utilized in order to
develop aregiona Quaternary sealeve/climate history (Thider et al., 2003). We can
take advantage of the abundant AAR analyses from this region by using advanced
visualization techniques for examining aminostratigraphic results.

This chapter can be read while referencing Appendix 1V, the CD included with
thisdocument. The CD includes a“readmehtm” file that detail s software and memory
requirements as well asingtallation ingtructions. Other filesincluded in Appendix 1V are
the database file (aardb.mdb), as well as other spreadsheet and GIS files used for the
demonstrations described here. Examples of data retrieval and manipulation are
presented using available data sharing methods such as ODBC and automation through

VBA.
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6.2 Gathering the Data

6.2.1 Overview

Most of the pertinent data can be retrieved from the database by usng the Main
Parameter Query from the Data Select switchboard (Figure 5.11). The constraints of our
query are based on our geographic region of interest, the type of samples (i.e., genus) and
the types of analysisresults we are interested in. These points are summarized below as
the input in the Main Parameter Query form.
All stesin the database within northeastern NC
All subsurface and surface sampling types.
All Mercenaria sample types.
All AAR mean D/L ratios, radiocarbon and taphonomic results.

Only GC analysis method for total amino acid fraction.
Exclude results that represent sub-samples of a sub-sample.

NN INIDN

6.2.2 Geographic and Sample Parameters

A latitudinal range of approximately 35.0° N to 36.6° N will constrain the
sampling sites for theregion of interest. Then, choosing Inland Core, Offshore Core,
Surface and Excavation/Exposure from the Sampling Type drop-down selection boxes
satisfies the type of samplings constraint. We can also specify the genus Mercenaria
from the Sample Type drop-down selection box for our query.

Besides AAR analyses, we want to include radiometric results for the region.
Currently only radiocarbon analyses are recorded in the database and checking on the
Include Other Results option (Figure 5.11) allows our query to also draw from this
dataset. We do not want to restrict our query further by checking the “Only 14C
Records,” asthiswould only retrieve AAR records that have corresponding radiocarbon
analyses.
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6.2.3 Sub-sample and Method Parameters

Sub-samples recorded in AARDB are either created from samples or from other
sub-samples. To date, the only sub-samples created from other sub-samples recorded in
the database are from ILC standards (which we are not considering for our query) and for
repeat GC analysis with methanol treated derivatives. The methanol treated sub-samples
that come up in our query should be removed because they represent repeat values for the
same AAR derivative and are not significantly different from their non-methanol treated
precursors. A SubSamplel D appended with an “ m” identifies the methanol treated
derivatives. These unwanted sub-samples could either be removed from our query by
specifying the No Precursors option for sub-sample data (Figure 5.11) or by typing an
“m’ inthe Not text box for SubSamplel D selection (Figure 5.11).

Further constraints for AAR data involve specifying the analysis method used for
deriving D/L amino acid ratios. GC analysis method, Total AA (amino acid) fraction,
and Arearatio type should be selected using the list boxes within the AAR Lab Data
section of Main Parameter Query (Figure 5.11).

Clicking on the Run Query button in the lower portion of the Main Parameter
Query form (Figure 5.11) executes our query, thereby retrieving results based on our
specifications. Theresults of our query are automatically saved in the database under the
name “ResultQuery;” however, this query is overwritten every time anew query is
executed from the Main Parameter Query form. The specifications of this query have
also been saved as NENCResultsin the stored queries of Appendix V.

Accessing this query from outside MS Access is possible through an established

ODBC connection. The steps necessary to set up an ODBC connection are described in
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Appendix I1, “Setting up an ODBC Connection to Your Data.” With this connection we
can later retrieve data from GI S software and display the records in our GIS project as
current data.

6.2.4 Taphonomic Characteristic Data

Inclusion of taphonomic data could also be useful in our study. The combination
of chronological and taphonomic data can bring insight to the distribution of fossil shell
material on coastal plain beaches (Wehmiller et al., 2003). In particular, for Mercenaria
shells, dark color isagood indicator of shell age (i.e., whether Holocene or Pleistocene)
(Wehmiller et al., 1995; Bart, 2001). However, for our purposesit will not be too useful
to gather taphonomic data for individual beach samples (currently taphonomic data are
only recorded for Mercenaria samples collected from beaches). Instead we need to draw
these data by building a new query in MS Access that will give ustallies of taphonomic
attributes for beach transect collections.

To do this, we will need to sdlect taphonomic characteristics for sample
collections (rather than samples) from tbl TaphonomicCharacter. 1n addition, some
pertinent records are stored in tbl SampleCollectionTapho as totals of taphonomic
parameters for beach transect collections. We want to convert the recordsin
tbl TaphonomicCharacter into tallies of taphonomic parameters to match the data in
tbl SampleCallectionTapho. Then the records from these two tables can be combined into
asingle database view. Building this specia query isamulti-step processand is
illustrated here by using MS Access query design options and SQL code.

First we must build two queries from the Design view option (Database Window-

Queries-Create query in Design view) (see Figure 5.1 for the Database Window). The
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first query should be designed using tabl e thl TaphonomicCharacter as the source data
(see Chapter 5.4.3 for instructions on building a query in design view). Add the
CollectionlD, Characteristic and Value data fields.

Next, the records are to be converted to totals for each value (i.e., Black, Gray,
Orange, etc.) of ataphonomic parameter (i.e., Color, Abrasion, Percent Shell). Todo
this, we need to specify a GROUP BY clause for the query. Instead of writing thisout in
SQL, aquick Design view trick isright-click the computer mouse with the cursor over
the table window of the query Design view (Figure 6.1). Change the query typeto
Crosstab Query, then bring up the same menu and change the query type to a Select
Query again (Figure 6.1). Thiscausesthe Tota option in the Field editor window to
appear (Figure 6.2). With this option we can specify that the records be grouped by
Collectionl D, then by Characteristic and then by Value. This causes each value of a
taphonomic characteristic for a sample collection to represent a unique record in the
view. Adding the Vauefidd tothefield editor a second time and specifying a COUNT
function for that field generates the totals for each value (Figure 6.5). This query should

then be saved (File/Save As...) and given aname.
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Figure6.1  Screen capture showing the right mouse click menu of the Design query
window.

The second step involves combining the query made in the first step with data
from tbl SampleCollectionTapho. Recordsin tblSampleCollectionTapho are already in
the taphonomic characteristic, value and totals format similar to our first query. The data
in our first query and thlSampleCallectionTapho must contain the same attribute types
and have them in the same order to perform a combination or UNION query. However, a
UNION query must be donein the SQL View, accessed through the new query Design
view. The SQL code to perform the necessary UNION query is shown in Figure 6.3.

This new query is then saved and given a name.
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Figure6.2  Thisscreen capture representsthe first step in creating a UNION query for

gathering all taphonomic data stored in AARDB. The Total clause should be set to
GROUP BY for each grouping attribute, with the repeated Value attribute subject to an
aggregate function.

The third and final step of this process assigns the regional and sample constraints
to the records of our taphonomic data query and reformats the data to a spreadsheet-like
form. Design anew query using the query Design view and add the tables thlL ocation,
tbl CollectSample and the query from step two (TaphoUNION in the example of Figure
6.3). Next we should add the attributes we are interested in, such as UDAMS, Lat, Long
and all the attributes from the UNION query. Now we can specify the latitudinal range
for our region of interest by typing in the constraint in the Criteria section of the field
editor (Figure 6.4). To smplify the amount of data to work with, the Characteristic field
of the query can be constrained to only giving “Color” records (Figure 6.4).

When thisfinal query is executed all sample collection totals of taphonomic

characteristics are retrieved from the database. The constraints specified above limit the
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data to just theregion of interest. These records can be brought into spreadsheet software
for further analysis or accessed by a GIS for spatial display of mollusk taphonomy for the

Atlantic Coagtal Plain.

&8 TaphoUNION : Union Query S[=] E3

SELECT TaphoStepl. CollectionIl, -
TaphoStepl.Characteristic,

TaphoStepl.Value,

TaphoStepl. CountOfYalue

FROM Taphostepl

LIMICON

SELECT thiSampleCallectionTapho, SampleBag,
FblSampleCollectionTapho, TaphoParameter,
kblSampleCollectionTapho. Paramialue,

FblSampleColleckionTapho, Tokal

FROM EblSampleCollectionTapho;

Figure6.3  SQL View showing the SQL syntax to perform a UNION on thefirst two
queries created in this section (TaphoStepl and TaphoStep2).
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Figure6.4  Query Design view for final step in taphonomic character totals. Notice
the Latitude and Characteristic fields contain constraints to restrict the query.
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6.2.5 Spreadsheet Analysis

There are several options for analyzing the data in our database. MS Access
comes equipped with the ability to calculate smple aggregate functions and generate
simple graphs. However for more robust analyses, it is necessary to use spreadshest
software such as Microsoft® Excel. Sharing data with other software in the Windows®
environment can be done several ways, including cutting/pasting records, ODBC, data
Import/Export options and through Automation via a host programming language. One
example of Automation through VBA is presented in aardb.mdb using the Discriminant
Function Query form available from the Data Select switchboard (Figure 5.10).

The Microsoft® Exce spreadsheet (DiscrimFunction.xls) in Appendix 1V (the
included CD) has stored functions to calculate a discriminate score for each AAR GC
analysis imported from the Discriminant Function Query form. The query congtraints
would be the same as above, though we can also add that the query only retrieve records
with a specific D/L valuerange. Thisisthe way we narrow down the records to apply
the discriminant analysis for alater join of all pertinent recordsin our GIS. Executing the
Run button on the Discriminant Function Query form gueries the database and
automatically opens up the Excel spreadsheet and updates the table and graphs.

