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| In Memoriam

Donald W. Rennie, M.D.
1925-1992

On December 28, 1992 on a goif course in Myrtle Beach, SC, Don
Rennie succumbed to @ heart -problem that he had been battling
for some time. Losing Don was not only a fremendous loss fo his
family and to his extended family at the University at Buffalo, but it
was qQiso a loss to anyone who works at
protecting and preserving the
anvironment, and the Great Lcokes in
particular.

Don’s love for the environment and the
outdoors is exemplified by his passion for
golif and sailing. He loved fo sail and was
very good at it. | think it was this link to the
waters of the Great Lakes basin that made
him such a strong supporter of Great Lakes
research. Beyond his reguiar duties at the
University, Don was a member of the
Great Lakes Research Consortium Board
of Governors since ifs inception. He waos
ako a member of the Governing Beard of
the New York State Sea Grant Insfitute.
These and other activities confirmed Don’s
commitment tfo research acimed at
understanding and managing the Great
Lakes Ecosystem.

| was extremely fortunate to have
developed a close working relationship
with Don during my brief tenure at UB; as
Vice Provost for Research and Graduate
Educatfion, he was my immediate
supervisor on matters concerning the
Great Lakes Program. | could not have asked for a more supportive
administrator, either from a fiscal or a personal perspective. | am
very saddened to have lost Don, but | am also very happy to have
experienced his wisdom and friendship, even for the brief fime we
knew each other. In memory of his devotion fo improving the Great
Lakes Ecosystem and of the fremendous support that he gave to
the Great Lakes Program, we proudly dedicate this Great Lakes
Program Monograph and all future publications in our Monograph
Series to the memory of Donald W. Rennie.

Josaph V. DePinto, Director
Great Lakes Program
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| Introduction

This workshop, held February 3-5, 1992 at the University at Buffalo in

Buffalo NY, was sponsored by the U.S. EPA Large Lakes Research
Laboratory and was convened by the Great Lakes Program of SUNY
Buffalo and the New York Great Lakes Research Consorfium of
SUNY-ESF. The goal of the workshop was to discuss and develop a
set of recommendations for reducing uncertainty in mass balance
modeils of toxics with specific emphasis on gpplication to Lake
Ontario.

To virtually elimincte the presence of toxic substances in the Great
Lakes, the most appropriate and scientifically defensibile targets for
toxic load reductions must be selected and the most effective and
efficient means tfo reach those targets must be chosen. In making
these decisions, mass balance madels that predict the fate of toxic
substances, quontify load-to-conceniration relagtionships for key
environmental compartments, and determine target load
reductions must be used. Since judgements based on these models
will have significant iegdl, regulatory and financial implications, it is
assential that the uncertainty associated with mass balance models
for toxics in the Great Lakes be reduced to the minimum allowed by
the current state of data acquiition, modeling formulation and
technology.

This workshop was organized by Dr. Joseph DePinto, Director of the
Great Lakes Program, and Jack Manno, Director of the New York
Great Lakes Research Consortium, in cooperation with Dr. William
Richardson of the EPA‘s Large Lakes Research Laboratory. A steering
committee, recruited by the organizers, helped prepare the agenda
and guide the approach to developing recommendations.

The meeting was structured into four working groups to consider
sources of modeling uncertainty: loadings and other forcing function

“data, in sifu field observations/system response measurements,

mode| paradigms, and process parameterization. A faclitator
responsible for lecding the discussion and preparing a final report to
the entire workshop wes designated for each working group.

Prior to the meeting, the organizers aranged for selected
participants to prepare White Papers fo stimulate preparation for the
meeiing. The outhors were asked to onalyze the prospects for
reducing uncertainty in the source of modeling error they were
addressing, assess the relative vaiue of further reductions in that
source of uncertainty when compared with others, and suggest an
agenda for discussion by conference participants. These papers
served as the starting point for each working group. '

- The workshop also involved plenary presentations which included an

overview of uncertainty in tfoxics modeling, @ management
peispective on the applications of mass balance modeis in the
Great Lakes with emphasis on management needs for Lake Ontario,
the current methods for quantifying and expressing uncertainty in

Reducing Uncertainty in Mass Balance Models of Toxics
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Great Lakes modeling, the imporfance of large events, and a
management perspective on determining the appropriate levels of
complexity, accuracy and cost to fit the application.

These proceedings include transcriptions or summaries of the
plenary sessions, the white papers, summaries of the disgussions of
each working group, and the final recommendations.

Great Lakes Monograph No. 4



| Executive Summary

Group 1

Group 2

Group 3

Group 4

A workshop was held on February 3-5, 1992 in Buffalo, New York to
focus expert attention on the problem of uncericinty in mass
baknce models for toxic chemicails in the Great Lakes. in order to

- focus the discussion, specific emphasis was placed on applications

to Lake Ontario. A steering committee was formed whose members
included representatvies of U.S. EPA and Environment Canada
adlong with the two institutions that organized the workshop: the
Great Lakes Program at the State University of New York at Buffaio
and the Great Lakes Research Consorfium. Attendance was by
invitation of the steering committee and included modeling,
profassiondls, university-based aquatic scientists, senior agency
personnel responsible for state and federal water quality programs,
and others. More than seventy individuals worked over. the three
day period to derive recommendations for ways fo reduce
uncertainty and increase confidence in mass balance models and
the accuracy of their predictions.

Participants were assigned to one of four work groups. The work
groups were defined by the steering committee, and were intended
to focus attention on particular ways in which anaiytical uncertainty
and input errors qre likely 10 be infroduced into mass balance
models. The workgroups were divided as follows:

Loadings and other forcing function data, inciuding the influence of
stochastic variability

in situfieid observations/system response measurements for the
establishment of initial conditions, boundary conditions,
calibratioryconfirnation data sets, and model post-audit data sets

Modei paradigms, incliuding model formulation, spatialtemporal
resolution, and the effects of process aggregation

Process parameterization, including data availability, process
axperimentation and scaling problems.

The steering committee commissioned white papers fo summarize
the ksues in each of these fopic areas. The white papers are printed
in the folowing proceedings. Each work group was asked to review
and discuss the white paper prepared for its group, consider the
suggestions offered in the papers for reducing uncertainty and offer
recommendations from the group. Fach group was asked to
consider questions of technical feasibility, costs and time needed to
implement aach of the recommendations. These recommendations

-were then commented on by a panel made up of management

professionals who would be expected to consider their
implementation. The intended outcome of the workshop was a set
of recommendations to guide decisions about the future direction

Reducing Uncertainty in Mass Balance Models of Toxics
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Overall Workshop
Conclusions and

of mass balance modeling efforfs in the Great Lakes: how models
should be used and the best way to direct resources toward
research most likely to improve the usability of mass balance models
for management decisions.

The proceedings following this summary include a more detailed
discourse of the discussions in each of the work groups. It also
inciudes the franscripts of the plenary sessions that guided the work
group deliberations and a summary of the closing panel comments
on the work group recommendations. Presented in the remainder
of this Executive Summary are the overall workshop conclusions and
recommendations, judged by the organizers to be the consensus of
the entire workshop, followed by a listing of the specific
recommendations of each of the individuai work groups.

To virtually eliminate the impacts of toxic substances in the Great
Lakes, the most appropriate and scientifically defensible targets for
toxic load reductions must be selected and the most effective and
efficient means to reach those targets must be chosen. I making
these decisions, mass balkance modeils that predict the faie of toxic
substances, quantify load-concentration relationships for  key
environmental compartments, and determine target load
reductions must be used. Since judgements based on these models
will have significant legal, regulatory and financial implications, it is
essential that the uncertainty associated with mass balonce models
for toxics in the Great Lakes be reduced to a level commensurate
with the mancgement needs. While it was not within the scope of
this workshop, we must recognize that the level of confidence
needed for a given application must be determined a priorf as part
of the problem definition. Only then can a problem-specific strategy
for reducing uncertainty be devised. Given this caveat, it wos the
goal of this workshop to identify a list of the most promising modeling
improvements possible in the areas of process understanding and
parameterization, loading and cdlibration data sets, and model
paradigms. These strategies for reducing model uncertainty could
then be selected and implemented on a problem-specific basis as
dictoted by the particular management needs.

As Dr. Thomann conveyed fo the Workshop partficipants in his
Keynote Address, reducing model uncertainty, placed in a positive
context, is merely gaining more and more confidencs (.6., a higher
degree of certainly) in the ability of our models to explain the
variability of a toxic contaminant in physical and biclogical space
and time. Listed below are the areas that we felt the Workshop
participants identified providing the most fruitful avenues of
inquiry relative fo gaining confidence in model predictions of toxic
contaminant behavior In the Great  Laokes. These generai
recommendations are placed info two groupings: 1) those that
address the confinued development and impiementation of a
strategy for using mass baiance models for managing toxics in the
Great Lakes; and 2) those that address needs that are more specific
to particular processes or contaminants. Within each grouping the
items are not listed in any particular order of priority.
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Modei Development and 1. The spatial, temporal, and kinetic resolution of a model are what
Application Strategies  oiomine its complexity. Much of the unexplained variabiiity in our
models is due to a priorl averaging and lumping that we perform in
order o simplify our modeling framewotks. Development of
complex, site-specific toxics mass balance models in the Great
Lakes Ecosystermn are required if we are to gain a frue understanding
of sources of uncertainty and to develop approcches for reducing
those uncerfainties. However, model development and application
should procesd along both the simple and complex paths: these
paths are complementary and provide an effective process
formulation, parameterization and scale dependency testing
framework.

2 since site-specific models are anly as good the daia from
which they are developed, a good deal of model uncertainty
reduction can be achieved by collecting guglity data and fuily
understanding -- and quantifying -- the variability in field data. Also,
data coilected for a site-specific modei application must be directily
usable for the application in question. Given limited resources, there
is no room for monitoring that haos little value as model input or for
comparison with model output. To assure these objectives, new field
dala collection progroms should be designed with the full
cognizance of the problem definition (including definition of desired

- accuracy and precision), historical monitoring data and screening

' model analysis of these data, existing model applications fo similar
problems, and state-of-the-art statistical techniques.

3. if we are to make advancss in reducing model uncertainty, we
must focus research effort on developing efficient and unbicsed
methods for guantifving model error. These methods must account
for data variabiity and aftempt fo account for model formulation
and application errors as well as model parameterization errors,

4. As models become more compiex and multimedia in nature, as
suggested by the model paradigm work group, it will become
necessary to develop better and more efficient modeiing support
tools. For exampie, Geographic Information Systems (GIS) linked to
a series of toxic chemical loading, fate and transport, and effects
models can be invaluable for organizing and analyzing spatial and
atiribute data, for applying averaging and interpoiation schemes
that permit higher resolufion modeling with sparse datq, for
restructuring and passing model input/output data  between
models, for visualizihg model output, and many other modeling
tasks. We must continue fo explore and develop techniques (such
Monte Cario analysis, maximum likelihood methods, or DiToro’s
method for apportioning uncertainty between calibration data and
‘model parameterization uncertainty) for model calibration, sensitivity
analysis, and error analysis. Finally, expert systems can be used to
aid in model formuiation and application in an attempt to benefit
from previous experiences in a particular modeling domain.

Reducing Uncertainty in Mass Balance Models of Toxics
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Priority Model Formulation
a_nd Parameterization Needs

Specific Viork Graup
Recarnmendations

Summary of
Recommendations Group

1. Accurate representation of sorbent fransport and fransformation
dynamics is grycigl to developing accurate toxic mass balance
modeils. Of particular importance are water/sediment exchange
process, More effort should be focused on formulating site-specific
sorbent dynamics models (including explicit representation of
organic carbon sorbent kinetics) and obtaining high resolution
(especially in the vertical dimension) calbration and verification
data sets,

2. Atmospheric exchange of foxicants, including deposition and
phase transfer, represents a major source and sink in the Great
Lckes; more research is needed to better quantify the rates and
governing conditions for these processes.

3 Accurate representation of the food web structure and
dynamics is one of the weakest components in an integrated toxics
exposure model; definition of the routes of carbon flow in aquatic
ecosystems, individual organsm metabolism, and toxic chemical
assimilation efficiencias are some of the priority data needs.

4 Mercury is a significant problem toxicant in Lake Ontario, yet our
understanding of mercury fransformations and our ability to obtain
accurate field measurements of ifs various phases are very limited.
A comprehensive program to develop an understanding of mercury
fransport and fate by synthesis of field data and process
experimentation in a mass balance modeling framework is strongly
recommended. ’ :

The remainder of the Executive Summary of this Proceedings
presents a summary of the recommendations of each of the four
Work Groups. These recommendations are ngt presented in any
particukar priority, since the groups did not pricritze their
recommendations. However, a feeling for the significance of each
recommendation can be obtained by reading the transcripts of the
discussions that led fo the formulation of these recommendations.

Loadings and other forcing function data, including the influence of
stochastic variabikty

® loadings estimates are dependent on the qudlity of the
monitoring data provided. It is, therefore, critical that Qualiity
Assurance/Quality Control procedures be carefully established
at the beginning of a mass balance modeling project.

8 Samping programs should be designed with the needs of the
maodel in mind. Existing monitoring data and models, as well as
state-of-the-art statistical fechniques should be used to help
design new sampling programs. Spatial and temporai resclution
of load estimates must be compatible with the model being
used.

® Research is needed into the effect on model uncertainty of
using alfernative statistical methods for estimating loads, in

Great Lakes Monograph No. 4



particular for samples reported at non-detect.

= State-of-the-art sampling and analysis protocols shoub be
followed wheneveér possible to minimize censored data.

8 Atmospheric inputs are still imprecisely known. More study is
needed in this areq; in particular, improved estimaies of process
rates, improved understanding of the correlation between air
concentrations on shore and over the open lake, and methods
for including short-range transport into loading models.

Summaryof In siiu fleld observations/sysiem response measurements for the
Recommendations Group 2 establishment of inilial  conditions, boundary conditions,
calibration/confirmation data sets, and model post-audit data sets:

s Additional efforts should be made to analyze the Green Bay
experience 1o help identify the oplimal sampling requirements
for Lake Ontario.

= Research is needed into methods for quantifying uncertainty,
estimating uncertainty from alternative sampiing regimes, the
possibility of using surrogates that are more easily sampled and
measured than toxic organic contaminanits.

» Historical sediment data for Lake Ontario and Green Bay shbuld
be reviewed to guide future sediment sampling programs.

s Existing data on contaminant levels in Lcke Ontario are
insufficient for model cdlibration and additonal sampling will be
required to obtain toxics concentrations in water, sediment,
atmosphere and biota. An optimal water column, sediment and
biota sampling program for the data needs of a mass balance
model calibration effort for toxics in Lake Ontario should include:

five to six lake segments with three fo five water column
sampling stations and one master station per segment.

sampling of the epiimnion and hypolimnion in each
segment, with the master station sampled more frequently
with extensive vertical profiing, including two samples in the
epilimnion and four in the hypolimnion. In addition to toxics.
dissolved and particulkate organic carbon, suspended solids,
P, N, i, and Cl shouid be sampled at the master stations

sampiing under the ice, after spring loading, aoffer
stratification, after fall turnover, and during one additional
fime ' '

samping for a minimum of two years to acccount for
variability in weather

one master sampling station in each segment. Sampling
should be more frequent and should take place every year,
not just for two years. Vertical profiing shoukd be more
extensive

volume proportional sampling techniques shouid be uﬁlizéd

some data collected during storms to determine the puise
loading associated with big events

Reducing Uncertainty in Mass Balance Models of Toxics
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multiple samples tcken during sample collection.
Preservation of sample is inexpensive compared to the cost
of losing a sample.

sampling grid for sediments that match water column grid,
except more intensive

sampling of biota from various compartments in the food
web, with particukar concerns with sampling of:

~ seasonal concentrations of toxics in alewife

popuiations

~ different age classes of lake trout

- mysis and pontopreia
» Because of the characteristics of the contaminants of concern,
the needs of the models, and the particukar problems in the lake,
mass balance modeils for Lake Ontario should concentrate on
PCBs (Totat), DDT, Mirex/Photomirex and Plutonium.

s |t is essential that measurements of water column and
invertebrates concentrations are matched in fime. It is less
essential fo match fish and sediment data.

®» Research needsinclude:
*  Use of piutonium measurements in water and sediment to
cdiibrate sorbent mass balance models.

Study photochemisiry of mirex and photomirex.
Measure the Kow far each chemical to be modeled.

Determine how to combine vaiue weighted averaging
techniques with maxiumum likelihood estimaotion for
censored data.

Summary of Model paradigms, including model formulation, spatial/temporal
Recommendations Group 3 resolution, and the effects of process aggregation

Much of group 3's discussion centered on the comparative
advangages of simple models sufficient for whole loke mass
balkance estimates versus more complex models caopable of
'discrirnincting between impacts of different inputs, providing
information on localized effects, estimating response times to
management actlions affecting loadings and in general, increasing
our understanding of the fate and transport of foxic substances in
lorge lakes (see proceedings for more detai about this debate),
Questions about uncertainty far each type of madel are significanily
different. The group was able to agree on the following general
recommendations:

w  Continue to use existing models for whole loke issues

H Use simple models to test and refine process descriptions with
regard to water/bed exchange processes, air/water exchange
processes, biota/water exchange processes, sorption kinetics,
food web processes, solids/carbon correlations, and speciation.

e Of the processes described in work group 3's report, water/bed
exchange processes are most important. Future research shouid
include Iincreasing the vertfical resolution in the bed and
developing explicit representations of organic carbon kinefics.
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s Use complex modeis to add spatial/temporal resolution.  In
addition these models can be coupled with
hydrodynamic/sediment models, can use multiple sediment
layers, and can exfend into tributaries

Summary of Process Parameterization Including dafa avaliability/process
Recommendations Group 4~ experimeniation and scalng problems

The members of workgroup 4 each summarized an aspect of the
group’s deliberations. The following processes were identified as
confributing foward model uncerfainty,. The group identifled
research needs, sompling methods, or improved process
characterization that coukd reduce the uncertainly associated with
each process. The list of processes that follows is not prioritized with
respect to importance in reducing model uncertainty.

& Gastro-intestinal uptake and biomagnification of hydrophobic
organic chemicals (kack of knowledge cbout mechanisms is the
main source of uncertainty)

= Tronsformcﬂon processes (experimental research is needed to
better characterze the processes by which conftaminants
fransform in the environment)

m  Physical/chemical properties of contaminants (Kow vaiues and
Henry's law constants vary widely. For modeling purposes,
guidelines for accepted values are needed)

®» Flux across the dir-water interface (there is insufficient data to
characterize the flux rates at different temperatures for different
contaminanits)

s Watershed/airshed models (the role of soil processes, and wind
driven erasion is undefined)

m Food web structure (uncertainty exists regcrdnng exposure of
animals in contact with sediment)

B Impact of large events (data and parameters relevant to large
storm and mn-off events is needed)

® Measuring mercury (@ major field measurements program is
needed for methyl mercury)

E Fish mobiity (movement paiterns need to be better
parameterized)

#  Resuspension/deposition (contaminant flux due to
resuspension/deposition, especially at high siresses, needs
improved quantification)

B Sorption processes (sorption phenomena need better
characterization, and a basic theory is needed to describe
sorption phenomena)

m Carbon Cycle Mass Balance (improved understanding is
needed of the dynamics of dissolved organic carbon, .
phytoplankton-toxicant sorption and effect of phytoplankion
growth on carbon content).

Reducing Uncertainty in Mass Balance Models of Toxics
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Congressman
Henry J. Nowak

| Opening Remarks

| om pleased to have the opportunity to welcome everyone here
foday to the University of Buffalo for this important working
conference on mass balance modeling of toxics in the Great Lakes.
| can see from the list of participants that this conference will be one
of the highlights within the Great Lakes research community this
year,

We are at an important junciure in Great Lokes research. The
uncompromising geals of the Great Lakes Water Quality Agreement
with Canada has challenged the research community with difficult,
yet exciting, problems. In calling for an ecosystem approach that
must employ mass balance methods, the Agreement has
highlighted the need far improved tools. This gpproach is required
to serve a broad constituency within the Great Lakes Basin that
includes every living organism.

i believe the Great Lakes are the perfect proving ground for such an
underfaking. As a unique and identifiabie resource, they provide a
living laboratory in which to observe cause and effect. With the
proper tools, we can come fo undesstand not only the
consequence of long term degradation of natural resources, but
more importantly we can devise appropriate management
schemes for its reclamation and erhancement. | believe ecosystemn
modeling will play a pivotal role in this effort,

My challenge s a policy maker is fo demonstrate to taxpaying
citizens that federal dollars are well spent and provide g posifive
return on investment. Unfortunately in the environmental area, this
has proven an illusive task. While our intfuition tells us that pollution is
bad. . . it has been difficult o quantify and demonstrate its damage
to our hedith and economy.  While enviionmental concern
continues to gain an increasing share of public attention, they wil
not have parity with other concerns until we can demonstrate the
benefits of our actions 1o the public at large. It is here that the Great
Lakes have provided are remarkable example. It is estimated that
over 312 biilion in federal doliars have been spent within the Basin for
construction of sewage treatment facilities, an action precipitated in
large part by the apparent "death of Lake Erie in the 1970's,
Reaction to the defiement of such a large natural resource created
the public support for our first envitonmental programs, and by all
counts, the reclomation of Lake Erie was a remarkable success and
perhaps the first example of environmental controls reclaiming a
vast natural resource.

Lake Erie also demonstrated the economic benefits of investment in
environmental protection and remediation helping produce a sport

fishery in the Great Lakes worth $4.5 bilion per year in economic

activity across the Basin. Incidentally, | understand some of the

I0
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phosphorus . loading models developed in those days were
pioneered by individuais here today.

In my mind the Lake Erie example demonstrates how criticat mass
balkance modeling will be to solving our current problems with the
persistent toxic chemicals that have permeated the Great Lakes
and are found in all forms of life throughout the system. A small
body of research ‘and prudent intuition tells us that there may be
human heaith effects associated with PCB’s in mothers’ mik and
their bioodstream that is passed on to their infants. A considerably
larger body research confims both the severe and subtle
developmental effects of persistent toxic chemicals on the fish and
wildlife population within the Basin. Again, as a policymaker | have
to ask myself: Do we know enough at this point to take action? Will
we ever have all of the information required fo demonstrate
absolute cause and effect? And perhaps most importantly, should
we wait until then to act? Without the tools 1o more fully understand
the costs of action vs. inaction regarding environmental
management these critical policy questions will go unanswered. For
this reason, | am excited by the potential of ecosystem modeling on
the Great Lakes. If modeling can help us to understand, in a
comprehensive fashion, the fate and fransport of pollution and its
effects, we can then make the best investiment of limited federai
doliars to protect the health of the ecosysiem.

| also believe there is a larger purpose to the wark in the Lakes. The
vast Great Laokes watershed and its complex environment are
mirrored in the institutional arrangements that govern the resource.
Two federai governments, eight states, two provinces, and Native
Americans provide a unique challenge o policymakers that will
provide the madel for international environmental agreements on a
global level. '

In short, if we cannot execute an ecosystem game plan here in the
Great Lakes, the challenges of global environmental management
may aiso go unanswered. But | am far from pessimistic. Great Lakes
issues have experienced a fremendous renaissance in the past few
years. Attention at the federal level has produced new resources
across many of the federal agencies committed to meeting the
Water Quaiilty Agreement and a greater level of interagency
cooperation is also paying off with more coordination and less
duplicating of work. This high profile has helped move programs
along and build support for the sustained efforts necessary to get
results. | can aiso say with a great deal of pride that by coming to
8uffaio fo hold this conference, you have come to the right place.

The University of Buffalo’'s Great Lakes Program under the leadership
of Joe DePinto has fostered a new center of expertise within the
University in the area of environmental modeling. With the
confidence and funding from EPA’s Environmental Research Lab
under the direction of Gil Veith, a critical investment has been made
to develop a predictive model for the Buffalo River watershed.
Fartunately, UB is one of three Universities within the National Science

Reducing Uncertainty in Mass Balance Models of Toxics
{n the Great Lakes- Lake Ontario Case Study



Foundations’ National Center for Geographic Information Analysis,
providing an unique opportunity to use existing University resources
o develop this powerfui model.

| certainly look forward to the results of this conference and ifs
forthcoming applications to the Loke Onfario Lakewide
Management Plan. Please be assured that as we move 1o
reauthorize the Clean Water Act this year in Congress, Great Lakes
lssues will continue fo be a high priority for me.

Thank you again for all of your strong effaris on behalf of our Great
Lakes resources.
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| Keynote Address

Robert V. Thomann
Manhattan College

Introduction

Uncertainty in Toxics Modeling

| gave a lot of thought on how to approach this subject of
uncertainty in toxics modeling and the fact that we will be spending
two and a half days looking at various dimensions of this problem. |
fried to review what has been done over the years and then
decided to turn 1o the dictionary. The synonyms for uncertainty are:
doubt, dubiosity (1), skepticism, suspicion. | checked "dubiosity* and
got the word “unceriainty* back againl The definition was a rather
negative perspective on uncertainty but that‘s the way the public
thinks about uncertainty and that is probably the way most
managers of water qudlity perceive the notion of uncertainty. In
fact, many managers of water quality, when they get to water
quality models, seem to think in these terms: suspicious, doubtful,
skeptical. Of course to some degree we have to have that healthy
skepticism ourselves.

But a lock at the flip side of the definition is interesting. The title of this
warkshop is "Reducing Uncertainty" which is another way of saying
we hope to "increase certainty”. The dictionary offers a much more
comforting kind of definition for "certainty®; "assurance"; “conviction®;
and *faith strong enough to risk all attack ()." We ultimately wani to
provide some kind of assurance or conviction (but not blind "faith”)
that' what we are offering managers with the results of model
caiculations and field and laboratory observations can be used in
the decision making process with some conviction and some
assurance.

The bosic questians that most managers ask are: "How good are the
predictions of the effects of controi actions?® "Do you understand
the reasons for the observed behavior in toxics concentrations?" "if
we carry out some control actions, what assurance do we have that
your predictions will, in fact, happen?* "How good is your modei?"
These are questions that have been asked ever since models were
first constructed., These broad questions are very meaningful fo
those who are ultimately responsible for carrying out programs. So
management looks at certainty and uncertainty from a relatively
simple point of view. The underlying fear in the notion of uncertainty
is that the "wrong" (in some sense) control actions will be
promulgated.

Reducing Uncertainty in Mass Balance Models of Toxics
in the Great Lakes- Lake Ontaric Case Study ’
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The Importance of the
Problem Cortext

The Saurces Of
Uncertainty In Iivdcs
Madeting

To a large degree, the significance of uncertacinty depends on the
problem context. How we perceive uncertainty reaily depends on
what we think are the relevant questions. For example, if we're
dedling with a regulaiory process on a broad-based - generic
problem, i.e.. across chemicals and across sites, then screening,
global, generic steady-state type models of toxics may be
appropriate. Qrder-of-magnitude modeils of bicaccumulation in a
paradigm food chain is an illustration. The significance of
uncertainty might aiso relate o the response time of systems fo
control actions. In that case, site-specific models may be needed.
An example would be estimating whether we can expect a certain
mean water quality objective or mean fish chemical concentration
be met within the next 10 - 20 years. Finally, uncericinty might also
depend on which questions are being addressed in the permitting
waste load dllocation process. Chemical dllocation models are
then necessary and meaon and exceedance frequencies, may need
to be calculated.

Arficuiating modeling uncerfainty questions must therefore be
attempted at specific levels of detal. What is the relative
contribution of data variability and model uncertainty o observed
chemical variability? What s the confidence interval on a
calculated mean chemical conceniration? Do we regulate on
exceedance of the mean? What are percentie exiremes on
individual levels? Do we reguiate on short term events? Up front
articulation of relevant questions is essential because the questions
determine the cpproach that needs to be faken to deal with
uncertainty. :

There are a number of components of uncertainty in the modeling
of chemical fate and accumulation. There is inherent variabitity due
1o spatial and temporal changes in meteorclogy, hydrology and
food web structure. Measurement and cobservation errors aiso are
important contributors to overall uncertainty especially for exfremely
low level chemical concentrations. Model structure ifself can be a
couse of uncertainty; state variables, inputs, processes, and linkages
may or may not be correct. Numerical assignments for inputs and

parameters, of course, have considercble potential uncertainty.

Other sources of uncertainty are biunders and pre- and
post-processing errors of model output. And finally there may be an
incomplete understanding of the modei which may result in an .
application of the model for which'it was never designed.

From a toxics modeling point of view, | believe that "uncertainty” is
redlly unexplkined variabiity, or unexplained behavior i.e.,
variabiity and behavior that is "left over* or "unexplained® affer
we'’ve fried to apply. as much of what we know at a particular point
in time. Large uncertainty in this sense means large confidence limits
around a prediction where the range of unceriainty of the
prediction may or may not be acceptable. The degree fo which
variability is explained can therefore be considered a measure of
the reduction of uncertainty.

14
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Recognizing these sources of doubt, a definition can be offered:
‘The certainty of a toxics model (or any model) is the degree to
which the variabilily of a chemical in physical or biclogical space
and fime is explained by the modeling framework". By "expiained”, |
-mean that the engineering/scientific/management community
agrees that the model is a valid representafion of a set of
observations and can be utilized within the given problem context.

Model and Data Figure 1 is @ schematic of the generation of model and data
N . . variability. Physical, chemical and biological processes lead to
Wmahhy spatial and temporal variabilty.  Input load variability further
coniributes to the total "true* variability of water quality, which, of
course, is unknown. There are a variety of sampling constraints that
govern the degree to which this real world true variabiity can be
observed. The degree to which sets of cbservations are meaningful,
of course, depends again on the probiem context. In addition fo
sampling constraints, there are modeling constraints that are also a
function of problem context. A priorl decisions are then made on
how to approach the problem: whole kake models, steady state, the
state variobles themselves, what kind of chemicals will be modeled,
and the spatial and temporal grid.  Finally, there is a comparison
between model caiculiations and data variability,. The degree to
which that comparison s "acceptable” is the degree to which
uncertainty caon be tolerated.

ExamplesOfObserved  what has been observed about chemical variability? For example,
. g oy for inputs and porameters what is the chemical response in
‘ WWhldy physio-chemical and biological compartments in terms of temporal
and spatial variabiity? What do the mean, variance, and
coefficient of variation lock like in some of these processes? What
do is known acbout the probability distribution functions? What is
known about response to load reductions?

Figure 2 shows the probability distribution function (pdf) for the PCB
load at a station in the upper Hudson River In general, load
probability distribution functions tend toward lognormal behavior
which means that significant siatistical statements can be made
from estimates of two statistical parometers. Suspended solids are an
important component of toxics modeling. Figure 3 shows the pdf for
the Mississippi River at Jefferson Parish, just to the north of New
Orleans. As an example of chemical variabiiity, Figure 4 shows the
pdf for chioroform at the same siation on the Mississippi River. The
top panel shows the time history of chioroform collected at that
location, and the bottom panel shows the pdf. As indicated, the pdf
is approximately log narmal, with a total variability about two orders
of magnitude with a coefficient of variation close to unity. This level
of variability is common in toxics chemicals. As a final example of
physio-chemical behavior, Figure 5 shows the TCDD in surficial
sediment in Lake Ontario. The "breck"” in the pdf may be a result of
near shore vs. open lake behavior or varying sediment organic
carbon concentrations.

Variability in the biclogical sector is aiso quite regular. Figure 6 shows

Reducing Uncertainty in Mass Balance Models of Toxics
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Model Frameworks and
Computed Variability

the structure of PCB variability in fish for data coilected on the
Hudson River and Estuary. It is rather remarkable that across
migratory and resident fish that such statistical reguiarity is observed
although it should be recognized that this is a log-log plot. A global
coefficient of variation is around 0.6. A model of fish variability
exposed to varying chemical concentrations indicates that for a
coefficient of variation around 0.6 for chemicals in fsh, the global
coefficient of variation for the dissolved chemical is about one,

- similar to observed coefficients of variation. Figure 7 shows a similar

behavior for kepone in the James estuary with a coefficient of
variation for fish of about 0.6, These data therefore appear to
display some considerable statistical regularity which con be
exploited to reduce uncertainty.

Figure 8 (from a data compilation on chemical uptake by benthic
invertebrates by Thomas Parkerton at Manhattan College) shows
the pdf for the Biota Sediment Factor (the ratfio of the chemical in
the benthic invertebrate on a lipid basis o the chemical in the
sediment on organic carbon). The first interesting observation about
this figure is that there are 1,770 instances in the literature observed
Biota Sediment Factor for deposit feeding invertebrates. The median
is approximately two (Indicating o preferential partitioning into lipid
over sediment carbon) which had been previously suggested from
earlier data analyses. Again, the data show a consistent degree of
statistical structure which can be used to make recsonable
estimates of variabiity in the degree 1o which invertebrates
accumuiate sediment chemicals .

Intra-species variability is also a source of variability that must be
examined. The range of such variability may be large and
apparently depends significantly on the exposure history of the
individual organisms. Figure 9 shows results from a single collection
of 67 fish (Alberta, Canada). The age distribution of the collection is
relatively narrow. As shown, the distribution of PCB is about one
order of magnitude in range while for BHC, the range is only a factor

-of two. The difference may reflect varying exposures of the fish fo

the two chemicals, but in any event the variabiiity within this
collection is significant.

The modeling framewarks available to deal with all of this variability
are varied and in differing degrees address the overall uncertainty
questicn. The approaches include determinisiic models of
physio-chemical fransport and subsecuent chemical accumulation
in the food web. Such models are run under both steady siate and
time variabie conditions. Age dependency may also be included in
food web models. Monte Carlo simulations can be conducted
within these deterministic frameworks to elucidate statistical
behavior of outcomes. Parameter uncertainty analyses and models
of stochastic behavior are also available. These and other areas will
be discussed throughout this workshop and a review is not
warranted here. | would like however 1o indicate the nature of the
kind of analyses that can be done to provide a basis for cailculating
variability and subsequently comparing the results to observed

16
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behavior,

Using a simple whole lake model of the dimensions of Lake Ontaric
with six 1 cm. sediment layers and following standard
physio-chemical partitioning and fate models, the illusirative
question that was asked Is: "What is the computed chemical
variability in a whole lake model due just o load variability?" Figures
10 and 11 show some simulations. A log normally distributed annual
load with a coefficient of variation of 50% was inputted info Lake
Ontaric. Annual water column and sediment response is shown for
a 60 year simuiation both with and without bioturbation in the
sediment. As expected, water coiumn response is considerably
more variable than surface sediment and deeper sediment. A
number of such simulations were conducted and the coefficient of
variation in the water column was calculated to be approximately
50% of the coefficient of variation of the load. From simulations of
this type, we can obtain first order insights into partitioning observed
variance in chemical concenirations in the water column between
load variability ( of which we have some reasonably good
knowiedge) and other sources of variobility.

It s ako of interest to note that simulations of the fraction of a
chemical in dissolved form for log normail solids and log normal
partition coefficient behavior does not result in log normat behavior
in the fraction dissolved. This would be expected on statisticai
grounds. Figure 11 illustrates the point. The range of the fraction
dissoived clearly is limited between about 0.6 and unity. The
coefficient of variation of the fraction dissolved is quite insensitive to
the coefficient of variation of the partition coefficient. These and
other results provide the framewaork for understanding the sources of
variability in observed chemical behavior.

Now once we've locked at model frameworks and at observed
variability, how- unexplkained variability is addressed cffects the
perception of uncerfointy and model credibility as illusirated in
Figure 12. This Figure picks up where Figure 1 left off. The comparison
of model and data veriability is the first step as shown in Figure 1, but
what s subsequently done with that comparison aoffects the
perception of model credibility. Far example, following Figure 12, the
maodel ond data may be compared qualiatively as is done in many
applications. The comparison is left to speak for itself and the results
are generally incorporated into some statements about model
performance. Figure 13 shows an example. The quote is the extent
of the analysis of model versus data. ( In fact, when | look back at
what I've written over the laost 35 years, most of what | say after | look
at model and data comparisons are permutations of those words.)
Such cpproaches may be useful for initial development and
elucidation of processes but are generally not appropriate for
detailed management questions.

Returning to Figure 12, attempis may also be made o quontify the
unexplained variability resulting from the comparison of model to
data. The residual variability may turn out to be acceptable in some
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sense and consistent with the gquestion being addressed. (Figure 13
illustrates a level of variability on eight cycle log-log paper that was
considered "acceptable” for purposes of demonstrating food chain
bioaccumuiation.) The model may then be considered suitable for
an intended use even though there may stil be a considerable
amount of residual variability. if the residual variability is
unaccepiable, then, of course, effort has to be directed towards
reducing that variability,

Figures 14-16 iliustrate detaled comparisons of model fo data
variability. The upper Hudson (Figure 14) is a fine time and space
scaie calculation. It shows a 50-day comparison at Waterford, NY
with the original calibration. The probability piot comparison of the
model to the data illustrates one way of displaying model and data
variability. The same model with a two-day phase shift; is also shown
to indicate that very offen the exact time variable behavior of the
calculation may not be captured. Are we interested mainly in
looking at the 95th percentie no matter when it occurs? s it an
uncertainty of timing, or an uncertainiy of maognitude? Is the timing
of the peck critical, or is it capturing the magnitude of the peak
that's important and it really doesn’t matter when the peck occurs?
The "uncertainty question* clearly. has. an impact on whether the
model is considered suitabie for use.

Figure 15 for Saginaw Bay illustrates an additional point.  This
Saginaw Bay total PCB model was a time variable model with results

shown for an inner Bay depositional zone. Madel runs A and B

represent differing ossumptions on  parameters  including
volatilization loss of PCB. For the total PCB, it was concluded that the
the cruise mean and individual station mean was captured and the
cruse meacn variance was captured. But the individual siation
variance was not captured. A similar result was obiained for the
particulate PCB. For the dissoived PCB, the mean is captured, but
neither variance component is reproduced by the model. Model
performance clearly depends on. the model siructure, but it also
depends on the data avercging that is used. Generally, model
perfarmance in terms of unexplained variability is improved as data
spatial and temporal avercging is increased.

Figure 16 shows results from @ model of cadmium in Foundry Cove
on the Hudson estuary. These results are offered as an itustration of
model reevaiuation and recalibration to improve confidence in the
forecasts, in this case, the effect of a load reduction. As can be seen .
from the plotted datq, there was reiatively lithe loss of cadmium over
about a 20 year period since the cessation of codmium loading to
the Cove. - The question we were asking is why did the surface
sediment cadmium concentration remain so high over that period?
As shown in Figure 16, the initici model cdlibration un was not
satisfactory and empfied out cadmium from the sediment
considercbly faster than was observed. Following Figure 12, this result
was not acceptable and a reduction in the unceriainty was
required. In the final cdlibration, benthic mixing of the surface
sediments (bioturbation) was included which a indicated, provided
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a much more satisfactory and credible representation of the data.
Now to what degree Is the model suitable? There is clearly a
substantial amount of individual variability in the surface sediment
cadmium data (5§ orders of magnitudel) that the model makes no
attempt fo resolve. If the model is intended to predict changes in
surface sediment mean concentrations then perhaps the model is
suitable. If however, the intention is to expiain the heterogeneity in
the sediment (or water column) cadmium then the model is not
suitable,

SWWTW}’CGM It seems from analysis of data to date that there is o great deal of
statistical structure in the physio-chemical and biologicai chemical
MWO'A behavior. Continual data analysis is essential in order to further
IHI@OWIO Makbng elucidate such structures, But data analysis is usually most fruitfully
accomplished when a modeling framework is at hand in order o
&mg)) guide the analyses. | don't think present toxics models have fully
succeeded in capturing the observed structure in  variability;
however, the models have provided a first basis for assessing the
range of unceriainty and confidence in predictions. But some
considercble unexpiained variability continues to exist, and whether
we need to do anything about that unexplkiined variability and
reduce it depends critically on the kinds of questions that are posed
and the management implications of such questions.

One might also ask: "How much of the unexpliained variability is due
to the relatively crude spatial and temporal scales and relatively
crude food web representations of toxics models?" It seems that a
considerable porfion of the unexplained variability may be due to
such crude representations, A classical choice that we might make
can be summarized as follows. "Should we average the data and
theory g priori and use whole lake models to compare fo data?"
Or: *Shouid we minimize a priori averaging and use a much finer
spatial and temporal grid and additional state variables, and then
average the output for comparisons to data? it seems to me that it
is a truism that site-specific models require more detailed spatial,
temporal, and state variable resolution to reduce uncertainty. If that
is so, then our aftempts to reduce uncertainty in the most general
sense requires a modeling framework that extends beyond, for
example, whole loke models with a single sediment layer. My choice
then would be for large compiex systems (such as the Great Lakes)
that the modeling framework be constructed on as fine a spatial
and temporal and state variable level as possible. The calcukated
output can then be averaged and compiled in a variety of different
ways for comparisons to abserved data. This implies a great deal of
effart in designing appropriate sampling programs to support and
be complemented by the more detailed modeling effort.

Finally if we turn attention to Lake Oniario, the subject of this
Workshop, it is important to note that Lake Ontario is a specific site.
As such there are a variety of site specific questions that may be
asked regarding the Lake. For example, what is the near shore fo
open lake interaction of toxics? To what degree can we forecast the
redistribution of chemicals resulting from transient events? Wil
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averaging of a more finely scaled model produce superior results
over a whole lake model? | think the days of a Lake Ontaric whole
loke medel with single sediment layer and simple food chain appear
to be numbered. Those models have successfully served their
original purpose when first constructed almost ten years ago. | think
it's lime fo move on. If we want o reduce uncertainty, | think we
have to gradually move away from the 'simple madels" and provide
a framework in anticipation of the more detailed and inevitable
manogement questions of the future. | think the management
questions for Lake Ontario would appear to require a model with a
much finer grid in time and space and increased realism of food
webs. One of the white papers scheduled for this Workshop-
addresses this issue of simple versus complex modeis. I'm coming
down on the side of a growing need for more complex and hence
more realistic models for Lake Ontario.

I would suggest a spatial scale on the order of 10 by 10 kilometer or
about 200 grid points in the horizontai with about 10 layers in the
vertical totaling .about 2000 grid points total. The temporal time
scale is best calcuiated at the same time scale as an underlying
hydrodynamic model which would be an essential eiement of the
overall model. The physio-chemcial model would need fo be
coupled {o a rediistic food web model including incorporation of a
full carbon balance with phyioplankton-nuirient and zcoplankton
kinetics. Specific attention should be paid aiso to the mechanisms in
the sediment especidily bioturbation.

Modeling frameworks of this type were generally not fecsible even a
faw years ago. But with the increacsing availablity of super
computing capability, the computational ospects while still
formidable are not infeasible. As noted eariier, we clearly would also
have to design a sampling program consistent with this kind of
model detail to address the articulated questions. The absence of
such a large data base need not however preciude the beginning
construction of such @ model since a considerable histerical data
base dlready exisis that can be used for prefiminary modeling
efforts. Finally data interpolafion schemes can be much better
employed fo extend existing point dala to data surfaces for
comparison to detailed spatial model output.

Our quest for reducing uncertainty should of course never
degenerate into an objective of being absolutelty sure of all of our
predictions. Our world requies us to five with some cantinuing
residual level of uncerfainty. To ask for complete certainiy s to
demand the impossible. Now, it is axiomatic that keynote speakers
should open with some significant quotation from some wise person,
I'd like to close with a quotation from a person who looked at the
question of cerfainty a long time ago and concluded: '

*Cerium est quia impossibile est.*

(Tertullian, c. 200)
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| Management Perspective

Applications of Mass Balance Models in the Great
Lakes with Emphasis on Management Needs for
Lake Ontario

Charles Zafonte, U.S.
- EPA - Region 2

There are many different perspectives on what management
qusstions should be asked. The perspective being offered here is
that of the EPA and of the Four Parties who signed the deciaration of
intent for the reduction of toxic chemicals in the Niagara River and
who developed a toxics management pian for Lake Ontario. These
Four Parties are the two Federal governments, U.S. and Canadian,
and two regional governments, New York State and the Province of
Ontario. My focus will be on the areas that have significant
relevance to the issues being discussed at this conference.

First, for toxic chemicals in Lake Ontario it is important to note that
we're dedling primarily with bicaccumulation problems not with
water column problems. For instance, for PCBs in lake trout it looks as
though the bioaccumuiation factor is on the order of fwo million and
for the herring gull on the order of 25 million.

The godal of the Lake Ontario toxics management plan is a lake that
provides drinking water and fish that are safe for unlimited human
consumption and allows natural reproduction within the ecosystem
of the most sensitive native species such as bald eagles, ospreys,
mink and ofters. To achieve this goal four objectives have been
established. The first is to achieve a reduction in inputs of toxic
chemicals driven by existing and developing programs. The second
is to achieve further reductions in inpuls driven by special efforts in
geographic areas of concern, These areas of concemn have
remedial action plans (RAPs) developed for them; probably the
most significant for Lake Ontario is the Niagara River toxics
management plon for the Niogara River RAP area. The third
objective is the reason for this conference, i.e., to achieve further
reductions in inputs of toxic chemicals driven by lake-wide analyses
of poliutant fate. Objective four, zero discharge, hos relevance here
because preliminary models that have shown in order to reach our
most stringent criteriac we must have complete elimination of all
loadings of certain chemicals to Lake Ontario.

To go into further detait on objective three, the Four Parties agreed
that there are two different ways of doing a lake-wide analysis of the
effects of toxic chemicals. The first s a chemical-by-chemical
approach and the second is an - ecosystem approach. The
chemical-by-chemical is more practical, uses existing data, and
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cliows the development of strategies for reducing the
concentrations in the lake. However, it does not answer the more
basic question of whether or not the ecosystem is healthy. The
ecosystem approach for Lake Oniario s being addressed by
another group and will not be discussed here, except to say that it s
most useful as a check on the effectiveness of the chemicai-by
chemical approach.

The first step in a chemical-by-chemical approach is the
categorization of toxics. This entails examining all chemicais for
which ambient data exists, either water column or fish tissue, and
comparing the data fo the most siringent criteria of the four parties.
Each chemical is then categorized exceeding an enforceable
stondard; exceeding a more stringent but unenfarceable criterion;
equal to or less than the most stringent criterion; the current limit of
datection is too high to cllow complete categorization; or no
criterion is currently available. Examples of chemicals falling into the
fist category, exceeds enforceable standards, are PCBs, dioxin,
chiordane, mirex, mercury, iron and afuminum. ron and aluminum
appearing on this list may not be indicative of real problems since

" the criteria are somewhat questionable and natural sources exist.

Examples of chemicals falling into the second category, exceeds a
more stringent but unenforcecble criterion, are DOT and
metaboiites, octachiorostyrene, hexachiorobenzene, and dieldrin.

The actions agreed on for chemicals in these first two categaries,
include constructing a preliminary loadings matrix by December
1989, constructing preliminary models of chemical fate by January
1990, and to establish the preliminary load-reduction targets fo meet
existing standards by March 1990. The first two actions have been
compieted but the third action has taken longer than anticipated
due to the lkack of agreement on a set of ambient criteria. The
Great Lakes Water Qualiity Initictive should provide this set of criteria
for the U.S., which will provide a basis for negetiation with Canada.
An examination of the loadings maitrix for PCBs (Figure 1) shows that
the system is dominated by loadings from the Niagara River and
upper Great Lokes. Other significant sources of loadings are
atmospheric deposition and tributaries in Ontario. Tributaries in New
York all tested as non-deteciable at the one part per trillion level for
the organochlorine toxics of concern and are cumrently being
estimated for purposes of comparison.

There are two basic management questions. The first is. given an
ambient standard for a toxic chemical, such as the proposed Great
Lokes Water Quaiity Initiative standard for PCBs of 6.3 ppb., what
loading to Lake Ontario would result in this ambient concentration
under steady-state conditions? The second is, once the loading fo
the loke is reduced to this level, how long woukl it take the system io
achieve steady state? Resulls from simulkation modeis con help to
answer these questions.

The Endicott model con help us understand the relationship
between PCB load to the lcke and concentration of PCBs in icke
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trout (Figure 2). Given the 1989 average concentration in lake trout,
this model back cakculates a steady-state load of 6.3 kg/day. The
FDA criterion of 2 ppm in fish tissue corresponds fo a steady-state
load of 3.9 kg/day so the model indicates the need for a load
reduction of about 40% at steady-state conditions o meet the FDA
enforceable standard. The most stringent criterion, though
unenforceabile, is EPA‘s limit of 2.5 ppb in fish tissue. This criterion is
based on a cancer endpoint of one-in-g-million. The model predicts
that to achieve this criterion would require a steady-state load of
around 0.005 kg/day which comresponds to a 99.9% reducfion. The
Initiative level is 6.3 ppb in fsh fissues corresponding to about 0.01
kg/day, a 99.8% reduction. It is relatively unimportant which
criterion, EPA’s or the Initiative’s, is used since it will require virtuai
elimination of PCB loadings to Lake Ontario fo achieve either. The
model result also tells us that the precision of the model prediction is
not as important to managers as its accuracy. That is, we need only
ensure thaf the model accurately reflects lake conditions within
existing confidence intervals.

Locking at the predicted response o a PCB lead cutoff indicates
that there will be a fairly quick reduction in the water column and
trout and a slower response for sediment (Figure 3). All the curves
show that the time frame invoived is not one of days or months but
of years and even decades. Finally, the relationship between PCB
load and PCB concentration in lake trout can be examined for
various timelags following a load ailteration (Figure 4). Again, this
shows that the response to a load change s slow and that, even at
twenly years aofter load cutoff, the steady-state concentration in
lake trout will not be achieved where initial loads are less than 1
kg/day.

In closing, here are the questions that EPA feeils need to be
addressed:

1. Recognizing that the preliminary modeis do not deai with
dlt nine Lake Ontario critical pollutants, what additional work
is needed to deal with these chemicals?

2. The preliminary mass balance models indicate that
attaining a siringent ambient standard for a bioaccumuliative
chemicdi, such as the proposed GLW&inumber for PCBs,
wouid require virtual eiimination of all loadings to the ioke.
This is frue even taking into account the uncertainty around
the prediction. Since increasing the precision of the
load/response prediction is reiatively unimportant, what
ambient and loading data are needed to ensure that the
madels accurately reflect the conditions in the Iake?

3. since the modeis indicate that the lake responds over
years and decades, would limited U.5. and Canadian
monitoring resources be best spent on a low-intensity
sampling program, with @ commitment for long-term
maintenance of the pregram?

Reducing Uncertainty in Mass Balance Models of Toxks 39
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LOAD CONCENTRATION RELATIONSHIP: LAKE TROUT PCB
(UNCERTAINTY IN PREDICTION IS + FACTOR OF 4)
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Load-Concentration Relationships for PCBs
in Lake Ontario lake trout
at Times Following Load Alteration
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| Managing with Uncertainty

William Richardson,
U.S. EPA - Large Lakes
Research Station

Determining Appropriate Levels of Complexity,
Accuracy, and Cost to Fit the Management
Application

We ae now at a crosstoads for modaling, monitoring, and
managing toxic substances in the Great Lakes. In the past five
years, there have been several meetings fo work foward a
consensus on the level of monitoring required fo proceed with
credible mass balance models of toxics in the Grect Lakes. Great
Lokes managers have recently started to appreciate the role of
modeling in aiding the management of toxic substances and the
EPA Office of Research and Development is convinced of the need
to reduce uncertainty in mass balance models. The probiem is that
we kack a plan and without a plan there will be a lost opportunity for
a coordinated resecrch and monitoring progrom geared to
developing a holistic understanding of chemical behavier in the
Great Lakes.

A research strategy involving U.S. agencies was recently developed
for the Great Lakes. This sfrategy stresses mass balonce modeling,
from management level models up through complex models, as an
important need. Resources to meet this need are being provided;
the base EPA research budget for modeling in the Great Lakes hos
doubled in the last year not including EMAP, atmospheric research,
and Congressional add-ons. The question is, what are the priorities
for research for mass balonce modeling? This meeting should
provide input to help set the direction for establishing those research

" priorities.

The process of setting research priorities will probably require the
organization of some kind of committee structure. Currently, there is
an ad hoc group developing the next monitoring effort for Lake
Oniario but there Is no cumrently active modeling committee for the
Loke. This committee structure needs o be organized and
ravilalized, perhaps building on the Green Bay modeling
committee. '

Regarding the question of model complexily, if management can
make decisions based on a screening or management level model
then they should do that. if zerc discharge or virtual elimination can
be achieved without discussion of costs, benefils, priorities, and

~ relative risk reduction and if managers can have confidence that

their goals wil be met within a specified period of time then
complex model predictions are not needed. Those of us who have

Great Lakes Monograph No. 4



‘been involved in management activities over the years,however,
doubt managers’ intuitive abilities to do this. In the end those
paying for regukatory efforts, whether they be industry or Congress,
will insist on having a high level of scientific credibility and an
economically optimal approach backing their decisions. Money for
monitoring, research, or clean-up must be spent in the most
effective way even if the long term goal remains virtual elimination.

Modelers need to be careful on how they sell management level
models, especially since litHe calibration to field data has been
done, and to be careful to describe quantitatively the unceriainty
associated with model predictions. Modelers also need to convince
management that some basic research is needed to develop a
better understanding of the interaction of toxic chemicdls with the
Great Lakes ecosystem. Without the basic research that was
conducted in the late 1970's and early 1980's we could not have
the locd/response modeis that we have today. We have good
gudiitative confidence in our basic modeling paradigms because
of the basic research that was done then and we will require more
research of this type as a foundation for future medeling efforts.

The process of improving Great Lakes mass balance modeling will
consist of several steps. The first step is fo have risk assessors and
managers determine what water uses, biological species, and
geographical areas are at greatest risk and what chemicals are
suspected of causing the risk. We need to establish a continuing
monitoring and basic research effort like EMAP to run in parallel with
mass balance modeling research. Next we need to continue to
develop screening level models and to buid on existing models and
historical databases. Some uncertainties lke the impact of large
events, the impact of invading species,and interaction with system
modifications may need to remain qualitative for now. We need to
design a research and monitoring program setting priorities based
on the greatest potential for reducing uncertainty and to optimize
our sampling designs. Alternative modeling projects shoukd then be
proposed to management including the costs required for carrying
them out and reqilistic timetables.

It is important that modelers interact with experimentalists and
managers in a continuing diclogue. 1t is also important that sufficient
time is gliotted fo all steps of @ modeling program including data
collection, iaboratory analysis, and 'modeling. Managers should
apply Total Quality Management concepfs fo. these projects by
placing quality first and deadlines second and madelers shouid insist
on having flexible timelines including sufficient time after the data is
received fo calibrate and validate the models. Finally, we need to
incorporate models into decision support systems so that we can
integrate our knowledge of loadings, remedial costs, and risk
calculations and give this information to field managers so that they
can arrive at optimally cost effective decisions.

There is o matrix of possible alternative modeling approaches to
take over the next five years (Figure 1). This matrix lays out the
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approximate budget required to ‘achieve various levels of spatial
resolution, foxic chemical coverage, phases, biological resolution,
atmospheric detail, groundwater and ftributary loadings, and
process research. Achieving many portions of this matrix wil
praobably require cooperation among various funding parts of EPA,
Environment Canada, and other parties.

