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1111 Memoriam 
Donald W. Rennie, M.D. 
1925-1 992 

On December 28,1992 on a golf course in Myrtle Beach, SC, Don 
Rennie succumbed to a heart-problem that he had been bottling 
for some time. Losing Don was not only a tremendous loss to his 
family and to his extended family at the University at Buffab, but it 

was also a loss to anyone who works at 
protecting and preserving the 
environment, and the Great Lakes in 
particubr. 

Don's love for the environment and the 
outdoors is exemplified by his passion for 
golf and sading. He loved to sail and was 
very good at it. I think it was this link to the 
waters of the Great Lakes basin that made 
him such a strong supporter of Great Lakes 
research. Beyond his regular duties at the 
University, Don was a member of the 
Great Lakes Research Consortium Board 
of Governors since its inception. He was 
also a member of the Governing Board of 
the New York State Sea Grant institute. 
These and other activities confimed Don's 
commitment to research aimed at 
understanding and managing the Great 
Lakes Ecosystem. 

I was extremely fortunate to have 
developed a close working relationship 
with Don during my brief tenure at UB; as 
Vice Provost for Research and Graduate 
Education, he was my immediate 
supervisor on matters concerning the 

G W  hk08 P-m. I could not have asked for Q more supportive 
administrator, either from a fiscal or a personal perspective. I am 
vefy saddened to have lost Don, but I am also very happy to have 
experienced his wisdom and friendship, even for the brief time we 
knew each other. In memory of his devotion to improving the Great 
Lakes Ecosystem and of the tremendous support that he gave to 
the Gmat &ko8 Pmgmm, we proudly dedicate this Grrecrt Luke$ 
Progum Monograph and all future publications in our Monograph 
Series to the memory of Donald W. Rennie. 

Joseph V. DePinto, Director 
Gmut Luke$ Progmm 
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I Introduction 
This workshop, held February 3-5, 1592 at the University at Buffalo in 
Buffalo NY, was sponsored by the US. EPA Large Lakes Research 
Laboratory and was convened by the Great Lakes Program of SUNY 
Buffalo and the New York Great Lakes Research Consortium of 
SUNY-ESF. The goal of the workshop was to discuss and develop a 
set of recommendations for reducing uncertainty in mass balance 
models of toxics with specific emphasis on application to Lake 
Ontario. 

To virtually eliminate the presence of toxic substances in the Great 
Lakes, the most appropriate and scientifically defensible targets for 
toxic load reductions must be selected and me most effective and 
efflcient means to reach those targets must be chosen. In making 
these decisions, mas babnce models that predict the fate of toxic 
substances, quantify load-to-concentration relationships for key 
environmental compartments, and determine target load 
reductbns must be used. Since judgements based on these models 
will have significant legal, regulatory and financial implications, it is 
essentM that the uncertainty associated with mass balance models 
for toxics in the Great Lakes be reduced to the minimum allowed by 
the current state of data acquisition, modeling formulation and 
technology. 

This workshop was organized by Dr. Joseph DePinto, Director of the 
Great Lakes Program, and Jack Manno, Director of the New York 
Great Lakes Research Consortium, in cooperation with Dr. William 
Richardson of the EPA's Large Lakes Research Laboratory. A steering 
committee, recruited by the organizers, helped prepare the agenda 
and guide the approach to developing recommendations. 

The meeting was structured into four working groups to consider 
sources of modeling uncertainty: loadings and other forcing function 
data, in dtu field observations/system response measurements, 
model paradigms, and process parameterization. A facilitator 
responsible for leading the discussion and preparing a final report to 
the entire workshop was designated for each working group. 

Prkr to me meeting, me organizers arranged for selected 
partieigmnts tQ prepare White Papers to stimulate preparation for the 
meeting. The authors were asked to analyze the prospects for 
reducing Uncertainty in the source of modeling error they were 
addressing, assess the relative value of further reductions in that 
source of uncertainty when compared with others, and suggest an 
agenda for discussion by conference participants. These papers 
served as the starting point for each working group. 

The workshop also involved plenary presentations which included an 
overview of uncertainty in toxics modeling, a management 
perspecfive on the applications of mass balance models in the 
Great Lakes with emphasis on management needs for Lake Ontario, 
the current methods for quentlfylng and expressing uncertainty in 



Great Lakes modeling, the importance of large events, and a 
management perspective on determining the appropriate levels of 
complexity, accuracy and cost to fit the application. 

These proceedings include transcriptions or summaries of the 
plenary sessions, the white papers, summaries of the diqussions of 
each working group, and the final recommendations. 

2 



I Executive Summary 
A workshop was held on February 3-5, 1992 in Buffalo, New York to 
focus expert attention on the problem of uncertainty in mass 
balance models for toxic chemicals in the Great Lakes. In order to 
focus the discussion. specific emphasis was placed on applications 
to Lake Ontario. A steering committee was formed whose members 
included representatvies of US. EPA and Environment Canada 
along with the two institutions that organized the workshop: the 
Great Lakes Program at the State University of New York at Buffalo 
and the Great Lakes Research Consortium. Attendance was by 
invitation of the steering committee and included modelinQ 
professionals, university-based aquatic scientists, senior agency 
personnel responsible for state and federal water quality programs, 
and others More than seventy individuals Marked over the three 
day period to derive recommendations for ways to reduce 
uncertainty and increase confidence in mass balance models and 
the accuracy of their predictions. 

Participants were assigned to one of four Mark groups. The work 
groups were defined by the steering committee, and were intended 
to focus attention on particular ways in which analytical uncertainty 
and input errors are likely to be introduced into mass balance 
models. The workgroups were divided as follows: 

Ladhg8 and 0 t h ~  forcing function data, induding the influence of 
stochastk variability 

Modd paradigms, including model formulation, spatialhemporal 
moIldlan,andthedTectsofprocessaggregation 

The steering committee commMoned white papers to summarize 
the issues in each of these topic areas. h e  white papers are printed 
in the foilowing proceedings. Each work group wus asked to review 
and discuss the white paper prepared for its group, consider the 
suggestbns offered In the papers for reducing uncertainty and offer 
recommendatbns from the group. Each group was asked to 
consider questions of technical feasibility, costs and time needed to 
implement each of the recommendations. These recommendations 
were then commented on by a panel made up of management 
professionals who would be expected to consider their 
implementation. The intended outcome of the workshop was a set 
of r@commendations to guide decisions about the future direction 
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of mas balance modeling efforts in the Great Lakes: how models 
should be used and the best way to direct resources toward 
research most likely to improve the usability of mass balance models 
for management decisions. 

The proceedings following this summary include a more detailed 
discourse of the discussions in each of the work groups. It also 
includes the transcripts of the plenary sessions that guided the work 
group deliberations and a summary of the closing panel comments 
on the work group recommendatbns. Presented in the remainder 
of this Executive Summary are me overall workshop conclusions and 
recommendatbns, judged by the organbers to be the consensus of 
the entire workshop, foliowed by a listing of the specific 
recommendatbns of each of the individual work group. 

OWd- 
ckhi!REd 

To virtually eliminate the Impacts of toxic substances in the Great 
Lakes, the most appropriate and scientiiically defensible targets for 
toxic load reductions must be selected and the most effective and 
efficient means to reach those targets must be chosen. In making 
these decisions, mass balence models that predict the fate of toxic 
substances, quantify loadconcentration relationships for key 
environmental compartments, and determine target load 
reductbns must be used. S e e  judgements based on these models 
will have slgniflcant legal, regulatory and financial implications, it is 
essentbl mat me uncertainty associated with mass balance models 
for toxics in the Great Lakes be reduced to a level commensurate 
with the management needs. While it was not within the scope of 
this workshop, we must recognize that the level of confidence 
needed for a given application must be determined CY prior/ as part 
of the problem definitbn. Only then can a problem-specific strategy 
for reducing uncertainty be devised. Given this caveat, it was the 
goal of this workshop to identify a Lt of the most promising modeling 
improvements possible in the areas of process understanding and 
parameterization, loading end calibratbn data sets, and model 
paradigms. These strategies for reducing model uncertainty could 
then be selected and implemented on a problem-specific basis as 
dkctetedl by the partkular management needs. 

As Dra PRQmann conveyed to the Workshop participants in his 
Keyrrote Address, rducing modd uncertainty, placed in a positive 
context, is merely gaining more and more cenlkhee (i.eo.. a higher 
degree of celtalnty) in tRe ability of our models to explain the 
varbbillty of a toxic contaminant in physical and taibgical space 
a d  time. Listed belaw are the areas that we felt the Workshop 
participants identified QS pmvkllng the most fmltf’ul avenues of 
inquiry relQtive to gaining confidence in model predictions of texk 
contaminant behavior In the Grrmt Lakes. These general 
recomrnendatbns are placed iflto two groupin@: I) those that 
address the contiiud development and implemsntatibn of a 
strdegy for using mass hbnce models for managing toxics in the 
Great Lakes; and 2) those that address needs that are more specific 
to particular processes or Contaminants. Withim each grouping the 
items are & listed in any particular order of priority. 
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'Odd went and 
srategrw 

1. The spatial, temporal, and kinetic resolution of a model are what 
determine its complexity. Much of the unexplained variability in our 
models is due to a prior/ averaging and lumping that we perform in 
order to simplify our modeling frameworks. Development of 
complex, sitespecific toxics mass balance models in the Great 
Lakes Ecosystem are required if we are to gain a true understanding 
of sources of uncertainty and to develop approaches for reducing 
those uncertainties. Howevw model development and application 
should proceed along both the sknple and complex paths these 
paths are complementary and provide an effective process 
formulation, parameterization and scale dependency testing 
framework. 

2. Since site-specific models are only as good os the date from 
which they are developed, a good deal of model uncertainty 
reduction can be achieved by collecting data and fully 
Understanding - and quantifyiig -- the variability in field data. Also, 
data collected for a site-specific model application must be direcliy 
usable for the applkatbn in questlon. Given limited resources, there 
is no room for monitoring thai has little value as model input or for 
comparison with model output. To assure these objectives, new field 
data collection programs should be designed with the full 
cognizance of the problem definition (including definition of desired 
accuracy and precision), historical monitoring data and screening 
model analysis of these data, existlng model applications to similar 
problems, and state-of-the-art statiiical techniques. 

- 

3. If we are to make advances in reducing model uncertainty, we 
must focus research effort on developing efficient and unbiased 
methods for pyantlfv inq model error. These methods must account 
for data variability and attempt to account for model formulation 
and application errors as well as model parameterization errors. 

4. As models become more complex and multimedia in nature, as 
suggested by me model paradigm work group. it will become 
necessary to develop better and more efficient modeling support 
tools. For example, Gsographic Information Systems (GIs) linked to 
a series of toxic chemical loading, fate and transport, and effects 
models con be Invaluable for organizing and analyzing spatial and 
attribute data, fer applying averaging and interpolation schemes 
that permit higher resolution modeling with sparse data, for 
restructuring and passing model inputloutput data between 
models, for visualizing model output, and many other modeling 
tasks. We must continue to explore and develop techniques (such 
as Monte Carb analysis, maximum likelihood methods, or DiToro's 
method for apportioning uncertainty between calibration data and 
model parameterization uncertainty) for model calibration, sensitivity 
analysis. and error analysis. Finally, expert systems can be used to 
aid in model formulation and application in an attempt to benefit 
from previous experiences in a particular modeling domain. 



1. Accurate representation of sorbent transport and transformation 
dynamics is gucia to developing accurate toxic mas balance 
models. Of particular importance are waterkediment exchange 
process. More effort should be focused on formulating site-specific 
sorbent dynamics models (including explicit representation of 
organic carbon sorbent kinetics) and obtaining high resolution 
(especially in the vertical dimension) calibration and verification 
data sets. 

2. Atmospheric exchange of toxicants, including deposition and 
phase transfer, represents a mapr source and sink in the Great 
Lakes; more research is needed to better quantify the rates and 
governing conditions for these processes. 

3. Accurate representation of the food web structure and 
dynamics is one of the weakest components in an integrated toxics 
exposure model; deflnitbn of the routes of carbon flow in aquatic 
ecosystems. individual organism metabolism, and toxic chemical 
assimilation efficiencies are some of the priority data needs. 

4. Mercury Is a significant problem toxicant in Lake Ontario, yet our 
understanding of mercury transformations and our ability to obtain 
accurate field measurements of its various phases are very limited. 
A comprehensive program to develop an understanding of mercury 
transport and fate by synthesis sf field data and process 
experimentatbn in a mass balance modeling framework is strongly 
recommended. 

The remainder of the Executive Summery of this Proceedings 
presents a summary of the recOmmendQtiOns of each of the four 
Work Groups. These recommendations are presented in any 
particular priority, since the groups dM not prioritize their 
recommendatbns. However. a feeling far the significance of each 
recsmmendatbn can be obtained by reading the transcripts of the 
discussions that led to the formulation of these recommendations. 

rn beedings estimates are dependent on the qualify of the 
monitoring data provided. It is, therefore, critical that Quality 
Assurance/Qucslity Conkol procedures be carefully established 
ut the beginning of a mass balance modeling project. 

= Sampling programs should be designed with the needs ob the 
model in mind. Existing monitoring data and models, as well as 
state-of-the-art statistical techniques should be used to help 
design new sampling programs. Spatial and temporal resolutiin 
of load estimates must be compatible with the model being 
used. 

= Research is needed into the effect on model uncertainty of 
using alternative statisiical methods for estimatiig loads, in 



particular for samples reported at non-detect. 

followed whenever possible to minimize censored data. 
8 State-of-the-art sampling and analysis protocols should be 

8 Atmospheric inputs are still imprecisely known. More study is 
needed in this area; in particular, improved estimates of process 
rates, improved understanding of the correlation between air 
concentrations on shore and over the open lake, and methods 
for includhg short-range transport into loading models. 

Summcllyd In diu ikld o~aiknr/rydom rospomm moasunmds for the 
Rocommmdatlonr Group 2 establishment of initial conditions, boundary conditions, 

callbratbn/confirmation data sets, and model postaudit data sets: 

Additional efforts should be made to analyze the Green Bay 
experience to help identify the optimal sampling requirements 
for Lake Ontario. 
Research is needed into methods for quantifying uncertainty, 
estimating uncertainty from alternative sampling regimes, the 
possibisty of using surrogates that are more easily sampled and 
measured than toxic organic contaminants. 

Historical sediment data for Lake Ontario and Green Bay should 
be reviewed to guide future sediment sampling programs. 
Existlng data on contaminant levels in Lake Ontario are 
insufficient for model calibratbn and additonal sampling wiil be 
required to obtain toxics concentrations in water, sediment, 
atmosphere and biota. An optimal water column, sediment and 
biota sampling program for the data needs of a mass balance 
model calibration effort for toxics in Lake Ontario should include: 
' fhre to six lake segments with three to five water column 

sampling stations and one master station per segment. 
sampling of the epilimnion and hypolimnion in each 
segment, with the master station sampled more frequently 
with extensive vertical profiling, including two samples in the 
epilimnion and four in the hypolimnion. In addition to toxics. 
dissolved and partlcubte orwk carbon, suspended solids, 
P, N, Si, and C9 should tse sampled at the master stations 
sampling under the ice, after spring loading, after 
stratification, after fall turnover, and during one additional 
time 
sampang for a minimum of two years to acccount for 
varitsbility in weather 

e one master sampling station in each segment. Sampling 
should be more frequent and should take place every year, 
not just for two years. Vertical profiling should be more 
extensive 
volume proportional sampling techniques should be utilized 
some data collected during storms to determine the puke 
loading associated with big events 

' 
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multiple samples taken during sample collection. 
Preservation of sample is inexpensive compared to the cost 
of losing a sample. 
sampling grid for sediments that match water column grid, 
except more intensive 
sampling of biota from various compartments in the food 
web, with particular concerns with sampling Of: - -el concentrations af toxics in alewife 

pcpulaPlons - dMerentagedassesaflaketrout - ~ a n d p o n d o p r e i a  
B Because of the characteristics of the contaminants of concern, 

the needs of the models, and the particular problems in the lake, 
mass balance models for Lake Ontario should concentrate on 
PCb (Total), DDT, Mirex/Photomirex and Plutonium. 

B It is essential that measurements of water column and 
invertebrates concentrations are matched in time. It is less 
essential to match fish and sediment data. 

B Research needs include: 
Use of plutonium measurements in water and sediment to 
calibrate sorbent mass balance models. 
Study photochemistry of mirex and photomirex. 
Measure the Kow fer each chemical to be modeled. 
Determine haw to combine value weighted averaging 
techniques with maxiurnum likelihood estimation for 
censored data. 

Model paradigm, including model formulation, spatial/temporal 
resolution, and the effects of process aggregation 

Sumrnwy of 
RecarrPmendatlom (;;roup3 

Much of group 3's discussion centered on the comparative 
advangages of simple modeis sufficient for whole lake mas 
balance estimates versus more complex models capable of 
discriminating between impacts of different inputs, providing 
information OR localized effects, estimating response times to 
munagement actions affecting badlng and in genera[, increasing 
our uneimtandiwg of the fate and transpc~rP of tsxk wtstances in 
Icrrge lakes (see proceedings for more detal abut this debate), 
Questions about uncertainty for each type of medel ufe significantly 
different. The group was able to agree on the folbwing general 
recommendations: 

m Conbhue to use existing models for whole lake issues 
Use simple model% to test and refine process descriptions with 
rglQrd to water/bd exchange pracesses, air/water exchange 
processes. biota/wder exchange paceses, sorption kinetics, 
food web processes. solids/carbon conelations and speciatbn. 
Of the process@$ described in war& group 3's report, water/bed 
exchange processes are most important. Future research should 
include Increasing the vertical rewlution in th@ bed and 
developing explicit representations of organic carbsn kinetics. 



= Use complex models to add spatial/temporal resolution. In 
additbn these models can be coupled with 
hydrodynamic/sediment models, can use multiple sediment 
layers, and can extend into tributaries 

Summary d Process Purumeterkafbn lndudlng dafu uvu//ub//lity/process 
Recommanddons Group 4 experlnentafbn undscullng problems 

The members of workgroup 4 each summarized an aspect of the 
group's deliberatbns. The folbwing processes were identied as 
contributing toward model uncertainty. The group identitled 
research needs, sampling methods, or improved process 
characterization that could reduce the uncertainty associated with 
each process. The list of processes mat follows is not prioritized with 
respect to importance in reducing modd uncertainty. 

m 

I 

8 

8 

8 

m 

Gastrs-intestinal uptake and biomagnificatlon of hydrophobic 
organic chemicals (lack of knowledge about mechanisms is the 
main source of uncertainty) 
Transformatron processes (experimental research is needed to 
better characterize the processes by which contaminants 
transform in the environment) 
Physical/chemical properties of contaminants (Kow values and 
Henry's law constants vary widely. For modeling purposa, 
guidelines for accepted values are needed) 
Fkrx across the air-water interface (there is insufficient data to 
characterize the flux rates at different temperatures for different 
Contaminants) 

Watershedlairshed models (the role of soil processes, and wind 
driven erosion is undefined) 
Food web structure (uncertainty exists regarding exposure of 
animals in contact with sediment) 
Impact of large events (data and parameters relevant to large 
storm and runoff events is needed) 
Measuring mercury (a major field measurements program is 
needed for methyl mercury) 

Fish mobility (movement patterns need to be better 
parameterized) 

Rgsuspension/depositbn (contaminant flux due to 
resllspension/depositbn, especially at high stresses, needs 
improved quantification) 

Sorption processes (sorption phenomena need better 
characterization, and a basic theory is needed to describe 
sorption phenomena) 

Carbon Cycle Mass Balance (improved understanding is 
needed of the dynamics of dissolved organic carbon, 
phytoplankton-toxicant sorption and effect of phytoplankton 
growth on carbon content). 

9 



1 lopening Remarks 
co?l.gress?nan 

Henry J. Nowak 
I am pleased to have the opportunity to welcome everyone here 
today to the Universily of Buffalo for this important working 
conference on mass balance modeling of tcixks in the Great Lakes. 
I can see from the list of participants that this conference will be one 
of the highlights within the Great Lakes research community this 
year. 

We are at an important juncture in Great Lakes research. The 
uncompromising goals of the Great Lakes Water Quality Agreement 
with Canada has challenged the research community with difficult, 
yet exciting, problems. In calling for an ecosystem approach that 
must employ mass balance methods, the Agreement has 
highlighted the need for improved tools. This approach is required 
to serve a broad constituency within me Great Lakes Basin that 
includes every living organism. 

I believe the Great Lakes are the perfect proving ground for such an 
undertaking. As a unique and identifiable resource, they provide a 
living laboratory in which to observe cause and effect. With the 
proper tooh we can come to understand not only the 
consequence of long term degradatbn of natural resources, but 
mere importantly we can devise appropriate management 
schemes for its reclamation and enhancement. I believe ecosystem 
modeling will play a pivotal role in this effort. 

My challenge as a policy maker is to demonstrate to taxpaying 
citizens that federal dollars are well spent and provide a positive 
return on investment. Unfortunately in the environmental area, this 
has proven an illusive task. While our intuition tells us that pollution is 
bad. . . it has been difficult to quantify and demonstrate its damage 
to our health and economy. While environmental concern 
continues to gain an increasing share of public attention, they will 
not have pariiy with other concerns until we can demonstrate the 
benefits d our actions ta the public d large. It is here that the Great 
Lakes have provided are remarkable example. It is estimated that 
over $9 2 billion in fderal dollars have been spent within the Basin for 
conshuctkn of sewage treatment facilities, an action precipitated in 
large part by the apparent ‘death’ of Lake Erie in the 1970’s. 
Rmcflon to the defllement of such a large natural resource created 
the pubk support for our first enviroflmental programs, and by all 
counts, the reclamation of Lake Erie was a remarkable suc~bss and 
perhaps the first example of environmental controls reclaiming a 
vast natural resource. 

Lake Erie also demonstrated the economic benefits of investment in 
environmental protestion and remediation helping produce a sport 
fishery in the Great Lakes worth $4.5 billion per year in economic 
activity across the Basin. Incidentalty, I understand some of the 
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phosphorus. loading models developed in those days were 
pioneered by individuals here today. 

In my mind the Lake Erie example demonstrates how critical mas 
balance modeling will be to solving our current problems with the 
persistent toxic chemicals that have permeated the Great Lakes 
and are found in all forms of life throughout the system. A smail 
body of research and prudent intuition tells us that there may be 
human health effects associated with PCB's in mothers' milk and 
their bloodstream that is passed on to their infants. A considerably 
larger body research conflrms both the severe and subtle 
developmental effects of persistent toxic chemicals on the flsh and 
wildlife population within the Basin. Again, as a policymaker I have 
to ask myself: Do we know enough at this point to take action? Will 
we ever have all of the information required to demonstrate 
absolute cause and effect? And perhaps most importantly, should 
we wait until then to act'? Without the tools to more fully understand 
the costs of actbn vs. inaction regarding environmental 
management these critical pollcy questions will go unanswered. For 
this reason, I am excited by the potential of ecosystem modeling on 
the Great Lakes. If modeling can help us to understand, in a 
comprehensive fashion, the fate and transport of pollution and its 
effects, we can then make the best investment of limited federal 
dollars to protect the health of the ecosystem. 

I also believe there is a larger purpose to the work in the Lakes. The 
vast Great Lakes watershed and its complex environment are 
mirrored in the institutional arrangements that govern the resource. 
Two federal governments, eight states, two provinces, and Native 
Americans provide a unique challenge to policymakers that will 
provide the model for international environmental agreements on a 
global level. 

In short, if we cannot execute an ecosystem game plan here in the 
Great Lakes, the challenges of global environmental management 
may also go unanswered. But I am far from pessimistic. Great Lakes 
issues have experienced a tremendous renaissance in the past few 
years. Attentbn at the federal level has produced new resources 
across many et the fedefal agencies committed to meeting the 
Water Qualily Agreement and a greater level sf interagency 
ceoperatbn is a b  paying off with more coordiation and less 
duplicatlng of work. This high profile has helped move programs 
along and build support for the sustained efforts necessary to get 
results. I can ais0 say with a great deal of pride that by coming to 
Buff- to hold this conference, you have come to the fight place. 

The University of Buffalo's Great Lakes Program under the leadership 
of Joo DePhto has fostered a new center of expertise within the 
University in the area of environmental modeling. With the 
confidence and funding from EPA's Environmental Research Lab 
under the direction of Gil Veith. a criical investment has been made 
to develop a predictive model for the Buffalo River watershed. 
Fortunately, UB is one of three Universities within the National Science 



Foundations' National Center for Geographic Information Analysis, 
providing an unique opportunity to use existing University resources 
to develop this powerful model. 

I certainly look forward to the results of this conference and its 
forthcoming applications to the Lake Ontario Lakewide 
Management Plan. Please be assured mat as we move to 
reauthorize the Clean Water Act this year in Congress, Great Lakes 
lssues will continue to be a high priordy for me. 

Thank you again for all of your strong efforts on behalf of our Great 
Lakes resources. 



I Keynote Address 
Uncertainty in Toxics Modeling 

I gave a lot of thought on how to approach this subject of 
uncertainty in toxics modeling and the fact that we will be spending 
two and a half days looking at various dimensions of this problem. I 
tried to review what has been done over the years and then 
decided to turn to the dictionary. The synonyms for uncertainty are: 
doubt, dubosity (I), skepticism, suspicion. I checked "dubiosity" and 
got the word "uncertainv back again1 The definition was a rather 
negative perspective on uncertainty but that's the way the public 
thinks about uncertainty and that is probably the way most 
managers of water quality perceive the notbn of uncertainty. In 
fact, many managers of water quality, when they get to water 
quality models seem to think in these terms: suspicious, doubtful, 
skeptical. Of course to some degree we have to have that healthy 
Skepticism ourselves. 

But a look at the flip side of the definition is interesting. The title of this 
workshop is "Reducing Uncertainty" which is another way of saying 
we hope to "increase certainty". The dictionary offers a much more 
comforting kind of definitbn for "certainty": "assurance"; "conviction"; 
and "faith strong enough to risk all attack (I)." We ultimately want to 
provide some kind of assurance or conviction (but not blind "faith") 
that' what we are offering managers with the results of model 
calculations and field and laboratory observations can be used in 
the decision making process with some conviction and some 
assurance. 

YRe bic questbns that most managers ask are: "How good are the 
pedicstbns of the effects of controi actions?" "Do you understand 
the reasons for the observed behavior in toxics concentrations?" "If 
we carry out some control actions, what assurance do we have that 
your predktbns will, in fact, happen?" "How good is your model?" 
These are questions that have been asked ever since models were 
fhst constructed. These broad questions are very meaningful to 
those who are ultimately responsible for carrying out programs. So 
management looks at certainty and uncertainty from a relatively 
simple point of view. The underlying fear in the notion of uncertainty 
is that the "wrong" (in some sense) control actions will be 
promulgated. 



To a large degree, the significance of uncertainty depends on the 
problem context, How we perceive uncertainty really depends on 
what we think are me rdevant questions. For example, if we're 
dealing with a regulatory process on a broad-based generic 
problem, i.8.. across chemicals and across sites, then screening, 
global, generic steady-state type models of toxics may be 
appropriate. Order-Bf-magnitude models of bioaccumulatiin in a 
paradigm food chain is an illustration. The significance of 
uncertainty might a b  relate to the response time of systems to 
control actions In that case, site-specillc models may be needed. 
An example would be estimating whether we can expect a certain 
mean water quality objective or mean fish chemical concentration 
be met within the next 10 - 20 years FinaUy, uncertainty might also 
depend on which questions are being addressed in the permitting 
waste load allocation process. Chemical allocation models are 
then necessary and mean and exceedance frequencies, may need 
to be calculated. 