Discriminant scores for two different functions are included in the spreadsheet
and are calculated by using the raw coefficients for Alanine, Glutamic Acid, Leucine,
Phenylalanine (DScr4-Val) and Valine (DScr5), derived from the discriminant analysis
(see Chapter 3). These two discriminant score cal culations were chosen based on results
of the test sample analysis (Appendix Il) and for flexibility in analyzing samples without

Valine resolved.
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Once therecords of interest are in the Excel spreadshest, the discriminant scores
of these analyses can be shared with other software through an established ODBC
connection (see Appendix I1). Therefore, we can retrieve thisinformation from our GIS
project as with data from AARDB, as a database source.

6.3 Data Exhibiticn and AnalysisUsinga GIS

6.3.1 Setting Up the Map

Now that the pertinent data are prepared, we can access the data through a GIS for
gpatial examination. As part of Appendix IV, an ArcGIS® version 8.3 project file
(SiteMap.mxd) isincluded with a general map of the northeast North Carolinaregion. In
addition, all solitary data tables, grids and digital line graphs (DLG) exhibited in this
work are also available within the folder \AAR_Database\MyGI S of Appendix 1V. A
basic knowledge of ArcGIS® software is helpful for the remainder of this chapter,
although basic instructions are provided in the text.

Figure 6.5 shows a screen capture of an opened ArcMap™ document with
pertinent data already added. The content window in the left part of the view presents the
datalayers and tables available for display. Database views and tables are brought into
our project through the Add Data button on the AARDB Toolbar (Figure 6.5) or through
the File menu option and then specifying database connection as the source.

Geographic data can be plotted from data tables as specified for ArcGIS®
ArcMap™, however, the Add ResultQuery button (gray button) on the AARDB T ool bar
(Figure 6.5) automates import of the ResultQuery records we created earlier and plots
sampling Stes as an event theme. Once these data have been plotted on our map, we can

join these data with records brought in from DiscrimFunction.xls (NENCDiscrim ODBC
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Figure6.5  Screen capture of a GIS site map with specialized toolbar (AARDB
Toolbar). Thefilefrom which this figure was taken isincluded as
\AAR_Database\MyGI S\SiteMap.mxd in Appendix IV.

data source) or any other source based on identical attributes. For AAR analysis records,
joining the data sets entails matching up SubSamplel D from both data sets. If ajoinis
specified for the ResultQuery data set, then data from the joined table will be displayed
for any records corresponding in ResultQuery.

Further data manipulation may be necessary as one considers pertinent
information for spatial analysis. ArcMap™ allows usersto filter datatablesusing a
query building graphical interface that employs SQL commands (Figure 6.6). Filtering
refines the data set based on a definition query such that the original source query is not

affected. However, analyses performed within ArcMap™ only consider filtered records.
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Figure6.6  Screen capture of query builder in ArcMap™. SQL commands are
utilized to specify a WHERE clause for filtering the desired records.

6.3.2 Spatial Analysisof Data

6.3.2.1Presentation in 2D

Studies have been done looking at the occurrence of Pleistocene shell material
washing up on modern beaches (e.g., Wehmiller et al., 1995; Bart, 2001). Itisalso
hypothesized by Wehmiller et al. (1995) that the ages of beach shells might be used as
tracers of the coastal processes where subsurface chronostratigraphy is known. Besides
relative ages determined from AAR analyses, taphonomic characteristics have also given
cluesto the age of shells washing up onto beaches (Wehmiller et al., 1995). To study
these concepts, we can examine distributions of D/L values and shell taphonomic

characteristics for reworked mollusks within our region using different spatial and
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satistical toolswithin ArcMap™. We can look at surface samples from AARDB for two-
dimensional examination.

Using the definition query option for our ResultQuery, we can select records
where the SamplingType attribute is equal to “Surface.” Because several analyses are
represented for a particular sampling site, we need to look at the distribution of D/L
values (Leucine) for all of our sites of interest. These sites can be portrayed in several
ways using the Symbology tab of the layer propertiesin ArcMap™. With the Explore
Data option on the AARDB Toolbar (Figure 6.5) we can also make use of exploratory
statistical methods for examining attributes of these beach samples.

Displayed in Figure 6.7 are surface sampling sites where we find Mercenaria with
determined D/L Leucinevalues. Each siteisrepresented by a gradational symbol based
on the D/L Leucine value of a particular record. The histogram in Figure 6.7 shows the
distribution of D/L values from sites along the Outer Banks. In the figure, the Leucine
ratio bin of 0.34 to 0.395 is highlighted to show the location of these particular samples.
Thisratio range is sgnificant because it represents at least alast interglacial age,
approximately 70 to 120 ka, based on a U-series coral date from Stetson Pit (Szabo,
1985; York et al., 1989; Riggs et al., 1992). Theselast interglacial age shells are found
along Hatteras Idand at Rodanthe, Avon and along the southern shore of Cape Hatteras
(Figure 6.7). Asto be expected for a modern beach, Holocene shells are distributed
throughout all of the sites. Moreover, the north most site, Currituck beach, contain only

Holocene age shélls.

85



Histogram

Currituck Transformation: Kone

o
12 175 23 285 34 295 45 &05 85 615 67
Daa-10

Count 110 Skewness - 0.01453

M - 012034 | Kurtosis - 1.9624

Max : 06619 |1-st Ouartile - 019665
36655 | Median -0

Mean -0 5
Std Dev. : 0.15148| 3Hd Quartile - 0.49068

Legend

MENC Surface Sites
Leucine

e 012-022

@& 022-048

@ oss-oss

[ HE Marth Caraling

Rodanthe

u] 3 g 12 Miles
IS RS I —

Cape Hatteras
Frizco Beach

_

Figure6.7  Frequency distribution of D/L Leucine values for Mercenaria surface
samples. The histogram shows the distribution of D/L values (i.e., relative ages) for
surface samples collected along the shore. The highlighted samples correspond to the
highlighted D/L Leucine bin in the histogram.
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If we consider the pattern of taphonomic characteristics, in particular color, for
these sites, we can get a good picture of the distribution of reworked Pleistocene shells
along our sites of interest. Figure 6.8 shows an interpolated map (inverse distance
weighting method) of dark shell color for shells collected from beach transects. The
interpolated grid was generated from the NENCT apho data set created from our UNION
query (see above). Interpolation parameters were determined using the Geostastical
Wizard on the AARDB Toolbar (Figure 6.5), interpolating percent of totals for the sum
of black and gray colored shells.

A trend of increasing frequency of darker shellsis apparent from north to south
along Hatteras Idand. Dark color is significant because all Pleistocene age Mercenaria
shells analyzed by UDAL from coastal North Carolina beaches exhibit a dark gray color
(Wehmiller pers. comm., 2003). This pattern corresponds well with the distribution of
higher D/L values (i.e., older) we find for these southern most sites (Figure 6.7). The
trend exhibited in Figure 6.8 also suggests the age of the sediment source just offshore of

these beach collection sites.
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Figure6.8 IDW interpolation grid of dark colored Mercenaria shells along Hatteras
Idand. The frequency of dark shells (i.e., pre-Holocene shells) increases from north to
south along beach transects. Numbers adjacent sites represent the number of collected
shdlls.
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Aswith surface samples, we can generate exploratory statistics for ResultQuery
samples with an eevation component. While examining these data would work best in
three dimensions, exploratory statistics can identify patterns worth investigating further.
Figure 6.9 shows the results of creating a histogram for only Inland Core, Offshore Core,
Excavation/Exposure and Underwater Grab samples of ResultQuery. The frequency
pattern issimilar to that shown for the surface samplesin Figure 6.7. Not surprisingly,
what is preserved in the subsurface geologic record of a dynamic coastal system isalso
represented by what is washed up on shore. However, considerably fewer Holocene
shells are represented at depth. Therefore, the median D/L Leucine value for samples at
depth is greater than for surface samples (0.43 compared with 0.38).

By clicking on the bars of the histogram, we can highlight sasmples exhibiting a
certain range of D/L Leucine. Figure 6.9 highlights sampling sites with Leucine values
within a Pleistocene peak (approximate D/L Leucine range of 0.25 to 0.55). Considering
the resolution of the AAR method this D/L range is very broad and it islikely that several
significant aminozones are represented by this distribution. Unfortunately, any supposed
aminozones are undifferentiated by ssmple exploratory methods. Nonetheless, it is useful
to note the geographic distribution for this D/L Leucine range within the region (Figure

6.9).
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Figure6.9 A histogram for subsurface and excavation/exposure samples. Peaks
smilar to those exhibited for the surface samples are present within the subsurface.
Histogram bins that are highlighted represent late Pleistocene samples with their sample
locations also highlighted on the map. The histogram represents the frequency of
particular D/L Leucine bins from about 0.05 to 0.89. Exploratory statistics were
generated from only the highlighted samples.
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6.3.2.2 Presentation in 3D

Because geol ogic data often have an elevation or depth component, it ismore
helpful to view the data with three-dimensional software. GIS software has progressively
improved its rendering of 3D data and we can take advantage of this technology for
investigating aminostratigraphic results.

Figure 6.10 shows a screen capture of ArcScene™, athree-dimensional viewing
component of ArcGIS™. We can create three-dimensional GISfiles (e.g., a“shapefile’)
in ArcMap™ by using the “Features to 3D” option on the AARDB Toolbar (Figure 6.5).
Otherwise, most GISfiles or event themes can be exhibited in three dimensions when a
specific attribute is assigned for the Z value in the Base Heights tab of the layer’s
properties menu. We can also create grid files that represent an interpolated Z
component to depict in ArcScene™. Database views are imported into ArcScene™ the
same way aswith ArcMap™, viathe Add Data button (Figure 6.10). Interpolated maps
for this study were created using the Geostatistical Wizard in ArcMap™ and then
exported asagrid file.