We alo need to understand what can be expected of these various
approaches. The screening level models that exist now are only
good within two orders of magnitude, include many scientific
caveats because of a lack of calibration data, are not to be used
for numerical farget load establishment but only to set program
drection, and have litle scientific credibility. By little scientific
credibility | mean that the resuits can be successfully challenged by
scientists working for other involved parties. As we increase the
amount of funding, and therefore resolution, we should get an
increcse in certainty, At the first level on the matrix the modeis have
less uncertainty but are still not to be used for numerical farget load
establishment and their scientific credibility still remain siow. The
second level may involve uncertainties on the order to 2 fo 5 times
the estimate, may adllow broader questions to be answered, have
more scientific credibility, and may be used to set numerical target
loads at least for some chemicals. The third level may have
uncertainties on the order of a factor of 1 fo 2, may be able to begin
to address watershed issues but cannot set target loads within a
watershed, and shoulkd have moderate scientific credibiity. The
fourth level would cllow us to begin o understand mercury, the
load/response relationships, and the inter-relationshics between
nutrients and toxics. In addition it would allow us fo establish loads
within the watershed and has moderate scientific credibility. Finally,
the last level should have an accuracy to within about 20%, can be
used fo address nearshore and harbor issues, will improve
understanding of long term sediment fransport and resuspension,
help o estimate the impact of major events, and has considerable
scientific credibility.
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Joseph V. DePinto

Great Lakes Program

University at Buffalo

Group 1

Group 3

|Charge to Workgroups

There are two basic premises that have come out of the plenary
session papers; the first is that models are not done in a data
vacuum. A diagram deveioped by Paul Roberts at Stanford points
out that there are many interactions between modeling
computation and analyss and data gathering and evaiuation
(Figure 1), Data are used, whether they come from laboratory
experimentation, process experimentation, or field observation, to
help understand the system, develop the modeling framework, and
parameterize the model. Additionally, the model helps to direct the
data needs so that the modal and data gathering components are
coupled in both directions; the entire process can be thought of as
hypothesis formuiation and testing. :

The second basic premise is that all models are uncertain; there is no
model that has no emors and nouncertainty associated with it
Analytical uncertainty can be broken down into stochastic
variability, input error, and model error.  Input error can be further
reduced to meacsurement, parameter, and aggregation errors and
model eror split into formulation and use components. In
developing the workgroups for this workshop, this paradigm for.
model uncertainty was used and the work divided into the following
four arecs.

8 Loadings and other forcing function data,including the
influence of stochastic variability

s |n stu fleld observations/system response measurements for
the establishment of inifial conditions, boundary conditions.
calibration/confiimation data sets, and model post-audit
data sets

= Model paradigms, including model formulation,
spatial/temporal resolution, and the effects of process
aggregation '
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Group 4

®»  Process parameteriztion, including data availability, process
experimentation and scaling problems.

The charge to the workgroups includes severcl components.  First,
raview and discuss the white papers. The floar will then be open for
comments from the group paorticipants regarding sources of
unceriainty and prospects for improving model accuracy. The
group should then discuss the proposed recommendations for
achieving reductions in model uncertainty and come to group
consensus. There commendations should be prio(iﬁzed in terms of
technical feasibility, cost-effectiveness, and time-to-implementation
ond, finglly, the group should prepare a report on the group
deliberafions and recommendations.
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| Report of Group 1

White Paper

Loadings and Other Forcing Functions

Group 1 was charged with discussing reducing uncertainty in mass
balance models of toxics as it relates to loadings and other forcing
function data, including the influence of stochastic variability, Over
the last twenty years mathematical models have been exiremely
useful in guiding science and management in the Greaf Lakes.
Continued development of maodels, both simple and- complex
models, is aessentlal; however, one of the greatest confributors to
uncertainty in kake model results are the loadings of toxics which are
usually key forcing functions in the models.

Dave Doicn and Tom Young gave a presentation based on their
White Paper, "L.oadings, Forcing Functions, and Stochastic Variability.”
The authors assumed that loadings are usually the forcing functions
or independent variables in most models. They defined uncertainty
as the value or reliability of information. Uncertainty reduction takes
place through either improved data collection or data handling
procedures. :

The authors discussed two approaches fo assessing loading
uncertainty, first order analysis and Monte Carlo simulkations.  First
order analysis or variance propagation is the simpler of the two
methods and is based on the Taylor series expansion about the
mean of an uncertain input such as aload. Monte Carlo simulations
are more accurate than first order anadlysis and they have the
added advantage of producing a probability density function to
describe the eror rather than just estimating the mean and
variance. Since the Mante Cario simulations are computationally
intensive, first order analysis is usually used fo estimate unceriainty in
simple models.

The authors discussed uncerfainties in three lypes of loads:
tributaries, point sources, and nonpoint sources (runoff, atmospheric,
combined sewer overflows). Tributaries have received more’
attention than other sources because they are often the largest
source of contaminant loading. They recommended using
optlimization techniques to select the number and frequency for
sampling toxic contaminants. On the other hand, they suggest that
conventional physical and chemical parameters such as pH and
suspended solids not be optimized since they are inexpensive fo
collect and test. The Balanced Incomplete Block Design (BIBD) can
aiso be used to estimate the total load of a contaminant with fewer
samples than conventional sampling techniques require. Data
handling improvements suggested were the use of better load
estimation methods and use of the generalized load estimation
procedure for censored data.

Reducing Uncertainty in Mass Balance Models of Toxics
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Monitoring/Laboratory
Techniques

Point sources generally have less uncertainty associated with them
than nonpoint sources, however, femporal variability in loading due
to variability in concentration or discharge is a significant source of
uncertainty. Qptimization techniques can be used to obtain a more
efficient sampling design. They indicated that atmospheric
deposition was the most important source of variabiiity for nonpoint
sources of toxics,

Dolan and Young recommended the use of first arder uncertainty
analysis for mass balkance models and the use of oplimization
procedures to identfy the main sources of uncertainty. Historical
data should be looked at prior to saompling design and
state-of-the-art methods should be used fo process and analyze
data.

Following a discussion of general caveats to keep in mind regarding
modeling in Lake Ontario, the group focused their discussion into
four areas: Monitoring/Laboratory Techniques, Sources of Toxics,
Censored Data/Uncertainty Analysis, and Sampling Design.

The group identified three important caveats for modelling in Lake
Ontario. First, the purpose of the model must be clearly defined to
best target ways to reduce loading uncertainty. Second, reducing
uncertainty depends on the chemical being studied (there is no one
best way to reduce uncertainty). Third, careful planning, which
takes a significant amount of time and effort, needs to be done
up-fiont in any kind of modeling effort. While obvious, this is often
overiooked and data collection frequently begins before planning is
completed. ‘

The group discussed several monitoring and laboratory techniques
designed to reduce uncertainty including Quality Assurance/Quality
Control procedures (QA/QC), automated sampling, site specific
monitoring during exireme events, stale-of-the-art methods to
estimate lecads, and the use of surrogates to obtain information
about toxics.

The assumpition underlying ail modeliing efforts is that the analytical
work in labs has sufficient quality assurance and quality control. The
group discussed the difficulties that arise when labs following the
same procedures produce differences in contaminant levels of up
to two orders of magnilude. Quality Assurarice/Quality Control
procedures need to be carefully estabiished at the beginning of
loadings studies to ensure daic (loxics and conventional)
comparability and to reduce uncertainty in the loadings estimates.
The group abo recommended assigning one person the
responsibility of coordinating QA/QC efforts, particularly for large
studies.

Automated sampling of suspended particulate matter s
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encouraged as it offen can be used to synthesize missing or limited
data or to establish transport variability. Automated daily monitoring
of parficuiate matter can be used as a surrogate method to
estimate toxic chemical loadings between events, especiaily for
tributaries.

For some toxic substances most of the load comes from specific
locations, therefore these areas should receive more attention in the
future. Estimating loads from these sources during extreme events
such as large storms is very important becouse extreme event
loading may overwhelm all other sources of foxics. Simulation
modeling to estimate loading during exirerne events is useful, but
without sompling during extreme events modeis can not be
catibrated.

When calculating loads, especially tributary loads, state-of-the-art
caicuiation methods should be used. Exampies of these methods
include the ratic estimator method for estimating annuai loading
and regression estimators for estimating loading on a shorter time
scale.

Other more easily used parameters can be used fo establish the
pattern of behavior for toxic chemicals (e.g., particuiate organic
carbon, remotfe sensing derived parameters); however, the
uncertainlty generated by using the surrogates needs o be
established.  Surrogates should not be substituted for routine
monitoring of toxics but should be used to fill in the gops in toxics
data.

Sowrces of Toxics  The group discussed the uncertainty associated with the sources of
toxics o Lake Ontario including sewage freatment plants, chemical
spills, hazardous waste sites, atmospheric inputs, and unmonitored
areas. Additional monitoring of discharges of toxics from sewage
freatment plants, especially for Canadian plants, is needed. Toxic
chemical spills represents a special category of loading that shouid
be considered in mass bakince models of Laoke Ontario.
Groundwater contaminated by leachate from hazardous waste
disposal sites represents a potentially continuous long ferm source of
toxics. Methods of predicting or directly meagsuring these
contributions should be explored, parficularly where the source is a
significant one.

Discussion of atmaospheric inputs of foxics yielded three areas of
concermn. First, atmospheric inputs (wet fall, dry fal, and vapor
exchange) are still imprecisely known but may be very important
sources for some foxics. More study is needed in this areqg, with
particuler emphasis on improving estimates of process rates.
Second, research is still needed to establish the correlation between
atmospheric conditions at shore based stations and conditions over
the lake proper. Current methods of extrapolating loading from
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Data/Uncertainty Analysis

Sampling Design -

shore based monitoring stations to the lcke proper may be
inadequate. Third, short range, urban transport of atmospheric
inputs particukarly in terms of metals, needs fo be incorporated into
loading modeis.

Contaminant contributions to Lake Ontario from ungauged and
unmonitored areas (e.g. downsiream from monitoring stations in
urban regions) are difficult fo measure. These loading sources
should be sestimated using existing prediction technologies, but
further research is needed to develop better prediction methods.

Whenever possible, uncericinty of load estimates should be
calculated using techniques such as first order error analysis and/or
Monte Carlo simukations. More research is needed on the effect of
using various estimating techniques on reducing uncertainty.

Discussions about censored data centered around the isue of
estimating censored data, sampling protocols to minimize censored
data, and interpretation of censored data. Data is said o be
censored if @ nondetect is reported. Statisticians claim the
information is not all there whenever g nondetect is recorded. First,
censored data should be estimated using cccepted statistical
fechniques such as those used in The Green Bay Mass Balance Study
(GBMBS). The statistical techniques to be used should be
establshed before the study begins and should be followed
consistently throughout the study. Second, to minimize censored
datq, state-of-the-art sampling and andlysis protocois shouid be
used such large volume samples for PCB's in water and clean
room techniques for metals. Third, chemists and biclogists have an
important role fo play in improving the interpretation of censored
daia. Their knowledge of the contaminant and its properties should
be used in conjunction with statistical techniques fo determine if the
recorded leve!l shoukd be recorded as zero or a non-defect. For
example, a non-detect for a pesticide may in fact indicate a zero
concentration because the pesticide degrades. Chemists would
aexpect the parent material to be absent, i.e., zero.

The group discussed the use of general sampling design
considerations, the use of simukation modeling to obtain load
estimates, and the use of exkting data and models to design
rmonitoring programs. Monitoring for some substances may be site or
event specific. To reduce uncertainty, this fact must be considered
when designing monitoring programs. The spatkal and temporal
resoiution of load estimates must be compatible with the modeis to
be used. The group also thought that the data organizing power of
GI$ should be explored for Lake Oniario mass balance models.

Simulation modeling should be used as an aid in estimating loads
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that are difficult to measure, such as exireme events, rural nonpeint
sources, groundwgater inputs, and combined sewer overflows.
Existing monitoring data and models should be used to help design
new monitoring programs. Historical data shouid be used to
construct Balanced Incomplete Block Designs (BIBD) fo identify
significant sources of cantaminants. Opfimization methods should
also be employed to increase sampiing efficlency and cost
effectiveness of monitoring efforts.

Recommendation's The group prioritized their recommendations fo reduce uncertainty
in loadings. In priority order, the group recommended:

= Quality Assurance/Quality Conirol procedures need fo be
carefully established at the beginning of o study fo reduce
unceriainty in the loadings estimates. :

=> Existing monitoring data and models shoukd be used to help
design new monitoring programs.

= State-of-the-art statistical techniques should be used to
design scmpiing programs.

= Censored data should be estimated using accepted
statistical techniques.

= The spatial and temporal resolution of load estimates must
be compatible with the model being used.

= Atmospheric inputs are still imprecisely known but they may
be very important sources for some foxics. More study is
needed in this areq; in particular, improved estimates of
process rates are needed. '

= State-of-the-art sampling and analysis protocols shouid be
followed whenever possible to minimize censored data.
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White Papers

| Report of Group 2

In Situ Field Observations/System Response
Measurements

This workgroup was charged with the task of developing
recommendations for' quantifying and reducing uncertainty as it
relates to in situ field observations/system response measurements,
Specifically the group addressed in situ field measurements for biota,
water and sediment as a way of defining initial conditions,
boundary conditions, calibration and confirmation data sets, and
model post-audit dota sets. The model posi-audit suggests
monitoring and surveilonce requirements, as well as research
requirements to reduce uncertainty in modelling.

The group fried to answer the question, "Where are the loads
originating and how will controls of separate components reduce
fish contaminant levels below the action level specified in the Lake
Ontario Toxic Management Plan?" The cufcome of the discussion is
a set of recommendation reiated to reducing uncertainty of in situ
data. Twenty scientists participated in the discussion. A summary of
the discussion of this working group and ifs recommendations
follows.

The workgroup began with presentations by the three white paper
authors. Barry Lesht discussed his white paper, "Quaontification and
Reduction of the Uncertainty in Mass Balance Models by Monte
Carlo Analysis of Prior Data®. He suggested that the Green Bay mass
balance study be used to help identify the number of sampling
stations needed to regsonably estimate the total mass of a
contfaminant in Loke Ontario with a specified accuracy. He
recommended that researchers look at the data that currently exists
to see if it can be used for modelling. Dr. Lesht also thought basic
research was needed on methods to quantify uncertainty.

Efraim Holfon presented a summary of his white paper, "Organic
Contaminanis In Lake Ontarlo, 1968-1991: A Review and a Data
Base." In his paper he reviewed 500 popers which addressed the
food web and concenirations of toxic contaminants in Lake
Ontario. Dr. Halfon said that although there is a substantial amount
of information on foxics available, we have very little information on
the food chain. Contaminant modeling has emphasized the
chemistry of toxics and has not looked at the transfer of energy and
contaminants throughout the food chain o the top fish predators.
He was also concemed about the long time lag between research
and pubiication of modelling results. - Finally, he recommended
more coordination and planning on data collection.

" Dominic Diloro discussed his white paper: *Model and Projection
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Uncerainty: Methodology Deveiopment and Interpretation.” He
discussed classical statistical theory (maximum likelihood estimate)
ond nonciassical theory (generalized inverse estimate) cs they apply
to determining the level of uncertainty in models. He suggested that
the maximum likelihood classifier can serve as the lower bound and
the generaiized inverse estimate can serve as the upper bound in
estimating the true parameter uncertainty, He was critical of the use
of whole lake simple models because they treat all loads as identical
regardiess of the flow rate or concentration of contaminants. Dr.
DiToro thought that very large sforms can have a major impact on
modaelling results, but they are not adequately accounted for in any
of the simpie models.

Discussion Following a discussion of issues raised in the white paper, participants
were asked to discuss the ways fo reduce uncertainty for in sifu
modelling, One of the topics the group addressed was the level of
sophistication needed in toxics modeilling for Lake Ontario, that is, do
you want edibie fish or a healthy ecosystem? The group decided
that if achieving edible fish was a step in the right direction fo
obtaining a healthy ecosystem and that achieving a healthy
ecosystem would require more complex models.

The group frequenily addressed what had been learned from the
Green Bay study. They thought the Lake Ontario exercise should not
be as extensive as the Green Bay maodel in terms of the number of
chemicals monitored or the density of sampling stations. The final
topic the group discussed was the use of uncalibrated model resuits
by decision makers. Uncalibrated models have a lot of uncertainty
in them, thus the focus of the group should be to obtain the data
needed fo cailbrate current models for Lake Ontario.

Surveillance Monitoring  The group looked at two types of in situ data needed to reduce
' "uncertainty in Lake Oniario modeling. First, contaminant loadings
from tributaries, atmosphere deposition, point sources, and nonpoint
sources are needed. Most of the loadings originate in the
atmosphere or from tributaries. Although there are 13 tributaries, the
group thought that only the main tributaries, Niagara River and the
Oswego River, should be monitored.

The second type of data needed is the concentration of
confaminant in the water coiumn, sediment, and biota. The group
limited their discussion of which chemicals to address to those listed
in the Lake Ontario Toxics Management Plan. The analysis of which
chemicals fo recommend for monitoring involved several
considerations; the participanis thought that the overriding criteria
to be used was to maximize the amount of information that can be
obtained from the broadest range of chemicals at the least cost.
The suite of chemicails to be sampled should include a wide range
of physical and chemical properties taking into account ambient
water, sediment, and biotic components, and the chemicals must
be consistently and easily detectable. The group also thought it was
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important that state of the art Quality Assurance and Quality Control
techniques be used with the selected chemicak.

Contaminants were divided into two main groups, those that were
not recommended to be studied (Table 1) and those that were
recommended for study (Table 2).

Jable 1
Contaminants to Avoid Studying in Lake Ontariq

Trace Metals Aluminum
Iron
Mercury

Organics Chiordane
Dieldrin
Dioxin
Hexachlorobenzene
Octachiorostyrene
2378-TCDD

The chemicals listed in Table 1 were not recommended because
they were not in the Lake Onfario Toxics Management Plan, the
leveis may not be high enough to be a problem, or the analytical
work associated with measuring the chemical is difficult or
expensive. Mercury, a concern of expressed by other workgroups,
was not recommended because of the effort that would be
required in terms of sampling and sample analysis, different models
would have to be used, and the models would have to be fine
tuned to deal with mercury.

[able 2
Contaminants Recommended for Study in Lake Ontario
DoT Mirex/Photomirex
PCBs (Total) Plutonium

The chemicals isted in Table 2 were recommended for study in Lake
Ontario. DDT was recommended for study because it is found in
high concentiation and is relatively ecsy to mecsure. Mirex and
photomirex were recommended because they are contaminants
unique to Lake Ontario. Further, they originated from a known
source (Niagara and Oswego Rivers) and their loadings are
approximately known. Dr. Hassett has analyzed the ratic of mirex to
photomirex in sediments and has found it o be constant throughout
the lake at 0.13 suggesting that photomirex can be used as a tracer
for other contaminants. The mirex/photomirex ratio could be used
as a check on the accuracy of mass balance models.

58

Great Lakes Monograph No. 4



Although PCBs are expensive 1o test, they are readily measurable in
all media and their chemical properties cover the entire range of
hydrophobic compounds making them appiicabie as a surrogate
for other chemicals once the models are validated. PCBs should be
measured by selecting one congener from each homologue. The
PCB congeners can then be correlated to obtain total PCBs.

Plutonium was recommended because it is easy to measure in
water and sediment, loading stopped 20 years ago, and the
magnifude of loading is known. Although plutonium is not a human
health concern, plutonium modelling would enable modslers o
predict the fate of other toxics if loadings were eliminated.

MaMng@MID There is data available on the level of contaminants in water and

. fish tissue for Lake Ontario, however, the group thought the data was

Reduce UKHWIty insufficient for model cdlibration. They recommended additionai
data needs for the water column, sediment, and biota.,

Water column The group discussed the number of samples needed from the water
column. According to statistical theory, the accuracy of the mean is
improved by a factor of 1/square root n, where n is the number of
sampiing stations. Thus, 100 stations are not 100 times better than
one station, they are oniy 10 times better. This discussion influenced
the number of segments, number of sampling stations in each
segment, and the frequency of testing. Several recommendations
weare made by the group regarding water column testing.

= The Green Bay study shoukd be examined to help decide
the number and location of sampliing stations.

s |laoke Ontario should be regionalized into five or six
segments.

®  Each segment should have at least three but preferably
five sampling stations.

® Eoch segment should include epiiimnion and hypolimnion
sampiling.

= Sampling should be done under the ice, after spring
loading, after stratification, after fall turnover, and during
one additional time.

s Sampling should continue for a minimum of two years to
account for variability in weather,

One master sampling station should be established in each
segment. Sampling should be more frequent and should take place
every year, not just for two years. Vertical profiing should be more
extensive including two samples in the epilimnion and four in the
hypolimnion. In addition to toxics, dissolved and particulate orgonic
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Sediment

Biota

Steremary of

carbon, suspended solids, P, N, §l, and Cl shouid be sampled at the
master stations.

= Volume proportional som pling is necessary.

n  Data collection should take place during sforms o
determine the pulse loading associated with big events.

= Multiple samples shouid be taken during sample collection.
Preservation of sample is inexpensive compared to the cost
of losing a sampie.

w  Post qudit analysis should occur by resampling the stations in
five or ten years.

Historical data on Loke Ontario and Green Bay shoukd both be

reviewed to determine the sampiling intensity needed for seciment.

in general, the entire loke needs to be sampiled. not just the
deposition zones. Further, the sampling grid should match the water
column sampling grid except that it should be more extensive.

Contaminant levels should be determined at various levels in the
food chain. Information should be collected on clewife, smeit,
scalpin, lake trout, chinook salmon, and the invertebrates misis and
pontoporeia. The top priority should be alewife because it
comprises 90% of the weight in the lcke and is what most people
eat. Sompling of alewifes should emphasize seasonal variation in
contaminants. Lake frout change dramatically during their life cycle
in tferms of what they eat, thus different age classes should be
sampiled. Misis and pontoporeia are important to sample because
thay contribute the bulk of the energy in the food chain. Sampling”
frequency and location decisions can be addressed by looking at
Lake Ontario historical dota and the results from Green Bay.

=> More coordination of research and monitoring efforts is
needed to avoid duplication of efforis.

= Current data shoukd be studied to see where the gaps are
in the data, to estimate uncertainty, or 1o explore the
possibility of monitoring surrogates instead of toxics.

= Concenirate efforts on collecting data on PCBs, DDT, Mirex,
and Photomirex.

= The lake should be regionadlized info five to six segments
with three to five sampling stations per segment. Sampling
plans, including time and space components, should be set
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up for measuring toxics concentrations in water, sediment,
and biota.

= Use data from monitoring data to validate and verify
existing models,

= Sampling seasonal concentrations of toxics in alewife
populations should be a top priority.

= |t is essantial that measurements of water coiumn and
invertebrates concentrations are matched in time. It isless
essential to match fish and sediment data.

Research needs include: = |se piutonium measurements in water and sediment to
calibrate models.

= Study photochemistry of mirex and photamirex.
= Measure the Kow for each chemical to be modeled.

=» Continued research is needed to improve analytical
techniques.

= Determine how to combine value weighted averaging
techniques with maximum likelihood estimation for
censored data.

Reducing Uncertainty in Mass Balance Models of Toxics
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Whute Paper

| Report of Group 3

Model Paradigms

This workgroup was chartered with the task of discussing reducing
uncertainty in mass balance modeis of toxics in the Great Lakes as
the uncertainty relates o issues of model paradigms including
modei formuiation, spatial and temporal resoiution, and the effects
of process aggregation. The outcome of the discussion is a set of
recommendations on the most effective ways to reduce the
uncertainty arising from these sources. Twenty scientists
representing both the U.S. and Canada from a bread range of
academia, reguiatory agencies, and industry parficipated in the
discussion.

The group identified two major goals it wished to achieve. The first
goal was 1o identify research needs for reducing uncertainty arising
from issues of model paradigms. The second was to discuss needs
for monitoring and surveillance in Lake Ontario to insure accurate
and useful modeling results. '

A summary of the discussion of this working group and of its
recommendations follows.

The workgroup began with a presentation by Donald Mackay of the
University of Torontoc and Victor Bierman of Limno-Tech, inc., authors
of the white paper "Mode! Paradigms: A Discussion of Simple and
Complexi Model*. Don Mackay made the points that there will be a
range of management questions and often these questions are not
very well articulkated since mandagers vary in sophistication and
understanding of what models can and cannot do. The modeler
has a duty not oniy to produce the model but to try and anticipate
some of the questions that may arise. To deal with the range of
management questions, there will probably have to be a range of
models from the simplest credible model to very complex,
multi-segment, high-resolution, hydrodynamic models.

The smplest credible model is one that contains qir, one mixed water
column, and one mixed sediment layer. In Lake Ontario there is a
mass of PCBs in water, @ mass in sediment and, in the course of a

" yeay, there will be a mass which will evaporate. The rate constants

for these mass transfers exist and it is the challenge for the modeler
to fry to estimate them as closely as possible. The simple model, if
the rate constants are well estimated, will give an accurate
representation of what is going on in the Lake.
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Dr. Mackay also made the point that modelers must convey 1o the
user the uncertainties involved in the model outputs. There are a
number of types of uncertainty; there is uncertainty in the parameter
estimates, there are parameters which vary over time, and there is
the uncertainty which arises from questions about the structure of
the model. Propogation of error through the model can give an
estimate of the uncerainly in the results which arises from the
parameter estimates but cannot estimate the uncertainty arising
from incorrect or inadequate model structure. Research fo help
define mechanisms for incorporation into models must continue.

Victor Bierman began by saying. that the recommendations most
likely to be acted on are those perceived by managers to have the
highest probability for reducing uncertainty in  answering
management questions. Two principal management questions are:
if external loadings are changed what will be the new state of the
system, and, how long will it take the system ta reach its new state?
These questions can be used as a litmus fest against which
recommendations can be compared to test for utility. In addition to
these, anather issue is the reconciliation of open lake or whole lake
questions to those invoiving near shore areas since near shore areas
ara likely to be of interest to managers and questions involving them
may require more complex models.

An important question for Lake Ontaric modeling is the relative need
for steady-state versus time varioble models. Clearly, time variable
models are needed to answer the second management question;
how long will it tcke to reach steady state? Another need is to
dynamically couple the water column and sediment layer together
in the model since it can be shown that the water column responds
much more quickly to a change in load than does the sediment.
Overdll, Dr. Bierman stated that there are three reasons fo use fime
variable, coupled water column-sediment models. First, the toxic
chemical concentrations in sediments respond at different rates
than the toxic chemical concentrations in the water column.
Second, sediments can act os toxic chemical sources or toxic
chemical sinks, depending on the dynamic state of the system and
finally, in-lake toxic chemical concentrations are not proportional to
external loadings under non-steady-state conditions.

Models may also require additional spatial and process complexity
in the surface sediments since there is a large range of uncertainty in
sediment response times for a reasonable range of values for
assumed mixed layer sediment depth. Abko, there are significant
differences in resuspension potential between near-shore and
open-water zones in large lakes and, in Loke Ontario, the
open-water depositional zone represents approximately one-half of
the total lake area.

Finally, additional complexity may be needed to represent the
transformation and fate of organic carbon sorbents since unequal
fractions of particulate organic carbon between the water column
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and sediment will cause unequal dissolved phose toxic chemical
concentrations, even af steady state. Also, a given loading
condifion for a particukar chemical may satisfy a water quality
criterion but not necessarily a sediment qudiity criterion and toxic
chemicals released within the sediment bed, if they are not buried
info deeper sediment layers, will recycie back to the water column
over a long period of time. In addition, foxic chemicals released in
the nepheloid layer and/or at the sediment-water interface may
"short circuit” siower sediment recycling processes and be recycled
qQuickly back to the water column.

After a brief discussion of issues raised in the white paper,
participants in the group were each given a chaonce to voice their
opinions on critical sources of uncertainty and areas of needed
research and to suggest recommendatfions for the group to
consider. A stimulating discussion of the need, or lack of need, for
addifional model complexity ensued and the pros and cons of both
simple and complex models were identified. In an attempt to
grapple with the model complexity issue, a set of important
management questions were identified and the appropriateness of
each type of model for answering each quesiion was discussed.

Simple models are defined here as whole Icke modeis whether they
be steady-state or dynamic. Some advantages of simple models
include that they are immediately applicable; educational; cheap;
more friendly; may be sufficient for whole lake estimates; may have
less data requirementis; provide insights and understanding: and
mistakes or blunders are easier to detect. Some disadvantages are
that they can’t discriminate between impacts of different inputs;
don’t discriminate between on and off shore effects or provide
information on localized effects; their parameterization is difficult;
and there is uncertainly in estimating response times to changes in
loadings. '

Complex models are defined as models with increased spatial,
temporal, and/or kinetic resolution when compared to simple
models,. The advantages of complex models include increased
spatial resolution in the results, for example, near and far shore
processes can be studied separately; fewer implicit assumptions
and more formalization of the assumptions; less aggregation; more
direct comparisons to data; can be used to aid in the formulation of
and increcse the credibility of simple models; dllow the analysis of
the relative significance of various processes; and they may be able
to reduce the need for calibration if they are more mechanistic.
Some dsadvantages of complex models are that it may be more
difficult to synthesize and interpret the resulls; there are more
degrees of freedom; it is difficult to do optimization and some
methods for uncertainty analysis; blunders are more likely; scenarios
are more difficult to simulate; and we currenily have an incomplete
understanding of some critical processes.

The usefulness and cppropriateness of simple or complex maodels
depends on the specific application. To assess the appropriate level
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of complexity for mass balance models of toxics in Lake Ontario, six
management questions were identified and the ability of both
simple and complex models to answer these questions were
estimated. The resuits of this analysis are shawn in Table 1.

Table 1
Ability of Models to Answer Management Questions
(Y=Yes, N=No, P=Patrtial)

Question _ Simple___Complex

Whenwilllalzumrbesaﬁfwwuﬁ_mitedcmsmptianqna

A) Whole lake basis? P Y
B)  Local basis? | N Y
When will fish be safe for unlimited consumption on a

A)  Whole lake basis? P Y
B) Local basis? N Y
Protection of mast sensitive species on a

A) Whole lake ba.ws? P Y
B) Local basis? N Y

Performing waste load allocations on a

A) Whole lake basis? P Y
B) Local basis? N Y
Identfication of remedial options P ) 4
Planning of field/monitoring studies ¥ Y

Model-o- A usetul definition of model uncertainty is that it is @ measure of how
well model oufput compares to some independent source of
Data and Model-o- information. This information source can be observations gathered
MadelCarmzsms in the laboratory or in the field or it can be another model which has
been independenily constructed. Model-to-data comparisons and
model-to-model comparisons are both useful and provide different

types of infarmation about sources of model uncertainty.

Model-to-data comparisons are fairly common and form the basis of
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most model cdlibration, validation and post-audit studies. These
types of comparisons aliow an empirical assessment of uncerfainty
to be performed and provide Iinformation about the
appropriateness of loading estimates and parameter values. In
addition, model-to-data comparisons help in the identification and
improvement of knowledge of process descriptions. Examples
include the identification of critical process descriptions In
eutrophication models and the incorporation of sediment/food
chain processes in foxic models. Problems with model-to-data
comparisons include the need to match the time and space scale
of the model to that of the data and, when whole-icke models are
used, the averaging in the data can be problematic. Finer time and
space scales may be required to alliow more direct comparison.

Model-to-model comparisons are useful for several recsons. These
types of comparisons aiso allow uncertainty o be empirically
estimated and help to estimate of the effect of model assumptions,
structure and completeness. Three types of modei-fo-modei
comparisons coulkd be performed: round robin studies of models of
essentially the same complexily, round robin studies involving
models of varying complexity and resolution, and studies invoiving
comparison of contemporary models with histerical models to assess
the effectiveness of changes in modeling approaches.

The group developed a recommended sirategy for future research
on and developmeni of mass balance models of toxics in Lake
Ontario. First, there should be the continued use of existing models
for whole Ilcke issues and for addressing other appropriate
management questions. At the same time, itwo paralei efforts
should be launched which will complement each other, result in- the
development of more sophisticated models, and provide feedback
to each other to assess the effectiveness of this approach.

The fitst path involves the further development of the simple, or
whole-lake, models. The recommended qpproach is to use simple
models to test and refine process descriptions. The first process
description to be examined would be water/bed exchange
processes including increased vertical resolution in the bed and an
expiicit representation of organic corbon kinetics. The simple
models would also be used to study the air/water exchange
process, sorption kinetics, biota/walter exchange. more
sophisticated food web processes, solids/carbon cormreiations, and
speciation including hydrophilic organics and metals.

The paraliel path invoives the construction of models with increased
spatial, temporal, and kinetic resolution, the complex model. These
models would be used to tfoke existing kinefics and add
spatial/temporal resolution, couple with hydrodynamic/sediment
models, use multiple sediment layers, and extend into tributaries.

~ These models could be used to address either whole iake or lacal

management questions by allowing averaging over the relevant
portion of the lake. Additionally, these models can produce resulits
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which are directly comparable to data on the same time and
space scale and allow the importance of large events o be
addressed.

Adafﬁoml Several additional points were discussed by the group for
R i consideration as recommendations. First, there was an overall
, consensus on the need for improved coordinafion and
communication between agencies and organizations involved in
modeling activiles. Open lines of communicatfion, discussion of
successes and failures, and a sharing of resources are necessary to
levercge limited resources effectively. Along those lines is a need for
increased peer review of modeling studies. This type of review
would encourage communication, facilitate the incorporation of
improved mechanisms into new models, and raise the overall level
of the activities of the modeling profession.

Another recommendation discussed was the need to coordinate
and link groundwater, atmospheric and watershed modeis with
-water quality models, While impertant, it was recognized that this
will be a difficult task to accomplish and may be some way off
though research is beginning on linking Geographic information
System (GiS) based watershed models with water quality models.
There was a general consensus on the need to confinue the
collection of field ond laboratory data with respect to processes
described under simple model. A final suggestion was fo add some
complexity levels (couping hydrodynamic and sediment transport)
o the existing Green Bay model and compare the results with those
obtained from the existing framework.

Summary Of

=» Continue to use existing models for whole Icke issues

= Use simpie models to test and refine process descriptions
with regard to water/bed exchange processes, air/water
exchange processes, biota/water exchange processes,
sorption kinetics, food web processes, solids/carbon
correlations, and speciation. ’

= Of the process descriptions listed above, water/bed
exchange processes are most important. Future research
should include increasing the vertical resolution in the bed
and developing explicit representations of arganic carbon
kinetics.

= Use complex models to add spatialftemporal resolution. In
addition these madels can be coupled with
hydrodynamic/sediment models, can use multiple
sediment layers, and can extend into tributaries.
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White Papers

| Report of Group 4

Process Parameterization

" This workgroup was charged with the task of discussing reducing

uncertainty in mass balkonce models of toxics in the Great Lakes as
the uncertainty relates to issues of procass parameterization
including data availability, process experimentation, and scaling
problems. The oufcome of the discussion was a set of
recommendgtions on the most effective ways to reduce the
uncertainty arising from these sources. Thirteen scientists from both
the U.S. and Canada and from a broad range of academia,
reguiatory agencies, and industry participated in the discussion.

A summary of the discussion of this working group and of its
recommendations follows.

The workgroup began with presentations by the white paper
authors. John Connolly of Manhattan College and Doug Endicott of
the United States Environmental Protection Agency presented their
white papers "Process Parameterization Uncertainty in Mass Balance
Modeis of Toxics in the Great Lakes, Parts 1 and 2. Ephram Halfon of
the Canada Center for Inkaind Waters presented his white paper
"Organic Contaminants in Lake Ontario, 1968-1991: A Review and a
Data Base." '

The following are summairies, by topic, prepared by the participants
of this workgroup.

GASTRO-INTESTINAL UPTAKE AND
BIOMAGNIFICATION OF HYDROPHOBIC ORGANIC

CHEMICALS
Frank Gobas

To reduce uncertainties in estimates of dietary uptake kinetics and
biomagnification, it is imporiant to standordize experimental
procedures for measuring and reporting dietary uptake efficiencies
ond to determine relationships between intestinal upfake and
magnification and Kow, food digestabilty, and the “availability” of
chemicails in food.

A large part of the uncertainty in food-chain accumukation models is
due to the fact that the intestinal uptake and magnification of
organic chemicals is o rather compiex and largely unexplored
function of: the properties of the chemical (e.g. Kow); the properties
of the food-phase related to the release rate or bioavailability of the
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chemical in the food; the digestibility of the food: and the
physiology related to food-uptake (e.g. benthic invertebrates and
fish have different food-uptake mechanisms).

Another source of uncertainty is intfroduced in the form of error in
experimental measurements of dietary upfake efficiencies.
Reduction in the uncertainty can be achieved by:

(1) Developing "standard” procedures or protocols for measuring and reporting
values for dietary uptake efficiencies. Modelers should then only use the "good”
values and forget the bad ones;

(2) Determine the relationships between intestinal uptake/dietary uptake
efficiency, and the properties of the chemical, in particular Kow valves;

(3) Determine the relationship between food digestability and the dietary uptake
efficiency of the chemical;

(4) Determine the extent of food digestability in the appropriate biological
organisms (e.g. fish, benthic species, birds);

(5) Determine the availability of chemical uptake from the various foods.

Since a lack of knowiedge regarding mechanisms is the main source
of uncertainty, iaboratory experiments followed up by field testing is
likely to be the most successful way to reduce uncertainty.

TRANSFORMATIONS
Deborah sSwackhamer

Omission of these processes can lead to substantial uncertainty in
model predictions, dependent upon the chemical or group of
chemicals under consideration, the management questions being
addressed by the model, and the complexity of the model
framework. The specific process considered here include: microbiai
degradation, formation, photolysis, hydrolysis, and chemical
speciation/dissociation,

The parameters leading o uncertainty in modeling thase processes
are the rate coefficients os a function of given conditions (e.g.
temperature, substrate, water chemistry, biclogy) and accurate
chemical concentrations in the reactant phase. For example,
models applied to mercury fate wouki need accurate rate
constants and chemical concentrations for meihylation rates;
models applied to mirex fate need accurate photolysis rates, For
stable compounds such as PCBs, these processes (and thus their
uncertainty) will be less important. The importance of these
processes is also dependent on the models’ time scale; over long
periods -of time (decades) photalysis or biocdegradation may be
moré important for PC8s than shorter time periods. If the models are
1o be used for evalualing remediation measures, these processes
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may be more important fo consider, e.g. these processes may
contribute more to contaminant fate in dredged. disturbed areas
than in ambient, undisturbed areas. '

Experimental research is needed to better characterze the
parameters mentioned above. Development of befter anailytical
methods is needed to more accurately measure the chemical
species most influenced by these processes, such as: mercury
species in water; metal complexes, efc. Laboratory experiments are
needed to determine the process rate constants under controlled,
varying conditions. Thesa would need o be verified with field
measurements as much as possible. Some of this could be
incorporated into routine monitoring efforts, such as the chemical
species concentrations, and degradation product ratios (e.g.
mirex/photomirex; DDT/DDE).

PHYSICAL/CHEMICAL PROPERTIES OF
CONTAMINENTS

Michael Zarrull

The reported physical/chemical properties such as Kow values and
Henry's law constants for many contaminants of inferest vary widely.
Recent measurements of some compounds (especially those with
very high Kow's) show differences from literature values by several
orders of magnitude.

Since much of the behavior of a compound fo be modeled is
inferred from its "known" physical/chemical properties, a high
degree of confidence must be associated with these values. Often,
the temperature dependence relationship of physical/chemical
properties over environmentally significant ranges is missing (e.g.
Kow at 20 degrees Ceisius vs. at 0 fo 25 degrees Celsius). A review
s needed of avdilable literature and a record of the range of
reported vaiues. This review, including a list of priority compounds to
be modeled, will provide the basis to direct the specific
measurements fo be made.

For the use of models, a protocol or guideline of acceptable values
is required. . Additionally, laoboratory/field measurements of physical
and chemical properfies over g given range of environmentaily
significant condttions is required. A new suite of values would thus
improve model certainty considerably.

A timeline for creaiion of such a new model would include: literature
review of conflicts (less than one year); generation of protocol for
use in existing models (less than two years); and. fime to re-measure
the physical and chemical properties for Great Lake compounds
(either less than five years for short list (less than 286 compounds) or
less than ten years for long list (100-200 compounds)). The total fime
range to -change the present conditions woulkd therefore be
between two and ten years.
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CALCULATING NET FLUX OF VOLATILE TOXIC
POLLUTANTS ACROSS THE AIR/WATER

INTERFACE OF LAKE ONTARIO
Terry Clark

Statement of Problem: Insufficient concurrent air and water
concentration data exist to characterize seasonal gradients within
the lower air marine layer as well as the air/water interface, both of
which determine the direction and rafe of flux. Fiux includes
air/water diffusive exchange as well as deposition; these
companents shoukd be resolved.

Initiative: Collect concumrently, hourly air and water samples and
qir/water properties near the air/water interface on reiatively caim,
ice-free days during each of the four seasons. (Hopefully this could
be extended to higher-wind conditions at a site in the middie of
Lake Ontario.)

Focus Chemicals Volatie loxic pollutants for which analyticai
detection limifs and uncertainties are suitably low.

Parameters: Dissolved water concentrations and at two levels in the
marine layer (e.g. . Im and 5m) hourly mean air concentrations,
temperature, and 3 - dimensional wind velocities.

Work Plan/Schedule: During each of the four seasons do two things.
For three weeks use an instumented vessel on lLake Ontario
sampiing for as many days as possibie (relatively calm days only).
within 8 months of the end of ecch secsonal cycle: analyze
air/water sampies, QA datq, calculate net flux for each sampling
event, and characterize seasonal net flux.

WATERSHED MODELS FOR PCB’s AND OTHER
TOXIC SUBSTANCES IN THE LAKE ONTARIO

BASIN
William sSnodgrass

Problem Area To understand the response of Lake Ontario to control efforts, we

must be able to model the changes in airshed concentrations of
PCB's.

Uncertainty The major uncertainty is the factors that control PCB presence in
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Reeommendﬂidm

importance .

Logistics / Schedule

watershed, their sorption and possible fransformation in soils
(agricultural areas, urban areas, foresfed areas) and their release
into the atmosphere by wind driven erosion of soils and volatilizafion
frorn soil systems.

First we should develop a basin monitoring netwerk fo define PCB
deposition and of concentrations of PCB's and other priority
organics. After that we should develop a diognostic mass balance
model for the watersheds of the Great Lakes, the dirshed of the
Great Lakes, and each of the Great Lake water bodies to: define
the relative importance of fiuxes; the possible long-ferm trends that
might be expected; and to develop necessary field/laboratory
measurements o access watershed processes and various control
efforts (vertical elimination, ete.). '

This wouid be used o provide managers with a perspective on
response fimes in Lake Ontario PCB concenirations when
communicating the resuifs of mass balkance modeling fo
environmental managers.

A diagnostic model could be defined within one year and parallel
to full meagsurements. The meagsurement program would require 3-5
yvears of data to reasonably provide baseline data for amassing
model uncertainty and probably 3 years o provide experimental
and fleld insight into watershed release processes.

FOOD WEB STRUCTURE
John Connolly

The computed hydrophobic contaminant concentrations in top
predator fish cre largely dependent on the number of trophic levels
in the food web and the association of the companents of the food
web with the water column and sediment environments., Of
particuiar importance is the pathway of contaminant movement
between sediments and the fop predator fish. Considerable
uncertainty exists with regard to the exposure regime of animails in
contact with sediment., The water they take in for respiration. and
the particles they ingest may be characteristic of the overlying
water, the sediment or the benthic boundary layer.

Analysis of stomach contents of animals feeding on the benthos is
needed 1o quontify the components of the food web.
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Determinations of stable carbon and niirogen isotopes in sediment
and water column particuiates, benthic animals and denersal fish
should be made to define the routes of carbon flow, and thus the
routes of contaminant fransport to the fish. Current knowledge is

" wholly inadequate to define the benthic component of the food
web. This modeling component is only important for hydrophobic,
and possibly super-hydrophobic contaminants. In-addition, seasonal
variations in food web structure need to be determined and the
recommended field experiments shoukd be conducted over several
years so that inter-annual variability can be assessed.,

LARGE EVENTS
Wilbert Lick

Lorge events such as major storms on lakes and large run-offs in
rivers, despite their infrequent occurence, are responsible for most
of the sediment and contaminant fransport in lakes and rivers. In
Qddition, the flux of contaminants form the botiom sediments to the
‘overlying water due to resuspension/deposition of sediments is
generclly larger than the fluxes due to bioturbation and diffusion.
The fluxes of sediments and contaminanis change continuously in
magnitude and direction. There is no steady state. Because of this,
an average state is difficult to define and may not be meaningful.
For these reasons, it s the large, time-dependent event that must be
considerad in the modeling and prediction of the fransport and fate
of sediments and contaminants. ' '

More specifically, data and parameters relevant fo large storm and
run-off events are needed. in parficular, data are needed on the
resuspension of sediments at high shear stresses, the deposition of
sediments during sirong currents, the variation of the resuspension
properties of sediments with depth and not just near the
sediment/water inferface. Also datoc are needed on weather
conditions, floods, changes in bathymetry, and sediment and
contaminant concentrations during large storms and run-offs. This
requires fleld instrumentation capable of surviving large events and
able to measure and record during these events. Because of
difficuities in making measurements during large events, Iaboratory
experiments must be devised which can extend the present ranges
of parameters fo those values which are redlistic during large storms
and run-offs,

MERCURY
William Snodgrass

A major field measurements program is required for mercury,
particularly methyl mercury to provide the data base for
constructing the model. The logistics/schedule shoukd invoive a 3-5
year effort to provide data input for o parallel model applicator
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effort. Shipboard support is required. Laoboratory  based
measurements (where possible) are needed to define process rate
canstants as a function of specific environmental conditions.

Initicte @ chemical measurements program on Lake Onfario for
methyl mercury particularly in the following waste masses: water
column profiles; atmospheric deposition: and magjor land-based
sources such as the Niagara River. This program should determine
the observed levels, if there is a bicogeochemically influenced profile
of the water column, and provide insight into the relative potential
role between land based inputs and in sifu formation. Gther
mercury species shoukd be measured as well, but priority given to
methyl mercury.

FISH MOBILITY
John Connolly

Fsh move between three types of habitats: one suitable fdr
reproduction; one suitable for feeding; and one suitable as a refuge
in periods of unfavorable abiotic or bictic conditions. The timing and
extent of movement varies between individual fish and as a function
of age and sex. Quantitative relationships between movement and
various biotic and abictic factors do not exist. Since contaminant
models rely on limited data from fagging studies and anecdotal
information to define a single deterministic movement pattern, the
error in the defined pattern may be substantial.

Field measurements of fish location and movement and biotic and
abiotic conditions such as temperature, light intensity, age. sex and
prey densities are necessary so that a productive framework may be
developed and the natural variability within a popukation may be
assessed. Movement over the full annual cycle needs to be
determined and within-population variabiliity needs to be quantified.
A minimum of two years of field study ore necessary to determine
the reproducibility of the relationships between movement and the
various abiotic and biotic factors.

RESUSPENSION/DEPOSITION
Wilbert Lick

The flux of contaminants from the bottom sediments to the overlying
water is primarily due to resuspension/deposition, bioturbation and
diffusion and is modified by chemical sorption as well as other
reactions. The flux due to resuspension/deposition is generally larger,
sometimes by as much as several orders of magnitude, than the
fluxes due to bicturbation and diffusion. Despite this, the
containment fiux due to resuspension/deposition has not been
adequately quantified, especially at higher stresses.

In order to determine this contaminant flux accurately, research is

74

Great Lakes Monograph No. 4



needed on sediment resuspension and deposition at high flows, the
rate of sorption of hydrophobic chemicais by the sediments and the
effects of this sorption and other reactions on the contaminant flux
during sediment suspension/deposition. Especially important af low
stresses is the dynamics of the nepholoid layer and the parameters
on which this dynamics depends.

Although sediment resuspensions at low shear stresses (due to wave
action and currents) is beginning to be understood, resuspension at
high shear stresses is not well understood or quantified. A few
experiments on the deposition of sediments and the incorporation of
sediments and contominants into the bottom sediments, in the
presence of currents, have been done and show the significant
effects that currents have on the deposition and subsequent
consolidation of the bed. These results are not sufficient for
understanding or quantifying this process, and they need to be
extended.

A nepholoid layer is often present just above the sediment-water
interface in low to moderate currents in rivers and lakes. The
accurrence of this layer, its properties, dynamics, and effect on the
contaminant flux need o be understood and quantified. In order to
quontify the contaminant flux during resuspension/deposition,
sorption rates, equiibrium partitioning. and the parameters on which
this sorpfion depends must be understood and accurately
determined.

SORPTION PROCESSES

William Snodgrass

Sarption processes are a major area of concern in mass balance
modeling because particle fluxes are the dominant transport
mechanism for a variety of substances and/or because particulate
forms of the contaminants are the largest reservoir of contaminants
found in areas such as sediments. The sorption phenomena of
concern includes the following exampies: partitioning of
hydrophobic chemicais onto particles or into aggregates of
particles; the calculation of precipitation by algal induced blooms
and sorption/compaetition of organics and metals is important; and
precipitation of metals such as mercury, lead, caicium and others as
suffides in sediments,

Sorption of Hydrophobic  The major area of uncertainty is that sorption theory based upon
Organic Chemicals Kow (local equiibrium or kinetics) data does not work for
superhydrophobic compounds (Kow 710) partifioning into algae

and a variety of other characteristics identified in the warkshop.

Another example of identified unceriqinty is the apparent need for

a variety of data sefs to calibrate the mass balance models with

"apparent partner coefficients® which are a couple of orders of
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Recommendations

Lab/field

Work Plan Schedule

Completed

Carbon Cycle
Mass Balance

magnitude above values predicted by the local equilibrium
assumptions,

initiate laboratory based experiments which define sorption and
desorption kinetics, reversible, binding sites, and irreversible sorption
site as a function of a variety of particle characteristics, including
solid fype, nature of organic corbon, free of aggregation of
particles, efc. Previous experimental data shauld be repeated using
proper experimental protocols which have recently been defined.
Additionally, we need io develop a basic theory to descrice
sorption phenomena. The final recommendation is to gather field
and  laboratory data to asses the bioavailabiity of organic
compounds in food o organisms from partficulate forms and as a
function of the labile characteristics of organic carbon (e.g.. algal
remain, bacterial remains; condensed macro molecuies of
organccarbon in sediments,

u The initial focus of this work is with laboratory based
measurements and modeilling and theory development.

s The general schedule requires an interactive approach with
2-4 years being required for laboratory work with field
samples 1o obtain suspended solids and sediments for-
conformation measurements.

& This laboratory work will be straightforward, but require
careful attention to experiment protocol. Maijor innovation
~and creativity may be needed to design the appropriate
experiments, '

Contemporary scienfific evidence and mass balance models
recognize that the fate of hydrophobic chemicals that
bicaccumuiate are closely linked to the content and fate of organic
carbon in the enviionment. The distribution of these chemicals
between phases (particulote or dissolved) is a function of the
characteristics of the chemical as well as the content of organic
carbon in the phases. In fact, scientists have begun fo normalize
toxic chemical data for a common frame of reference as the mass
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of chemical per mass of organic carbon.

Based on these observations, foxic chemical models have begun to
characterze organic carbon in the aguatic systems via either
implicit methods (e.g. percent organic carbon, lipid content, etc.) or
expliclt modeling (e.g. Green Bay Mass Balance Model Framework).
The effort fo model toxic chemicals sorbed to carbon has exposed
areas of model uncertainty which can be addressed in future efforts.
These areas of uncertainty are in two areas; the first is the uncertainty
regarding the mass balance of organic carbon in aquatic systems,
including production and fransformation processes such as carbon
to chiorophyil ratios; transformation of particulate organic carbon fo
dissoived organic carbon and detritus; and specification of when,
where, and how the carbon gets transported to the sediment -
water interface. The second area is the uncertainty regarding the
fate of sorbed toxicant on biotic compartiments of organic carbon
(Le., POC) when the cell dies and undergoes lysis.

Recommendations to lessen these uncertainties in future efforts
include research on the dynamics of DOC (experimental and field);
in situ studies of the sediment/water inferface that include fine scale
measurements of arganic carbon; kaboratory experiments using C14
labeled PCB or other toxicants that better define phytoplankion-
toxicant "sorption® or relecse; and more exiensive efforts to model
phytopiankton growih in terms of carbon content.

Surmmary Of

= Physical chemical properties: Literature review and
laboratory/field measurements of Kow values and of
Henry's Law constanis.

= Ai-water interface: Develop a research program to
measure concentrations of volatile toxic poliutants at the
qir/water interface and characterize the seasonal net flux.

= Sorption processes: Develop a basic theory to describe
sorption phenomena and initiate icboratory experiments to
define somption and desorption kinetics.

=» Transformation: Develop better analytical methods and
determine process rate constants in laboratory and field.

= |arge Events: Consider the large, time-dependent event in
modeling; collect data relevant to large storm and run-off
events.

= Resuspension/Deposition: Research sediment resuspension
and deposition at high flows.

= Diletary Uptake in Fish: Develop standard procedures for
measuring dietary uptake efficiency and determine the
reiationship between dietary uptake efficiency. food
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digestability and Kow.

Food web structure: Quantify the components of the food
web through stomach-content analysis, define the routes of
carbon flow, determine seasonal variation in food web
structure.

Mercury: Davelop a fieid measurements program for
methyl mercury.
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Closing Panel Discussion and Responses 10
Recommendations

Breit Kaull, Congressman Henry
Nowak's Office

Donaid O’Connor, Manhaitan
College

Willlam Richardson,
U.S. EPA - Large Lakes Research
Station

Wayne Wiltford,
U.S. EPA - Great Lakas National
Program Office

Charles Zafonts,
U.S. EPA - Ragion 2

Michael Zammull, .
Canada Center for inland Wate

William Richardson:

The results from this conference should be used to plan

future modeling research.

it*s good to see scientists and decision makers falking and

working together toward consensus.

There is a need to cany on with the Green Bay data set and

the work that is going on there.

Wae need to coordinate our data gathering and other efforts

50 thaot we can leverage our resources better.

We need a vision and a mission to come out of this
workshop. This will help convince management and get
future funding.

We need to be cautious about not overseling models. We

should do follow-up research to check model resulis.

Mercury is an important problem. We must initiate research

Reducing Uncertainty in Mass Balance Models of Toxics
in the Great Lakes- Lake Ontario Case Study

79



Wayne Willford:

on it scon.

Models are built to respond to management needs but
these needs change over time. We need fo be able fo
anficipate future needs so that there can be a response

when new questions arise.

Decisions will be made and regulatory actions will be taken
whether models are used or not. Modelers shouldn“r be

afraid to have their modeis used.

Uncertainty about loadings is @ mgjor issue. We need a
good loadings matrix; this matrix would be useful to

management whether modeis are used or not.

it would be a strategic error to ignore a management
identified problem like mercury [ust because it is a difficutt
problem to deal with. Insfead we shouid present proposals
for the research needed to respond to this problem.

How can we move models from data consumers to
predictors so that we can lower our data collection needs?
Models should aliow us to be more proactive rather than

requiring research which is retrospective in nature.

We should mova steadily from the simple o the complex.
However, we should not be hesitant fo use models as we

progress since decisions will be made with or without them,

Future research needs should focus on improving
understanding rather than on an improving G mass
balance. Additionally, sensitivity analysis should be used to

identify pricrities for research.

80

' Great Lakes Mornwograph No. 4



Brett Kaull:

Michael Zarruil:

Donald O*Connor:

Palicy makers need modeils as a tool to help them use tax

doilars wisaly,

The Great Lakes is a good piace for a case study since it is
an important resource and involves two countries and many

states and provinces.

Models may help to make the connection for why money
should be spent on reguiation and remediation. They bring
enviiconmental benefits into the policy decision making

process.

To get federal support behind a project there must be a tool
o show that investiment in the environment will pay a
dividend. Models help decision makers develop informed
intuition.

There is a need for coordination since coordination leads to

a decreased need for resources without sacrificing quality.

There is a need for a framework for process research.

Along with reducing uncertainty in mass balance models, it
is also important to think about reducing uncertainty in the
research manager’s future budgets.

Money is an important considerdﬂon. We must use our

resources as effectively as possible.

We should be planning to construct one complex "mother
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Charles Zafonte:

of all models* whose primary purpose would be scientific
understanding. This model could give birth to simpler, more
specific models designed to answer key management

questions.

Maodeling is a relatively young field; it started in 1926 and
only really got going in the 1950°s. Because of this, and the
need to use modals now, we lack the leisure to deveiop the
discipline slowly.

Progressing in complexity down two parallel paths as
suggested by Group 3 is a good idea.
{Compiex and Simple models)

We must relate what we do to real prqblems and then
demonstrate the application of models to these problems.
We must be more arliculate about the application of our
modeils. We must both maintain the integrity of science and

answer the questions that are being posed to us.

This conference represents significant progress on reducing

uncertainty.

There is a need for both simple and complex maodels. We
need to continue to learn from the simple models, verify
them with dota, and gain consensus on what we've
learned.

Research proposals should be written on the issues that
arose as impaortant in this conferehce, for example

uncertainty surrounding the sediment/water interface.