Artlculathg modeling uncertainty questions must mer@fore be 
attempted et specific levels of detail. What is the relative 
contribution of data variability and model uncertainty to observed 
chemical variability? What is the confidence interval on a 
calculated mean chemical concentration? Do we regulate on 
exceedance of the mean? What are percentile extremes on 
individual levels? Do we regulate on short term events? Up front 
artkulatbn of relevant questions is essential because the quastiins 
determine the approach that needs to be taken to deal with 
uncertainty. 
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There are a number of components of uncertainty in the modeling 
of chemical fate and accumulation. There is inherent variability due 
to spatial and temporal changes in meteorology, hydrology and 
food web structure. Measurement and observation errors also are 
important contributors to overall uncertainty especially for extremely 
low level chemical concentratiins. Model skuctura itself can be a 
cause of uncertainty; state variables. inputs, pfocesses, and linkages 
may or may not be correct. Numerical assignments for inputs end 
parameters, of courser Reve csmidererble potential uncertainty, 
Other sources of uncertainty are blunders and pre- end 
post-processing errors e% model output. And finally there may be an 
incomplete understanding of the model which may resutt in un 
application of the model for which it was never designed. 

From a t~xics modeling paint of view, I h h v e  that "uncertainty" is 
redly unexplained variability, or unexplained bhavisc is., 
varhbility and behavior that is "left evefu or "unexplained" mer 
we've tried to apply as much of what we know at a particular point 
in time. Large uncertainty in thk sense means large confidence limits 
around a prediction where the range of uncertainty of the 
predktbn may or may not $e acceptable. The degree to which 
vmiabPty is explained can therefore be considered a measure of 
the reductiin of uncertainty. 
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Recognizing these sources of doubt, a definition can be offered: 
%e certainty of a toxics model (or any model) is the degree to 
which the variability of a chemical in physical or biological space 
and time is explained by the modeling framework". By "explained", I 
mean that the engineering/scientii/management community 
agrees that the model is a valid representation of a set of 
observations and can be utilized within the given problem context, 

Figure 1 is a schematic of the generation of model and data 
variability. Physical chemical and biological processes lead to 
spatial and temporal variability. Input load variability further 
contributes to the total "true" variability of water quality, which, of 
course, is unknown. There are a variety of sampling constraints that 
govern the degree to which thii real world true variability can be 
observed. The degree to which sets of observatbns are meaningful, 
of course, depends again on the problem context. In addition to 
sampling constraints, there are modeling constraints that are also a 
function of problem context. A priori decisions are then made on 
how to approach the problem: whole lake models, steady state, the 
state variables themselves, what kind of chemicals will be modeled, 
and the spotid and temporal grid. Finalty, there is a comparison 
between model calculations and data variability. The degree to 
which that comparison is "acceptable" is the degree to which 
uncertainty can be tolerated. 

What has been observed about chemical variability? For example, 
for inputs and parameters what is the chemical response in 
physio-chemical and biological compartments in terms of temporal 
and spatial variability? What do the mean, variance, and 
coefficient of variation look like in some of these processes? What 
do is known about the probability distribution functions? What is 
known about response to load reductions? 

Figure 2 shows the probabiiity distribution function (pd9 for the PCB 
load at a station in the upper Hudson River. In general, load 
probability distribution functions tend toward lognormal behavior 
which means that significant statistical statements can be made 
from esthates of two statistical parameters. Suspended solids are an 
important component of toxics modding. Figure 3 shows the pdf for 
the Mississ;ippi River at Jefferson Parish, just to the north of New 
Orlwns. As an example of chemical variability, Figure 4 shows the 
pdf for chloroform at the same station on the Mississippi River. The 
top panel shows the the history of chloroform collected at that 
location, and the bottom panel shows the pdf. As indicated, the pdf 
is approximately bg normal, with a total variability about two orders 
of magnitude with a coefficient of variation close to unity. This level 
of variability is common in toxics chemicals. As a final example of 
physio-chemical behavior, Figure 5 shows the TCDD in surficial 
sediment in Lake Ontario. The "break" in the pdf may be a result of 
near shore vs. open lake behavior or varying sediment organic 
carbon concentrations 

Variability in the biological sector is also quite regular. Figure 6 shows 



the structure of PCB variability in fish for data collected on the 
Hudson River and Estuary, It is rather remarkable that across 
migratory and resident fish that such statistical regularity is observed 
although it should be recognized that this is a log-log plot. A global 
coefficient of variation is around 0.6. A model of fish variability 
exposed to varying chemical concentratians indicates that for a 
coefficient of variation around 0.6 for chemicals in fish, the global 
coefficient of variation for the dissolved chemical is about one, 
similar to observed coefflcienis of variation. Figure 7 shows a similar 
behavior for kepone in the James estuary with a coefficient of 
varbtion for fish of about 0.6. These data therefore appear to 
dkplay some considerable statistical regularity which can be 
exploited to reduce uncertainty. 

Figure 8 (from a data compktbn on chemical uptake by benthic 
invertebrates by Thomas Parkerton at Manhattan College) shows 
the pdf for the Bicrta Sediment Factor (the ratio of the chemical in 
the benthic invertebrate on a lipid basis to the chemical in the 
sediment on organic carbon). The first interesting observation about 
thk figure is that there are 1,770 instances in the literature observed 
Biota Sediment Factor for d-it feeding invertebrates. The median 
is approximately two (Indicating a preferential partitioning into lipid 
over sediment carbon) which had been previously suggested from 
earlier data analyses. Again, the data show a consistent degree of 
statistical structure which can he used to make reasonable 
&hates of varkbility in !he degree to which invertebrates 
accumulate sediment chemicals. 

Intra-species variability is also a source of variability that must be 
examined. The range of such variability may be large and 
apparently depends signiflcantly on the exposure history of the 
individual organisms. Figure 9 shows results from a single collection 
of 67 fkh (Alberta, Canada). The age distribution Qf the collection is 
relatively narrow. As shown, the distribution of PCB is about one 
order of magnitude in range while for BHC, the range is only a factor 
of two. The difference may reflect varying exposures of the fish to 
the ha chemicels but in any event the variability within this 
cdktion iS !@Rifke%mt. 

d The modeling framework mailable to deal with all of this variability 
are varied and in dffering degrees address the overall uncertainty 
question. The approaches include deterministic models of 
physio-chemical transport and suwuent chemical accumulation 
in the food web. Such models are run under both steady state and 
the varbbk conditions Age dependency may alsa b included in 
food web models. Monte Garb simubtions can he conducted 
within these deterministic frameworks to elucidate statistical 
behavbr of outcames. Parameter uncertainty analyses and models 
of stochastic behavior are also available. These and other areas will 
be discused throughout this workhop and e review is not 
warranted here. I would like however to indicate the nature of the 
kind of analyses that can be done to provide a basis for calculating 
variability and subsequently comparing the results to observed 



behavior. 

Using a simple whole lake model of the dimensions of Lake Ontario 
with six 1 cm. sediment layers and following standard 
physio-chemical partitioning and fate models, the illustrative 
question that was asked is: "What is the computed chemical 
variability in a whole lake model due just to load variability?" Figures 
10 and 1 1 show some simulations, A log normally distributed annual 
load with a coefficient of variatbn of 50% was inputted into Lake 
Ontario. Annual water column and sediment response is shown for 
a 60 year simulation both with and without bioturbation in the 
sediment. As expected, water column response is considerably 
more variable than surface sediment and deeper sediment. A 
number of such simulations were conducted and the coefficient of 
variatbn in the water column was cafcubted to be approximately 
X% of the coefficient of variation of the load. From simulations of 
this type, we can obtain first order insights into partitioning observed 
variance in chemical concentrations in the water column between 
load variability ( of which we have some reasonably good 
knowledge) and other sources of variability. 

It is also of interest to note that simulations of the fraction of a 
chemical in dissolved form for log normal solids and log normal 
partition coefficient behavior does not result in log normal behavior 
in the fraction dissolved. This would be expected on statistical 
grounds. Figure 1 1  illustrates the point. The range of the fraction 
dissolved clearly is limited between about 0.6 and unity. The 
coefficient of variatbn of the fraction dissolved is quite insensitive to 
the coefficient of variation of the partition coefficient. These and 
other results provide the framework for understanding the sources of 
variablity in observed chemical behavior. 

Now once we've looked at model frameworks and at observed 
variability, how unexplained variability is addressed affects the 
perception of uncertainty and model credibility as illustrated in 
Figure 12 This Figure picks up where Figure 1 left off. The cornparison 
of model and data variability is the first step as shown in Figure 1, but 
What is subsequentty done with that comparison affects the 
perception of model crediblty. For example, foliowing Figure 12, the 
model and data may be compxx! quafftativety as is done in many 
applications. 'The comparison is left to speak for itself and the results 
me gemrally incorporated into same statements about model 
performance. Figure 13 shows an example. The quote is me extent 
of the analysis of model versus data. ( In fact, when I look back at 
what I've wrtiten over the last 35 years, most of what I say after I look 
at model and data comparisons are permutations of those words.) 
Such approaches may be useful for initial development and 
elucidation of processes but are generally not appropriate for 
detailed management questions. 

Returning to Figure 12, attempts may also be made to quantify the 
unexplained variability resulting from the comparison of model to 
data. The residual variability may turn out to be acceptable in some 



sense and consistent with the question being addressed. (Figure 13 
illustrates a level of variability on eight cycle log-bg paper that was 
considered "acceptable" for purposes of demonstrating food chain 
bioaccumulation.) The model may then be considered suitable for 
an intended use even though there may still be a considerable 
amount of residual variability. If the residual variability is 
unacceptable, then, of course, effort has to be directed towards 
reducing that variability, 

Figures 14-16 illustrate detailed comparbns of model to data 
varbbility. The upper Hudson (Figure 14) is a fine time and space 
scale calculation. It shows a =day comparison at Waterford, NY 
with the original calibration. The probability plot comparison of the 
model to the data illustrates one way of dkplaying model and data 
variability. The =me model with a two-day phase shift; is also shown 
to indicate that very often the exact time variable behavior of the 
calculation may not be captured. Are we interested mainly in 
looking at the 95th percentile ne matter when it occurs? Is it an 
uncertainty of thing, or an uncertainty of magnitude? Is the timing 
of the peak critical, or is it capturing the magnitude of the peak 
that's important and it really doesn't matter when the peak occurs? 
The "uncertainty question" clearly has an impact on whether the 
model is considered suitable for use. 

Figure 15 for Saginaw Bay illustrates an additional point. This 
Saghaw Bay total PCB model was a time variable model with results 
shown for an inner Bay depositional zone. Model runs A and B 
represent differlng assumptions on parameters including 
volatilization bss of PCB. For the total PCB, it was concluded that the 
the cruise mean and individual station mean was captured and the 
cruise mean variance was captured. But the individual station 
variance was not captured. A similar result was obtained for the 
particubte PCB. For the dissolved PCB, the mean is captured, but 
neither variance component is reproduced by the model. Model 
performance clearly depends on the model stPucture. but it also 
depends on the data averaging that is used. Generally, modd 
performance in terms of unexplained variability is improved as data 
spatial and temporal averaging is increased. 

Figure 16 shows results from a model of cadmium in Foundry Cave 
on the Hudson eshdary. These results are sfferd as an itlustratien of 
model reevabratisn and recalibration to improve confiefence in the 
forecasts, in this caser the effect of a bed rdustbn. As can be seen 
from the pbtted data, there was relatively IitHe loss of cadmium over 
about a 20 year period since the cessation of cadmium loading to 
the Cove. The questism we were asking is why dkd the surface 
sediment cadmium concentration remain so high ova that period? 
As shown in Figure 16, the initial model calibration run was not 
satisfactory and emptied out cadmium from the sediment 
considerably faster than was observed. Following Figure 12. this result 
was not acceptable and a reduction in the uncertainty was 
required. In the final calibration, benthic mixing of tho surface 
sediments (bioturbation) was included which a indicated, provided __ 



a much more satisfactory and credible representation of the data. 
Now to what degree is the model suitable? There is clearly a 
substantial amount of individual variability in the surface sediment 
cadmium data (5 orders of magnitude!) that the model makes no 
attempt to resolve. If the model is intended to predict changes in 
surface sediment mean concentrations then perhaps the model is 
suitable. If however, the intention is to explain the heterogeneity in 
the sediment (or water column) cadmium then the model is not 
suitable. 

It seems from analysis of data to date that there is a great deal of 
statistical structure in the physiochemical and biological chemical 
behavior. Continual data analysis is essential in order to further 
elucidate such structures. But data analysis is usually most fruitfully 
accomplished when a modeling framework is at hand in order to 
guide the analyses. I don't think present toxics models have fully 
succeeded in capturing the observed structure in variability; 
however, the models have provided a first basis for assessing the 
range of uncertainty and confldence in predictions. But some 
conskferable unexplained variability contlnues to exist, and whether 
we need to do anything about that unexpbined variability and 
reduce it depends criticalty on the kinds of questions that are posed 
and the management implications of such questions. 

One might also ask: "How much of the unexplained variability is due 
to the relathrely crude spatial and temporal scales and relatively 
crude food web representations of toxics models?" It seems that a 
considerable portion of the unexplained variability may be due to 
such crude representations. A classical choice that we might make 
can be summarized as follows. Should we average the data and 
theory CI p r M and use whole lake models to compare to data?" 
Or: "Should we minimize u pbri averaging and use a much finer 
spatial and temporal grid and additional state variables, and then 
average the output for comparisons to data? It seems to me that it 
is a lruism that site-specific models require more detailed spatial, 
temporal, and state variable resolution to reduce uncertainty. If that 
is so, then our attempts to reduce uncertainty in the most general 
sense requires a modeling framework that extends beyond. for 
example, whole lake models with a single sediment layer. My choice 
then would be for large complex systems (such as fhe Great Lakes) 
that the modeling framework be csnstructed on as fine a spatial 
and temporal and state variable level as possible. The calculated 
output can then be averaged and compiled in a variety of diffarent 
ways for comparisons to observed data. This implies a great deal of 
effort in designing appropriate sampling programs to support and 
be complemented by the more detailed modeling effort. 

Finally if we turn attention to Lake Ontario, the subject of this 
Workhop, it is important to note that Lake Ontario is a specific site. 
As such there are a variety of site specific questions that may be 
asked regarding the Lake. For example, what is the near shore to 
open lake interaction of toxics? To what degree can we forecast the 
redistribution of chemicals resulting from transient events? Will 
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averaging of a more finely scaled model produce superior results 
over a whole lake model? I think the days of a Lake Ontario whole 
lake model with single sediment layer and simple food chain appear 
to be numbered. Those models have successfully served their 
original purpose when fist constructed almost ten years ago. I think 
it's time to move on. If we want to reduce uncertainty, I think we 
have to gradually move away from the "simple models" and provide 
e framework in antkipation of the more detailed and inevitable 
management questions of the future. I think the management 
questbns for Lake Ontario would appear to require a model with a 
much finer grid in time and space and increased realism of food 
webs. One of the white papers scheduled for this Workshop 
addresses thk issue of simple versus complex models. I'm coming 
down on the side of a growing need for more complex and hence 
more realistk models for Lake Ontario. 

I would suggest a sputbl scale on the order of 10 by 10 kilometer or 
about 208 grid points in the horizontal with about 10 layers in the 
vertical totaling about 2Qoo grld points total. The temporal time 
scale is best calculated at the same time scale as an underlying 
hydrodynamic model which would be an essential element of the 
overall model. The physiochemcial model would need to be 
coupled to a realistic food web model including incorporation of a 
full carbon balance with phytoplankton-nutrient and zooplankton 
kinetics. Specific attention should be paid also to the mechanisms in 
the sediment especially bioturbatbn. 

Modeling frameworks of this type were generally not feasible even a 
few years ago. But with the increasing availability of super 
computing capability, the computational aspects while still 
formidable are not infeasible. As noted earlier, we clearly would also 
have to design a sampling program consistent with this kind of 
model detail to address the artiiubted questions. The absence of 
such a large data h e  need not however preclude the beginning 
constructbn of such a model since a considerable historical data 
base already exists that can be used for preliminary modeling 
efforts Finally data interpelation schemes can be much better 
employed to extend exMisrg pint data to data surfaces for 
comparison to detailed spatial model output. 

Burs quest for reducing uncertainty stmuld of course never 
cdsgenerate into an objective of being ataselutelty sure of all of our 
pdktkn% Our woru requies us to live with some continuing 
reddual level of uncertainty. To ask for coimplete certainty is to 
dmend the impossbk. New, it is axbmatic that keynote speakers 
should apen with some significant qustatbn from some wise person. 
I'd like to ellose with a qmtatkn from Q persaw who looked at the 
questbn of certainty a long time ago and concluded: 

=cMuln est quia iiqmssi~k estm 
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I Management Perspective 
AppfcationS of Mass Balance Models in the Great 
Lakes with Emphas~~ on Management Needs for 
Lake Ontario 

Chks zl.@nte, U.S. 
EPA- Region 2 

There are many different perspectives on what management 
questions should be asked. The perspective being offered here is 
that of the EPA and of the Four Parties who signed the declaration of 
intent for the reduction of toxic chemicals in the Niagara River and 
who developed a toxics management pian for Lake Ontario. These 
Four Parties are the two Federal governments, U.S. and Canadian, 
and two regional governments, New Yqrk State and the Province of 
Ontario. My focus will be on the areas that have significant 
relevance to the issues being discussed at this conference. 

First, for toxic chemicals in Lake Ontario it is important to note that 
we're dealing primarity with bioaccumulatiin problems not with 
water column problems. For instance, for PCBs in lake trout it looks as 
though the bioaccumulatiin factor is on the order of two million and 
for the herring gull on the order of 25 million. 

The goal of the Lake Ontario toxics management plan is a lake that 
provides drinking water and fish that are safe for unlimited human 
consumption and allows natural reproduction within the ecosystem 
of the most sensitive native species such as bald eagles, ospreys, 
mink and otters. To achieve this goal four objectives have been 
established. The first is to achieve a reduction in inputs of toxic 
chemicals driven by existing and developing programs. The second 
b to achieve further reductbns in inputs driven by special efforts in 
geographic areas of concern. These areas of concern have 
remedial action plam (RAPS) developed for them: probably the 
most significant for Lake Ontario is the Niagara River toxics 
management plan for the Nlagara River RAP area. The third 
objective is the reason for this conference, Le., to achieve further 
reductions in inputs of toxic chemicals driven by lake-wide anatyses 
of pollutant fate. Objective four, zero discharge, has relevance here 
because preliminary models that have shown in order to reach our 
most stringent criteria we must have complete elimination of all 
loadings of certain chemicals to Lake Ontario. 

Po go into further detail on objective three, the Four Parties agreed 
that there are two different ways of doing a lakewide anaiysis of the 
effects of toxic chemicals. The first is a chemical-bychemical 
approach and the second is an ecowstem approach. The 
chemical-by-chemical is more practical. uses existing data, and 



allows the development of strategies for reducing the 
concentrations in the lake. However, it does not answer the more 
basic question of whether or not the ecosystem is healthy. The 
ecosystem approach for Lake Ontario is being addressed by 
another group and will not be discussed here, except to say that it is 
most useful as a check on the effectiveness of the chemical-by 
chemical approach. 

The first step in a chemical-bychemical approach is the 
categorizatbn of toxics. This entails examining all chemicals for 
which ambient data exists, either water column or fish tiue, and 
comparing the data to the most stringent criteria of the four parties. 
Each chemical is then categorized as exceeding an enforceable 
standard; exceeding a more stringent but unenforceable criterion; 
equal to or less than the most stringent criterion; the current limit of 
detectbn is too high to allow complete categorization; or no 
criterion is currently available. Examples of chemicals falling into the 
first category, exceeds enforceable standards, are PCBs, dioxin, 
chbrdane, mirex mercury, iron and aluminum. Iron and aluminum 
appearing on this list may not be indlcative of real problems since 
the criteria are somewhat questionable and natural sources exist. 
Examples of chemicals falling into the second category, exceeds a 
more stringent but unenforceable criterion, are DDT and 
metabolites, octachbrostyrene, hexschbrobemene, and dieldrin. 

The actions agreed on for chemicals in these first two categories, 
include constructing a preliminary loadings matrix by December 
1989, constructing preliminary modeis of chemical fate by January 
1990, and to establish the prelirninaty bad-reduction targets to m@et 
existing standards by March 1990. The fist two actions have been 
completed but the third action has taken longer than anticipated 
due to the lack of agreement on a set of ambient criteria. The 
Great Lakes Water Quality Initiative should provide this set of criteria 
for m e  U.S., which will provide a basis for negotiation with Canada. 
An examination of the loadings matrix for PCBs (Figure 1) shows that 
the system is dominated by loadings from the Niagara River and 
upper Great Lakes. Other significant SOUPCBS of loadings are 
&nospheric deposition and tributaries in Ontario. Tributaries in New 
Yark all W e d  as non-detedabk at %e QIW part per trillion level for 
the orgmcxhlorlne toxics of concern and are cuprently being 
&Smated for purposes of campafin. 

There are two bgsic management questbns. The first is. given an 
ambient standard for a toxic chemical, such as the proposed Great 
Lakes Water Quality Initiative standard for PCb of 6.3 ppb. what 
kdhg to Lake Ontarb would result in this ambient concentration 
under sttxxiy-state conditions? The second is, once tple loeding to 
the lake L reduced to this level, haw bng would it take the system to 
achieve steady state? Results from slmubtbn models can help to 
answer these questbns. 

The Endicott model can help us understand the relationship 
between PCB load to the lake and concentration of PCBs in lake 



trout (Figure 2). Given the 1989 average concentration in lake trout. 
ths model back calculates a steady-state load of 6.3 kg/day, The 
FDA criierion of 2 ppm in fish tissue corresponds to a steady-state 
load of 3.9 kg/day so the model indicates the need for a load 
reduction of about 4U% at steady-state conditions to meet the FDA 
enforceable standard. The most stringent criterion, though 
unenforceable, is EPA's limit of 25 ppb in fish tissue. This criterion is 
based on a cancer endpoint of one-in-a-million, The model predicts 
that to achieve this criterion would require a steady-state load of 
around 0.005 kg/day which corresponds to a 99.9% reduction. The 
lnitbtive level is 6.3 ppb in fish tissues corresponding to about 0.01 
kg/day, a 99.8% reduction. It is relatively unimportant which 
criterkn, EPA's or me Initiative's, is used since it will requke virtual 
eliminatbn of PCB loadings to Lake Ontario to achieve either. The 
model result also tells us that the precision of the model prediction is 
not as important to managers as its accuracy. That is, we need only 
ensure that the model accurately reflects lake conditions within 
existing confidence intervals. 

Looking at the predicted response to a PCB load cutoff indicates 
that there will be a fakly quick reduction in the water column and 
trout and a slower response for sediment (Figure 3). All the curves 
show mat the time frame involved is not one of days or months but 
of years and even decades. Finally, the relationship between PCB 
load and PCB concentration in lake trout can be examined for 
variaus timelags following CI load alteratan (Figure 4). Again, this 
shows that the response to a load change is slow and that, even at 
twenty years after load cutoff, the steady-state Concentration in 
lake trout will not be achieved where initial loads are less than 1 
kg/day* 

In closing, here are the questions that EPA feels need to be 
addressed: 

1. Recognizing that m e  preliminary models do not deal with 
all nine Lake Ontario critical pollutants, what additional work 
is needed to deal with these chemicals? 

2. The preliminary mass twlance models indicate that 
attaining a strhgant ambient standard for a bbaccumulative 
chemicd, such as the proposed GlWQlnumber for PCBs, 
would require virtucrl ellmination of all loadings to the lake. 
This is true even taking into account the uncertainty around 
the predlctbn. Since increasing the precision of the 
Isad/response prediction is remively unimportant, what 
ambient and loadlng data are needed to ensure that the 
models accurately reflect the conditins in the lake? 

3. Since the models indicate mat the lake responds over 
years and decades, would limited U.S. and Canadian 
monitoring resources be best spent on a lowintensity 
sampling program, with a commitment for long-term 
maintenance of the program? 

39 



Q 
d 

O L  
a, 
P 

v) 
G) 
C 

q 5  
-I 

m 
0 

Y 
8 

b 
Q 

0 

a 

d 6 

2 
U L  m 0 -  
L e  .- 
2 c  

cn 
0 
Q 
r2 



LOAD CONCENTRATION RELATIONSHIP: LAKE TROUT PCB 
(UNCERTAINTY IN PREDICTION IS - + FACTOR OF 4) 
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Load-Concentration Relationships for PCBs 
in Lake Ontario lake trout 
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I Managing with Uncertainty 

We are now at a crossroads for modeling, monitoring, and 
managing toxlc wMances in the Great Lakes. In the past five 
years. there have been several meetings to work toward a 
consensus on the level of monitoring required to proceed with 
credible mass balance models of toxics in the Grmt Lakes. Great 
Lakes managers have recently started to appreciate the role of 
modeling in aMing me management of toxic substances and the 
EPA Office of Research m d  Development is convinced of the need 
to reduce uncertainty in mass balance models. The problem is that 
we lack a plan and without a plan there will be a lost opportunity for 
a coordinated research and monitoring program geared to 
developing a holistic understanding of chemical behavior in the 
Great Lakes. 

A research strategy involving U.S. agencies was recentty develsped 
for the GreaP Lakes. This strategy stresses mas balance modeling, 
from management level models up thrpugh complex models, as an 
important need. Resources to meet this need are being provided; 
the base EPA research budget for modeling in the Great bakes has 
doubled in the last year not including EMAf? atmospheric research, 
and Congressional add-ons. The question is, what are the priorities 
for research for mass tsalance modeling'? This meeting should 
provide input to help set the directbn for establishing those research 
priorities. 

The pracess of setting research priorities wit protaably require the 
otgnkatbn of some kind of committee structure. CusPently, there is 
an ad hac group developing the next monitoring effort for Lake 
C&ItQrb bblt there is no cunently aslive modeling committee for the 
Lake. This committee structure ne@& to be organized and 
revitatized, perhups building on the Green Bay modeling 
committee. 

Regardlng the question of model complexity, if management can 
make decisions based on a screening or management level model 
then they should do thut. if zero discharge of virtual elimination can 
fae achieved without discussion of tests, benefits. prieritis. and 
relative risk reductbn and if manages can have confidence that 
their goals will be met within a specified period of time then 
complex model predictions are not needed. Those of us who have 



been involved in management activities over the years,however, 
doubt managers' intuitiie abilities to do this. In the end those 
paying for regubtory efforts, whether they be industry or Congress, 
will insist on having a high level of scientific credibility and an 
economically optimal approach backing their decisions. Money for 
monitoring, research, or clean-up must be spent in the most 
effective way even if m e long term goal remains virtual elimination, 

Modelers need to be careful on how they sell management level 
models, especially since llttte calibration to field data has been 
done, and to be careful to describe quantitatively the uncertainty 
associated with mod& predictions. Modelers also need to convince 
management that some basic research is needed to develop a 
better understanding of m e  interactbn of toxic chemicals with the 
Great Lakes ecosystem. Without the basic research that was 
conducted in the late 1970's and early 1980's we could not have 
the loadlresponse models that we have today. We have good 
qualitative confidence in our basic modeling paradigms because 
of the basic research that was done men and we will require more 
research of this type as a foundation for future modeling efforts. 

The process of improving Great Lakes mass balance modeling will 
consist of several stem, me first step is to have risk assessors and 
managers determine what water uses, biological species, and 
geographical areas are at greatest risk and what chemicals are 
suspected of causing the risk. We need to establish a continuing 
monitoring and basic research effort like EMAP to run in parallel with 
mass balance modeling research. Next we need to continue to 
develop screening level models and to build on existing models and 
historical databases. Some uncertainties like the impact of large 
events, the impact of invading species,and interaction with system 
modifications may need to remain qualitative for now. We need to 
design a research and monitoring program setting priorities based 
on the greatest potential for reducing uncertainty and to optimize 
our sampling designs. Alternative modeling projects should then be 
proposed to management including me costs required for carrying 
them out and realistie timetables. 