Browsing sample pointsin three dimensions allows visualizing the absolute
positions of samples and the spatial distribution of D/L values. With available
radiocarbon analyses, D/L values and discriminant scores for AAR analyses with
ambiguous D/L values, we can portray athree-dimensiona distribution of
geochronological results for the subsurface of coastal northeast North Carolina. The
three-dimensional image portrayed in Figure 6.10 and available as 3DSiteMap.sdx in

Appendix 1V, show the distribution of Holocene and Plel stocene samples.
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Figure6.10 Screen capture of open ArcScene™ document with sample locations and
cores displayed for northeast North Carolina. Visualization tools include 3D labeling and
a Navigation toolbar for complete three-dimensional view rotation.

More sophisticated spatial analysisis also possible utilizing tools like the
Geodtatistical Wizard. For thiswork, spatial analysis was performed in ArcMap™ and
then visualized within ArcScene™ (see Appendix IV, \MyGIS\3DSiteM ap.sxd).

A surface representing late to mid-Ple stocene samples, according to
geochronologic estimates of York et al. (1989), is portrayed in Figure 6.11 along with
samplelocations. Thisinterpolated surface represents the e evations of samples that were
within highlighted D/L Leucine bins of the histogram in Figure 6.9. Surface validation

for the Pleistocene surface (Figure 6.11) isincluded in Appendix I11. An attempt was
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made to interpolate a Holocene surface but cross-correlation plots of the model exhibited
apoor fit of predicted data with measured data. An example of an interpolated Holocene
surface was nonetheless included with Appendix IV

(\AAR_Database\MyGI S\SiteMap.mxd).

Pleistocene headlands (i.e., subaerial headlands) are apparent on the north end of
the map at Stetson Pit (Dare Headland of Riggs et al., 1995) and as a gently doping
headland feature in the southern end of the map (Figure 6.11). Also apparent from Figure
6.11 are depressionsin the late Pleistocene surface that represent alack of Pleistocene
age shells collected from cores. The northernmost surface low corresponds with inlet-
filled channels described in Riggs et al. (1995), where Holocene samples are found as
much as 20 to 30 meters below MSL. The southern most low surrounds the OBX-11
core hole, for which no samples above —20 MSL have so far been analyzed. Therefore,
thislow may be an artifact of the interpolation method.

Another attempt at interpolating the values between sampling sites was made
from the D/L Leucine values of the same samples used to create the late Pleistocene
surface (Figure 6.11). The D/L Leucine surface was then draped over the late Pleistocene
surface for athree-dimensional context in ArcScene™. This surface represents the
interpolated distribution of D/L values as calculated with the IDW method. This model is
not presented here but can be viewed in Appendix IV
(\AAR_Database\MyGI S\3DSiteMap.sxd).

The spatial interpolations attempted here may prove to be a useful way to mode
antecedent surfaces based on aminostratigraphic data. The cross-correlation plot

(Appendix 111) of the late Pleistocene surface (Figure 6.11) shows good agreement with
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measured and predicted values. Cross-correlation plots for the D/L Leucine surface show
fair correlation, however, a plot of the resduals against measured val ues suggests some
heteroscedasticity of the data (Appendix I11). Artifacts of the interpolation method such
asisolated D/L value patches are also apparent (see Appendix IV,
\AAR_Database\MyGIS\SiteMap.mxd). Method parameters for these interpolated

surfaces are also included in Appendix I11.
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Figure6.11 Interpolated late Pleistocene surface created from the elevations of sample
locations with D/L Leucine values ranging from approximately 0.32 to 0.52. Subaerial
headland areas are apparent below Dare County (Stetson Pit), the north bank of
Albemarle Sound, and gently doping headland to the south near core MLD-01. A
Holocene valley-filled depression is apparent from northernmost depression in late
Pleistocene surface.
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CHAPTER 7
DISCUSSION AND CONCLUDING REMARKS
7.1  Statistically Assessing Aminozones
An important objective of AAR geochronologic studies of Atlantic Coastal Plain
stesis desgnating statistically distinct aminozones within the framework of 1ocal
stratigraphy. Several workers have successfully determined the significance of D/L ratio
clustersfor particular coastal plain localities. For example Y ork (1990) performed

statistical t-test on Mulinia from Stetson Pit, North Carolina to differentiate three

Pleistocene D/L ratio clusters. Similarly, Corrado et al. (1986) and Harris (2000) have
explored statistically observable D/L ratio clusters for coastal plain sitesin South
Carolina. Such clusters, when considered with local stratigraphy can lead to reasonable
estimates of aminozones exhibited in an area (e.g., Harris, 2000).

In thiswork, we investigated a statistical method of differentiating between early
Holocene and |ate Plei stocene samples from the region using discriminant analysis
(Appendix I1). Besides overcoming the variability inherent with the AAR method as
discussed in Chapter 2, resolution of Quaternary coastal plain stratigraphy by
aminogtratigraphic means is complicated by another factor; thereis usualy little relative
differencein D/L values between early Holocene and late Pleistocene samples. Thisis
not only a natural consequence of racemization kinetics but also stems from colder

effective temperatures experienced by Pleistocene age shdls (Wehmiller et a., 2002).
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Furthermore, resolving Quaternary stratigraphy is challenging for Atlantic Coastal
Plain sites because preserved Pleistocene deposits are generally confined to a topographic
range of only 15 meters above sea level (Wehmiller and Miller, 2000). Consequently,
geochronologic resolution of the AAR method must often distinguish units with uncertain
stratigraphic control and with a paucity of samples representing the latest glacial period
in the region (Wehmiller and Miller, 2000).

In using discriminant analysis, we utilized a multivariate statistical method for
assigning areative age (Holocene or Pleistocene) to an analyzed sample that fell within
an ambiguous range of D/L values (see Figure 2.4). Application of discriminant analyss
to samples collected from the study region proved useful for these samples of uncertain
ages. For example, a Mercenaria sample, IW2003-156-004, near the top of the MLD-01
core (approximately 9 meters below MSL) gave a D/L Leucine value of 0.27, within the
ambiguous range displayed in Figure 2.4. The discriminant analysis classified this
sample, with a high probability, within the Pleistocene group (see Appendix 1V,
DiscrimFunction.xls). A radiocarbon analysis of a Mercenaria, JW2003-156-002,
collected from the same depth gave a result of >52,000 radiocarbon years. Furthermore,
a gastropod sample, IW2003-154, collected at about 3 meters below MSL and dated at
39,900 radiocarbon years helpsto confirm the late Pleistocene age assignment for the
Mercenaria sample IW2003-156-004.

The frequency distribution of D/L Leucine values for samplesin thisregion (see
histogram in Figure 6.9) highlight the necessity for applying more rigorous statistical
methods to differentiate aminozones. It may be possible to separate |ate Pleistocene D/L

clusters using methods like discriminant analysis. However, discriminant analyss
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depends on a priori knowledge of the relations between observations (Davis, 1986). So
the study region would have to exhibit good stratigraphic control in order to establish
before hand the characteristics of groups to be differentiated.

Furthermore, it may not be possible to resol ve these assumed clusters by
exploiting intrageneric differences. For instance, some researchers have commented on
the unreiability of Alanine for geochronologic analysis because it can be created from
the degradation of more complex amino acids (Miller and Brigham-Grette, 1989), and
gtill other amino acids have been shown to exhibit reversed racemization over time for
some genera (Kimber and Griffin, 1987).

The successful application of discriminant analysisin thiswork, for which
Alanine was determined to be a necessary variable for significant separation between
group means (see Appendix 1), may be because of the robustness of the particular genus
utilized here, Mercenaria, but may also be due to the relatively young ages of the two
groups of study (i.e., early Holocene and late Pleistocene). Significant degradation of
more complex amino acids may yet have affected Alanine abundances and, therefore,
unduly influence the discrimination processes. Moreover, at least for northeast North
Carolina Mercenaria samples, aplot of D/L Alanine versus radiocarbon age shows a
smilar trend of increasing ratio with increasing age smilar to D/L Leucine (Figure 2.4).

Pursuing more rigorous statistical methods for data analysis, while continuing to
amass samples from thisregion, will likely improve our understanding of Quaternary
stratigraphy of the North Carolina coastal plain. Surface models smilar to the one shown
in Figure 6.11 could be refined using statistically significant D/L clusters and become a

useful visualization and analysistool.
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7.2  Assessment of Spatial Interpolation of AAR Ratios

The application of spatial interpolation techniquesto AAR analyses for the region
proved useful for visual ingpection of regional aminaostratigraphy. Though, one should be
mindful of artifacts of the interpolation method used, such as the surface low surrounding
OBX-11in Figure 6.11. This pattern, however, would likely change with future analyses
further up section in OBX-11. In addition, the inverse distance weighting method of
interpolation tends to generate a bulls-eye pattern for solitary samples or areas with low
sample dengities.

The northernmost surface low in the interpolated late Pleistocene surface (Figure
6.11) likely represents a sum effect of several Holocene fill sequences, that is, alack of
subsurface Pl e stocene age samples collected from thisarea. Corroborating this
interpretation, coast paralldl cross-sectionsin Riggs et al. (1992) depict inlet-filled
channels and Holocene valley-fill of the paleo-Roanoke River/Albemarle estuarine
system between Kitty Hawk and Oregon Inlet. Furthermore, work by the Coastal
Carolina Project has also revealed similar faciesin thisarea (Thieler et al., 2003).
However, comparison of the Figure 6.11 model with a cross-section (Figure 7.1)
generated from litho and biostratigraphy, along with geochronology (AAR and
radiocarbon), by the Coastal Carolina Project team shows the severe problems with solely
interpolating the AAR data.

Figure 7.1 represents about a seventeen-mile shore parallel cross-section from
Kitty Hawk, NC (OBX-02) to Whalebone, NC (OBX-08) (see Figures 1.2 and 6.8).
Numerical ages are assigned to specific samplesin the figure, black numbers are from

radiocarbon analyses and red numbers represent AAR analyses (Figure 7.1). Themain
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units are differentiated by lithology and microfossi| assemblages and are distinguished in
the cross-section by various colors and black dividing lines (Figure 7.1).