We should make coordination a priority. We need to get

people who are working on similar projects communicating
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with each other.

¢ Mercury is a real enviionmental problem in Lake Ontario
and we need to find out what is going on. Research
proposals for developing a Level 1mercury model should be

prepared.

¢ It was suggested that we monitor three chicrinated
organics. We need to ensure that the other five are deait

with also.

¢ Funding is a major issue. The continued pressure on funding

is the most important issue for decision makers.

) Several questions to the panel were posed by the conference participants.

John Toil brought up the point that researchers are conservative on the use
of modeis of unpredictable systems because they are worried about
scientific credibility and policy makers are conservative because they're
worried about policy credibility. A solution is that scientists and regulators
could begin with what type of answers and level of uncertainty they're both
comfortable with and then work backward to generate a set of feasible
research and policy objectives. in addition, modelers need to be more
sophisticated in presenting uncertainty and managers need to be more
sophisticated in framing questions.

Paul Rogers suggested that, for the Green Bay modeling project,
models that were thought to be state-of-the-arf at the beginning of
the project shouid be compared to the current models. This would
give a good indication of what was gained for the money spent.
Wayne Willford responded that it was just a pilot project fo learn
what to do and how to do it. Donakd O'Connor said we’ve at least
gained knowledge and decreased uncertainty and Bill Richardson
said such a study would be a good idea but keep in mind that the
modeling costs are small compared to the data collection costs.

Charles Hall pointed out that sophisticated computer graphics can
help to bridge the gop between scientists and decision makers. Bill
Richardson responded that this is currently being pursued and that
a supercomputer is being installed in Green Bay with sophisticated
visudlization capabilities. -

Eifron Halfon pointed out that five models have been developed for
Lake Ontario and we don’t have consensus on their credibility so
how can we develop just one model? Donald O’ Connor responded
that we shouid stress the unity of what we know and get consensus
on scientific beliefs and then get these beliefs into the models. In
addition, we need to establish a repository of modeling history so
that we will have a perspective as we advance.
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Loadings,
Forcing
Functions, and
Stochastic
Variability

Dave Dolan
International Joint Commiasion

Tom Young
Clarkson University

Irtroduction

In this paper, model forcing functions (especially loadings) are
discussed. Important issues are identified and the possibilities for
reducing their uncerfainty are presented. At this point, a couple of
definitions would be useful:

s Forcing Function - An independent variable in a model
formuiation. By independent it is meant that the variable is
not affected by changes in the model. Thus, forcing
functions can appecar on the right hand sides of differential
equgations, but not the left. Some forcing functions, such as
loading, can often be conirolled and thus are of
management interest, others, such as weather, are basically
unconirolled.

= Uncertainty - An indication of the vaiue or reliability of
informiation. In this paper, the indicator used is the standard
deviation of the model estimate of an cutput variable.

Reductions in unceriainty occur In a variety of ways. It is assumed
that, whenever possibie, state-of-the-art methods for daia handiing

- will be used, so that this area will not add to uncertainty. Furthey, it is

assumed that new datla will be collected in an effort to reduce
uncertainty and that, because of budget constraints, it is desired o
optimize this effort in some way.

Contaminant loads frequently are handled in models of toxic
chemical fate and transport as if they were independent variables,
or forcing functions, that drive the response of the modeled system.
However, the loading of toxic chemicals and other substances of
interest are not truly independent variables; rather, they respond to
numerous external forces, true forcing functions, in achieving their
observed states. The coupling between loads, forcing functions,
and chemical fate is partty deterministic and partly stochastic. Here,
the emphasis will be on identifying the uncertain element in the
linkages between loads and forcing functions. Toxic chemical loads
of concern to this discussion will be identified as belonging to one of
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three categories. These include:
= tributary inflows,
®  direct point sources (industrial and municipal inputs), and

® direct non-point sources (rural and urban runoff, in-plkace
poliutants, groundwater, and atmospheric inputs).

Loads in each of these categories possess attributes that vary in a manner
that makes load quantitation difficuit without encountering substantial
uncertainty. On the other hand, several issues related to uncertainty are
common to most protocols for estimating loads and forcing functions. An
important issue commeon to any load or forcing function estimate is selection
of appropriate time and space scales for aggregating information. This
consideration is important becatse it can determine the accuracy with which
uncertainty in the estimates may be known for given actual variability in the
quantities of interest. An in-depth discussion of the issue of time and space
scales appears in a companion paper.

A second issue of common concern is that of observation
uncertainty such that the uncertainty may be attributed to the
physical and chemical methods used for data collection (e.g..
sampiing schedule, field and laboratory methods for sampling,

. handling, preservation, storage, and analytical quantitation). Such
methodological uncertainties may be systematic or random and
provide the target for quality assurance and control programs
(QA/QC). In the design of a monitoring program, however, the
need o randomize is not always recognized. Nevertheless, the
need to randomize at some stage of monitoring is aiways present.
Otherwise, the analysis of results by statistical models cannot be
accomplished without an unknowable amount of Dbics.
Uncertfainties due to sampling and analysis methodoiogies will be
addressed to a limited degree in this poper but a detaied
discussion is outside of the scope of this paper. One special area of
data uncertainty that frequently arises in estimating loads of toxic
chemicals for mass balance models is the issue of non-detect
observations. Dedling with non-detect data will be examined in this
paper in the context of estimating contaminant loads and doing so
to minimize uncertainty.

" A third common issue involving uncertainty arises over the approach
to be used for data analysis, or the statistical estimation method to
be emploved. To a large extent, such concerns parallel thase that
ermanate from uncertainties over model specification, including
process parameterzation. This is appropriate, because the statistical
analysis applied to yield a loading estimate or time series must be
faithful to an underlying mathematical (i.e.. statistical) model. This
aspect of uncertainty aiso will be given detailed treatment in this
discussion.
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Tradeoffs

As has been alluded to above, the feasibility of obtaining perfect
load estimates is reduced by a number of difficuit issues: scientific,
logistic, econamic and natural, It is important to not only divide
these issues info ones that can be confrolled and those that can't,
but aso.into those that represent fradeoffs or compromises and
those that don't.

Tradeoffs occur when there is g tosk 1o perform within a fixed
budget (either dollars or manpower or both). In the context of load
estimation, thay invoilve questions such as: how many fributaries and
sources can be sampled? how many samples per source can be
taken?, etc. These are mainly economic and logistic considerations.
Scientific issues in load esiimation tend not to be as subject to
tradeoffs because the usual appreach is to apply state-of-the-art
science without advancing to unproven arecs.

As is frue in the larger context of model uncertainty analysis, the
evaiuation of load estimation unceriainty is, itself, a procedure that
may incur considerable error. Except in simple models, it is presently
not possible to objectively and uniquely assess unceriainly due to
model (stafistical) formulation, dependent and independent
variabies, and parameters. Most effort in uncertainty analysis has
been put toward evaluating uncertainty due fo errors in parameters
and independent variables or farcing functions.

Two fundamentally different approaches to the assessment of
parameter uncertainly have been developed: Monte Cario
simulation and first order analysis (variance propagation). The
approach taken with the former method involves assigning
probability density functions to each uncertain model parameter or
variable, and then "sampling" the disttibutions at random for
caiculation of a model result. This procedure is repeated a large
number of times, and the distribution of model resulls may be
analyzed statistically to ascertain the combined effects of all the
uncertain parameters on the overal uncertainty exhibited by the
model.

The term, first order analysis, is apt because the approach is based
on using the first order terms of g Taylor series expansion about the
mean of each uncertain parameter or input variable. For a single
equation, multi-parameter model (e.g.. Y=f(X), where X & the vector

.of uncertain parameters), the expression for the estimated

uncertainty of the modael result (V(Y), variance of oufcome, Y), due
to parameter uncertainty, is given by Equation 1.

a I-1 '
ARE) 3D AL AIKE
V(Xi) 21‘.-1 J=1 (W;J(W)COV(XJL’XJ) - (1)

if the uncertain parometers are uncormrelated, then Equation 1
simpifies to the first term on the right and the total prediction
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uncertainty is due to the sum of the individual contributions by each
uncertain parameter.

Monte Carlo simulation has two main advantages over first order
anatysis, First, Monte Carlo simulation does not lose exactness of
model representation, as first order analysis does due to truncation
of the Taylor series expansion. Thus, within the limits of the
deterministic model and parometer distributions, Monte Carlo
simulation s complete. Second, the results of Monte Carlo
simulation provide g complete probability density function estimate
to describe parometer enor, rather than only an estimate of the
mean and varianca. The Monte Carlo procedure, however, is
computationally intensive. Consequently, first crder analysis may be
favored for its convenience on simple models. Uncertainty analysis
for complex models (dynamic, muiti-state, muit-parometer, detailed
spatial resolution) may require more computation for Monte Cario
simulation than can be justified. Statistically efficient methods of
drecting the sampling required for the simulations (e.g., the iatin
hypercube design) can greatly reduce the computational
requirements.

First order analysis provides a reasonably uncomplicated approach to
assaessing uncertainty that may be adapted for use with models of high
complexity. Because of its wide utility, it will be used here to demonstrate a
procedure for ranking the uncertainty in lake water concentration for a
contaminant of concem that is associated with uncertainty in each of the
loading categories discussed previously. To do this, of course, 2 model
must be specified that relates concentration and loads. Given in Equation 2
for the purposes of illustration is a mass balance equation for a lake of
volume, V, an outflow rate of Q a contaminant of concern with water
column concentration, G, and which receives loads of the contaminant from
tributaries (EWpip, i) direct point sources (EWprs ), external direct non-point
sources (ZWpnps, 4, atmospheric sources (Wamy), and which loses mass
due to the net of sedimentation, resuspension, diffusion, and bicturbation
over the sediment with surfacer area A, (JsgpAd), by
evaporation/volatilization over the water surface with area A, (Jgy4pA4), and
which reacts within the water column by a first order process with rate law
-XC:

dac
V?f-= ; Wmm,i"'; Wprs,j"'; Wyes

_ (2)
+ Wagy = TsxpBy = TgapA ~QC-kCV
which has the stecdy-state solution:
C = ZI:WTRIBJ*'; Wm;j"'; Wms+Wam'JsxDA.'sznA (3)
(@+kvy -
ac _ 1
aw, VIRV (4)
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The parfiol derivatives in Equation 1 (8 f/.aX)) are sensitivity
coefficients; they indicate the rate of change in the dependent or
predicted variable with respect fo the uncertain parameters. By
analogy, the steady-state concentration of contaminant in Equation
3 may be taken to be the dependent variable and the lcads may
be taken to represent uncertain parometers, giving Equation 4
Here, the objective is projecting the uncertainty in loads ontfo
predictions made about the steady-state contaminant
concentration. Because of the simplicity of this model, the sensitivity
of the loke water concentration at steady-state to each of the loads
is identical, as shown in Equation 4 (Wr, is an arbifrary loading term
from Equation 2 or 3).

The contributions of the loads to the uncertainty of the
concentration prediction, however, are not identical. Rather, they
depend on their individual varionces. If the loads are assumed 1o
be independent of ecch other to permit simple extension of the
illustration (secsondlity alone suggests that this is not a particularly
good assumption), then individual lood contfributions to the

- uncertainty of concentration is given by Equation 5, while the total

uncertainty due fo loading is given by Equation 6.
Sy

Se ]y, = (0+kV)? (%)
- 5,2 (6)
Sa,’ ((Q+kV) )2

Further demonstration of the first order unceriginty of lake
concentration to loading may be pursued using the illustrative

(default) data on contaminant loadings from D. Mackay's

steady-state model (PROGRAM NOTL) for Lake Ontario; also other
attributes of Lake Onfario rec:m,:&ecj3 faor Equation 3 were 'rgk from
the Mackay model (V=1.67x10 m ", V/Q=6.5y, k=607x10 'y ) The

~ loads of toxic chemical range from 100 to 200 kg y . The analysis is

shown in Table | To perform the analyss. coefﬁcients of variation
were required for the load estimates. The values used are given in
Table | ond are hypothetical, they are suggestive of the reiative
ranking of the unceriainty with which each load may be known.

To put the conceniration uncertainty estimates info context,
Equation 3 may be calkulated for the volume, discharge, and
chemical decay attributes noted parenthetically above. To do this
with the minimal information given, it will be assumed that the net
interaction wiih sedimeni and atmosphere |s12ero As indicated in
Table |, the given loadings total 700 kg v . lelis would yield a
steady-skate concentration estimate of 27 ng L by Equation 3.
Because the partial unceriainties hypothesized for the loadings total
20 ng L, the steady-state concentration estimate has an overdll
coefficient of variation of 74 percent. The relative ranking of the
partial uncertainties closely tracks the assumed coefficients of

varigtion. This underscores the importance to uncertainty analysis of

knowing the properties of the underlying error structure as well os
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possible.

In the example presented in Table |, the direct point sources have
been split info municipal and industrial.  In general, this split is
desirable because these sources represent different management
options (prefreatment programs vs. direct effluent confrols).
Sufficient information currently exists to make this division of the point
source load.

In the case of the tributary load, a split hos been made into -the
Niagara River and “all others." This was done because the Niagora
load is comparatively well known due to the program of the
Niagara River Toxics Committee. The differences in coefficients of
variation reflect this situation. ’
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Magor Sources Of
Loading Uncertairay

Table l.

First-Order Annlysis of Concentration Estimate Uncertainty Altributable to Loading
Uncertainty for Lake Ontario Using lHustrative Data

Assumed Load : Partial Uncertainty

Cuefficient of in Concentration
Source of Lond Variation Load Estimate Due to
Uncertainty Magnitude (%) Standard Load Uncertainty
Deviation (ng L)
(k) (g v
Municipal Point 100 25 25x10" Q.1
Sources
Industrial Point 120 25 30x10% a1
Sousces ’
Direct Non-Point 130 B 1} 130x10* 0.5
Sources
All Other Influent
Tributaries 150 200 300x10" L2
Niagara River 200 20 40x10 0.2
TOTAL 700 - - 20

For non-point sources, no such division is possible given existing:
knowledge, dithough it would be desirable because of the
implications for control options.

When a model formulation is agreed on for Lake Ontario, the above
analysis should be repeated using curent data. The partial
uncertainties should be estimated and ranked and then the
sampling efforts should be concentrated on the highest sources of
uncerfainty. In this type of analysis, the importance of historical data
analysis is made clear. Another paoint that should be made is that
methods of load estimation based on extrapolation and typical
concentrations (among other procedures) that are used in lieu of
real data should continue to be developed, since improving their
effactiveness willimprove the utility of the uncertainty analysis.

The average load, L [M T']], delivered to a receiving water during
soe specific fime interval, At [T], through an interface of area. A
[L]. for a contominant thatl is carried by water flowing, at an
instantaneous velocity, v, [L T ], and concentration, C [M L], may
be represented by Equation 7 when contaminant transport occurs

- by purely cdvective processes. If contominant transport occurs by

purely diffusive or dispersive processes clong the instcm‘gneous
concentration gradient norn'iol_{o the interface, dC/dz [M L ], with
a fransport coefficient, Dz [L™ T '], then Equation 8 may be used tfo
represent the average load to the receiving water.

1

L= L L \‘z(A,t) C(A,t) dA d= | . (7)
_'_, 1 dC(A,“C) : ]
- g L pen—g—=dte O
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Equations 7 and 8 are one-dimensional, idealized, deferministic
simpiifications of the complex, stochastic situation that exists and
determines loads during contaminant transport. |f it were possible fo
monitor continuously in time and space and with absolute accuracy
all boundaries of a receiving water body, then one could compute
loads without uncertainty, at least in theary. Even if monitoring with
that intensity were technologically feasible, however, it would be
impractical. Nevertheless, these equations can serve to ilustrate the
maijor sources of uncertainty that affect estimates of toxic chemical
loading and other forcing functions of interest for Great Lokes
modeling. In particular any condition or change in conditions that
atters any of the variables in Equations 7 and 8 will affect, in turn, the
resulting estimate of load. By corollary, uncertainty in the variabiles
of Equations 7 and 8 will propagate through the relationship to
affect the load estimate. Any quantity, therefore, that produces
uncertainty in flow velocities, concentrations, dispersion or diffusion
coefficients, or concentration gradients can lead to uncertainty in
contaminant loading estimates. The role of sampling design in
reducing uncertainty is examined below; after a survey of the major
sources of unceriainty associated with the loads in each of the
categories identified earlier.

Tributary Mouth Loadings

Caontaminant loading estimates for rivers that enter the Great Lakes
derive uncertainty from a combination of several sources. Because
fributary inpuls consfitute the largest single load for many
contaminants, considerable attention has been given to tributary
load estimation and uncertainty. Exhaustive coverage of tfributary
load uncertainty will not be given here, however, the main
confributory elements will be examined. The discussion will focus on
uncertainty associated with estimating loads of contaminants that
partition strongly to the solid phase. This will be done for two
reasons. First, many anthropogenic orgonic contaminants that are
of concern to mass baiance modelers of toxic chemicals are
surface cctive due o hydrophobicity or polyvaiency and, therefore,
may be predominantly associated with transported solids. This
phase partitioning s a complex phenomenon invoiving
thermodynamic and kinelic constraints that resuit from chemical
and physical characteristics of the solid and liquid phases, and the
“contaminant(s) of concern. Some of the more important factors
include pH, particulate and dissolved organic carbon levels, solid
phase leveis of hydrous metal oxides, sorbent and sorbate
concentrations and kinetics of adsorption and desorption.  The
second reason for focusing this discussion on particulate matter is
the fact that particulafe matter, and associated contaminants,
generally are subject to greater spatial and temporal heterogeneity
than contaminants in the disscived phase. Consequently, the
uncertainty of total tributary loads will be heavily influenced by the
uncertainty of parficulate loads of such contaminants. Moreover,
reductions in particle-associated tibutary locading uncertainty by
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improved sample design will yield more certain soluble phase
loadings, too.

Sediment and sediment-associated poliutants that reach the mouth of a
tributary originate largely from non-point sources in the watershed and resuit
from of a complex interplay of numerous forces. Of special importance are
(1) climate, in general, and the nature, amount, and intensity of precipitation,
in particular; (2) orientation, degree, and length of slopes; (3) geclogy and
soil types; (4) land use; (5) condition and density of the channel system; (6)
particle settling velocity; and (7) strearnfiow regime. In addition, the finest
resolution of sediment load variability, and that of associated contaminants,
for a receiving water generally will depend on the coarsest resolution of
sither meteorologic events, recsiving water events, or channel geometry
and geology. Fluvial loading uncertainty, therefore, will depend in large
measure on the variability of these physical factors. This dependence, of
course, is in addition to the influence of physicochemical factors specific to
the contaminant of interest, such as, solubility, volatility, partitioning, and
temperature dependencies, plus the biochemical influences of uptake and
decay.

The interplay of gravitational and viscous forces on particulate matter in
water resuits in fluvial systems having a selective transport capacity for
paricie-bound poliutants. Thus, as fluid forces vary in time and space, so
too does the movement of particulate contaminants. In general, therefore,
the total loading of particie-bound contaminants is related to discharge in a
non-linear manner that consists of a watershed-determined movement of
fine particles superimposed on a discharge-dependent and spatially varying
flux of coarse sediments. The consequence of selective transport for
loading uncertainty arises immediately as a requirement to design sampiing
protocols that address concentration and velocity variability over a sample
transect.

Cross-sectionai variability in particulkate contaminant concentration
dlso is a problem consisting of two components, because fine and
coarse particulkate matter behave differently. Fine matter (coarse silt
and smaller) may be considered to be uniformly distributed vertically
and horizontally at an appropriate distance downstream from a
source of sediment, so long as flows are sufficiently turbulent. This
criterion is nat well defined but will depend on characteristics of the
parficles, the fiuid, and the site of concern (discharge,
cross-sectional area, channel widith and depth). Coorse sediment
(fine sond and greater), on the other hand, shows a strong
dependence on the hydraulic character of the system. In particular,
the fransport of sand-size particles depends on bedform (depth and
dune forms) and flow regime (development of turbulence). The
combined effect of these components is reiatively low variability
across the cross-section if the amount of fine sediment is high relative
to sand.

Temporal variability, of course, adds an additional dimension of
uncertainty to the fluvial load problem. Concentrations of
suspended matter and associated pollutants at a stream
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crosssection during a hydrologic event often shows a
time-dependence that reflects the character of the hydrograph,
generally increasing and then decreasing during the event, due to
erosion, scour and deposition. The peak concentration, however,
often does not coincide with the peak of flow and may lead or lag
the flow peak. Most frequently the concentration peak lecds the
hydrogreph somewhat; however, for suspended matter the actual
pattern realized by a given drainage system depends on the size of
the watershed, location of the causative event, and antecedent
streamflow. Time of year exertfs significant influence on the solids
levels found in most systems. For fine suspended matter, this
influence is a result of the dependence of concentration on rafe of
supply, which in turn depends on erodabiiity, land use patterns,
precipitation, intensity, and pattern, antecedent soil moisture, and
spring freeze-thaw cycles. Seasonal variability in coarse suspended
matter concentrations depends mainly on the streamflow conditions
that are redlized in the systems of interest.

Three additional sources of uncericinty in tributary mouth loading
estimates will be discussed: seiching, near upstream point sources,
and gauge to confluence distance. Seiching is a condition that
gives rse to periodic reversals of flow at the tributary-lake
confluence and leads to an especially difficult load estimation
problem. The problem can be so severe that loads of conservative
as well as non-conservative contaminants cannot be estimated by
projection from a near upstream monitoring point  without
unreasonably high uncertainty. The main factors prohibiting
exirapolation of the upstream estimate are transport time phase
error and physical phenomena dependent on the particle size
distribution of the solid phase matter, sedimentation, resuspension,
and delivery to the receiving water.

Consideration must be given to uncertainty aftributable to upstream
point sources that are proximate to the confluence of concern. The
uncertainty such sources contribute to the load estimate is that due
to inadequate mixing over the crosssection and the resulting
transverse gradients. Combined sewer overflows, which offen occur
in near-mouth reaches, ako give rse to uncharacteristic
flow-conceniration responses during wet weather, and their
influence may coniribute uncertainty in the fluvial load estimate.

Commonly, an existing gauging site may not be the most desirable
location for sample cotlection, or the toxic chemical observations of
interest may be pre-existing and from a site that is a substantial
dstance upstream from the confluence. Uncertainty in
*extropolating” the upsiream megsurements over the unmonitored
portion of the fributary give rise to uncertainty in the fributary load
estimate.

Data Collection  Since, using the illustrative example in Table |, the largest source of
Improvements  loading uncertainty was the "all other influent tributaries,” the
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folowing discussion will concenirate on ways fo reduce the
uncerfainty for trioutary loads. Some of the recommendations’
discussed below wil be applicable to other sources of uncertainty;
others will be added where appropriate.

Economic and logistical considerations can be optimized for given
fixed dollars and resources (sampling crews, lab capacity, etc.).
However, it is recommended that certain sampling not be optimized
for and in fact be designed for built-in redundancy when paossibie.
In general, physical and chemical variables that are reiatively
inexpensive to obtain but critical fo load estimation and subsequent
modeling efforts (such os flow, temperature, pH, chioride,
suspended solids and other conventionals) should not be subject to
optimization. ideally, existing jurisdictional programs for these
parameters should continue or even be strengthened during the '
study. In addition, sampling for toxic contaminants should also
include these important parameters fo both provide a redundant
measure (for sofety purposes) and a way of relating these
measurements to more routine ones made historically.

The sampiing that should be optimized is for the toxic contaminants
themselves. Due to the cost per sample of many of these
chemicals, as well as limited lab capacity, field equipment and
expertise, the tradeoffs really cccur at this level of sampling. The
compromise will come down to accuracy load estimate vs. cost of
sampling. As a hypothetical exampie, suppose one wishes to
sampie 95% of the fributary flow to Lake Ontario (suspended solids
load could ako be used here) on @ monthly basis for a suite of
organic and metal contaminants.  The list of tributaries fo be
sampled is:

Oswego Tweive Mile Creek
Trent Black

Genesee Welland

Moir Buffalo

Saimon Napanee

Credit

Fortunately, the largest fributary, the Niagarg, is well sampled by an
existing program at a weekly frequency. Howevey, this list will require
new efforts. The cost would be:

# tributaries x 12 x cost per sampie -

if this is within the budget, then no optimization is necessary.
However, assuming it is foo expensive and no additional funds are
available, the tradeoff occurs in number of samples (less tributaries
or less months). Alternatively, if a certain maximum uncertainty is
allowed, then a program could be designed fo achieve fthis af
minimum cost. See Lasht (1991) for @ more detailed treatment.

An aiternative agpproach to this type of optimization is the Balanced
Incomplete Block Design proposed by ElShaarawi and Willioms
(1989) for Niagara River point sources. Briefly, it allows the estimation
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of the total load of a contaminant, the individual loads of larger
trioutaries and standard errors of the loads with substanficlly less
samples needed than conventional designs, Again, assuming @
fixed number of samples allocated fo the effort, it should be possible
to estimate the total tributary load, the relative contribution of at
least four of the major tributaries and provide the equivalent of af
least three replications at better than haif the cost of a conventional
design. This is a type of fradeoff also, but it occurs without giving up
the primary objective, which is an accurate fotal load. This
approach may not be cppropriate for ail scales of modeling but it
should be considered because of the substantial savings it offers,

Data Handling Improverments o reduce uncertainty in load and forcing function
Improvements estimation in the area of data haondling should not be subject to
tradeoffs. The best available methods should be used so that no
information that is collected is unused or partially used. In past
- projects this has occured in two areas: load estimation methods

and censored data handling.

Considerable effort hos been devoted fo demonstrating that load
estimation methods that ignore the correlation between measured
variables are unacceptable. Besides the fact that they do not use
all availabie information, they introduce significant biases into load
estimates. Ratio and regression estimates are two methods that do
consider the correlation between variables and these should be
used whenever possible.

One probiem that inhibits the use of these methods is that of dafa
censoring. This practice should be avoided whenever possible in the
laboratory, but in many coses it is unavoidable. Simiiarly, if data are
fo be censored, they shouid have one detection limit reported.
Again, sometimes this is impossible. Therefore, a generalized load
estimation procedure is being developed for use with censored
data that will moximize the information that can be obtained from
partially censored loading data sets (up to 80% censoring). This
involves @ maximum likelihood estimate for statistical parameters
that describe loading. This procedure will solve the problem of
"minimum and maximum" load estimates that was caused by partial
censoring of loadings data in the Green Bay study. The procedure is
an extension of work by El-Shaarawi and Dolan and will be available
in early 1992,

Point Sources

Quantitation of contaminant paint source loadings fo the Great
Lakes may be done with greater certqinty than non-point source
loadings, because the technical and logistical aspects of sampling
are less complicated for point sources. The simplicity of point source
load estimation resulfs from ignoring the spatial component of
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Data Collection
Improvements

variability during monitoring, a convenience permitted by the point
character of the source (the interfacial areq, A, in Equations 7 or 8 is
negligible). The degree of simplification this affords is such that a
continuous record of an instantaneous load is possible for some
contaminants {(e.g., oxygen deficit). Of course, the extent fo which
the point source model is inappropriate for the monitoring data will
lead to uncertainty in estimates based on it.

Most important, to the overall uncertainty of most point source load
estimation questions is the uncertainty associated with temporat
varicbility of the load, whether due to variability in concentration or
discharge or both. Temporal varicbiity becomes a problem
whenever a continuous record of the contaminant load is not
available for the point source of interest. This is, of course, generally
the case for Great Lakes contaminants, even though permitted

. dischargers are required to monitor their effluents routinely. As wil

be discussed later, proper sampling design can significanity reduce
the influence of temporal variability on the uncertainty of point
source load estimates. ‘ :

The temporal variabiity in point source loads may possess Q
considerable level of determinism, or structure, that can be
exploited to improve load estimate accuracy. Such structure that
may be present will depend on the nalure of the point source.
Muynicipal wastewater effluents, for example, may show periodicity
over 8 fo 12 and 24 hour cycles for some contaminants, weekly
cycles for others, and seasonal or annual cycles for stil others.
Indystricl point sources, on the other hand, tend to show less
temporal structure, though they do reflect manufacturing or other
production cycles. In generql, variability in point sources is
associated with community size, meteorologic and geographic
factors, mixtures of influent sources (industrial/sanitary), and design
flow rate of the facility of concern.

The location, design flow and industrial category of all point sources
in the basin are known. This information should be used in optimizing
the sampiing design for point sources. A GIS would be most useful in
identifying accurately the direct point sources.

The same optimization considerations discussed under tributaries are
relevant with point sources. However, the practicality of mixing
effluents to achieve the Balonced Incomplete Block Design is
dubious, especially from a legal and anatytical chemistry viewpoint.
The question of utilizing effluent self-monitoring data is unresolved.
Some self-monitoring data will probably be used, but toxic
contaminant data obtained this way will usually be subject to less
stringent quality assurance procedures.
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DataHandling In general, load estimation with point sources is easier, given

Improvements adequate data. Ratic and/or regression estimations are probably
not necessary, and a simple summation of the products of flow and
concentration shoulkd be adequafe. The same type of
considerations for censored data apply to point sources.

Non-Point Sources

The maijor phenomena that produce uncertainty in non-point source
load estimates for use in foxic chemical mass balkance models
consist of "true” forcing functions in the sense that they are truly
independent variables that govern both the deterministic elements
of the quantities represented in Equations 7 and 8 and the stochastic
elements that are only implied by the previous discussion.

Direct non-point loads from gl runoff derive unceértainty from
numerous sources, but it is possible to generaiize these by stating
that rural runoff is mainly associated with (1) random hydrologic
avents that have their roots in meteorologic or climatic phenomena,
(2) sediment movement that accompanies runoff, and (3)
partitioning of the chemical of interest between water and
sediment. The forcing functions that govern uncerfainty in rural
runoff load estimates, therefore, relate mainly to these three
phenomena. Physical forcing functions that affect rural runoff
include meteorologic and climatic varicbles such as temperature,
wind speed and direction, precipitation quantity, intensity, and form;
terrestrial atftributes such as distribution and size of scurce areas, soil
type and erodability, land use and management practices, slope,
aspect, depression storage, and antecedent moisture conditions.
Chemical forcing functions that lead fo uncertainties in rural runoff
load estimation include the phase parfitioning behavior of the
contaminants of interest and the rate, fiming, and mode of
environmental release of the contaminant in the source area.
Biological variables that influence the degree of certainty with
which rural runoff loads may be determined include seasonal and
acological succession, evopotranspiration, migration,  and
distribution of ground cover.

In a general way, urban rnoff loading of contaminants depends on
the same factors as those cited above for rural runoff loads. Urban
runoff locads normally differ substantially, however, in that they
generally reflect much higher rates of runoff compared to rural ones.
This is due to the generally greater imperviousness of surfaces that
intercept precipitation. Further, urban runoff normally is collected for
routing to ultimate disposal. Under circumstances that are faverable
to surface receiving waters, such routing is through separate storm
sewers and seitling basins followed by application fo infilfration beds
to recharge groundwater. Under less favorabie circumstances, the
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routing is through combined sewers (runoff and sanitary wastewater)
that may be allowed to overflow during runoff events that exceed
the volumetric design capacity of wastewater treafment facilities.
Urban runoff loads aiso differ from rural ones in that urban loads
depend on popuiation density and street cleaning effort. Empirical
modeis (e.g. STORMS - US Army Corps of Engineers) are avcilable to
aid in estimating urban runoff ioads, however, monitoring is required
for any quantitative assessment of estimate uncertainty, which may
be large.

Dissolved phase contaminants predominate in groundwater and
are fransported info (and out of) the receiving waterbody by
advection, dispersion, and diffusion at the sediment-water interface.
Contaminant loads from infiliration of contaminated groundwater
are difficult to quantify direcly and frequently are estimated by
mass balance closure; consequently, they are often notably
uncertain. Among the numerous detferminanits of groundwater
contaminant tronsport are included aquifer thickness, hydraulic
conductivity or transmissivily and degree of anisotropy, hydrauiic

. gradient, proximity of recharge and contaminant source areas, and

such contaminant attributes as partitioning behavior, susceptibiiity to
decay, and concentration gradients. When groundwater loading
of contaminants is estimated directly, then each of the parameters
named above can coniribute uncertainty to the result.

Contaminatad sadiments, or in-place pollutants, may enter the overlying
water in the dissolved or particuiate phase. Mechanisms that lead to the
introduction of in-place pollutants into the water column include bicturbation,
the net rasult of scour, resuspension and sedimentation; diffusion, and
advection (via groundwater). At least in principle, each of these
mechanisms may be quantified, but each is determined by parameters that
are difficuit to measure directly, that vary spatially and temporally, and that
generally possess high uncertainty. The determinants of in-place
contaminant loading rates are numerous. Some of the more significant
ones include temperature, and contaminant-specific diffusion and dispersion
cosfficients, hydraulic gradient and conductivily, viscosily (water and
surficial sediment siurry), porosity and bulk density of sediments, thickness
of active sediment layer and sediment cohesiveness, velocity of averlying
water and boundary shear stress; state of waler column stratification
(thermal) and internal current structure; burrowing invertebrate population
type, density, activity levei; migration of biota and seasonal succession;
chemical-specific characteristics, such as partitioning behavior, voiatility,
solubility; sediment particle fraction of organic carbon; concentrations of
contaminants in water, pore water, and sediment particles; and, antecedent
conditions.

Direct gtmospheric deposition of contaminants consists of two
spatially and temporally variable processes which are subject to
significant unceriainty: dry and wet deposition (scavenging). Dry
deposition fluxes consists of the air-to-water interfacial transport of
contaminants bound to particukate matter, in the gas phase, or
dissolved in water vapar. The physical processes that lead to dry
deposition of particulate matter at the water surface are size
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dependent and include gravitational settling for large particles (>5
m), Brownian molion for fine particles (<03 m), and
interceptionfimpaction for intermediate size particles. In addition o
the transport rate dependence on particle size, the phase
distribution of atmospheric contaminants also depends on particle
size, and smaller particles normally contain higher amounts of
contaminants per unit of weight or volume. Gas phase
contaminants also may be deposited after fransport to the water
surface. Wet deposition of contaminants occurs as a result of the
tendency of precipitation to cleanse the aimosphere by
scavenging particuiate matter and absorbing gases. Transport of
wet deposition occurs largely by gravity, though the transport
processes that permit scavenging and absorptfion processes are
more diverse. The principal factors causing uncertainty in estimating
atmospheric loads of contaminants include the meteorologic
factors involved in atmospheric transport (e, wind speed and
direction, temperature, precipitation kind and amount), attributes of
the contaminants of interest (concentration gradients, partitioning
behavior), and the receptor area.

Data Collection ~ Of the non-point sources discussed above, the most important is

Improvements probably atmospheric deposition. Fortunately, this source aiso has
the best prospects for data collection improvements because of
current research and monitoring programs on air toxics. Urban and
rural non-point sources are less important because only direct
sources need to be estimated; indirect sources are covered by
tributary monitoring. At the scale of Lake Ontario, it is doubtfui that
new samples of urban and rural runoff will be taken, uniess these
sources are much larger than anficipated. The importance of
groundwater on a lakewide basis is unclear. Sampling should occur
in the most susceptable areas and a judgement made whether
further sampling is warranted. In-place pollutants may not be
considered os external forcing functions, depending on the model
formulation. It is probably that the level of modeling used on Lake
Ontario will include contaminated sediments.

Data Handling Improvements

Once ogain, censored data are an issue for non-point sources,
especially for atmospheric deposition monitoring. Load estimation
methods will have fo be worked out that allow use of partially
censored data. Abko, the estimation procedures for runoff and
groundwater need o be researched thoroughly.

Unresolved Issues and Due to the optimization of sampling resources that will undoubtedly

3 ﬁ . accur, there wil be some sources that are unmonitored or
inadequately monitored. In the latter case, it may be that the
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desired sample size was not achieved, the required quality control
was not practiced or a method involving exirapolation over a wide
range was used. The decision that needs to be made is whether to
use this information, and if it is to be used, how to incorporate it info
the forcing functions and still minimize uncertainty.

In conclusion, there are several opportunities for reducing
uncertainty in forcing function estimation. Many involve "up front"
planning and analysis and require historical or typical data to use in
this effort, Others involve using the best avaiable methods for
precessing and analyzing data ance it is collected.

it is recommended that the first-order uncertainty analysis discussed
in this paper be conducted with the model formuiation to be used in
the actual mass-balance effort. Some type of optimization should
then be done to reduce the target sources of unceriainty. This effort
should use real data wherever possible. For data collection not
subject to optimization, it is recommended that redundancy be built
into the sampling effort.
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and Reduction
of the
Uncertainty in
Mass Balance
Models by
Monte Carlo
Analysis of
Prior Data

Basry M. Lasht
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Environmental Ressarch Divigion

Argonne National Laboratory

Overview The general objective of this workshop is to investigate and discuss
methods by which uncertainties in mass balance models for toxics in
the Great Lakes may be reduced. As described by the workshop
prospectus, this paper is focused on problems of reducing (and
quantifying) uncertainty they relate to "“In sifu field
observations/system response measurements for the establishment
of initial conditions, boundary conditions, calibration/confirmation
data sets, and model post-audit data sets.* | have taken this
description to refer not only to the evaluation of uncertainty in the
field observations themseives, but also to the uncertainty associated
the analyses of In sfilu observations as they interact in the overall
modeling process. Thus, | will be concerned here with quantification
and reduction of uncertainty both (1) as they may be applied to
descriptions of the system that is being modeled and (2) as they
may be associated with modei simulations.

The relationship between envionmental models (of which mass
balance models are a major subset) and field data is a particularly
close one. Field data are needed at aimost every stage of model
development. In sifu cbservations are often critical for identification
and cadllbration of model parometers and are required for
verification of model performance. The questions | address relate
both to ways of estimating the uncertainty in representation of the
field data themseilves and to methods by which the uncertainty
associated with model forecasts may be described. | show that
opportunities for quantifying and reducing uncertainty occur both in
the design of sampling programs for collecting field data, and in the
process of identifying the model parameters that appear to be most
critical for success of @ model. A common feature of both
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applications is the use of prior data and Monte Carlo methods. |
note that dlthough these methods may involve intense
computation, the computational requirements are not particuiarly
excessive and are suitable for operational analysis. After a brief
infroductory discussion touching on my general goals and
approach, | present the methods, describe some case studies, and
explore some potential applications to a mass balance study of
Lake Ontario.

Ilﬂm What do we mean by model “uncertainiy?* In the context of this
workshop we are concerned with models that are fo be used for
regulatory and management purposes. Quoting from the workshop
prospectus, the models are intended "... to understand and predict
exposure pathways ... o quantify load/conceniration relationships ...
fo determine target load reductions.” Therefore, in a quaitative
sense, the uncertqinty that concerns us refers to the difference
between the estimated future value of some system property
calcuiated by the numerical model and the “frug® value of that
property. If we are to make the results of environmental models
valucble for management, we must determine whether the
predictions obtfained from the models are meaningful and useful
(Beck 1987). One way to do this is to quantify the confidence we
have in the model estimates, that is, to calculate some metric of the
difference between what the model predicts and what actually
occurs in nature (aos best as we can estimate) and provide that
metric to management along with the prediction. We should keep
in mind that attempts to reduce the uncertainty associated with
mass balonce modeis will, to a certain extent, depend on the nature
of the unceriainty metric being considered.

How an uncertainty metric is best calculated or expressed (or used,
for that matter) is the subject of some debate (O’ Neill and Gardner
1979; Scavia ef al. 1981; Beck 1987; Haness of al. 1991) and will
depend on the parficular gpplication. We should recognize from
the outset that in all respects (both data and model) we are dealing
with imperfect representations of the system of interest and,
furthermore, that the system is invariably influenced by stochastic
processes. Imperfect models (of different sorts) are used both 1o
describe the fleld dota and to produce the predictions. Because
both types of models are necessarily imperfect idealizations and
are, at least In siructure, generally deterministic, Monte Carlo
methods pravide a convenient way of accounting both for the
stochastic aspects of the system ond for the unavoidable
uncertainty in model parameter estimation, especially when the
models are noniinear. The Monte Carlo methods discussed below
do not require any a priorl assumption about the statistical properties
of the component erors and are offered as alternctives
(complements) to more taditional methods of first-order eror
propagation and paramaetric statistics.

| have structured this paper as follows. | first discuss the use of Monte
Carlo methods to quantify the uncertainty associated with field
measurements of Iimnologiccl variables. The variables | consider
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Uncertairty Associated
withLimnological
Sampling Nemoris

here are those measured in units of mass concentrations in water,
This is typical of many of the state variables incorporated in mass
balonce models of toxics. Although the nature of the appropriate
fleld mecsurement will depend on the model structure, in most
cases it wil be necessary to estimate the fotal mass of a
contaminant within some spatial segment of the system being
modeled. The Monte Carlo approach is intended for the situation in
which the methods of clossical parametric statistics are not
applicable. This is usually the case in limnological sfudies, where
samples are seldom true replicates (Hurlebert 1984) and are often
correlated in space and/or time (Reckhow and Chapra 1983).
Under these circumstances, a fradifional parametric model (e.g., an
analysis of variance model) may be inoppropriate.  Originally used
o evaluate the size of candidate sampling networks for the Green
Bay Mass Balance Study (Lesht 1988b), recent experiments (Lesht
1991a) suggest that it may be possible to extend the method to
design (or at least determine the key feafures of) optimized
sampiing networks of different sizes. This extension would be useful
for estimating the relative advantage of reducing the sampiing
uncertainty by increasing the number of samples collected in terms
of the added costs of sampling and analysis. [See Lesht (1991b) for
g similar application to fributaries.]

In the second part of the discussion | describe the use of regionalized
sensitivity analysis (Spear and Homberger 1980; Fedra ef al 1981,
Homberger and Spear 1981) to identify a set of model parameters and initial

. conditions that produce simuiations agreeing in some objective sense with a

set of criteria determined from field observations. The regionalized
sensitivity analysis method has been used to determine which model
parameters in a simple Great Lakes iotal phosphorus model were most
critical for producing an acceptable simulation (Lesht ef a/. 1991). When an
acceptable set of parameter vectors is identified, it is a simple matter to use
the vectors (again in Monte Carlo mode) to estimate the uncertainty of future
model projections (expressed as a probabiiity distribution, if desired) in
combination with explicit consideration of the uncertainty associated with
loadings and other forcing variables. This type of information may aiso be
used within the context of management decisions, by making it pessible to
assess the uncertainty associated with particular control actions (Fontaine
and Lesht 1987). Finally, | suggest that these approaches be used for
future studies in Lake Ontario.

The first and most obvious reason for investigating the uncertainty
associated with limnological sampling networks is to provide some
assessment of the confidence with which we report a descriptive
statstic (e.g.. mean concentration) determined by the sampling.
This assessment will be required if the descriptive statistic is 1o be
used for model cdlibration and verification. The second recson is to
determine, if possible, the functional relationship between the
uncertainty associated with descriptive estimates and the properties
of the sampling scheme (lLe., the number of sampling locations).
Such a relationship is useful for the initial design of a sampling
program and s necessary if we want to evaluate proposed changes

in the sampling program in terms of the expected changes in the
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estimated uncertainty.

Background The types of maodels that we are considering here can best be
evaluated in terms of the comespondence of the model predictions
(output) to some measures of the modeled system (field data). For
mass balance models, one type of appropriate comparison is with
on estimate of the total state varicble mass, estimoted by
multiplying the average varicble concentration by the system
volume. Because the average in sifu concentration usudly is
estimated from discrete samples collected during limnological
surveys, it s important to be able o quantify the uncertainty
associated with estimates made from point measurements. If the
sampied variable s spatiolly homogeneous, then this uncertainty
may easiy be determined by using the results of parametric
stafistics. The expected uncertainty then may be reduced g known
amount by increasing the number of samples. The probiem is more
difficult, however, when we are sampling variables that may not be
spatially homogeneous (l.e., their expected valte depends on
location), as is usually the case for limnological variables. Under this
circumstance, the simple saomple average may be biased by the
relationship between the sample locations and the underlying
spatial distribution of the variable, which is, necessarily, unknown.

One way to compensate for spatial heterogeneity is to conduct a fom of
gtratified sampling in which the estimation of simple statistics is restricted to
data collected in regions of the lake that are thought, usually on the basis of
an analysis of historical data (e.g., Kwiatkowski 1978; Kwiatkowski 1980), to
be homogeneous. in terms of modeling, however, this procedure requires
separate calculation of the state variables within each region and additional
modeling or specification of region-specific forcing functions as well as any
inter-regional transport and exchange. Furthermore, the assumption of
homogeneity may be difficuit to verify after the sampling is conducted. An
alternative approach is to use a spatial interpolation model to estimate the
vailue of the variable in each cell of a gridded representation of the lake or
segment. The estimates may then be summed to produce an estimate of
the overall mean value. When the estimates are weighted by the relative
volumes of the cells in the grid the resulting value is often referred to as a
volume-weighted mean.

To cdicuiate the uncertainty associated with the simple mean of a
homogeneous process is a simple matter, but in most cases no
simple measure of the uncerfcinty s associated with the
volume-weighted mean. The volume-weighted mean is obviously a
function of the interpolated estimates, which, in turn, depend on the
original sample data. If the configuration of a sampling network is
changed, the spatial interpolation and hence the volume-weighted
mean will change. The magnitude of the change will depend on
the relationship between the modified sampling network and the
spatial structure of the sampled variable. Qur problem then is to find
a way of expressing the uncerainty in the estimated
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Calculation of a
Voiume-Weighted Mean

volume-weighted mean as a function of the properties (e.g., size) of
the sampling network.

The key to caiculkation of a volume-weighted mean is the horizontal
spatial interpolation of the sampled data. This interpolation is usually
expressed as »

N
7' (x,)= PR ‘- (1)

j=l

in which z* is the estimated value at unsampled location xo. the z
values are the sampled data (/ = 1, 2 ... N), and the wg; values are
weights appropriate for the paositions xo and x;. Many methods are
available for calculating the interpolation weights wq;. In one
simple cose, that embodied in VWA, the computer code
developed by the U.S. Enviionmental Protection Agency’s Large
Lakes Research Station (Yui 1978), the weights are functions of the
diktance between the two locations. Specifically,

N
w,;=D;513.D;F, 2)

i=]

where Dy, is the Euclidean distance between points/ and /, and is a
parameter that controls the amount of influence of distant
observations on the estimated vaiue at a point. A lower vaiue of a
indicates a stronger influence of distant cbservations. In practice,
the selection of a value for a will depend on many factors and may
be done empiicclly,. ©One aqppropriate selection methed is
cross-validation, in which the value of a is optimized o minimize the
difference between the datac values at the observed points and the
estimates interpolated at those same points from the other
observations. Anaglysis of the overall cross-validation error as a
function of « may be used to estimate the spatial heterogeneity of
the sampled data (Lesht 1988a) and can serve as a screening tool
prior to the appiication of spatial analysis. :

The volume-weighted mean is calculated by weighting the cell
estimates by the cell volume and summing over the total number of
cells. This sumimation may be written

Q -~
Z= Z\’;Z; > G)

j=1

where Z is the volume-weighted mecn value, z; is the estimated
value in cell /, and @ is the number of cells in the region of
integration. The weight, v}, is the ratio of the cell volume to the total
region volume.
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Estimating the Of course, uncertainty is associated with the spatial interpolation
Uncertainty as a Function model, and if we choose fo use a volume-weighted mean to
of Network Size  'epresent some property of the lake, we are faced with the problem
of quantifying that uncertainty. One way to do this is to examine the
differences in volume-weighted means that result from spatial
interpolations made by using different sets of sample data. The
basic idea is that the uncerfainty associated with sampling a
spatially inhomogeneous variable may be estimated empirically by
repeated, extensive, random resampling of a reference data set. If
the reference data set is comprehensive (that is, if it adequately
resolves the major scaies of spatial variation), the method will
provide o good estimate of the uncertainty associated with using
networks of fewer stations. . The degree to which the reference
network resolves the major scales of spatial variation may be
determined as part of this analysis in conjunction with the screening
analysis described above. An initial data set is required for the
purposes of exploration or design, but the analysis may be used with
data of current interest to evaluate smaller networks and to estimate
an upper bound on the uncertainty of the full network.

CaseStudy -GreenBay The Green Bay Mass Balonce Study was infended to be the
Whole-Bay Model prototype of mass balance studies in the Great Lakes. Early in the
: project the pianners asked the question "How many stations do we
need to sample to be reasonably sure that we can estimate the
total mass of a contaminant in Green Bay with a specified
accuracy?” The question was asked for two reasons. First, because
the data were to be used for calibration and verification of models,
it was important to provide some estimate of the uncertainty
associated with the fleld data, Second, given the costs of sampling
and chemical analysis, there was some desire to optimize the -
sampling. The optimization decision required some estimate of the
trade off between the number of sampling stations occupied and
the estimated uncertainty in the mean concentrations.

| approached this problem empirically by using the Monte Carlo
method outlined above. Beginning with a reference data set
(Conley 1983) consisting of turbidity data (used as a surrogate for
suspended particle concentration) collected at 31 stations during 5
cruises, | repeatedly subsampied the daia and then calcuiated the
volume-weighted mean turbidity from the fandomly selected) test
networks, Approximately 14,000 different networks of varying sizes
were tested. Figure 1 shows how the distribution of
volume-weighted average turbidity estimates depended on the
number of stations used in the spatiat interpolation. | was able fo
estimate the probabiity of obtaining a volume-weighted mean
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value that was-within a fixed percentage of the “true" value (defined
by the full network) as a function of the number of sample locations
by successively applying the resampling procedure to test networks
ranging in size from 1 station to 31 stations (Fig. 2). The curves shown
in Fig. 2 provided the Green Bay Mass Balance Study pianners with
way to evaluate the benefits of reducing the uncertainty associated
with incomplete sampling of a spatially distributed variable in terms
of the cast required for additional sample locations.

Problems and Limitations -

The Green Bay Mass Balance Study was concerned with a number
of toxic contaminants, especially polychlorinated biphenyls (PCBs).
Unfortunateiy, no prior sampling for these contaminanits had been
conducted with sufficient detail to provide a useful reference data
set. The most complete previous sampling of Green Bay available to
us was Conley’s (1983) work. Because the substances of interest are
strongly associated with particles, | used a variable (turbidity) that is
related to suspended material as a surrogate for the nonexistent
measurements of toxics. Although | expect that the major features
of the analysis would be similar, it is not at all certain that the resuits
shown in Fig. 2 would be the same for another variable.

The uncertainty freated in this example is that due solely to the
incomplete sampiling of a spatially distributed variable. It is implicitly
assumed that the sample values themselves are exact. Turbidity can
be measured with fairly high accuracy, and the sample values used
in the case described above for Green Bay were actuaily water
column averages. The averaging tended to reduce the effects of
other sources of error, such as that associated with collection and
chemicai analyses. Simulafion studies of spatial sampling in the
presence of uncorrelated noise show that, as may be expected,
adding noise is equivalent o reducing the number of stations in the
sampling network (Lesht 1988a). The effect varies with the
signal-tg-noise ratio, but fairly dense sampling networks (1 station per
200 km"“) seem to be able fo resolve spatial signals if they are at least
four times the level of the nose. It may be possible to use
cross-vaiidation to estimate the signail-to-noise ratio, but this idea has
not been tested. Although the smocthing inherent in spatial
interpokation tends fo reduce the effects of random fluctuations in
the datq, the uncertainty estimates obtained probably are
somewhat low when anafytical noise is present (but not large
enough to overwhelm the spatial signaf).

Without replicate sampiing, it is impossible to estimate the uncertainty
associated with the reference network. This is a consequence of the classic
sampling problem. All of the information we have about the system comes .
from the reference networic if the reference network is large enough to be
itself divided (to produce "replicate” reference networks), empirical estimates
of the uncertainty associated with smaller "reference” networks can be
made. Because this was not possible in Green Bay, the estimated
uncertainty must be considared relative to that inherent in the original
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sampiing.

One aftraction of the inverse distance-weighfing spatial
interpolation algorithm used in VWA is that it is very easy to
incorporate into Monte Carlo codes. Other, perhaps more
sophisticated spatial interpoiators (e.g., Kriging), that could be used
instead would be much less efficient computationally. Although it is
generdlly agreed that Kriging is more accurate than other spatial
interpolation methods, fo my knowledge. Kriging has not been used
in production volume-weighting ccdes. In cases where the
sampling locations are fairly evenly distributed (unclustered), the
advantage of Kriging over inverse distance methods is very siight.

This method of spafial analysis is not applicable to all types of
variables that might be used in a mass balance model for toxics
(e.g.. contaminant concentrations in fish). Uncertainties in variables
that cannot be expected to have spafial structure but are sifil
sampled must be estimated by other techniques.

Extension — Determining The analysis descrived above was aimed ot determining the
the Properties of Optimal relationship befween the uncertainty of an estimate and the size of
Sampling Networks  © randomly configured sampling network. Selecting the stations
carefully would probably reduce the uncertainty associated with a
network of a particular size. Because a very large number of
‘candidate” networks could be selected from a reference network,
however, the way to do this objectively is not immediately clear. In
the case of Green Bay, | explored several possible methods of
selecting efficient subsets of the original reference network. | found
that two staiistical approaches (successive elimination of the
stations with the highest average spatial covarionce and successive
. elimination of the stations closest to the center of a cluster formed in
a five-dimensional space based on the turbidity values for each
cruise) were generally unsatisfactory. Experiments with an empirical
quantification of the relative success of each station during the
Monte Carlo runs were more successfui and led to identification of a
22-station network that would have a greater than 80% chance of
producing a whole-bay estimate within 10% of the "rue® value. Tests
with data from cruises not included in the Monte Carlo runs
confirmed that the 22-station network met the specified uncertainty
criterion for all cruises.

In more recent work (Lesht 1991a) | have experimented with using
the combinatorial optimization method of simuiaoted annedling
(Kirkpatrick et al. 1983) to try to determine the general features of an
"optimal® sampling network. The basic idea is that the uncertainty
associated with field measurements of a spatially distributed varicble
can be reduced by using a sampling network configured to
minimize the errors associated with the spatial interpolation. If the
features (e.g., station density, non-isotropy) of optimai networks can
be idenfified and generclized, then these features could be
incorporated into the design of new sampling networks that should
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Recionalized Sensitvi
Aralysisof Mass
Balance Models

Background

provide estimates with reduced (relative to randomly configured
networks) uncertainty. My preliminary results indicate that the
approach is fecsible and that the simulated annealing algorithm
efficiently finds a "necr-optimal" network configuration,

According to O'Neill and Gardner (1979), the three maijor sources of
uncerfainly in environmental models are (1) the uncericinty
associated with the model structure (l.e., that uncertainty resulting
from aftempting fo describe a complicated system with a limited
model), (2) the uncertainty associated with assigning values to
model parameters (whether the parameter values are determined
by laboratory or field experiment or by “tuning” the output of the
model to match field observations), and (3) the uncertainty
associated with natural variabiiity in the system’s forcing variables
(e.g.. metecrological or loading variability). The fist source of
uncertainty, which refers to the structural uncertainty of the model, is
perhaps the most serious (in terms of the difficulty of evaluating it
and its effects on long-term predictions) and can perhaps be
addressed only by considering a wide suite of alfernative models.
Given alternative modeis, hawever, each will be affected by the
other two sources of uncertainty, We may ask how we can use our
knowledge of the uncertainty associated with In situ observations fo
help estimate and reduce the uncertainty associated with model
predictions. In this section, | describe a methoed that uses in sifu
descriptions to quantify the combined prediction uncertainty due to
imprecise parameter definition and stochastic forcing. The method
dalso ranks the parcmeters that are most important in terms of
producing successful simulations so that efforts can be directed
toward reducing their uncertainty.

In many envicnmental models, final parameter values are
determined by *tuning* the model output to a set of field data. This
methad produces a single parameter set that is then used for model
simulations. The parameters themselives are widely recognized o be

- uncertain, and the effect of this uncertainty on model predictions is

often estimated by direct sensitivity or differential methods. These
methaods (e.g.. first-order sensitivity analysis) may be inaccurate or
difficult to apply, especially when the models are nonlinear or the
parameter uncertainties are iarge.