It is important that madders interact with experimentalists and 
managers in a continuing diabgus. It is also important that sufficient 
the is albtted to all steps of a modeling program including data 
collection, laboratory analysis, ~ n d  modeling. Managers should 
apply Total Quality Management concepts to- these projects by 
placing quality first and deadlines second and modelers should insist 
on W i g  flexible thelines including sufficient time after the deta is 
received to calibrate and validate the models. Finally, we need to 
incorporate models into decision support systems so that we can 
integrate our knowledge of loadings, remedial costs, and risk 
calculations and give this information to field managers so that they 
can arrive at optimally cost effective decisions. 

There is a matrix of possible alternative modeling approaches to 
take over the next five years (Figure 1). This matrix lays out the 
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approximate budget required to achieve various levels of spatial 
resolution, toxic chemical coverage, phases, biological resolution, 
atmospheric detail, groundwater and tributary loadings, and 
process research. Achieving many portions of this matrix will 
probably require cooperation among various funding parts of EPA. 
Environment Canada, and other parties. 

We a b  need to understand what can be expected of these various 
approaches. The screening level models that exist now are only 
good withh two orders of magnitude, include many scientific 
caveats because of a lack of calibration data, are not to be used 
for numerical target load establishment but only to set program 
direction, and have lit& scientific credibility. By little scientific 
credibility I mean that the results can be successfully challenged by 
scientiis working for other involved partles. As we increase the 
amount of funding, and therefore resolution, we should get an 
increase in certainty. At the first level on the matrix the models have 
less uncertainty but are stdl not to be used for numerical target load 
establishment and their scientlfic credibility still remain slow. The 
second level may involve uncertainties on m e  order to 2 to 5 times 
the estimate, may allow broader questions to be answered, have 
more scieniific credibility, and may be used to set numerical target 
loads at least for some chemicals. The third level may have 
uncertainties on the order of a factor of 1 to 2, may be able to begin 
to address watershed issues but cannot set target loads within a 
watershed, and should have moderate scientiflc credibility. The 
fourth level would allow us to begin to understand mercury, the 
loadlresponse relationships, and the inter-relatbnships between 
nutrients and toxics. In addition it would allow us to establii loads 
within the watershed and has moderate scientific credibility. Finally, 
the last level should have an accuracy to within about 20%. can be 
used to address nearshore and harbor issues, will improve 
understanding of long term sediment transport and resuspension, 
help to estimate the impact of major events, and has considerable 
scientific credibility. 
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I Charge to Workgroups 

There are two basic premises that have come out of the plenary 
session papers; the first is that models are not done in a data 
vacuum. A diagram developed by Paul Roberts at Stanford points 
out that there are many interactions between modeling 
computation and analysis and data gothering and evaluation 
(Figerre 1). Data are used, whether they come from laboratory 
experknentatbn, process experimentation, or field observation, to 
help understand the system, develop the modeling framework, and 
parameterize the model. Additbnally, the model helps to direct the 
data needs so that the model and data gathering components are 
coupled in both directions: me entire process can be thought of as 
hypothesis formuiatbn and testing. 

The second basic premise is that all models are uncertain: these is no 
model that has no errors and nouncertainty associated with it. 
Analytical uncertainty can be broken down into stochastic 
variability, input error, and model error. Input error can be further 
reduced to measurement, parameter, and aggregation errors and 
model error split into formulaflon and usa components. In 
developing the workgroups for Hi workshop, thh paradigm for 
model uncertainty was ukd and the work divided into the following 
four areas. 

m Loadins and other forcing function data,including the 
influence of stochastic variability 

m In situ field obsewatlans&ystem response measurements for 
the establishment of initial conditions, boundary conditions, 
cal4bratbn/confirratbn data sets and model post-audit 
data sets 

m Model paradigms, including model farmulation, 
spatiaUtemporal resobtian, and the effects of process 
aggregation 
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Group 4 
rn Process parameteriztion, including data availability, process 

experimentation and scaling problems. 

The charge to the workgroups includes several components. First, 
review and discuss the white papers. m e  floor will then be open for 
comments from the group participants regarding sources of 
uncertainty and prospects for improving model accuracy. The 
group should then discuss the proposed recommendations for 
achieving reductions in model uncertainty and come to group 
consensus. There commendations should be priofitized in terms of 
technical feasibiity, cost-effectiveness, and the-to-implementation 
and, flnaUy, the group should prepare a report on the group 
deliberations and recommendations. 



IReport of Group 1 

Mingsand Other Forcing  function^ 

Group 1 was charged with discussing reducing uncertainty in mass 
babnce models of toxics as it relates to loadings and other forcing 
functibn data, including the influence of stochastic variability. Over 
the last twenty years mathematical mod& have been extremely 
useful in guiding science and management in the Great Lakes. 
Continued development of models, both simple and complex 
models, is essential: howevw one of the greatest contributors to 
uncertainty in kke model results are the badings of toxics which are 
usually key forcing functions in the models. 

W.f?;la Dave Dolan and Tom Young gave a presentation b e d  on their 
White Papec “Loadinqs, Forcing Functions, and Stochastic Wriabiiity.” 
The authors assumed that loadings am usually the forcing functions 
or independent variables in most models. They defined uncertainty 
as the value or reliability of information. Uncertainty reduction takes 
place through either improved data collection or data handling 
procedures. 

The authors discussed two approaches to assessing loading 
uncertainty, first order analysis and Monte Carlo simulations. First 
order analysis or variance propagation is the simpler of the two 
methods and is based on the Taylor series expansion about the 
mean of an uncertain input such as a load. Monte Carlo simulations 
are more accurate than first order analysis and they have the 
added advantage of producing a probability density function to 
describe the error rather than just estimating the mean and 
variance. Since the Monte Carlo simulations are computationally 
intensive, fkst order analysis is usually used to estimate uncertainty in 
simpb models. 

The authors discussed uncertainties in three lypes of loads: 
tributariese point sources, and nenpint sources (runeff, atmospheric, 
combined sewer overflows). Tributaries have received more 
attention than other sources because they are often the largest 
source of contaminant loadhg. They recommended using 
optimization techniques to select the number and frequency for 
sampling toxic contaminants On the other hand, they suggest that 
conventional physical and chemical parameters such as pH and 
suspended solids not be optimized since they are inexpensive to 
collect and test. The Balanced incomplete Block Design (BIBD) can 
also be used to estimate the total bad of a contaminant with fewer 
samples than conventbnal sampling techniques require. Data 
handling improvements suggested were the use of better load 
estimation methods and use of the generalbed load estimation 
procedure for censored data. 



Point sources generalb have less uncertainty associated with them 
than nonpoint sources, however, temporal variability in loading due 
to variability in concentratin or discharge is a significant source of 
uncertainty. Optimization techniques can be used to obtain a more 
efficient sampling design. They indicated that atmospheric 
deposition was the most important source of variability for nonpoint 
sources of toxics. 

Dolan and Young recommended the use of fhst order uncertainty 
analysis for mass balance models and the use of optimization 
procedures to identify the main sources of uncertainly. Historical 
data should be looked at prior to sampling design and 
state-of-the-art methods should tae used to process and analyze 
data. 

Folbwing a discussion of general caveats to keep in mind regarding 
modeling in Lake Ontario, the group focused their discussion into 
four areas Monitoring/Laboratory Techniques, Sources of Toxics, 
Censored Bata/Uncertcrinty Analysis, and Sampling Design. 

The group identlfied three important caveats for modelling in Lake 
Ontario. Fhst. the purpose of the model must be clearly defined to 
best target ways to reduce loading uncertainty. Second, reducing 
uncertainly depends on the chemical being studied (thefe is no one 
best way to reduce uncertainty). Third, careful planning, which 
takes a significant amount of time and effort, needs to be done 
up-front in any kind of modeling effort. While QbViOMS, thk is often 
overlooked and data collection frquently begins before planning is 
completed. 

Monitcirin@&orm 
Tgctpnhues 

The group discussed several monitoring and laboratory techniques 
designed to reduce uncertainty including Quality Assurance/Quality 
Control procedures (QA/QC), automated sampling, site specific 
monitoring during extreme events, state-of-the-art methods to 
esblrrtate, loads and tRe use of surrogates to obtain information 
about toxics. 

The assumption underlying all modelling efforts is that the analytical 
work in labs has sufficient quality assurance and quality csntrol. The 
group d4scussed the difficulties that arise when labs folbwing me 
same procedures produce differences in contaminant levels of up 
ta RM8 ordew of magnitude. Quality Assurcsnee/Quality Control 
pracedures need to be carefully establhd a% the beginning of 
loadings studies to ensure data (toxics and conventional) 
comparebility and to reduce uncertainty in the Ioadings @stirnat@s. 
The group a b  recommended assigning one person the 
responsbiilty of coordinating QA/QC efforts, purtkuiarfy for large 
studies. 

Automated sampling of suspended particubte matter is I 
.. 



encouraged as it often can be used to synthesize missing or limited 
data or to establish transport variability. Automated daily monitoring 
of particulate matter can be used as a surrogate method to 
estimate toxic chemical loadings between events, especially for 
tributaries. 

For some toxic substances most of the load comes from specific 
locations, therefore these areas should receive more attention in the 
future. Estimating loads from these sources during extreme events 
such as large storms is very important because extreme event 
loading may overwhelm all other sources of toxics. Simulation 
modeling to estimate loading during extreme events is useful, but 
without sampling during extreme events models can not be 
calibrated. 

When calculating loads, especially tributary loads, state-of-the-art 
calculation methods should be used. Exarnpies of these methods 
include the ratio estimator method for estimating annual loading 
and regression estimators for estimating loading on a shorter time 
scale. 

Other more easily used parameters can be used to establish the 
pattern of behavior for toxic chemicals (e.g., particulate organic 
carbon, remote sensing derived parameters); however, the 
uncertainty generated by using the surrogates needs to be 
established. Surrogates should not be substituted for routine 
monttoring of toxics but should be used to fill in the gaps in toxics 
data. 

Sources dToxk8 The group dkcussed the uncertainty associated with the sources of 
toxics to Lake Ontario including sewage treatment plants, chemical 
spills, hazardous waste sites, atmospheric inputs, and unmonitored 
areas. Additional monitoring sf discharges of toxics from sewage 
treatment plants especialy for Canadbn planis, is needed. Toxic 
Chef7liCQl alk represents a wecbl category of loading that should 
be considered in mass balance models of Lake Ontario. 
Groundwater contaminated by leachate from hazardous waste 
dlsposa! sites represents a potentially csnthuous long term source of - toxics. Methods of predicting or dbectly measuring th- 
contributions should be explored, particularly where the source is a 
significant one. 

Discussion of atmospheric inputs of toxics yielded three areas of 
concern. First, atmospheric inputs (wet fan, dry fan, and vapor 
exchange) are still imprecisely known but may be very important 
sources for some toxics. More study is needed in this area. with 
particular emphasis on improving estimates of process rates. 
Second. research is still needed to establish the correlaiion between 
atmospheric conditions at shore based stations and conditiins over 
the lake proper. Current methods of extrapolating loading from 



shore based monitoring stations to the lake proper may be 
inadequate. Third, short range, urban transport of atmospheric 
inputs particularly in terms of metals, needs to be incorporated into 
loading models. 

Contaminant contributions to Lake Ontario from ungauged and 
unmonitored areas (e.g. downstream from monitoring stations in 
urkm regions) are difficult to measure. These loading sources 
should be edlmated using existing prediction technologies, but 
further research is needed to develop better prediction methods. 

Whenever possible, uncertainty of load estimates should be 
calculated using techniques such as first order error analysis and/or 
Monte Carlo simulations More research is needed on the effect of 
using various estimating techniques on reducing uncertainly. 

Dkussims about censored data centered around the issue of 
estimating censored data, sampling protocols to minimize censored 
data, and interpretation of cemred data. Data is said to be 
censored if a nondetest is reported. Statiktiijans claim the 
information is not all there whenever a nondetect is recorded. First, 
censored data should be estimated using accepted statistical 
techniques such as those used in The Green 8ay Mass Balance Study 
(G8MBS). The statistical techniques to tk used should be 
establ'khed before the study begins and sk~uld be followed 
consistentty throughout the, study. Second, to minimize censored 
data, state-of-the-art sampling and analysis protocols should be 
used such as large volume samples for PC8's in water and clean 
room techniques for metals. Third, chemists and biologists have an 
important role to play in improving me interpretation of censored 
data. Their knowledge of the contaminant and its properties should 
be used in conjunction With statistical ttzehniques to determine if the 
recorded level should be recorded as zero or a non-detect. For 
example a non-detect for a pesticjde may in fact indicate a zero 
eoncentratbn because the pesticide degrades. Chemists would 
expect the -rent material to be absent, i.e., zero. 

The group discussed the use of general sampling design 
consideratbws the use of simuktbn modeling to obtain ioad 
estimates and the use of existing data and models to design 
monitoring programs. Monitoring for some substances may be site or 
event specific. To reduce uncertainty, this fact must be considered 
when designing monitoring programs. The spatiol and temporal 
reolutbn d bad estimates must be compatible with the models to 
be used. The group also thought that the date organizing power of 
GIS shoerM be explored for Lake Ontario mass bal~rpse models. 

dmulatbn modeling should be used as an aid in estimating loads 



that are difficult to measure, such as extreme events, rural nonpoint 
sources, groundwater inputs. and combined sewer overflows. 
Existing monitoring data and models should be used to help design 
new monitoring programs. Historical data should be used to 
construct Balanced Incomplete Block Designs (BIBD) to identify 
significant sources of contaminants. Optimization methods should 
also be employed to increase sampling efficiency and cost 
effectiveness of monitoring efforts. 

The group prioritized their recommendations to reduce uncertainty 
in loadings. In priorily ordec the group recommended: 

Quality Assurance/Quality Control procedures need to be 
carefully established at the beginning of a study to reduce 
uncertainty in the loadings estimates. 

Existing monitoring data and models should be used to help 
design new monitoring programs. 

State-of-the-art statistical techniques should be used to 
design sampling programs. 

Censored data should be estimated using accepted 
statistical techniques. 

The spatial and temporal resolution of load estimates must 
be compatible with the model being used. 

Atmospheric inputs are still imprecisely known but they may 
be very important sources for some toxics. More study is 
needed in this area: in particular, improved estimates of 
process rates are needed. 

State-of-the-art sampling and a n a m  protocols should be 
foliowed whenever possible to minimize censored data. 
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I Report of Group 2 

This workgroup was charged with the task of developing 
recommendations for quantihg and reducing uncertainty as it 
relates to in situ field observatienslsystem response measurements. 
Specifically the group addressed in situ field measurements for biota, 
water, and sediment as a way of defining initial conditions, 
txsundary condmons, calibration and confirmation data sets, and 
model post-audit data sets. The model post-audit suggests 
monitoring and surveillance requirements, as well as research 
requirements to reduce uncertainty in modelling. 

The goup tried to answer the question, “Where are the loads 
originating and how will controls of separate components reduce 
fish contaminant levels below me action level specified in the Lake 
Ontario Toxic Management Plan?” The outcome of the discussion is 
a set of recommendation rdated to reducing uncertainty of in situ 
data. Twenty scientists particivted in the discussion. A summary of 
the discussion of this working group and its recommendatbns 
fellows. 

The workgroup began with presentations by the three white paper 
authors Barry Lesht discussed his white paper, “Quantification and 
Reduction of the Uncertainty in Mas Balance Models by Monte 
Carlo Anatysis of Prior Data*. He suggested that the Green Bay mass 
balance study be used to help identify the number of sampling 
stations needed to reasonably estimate the total mass of a 
contaminant in Lake Ontario with a specified accuracy. He 
recommended that researchers bok at the data that currently exists 
to see if it can be used for modelling. Dr. Lesht also thought basic 
research was needed on methods to quantify uncertainty. 

Efsam Hslfen presented a summary of his white papere “Organk 
Contamhrants in hko Ontarle, 1%8-1991: A Review and a Data 
Baao.‘ In his paper he reviewed 5fXl papers which addressed the 
food web and concentrations of toxk contaminants in Lake 
Ontario. Dr. Halfon said that although there is a substantial amount 
of informawn on ~QX~CS available, we have very lime informatisri on 
the food chain. Contaminant modelling has emphasized the 
chemistry edf toxks and has not looked at the transfer of enefgy and 
contaminants throughout the food chain to the top fisk predators. 
He was also concerned about the long time lag between r@$earch ~ 

and publieation of modelling results. Fin~w. he recommended 
more coordination and planning on data collection. 

Dominic Biroro discused his white paper: “Model and Projection 



Uncertainty: Methodology Development and Interpretation." He 
discussed cfassical statistical theory (maximum likelihood estimate) 
and nonclassical theory (generalized inverse estimate) as they apply 
to determining me level of uncertainty in models. He suggested that 
the maximum likelihood classifier can serve as the lower bound and 
the generalized inverse estimate can serve as the upper bound in 
estimating the true parameter uncertainty. He was critical of the use 
of whole lake simple models because they treat all loads as identical 
regardless of the flow rate or concentration of contaminants. Dr. 
DlToro thought mat very large storms can have a major impact on 
modellhg results, but they are not adequately accounted for in any 
of the simple models. 

LkZSSDZ Following a discusion of issues raked in the white paper, participants 
were asked to discuss the ways to reduce uncertainty for In situ 
modelling. One of the topics the group addressed was me level of 
sophistication needed in toxics modelling for Lake Ontario, that is, do 
you want edible fish or a healthy ecosystem? The group decided 
that if achieving edible fish was a step in the right direction to 
obtaining a healthy ecosystem and that achieving a healthy 
ecosystem would require more complex models. 

The group frequently addressed what had been learned from the 
Green Bay study. They thought the Lake Ontario exercise should not 
be as extensive as the Green Bay model in terms of the number of 
chemicals monitored or me density of sampling stations. The final 
topk the group dlscussed was the use of uncalibrated model results 
by decision makers. Uncalibrated models have a lot of uncertainty 
in them, thus the focus of the group should be to obtain the data 
needed to callbrate current models for Lake Ontario. 

SweillanceMonitoring The group looked at two types of in situ data needed to reduce 
uncertainty in Lake Ontario modelling. First, contaminant loadings 
from tributaries, atmosphere deposition, pint sources, and nonpoint 
sources are needed. Mast of the loadings originate in the 
utmosphepe or from tributaries. Although there are 13 tributaries, the 
gmup thought that only the main tributaries, Niagara River and the 
Oswego River, should be monitored. 

The second type of data needed is me concentration of 
contaminant in the water column, sediment. and biota. The group 
limited their discussion of which chemicals to address to those listed 
in the Lake Ontario Toxics Management Pbn. The analysis of which 
chemicals to recommend for monitoring involved several 
considerations; the participants thought that the overriding criteria 
to be used was to maximize the amount of informaflon that can be 
obtained from the broadest range of chemicals at the least cost. 
lhe suite of chemicals to be sampled should include a wide range 
of physical and chemical properties taking into account ambient 
water. sediment, and biotk components, and me chemicals must 
be consistently and easily detectable. The group also thought it was 



important that state of the art Quality Assurance and Quality Control 
techniques be used with the selected chemicals. 

Contaminants were divided into two main groups, those that were 
not recommended to be studied (Table 1) and those that were 
recommended for study (Table 2). 

m2u 
contaminatst0 Avdd Studying in M e  Ontario 

TraceMatals 

Organics Chlordane 
Dieldrin 
Bbxin 
Hexatdorobeme 
Odachlarostyrene 
2378-TCOO 

The chemicals listed in Tam 1 were not recommended because 
they were net in the Lake Ontario Toxics Management Plan, the 
levels may not be high enough to be a problem, of tke QnelytIcal 
work associated with measuring the chemical is difficult or 
expensive. Mercury, a ccmcern of expressed by other workgroups, 
was not recommended because of the effort that would be 
required in terms of sampling and sample analysis, different models 
would have to be used, and the models would have to be fine 
tuned to deal with mercury. 

The chemicals IM@d in TaBe 2 were recommend& for study in bake 
Ontario. DDT was recommended for study because it is found in 
high concentration and is reWvely easy to measure. Mirex and 
phetomirex were recommended because they are contaminants 
unique to Lake Ontario. Further, they originated from a known 
source (Niagra and Oswego Rivers) and their loadings are 
approximately known. Dr. Hasett has analyzed the ratio of mirex to 
photomirex in sediments and has found it to be constant throughout 
the lake at 0.13 suggesting that photomirex can be used as a tracer 
for other contaminants, The mirexlphotomirex ratio could be us& 
as a check on the accuracy of mass balance models. 



Water column 

Although PCBs are expensive to test, they are readily measurable in 
all media and their chemical properties cover the entire range of 
hydrophobic compounds making them applicable as a surrogate 
for other chemicals once the models are validated. PCBs should be 
measured by selecting one congener from each homologue. The 
PCB congeners can then be correlated to obtain total PCBs. 

Plutonium was recommended because it is easy to measure in 
water and sediment, loading stopped 20 years ago, and the 
magnitude of loading is known. Although plutonium is not a human 
health concern, plutonium modelling would enable modelers to 
predict the fate of other toxics if loadings were eliminated. 

There is data available on me level of contaminants in water and 
fish tlssue for Lake Ontario, however, me group thought the data was 
insufficient for model calibration. They recommended additional 
data needs for the water column, sediment, and biota. 

The group discussed the number of samples needed from the water 
column. According to statistical theory, me accuracy of the mean is 
improved by a factor of l/square root n, where n is me number of 
sampiing stations. Thug 100 stations are not 100 times better than 
one station, they are only 10 tmes better This discussion influenced 
the number of segments, number of sampling stations in each 
segment, and the frequency of testing. Several recommendations 
were made by the group regarding water column testing. 

The Green Bay study should be examined to help decide 
the number and location of sampGng stations. 

Lake Ontario should be regionalized into five or six 
segments. 

Each segment should have at least three but preferably 
five sampfing stations. 

Eaeh segment should include epiiimnbn and hypolimnion 
=wm3 

Sampling should be done under the ice, after spring 
Isadlng, after stratiffcation, after fall turnover, and during 
one additknal tie. 

Sampling should continue for e minimum of two years to 
account for variability in weather. 

One master sampling station should be established in each 
segment. Sampling should be more frequent and should take place 
every year, not just for two years. Vertical profiling should be more 
extensive including twra samples in the epilimnion and four in the 
hypolimnion. R additbn to toxics, dissolved and particulate organic 
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carbon, suspended solids, P, N, Si, and CI should be sampled at the 
master stations. 

= Volume proportional sampling is necessary. 

m Data collection should take place during storms to 
determine the pulse loading associated with big events. 

= Multiple samples should be taken during sample collection. 
Preservation of sample is inexpensive compared to the cost 
of losing a sample. 

= Post audit analysis should occur by resampling the stations in 
five or ten years. 

sediment Historical data on Lake Ontario and Green Bay should both be 
reviewed to determine the sampling intensity needed for sediment. 
In general, m e  entire lake needs to be sampled, not just the 
deposition zones. Further, the sampling grid should match the water 
column sampling grid except that it should be more extensive. 

Bia Contaminant levels should be determined at various levels in the 
food chain. Information should be collected on alewife. smelt, 
scalpin, lake trout, chinook salmon, and the invertebrates rnkh and 
pontopordu. The top priority should be alewife because it 
comprises 9W% of the weight in the lake and is what most people 
eat. Sampling of alewifes should emphasize seasonal variation in 
contaminants. Lake bout change dramatically during their We cycie 
in terms of what they eat. thus different age classes should be 
sampled. MMs and pontoporda are important to sample because 
they contribute the bulk of the energy in the food chain. Sampling- 
frequency and locatbra decisions can be addressed by looking at 
Lake Ontario historical data and the resutts from Green Bay. 

More coordination of research and monitoring efforts is 
needed to avoid duplication of efforts 

* Current data shou# b3e studkc! to .see where tke gaps are 
in the data, to estimate uncertainty, or to explore fhe 
possibility of monitoring surrogates instead of toxks. 

* Concentrate efforts on collecting data on PCBS, DDT, Mirex, 
and Photomirex. 

The lake should be regionalized into five to six segments 
with three to five sampling staations per segment* Sampling 
plans, including time and space esmpsnents, should be set 



up for measuring toxics concentrations in water, sediment, 
and biota. 

* Use data from monitoring data to validate and verrfv 
existing models. 

Sampling seasonal concentrations of toxics in alewife 
populations should be a top priority. 

a It is essential that measurements of water column and 
invertebrates concentrations are matched in time. It is less 
essential to match fish and sediment data. 

Rmneedsindudee 30 Use plutonium measurements in water and sediment to 
calibrate models. 

Study photochemistry of mirex and photomirex. - Measure the Kow for each chemical to be modeled. 
-D Continued research is needed to improve analytical 

techniques. 

3. Determine how to combine value weighted averaging 
techniques with maximum likelihood estimation for 
censored data. 



Model Paradigms 

hkZhdD2 This workgroup was chartered with the task of discussing reducing 
uncertainty in mas babnce models of toxics in the Great Lakes as 
the uncertainty relates to issues of model paradigms including 
model formubtbn, gaatkl and temporal resolution, and the effects 
of process aggregation. The outcome of the discussion is a set of 
recommendations on the most effective ways to reduce the 
uncertainty arising from these sources. Twenty scientists 
representlng both the U.S. and Canada from a broad range of 
academia, regulatory agencies, and industry participatd in the 
discussion. 

The group identified two major goals it wished to achieve. The first 
goal was to identi research needs for reducing uncertainty arising 
from issues of model paradigms. The second was to discuss needs 
for monitoring and surveillance in Lake Ontario to insure accurate 
and useful modeling results. 

A summary of the discussion of this working group and of its 
recommendations follows. 

The workgroup began with a presentation by Donald Mackay of the 
University of Toronto and Victor Bierman of Limno-Tech, Inc., authors 
of the white paper "Model Paradigms: A Discussion of Simple and 
Complexi Model". Don Mackay made the points that there will be a 
range of management questions and often these questions are not 
vw well mtlculated since managers vary in sophistication and 
umkmtaRslhg of what models can and cannot do. The modeler 
has a duty ncrf onb# to produce the model but to tfy and antkipate 
s c a m  of the questions that may arise. To deal with the range of 
management questions. there will pro$abh/ have to be a range of 
models from the sknplest credible model to very complex, 
multi-segment, Righ-resolutbn, hydrodynamic models. 

The simplest credible model is one that contains air. one mixed water 
column, and one mixed sediment layer. In Lake Ontario there is a 
mas of PCBs in water, a mass in sediment and. in the course of a 
year. there will tSe a mass which will evaporate. The rate censtaflts 
for these mas transfers exist and it is the challenge for the modeler 
to tn/ to estimate them as closely as possible. The simple model. if 
the rate constants are well estimated. will give an accurate 
representation of what is going on in the Lake. 



Dr. Mackay also made the point that modelers must convey to the 
user the uncertainties involved in the model outputs. There are a 
number of types of uncertainty; there is uncertainty in the parameter 
estimates, there are parameters which vary over time, and there is 
the uncertainty which arises from questions about the structure of 
the model. Propogation of error through the model can give an 
estimate of the uncertainty in the results which arises from the 
parameter estimates but cannot estibnate the uncertainty arising 
from incorrect or inadequate modal structure. Research to help 
define mechanisms for incorporation into models must continue. 