The dimensions of the Holocene valley-fill of the paleo-Roanoke
River/Albemarle estuary apparent in Figure 6.11 do not match that of the detailed cross-
section (Figure 7.1). For example, Figure 7.1 shows the deepest part of the Holocene
valley-fill running through Kitty Hawk and Nags Head, NC (about -40 meters from MSL,
while the Pleistocene surface depths in Figure 6.11 are about 10-15 meters too high
(about -25 metersfrom MSL). Moreover, Figure 6.11 shows the Pleistocene units much
deeper in the area of OBX-07 and OBX-08, while detailed studying of the OBX cores
shows a shallower marine Pleistocene unit dissected by smaller Holocene channd fill
deposits (Figure 7.1).

Clearly, the AAR data are not as densdly distributed enough to define the units
with the detail displayed in Figure 7.1. Furthermore, Figure 6.11 was generated from
Pleistocene samples with alarge range of D/L Leucine values (about 0.32 to 0.52, see
Figure 6.9). More narrowly chosen D/L clusters, only representing latest Pleistocene
samples, for instance, along with more AAR analyses would likely generate a more
accurate late Pleistocene surface map. Future models like the one shown in Figure 6.11
will need to take advantage of statistical methods to meaningfully classify or discriminate

D/L clusters and allow for more detailed model's to be devel oped.
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Figure7.1 A seventeen mile, shore paralld cross-section generated from studying
OBX cores 01 through 09. Numerical ages are assigned to specific samplesin thefigure,
black numbers are from radiocarbon analyses and red numbers represent AAR analyses.
Lithology, foraminiferal assemblages and the presence of diatoms differentiate the main
unitsin the figure and are distinguished by various colors and solid or hashed black
dividing lines. Craoss-section produced by members of the Coastal Carolina Project.
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7.3  Data Manipulation and Sharing M ethods

Data sharing methods utilized for this work were very useful for a comprehensive
investigation of aminostratigraphic results for the northeastern North Carolina region.
The ability to combine several data analyss techniquesin a single spatial context can be
a powerful tool for stratigraphic interpretation.

However, data sharing between software on a single platform was not without its
flaws. Attribute data types did not always trand ate well when utilizing Automation from
AARDB to both Microsoft® Excel and ArcMap™. Workarounds creating stand-alone
filesin ArcMap™ were implemented to resolve thisissue. For example, importing data
from DiscrimFunction.xls (NENCDiscrim ODBC source) into ArcMap™ changed the
attribute data type of SubSamplelD, therefore hindering the ability to join this dataset
with records from AARDB in ArcMap™.

Furthermore, attribute names from data sources are often truncated when viewed
in ArcGIS® software. While this was mostly a minor inconvenience, attributes with
similar names are indistinguishable except for an arbitrary number appended to field
names by the ArcGIS® software. ArcMap™ also cannot handle attribute names with
gpaces and often generates errors when analysisis attempted on these fields.

Finally, for examining AAR ratios queried from AARDB in ArcGIS™, it was
often necessary to filter the data further than theinitial query constraints (see Chapter
6.1). Thiswas often apparent after attempts at spatial analysisidentified troublesome
data points. These data points included reworked fossil mollusks from a subsurface
section and records from the database where AAR sub-sampling incorporated shell

material other than the middle carbonate layer (see Chapter 3). These data points
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exhibited discordant values that had to be filtered out for any spatial analysis. The
northeast North Carolina query developed in Chapter 6 and saved in AARDB (Appendix
V) as NENCResults excludes the sub-samples that were not produced utilizing the
middle umbo layer of Mercenaria.

7.4  Concluding Remarks

In conclusion, thiswork demonstrates the utility of efficient data organization for
comprehensive data exploration. AARDB allows for multi-parameter searching and
guerying of UDAL’s AAR database through a user-friendly graphical interface.
Additionally, data sharing methods, enhanced by ardationa design, applied here enable
more sophisticated data exploration including advanced visualization techniques using
GIS.

AAR and radiocarbon analyses analyzed for the North Carolina coastal plain
since the early 1980’ s represent a wealth of geochronologic data that is fundamental for
stratigraphic characterization of the Albemarle Embayment. Efforts by the Coastal
Carolina Project would benefit greatly from a synthesis of geochronological results for
framework geology studies coastal plain deposits. The database management effort
presented here suggests a platform for a more quantitative assessment of AAR data for
stratigraphic analysis and builds on previous efforts (e.g., Wehmiller et al., 1988) to
synthesi ze geochronol ogic data for the region.

Future endeavors will likely include morein depth statistical and spatial analysis
techniques for aminostratigraphic investigations. In addition, AARDB will likely grow

to include more samples from coastal North Carolina sites, aswell as sitesal along the
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Atlantic Coastal Plain. Such efforts will likely improve the resolution of the
aminogtratigraphy for coastal North Carolina.

It would also be useful to take advantage of existing technology for Web accessto
AARDB as a means to facilitate data sharing among interested parties outside of UDAL.
Application of an Internet map server (IMS) as the web front-end of AARDB, thereby
presenting the data within a spatial context, may prove to be functionally most practical.
Asfor the cooperative research currently underway by the Coastal Carolina Project, a
Web based aminostratigraphy database may act as a springboard for future data

management and sharing efforts endeavored by the project.
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APPENDIX |
DEVELOPMENT OF AARDB
A-1  Overview

The development of the AAR database for UDAL entailed reorganizing an
existing database of AAR analyses from coastal plain sites. Work aong the preiminary
level of the database contains sites from coastal North Carolina, South Carolina and
southeastern Virginia and represents data collected over the past two decades.

Earlier reports described details of the working database of coastal plain AAR
analyses, most notably Wehmiller et al. (1988), and presented the classification of sites
based on geographic regions of smilar temperature regimes (aminostratigraphic regions |
through V, Wehmiller et al., 1988). From these regions a system of identification for
sampling sites (UDAMS) and samples collected (Samplel D) were specified to keep track
of samplings. AAR derivatives created in the lab from these samples were further
classified and identified (AAR lab number) to help keep track of laboratory processes and
analyses.

Asis often the case, designing a database entails beginning with a working
prototype that needs to be restructured to further meet the growing demands of an active
dataset. When moving from flat-file database to arelational format there are guidelines
one can follow to ensure proper relational design. Similarly, creating a database from
scratch would also follow these same steps. Database design steps are presented here and

are adapted from practical design steps presented in Elmasri and Navathe (2000). These
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steps can be summarized as, 1) data requirements and database functionality, 2)
conceptual design, 3) Choosing a DBMS, 4) database mapping and physical design, and
5) implementation and fine-tuning.

The guiddines presented here do not attempt to represent a comprehensive
treatment of relational database development procedures. Numerous other texts deal with
this topic and its details more thoroughly and should be consulted for a more adequate
description of the database design process. This section merdly describes the major steps
toward the design of AARDB and can be used for a general overview of database design
procedures.

A-2 Data Requirements and Database Functionality

Thefirst step for the designer of a database is to become intimately familiar with
the data and data types of the proposed database, as well as with the database’ s expected
functionality. If creating a database from scratch, the data requirements would be based
on the design of forms used to collect data. These forms (digital or paper) represent all
the aspects of the real-world entity the database would represent.

For AARDB, there existed a legacy of data and constraints that defined the use
and transactions of the database, although in aless organized form. Thisis often the case
when developing a database (Elmasri and Navathe, 2000); the database designer inherits
the work of those before him or her and must incorporate legacy data with new data
management demands. The database designers must familiarize themsaves with the data
content and processing requirements of the primary users. Often this entails a process of
lengthy interviews with the primary users of the database to fully determine data

management expectations (Elmasri and Navathe, 2000).

109



Below is a concise description of most of UDAL’s AAR database requirements.
The descriptions also include the functionality of certain attributes and how attributes are
related in the context of the real-world entity they are describing. A database designer
would use such a description to aid the conceptual modeling of the database as well

mapping out the physical database.

1 The laboratory collects mollusk samples for chromatographic analysis from a
variety of localities. Localities are assigned names and unique numeric
identifiers (UDAMS No.) that designate a unigue sample place.
Corresponding latitude and longitude (and sometimes elevation) are recorded
to designate their position in geographic space. Localities are also specified
according to type such as a core location, burrow pit, underwater, and beach

or ground surface.

2. As samples are collected, information is recorded regarding the relative
position of sampling and collections are assgned unique a phanumeric
identifiersthat contain theinitials of the collector or principal investigator.

All sample collections will have corresponding locality information.

3. Samples within a collection are designated with their own sample ID that
represents the parent collection ID appended with an alphanumeric identifier.
Sometimes solitary samples are collected at alocality, in which case the
collection ID would also act asasample ID. Individual samples are also
labeled with a sample type identifier based loosdly on the genus of the sample

(e.g. Mercenaria, Mulinia, etc.).
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Information stored for samples also includesits physical characteristics at the
time of sampling. Thisincludes a sampl€ s taphonomic character and should
be based on currently utilized characteristics (i.e. abrasion, fragmentation,
color) but allow for changes to the types of observed characteristics collected.
Additionally, samples should be photographically documented, though not all
samples will have a photograph representing them. Some photographs may

represent a collection of samples.

Samples are further sub-sampled, generally in alab though not exclusively,
and are uniquely identified. Information regarding the person or entity
creating the sub-sample, date sub-sampleis created and position on sample
from which sub-sample was collected should also be recorded. Sub-samples
are created/analyzed by a particular method in a particular laboratory. Sub-
samples can aso be generated from other sub-samples, for example, in the

form of aliquots.

Laboratory methods or procedures creating sub-samples are given unique
identifiers and are described by the name of the laboratory, the name of the

method, generic parameter identification and accuracy limits.

Sub-samples from |aboratories or sources represent a myriad of analyses that
need to be identified by a unique Lab procedure ID. Analysis results from
these sources need to accommodate legacy data that at times represent
calculated values. Results should be recorded such that they correspond to a

single sub-sample with standard error and units also recorded when available.
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10.