Only recently (Diloro and Parkerton, personal communication) have
methods been developed that incorporate some estimate of the
uncertainty in the field observations into the differential method of
estimating the uncertainty of the prediclion. Limnologicai data are
generally sparse, however, and it is often difficult to apply strict
statistical criteria to -~ either cdlibration or vdlidation.  As an
alternative, it is instructive to use Monte Carlo methods to identify
set of "acceptabie” parameter vectors rather than .atlempting fo
determine a single “best” parameter vector by using some
optimization technique. This set of parameter vectors, when used fo
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simulate some test data sef, produces an "acceptable” simulation as
defined by some objective set of criteria. In ferms of forecasts, when
an acceptable set of parameter vectors has been determined,
each member of that set is considered to produce an equally valid
forecast in terms of the uncertainty cssociated with the daifa used to
define the acceptance criteria. This gpproach, known as
regionalized sensitivity analysis (RSA), was first used by Spear and
Hornberger (1980) and has been described in some detail by Fedra
ot al. (1981), by Hornberger and Spear (1981), and by Hernberger
and Cosby (1985). Recently, Lesht of al. (1991) used this method o
axamine Q sxmple mcss bailonce model of phosphorus in the Great -
Lakes.

Method Assume that o time-dependent environmental model may be
represented by the set of differential equations

dxt)/dt = f{x,u,,Xo; (4)

where x(H s a vector of state variables; u is a vector of forcing
variables; is a vector of (say) n model parameters, here assumed
constant with fime; xg s a vector of initial conditions; and 1 is time. In
this notation, the structure of the model is embodied in the (possibly
nonlinear) vector function f. Given a set of forcing variables and
initial conditions, the function fis a mapping from the domain of all
possible parameter vectors () fo a range of all possible stafe variable
solutions (x). We may define an additional set of vector functions g .
that reilate the state variables (X) to some set of (say) m
environmental measurements (y), (e.g.. In sifu field observations).
The functlions g may include simple direct mappings of the state
variables, or they may be more complicated functions of the state
varicbles. The In situ field observations are clearly necessary for
evaluating the modei performance; we must have some idea of
how the natural system is behaving before we can determine
whether the model produces a reasonable representation of the
system.

In RSA we use In stu observations (perhaps in combination with other
information) fo define a set of criteria that describes the behavior of
the modeied system. We then use Monte Carlo methods to
randomly choose parameters values (and possibly initial conditions)
from some feasible domain () and use those parameters to produce
model predictions (@ mapped via functions g to y). If the model
predictions satisfy the criteria defining the system behavior, then the
randomly selected parameter vector is classified as accepiable.
Parameter vectors resulting in simulations that do not safisfy the
behavior criteric are classified as unacceptable. If the problem is
fairly well constrained in terms of the behavior criteria, the
acceptable and unacceptable parameter vectors will separate in
regions of parameter space. Once determined, the set of
acceptable parameter vectors may then be used (perhaps in
conjunction with stochastic forcing variables) to generate a
populafion of future behaviors. The uncertainty of the model
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Case Study ~ Great Lakes

Total Phosphorus Model

predictions is described by the statistical distribution of the future
behaviors. Furthermore, and perhaps of more immediate interest,
comparison of the statistical distributions of the acceptable and
unaccepiable parameter vectors makes it possible to identify the
elements of the parameter vector (that is the individual parameters)
that are most important for producing acceptable simulations.  If
effort (e.g.. additional field work or experimentation) is to be
expended in reducing the uncerainty ossociated with any
parameter, RSA provides a way fo prioritize those expenditures.
Finally, Hornberger and Spear (1981) propose that the method could
be used to examine management alternatives as well.

Although our work was exploratory, we had two goals in mind when
we (Lesht ef al. 1991) applied RSA to a simple madel (Chapra 1977)
of Great Lakes total phosphorus. We were interested in (1) using the
modal to check the internal consstency of over a decade of
phosphorus loading estimates and In silu observations of total
phosphorus concentrations and (2) identifying the model
parameters that were most important for producing an acceptable
simulation. Our motivation for answering the first question was o see
if the RSA method could be used to determine the leveis of
uncertainty that could be tolerated in the loading estimates for a .
given level of uncerfqinty in the field observations and model
parameters. The second question was motivated by our curiosity
about which parameters had the greatest effect on the simulations
and could benefit mast fromn further study.

Our application of RSA was relatively straightforward. We defined
the system behavior in terms of the annual average total
phosphorus concentration measured in each of the major basins of
the Great Lakes from 1980 to 1986. Eleven basins were modeled,
but, because of limited field observations, only seven basins were
used in the analysis. The acceptance criterika we used were based
on an arbitrary "confidence interval® around the observed mean
values. We added a stochastic element fo the acceptance criteria
by accepting a simulation if it was within the confidence intervals
80% of the time (le.. if the simulation matched 35 of the 43
observations defining the behavior of the system). The model was
run fo simuiate the period 1974 to 1986 by using phosphorus loading
aestimates made by the international Joint Commission as the forcing
variable. Parameter values and initicl conditions were selected
randomly from rectanguiar distributions centered on the calibration
values presented by Chapra and Sonzogni (1979). Two thousand
model runs were made; these were spiit aimost evenly between
acceptable (1019) and unacceptable (981) simulations.

Examingtion of the cumuiative frequency distrioution functions of the
parameters in the two sets of simulations (e.g., Fig. 3) showed that 9
of the 40 model parameters were important (cs determined by the
Kolmogorov-Smirnov  statistic) for producing an  acceptable
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simulation. Of .these 9, 6 parameters represented the apparent loss
of phosphorus from the water column to the sediments, 2 were the
advective flows into and out of the western basin of Lake Erie, and
the last was the initial condition assumed for Lake Superior
Interestingly, one of the observations we used to define fhe system
behavior (fotal phosphorus concentration in western Lake Erie 1982)
was missed by all 2,000 simulations. We interpreted this o be a
datum that wos not representative of the annual average
conditions we intended to simulate with the model. It also could be
inferprated as an example of structural inadequacy of the model.
The high concentrations observed in 1982 probably were related to
the unusual frequency of spring storms that resuspended much of
the total phosphorus contained in the sediments of the shaliow
western basin,. The model, based on constant parameters, was
unable to simulate this "anomalous® condition.

We have not yet used our results to examine the relationship
between uncertainty in loading estimates and the field observations.
The basic idea would be to assign different levels of uncertainty to
the loading estimates and use the set of acceptable parameter
vectors to simukate a population of predictions that could be
compared with the field data. By definition, the acceptable
parameter vectlors will cil satisfy the behavior criteric when the
madel is forced with the original loading estimates. The purpose of
the exercise would be to determine how much we could perturb
the loading estimates before some percentage of the previously
ccceplable simulations became unaccepiable. This would be yet
another way to assess the relative value of attempting to further
reduce different sources of uncertainty. Similarly, if independent
estimates of the loading uncericinty were available, it would be
possible to couple them with stochastic simulations made by using
the acceptable porameter vectors to estimate a target accuracy
for the field observations,

Problems One attraction of RSA is that it cllows us to develop a set of
and Limitations parameter vectors that result in acceptable simulations. The utility of
producing such a parameter set obviously depends on the

discriminating power of the behavior-defining classification scheme.

In the case of the Great Lakes total phosphorus model, acceptable

simulations were based on only one basic description of the systemn,

the confidence limits of the observed annual average total

phosphorus concentrations. This description seemed to provide

adequate discriminating power (because half of the simuiations

were rejected as unacceptable) and was suited to the madel, but

more complicated models will require much more elaboraie
descriptions of the system.

We cssumed that the loading estimates forcing the model were
exact. Although it is possible to accommodate stochastic loading
functions, the effect of the accommodations on the identification of
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Morte Carlo Methads in

Reducingthe
Uncertairty of Mass
Balance Models of
Twdics in Lake Ordario

critical parameters is not clear. For a given set of behavior defining
criteria, the number of acceptable simulations would probably be
reduced and more model runs would be required to produce a
sufficient simulations for parameter discrimination.

Our analysis showed that important information about parameter
differences can be determined from a univariate andalysis of the
parameter distributions. More complicated models would be
expected to have multivariate relationships among parameters.
These reiationships may not be evident from the univariate analysis
clone. The existing methods for determining these relationships are
somewhat cumbersome. Thus, simuiating the multivariate
reiationships for future projections may be problematic.

The basic theme of this paper is that much can be learned from
information that has okeady been collected; indeed, thi
information is critical for designing any new sampling program. Lake
Ontario is unique among the Great Lakes in the amount of sampling
that hos been done and should provide a very rich data set for the

‘meodeling initiative. Not anly will these data be useful for quantifying

the uncertainty associated with analyses of field datg, but they also
will be useful for assessing the uncertainty associated with cll phases
of the modeling process. In terms of specific applications to Lake
Ontario, | suggest the following applications:

¢ Conduct a spatial analysis of survey data o assess the
reiative importance of the uncertainty associated with
spatial heterogeneity. Several different variables should be
analyzed, including whatever data are available for toxics.
if spatial heterogeneity is found to be important, then use -
Monte Carlo methods to determine the expected
uncertainty associated with sampiing networks of different
sizes. If new sampiing is required, use Monte Carlo methods
to optimize the network design. Examine alternative ways of
expressing descriptions of the system to be modeled (e.g..
volume-weighted means, frequency distributions).

¢ Perform regionalized sensitivity analysis on candidate
models. Use alternative definitions of the system’s behavior
to check the sensitivity of the identfification of criticat
parameters. Determine the gppropriate prediction limits
(l.e., fime scales for each model) and conduct RSA cnan

ensemble of independent data sets by using the candidate
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models or derivatives. Compare identification of critical
parameters as a check on the stability of the uncertainty in
model siructure. If additional sampling is contemplated, use
the RSA results to identify the parameters that are significant
for understanding the modeled systerm and design the
sampling program fo iimit the values of The: variables that
are critical for identification of the significant parameters
(.e.. define tighter constraints). |

WMW The following unresolved issues and questions shouid be addressed
2 . ﬁ' the by the workshop:

= |n my opinion, the most important unresolved issue involving
model uncertainty is a very general cne. Despite recent
attention, methaods of estimating model uncertainty are still
rather poorly developed. Especially in the case of complex
environmental models, we should be very careful that
having the atility to provide seme metric of uncertainfy
with our models, does not tempt us to believe that these
metrics allow us to quantify the ikely difference between
the model predictions and what will actually occur in
nature. The potential danger invoived with specifying a
guantitative measure of uncertainty is that those who make
management decisions may act on them cs if they are
fact. We must find a way to make it clear what the
uncertainty estimates reaily mean in the context of using
the models for regulaiory purposes.

=> The previous comment notwithstanding, | think that it also is
important to consider how we express uncertainty in our
model predictions. The metric(s) we provide should be
related to the anticipated use(s) of the model. In the
reguictory environment this consideration puts the burden
on the modeler to understand how the model is expected
o be used.

= Methods must be explored o deal with structural
uncertainty. We can all cite many examples of models,
developed under one set of assumptions, that failed
miserably when unmodeled processes affected the
modeled systems. In many cases our uncertainty analysis
will implicitly include structural inadequacy with the
uncertainty in parameter vaiues.

= We must carefully consider the reiationship between the
state variables of the model and the measured
characteristics of the system. How well do we understand
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the functional mapping between the madel state variables
and our field observations? Comparing the model results to
field observations is of littte use if the two represent different

tings.

| have discussed two sources of uncertainty in this paper. The first is
the uncertainty resulting from incomplete sampling of a spatially
heterogeneous variable. With the procedure used in the Green Bay
Mass Baiance Study, this uncertainly can be quantified and its
dependence on the size of the samplng network con be
determined, Given a-description of the uncerfainty associated with
field observations, the spatial uncertainty can be reduced by
objectively designing any future sampling network. '

The second source of uncertainty | considered is that inherent in
modeling a stochastic system. The model structure, the model
parcmeter values, and the input forcing functions all are uncertain.
The combined effects of these uncertainties, however, can be
assessed in relgtionship to the uncerfainty associated with the field
observations. Efforts to reduce uncertainty can be prioritized by
using Monte Caric methods o assess the relative value (in terms of
the model predictions) of reducing parficular sources.

In his review of uncertainty in water quaiity models, Beck (1987) said,
'The way in which a model is derived from, or evaluated by
reference to the In sifu field data must clearly influence both its
ability to predict future behavier and the confidence to be
attached to that prediction.” It is must be understood that, because
our view of nature is limited, the "true* behavior of the system can
never be determined exaclly. Our goai then must be fo provide
some objective evaiuation of our ability to represent that behavior.
Because it explicitly includes the stochastic nature of the system,
Monte Carlo analyses are attractive ways of providing the required
evaluation.

The work described in this paper was supported by the U.S. EPA’s
Great Lakes National Program Office under Interagency Agreement
Dwage31897-01-0 with the U.S. Department of Energy, and by the
U.S. Department of Commerce, National Oceanic and Atmospheric
Administration (Great Lakes Environmental Research Laoboratory)
under interdepartmental Purchase Request 40WCNR901465, through
U.S. Department of Energy contract W-31-109-Eng-38.
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L. Introduction

The subject éf this workshop is: Reducing Uncertainty in Mass Balance Models of Toxics in
the Great Lakes: Lake Ontario Case Study. In this white paper we present a2 methodology for
estimating the uncertainty to be associated with (1) the calibration data and (2) the model. The
model] uncertainty is used to establish the uncertainty of (3) the model parameters and (4) the
model projections. This methodology is intended to answer the questions: "How good is the

model?", and "How good are the projections?”

The methodology is based on an analysis of the residuals: the difference between the
observed concentrations and modet calculations. The initial problem is to apportion the
uncertainty between data uncertainty - which are due to differences between the true data mean
and the sample mean used in the calibration - and other sources of variations, which we call model
uncertainty or model error. Once this is done, the parameter uncertainty is estimated by requiring
that all the model uncertainty be accounted for by parameter uncertainty. We compare this result
to the result obtained from applying the Maximum Likelihood method of estimation. Finally, the
uncertainty of the parameters can be used to assess the uncertainty of the model projections using,

for example, Monte Carlo methads, or from the first order analysis presented below.

I1. Framework - The Classical Case

It is important to realize that classical model uncertainty analysis_ié based on a probabilistic
model that makes certain explicit assumptions. Consider a simple linear model of concentrations

versus time:
c(t,)=F(8.t) e,
=0, +0,t,+¢€, @Y,
where:

¢, = Observed concentration at ¢,
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£(8,t,) = Model concentration at ¢,

- - |8
6 = Model parameter vector: 9= I: 8 l:]
2

€, = Random fluctuations about the true mean

It is explicitly assumed that the model: £ (8,1)=~8,+8,¢, represents the rrue mean of the random

process and that ¢, represents random fluctuations about the mean. These random fluctuations
are assumed to be due to phenomena that are not included in the model. The only problem is to
estimate the parameters of the model, 8, and 8,, and their uncerzainties.

The random fluctuations, ¢,, are thought of as real, and since they are not captured by the

model, they are referred to as model error. However, this nomenclature should not be taken to
mean that the model is actually in error since it is assumed that the model represents the true
mean of the random process. It is simply that the model in incomplete; it cannot compute the

fluctuations, €,. To this extent only are the fluctuations are considered to be model errors.

For these linear models, a full statistical theory of estimation and uncertainty exists [Liebelt,
1967, Searle, 1971]. The statistical theory is known as (multiple) linear regression. The

assumptions of regression analysis are:

1) t, is known exactly.

2) €, = N (0, a?). That is, the random variations are normally distributed with

unknown variance o2,

3) The model is correct. The underlying relationship between c(¢,) and ¢, is

exactly a straight line.

Reducing Uncertainty in Mass Balance Models of Toxics
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Tt is interesting to note that even for this simple model, the assumptions are somewhat
restrictive. There are many cases for which ¢, are quantities that are measured with less precision
than time and, therefore, are not known exactly. Also the structure of the random component of -

the model may be more complicated - for example the variance may depend on ¢;.

But the most restrictive of the assumptions is that the model is exactly a straight line. Of
course, if it were known that the model was deficient in some way, i.e. not a straight line but
somewhat curved, then presumably that would have been included in the model in the first place.
Hence, although the assumption that the model is a true representation of the mean seems an
unrealistic assumption, it appears to be inescapable since, presumably, every effort has been made
to make the model as realistic as possible.

For a straight line model, the following are available:

1) Optimal estimates, 8,, 8, and 62 are available for the parameters: 6, .9, and
a2,

2) Parameter uncertainty covariance, %, for 8,,8, where:

z =E<[ (él_el)z (91-9'1)(92-62) >
* (8:-98,)(8,-6,) (8,-0,)% ]

E{} denotes the expectation, ie. the probabilistic average of the quantity in

brackets.

3)  Confidence limits for projections: csx.C.Cosx

Our objective is to find an analogous methodology that is applicable and workable for mass
balance modeis.
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II1. Methodology

Mass balance models compute concentrations of various constituents in various model
segments at various times. Consider the vector of concentrations of these constituents, ordered by
type and model segment. As a concrete example, consider a simple model of Lake Ontario with a
water column (w) and a sediment (s) layer. The dissolved (d) and particulate (p) concentrations of
two PCB homologs (#1) and (#2) are being considered together in the model. Then, the

concentration vector can be defined as:

—C(ti)l_d_,,j
C(ti)l_p_w
c(t':)l.d.s
ety p.s
c(ti)z.d.w
c(ti)z‘P_,‘,

i c(ti)z.d.s

__C(ti)z

c(ty)= (2)

.p.s |

where homolog number, dissolved or particulate, water column or sediment are denoted by the

subscripts. In general, let:

ci=¢ (t;) = Observed mean concentration vector at ¢,
F(8.t,) = Model concentration vector at ¢,

8 = Model parameter vector
The relationship between the observed mean concentrations and the model results is:

c=F(B.t)+¢, @
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where ¢, are the residuals: the differences between the observed mean concentrations and model

computations.

The residual errors are assumed to arise from two distinct sources. The first source arises
because the observed mean concentrations are not the true means since they are based on a finite
number of measured concentrations. The second source are random fluctuation that are
associated with ail the phenomena that are not explicitly included in the model. This second

source is termed the random model error. Thus:
g =5+, €
where:

£, = uncertainty of the mean concentration

g, = random model error

Therefore the statisticai model that includes these two sources of fluctuations is:

- -

c=F@B.t)+E+E, (S)
It is used in the uncertainty analysis below.

A. Parameter Estimation - Maximum Likelihood

A complete statistical methodology would include methods for computing the optimal
estimates of the parameters, 8, such that some criteria that measures goodness of fit is minimized.
Such a formulation is available within the context of maximum likelihood estimation [Schweppe,
1973; Sorenson, 1980)]. If we ignore for the moment the distinction berweén data uncertainty and

model error, then the relevant equation is:

ci=F(8.t)*¢, (6)

13

If we assume that:
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€=N(0,Z) (7

that is, that the random fluctuations are normatly distributed with zero mean and unknawn
covariance, %, then it turns out that a full theory is available. The optimal estimate for the

residual covariance matrix is:
S iCED) ®)

which is simply the average of the residual variances and covariances. The optimal parameter

estimate, 8, is found from the condition:

§=main [Z.1 ()

where I, is the covariance of the residuals, given by eq.(8), and | Z, | is the determinant of Z..

In order to compute these maximum likelihoad estimates it is necessary to find the parameter
vector that minimizes the determinant of the residual covariance matrix. Note that the method
automatically accounts for the proper weighting to be given to each of the concentrations in the
vector, €. This result is quite interesting and, for certain problems, it may well be a feasible

method for generating optimal parameter estimates.

The parameter uncertainty covariance is also known for N large:
N -1
zg=(2JIz;‘J,.) N-w (10)
i=1

where:

RIICHD

iy =
26

(1
the Jacobian of the model solution. Note that computing the J. acobian of the solution requires only
that the model be run an additional time for each parameter in 8. The Jacobian can be computed

by a simple difference approximation to eq.(11).

Reducing Uncertainty in Mass Balance Model
intheGreatLakes-LakeOntlrbCafesmd;quoxks 131



In fact, we had proposed to use this parameter uncertainty covariance for any calibrated
model e.ver; if the parameter estimates were not computed using the maximum likelihood
equations given above, although no justification was given for this suggestion other than it
appeared to be an expedient choice since it was a known solution {Di Toro and van Straten 1979;

van Straten, 1983].

There are arguments to be made for not using optimal estimation methods. Calibration is
not just minimizing residual errors. It is necessary to balance the goodness of fit with other more
subjective criteria, for example, the physically realistic range of the parameters, other independent
estimates of the parameters, and the degree to which these parameters values are judged to be
reliable. In practise, it has been found that uniess the problem is well constrained and only a few
parameters are to be estimated, the optimal methods are temperamental and can produce strange
results. The numerical minimization problem in eq.(9) is not trivial. Local minima abound in the

surface defined by the equation: | £, | in multidimensional parameter space.

Thus, instead of insisting on optimal parameter estimation, we accept the hand calibration as
the "optimal" parameter estimates. The parameter uncertainty methodology discussed below is

designed to accommodate this view of parameter estimation.
B. Estimating Model and Data Uncertainty

The first step in computing parameter uncertainty is to isolate the model error. That is, it is
necessary to estimate the magnitudes of the model error and data mean uncertainty from the

residuals. This is done as follows.

For certain times and model segments, there are 2 number of measurements that are
combined to estimate the mean value of the data in that segment. Let the index j denote this

replication. Hence the statistical model becomes:
Ei.j’f(evti)*'zi*éi.j - (12)

where:
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¢..,=c(t,) for replication j=1,....7,
Z, is the model errar at time ¢,
g, , is the random fluctuation about the data mean at time ¢, and replication J.

The problem is to estimate the model uncertainty covariance:

L= E{E.E]) | (13)
and the data uncertainty covariance.
z- (5,8 (14)

from the residuals. It turns out that the problem can be solved using the vector version of the
One-Way Random Unbalanced Analysis of Variance Model (ANOVA) (Searle, 1971]. This can be
seen if eq.(12) is written in terms of the residuals which more closely resembles the standard form

for ANOVA models:

€ =H+E+§, (13
where W is the mean of the residuais; £, contributes the variance due to model uncertainty; and

§,., contributes the variance due to data replication. The ANOVA methods estimate the
magnitude of these variances. The matrix ANOVA methods are analogous except that they

estimate the covariances.
C. Estimating Parameter Uncertainty

The fundamental idea is to compute the parameter uncertainty covariance that accounts for
the observed model error covariance. That is: given the magnitude of the model error covariance:
T, how large must the parameter uncertainty covariance, Z,, be in order to account for all the

model error covariance.
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Nate that we asuﬁe that this is the proper way to compute the parameter uncertainty
covariance. In effect, this method of estimating parameter uncertainty assumes that all the model
fluctuations are actually caused by fluctuations of the parameters. Thus the model produces the
mean concentrations, and the parameter uncertainties produce the random component. We will

compare the result of this point of view with the maximum likelihood results below.

In order relate model uncertainty to parameter uncertainty, it is necessary to have the
relationship between a parameter variation: 58, and the resulting model variation. Let g, be the

model fluctuation due to the parameter fluctuation 56:

?(6+*é'ti)=7(é'ti)+“‘i'6_e- an
where:
Jiaaf(e_vfz) (18)
200

is the Jacobian of the model solution with respect to parameter variations. Then:
| g,=-J,68 (19)
The the covariance of Z, is found as follows:
()= E(E.E.T)
=£{J,5656 47}
=1,5,d7 (20)

where:

L, =E{50060 } 20
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The problem is to soive for the parameter uncertainty covariance, I, given the model uncertainty
covariances, I,(i),attimes, ¢,.

1. Estimating T, - The Constant Case

The equation that relates T, to I,({) is:
T () =1,Td7 22y

Consider, first the case where there is no time variation in the problem so that £.({)=Z,.

Then the relationship between model uncertainty covariance and parameter uncertainty

covariance is:
I,=JZ,07 (23)

This equation can be solved for X, if an matrix inverse exists for the Jacobian matrix, J. Let the
inverse of J be denoted by J~. Then, the solution to eq.(23) is:

Te=d75,37° (24)
In fact, Generalized Inverses do exit [Pringle and Rayner, 1971]. For example,
=TT (25)

if the inverse of JTJ exits. We use this Generalized Inverse to solve for T, and call it the

Generalized Inverse Estimator (GIE) of the parameter uncertainty covariance. In fact, it satisfies

the condition:

Zg=min )| T, -J%d7 1 (26)

where the matrix norm |] A |) of any matrix A is defined as:

HAH-‘_Zjaﬁi (27)
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Thus, the GIE is the matrix which is the element-by-element least squares solution of the matrix
equation that requires the parameter uncertainty to account for as much of model uncertainty as
possible. Further it can be shown from the properties of the Generalized Inverse [Pringle and

Rayner, 1971] that the GIE given by eq.(24) is equivalent to:
- -1
o=t (28)
2. Estimating =, - The General Case

For the case where model variations occur at the various times, ¢, , it seems reasonable to

require that the parameter uncertainty account for the average observed model uncertainty. Thus

we require that:
1 N T
Z¢=I—\7_Zl(JiZQJi ) (29)

It can be shown that the GIE for this case is:

T -(—I-ZSV:JTZ“J )-I (30)
s N t7s T

This is essentially a time averaged version of eq.(28) before the final matrix inversicn.
3. Relationship Between GIE and MLE Parameter Uncertainty Covariances

We have presented two different estimates of the parameter uncertainty covariance. The
first is derived from applying the principle of Maximum Likelihood and assuming that the

calibrated parameters are optimal. The result is:

N -1
Z;‘,“'E=(‘Z‘JIZ;‘JL-) 7 3
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where we use the model uncertainty covariance, I,, rather than the residual uncertainty

covariance, ., so that only model error causes parameter uncertainty. The second estimate
follows from the principle of maximizing the parameter uncertainty using the Generalized Inverse.

z‘”‘-(—l- %’ Jrecta )‘l (32)
° Ny roe o

These two estimates are related as follows:

CIE 1 ¥oore-l -t
1€ — N - .
g (NEHJ‘EE J,)

N -1
=N( T JTZ;‘JE)
i=1 .
= NI (33)

ZMLE 1 ZGIE 31
9 = V 9 ( )

What is striking and unexpected is that there is any relationship at all between two such

dissimilar approaches to the problem. They differ only by the < factor.

N
It can be shown that the maximum likelihood estimate is optimal in the sense that no better
parameter estimates can be made within the assumptions of the method [Sorenson, 1980} The
GIE provides the most pessimistic estimate of parameter uncertainty. All the model uncertainty
translates to parameter uncertainty and additional calibration data does not necessarily decrease
parameter uncertainty. Hence, one would expect that the true parameter uncertainty covariance
for a hand calibrated model to be bracketed by these two estimates:

1

z MLE = —
o N

L (39)

A simple illustration may help clarify the situation.
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4. Illustrative Example

The difference between the two parameter uncertainty covariance estimates can be

understood by examining the simplest model, a single constant scalar.
FB.ty=9, (36)
For this model, the statistical problem is to estimate the mean, 8,, of the concentrations. The

Jacobian for the model is:

KJICEDE

= 37
3 1 E7)

J;

13

The MLE for the parameter uncertainty for 8, is:

N -1
z;‘“=( g JfZ;_lJl)
{m}

- (38)

where Z, =[02] is the 1x 1 covariance matrix. The diagonal element is the variance of the model

uncertainty. In this case of is the variance of the observed concentrations. The result is the weil

known formula for the variance of the sample mean.

By contrast the GIE is:

I =0y (39)

This is not unexpected since the model is the parameter itself: F(8.t,)=0,, and therefore the

parameter uncertainty should be equal to the model uncertainty.
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This simple case suggests the following interpretation. The ML method assumes that the
model is true. The presence of the random fluctuations, £, prevent the estimation of the true
values of the parameters, 8. When 2 ML estimate of § is made, 8, that estimate can differ

from the true parameter vector, 8. The covariance of this variation is:
= = .= 2T MLE
E{(Buis=8)(Brae=8)") =14 (40)

i.e. the parameter uncertainty covariance. As more and more data are added to the estimate, the

. . 1 . . bud
parameter uncertainty covariance decreases as . The reason is that the random fluctuations, g,
can be more effectively averaged out and their presence are less of a hindrance to finding the true

parameters.

By contrast, the GI estimator does not assume a set of true parameters for which an optimal
estimate has been made. It simply assigns the parameters as much of the model uncertainty
covariance as is possible. Adding more data to the calibration may not reduce the parameter
uncertainty covariance at all ( no 5 behavior). This appears to be a rather pessimistic estimate of
the actual parameter uncertainty covariance. In any case, it is a simple matter to use both
estimates (they differ only by the leading %). and examine the effect on the magnitude of the

model projection uncertainty.
D. Projection Uncertainty

The second principal reason for evaluating model uncertainty is to calculate the uncertainty
of projections made using the model. The procedure is to run the model to <valuate a remedial

alternative:
Gi=F (8.t (41)

where the superscript P indicates that this is a projection. In order to evaluate the uncertainty of

the projection, the relationship between a parameter variation 56, and a concentration variation

8¢, is required:
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P ——

88, =FT(B+88,t)-F (B.t,)=J[58 (42)
to first order in 56. The model uncertainty covariance for this magnitude of parameter variation
is:

e P p T
- E(Gc?&cf }
= JPpCE Pt (43)
Note that the parameter uncertainty covariance, Z$'f, plays a dominant role in determining the

magnitude of model uncertainty. Also note that the lﬁ term, would he included if the ML estimate

were intended to be used.

The diagonal elements of Z¥,, diag[If ] are the prediction error variances for time ¢, .

Hence the approximate 95% confidence limits are:
P 1 .96 N F3
¢; & ~=—q diag{Z; ] (44)

where the ‘—% term is included for the ML estimate of parameter uncertainty. For the GI
estimate, set ¥ = 1 . Therefore, in practice, the ambiguity between an MLE and GIE
interpretation is ‘-'W- For example, if &V = 10, then ;’,ﬁ = (.32 and the confidence limits would be
~ 32% narrower using MLE versus GIE. It is a matter of judgement whether or not to include the
;—‘-; since it depends an whether one thinks the parameter estimates are optimal in the sense of
Maximum Likelihood, or that the parameter fluctuations are the cause of the model error

fluctuations and should be reflected in the parameter uncertainty.
E. Status of Applications

We have tested the ANOVA method for discriminating between data and model uncertainty

using artificial data sets and indeed the method can estimate the two covariance matrices if
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sufficient data are available [Di Toro, D.M. and Parkerton, T.F. 1991]. Some difficuities cccur is
te daia sets are smail. The GIE methodoiogy has been tested to ses if in fact i can regovar the
parameter uncertainty covariance for the case where the model errors ars generated by fluctuating
parameters. For large data sets, the method is quite reliable. We are in the process of testing the
method using more realistic mass balance and food chain models and actual data sets. Freiiminary
results .ndmze that there may be some practica! limitations impaosed by small data sers [D: Tero,

D.M. and Pari:erton, T.F. 1995}
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Introduction

for Models

This paper discusses model paradigms and explores the issue of
detarmining model compiexity. As we discuss later there are
situations.in which simple models are adequate, but other situations
require more complex models, which of course are more faithful to
reality. A key issue which must be addressed by modelers is fhen the
“optimal’ level of complexily. This is a matter of judgement and is
the essence of the "art of modeling" A convincing argument can
be made that the modeler should select a level of complexity
appropriate to the question being addressed. We therefore discuss
in some detail the purposes of, or incentives for, models.

Perhaps to add a touch of class to these proceedings, we should bear in
mind the Principle of Parsimony stated by William of Occam 650 years ago,
and referred to as "Occam’s Razor".

*Essentia non sunt mutltiplicanda praeter necessitatem*

which con be franslaoted as "What can be done with fewer
(assumptions) is done in vain with more” or colloquially in this context,
“Don‘t make models of toxic chemicals in the Great Lakes any more
complicated than is absolutely necessary”.

There are two primary incentives for developing modeis of contaminant
behavior: to assist rational management, and to further the science of
contaminant behavior. Essentially, a mass balance model brings together
information from a variety of sources to syrnthesize a statement of mass
balance, for example, where the contaminant has accumulated, its
concentrations, its sources, its rates of transport and transformation and
how fast contaminant inventories are changing. Because lakes are complex
systems with variations in space and time, we can never hope to establish
exact mass balances, only approximations. In many respects, assembling a
lake mass balance is like trying to follow the progress of a ball game, but
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only part of the field is visible, and then only for part of the time. We have
some items of information (usually concentrations at a specific time and
place, with efror) and the task is to deduce all the missing items (usually
masses and fiuxes). In some cases, we may be quite successful, and in
others the information is so fragmentary that any mass balance is highly
speculative.

The key point is that if an approximate mass balance can be
established, it represents a very powerful assembly of data whose
value greatly exceeds the sum of the parts. From the management
perspective, it enables various remedial strategies fo be tested ond
justified - it exposes possible futures. From the scientific viewpoint, it
represents attainment of the goal of understanding the entire
system’s dynamics as distinct from having piecemeal information
about its parts.

Emws Because the model results are merely estimates, it is critically
l important that the model documentation conveys information

about:
Credibility

m How accurate the results are perceived 1o be, i.e. erroriimits.
Offen, these will be judgements of error magnitude because
there is no “*hruth" for comparison, nor may there even be
other estimates from independent sources.

8 What assumptions and simplifications are inherent in
thecalcuiation, so that the reader can form an opinion
about the model's credibility.

Here there are two limiting situations. A very simple model must
contain sweeping assumptions which are easily understcod but
which are so sweeping that the model lacks credibiity. A very
complex model must contain numerous parameters and equations
and mathematical operations. Are the parameter values correct?
Are the equations correct? Have the operations been done
correctly? The time required to check ail these factors can be
considercble. Most "managers” lack the time or skill o perform
these checks, thus they must rely on other parties to verify the
model's structure and contents. A compiex model will require many
days of intensive study, thus verification will be expensive. Usually, it
is not done. The model thus may lack credibility because it is too
difficult to verify. It is not peer reviewed.

One solution is o have several modeling teams address the same
problem and compare the results. This is similar in concept o the
analytical chemist’s "round robin*. Comparisons between models
may contain the same error, however, the comparison should reveal
gross discrepancies.

Perhaps one conclusion is that models must be designed with a level of
complexity appropriate not only to the environmental situation being
addressed, but also to the proposed application, whether it be scientific or
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Designing Models

managerial. The manager must be comfortable with the model and must be
willing to devote adequate resources for verification. Purchasing a model is
not like purchasing a car. The car's performance is predictable from past
experience. The model is "one of a kind*, a custom effort of unknown
quality,

Mecst water quality models are compartmental in nature, i.e. they divide the
system into a number of compartments which are (usually) fixed in space,
have defined volumes, areas, flows and homogeneous composition and
temperatures. A mass balance can then be written around each phase
envelope.. The first problem is to decide on the number of compartments or
segments. This daecision should be based on composition or chemical
concentration differences. In most lake models, the first segmentation is into
air, water column and bottom sediments, three compartments with usually
quite different chemical compositions. It may be appropriate to discriminate
between chemicai dispersed in different states within each compartment, i.e.
into subcompartments. Examples are:

m Al Gaseous, aerosol associated

=  Water: Dissolved, sorbed to fiterable particles; sorbed o
non-fiterable matter or dissolved in biota ranging from
bacteria to fish.

m  Sediment: Similar o water.

Two simpilifications can often be made. First, if the fraction of
chemicadl in o compartiment or subcompartment is negligible and if
that chemical therein experiences no unique or important. fransport
or fransformations, then the compartment can be ignored. But this
raises a problem. It s possible, that for one chemical, a
subcompartment is negligible, but for another it is not. For example,
cerosol associated benzene is negligible but cerosol associated
pyrene, is not. If the model is to be applied to numerous chemicals,
it seems that we must include all possicle relevant
subcompariments.

Second, if thermodynamic equilibrium exists between chemical in
these compartments, then an equilibrium relationship can be
intfroduced (usually a partition coefficient) to relate concenirations,
thus one varicble can be elminated. Alternatively, a total
concentration can be defined from which the individual phase
concentrations can be deduced.

For example, if the phoses have defined volumes V1 and V2,
variabie concentrations C1 and C2, and a fixed partition coefficient
K12 which is C1/C2, then if C1 is defined, C2 can be calcukafed as
C1/K12, and the amounts C1V1 and C2V2 can be deduced.
Alternatively, a total concentiration, CT can be defined as (C1V1 +
C2v2)/(V1 + V2) and the individual concentrations are then:

C1=CT/(v1 + v2/K12) C2 = CT/(viKI2 +v2)
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where v1 and v2 are the volume fractions
V1/(V1 + V2) and V2/(V1 + V2)

This equilibrium or constant concentration ratio assumption is very
useful because it reduces the number of variables. It should be
invoked whenever it can be justified. Failure fo invoke it necessitates
introducing another variable and probably a need to estimate the
rates of transfer between the subcompartments, possibly as rafe
constants, :

Perhaops most difficut in this context is the treatment of the
non-filterable or colloidal or DOC fraction in the water column or the
sadiment. Rarely are data available on the fraction of the chemical
present in this form, indeed it may be misleading fo regard it as a
discrete compartment because there may be a confinuum of
sorbed material from disscived carbohydrates and proteins through
fulvic acids, to humic acids, to humin and large particles.

A second spatial segmentation is possible for each compariment,
for example the water column can be divided horizontally or
vertically, or both. The sediment can be treated as one of more
layers, and different depositional regimes can be defined
horizontally. Perhaps the decision to segment should be on the basis
of observed conceniration differences and the desire to reproduce
these differences in the model. It is tempting to segment on a
hydrodynamic basis, identifying discrete volumes of water which
may be separated by a narrows. Every new segmentation should

- be questioned and included only when needed. The modeller
should adopt the strategy of aggregating whenever possible and
strive fo reduce the number of segments. This is the Principte of
Parsimony pronounced by William of Occam, 650 years ago and
stated earlier.

Another difficulty arises when the compartments vary in volume with
time, for example an epilimnion-hypolimnion combination.

Most perplexing s the issue of segmentation in the botiom
sediments. Should there be separate freatment of a nepheloid
layer? Is one surface layer adequate? If not, how many layers are
needed? Introducing each layer necessitates defining inter-layer
transport parameters which may be poorly quantified. Yet, for
strongly sorbing chemicals, the measurable sediment chronology
contains a wealth of information which can only be expioited for the
purposes of future prediction by a multiiayer model. Perhaps there is
Q need for a number of modaels of varying complexity. Perhagps it is
impossible to predict in advance which model or level of complexity
is optimal until the model is run and sensitivities are tested. This
iteration towards the optimum can be done from both sides, simple
and complex.

We can start with a si'mple model and increase its complexity in the
light of experience. Or we can start with a complex model and trim
it down. it is likely that the former approach is easiest. Regardiess of
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Somplicitvvs Complexi

TheCase For Simple
Models (D. Madkay)

the approach, the modeller should keep an open mind and refain
the flexibiity o change the model structure in the light of
experience.

It is difficult to follow the caicuiations in a new model, thus the
madeller has a duty to document the model parameters, equations
and operations, preferably in fables which can be consulted for
complete information. This should include all chemical parameters
(e.g. vopour pressure, solubility), all reactivity rate parameters (e.g.
haiflines), ol enviconmental parameters (e.g. volumes, areas, rainfall
rates), all rate equations used (e.g. for volatilization), and all
mathematical data (e.g. integration, time steps). For all parameters
and variables the units should be clearly defined.A specimen
calculation shouid aiso be included. .

When preparing for the Workshop the authors of this contributfion
decided fo present differing viewpoints, i.e. to be advocates for
simplicity or complexity. One of us (D.M.) presented the case for
simpicity, and the other (V.J.B.) the caose for complexity. The
following sections summarize some of the key points made on both
sides, and include some ideas presented by the workshop
participants.

To examine the iole of management as the sponsor of maodels let us
consider PCB's in Lake Ontario. We can envisage three separate
modeliing efforts: A, B and C in order of increasing complexity and
cost. The models give the following hypothetical results:

Model A
1990 Water: 1.0 mgA. +/- 0.5 mg/L. (whole Lake,
annual average)
Sediment: 200 mg/g +/- 150 mg/g
Fish: 0.8 ug/g +/- 0.5 ug/g

1991 similar, but approximately 5% lower etc.
1992 similar, but approximately 9% lower
** 3 years with 5 data points each year = 15 points

Model B

1990 Water Segment 1: 1.5 mg/L. +/~ 0.4 mgi
{annual average)

Water Segment 2: 1.0 mg/. +/- 0.4 mg/L
Water Segment 3: 0.8 mg/L +/~ 0.3 mgiL

pius two other segments .

Sediment: 3 segments with similar data

Fish: 5 segments, 2 trophic leveis, similar data
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1991similar to 1990 but approximately 5% lower

** 3 years data with 18 data points sach year = 54
points

Model C
1990 Water Segment 1, Month 1: 1.8 mg/l. +/0.3
mg/L
Month 2 1.7 mg/L +/- 0.3 mg/
stc. for 12 months

Water Segment 2, Month 1: 1.5mg/L +/-0.2mglL
etc. for 12 months plus 3 other water segments
Sediment: 3 segments for 12 months

Fish and benthos: 5 trophic levels in 5 segments for 12
months

1991similar, but 5% lower etc.

= 3 years with 396 points each year = 1188 points

‘We can now ask these management questions:

1. Will the results of the models be viewed with any
difference in credibility? Will the stated uncerfainties be
believed?

2 if he errors or unceriainties are accepted, wil make any
difference to the final managerial decisions?

It is possible that the answer to both questions is "NO". This is not to
suggest that we be deliberately sloppy, but we should adopt the
strategy of developing the simplest respectable model, present the
results honestly, have the model thoroughly peer reviewed, then ask
the "managers’ if they wish fo buy more cerfainty. We can even
give them a quotationl

From a scientific perspective. perhaps we should always strive to
improve models by developing better equations, more accurate
parameters and more ingenious ways of manipulating the equations
and presenfing the results. We hope that eniightened funding
agencies will see the fundamental merit in studying and quantifying
contaminant behavior in Lakes because it is always valuable to
know more, rather than less, about the system.

AnExample of aSimple
Model

The Model Described Briefly Here Was Developed as a result of the
Barrie UC Workshop and the Niagara-on-the-Lake Workshop in June
1991. The "praceedings* are being finalized In early 1992, The
material given here is essentially an odvance excerpt from that
"proceedings’.

it has inevitable similarities to other models including the Endicott
Model, the Fink Model developed for the National Widlife
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Steady-State Mass

Federation and Mackay’s Fugacity Model. The model is written in
“rate constant* format with ail process rates (kgfyear of chemical)
being expressed as a product of a rate constant (years-1), and the
amount of chemical in the compartment (kg). 1t is believed that this
makes the model much ecsier to understand, especialy by
"managers’.

The model accepts as input a set of key parameters listed in Table 1
which is actualy a printout of the program. These are the usual
modei quantities.

These data are sufficient to deduce the steady-state chemical mass
baknce as depicted in Figure 1 and on the computer output.

The water column is freated cs a single well mixed compartment, as
is the sediment which has a fixed depth. The processes included
are:

chemical discharge

chemicadl inflow

deposition from the atmosphere
evaporation

outflow

transformation in water
transformation in sediment
water to sediment fransport
sediment to water transport
sediment burial

RN

An option can be included to include the rates of change of water
and sediment concentrations (and hence amounts) which are used
in a pseudo-unsteady-state calculation as described Iater.

The working equations relating these quantities to a series of rate
constants are conventional in nature,

The steady-state mass balances for water and sediment are then:

E + MSKS = MW(k1 + k2 + k3 +k4)

MWk4 = MS(k5 + k6 + k7)
where E s total loading rate from alf sources including the
atmosphere (kg/year) and MW and MS are the masses of chemical
in the water and sediment respectively, from which the “forwards"
result becomes:

MS = MWK4/(k5 + k6 + k7)

MW = E/k1 + k2 + k3 + kd(k6 + k7)/(k5 + k6 + k7)]

All process rates and concentrations can be deduced. A food
chiain model can also be included which consists of six organism
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MASS BALANCE CALCULATION OF THE FATE OF PCB in LAKE ONTARIO
Forwards, loading to concentration catculation
Input quantities

| Total concentration in air ng/m3 | 5.50E-01 |
| chemical concn in rain (if input) ng/L | G.00E+Q0 |
| Tributary toadings kg/year | 0.00E+00 |
| other loedings kg/year | 1.00E+03 |

...... P L L T Y L L L T TP

Key parameters: * indicates deduced quantity

| Water area (m2) | 1.958+10 |
| Sediment area (m2) | 1.17E+10 |
| Water volume (m3} * | 1.67E+12 |
| sediment voiume (m3) * | 1.17e+08 |
| susperdied solids mass (kg) * | 6.68E+09 |
| Susperded solids concn in water (mg/L) |  4.00000 |
| solids concn in bottom sediment (mg/L)* | 160000.0 |
| Parasity of battom sediment | 0.080000 |
| Sediment solids mass (kg) * | 1.87e+10 |
| Sediment solids density (kg/m3) | 2000.00 |
| Sediment organic carbon content (g/g) | 0.020000 |
| Mean water depth (m) | 85.641 |
| Mean active sediment depth (m) | 0.01000 |
| Water residence time (years) ] 6.500 |
| Frn on depositing particies in water ® | 0.500000 |
| Fraction dissolved in water column * | 0.500000 |
| Fraction on particles in sedmt | 0.999958 |
| Fraction dissolved in sediment { 0.000042 |
| Fraction sorbed in atmosphere | 0.050000 |
| Fraction gaseous in atmosphere ® { 0.950000 |
| volatitization MTC: air side (m/h) | 1.00000 |
| volatilization MTC: water side (m/h) | o0.010000 |
| Air-water partition coefficient | 5.00E-03 |
| Log octanci-water partition coefficient | 5.60E+00 |
| Octanol-water partition coefficient ® | 3.98E+06 |
| overall water side MTC (m/h) *® | 3.33E-03 |
| sediment-water diffusion MTC | 1.00E-04 |
| Transformation half Life in water (h) | 5.00E+05 |
| Transformation half life in sedimnt (h) | 5.00E+05 |
| Transformtn rate const in water (h-1) * | 1.39E-06 |
| Transformtn rate const in sedmt Ch-1) * | 1.39€-06 |
| oeposition rate g/m2.day ] 0.73000 |
| Resuspension rate g/m2.day | 9.22000 |
| Burial rate g/m2.day | 1.00000 |
| Fraction particies deposited per year * | 0.777811 |
| Fraction sediment deposited per year * | 0.277552 |
| Mass particies depasited per year (kg) *| 5.20E+09 |
| Fraction sediment resuspended per year *| 0.050188 |
| Mass sediment resuspnded per year (kg) *| 9.40E+08 |
| Fraction sediment buried per yenr | 0.228125 |
| Mass sediment buried per year (kg) ® | 4.27E+09 |
| Rate of water concentration change yr-1 |  0.00000 |
| Rate of sedmt concentration change yr-1 |  0.00000 |
| scavenging ratio of aerosols a | 100000. |
| Ory deposition velocity (m/h) | 7.200 |

TABLE 1t
ILLUSTRATION OF A SIMPLE MODEL

Reducing Uncertainty in Mass Balance Models of Toxics

in the Great Lakes- Lake Ontario Case Study
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Rate constants (years-1)

k1 evaporation from water

k2 outflow from the lake

k3 transformation in water

k4 water to sediment transport
k5 sediment to water transport
ké transformation in sediment
k7 burial from sediment

Total rate constant from water
Total rate constent from sediment
Vater to sediment deposition
Water to sediment diffusion
Sediment to water resuspension
Sediment to water diffusion
Water inventory change Iw
Sediment inventory change I3

TABLE 1

ILLUSTRATION QF A SIMPLE MODEL (Continued
1.708-01 (Continued)

|
1.54E-01 |
1.21€-02 |
3.926-01 |
5.39€-02 |
1.212-02 |
2.286-01 |
7.288-01 |
2.94E-01 |
3.898-01 |
3.07E-03 |
5.028-02 |
3.67€-03 |
0.00E+00 |
0.00E+00 |

MASS BALANCE SUMMARY FROM RATE CONSTANT CALCULATIONS

!
I
|
I
!
|
!
|
!
|
|
|
!
|
[
|
|
!
|
!
|
|
!
|
|
|
|
l
|
[
I
|
!
!

|
|

PR woana

Total mass in water (kq)
Tatal mass in sediment (kg)
Total mass in system (kg)

Total loadings
Tributary loadings kg/year

Emissions to water except atm and tribs

Municipal point sources kg/year
Industrial point sources kg/year
Non-paint sources kg/year

Loadings from areas of concern kg/year

Deposition from atmosphere
Rain disselution

Wet deposition of particles
Total wet deposition

Ory deposition

Absorption

k2 outflow rate from the lake

.k3 transformation rate in water

k4 water to sediment transport rate
kS sediment to water transport rate
ké transformation rate in sediment
k7 burial rate from sediment

Total rate of removal from water
Total rate of removal from sediment
Water to sediment deposition rate
Water to sediment diffusion rate
Sediment tc water resuspension rate
Sediment to water diffusion rate
Water inventory change -
Sediment inventory chenge

Water concentration ng/L or ug/m3
Sediment concentration ng/g

|
I
i
|
|
!
!
|
|
I
|
|
|
|
|
|
|
k1 evaporation rate from water (kg/year)|
|
|
|
|
|
|
|
|
{
|
|
|
|
[
!
|
|

1740.40
2319.51
4059.91

|

|

}

1142.86 |
0.00 |

|

|

|

|

esmenwsevsvevcavasevsannan memmue. P L L T T
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FOOD CHAIN RESULTS

Log Kow

Kow

Sediment OC content

Temperature deg C .

water concentration (total) ng/L-
water concentration (dissolved) ng/L
Sediment solids concentration ng/g
Sediment organic € conen ng/g OC
ORGANISM Zoopinktn Benthos
CONCN ng/kg 1.04E+05 7.55E+05
CONCN ug/g 1.04E-01 7.55E-01
CONCN ng/g lipid 2.07E+03 1.51E+04
BIOMAGNIF FACTOR 1.00E+00 7.28E+00Q
VOLUME (L) 0.00E+00 0.00E+00
LIPID CONTENT 5.00E-02 5.00E-02
k1 (water uptake) 0.00E+Q0 0.00E+Q0
Xd (food uptake) 0.00E+00 0.00E+Q0
k2 (water loss) 0.00E+00 0.00E+00
ke (egestn loss) 0.00E+00 0.00E+0Q
km (metabol ism) 0.00E+00 0.00E+00
kg (growth) 0.00E+00 0.0CE+Q0
food concn (aver) G0.QCE+00 0.0CE+Q0
FOOD PREFERENCES Food
Consumer Zooplnktn Benthos
Sculpin 0.180 0.820 .
Alewife 0.500 0.400
Smelt 0.540 0.210
Lake trout 0.000 0.000

6.6
3981070
.02

8
1.042154
.3210772
123.9004
6195.022

Sculpin

1.43E+06
1.43E+00
1.78E+04
8.50E+00
5.40E-03
3.00E-02
7.13E+02
3.10E-02
2.24E-03
4.20E-03
0.00E+Q0
5.68E-03
6.38E+05

organisms
Sculpin
0.000
0.000
0.250
0.100

Alewife

8.85e+05
8.85E-01
1.26E+04
6.09E+00
3.20E-02
7.00E-02
3.50E+02
2.37e-02
1.26€-03
4.TSE-Q3
0.00E+00
3.98£-03
3.64E+05

Alewife
0.000
0.000
0.000
0.500

TABLE 1

ILLUSTRATION OF A SIMPLE MODEL (Continued)

Smelt

1.20E+06
1.20E+00
3.00E+04
1.45E+01
1.60E-02
4.00E-02
4.62E+02
2.63E-02
2.90E-23
5.27e-03
0.00E+Q0
4.57€-03
5.71E+05

Smel t
0.000
0.000
0.000
0.400

Lake trout
3. 11E+06
3.11E+00
1.95E+04
9.38E+00
2.50E+00
1.60€E-01

6.12E+01

1.23E-02
9.61E-05
2.47E-03
0.00E+00
1.67E-Q03
1.08E+06

Lake trout
0.000
0.000
0.000
0.000
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classes with plankton (at equilibrium with water) at the base of the
water focd chain and benthos (at equilibrium with sediment) af the
base of a benthic food chain. The other four organisms form a food
web with defined food preferences.

Discussionn  This model, or one similar 1o it, is regarded as the simplest possible
credible model. To eliminate a compartment or a process would
greatly weaken the modei's appiicability and for some chemicails at
least it wouid remove any hope of achieving reagsonable estimates
of fate. A strong case can be made that this should be a starting
point for models, a first-attempt which can be improved upon in the
light of experience.

A wortsome consideration emerges when more complexity is
infroduced. It is entirely possitle that the paradigm on which even
this simple model is based is wrong. Let us explore just two
possibilities.

Perhaps the well-mixed-water in contact with well-mixed-sediment
concept s wrong. There may be a nepheloid layer, fens of
centimeters deep, above the sediment in which there is active
organic carbon conversion and contaminant relecse. When a
hydrophobic contaminant does setfle on the bottom, it may
assentially remain there with virtually no release or diffusive mixing.
Sorption may be essentially ireversible. I this is the case, dividing up
the sediment into muiltiple layers is pointless. if the water column is fo
be meaningfully segmented vertically it may invoive layers 10 cm
deep above the sediment. It is thus essenfial that we better
understand these phenomena (which are so difficult to investigate).
A more complex model with the same basic misrepresentation
merely adds a greater number of fundamentally erroneous
parameters.

Perhaps the two-fim evaporation equations cease to apply atf very
low concentrations. There have been no actual measurements of
fiuxes of hydrophobic chemicals at typical lake concentrations. |If,
for some reason, surface microlayers become significant retarding
factors at low concentrations, the expression for evaporation may
be wiong. An erroneous equation may be easier to detect with a
simple model in which there are fewer adjustable parameters.

The key conclusion is that we must be absolutely sure that the basic
physics and chemistry are undersiood so that the equations are
fundamentally corect. Complex medels tend to obscure such
fundamental inadequacies. They merely compute more mistakes!

A final issue relates o the scale of the model. It is certainly frue that
a simple Lake Ontario model can not treat locally high shoreline or
near-shore contamination. t could not include Hamilton Harbour or
the Bay of Quinte. A more complex spatially resolved model could
treat these areas. Perhaps each "Area of Concemn” or region of high
local contamination should be treated as a source fa the simple
whole lake model. The mass balance envelope would then be
drawn to exclude such areas, but would accept contaminant input
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The Case For More

Campleaty
(V. Bierman)

A Propased Conceptual

Mode!

from them. By judicious selection of the phase envelope it may be
possible to treat 95% or more of Lake Ontaric with a simple model,
then apply ather, separate simple models fo "Areas of Concern” or
near-shore regions.

Is there not a case for developing a family of simple modeis which
operate separately, at different scales and which ‘feed" from each
other? This approach would perhaps satisfy proponents of simplicity

" and complexity.

| agree with the philosophy that models of toxic chemicals in the
Great Lakes should not be made any more complicated than
absoiutely necessary. The cose for additional model complexity
should be driven by two principal, generic management questions:

1. If external loadings are changed, what will be the new
state of the system?

2 Ifexternal loadings are changed, how long will it ake
the system fo reach its new state?

A coroliary to the first question is: given an in-lake farget state, what
change in external loading (if any) is required to produce this state?

Additional model complexity must have the potential to reduce

‘uncertainties in answering one or both of these questions. While

advances in scientific understanding should be a principal godl in
model development, a redlity is that mest model development and
applications research in the Great Lokes is supported by
mission-criented agencies. Consequently, sponsors/managers can
not be expected 1o pay for additional model compilexity unless
there is some reasonable expeciation that uncertainties will be
reduced in answering critical management questions. | believe that
strong cases can be made for additional model complexity in
several key areas that bear directly on such critical questions,

Figure 2 contains a simple conceptual modei for toxic chemicais. It
is similar to the model proposed in Figure 1. There are three principal
compartments: ai, water and sediment. The state variables are
particuiate and dissolved phase toxic chemical concentrations in
the water column and sediment compartments. Sorbed chemicals
are normdiized fo particulaie organic carbon, as opposed to

‘suspended/bedded  solids. within a compariment phase

concentrations are related by a simple equilibrium equation. The
usual process mechanisms are included: setting, resuspension, deep
burial, air-water and sediment-water transfers, decay. photolysis,
etc,

The principal purpose for introducing this simple model is to
emphasize the importance of organic carbon as the principal
controlling sorbent volume for hydrophobic, organic chemicals. 1t is
not possible to understand or predict the behavior of these
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chemicdls in the Great Lakes without understanding the dynamics
and fate of organic carbon. This modei will be used below for
several Lake Ontario examples.