VIctor Bierman began by saying that the recommendations most 
likely to be acted on are those perceived by managers to have the 
highest probability for reducing uncertainty in answering 
management questions. Twu principal management questions are: 
if external loadings are changed what will be the new state of the 
system, and, how long will it take the system to reach its new state? 
These questions can be used as a litmus test against which 
recommendations can be compared to test for utility. In addition to 
these, another issue is the reconciliation of open lake or whole lake 
questions to those involving near shore areas since near shore areas 
are likely to be of interest to managers and questions involving them 
may require more complex models. 

An important question for Lake Ontario modeling is the relative need 
for steady-state versus the variable models. Clearly, time variable 
models are needed to answer the second management question; 
how long will it take to reach steady state? Another need is to 
dynamically couple the water column and sediment layer together 
in the model since it can be shown that the water column responds 
much more quickly to a change in load than does the sediment. 
Overall, Dr. Bierman stated that there are three reasons to use time 
variable, coupled water column-sediment models. First, the toxic 
chemical concentrations in sediments respond at different rates 
than the toxic chemical concentrations in the water column. 
Second, sediments can act as toxic chemical sources or toxic 
chemical sinks, depend- on the dynamic state of the system and 
finaiy, in-lake toxic chemical concentrations ere not proportional to 
ext@rnal loadings under non-steady-state conditions. 

Models may a b  require addltlonal spatial and process complexity 
in the surface sediments since mere is a large range of uncertainty in 
sediment response times for a reasonable range of values for 
assumed mixed layer sediment depth. Also, there are significant 
differences in resuspension potential between nearshore and 
open-water zones in large lakes and, in Lake Ontario, the 
open-water depositional zone represents approximately one-half of 
the total lake area. 

Finally, additional complexity may be needed to represent the 
transformation and fate of organic carbon sorbents since unequal 
fractions of particulate organic carbon between the water column 



and sediment will cause unequal dissolved phase toxic chemical 
concentrations, even at steady state. Also, a given loading 
condition for a particular chemical may satisfy a water quality 
criterion but not necessarily a sediment quality criterion and toxic 
chemicals released within the sediment bed, if they are not buried 
into deeper sediment layers, will recycle back to the water column 
over a long period of time. In addition, toxic chemicak released in 
the nepheloid layer and/or at the sediment-water interface may 
"short circuit" slower sediment recycling processes and be recycled 
quickly back to the water column. 

W W X S U S  md 
After a brief discussion of issues raised in the white paper, 
participants in the group were each given a chance to voice their 
opinions on critical sources of uncertainty and areas of needed 
research and to suggest recommendations for the group to 
consider. A stimulating discussion of the need, or lack of need, for 
additional model complexity ensued and the pros and cons of both 
simple and complex models were identified. In an attempt to 
grapple with the model complexity issue, a set of important 
management questions were identified m d  the appropriateness of 
each type of model for answering each question was discussed. 

Slmple models are defined here as whole lake models whether they 
be steady-state or dynamic. Some advantages of simple models 
include that they are immediately applicable; educational; cheap; 
more friendly; may be sufficient for whole lake estimates;; may have 
less data requirements; provide insights and understanding; and 
mistakes or blunders are easier to detect. Same disadvantages are 
that they can't discriminate between impacts of different inputs; 
don't discriminate between on and off shore effects or provide 
information on localbed effects; their parameterization is difficult; 
and there is uncertainty in estimating response times to changes in 
loadings. 

Complex models are defined as models with increased spatial, 
temporal, and/or kinetic resolution when compared to simple 
models. The advantages of complex models include increased 
spaflai resdution in the results, for example, near and far share 
ppac-s can be studied separately; fewer implicit assumptions 
and mere formakdbn of the asumptiims less aggregation; mere 
dirwt comparisons to data: can be used to aid h the formubtiin of 
and increase the credibility of simple models: allow the analysis of 
the rdative significance of various processes; and they may be able 
to reduce the need for calibration if they are more mechanistic. 
Some dbdvantages of complex modek are that it may be more 
diffkutt to synthesize and interpret the results; there are more 
degrees of freedom; it is diffkult to do optimization and some 
methods for uncertainty analysis; blunders are more likely; scenarios 
are more difficult to simulate; and we currently have an incomplete 
understanding of some critical processes. 

The usefulness end appropriateness of simple or complex models 
depends OR me specific application. To assess the appropriate level 



of complexity for mass balance models of toxics in Lake Ontario, six 
management quesfons were identified and the ability of both 
simple and complex models to answer these questions were 
estimated. The results of this analysis are shown in Table 1. 

Table 1. 
Ability of Models to Answer Management Questions 
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A useful definition of model uncertainty is that it is a measure of how 
well model output compares to some independent source of 
information. This information source can be observations gathered 
in the laboratory or in the field or it can be another model which has 
been independently constructed. Model-to-data comparisons and 
model-to-model comparisons are both useful and provide different 
types of information about sources of model uncertainty. 

McdelG2EpTbU 

Model-to-data comparisons are fairly common and form the basis of 



most model calibration, validation and post-audit studies. These 
types of comparisons allow an empirical assessment of uncertainty 
to be performed and provide information about the 
appropriateness of loading estimates and parameter values. In 
addition, model-to-data comparisons help in the identification and 
improvement of knowledge of process descriptions. Examples 
include the identification of critical process descriptions in 
eutrophication models and the incorporation of sediment/food 
chain processes in toxic models. Problems with model-to-data 
comparisons include the need to match the time and space scale 
of the model to that of the data and, when whole-lake models are 
used, the averaging in the data can be problematic. Finer time and 
space scales may be required to allow more direct comparison. 

Msdel-to-model comparisons ere useful for several reasons. These 
types of comparisons also allow uncertainty to be empirically 
estimated and help to estimate of the effect of model assumptions, 
structure and completeness. Three types of model-to-model 
compurisons 60uW be performed: round robin studies of models of 
essentblly the same complexity, round robin studies involving 
models of varying complexdy and resolution, and studies involving 
comparison of contemporary models with Ritorical models to assess 
the effectiveness of changes in modeling approaches. 

The group developed a recommended strategy for future reswrch 
on and development of mas balance models of taxks in bake 
Ontario. First, there should be the continued use of existing models 
for whole lake issues and for addressing other appropriate 
management questions. At the same time, two parallel efforts 
should be launched which will complement each other, result in the 
development of more sophisticated models, and provide feedback 
to each other to assess the effectiveness of this approach. 

The first path involves the further development of the simple, or 
whoblake, models. The recommended approach is to use simple 
models to test and refine process descriptions. The first process 
description to be examined would be water/bd exchange 
pocesses including increased vertkal reolutiom in the bed and an 
explicit representation sf organic ceartmn kinetics. The simple 
models wouki also be used to stue3y the air/water exchange 
pracess, sorptbn kinetics, bistu/water exchange, more 
sophisticated food web processes, solidsicarbon corpelstions, and 
speclation including hydrophilie organkes and metals. 

The perallel path Involves the construction of models with increased 
spatial, temwral, and Minetk resolution, the complex model. These 
models would be used to take existing kinetics and add 
spatialltemporal resolution, couple with hydrodynamic/sediment 
models, u s  mufflple sediment layers, and extend into tributaries. 
These models could be used to address either whole lake OP local 
management questions by allowing averaging over the relevant 
portion of the lake. Additionally, these models can produce results 



which are directly comparable to data on the same time and 
space scale and allow the importance of large events to be 
addressed. 

Several additional points were discussed by the group for 
consideration as recommendations. First, there was an overall 
consensus on the need for improved coordination and 
communication between agencies and organizations involved in 
modeling activities. Open lines of communication, discussion of 
successes and failures, and a sharing of resources are necessary to 
leverage limited resources effectively. Along those lines is a need for 
increased peer review of modeling studies. This type of review 
would encourage communication, facilitate the incorporation of 
improved mechanisms into new models, and raise the overall level 
of the activities of the modeling profession. 

Another recommendation discussed was the need to coordinate 
and link groundwater, atmospheric and watershed models with 
water quality models, While important, it was recognized that this 
will be a difficult task to accomplish and may be some way off 
though research is beginning on linking Geographic Information 
System (GIs) based watershed models with water quality models. 
There was a general consensus on the need to continue the 
collection of field and laboratory data with respect to processes 
described under simple model. A final suggestion was to add some 
complexity levels (coupling hydrodynamic and sediment transport) 
to the existing Green Bay model and compare the results with those 
obtained from the existing framework. 

Continue to use existing models for whole lake issues 

30 Use simple models to test and refine process descriptions 
with regard to water/bed exchange processes, air/water 
exchmge processes. biota/water exchange processes, 
sorptian kinetics, food web processes, solids/carbon 
correlations, and speciation. 

3. Of the process descriptions listed above, water/bed 
exchange processes are most important. Future research 
should include increasing the vertical resolution in the bed 
and developing explicit representations of organic carbon 
kinetks. 

=w Use complex models to add spatial/temporal resolution. In 
addition these models can be coupled wim 
hydrodynamic/sedlment models, can use multiple 
sediment layers. and can extend into tributaries. 
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I Report of Group 4 

This workgroup was charged with the task of discussing reducing 
uncertainty in mas balance models of tsxics in the Great Lakes as 
the uncertainty relates to issues of precess parameterization 
including data availability, process experimentatin, and scaling 
problems. The outcome of the discussion was a set of 
recommendatkns on the most effective ways to reduce the 
uncertainty arising from these sources. Thirteen scientists from both 
the U.S. and Canada and from a broad range of academia, 
regulatory agencies, and industry participated in the discussion. 

A summary of the dkussion of this working group and of its 
recommendatbns follows. 

mp@XS The workgroup began with presentations by the white paper 
authors. John Connolty of Manhattan College and Doug Endkott of 
the United States Environmental Protection Agency presented their 
white papers "Process Parameterization Uncertainty in Mas Balance 
Models of Toxics in the Great Lakes, Park 1 and 2". Ephram Helfon of 
the Canada Center for Inland Waters presented his white paper 
"Organic Contaminants in Lake Ontario, 1968-1991 : A Review and a 
Data Base." 

The following are summaries, by topic, prepared by me participants 
of this workgroup. 

GASlXOllNTESTlNAL UPTAKE AND 
BlOMAGNlFlCATlON OF HYDROPHOBIC ORGANIC 
CHEMlCAbS 
d"pamk GsBas 

To reduce uncertainties in estimates of dietary uptake kinetics and 
biomagnifkation, it is imwrtant to standardize experimental 
pfocedures for measuring and reporting dietary uptQke efficiencies 
and to detesmine relat6onships between intestinal uptake and 
magnification and Kow, food digestabillty, and the "availability" sf 
chemicals in food. 

A large part of the uncertainty in fOOef-chQin accumubtkm models is 
due to the fact that the intestinal uptake and magnification af 
organic chemicals is a rather complex and largely unexplored 
hunetion of: the properties of me chemical (e.g. Kow]; the properties 
of the food-phase related to me release rate or bioavaiiabilily of the 



chemical in the food; the digestibility of the food; and the 
physiology related to food-uptake (e.g. benthic invertebrates and 
fih have different food-uptake mechanisms). 

Another source of uncertainty is introduced in the form of error in 
experimental measurements of dietary uptake efficiencies. 
Reduction in the uncertainty can be achieved by: 

Since a lack of knowledge regarding mechankms is the main source 
of uncertainty, laboratory experiments followed up by field testing is 
likely to be the most successful way to reduce uncertainty. 

TRANSFORMATIONS 
Deborah Swackhamer 

Omission of these processes can lead to substantial uncertainty in 
model predictions, dependent upon the chemical or group of 
chemicals under consideration, the management questions being 
addressed by the model, and the complexity of the model 
framework. The specific process considered here include: microbial 
degradation, formation, photolysis, hydrolysis and chemical 
speciatign/dissociatn. 

The parameters leading to uncertainty in modeling these processes 
are the rate coefficients as a functbn of given conditions (e.g. 
temperature, substrate, water chemistry, bolegy) and accurate 
chemical concentrations in the reactant phase. For example. 
models applied to mercury fate would need accurate rate 
constants and chemical concentratiins for methylation rates; 
models applied to mirex fate need accurate photolysis rates. For 
stable compounds such os PCBS, these processes (and thus their 
uncertainty) will be less important. The importance of these 
processes is also dependent on the models' time scale: over long 
periods of the (decades) photolysis or biodegradation may be 
more important for PCBs than shorter time periods. If the models are 
to be used for evaluating remediation measures, these processes 
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may be more important to consider, e.g. these processes may 
contribute more to contaminant fate in dredged, disturbed areas 
than in ambient, undisturbed areas. 

Experimental research is needed to better characterize the 
parameters mentioned above. Development of better analytical 
methods is needed to more accurately measure the chemical 
species most influenced by these processes, such as: mercury 
species in water; metal complexes, etc. Laboratory experiments are 
needed to determine the process rate constants under controlled, 
varying conditions. These would need to be verified with fieid 
measurements as much as possible. Some of thls could be 
incorporated into routine monitoring efforts, such as the chemical 
species concentrations, and degradation product ratios (e.g 
mirex/photomirex; DDT/DDE). 

PHYSlCAUCHEMlCAL PROPERTIES OF 
CONTAMINENTS 

The reported physicalkhemical properties such as Kow value and 
Henry's bw constants for many contaminants of interest vary widely. 
Recent measurements of some compounds (especially those with 
vefy hgh Kow's) show differences from literature values by several 
orders of magnitude. 

Since much of the behavior of a compound to be modeled is 
inferred from its "known" physical/chernical properties. a high 
degree of confidence must be associated with these values. Often, 
the temperature dependence relationship of physieal/ehemical 
pfopertles over environmentally significant ranges is missing (e.g. 
Kow at 20 degrees Celsius vs. at 0 to 25 degrees Celsius). A review 
is needed of available literature and a record of the range of 
reported values. This review, including a list of prbrily compounds to 
tx! modeled, will provide tRe tamis to direct the specifc 
measerrmefats to be made. 

Fa' ihe use of rnodels a protocoi or guiddine of acceptable values 
is requkd. Additbnally, labomtory/field mmsurememts of physical 
m d  chemical properties over a given range of environmentally 
sigfMcant condttlsns is requtd. A new suite d values would thus 
improve model certainty considerably. 

A tkneiine for credon of such e new model would include: literature 
review of conflicts (kss than one yea); gemeration of protocol for 
use in existing models (less than two years); and. time to remeasure 
the physical and chemical properties for Great Lake compounds 
(either less than five y@ars for short list [ks than 25 compounds] or 
less then ten years for long list (1OO-x)B compounds)). The total time 
range to change the present conditions would therefore be 
between tws and ten years 



CALCUIATING NET FLUX OF VOLATILE TOXIC 
POLLUTANTS ACROSS THE AIWATER 
INTERFACE OF LAKE ONTARIO 
Terry Clark 

Statement of Problem: Insufficient concurrent air and water 
concentration data exist to characterize seasonal gradients within 
the lower air marine layer as well as me alr/water interface, both of 
which determine the direction and rate of flux. Flux includes 
air/water diffusive exchange as well as deposition; these 
components should be resolved. 

IniHative: Collect concurrently, hourly air and water samples and 
air/water properties near me air/water interface on relatively calm, 
ice-free days during each of the four seasons. (Hopefully this could 
be extended to higher-wind conditions at a site in the middle of 
Lake Ontario.) 

Focus Cbmkak Volatile toldc pollutants for which analytical 
detection limits and uncertainties are suitably low. 

Paramden: Dissolved water concentrations and at two levels in the 
marine layer (e.g. , lm and 5m) hourly mean air concentrations, 
temperature, and 3 - dimensional wind velocities. 
Work Plan/Seheduk: During each of the four seasons do two things. 
For three weeks use an instrumented vessel on Lake Ontario 
sampling for as many days as possible (relatively calm days only). 
Within 8 months of the end of each seasonal cycle: analyze 
air/water samples, QA data, calculate net flux for each sampling 
event, and characterize seasonal net flux. 

WATERSHED MODELS FOR PCB's AND OTHER 
TOXlC SUBSTANCES IN THE LAKE ONTARIO 
BASIN 
wiuiam SnOdFmB 

Ptobhl Area Po understand the response of Lake Ontario to contml efforts, we 
must be able to model the changes in airshed concentrations of 
PCB'S. 

UnCertaipaY The major uncertainty is the factors that control PCB presence in 



watershed, their sorption and possible transformation in soils 
(agricultural areas, urban areas, forested areas) and their release 
into the atmosphere by wind driven erosion of soils and volatilization 
from soil systems. 

F W  we should develop Q basin monitoring network to define PCB 
deposition and air concentrations of PCB's and other priority 
organics. After that we should develop a diagnostic mass tsalance 
model for the watersheds of the Great bakes, the airshed of the 
Great Lakes, and each of the Great Lake water bodies to: define 
the relative importance of fluxes; the possible long-term trends that 
might be expected; and to develop necessary field/latsoratory 
measurements to access watershed processes and various control 
efforts (vertical elimination, etc.). 

This would be used to provide managers with Q p@r$pestive on 
response f l m s  in Lake Ontario PCB concentrations when 
communicating the results of mass balance modelling to 
environmental managers. 

A diagnostic model could be defined within one year and parallel 
to full measurements. The measurement program would require 3-5 
years of data to reCISOnQbh/ provide baseline data for amassing 
model uncertainty and probably 3 years to provide experimental 
and field insight into watershed release processes. 

FOOD WEB STRUCTURE 
YQhrm CameMy 

The computed hydrophobic contaminant concentratlorn in top 
predator fish me lasgely dependent on the number of trophic levels 
in Wm food web and the asmciatlon of the components of the food 
web with the water cotumrp and sediment environments. Of 
particular impQrtanee is the pathway of contaminant movement 
tetween sediments and the top predator fish. Conskierable 
uncertainty exists with rqad to the exposure regime at animals in 
contact with sediment. The water they take in for respiration and 
the parkles they ingest may be characteristic of the overlying 
water, the sediment of me b n m k  bundary layer. 

Analysis of stomach contents of animals: feeding on the benthos is 
needed to quanti the components of the food web. 



Determinatbns of stable carbon and nitrogen isotopes in sediment 
and water column particulates, benthic animals and denersal fish 
should be made to define the routes of carbon flow, and thus the 
routes of contaminant transport to the fish. Current knowledge is 
wholly inadequate to defhe the benthic component of the food 
web. This modeling component is only important for hydrophobic, 
and possibly super-hydrophobic contaminants. In addition, seasonal 
variations in food web structure need to be determined and the 
recommended field experiments should be conducted over several 
years so that inter-annual variability can be assessed. 

LARGE EVENTS 
Wilbart Lick 

Large events such as major storms on lakes and large run-offs in 
rivers despite their infrequent occurrence, are responsible for most 
of the sediment and contaminant transport in lakes and rivers. In 
addition, the flux of contaminants form the bottom sediments to the 
overtyng water due to resuspension/depositiin of sediments is 
generally larger than the fluxes due to bioturbation and diffusion. 
The fluxes of sediments and contaminants change continuously in 
magnitude and direction. There is no steady state. Because of this, 
an average state is difficult to define and may not be meaningful. 
For these reasons, it is the large, tiie-dependent event that must be 
considered in the modeling and prediction of the transport and fate 
of sediments and contaminants. 

More specificaky, data and parameters relevant to large storm and 
run-off events are needed. In partlcubr, data are needed on the 
resuspension of sediments at high shear stresses, the deposition of 
sedknents during strong currents, the variation of the resuspension 
properties of sediments with depth and not just near the 
sedknentlwater interface. Also data are needed on weather 
conditions, fbods, changes in bathymetry, and sediment and 
contaminant concentrations during large storms and run-offs. This 
requires field instrumentation capable of surviving large events and 
able ta measure and record during these events. Because of 
diffkuffles in making measurements during large events. labratory 
experiments must be d e v W  which can extend the present ranges 
of parameters to those values which are realistic during large storms 
and Nn-OffS 

MERCURY 
William Snodgparvs 

A major field measurements program is required for mercury. 
parkubrly methyl mercury to pfovide the data base for 
constructing the modd. The logistics/schedule should involve a 35 
year effort to provide data input for a parallel model applicator 



effort. Shipboard support is required. Laboratory based 
measurements (where possible) are needed to define process rate 
constants as a function of specific environmental conditions. 

Initiate a chemical measurements program on Lake Ontario for 
methyl mercury particularly in the following waste masses: water 
column profiles; atmospheric deposition; and major land-based 
sources such as the Niagara Rlver. This program should determine 
the observed levels, if mere is a biogeoehemically influenced profile 
of the water column, and provide insight into the relative potential 
role between kvsd based inputs and h siru formatkn. Other 
mercury species should be measured as well, but prbrity given to 
methyl mercury. 

FISH MOBILITY 
John Connolly 

Fish move between three types of habitats: one suitable for 
reproduction; one suitable for feeding and one suitable as a refuge 
in periods of unfavorable abiotic or biotic conditions. The timing and 
extent of movement varies between individual fish and as a function 
of age and sex. Quantitative relationships between movement and 
various biotic and abiotic factors do not exist. Since contarninant 
models rely on limited data from tagging studies and anecdotal 
information to define a single deterministic movement pattern, the 
error in the deflned pattern may be substantial. 

Field measurements of fish location and movement and biotic and 
abiotic conditions such as temperature, light intensity, age. sex and 
prey densities are necessary so that a productive framework may be 
developed end the natural variability within a population may be 
assessed. Movement over the full annual cycle needs to tae 
determined and within-popubtbn variabiiify needs to be quantified. 
A minimum of two yecln of field study are necessary to determine 
the r@producilailing of the relatbnships between movement and the 
various abiotk and bide factors. 

WE~USPEldSION/DEPOSfflON 
WilBast Eiek 

The flux of contaminants from the txttom sediments to the overlying 
water is primarily due to resuqxmion/depe&fno biolurbatbn and 
diffusion end is modified by chemicd sorption as well as other 
reactions. The flux due to resuspensbn/depositbn is generally larger, 
sometimes by os much as several orders of magnitude. then the 
fbes due to bigturtseticin and diffusion. Despite this, the 
containment flu due to resuqxnsion/depositbn has not been 
adequately quantified, especially at higher stresses. 

In order to determine this contaminant flu accurately, research is I 



needed on sediment resuspension and deposition at high flows, the 
rate of sorption of hydrophobic chemicals by the sediments and the 
effects of this sorption and other reactions on the contaminant flux 
during sediment suspension/deposition. Especially important at low 
stresses is the dynamics of the nepholoid layer and the parameters 
on which thk dynamics depends. 

Although sediment resuspensions at low shear stresses (due to wave 
actbn and currents) is beginning to be understood, resuspension at 
high sheor stresses is not well understood or quantified. A few 
experiments on the depostbn of sediments and the incorporation of 
sediments and contaminants into me bottom sediments, in the 
presence of currents, have been done and &ow the significant 
effects that currents have on the depositbn and subsequent 
consolidation of the bed. These results are not sufficient for 
understanding or quantifying this process, and they need to be 
extended. 

A nephobid layer is often present just above the sediment-water 
interface in low to moderate currents in rivers and lakes. The 
occurrence of this layer, its properties, dynamics, and effect on the 
contaminant flu need to be understood and quantified. In order to 
quantify the contaminant flux during resuspension/deposition, 
sorption rates, equilibrium partitioning, and the parameters on which 
this sorption depends must be understood and accurately 
determined. 

SORPTlON PROCESSES 
William Snodgrass 

Sorption processes are a major area of concern in mass balance 
modelling because particle fluxes are the dominant transport 
mechanism for a variety of substances and/or because particulate 
forms of the contaminants are the largest reservoir of contaminants 
found in areas such as sediments. The sorptiin phenomena of 
concern includes the following examples: partitioning of 
hydrophobic chemicals onto particles or into aggregates of 
particless: the cakulation of precipitatbn by algal induced blooms 
and sorption/competitbn of organics and metals is important: and 
precipitation of metals such as mercury, lead, calcium and others as 
suFMes in sediments. 

Sorption of Hydrophobic The major area of uncertainty is that sorption theory based upon 
Organicchemicals Kow (local equilibrium or kinetics) data does not work for 

superhydrophobic compounds (Kow 710) partitioning into algae 
and a variety of other characteristics identified in the workshop. 
Another example of identified uncertainty is the apparent need for 
a variety of data sets to calibrate the mass balance models with 
"apparent partner coefficients" which are a couple of orders of 



magnitude above values predicted by the local equilibrium 
assumptions. 

Recommendations Initiate laboratory based experiments which define sorption and 
desorptiin kinetics, reversible, binding sites. and irreversible sorption 
site as a function of Q variety of particle characteristics, including 
solid iypa, nature of organic carbon, free of aggregation of 
wrticles, etc. Previous experimental data should be repeated using 
proper experimental protocols which have recently been defined. 
AdditionaUy, we need to develop a basic theory to describe 
sorption phenomena. The flnal recommendation is to gather field 
and laboratory data to asses the bibavailability of orgmic 
compounds in food to organisms from particulate forms and as a 
function of the labile characteristics of organic carbon (e.g., algal 
remain, bacterial remains; condensed macro molecules of 
orgonocarbon in sediments. 

Lrsb/fiekl 

Work Plan Schedule 

a The initial focus of this work is with laboratory based 
measurements and modelling and theory development. 

a The general schedule requires an interactive approach with 
2-4 years being required for laboratory work with field 
samples to obtain suspended solids and sfdimen6 for 
conformation measurements. 

Contemporary scientific evidence and mas balance models 
recognize that the fate of hydrophobic chemicals that 
bisaccurnulete are elmely linked to the content end fate of organic 
carbon in the environment. The dstrbution of these chemicals 
between phases (partlcuiate or dissolved’) is e function of the 
characteristics 0% the chemical QS well as the content of organic 
carbon in the phases. In fact. scientists have begun to normalie 
toxic chemical data for a common frame of reference as the mas 
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of chemical per mass of organic carbon. 

Based on these observations, toxic chemical models have begun to 
characterize organic carbon in the aquatic systems via either 
implicit methods (e.g. percent organic carbon, lipid content, etc.) or 
explicit modeling (e.g. Green Bay Mass Balance Model Framework). 
The effort to model toxic chemicals sorbed to carbon has exposed 
areas of model uncertainty which can be addressed in future efforts. 
These areas of uncertainty are in two areas; the first is the uncertainty 
regarding the mas balance of organic carbon in aquatic systems, 
including production and transformation processes such as carbon 
to chbrophyl ratios; transformation of particulate organic carbon to 
dissolved organic carbon and detritus; and specification of when, 
where, and how the carbon gets transported to the sediment - 
water interface. The second area is the uncertainty regarding the 
fate of sorbed toxicant on biotic compartments of organic carbon 
(Le., POC) when the cell dies and undergoes lysis. 

Recommendatlons to lessen these uncertainties in future efforts 
include research on the dynamics of DOC (experimental and field); 
In dtu studies of the sediment/water interface that include fine scale 
measurements of organic carbon; laboratory experiments using el4 
labeled PCB or other toxicants that better define phytoplankton- 
toxicant "sorption" or release; and more extensive efforts to model 
phytoplankton growth in terms of carbon content. 

- Physical chemical properties: Literature review and 
laboratory/field measurements of Kow values and of 
Henry's Law constants, 

* Air-water interface: Develop a research program to 
measure concentrations of volatile toxic pollutants at the 
air/water interface and characterize the seasonal net flux. 

=B Sorption processes: Develop B M e  theory to describe 
sorption phenomena and initiate laboratory experiments to 
define sorptbn and desorptbn kinetics. 

3. Transformatisn: Develop better analytical methods and 
determine process rate constants in laboratory and field. 

* Large Events: Consider the large. time-dependent event in 
modeling: colect data relevant to large storm and run-off 
events. 

* Resuspensbn/Deposition: Research sediment resuspension 
and deposition at high flows. 

3 Dietary Uptake in Fish: Develop standard procedures for 
measuring dietary uptake efficiency and determine the 
relationship between dietary uptake efficiency, food 



digestability and Kow. 