11.

A-3

A sub-sample analysis result from the UD laboratory always produces
chromatographic information in the form of chromatograms (digital and/or
analog). The date of the analysis, amachine reference ID and a general
designation of the type of chromatographic device used generally characterize

chromatograms.

Calculated D/L ratios for specific amino acids are recorded in the database for
maintaining legacy data and should be related to its corresponding

chromatogram.

AAR gtatigtics, mean, standard deviation and number of analyses, should be
computed for all chromatographic sub-samples and relatable to other analyses

on corresponding samples or sub-samples.

Analysisresults or other parameters should all be related to a particular

sample mollusk so that parameters within the database can be compared.

Conceptual Design of AARDB

A conceptual design of the database uses a mode to graphically describe the

database including relations and aspects of entity relationships. Visualization can clarify

database functionality and is often used to communicate the database design to non-

technical users (Elmasri and Navathe, 2000). A conceptual model needsto include all

aspects of the database but should be flexible enough such that changes to the database

can be accommodated.

There are several different data models one could use to conceptualize their

database. Common onesinclude the Entity-Relation (ER) model and the enhanced ER
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(EER) moddl. The ER modé was chosen for the conceptual design of AARDB with
some borrowed aspects of EER (specialization and generalization). Severa texts
describe the structural concepts of these models, some of which can be found in the
Reference section. The concepts of the ER model are only briefly described here.

Figure A-1 is a key to the components of the ER modd used for the conceptual
design of AARDB. Rectangles represent entities, which are equivalent to tablesand a
diamond shape represents rdationships. A relationship in the ER modd does not only
refer to the sharing of key attributes between two tables for they can also represent tables
with attributes of their own.

Entity names and the roles of relationships are specified in the center of the
component. Attributes of entities or relationships are designated by an oval with a stem
connected to the corresponding entity or relationship. The names of entities are specified
in the center of each oval.

Entities and relationships with double lines signify a weak entity and its
identifying relationship, respectively. A weak entity is one that does not have key
attributes of its own but instead borrows ancther entity’s primary key (or set of keys) for
itsidentifying attribute, termed a partial key.

Entity relationships are designated by connecting lines and annotated to specify
the cardinality ratio of ardationship. Double connecting lines signify total participation
of an entity in areationship, while asingle line specifies only partia participation.

Figure A-2 exhibits the conceptual schema of AARDB. This schema was created
from the database requirements established above. In the design process, designers may

move several times from step 2 (conceptual design) to step 1 back to step 2 in order to
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Entity

Weak Entity

Relationship

Identifying Relationship

Total participation of E 2 in R

Cardinality Ratio 1:N for ExE:in R

Total specialization of E : into Ez and Es

Circle d signifies that an entity can be a

member of at most one of the subclasses.

Attribute

Key Attribute

Partial Key

Derived Attribute

Composite Attribute

Figure A-1  Summary of the Entity-Relationship model notation. Component
explanations are to the right of each model component. After Elmasri and Navathe,

2000.
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Figure A-2  Entity-Relationship (ER) modd of the UDAL’s AAR database. |mportant
database components are explained in the text of Appendix |. This conceptua modd is
used to guide database designersin creating the necessary tables and relationships of the

database.
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refine the database design. Thelist of data content and functional requirements for
AARDB from step 1 could be further refined such that entities and their key attributes are
specifically identified.

Generally, the grouping of related attributes creates entities in the conceptual
schema. There may be more than one option for grouping attributes and is influenced by
the intention of the database and the knowledge of the designer for that particular
database. One can get a general sense of the entities to create smply from the processin
step 1 and from normalization techniques described in chapter 4. Following through with
the conceptual design process further clarifies database entities and relationships.

Conceptualizing the database requirements can be approached using different
strategies. The strategy applied for AARDB was an inside-out methodol ogy because we
were working with several clearly evident entity types (Location, Sample, Sub-sample).
New entities and their relationship with the already evident entities were then added to
the schema systematically.

Other schema design methodol ogies include the top-down strategy, which begins
with a set of high-level entity types that are gradually specialized to subclass entities.

The bottom-up strategy takes the opposite approach and begins with smpler entities or at
least a set of attributes and systematically builds more robust entities. Devel opment of
the AARDB conceptual model actually entailed a mixture of the above strategies as
severd iterations of the data requirement and conceptualization steps were fulfilled. The
primary strategy was to build from the set of centralized entities (i.e., Location, Sample
and Sub-sample), with specialization and generalization techniques to augment the

process.
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Some aspects of AARDB's conceptual schema should be particularly noted. For
instance, arank view of entity relationships between L ocation, SampleCollection,
Sample, SubSampleand Chromatogram does not adequately describe all aspects of the
database. These entities can have multiple relationships, such aswith L ocation
specifying spatial coordinates for a sample collection (denoting a sampling event or a
group of samples) in SampleCollection or for an individual mollusk in Sample (Figure
A-2). Likewise, Sample has relationships with most entitiesin AARDB (Figure A-2),
suggesting the significance of asamplein AARDB. Thisreflects the database
requirement that parameters stored in AARDB should be relatable to an individual
sample so that analyses can be coupled or compared.

The database requirement that AAR statistics be calculated for all
chromatographic analysesis conceptualized in the model as arelationship classwith
attributes Mean, Std. Dev. and Count (AAR Statisticsin Figure A-2). Thisrdationshipis
an example of arelationship entity that contains attributes, signifying that the relationship
could be mapped out asatable. In AARDB, however, thisrdationship entity is actually
a database view (a saved query) because the values of the table can be calculated on the
fly and need not be stored in the database.

Other aspects of interest in the AARDB schema are instances of specialization.
Specialization isthe process of defining subclasses of an entity type, referred to asa
superclass (Elmasri and Navathe, 2000). There are four instances of specialization of a
superclassin AARDB, TaphonomicCharacter, Samplel mage, Result, and Procedure
(Figure A-2). Specialization of Result designates the kind of finalized analyses that can

be stored, radiometric, isotopic or chromatographic. It isdesignated as a weak entity type
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because it borrows Subsamplel D from the entity SubSample SubSamplelD and
Parameter make up the composite key for the relation Result (Figure A-2).

The entity type TaphonomicCharacter exhibits specialization in the form of
taphonomic designations for a group of shells or individual shells. Individua samples are
described by the attributes Characteristic and Vaue, while sample collections are
described by the composite attribute of Characteristic and Vaue along with tallies
(attribute Totals) for a sample collection (Figure A-2). This distinction was made
because of separate plans for categorizing the taphonomy of sample shells. Earlier efforts
at UDAL assigned characteristic totals to whole sample collections; the number of shells
in a collection with a certain abrasion type, shell color, and so on. Later, it was decided
that the extra effort early on to assign individual shellswith particular taphonomic
characteristics was more useful as this detailed data could then be trand ated to collection
totals. This association forms the basis of the UNION query performed in chapter 6 of
this report.

A-4 ChoosngaDBMS

Considerations for choosing a DBMS were discussed in the last section of
Principles of Database Devel opment (chapter 4). In addition, factors influencing the
move from aflat-file format database to relational database were discussed in section 4.2
of thiswork.

Often database devel opment tools are incorporated into several DBM S software
to aid the devel oper when moving from conceptualizing to actualizing the database. The
existence of these toals, or more generaly, the user-friendly nature of the DBMS, may be

a good incentive for choosing one system over ancther.
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A-5 Database Mapping and Physical Design

Mapping out the database tables from the conceptual model can often be
performed utilizing tools available from the DBM S software. However, this step need
not be tailored to a specific DBMS. Cregtion of tables and their relationships could
smply be in the form of DDL (data definition language) statements through SQL or other
such languages (Elmasri and Navathe, 2000). With MS Access (version 2000), there are
no development tools for creating a conceptual model and, therefore, no way to trandate
conceptual entitiesinto database tables. Tables must be created either using SQL or
through a graphical interface that can be facilitated by software aids (Access wizards).

Congtruction of atable schema should be worked out using the steps of
normalization described in chapter 4 before physical creation of these tablesin the
DBMS. The normalization processis useful for coming up with well-designed relation
schemas (i.e., table designs) and an ER-to-Rdational Mapping algorithm, such as
presented in ElImasri and Navathe (2000), can help the devel oper create the physical
database tables. Only the steps of Elmasri and Navathe (2000) pertinent to the
development of AARDB are presented here.

A-5.1 ER-to-Relational Mapping

Step 1

For every strong entity (as opposed to aweak entity), create a table that includes
all smple attributes of the entity. Composite attributes should be decomposed and stored
as atomic attributes. One the attributes should be chosen as the primary key (following

rules of first and second normal form).
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For example, the entity L ocation formed the table tblLocation with its unique
identifier, UDAMS number, as the primary key and LocalitylD, Lat, Long and
SurfaceElevation_m included as non-key attributes. A general note or remark attributeis
also included for recording notes pertaining to a sampling site.

Step 2

For every weak entity, create a table that includes all smple attributes (asin Step
1 above). Include the primary key attributes of the owner entity as foreign keysin the
new table. The primary key for the weak entity will include the foreign keys (primary
keys of owner entity) and any partial keys.

Thetable tbIDLRatio in AARDB was created from the weak entity DL Ratio
using the attributes Date, RefNumber, AnalyssMethod, AminoAcid and AreaOrHeight
as the composite (primary) key. Date, RefNumber and AnalyssMethod are primary keys
of the owner entity Chromatogram. Attributes AminoAcid and AreaOrHeight are
partial keys because they clarify the meaning of table tbIDLRatio and are necessary for
unique records; establishing these two attributes as the composite key without including
the foreign keys would create non-unique records and so would not be a suitable primary
key.