Ideulz'zai Load-response relationships in coupied water-sediment systems such
as the Great Lakes can have complex ramifications for addressing
WR@"& critical management questions. These camplexities were discussed
Rdafum in considerable detail for Lake Ontario during an UJC-sponsored
modeiing workshop (February 1819, 1987) fhat involved
comparisons among three different toxic chemical models. The

principai points to be made here are the following:

1. Toxic chemical concentrations in the sediments respond
at different rates than toxic chemical concentrations in the
water column.

2. sediments can act as toxic chemical sources or foxic
chemical sinks, depending on the dynamic state of the
system.

3. In-lake toxic chemical concentrations are not
proportional to external loadings under non-steady-state
condifions.

These points support the case that toxic chemical models for the
Great Lakes must be time variable. Steady-state models alone are
not sufficient. Furthermore, these time variable models must include
both water column ond sediment compartments, and explicit
representation of setlling, resuspension, deep burial and
sediment-water diffusion.

For the idedlized example in Figure 3, fotal toxic chemical
concentrations in the water column and sediment are zero at 1 = 0.
At t = 0 a constant external loading is imposed. Water
concentrations quickly approach - near-equilibrium . values
(approximately 90% in 2-3 years) while sediment concentrations
show a much slower approach ( 90% after 20 years). During this
temporal period the sediments are a sink for toxic chemicais. Att =
20 years external loading is step-reduced to zero, Water
concenirations show a two-component response: a fast initial
decrecse followed by a much slower decrease toward eveniual
equilibrium. It is crifical to note that this decreasing water column
concentration trajectory is not the inverse of the increasing
trajectory. Sediment concentrations follow an exponentially
decreasing trajectory with a relatively small time constant. During
this recession period the sediments are a source for toxic chemicals
because “sediment bleeding® controls the long-term response
trojectory of water column toxic chemical concentration.

This example can be made more concrete by considering some of the
management implications of sedimenmt quality criteria (SQC) now being
developed by the U.S. Environmental Protection Agency. The SQC can be
used to prevent future sediment contamination or to remediate present

Reducing Uncertainty in Mass Balance Models of Toxics - 155
in the Great Lakes- Lake Ontario Case Study



FIGURE 2

Conceptual Framework for Toxic Chemical Model

Atmosphere -
3
N
3
s
Photolysi _ Photolysis
- Chemical on Ko Chemical in > >
Parﬁcxgat‘%OOrganlc —) Dissolved Phasae
Decay aroon _ﬂ_»n
] (ugkg O.C.) (v
Water Column b
gl B _ g
NS N NN IININNY, § A R T ITITITA - POOLLIELE IR iieiante
g Q
<
Decay Chemical on Ko ; ; D
== Pariciste Organic [T | Chemial Dissohed | ooy
(ughg O.C) o

Activa Sediment

XXXXXXXXXXXX

Deep Sediment

\ 4

XXXXXXXXXXXXXXXX

" Net Sedimantation

\ 4

XXXXXXXXXXXXX

156

Great Lakes Monograph No. 4



sediment contamination. Lack of a unique loading-sediment response
relationship can confound implementation of the appropriate management
strategy, as depicted in Figure 4. Under the application of a constant
oxternal load that is less than the total maximum daily load (TMDL),
sediment concentrations will depend on the dynamic state of the system,
however, they will remain less than the indicated SQC. Prevention is the
proper management strategy in this case. Under the application of a
constant external load that is greater than the TMDL, sediment
concentrations could be less than or greater than the SQC, depending on
when they are measured. Consequently, in order to implement the proper
management strategy, the dynamic state of the system must be known.
Finally, if the system is in equilibrium with an external load that is greater
than the TMDL, remediation is required and a steady-state analysis might
suggest the indicated loading reduction to meet the TMDL. However, even
if this reduction is implemented instantaneously, sediment concentrations
could remain in violation of the SQC for a considerable period of time before
reaching equilibrium.

From these ideclized examples it can be seen that for a given
. external loading, in-lake concenfrations for both water column and
sediment compariments depend on the dynamic state of the
system. That is, for a given external loading, there does not
necessarily exist a unique set of water column and sediment
response concentrations. This behavior hos direct bearing on both
of the above principal management questions. To understand and
predict the behavior of such a system, time varicble mass balance
models must be used, in conjunction with long time-series data for
loadings and in-lcke concentrations.

Sedimert Having established that sediment dynomics can confound
Times load-response relationships, attention should be directed to factors
Rm]l% controling sediment response times and their associcted
uncertainties. The principal point is that there is a large range of
uncertainty in sediment response times for @ reasonable range of
values for assumed mixed layer sediment depth. This point supporis
the case that toxic chemical models for the Great Lakes must

incorporate additional complexity in the surface sediments.

~ As asimple example, the conceptual model in Figure 2 was used to
estimate 90% response times for sediment foxic chemical
concentrations in response to a step change in external loading.
The model parameters used in this example were the following:

Resuspension velocity = 1.38 x 10-4 m/yr
Burial velocity = 1.25 x 10-3 m/yr
Porosity = 0.90

Particle density = 2.45 gm/cm3

Fraction organic carbon = 0,02

Koc = 106 L/kg organic carbon

Decay rate = 0

Diffusion coefficient = 3 x 10-5 cm2/sec.

The resuspension and burial velocities were taken from the Loke
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Ontario models presented at the above-mentioned UC Workshop.
They correspond fo a steady-state solids balonce for the lake.
Vaiues for the other parameters are estimated, but fall within
recsonable ranges for illustrative purposes. Mixed layer sediment
depth was the independent variable.

Figure 5 illustrates 90% sediment respaonse times s a function of
assumed mixed layer sediment depth. Response fime ranges from
approximately two years for a sediment depth of 0.5 cm. to
approximately 65 years for a sediment depth of 5 cm. The principal
point is not that these estimates are accurate, but that there is @
large range of uncerfainty in response fime coresponding fo a
recsonable range of values for assumed mixed layer sediment
depth. .

This example supports the case for additional model complexity in
the surface sediments. Specification of mixed layer sediment depth
in simple models is somewhat arbitrary and s usually based on "best
professional judgment”, More redlistic process representations would
.increase model accuracy and reduce prediction uncertainty for
system response times. These processes shoukd include vertical
segmeniation and explicit representation of advective and
dispersive mass fransfer processes within the sediment bed.
Attempis should be made to parameterize these processes in terms
of molecular diffusion, bicturbation and waves/currents.

WholeLakeversus  Ancther aspect to the case for additional model complexity in the
surface sediments is the need to distinguish between necr-shore and

Near-Shore Scales open-water zones. In addition, there are critical management
questions that can not be answered with whole-kikke models. The
principal points to be made here are the following:

1. There are significant differences in resuspension potfential
between near-shore and open-water zones in large lakes.

2 InLake Ontario, the open-water depositional z0ne
represents approximately one- half of the fotal lake area.

3. In addition to whole-lake target loadings, there are
critical menagement questions related to waste load
dllocations for individual sources in near-shore areas and
embayments, inciuding in-piace pollutants.

Having established that load-response relationships are a sensitive
function of sediment dynamics, it should be recognized that
sediment-water exchange rates may differ greatly between
nearshore and open-water zones due to differences in
wave/current energies and animal densities/bioturbation. In Lake
Ontario the open-water depositional zone represents only about haif
of the total Iake area. Ancother argument supporting separation of
these two zones is that most of the available sediment core data
represent deposition areas, not highly-energetic near-shore areas.
There do not exist "ake-wide average sediment cores' with which to
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compare output from lcke-wide average models.

From a management standpoint, whole-lake models can only be
used to estabilish lake-wide target loading objectives. Such models
can not be used to aliocate individual point and non-point source
loadings at their primary control points.  In particular, whole-lake
models can not be used to set NPDES permit limits or fo evaiuate
localized impacts of alternative remediation sirategies for Great
Lakes Areas of Concern.

OrgwucCarbaz For hydrophobic organic chemicals, the confraling environmental

isand sorbent volume is organic carbon, not water coiumn or bedded

Wm solids per se. Normalization of parficulate phase foxic chemical

Sedimert-Water concenfrations to organic carbon produces interesting and

somewhat compiex ramifications in mass balance models. These

Gma'ients ramifications directly impact both of the principal management
questicns. The principal points to be made here are the following:

1. Unequal fractions of particulate organic carbon between
water column and sediment will generally cause unequal
dissolved phase toxic chemical concentrations between
water column and sediment, even at steady-state.

2. A given loading condition for a particulkar chemical may
satisfy a water quality criterion but not necessarily a sediment
quality criterion.

3. Toxic chemicais released in the nepheloid layer and/or at
the sediment-water interface may "short circuit® slower
sediment recycle processes and be recycled quickly back fo
the water column.

4. Toxic chemicals released within the sediment bed, if they
are not buried into deeper sediment layers, will recycle back
to the water coiumn over a much longer period of fime.

These points support the case that toxic chemical modeis for the
Great Lakes must incorporate additional complexity to represent the
mass balance cycle for organic carbon and the fate of associated
toxic chemicais.

As another simple example, the conceptual model in Figure 2 was
used to estimate the ratios of dissoived phase toxic chemical
concentrations in the sediment to dissolved phase toxic chemical
concentrations in the water column. The independent variable was
fraction organic carbon content in water column particles (foc1).
Fraction organic carbon content in the sediment (foc2) remained
fixed af a value of 0.02. Sediment mixed layer depth was fixed at a

, value of 2 cm. Al other parameters were the same as in the
preceding example. Al computations correspond to steady-state
conditions.

Figure 6 Iilustrates that sediment:water dissolved phase
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concentration ratio ranges from 1 for foc1 = 0.02 o 17 for focl =
0.50. The reason for this behavicr is that unequal organic carbon
fractions produce unequal partiioning in the water column and
sediment compartments, and hence unequal dissolved phase toxic
chemical concentrations. it should be noted that this behavior is not
a consequence of the "solids concentration effect* an partitioning.
Water column and sediment partition coefficients (Koc1 and Koc2,
respectively) were set equal in this example, consistent with the best
current understanding that the "solids concentration effect" is not
operative in stationary, bedded sediments. Apparent unequal
partitioning occurs because in terms of organic carbon
normailization, the operative pariition coefficient is the product
Kocfoc (= L/kg solids). Field observations confirm that foci is
generaily 5 to 10 times greater thon foc2.

The significance of this example i that a given loading condition will
produce different dissolved phase toxic chemical concentrations in
the water column and sediment compariments, even at
steady-state. Dissolved phase toxic chemical concentrations are
generally considered to represent the bioavaiiable fractions of total
chemical concentrations. Consequently, benthic and pelagic biota
will have different toxic chemical exposure concentrations. With the
advent of sediment qudlity criteria, determination of target loadings
will become more complex because the external loading for a
given chemical may satisfy the water quality criterion, but not the
sediment quality criterion.

- Simple models can and do account for the above behavior by
gssigning observed values for focl and foc2 to the water column
and sediment compartments, respectively. However, hidden within
this simple cpproach, and in the simple example presented here, is
the assumption that the organic carbon associated with settled
particulates decays compietely within the sediment bed, thus
releasing the associated toxic chemicals completely within the
sediment bed. These toxic chemicals then re-equilibrafe with
sediment particulate organic carbon.

These simple assumptions ignore any organic carbon fransformation
and fate processes (and hence any toxic chemical recycle
processes) that may occur in the benthic nepheloid layer and/or at
the sediment-water interface. This distinction is not trivial because
processes controling water column dynamics are much faster than
processes controfing movement of toxic chemicals within the
sediment bed. Toxic chemicals released in the nephelcid layer may
"short-circuit* slower sediment recycle processes and be recycled
quickly back to the water column, Toxic chemicals released within
the sediment bed, if they are not buried into deeper sediment
layers, will recycle back to the water column over a much longer
period of time. The ability to understand and predict these
processes has direct bearing on the degree of certainty with which
system responses can be predicted.

This example and associated discussion support the case for
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Swmmmary of
Recommendations For
Additional Model

additional model complexity to explicifly represent the mass
balance cycle for organic carbon and the fate of associated toxic
chemicals. More reqlistic process representations would increase
model accurccy and reduce prediction uncertainty of system
responses. These processes should include explicit representation of
particukate and dissolved organic carbon as model state variables,
and additional vertical segmentation to represent a separate
benthic nepheloid layer.

Explicit inclusion of organic carbon dynamics in foxic chemical mass
bakcnce raises another important technical issue with direct
management implications. Most of the organic carbon in the Great
Lokes results from internal primary production, not external loadings.
For example, in the ongoing Green Bay Mass Balance Study, it has
been found that primary production is responsible for approximately
65% of the toial organic carbon “loading*. For Lake Ontario, even a
larger confribution from primary production would be expected
because it has @ slower hydraulic flushing rate than Green Bay.
Consequently, responses to nutrient loadings and toxic chemical

loadings are potentially coupled by in-kake organic carbon

dynamics. " A need to address the question of toxic chemical
impacts as a function of lake trophic state strengthens the case for
explicit inclusion of organic carbon dynamics and nutrient
load-response relationships in toxic chemical mass balance models
for the Great Lakes.

To reduce uncertainties in answering critical management questions,
the following recommendations are made for additional complexity
in toxic chemical mass balance medels for the Great Lakes in
general, and Lake Ontario in particular:

1. Models should be fully time-variable and include coupled
water column and sediment compartments with expiicit
representation of setiling, resuspension, deep burial and
sediment-water diffusive exchanges.

2. Vertical segmentation and explicit representation of
advective and dispersive mass fransfer processes within the
sediment bed.

3. Sediment-water exchange processes shouid be
parameterized in terms of molecular diffusion, bioturbation
and shecar stresses due to wave/current action,

4. Horizontal segmentation fo distinguish between near-shore
and open-water zones.

5. Explicit representation of the mass balance cycle for
arganic carbon and the fate of associated toxic chemicals,
This should include explicit specification of internal organic
carbon loadings due to primary production.
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6. Vertical segmentation in the water column to explicitly
represent processes in the benthic nepheloid layer.
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~I. - PREFACE

This white paper addresses the issue of process parameterization
uncertainty in models of toxic chemicals in the Great Lakes. The
paper is presented in two parts. The first part discusses
parameter uncertainty in mass balance models; the second part
considers parameter uncertainty in models of bicaccumulation.

The mass balance portion of the paper begins with an introduction
to parameterization. This is follewed by the description of a
common mass balance formulation, and the identification cf
uncertainties in process parameterization. The impact of
parameterization uncertainty cn the results of a2 toxic chemical
mass balance model is then presented as an illustrative example.
Finally, prospects for reducing parameter uncertainty will be
considered alcng with unresclved issues and questions.

II.  INTRODUCTION

Parameterization may be defined as the selection of numerical
values for input coefficients to a maEhematical mcdel.

- Obviously, uncertainty in parameterization will be reflected in
uncertain model results. Ih a broader sense, however,
parameterizaﬁicn must also consider the process description used
in the model. In fact, parameterization is only meaningful in
the context of a given precess description. Similarly, examining
uncertainty in a medel process must extend beyond the uncertain
parameter values themselves to consider the formulation used to
describe the process. Modelers intend to accurately describe
significant model processes, yet conceptual errors and errcrs in
assumptions, omissions and formulaticns are still‘possible. In
particular, a variety of process descriptions are relied upon
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that, although commonly accepted, may be reslatively unvalidated.
As a result, uncertainty in models due to mis-specification of
parametars is compounded by inaccuracies in the procass
descriptions. Therefore, the authors have chosen to address
ﬁncertainty in process description as well as in parameter values
in this paper.

Parameterization of mass balance models is preferably achieved by
calibration to a data set for the system keing medeled.
(Calibration data sets for mass balance mocdels are the subject of .
another white paper prepared for this workshop). Calibration is
the selection of model parameters that achieve an optimum fit
between the model simulation and datz for measured state
variables. A variety of optimization or tuning methods are used
for calibration, with "fit" being determined by visual
inspection, cbjective functicn (such as sum-of-square errdr) or
other criteria. Tha'ac:u:acy cf pararmeterization achieved by
calibration is strongly dependent upon the quality and
rarticularly the completeness of the data. Mass balance models
are very sensitive to the specification of external forcing
functions, including loads and initial and boundary conditions.
rroneous calibration parameterization is likely if forcing
functiens ccntain even modest errors. Other scurces of ‘
paramatarization uncertainty may ke intrzduced bv bias or
excessive variability in the calibration data, poor optimization,
or insensitivity of some parameters to calibration. cCalibration
produces parameterization errors that are compensating; that is,
error in cone parameter will be offset or compensated by an error
in another. The deviation of model calibration simulation from
the calibration data serves as a lower-bound estimate of model
uncertainty due to parameterization. A more comprehensive
evaluation of model certainty is obtained by comparing model
predictions to data independent of the calibration data set.
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However, such verification of mass balance models has rarely been
performed. The post-audit of eutrophication models for Lake Erie
(Lan et al., 1987; Di Toro et al., 1987) and Saginaw Bay (Bierman
and Dolan, 1986) represent the only documented verification of
mass balance models in the Great Lakes. The lack eZf
comprehensive data sets has prevented thorough calibration and
verification of toxics mass balance models, and this lack of
experience ultimately limits efforts to reduce model uncertainty.

For a variety of reasons, modelers rely upon other
parameterization methods either in conjunction with or in place
of calibration. Mass balance models are usually
ovarparamatarized; that is, the models contain more parameters
than can be determined by calibration alone. As a result,
calibration may yield a non-unique set of parameter values.
Another case occurs when the calibration simulation is
insensitive to one or more parameters; these parametars resmain
highly uncertain following calibration.. These are circumstances
in which parameterization by calibration alone may produce
uncertain predictions as the conditions of the model systesm
change. In these cases, calibration must be augmented by
external specification of some parameters. Even for the
parameter values that are cktained by calikration,
independently-determined values ars useful to assess the internal
consistency of the model.

Other methods of parameterization include direct measurement,
estimation by correlation and by the use of experimental data, or
some coﬁbination of the latter. Direct measurement of procass
parameters in the systexm being modeled is certainly preferable to
estimation. Most critical process parameters are not, however,
directly measurable requiring that parameter estimation be used.
Correlation estimates make use of relationships observed between
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process parameters and properties of the chemical and/cr the
system. These include QSAR and. other advanced computational
estimates of chemical properties and reactivity. Some chemical-
and system-specific parameters may be obtained directly from
experirental data. Both correlations and experimental data have
been reported extensively in the environmental literature.
However, the accuracy of parameters obtained by either course is
questicnable. Correlation estimates of parameters may ke highly
sansitive to properties that are themselves uncertain, and are of
course dependent of the accuracy on data used to construct the
correlation. Estimates of the same parameter obtained by
alternative correlations are scmetimes‘significantly different.
It is not unusual for some parameterization estimates to vary by
as much as several orders of magnitude. Parameterization by
experimental data is also difficult because much of the data
found in the literature are difficult teo interpret or
conflicting, are not available for many systems and chenicals,
require extrapclation or do'not account for variakles affecting
the parameter in the system of interest. When forcsd to rely
upon such approaches for precess parameterization, it may be
useful to construct a probability distribution for the parameter
value using all reliable estimates and data. In some cases, this
will provide a best estimate parameter value and suggest upper
and lower confidencs lizits. In other cases, it may only be
possible to bound the pessikle value of a parazetar.

In scme‘applications, mass balance models must be developed
without extensive calibraticon. Calibration is most-often
precluded when forcing functions are unknown or uncertain, cor
when either the quality cor gquantity of the chemical data are
insufficient to define state variable concentrations. In these
cases, a majority of parameters must be estimated by correlation
or experimental data. These applications include screening-level
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- models, where uncertain results may be acceptable, as well as
extrapolation of existing models to different systems or chemical
state variables. It is in such applications that defining
parameter uncertainty and its relationship to. model uncertainty
becomes most critical. The specific modal agplication presented
below describes an approach used for dealing with
parameterization uncertainty in this context.

III. MASS BALANCE MODEL FRAMEWORK

In order to introduce the formulation of mass balance processes
found in the WASTOX, WASP4 and other water gquality models, an
example will be presentad which is alsc the model used in the
application presented belcw. This is the two-compartment model,
the simplést framework that incorporates the significant
processes for the mass balance of persistent toxic chemicals in a
lake. This model simulates the chemical concentration in a
completely-mixed water column (C,) and underlying sediment layer
(C;) . The differential equation for chemical mass balance in the
water column is: '

dc,
g ¥

- QC,

C,
- v.rAfslcl M vrAF32C2 + KfA[(fa +f},2) 'n':' - (fd] +fbl)cl]
* ALV * Vi f12) C, + £, (£, C/H - £,C))]

- 2k, fuiC (Equation 1)
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- The accumulation of mass (VE—J equals the summation of the
following terms: leading {W}, wateP column exchange (in this
case, outflow) {-0CJ; sediment-water exchange (- v,4f,C,*V,AF,C, +
E A, + f,,)— - (fy *+ f,pGll ; air-water exchange (+ Al(Vug * Vapfm) Ca *
k(f,CHH - f’ C)It ; and transformation/-degradation (- Ekja/ Cy.

For the sediment layer the chemical mass balance equation is:

dc, ¢
Vz—‘-it-: = v, Af,C, - v, Af,C, - KfA[(fa "'sz)’f - G+ )G

- VS, :zéz

- Ekd: 2V2Cs
(Equation 2)

. , dac., - < , :
Accumulation of mass in the sediment (V"E-_-) equals sediment-water
exchange v Af,C, - vAf,C, - KAz + fu):’- - (fy « fipCl minus burial b,4f,C)
n-
and sediment transformation/degradation (- Xk,/f,V;C:}.

The terms in these two equations have been arranged to group the
mass balance processes in an organization of process categories
that will be utilizsd for the balance 2f this paper.

{(Nomenclature is defined at the end of the p,a,er.)

IV.  IDENTIFICATION OF UNCERTAINTY IN PROCESS PARAMETERIZATION
a. SEDIMENT-WATER EXCHANGE

Sediment~water exchange includes the processes of settling,
resuspension and diffusion. Because it is usually asscciated
with the other particle-transpert terms, burial will ke
considered as a sediment-water exchange process, although it is
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not. Similarly, the sediment layer volume will be considered as
a sediment-water exchange process parameter. Accuracy in the
description and parameterization of sediment-water exchange
processes is critical in models of toxic chemicals in the Great
Lakes, as toxics are persistent largely due to association wich
and accumulation in sediment. These processes define the
long-term response of the Great Lakes to toxic chemical
contamination and control efforts. Uncertainty in sediment-water
exchange processas ccmes from uncertainty in both the process
descriptions and parameterization.

1. Partitioning

A process of fundamental importance for sediment-water exchange
is partitioning, which defines the distribution of chemical
between different phases. Partitioning is represented in the
mass balanca fcocrmulations as fracticns f of the total chemical in
each phase. Examinaticn of egquations 1 and 2 reveals that
partitioning fractions are distributed throughout the model.
Partitioning affects nearly all other processes in the mass
balance model by (1) defining particulate chemical fractions
transported by particles, (2) defining dissoived chemical
fraction subject to air-water exchange and transformaticn/-
degradation processas and available for diresct uptake by biota
and (3) defining mocbile chemical fractions in sediment pore
water. Uncertainty in partitioning parameterization propagatas
uncertainty throughout the mass balance formulation. Generally
the effect of partitioning uncertainty is more pronounced in the
water column, because practically all chemical in the sediment is
in the sorbed (pafticulate) form.

Chemical fractions included in the model description of
partitioning include freely dissolved (f,), sorbed (f) to one or
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more particle classes and, in some models, colloidal "bound" ()
phase. It is generally assumed that chemical partitiening
reaches equilibrium rapidly, at least in comparison to other
process rates. The chemical fractions are then related
algebraically to the concentration of sorbent and partition
coefficients defining the equilibrium chemical distribution
between phases.

For example, the dissolved fraction in a simple two-phase
(dissolved/sorbed) system is

1

fam 13 K, M[n

where K, (X, =r/C;r =fC/M, C, = f,C) is the partition cocefficient and M
is the particle concentration. For hvdrophebic organic
chemicals, organic carkon ncr=malizaticn generally reduces
variability in partition cocefficients observed for a chemical.
Thersfore, K, is usually replaced by an organic-carbon partition
coeffidient, K (K, =K]f,f.1is the organic' carben fraction) in
models for hydrophobic organic chemicals (HOCs). (No similar
normalization of partition coefficients for metals has been
defined, a notable shortcenming.) K, is either parameterized by

calibration or estimated by regressions with chemical
hydrophobicity, either solubility or octanocl-water partition
coefficient, K,. Karikhoff's (1979) regression

log X, =101log K, - 02

is a classic example; many other correlations may be found in the
literatur= (Lyman et al., 1982). Considerable unexplained
variability in paftitioning apparently relates to the
semi-empirical nature of K, Sufficient data suggests that
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organic carbeon is not a uniform sorbent phase, and that the
relationship between K, and hydrophobicity varies among classes

of HOCs. Order-of-magnitude variability in X, is thus possible,
based upon either measurements or estimation. In the case of X,
estimation, this variability is related teo the fact that the
hydrophobicity (expressed as K.) itself is an uncertain parameter
for many HOCs of interest. The reliability of K,, measurements

has been greatly improved by the development of generator column
methods, which unfortunately have not been applied to many toxics
of concern. Alternatively, estimation of K, by correlation with
molecular properties such as total molecular surface area (TsAa)
may improve reliability of chemical hydrophobicity
determinations.

Uncertainty in the parameterizaticn of partition coefficients
alsoc comes from the operational difficulties of making chemical
separations consistent with the model process description.
Particularly difficult is the separation of freely-dissolved
chemical from the colloidal (or microparticulate) phase. Neither
filtration nor centrifugation is apparently capable of cleanly
separéting the dissolved chemical fraction.

These conventional sseparation methods actually rssult in the
measurement of a distribution cocefficient X,

K, = K,/(1 + BK,)

where B is the concentration of colloid (usually measursd as DCQ)
and K, is a binding cocefficient (X,=X,/1 +~ 8X,) . K, is apparently
related to chemical hydrophcbicity in a manner analogous to X,.

Depending upon the amount of colloidal material present and its
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affinity for binding HOCs, measured X, may be several orders of
pmagnitude smaller than X,. This "third-phase" effect is

apparently more significant in sediment pore water than in the
water column. Although refined separation methods have

been developed, they sometimes produce considerably different
results, and none are practical for routine sample processing.

The third-phase effect was offered as an explanation for the
ocbservation that measured partition coefficients often vary
inversely with sorbent concentraticn. Whether the "particle
effect", first described by.0'Connor and Connolly (1980), is
adequataly explained as an artifact of dissolved/colloidal
separation is continucusly debated. Di Toro (1935) has argued
that colleidal binding alone cannot explain the magnitude of the
particle effect. If so, then both the third-phase and particle
effects must be retained in the description of the partitioning
process. Regardless of the mechanism, the particle effect serves
to reduce the sensitivity of f to variation in partitiocn

coefficients and sorbent concentrations, a useful outcome.
Sorbed chemical fractions observed for HOCs in the Great Lakes
are generally in the range of 20-50%.

Finally, the validity of the equilibrium partitioning assumption
should be considered. Results of sorption/desorption rate
experiments (Karickhoff and Morris, 1985; Wu and Gschwend, 1986;
Cocates and Elzerman, 1986) suggest that partitioning equilibria
for HOCs may require from days to menths to achieve, depending
upen chemical hydrcpheobicity and sorbent particle size and
concentration. If these rates are applicable to sorption/-
desorpticnvin natural systams, then partitioning kinetics would
be comparable or slower than other medel process rates including
particle transport, thereby invalidating the equilibrium
partitioning assumption in at least some model applicaticns.
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Furthermore, the results of many experiments conductad to measure
partition coefficients are gquestionable because the duration of
the experiments were considerably shorter than the equilibration
times suggested by the sorption/descorption rate experiments.

More research is necessary to confirz the kinetic data, and to
develop rate data for a wider range of chemicals and experimental
conditions. A number of partitioning process models
incerporating kinetic effects are available, although for
practical reasons, the equilibrium partitioning description is
still employed in toxic chemical models.

2. Particle Transport

The three most important sediment-watsr exchange processes,
settling, resuspension and kurial, are-controlled by particle
transport. Settling and rssusgensizsn zediats the exchange of
particulate chemical between the water and surficizl sediment,
and burial represents a loss proscess as particulate chemical is
transported to deeper sediment layers (these deeper layers are
sometimes added as additicnal model segments). Settling,
resuspension and burial appear in the mass balance formulations
as velocities (v,,v,andv,) , Which are aggregate parameters
representing a greatly sizplified description of particle
transport processes; In the simplest casa, gparticle transport
velocities are parameterized as annual average rates. Usually a
steady-state mass balance for particles, either as a single class
or multiple particle classes, is used to simulats the particle
transport fluxes in toxic chemical models.

Because the sediment segment is treated as completely-mixed in
the mass balance, its volume V, is properly defined by the
thickness of the mixed sediment layer. The mixing of the
surficial sediment is considered to be the result of

Reducing Uncertainty in Mass Balance Models of Toxics 177
in the Great Lakes- Lake Ontario Case Study



bioturbation. Dividing the mixed sediment layer thickness by
the burial velocity determines the residence time of particles
(and presumedly of particulate chemical) in this well-mixed
layer. The sediment segment alsc represents the reservoir of
particles and particulate chemical available for resuspension.
The sediment residence time controls the accumulation rate in
the sediment mass balance, and resuspension of particulate
chemical ties the long-term water column accumulation to this
rate as well.

Calibration of particle transport parameters in the
2-compartment model is based upon cesium-137 and
plutonium-239/240, products of atmospheric bomb testing in the
early 1960s. Accurate descriptions of the atmospheric loading
of these constituents to the Great Lakes are available
(Robbins, 1985a), as are measurements of water and sediment
concentrations following their introduction to the lakes.
Because Cs-~137 and Pu-239/240 partition extensivély, they
serve as tracers for particle transport. Figure 1 illustrates
the calibration achieved for 2-compartment models of each of
the Great Lakes. It should be noted that this model fails to
simulate the observed depletion of radionuclides during
stratification, which isolates the epilimnion from resuspended
sediment particles (Robbins and Eadie, 1991). Furthermore,
this calibration is sensitive to the partition coefficients
for Cs-137 and Pu-239/240 (Thommann and Di Toro, 1983), so
mis-specification of partition coefficients results in errors
in the calibration. The calibrated burial rates may be
confirmed against sedimentation velocities determined by
Cs=-137 and lead-210 profile analysis in sediment cores,
although analysis of a large number of cores may be necessary
to define lake~wide averages. Similarly, settling and
resuspension velocities may be confirmed by measuring particle
accumulation in sediment traps. Calibrated sediment
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particle residence times are on the order of 20 years for all the
Great Lakes, which is again confirmed by sadiment core
measurements of surface mixed layer depth.

The description of particle transport presented abgove has several
limitations, which should be considered in the context of
parameter uncertainty. First, this description provides no
resolution on other than a whole-lake, annual basis. As one
moves towards greater resolution, the process descriptions become
more complex. For instance, study in the Great Lakes reveals
that particle transport processes are subject to considerable
spatial and temporal variability. Vertical transport rate varies
considerably between nearshore and open-lake locations and at
different depths in the water column. In addition, lateral
particle transpert, redistribution and accumulation result in
distinct depositibnal patterns in the lake basins. Particle
transport alsc varies tsrporally, both with seasonal preocesses
and during storm events. Further ccxmplication is introduced by 2
predominance of cohesive sediments, which undergo aggregation/-
disaggregation during transport which alters their properties,
and detrital particles which mineralize during settling. The
significance of the nephloid layer upon particle and contaminant
cycling is another phenomenon which has yet to'be.aqdressed.in
models. The potential influence of the complexity of particle
transport en parazeterization uncertainty in toxic chemical
nodels is addressed by another paper prepared for this workshop.
At a minimum, spatial and temporal variability of particle
transport introduces parameter uncertainty via averaging errors
in parameters obtained by measurement.

One enhancement to the simple description cf particle transport
that appears significant for the accurate mass balance of toxic
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chemicals is the simulation of multiple particle classes.
Multiple particle classes can be used to represent variations in
transport and sorption properties of the principal components of
the natural particlé assemblage. For instance, this allows the
accurate representation of partitioning of both suspended and
transported particles in the water column. A multiple particle
class formulation also facilitates the couplinq of the toxic
chemical model to simulations of biotic particle production and
decay.

3. Sediment-Hater Diffusion

The fourth sediment-water exchange process is diffusion ketween
the two compartments. The diffusion process is considered to be
a minor component of sediment-water exchange, althcugh data to
cnfirm this is lacking. The diffusive exchange coefficient, K,
is often estimated by the chemical fres ligquid diffusivizy
modified for pathlength tortuosity. This produces a K, of 0.1 to
1l cn/d, a range of values alsc suggested by Thomann and Mueller
(1987). Although a single exchange coefficient is applied to
both dissolved and bound chemical fracticns in the equations, K,
for colloidal-bound chemical is probably smaller. Diffusive
exchange cannot be uniquely determined in the calikration
procedure, and the applicability of experimental measursments cf
K, to the field is uncertain. Either bioturbation, which would
shorten the pathlength and lower the exchange resistance, or pore
water transport by ground water infiltration could increase the
flux of pore water chemical to the water column. Further
‘research is necessary to develop and apply field measurement
methods to measure diffusive exchange in situ, in order to remove

uncertainty in parameterizatien of this process.
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B. AIR-WATER EXCHANGE

Air-water exchange includes the processes of rainfall washout,
dry deposition, absorption and veolatilization. Because these
exchanges occur across an open model boundary and measurement is
difficult, process parameterization is particularly uncertain.
Rainfall washout and dry deposition represent the atmospheric
load to the water column; both are described as deposition
velocities (v and v, f) multiplied by the total chemical
concentration in air C,. Since both deposition processes are
usually specified és external forcing functions to water gquality
models they will not be considered further, except to note that
both deposition velocitiss and air concentrations ares difficult
to measure, resulting in uncertain atmospheric loadings. The
apparent spatial and temporal variability in depesitional
processas suggests that coupling the water quality model to
simulations of atnospheric chemical transport may be particularly
valuable in reducing this uncertainty.

The process descriptions for absorption and volatilization may be
combined as an expression for net volatile exchange

Ak(,C/H -f,C)

the product of a volatilization rate k, and the gradient between
atmospheric (£,C./H) and water column (f;C;) available chemical.
Depending upon the direction of this gradient, net velatilization
may represent either a source or sink of chemical. The two-film
theory of Liss and Slater (1974) describes the wvolatilization
rate as a function of serial mass transfer resistances in liquid
and gas films at the air-water interface, with the overall rate
constant given as:
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1
kK, KH

where KX, is the liquid film mass transfer coefficient [(L/T], K, is
the gas film mass transfer coefficient [L/T] and H is the

dimensionless Henry's constant defining chemical eguilibrium
between vapor and dissoclved phases. While there is general
agreement in this @escription of veolatilization, there is
considerable uncertaiﬁty in its parameterization. Obviocusly,
there are many parameters exerting influence upon the
volatilizaticon process. Henry's constant is particularly
critical, as it defines the chemical gradient and determines
which resistance controls k. For the semi-volatile chemicals of

. . R -5
greatest concern in the Great Lakes, H is in the range 10~ to

107 where direct experimental measurement is difficult and
produces uncertain results. Estimating H as the ratio of
solubility to vapor pressure is a questionable alternative, as
these properties are themselves uncertain for many chemicéls.
Henry's constant is also fairly temperature dependent, sc values
measured or estimated>a; 25° must be adjusted toc appropriate
environmental temperatures. Factor of 5-10 variability in H is
not uncommen; slightily less variabkility fcr extensively studied
chemicals including PCBs and TCDD. QSAR estimates, available for
some chemical classes (Brunner et al., 1990}, may also provide
more accurate values.

Liquid and gas-phase transfer coefficients are usually
extrapolated from reaeration and evaporation rates for the water
bodv of interest. Reaeration and evaporation have been studied

extensively, and fairly reliable correlaticns with envircnmental
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factors such as wind speed, drag coefficient énd water and air
viscosity have been developed. Correlations produce variable
estimates of these rates, presumably due to a dependence of the
rates upon scale. Correlations based upon data from large water
bodies predict generally higher mass transfer coefficients.
Extrapclation of the reaeration and evaporation rates to liquid
and gas-phase transfer coefficients for a chemical is
accomplished by scaling according to diffusivity ratios (Mills et
al., 1982; Rathbun, 1990), based upon limited experimental data.
Estimates of K, and X, can vary by 3-5, depending upon the '
particular method followed.

Volatilization rates determined in the calibration of mass
balance models represent perhaps the best estimates for this
process, although few examples can be cited. Richardson et al.
(1983) determined volatilizaticn rates of 0.2 and 0.05 m/d for
Aroclors 1242 and 1260, respectively, in Saginaw Bay,-Lake Hurcn.
However, aksorrtion of PCBs was neglected in that calibration;
including absorption would have increased the calibrated %s.

Schwarzenbach et al.(1979) calibrated a volatilization raite of
0.24 m/d for dichlorcbenzene in Lake Zurich. Considering the
importance of volatilization in mass balance models, further
field-scale determination of volatilization rates for the purpose
of reducing parameterization uncertainty appears necessary.
Simultaneous process calibration of air and water compartments
should be considered in any such design.

C. TRANSFORMATION/DEGRADATION

Transformation and degradation processes alter the mass balance
for certain chemicals by biclogical and chemical reaction.
Transformation is operationally defined as a process converting
one constituent of concern to another; both will usually be
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retained in the mass balance. Examples include mercury
methylation, mirex photolysis, DDT transformation to DDE and PCB
dehalogenation. Degradation is a transformaticn to constituents
ef no interest (or unknown chemical products) that are not
retained in the mass balance. Transformation processes of
concern include photolysis, hydrolysis, oxidation and aercbic and
anaerobic biodegradation. Except for photolysis, which is
limited to the upper water column, these processas may be
particularly important in the sediment where even relatively slow
transformation rates can alter chemical accumulation.

Transformation/degradation are described as first-order kinetic
processes in the mass balance formulation, and are parameterized
by a first-order reaction rate, k,. For hydrolysis, oxidation
and hiodegradation this is an approximation since these are
second-~order reactions, although first-order with respect to
chemical concentraticn. &k, must usually ke estimated fron
experimental data, although transformation rates have been
inferred from vertical chemical distributions in sedinent pore
water (Oliver, Carlton and Durham, 1589). The reliakility of
transformation rate data and its applicability to environmental
conditions make estimation of this parameter particularly
uncertain. Practically, the observed persistence of a chemical
can be used to define a prcbable upper bound for transformaticn
rate; this may be essentially zero for many persistent toxics.
If not, then uncertainty in estimates of %, can exert a streong

influence on the mass balance.
D. WATER COLUMN EXCHANGE
Water column exchange includes the processes of advection and

dispersion. In the 2-compartment model the only water column
exchange process is ocutflow, which has a minor influence on the
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mass balance for most chemicals. The completely-mixed assumption
presumes that lake circulation is adequate to maintain uniform
chenical concentrations throughout the water column. While this
assumption may be valid on an annual basis, thermal
stratification in particular may seasonally reducs circulatiocn
allowing concentration gradients to develap. Stratification
alters particle transport, as previously mentioned. It may
‘affect other processes as well because of their first-order
relationship to chemical concentration. For example, a chemical
transformation or volatilization rate will be effectively reduced
if the chemical is depleted in the epilimnion during
stratification. To simulate spatial variability in chemical
concentraticns requires additional model segmentation, and the
addition of water column exchange processes to the model
formulation. ' '

In fact, equations 1 and 2 form a basis commonly used f£or =mcre
ccaoplex, multisegment models. Such models are made up of several
water column and sediment compartments in which the mass kalancs
egquations 1 and 2 apply, with minor modification. This
mcdification is necessary to account for mass exchange between
water column segments. If segment 1 receives flow Q, from an
adjacent water column segment 3, and some degree of mixing
(zarameterized as a “bulk dispersion coefficient, E’,} ogsurs
between the segments, then the modification to equation 1 would
ke to add the terms

QG+ E (G -C)

to the water column exchange term previcusly defined. Flows and

dispersion coefficients are temporally varied to reproduces the
.observed circulation patterns. This is usually done by
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calibration, either to a consarvative tracer such as chloride, or
to temperature. Calibration is only possible if gradients in the
tracer are observed; this limitation has prevented, for instance,
the calibration of large-scale horizontal exchange in Lake
Michigan (Rodgers and Salisbury, 1981). The predictive accuracy
of calibrated exchange beyond the period of calibration may alse
be uncertain.

Hydrodynamic simulation has often been proposed as an alternative
to calibration for exchange parameterization. Hydrodynamics
offers the prospect of more accurate prediction of water column
exchange, yet app}ications for mass balance model
parameterization have been limited. Because hydrodynamic
simulations take place on tize and space scales much smaller than
those of interest for mass balance, either hydrodynamic results
must be averaged to pro&uce exchange parameters or the mass
balance equations must be solved on the hydrodynamic grid. The
averaging schemes necessary to implement the first option are not
generally developed, and the computational expense of the second
cption has been prohibitive. This latter option may become
feasible with the growing availability of supercomputers and
high-performancs computer workstations.

'S EXAMPLE: LAKE ONTARIO LEVEL 1 FATE OF TOXICS MODEL

A preliminary ("level 1") model for toxic chemicals in Lake
Cntarioc was developed to support the Lake Ontario Toxics
-Management Plan development. The model was applied to predict
the relationship between loading and chemical concentrations in
water, sediment and biota for toxic chemicals of concern
includin§ chlordane, DDT, dieldrin, hexachlorobenzene, mifex,
octachlorostyrene, PCBs (modeled as homologs) and TCDD. This
model was based upon earlier models of radiocnuclides (Rebbins,
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1985b; Thomann and Di Torc, 1983), PCBs (IJC, 1988) and TCDD
(Endicott et al., 1989) in Lake Ontario. The mass balance was
based upon the two-ccmpartzent formulation presented akove. The
mass balance model was coupled to a bicaccumulation model to
extand pradictions to toxic chemical concentrations in biota,
althcugh the bicaccumulation model will not be discussed here.
Because of limitations of the toxic chemical database,
particularly the lack of reliable locading estimates, calibration
of the model was not attempted. Loadings were treated as a
single forcing function, including atmospheric deposition and
absorption. The initial steady-state application of the model is
presented here, although dynamic model applications have been
subsequently developed.

Because of the preliminary, uncalibrated nature of this model
estimation of predictive uncertainty was z particularly important
/aspect of this model application. CUncertainty analysis was used
to realate parameter uncerzainty to uncertainty in model
predictions. Results of this analysis provided estimates cf
confidgnce for model predictions. Conceptual and descriptive
errors in the model were neglected, because these factors relate
to possibilities which would change model results to an unknown
extent. Uncertainty due to these errors can only be identified
by model calibration and verificaticn, althcugh scme gense of the
relative importance of mcdel error was gained by comparing
results to predictions generated by a conceptually-dissimilar
model, TOXFATE (Halfon, 1990).

A. ANALYSIS OF MODEL UNCERTAINTY
Uncertainty analysis may be performed by either first-order or

Monte Carlo methods, the latter being used for this applicaticen.
The Monte Carlo method allows direct analysis of the consequence
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of model parameter uncertainty, since the meodel can be used to
compute changes in concentration resulting from changes in
parameter values. This is achieved by performing repeated
simulations of the meodel with randemly selected values from
defined probability distributions. For each simulation parametsr
values are chosen at random from specified frequency
distributions. This is known as the Latin Hypercube methed
(McXay et al., 1979). The process is repeatad for a number cf
iterations sufficient to converge upon an estimats of the
frequency distribution of the ocutput variables. Montes Carlo
analysis allows a probabilistic statement of uncertainty to be
made because a distribution of model predictions is produced
(Gardner and O'Neill, 1983). The output probability
distributions for 200 and 300 itearations were found to ke the
same; 300 iterations were used to assure convergence in the Monte
Carlo analysis.

In Monte Carlo analysis probability distributions are used to
represent the confidence, or uncertainty, in the parameter
values. The selection of the probability distribution for each
model parameter depends upon the information used to estimate the
parameter. No distinction was made between parameters that were
uncertain and those that were variable, because the level 1 model
simulates anly average conditions in -the lake. Several
probability distributions were used to represent parameter
uncertainty in this exercise. If a parameter was based upon a
number of data values, then the probability distribution of the
sample mean was used. More often, however, parameter uncertainty
was specified as a range of values. If it was assumed that the
parameter could be anywhere in the range with equal probability,
a uniform probability distribution was used. If instead the
range was interpreted as confidence limits, with the actual value
probably lying in the middle of the range, the normal or
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lognormal distributicn was usad. There are several reasons for
preferring the lognormal distribution (Endicott et al., 1989).
For a narrow range the lognormal distribution approximates the
normal, but for wide range the lognormal distribution is centeread
on the gecmetric mean and produces fewer extremely large values.
In practice, the lognormal distribution is preferred because
values generated are always positive. In a previous study the
sensitivity of the Monte Carlo analysis to the assumed parameter
distribution was investigated (Endicott et al., 1989). t was
concluded that the choice of uncertainty probability distribution
for the most sensitive model parameter (photolysis rate constant)
did not significantly affect the results of Monte Carlo analysis.

The parameterization of the mass balance model followed the
methods described above; details of the parameterizaticn may be
found in a report (Endicott et al., 1990). Probability
distributions were also estimatsd for the parameters to quantify
uncertainty in the values. System-specific parameterization is
summarized in Table 1; the chemical-specific parameterization is
presented in Tables 2, 3 and 4. Uncertainty was expressed in
terms of the coefficient of variation (CV), a normalized measure
of variability. For normal distributions, the coefficient of
variation is the standard deviation (¢) divided by the mean (u):

cv=2
B

For lognormal distributions the coefficient of variatien is
defined (Aitchisen and Brown, 1969%) as:
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TABLE 1. LAKE ONTARIO MODEL PARAMETERS

PARAMETER UNITS MEAN VALUE CV ) DISTRIBUTICON

Volume . o 1.68E+12 constant

Interfacial Area m® - 1.95E+10 - - constant

Flow nﬁ/s 6770 0.109 lognormal

Suspended ng/1l 1.2 0.0932 lognormal

Particle :

Concentration

Sedimented mg/l 270000 0.266 lognormal

Particle

Concentration

Particle - z/d 1 adjusted to balance

Settling sediment particle

Velocity : fluxes

Particle mn/yr 0.741 0.430 lognormal

Resuspension

Velocity

Particle mm/yr 0.889 0.426 lognormal

Sedimentation

Velocity

Diffusive .em/d 0.1 0.642 lognormal

Exchange ’

Coefficient

Suspended. - ' .15 - 0.0937 - lesnormal

Particle £_ ' ‘ : -

Sedinentead 0.0323 ©0.236 nor=zal

Particle £

Water Column mg/1l 4 0.239 lognormal

NSOM Conc.

Sediment Solids gm/ml 2.4 constant

Density

Solids Loading kg/day 1.4E+07 = adjusted to balance
water column particle
fluxes
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TABLE 2. SELECTED roc K, VALUES FOR CHEMICALS OF INTEREST

CHEMICAL log(X,) CV of K_,
Chleordane 6.00 0.683
DDT 6.00 0.289
Dieldrin 5.50 0.550
HCB 5.84 0.475S
Mirex 7.14 0.612
oCcs 6.20 0.9380
PCB-3 v 5.46 0.262
PCB=-4 5.89 0.287
PCB-5 6.28 0.301
PCB~6 6.74 0.301
PCB-~7 7.12 0.274
PCB-8 7.51 0.270
TCOD 6.76 3 0.422 T
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TABLE 4. TRANSFORMATION (PHOTOLYSIS) RATES FOR CHEMICALS

OF INTEREST

CHEMICAL kp (1/4) DISTRIBUTION CV
Chlordane 0
DDT 7.9E-4 lognormal 1.73%
Dieldrin 4.2E~-6 lognormal 1.73
HCB 2.1E-5 lognormal 1.73
‘Mirex S5.4E-5 lognormal ‘ 1.73
ocCs 0
PCB-3 0
PCB-4 0]
PCB-5 0
PCB-6 0 o
BPCB-7 0
PCB-8 0
TCDD 2.3E-3 loguniform over

(2.3E=4 - 0.013)

The 95% confidence limits are * factor of 10.

194

Great Lakes Monograph No. 4



cv = e¥ -1

where ¢, = standard deviation of the natural logarithm of
the parameter valuea.

B. RESULTS

Deterministic and Monte Carlo simulation runs were made with unit
loadings of 1 kg/day. Sample Monte Carlo output histograms, in
this case for TCDD, are presented in Figure 2. "Count " in the
figqure is the freqﬁency of model predictions lying in a
particular concentration interval, from a total of 300 Monte
Carlo realizations. The model output distributions produced by
Monte Carlo analysis were approximately lognermal for all
chemicals. Reproducibility cf the Monte Carlo cutput
distributions was verified. The lcgarithmic mean, cocefficient of
variation (CV) and 95% confidence intervals of the distributicn’
of model predictions are presented in Table 5. The confidence
limits represent the model uncertainty as determined by Monte
Carlo analysis. The logarithmic means of the Monte Carlo output
distributions agree with the correspending deterministic
predictions. The variabkility of water and sedinment
concentrations are generally similar for each chemical, with CVs
in the range of 0.2 to 0.7. Because the steady-3ta®s mcdel
relationship between total loading and concentration is linear,
these predictions can be proportioned for any other total load to
the lake. The load-concentration relationships can also be
represented graphically, as shown in Figure 3.

The variability of model cutput may be compared to input
parameter variability, to indicate whether input errors are
accunulated or attenuated by the model. For each chemical, the
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Figure 2. Monte Carlo Output Distribution for TCDD
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TABLE 5.

SUMMARY OF MONTE CARLO RESULTS

Predicted Steady State Concentrations for Total Lake
Loading of 1 kg/day

CHEMICAL DISSOLVED WATER (pg/l)Q SORBED SEDIMENT (ng/q)
log  cv {95% CI) log cv (35% CI)
MEAN MEAN
Chlordane 171 0.538 63.8 460 36.3 0.503 14.3 92.2
pDT 140 0.608 46.8 422 30.1 0.629 9.71 93.2
Dieldrin 387 0.661 119 1260 48.8 0.368 24.3 98.0
HCB 67.8 0.239 42.5 108 12.2 » 0.671 3.68 40.2
Mirex 77.6 0.710 22.2 272 53.4 0.451 23.0 124
ocCs 111 0.487 44.9 274 29.0 0.596 ‘9.84 86.3
PCB-3 87.0 0.345 44.2 171 10.5 0.728 2.94 37.9
PCB-4 93.8 0.436 41.4 212 17.7 0.703 5.12 61.4
PCB-5 90.3 0.473 37.4 218 25.9 0.567 9.20 72.9
PCB-6 75.9 0.609 25.2 228 34.5 0.592 11.8 101
PCB-7 66.5 0.658 20.5 216 44.7 0.460 18.9 105
PCB-8 - —50.6 © 0.640 16.0 159 - 50.6 0:403-- 23.7 103
Aroclor 1248 94.9 0.260 57.5 157 23.9 0.325 12.8 44 .4
Aroclor 1254 87.1 0.354 44.4 171 32.7 0.369 16.2 65.8
TCDD 67.2 0.584 23.2 194 31.1 0.581 10.8 89.5
Reducing Uncertainty in Mass Balance Models of Toxics 197
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Figure 3. Load-Concentration Relationships for PCBs
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input parameter CVs were compared to the ocutput concentration
CVs. For water and sediment concentrations, the output CVs were
generally similar or somewhat smaller than the input parameter
CVs, indicating that input errors do not significantly accumulate
through the mass bkalance model. For example, the large
uncertainties in veolatilization rate constant for DDT, dieldrin
and mirex are not reflected in proportionately greater output
variabilities of water and sediment concentration for thdse
chemicals.

c. IDENTIFICATION OF CRITICAL PARAMETERIZATION UNCERTAINTY

Given that uncertainty in model predictions is large and, hence,
confidence in predictions is low, how can the situation be
improved? Aside from estimating the confidence intervals for
model predictions, Monte Carlo analysis may be used to examine
how confidence in model predicticns is improved by resducing cr
eliminating uncertainty (variability) in the model parameters.
An application of such analysis would be to prioritize reseazrch
efforts intended to improve the accuracy of model predicticrns by
acéurately measuring one or more parameters. The degree of
correlation observed between model inputs and outputs indicates
the relative importance of input parameter uncertainty in
contrikuting to predicted coﬁcentra;ion variabi}i;xi The Mcnte
‘carlo method is modified by simply redefining the uncertainty in
the parameter or parameters of interest, and comparing the
results to the original (base case) output distribution.

DDT, a chemical with significant variability in water and
sediment concentration predictions, will be used to illustrate
the method. Cross-correlation analysis of the base case Monte
Carlc run identified the log K, regression error, lgK,. and the

rates of transformation, volatilization and sedimentation as the
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parameters most responsible for model variability. Three tast
cases, representing different levels of parameter uncertainty
reduction, were preparesd:

Case 1: eliminate lg K, regression errosr (used to

represent uncertainty in K.)

Case 2: eliminate logK, regression error and uncertainty

in k, k and v

Case 3: eliminate lg X, regression error and uncertainty

in k, k,, 2v and lgk,

Eliminating wvariability would be equivalent to perfectly accurate
parameterization. A fourth case tested the impact of load
uncertainty upon predictions:

Case 4: base case uncertainty plus uncertainty in the
chemical load

Monte Carlo analysis was applied to each of these cases. The
results, in terms of logarithmic mean arnd CV for the distribution
of water predictions, are pressented in Table 6. The first three
cases test the impaét of sequentially removing variakility in the
medel parameters—mosf affecting output variability. Variability
in predicted water concentration is reduced 30% by eliminating
the log K, regression error, and by 90% by additionally eliminating
variability in &, k and v,. Eliminating variability in lgKX, has
only marginal impact upen the uncertainty of predicted water
concentrations.
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TABLE 6. MONTE CARLO OUTPUT FOR TESTS OF PARAMETER
VARIABILITY REDUCTION FOR DDT

Dissolved water concentration (pg/l)

CASE leg MEAN CV 95% CI

base case 140 0.608 46.8 - 422
case 1 146 0.492 58.4 - 363
case 2 176 0.089 148 - 210
case 3 177 0.069 155 - 203
case 4 139 0.771 36.6 - 532

To this point, all model predicticns have kbeen made with a
constant unit load. One should not lose sight cf the fact thzt
chemical lcading is, in fact, ancther uncertain input to the
model. Case 4 tests the significance of an uncertain load upon
output variability. Loading is treated as having a legnormal
is treated as having a lognormal probability distribution with a
CV of 0.428 (the width of the 95% confidence interval for the
loading distribution is a factor of five, similar to that for
other iﬁpcfzgnt modal inputs). The impact of load ;;riability
upon predicted water concentrations is significant; variability
is increased by 60% over the base case.

The results of the parameter variability reduction analysis for
DDT may be extended to the other toxic chemicals. Figure 4
illustrates the contribution of variabkility in key model
parameters to variability in wate2r concentrations. The sguare of
the correlation coefficient, F is an estimate of the fracticn of

Reducing Uncertainty in Mass Balance Models of Toxics
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Figure 4. Sources of Uncertainty in Water Concentration Predictions
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output variability attributable to each uncertain parameter.
Variability is controlled by chemical less rates (&, k and v)
and hydrophobicity (logX, regression and lgkX,) although the
relative importance of each parameter varies from chemical to
chemical. In this figure the chemicals are ordered according to
hydrophobicity; there is a general trend of increasing
significance in partitioning uncertainty ("X, error") and a
declining significance of volatilization and transformation rate
for the more hydrophobic chemicals.