* Food web structure: Quantify the components of the food 
web through stomach content analysis, define the routes of 
carbon flow, determine seasonal variation in food web 
structure. 

* Mercury: Develop a field measurements program for 
methyl mercury. 



Closing Panel Discussion and Responses to I Recommendations 

William Richatdaon: 
The results from this conference should be used to plan 

future modeling research. 

It's good to see scientists and decision makers talking and 
working together toward consensus. 

There is a need to carry on with the Green Bay data set and 

the work that is going on there. 

* W e  negd to coordinate our data gathering and other efforts 
so that we can leverage our resources better. 

+ W e  need a vision and a mission to come out of this 
workshop. Thk will help convince management and get 
future funding. 

+ We need to be cautious about not overselling models. We 
should do follow-up research to check model results. 

* Mercury is an important problem. We must initiate research 



on it soon. 

Wayne Willford 
+ 

+ 

+ 

Models are built to respond to management needs but 
these needs change over time. We need to be able to 
anticipate future needs sa that mere can be a response 
when new questions ark. 

Decisions will be made and regulatory actions will be taken 
whether models are used or not. Modelers shouldn't be 

afraid to have their models used. 

Uncertainty about loadings is a major issue. We need a 

good loadings matrk; this matrix wauld be useful to 

management whether models are used or not. 

It would be a strategic error to ignore a management 
identified problem like mercury just because it is a difflcult 
problem to deal with. Instead we should present proposals 

for the research needed to respond to this problem. 

How can we move models from data consumers to 

predictors so that we can lower our date calkction n@@ds? 
Mod& should allow us to be more proactive rather than 
requiring research which is retrospctive in nature. 

We should move steadily from the simple to the compkx. 
However, we shoukf not be hesitant to use models as we 
progress since decisions will be made with or without them. 

Future research needs should focus on improving 
understandin$ rather than on an improving a mas 
blance. Additbnally, sensitivity analysis should be used %a 
identi priorities fer research. 



Brett Kaull: 
+ Policy makers need models as a tool to help them use tax 

dollars wisely. 

4 The Great Lakes is a good place for a case study since it is 
an important resource and involves two countries and many 

states and provinces. 

+ Models may help to make the connection for why money 
should be spent on regulation and remedkrtion. hey bring 
environmental benefits into the policy decision making 

process 

+ To get federal suppart behind a project there must be a tool 
to show that investment in me environment will pay a 
dividend. Models help decision makers develop informed 

intuition. 

4 There is a need for coordination since coordination leads to 

a decreased need for resources without sacrificing quality. 

Michael zlrrmll: 
+ There is a need for a framework for process research. 

Abng with reducing uncertainty in mass bahnce models, it 
is ako important to think about reducing uncertainty in the 
research manager's future budgets. 

+ Money is an important consideration. We must use our 
resources as effectively as possible. 

+ W e  should be planning to construct one complex "mother 
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of all models" whose primary purpose would be scientific 

understanding. This model could give birth to simpler, more 

specific models designed to answer key management 

questions. 

0 Modeling is a relatively young field; it started in 1926 and 
only really got going in me 19Ws. Because of this, and the 
need to use models now, we lack the leisure to develop the 
discipline sbwly. 

Progressing in complexity down two parallel paths as 
suggested by Group 3 is a good idea. 

(Complex and Simple models) 

0 We must relate what we do to real problems and then 

demonstrate the application of models to these problems. 
We must be more articulate about the application of our 

models. We must both maintain the integrlty of science and 
answer the questions that are being po-d to us. 

chasleszafonte: 
0 This conference represents sgniflcant progress on reducing 

uncertainty. 

+ -re is e need for both simple and complex models. We 
need to continue to learn from the simple models, ver@ 
them with data, and gain consensus on what we've 
learned. 

0 Research prsposak should be written on the issues that 

arose CIS important in this conference, for example 
uncertainty surrounding the sediment/weter interface. 

We should make coordination a priority. We need to get 

people who are working on similar projects communicating 



with each other. 

Mercury is a real environmental problem in Lake Ontario 
and we need to find out what is going on. Research 

proposals for developing a Level 1 mercury model should be 

prepared. 

It was suggested that we monitor three chbrinated 
organics. We need to ensure that m e  other five are dealt 

with also. 

Funding is a major issue. The continued pressure on funding 

is the most important issue for decision makers. 

Several questlcns to the panel were posed bytheconference participants, 
John Toli brought up the point thl reseerchers are conservative on the use 
of madels of unpredrctable systems becawe they are worried about 
scientilk credibility and poky makers are conservative bemuse they're 
worried about policy credibility. A solution is that scientists and regulators 
could begin with what type of answers and level of uncertainty they're bath 
comfortable with and then work backward to g e m e  a sat of feasible 
research and @icy objedhres. In addition, modelers need to be more 
sophisticated in presenting uncertainty and managers need to be more 
sophisticated in framing questions. 

Paul Rogers suggested that, for the Green Bay modeling project, 
mQdels that were thought to be state-of-the-art at the beginning of 
the project should be compared to the current models. This would 
give a good indication of what was gained for the money spent. 
Wayne Willford responded that it was just a pilot project to learn 
what to do and how to do it. Donald O'Connor said we've at least 
gdned knowledge and desreased uncertainty and Bill Richardson 
said such a study would &I a good idea but keep in mind that the 
modeling costs are small compared to the data collection costs. 

Charles Hall pointed out that sophisticated computer graphics cafl 
help to bridge the gap between scientists and decision makers Bill 
Richardson responded that this is currently king pursued and that 
a supercomputer is being installed in Green Bay with sophisticated 
visualization capabilities. 

ECron Halfon pointed out that five models have been developed for 
Lake Ontario and we don't have consensus on their credibility so 
how can we develop just one model? Donald O'Connor responded 
that we should stress the unity of what we know and get consensus 
on scientific beliefs and then get these beliefs into the models. In 
addition, we need to establish a repository of modeling history so 
that we will have a perspective as we advance. 





I Appendix A: White Papers 



Loadings, 
Forcing 
Functions, and 
Stochastic 
Var iabi I ity 

h?Xk&XZ In this paper, model forcing functions (especially loadings) are 
discussed. Important 'ksues are identified and the possibilities for 
reducing their uncertainty are presented. At this point, a couple of 
definitions would be useful: 

rn Forcing Function - An independent variable in a model 
formulation. By independent it is meant that the variable is 
not affected by changes in the model. Thus, forcing 
functions can ~ppeesr on the right hand sides of differential 
equdons, but not the left. Some forcing functions, such as 
leading, can often be controlled and thus are of 
management interest, others, such as weather, are basically 
uncontrolled. 

m Uncertainty - An indication of the value or reliability of 
informatbn. In this paper, the indicator used is the standard 
deviation of the model estimate of an output variable. 

Rductiem in uncertainty occur In a variety of ways. It is assumed 
that, whenevef possible., stateof-the-art methods for data handling 
will be used, sa that thii mea wisl not add to uncertainty. Further, it is 
csmmed that new data will be collected in an effort to reduce 
uncertainty and met, because of budget constrain$, it is desired to 
optimize thii effort in some way. 

hJf&&h'lEWl Contaminant loads frquentty are hamdled ifl models of toxic 
chemical fate and tramport as if they were independent variables, 
or forcing functions, that drive the response of the modeled system. 
Hswver, the loading of toxic chemicals and other substances of 
interest are not truly independent variables; rathss they respond to 
numerous exterwal forces, true forcing functions. in achieving their 
observed states. The coupling between loads. forcing functionsv 
a d  chemical fate is partly deterministic and partly stochastic. Here. 
the emphasis Will b@ on identifying lhe uncertain element in the 

. linkages between beds and forcing functiens. Toxic chemical loads 
of concern to this discussion will be identifled as belonging To one pf 



three categories. These include: 

= tributary inflows, 

direct point sources (industrial and municipal inputs), and 

dkect non-point sources (rural and urban runoff, in-place 
pollutants, groundwater, and atmospheric inputs). 

L in oft- categories possess attributesthat vary in a manner 
that makes load guanutElHon difficult without encountering substantial 
uncertainty. On the other hand, sevd issues related to uncertainty are 
common to most prctocors for estimating kads and forcing functions. An 
important issue w m m n  to any bad or fordng function estimate is selection 
of appropriate time and space scales for aggregating information. This 
CMISideratkn is important because it can determine the accuracy with which 
uncertainty in the estimates may be knm for given actual variability in the 
quatities of interest An in-depth diiion of the issue of time and space 
scab *peers in ampanion paper. 

A second issue of common concern is that of observation 
uncertainty such that the uncertainty may be attributed to the 
physical and chemical methods used for data collection (e.g., 
sampling schedule, field and laboratory methods for sampling, 
handling, preservation, storage, and analytical quantitation). Such 
methodological uncertainties may be systematic or random and 
provide the target for quality assurance and control programs 
(QA/QC). In the design of a monitoring program, however, the 
need to randomize is not always recognized. Nevertheless, the 
need to randomize at some stage of monitoring is always present. 
Otherwise, the analysis of results by statistical models cannot be 
accomplished without an unknowable amount of bias. 
Uncertainties due to sampling and analysis methodologies will be 
addressed to a limited degree in this paper, but a detailed 
discussion is outside of the scope of this paper. One special area of 
data uncertainty that ffequentty arises in estimathg loads of toxic 
chemicals for mas balance models is the issue of non-detect 
ols~ervatiosss. Dealing with non-detect data will be examined in this 
ppr in the context of estimating contaminant loads and doing so 
to minimize uncertainty. 

A third carnmon $sue involving uncertainty arises over the approach 
to be used for data analysis, or the statistical estimation method to 
be employed. To a large extent, such concerns parallel those that 
emanate from uncertainties over model specification, including 
process parameterization. This is appropriate, because the statistical 
a n w s  applied to yield a loading estimate or the series must be 
faithful to an underlying mathematical (i.e., statistical) model. This 
aspect of uncertainty a b  will be given detailed treatment in this 
discussion. 

. 



As has been alluded to above, the feasibility of obtaining perfect 
load estimates is reduced by a number of difficult issues: scientific, 
logistic, economic and natural. It is important to not only divide 
these issues into ones that can be controled and those that can't, 
but also into those that represent tradeoffs or compromises and 
mose that don't. 

Tradeoffs occur when there is a task to perform within a fixed 
budget (either doMars or manpower or both). In the context of load 
estknatbn, they involve questkns such as: how many tributaries and 
sources can be sampled? how many samples per source can be 
taken?, etc. These are mainly economic and logistic considerations. 
ScientiRc issues in lead estimation tend not to be as subject to 
tradeoffs because the usual approach is to apply state-of-the-art 
science without advancing to unproven areas, 

As is true in the larger context of model uncertainty analysis. the 
evaluation of load estimation uncertainly is, itself, a procedure that 
may incur considerable errorq Except in simple models, it is presently 
not possible to objectively and unquely assess uncertainty due to 
model (statistical) formulation, dependent and independent 
variables, and parameters. Mosi effort in uncertainty analysis has 
been put toward evaluating uncertainty due to erras in parameters 
and independent variables of forcing functions;, 

Two fundamentally different approaches to the assessment of 
parameter uncertainty have been developed: Monte Carlo 
simulation and first order analysis (variance propagation). The 
approach taken with the former method involves assigning 
probability densily functions to each uncertain model parameter or 
variable, and then "sampling" the distributions at random for 
cakulation of a madel result. This procedure is repeated a large 
number of timess, and the distribution of model results may be 
analyzed statktkalty to ascertain the combined effects of all the 
uncertain parameters on the overal uncertainty exhibited by the 
model. 

The term, first order andysis, is apt because the approach is b e d  
cm using the first order terms of Q Taylor series expansion about the 
mean of each uncertain parameter or input variabla For a single 
equation, mullti-parameter model (e.g., Y = W ,  where X is fhe vector 
d uncertain parameters), the expression for the estimated 
uncertainty of the model result (Vm, variance of outcome. Y), due 
to parameter uncertahty, is given by Equatbn 9. - 

If the uncertain parameters are unccanelated, then Equation 1 
simplifies to the first term on the right and the total prediction 



uncertainty is due to the sum of the individual contributions by each 
uncertain parameter. 

Monte Carlo simulation has two main advantages over first order 
analysis. First, Monte Carlo simulation does not lose exactness of 
model representation, as first order analysis does due to truncation 
of the Taylor series expansion. Thus, within the limits of the 
deterministk model and parameter distributions, Monte Carlo 
simubtbn is complrtte. Second, the results of Monte Carb 
simulation provide a complete probability density function estimate 
to describe parameter err06 rather than only an estimate of the 
mean and variance. The Monte Carb procedure, however, is 
computationally intensive. Consequent@, first order analysis may be 
fuvored for its convenience on simple models. Uncertainty analysk 
for complex models (dynamic, multi-state, multi-parameter, detailed 
spatial resolution) may require more computation for Monte Carlo 
simulation than can be justified. Statistically efficient methods of 
directing the sampling required for the simulations (ems., the latin 
hypercube design) can greatty reduce the computational 
requirements. 

First a r  m a  plovides a r- uncomplicatd approach to 
assessing uncertainty ttrst may be w e d  for use with models of high 
complexity. Because of its wide utility, it will be used here to demonstrate a 
pracedure for ranking the uncertainty in lake water concantration for a 
contaminant d concern thad is assodated with uncertainty in each of the 
loading categories discussed previausly. To do this, of course, a model 
must be specifled that relates concentration and loads. Given in Equation 2 
for the pwposes of iUmtration is a mas balance equation for a lake of 
volume, M an Olrfflow rate of GI? a contaminant of concern with water 
column cancentration, C, and which receives loads uf the contaminant from 
tributaries wwb,i) direct point sources eNprs,p, external direct non-point 
SwrCBs (ZW~ps,,d, atmaspheric ( W A ~ ,  and which loses mass 
due to the net of sedimentation, resuspension, diffusion, and bioturbation 
~ver the sediment with SU- arm As (JsEL3\$, by 
au-ilizatia over the water surface with area 4 (JNApA), and 
which mctswithin the water column by aflrst order p~ocess with rate law 
-kc 

which has the steady-state solutbn: 



The partial derivatives in Equation 1 (a f/,aXi) are sensitivity 
coefficients: they indicate the rate of change in the dependent or 
predicted variable with respect to the uncertain parameters. By 
analogy, the steady-state concentration of contaminant in Equation 
3 may be taken to be the dependent variable and the loads may 
be taken to represent uncertain parameters, giving Equation 4. 
Here, the objective is projecting the uncertainty in loads onto 
predictions made about the steady-state contaminant 
concentratbn. Because of m e  simplicity of this model, the sensitivity 
of the lake water concentration at steadystate to each of the loads 
is identical, as shown in Equation 4 (W, is an arbitrary loading term 
from Equation 2 of 3). 

The contributions of the loads to the uncertainty of the 
concentration prediction, howevec are not identical. Rather, they 
depend on their individual variances. If the loads are assumed to 
be independent of each other to permit simple extension of the 
ilkrstratbn (seasonality abne suggests mat this is not a particularly 
good assumption), then individual load contributions to the 
uncertainty of concentration is given by Equation 5, while the total 
uncertainty due to loudhg is given by Equation 6. 

Further demonstration of the first order uncertainty of lake 
concentration to loading may be pursued using the illustrative 
(default) data on contaminant loadings from D. Mackay's 
steady-state model (PROGRAM NOTL) for Lake Ontario; also other 
attributes of Lake Ontario reqv$qfsr Equation 3 were tyT from 
the Mackay model r/-1.67~10 m , V/Q=6.5 y, k=t+l7xlO- f ). The 
loads of toxic chemical range from lm to ZOO kg y The analysis is 
shown in Table 1. To perfarm the analysis. csefficienk of varbtion 
wem required for me, load estimates. The values used are given in 
Table I and are hypothetical: they are sugg@st!ve of $he relative 
ranking of the uprcestuinty with which each lead may be known. 

To put the concentsatfsn uncertainty estimates into context, 
Equation 3 may be calculutd for the volume, discharge, and 
chemical decay crttribxrtes noted parenthetkalty above. Te do this 
with the minimal information given, it will be assumed that the net 
interaction wilb sediment and atmaphere gmero. As indicated in 
Table I, the given loadlngs total 700 kg TP wouu yield a 
steady-state concentration estimate of 27 ng L by Equatin 3. 
Becauylhe partiQl uncertainties hypothesfzed for the IQQdings total 
2.0 flg L , the steady-state concentration estimate has an overall 
coefficient of variation of 94 percent. The relative ranking sf the 
perHal rancertahtks closely tracks the assumed coeffcienk of 
variation. This; underscores the impontanee to uncertainty analysis of 
knowing me properties d the underlying error structure as well CIS 



possible. 

In the example presented in Table I, the direct point sources have 
been split into municipal and industrial. In general, this split is 
desirable because these sources represent different management 
options (pretreatment programs vs. direct effluent controls). 
Sufficient information currently exists to make this division of the point 
source load. 

In the case of the tributary load, a split has been made into the 
Nkgara River and "all others." This was done because the Niagara 
load is comparatively well known due to the program of the 
Niagara River Toxics Committee. The differences in coefficients of 
varbtbn reflect this situation. 



Table 1. 
First-Order Annlysis of Gncentrxtian E~timate UncerLlinty Attributable la Loding 

Uncertainly lor Lake Ontario Using lllualralive Data 

-- 

Partial Uncertainty 
in Conccntratian 
Lhnatc L)ac 10 

Standard Land Uncertainty 

A..sumcd Load 
Gmfficient nf 

Source of Load Variation Laad 
Uncertainty Magnitude (B 

Deviation (nr: r') 
( k W  (ns Y.') 

Municipd Point IW 25 2SrlU" 0.1 
saurro 
Inrimtrial Paint 120 25 3nX inta 0.1 
souaf 

Mred Nan-Point 130 I00 130% 10" 0.5 
SOMLS 

All m e r  Influent 
TrWrin 150 200 3WxlO'Z 1.2 

Niqm Riva so0 20 4ox 101' 0.2 

For non-point sources, no such divkion is possible given existing 
knowledge, although it would be desirable because of the 
implications for control options. 

When a model formulation is agreed on for Lake Ontario. the above 
analysis should be repeated using current data. The partial 
uncertainties should be estimated and ranked and then the 
sampling efforts should be concentrated on the highest sources of 
uncertainty. In this type of anam, the importance sf historical data 
analysis is made clear. Another point that should be made is that 
methods of load estimation based on extrapolation and typical 
concentrations (among other procedures) that are used in lieu of 
real data should continue to be developed, since improving their 
effectiveness will improve the utility of the uncertainty analysis. 

The average Isad, b [M T-'1, delivered to a receiving water during 
sa e spifk time interval& IT], through an interface of area, A 
&$a for a conwrninant m q  is c a n w  by water flowingsat an 
instantaneous vebeity, M, [L T- I, and concentration, c [M L 1, may 
be represented by Equaiion 7 when contaminant transport occurs 
by purely sdvectsve processes. C contaminant transport occurs by 
pur* diffusive or dispersive prmeses along the imtantyneous 
concentration gradient normpl-{o the interface, dCl& [M L 1, with 
a transport coefficient, Dz [L T 1, then Equatbn 8 may be used to 
represent the average load to m e  receiving water. 



Equations 7 and 8 are one-dimensional, idealized, deterministic 
simplifications of me complex, stochastic situation mat exists and 
determines loads during contaminant transport. If it were possible to 
monitor continuously in time and space and with absolute accuracy 
all boundaries of a receiving water body, then one could compute 
loads without uncertainty, at least in theory. Even if monitoring with 
that intensity were technologically feasible, however, it would be 
impractical. Nevertheless, these equations can serve to illustrate the 
major sources of uncertainty that affect estimates of toxic chemical 
loading and other forcing functions of interest for Great Lakes 
modeling. In particular, any condition or change in conditions that 
alters any of the variables in Equations 7 and 8 will affect, in turn, the 
resulting estimate of load. By corollary, uncertainty in the variables 
of Equations 7 and 8 will propagate through the relationship to 
affect the load estimate. Any quantity, therefore, that produces 
uncertainty in flow velocities, concentrations, dispersion or diffusion 
coefficients, or concentration gradients can lead to uncertainty in 
contaminant loading &hates. The role of sampling design in 
reducing uncertainty is examined below: after a survey of the major 
sources of uncertainly associated with the loads in each of the 
categories identified earlier, 

Tributary Mouth Loadings 

Contaminant loading estimates for rivers that enter the Great Lakes 
derive uncertainly from a combination of several sources. Because 
tributary inputs constitute the largest single load for many 
contaminants, considerable attention has been given to tributary 
load estimation and uncertainty. Exhaustive coverage of tributary 
load uncertainty will not be given here, however, the main 
contributory elements will be examined. The discussion will focus on 
uncertainty associated with estimating loads of contaminants that 
partition strongly to the solid phase. This will be done for two 
reusom. First, many anthropogenic organic contaminants that are 
of concern to mass balance modelers of toxic chemicals are 
surface active due to hydrophobicity or polyvalency and, therefore, 
may be predominantly associated with transported solids. This 
phase partitloning is a complex phenomenon involving 
thermodynamic and kinetic constraints that result from chemical 
and physical characteristics of the solid and liquid phases, and the 
contaminant(s) of concern. Some of the more important factors 
include pH, particulate and dissolved organic carbon levels, solid 
phase levels of hydrous metal oxides, sorbent and sorbate 
concentrations and kinetics of adsorption and desorption. The 
second reason for focusing this discussion on particulate matter is 
the fact that particulate matter, and associated contaminants, 
generally are subject to greater spatlal and temporal heterogeneity 
than contaminants in the dkohred phase. Consequently, the 
uncertainty of total tributary loads will be heavily influenced by the 
uncertainty of particulate loads of such contaminants. Moreover, 
reductbns in particle-associated tributary loading uncertainty by 
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improved sample design will yield more certain soluble phase 
loadings, too. 

sediment and sediment-associated pollutants that reach the mouth of a 
tributary originate largely from non-point sources in the watershed and result 
from of a complex interplay of numerous forces Of special importance are 
(1) Climate, in general, and the nature, amount, and intensity of precipitation, 
in particular; (2) dentation, degree, and length of slopes; (3) geology and 
soil types; (4) land use; (5) condition and density of the channel system: (6) 
partide s&tling velocity; and (7) stregmiicm regime. In addition, the finest 
resolution of sediment bsd variability, and that of associated contaminants, 
f# a receiving water generally will depend on the coarsest resolution of 
either meteorwc events, receiving water enants, or channel geometry 
and geology. Fluvial kading uncertainty, therefore, will depend in large 
measure on the variabiity of these physical Wars. Thii dependence, of 
course, is in addition to the influence of physicochemical factors specitic to 
the contaminant of interest, such as, solubili, volatility, partitioning, and 
temperature dependencl ‘es, plus the biochemical inliuencas of uptake and 
d = W  

TM interplay of gravitational and viscow forces on particulate matter in 
water results in fluvial systems having a selective transport capacity for 
particle-bound pollutants. Thus, as fluid forces vary in time and space, so 
too does the movement of particulate contaminants. In general, therefore, 
the tcrtal loading of partkle-bound conterninants is related to discharge in a 
non-linear mannec that consists ai a watershed-determined movement of 
flne pavticles superimposed on a dischargedependent and spatially varying 
nux of coarse sediments. The consequsnce of selective transport for 
loading uncertainty arises immediately as a requirement to design sampling 
protocols that address concentration and velocity variability over a sample 
transect. 

Cross-sectional variability in particulate contaminant concentration 
also is a problem consisting of two components. because fine and 
coarse particulate matter behave differently. Fine matter (coarse silt 
and smaller) may be considered to be uniformly distributed vertically 
and horizontally at an appropriate distance downstream from a 
source of sediment, so long as flows are sufficiently turbulent. This 
criterion Is not well defined but will depend on characteristics of the 
particles, tke fluid, and the site of concern (discharge, 
crosssectional arm, channel width and depth), Coarse sediment 
(fine sand and greater), on the other hand, shows a strong 
dependence on the hydraulic character of the system. In particular. 
the transport of sand-size particles depends on bedform (depth and 
dune forms) and flow regime (development of turbulence). The 
combined effrxt of these components is relatively low variability 
across the cross-section if the amount of fine sediment is high relative 
to sand. 

Temporal variabiiity, of course, adds an additional dimension of 
uncertainty to the fluvial load problem. Concentrations of 
suspended matter and associated pollutants at a stream 
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cross-section during a hydrologic event often shows a 
time-dependence that reflects the character of the hydrograph. 
generally increasing and then decreasing during the event, due to 
erosion, scour and deposition. The peak Concentration, however, 
often does not coincide with the peak of flow and may lead or lag 
the flow peak. Most frequently the concentratin peak leads the 
hydrograph somewhat; however, for suspended matter the actual 
pattern realized by a given drainage system depends on me size of 
the watershed, location of the causative event, and antecedent 
streamflow. Time of year exerts significant influence on the solids 
levels found in most systems. For flne suspended matter, this 
influence is a result of the dependence of concentration on rate of 
supply, which in turn depends on erodability, land use patterns, 
precipitation, intensity, and pattern, antecedent soil moisture, and 
spring freezethaw cycles. Seasonal variability in coarse suspended 
matter concentrations depends mainly on the streamflow conditions 
that are realized in the systems of interest. 

Three additional sources of uncertainty in tributary mouth loading 
estimates will be discussed: seiching, near upstream point sources, 
and gauge to confluence distance. Seiching is a condition that 
gives rise to periodic reversals of flow at the tributary-lake 
confluence and leads to an especially diffcult load estimation 
problem. The problem can be so severe that loads of conservative 
as well as nonconservative contaminants cannot be estimated by 
projection from a near upstream monitoring point without 
unreasonably high uncertainty, The main factors prohibiting 
extrapolation of the upstream estimate are transport time phase 
error and physical phenomena dependent on the particle size 
distribution of the solid phase matter, sedimentation, resuspension, 
and delivery to the receiving water. 

Consideration must be given to uncertainty attributable to upstream 
point sources that are proximate to the confluence of concern. The 
uncertainty such sources contribute to the load estimate is that due 
to inadequate mixing over the cross-section and the resulting 
transverse gradients. Combined sewer overflows, which often occur 
in near-mouth reaches, also give rise to uncharacteristic 
fbwtoncentratbn responses during wet weather, and their 
influence may contribute uncertainty in the fluvial load estimate. 

, 

Commonly, an eldsiing gauging site may not be the most desirable 
location for sample collection, or the toxic chemical observations of 
interest may be preexisting and from a site that is a substantial 
distance upstream from the confluence, Uncertainty in 
"extrapolating" the upstream measurements over the unmonitored 
portion of the tributary give rise to uncertainty in the tributary load 
estimate. 

DataColldon Since, using the illustrative example in Table 1, the largest source of 
Improvements loading uncertainty was the "all other influent tributaries," the 



following dlscussion will concentrate on ways to reduce the 
uncertainty for tributary loads. Some of the recommendations 
discussed below will be applicable to other sources of uncertainty; 
others will be added where appropriate. 

Economic and logistical considerations can be optimized for given 
fiied dollars and resources (sumpling crews, lab capacity, etc.). 
However, it is recommended that certain sampling not be optimized 
for and in fact be designed for built-in redundancy when possible. 
In general. physical and chemical variables that are relatively 
inexpensive to obtain but critical to load estimation and subsequent 
modeling efforts (such as flow, temperature, pH, chloride, 
suspended solids and other conventionals) should not be subject to 
optirnizatbn. Ideally, existing jurisdictional programs for these 
parameters should continue or even be strengthened during the 
study. In addition, sampling for toxic contaminants should also 
include these important parameters to both provide a redundant 
measure (for safety purposes) and a way of relating these 
measurements to more routine ones made historically. 