Step 3

Mapping of Relationships. For a 1:1 relationship between two entities, include
the primary key of one entity as aforeign key in the other entity. Generdly, the entity
that contains the foreign key will have atotal participation in the relationship. If both
entities have total participation in the relationship than one table, as opposed to two, can

be created containing the attributes of both entities and the relationship.
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A 1:1 relationship exists between relations SamplingL ogand L ocation. Not
every L ocation record will have corresponding log information but all SamplingL og
records correspond with one and only one L ocation record. This means that
SamplingL ogexhibits total participation in the Has relationship with L ocation (see
Figure A-2). The table thlSamplingLog (see Chapter 5) is created with al its atomic
attributes along with the primary key of L ocation (UDAMYS) as aforeign key.
SamplingLog is aso aweak entity so the foreign key (UDAMYS) also represents
tblSamplingLog’s primary key.

For a 1:N relationship between two entities, determine which entity represents the
parent entity (1 side) and which represents the child entity (N side). The child entity
becomes a table with the primary key of the parent entity as aforeign key.

There are several examples of 1:N relationshipsin the conceptual model of
AARDB. Each of these entity relationships corresponds to parent/child tablesin
AARDB that exhibit the parent’s primary key as the foreign key in the child table.

For aN:M relationship between two entities, a new table needs to be created that
represents the relationship between the N:M entities. This new table contains the foreign
keys from both participating entities. The combination of the foreign keys makes up the
primary key of the new table. Any pertinent smple attributes should also be included in
thisnew table. No examples of N:M rdationships exist in AARDB but it isa common
issue in database design.

The guidelines above for considering entity and relationship types of differing
cardinality ratioswere all for binary relationships, that is, for relationships between two

entities. Binary relationships represent the smplest scenario for database design and n-
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ary relationships can often be expressed as severa binary relationships (Elmasri and
Navathe, 2000). When several binary reationships does not fully explain the semantics
of the database (as described by the database requirements stage or stage 1) than other
steps need to be taken to create tables that satisfy all possible data relationshipsin the
database. Discussion on mapping out n-ary relationships can be found in Elmasri and
Navathe (2000).

A-5.2 Specialization and Generalization

Onefinal point on mapping out database tables from a conceptual model deals
with handling specialization or generalization. The designer can either create a table for
each subclass entity or have one table representing the superclass. The primary key of
the superclass would be the primary key for each of the subclass tables. Generally,
separate subclass tables are constructed when there are attributes that pertain to individual
subclasses, such that in a superclass table an attribute would remain blank for every
record pertinent to other subclasses.

In AARDB, the superclass entity Procedure was split into two tables,
tbl SubSamplingProcedure and thl AnalysisProcedure. This was considered appropriate
because the sub-sampling method required distinctive information to be stored (e.g. total
or free amino acid content). Likewise, the analysis procedure required a “units’ attribute
designating the kind of measurement made in the analysis.

The superclass entity Result is an example where it is unnecessary to subdivide
the entity into subclass tables. Thisis because the attributes of Result appropriately
describe each subclass. However, this may change in the future if more specific dataisto

be recorded in the database for each of the subclass entities. The conceptual mode of
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AARDB does allow for this, and would only entail adding the necessary attributes to the
appropriate subclass entity of the moddl. The conceptual change would then trandate
into construction of subclass tables with the corresponding records.

A-5.3 Automating Database Editing

Further physical database construction includes steps such as specifying whether
cascading updates and deletions are allowed for a particular table relationship. Cascading
updates and deletions specify to the DBMS that when an attribute of arecord is edited or
deleted, that change should propagate throughout the database such that an edit need only
be made once. Otherwise, the DBMS would not alow an edit to an attribute in a parent
table with a corresponding attribute in a child table (i.e., foreign key) to occur. The edit
must first be made to the child table (assuming that referential integrity constraints are
not violated) and then to the parent table. Generally, it is more prudent to allow
cascading updates but not cascading deletions. Thisis because a user may inadvertently
ddeteinformation in achild table if a deetion is made in the parent table.

Another aspect of record updates propagating throughout the database uses the
concept of ageneral lookup table for set record values. Often, values stored in a database
need to be constrained to a specific set of values from which data entry personnel can
sdect. Two benefits are evident from using a general-purpose lookup table that is linked
to the database tables. Thefirst isthat referential integrity is enforced for non-key
attributes because an entered value must correspond to val ues documented in the lookup
table. For example, in AARDB, the table thl Sample contains a non-key attribute that
describes the genus of a particular mollusk (SampleType). Vaues entered for this

attribute are restricted to a prescribed set of genera established in tblLookupTable (see
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Chapter 5) as arranged by a one-to-many reationship between tblLookupTable and
tblSample. New genera values would be added to thlLookupTable before they could be
entered in thlSample.

The second benefit of a general-purpose lookup table is that prescribed values can
be edited once within the lookup table and that edit propagate to records within core
database tables via a one-to-many reationship. For instance, there are eight amino acids
presently stored in AARDB. These amino acid choices are recorded oncein
tblLookupTable and are accessed by the table tbiDLRatio. The amino acid ratio of
allolsoleucine and Isoleucineis recorded in the database as “alle/ll€’. However, often
software that imports data from the database does not accept special characters for
attribute names, such as“/”. Even though numerous records in the database contain the
amino acid ratio item in the “alle/lle€’ form, a change dropping the “/” would only need
to take placein tblLookupTable once; all records containing the old amino acid name
would be changed to the new name in order to maintain referential integrity.

A-6 Implementation and Fine Tuning

Thefina step in the relational database design process involves implementing the
database with actual data and testing different transactions. Thisinvolves populating the
database tables and testing different query scenarios. The designer will mainly want to
assess querying time efficiency and whether queries fully ddiver the requests of the
database users.

Symptoms of poor database design include unnecessarily long query execution
times and generation of spurious results. Generally, the solution isto go back to the

conceptual design and mapping stage to make certain that tables are normalized properly.
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Often, poor querying time efficiencies are resolved with good use of table indices
(indexes) (Elmasri and Navathe, 2000). An index should be established for all primary
and foreign keys, and then for attributes that are accessed often.

While this topic deserves further devel opment, such an effort is outside the scope
of thiswork. Additional guiddinesfor database fine-tuning can be found in ElImasri and

Navathe (2000) or other similar texts.
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APPENDIX 11
DISCRIMINANT ANALYSISSUMMARY AND OUTPUT

Discriminant analysis was performed on AAR from GC analysis for steswithin
northeastern North Carolina. The results of the analysis are discriminant functions used
to calculate raw discriminant scores for a particular sample. Several discriminant
functions were determined from the analysis based on the retention or discarding of
variables (amino acids). All calibration analyses were 100% accurate in differentiation of
groups (Holocene or Pleistocene).

Test samples were aso analyzed for each discriminant function with varying
results. The discriminant functions that performed the best were those that discarded
Aspartic Acid. The function containing Alanine (Ala), Glutamic Acid (Glu), Leucine
(Leu), Phenylalanine (Phe) and Valine (Val) discriminated correctly 100% of the time
(out of 13 observations). The function containing Ala, Glu, Leu and Phe discriminated
correctly 95% of the time (out of 19 observations).

The discriminant analysis output is given below, followed by statistical tests of
significance for Mahalanobis' distances and variables. These tests were used to

determine which variables should be retained and which could be discarded.
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MINITAB Output

Discriminant Analysis: Holo/Pleist versus Ala, Asp, Glu, Leu, Phe, Val

Li near Method for Response: Hol o/ Pl e
Predictors: Ala Asp GQu Leu Phe Va

G oup Hol o Pl ei st
Count 20 4

Sunmary of Cl assification

Put into ....True Goup....
G oup Hol o Pl ei st
Hol o 20 0
Pl ei st 0 4
Total N 20 4
N Correct 20 4

Proportion 1. 000 1. 000
N = 24 N Correct = 24 Proportion Correct = 1.000

Squar ed Di stance Between G oups
Hol o Pl ei st

Hol o 0. 0000 26.9421

Pl ei st 26.9421  0.0000

Li near Discrimnant Function for G oup
Hol o Pl ei st
Const ant -87.03 -92. 89

Al a -68. 18 185. 31

Asp 567. 44 439. 48

Au -246.94 -219.40

Leu -50. 80 108. 09

Phe -32.36 -262.87

Val -87.72 -193.59

Vari abl e Pool ed Means for G oup
Mean Hol o Pl ei st

Al a 0.37417 0.33950 0.54750

Asp 0.49250 0.48300 0.54000

Au 0.20000 0.19100 0.24500

Leu 0.21542 0.20200 0.28250

Phe 0.25875 0.23900 0.35750

Val 0.14208 0.13350 0.18500

Vari abl e Pool ed St Dev for G oup
St Dev Hol o Pl ei st

Al a 0.06821 0.06573 0.08221

Asp 0.04662 0.04131 0.07165

Au 0.03182 0.02864 0.04726

Leu 0. 04348 0.03968 0.06238

Phe 0. 05537 0.05230 0.07182

Val 0.03086 0.02720 0.04796
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Pool ed Covari ance Matri x

Al a
Asp
Au
Leu
Phe
Val

Al a
Asp
Au
Leu
Phe
Val

Al a
Asp
Au
Leu
Phe
Val

cNeoloNeoNoNe] cjololoNoNo]

ecjooloNoNe]

Observati on

1

2

10

11

12

13

14

15

16

Al a Asp Gu
. 0046532
. 0026105 0.0021736
.0018073 0.0013155 0.0010127
. 0020293 0.0015218 0.0010959
. 0035393 0.0020845 0.0014895
.0018311 0.0011723 0.0008923
Covariance Matrix for Group Holo
Al a Asp Gu
. 0043208
. 0023437 0.0017063
. 0015532 0.0010179 0.0008200
.0021695 0.0012095 0.0010189
. 0032574 0.0016663 0.0012274
. 0015334 0.0008784 0.0006805
Covariance Matrix for G oup Pleist
Al a Asp Gu
. 0067583
. 0043000 0.0051333
. 0034167 0.0032000 0.0022333
.0011417 0.0035000 0.0015833
. 0053250 0.0047333 0.0031500
.0037167 0.0030333 0.0022333
Summary of Cl assified OQobservations
True Pr ed G oup
G oup G oup
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
Hol o Hol o Hol o
Pl ei st
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Leu