D. IMPLICATIONS OF UNCERTAINTY ANALYSIS FOR MODEL APPLICATION

The uncertainty analysis performed on the "level 1" mass balance
model indicates that predicted steady-state water and sediment
chemical concentrations are confident to within about a factor of
ten. This represents a large uncertainty in comparison to the
potential accuracy of a calibrated mcodel, where an accuracy on
the order of * 50% may be achieved. However, even with the
factor-of-ten uncertainty, the results of the "level 1" model
have apparently proven useful for preliminary applications in the
Lake Ontario Toxics-Management Plan. For instance, the
load-concentration predictions confirm that virtual elimination,
the stated gocal of the Toxics Management Plan, must be achieved
to meet#strzggent-water gquality criteria being débeigbed £or the
Plan (Zafonte, 1990). Mass balance modeling will play a
continual role in gquiding toxics management efforts by predicting
the effectiveness of loading reductions.

Even if model uncertainties were too large for predictions to be
useful, the analysis of uncertainty is useful to identify
critical uncertain parameters, which may be prioritized for
further research investigation.
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E. IMPROVEMENTS

This mass balance application could be improved in a number of
ways. Most importantly, the influence of non-steady state
conditions and specification of atmospheric concentration and
exchange, independent from loading, should be incorpcorated in the
model results. Load-concentration diagrams incorporating these
effects as well as parameterization uncertainty are being
developed, to provide. additional insight to the simulation of
this critical relationship. Figure 5 illustrates how the linear
steady-state load-concentration relationship, and its confidence
limits based upon uncertainty analysis, compare to results under
more complex and realistic conditions.

VI. PROSPECTS FOR REDUCING PARAMETERIZATION UNCERTAINTY

Reducing parameterization uncertainty in mass balance models will
require the develcpment of a rssearch strategy combining (1) the
determinaticn of critical process descriptions and parameters
(including field measurement and verification) with (2) the
further development of comprehensive data sets for model
calibration, verification and post-audit. Critical |
parameterization uncertainties may be identified by the
application of uncertainty analysis as well as by testing the
sensitivity of model predictions to different process
descriptions. More experimental process research will allow more
advanced process descriptions to be usad, as will more powerful
computer resources. However, modelers will still rely upon the
experience gained by calibration and verification to reduce
parameterization uncertainty.
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Figure 5. Impact of System Lag Time and Constant Air

Concentration
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VII. UNRESOLVED ISSUES/QUESTIONS
A. WHAT UNCERTAINTY IS 'I,m'nonuczn BY COMMON ASSUMPTIONS IN
MASS BALANCE MODELS?
1. Equilibrium partitioning
2. Mixed-layer sediment model
3. Constant settling/resuspension/deposition particle
fluxes
4. Completely-mixed water column
5. Single sediment compartment
6. Single, constant air concentration (C,) driving
air-to-water chemical fluxes
B. DO UNCALIBRATED AND/OR SIMPLISTIC MASS BALANCE MODELS HAVE
VALUE FOR DECISION MAKING?
C. ARE THERE BETTER WAYS TO ESTIMATE/PRESENT MODEL
UNCERTAINTY?
206 Great Lakes Monograph No. 4



MASS BALANCE NOMENCLATURE

Vie V5 = Water column and sediment layer volumes [If]

C., C; = Chemical concentratlcns in water column and
sediment [M/L]

w = Chemical loading rate

0 = Flow rate through lake

G, = Chemical concentration in water column
segment 3 {M/IF]

0O = Flow rate from water column segment 3
to segment 1 [L /T]

E’;, = Bulk dispersion cocefficient between

- segments 3 and 1 [L°/T]

K, = Diffusive exchange coefficient between
water column and sediment [L/T]

A = Interfacial area between segments [Lﬁ

Jiv fov fu : = Dissolved, bound (to non-settling organic

matter), and sorbed (to settling particles
chemical fractions in water column

S fon'fa = Dissolved, bound, and sorbed chemical
fractions in sediment layer

n, = Porosity of sediment layer

k, . =  Volatilization mass transfer coefficients

" (L/T] -
k, = ‘Transformation/degradation rate of chemical
’ (1/T]

k, = Transformation/degradation of rate of
chemical in sediment ([1/T]

Cg = Gas phase atmospheric chemical concentration
(/L)

C, = Total atmospheric chemical concentration
(M/Ls]

Vou = Wet deposition velocity ([(L/T]

Vi =  Dry deposition velocity [L/T]

Reducing Uncertainty in Mass Balance Models of Toxics . 207
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S Jor : = Particulate and vapor fractions of chemicals
in atmosphere

H o= Dimensionless Henry's constant
Y, Vs V = Solids settling velocity, resuspension

velocity, and burial (sedimentation)
velocity [L/T]
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SUMMARY OF THE PROCESSES

Exposure to the Chemical. The flux rate of chemical to an aquatic animal is depen-
dent on the chemical concentrations in the two media contacting the animal; water and
food. Bioaccumulation models explicitly specify the dissolved chemical concentration and.
somerimes, the chemical concentration in the detritus or phytoplankton at the base of the
food chain as forcing functions. In general, these concentrations are areal averages for a
defined segment of the water body. Where concentrations vary spatially, such that a
migrating animal experiences a significant temporal variation in exposure to the chemical,
several segments are defined. Seasonal migration is accounted for by moving the migrating
animal between the ségments.

The model is usually directed to a top predator fish of commercial or sport fishing
value. The chemical concentration in the prey of this fish is dependent on the concenira-
tion in the food of the prey, and so on to the base of the food chain. Thus, to correctly
specify the chemical concentration in the food of the top predator it is necessary to define
the food web below the top predator and to sequentially calculate concentrations from the
base of the food chain through the top predator. The definition of the food web is gener-
ally simplified by using a single spécies as a representative of all the prey species inhabiting
closely related ecological niches.

Uptake and Loss of Chemical. The accumulation of toxic chemicals by aquatic ani-
mals is generally described by the following equation (1):

- . av; : X T
dr = [_(EC+FZaifCiivi_(1i+Gi)vl ‘ (D

where

v, = concentration of chemical in species i in the food chain {ug/g(w), where g(w) is grams
wet weight]

K .; = rate constant for chemical uptake across the gill of species i [L/g(w)-d]

K ; = rate constant for excretion of chemical by species i (1/d)

a,; = efficiency at which ingested chemical from prey j is assimilated by species i

C.; = ingestion or consumption rate of species i on species j [g(w)prey/g(w)pred/d]
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G, = growth rate of species i (g(w)/g(w)/d)

c = dissolved chemical concentration (ug/L)

n = number of species (including different year classes of a single species) preyed on by
species i

The first term of Equation (1) represents the direct uptake of chemical by the animal
from water. The second term represents the flux of chemical into the animal through feed-
ing. The third term is the loss of chemical due to desorption and excretion plus the change
in concentration due to growth. Eguation (1) is applied to each of the animals that
comprise the food web. For the upper levels of the food web changes in chemical
concentration with age ars sometimes significant and each year class of the species art these
levels is modeled separately.

The rate constant Ky, parameterizes the transport of chemical across the gill to the
blood. It is essentially the body weight normalized product of a mass transfer rate constant
and the gill surface area. Several equations have been proposed to define the mass transfer
rate constant based on mechanistic descriptions of the processes occurring at the gill sur-
face (2-4). A simpler approach that does not require explicit definition of the mass transfer
rate defines Ky;j from the uptake rate for oxygen (1). Oxygen transfer rate is defined by the
respiration rate of the animal and the oxygen concentration of the water (cO2):

r;
Kuto = (2)
2 COz '

where 7, is the Tespiration rate in units gOp/g(w)-d. Mechanistically tfis uptake rate may

be described in terms of a mass transfer rate constant at the gill (X uéz), the gill surface
area (A), and the weight of the animal, W:

Kuozf'l _
uigs = v (3)

K

Similarly, the mass transfer rate for a chemical is:

KuA
Ko = 4
w = ()
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If equations (2) and (3) are equated, solved for A/W and substituted into equation (4), the
uptake rate of the toxicant may be written as:

Ky r’;

Ky = )]

y
K LigzCoz

From this equation it follows that the uptake rate of a chemical can be computed from the
respiration rate of the animal if the ratio of the mass transfer coefficients for the chemical
and oxygen is known. Estimates of the ratio may be obtained from measurements of chem-
ical and oxygen uptake efficiencies. The ratio of mass transfer coefficients is equal to the
ratio of uptake efficiencies measured when the body burden of the animal is zero.

The excretion rate constant Kj includes all of the processes by which the animal is
able to depurate chemical. For most organic chemicals it appears that the gill is the major
site of depuration (5) and that Ky and K define the rates of uptake and elimination for a
reversible ditfusive process. The ratio of these rate constants defines the equilibrium con-
dition for this process, or what is generally called the bioconcentration factor, N.

It has been demonstrated that the bioconcentration factor of neutral organic chemicals
measured in laboratory studies can be predicted from the Kqw of the organic chemical
(6-9). In fact, it appears that the lipid-normalized bioconcentration factor is approximately
equal to Kgw, at least for log Kow values up to about 6. Therefore, it is possible to com-
pute N for a neutral 6rganic chemical from the Kqw of the chemical and theéTraction lipid
of the animal (ff), i.e.,: o '

Using this value of N for animal i in the food chain and the computed value of K;j it is
then possible to compute Kj:

K, = == (7)
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Above a log Koy value of 6 a loss of linearity has been observed in correlations of N
and Kgw (10-12). N appears to reach a maximum in the log Kqgw range 6.5 to 7 and begins
to decrease at higher log Kow values. Several hypotheses exist to explain this behavior.
Gobas et al. (3) have reviewed and evalnated these hypotheses and have concluded that the
dominant effects are the increasing importance of fecal elimination and a decrzase in freely
dissolved chemical (due to complexation with dissolved and colloidal organic material) as
Kow increases. The latter effect is an experimental artifact dependent on the concentra-
tion of organic matter in the water used in the experiment. Fecal elimination was shown to
lower the slope of the N-Kq relationship but not cause a decreasing relationship.

Transfer of chemical across the gut wall is defined by an empirical constant; the
chemical assimilation efficiency. This constant specifies the fraction of ingested chemical
assumed to be transferred from the gut 1o the animal. The rate at which chemical is
ingested is defined by the rate of food consumption C;j and the concentration of chemical in
the food. The food consumption rate is calculated from the rate of energy usage. Energy
usage is estimated from the rates of production and metabolism of body tissue by the ani-
mal. Growth ra:e defines the net production of body tissue (g(w)/g(w)/d). The rate of
metabolism of body tissue, R, may be computed from the respiration rate by: 1)
stoichiometricaily converting respiration from gO2/g(w)/d to gC/g(w)/d; 2) converting
carbon to dry weight by assuming ail animalis are 40 percent carbon on a dry weight basis;
and 3) converting dry weight to wet weight using observed ratios. Given the caloric density
of the animal’s tissue in units cal/g(w), A, the energy usage rate, P, is then;

Pio= N(R-G)) : » (8)
Dividing Pj by the fraction of ingested energy that is assimilated, a, yieldgrthe rate of energy
intake by the animal. The rate of consumption of food, Cjj, is the energy intake rate

divided by the caloric density of the food, A 2

R+ G,
a

o o 9
y x) (9)
Where food is a lower trophic level animal, differences in caloric density are assumed to be

related to differences in wet weight:dry weight ratio, i.e., the caloric density of dry tissue is
assumed to be the same for predator and prey. The caloric density ratio in Equation (9) is
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thus replaced by the ratio of the dry weight fractions of the predator and its prey. Doing
this ignores differences in body composition, particularly differences in lipid conrent.
While such differences do effect the caloric density ratio, they are much less significant
than the effect of ditferences in water content.

For deposit fesding animals consumption is based on carbon rather than energv. C;
is computed as above except that caloric density is not considered, P; is expressed as
gC/g(w)/d using the conversion factors mentioned above and food assimilation efficiency,
a, is interpreted as the fraction of ingested carbon that is assimilated. In the application of
Equation (1) v, the chemical concentration in the food (i.e., sediment), is expressed as
ug/gC.

Respiration and growth are defined by empirical relationships. Respiration is a spe-
cified function of weight and temperature, T, of the form:

R = BT (10D

An exponential growth rate that varies with age is assumed (see 1). The respiration-
weight-temperature function for each species is determined by regression of data from lab-
oratory respiration studies. The growth rates are established from field observed
length-weight, length-age and weight-age relationships.

UNCERTAINTY IN PROCESS DESCRIPTION

Migration. Migration may be defined as the moverment of fishes bétwezn three rypes
of habirats: one suitable for reproducrion, one suitable far feeding and one suitable as 2
refugs in periods of unfavorable abiotic or biotic conditions (13). The movement between
habitats is strongly influenced by the diel pattern of light and dark, the annual temperature
and photoperiod cycles and the age and sex of the fish. In addition, the habitars suitabie
for feeding and refuge may be different at different stages in the life cycle.

The general migration patterns of individual fish species can be determined from tag-
ging studies. These data generally indicate that migration timing and extent vary greatly
berween individual fish. In addition, some species include a sub-population that do not
participate in migration. For example, the Green Bay walleye include a sub-population
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that permanently resides in the Fox River and a sub-population that migrates between the
river and the bay. Other species, such as stripped bass, only begin migrating after age two
or three (14).

The variability of migration bshavior within a fish population can make assignment of
a single deterministic migration pattern problematic. An unquantified bias may be intro-
duced into the model. Further, the comparison of computed and observed fish contam-
inant concentrations ignores possible differences between the movement history of the fish
sampled and the migration pattern defined in the model. Also, the variability of migration
behavior increases the variance of the contaminant concentration distribution in the
population, particularly if the different habitats have significantly different exposure <on-
centrations. These factors increase the inherent uncertainty of the calibrated model.

Migration uncertainty limited calibration in the modeling of Kepone in the stripped
bass food web of the James River Estuary (15). Two migratory species were included in
that model: stripped bass and Atlantic croaker. The croaker has a well-defined migration
pattern and the model calibration was excellent Figure 1). The migration pattern of the
stripped bass is more complicated because immature fish do not migrate and the age at
which migration begins may vary between individual fish and between year classes (14). In
addition, the timing of the migratory movements is somewhat variable. As a result, the
temporal Kepone pattern in the stripped bass is less structured than that of the Atlantic
croaker and the model calibration is weaker (Figure 1).

Additional-aspects of migration that are not considered in the-current models are the
changes in energy expenditure and energy uptake. The activity level of the fish is increased
during migration and feeding may cease. Fat reserves may be used and stored chemical

- may be released. The significance of these changes to the seasonal and annual contam-
inant concentration profile are uncertain.

Food Web Structure. The computed contaminant concentration in top predator fish
is largely dependent on the structure of the food web. Of particular importance are the
number of trophic levels in the food web and the association of the components of the food
web with the water column and sediment environments.
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Figure 1. Comparison of observed and computed Kepone concentrations in James River
white perch, atlantic croaker and striped bass(15).
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The bioaccumulation models are generally built around the classical description of
the aquatic food web; phytoplankton to zooplankton to forage fish to top predator fish.
This description is now viewed as inadequate because of the demonstrated contribution of
the bacteria to nanozooplankton to microzooplankton "microbial loop" to carbon flow (16).
Figure 2 shows the classical food web and the positioning of the microbial loop. The signif-
icance of this microbial loop in contaminant accumnulation has not been established. In
freshwater systems the ability of cladocerans to graze the full microbial loop may reduce
the impact that biomagnification through the loop has on higher trophic levels. In
estuarine/marine systems the plankton food web is fairly linear and the microbial loop may
be of greater importance.

Contaminated sediments are a dominant toxic chemical problem, and the pathway of
chemical movement between these sediments and top predator fish is an important compo-
nent in toxic chemical models. This pathway generalily invoives forage fish who feed at or
near the sediment surface. These forage fish generally consume a variety of benthic
animals including insect larvae, amphipods, oligochaetes, gasiropods and bivalves. The
benthic animals may live on the surface of the sediment or they may dwell in the sub-
surface. They may be suspension feeders, surface-sediment feeders or sub-surface sedi-
ment feeders. The water they take in for respiration and the particles they ingest may be
characteristic of the overlying water column, the sediment or the benthic boundary layer.
They may be selective feeders; ingesting particles whose physical characteristics and
contaminant concentration are different from those of the bulk particulate material.
Defining a prototype benthic food web component is difficult because of the variety of

_characteristics and because benthic ecologists have not yet determined these characteristics
at the level required to define the contaminant exposure of the benthic animals. Uncer-
tainty in defining the exposure-regime of the benthic animals is of particular concern in
model projections in which the rate of contaminant concentration change in the sediment is
different from that in the water.

Transfer Across the Gut Wall. The equation describing contaminant uptake from
food specifies the assimilation efficiencies of food and contaminant as independent param-
eters. Recent experiments with zooplankton (17) and polychaetes (18) indicate that these
parameters are directly related and suggest that it is the contaminant released as tissue is
digested that is available for transfer across the gut wall. Thus, model uncertainty could be
reduced if empirical relationships between food and contaminant assimilation efficiencies
were available.
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Figure 2. Schematic of the aquatic food web illustrating the classical structure and the
microbial loop. :
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| If only contaminant in digestible food is available for uptake, then the use of bulk
food contaminant concentration is also a cause for uncertainty. The significance of this
uncertainty will depend on the variability of the digestible food:bulk food contaminant con-
centration ratio. It may be most important for deposit feeding animals. These animals
preferentially digest the more-labile components of the organic matter on the particles they
ingest. A large fraction of this organic matter is bacterial. It is likely that the bacteria
associated with sediment particles have a lower contaminant concentration per unit carbon
weight than does the bulk sediment carbon; a consequence of their being composed of sim-
pler carbon compounds than the bulk sediment carbon. Also, bacterial particulate organic
carbon (POC) is essentially new carbon, whereas bulk sediment carbon is old carbon that
has resistantly bound contaminart. Thus, only a small fraction of the ingested chemical is
probably available for uptake and this fraction probably varies depending on the age of the
sediment and the density of bacteria on the particles.

Growth. Growth rates used in the models are usually annual average values deter-
mined from measured weight and age data for fish from the water body being modeled.
Because growth varies seasonally, the models tend to underestimate growth during the
summer and overestimate growth during the winter. This error may not be significant
because growth affects both uptake and loss of chemical concentration. An increase in
growth will increase the rate of intake of contaminated food; but it will also increase the
rate at which chemical is diluted by increasing body weight. Figure 3 shows computed
annual cycles of PCB in three year old Green Bay walleye assuming either that the annual
growth occurs uniformly throughout the year or only during the time that temperature
exceeds 100C. The hypothetical temperature profile used in the calculations is also shown.
Restricting growsh to a growing season results in a greater concentration.variability through
the year, but the differences between the calculations are small. The differences, however,
do not include the effects of the annual variability in fish lipid content, nor the effects of
seasonal variability in exposure concentration. The growth related annual cycle of storage
and metabolism of fat reserves will affect the rate at which contaminants are excreted and
alter the contaminant patterns shown in Figure 3. Unfortunately, in most cases insufficient
data are available to describe the lipid reserve cycle. In rivers, the seasonal flow variability
will result in a seasonal exposure concentration variability. Depending on whether the con-
taminant is derived from an external source or from bed sediment, the exposure concentra-
tions will be highest or lowest during the summer low flow period when maximum growth is
occurring. This variability will tend to increase the effect of the seasonal growth variability.
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Figure 3. PCB concentrations computed for walleye assumed to grow at a constant rate
and walleye assumed to grow only when temperature exceeds 10°C.
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UNCERTAINTY IN PROCESS DESCRIPTION PARAMETER VALUES

Bioaccumulation models have numerous coefficients that define the processes being
described. Using the models developed by the Manhattan College group (1, 15, 19-21) as
the paradigm, the coefficients are presented in Table 1. Previous applications of the mod-
els have indicated that sensitivity to the various coefficients is dependent on the particular
contaminant being modeled. However, the contaminants may be categorized in three
groups: metals (with the exception of mercury) and low to moderately lipophilic organic
chemicals, lipophilic organic chemicals and super-lipophilic organic chemicals.

Models of Metals and Low to Moderately Lipophilic Chemicals. Most metals (exce-
pting mercury), and organic chemicals with log Kqw values less than 5, do not biomagnify.
The metals tend to be poorly absorbed from food (22), possibly because they are generally
stored in relatively inert components of cells which are not readily digested (23). The
lower Kqw organic chemicals are excreted sufficiently fast to limit their accumulation (20).
Modeis of these contaminants are most sensitive to coefficients associated with uptake
across the gill and excretion.

Respiration, contaminant:oxygen mass transfer ratio and bioconcentration factor are
the controlling parameters. Since uptake from food is not important for this group of
chemicals and excretion rate is usually greater than growth rate, the steady-state concentra-
tion is defined by the bioconcentration factor and the concentration of bioavailable con-
taminant in the water. Thus, uncertainty in the bioconcentration factor tends to dominate
the model uncertainty. As discussed above, the bioconcentration factor for neutral organic
chemicals can be estimated from the lipid content of the animal and the Koy of the
chemical. This relationship is probably accurate to factors of 2 or 3. Metals bioaccumula-
tion factors are much more difficult to predict because of species specific enzvmatic
responses to metal accumulation.

Models of Lipophilic Organic Chemicals. Organic chemicals with log Kqow values in
the range of 5 to 7 or 8 do biomagnify, with the extent of biomagnification increasing as
Kow increases (19-21, 24). This phenomenon occurs because uptake from food becomes
an increasingly more significant flux of chemical to the animal as Ky increases (20, 24).
The increasing importance of food as a contaminant source is due to an increasing contam-
inant partition coefficient for the plankton and sediment that constitute the base of the -
food web. Thus, the coefficients associated with food consumption, the assimilation
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efficiency across the gut wall and the partition coefficient at the base of the food web are.
the significant model parameters for these chemicals. In addition, growth diiution is impor-
tant because the high lipid solubility of these chemicals results in very low aqueous blood
concentrations and low excretion rates (19, 21).

Gut wall assimilation efficiency values used in the models are derived from labora-
tory experiments. We have compiled over two hundred published values encompassing a
variety of organic compound classes including polychlorinated and polybrominated
biphenyls, chlorinated insecticides, benzenes, toluenes, napthalenes and diphenylethers,
polyaromatic hydroc:irbons and polychlorinated dibenzo-p-dioxins and dibenzofurans.,
Approximately half of these values are for PCB congeners. Viewed in total the data are
highly variable. Efficiencies range from less than 0.1 to greater than 0.9 with little correla-
tion to Kgw, although values at the lowest and highest Koy values tend to be toward the
low end of the range. Within study variability is generally significantly less than cross study
variability, suggesting that much of the variability is due to differences in methodology or
differences berween individual anirnals or species.’

The significance of assimilation efficiency across the gut wall is illustrated by a model
calibrated to PCB homologs 3, 4, 5 and 6 in the lobster and flounder food chains of New
Bedford Harbor (21). The flounder is part of a largely benthic based food web. Sediment
forms the base of this food web and its PCB homolog concentrations were fixed by observa-
tion. Polychaetes represented the deposit feeding animals that constitute the bulk of the
flounder diet. To compute a PCB homolog distribution consistent with that observed in the
polychaetes and the flounder the assimilation efficiency was decreased as PCB chlorine
level increased. PCB homolog 3 through 6 assimilation efficiency values observed in labo-
ratory studies exhibit little evidence of a dependency on chlorine level, although wide cross-
study variability exists (21). Calibration was not possible if the same assimilation efficiency
value was used for all homologs. For example, applying the homolog 3 calibration
assimilation efficiency to the other homologs results in an over prediction of as much as
one and one-half orders of magnitude (Figure 4).

Values of the partition coefficient at the base of the food chain are generally calcu-
lated from Kqgw. For non-living particulate material, a particulate carbon weight based
partition coefficient is generally used. The uncertainty associated with this coefficient has
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“Figure 4. Computed and observed New Bedford Harbor flounder PCB homolog bioaccu-
mulation factors in relation to Kgw.
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~ been discussed Part 1 of this paper. Published data indicate that the plankton bioconcen-
tration factor for organic chemicals (BCF) is proportional to Kqw up to a log Kqgw of about
5. At higher Ky values the BCF tends to be independent of Kqy, although significant
variability exists. For example, BCFs for various PCB congeners in Lake Ontario plankton
show no trend with Kqw (Figure 5). These data were reported by Oliver and Niimi (25).
Laboratory phytoplankton BCF data for PCB congeners (26-28) and other organic chemi-
cals (29) show the same behavior (Figure 5b). Phytoplankton PCB data collected at vari-
ous times over a year as part of the Green Bay Mass Balance Study (Debra Swackhammer,
University of Minnesota, unpublished data) show relationships to Ko that vary from a
tendency to plateau at higher Kgws to a continuous proportionality to Kgy-

Recent laboratory experimental studies (Debra Swackhammer, University of Minne-
sota, unpublished data) suggest that the depression of phytoplankton BCF below its
expected linear relationship to Kgw is related to growth rate. These data show that as
growth rate is decreased the BCF values approach the values defined by Equation (6). The
mechanisms controlling the BCF-growth relationship have not been elucidated.

Alternately, it is possible that the observed BCF-Kqw relationship is an artifact
caused by the use of total dissolved chemical, rather than bioavailable dissolved chemical,
in the BCF calculation. Dissolved or colloidal organic matter present in the water would
decrease the bioavailable fraction of measured dissolved chemical in proportion to its con-
centration apnd the Kow of the che.r‘nicai. Such a "third phase” is known to cause apparent
independence of partitioning and Kqow-

The significance of uncertainty in the phytoplankton bioconcentration factor value is
illustrated using a steady-state bioaccumulation model of PCBs in the Lake Ontario lake
trout food chain (30). A linear food chain of phytoplankton, zooplankton, alewife and lake
trout was assumed. Consistent with the observed data, the phytoplankton bioconcentration
factor was assumed to be constant across all of the PCB congeners. The observed and
computed bioaccumulation factors for each level of the food chain are shown in relation to
Kow in Figure 6. Two computed lines are presented: the calibrated model with constant
phytoplankton bioconcentration factor and a model that assumes a linear relationship
between phytoplankton bioconcentration factor and Kgw. At log Kqyw values less than 6
the models are nearly identical at all trophic levels above the phytoplankton. Above 6 the
models begin to diverge. At log Kqw of 7 the.computed concentrations in lake trout differ
by about one order of magnitude.  Assuming that the bicaccumulation factor varies
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between the limits of the two assumptions used here, the use of either assumption may not
be appropriate. However, use of a time-variable partitioning requires deriving a valid
mechanistic description of the uptake and loss of contaminant by phytoplankton.

Models of Super-Lipophilic Organic Chemicals. Super-lipophilic organic chemicals
(log Kow > about 7 to 8) have been shown to have reduced uptake efficiencies at both the
gill and the gut, and appear to biomagnify somewhat less than the lipophilic chemicals.
However, the available data are too limited to adequately model these chemicals. In par-
ticular, the lack of detectable dissolved concentrations tends to dominate the uncertainty of
the models. Also, the limited data on gill versus gut uptake do not allow an assessment of
the relative importance of these uptake routes and, thus, the relative significance of their
associated parameters. Additional laboratory and field data are needed before a credible
uncertainty analysis can be conducted for this class of chemicals.

PROSPECTS FOR REDUCING UNCERTAINTY
The most significant uncertainties relate to the following processes or parameters:

(1) the species and contaminant specific uptake efficiencies and bioconcentration
factors of metals,

"(2) gut wall assimilation efficiencies of lipophilic and superlipophilic chemicals and
their relationship to food assimilation efficiency,

(3) phytoplankton bioconcentration factors,
(4) sources of contaminants to benthic animals,
(5) migration, and
(6) seasonal changes in animal growth and lipid content
Of these, the second, third and fourth on the list probably have had the most impact on the

models that have been developed and are likely to be the most important sources of uncer-
tainty in the modeling contemplated for Lake Ontario.
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The greatest reduction in overall model calibration uncertainty would probably result
from better quantification of gut wall contaminant assimilation efficiency. Laboratory stu-
dies directed to understanding the relationship between the assimilation efficiencies of con-
taminant and food will probably significantly reduce the uncertainty of this parameter.

The uncertainty associated with the phytoplankton bioconcentration factor could
most easily be reduced by field sampling sufficient to describe seasonal variability in this
parameter. In the short term these field data would be used to specify phytoplankton con-
taminant concentration in the model calibration. These data should also be coupled with
laboratory studies in an effort to develop mechanistic descriptions of contaminant uptake
and loss in phytoplankton. Such descriptions are necessary to reduce uncertainty in
projections to conditions not represented by the calibration data set.

Food webs that include a benthic animal component are subject to uncertainty asso-
ciated with defining a prototype for that component. A means to reduce that uncertainty
may be to analvze stomach contents of the animals feeding on the benthos. However. not
all animals in the stomach are easily identified and a biased estimate could result from this
type of data. Stable isotope data may allow a determination of the extent to which the bot-
tom feeding animals are receiving water column associated or sediment associated carbon
in their diet. Such data could be used to define the sources of contaminant to the benthic
component.

UNRESOLVED ISSUES/QUESTIONS TO BE DISCUSSED AT THE WORKSHOP

A number of issues have been raised in this paper and, although, several approaches
to reducing uncertainty are suggested, most issues remain unresolved. These issues do not
encompass all of the parameterization related sources of uncertainty in models of chemical
accumulation in aquatic animals, however, they provide a basis for discussion. A summary
of the principal questions follows. |

(1) What are the major sources of uncertainty in models of super-lipophilic chemni-
cals?

(2) What types of experiments are needed to progress towards a mechanistic
description of contaminant uptake and loss by phytoplankton?
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(3) What types of experiments are needed to permit the development of a better
description of gut wall contaminant assimilation efficiency and its relationship to
food assimilation efficiency?

(4) How can migration be better quantified; both in terms of the time-location rela-
tionship and changes in bioenergetics that occur during migration?

(5) How can the differences in chemical content between digestible and
bulk food be determined, particularly for deposit-feeding animals?

(6) What is the significance of the "micrqbial loop” in modeis of biomagnifying
chemicals?

(7) How should the uptake and loss (bioconcentration) of metals be described?
Should species-specific enzymatic processes be considered?

(8) How important is fat storage and metabolism to contaminant dynamics, and how
should this process be described in the models?

(9) How significant are seasonal differences in growth rate to contaminant uptake
and loss, particularly in river systems?
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Table 1. Coefficients Included in the Food Chain Model

Process

Coefficients

Oxygen Uptake Rate

Weight & Temperature Dependent Respiration Rate
Dissolved Oxygen Concentration

Food Consumption Rate

| Growth Rate

|Dry Weight:Wet Weight Ratio of Predator and Prey

Respiration Rate

Food Energy Assimilation Efficiency

Contaminant Uptake Rate
Across the Gills

Oxygen Uptake Rate
Contaminant:Oxygen Mass Transfer Coefficient Ratio

Contaminant Uptake Rate
Across the Gut

Food Consumption Rate
Contaminant Assimilation Efficiency

Whole Body Contaminant
Excretion Rate

Animal Lipid Content :
Contaminant Uptake Rate Across the Gills
Contaminant Bioconcentration Factor

Dilution of Contaminant Growth Rate
Concentration

Contaminant Accumulation |Partition Coefficient
in Plankton at Base of the

Food Web

Food Web Structure Number of Prey

Fraction of Food Consuxhption on Each Prey

Migration

Annual Parttern of Movement Between Spatial Compart-
mernts
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Organic
Contaminants
In Lake
Ontario,
1968-1991:

A Review and
a Data Base

Efraim Halfon

and

Natalie Schito

Lakes Research Branch
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Canada Centre for inland Waiars

January 1992

Abstract  Approximately 500 publications have been reviewed for
concentration data of toxic organic contaminants in Lake Ontario
(Throughout the search, it was often discovered that the same data
were published in a variety of sources. Whenever possible the
primary arficle is referenced, and exclusion of the secondary
sources has occurred, thus the reference list is much smaller than
those read and reviewed). This search has been lmited to
*published" data readily available to the scientific community. Of
interest are the concentrations in water, sediments (at the bottom
and in suspension), and in biota (plankton, benthos and fish) over
time. Al these concentrations have now been collected info a
freely distributable data base (The data bose also contains food
web information in energy ferms). We have found that
comprehensive data, meaning data in al compariments
mentioned above and for many years, exist only for very few
chemicals; mainly PCBs, dieidrin, Mirex, DDT, and some
chlorobenzenes. Data exist for many other chemicals (various di,
fri, tetra- and penfa chiorobenzenes, HCBD, HCE, various PCB

~ congeners, lindane, OCS, PCP, chiorotoluenes, photomirex, PCT,
TICP, HCE, heptachlor epoxide and methoxychlor) but in a much
more limited form. The existence of published data is important to
modellers for comparison with their simulations, and to statisticians
invoived with trend analysis. As of December 1991, most available
data are for 1990 and previous years: this lag is due to both
analytical work and publication delay.

Irtroduction In the past two decades the presence -of toxic organic
contaminanis in Lake Ontario has been reported: hundreds of them
might be present. Eadie (1984), Shear (1984), Strachan and Edwards
(1984), Biberhofer and Stevens (1987), Thomas gt gl. (1987), Allan
and Ball (1990) and the Government of Canada (1991) made
comprehensive reviews of contaminants in the Great Lakes region.
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Methods

Data sources

Data omission from
data base

One of the drawbacks. for modeilers and statisticians alike, has
been the lack of a readiy availoble data base to compare
simulations with and to assess frends. This review tries to overcome
this problem. An extensive literature search on the organic
contamination of Lake Ontario was performed. Approximately-500
papers were reviewed, A small parf of the data can be made
available in printed form here, but ail data are freely availabile in
PARADOX, QUATTRO PRO, LOTUS 1-2-3, ASCI, and DBASE Ii, lll, il PLUS,
or IV formats.

The data base contains information not only on concentrations of
toxic contaminants in Lake Ontario but also information on the food
web (Schito and Halfon, 1992). Once a fate maodel, TOXFATE (Halfon
and Oliver, 1990; Halfon, 1992a), was completed, we rediized that
the food chain models in TOXFATE (plankton - alewife - lcke trout;
benthos - scuipin - lake frout) did not include the complex food web
redliies in the loke. Transfer of contaminants to the top fish
predators was dependent on the knowledge of how energy
collected by plkankion was transferred to the top five predators in

.the lake. This food web has been published and its data are also

available.

As a final point wa acknowledge the fact that the systematic name

- of Pontoporeig hovi has recently been changed to Diporeia sp.

(Bousfield, 1989). Howevey, in this paper we refer to it as Pontoporeia
hovi, the name commonly used by Great Lakes resecrchers.

Data presented here are availoble in the literature (1970 tc 1991). A
major drawback is that not much recent data was discovered in the
literature. Our database contains information as current as 1990
(published up to 1991). As a norm, contaminant data iake about a
year to be analyzed in a laboratory. Publication usually adds a two
yeor delay.

Throughout the search, it was offen discovered that the scme data
were publshed in @ variety of ploces. Whenever possible the
primary article is referenced. and exclusion of the secondary
sources has occurred. The number of articles cited here is therefore.
much smaller than those read and reviewed. Data from the same
government agencies are not always published in the same report
series and had fo be tracked down.

Sometimes it was necesscry'to omit published concentrations from
the data base. Potential data was rejected if the year of sampling
was not explicitly stated in the articie, or if the conceniration in an
organism was not measured on @ whole organism basis.  For
exampie, concentrations meagsured in the muscle portion or a
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standard fish filet were not included. In the event that the reported
concentration was based on a sampliing plan that spanned a
number of years, the most recent year was assumed to be the year
that the conceniration level occurred.

This approach has provided a data base that spans a period of
approximately two decades and contains the observations from
many different researchers. Therefore, the concentrations of
toxicants in the various compartments are not always directly
comparable; one must consider the experimental conditions
associated with each reported vailue. Furthermore, some older
data were measured using obsolete analytical methods. Some very
high concentrations published in the 1970's have been weeded out,
but some are still present. Users should carefully screen old data
before using them.

Data conversiontoa .The reported data were converted to ng/L (for water) and ng/g dry
standard basis weight (for all other compariments). This conversion was necessary
to be able to compare data with simulations. When necessary,
caoncentrations on a wet weight basis were converted o dry weight.
This conversion was done using the following assumptions: the dry
weight of phytoplankton and zooplkanktaon is 10% of wet weight, the
dry weight of benthas is 15% of wet weight (Strayer and Liken, 1986),
the dry weights of Mysis and Pontoporeig are 21 and 27% of wet
weight, respectively (Evans and Landrum, 1983), and the dry weights
of all fishes are 256% of wet weight.

The Data Base

Separate daicfies were constructed for each of the following:
fishes, P. hovi, benthos, Mysis, plankion, sediments, and water. Al
datadfiles inciude “standard” fields with the sampling location and
year, number of samples, toxicant, reported concentration, and
converted concentration. There is aiso a reference datafile, which is
linked to the above datafiles by a field called "reference #. In
addition to the "standard” fields. the fish datafile includes fields for
fish age, weight, and length. These fieids are used when data are
available from the literature,

The datdfiles for benthos and B. hoyi are essenticlly the same. Both
dafdfiles include the "standard® fields, as well as a field to record the
depth of the site scampled. The benthos datafie includes one
additional field: a field to record the type of benthic organism used
in the confamination monitoring (for exampie, an amphipod or
oligochaete).

The plankton dafdfie contains the "sfdndcrd" fields, in addition to
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Biota

fields for organism type (i.e. zooplankton, phyfopiankton, or both,
and minimum size of the organisms, if available), depth of site, and
depth of sampling below the water surface.

The Mysis datafile is more limited than the plankfon datafile; it does
net contain fields to record either the depth of site, or the depth of
samping. These fields were eliminated from the datafile because
no researcher identified these variables in their reports. '

The water dalafile contains information regarding the site depth, in
addition to the information provided by the "standard” fieids.

Besides the “standard" fields, the sediment datafile contains a field
called "sediment type* that s used fo specify whether the
contaminant is mecsured in suspended, sutficial, or bottom
sediments. Depth of site, depth of sampling below water surface,
and depth into sediments are also recorded when available.

Even though the data base includes many contaminants, to reduce

‘the amount of printed information, Tables 1 to 8 present only

concentrations of polychiorinated biphenyis (PCBs), dieldrin, Mirex,
and chiorobenzenes (1,2,.3-TC8, 1,2,3.4-TeCB, and HCB) in Lake
Ontario water, sediments, and aquatic life (exciuding macrophytes).
These contaminants were chosen since they are found widely in
Lake Ontario, the dota base is fairly complete, and past loadings
have been computed (Halfon and Oliver, 1990) o drive a model.
Since most information of inferest fo readers is the data base, the
results section only mentions points of interest, such as the availabitity
(or missing measurements) of recent data in  selected
compartments.

Surprisingly, a full data base Is only available for a few of the many
contaminants in Lake Ontaric. Concentrgtions of BHC, various
chiorobenzenes, chiordane, DDT and metabolites, dieldrin,
hexachlorobutadiene, lindane, Mirex, octachlorostyrene,
photoMirex, and total PCBs in Lake Ontario biota, water, and
sediments were found in the [iteraiure. Less information is available
on the concentrations of other chemicals (for exampile dioxins,
pentachliorotoiuene, and TTCP) in various compartments. Tables 1
through 6 provide a summary of the occurrence of selected
contaminants in Lake Ontario biota. Water concentrations are
summarized in Table 7 and concentrations in Lake Oniario sediments
are in Table 8. .

The largest numbers of data were found for PCBs in biota, water,
and sediments. Table 1 shows concentrations in biota. Most data
are averages reporfed in the literature: authors of each report
should be contacted for the row data. Figure 1 shows PCBs
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concentrations. in lake frout: this species is among the best
documented. The fish datafile contains close fo 100 records on
concenfrations of PCBs in spottail shiner, slimy sculpin, rainbow smeit,
alewife, brown trout, lake trout, and rainbow frout (Hdile et al.. 1975;
Borgmann and Whitlle, 1983: Whitle and Fitzsimons, 1983: Shear,
1984: Strachan and Edwards, 1984; Whitle, 1986; Oliver and Niimi.
1988; Stevens, 1988; Niimi and Cliver, 1989: Borgmann and Whittle,
1991). Data for PCBs in dlewife are very scarce; only cne value was
reported for 1982 (Cliver and Niimi, 1988), while dll other reported
values were for 1973 (Haile et gl., 1975). ‘Niimi and Oliver (1989) were
the only researchers that reported concentrations of PCBs in brown
and rainbow trouts.

PCB concenfrations in P. hovi (Borgmann and Whittle, 1983; Whittle
and Fitzsimons. 1983; Oliver and Niimi, 1988; Stevens, 1988) have
been reported from 1978 through to 1985 (with the exception of
values for 1982 and 1984). No literature was located with
concenirations after 1985.

PCBs in Lake Ontario benthos have been investigated thoroughly
(Cook and Johnson, 1974; Haile gt gl.. 1975; Fox et g¢l.. 1983:
Strachan and Edwards. 1984; Oliver and Niimi, 1988; Stevens, 1988).
The mgjority of data is for amphipads or oligochasetes and reported
for the years 1972 to 1985.

The datdfile for Mysis contains 11 records on the concentration .of
PCBs. These vdues have come from a variety of sources (Borgmann
and Whithe, 1983; Whithe and Fitzsimons, 1983; Oliver and Niimi,
1988; Stevens, 1988), and cover the years 1977 to 1984 (Fig. 2).

The mgjority of concentrations found for PCBs in other planktonic
organisms ware from yaars before 1980 (Haile et gl.. 1975; Borgmann
and Whitfle, 1983; Strachan and Edwards, 1984; Stevens, 1988).
Whittle and Fitsimons (1983) report two concentrations in net
plankton sampled from the lake in 1981. A conceniration from 1982
was reported by Oliver and Niimi (1988).

Water Concentrations of PCBs in water are contadined in approximately 30
records (Fig. 3). The vasf mgjority are samples taken in 1973 (Haile et
gl.. 1975) or 1983 (Biberhofer and Stevens., 1987; Stevens, 1988).
There is one record for each of the years 1975 (Glooschenko and
Glooschenko, 1975), 1984 (Oliver and Niimi, 1988), and 1986 (Stevens
and Neilson, 1989). Serge L'ltalien (NWRI, Burington) provided a
large amount of data (fo 1990) not yet available in the literature.

Sediments A concentrafion of PCBs in suspended sediments from Lake Ontario
in 1986 (Qliver and Niimi, 1988) was the only vaiue found. PCB
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Dieldrin

Biota

Water

concenirations in surficial sediment (0 - 3 cm) are available for the
years 1968 (Frank et d.. 1979), 1974 (Thomas. 1983). 1981
(Bourbonniere gt gl.. 1986: Oliver et gl.. 1987). and 1982 (Cliver et 4.
1989). Measurements in the upper 2 cm were reported by Stevens
(1988) for the year 1981, Note that caufion must be used when
comparng data in the sediment datafile: earier collection
techniques. and storage of samples has opparently ylelded
concentrations lower than the actudl ones.

This chemicdl is water soluble and is quite widespread in Lake
Ontario. The data base is quite comprehensive.

About 75 records exist in the fish datdfile. A large portion of these
records is the result of lake frout (Fig. 4) monitoring (White and
Fitzsimons, 1983; Shecr, 1984; Whitlle, 1986; Borgmann and Whittle,
1991). Concenirations of dieidrin (Table 2) in alewives were only
found for 1973 (Haile et al.. 1975). Over haif the records for siimy
sculpin was for the year 1973 (Haile et dl.. 1975). while only one
record was for data collected in the 1980s (Stevens, 1988).

Concenirations of dieldrin in the amphipod P. hovi were only found
for the years 1978 to 1983 (Whittle and Fifzsimons, 1983; Stevens,
1988), Llikewise, no data was found.in the literature for dieldrin
concenfrations in benthos sampled after 1983 (Cook and Johnson,
1974; Haile gt gl.. 1975; Stevens, 1988).

The literature search provided eight concenirations of dieldrin in
Mysis, from the years 1977 to 1982 (Whittle and Fitzsimons, 1983;
Stevens, 1988). No source provides insight info the more recent
concenfrations in this zooplankter (Fig. 5). Data regarding the
concentration of dieldrn in other planktonic species is dlso limited
before 1982 (Haile et gl.. 1975; Whitlle and Fitzsimons, 1983; Stevens,
1988).

Of the 27 records in the water datafile that are concerned with the
concentrations of dieldrin (Fig. 6). eight refer o samples taken in
1973 (Haile et dl.. 1975). and 18 to samples taken in 1983 (Biberhofer
and Stevens, 1987: Stevens, 1988). The remcining record is for
sampiles taken in 19856 (Stevens and Neilson, 1989). Vast amounts of
data (fo 1990) not yet available in the literature was provided by
Serge L'ltalien (NWRI, Burlington).
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Sediments

The database on dieldrin concentrations in Lake Ontfario sediments
is exiremely limited. No published vaiues were found for suspended
sediments. Concsnirations in surficial sedimentis (0 - 3 cm) were only
reported for 1968 (Frank ot _dl.. 1979). and 1974 (thomas, 1983).
Concenirgtions in bottom sediments (depth info sediment not
specified) from various locations throughout the lake were reported
for 1973 (Haile et di.. 1975).

Chioroberzenes  Chiorobenzenes enter Lake Ontario mainly from the Niagara River
(Hdlfon and Oliver. 1990). Hdifon (1992b) reports a large source of
dichlorobenzenes from Toronto. Dichlorobenzenes are used in
public lavatories as disinfectants. Several chiorobenzenes (Tables 3
to 5 ae found in Lake Onfario: trichlorobenzenes ICB).
tetrachlorobenzenes (TeCB), pentachlorocbenzene (QCB) and
hexachlcrobenzene (HCB). Data for these chemicdls is quite
extensive and the computation of past loadings since 1909 (Halfon
and Cliver, 1990) allows the driving of fate models. A comparison of
model simulations and data is in preparation (Halfon and Schito,
1992). The following section shows some interesting data features.

Biota
Data on specific chlorobenzenes concentrations in Lake Ontario
biota are incomplete. Data on HCB are the most widely published.
Chiorobenzenes in biota have been measured since 1980 (Oliver
and Nicol, 1982: Fox gt gl.. 1983; Qliver and Niimi, 1988; Niimi and
Oliver, 1989), with the exception of 1978 vdlues reported for HCB in
coho salmon, and lake (Fig. 7) and rainbow tfrouts (Niimi, 1979).

Fox et gl. (1983) reported chiorobenzene concenirafions in both
amphipods and oligochaetes collected from the western basin in
1981. Cliver and Niimi (1988) sampled benthic organisms from the
Niagara basin in 1985, and they reported concentrations much
smailer than those reported by Fox et gl. (1983). These two are the
only articles found that pertain to chiorobenzenes concenirations in
benthes from Lake Ontario. Tables 3 to 5 present the available data
for 1.2.3-TCB, 12.3.4-TeCB and HCB.

Fox et dl. (1983) and Cliver and Niimi (1988) investigated the level of
chlorobenzenes contamination in Mysis. HCB (Fig. 8), 1.2.3-TCB, and
1.2.3.4-TeCB concentrations were reported for samples taken in 1981
(Fox gt gl.. 1983) and 1982 (Oliver and Niimi, 1988).
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Water

Sediments

Overall
Cortarmination

Discussion

Concentrations of HCB (Fig. 9). 12.3-TCB, and 12.3.4-TeCB in Lake
Ontfario water have been reported by Oliver and Nicol (1982),
Biberhofer and Stevens (1987). Stevens (1988), Oliver and Niimi
(1988), and Stevens and Neilson (1989). The mgicrily of the
chlorobenzene records in the water daiafle have come from
samples collected in 1983 (Biberhofer and Stevens, 1987; Stevens,
1987), while a limited number is for samples from 1984 (Oliver and
Niimi, 1988), and 1986 (Stevens and Neilson, 1989). The 1983 open
lake concenirations of specific chlorobenzenes reported by
Biberhofer and Stevens (1987) are well within the 1983 ranges
reported by Stevens (1988). Serge L'ltaien (NWRI, Burlington)
provided large amounts of data (fo 1990) not yet available in the
literature.

Some chiorobenzenes concenirations in suspended sediments have
been reported for 1982 (Oliver and Chariton, 1984) and 1986 (Qiiver
and Niimi, 1988). As for bottom sediments, Oliver and Nicol (1982)
were the only researchers to report on chlorobenzene vertical
distibution within a core sample. They reporfed concenirations
based on a core sample taken from the Niagara basin in 1980.

Concentrations of chiorobenzenes in surficial sediments (0 - 3 cm)
were only located in the literature for 1981 (Oliver and Nicol, 1982;
Bourbonniere et d.. 1986; Oliver gt dl.. 1987), and 1982 (Cliver et dl.,
1989). For 1981, Oliver et d. (1987) reported values that were ail
lower than the lowest values reported by Bourbonniere et al. (1986)
dso for 1981, Stevens (1988) summarized chlorobenzene
concentrations in samples of surficid sediments (fop 2 cm only)
collected in 1981.

Table 6 shows Mirex concentrations in Lake Ontario biota, Mirex is a
chemicd extensively studied by Kaiser (1978) and his co-workers.
Comba et gl. (1992) has recently computed past loadings of Mirex
since 1952 and therefore this chemicdl s a good object for
modeling work.

Tables 7 and 8 summarize water and bottom sediment
concentfration of the PCBs, Mirex, dieldrin and chiorobenzenes. As
mentioned above. more dota on other chemicdls are available in
the data base. Also in these tables we note the lack of published
recent concentrations.

A large fime gap exists between data collection, analysis and

publication. Some selected data might be pubilished with short
delays. but complete data bases that include dll water, sediment,
and biota compartments, take many years before being property
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published. A complete data set exists for few chemicadls. Even
when a complete data base exists, often some compartments are
rarely sampled, for example, contaminants in alewives. A careful
review of the data base shows that even water concentrations are
not often reported in the literature. A fluy of activity has occurred
in the early 1980°s when the importance of the contaminants
problems was rediized and large data collections programs were
organized. These lkxrge efforts must be repeated in the 1990’s. All
compariments must be measured for as many contaminanfs as
possible to obtain reference data. Since these efforts are very
expensive, we racommend that these be repeated only every ten
year. Smdller surveillance programs on toxic contaminants should
be done every year and should focus on compartments where few
datla are aqvdiiable even now. Some compariments were
contaminant data are missing are the diewives, benthic organisms,
all saimonids but iake trout, plankton and suspended sediments.
We wil fiy to keep this data base as cument as possible and we
invite any interested parfies, including agencies and individuals to
provide us with the organic contaminant data in a prompt fashion
5o that they can be made available in electronic form fo the
scientific community at large.

Reducing Uncertainty in Mass Balance Models of Toxics ' 243
in the Great Lakes- Lake Ontario Case Study



References

ALLAN, R.J., AND A.J. BALL 1990. An overview of foxic contaminants
in water and sediments of the Great Lakes. Water Poll. Res.
J. Canada. 25(4):387-505.

BIBERHOFER, J., AND R.J.J STEVENS. 1987. Organochlerine
contaminants in ambient waters of Lake Ontaric. Inland
Water Directorate, CCIW, Burlington, Ontario. Scientific
Series No. 159.

BORGMANN, U., AND D.M. WHITTLE, 1983. Particle-size-conversion
efficiency and contaminant concenirations in Lake Ontario
biota. Can. J. Fish. Aguat. Sci. 40(3): 328-336.

BORGMANN, U., AND D.M. WHITILE. 1991. Contaminant
conceniration frends in Lake Ontario lake frout (Sgivelinys
namaycush): 1977 to 1988, J. Great Lakes Res. 17(3):
368-381.

BOURBONNIERE, R.A., B.L. VANSICKLE, AND T. MAYER. 1986. The Great
Laokes sediment bank - | (including catalogs of Lake Huron
and Onfario samples). NWRI Contribution No. 86-151.

BOUSFIELD, E.L. 1989. Revised mormphclogicd relationships within the
amphipod genera Pontoporeig and Grommaracanthus
and the "glacial relict’ significance of their postglacial
distributions. Can. J. Fish. Aquat. Sci. 46: 1714-1725.

COMBA. M.E.. R.J. NORSTROM, C.R, MACDONALD and K.L.E. KAISER.
1992. Lake Ontario - gulf of St. Lawrence dynamic mass
“bdlance for Mirex (in preparation).

COOK, D.G. AND M.G. JOHNSON. 1974, Benthic macroinvertebrates
of the St. Lawrence Great Lakes. J. Fish Res. Bd. Can. 31:
763-782.

EADIE, B.J. 1984, Distibution of polycyclic aromatic hydrocarbons in
the Gregat Lakes. |n: Nriagu, J.O. and M.S, Simmons (Eds.),
Toxic contaminonts in the Great Lakes. New York. pp.
195-211.

ELI ECO LABORATORIES INC. 1988, The Toronto plume study: analysis
of large volume samples from Lake Ontario and metro
Toronto sewage freatment plants for chlorinated organic
substances. Technical report.

EVANS, M.S.. AND PF. LANDRUM. 1989. Toxicokinetics of DDE.
benzo(a)pyrene, and 2.452° A’ 5'-hexachiorobiphenyi in

Pentoporeig hovi and Mysis relicta. J. Great Lakes Res.
15(4): 589-600.

FOX. M.E., J.H. CAREY. AND B.J. OLIVER. 1983. Compartmentd
distribution of organochlorine contaminants in the Niagara
River and the western basin of Lake Ontario. J. Great Lakes

244

Great Lakes Monograph No. 4



Res. ¥(2): 287-294.

FRANK, R., R.L. THOMAS, A.LW. KEMP, M. HOLDRINET, AND H.E.
BRAUN. 1979. Organochlorine insecticides and PCB in
surficial sediments (1968) and sediment cores (1976) from
Lake Ontario. J. Great Lakes Res. §(1): 18-27.

GLOOSCHENKO, V., AND W. GLOOSCHENKO. 1975. Effect of
polychiornated biphenyl compounds on growth of Great
Lakes phytoplankton. Can. J. Bot, 53: 653-659.

GOVERNMENT OF CANADA, 1991, Toxic Chemicals in the Great
Lokes and Associated Effects.

HAILE. D.L., G.D. VEITH, G.F. LEE, AND W.C, BOYLE. 1975. Chlorinated
hydrocarbons in the Lake Ontario ecosystem (FYGL). U.S.
Environmentd Protection Agency Report No. EPA - 660/3 -
75-022. _ :

HALFON, E. 1992a. TOXSHELL. a graphic interface fo run the fate
model TOXFATE on MS-DOS computers. Environmental
Software (Submitted).

HALFON. E. 1992b. Poilution ranking analysis and distribution of
chiocrobenzenes, pesticides and PCB isomers in Lake Ontario
near the Toronto Waterfront. Water Poll. Res. J.Canada (in
press).

HALFON. E., AND B.G. OUVER, 1990. Simulation and data analysis of
four chiorocbenzenes in alarge lake system (Lake Ontario)
with TOXFATE. a contaminant fafe model. In: S.E.Jorgensen
(Ed.) Modelling in Ecotoxicology, Elsevier, pp. 197-214.

HOLDRINET, M.V., R. FRANK, R.L. THOMAS, AND L.J. HETUNG. 1978.
Mirex in the sediments of Lake Ontario. J. Great Lakes Res.
4: 69-74.

KAISER. K.L.E. 1978. The rise and fall of Mirex. Environ. Sci. Technol.,
12: 520-528,

KAMINSKY, R.. KLE. KAISER, AND R.A. HITES. 1983. Fates of organic -
compounds from Niagara Falls dumpsites in Lake Ontario. J.
Great Lakes Res, 9(2): 183-189.

NilMI, A.J. 1979. Hexachicrobenzene (HCB) levels in Lake Ontario
saimonids. Bull. Environ. Contam. Toxicol. 23(1): 20-24.

NIIMI, A.J. 1985, Use of laboratory studies in assessing the behaviour
of contaminants in fish inhabiting natural ecosystems. Water
Poliut. Res. J. Can. 20(1): 79-88.