The sampling that should be optimized is for the toxic contaminants 
themselves. Due to the cost per sample of many of these 
chemicals, as well as limited lab capacity, field equipment and 
experti, the tradeoffs really occur at this level of sampling. The 
compromise will come down to accuracy load estimate vs. cost of 
sampling. As a hypothetical exampk suppose one wishes to 
sample 95% of the tributary flow to Lake Ontario (suspended solids 
load could a b  be us@d here) on a monthly basis for a suite of 
organic and metal contaminants. The IM of tributaries to be 
sampled is: 

o=wo Twehre Mile Creek 
Trent Black 
GeneSee Welland 
Moir Buffalo 
Salmon Napan- 
Credit 

Fortunately, the largest tributary, the Niagara, is well sampled by an 
existing program at a weekly frequency. Howevw, this list will require 
new efforts. The cost would be: 

8 this is within the budget, then no optimization is necessary. 
However, assuming it is tos expensive and no additional funds are 
available, the tradeoff occurs in number of samples (less tributaries 
or less months), Alternatively, if a certain maximum uncertainty is 
allowed, then a pragram could be designed to achieve this at 
minimum cost. See besht (1991) for a more detailed trmtment. 

An alternative approach to this lype of optimization is the Balanced 
incomplete Hock Design proposed by EI-Shaarawi and Williams 
(1989) for Niagara River point sources. Briefly, it allows the estimation 



of me total load of a contaminant, me individual loads of larger 
tributaries and standard errors of the loads with substantially less 
samples needed than conventional designs. Again, assuming a 
fixed number of samples allocated to the effort, it should be possible 
to estimate me total tributary load, the relative contribution of at 
least four of the major tributaries and provide the equivalent of at 
least three replications at better than half the cost of a conventional 
design. This is a lype of tradeoff also, but it occurs without giving up 
the primary objective, which is an accurate total load. This 
approach may not be appropriate for all scales of modeling but it 
should be considered b8cause of me substantial savings it offers. 

DataHandling 
Improvements 

Improvements to reduce uncertainty in load and forcing function 
estimation in me area of data handling should not be subject to 
tradeoffs. The best available methods should be used so that no 
information that is collected is unused or partially used. In past 
projects this has occurred in two areas: load estimation methods 
and censored data handling. 

Considerable effort has been devoted to demonstrating that load 
estimatbn methods that ignore the correlation between measured 
variables are unacceptable. Besides the fact that they do not use 
all available information, the)’ introduce significant biases into load 
estknates. Ratio and regression estimates are two methods that do 
consider the correlation between variables and these should be 
used whenever possible. 

One problem that inhibits the use of these methods is that of data 
censoring. This practice should be avoided whenever possible in the 
laboratory, but in many cases it is unavoidable. Similarly, if data are 
to be censored, they should have one detection limit reported. 
Again, sometimes this is impossible. Therefore, a generalized load 
esthatbn procedure is being developed for use with censored 
data mat will maximize me information that can be obtained from 
partially censored loading deta sets (up to 80% censoring). This 
involves a maximum likelihood estimate for statistical parameters 
that describe loading. This procedure will solve me problem of 
”minimum and maximum” bad estimates that was caused by partial 
censoring of badings data in the Green Bay study. The procedure is 
an extension of work by El-Shaarawi and Dolan and will be available 
in early 1992 

Pointsources 

Quantitation of contaminant point source loadings to the Great 
Lakes may be done with greater certainty than non-point source 
loadings, because the technical and logistical aspects of sampling 
are less complicated for point wurces. The simplicity of point source 
load estimation results from ignoring the spatial component of 
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variability during monitoring, a convenience permitted by the point 
character of the source (the interfacial area, A, in Equations 7 or 8 is 
negligible). The degree of simplification this affords is such that a 
continuous record of an instantaneous load is possible for some 
contaminants (e.g., oxygen deficit). Of course, me extent to which 
the point source model is inappropriate for the monitoring data will 
lead to uncertainty in estimates based on it. 

Most important to the overall uncertainty of most point source load 
estknatbn questbns is the uncertainty associated with temporal 
variability of me load, whether due to variability in concentration or 
discharge or both. Temporal variability becomes a problem 
whenever a continuous record of the contaminant load is not 
available for me point source of interest. This is, of course, generally 
the case for Great Lakes contaminants. even though permitted 

I dischargers are required to monitor their effluents routinely. As will 
be discussed lata proper sampling design can significantly reduce 
the influence of temporal variability on the uncertainty of point 
source load estimates. 

The temporal variability in point source leads may possess a 
considerable level of determinism, or structure, mat can be 
exploited to improve load estimate accuracy. Such structure that 
may be present will depend on the nature of the point source. 
Municiml wastewater effluents, for example, may show periodicity 
over 8 to 12 and 24 hour cycles for some contaminants. weekly 
cycles fer others. and seasonal or annual cycles for still others. 
Industria point sources, on me other hand, tend to show less 
temporal structure, though they do reflect manufacturing or other 
production cycles. In general, variability in point sources is 
associated with community see, meteorologic and geographic 
factors, mixtures of influent sources (industrial/sanitary), and design 
flow rate of the facility of concern. 

Data Collection 
IrnprovemenEs 

The locatbn, design fbw and industrial category of all point sources 
in the basin are known. This information should be used in optimizing 
the sampling design for point sources. A GIs would be most useful in 
identwng accurately the direct point sources. 

The same optimization consideratbns discussed under tributaries are 
relevant with point sources. However, the practicality of mixing 
effluents to achieve the Balanced Incomplete Block Design is 
dubious, especially from a legal and esnah/tiial chemistry viewpoint. 
The question of utilizing effluent self-monitoring data is unresolved. 
Some self-monitoring data will probably be used, but toxic 
contaminant data obtained this way will usually be subject to less 
stringent quality assurance procedures. 



DataHandiing 
Improvements 

In general, load estimation with point sources is easier, given 
adequate data. Ratio and/or regression estimations are probably 
not necessary, and a simple summation of the products of flow and 
concentration should be adequate. The same type of 
Considerations for censored data apply to point sources. 

The major phenomena that produce uncertainty in non-point source 
load estimates for use in toxic chemical mass balance models 
consist of "true" forcing functlons in the sense that they are truly 
independent variables that govern both the deterministic elements 
of the quantities represented in Equations 7 and 8 and the stochastic 
elements that are only implied by the previous discussion. 

Direct nongoint laads from ptral runoff. derive uncertainty from 
numerous sources, but it is possible to generalize these by stating 
mat rural runoff is mainly associated with (1) random hydrologic 
events mat have their roots in meteorologic or climatic phenomena, 
(2) sediment movement that accompanies runoff, and (3) 
partitioning of the chemical of interest between water and 
sediment. The forcing functions mat govern uncertainty in rural 
runoff load estimates, therefore, relate mainly to these three 
phenomena. Physical forcing functions that affect rural runoff 
include meteorologic and climatic variables such as temperature, 
wind speed and direction, precipitation quantity, intensity, and form; 
terrestrial attributes such as distribution and size of source areas, soil 
type and erodability, land use and management practices, slope, 
aspect, depression storage, and antecedent moisture conditions. 
Chemical forcing functions mat lead to uncertainties in rural runoff 
load estimation include the phase partitioning behavior of the 
contaminants of interest and the rate, timing, and mode of 
environmental release of the contaminant in the source area. 
Biological variables that influence the degree of certainty with 
which rural runoff loads may be determined include seasonal and 
ecologkol succession, evapotranspiration, migration, and 
dktributlon of ground cover. 

In a general way, loading of contaminants depends on 
the same factors as those cited above for rural runoff loads. Urban 
runoff loads normally differ substantially, however, in mat they 
generally reflect much higher rates of runoff compared to rural ones. 
This is due to the generally greater imperviousness of surfaces that 
intercept precipitation. Further. urban runoff normally is collected for 
routing to ultimate disposal. Under circumstances that are favorable 
to surface receiving waters, such routing is through separate storm 
sewers and settling basins followed by application to infiltration beds 
to recharge groundwater. Under less favorable circumstances, the 

Reducing Idrasertufnty in Mass Balance Models of Toxks 
in the Great Lakes- Lake Ontario Case Study 

99 



routing is through combined sewers (runoff and sanitary wastewater) 
that may be allowed to overflow during runoff events that exceed 
the volumetric design capacity of wastewater treatment facilities. 
Urban runoff loads also differ fiom rural ones in that urban loads 
depend on population density and street cleaning effort. Empirical 
models (e.9. STORMS - US Army Corps of Engineers) are availabie to 
aid in estimating urban runoff loads, however, monitoring is required 
for any quantitative assessment of estimate uncertainty, which may 
be large. 

Dissolved phase contaminants predominate in aroundwater and 
are transported into (and out of) the receiving waterbody by 
advectbn, dispersion, and diffusion at the sediment-water interface. 
Contaminant loads from inflltratbn of contaminated groundwater 
are difficult to quanti directty and frequently are estimated by 
mass balance closure: consequently, they are often notably 
uncertain. Among the numerous determinants of groundwater 
contaminant transport are included aquifer thickness, hydraulic 
conductivity or transmissivity and degree of anisotropy, hydraulic 
gradient, proximity of recharge and contaminant source areas, and 
such contaminant attributes as partitioning behavior, susceptibility to 
decay, and concentration gradients. When groundwater loading 
of contaminants is estimated directly, then each of the parameters 
named above can contribute uncertainty to the result. 

Ccmtaminatd sediments, or in-olace wllutants, may enter the overlying 
water in the dissdvd or particulate phase. Mechanisms that lead to the 
intrdudlon of i-e pOrlutants into the water edumn indude biotwtaation, 
the net r d  of scour, rt3wqmsion and sedimentation; diffusion, and 
advection (via groundwater). At least in principle, each of these 
mechanisms may be quantlW, but each is determined by parameters that 
are dlflicult to measwe directlyl that vary spatially and temporally, and that 
generally pessess hgh uncertainty. The determinants of in-place 
contaminant loading rates am numerous. Some of the more significant 
ones indude temperature, and contaminant-specific diffusion and dispersion 

surficial sediment sluny), porosity and bulk mi of sediments, thickness 
gf active sediment layer and sediment mhesivenass, velocity of avertying 
water ylet boundary shm stress; state of water edwnn stratification 
(thermal) and internal current stmctwq bunowing investebpate population 
typq densityl level; migration of tkda and seasonal succession; 
Chernicahpecilic ctrusrderistics, such as partitioning behavior, volatility, 
sokrbilitgr; sediment particle fradion of organic carbon; ccmmtrations of 
contansinents in water, pore water, arsd sediment particles; and, antecedent 
conditia 

d U W l @  hyd?dk gradisnt and condoStki@, viSCO&y (Wat8r asld 

Direct gtmos~ heric d e w  sition of contaminants consists of two 
spatlally and temporalty variable processes which are subject to 
significant uncertainty: dry and wet deposition (scavenging). Dry 
deposition fluxes consists of the air-to-’water interfacial transport of 
contaminants bound tca particulate matter, in the gas phase, or 
dissolved in water vapor. The physical processes that lead to dry 
deposition of particulate matter at the water surface are size 



dependent and include gravitational settling for large particles (>5 
m), Brownian motion for fine particles (<0.3 m), and 
interception/impactin for intermediate sue particles. In addition to 
the transport rate dependence on particle size, the phase 
distribution of atmospheric contaminants also depends on particle 
size, and smaller particles normally contain higher amounts of 
contaminants per unit of weight or volume. Gas phase 
contaminants also may be deposited after transport to the water 
surface. Wet depositbn of contaminants occurs as a result of the 
tendency of precipitation to cleanse the atmosphere by 
scavenging particulate matter and absorbing gases. Transport of 
wet deposition occurs largely by gravity, though the transport 
processes that permit scavenging and absorption processes are 
more diverse. The principal factors causing uncertainty in estimating 
atmospheric loads of contaminants include the meteorologic 
factors involved in atmospheric transport (Le. wind speed and 
direction, temperature, precipitation kind and amount), attributes of 
the contaminants of interest (concentration gradients, partitioning 
behavior), and the receptor area. 

D8taCdledion Of the non-point sources discussed above, the most important is 
1 m - d  probably atmospheric deposition. Fortunately, this source also has 

the best prospects for data collection improvements because of 
current research and monitoring programs on air toxics. Urban and 
rural non-point sources are less important because only direct 
sources need to be estimated; indirect sources are covered by 
tributary monitoring. At the scale of Lake Ontario, it is doublful that 
new samples of urban and rural runoff will be taken, unless these 
sources are much larger than anticipated, The importance of 
groundwater on a lakewide basis is unclear. Sampling should occur 
in the most susceptabk areas and a judgement made whether 
further sampling is warranted. In-place pollutants may not be 
considered as external forcing functions, depending on the model 
formulation. It is probably that the level of modeling used on Lake 
Ontario will include contaminated sediments. 

Data Handling Improvements 

Once again, censored data are an issue for non-point sources, 
especially for atmospheric deposition monitoring. Load estimation 
methods will have to be worked out that allow use of partially 
censored data. Atso, the estimation procedures for runoff and 
groundwater need to be researched thoroughly. 

- h r m d  
GXXhXX9 

Due to the optimization of sampling resources that will undsubtedty 
OCCUI; there will be some sources that are unmonitored or 
inQdeqUateh/ monitored. In the latter case, it may be that the 



desired sample size was not achieved, the required quality control 
was not practiced or a method involving extrapolation over a wide 
range was used. The decision that needs to be made is whether to 
use this informatian, and if it is to be used, how to incorporate it into 
the forcing functions and still minimize uncertainty. 

In conclusion, there are several opportunities for reducing 
uncertainty in forcing function estimation. Many involve "up front" 
planning and analysis and require historical or typical data to use in 
tkis effort. Others involve using the best available methods for 
processing and anah/ung data once it is collected. 

It is recommended that the first-order uncertainty analyds discussed 
in this paper be conducted with the model formulation to be used in 
the actual mass-balance effort. Some type of optimization should 
then be done to reduce the target sources of uncertainty. This effort 
should use real data wherever passible. For data collection not 
subject to optimization, it is recommended that redundancy be built 
into the sampling effort. 
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Quantification 
and Reduction 
of the 
Uncertainty in 

I MassBalance 
Models by 
Monte Carlo 

Prior Data 
Analysis of 

&?'VkbV The general objective of this workshop is to investigate and discuss 
methods by which uncertainties in mass balance models for toxics in 
the Great Lakes may be reduced. As described by the workshop 
prospestus, this paper is focused on problems of reducing (and 
quantifying) uncertainty as they relate to 'Yn situ field 
observations/system response measurements for the establishment 
of initkl conditbns, boundary conditions, calibration/confirmation 
data sets, and model postaudit data sets!' I have taken this 
description to refer not only to me evaluation of uncertainty in the 
field observations themselves, but also to the uncertainty associated 
the analyses of In dtu observations as they interact in the overall 
modeling process. Thus, I wig be concerned here with quantification 
and reductbn of uncertainty bath (1) BS they may be applied to 
descriptbns of the system that is being modeled and (2) as they 
may be associated with model simulations. 

The relalionship between envkonmental models (of which mass 
balance models are a major subset) and field data is a particularly 
close one. Field data are needed at almost every stage of model 
development. In dfu observations are often critical for identification 
and calibration of model parameters and are required for 
verification of model performance. The questions I address relate 
both to ways of estimating the uncertainty in representation of the 
field data themselves and to methods by which the uncertainty 
associated with model forecasts may be described. I show that 
opportunities for quantiifying and reducing uncertainty occur both in 
the design of sampling programs for collecting field data, and in the 
process of identifying the model parameters that appear to be most 
critical for success of a model. A common feature of both 



applications is the use of prior data and Monte Carlo methods. I 
note that although these methods may involve intense 
computation, the computational requirements are not particuiarly 
excessive and are suitable for operational analysis. After a brief 
introductory discussion touching on my general goals and 
approach, I present the methods, describe some case studies, and 
explore some potential applications to a mass balance study of 
Lake Ontario. 

hdCZkZ2 What do we mean by model "uncertainty?" In the context of this 
workshop we are concerned with models that are to be used for 
regulatory and management purposes. Quoting from the workshop 
prospectus, the mod& are intended "... to understand and predict 
exposure pathways ... to quantify loadiconcentration relationships ... 
to determine target load reductions." Therefore, in a qualitative 
sense, the uncertainty that concerns us refers to the difference 
between the estimated future value of some system property 
calculated by the numerical model and the "true" value of that 
property. If we are to make the results of environmental models 
valuable for management, we must determine whether the 
predictbns obtained from the models are meaningful and useful 
(Beck 1987). One way to do this is to quanti the confidence we 
have in the model estimates, that is, to calculate some metric of the 
difference between what the model predicts and what actually 
occurs in nature (as best as we can estimate) and provide that 
metric to management along with the prediction. We should keep 
in mind that attempts to reduce the uncertainly associated with 
mass balance models wiU. to a certain extent, depend on me nature 
of the uncertainty metric being considered. 

How an uncertainty metric is best calculated or expressed (or used, 
for that matter) is the subject of same debate (O'Neill and Gardner 
1979 Scam et u/. 1981; Beck 1987; Haness et a/. 1991) and will 
depend on the particular application. We should recognize from 
the outset that in all respects (both data and model) we are dealing 
with imperfect representations of the system of interest and, 
furthermore, that the system is invariably influenced by stochastic 
processes. Imperfect models (of different sorts) are used both to 
describe the fleld data and to produce the predictions. Because 
Isoth types of models are necessariiy imperfect idealizations and 
are, at least in structure, generally deterministic, Monte Carb 
methods provide a convenient way of accounting both for the 
stochastic aspects of the system and for the unavoidatjle 
uncertainty in model parameter estimation, especially when the 
models are nonlinear. The Monte Carb methods discussed below 
do not require any a prlorl assumption about the statistical properties 
of the component errors and are offered as alternatives 
(complements) to more traditional methods of first-order error 
propagation and parametric statistics. 

I have structured this- paper as follows. I flrst discuss the use of Monte 
Carb methods to quantify the uncertainty associated with field 
measurements of limnological variables. The variables I consider 
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here are those measured in units of mass concentrations in water. 
This is typical of many of the state variables incorporated in mass 
balance models of toxics. Although the nature of the appropriate 
field measurement will depend on the model structure, in most 
cases it will be necessary to estimate the total mass of a 
contaminant within some spatial segment of the system being 
modeled. The Monte Carlo approach is intended for the situation in 
which the methods of classical parametric statistics are not 
applicable. This is usually me case in limnological studies, where 
samples are seldom true replicates (Hurlebert 1984) and are often 
correlated in space andlor time (Reckhow and Chapra 19839. 
Under these circumstances, a traditional parametric model (e.g., an 
analysis of variance model) may be inappropriate. Originally used 
to evaluate the size of candidate sampling networks for the Green 
Bay Mass Balance Study (Lesht 1988b), recent experiments (Lesht 
1991a) suggest that It may be possible to extend the method to 
design (or at least determine the key features of) optimized 
sampling networks of different sizes. This extension would be useful 
for estimating the relative advantage of reducing the sampling 
uncertainty by increasing the number of samples collected in terms 
of the add& costs of sampling and analysis. [See Lesht (1 991 b) for 
a similar application to tributaries.] 

In the part of the discussion I describe tiw use of regiondied 
sensithnty anaiysis (Spear and Hornkger 1980; Fedra et a/. 1981; 
Homberger and Spear 1981) to identify a set of model parameters and initial 
conditions that produce simulations agreeing in some objective sense with a 
set of criteria determined from field obsenrations. The regionaliied 
sensitivity analysjs method has been used to determine which model 
parameters in a simple Greet Lakes total phasphonrs model were most 
critical far producing an -We simulation (Le& et el. 1991). When an 
mxphble set of parameter vectors is identified, it is a simple matter to use 
ttw vectm (again in Monte Carlo mode) to estimate the uncertainty of future 
model projections (expmssd as a probability distribution, if desired) in 
combination with explicit consideration of the uncertainty associated with 
loadings and mer forcing variables. This type of information may also be 
used withinthe conbxt of management decishq by making it possible to 
assess the Uncertainty ass0ciatd with particular centrae adim (Fontaim 
and L d l t  1987). Finallys s suggesp that these approaches be used for 
Wre Sbdk in Lake Ontario. 

The first and most obvbus reason for investbating the uncertainty 
associated with limnolsgical sampling networks is to provide some 
assessment of the confidence with which we report a descriptive 
statistis (as,, mean concentration) determined by the sampling. 
This assessment will be required if me descriptive statistic is to fx 
used for model calibration and verification. The second reason is to 
determine, if possible, the functional relationship between the 
uncertainty associated with descriptive estimates and the properties 
of the sampling scheme (/.e., the number of sampling locations). 
Such Q relationship is useful for the initial design of a sampling 
program and is necessary if we want to evaluate proposed changes 
in the sampling program in terms of the expected changes in the 



estimated uncertainty. 

Background The types of models that we are considering here can best be 
evaluated in terms of the correspondence of the model predictions 
(output) to some meamres of the modeled system (field data). For 
mass balance models, one type of appropriate comparison is with 
an estimate of the total state variable mass, estimated by 
multiptyiig me average variable concentration by the system 
volume. Because me average In sifu concentration usually is 
estimated from discrete samples collected during limnological 
surveys, it is important to be able to quantify the uncertainty 
associated with estiates made from point measurements. If the 
sampled variable is spatially homogeneous, then this uncertainty 
may easily be determined by using the results of parametric 
statistics. The expected uncertainty then may be reduced a known 
amount by increasing the number of samples. The problem is more 
dmicult, however, when we are sampling variables that may not be 
spatially homogeneous (Le., their expected value depends on 
location), as is usually the cass for limnological variables. Under this 
circumstance, the simple sample average may be biased by the 
relationship between the sample locations and the underlying 
spatial distribution of the variable, which is, necessarily, unknown. 

one way to compensate for spadial heteqmeity is to conduct a form of 
sbawied sampling in which the estimatlon of simple statistics is restricted to 
data collected in regicm af the lake that are thought, usually on the basis of 
an analysis of historical data (e.g., KwiatkowskI 1978 Kwiatkowski 1980), to 
be hcmogeneous. in terms of modeling, however, this procedure requires 
separate calculation of the state variables within each region and additional 
modding or spedlidon of region-spedfic fordng functions as well as any 
inter-regional transport and exchange. Furthermore, the assumption of 
homogeneity may be difficult to vemfy after the sampling is conducted. An 
alternative appmach is to use a spatial interpdab'on model to estimate the 
value d the variable in each cell of a gridded representation of the lake or 
segment. The esHmatm may then be summed to produce an estimate of 
the overali mean value. when the estimates are weighted by the relative 
volumes dthe cells In the grid the resulting value is &en referred to as a 
volome-weigt?ted mem. 

To calcubte the uncertainfy associated with me simple mean of a 
homogeneous process is a simple matter, but in most cases no 
simple measure of the uncertainty is associated with the 
volume-weighted mean. The volumeweighted mean is obviousty a 
function of the interpolated estimates, which, in turn, depend on the 
original sample data. If the configuration of a sampling network is 
changed, the spaiial interplatbn and hence the volume-weighted 
mean will change. The magnitude of the change will depend on 
the relationship between the modified sampling network and the 
spatial structure of the sampled variable. Our problem then is to find 
a way of expressing the uncertainty in the estimated 
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volume-weighted mean as a function of the properties (6.g.. size) of 
the sampling network. 

Caldgtlon of a 
Vdume-weighted Mean 

The key to calculation of a volume-weighted mean is the horizontal 
spatial interpolation of the sampled data. This interpolation is usually 
expressed as 

in which z* is the estimated value at unsampled location x,, the q 
values are me sampled data (/ = 1, 2, ... N), and the w0,] values are 
weights appropriate for me positions x, and 9. Many methods are 
available for calculating the interpolation weights w,,~ In one 
simple case, that embodied in VWA, the computef code 
developed by the U.S. Environmental Protection Agency's Large 
Lakes Research Statbn (Yui 19789, me weights are functions of the 
distance between the two locations. Specifically, 

where DW is the Euclidean distance between points I and jt and is a 
parameter that controls the amount of influence of distant 
observations on the estimated value at a point. A lower value of Q 
indicates a stronger influence of distant observations. In practice. 
me selection of a value for a will depend on many factors and may 
be done empirically. One appropriate selection method is 
cross-validatbn, in which the value of Q is optimized to minimize the 
difference between the data values at the observed points and the 
esthetes interpolated at those same points from the other 
observations. Analysis 'of the overall cross-validation error as a 
function of a may be used to estimate the spatial heterogeneity of 
the sampled data (Lesht 1988~19 and can serve as a screening tool 
prior to me applicaton of spatial analysis. 

The volumsweighted mean is cakulated by weighting the cell 
estimates by the cell volume and summing over the total number of 
cells This summation may be written 

P m  = z v i z i  ? 
iai 

t 

where Z is the volumsweighted mesn value, ZI is the estimated 
value in cell I, and Q is the number of cells in the region of 
integration. The weight, vi, is the ratio of the cell volume to the total 
region volume. 



Estimatlngthe 
UncertaintyasaFFunction 

d NetworkSke 

Of course, uncertainty is associated with the spatial interpolation 
model, and if we choose to use a volumeweighted mean to 
represent some properly of the lake, we are faced with the problem 
of quantifying mat uncertainty. One way to do this is to examine the 
differences in volumeweighted means that result from spatial 
interpolations made by using different sets of sample data. The 
basic idea is that the uncertainty associated with sampling a 
spatially inhomogeneous variable may be estimated empirically by 
repeated, extensive, random resampling of a reference data set. If 
the reference data set is comprehensive (that is, if it adequately 
resolves the major scales of mtial variation), the method will 
provide a good estimate of the uncertainty associated with using 
networks of fewer stations, The degree to which the reference 
network resolves the major scales of spatial variation may be 
determined as part of this analysis in conjunction with the screening 
analysis described above. An initial data set is required for the 
purposes of exploration or design, but the analysis may be used with 
data of current interest to evaluate smaller networks and to estimate 
an upper bound on the uncertainty of the full network. 

Case Study - Green Bay 
WhdeBay Model 

m e  Green Bay Mass Balance Study was intended to be the 
prototrpe of mass balance studies in the Great Lakes. Early in the 
project the planners asked the question "How many stations do we 
need to sample to be reasonably sure that we can estimate the 
total mass of a contaminant in Green Bay with a specified 
accuracy?" The question was asked for two reasons. First, because 
the data were to be used for calibration and veriication of models. 
it was important to provide some estimate of the uncertainty 
associated with the field data, Second, given the costs of sampling 
and chemical analysis, there was some desire to optimize the 
sampling. The optimization decision required some estimate of the 
trade off between the number of sampling stations occupied and 
the estimated uncertainty in the mean concentrations. 

I approached this problem empirically by using the Monte Carlo 
method outlined above. Beginning with a reference data set 
(Conley 1983) consisting of turbidity data (used as a surrogate for 
suspended particle concentration) collected at 31 stations during 5 
cruises, I repeatedly subsampled the data and then calculated the 
volume-weighted mean turbidlty from the (randomly selected) test 
networks. Approximately 14,000 different network of varying sizes 
were tested. Figure 1 shows how the distribution of 
volume-weighted average turbidity estimates depended on the 
number of stations used in the spatial interpolation. I was able to 
@stimate the probability of obtaining a volume-weighted mean 
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value that was-within a fixed percentage of the "true" value (defined 
by the full network) as a function of the number of sample locations 
by successively appiying the resampling procedure to test networks 
ranging in size from 1 station to 31 stations (FQ. 2). The curves shown 
in Fig. 2 provided the Green Bay Mass Balance Study planners with a 
way to evaluate the benefits of reducing the uncertainty associated 
with incomplete sampling of a spatially distributed variable in terms 
of the cost requked for additional sample locatins. 