. 0018907
. 0019893
. 0010505

oo

Leu

. 0015747
. 0018653
. 0010242

eNeole]

Leu

. 0038917
. 0027750
. 0012167

cNoNe]

Squar ed
Di st ance
4.953
38. 667
6. 801
45. 571
15.70
33.41
1.437
33. 165
3.710
23.121
1. 356
38.924
3.419
29. 186
4. 065
50. 814
2.895
40. 081
1.336
25. 669
0. 8555
29. 8764
6. 324
50. 611
4,222
18. 948
6. 887
21.211
1.473
27.954
2.954
19. 284

Phe

0. 0030661
0. 0015327

Phe

0. 0027358
0. 0012721

Phe

0. 0051583
0. 0031833

Probability

. 000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
999
001
999
001
000
000
000
. 000

CRPOPOOOOORORPORPORPORPORORPORPORORPOROR

Val

0. 0009525

Val

0. 0007397

Val

0. 0023000



17
18
19
20
21 P
22 P
23 P
24 P

Prediction for Test

Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
| ei st Pl ei st
| ei st Pl ei st
| ei st Pl ei st
| ei st Pl ei st

Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st

Cbservati ons

9. 445
19. 293
1.012
26. 255

21.788
14. 15
41. 40

46. 631
8.716
42.74
14.72

21.434
8. 037

32.583
4. 146

POOORPOROORORPOROO

. 993

007
000
000
000
000
000
000
000
000
000
000
001
999
000
000

SubSanplelD Pred Group From Group Sqrd Distnc Probability

990162 Hol o
Hol o 37. 213 1. 000
Pl ei st 79.870 0. 000

2003168 Hol o
Hol o 18.519 1. 000
Pl ei st 80. 097 0. 000

960282 Hol o
Hol o 12. 263 1. 000
Pl ei st 38. 894 0. 000

960180 Hol o
Hol o 14. 752 1. 000
Pl ei st 55. 819 0. 000

2000214 Hol o
Hol o 5.103 1. 000
Pl ei st 42. 251 0. 000

2001012 Hol o
Hol o 6.070 1. 000
Pl ei st 50. 639 0. 000

* 960388 * Hol o
Hol o 32. 268 0. 998
Pl ei st 44.579 0. 002

2000021 Pl ei st
Hol o 41. 419 0. 000
Pl ei st 13. 642 1. 000

950218 Pl ei st
Hol o 39.938 0. 000
Pl ei st 13. 696 1. 000

2000108 Pl ei st
Hol o 58. 309 0. 000
Pl ei st 12. 356 1. 000

2000113 Pl ei st
Hol o 42. 499 0. 000
Pl ei st 22.675 1. 000

2000114 Pl ei st
Hol o 45. 392 0. 000
Pl ei st 12. 483 1. 000

* 2000035 * Hol o
Hol o 49.518 0. 999
Pl ei st 62. 889 0. 001

SubSamples surrounded by * * are misclassified
2 misclassified out of 13 sub-samples

85% success rate

130



Discriminant Analysis: Holo/Pleist versus Ala, Glu, Leu, Phe, Val

Li near Method for Response: Hol o/ Pl e
Predictors: Ala du Leu Phe Va

G oup Hol o Pl ei st
Count 20 4

Sunmary of Cl assification

Put into ....True Goup....
G oup Hol o Pl ei st
Hol o 20 0
Pl ei st 0 4
Total N 20 4
N Correct 20 4

Proportion 1. 000 1. 000
N = 24 N Correct = 24 Proportion Correct = 1.000

Squar ed Di stance Between G oups
Hol o Pl ei st

Hol o 0. 0000 20.6652

Pl ei st 20.6652  0.0000

Li near Discrimnant Function for G oup
Hol o Pl ei st
Const ant -25.31 -55. 86

Al a 138. 74 345. 57
Gu 290. 49 196. 85
Leu 98. 81 223.97
Phe -172.09 -371.10
Val -230.74 -304. 36

Vari abl e Pool ed Means for G oup
Mean Hol o Pl ei st

Al a 0.37417 0.33950 0.54750
du 0.20000 0.19100 0.24500
Leu 0.21542 0.20200 0.28250
Phe 0.25875 0.23900 0.35750
Val 0.14208 0.13350 0.18500

Vari abl e Pool ed St Dev for G oup
St Dev Hol o Pl ei st

Al a 0.06821 0.06573 0.08221
Gu 0.03182 0.02864 0.04726
Leu 0.04348 0.03968 0.06238
Phe 0. 05537 0.05230 0.07182
Val 0.03086 0.02720 0.04796
Pool ed Covari ance Matri x
Al a Au Leu Phe Va
Al a 0. 0046532
Gu 0.0018073 0.0010127
Leu 0. 0020293 0.0010959 0.0018907
Phe 0. 0035393 0.0014895 0.0019893 0.0030661
Val 0.0018311 0.0008923 0.0010505 0.0015327 0.0009525
Covariance Matrix for Group Holo
Al a Au Leu Phe Va
Al a 0. 0043208
Gu 0.0015532 0. 0008200
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Leu
Phe
Val

0. 0021695 0.0010189 0.0015747
0. 0032574 0.0012274 0.0018653
0. 0015334 0.0006805 0.0010242

Covariance Matrix for G oup Pleist

Al a
Au
Leu
Phe
Val

Al a
0. 0067583
0. 0034167
0. 0011417
0. 0053250
0. 0037167

Au

0. 0022333
0. 0015833
0. 0031500
0. 0022333

Leu

0. 0038917
0. 0027750
0. 0012167

Summary of Cl assified Qobservations

Cbservati on

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

True
G oup
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Pl ei st
Pl ei st
Pl ei st

Pl ei st

Pred
G oup
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Hol o
Pl ei st
Pl ei st
Pl ei st

Pl ei st

G oup

Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
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0. 0027358
0. 0012721

Phe

0. 0051583
0. 0031833

Squar ed
Di st ance
3.219
37. 254
4.998
44,219
14. 68
31.17
1.428
27. 346
3. 396
19. 339
0. 5947
27.5160
3.334
24.284
3. 061
38.513
0. 5010
23. 6584
0. 6847
22.7836
0. 8526
23. 3242
1.651
28. 830
3.661
15. 862
6. 341
10. 683
1. 244
19. 050
2.714
15. 224
9. 445
13. 093
1.012
20. 106
3. 046
12. 243
13. 61
38. 28
32.088
7.005
32.41
14. 22
20.714
5.291
27.977

0. 0007397

Val

0. 0023000

Probability

. 000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
998
002
898
102
000
000
998
002
861
139
000
000
990
010
000
000
000
000
000
000
000
000
. 000

CPOPOPOORPOOORPROOOOORPROOOOORORORPORPORORPORPORORPOROROR



Pl ei st 4,017 1.000
Prediction for Test Cbservations

SubSanplelD Pred Group From Group Sqrd Distnc Probability

990162 Hol o
Hol o 21. 686 1. 000
Pl ei st 77.811 0. 000

2003168 Hol o
Hol o 18. 011 1. 000
Pl ei st 69. 741 0. 000

960282 Hol o
Hol o 7.948 1. 000
Pl ei st 38.710 0. 000

960180 Hol o
Hol o 10. 389 1. 000
Pl ei st 55. 646 0. 000

2000214 Hol o
Hol o 4,880 1. 000
Pl ei st 38.118 0. 000

2001012 Hol o
Hol o 6. 040 1. 000
Pl ei st 45, 205 0. 000

960388 Pl ei st
Hol o 30. 779 0. 490
Pl ei st 30. 702 0.510

2000021 Pl ei st
Hol o 34. 565 0. 000
Pl ei st 13. 630 1. 000

950218 Pl ei st
Hol o 34. 465 0. 000
Pl ei st 13. 668 1. 000

2000108 Pl ei st
Hol o 51. 564 0. 000
Pl ei st 12. 347 1. 000

2000113 Pl ei st
Hol o 42. 489 0. 000
Pl ei st 16. 884 1. 000

2000114 Pl ei st
Hol o 39. 252 0. 000
Pl ei st 12. 482 1. 000

2000035 Pl ei st
Hol o 45. 748 0.211
Pl ei st 43. 114 0. 789

0 misclassified out of 13 sub-samples
100% success rate

Discriminant Analysis: Holo/Pleist versus Ala, Asp, Glu, Leu, Phe

Li near Method for Response: Hol o/ Pl e
Predictors: Ala Asp Gu Leu Phe

G oup Hol o Pl ei st
Count 20 4

Sunmary of Classification

Put into ....True Goup....
G oup Hol o Pl ei st
Hol o 20 0
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Pl ei st
Total N