NIMI, AJ.. AND B.G. OLIVER. 1989. Distribution of polychlorinated
biphenyi congeners and other halocarbons in whole fish

Reduchg Uncertainty in Mass Balarice Models of Toxics 245
in the Great Lakes- Lake Ontario Case Study



and muscle among Lake Ontario salmonids. Environ. Sci.
Technol. 23(1): 83-88.

OUVER, B.G. 1984. Distribution and pathways of some chlorinafed
benzenes in the Niagara River and Lake Ontario. Wat. Poll.
Res. J. Canada. 19(1): 47-58.

OLIVER, B.G, M.N. CHARLTON, AND R.W. DURHAM. 1987, Distribution,
redistribution and geochronology of PCB congsners and
other chlorinated hydrocarbons in Lake Ontario sediments.
NWRI Contribution No. 87-25.

OLVER, B.G.. AND K.D. NICOL. 1982. Chicrobenzenes in sediments,
water, and selected fish from Lakes Superior, Huren, Erie,
and Ontario. Environ. Sci. Technol. 16: 532-536.

OUVER, B.G.. AND A.J. NIiMI, 1983, Bioconcentration of
chlorobenzenes from water by rainbow frout: correlation
with partition coefficients and environmentd residues.
Environ. Sci. Technol. 17: 287-291.

OLUVER, B.G.. AND A.J. NlIMI. 1988. Trophodynamic analysis of
polychlorinated biphenyl congeners and other chiorinated
hydrocarbons in the Lake Ontario ecosystem. Environ. Sci.
Technol. 22: 388-397.

SCHITO, N. AND E. HALFON. 1992. Energy flow through the Lake
Ontario food web. Can. J. Fish, Aquat. Sci. (Submitted).

SHEAR, H. 1984. Contaminants research and surveillance - a
biclogicd approach. In: Nriagu. J.O. and M.S. Simmons
(eds.), Toxic contaminants in the Great Lakes. New York. pp.
31-51. :

SKINNER, L.C. 1988. Memorandum on chemical contaminants in
New York fish. Lake Ontario Committee 1988 Annual
Meeting. Great Lakes Fishery Commission.

STEVENS, R.J.J. 1988. A review of Lake Ontario water quality with
emphasis on the 1981 - 1982 intersive years. Report fo the
Surveillance subcommittee of the Great Lakes Water
Quality Board. 300 pp.

STEVENS, R.J.J. AND M.A. NEILSON. 1989, Inter- and iniralake
distribution of frace organic contaminants in surface waters
of the Great Lakes. J. Great Lakes Res. 15(3): 377-393.

STRACHAN, WM.J.. AND C.J. EDWARDS. 1984. Organic pollutants in
Lake Ontario. [n: Nriagu. J.0O. and M.S. Simmons (Eds.). Toxic
contaminants in the Great Lakes. New York. pp.239-264.

STRAYER, D.. AND G.E. LIKENS. 1986. Energy budget for the
zoobenthos of Mirror Lake, New Hampshire. Ecology 67:

246

Great Lakes Monograph No. 4



303-313.

SUNS. K. 1984, Nearshore juvenile fish contaminants surveillance
program. OMOE, Rexddle, Ontario. Great Lakes Water
Quiity Board. 1987 Report on Great Lakes Water Quaiity -
Appendix B Great Lakes Surveillance.

THOMAS, R.L. 1983, Lake Ontario sediments as indicators of the
Niagara River as a primary source of confaminants. J. Great
Lokes Res, 9(2): 118-124,

THOMAS, R.L.. J.E. GANNON, D.J. WILLIAMS, J.H. HARTIG, AND D.M.
WHITTLE. 1987. Contaminanis in Lake Ontario - a case study.
In: Schmidtke, N.W. (Ed.). Toxic contamination in large lakes.
Vol. lll. Sources, fate, and contirols of toxic contfaminants.
Chelsea, Ml. pp.'327-387.

WHITTLE. D.M. 1986. Report on Lake Ontario open lake fish
contaminant trends (1977 - 1986). Cited in: Great Lakes
Water Quadiity Board. 1987 report on Great Lakes water
qudlity - Append. B Great Lakes surveillancs.

WHITTLE, D.M.. AND J.D. FITZSIMONS. 1983. The influence of the
Niagara River contaminant burdens of Lake Ontario biota.
J. Great Lakes Res. %(2): 295-302.

Reducing Uncertainty in Mass Balance Models of Toxics 247
in the Great Lakes- Lalkke Ontaric Case Study



Total PCBs Concentration

35000
L
= x
T 715 o ) T
»
u
25000 b-v v e e e tiaceae e e
n - - :
_ 20000 - cm - - e R LR R R R
in fake traut (ngfg ﬁry weight} = I -
¥ L 3
15000 - ---«---- PRPIRN Reooiunmnans T R R et e e
n " - .
- L
-3 »
= ] N u
LT T o] S ... e e
L}
5000 L ! ] L L 1
1976 1978 1980 1982 1984 1986 1988 1890
Year

Figure 1.Mean whole fish concenirations (ng/g dry weight) of total
PCBs in lcke frout from Lake Ontario. See Table 1 for values
ond sources.
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Lake Ontario. See Table 7 for values and sources.
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Figure 5.Mean concentrations (ng/g dry weight) of disldrin in Mysis
telictg from Lake Ontario. See Table 2 for values and
sources.
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Figure 7.Mean whole fish concentrations (ng/g dry weight) of HCB in
lake trout from Lake Ontario. See Table 3 for values and
sources,
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Figure 9.Mean concenirations (ng/L) of HCB in water from Lake
Ontario. See Table 7 for values and sources.
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580 ng/g dry weight 580

TABLE 1. Summary of the concentration of PCBs in various Lake Ontario biota.
(See footnotes for comments and assumptions). '
Converted Conc.
Organism Location Year Mean Concentration' (ngfg dry) Source®
plankton
net >153um Lake Ontario 1972 7.17 ug/g dry weight 7170 Stevens, 1988
1977  0.19 ug/g dry weight 190
1978  0.26 ug/g dry weight 260
1979  0.15 ug/g dry weight 150
net >64um midlake, Lake Ontario 1973 10.6 ug/g dry weight 10600 Haile et al., 1975
Hamilton, Lake Ontario 1973 3.4 ug/g dry weight 3400
midlake, Lake Ontario 1973 3.6 ug/g dry weight 3600
midlake, Lake Ontario 1973 6.0 ug/g dry weight 6000
Cobourg, Lake Ontario 1973 7.6 ug/g dry weight 7600
Deep Hole, Lake Oniario 1973  11.8 ug/g dry weight 11800
net Lake Ontario 1973 6.1 ug/g dry weight 6100 Strachan and Edwards, 1984
1975 1.9 ug/g dry weight 1900
net >153um, n*=2  Eastern Lake Ontario 1981 110 ng/g dry weight 110 Whittle and Fitzsimons, 1983
net >153um, n=5 Western Lake Ontario 1981 280 ng/g dry weight 280
n=3, 10m depth Lake Ontario 1982 50 ng/g wet weight 500 Oliver and Niimi, 1988
zooplankton >153um
n=20, 1m depth Eastern Lake Ontario 1979  0.20 ug/g dry weight 200 Borgmann and Whittle, 1983
n=4, im depth Western Lake Ontario 1979 031 ug/g dry weight 310
Mysis relicta
n=23 Lake Ontario 1977  0.31 ug/g dry weight 310 Stevens, 1988
n=25 1978  0.44 ug/g dry weight 440
n=32 1979  0.64 ug/g dry weight 640
a=15 1980 0.76 ug/g dry weight 760
n=25 1981  0.60 ug/g dry weight 600
=22 1982  0.58 ug/g dry weight 580
n=12 Eastern Lake Ontario 1979 029 ug/g dry weight 290 Borgmann and Whittle, 1983
n=4 Western Lake Ontario 1979  0.39 ug/g dry weight 390
n=12 _Eastern Lake Ontario 1981 150 ng/g dry weight 150 Whittle and Fitzsimons, 1983
n=3 Western Lake Omtario 1981
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n=2 Lake Ontario - 1984 330 ng/g dry weight 330 Oliver and Niimi, 1988
benthos
=3 Western Lake Ontario 1972 0.98 ug/g dry weight 980 Stevens, 1988
n=11 1983  1.57 ug/g dry weight 1570
.Oswego, Lake Ontario 1973 97 ng/g dry weight 97 Cook and Johnson, 1974
no details Lake Ontario 1973  0.47 ug/g dry weight 470 Strachan and Edwards, 1984
mixed, includes Rochester, Lake Ontario 1973 341 ng/g dry weight 341 Haile et al., 1975
P. hovi Hamilton, Lake Ontario 1973 976 ng/g dry weight 976
amphipods
no details Lake Ontario 1975 9.0 ug/g dry weight 9000 Strachan and Edwards, 1984
amphipods
mixed, includes Western Lake Ontario 1981 2600 ngfg dry weight 2600 Fox et al., 1983
P. hovi 1981 4700 ng/g dry weight 4700
1981 5200 ngfg dry weight 5200
1981 5300 ng/g dry weight 5300
1981 6600 ng/g dry weight 6600
1981 7900 ng/g dry weight 7900
1981 11000 ng/g dry weight 11000
1981 17000 ng/g dry weight 17000
oligochaetes )
no details Lake Ontario 1975 1.9 ug/g dry weight 1900 Strachan and Edwards, 1984~
oligochaetes - Western Lake Ontario 1981 930 ng/g dry weight 930 Fox et al., 1983
no details 1981 1400 ng/g dry weight 1400
1981 1500 ng/g dry weight 1500
1581 1800 ng/g dry weight 1800
1981 2000 ng/g dry weight 2000
1981 2400 ng/g dry weight 2400
1981 2600 ng/g dry weight 2600
1981 5300 ng/g dry weight 5300
oligochaetes
n=6 Niagara basin 1985 180 ng/g wet weight 1200 Oliver and Niimi, 1988
Pontoporeia hovi
n=16 Lake Ontario 1978  1.73 ug/g dry weight 1730 Stevens, 1988
n=13 1979  1.84 ug/g dry weight 1840
n=3 1980  1.26 ug/g dry weight 1260
=5 1981  1.89 ug/g dry weight 1890
n=11 1983  1.35 ug/g dry weight 1350
n=4 Western Lake Ontario 1979  1.67 ug/g dry weight 1670 Borgmann and Whittle, 1983
n=8 Eastern Lake Ontario 1979  1.70 ug/g dry weight 1700
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(=1

=]
([

[}

n=6

spottail shiner

n=3,58mm length

n=5,58mm length
n=6,54mm length
n=35,58mm length
n=10,60mm length
=9,55mm length
n=8,62mm length
n=8,49mm length
n=8,51mm length
n=8,60mm length
n=8,58mm length
n=5,45mm length

n=8,53mm length .

1=8,49mm length
n=8,56mm length
n=8,53mm length
n=3,49mm length
n=8,51mm length
n=8,60mm leagth
n=7,61lmm length
n=7,48mm length
n=7,53mm length
n=7,62mm length
n=7,47mm length
n=6,62mm length
n=7,57mm length
n=0,54mm length
n=6,62mm length

=3,68mm length
n=6,54mm length
n=7,49mm length
n=7,48mm length
n=7,52mm length
n=4,56mm length

=7,41mm length
n=6,58mm length
n=7,65mm length
n=7,63mm length
n=7,64mm length
n=7,60mm length
n=7,57mm length
n=7,68mm length
n=7,70mm length

Western Lake Ontario 1981
Eastern Lake Ontario 1981
Niagara basin 1985
Lake Ontario 1975
1977
1978
1979
1980
Glenora, Lake Ontario 1975
Darlington, Lake Ontario 1975
Presqu’ile, Lake Ontario 1975

Twelve Mile Creek, Lake Ont
Darlington, Lake Ontario 1976
Burlington, Lake Ontario 1977

Humber River, Lake Ontario
Cobourg Creek, Lake Omario
Twelve Mile Creek, Lake Ont
Credit River, Lake Ontario
Humber River, Lake Ontario
Rouge River, Lake Ontario
Qutlet River, Lake Ontario
Presqu’ile, Lake Ontario
Credit River, Lake Ontario
Bronie Creek, Lake Ontario
Gages Creek, Lake Ontario
Twelve Mile Creek, Lake Ont
Humber River, Lake Ontario
Duffrin Creek, Lake Ontario
Twelve Mile Creek, Lake Ont
Outlet River, Lake Ontario
Credit River, Lake Ontario
Burlington, Ontairo 1980
Humber River, Lake Ontario
Ganaraska River, Lake Ont
Twelve Mile Creek, Lake Ont
Humber River, Lake Ontario
Mimico Creek, Lake Ontario
Wolfe Island, Lake Ontario
Qutlet River, Lake Ontario
Welland Canal, Lake Ontario
Credit River, Lake Ontario

1979

. Oshawa Creek, Lake Ontario

Twelve Mile Creek, Lake Ont
Humber River, Lake Ontario
Wolfe Isiand, Lake Ontario
Welland Canal, Lake Ontario
Twelve Mile Creek, Lake Ont
Credit River, Lake Ontario
Buriington, Lake Ontario 1983
Humber River, Lake Ontario
Mimico Creek, Lake Ontario

1378 ng/g dry weight
1849 ng/g dry weight

790 ng/g wet weight

0.69 ug/g wet weight
0.65 ug/g wet weight
0.32 ug/g wet weight
0.15 ugfg wet weight
0.27 ugfg wet weight

111 ug/kg wet weight

420 ug/kg wet weight
505 ug/kg wet weight
1975
360 ug/kg wet weight
833 ug/kg wet weight
1977
1978
1978
1978
1978
1979
1979
122 ug/kg wet weight
1979
1979
1979
1979
1979
1980
1980
1980
1980
250 ug/kg wet weight
1980
1980
1981
1981
1981
1982
1982
1982
1982
1982
1982
1982
1983
1983
1983
1983
375 ug/kg wet weight
1983
1983

1378
1849

2926

2760
2600
1280

600
1080

444

1680
2020

890 ug/kg wet weight

1440
3332

‘Whittle and Fitzsimons, 1983

Oliver and Niimi, 1988

Shear, 1984

Suns, 1986

3560

2218 ug/kg wet weight
270 ug/kg wet weight
349 ug/kg wet weight
590 ugfkg wet weight

8872
1080
1396
2360

2938 ug/kg wet weight 11752

82 ug/kg wet weighs
112 ugfkg wet weight

488

186 ug/kg wet weight
188 ug/kg wet weight
197 ug/kg wet weight
271 ug/kg wet weight
1223 ug/kg wet weight
111 ug/kg wet weight
148 ug/kg wet weight
185 ug/kg wet weight
238 ug/kg wet weight

1000

621 ug/kg wet weight
1202 ug/kg wet weight
205 ug/kg wet weight
954 ug/kg wet weight
1051 ug/kg wet weight
121 ug/kg wet weight
128 ug/kg wer weight
158 ug/kg wet weight
183 ug/kg wet weight
227 ug/kg wet weight
279 ug/kg wet weight
353 ug/kg wet weight
81 ug/kg wet weigh
229 ug/kg wet weight
236 ug/kg wet weight
329 ug/kg wet weight

1500

537 ug/kg wet weight
542 ug/kg wet weight

448

744
752
788
1084
4892

592
740
952

2484
4808

820
3816
4204

512
632
732

1116
1412

916
944
1316

2148
2168
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n=6,66mm length  Mirmico Creek, Lake Ontario 1683 572 ug/kg wet weight 2288

n=7,58mm length  Wolfe Island, Lake Ontario 1984 90 ug/kg wer weidi0
n=7,43mm length  Outlet River. Lake Ontario 1984 112 ug/kg wer weight 448
n=6,33mm length  Burlington, Lake Ontario 1984 113 ug/kg wet weight 452

n=6,48mm length  Welland Canal, Lake Ontario 1984 157 ug/kg wet weight 628
n=6,54mm length  Twelve Mile Creek, Lake Ont 1984 267 ug/kg wet weight 1068
n=6,69mm length  Mimico Creek, Lake Ontario 1984 378 ug/kg wet weight 1512
n=7,57mm length  Weiland Canal, Lake Ontario 1985 255 ug/kg wet weight 1020
n=7,57mm length  Bronte Creek, Lake Ontario 1985 317 ug/kg wer weight 1268

n=4,57mm length  Twelve Miie Creek, Lake Ont 1985
n=7,41mm length  Burlington, Lake Ontario 1985 502 ug/kg wet weight 2008

337 ug/kg wet weight 1348

n=7,64mm length  Humber River, Lake Ontario 1985 524 ugfkg wet weight 2096

n=53,74mm length  Toronto main STP, Lake Omnt 1985 676 ug/kg wet weight 2704

n=10,62mm length Credit River, Lake Ontario 1986 1315 ug/kg wet weight 5260
Lake Ontario 1975  0.69 ug/g wer weight 2760 Strachan and Edwards, 1584

1976 1.3 ugfg wet weight 5200
1977 1.5 ug/g wet weight 6000
1978 1.1 ug/g wet weight 4400
1979 046 ug/g wet weight 1840
1980  0.31 ug/g wet weight 1240

slimy sculpin

no details Lake Ontario 1972 4.63 ug/g wet weight 18520 Stevens, 1988
n=10,mean wet=5.10g 1977 0.74 ug/g wet weight 2960
n=3,mean wet=4.34g 1979 1.09 ug/g wet weight 4360
n=11,mean wet=7.47g 1982 1.74 ug/g wer weight 6960
no details Prince Edward Point 1973  1.58 ug/g wet weight 6320 Haile et al., 1975

Hamilton, Lake Ontario 1973 2.89 ug/g wet weight 11560
Galloo-Stoney, Lake Ont 1973 3.33 ug/g wet weight 13320
Rochester, Lake Ontario 1973  4.32 ug/g wet weight 17280
Mexico Bay, Lake Ontario 1973 6.49 ug/g wet weight 25960
Olcort, Lake Ontario 1973 9.17 ug/g wet weight 36680

n=53, mean dry=.66g Eastern Lake Ontario 1979  3.82 ugfg dry weight 3820 Borgmann and Whittle, 1983

5 fish composite Lake Ontario 1986 1600 ng/g wet weight 6400 Oliver and Niimi, 1988
rainbow smeit
no details Lake Ontario 1972  2.65 ug/g wet weight 10600 Stevens, 1988
1984  1.73 ugfg wet weight 6920
no details Lake Ontario 1977  1.50 ug/g wet weight 6000 Shear, 1984
1978  1.82 ug/g wet weight 7280
1979  0.80 ug/g wet weight 3200
1980  1.12 ug/g wet weight 4480
n=73,mean wet=24.4¢ Lake Ontario 1978 174 m wet weight 696 i
n=47,mean wet=283¢g 1981 g s ° ke et s

0.90 mg/kg wet weight 3600

n=48,mean wet=31.9¢ 1982 1.66 mg/kg wet weight 6640
n=36,mean wet=29.8¢ 1983 i

n=56,mean wet=21.9g 1984 101 me v et 200
n=49,mean wet=17.2g v 1985 055 s et ek 3900

0.55 mg/kg wet weight 2200
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n=109,mean dry=4.22g Eastern Lake Ontario
n=50,mean dry=6.90 Western Lake Ontario

n=23,mean wet=18.3g Western Lake Ontario
n=12 Eastern Lake Ontario

20 fish composite  Vineland, Lake Ontario

6 8-fish composite Port Credit

alewife

no details Prince Edward Point
Mexico Bay, Lake Ontario
Olcott, Lake Ontario
Hamilton, Lake Ontario
Gailoo-Stoney, Lake Ont
Rochester, Lake Ontario

12 fish composite  Lake Ontario

brown trout

n=10,mean wt=1430g
and Oliver, 1989

coho saimon
n=206, mean dry=434g Western Lake Ontario

no details Lake Ontario

no details Lake Ontario

" n=10, total wt=3026g Lake Ontario
n=9, mean wt=3330g

and Oliver, 1989
n=10, mean wt=1190g Vineland, Lake Ontario

lake trout

n=216, mean dry=246g Eastern Lake Ontario
n=110, mean dry=177g Western Lake Ontario

1979  2.38 ug/g dry weight 2380 Borgmann and Whittle, 1983
1979  6.75 ug/g dry weight 6750

1981 858 ng/g wet weight 3432 Whittle and Fitzsimons, 1983
1981 1000 ng/g wet weight 4000

1982 1400 ng/g wet weight 5600 Oliver and Niimi, 1988
1986 620 ng/g wet weight 2480

1973 0.14 ug/g wet weight 560 Haile ¢t al., 1975
1973 0.94 ug/g wet weight 3760

1973 L.73 ug/g wet weight 6920

1973 3.12 ug/g wet weight 12480
1973 3.8l ug/g wet weight 15240
1973 4.36 ug/g wet weight 17440

1982 = 1300 ng/g wet weight 5200 Oliver and Niimi, 1988

Vineland, Lake Ontario 1986 2380 ng/g dry weid380

1979  9.14 ugfg dry weight 9140 Borgmann and Whittie, 1983

1977  3.03 ug/g wet weight 12120 Shear, 1984
1978  3.00 ug/g wet weight 12000
1979  1.21 ug/g wet weight 4840
1980 2.3 ug/g wet weight 9200

1975  0.69 ug/g wet weight 2760 Strachan and Edwards, 1584
1976 1.3 ug/g wet weight 5200
1977 1.5 ug/g wet weight 6000
1979 2.8 ugfg wet weight 11200
1981 424 ug/g wet weight 16960 Whittie and Fitzsimons, 1983

Credit River, Lake Ont 1986 4650 ug/kg dry weddH0

1986 1970 ug/kg dry weight 1970

1979  14.1 ug/g dry weight 14100 Borgmann and Whittle, 1983
1979  20.7 ug/g dry weight 20700

no details Lake Ontario 1977  4.95 ug/g wet weight 19800 Shear, 1984
1978  7.10 ug/g wet weight 28400 '
1979 . 3.79 ug/g wet weight 15160
1980  4.79 ug/g wet weight 19160
1981  2.82 ug/g wet weight 11280
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n=32,mean wet=2102g Lake Ontario 1977  8.00 mg/kg wet weight 32000 Whittle, 1986

n=11,mean wet=1200g 1978 5.06 mgfkg wet weight 20240
n=72,mean wet=2068g 1979 4.73 mgfkg wet weight 18920
n=82,mean wet=1792¢g 1980 4.77 mg/kg wet weight 19080
n=83,mean wet=1538g 1681 3.67 mg/kg wet weight 14680
n=36,mean wet=1862g _ 1982 5.87 mg/kg wet weight 23480
n=46,mean wet=1769¢g 1983 6.44 mg/kg wet weight 25760
n=47,mean wet=1547g 1984 5.91 mg/kg wet weight 23640
n=14,mean wet=1714g 1985 2.80 mg/kg wet weight 11200

n=10, age=4+yrs Eastern Lake Ontario 1981 2370 ng/g wet weight 9480 Whittle and Fitzsimons, 1983
n=98, age=4+yrs Western Lake Ontario 1981 3890 ng/g wet weight 15560

n=10,mean wt=2410g Port Credit, Lake Ont 1986 9970 ug/kg dry weSEH0 MNi
and Oliver, 1989

age=4yrs Lake Ontario 1977  6.84 ug/g wet weight 27360 Borgmann and Whittle, 1991
1978  8.04 ug/g wet weight 32160
1979  3.67 ug/g wet weight 14680
no details Cobourg, Lake Ontario 1980  3.31 ug/g wet weight 13240
Eastern Lake Ontario 1980  2.88 ug/g wet weight 11520
Hamilton, Lake Omtario 1980  4.90 ug/g wet weight 15600
Kingston basin 1980  3.47 ug/g wet weight 13880
Lake Ontario * 1980  3.94 ug/g wet weight 15760
Niagara River, Lake Ont 1980  3.98 ug/g wet weight 15920
Port Credit, Lake Ont 1980  5.25 ug/g wet weight = 21000
age=4yrs Lake Ontario 1681  2.85 ugfg wet weight 11400
1982  3.31 ug/g wet weight 21240
© 1983 5.43 ug/g wet weight 21720
1984  4.84 ug/g wer weight 19360
1985  2.54 ug/g wet weight 10160
1986  3.13 ug/g wet weight 12520
1987  3.43 ug/g wet weight 13720
1988  2.54 ug/g wet weight 10160

n=213,mean wet=1587.4gl ake Ontario 1981  3.25 ug/g wet weight 13000 Stevens, 1988 ,
n=178,mean wet=1460.0g 1982 5.64 ug/g wet weight 22560
n=144 : 1983 530 ug/g wer weight 21200

rainbow trout

n=12, mean wt=3380g Credit River, Lake Ont 1986 5660 ug/kg dry weight 5660 - Niimi and Oliver, 1989
n=8, mean wt=1140g Vineland, Lake Ontario 1986 1450 ug/kg dry weight 1450

‘In most cases only mean concentrations reported; confact author(s) for raw data.

*All reported values converted to ng/g dry weight using the following assumptions;

. dry weight of plankton is 10% its wet weight

. dry weight of Mysis is 21% its wet weight (Evans and Landrum, 1983)

. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986)

. dry weight of Pontoporeia is 27% its wet weight (Evans and Landrum, 1983)
. dry weight of all fishes is 25% its wet weight

[V S LS R

*Sources include published literature from 1970 to 1991 only. _
‘n = number of samples for piankton, Mysis, Pontoporeia, or benthos, and n = number of organisms for all fishes.
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TABLE 2

Summary of the concentration of dieldrin in various Lake Ontario biota

(See footnotes for comments and assumptions).

Converted Conc.’

Organism Location Year Mean Concentration® (ng/g dry) Source’
plankton
net >135um v
a's7 Lake Ontario 1972 0.13 ug/g dry weight 130 Stevens, 1988
n=23 1977  0.05 ug/g dry weight 50
n=22 1978  0.03 ug/g dry weight 30
=29 1979 Q.01 =glz dry weighr 10
=20 1982 0.01 ugg dry weight 10
aet >6dum Deep Hole, Lake Omario 1973 0.02 ug/g dry weight 20 Haile g1 al, 1975
Rochester. Lake Ontario 1973 0.02 ug/g dry weight 20
midlake, Lake Omario 1975 0.16 ugig dry weight 160
midlake east Lake Ox 1972 0.18 ug'g dry weight 130
Hamilton, Lake Ontario . 1973 0.24 ugsg dry weigit 240
midlake west. Lake Qut 1973 0.25 ug/g dry weight 150
net >153um, n=5  Western Lake Ontarig 1981 17 ng/g dry weight 17 Whittle and Fitzsimons, 1983
aet >i53um, n=2  Eastern Lake Qausio 1981 19 ngfg dry weight 19
Lake Ontario 1977  0.10 ug/g dry weight 100 Stevens, 1988
1978 0.15 ugg dry weight 120
157 - 0.03 ug'g dry weigt 30
1980 Q.05 ug'g drv weight 30
1981  0.06 ug:g dry weignt 60
1982  0.07 ugg dry weight 70
n=3 Western Lake Onrario 108 10 ng/g dry weight 10 Whirttle and Fizsimons. 1983
a=12 Eastern Lake Ontario 1981 17 ngig dry weight 17 .
benthos
n=3 Western Lake Omario 1572 0.5 ugg dry weight 150 Stevens. 1988
n=11 ' 1983 0.27 ug/g dry weight 270
Qswego, Lake Omario 1973 3.0 ngg dry weight 3 Cook and Johnson. 1974
mixed, inciudes Hamilton, Lake Ontario 1973 14.8 ng'g dry weight 148  Haile gt al., 1975
2. hovi Rochester, Lake Qmario 1973 2.9 ngg dry weight 19
Peneozoreia hovi
=16 Lake Ontaric 1978  0.13 ug/g dry weight 130 Stevens, 1988
n=13 1979 0.38 ug/g dry weight 380
n=3 1980  0.23 ug/g dry weight 230
a=3 1981 043 ugfg dry weight 450
r=il 1983  0.28 ug/g dry weight 230
=5 © Wasiern Lake Ontatio 1081 226 ng/g dry weizht o] Whistle and Fitzsimons, 1983
=13 Eastern Lake QOuntario 1981 376 ng/g dry weight 376
siimy sculpin
no details Liake Ontario 1972.  0.06 ugf/g wet weight 240 Stevens, 1988

n=i0,/zean wet=3.10g
ne=3.mean wer=4.24g
a=il.mean wet=7.47g

1977
1979
1982

- .08 ugig wer weigit 320

0.14 ug/g wet weight 560
0.09 ug/g wet weight 360
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no details

rainbow smelt

no details

no details

no details

Galloo-Stoney, Lake Ont 1973

Rochester, Lake Ontario
Olcott, Lake Ontario

Mexico Bay, Lake Ontario

Prince Edward Point

Lake Omario

Oleott, Lake Ontario
Rochester, Eake Ontario
Hamilton, Lake Omario
Prince Edward Point

Galloo-Stoney, Lake Ont

Lake Ontario

" n=47,mean wer=28.3g
Whinte, 1986
n=43,mean wet=31.9g
n=36,mean wet=29.8¢
n=3j6.mean wer=21.9¢
a=d9,mean wei=17.2g

a=i2

Eastern Lake Ontario

n=23,mean wet=18.3g

alewife

0o details Mexico Bay, Lake Omtario
Olcort, Lake Ontario
Prince Edward Point
Gailgo-Stoney, Lake Ont
Hamilton, Lake Ontario
Rochester, Lake Ontario

¢oho salmon

5o details Lake Onrario

lake trout

no details Lake Ontario

age=4yrs Lake Ontario

no details Niagara River, Lake Oni

Eastern Lake Ontario

Kingston basin, Lake Omt

Lake Ontario

Port Credit, Lake Ont
Hamilion, Lake Ontario
Cobonrg, [ ake Ontaio

0.04 ug/g wet weigit

1973 0.05 ug/g wet weight
1973 0.06 ugfg wet weight
1973 0.10 ug/s wet weight
1975 0.11 ugg wer weight
1972 0.04 ug/g wet weight
1984  0.04 ug/g wer weignt
1973 0.02 ug/g wet weight
1973 0.03 ug/g wet weight
1973 0.04 ug/g wet weigit
1973 0.06 ug/g wet weight
1973 0.07 ug/g wet weight
1977 0.02 ug/g wet weight
1978  0.05 ugig wet weight
1979 0.04 ug/g wet weight
1980  0.04 ug/g wet weight
Lake Omario

1982

1983

1984

1985
1981 65 ng'g wet weight

Western Lake Oniario

1973
1973
1973
1973
1973
1973

1977

1979
1980

1977
1978
1979
1980
1981

1977

1979
1980

© 1980

1980
1980

1980,

1980
1980

Q.05 ug.g wer weight
0.03 ugig wet weight
0.03 ug'g wes weight
0.04 ug/g wer weight
0.04 ugrg wet weight
0.04 ug'g wer weight

0.07 ug/g wer weight
0.10 ug/g wer weight
0.05 ugrg wet weight
0.07 ug:g wet weight

0.04 ug/g wet weight
0.18 ug/g wet weight
0.20 ug/g wet weight
0.10 ug/g wet weight
0.15 ug/g wet weight

0.05 ug/g wet weight
0.19 ug/g wet weight
0.08 ug/g wet weight
0.09 ug/yg wet weight
0.09 ug/g wet weight
0.09 ug/g wet weight
0.09 ug/g wet weight
0.1} ugfg wet weight
(.12 ug/y wet weight

160 Haite et 2k, 1975
200
240

40

160 Stevens, 1988
160

80  Hailectal, 1975
120

240
280

30 Shear, 1984
200

160

1581 0.06 mg/kg wet weight
" 0.05 mg/kg wet weight 200
0.03 mg/kg wet weight 120
0.03 me/kg wet weight 120
0.02 mg/kg wet weight 30

260 Whistie and Fitzsimons, 1982
1981 70 ng/g wet weight 30

12 Haile et al., 1675

280 Shear, 1984

200
220

160 Shear, 1984
70

200 Borgmann and Whittle, 1991

320
360
360
360

480
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age=4yrs

n=11,mean wet=1200g
Whittle, 1986

n=72,mean wet=2068¢g
n=82,mean wet=1792g
n=83,mean wet=1538¢g
n=36,mean wet=1862g
n=46,mean wet=1769g
n=47,mean wet=1547g
n=14,mean wet=1714g
n=10, age=4+yrs
n=98, age=4+yrs

n=213,mean wet=1587.4g

Stevens, 1988
n=144

Lake Ontario

Eastern Lake Ontario
Western Lake Ontario

1981  0.18 ug/g wet weight
1982  0.13 ug/g wet weight
1983  0.13 ug/g wet weight
1985  0.10 ug/g wet weight
1986  0.11 ug/g wet weight
1987  0.11 ug/g wet weight
1988  0.09 ug/g wet weight
Lake Ontario

1979

1980

1981

1982

1984

1984

1985 '
1981 190 ng/g wet weight
1981 190 ng/g wet weight
Lake Ontario
1983  0.12 ug/g wet weight

720
520
520

360

760
760

480

1978 0.21 mg/kg wet weight

0.23 mg/kg wet weight
0.12 mg/kg wet weight
0.19 mg/kg wet weight
0.15 mg/kg wet weight
0.14 mg/kg wet weight
0.15 mg/kg wet weight
0.11 mg/kg wet weight

920
480
760
600
569
600
440

840

Whittle and Fitzsimons, 1983

1981 0.20 ug/g wet weigh300

'In most cases only mean concentrations reported; contact author(s) for raw data.
*All reported vaiues converted to ng/g dry weight using the following assumptions;

1. dry weight of piankton is 10% its wet weight

2. dry weight of Mysis is 21% its wet weight (Evans and Landrum, 1983)

3. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986)

4. dry weight of Pontoporeia is 27% its wet weight (Evans and Landrum, 1983)

5. dry weight of all fishes is 25% its wet weight
3Sources include published literature from 1970 to 1991 only.

‘n = number of samples for plankton, Mvsis, Pontoporeia, or benthos, and n = number of organisms for all fishes.
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TABLE 3

Summary of the concentration of HCB in various Lake
(See footnotes for comments and assumptions).

Convered Cona?

Organism Location Year Mean Concentration! (ng/g &r7) Source’
plankton
2'=3, 10m depth Lake Omario 1982 1.6 ng/g wet weignt 16 Cliver 2=d Niizi, 1988
Moysis relicta
no damails Western Lake Onrario 1981 96 agig dry weigit gé Fox g 3. 1553
a=2 ke Onaci 1982 2.0 ngfg wer weizit b2 Qliver 2ad Niimi, 1688
benthos
armpaipods Wesiern Lake Omasio 1881 G0 ag/g dry weight en Tox = 2L, 1083
mixed, includes 1981 157 ag'g dry weight 157
2. hovi 1981 190 ngjg drv weight 190
1981 220 ngrg dry weight 50
1981 259 agg dry weigl 0
1981 370
1881 )
1981 iz 1200
1981 1200 =gz drv weight 1209
1881 1600 ngrg dry weight 1500
oligochaetes ‘Westera Lake Criasio 1981 63 ng'g dry weight 63 Fox = al.. 1983
20 desails 1981 69 ng'g dry weight 69
1981 75 ng g dry weight 75
1981 140 ng'g dry weight 120
1981 181 agrg dry weight 181
1981 230 ng/g dry weight =0
1981 270 agg dry weight =
1981 480 ng'g dry weight 30
1981 1200 =gig dny v 1200
n=4 Niagara basin, Lake Ont 1985 3.5 ngfg wet weight 13 Oliver and Niimi, 1588
Pontonoreia affinis
n=6 Niagara basin, Lake Ot 1985 18 ng’g wer weight 67 Oliver and Niimi. 1988
slimy seulpin
5 fish composiie Grimsby, Lake Outaio 1986 38 ngfy wet weight 152 Oliver and Niimi, 1948
rainbow smelt
20 tish coimposite k Vineland, [ake Owatia 1982 14 ap/g wet weight 56 Ofiver and Niimi, 1988
0 8-fish compaosites  Pott Ciedit, Lake Om 1986 1.6 nfg wet weipit Wt
alewile
12 fish composite  Vincland, Lake Ontario 1982 S0 Oliver and Niimi, 1988

20 ug/g wet weight
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brown trout

n=10,mean wet=1430g - ) Vineland, Lake Omtario 1586 25 ug/kg dry weight 25 MNi
and Oliver, 1989 )

2oho salmon

n=20,mean wet=3.56kg radit River, Lake Ont 1978 36 ng/g dry weight 36 M
1979

n=9%,mean wet=3330g Credit River, Lake Ont 1986 24 ug/kg dry weight 24 b4
and Oliver, 1989

n=10,mean wet=1190g Vineland, Lake Ontario 1986 26 ug/kg dry weight 26

lake rout

n=14,mean wet=1.02xg Eastern Lake Omrario 1978 20 ng/g dry weight SO M
1979

n=l, agessrvrs Point Patre, ke Ot 1880 61 ppb dry weight) 61 Qtiver and Nicol, 1982

n=1, age=6+yrs Niagara basin, Lake Ont 1980 127 ppb dry weight) 127

n=10,mean wet=2410g . Port Credit, Lake Ont 1986 90 ug/kg dry weight 90 b
and Oliver, 1989 .

rainbow trout

n=15,mean wet=2.32kg Port Hope. Lake Cnt 1978 62 ng'g dry weight 62 X
1979
n=1,wet weight=23%g Ganaraska R., Lake Ont 1981 15 ng/g dry weight 15 Ge
and Niimi, 1983 :
n=i,wet weight=1.86kg 1981 20 ng/g drv weight20
n=1,wet weight=4.67kg 1981 20 ng/g dry weight20
a=1,wet weight=1.52kg © . 1981 21 ngfg dry weight21
n=1,wer weight=2.86kg . 1981 27 ngfg dry weight27
n=1,wet weight=+4.07kg 1981 28 ng/g dry weigh8
n=1.wet weight=3.05kg 1981 40 ng/g dry weight4Q
n=1,wet weight=3.94kg 1981 48 ngg dry weight+8
n=1,wet weight=3.73kg 1981 30 ng/g dry weightS0
a=1,wet weight=3.88kg 581 38 ng/g dry weight38
n=8,mean wet=1140g ‘Vineland, Lake Ontario 1986 20 ug/kg dry weight 20 Mo
and Oliver, 1989
n=12,mean wet=3380g Credit River, Lake Ont 1986 42 ugkg dry weight 42
In most cases only mean concentations reported; contac: zuthor(s) for aw dam.
*All reported values converted to ngfg dry weight using the foilowing assumptions;
1. dry weight of plankton is 10% its wet weight
2. dry weight of Mysis is 21% its wet weight (Tvaas and Landrum, 1583)
3. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986)
4. dry weight of Pontovoreia is 27% its we: weight (Evans and Landrum, 1983)
5. dry weight of all fishes is 25% its wet weight
*Sources include published literature from 1970 to 1991 only.
‘n = number of samples for plankton, Mysis, Pontoporeia. or benthos, and n = number of organisms for ail fishes.
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‘TABLE 4. Summary of the concentration of 1,2,3-TCB in various Lake Ontario

biota (See footnotes for comments and assumptions).

Converted Conc.’

Organism Location Year  Mean Concentration* (ng’g éry)  Source®
plankton
n'=3, 10m depth Lake Onptaric 1982 0.03 ng/g wet weight 03  Ofiver and Niimi, 1988
Moysis relicta
a0 desails Western Lake Onrario 1981 2.0 ne/g dry weight 2 Fox et al., 1983
n=2 Lake Ontaric 1982 0.1 ng/g wet weight 0.48 Oliver and Niimi, 1988
benthos
mphipods “Westera Lake Ontario 181 1.9 nwg dry weight 29 Foxeal 1983
raixed, includes 1581 6.7 nw/g dry weight 8.7
2. novi 1981 9.0 ng/g dry weight 9
1981 9.5 ng/g drv weight as
1981 10 ag/g drv weight i0
1981 14 ng/g dry weight i4
1981 19 ng/g dry weight 19
1981 20 ngrg dry weight X
1981 29 ng/g dry weight 29
sligochaetes Western Lake Omario 1981 135 n&/g dry weight 13 rFoxeral 1985 .
1881 6.3 ngg dry weight 63
1881 7.5 agg dry weight 3
1881 93 ne/g dry weight 93
1981 11 ngfg dry weight 11
1981 13 ng/g dry weight 13
Pontoporeia hovi
=6 Niagara basin, Lake Ot 1985 1.5 ng/g wet weight 556 Oliver and Niimi, 1988
spoteail shiner
lake trout
n=i, age=d+yrs - Point Petre, Lake Ont 1980 0.2 ppb wex vfeighl) 08  Oliver and Nicol, 1982
g=l, age=G+yrs  Niagara basin, Lake Ont 1980 1 ppb wet weight 4

‘In most cases only mean concentrations reported; contact nuthor(s.)' for raw dzxa.
2All reported values converted 1o ng/g dry weight using the following assumptions:

, et

1. dry weight of plankton is 10% its wet weight
2. dry weight of Mysis is 21% its wet weight (Evans and Landmm. 1983)
3. dry weight of bemthos is 15% i wet weight (Strayer and Liken, 1986)
4, drv weight of Pontovareia is 27% its wet weight (Evans and Landrum. 1983)
5. dry weight of all fishes is 25% its wet weight :

published literature from 1970 to 1951 oniy.

43 = mmmber of samples for flankesa, Mesis, Pontooreis, ar bestkos, 20d 3 = 2umber of arganisms for all Sshes.
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TABLE 5.  Summary of the concentration of 1,2,3,4-TeCB in various Lake Ontario
biota (See footnotes for comments and assumptions).
Converted Cone.?
Organism Location Year Mean Concentration! (ng/g dry)  Source’
piankton
==3, 10m depth Lake Ontario 1982 0.4 ng/g wet weight 4 Oliver and Niimi, 1988
Muysis reficta
20 details Western Lake Ontario 1981 19 ngfg dry weight 19 Fox gt al., 1983
1=2 Lake Ontario 1984 1.5 ng/g wet weight 7.14  Oliver and Niimi, 1988
Sentnos
ampiipods Western Lake Ontario 1981 9.0 ng/g dry weight 9 Fox et al., 1683
mixea., inciudes 1981 I3 ngg dry weight 13
2 oovi 1981 18 ng/g dry weight 18
1981 24 ng/g dry weignt 24
1981 48 ngfg drv weight 48
1981 76 ng/g dry weignx 76
1981 90 ngfg dry weight )
1981 95 ngg dry weigit 95
1981 130 ngig dry wesght 130
oligochaetes Western Lake Omtario 1581 9.3 ng/g dry weight 93 TFoxetal, 1983
30 details 1981 19 ng/g drv weight 19
1981 20 ng/g dry weight 20
1981 21 ng/g dry weighr a4
1981  2S ng/g dry weight 25
1981 38 ng/g dry weight 38
1981 42 nwg dry weignt 42
1981 69 ng/g dry weigit 69
=6 Niagara basin, Lake Ont 1985 0.3 ng/g wet weight 2 Oliver and Niimi, 1988
Pontopareia hovi
a6’ Niagara basin, Lake Ont 1985 6.1 ng/g wet weight - 22.6  Oliver and Niimi, 1988
slimy seulpin
5 fish composite  Grimsby, Lake Ontario 1986 0.9 ng/g wet weight 36  Oliver and Niimi, 1988
lake trout
n=l, age=5+yrs Niagara basin, Lake Omt 1980 12 ppb wet weight 12 Qliver and Nicol, 1982
n=1, age=4-+yrs Paint Petre, Lake Ont 1980 4 ppb wet weight 16
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rainbow trout

n=1,wet weight=2.39%g Ganaraska R., Lake Ont 1981 0.4 ng/g dry weight 0.4 Gr
and Niimi, 1983 ) .
n=1,wet weight=4.67kg 1981 0.6 ng/g dry weight 0.6
n=1,wet weight=1.86kg 1981 0.6 ng/g dry weight 0.6
n=1,wet weight=1.52kg 1981 0.7 ng/g dry weight 0.7
n=1,wet weight=4.07kg 1981 0.9 ng/g dry weight 0.9
n=1,wet weight=3.05kg 1981 0.9 ng/g dry weight 0.9
n=1,wet weight=3.94kg 1981 1.2 ng/g dry weight 1.2
n=1,wet weight=2.86kg 1981 1.4 ng/g dry weight 1.4
n=1,wet weight=3.73kg 1981 1.4 ngfg dry weight 1.4
n=1,wet weight=3.88kg 1981 1.4 ng/g dry weight 1.4

In most. cases only mean concentrations reported; contact author(s) for raw data.
2All reported values converted to ng/g dry weight using the following assumptions;
. 1. dry weight of plankton is 10% its wet weight

2. dry weight of Mysis is 21% its wet weight (Evans and Landrum, 1983)
3. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986)
4. dry weight of Pontoporeia is 27% its wet weight (Evans and Landrum, 1983)
5. dry weight of all fishes is 25% its wet weight

3Sources include published literature from 1970 to 1991 only.

‘n = number of samples for plankton, Mysis, Pontoporeia, or benthos, and n = number of organisms for all fishes.
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TABLE 6.

Summary of the concentration of mirex in various Lake Ontario biota
(See footnotes for comments and assumptions).

Organism Location

Converted Conc.?
Year Mean Concentration®

(ng/g dry) Source’

plankton

n*=3, 10m depth
Qliver and Niimi, 1988

Mysis relicta

n=2 Lake Ontario
benthos

oligochaetes

n=6 Niagara basin

Pontoporeia hovi

n=16 Lake Ontario

n=13 '

n=35

n=13 Eastern Lake Ontario
Whittle and Fitzsimons, 1983

n=3 Western Lake Ontario
n=6 Niagara basin

spottail shiner

Lake Ontario

1984

1985

1978
1979
1980

1985

330 ng/g wet weight571

6.9 ng/g wet weight 46

0.08 ug/g dry weight 80
0.04 ug/g dry weight 40
0.12 ug/g dry weightl20

1982 1.3 ng/g wet weight 13

Oliver and Niimi, 1988

Oliver and Niimi, 1988

‘Stevens, 1988

1981 41 ng/g dry weight 41

1981 228 ng/g dry weigh28

12 ng/g wet weight 44

Oliver and Niimi, 1988
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Lake Ontario 1975 0.013 ug/g wet weight2  Shear, 1984
1978- 0.029 ug/g wet weiglii6
1979 0.001 ug/g wet weight 4
1980 0.011 ug/g wet weighti4

n=10,mean wet=9.11g Salmon River, Lake Ont 1984 3.5 ng/g wet weight 14
Skinner, 1988
n=10,mean wet=10.6g Oswego Harbor, Lake Ont 1984 3.8 ng/g wet weight 15.2
n=10,mean wet=11.1g Black R. Bay, Lake Ont 1984 3.9 ng/g wet weight 15.6
n=9,mean wet=11.8g Salmon River, Lake Ont 1985 4 ng/g wet weight 16
n=10,60mm length ’ Darlington, Lake Ontario 1976 6 ug/kg wet weight 243s
1986
n=8,62mm length Humber River, Lake Ontario 1977 5 ug/kg wet weight 20
n=9,55mm length Burlington,-Lake Ontario 1977 9 ug/ikg wet weight 36
n=8,49mm length Cobourg Creek, Lake Ont 1978 6 ugikg wet weight 24
n=8,58mm length Humber River, Lake Ontario 1978 15 ug/kg wet weight60
n=8,51mm length Twelve Mile Creek, Lake Ont 1978 20 ug/kg wet weight80
n=8,60mm length Credit River, Lake Ontario 1978 28 ug/kg wet weight12
n=3,49mm length Gages Creek, Lake Ontario 1979 6 ug/kg wet weight 24
n=8,53mm length Qutlet River, Lake Ontario 1979 10 ug/kg wet weight40
n=7,57mm length * Ganaraska River, Lake Ont 1980 6 ug’kg wet weight 24
n=7,53mm length Qutlet River, Lake Ontario 1980 8 ug/kg wet weight 32
n=7,48mm length Welland Canal, Lake Ontario 1982 6 ug/kg wet weight 24
n=7,52mm length Credit River, Lake Ontario 1982 7 ug/kg wet weight 28
n=7,49mm length .Qutlet River, Lake Ontario 1982 7 ug/kg wet weight 28
n=6,54mm length Wolfe Island, Lake Ontario 1982 8 ug/kg wet weight 32
n=4,56mm length Oshawa Creek, Lake Ontario 1982 9 ug/kg wet weight 36
n=7,41mm length Twelve Mile Creek, Lake Ont 1982 21 ug/kg wet weight84
n=7,60mm length Credit River, Lake Ontario 1983 5 ug/kg wet weight 20
=7,57mm length Burlington, Lake Ontario 1983 7 ug/kg wet weight 28
n=7,65mm length Wolfe Island, Lake Ontario 1983 7 ug/kg wet weight 28
n=7,64mm length Twelve Mile Creek, Lake Ont 1983 8 ug/kg wet weight 32
n=06,48mm length Welland Canal, Lake Ontario 1984 5 ug/kg wet weight 20
n=7,43mm length Outlet River, Lake Ontario 1984 6 ug/kg wet weight 24
n=6,54mm length Twelve Mile Creek, Lake Ont 1984 7 ug/kg wet weight 28
n=7,58mm length Wolfe Island, Lake Ontario 1984 7 ug/kg wet weight 28
n=10,62mm length Credit River, Lake Ontario 1986 32 ug/kg wet weighlt28
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slimy sculpin

n=10,mean wet=5.10g Lake Ontario 1977 0.06 ug/g wet weigh240

n=5,mean wet=4.34g

5 fish composite
QOliver and Niimi, 1988

rainbow smelt

no details Lake Ontario

n=73,mean wet=24.4g Lake Ontario
n=73,mean wet=24.2g

n=33,mean wet=28.7g

n=47,mean wet=28.3g

n=48,mean wet=31.9g

n=36,mean wet=29.8g

n=56,mean wet=21.9g

n=49,mean wet=17.2g

no details Lake Ontario
n=12
Whittle and Fitzsimons, 1983
n=23,mean wt=18.3g

20 fish composite
Oliver and Niimi, 1988

Eastern Lake Ontario

1979

Grimsby, Lake Ontario

1977
1978
1979
1980

1978

1981

6 8-fish composites Port Credit, Lake Ont

0.11 ug/g wet weightd40
0.06 ug/g wet weigh40
0.06 ug/g wet weighf40
0.08 ug/g wet weighB820

0.05 mg/kg wet weigi0

Stevens, 1988
0.08 ug/g wet weighi20

1986 57 ng/g wet weight228

Shear, 1884

Whittle, 1986

1979 0.05 mg/kg wet weight - 200
1980 0.04 mg/kg wet weight 160
1981 0.04 mg/kg wet weight 160
1982 0.02 mg/kg wet weight 80
1983. 0.05 mg/kg wet weight 200
1984 0.01 mg/kg wet weight 40
1985 0.01 mg/kg wet weight 40

0.06 ug/g wet weigh240

1981

Western Lake Ontario

Vineland, Lake Ontario

1986

Strachan and Edwards, 1984

50 ng/g wet weight 200

1981 35 ng/g wet weight140

1982 53 ng/g wet weight212

26 ng/g wet weight 104
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alewife
12 fish composite Vineland, Lake Ontario 1982 45 ng/g wet weight180
QOliver and Niimi, 1988
brown trout.
=10,mean wt=1430g Vineland, Lake Ontario 1986 77 ug/kg dry weight77hia
and QOliver, 1989
coho salmon
no details Lake Ontario 1977 0.16 ug/g wet weight40 Shear, 1984
1978 0.08 ug/g wet weigh820
1979 0.10 ug/g wet weigh#00
1980 0.10 ug/g wet weigh#00
no details Lake Ontario 1981 0.04 ug/g wet weighfl60 Strachan and Edwards, 1984
n=9,mean wt=3330g Credit River, Lake Ont 1986 203 ug/kg dry weigh@3bm
and Oljver, 1989 '
n=10,mean wt=1190g Vineland, Lake Ontario 1986 45 ug/kg dry weight45
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lake trout

no details Lake Ontario 1977 0.27 ug/g wet weigh80 Shear, 1984
1978 0.21 ug/g wet weighB840
1979 0.23 ug/g wet weighD20
1980 0.18 ug/g wet weigh20
1981 0.15 ug/g wet weight00
n=32,mean wet=2102g Lake Ontario 1977 0.49 mg/kg wet wiRfil
Whittle, 1986
n=11,mean wet=1200g 1978 0.15 mg/kg wet weight 600
n=72,mean wet=2069¢g 1979 0.25 mg/kg wet weight 1000
n=82,mean wet=1792g 1980 0.14 mg/kg wet weight 560
n=83,mean wet=1583g 1982 0.16 mg/kg wet weight 640
n=36,mean wet=1862g 1983 0.21 mg/kg wet weight 840
n=46,mean wet=1769g 1984 0.08 mg/kg wet weight 320.
n=14,mean wet=1714g 1985 0.13 mg/kg wet weight 520
age=4yrs Lake Ontario 1977 0.38 ug/g wet weight20 Borgmann and Whittle, 1991
no details Cobourg, Lake Ontario 1980 0.14 ug/g wet weighi60
Eastern Lake Ontario 1980 0.09 ug/g wet weigt360
Hamilton, Lake Ontario 1980 0.19 ug/g wet weighi60
Kingston basin 1980 0.12 ug/g wet weight80
Niagara River, Lake Ont 1980 0.14 ug/g wet weighi60
Port Credit, Lake Ont 1980 0.16 ug/g wet weighid0
age=4yrs Lake Ontario 1981 0.12 ug/g wet weightt80
1983 0.18 ugf/g wet weight/20
1984 0.07 ug/g wet weigh80
1986 0.06 ug/g wet weigh40
1987 0.10 ug/g wet weighttO0
1988 0.17 ug/g wet weigh680
n=141,mean wet=956.7g Lake Ontario 1978 1 0.18 ug/g wet weighi20
Stevens, 1988
n=176,mean wet=1554.8g 1979 0.22 ug/g wet weigB80
n=133,mean wet=1660.4g 1980 0.17 ug/g wet weigti80
n=178,mean wet=1460.0g 1982 0.17 ug/g wet weighi80
n=144 1983 0.17 ug/g wet weightt80
no details Lake Ontario 1981 0.14 ug/g wet weigh660 Strachan and Edwards, 1984

n=10, age=4+yrs
Whittle and Fitzsimons, 1983
n=98, age=4+yrs

n=10,mean wt=2410g
and Oliver, 1989

Eastern Lake Ontario
Western Lake Ontario

Port Credit, Lake Ont

1981 130 ng/g wet weighi20
1981 150 ng/g wet weighi00

1986 430 ug/kg dry weigdB0ha
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rainbow trout

n=12,mean wt=3380g Credit River, Lake Ont 1986 246 ug/kg dry weighi6in

and Oliver, 1989
n=8,mean wt=1140g Vineland, Lake Ontario 1986 51 ug/kg dry weight51

Yn most cases only mean concentrations reported; contact author(s) for raw data.
2All reported values converted to ng/g dry weight using the following assumptions;
1. dry weight of plankton is 10% its wet weight
, 2. dry weight of Mysis is 21% its wet weight (Evans and Landrum, 1983)
3. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986)
4. dry weight of Pontoporeia is 27% its wet weight (Evans and Landrum, 1983)
5. dry weight of all fishes is 25% its wet weight
*Sources include published literature from 1970 to 1991 only.

‘n = number of samples for plankton, Mysis, Pontoporeia, or berthos, and n = number of organisms for
all fishes. - '
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TABLE 7. Summary of the organic contaminant concentrations in Lake Ontario

water (See footnotes for comments).

Contaminant and Location - # of samples Year Hean Concentration’ ng/L?