Problems and Limitathns . The Green Bay Mass Balance Study was concerned with a number 
of toxic contaminants, especially polychlorinated biphenyls (PCBs). 
Unfortunately, no prior sampling for these contaminants had been 
conducted with sufficlent detail to provide a useful reference data 
set. The most complete previous sampling of Green Bay available to 
us was Conley's (1983) work Because the substances of interest are 
strongiy associated with particles, I used a variable (turbidity) that is 
related to suspended material as a surrogate for the nonexistent 
measurements of toxks. Although I expect that the major features 
of the analysis would be similar, it is not at all certain that the results 
shown in Fig. 2 would be the same for another variable. 

The uncertainty treated in thk example is that due solely to the 
incomplete sampling of a spatially distributed variable. It is implicitly 
assumed mat the sample values themselves are exact. Turbidity can 
be measured with fairly hg h  accuracy, and the sample values used 
in the case described above for Green Bay were actually water 
column averages. The averaging tended to reduce the effects of 
other sources of error, such as that associated with collection and 
chemical analyses. Simulation studies of spatial sampling in the 
presence of uncorrelated noise show that, as may be expected, 
adding noise is equivalent to reducing the number of stations in the 
sampling network (Lesht 1988a). The effect varies with the 
signal4 -noise ratio, but fairly dense sampling networks (1 station per 
288 km 9 seem to be able to resolve spatial signals if they are at least 
four tknes the level of the now. It may be possible to use 
crosvalidatbn to estimate the signal-to-noise ratio, but this idea has 
not been tested. Although the smoothing inherent in spatial 
interplation tends to reduce the effects of random fluctuations in 
the data, the uncertainty estimates obtained probabiy are 
somewhat low when analyticai noise is present (but not large 
enough to overwhelm the spatial signal). 

Without w i d e  sampling, it is impossiiie to estimate the uncertainty 
ass0ciated with the reference netwok This is a comequmce of the classic 
sampling problem. All of the information we have about the system comes 
frm the reierence network If the reference network is large enough to be 
itself dvided (to produce 'replicate" reference networks), empirical estimates 
d the uncertainty asscdated with smaller 'reference' networks can be 
made. edecause this was ncd possible in Green Bq, the estimated 
uncertainty must be considered relative to that inherent in the original 



sampling. 

One attraction of the inverse distance-weighting spatial 
interpolation algorithm used in VWA is that it is very easy to 
incorporate into Monte Carlo codes. Other, perhaps more 
sophisticated spatial interpolators (e.g., Krging), that could be used 
instead would be much less efficient computationally. Although it is 
generally agreed that Krging is more accurate than other spatial 
interpolation methods, to my knowledge, Kriging has not been used 
in production volume-weighting codes. In cases where the 
sampling localions are fairly evenly distributed (unclustered), the 
advantage of Kriging over inverse distance methods is very slight. 

This method of spatial analysis is not applicable to all types of 
variables that might be used in a mass balance model for toxics 
(e.g., contaminant concentrations in fiih). Uncertainties in variables 
that cannot be expected to have spatial structure but are still 
sampled must be estimated by other techniques. 

Extension-Deterrnining 
the properties of Optimal 

The analysis described above was aimed at determining the 
relationship between the uncertainty of an estimate and the size of 

kplingN- a randomly configured sampling network. Selecting the stations 
carefully would probably reduce the uncertainty associated with a 
network of a particular size. Because a very large number of 
"candidate" networks could be selected from a reference network, 
however, the way to do this objectively is not immediately clear. In 
the case of Green Bay, I explored several possible methods of 
selecting efficient subsets of the original reference network. I found 
that two statistical approaches (successive elimination of the 
stations with the highest average spatial covariance and successive 

. elimination of the stations closest to the center of a cluster formed in 
a five-dlmensional space based on the turbidity values for each 
cruise) were generally unsatisfactory. Experiments with an empirical 
quantification of the relative success of each station during the 
Monte Carlo runs were more successful and led to identification of a 
=-station network that would have a greater than 88% chance of 
producing a whole-bay estimate within 1C% of the ''true'' value. Tests 
with data from cruises not included in the Monte Carlo runs 
confirmed that the 22-station network met the specified uncertainty 
criterion for all cruises. 

In more recent work (Lesht 1991a) I have experimented with using 
me combinatorial opthizatbn method of simulated annealing 
(Kirkpatrick et a/. 1983) to try to determine the general features of an 
"optimar sampling network. The basic idea is that me uncertainty 
associated with field measurements of a spatially distributed variable 
can be reduced by using a sampling netwfJrk configured to 
minimize the errors associated with the spatial interpolation. If the 
features (0.g.. station density, non-isotropy) of optimal networks can 
be identified and generalized. then these features could be 
incorporated into the design of new sampling networks that should 
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provide estimates with reduced (relative to randomly configured 
networks) uncertainty. My preliminary results indicate that the 
approach is feasible and that the simulated annealing algorithm 
efficiently finds a "near-optimal" network configuration., 

According to O'Neill and Gardner (1 979), the three major sources of 
uncertainty in environmental models are (1) the uncertainty 
associated with the model structure (Le., that uncertainty resulting 
from attempting to descrbe a complicated system with a limited 
model), (2) the uncertainty associated with assigning values to 
model parameters (whether the parameter values are determined 
by laboratory or field experiment of by "tuning" the output of the 
model to match field observations), and (3) the uncertainty 
associated with natural variability in the system's forcing variables 
(8.g.. meteorological or loading variability). The fhst source of 
uncertainty, which refers to the structural uncertainty of the model, is 
perhaps the most serious (in terms of the difficulty of evaluating it 
and its effects on long-term predictions) and can perhaps be 
addressed only by considering a wide suite of alternative models. 
Given alternative models however, each will be affected by the 
other two sources of uncertainty. We may ask how we can use our 
knowledge of the uncertainty associated with In Situ observations to 
help estimate and reduce the uncertainty associated with model 
predictions. In this section, I describe a method that uses in sifu 
descriptbns to quantify the combined prediction uncertainty due to 
imprecise parameter definition and stochastic forcing. The method 
alsa ranks the parameters that are most important in terms of 
producing successful simulations so that efforts can be directed 
toward reducing their uncertainty. 

In many environmental models, final parameter values are 
determined by "tuning" the model output to a set of field data. This 
method produces a single parameter set that is then used for model 
simubtbns. The parameters themselves are widely recognized to be 
uncertain, and the effect of this uncertainty on model predictions is 
often estimated by direct sensitivity of differential methods. Thee 
memods (age, first-order sensithrity ana6pis) may be inaccurate or 
dfficulf to apply, especially when the models are nonlinear or the 
parameter uncertainties are large. 

Onh/ recently (DiToro and Parkerton, personal communication) have 
methods been developed that incorporate some estimate of the 
uncertainty in the field observations into the differential method of 
estimating the uncertainty of the prediction. Limnological data are 
generally sparse, however, and it is often difficult to apply strict 
statistical criteria to either calibration or validation. As an 
alternative, it is instructive to use Monte Carlo methods to identi a 
set of "acceptable" parameter vectors rather than attempting to 
determine a single "besY parameter vector by using some 
optimization technique. This set of parameter vectors, when used to 



simulate some test data set, produces an ''acceptable" simulation as 
defined by some objective set of criteria. In terms of forecasts, when 
an acceptable set of parameter vectors has been determined, 
each member of that set is considered to produce an equally valid 
forecast in terms of the uncertainty associated with the data used to 
define the acceptance criteria, This approach, known as 
regionalized sensitivdy analysis (RSA), was first used by Spear and 
Hornberger (1980) and has been described in some detail by Fedra 
et a/* (1981). by Hornberger and Spear (1981). and by Hornberger 
and Cosby (1985). Recently, Lesht et a/. (1991) used this method to 
examine a simple mass balance model of phosphorus in me Great 
Lakes. 

Method Assume that a time-dependent environmental model may be 
represented by the set of differential equations 

where x(t) is a vector of state variables; u is a vector of forcing 
variables; is a vector of (say) n model parameters, here assumed 
constant with time; x, is a vector of initial conditions; and i is time. In 
this notation, the structure of the model is embodied in the (possibly 
nonlinear) vector function f. Given a set of forcing variables and 
initial conditions, me function I is a mapping from the domain of all 
possible parameter vectors 0 to a range of ail possible state variable 
solutions (x). We may define an additional set of vector functions g 
that reiate the state variables (x) to some set of (say) rn 
environmental measurements (y), (e.g., In Situ field observations). 
The functions g may include simple direct mappings of the state 
variables, or they may be more complicated functions of the state 
variables. The In dtu field observations are clearly necessary for 
evaluating the model performance; we must have some idea of 
how the natural system is behaving before we can determine 
whether the model produces a reasonable representation of the 
system. 

Wt)/dt = f{W,Jo; t3(4) 

In RSA we use h srtu observations (perhaps in combination with other 
information) to define a set of criteria that describes the behavior of 
the modeled system. We then use Monte Carlo methods to 
randomly choose parameters values (and possibly initial conditions) 
from some feasible domain (1 and use those parameters to produce 
model predictions (x mapped via functions g to y). If the model 
predictions satisfy the criteria defining the system behavior, then the 
randomly selected parameter vector is classified as acceptable. 
Parameter vectors resulting in simulations that do not satisfy the 
behavior criteria are classified as unacceptable. If the problem is 
fairly well constrained in terms of the behavior criteria, the 
acceptable and unacceptable parameter vectors will separate in 
regions of parameter space. Once determined, the set of 
acceptable parameter vectors may then be used (perhaps in 
conjunction with stochastic forcing variables) to generate a 
population of future behaviors. The uncertainty of the model 
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predictions is described by the statistical distribution of the future 
behaviors. Furthermore, and perhaps of more immediate interest, 
comparison of the statistical distributions of the acceptable and 
unacceptable parameter vectors makes it possible to identit the 
elements of the parameter vector (that is the individual parameters) 
that are most important for producing acceptable simulations. If 
effort (e.g., additional field work or experimentation) is to be 
expended in reducing the uncertainty associated with any 
parameter, RSA provides a way to priorithe those expenditures, 
Finally, Hornberger and Spear (1981) propose that me method could 
be used to examine management atternatives as well. 

Case Study - Great Lakes 
T d  p h o s p m  Model 

Atthough our work was exploratory. we had two goals in mind when 
we (Lesht et a/. 1991) applied RSA to a simple model (Chapra 1977) 
of Great Lakes total phosphorus. We were interested in (1) using the 
model to check the internal consktency of over a decade of 
phosphorus loading estimates and In situ observations of total 
phosphorus concentrations and (2) identifying the model 
parameters that were most important for producing an acceptable 
simulation. Our motivation for answering the first question was to see 
if the RSA method could be used to determine the levels of 
uncertainty that could be tolerated in the loading estimates for a 
given level of uncertainty in the fild observations and model 
parameters The second question was motivated by our curiosity 
about which parameters had the greatest effect on the simulations 
and could benefit most from further study. 

Our application of RSA was relatively straightforward. We defined 
the system behavior in terms of the annual average total 
phosphorus concentration measured in each of the major basins of 
the Great Lakes from 1980 to 1986. Eleven b i n s  were modeled, 
but, because of limited field observations, only Seven basins were 
used in the analysis. The acceptance criteria we used were based 
on an arbitrary “confidence interval” around the observed mean 
v~lues. We added a stochastic element to tho acceptance criteria 
by accepting a simulation if it WQS within the confidence intervals 
80% of the time (Le., if the simulation matched 35 of the 43 
observations deflning the behavior of the system). The model was 
run to simulate the period 1974 to 1986 by using phosphorus loading 
&hates made by the International Joint Commission CIS the forcing 
variable. Parameter values and iniiial conditions were Selected 
randomly from rectangular dktriiutbns centered on the calibration 
values presented by Chapra and Sonzcsgni (1979). Two thousand 
model runs were made; these were split almost evenly between 
acceptable (1 01 9) and unacceptable (989 ) simulations. 

&xsmination of the cumuletive frequency distribution functions of the 
parameters in the two sets of simulations (e.g.. Fig. 3) showed that 9 
of the 40 model parameters were important (as determined by the 
Kelmogorov-Smirnov statistic) for producing an acceptable 



simulation. Of fhese 9, 6 parameters represented the apparent loss 
of phosphorus from the water column to the sediments, 2 were the 
advective flows into and out of the western basin of Lake Erie, and 
the last was the initial condition assumed for Lake Superior. 
Interestingly, one of the observations we used to define the system 
behavior (total phosphorus concentration in western Lake Erie 1982) 
was missed by all 2,000 simulations. We interpreted this to be a 
datum that was not representative of the annual average 
conditions we intended to simulate with the model. It also could be 
interpreted as an example of structural inadequacy of the model. 
The high concentrations observed in 1982 probably were related to 
the unusual frequency of spring storms that resuspended much of 
the total phosphorus contained in the sediments of the shallow 
western basin. The model, based on constant parameters, was 
unable to simulate this "anomalous" condition. 

We have not yet used our results to examine the relationship 
between uncertainty in loadlng estimates and the field observations. 
The basic idea would be to assign different levels of uncertainty to 
the loading estimates and use the set of acceptable parameter 
vectors to simulate a population of predictions that could be 
compared with the field data. By definition, the acceptable 
parameter vectors will all satisfy the behavior criteria when the 
model is forced with the orginai loading estimates. The purpose of 
the exercise wouM be to determine how much we could perturb 
the loading estimates before some percentage of the previously 
acceptable simulations became unacceptable. This would be yet 
another way to assess the relative value of attempting to further 
reduce different sources of uncertainty. Similarty, if independent 
estlmates of the loading uncertainty were available, it would be 
possible to couple them with stochastic simulations made by using 
the acceptable parameter vectors to estimate a target accuracy 
for the field observations. 

Problems One attraction of RSA is that it allows us to develop a set of 
parameter vectors that result in acceptable simulations. The utility of 
producing such a parameter set obviously depends on the 
discriminatlng power of the behavior-defining classifkatiin scheme. 
In the case of the Great Lakes total phosphorus model, acceptable 
simulations were based on only one basic description of the system, 
the confkfence limits of the observed annual average total 
phosphorus concentrations This description seemed to provide 
adequate discriminating power (because half of the simulations 
were rejected as unacceptable) and was suited to the model, but 
more complicated models will require much more elaborate 
descriptions of me system. 

end Urn- 

We assumed that the loading estimates forcing the model were 
exact. Although it is possible to accommodate stochastic loading 
functions, the effect of the accommodations on the identification of 
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critical parameters is not clear. For a given set of behavior defining 
criteria, me number of acceptable simulations would probably be 
reduced and more model runs would be required to produce a 
sufficient simulations for parameter discrimination. 

Our analysis showed that important information about parameter 
dmerences can be determined from a univariate analysis of the 
parameter distributions More complicated models would be 
expected to have multivariate relationships among parameters. 
These relationships may not be evident from the univariate analysis 
alone. The exirtig methods for determining these relationships are 
somewhat cumbersome. Thus, simulating the multivariate 
relationships for future projectbns may be problematic. 

The basic theme of this paper is that much can be learned from 
information that has already been collected; indeed, this 
information is critical for designing any new sampling program. Lake 
Ontario is unique among the Great Lakes in the amount of sampling 
that has been done and should provide a very rich data set for the 
modeling initiative. Not only will these data be useful for quantifyng 
the uncertainty associated with analyses of fleld data, but they also 
will be useful for assessing the uncertainty associated with all phases 
of the modeling process. In terms of specific applications to Lake 
Ontario, 1 suggest the following applications: 

+ Conduct a spatial anavsis of survey data to assess the 
relative importance of the uncertainty associated with 
spotial heterogeneity. Several different variables should be 
analyzed, including whatever data are available for toxics. 

If spatial heterogeneity is found to be important, then use 
Monte Carb methods to determine the expected 

uncertainty associated with sampling networks of different 

sizes. If new sampling is required, use Monte Carb methods 

to optimize the netwrk design. Examine alternative ways of 
expressing descriptbns of the system to be modeled (ag., 

volumeweighted means, frequency distributions). 

e Perform regionalized sensitivity analysis on candidate 
models. Use atternative definitions of the system's behavior 
to check the sensitivity of the identification of critical 
parameters. Determine the appropriate prediction limits 

(Le., time scales for each model) and conduct RSA on an 
ensemble of independent data sets by using the candidate 



models or derivatives. Compare identification of critical 

parameters as a check on the stability of the uncertainty in 
model structure. If additional sampling is contemplated, use 

the RSA results to identify the parameters that are significant 

for understanding the modeled system and design the 

sampling program to limit the values of the. variables that 
are critical for identification of the significant parameters 

(Le., define tighter constraints). 

&t2SdkdhSZESrnd The following unresolved issues and questions should be addressed 
by the workshop: -w= 
* In my opinion, the most important unresolved issue involving 

model uncertainty is a very general one, Despite recent 
attention, methods of estimating model uncertainty are still 
rather poorly developed. Especially in the case of complex 
environmental models, we should be very careful that 
having the ability to provide some metric of uncertainty 
with our models, does not tempt us to believe that these 
metrics allow us to quantify the likely difference between 
the model predlctions and what will actually occur in 
nature. The potential danger involved with specifying a 
quantitative measure of uncertainty is that those who make 
management decisions may act on them as if they are 
fact. We must find a way to make it clear what the 
uncertainty estimates really mean in the context of using 
the models for regulatory purposes. 

+ The previous comment notwithstanding, I think that it also is 
important to consider how we express uncertainty in our 
model predictions. The metric@) we provide should be 
related to the anticipated use@) of the model. in me 
regulatory environment this consideration puts the burden 
on the modeler to understand how the model is expected 
to be used. 

* Methods must be explored to deal with structural 
uncertainty. We can all cite many examples of models, 
developed under one set of assumptions, that failed 
miserabty when unmodeled processes affected the 
modeled systems. In many cases our uncertainty analysis 
will implicitly include structural inadequacy with the 
uncertainty in parameter values. 

* We must carefully consider the relationship between the 
state variables of the model and the measured 
characteristics of the system. How well do we understand 
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the functional mapping between the model state variables 
and our field observations? Comparing the model results to 
field observations is of little use if the two represent different 
things. 

I have discused two sources of uncertainty in this paper. The first is 
the uncertainty resulting from incomplete sampling of a spatially 
heterogeneous variable. With the procedure used in the Green Bay 
Mass Balance Study, this uncertainty can be quantified and its 
dependence on the size of the sampling network can be 
determined. Given a description of the uncertainty associated with 
field observations, the spatial uncertainty can be reduced by 
objectively designing any future sampling network. 

The second source of uncertainty I considered is that inherent in 
modeling a stochastic svstem. The model structure, the model 
parameter values, and the input forcing functions all are uncertain. 
The combined effects of these uncertainties, however, can be 
assessed in relationship to the uncertainty associated with the field 
observations. Efforts to reduce uncertainty can be prioritized by 
using Monte Carlo methods to assess the relative value (in terms of 
the model predictions) of reducing particular sources. 

In his review of uncertainty in water quality models, Beck (1 987) said, 
"The way in which a model is derived from, or evaluated by 
reference to the In srtu field data must clearly influence both its 
ability to predict future behavior and the confidence to be 
attached to that prediction." It is must be understood that, txxx~use 
our view of nature is limited, the Vue" behavior of the system can 
never be determined exactly. Our goal then must be to provide 
some objectlve evaluation of our ability to represent that behavior. 
Because it explicitly includes the stochastic nature of the system, 
Monte Carlo analyses are attractive ways of providing the required 
evaluation. 

The work described in this paper was supported by the U.S. EPA's 
Great Lakes National Program Office under Interagency Agreement 
DW88931897-01-0 with the U.S. Department of Energy, and by the 
U.S. Department of Commerce, National Oceanic and Atmospheric 
Administration (Great Lakes Environmental Research Laboratory) 
under Interdepartmental Purchase Request 40WCNR901465, through 
U.S. Department of Energy contract W-31-109-Eng38. 
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I. Introduction 

The subject of this workshop is: Reducing Uncertainty in Mass Balance Models of Toxics in 

the Great Lakes: Lake Ontario Case Study. In this white paper w e  present a methodology for 

estimating the uncertainty to be associated with (1) the calibration data and (2) the model. The 

model uncertainty is used to establish the u n c d g  of (3) the model parameters and (4) the 

model projections. This methodolog is intended to answer the questions: "How good is the 

model?", and "How good are the projections?" 

The methodolog is based on an analysis of the residuals: the difference between the 

observed concentrations and model calculations. The initial problem is to apportion the 

uncertainty between data uncertainty - which are due to differences between the true data mean 
and the sample mean used in the calibration - and other sources of variations, which we call model 
uncertainty or model error. Once this is done, the parameter uncertainty is estimated by requiring 

that all the model uncertainty be accounted for by parameter uncertainty. W e  compare this result 

to the result obtained from appiying the iMavimum Likelihood method of estimation. Finally, the 

uncertainty of the parameters can be used to assess the uncertainty of the model projections using 

for example, ,Monte Carlo methods, or from the first order analysis presented below. 

11. Framework - 'fhe Classical Case 
It is important to realize that classical model uncertainty analysis is based on a probabilistic 

model that makes certain explicit assumptions. Consider a simple linear model of concentrations 

versus time: 

where: 

c, = Observed concentration at t, 



f(g, t,) = Modeiconcentration at 1, 

[::I = Model parameter vector: i = 

E, = Random fluctuations about the true mean 

It is explicitly assumed that the model: f ( it t ) - e + e2 t , represents the true mean of the random 
process and that E, represents random fluctuations about the mean These random fluctuations 

are assumed to be due to phenomena that are not included in the model. The only problem is to 

estimate the parameters of the model, 8 I and e,, and their uncerrainties. 

The random fluctuations, E,, are thought of as real, and since they are not captured by the 

model, they are referred to as model error. However, this nomenclature should not be taken to 

mean that the model is actually in error since it is assumed that the model represents the true 

mean of the random process. It is simply that the model in incomplete; it cannot compute the 
fluctuations, E,. To this extent only are the fluctuations are considered to be model errors. 

For these linear models, a full statistical theory of estimation and uncertainty exists [Liebelt, 

1967, Searie, 19711. The statistical theory is known as (multiple) linear regression. The 

assumptions of regression analysis are: 

1) t, is known exactly. 

2) E, = N(0, ai). That is, the random variations are normally distributed with 

unknown variance u f . 

The modei is correct. The underlying relationship between c ( t , 1 and 6, is 

aaa& a straight Iinc 

3) 
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It is interesting to note that even for this simple model, the assumptions are somewhat 

restrictive. There are many cases for which t, are quantities that are measured with less precision 

than time and, therefore, are not known exactly. Also the structure of the random component of 

the model may be more complicated - for example the variance may depend on f ,  , 

But the most restrictive of the assumptions is that the model is euzctly a straight line. Of 

course, if it were known that the model was deficient in some way, Le. not a straight line but 

somewhat curved, then presumably that w o d d  have been included in the model in the firse place. 

Hence, although the assumption that the model is a true representation of the mean seems an 

unreiilistic assumption, it appears to be inescapable since, presumably, every effort has been made 

to make the model as realistic as possible. 

FOP a straight line model, the following are available: 

1) Optimal estimates, 8,, 6 I and 5 are available for the parameters: e I , e and 

a:. 

2) Parameter uncertainty covariance, Ee for 6 I ,6 where: 

E{} denotes the expectation, ie. the probabilistic average of the quantity in 

brackets. 

3) Confidence limits for projections: cSr, c, cgSx 
Our objeaive is to find an analogous methodology that is applicable and workable for mass 

balance models. 



111. Methodology 

Mass balance models compute concentrations of various constituents in various model 

segments at various times. Consider the vector of concentrations of these constituents, ordered by 

w e  and model segment. As a concrete example, consider a simple model of Lake Ontario with a 

water column (w) and a sediment (s) layer. The dissolved (d) and particulate (p) concentrations of 

two PCB homolog (#1) and (#2) are being considered together in the modeL Then, the 
concentration vector can be defined as: 

where homolog number, dissolved or particulate, water column or sediment are denoted by the 

subscripts. In general, let: 

c, = c(t,) = Observed mean concentrationvector at t, 

7(6, t i )  = Modeiconcentrationvector at t, 

= Model parameter vector 

The relationship between the observed mean concentrations and the model results is: - 
(3) 

- - -  
c i  = m.t,i + E, 



where c, are the residuakxhe differences between the observed mean concentrations and model 
computations. 

The residual errors are assumed to arise from two distinct sources. The first source arises 

because the observed mean concentrations are not the true means since they are based on a finite 

number of measured concentrations. The second source are random fluctuation that are 

assoCiated with all the phenomena that are not explicitly included in the modeL This second 

source is termed the random model error. Thus: 

- - -  
E i  = si + ti 

where: 

g, = uncertainty of the mean concentration 

ci = random model error 
Therefare the statistid model that includes these two sources of ffuctuabns is: 

It is used in the uncertainey analysis below. 

A. Parameter Estimation - Maximum Likelihood 
A complete statistical methodology would include methods for compuring the optimal 

estimates of the parameters, g, such that some criteria that measures goodness of fit is minimized. 
Such a formulation is available within the context of maximum likelihood estimation [Schweppe. 

1973; Sorenson, 19801. Ifwe ignore for the moment the distinction between data uncertainty and 

model error, then the relevant equation is: 

Ifwe assume that: 



that is, that the random fluctuations are normally distributed with zero mean and unknown 

covariance, E,, then it turns out that a full theory is available. The optimal estimate for the 

residual covariance matrix is: 

which is simply the average of the residual variances and covariances. The optimal parameter 

estimate, 8, is found from the condition: 

6- min I & [  (9) 
e 

where E ~ is the covariance of the residuals, given by e¶.@), and I 1.1 is the determinant of t 

In order to compute these maximum likelihood estimates it is necessary to find the parameter 

vector that minimizes the determinant of the residual covariance matrix. Note that the method 

automatically accounts for the proper weighting ta be given to each of the concentrations in the 

vector, 2. This result is quite interesting and, for certain problems, it may well be a feasible 
method for generating optimal parameter estimates. 

The parameter uncertainty covariance is also known for N large: 

where: 

the Jacobian of the model solution. Note that computing the Jacobian of the solution requires only 

that the model be run an additional time for each parameter in g. The Jacobian can be computed 
by a simple difference approximation to eq.( 11). 



In fkt, we had proposed to use this parameter uncertainty covariance for any calibrated 

model even if the parameter estimates were not computed using the maximum likelihood 
equations given above, although no justification was given for this suggestion other than it 

appeared to be an expedient choice since it was a known solution pi Toro and van Straten 1979; 
van Straten, 19831. 

There are arguments to be made for not using optimal estimation methods. Calibration is 

not just minimizing residual errors. It is necessary to balance the godness offit with other more 
subjective criteria, for example, the physically realistic range of the parameten, other independent 

estimates of the parameters, and the degree to which these parameters values are judged to be 

reliable. In practise, it has been found that unless the problem is well constrained and only a few 

parameters are to be estimated, the optimal methods are temperamental and can produce strange 

resuits. The numerical minimization problem in eq.(9) is not trivial. Local minima abound in the 

surface defined by the equation: I X. I in multidimensional parameter space. 

Thus, instead of insisting on optimal parameter estimation, we accept the hand calibration as 

the "optimal" parameter estimates. The parameter uncertainty methodolog discussed below is 

designed to accommodate this view of parameter estimation. 

B. Estimating iModel and Data Uncertainty 

The first step in computing parameter uncertainty is to isolate the model error. That is, it is 

necessary to esthate the magnitudes of the model error and data mean uncertainty from the 

residuals. 'Kis is done as follows. 