N Correct
Proportion

N = 24

20
20
1. 000

N Correct =

24

Squar ed Di stance Between G oups

Proportion Correct

1. 000

Phe

Phe

0. 0027358

Phe

Hol o Pl ei st
Hol o 0. 0000 25.7275
Pl ei st 25.7275 0. 0000
Li near Discrimnant Function for G oup
Hol o Pl ei st
Const ant -86.61 -90. 85
Al a -73.10 174. 46
Asp 573.69  453.27
Gu -296.11 -327.91
Leu -52.33 104.71
Phe -49.90 -301.58
Vari abl e Pool ed Means for G oup
Mean Hol o Pl ei st
Al a 0.37417 0.33950 0.54750
Asp 0.49250 0.48300 0.54000
Gu 0.20000 0.19100 O0.24500
Leu 0.21542 0.20200 0.28250
Phe 0.25875 0.23900 0.35750
Vari abl e Pool ed St Dev for G oup
St Dev Hol o Pl ei st
Al a 0.06821 0.06573 0.08221
Asp 0.04662 0.04131 0.07165
Gu 0.03182 0.02864 0.04726
Leu 0.04348 0.03968 0.06238
Phe 0. 05537 0.05230 0.07182
Pool ed Covariance Matri x
Al a Asp Gu Leu
Al a 0. 004653
Asp 0. 002610 0.002174
Gu 0.001807 0.001315 0.001013
Leu 0. 002029 0.001522 0.001096 0.001891
Phe 0. 003539 0.002085 0.001490 0.001989 0.003066
Covariance Matrix for Goup Holo
Al a Asp Gu Leu
Al a 0. 0043208
Asp 0. 0023437 0.0017063
Gu 0. 0015532 0.0010179 0.0008200
Leu 0.0021695 0.0012095 0.0010189 0.0015747
Phe 0. 0032574 0.0016663 0.0012274 0.0018653
Covariance Matrix for G oup Pleist
Al a Asp Gu Leu
Al a 0. 0067583
Asp 0. 0043000 0.0051333
Gu 0. 0034167 0.0032000 0.0022333
Leu 0.0011417 0.0035000 0.0015833 0.0038917
Phe 0. 0053250 0.0047333 0.0031500 0.0027750
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Sunmary of Cl assified OQobservations

Observati on

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Prediction for

Cbse

rvation
990162

2003168

960282

G oup

Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st

Squar ed
Di st ance

4.
38.
6.
44.
8.
19.
1.
30.
2.
23.
1.
37.
2.
29.
3.
46.
2.
39.
1.
25

567
436
697
962
824
540
282
926
453
121
349
523
236
185
305
918
885
076
171
184

0.5719
29. 5520

27.

14.
5.
18

. 384
. 320
. 762
. 768
. 714
. 905
. 223

592

. 987

935
068
313

0. 6023
23. 2182

3.
19.

264
677

14. 14
39. 88

43.
8.

456
254

42.69
12. 95

20.
7.
28.
3.

699
977
586
341

Probability

From Group Sqrd Distnc Probability

Hol o
Pl ei st

Hol o
Pl ei st

True Pred
G oup G oup
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Pl ei st Pl ei st
Pl ei st Pl ei st
Pl ei st Pl ei st
Pl ei st Pl ei st
Test Observations
Pred Group
Hol o
Hol o
Hol o
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36.572
79.779

17.672
80. 064

1. 000
0. 000

1. 000
0. 000

POOORPORPROORPORPORPROOOOORPOOOOORORPORPORPORORPORPORORPROOOROR

000
000
000
000
995
005
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
999
001
998
002
000
000
998
002
999
001
000
000
000
000
000
000
000
000
000
000
002
998
000
000



Hol o 11. 304 1. 000

Pl ei st 38.878 0. 000

960180 Hol o
Hol o 12.878 1. 000
Pl ei st 55. 748 0. 000

2000214 Hol o
Hol o 5.034 1. 000
Pl ei st 41. 547 0. 000

2001012 Hol o
Hol o 6. 065 1. 000
Pl ei st 49, 256 0. 000

* 960388 * Hol o
Hol o 22.565 0. 892
Pl ei st 26. 797 0.108

2000021 Pl ei st
Hol o 40. 420 0. 000
Pl ei st 9. 226 1. 000

950218 Pl ei st
Hol o 39.934 0. 000
Pl ei st 12. 355 1.000

2000108 Pl ei st
Hol o 57.204 0. 000
Pl ei st 7.719 1.000

2000113 Pl ei st
Hol o 40. 938 0. 000
Pl ei st 22.654 1. 000

2000114 Pl ei st
Hol o 45, 300 0. 000
Pl ei st 11. 846 1.000

* 2000035 * Hol o
Hol o 48. 339 0.992
Pl ei st 58.103 0. 008

2001002 Hol o
Hol o 8. 293 1. 000
Pl ei st 31. 286 0. 000

2000190 Hol o
Hol o 51. 428 1. 000
Pl ei st 102. 861 0. 000

960217 Hol o
Hol o 7. 345 1. 000
Pl ei st 47.013 0. 000

* 2000210 * Hol o
Hol o 11.594 0.974
Pl ei st 18. 860 0. 026

2000145 Hol o
Hol o 5.010 1. 000
Pl ei st 26.148 0. 000

2000205 Hol o
Hol o 1.053 1. 000
Pl ei st 23.102 0. 000

SubSamples surrounded by * * are misclassified
3 misclassified out of 13 sub-samples
77% success rate

Discriminant Analysis: Holo/Pleist versus Ala, Glu, Leu, Phe

Li near Method for Response: Hol o/ Pl e
Predictors: Ala du Leu Phe
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G oup
Count

Hol o
20

Pl ei st

4

Sunmary of Cl assification

Put into ....True Goup....

G oup Hol o Pl ei st

Hol o 20 0

Pl ei st 0 4

Total N 20 4

N Correct 20 4

Proportion 1. 000 1. 000

N = 24 N Correct = 24 Proportion Correct = 1.000

Squar ed Di stance Between G oups

Hol o Pl ei st
Hol o 0. 0000 20.0672
Pl ei st 20. 0672 0. 0000
Li near Discrimnant Function for G oup
Hol o Pl ei st
Const ant -22.37 -50.75
Al a 131. 66 336. 24
Gu 174. 65 44. 04
Leu 99. 13 224.38
Phe -223.19 -438.50
Vari abl e Pool ed Means for G oup
Mean Hol o Pl ei st
Al a 0.37417 0.33950 0.54750
Gu 0.20000 0.19100 O0.24500
Leu 0.21542 0.20200 0.28250
Phe 0.25875 0.23900 0.35750
Vari abl e Pool ed St Dev for G oup
St Dev Hol o Pl ei st
Al a 0.06821 0.06573 0.08221
Gu 0.03182 0.02864 0.04726
Leu 0.04348 0.03968 0.06238
Phe 0. 05537 0.05230 0.07182
Pool ed Covari ance Matri x
Al a Gu Leu Phe
Al a 0. 004653
Gu 0. 001807 0.001013
Leu 0. 002029 0.001096 0.001891
Phe 0. 003539 0.001490 0.001989 0.003066
Covariance Matrix for Goup Holo
Al a Gu Leu Phe
Al a 0. 0043208
Gu 0. 0015532 0.0008200
Leu 0. 0021695 0.0010189 0.0015747
Phe 0. 0032574 0.0012274 0.0018653 0.0027358
Covariance Matrix for G oup Pleist
Al a Gu Leu Phe
Al a 0. 0067583
Gu 0. 0034167 0.0022333
Leu 0.0011417 0.0015833 0.0038917
Phe 0. 0053250 0.0031500 0.0027750 0.0051583
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Sunmary of Cl assified OQobservations

Observati on

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Prediction for

Cbse

rvation
990162

2003168

960282

G oup

Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st
Hol o
Pl ei st

Squ
Di st

3.
37.
4.
43.
6.
18.
1.
25.
2.
19.

0.
26.
2
24
2
36
0.
23.
0.
22.
0.
23.

9
0.
19.
1
11
4
11
0.
18.
2
11
1
3
30
6
3
1
20
5
24
3

ar ed
ance
017
149
978
822
940
526
260
944
282
259
5935
9717
. 215
. 203
. 507
. 210
4052
4432
5947
5596
5558
2719
. 181
. 700
. 321
. 826
. 238
. 487
9199
0079
. 593
. 868
. 996
. 309
5896
0810
. 970
. 144
3.55
7.27
. 444
. 745
1.97
2.15
. 152
. 291
. 994
. 107

Probability

From Group Sqrd Distnc Probability

Hol o
Pl ei st

Hol o
Pl ei st

True Pred
G oup G oup
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Hol o Hol o
Pl ei st Pl ei st
Pl ei st Pl ei st
Pl ei st Pl ei st
Pl ei st Pl ei st
Test Observations
Pred Group
Hol o
Hol o
Hol o
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21.6
77.5

16.9
69. 6

11
62

60
78

1. 000
0. 000

1. 000
0. 000

POOORPORPROORPOOORPROOOOOROOOO0ORORPORPORPORORPORPORORPROOOROR

000
000
000
000
997
003
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
998
002
835
165
000
000
994
006
959
041
000
000
983
017
000
000
000
000
000
000
001
999
000
000



960180

2000214

2001012

960388

2000021

950218

2000108

2000113

2000114

2000035

2001002

2000190

960217

* 2000210 *

2000145

2000205

Hol o

Hol o

Hol o

Pl ei st

Pl ei st

Pl ei st

Pl ei st

Pl ei st

Pl ei st

Pl ei st

Hol o

Hol o

Hol o

Hol o

Hol o

Hol o

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

Hol o
Pl ei st

40.
16.

39.
. 839

45.
40.

SubSamples surrounded by * * are misclassified
1 misclassified out of 19 sub-samples

95% success rate
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. 448
. 706

. 181
. 540

. 840
. 791

. 030
. 445

. 909
. 627

. 709
. 068

. 326
. 355

. 570
. 571

933
660

251

055
534

.016
. 279

. 197
. 836

. 289
. 424

. 469
. 775

. 675
. 650

. 011
. 427

= O = O = O

= O

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 067
. 933

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 094
. 906

. 000
. 000

. 000
. 000

. 000
. 000

. 999
. 001

. 000
. 000

. 000
. 000
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APPENDIX I11

VALIDATION OF INTERPOLATED SURFACES
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Crogeg-correlation table for late Pleistocene surface

[Figure §.10) and Method Parameters
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Figure A-3 Validation table and graphs for the late Pleistocene surface (Figure 6.11)
interpolated from elevations of AAR determined Pleistocene Mercenaria (see Figure
6.9). Interpolation method parameters are also included.
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Figure A-4  Validation table and graphs for the surface interpolated from D/L Leucine
values of AAR determined Pleistocene Mercenaria. Interpolation method parameters are
alsoincluded. The surface can be viewed in \AAR_Database\MyGI S\3DSiteMap.sxd
found in Appendix IV.
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