Source’

PCBs

Toreonto, Lake Ontario 1873 35 ng/L 35 Haile et al., 1975

Rochester, Lake Ontario 1973 40 ng/L 40

Olcott, Lake Ontario 1873 44 ng/L 44

Cobourg, Lake Ontario 1373 45 ng/L 45

Bamilton, Lake Ontario ’ 1973 49 ng/L 49

Deep Hole, Lake Ontario 1973 56 ng/L 56

Oswego, Lake Ontario 1973 77 ng/L 17

Niagara River, Lake Ontario 1973 97 ng/L 97

Lake Ontario 1975 30 ng/L 30 Glooschenko and
Glooschenko, 19735

open lake, Lake Ontario 14 1983 0.430 ng/L 0.43 Biberhofer and

open lake, Lake Ontario 1983 0.320 ng/L 0.32 Stevens, 1987

open lake, Lake Ontario 1983 1.140 ng/L 1.14

eastarn Lake Ontario 1983 0.320 ng/L 0.32 Stevens, 1988

Kingston basin, Lake Ontario 1983 0.430 ng/L 0.43

midlake, Lake Ontario 1983 0.430 ng/L 0.43

Rochester basin, Lake Ontario 1983 0.430 ng/L 0.43

Humber River, Lake Ontario 1983 0.580 ng/L 0.58

Oswego, Lake Ontario 1983 0.700 ng/L 0.70

Bay of Quinte, Lake Ontario 1983 . 0.720 ng/L 0.72

Lake Ontario 1983 0.78 ng/L 0.78

Niagara River, Lake Ontario 1983 0.830 ng/L 0.83

northshore, Lake Ontario 1983 0.840 ng/L 0.84

Welland Canal, Lake Ontario 1983 0.870 ng/L 0.87

18 Mile Creek, Lake Ontario 1983 1.010 ng/L 1.01

western Lake Ontario 1983 1.140 ng/L 1.14

Black River, Lake Ontario 1983 1.920 ng/L 1.92

Burlington, Lake Ontario 1983 3.100 ng/L 3.10

Lake Ontario 31 1986 1.41 ng/L 1.41 Stevens and
Neilson,1989

Lake Ontario 7 1984 1100 pg/L 1.10 Oliver and Niimi,
1988

Toronto, Lake Ontario’ 94 1987 1.33 ng/L 1.33 ELI Eco Lab., 1988

Lake Ontario 33 1988 1.18 ng/L 1.18 L‘Italien, pers.

486 1990 1.31 ng/L 1.31 comm.

dieldrin

Deep Hole, Lake Ontario 1973 1.3 ng/L 1.3 Baile et al., 1975

Niagara River, Lake Ontario 1973 2.1 ng/L 2.1 :

Rochester, Lake Ontario 1973 2.2 ng/L 2.2

Hamilton, Lake Ontario 1973 3.1 ng/L 3.1

Toronto, Lake Ontario 1973 3.5 ng/L 3.5

Qlcott, Lake Ontario 1973 3.9 ng/L 3.9

Cobourg, Lake Ontario 1973 9.9 ng/L .9.9

Oswego, Lake Ontarioc 1973 12.6 ng/L 12.6
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open lake, Lake Ontario - 14 1983 0.259 ng/L 0.259 Biberhofer & Stevens,

open lake, Lake Ontario 1983 0.361 ng/L 0.361 1987
open lake, Lake COntario 1983 0.470 ng/L 0.470
Bay of Quinte, Lake Ontario 1983 0.047 ng/L 0.047 Stevens, 1988
westarn Lake Ontario 1383 0.259 ng/L 0.259
Black River, Lake Ontario 1983 0.300 ng/L 0.300
Rochester, Lake Ontario 1983 0.325 ng/L 0.325
18 Mile Creek, Lake Ontario 1983 0.352 ng/L 0.352
eastarn Lake Ontario 1983 0.361 ng/L 0.361
Oswego, Lake Ontario 1983 0.442 ng/L 0.442
Lake Ontario 1983 0.448 ng/L 0.448
Niagara River, Lake Ontario 1983 0.453 ng/L 0.453
Burlington, Lake Ontario 1983 0.456 ng/L 0.456
midlake, Lake Ontario 1983 | 0.470 ng/L 0.470
Welland Canal, Lake Ontario 1983 0.510 ng/L 0.510
Humber River, Lake Ontaria. 1983 0.527 ng/L 0.527
Kingston basin, Lake Ontario 1983 . 0.538 ng/L 0.538
northshore, Lake Ontario 1983 0.631 ng/L 0.631
Lake Ontario 31 1986 0.331 ng/L 0.331 Stevens and Neilson,
1989
Lake Ontario 33 1988 0.36 ng/L 0.36 L'Italien, pers.
46 1990 - 0.28 ng/L 0.28 comm.
mirex
Lake Ontario 7 1984 31 pg/L 0.031 Oliver and Niimi,
1988
Toronto, Lake Ontario 95 1987 0.0071 ng/L 0.0071 ELI Eco Lab., 1988
Lake Ontario . 33 1988 0.013 ng/L 0.013 L’Italien, pers.
46 1990 0.0029 ng/L 0.0029 comm.
HCB
Lake Ontario 1980 0.06 ng/L 0.06 Oliver and Nicol,
. 1982
open lake, Lake Ontario 14 1983 0.033 ng/L 0.033 Biberhofer & Stevens,
open lake, Lake Ontario 1983 0.036 ng/L 0.036 1987
open lake, Lake Ontario 1983 0.043 ng/L - 0.043
Oswaega, Lake Ontarie 1983 0.017 ng/L 0.017 Stevens, 1988
Black River, Lake Ontario 1983 0.019 ng/L 0.019
eastern Lake Ontario 1983 0.033 ng/L 0.033
Kingaston basin, Lake Ontario 1983 0.031 ng/L 0.031
Bay of Quinte, Lake Ontario 1983 0.034 ng/L 0.034
midlake, Lake Ontario 1983 0.036 ng/L 0.036
eastern Lake Ontario 1983 0.04 ng/L 0.04
Rochester, Lake Ontario . 1983 0.042 ng/L 0.042
western Lake Ontario 1983 0.043 ng/L 0.043
Lake Ontario 1983 0.05 ng/L 0.05
midlake, Lake Ontario 1983 0.05 ng/L Q.05
western Lake Ontario 1983 0.05 ng/L 0.05

Welland Canal, Lake Ontario 1983 0.052 ng/L 0.052
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Burlington, Lake Ontario
northshore, Lake Ontario
western Lake Ontario

Humber River, Lake Ontario
Niagara River, Lake Ontario
18 Mile Creek, Lake Ontario
western Lake Ontario

Xingston basin
eastern basin
eastern rasin
eastern basin
midlake, Lake Ontario
western basin
Niagara basin
Niagara basin

Lake Ontario 7

Lake Ontario 31

1989

Toronts, Lake Ontario 95

Lake Ontario 33
46

1,2,3'—TCB

Lake Ontario

open lake, Lake Ontario 14
open lake, Lake Ontario
open lake, Lake Ontario

Black River, Lake Ontario
Welkland Canal, Lake Ontario
midlake, Lake Ontario
Kingston basin, Lake Ontario
Bay of Quinte, Lake Ontaric
Oswego, Lake Ontario
northshore, Lake Ontario
Rochester, Lake Ontario
eastern Lake Ontario
Burlington, Lake Ontario
Humber River, Lake Ontario
Niagara River, Lake Ontario
western Lake Ontario

18 Mile Creek, Lake Ontario

Lake Ontario 7
Lake Ontario 31
Toranto, Lake Ontario 86
Lake Ontario 33

46

1983
1883
1383
1983
1983
13583
1983

1583
1983
1983
1983
1983
1983
1583
1983

1984

1986

1987

1988
1990

1980

1983
1983
1383

1383
1983
1983
1983
1983
1983
1983
1983
1983
1983
1983
1983
1983
1983

1984

1986

1887 .

1988
1930

0.068 ng/L
0.068 ng/L
0.08 ng/L
0.089 ng/L
0.095 ng/L
0.103 ng/L
0.12 ng/L

0.03 ng/L
0.03 ng/L
0.03 ng/L
0.04 ng/L
0.05 ng/L
0.05 ng/L
0.08 ng/L
0.12 ng/L

150 pg/L

0.063 ng/L

0.063 ng/L

0.068 ng/L
0.087 ng/L

0.1 ng/L

0.024 ng/L
0.065 ng/L
0.140 ng/L

0.008 ng/L
0.020 ng/L
0.024 ng/L
0.040 ng/L
0.048 ng/L
0.055 ng/L
0.056 ng/L
0.056 ng/L
0.065 ng/L
0.084 ng/L
0.111 ng/L
0.133 ng/L
0.140 ng/L
0.672 ng/L

170 pg/L
0.097 ng/L
0.072 ng/L

0.110 ng/L
0.660 ng/L

0.068
0.068
0.08

0.083
0.095
0.103
Q.12

0.03
0.03
0.03
0.04
0.05

0.05

¢.08

0.12

0.15

0.063

0.063

0.068
0.087

0.024
0.065
0.140

0.008
0.020
0.024
0.040
0.048
0.055
0.056
0.056
0.065
0.084
0.111
0.133
0.140
Q.672

g.170

Q.097

0.072

0.110
0.560

Oliver, 1984

Oliver and Niimi,
1988

Stevens and
Neilsacn,
ELI Eco Lab., 1988

L‘Italien, pers.
comm.

Oliver and Nicol,
1982

Biberhofer & Stevens,
1987

Stevens, 1988

Qliver and Niimi,
1998

Stevens and Neilson,
1989

ELI Eco Lab., 1988

L’'Italien, pers.
comm.

.Reducing Uncertainty in Mass Balance Models of Toxics

in the Great Lakes- Lake Ontario Case Study

279



1,2,3,4—T9CB

Lake Ontario 1980 0.1 ng/L 0.1 Oliver and WNicol,
1982

cpen lake, Lake Ontarip 14 1983 0.082 ng/L 0.082 Biberhofer & Stevens,

open lake, Lake Ontario 1983 0.086 ng/L 0.086 1987

open lake, Lake Ontario 1983 0.091 ng/L 0.091

Bay of Quinte, Lake Ontario 1983 0.014 ng/L 0.014 Stevens, 1988

Kingston basin, Lake Ontario 1983 0,017 ng/L 0.017

Welland Canal, Lake Ontario 1983 0.034 ng/L 0.034

Burlington, Lake Ontario 1983 0.037 ng/L . 0.037

northshore, Lake Ontario 1983 0.037 ng/L 0.037

Rochester, Lake Ontario 1983 0.057 ng/L 0.057

Oswegoc, Lake Ontario 1983 0.058 ng/L 0.058

eastern Lake Ontario 1983 0.07 ng/L 0.07

eastern Lake Ontario 1983 0.08 ng/L 0.08

Niagara River, Lake Ontario 1983 0.081 ng/L g.081

western Lake Ontario 1983 0.082 ng/L 0.082

midlake, Lake Ontario 1983 0.086 ng/L 0.0886

eastern Lake Ontario 1983 0.091 ng/L 0.091

eastern Lake Ontario 1983 0.11 ng/L g.11

Humber River, Lake Ontaric 1983 " 0.125 ng/L 0.125

Lake Ontario 1983 0.13 ng/L 0.13

midlake, Lake Cntario 1983 0.15 ng/L 0.15

western Lake Ontario 1983 0.16 ng/L g.186

western Lake Ontario . 1983 0.27 ng/L 0.27

18 Mile Creek, Lake Ontario 1983 0.572 ng/L 0.572

Kingston basin 1983 0.07 ng/L 0.07 Cliver, 1984

eastern basin 1983 '0.08 ng/L 0.08

eastern basin 1983 0.09 ng/L 0.09

eastern basin 1983 0.11 ng/L 0.11

midlake, Lake Ontario 1983 0.15 ng/L 0.15

Niagara basin 1983 0.16 ng/L Q.16

Niagara basin 1983 0.16 ng/L 0.16

western basin 1983 0.27 ng/L 0.27

Lake Ontario ’ 7 1984 140 pg/L 0.14 Oliver and Niimi,

©.1988

Lake Ontario 31 1986 0.104 ng/L 0.104 Stevens and Neilson,
1989

Toronto, lLake Ontario 94 1987 0.095 ng/L 0.095 ELI Eco Lab., 1988

Lake Ontario 33 1988 0.132 ng/L 0.132 L'Italien, pers.

46 1990 0.070 ng/L 0.070 comm.

'In most cases mean concentration reported; contact author(s) for raw data.
'all rsported values converted to ng/L.
*Published literature from 1970 to 1991 only.
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TABLE 8.

‘Summary

of the

organic

contaminant

concentrations in Lake Ontario sediments (See

footnotes for comments).

Chemical & Details # of samples Year Mean Concentration' ng/g dry weight?
Source’®
PCBs
bottom sediments
0 - 3. cm .
inshore 229 1968 31 ppb dry weight 31 Prank et al., 1979
Lake Ontario 1968 57 ppb dry weight 57
Mississauga basin 1968 77 ppb dry weight 77
basin zone 1968 85 ppb dry weight a5
Niagara basin 19638 89 ppb dry weight 89
Rocheater basin 1968 839 ppb dry weight 89
Cobourg 1973 43 ng/g dry weight 43 Haile et al., 1975
midlake 1973 79 ng/g dry weight 79
Olcott 1973 80 ng/g dry weight . 8a
Rochester basin 1973 84 ng/q dry weight 34
Niagara basin 1973 155 ng/q dry weight 155
gsveqgo 1973 158 ng/q dry weight 158
Welland Canal 1973 245 ng/g dry weight 245
0 -2 cm
Lake oOntario 1981 260 ng/g dry weight 260 Stevens, 1988
1981 380 ng/g dry weight 3go
1981 470 ng/g dry weight 470
1981 §70 ng/q dry weight 570
1981 680 ng/g dry weight 680
1981 730 ng/q dry weight 730
1981 810 ng/g dry weight 810
1981 840 ng/g dry weight 840
0 -3cm
Rochester basin 1 1981 630 ng/g dry weight 630 Bourbonniere et al.,
1986
Niagara basin 1981 874.8 ng/g dry weight 874.8
Niagara basin 1981 910 ng/g dry weight 910
Mississauga basin 1981 1041 ng/g dry weight 1041
Niagara basin 1981 1100 ng/g dry weight 1100
Rochester basin 1981 1500 ng/g dry weight 1500
0 -3 cm
Niagara basin 35 1981 360 ng/qg dry weight 360 Oliver et al, 1987
Rochester basin 1981 400 ng/g dry weight 400
Mississauga basin 1981 430 ng/q dry weight 430
0 -3 cm
Kingston basin 35 1982 200 ng/g dry weight 200 Oliver et al., 1989
Niagara basin 1982 510 ng/g dry weight S10
Rochester basin 1982 630 ng/q dry weight 630
Mississauga basin 1982 690 nqg/g dry weight 690
suspended sediments
Lake Ontario 10 1986 440 ng/g dry weight 440 Oliver and Niimi, 1988
Toronto, Lake Ontario 20 1987 300 ppt 38BDI Bco I.a.bs., 1988
dieldrin
bottom sediments
0 -3 cm
Lake Ontario 229 1968 0.6 ppb dry weight 0.6 Prank et al., 1979

Reducing Uncertainty in Mass Balance Models of Toxics
in the Great Lakes- Lake Ontario Case Study

281




0 -3 cm

Niagara basin 1968 2.8 ng/g dry waight Thodas 2t al., 1983
midlake . 1973 0.5 ng/g dry weight 0.5 Haile et al, 1975
Cobourg 1573 0.6 ng/g dry weight 0.6
Oswego 1973 0.8 ng/q dry weight 0.8
Qlcott 1973 0.9 ng/g dry weight 0.9
Rochester basin 1973 0.9 ng/g dry weight 0.9
Niagara basin 1973 1.4 ng/g dry weight 1.4
nidlake~east : 1973 2.1 ng/g dry weight 2.1
Welland 1973 2.6 ng/q dry weight 2.6
mirex
bottom sadiments
0 ~-3cm .
Lake Ontario 16 1968 S.§ ppb dry weight 5.6 Holdrinet et al., 1978
Oswego ancmaly 27 1968 7.3 ppb dry weight 7.3
Niagara anomaly 30 1968 10 ppb dry weight 10
Western Lake Ontario 1 1980 8.2 ppb dry weight 8.2 Raminsky st al., 1983
1980 16 ppb dry weight 16
1980 17 ppb dry weight 17
1980 20 ppb dry weight 20
1980 33 ppb dry weight 33
1980 37 ppb dry weight 37
1980 62 ppb dry weight 62
0 ~-3cm
Niagara basin 1 1981 45.7 ng/g dry weight 45.7 Bourbonniere et al.,
1986
Rochestar basin 1981 59.0 ng/g dry weight 59.0
Rochester basin 1981 93.0 ng/g dry weight 93.0
Mississauga basin 1981 98.1 ng/g dry weight 98.1
Niagara basin 1981 110.0 ng/g dry weight 110.0
Niagara basin 1981 110.0 ng/g dry weight 110.0
0 -3 cm .
Niagara basin 3s 1381 18 ng/qg dry weight 18 Oliver et al., 1987
Rochester basin 1981 23 ng/g dry weight 23
Mississauga basin 1981 25 ng/g dry weight 25
Niagara basin 12 1982 48 ng/g dry sediments 48 Oliver and Charlton,l984
0 -3 cm ) .
Kingston basin 35 1982 6.4 ng/qg dry weight 6.4 Oliver et al., 1989
Niagara basin 1982 30 ng/g dry weight 30
Rochester basin 1982 33 ng/g dry weight 33
Mississauga basin 1982 38 ng/g dry weight 33
suspanded sediments
Niagara basin 21 1982 5.2 ng/g dry weight 5.2 Oliver and Charlton,
1984
1982 7.3 ng/g dry weight 7.3
1982 9.3 ag/g dry weight 9.3
1982 16 ng/g dry weight 16
Lake Ontario 10 1986 15 ng/q dry weight 15 Oliver and Niimi, 1988
Toronto, Lake Ontario ] 1987 14 ppe 1ZLI 2co Lab., 1988
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HCB
bottom sediments

Western Lake Ontario

0 ~3cm
Lake Ontario

Niagara basin

ga385daas

o
[}

2 cm
Lake Ontario

0 -3 cm
Rochester basin
1986
Niagara basin
Niagara basin
Rochester basin
Mississauga basin
Miagara basin

0 -3 cm
Niagara basin
Mississauga basin
Rochester basin

0 «3cm
Xingston basin
Rochester basin
Niagara basin
Mississauga basin

Niagara basin
1984

0 -3 cm
Lake Ontario
suspeuded sedinents

Niagara basin
1984

Niagara basin
Lake Ontario

Toronto, Lake Ontario

as

35

12

21

i0
13

1380
1980
1980
1980
1980
1980
1980
1980
1930
1980
1380

1980

1980
1980
1380
1380
1980
1980
1980
1980

1981
1981
1981
1981
198}
1981
1981
1981
1981

1981

1981
1981
1981
1981
1981

1981

1981

1981

1982
1982
1982
1982

1982

1983

1982
1982
1982
1982
1982
1986

1987

7.6 ppb dry weight

7.7 ppb dry weight
10 ppb dry weight
17 ppb dry weight
47 ppb dry weight
51 ppb dry weight
52 ppb dry weight
57 ppb dry weight
58 ppb dry weight
65 ppb dry weight
89 ppb dry weight

97 ppb

270 ppb
460 ppb
220 ppb
160 ppb
76 ppb

16 ppb

0.8 ppb
0.5 ppb

§2 ng/g dry weight
71 ng/g dry weight
73 ng/g dry weight
110 ng/g dry weight
120 ng/g dry weight
210 ng/qg dry weight
230 ng/qg dry weight
260 ng/g dry weight
840 ng/g dry weight

150.0 ng/g dry weight

188.9 ng/g dry weight
200.0 ng/g dry weight
210.0 ng/g dry weight
228.0 ng/g dry weight
380.0 ng/q dry weight

42 ng/qg dry weight
51 ng/g dry weight
64 ng/g dry weight

14 ng/qg dry weight
100 ng/g dry weight
110 ng/g ary weight
130 ng/g dry sediments

110 ng/g dry weight

Raminsky et al., 1983

97 Oliver and Nicol, 1982

Oliver and Nicol, 1982
270 :

460
220
160
76
16
0.8
0.5

62 Stevens, 1388
71
73
110
120
210
230
260
840

150.0 Bourbonniere et al.,

188.9

200.0

210.0
228.0
380.0

42 Oliver et
51
64

-

1., 1987

I

14 Oliver et al., 1989
100
110
130

110 Oliver and Charlton,

100 ng/g dry weiljhifon andlOdiver, 1990

26 ng/g dry waight
27 ng/g dry weight
41 nq/g dry weight
42 ng/qg dry weight
14 ng/g dry weight
36 ng/g dry weight -

4.1 ppt

26 Oliver and Charltom,
27

41

42

gdiver, 1984

s Oliver and Niimi, 1988

ILT Bco Lab., 1988

Reducing Uncertainty in Mass Balance Models of To;ti:s
in the Great Lakes- Lake Ontaric Case Study

283




1,2,3-TCB
bottom sediments

Niagara basin
<m

geagsaa

3

Lake Ontario

0 -2cm
Lake Ontario

Niagara basin
1984
suspended sediments

Niagara basin
1984 -

1,2,3,4-TeCB
botton sediuents

0 -3 cm
Lake Ontario

Niagara basin

gagpagas

- 2
Lake Ontario

8

Q-3 cm
Rochester basin
198¢
Niagara basin
Rochester basin
Niagara basin
Niagara basin
Mississauga basin

12

21

1980
1980
1980
1980
1380
1980
1980

1980

1981
1381
1981
1981
1981
1981
1981
1981

1982

1382

1982
1982
1982

1280

1980
1280
1980
1980
1980
1980
1980
1980

19381
1981
1981
1981
1981
1981
1981
1981

1981

1981
1981
1981
1981
1981

18 ppb 18
11 ppb 11
10 ppb 10

3 ppb 3

2 ppb 2

3 ppb 3

1 ppb 1

7 ppb Qliver and Ricol,
7.2 ng/q dry weight 7.2
7.6 ng/g dry weight 7.6
8.6 ng/g dry weight 8.6
9.0 ng/g dry weight 9
10 ng/g dry weight 10
11 ng/g dry weight 11
14 ng/g dry weight 14
25 ng/g dry weight 25

9 ng/g dry weight 9
6.9 ng/g dry weight 5.9
7.7 ng/g dry weight 7.7
7.8 ng/g dry weight 7.8
64 ng/g dry weight 64
33 ppb 33
76 ppb 76
68 ppb 68
32 ppb 32
12 ppb 12

3 ppb 3

4 ppb 4

1 ppb 1
‘0.5 ppb 0.5
23 ng/g dry weight 23
31 ng/g dry weight 31
32 ng/qg dry weight 32
34 ng/g dry weight 34
39 rng/q dry weight 39
46 ng/g dry weight 46
49 ng/qg dry weight 49
110 ng/g dry weight 110
37.0 ng/q dry weight 37.0
41.8 ng/q dry weight 41.8
50.0 ng/g dry weight 50.0
52.0 ng/q dry weight 52.0
53.0 ng/q dry weight 53.0
$3.5 ng/qg dry weight 53.%

Oliver and Nical, 1982

1982

Stevens, 1988

QOliver and Charlton,

Oliver and Charlton,

Oliver and Nicol, 1982

Oliver and Nicol, 1982

Stevens, 1983

Bourbonniere et al.,
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0 ~3cm
Niagara basin
HMississauga basin
Rochester basin

Niagara basin
1984

0 -3 cm
Lake Ontario
suspendad sediments

Niagara basin
1984

Niagara basin
Lake Ontario

Toronto, Lake Ontario

35

12

21

10
8

1981
1981
1981

1982

1983

1982

1982
1982

1982
1986

1387

17 ng/g dry weight
20 ng/g dry weight
20 ng/g dry weight

4l ng/g dry weight

17 Oliver et al., 1387
20
20
41 Oliver and Charlton,

36 ng/q dry weiglklfon and OKkiver, 1990

20 ng/g dry weight

21 ng/q dry weight
23 ng/qg dry weight

5.3 ng/g dry weight
15 ng/g dry weight
17 ppt

20 Oliver and Charlton,

21
23

OSiger, 1984
15 Oliver and Niimi, 1988

1RLI Eco Lab., 1988

'In most cases mean concentration reported; contact author(s) for raw data.

A1l reported values converted to ng/g dry weight.
‘Published literature from 1970 to 1991 only.
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Abstract

Sediment resuspension in rivers and lakes is a very nonlinear funcrion of the currents
in these systems. It is shown here that because of this and other nonlinear wansport
processes, large events such as storms on lakes and large run-offs in rivers, despite their
infrequent occurrence, are responsible for most of the sediment transport in rivers and
lakes.

It is also demonstrated that the flux of contaminants from the bottom sediments to the

~ overlying water due to resuspension and deposition of sediments is generally larger,

sometmes by as much as several orders of magnitude, than the fluxes due to bioturbation
and molecular diffusion. As a result, large evenrs are also responsible for most of the
coniaminant &nnsport in rivers and lakes. : |

For many hydrophobic chemicals, the assumption of chemical equilibrium during
resuspension/depositon is not vaiid. Therefore, in order to predict the flux of hydrophobic
chemicals accurately, the rates at which adsorption and desorption occur and the parameters
on which these rates depend must also be determined accurately, especially as they affect
the partitioning of these chemicals’ between solids and water during large
resuspension/deposition events.

The =znsport of sediments and contaminants is a very dynamic process with the
fluxes chaﬁging continuously in magnitude and direction. There is no steady state.
Because of this and the nonlinearity of the processes involved in this ransport, an average
state is difficult to define and may not be meaningful. It is the time-dependent event,
especially the large run-off and/or storm, that must be considered in the modeling and

prediction of the wansport and fate of sediments and contaminants.
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(9]

Introduction

In geology, in particular in the interpretation of the stratigraphic record, there has
been a long standing contoversy between the uniformitarionists and the catastrophists.
The uniformitarionists believe in the 'gentle rain from heaven’ theory; that is, sedimentary
conditions and rates are uniform with time, and the stratigraphic record can be interpreted
from a knowledge of the present day conditions and rates. Catastrophists on the other hand
believe that the sedimentary record is primarily determined by large episodic events
separated by long periods of time where very little occurs.

The history of this controversy is quite fascinating with the original confrontation
occurring during the nineteenth century between people with swong religious beliefs
(catastrophists) and presurmnably more logical scientists (unifomﬁta.rionis'ts). The religious
sector believed that God intervened in the day-to-day affairs of man and caused cataswrophic
events from time to time (for example, the great flood of Noah's time), and that these
events were observable in the stratigraphic record. The scientists had a somewhat more
logical approach; however, their approach was based on an over-simplified idea orf the
invariance of natural laws which was then extended to the presumption of uniform rates
and conditions in the past. In the latter part of the nineteenth century, the emphasis on
God's intervention decreased, the uniformitarionists’ were able to satisfactorily interpret
much 6f the geologic record, and catasorophe theory became less favored.

However, in more*x.'ecent times, the importance of large events in geology has
received increasingly more attention. Ager (1981), in a delightful book endtled, "The
Nature .of the Stratigraphical Record”, is a soong and persuasive proponent of the
importance of large events in the interpretation of the swatigraphic record. In the book, he
presents information on numerous catastrophic events and their effects on the stratigraphic
record and emphasizes the spasmodic nawmrs of sedimentaton.

Of many events thart he describes in detail, let me mendon only a few. (1) The floods

from the glacially-dammed Lake Missoula in the northwestern part of the United States
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which occurred during the Pleistocene Epoch, about one to two million years ago. During
this time, catastrophic floods from Lake Missoula occurred several times. An event was
typically initiated when a 2000 ft. glacial dam broke; this was followed by a flood of water
up to §00 fr. deep which ran for about 2 weeks from Lake Missoula to the Pacific Oczan
about 430 miles away. Basins as deep as 135 ft. were scoured out, the Upper Grand
Coulee (25 miles long) was formed, boulders many fest in diameter were rolled for miles,
and current ripples up to 10 ft. in height were formed. (2) Turbidity currents in the Italian
Apennines. For this region, it has been proposed that large turbidity currents caused the
formation of sedimentary beds up to 20 m thick, all deposited by a single 'whoosh’ of
turbid water. (3) Hurricanes in the Gulf of Mexico. In more recent times, it is estimated
that there is a 95 per cent probability that a hurricane will pass over any particular point on
the coast of the Guif of Mexico at least once every 3000 years. The maximum amount of
sediment deposited over that period is estimated to be about 30 cm. But hurrica.n.cs, by
resuspension and subsequent depositon, can certainly rearrange that amount of sediment.
In other words, the rare hurricane is probably the main event recorded in the stratgraphy of
this region and probably of other similar parts of the world, even in the present time.

Ager describes many other large and rare events and also the causes of these events,
including tsunamis, meteorites, climatic changes, and plate tectonics. As far as catastophic
events are concerned, he concludes that "Nothing is world-wide, but everything is
episodic.”

Of course, as far as pollution in rivers and lakes is concerned, the spadal and
especially the temporal scales of concem are much smaller than those described by Ager.
Nevertheless, a careful examinadon of present-day sediment dynamics at the smailer spatial
and temporal scaies of interest in polluton problems also leads to a recognition of the
importance of the large and rare event in the ransport and fate of sediments. More
importantly, it follows that the large event is also of major significance in the transport and
fate of contaminants and in the resultant exposure of organisms to these contaminants. The
specific hypothesis that will be argued here is that large episodic events such as storms on

lakes and large run-offs in rivers, despite their infrequent occurrence, are responsible for
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most of the sediment and contaminant ansport in rivers and lakes. A corollary to this is
thar, over a long enough period of time, exceptional events are not the excepton but the
rule.

In the following, recent work on the effects of large events on sediment mansport and
fate in rivers and lakes is briefly discussed. The fluxes of contaminants from the bottom
sediments to the overlying water due to resuspension/deposition, bioturbation, and
molecular diffusion (as well as the effect of non-equilibrium sorption on tﬁese processes)
are then briefly described and compared. A summary and concluding remarks are

presented in the final section.

Sediment Transport

Lzke Ede

The resuspension and transport of fine-grained sediments in Lake Erie has besn
calculated for a variety of wind conditions (Lick et al, 1991). The emphasis was on the
effects of major storms. Calculations were made for different constant wind speeds and
wind directions and also for the Armistice Day storm in November 1940, one of the largest
in the last century. Only a brief summary of the results will be presented here; the report by
Lick et al. should be consulted for the details.

‘However, before considering 1 few of the resuits. it is informative o consider a
qualitative argument for the relative importance of large storms in résuspending and
ransporting large amounts of sediments. Consider the forcing of currents and/or wave
action in a lake by a wind with speed U. The magnitude of the steady-state wind-driven
currents and/or wave action is approximately proportional to the wind speed. It is also well
known that the bottom shear smress T due to currents and/or wave action is approximarely
proportional to the square of the magnitude of the currents and/or wave actdon. From this it
follows that t is proportional to the square of the wind speed, i.e.,

2

t~U°* N
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Recent experimental evidence has demonstrated that the amount of sediment resuspended €

is proportional to the cube of the shear stress, Le.,
g~1 _ 2

From the above equatdons, it follows that the amount of sediment resuspended for a
particular wind speed is approximately proportional to the sixth power of the wind speed,

i.e.,

g~US (3)

For example, when the wind speed is doubled, the amount of sediment resuspended is
increased by a factor of 64; when the wind speed is increased by four, the amount of
sediment resuspended is increased by a factor of 4096. It can be readily seen that the
resuspension of bottom sediments is a very nonlinear and rapidly increasing functon of the
wind speed. The amount of sediment ransported of course depends on the amount of
sediment resuspended as well as the currents and is therefore also a very nonlinear function

of the wind speed.

In order to quan:ify these arguments. calculations of sediment wansport were made

for winds of 1} mph «the average wind ar the Buffalo airport), 22.5 mph, and 45 mph (the
approximate fn‘aximum sustainable winds during the year). For each of these wind speeds,
calculations were donz for a southwest wind (the dominant wind direction throughout the
year), a northeast wind (the dominant wind during large storms), a southeast wind, and a
northwest wind.

In the middle of the Eastern Basin, cores have been taken and analyzed by Robbins et
al. (197-8). Geochronological data from these cores will be referred to below. For
purposes of comparizg the etfecrs of different wind magnitudes and directions, the net
deposition at this core locarion ﬁas been calculated and is shown in Table 1. For the

average 11 mph wind. net deposition at this location is less than 107 gm/crn2 for all wind
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directions. For the 22.5 mph wind, the net deposition is largest for the southwest wind
(0.01 gm/cmz) and decreases to 0.0003 grn/cm2 for the southeast wind. For the 45 mph
wind, net deposition is relatively large for all wind directions, is largest for the southwest
wind (2.4 gm/cmz), and is least for the northeast wind (0.7 gm/cmz), but is generally on
the order of 1 gm/cmz. The very nonlinear effect of increasing wind speed is quite evident
as is the lesser effect of wind direction.

For purposes of verification, calculations of sediment deposition were then compared
with the 210Pb and 137Cs data ar the Eastern Basin core location. The data indicates that
deposition at this site was very non-uniform with ime with infrequent large depositions
caused by major storms which were separated by long periods of time in which very licle
deposition occurred. The results of the calculated deposition are consistent with this idea,
thus substantiating the model and the approximations used in the model. Depositions at
this site due to major storms (defined as about a once-in-five year storm) typically are on
the order of a few centimeters.

From the above and other similar calculations, it can be shown in general that winds
with average and below average speeds cause negligible transport compared to the 1940
storm or any equivalent large storm. As the wind speed increases, the probability of an
event with this speed decreases, but the net ransport of sediment caused by all events with
a given wind speed increases. The largest storms. despite their infrequent occurrence,
cause the most ansport of any class of wind events, and are responsible for more of the

transport in Lake Erie than the ol of all of the lesser storms and wind events.

Fox River _
Sediment ransport in the lower Fox River (defined as the part of the River from the
‘DePere Dam to Green Bay) has been studied intensively as part of the Green Bay Mass
Balance Program. As part of the sediment ransport study, calculadons were made of the
concentratons of suspénded sediments in the Fox at steady high, medium, and low flow
rates as well as for dime-varying flow events (Gailani et al, 1991). In particular, three large

flow events were modeled in detail, and the results of the calculations were then compared
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with observations. Excellent agreement berween the calculations and observations was
obtained, thereby validating the model and the descdgtion of the physical processes implied
in the modeling. Calculations are presently being extended to include other storms, bed
load, and the changas in sediment bed thickness due to resuspension and bed load. At the
present time, reasonable agreement between the caiculations and observations of the
changes in sediment bed thickness is being obtained.

In the lower Fox under almost all conditions, the source of most sediment is the
suspended sediment in the flow over the DePere Dam and not the resuspension/deposition
of bottom sediments. As the ﬂov-/ rate increases, the sédiment transport in the River
increases even more rapidly due to higher sediment concentrations in the flew over the Dam
as well as the increased flow. Erosion also increases rapidly with flow rate, for similar
reasons 1o those described above for a lake.

The flow in the Fox is controlled by dams so that natural exreme high and low flows
do not occur. Nevertheless, for the 1989-90 period examined by us in detail,
approximately 80% of the sediment transport occurred in 20% of the time. For other rivers
which are not controiled, a much larger fraction of the Tansport can be caused by fewer
gvents. For example, the rado of the once-in-five year flow rate to the median flow rate for
the Fox is about 4; in the Buffzilo River, this ratio is about 60; while in the Saginaw River,
this ratio is about 30. In these latter rivers, because of these much higher ratios and
because of f.he: very nonlinear response of sediment resuspénsion to flow rate, it is expected
that a much greater fraction of the sediment wansport will occur during the large bur rare
event compared to the Fox. A preliminary estimate indicates that in these rivers a once-in-
five year flow will ransport an amount of sediment comparable to, or perhaps more than,
the amount transported by all the other flows during the same five year period. In addition,
the amount of erosion during a once-in-five year flow will be far greater than that caused by

all other flows during that period.
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Chemical Fluxes

Chemical fluxes from the bortom sediments occur primarily by a combination of three
processes: resuspension/deposition, biowrbation, and diffusion. Each of these processes
is quite complex and also is distinctly different from the others. In general, they occur
simultaneously, and there are interactions between them. However, for simplicity, each of
these processes will be briefly described below independenty of the others. In many
realistic situations, one of the processes is dominant over the others and so, to a good
approximartion, can be considered independently. Other possible flux mecﬁanisms are (a)
diffusion and convection of chemicals adsorbed on colloids in the interstitial waters of the
bottom sediments and (b) convection of dissolved chemicals in the interstitial waters.
Convection of the pore waters is possible due to pressure differences caused by oscillatory
wave action. These larer two flux mechanisms have not been investdgated quangratively,
but are thought to be less important than the three mechanisms mentioned above and so will
not be discussed further here.

Chemical reactions can significantly affect the sediment-water fluxes. For
hydrophobic organic chemicals (HOCs), the adsorption/desorption. process (especially its
non-equilibrium nature) is particularl_ﬂ' significant Because of this, its effect on the flux is

also briefly discussed below.

Resuspension/Deposition ‘

As bottom sedimenis are resuspended, the contaminants associated with these
sediments are also transported into the water column where they may adsorb or desorb
depending on the conditions in the overlying water relative to the conditons in the bottom
sediments. This sorption does not occur instantaneously but at a finite rate. This will be
discussed further below. Significant amounts of contaminants can be fluxed in this manner
compared to bioturbation and diffusion.

For example, in Lake Erie during major storms, up to a meter or more of sediment
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can be eroded from near-shore areas while up 1o 20 cm of sediment can be déposited in
other areas further off shore (Figure 1). It should be noted thar almost all areas in the Lake
are neither uniquely erosional nor depositional; erosion generally occurs in almost all areas
at the beginning of the storm while deposition occurs later in the storm. It is the difference
between these two which determines whether there is net erosion or depositon at a
particular site.

For the Fox, there is a similar ‘conflict’ berween erosion and deposition with erosion
occurring primarily at the beginning of the flood while deposition occurs later, especially
during moderating ancHew flows. ‘In the. Fox',-thé amounts of ;scd'imefxt disturbed during a
large run-off are somewhat ‘smaller than in Lake Ere during a large storm. Figure 2 shows
the net changes in bed thickness due to large flows in the period from October 27, 1989 to
September 20, 1990. It can be seen that more than S50 cm of sediment have bccn.croded in
some areas while up to 20 cm of sediment have been deposited in other areas. For mivers
which are not as controlled as the Fox, greater changes in bed thickness due to

resuspension/deposition are expected.

Bioturbaton

Bioturbarion is another significant factor in the flux of contarninants ﬁ'om the bottom
sediments. Benthic organisms burrow in the sediments and aiso plow through the
sediments: in the process, they str the sediments, force water through pores and burrows
in the sediments, dism;ﬁf the existing sediment fabric, change the water content, and secrete
mucus within the sediments. Their effects are many, quite di\}crse, and depend on the
organism. In order to be specific, the vertical mixing of the bottom sediments by bificid
oligachaetes in Lake Erie (Fisher et al, 1980) is discussed here as a typical example of
biomrbation. Tubificid oligochaetes are vertically oriented subsurface deposit feeders; they
feed at depth and defecate at the surface, thus mixing the sediments by a combination of
vertical ransport due to feeding and diffusion due to slumping and closing of old burrows

‘and development of new burrows.

From the activity of these organisms as measured in the laboratory and from their
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densities as measured in the Lake, a reworking rate (reported as a subducton velociry) can
be calculated and is shown in Figure 3. In most of the Western Basin and in the near-shore
areas of the Central and Eastern Basins, the subduction velocites are about 1.0 x 1072

cm/day. In most of the off-shore areas of the Cenmal Basin, these subduction velocitdes

decrease to about 0.5x 107> cm/day, while in the center of the Eastern Basin, these
velocities are still lower, about 0.1 x 10-2 cm/day. In a few isolated areas (mouths of the

Derroit, Maumee, Sandusky, and Cuyahoga Rivers), the subduction velocities may be as

high as 5x 1072 cm/day.

Diffusion

The flux of chemicals from the bottom sediments can also occur by diffusion; in fact,
all of the chemical flux from the bottom sediments is quite often atributed to this process.
In the absence of resuspension/deposition, bioturbation. and chemical reaction. diffusion

can be described relatively simply, i.e., the flux q is given by

=-D= @

where 9C/dz is the vertical soncenmation gradient in the sediment at the sediment-water
interface. and D is the molecular diffusion coefficient. When chemical sorption is present,
molecular diffusion is retarcad because of this sorption. If sorption rates are sufficiently
rapid thart equilibrium is artained, then an etfectve diffusion coefficient which includes this

sorption equilibration can be defined by (Berner, 1980)

D
Degt = —1— ©)
1+(—n ) PKy

where K, is the equilibrium partition coefficient defined as the ratio of the concentration of

the sorbed chemical to the concentration of the dissolved chemical, p is the density of the
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solid particles, and n is the porosity of the sediment bed. For hydrophobic chemicals, this
effactive diffusion coefficient will be many orders of magnirude less than the molecular

diffusion coefficient.

Sorpdon

In quantifying the wansport and fare of HOCs in aquatic systems, it is necessary to
know the extent to which these ch-emicals sorb to partcles in the water. In most previous
work, it has been assumed that chemic# equilibrium exists and that this equilibrium can be
quantified by means oﬁ-i_th_é barddbn coefficient K. However, in recent work, it has been
noted that although the initial adsorption or desorption of a hydrophobic chemical can be
quite rapid, with time scales of minutes 10 hours, the final equilibration may take days to
weeks or even longer (Karickhoff and Morris, 1985; Coates and Elzerman, 1986; Van
Hoof and Andren, 1991). For example, it has been demonstrated that an equilibration time
for hexachlorobenzene may be one to two months while equilibradon times for PCBs may
be months to years. By corriparison, the time of mansport of a sediment particle in a river
or lake may be as short as minutes to hours. Because of this, the assumption of chemical
equilibrium for HOCs sorbed w0 bottom sediments aftc’r these sediments are resuspended
and as they are ransported in an aquatic system may not be valid. Even the assumption of
sorption chemical equilibrium in the surficial bottom sediments may be qucsrioﬁable when
it is noted tha:tithe times berween resuspension events (hours to days) may be quite small
compared to sorption equilibration times. For these reasons, it follows that the rate of
sorption as well as the equilibrium partition coefficient is a significant quantity and needs to
be determined, both for suspended solids and for deposited bottom sediments.

In quantifying the rate of sorption, significant processes that must be considered are
the convective-diffusive mass transfer from the water to the particle and the diffusion of the
contaminant into the interior of the particle. The available data is consistent with the idea of
a rapid mass transfer from the water to the surface followed by a slow diffusion into the
interior. In both cases, the size of the particle is an important parameter. Since fine-

grained particles exist as flocs, the effective sizes and densities of these flocs are also
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significant in determining sorpton rates.

Comparison of Fluxes

A comparison of the relative effects of resuspension/deposition, bioturbation, and
diffusion is difficult because these processes affect wansport in different ways and on
different time scales. Molecular diffusion is probably simplest to quantify. It occurs
continuously. Molecular diffusion coefficients for non-reacting substances, e.g. NaCl, are
typicaily about 1073 cm?/s. For reacting substances, the diffusion coefficients can be
cOnsiderably lower. For example, for PCBs, the effective diffusion coefficients are on the
order of 10712 cm?/s (from Eq. (5) or Fisher er al, 1983). An effective distance Az over
which diffusion affects the sediments is given by

pome—

Az=D At (6)

where At is the time interval. Consider the depth of penetration in a one-year period
(approximately 3 x 10 s). For non-reacting substances (D = 109 cmzls), Az is then
approximately 17 cm. IfDis 10"12 cm?s, then Az is reduced to 5 x 10~ em.

Benthic organisms mix the sediments down to a depth of about 10 cm. This does not
occur instantaneously bur over a period of time that depends on the reworking rate, which
in turn depends on the concentrations of the organisms and their acdvides. For a
subduction velocity of 102 cmyday (as for tubificids in Lake Erie), it would take 1000 days
for the sediments to be well-mixed to a depth of 10 cm. In order to compare bioturbation

with molecular diffusion, an effective diffusion coefficient can be defined as

D=— ™

For the present case, D would be about 10® cm?/s. This is somewhat smaller than the

molecular diffusion coefficient for non-reacting substances, but much larger than the
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effective diffusion coefficients for swongly reacting substances.

In many areas of lakes, it has been assumed that benthic organisms are primarily
responsible for the mixing of the upper layers of the sediments. The justification for this
has been the well-mixed surficial layers deduced from the radiometric dating of the
sediments. From a consideration of sediment dynamics, an alternative and more plausible
explanation in many instances is that this mixing is due to episodic resuspension/deposition
events.

The effects of resuspension/deposition are highly variable in space and time,
depending on water depth, topography, and meteorological conditions. During caim
periods and average winds, the effects of resuspension/depositdon are reladveily small and
are probably comparable with the effects of biowrbation and diffusion. However, major
storms can cause mixing of sediments to depths much greater than that possible by benthic
organisms or chemical diffusion. The release of contaminants from the bottom sediments
due to this resuspension/deposition and subsequent desorpton would also then be much
greater than that due to bioturbation or diffusion.

The effects of contaminant sorption on resuspension/deposition, bioturbation, and
diffusion depend on the particular ransport process as well as the rates of adsorption and
desorption. but have not vet been quantified. However, consideration of the differences in
the tluxes for the two limiting cases of fast sorption (equilibrium partitioning) and slow
sorption (froze;‘n' partitioning) shows that the effects of sorption rates can be significant and

must be considered in determining the flux of contaminants.
Concluding Remarks

Some geologists, in their version of catastrophe theory, have recently emphasized the
imporrtance of the large but rare event and believe that the sedimentary record is primarily
determined by large episodic events separated by long periods of time where very little

occurs. A careful examination of present-day sediment dynamics at the smaller spatial and
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:émporal scales of interest in pollution problems also leads to a recogniton of the
importance of large events. In the present paper, it is specifically argued that large episodic
events such as storms on lakes and large run-offs in rivers, despite their infrequent
occurrence, are responsible for most of the sediment and contaminant transport in rivers
and lakes. .

Quantitative results were presented for Lake Erie which demonstrated (a) the very
nonlinear response of sediment wansport and fate to the wind speed over the Lake, (b) that
major storms can be identfied in the geochronological record, and (c) that major storms are

_responsible for most of the sediment ransport in the Lake. For the Fox River, detailed and
verified calculations of sediment transport have demonstrated that a few large run-off
e events are responsible for most of the ransport in the River, despite the fact that the River
is controlled and the natural extremes of flow do not occur. For other rivers which are less
conmolled. even a greater fraction of the wansport would be caused by fewer events. For
example, for the Buffalo and Saginaw Rivers, preliminary calcuiations indicate that a once-
in-five year flow will transport more sediment than all the other flows during that same five
year period. |

The importance of the effects of resuspension and deposition of bottom sediments on
the flux of nutrients and contaminants from the lake bottom to the overlying water was also
emphasized. in facr," it was aréued thar the ner chemical flux due to
resuspgnsion/deposition is;"genemlly larger, in some cases by several orde;s of magnirude,
than ihc‘chcmical flux due o both molecular diffusion and biowrbadon. In order to predict
the net flux accurately, the finite rate ar which sorption occurs and the parameters on which
this sorption depends must also be determined accurately.

A generalized conclusion that follows from these studies is that, during any specified
period of tdme (whether it is one vear or twenty years), the largest event (either storm or
run-off) expected during that period is responsible for more of the sediment and
contaminant ransport than all of the other events during thar period. In other words,
during a one-year period. the once-in-a-vear high flow or storm will cause more sediment

and contaminant ansport than afl the other flows or storms during that year. During a
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five-year period, the once-in-five year high flow or storm will cause more sediment and
contaminant transport than all the other flows or storms during that five-year peried, i.e.,
more than the five once-in-a-vear high flows or storms. During a twenty-year period, the
once-in-twenty year high flow or storm will cause more sediment and contaminant
' transport than ail the other flows or storms during thar twenty-year period, i.e., more than
four once-in-five year high flows or storms and more than twenty once-in-a-year high
flows or storms. _

The above s:atememé may be repeddve and may even be slightly over-stated for some
cases, but the repetition is meant in order to make a point. In atempting to predict the wend
of water quality in rivers and lakes over long periods of time, it is the large run-off and/or
storm that must be considered in the modeling and prediction of the transport and fate of
sediments and contaminants. This of course is contrary 10 the conventional wisdom which
emphasizes the uniform deposi.tion of sediments and the chemical flux from the bortom
sediments due to diffusion. In conwrast, the above studies emphasize the dynamic nature of
sediment and contaminant ransport and the importance of large events in this dynamics.
There is no steady state. Because of this and the nonlinearity of the processes, an average
state is difficult to define and may not be meaningful.

From this it follows that, in order to predict sediment and contamninant transport more
accurately, data and m‘o&i:ling relevant to large storm and run-off events are needed. In
particular, dara is needed on the résuspcnsion of sediments ar high shear swesses, the
changes in bathymetry due to erosion/deposition during large events, the variation of
sediment properties with depth and not just near the sediment-water interface, and weather
conditons, flows, and sediment and contaminant concenwations during large storms and
run-offs. More accurate information on the probability of the occurrence of a large event of
a certain magniwmde is also needed. The non-equilibrium nature of HOC sorption needs to
be investigated, first as a rate process and second as it affects the partidoning and flux of

contaminants during large events controlled by resuspension/deposition.
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TABLE 1

Deposition in Eastern Basin of Lake Erie (gm/cm?2)

Wind Wind Magnitude (mi/hr)
Direction 11 22.5 45
Southwest < 106 .01 2.4
Northeast <106 0008 0.7
Northwest < 10-6 .008 1.6
Southeast < 106 .0003 1.0
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FIGURE 3
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3. Calculated subduction velocities in Lakea Erie due to wbificid oligochaetes.
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| Appendix D

Summary of Post-Conference Survey Results

The conference was aimed at reducing uncerfainty in mass
balonce models but specific models were not presented nor
discussed in any detail. Quglitatively, the uncertainties will differ
fromn toxicant to foxicant -- different loadings via different routes and
different processes governing their fates. The workshop might have
benefited by being more specific in its charges to the participants.
A selection of poilutants with different properties and modes of
import and export could have been given which covered the span
for substances to be encountered; a definition or comparison of the
sorts of model (and therefore the inputs) to be considered would
have helped focus the discussions.

=> Smalier working groups with more specific charges.

=> A priorl budgeting for d' follow up meeting to be held the
following year.

= [nvite speakers to introduce the notion of vaiue of
information as a framework for guiding mass baiance
modeling research.

Examples of such work:
Reichard and Evans, 1989. "Assessing the Value of Hydrogeologic
information for Risk Based Remedial Action Decisions,”

Water Resources Reseqreh 26(7):1451-60.

Knopman and Voss, 1987." Behavior of Sensitivities in
One-Dimensional Advection-Dispersion Equation:
Implications for Parameter Estimation and Sampling Design,”
Water Resources Reseqrch 23(2):253-275.

In refrospect, | think | would do the following:

¢ Provide more detailed guidance o the working groups and
facilitators. There seems to be some confusion as to what
the actual goais of the workshop were. As a result, it seems

that the working group discussions and reports were either
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biased by facilitator’'s pre-conceptions of what he/she
thought the workshop goals were, or dominated by
particuiar individuals, who, in the absence of more definite

guidance, put forth their own agendas.

¢ |thought | understood the workshop godis from recding the
prospecius and from discussions with the organizers in
advance of preparing a white paper. However, most
people focused on what | think of as application and
impiementation issues only (e.g., which chemicals should be
monitored, how many cruises shouid we have) instead of
more fechnicdl issues (e.g.. how do we quantify uncertainty,
how does model uncertainty affect mancgement
decisions). Both issues are important and | think that the
workshop was intended to deadl with thém both. However, |
think the technical issues should have been deait with first.
An understanding of these more basic problems would put
the implementation questions into @ more general and
manageable context. However, given the time that we

had, it would have been very difficult to consider both.

® My second suggestion is that [ would have allowed mare
time for the workshop and perhaps involved fewer people. |
thought the plenary presentations on the first afternoon
were excellent and a great way to start off the conference
but all. of the work of the meeting was done onday 2. The
size of the working groups (abaout 15 people) was too large
o really wark efﬁcienﬂy and it was very difficult to get into
any great depth about the quesﬂoné the groups were
charged with. | think this is why the groups fended 16 focus
on fairly narrow implementation issues rather than on the
broader technicadl issues. if more time was allowed (maybe
another day) and if we had spent the first day on the
fundamentals and the second day on the specifics of a
Lake Ontario model, |, for ane, would have been more

satisfied with the result. | reqlize, of course, that it is hard
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enough to get people fo a meeting for three days, to say
nothing of four. Perhaps if the original group were smaller it

could have been done.

A strawman proposal for Lake Ontario would have focused
discussion a bit better. This shoukd have included samples
per year, tributary schedule, lake stations, biota sampiing,

process experiments, eic.

| thought the conference went well and was exactly what
was needed, however next time | would hope we could get
more managers fo pcrﬁcipcfe. With many workshops like
this the results get stuck and never get communicated fo
those who can impiement the recommendations. Let's
macke sure we put a presentation package together far use
by the key organizers and perhaps as a group we could
present it to different manogement groups. | would hope
that ecch participant would take the results to appropriate

forums.

The conference'qu very well organized and run. One
suggestion for next time - professional facilitators in the work
group meetings would have helped keep groups on frack.
Group leaders could be "resource persons” for technical
input. A recorder couid have just kept notes. Askinga

group leader to da alil three jobs is aimost impossible.
More time with small groups. Possibly smaller groups.

| might have made It g bit more structured, i.e., posed a

series of questions to focus each warkgroup.

¢ Have more of the Managers integrated into the workgroups.
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QICW'O‘lZ.' Effective treatment of uncertainty in mass balancing modeling of
. Great Lakes toxics requires supplementing best avaicbie mass
I”WWPOW balonce models with sensitivity/uncertainty and decision analyiic
doyauwm‘z)w had methods to produce a more useful policy research tool.
Sensitivity/uncertainly and decision analytic methods provide
made? rigorous documentation of objectives and modeling assumptions
and a rational framework for thinking about the value of reducing

uncertainty in mass balance models.

The effectiveness/usefulness of models in regukating pollution
sources i diminishing. The real value is in understanding the
ecosystems so that the necessary societal changes can be made
with respect o persistent toxic substances.

That modelers and experimentaiists interested in water quality
evaiuation and forecasting must work together to develop holistic
modeis, Piecemedl research never results in @ complete systems
appreach and can lead to confusion, contradiction, and poor
decision making. »

Given that the workshop was to address reducing the uncertainties
in mass balance models, | feel that the role of the biota in the
models should not have been included -- except as a check on
predictions or @ surfogate for some other aspect of the models. |t
would be nice to have “the mother-of-ail-models' but the resources
to vaiidate (or even develop) such a model are not and will not be
made avaiable. We should learn to walk before we run, if we
cannot predict/account for 90% of the dispasition of chemicals, how
then are we going to do 99.99% of them?

| feei that a sensitivity analysis of the models to each of the different
process parameters and the input functions should be done. There
are some which need only be known roughly and others which
shouid be more precise. This might help in determining the source(s)
of the uncertainty.

The point | tried to make is that there are contaminant data from
Lake Ontario to compare models with and there are loading data
that can be used to drive the models. There is @ white paper with
data, a published paper with data up to 1983 and the later loadings
from the Niagara river are available from CCIW. In a paper in
preparation we will show that those loadings for four
chiorobenzenes, PCB’'s and mirex can drive the model well enough
to match the data well. The model was calibrated with 1983 data
and therefore @ good match with post-1983 data can be
considered a post-audit.

The modeling proposals are only incremental improvements over
the Green Bay Study. Whie | welcome the progress that Bob
Thomann and others have made in their thinking, we need to go still
further in improving the state of the art. We should not be distracted
by the difficulties of the Green Bay Study. Many of these praoblems
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can be avoided by the improved management of resources and
investigators that was being learned during the study as quickly cs
new things were being learned about modeling.

Up-front planning and understanding of objectives by all study
participants is essential. Omission of mercury from the list because it
is difficult to analyze is irresponsible and naive.,

When models cre well understood, pathways and kinetics well
documented, rates known etc., the model is no longer needed.
Once we understand how a system works, we can effectively
manage it and maoke inteligent decisions. It is precisely where we
don't understand, have the highest uncertainty and least insight
where modeils are needed the most. A mass balance model
exposes ouwr lack of knowledge in ways individual research projects
never could. The discussion on mercury is a case in point. We know
less about mercury than most other toxics. Trying to do a mass
baiance modei will very clearly show what our knowledge needs
are.
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