For certain times and model segments, there are a number of measurements that are 

combined to estimate the mean value of the data in that segment. Let the index J denote this 

replication. Hence the statistical model becomes: 

where: 



- -  
ci.,-c(tl) forreptication j- 1 ,..., n, 

Ed is the model error at time t, 

g,., is the random fluctuation about the data mean at time t, and replication j. 

The problem is to estimate the model uncertainty covariance: 

1, -E(titT) 

and the data uncertainty covariance. 

(14) 

from the residuals. It turns out that the problem can be solved using the vector version of the 
One-Way Random Unbalanced Analysis of Variance Model (ANOVA) [Searle, 19711. This can be 

Seen if eq.(12) is written in terms of the residuais which more closely resembles the standard form 
for AiiOVA models: 

Z,.] - I.L+ t,+ Ll (15) 

where is the mean of the residuals, c, contributes :he variance due to model uncertainty; and 
$,,, contributes the variance due to data replication. The ANOVA methods estimate the 
magnitude of these variances. The matrix ANOVA methods are analogous except that they 

estimate the covariances. 

C Estimating Parameter Uncertainty 

The fundamental idea is to compute the parameter uncertaincy covariance that accounts for 

the observed model error covariance. That is: given the mapitude of the model error covariance: 

Xt, how large must the parameter uncertainty covariance, E,, be in order to account for all the 
model error cr)variance. 
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Note that w e  assume that this is the proper way to compute the parameter uncertainty 

covariance. In effect, this method of estimating parameter uncertainty assumes that all the model 

fluctuations are actually caused by fluctuations of the parameters. Thus the model produces the 
mun concentrations, and the parameter uncertainties produce the random component. W e  will 

compare the result of this point of view with the maximum likelihood results below. 

In order relate modei uncertainty to parameter uncertainty, it is necessary to have the 
relationship between a parameter variation: G, and the resulting model variation. Let ft be the 
model fluctuation due to the parameter flucuation : - - - -  si = c,-f(e+ 68, ti) ('16) 

Expand the model in a Taylor series and retain only the first order terms: 

?(e'+ 65, t i )  = 7( e', t i )  + JiE 
where: I 
is the Jacobian of the model solution with respect to parameter variations. Then: 

The the covariance of fi is found as follows: I 

where: 

--T Z,=E{6868 } 



The problem is to solve for the parameter uncertainty covariance, E,, @yen the model uncertainty 
covariances, ~ , ( i ) ,  at times, t, . 

1. Estimating Z, - The Constant Case 
The equation that relates ZB to Er(i) is: 

Ic(i) = J,Z,J: 

Consider, first the case where there is no time variation in the problem so that Z, ( i )  = Z <. 

Then the relationship between model uncertainty covariance and parameter uncertainty 

covariance is: 

= JZ,J' 

This equation can be solved for .Xe if an matrix inverse exists for the Jacobian rnatriu, J . Let the 
inverse of J be denoted by J -. Then, the solution to eq.(23) is: 

In fact, Generalized Inverses do exit [Pringle and Raper, 19711. For example, 

J -  = ( J~ J)-' J +  (25) 

if the inverse of J T  J exits. We use this Generalized Inverse to solve for Ts and call it the 

Generalized Inverse Estimator (GIE) of the parameter uncertainty covariance. In fact, it satisfies 
the condition: 

E,- min t, IIEt-JZ,Jrll 

where the matrix norm I I h I I of any matrix A is defined as: 

IIAiI- Za:.j 
i. i 



Thus, the GIE is the matrix which is the element-by-element least squares solution of the matrix 

equation that requires the parameter uncertainty to account for as much of model uncertainty as 

possible. Further it can be shown from the properties of the Generalized Inverse Fringe and 

Rayner, 19711 that the GIE gven by eq.(24) is equivalent to: 

z, = (J~z;' J)-' 

2. Estimating To - The General Case 
For the case where model variations occur at the various times, t, , it seems reasonable to 

require that the parameter uncertainty account for the average observed model uncertainty. Thus 

we require that: 

1 
N L- I 

zc = - z ( J J ~ J T )  
It a n  be shown that the GIE for this case is: 

This isessentially a time averaged version of eq.(2S) before the final matrix inversion. 

3. Relationship Between GXE and MLE Panmeter Uncertainty Covariances 

W e  have presented two different estimates o€ the parameter uncertainty covariance. The 

Grst is derived from appiying the principle of Maximum Likelihood and assuming that the 

calibrated parameters are optimal. The result is: 



where we use the model uncertainty covariance, Z<, rather than the residual uncertainty 

covariance, Tc, so that only model error causes parameter uncertainty. The second estimate 

follows from the principle of maximizing the parameter uncertainty using the Generalized Inverse. 

These two estimates are related as follows: 

so that 

What is striking and unexpected is that there is any relationship at all between two such 

dissimilar approaches to the problem. They differ only by the $ factor. 
It can be shown that the maximum likelihood estimate is optimal in the sense that no better 

parameter estimates can be made within the assumptions of the method [Sorenson, 19801. The 

GIE provides the most pessimistic estimate of parameter uncertainty. All the model uncertainty 

translates to parameter uncertainty and additional calibration data does not necessarily decrease 

parameter uncertainty. Hence, one would expect that the true parameter uncertainty covariance 

for a hand calibrated model to be bracketed by these two estimates: 

A simple Uustration may hdp &rify the situation. 
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4. Illustrative Example 

The difference between the two parameter uncertainty covariance estimates can be 

understood by examining the simplest model, a single constant scalar. 

For this model, the statistid problem is to estimate the mean, 9 

Jacobian for the model is: 

of the concentrations. The 

= 1  dj( e'. t i )  
2e' 

J . =  

The ?I/ILE for the parameter uncertainty for 0, is: 

(37) 

where IC = [a:] is the 1 x I covariance matrix. The diagonal element is the variance of the model 

uncertainty. In this case ut is the variance of the observed concentrations. The result is the well 

known formula for the variance of the sample mean. 

By contrast the GIE is: 

This is not unexpected since the model is the parameter itsetf: T( e'. f i )  = e 

parameter uncertainty should be equal to the model uncertainty. 

and therefore the 



This simple case suggests the following interpretation. The ML method assumes that the 

model is true. The presence of the random fluctuations, e', prevent the estimation of the true 
values of the parameters, G. When a ML estimate of 
from the true parameter vector, 4 e The covariance of this variation is: 

is made, 6ULE, that estimate can differ 

- M M L C  gf} = Z;LE (40) 

i.e. the parameter uncertainty covariance. As mare and more data are added to the estimate, the 

parameter uncertainty covariance decreases as $. The reason is that the random flucmations, ti, 
can be more effectively averaged out and their presence are less of a hindrance to Gnding the true 

parameters. 

By contrast, the GI estimator does not assume a set of true parameters for which an optimal 

estimate has been made. It simply assigns the parameters as much of the model uncertainty 
covariance as is possibIe. Adding more data to the calibration may not reduce the parameter 

uncertainty covariance at all ( no 
the actual parameter uncertainty covariance. In any case, it is a simple matter to use both 
estimates (they differ only by the leading h), and examine the effect on the ma= nnitude of the 
model projetsion uncertainty. 

behavior). This appears to be a rather pessimistic estimate of 

D. Projection Uncertainty 

The second principal reason for evaluating model uncertaincy is to calcuiare the uncertainv 

of projections made using the model. The procedure is to run the modei to evaluate a remedial 

alternative: 

where the superscript P indicates that this is a projection. In order to evaluate the uncertainty of 

the projection, the relationship between a parameter variation E, and a concentration variation 
a: is required: 
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to first order in G. The model uncertainty covariance for this magnitude of parameter variation 

is: 

P CIE P T  = J i  2, J i  i 43) 

Note that the parameter uncertainty covariance, ZZiE, plays a dominant role in determining the 

magnitude of model uncertainty. Also note that the 3 term, would be included if the ML estimate 
e were intended to be used. 

The diagonal elements of E:.,, diag[ E:.,] are the prediction error variances for time t, . 

Hence the approximate 95% confidence limits are: 

(44) 

where the & term is included €or the ,ML estimate of parameter uncertainry. For the GI 
estimate, set iV = 1 . Therefore, in practice, the ambiguity between an MLE and GIE 
interpretation is 5. For example, if N = 10, then & = 0.32 and the confidence limits would be 
- 32% narrower using W E  versus GIE. It is a matter of judgement whether or not to include the 
A “N since it depends on whether one thinks the parameter estimates are optimal in the sense of 

Maximum Likeiihood, or that the parameter fluctuations are the cause of the model error 

fluctuations and should be reflected in the parameter uncertainty. 

E. Status of Applications 

W e  have tested the ANOVA method for discriminating benveen data and model uncertainty 

using artificial data sets and indeed the method can estimaee the two covariance mawices if 



suEciect data are available [Di Toro, D.!d and Psrkerton, T.F. 19911. Some dEimities c a r  is 

;;le kiia S ~ O  are sina;t Tic GIE rnzihoddo~ has k e n  iared :O see if k k ~ 7  i; a: T ~ ~ X C :  :he 

parameter uncertainty covariance for the case where the model errors are pnerated by fkctuating 

parameters. For large data sets, the method is quite reliable. W e  arc in the process of tesring the 

method using more realistic mass balance and food chain modeis and a c d  aata sers. F:t&inary 

iaults hditate *at there m y  be x~mc pa5d limitations imposed @ s ~ d !  &D scs [E Tcro, 
D..W and Parkenon, T.F. 19921 
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Ln ~ ~ n n ~ t e c h  

This paper discusses model paradigms and explores the issue of 
determining model complexity. As we discuss later there are 
situations. in which simple models are adequate, but other situations 
require more complex models, whish of course are more faithful to 
reality. A key 'sue which must be addressed by modelers is then the 
"optimal" level of complexity. This is a matDer of judgement and is 
the essence of the "art of modeling." A convincing argument can 
be made that the modeler should select a level of complexity 
appropriate to the question being addressed. We therefore discuss 
in some detail the purposes of, or incentives for, models. 

Perhaps to add a touch of dass to these proceedings, we should bear in 
mind the Principle of Parsimony stated by William of Occam 650 years ago, 
and referred to as 'Occam's Razor'. 

"Essentia nm sunt muhipiicanda pt-aeter necessitaem" 

which can be translated as "What can be done with fewer 
(assumptions) is done in vain with more" or colloquially in this context, 
"Don't make mode of toxic chemicals in the Great Lakes any more 
complicated than is ahsolutety nwesan/.. 

There are two primary incentives for dewloping models of contaminant 
behavior: to assist rational management, and to further the science of 
contaminant behavior. Essenthlly, a maSS balance model brings together 
information from a vadety of sources to synthesize a statement d m a s  
balance, for example, where the contaminant has accumulated, its 
cencentrations, its sources, its rates of transport and transformation and 
how fast cordaminam inventories are cfmging Because lakes are complex 
systems with variations in space and time, we can never hope to establish 
exad mas balances, only approximat.ions In many respects, assembling a 
lake mass Mawe is like trying to Wbw the progress of a ball game, but 



only part of the field is Visible, and then only for part of the time. W e  have 
some items of information (usually concentrations at a speciiic time and 
place, with error) and the task is to deduce all the missing items (usually 
masses and fluxes). In some cases, we may be quite successful, and in 
dhers the information is so fragmentary that any mass balance is highly 
speculative. 

The key point is that if an approximate mass balance can be 
established, it represents a very powerful assembiy of data whose 
value greatly exceeds the sum of the parts. From the management 
perspective, it enables various remedial strategies to be tested and 
justiied - it exposes possible futures. From the scientific viewpoint, it 
represents attainment of the goal of understanding the entire 
system's dynamics as distinct from having piecemeal information 
about its parts. 
Because me model resutts are merely estimates, it is critically h?XS 
important that the model documentation conveys information 

and about: 

How accurate the results are perceived to be, Le. errorlimits. 
Often, these will be judgements of error magnitude because 
there is no "truth" for comparison, nor may there even be 
other estimates from independent sources. 

= What assumptbns and simpliflcotions are inherent in 
thecalculation, so that the reader can form an opinion 
about the model's credibility. 

Here there are two limiting situations. A very simple model must 
contain sweeping assumptions which are easily understood but 
which are so sweeping that the model lacks credibility. A very 
complex model must contain numerous parameters and equations 
and mathematical operations. Are the parameter values correct? 
Are the equations correct? Have the operations been done 
correctty? The time required to check an these factors can be 
considerable. Most "managers" lack the time or skill to perform 
these checks, thus they must rely on other parties to verm/ the 
model's structure and contents. A complex model will require many 
days of intensive study, thus verification will be expensive. Usually, it 
is not done. The model thus may lack credibility because it is too 
difficult to verrfy. It is not peer reviewed. 

One solution is to have several modeling teams address the same 
problem and compare the results. This is similar in concept to the 
analytical chemist's "round robin". Comparisons between models 
may contain the same error, however, the comparison should reveal 
gross discrepancies. 

Perhaps a m  condusian is that models must be designed with a level of 
complexity appropriate not only to the environmental situation being 
addressed, but also to the proposed application, whether it be scientific or 
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managerial. The manager must be comfortable with the model and must be 
wiiling to d m e  adequate resourcss for verification. Purchasing a model is 
not like purchssig a car. The car's performance is predictable from past 
experience. The model is 'one of a kind', a custom effort of unknawn 
quali. 
~ o s t  water quality models are compartmental in nature, i.e. they divide the 
system into a number of compartments which are (usually) fixed in space, 
have defined vdumes, ale=, ffaws and homogeneaos composition and 
temperatures. A msss balance can then be written around each phase 
envelope. The first problem is to decideon the number of compartments or 
segments This dedsicn shoukl be based on composition or chsmical 
concentration diffefmwe. In most lake models, the first segmentation is into 
air, water column and M o m  sedknents, three compartments with usually 
quite different chemical compositions. It m q  be appropriate to discriminate 
between chemical dtspersed in dHbrent states within each compartment, i.8. 
into subcompatments. Examples are: 

Ik&@gM& 

Air: Gaseous, aerosol associated 

= Water: Dissolved, sorbed to flterable pprticles; sorbed to 
mn-filterable matter or disolved in biota ranging from 
bacteria to fish. 

Sediment: Similar to water. 

Two simplifications can often be made. First, if the fraction of 
chemical in a compartment or subcompartment is negligible and if 
that chemical therein experiences no unique or important transport 
or transformatins, then the compartment can be ignored. But this 
raises a problem. It is possible, that for one chemical, a 
subcompartment is negligible, but for another it is not. For example, 
aerosol associated benzene is negligible but aerosol associated 
pyrene. is not. If the model is to be applied to numerous chemicals, 
it seems that we must include all possible relevant 
subcompartments 

Second, if thermodynamic equilibrium exists between chemical in 
these compartments, then an equilibrium relationship can be 
introduced (usually a pastition coefficient) to relate concentrations, 
thus one variable can be eliminated. Alternativelyn a total 
concentratbn can be defined from which the individual phase 
eoncentratbns can be deduced. 

For example, if the phases have defied volumes V1 and V 2  
varbble concentrations C1 and C2 and a fixed partition coeffiient 
K12 which is C1/C2 then if C1 is defined, C2 can be calculated as 
CI/K12, and the amounts ClVl and C2V2 can be deduced. 
Alternatively, a total concentration, CT can be defined as (C'lV1 + 
C2V2)/(W + V2) and the indivaual concentmtiins are then: 

C1 = CT/@I + WK12) C2 = CT/(Vl K12 i- Va) 



where vl and v2 are the volume fractions 
VIl(V1 + V2) and V2/0/1 + V2) 

This equilibrium or constant concentration ratio assumption is very 
useful because it reduces the number of variables. It should be 
invoked whenever it can be justified. Failure to invoke it necessitates 
introducing another variable and probably a need to estimate the 
rates of transfer between the subcompartments, possibly as rate 
constants. 

Perhaps most difficult in this context is the treatment of the 
non-filterable or colloidal or DOC fraction in me water column or the 
sediment. Rarely are data available on the fraction of the chemical 
present in this form, indeed it may be misleading to regard it as a 
discrete compartment because there may be a continuum of 
sorbed material from dissolved carbohydrates and proteins through 
fulvic acids, to humic acids, to humin and large particles. 

A second spatial segmentation is possible for each compartment, 
for example the water column can be divided horizontally or 
vertically, or both. The sediment can be treated as one of more 
layers, and different depositional regimes can be defined 
horizontally. Perhaps the decision to segment should be on the bast 
of observed concentration differences and the desire to reproduce 
these differences in the model. It is tempting to segment on a 
hydrodynamic basis, identifying discrete volumes of water which 
may be separated by a narrows. Every new segmentation should 
be questioned and included only when needed. The modeller 
should adopt the strategy of aggregating whenever possible and 
strive to reduce the number of segments. This is the Principle of 
Parsimony pronounced by William of Occam, 650 years ago and 
stated earlier. 

Another difficulty arises when the compartments vary in volume with 
time, for example an epilimnion-hypolimnion combination. 

Most perplexing is the issue of segmentation in the bottom 
sediments Should there be separate treatment of a nepheloid 
layer? Is one surface layer adequate? If not, how many layers are 
needed? Introducing each layer necessitates defining inter-layer 
transport parameters which may be poorly quantified. Yet, for 
strongiy sorbing chemicals, the measurable sediment chronology 
contains a weallti of information which can only be exploited for the 
purposes of future predictbn by a multilayer model. Perhaps there is 
a need for a number of models of varying complexlh/. Perhaps it is 
impossible to predkt in advance which model or level of complexity 
is optimal until the model is run and sensitivities are tested. This 
iteration towards the optimum can be done from both sides, simple 
and complex. 

We can start with a simple model and increase its complexity in the 
light of experience. Or we can start with a complex model and trim 
it down. It is likely that the former approach is easiest. Regardless of 
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the approach, the modeller should keep an open mind and retain 
the flexibility to change the model structure in the light of 
experience. 
It is difficult to follow the calculations in a new model, thus the 
modeller has a duty to document the model parameters, equations 
and operations, preferably in tables which can be consulted for 
complete information. This should include all chemical parameters 
(e.g. vapour pressure, solubility), all reactivity rate parameters (e.g. 
halflines), all envbonmental parameters (e.g. volumes, areas, rainfall 
rates), all rate equations wed (e.g. for volatilization), and all 
mathematical doto (e.g. integration, tbne steps). For all parameters 
and variables the units should be clearly defined.A specimen 
calculation should also be included. 

When preparing for the Workshop the authors of this contribution 
decided to present differing viewpoints. i.e. to be advocates for 
simplicity or complexity. One of us (D.M.) presented the case for 
simplicity, and me other (V.J.B.) the case for complexity. The 
following s@ctions summarize some of me key points made on both 
sides, and include some ideas presented by the workshop 
participants. 

Po examine the role of management as the sponsor of models let us 
consider PCB's in Lake Ontario. We can envisage three separate 
modelling efforts: A, B and C in order of increasing complexity and 
cost. The models give the following hypothetical results: 

Model A 
1990 Water 1 .O mgh +/- 0.5 mgR- (whde Lake, 
annual average) 
Sediment: 200 mag +/- 150 mg/g 
Fish: 0.8 Uglg +/- 0.5 ug/g 

1991 similar, but ap(araximat6Iy 5% lower etc 

1992 similar, but approximately 9% bwer 

-3years with 5 data points eech year = 15 points 

Model 6 
1990 Water Segment I: 1.5 mgh +/- 8.4 mg/b 

Water Segment 2 1 .O rngh +/- 0.4 mgA 
Water Segment 3: 0.8 mgh +/- 0.3 mgh 

Sediment: 3 segments with similar data 
Fish: 5 segments, 2 trophic levels, similar data 

(an-aerage) 

plus twe o m  Segments 



1991 similar to 1990 but approximately 5% lower 

-3years datawith 18 data points each year = 54 
pints 

Model C 
1990 WaterSegment1,Monthl: 1.8mgll +/-0.3 
mgll 
Month 2 1.7 mgL +/- 0.3 rngh 
etc. for 12 months 

Water Segment 2, Month 1 : 1.5 mgL +/- 0.2 rngk 
etc. for 12 months plus 3 dherwater segments 
Sediment: 3 segments for 12 months 
Fish and benthos: 5 trophic levels in 5 segments for 12 
months 
1 Wlsimilar, but 5% lower etc. 
-3 years with 396 points each year = 1188 points 

We can now ask these management questions: 

1. Will the results of the models be viewed with any 
difference in credibility? Will the stated uncertainties be 
believed? 

2. 
difference to the final managerial decisions? 

If the errors or uncertainties are accepted, will make any 

It is possible that the answer to both questions is "NO'. This is not to 
suggest that we be deliberately sloppy, but we should adopt the 
strategy of developing the simplest respectable model, present the 
results honestty, have the model thoroughly peer reviewed, then ask 
the "manager9 if they wish to buy more certainly. We can even 
give them a quotation1 

From a scientific perspective, perhaps we should always strive to 
improve models by developing better equations, more accurate 
parameters and mare ingenious ways of manipulating the equations 
and presenting the results We hope that enlightened funding 
agencies will see the fundamental merit in studying and quanting 
contaminant behavior in Lakes because it is always valuable to 
know more, rather than less, about the system. 

The Model Described Briefly Here Was Developed as a result of the 
Barrie IJC Workshop and the Nagara-on-the-Lake Workshop in June 
1991. n7e "proceedings" are being finallzed in early 1992. The 
material given here is essentially an advance excerpt from that 
"proceedings". 

It has inevitable similarities to other models including the Endicott 
Model, the Fink Model developed for the National Wildlife 
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Federation and Mackay's Fugacity Model. The model is written in 
"rate constant" format with all process rates (kg/year of chemical) 
being expressed as a product of a rate constant (yearsl), and the 
amount of chemical in the compartment (kg). It is believed that this 
makes the model much easier to understand, especially by 
"managers". 

The model accepts as input a set of key parameters listed in Table 1 
which is actually a printout of the program. These are the usual 
model quantities. 

These data are sufficient to deduce the steadystate chemical mas 
balance as depicted in Figure 1 and on the computer output. 

The water column is treated as a single well mixed compartment, as 
is the sediment which has a fixed depth. The processes included 
are: 

3, chemical discharge 
=e chemical inflow 
3, deposition from the atmosphere 
=e evaporation 

outfbw 
3+ transformation in water 
a transformation in sediment 
* water to sediment transpart 
* sedhnent to water transport 
=a sediment burial 

An optbn can be included to include the rates of change of water 
and sediment concentrations (and hence amounts) which are used 
in a pseudo-unsteady-state calculation as described later. 

The working equations relating these quantities to a series of rate 
constants are conventional in nature. 
The steadystate mass balances for water and sediment are then: 

E -+ M S k S  = MW(k1 + 10 + k3 +k4) 
MWk4 = MS(k5 + k6 + k7) 

where E is total loadhg rate from all sources including the 
atmosphere (kg/year) and M W  and MS are the masses of chemical 
in the water and sediment respectlvely, from which the "forwards" 
result becomes: 

MS = MWk4/(k5 + k6 + k7) 
Mw = ml + k2 + k3 + k4(k6 + k7)/(k5 + k6 + k7)] 

AU process rates and concenfratbns can be deduced. A foesf 
chain model can also be included which consists of six organism 



MASS BALANCE CALCULATION OF THE FATE OF PCB in LAKE WTARIO 

:y parameters: * indicates deduced quanti1 

Water area (d) 
Sedimmt area (dl 
Water volune (m3) * 
Sediment vulune (m3) * 
Suspended solids mass (kg). * 
suspended solids concn in uater (mg/~) I 
solids concn in bottom sediment (mg/~)* I 
Porosity of bottw sediment 
Sediment solids mass (kg) * 

Sediment organic carbon content (g/g) 
Mean uater depth (m) 
Hem active sediment depth (in) 
water residence time (years) 
Fm on depositing particles in uater 
Fraction dissolved in uater colum * 
Fraction on particles in sedint 
Fraction dissolved in sediment 
Fraction sorbed in atmosphere 
Fraction gaseous in atmosphere 
Volatilization HTC: air side (Wh) I 
Volatilization HTC: uater side (rn/h) I 
Air-water partition coefficient 
~ o g  octanol-water partition Coefficient I 
&tanat-uater partition coefficient I 
Overall uater side HTC (Wh) 
Sediment-uater diffusion HTC 
Transformation half life in uater (h) I 
Transformation half life in sedimnt (h) I 
Trmsformtn race const in uater (h-1) * I 
Transformtn rate const in sedint (h-1) * I 

I O m i t i o n  rate g/m?.day 
I Rauspcmion rate g/d.day 
I Bwial race g/m2.day 

Fraction particles deposited per year * I 
Fraction sediment deposited per year * I 
Mass particles deposited per year (kg) *I 
Fraction sediment resuspended per year *I 
nU, sediment reruspnded per year (kg) * I  
Fraction sediment turied per year 1 
Mass sedimmt buried per year (kg) I 
Rate of Hater concentration change yr-1 I 
Rate of sedmt concentration change yr-1 I 
Scavenging ratio of aerosols 0 
Dry depasition velocity (Wh) 

.---__________--_--_-~~-------------------= 
1 
I 
I 
I 
I 

I 
I 

Sediment solids density (kg/d) I 
I 
I 
I 

I 
I 
I 
I 

I 

I 
I 

I 

I 
I 

I 
I 

:Y 
.---O------ 

1.95€+10 
1.17E+10 
1.67E+12 
1.17€+08 
6.681+09 
4.00000 
160000.0 
0.080000 
1.87€+10 
2000 . 00 
0.020000 
85.641 
0.01 000 
6.500 

0.500000 
0.500000 
0.999958 
0.000042 
0.050000 
0.950000 
1 .ooooo 

0.010000 
5.00E-03 
6.60€+00 
3.98€+06 
3.33E-03 
1.00E-04 
5.00E+05 
5.00E+05 
1.39E-06 
1 J9E-06 
0. no00 
0.92000 
1 .ooooo 
0.777811 
0.27T55.2 
5.2OE+O9 
0.050188 
9.40€+08 
0.228125 
4.27€+09 
0.00000 
0.00000 
1oooO0. 
7.200 

TABLE 1 
ILLUSTRATION OF A SIMPLE IIQ)EL 
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Rate constants (years-1) ..................................................... 
I kl evaporation frcm water 
1 k2 outflow frcm the Lake 
I transformation in uater 
I k4 uater to sediment transport 
1 k5 sediment to water transport 
I k6 transfomrion in sediment 
I k7 turfat from sediment 
I Total rate constant frca water 
I Total rate comtant fron sediment 
1 Water to sedimnt dcposi tion 
I Wter to sedimnt diffusion 
I sediment to water resuspension 
I Sediment to uater diffusion 
I water inventory change In 
I Sediment inventory drange lo 

MASS BALANCE SUMMARY FRW RATE COHSTANT CALWLATIONS __-__-_______________--__---__-----_--.-_--__--------- 
I Total mass in water (kg) 
I Total mats in sedimart (kg) 
I Total mass in systm Ckg) 
I Total loadings 
I Emissions to water except acm and tribsl 

1 Industrial point sources kg/year I 
I Loadings fran areas of concern kg/year( 

' 

I I 
1 Trikrtary loadings kg/year I 
I nuricipai point sources kg/year I 
I Non-point sources kg/year I 
I Depesition from atmasphere I 
I Rain dissolution I 
I Wet deposition of prticles I 
I Total wet dcpositim I 
I Dry deposition I 
I Absorption I 
I I 
I k2 outflow rate fm the lake I 
1.U transformation rate in water I 
I kl evaporation rate from water Ckg/ycar)l 

I k4 water to sediment transport rate 
.I k5 sediment to water transport rate 
I k6 transformstion rate in sediment 

1 
I 
I I k7 burial rate f r m  sediment I 

I Total rate of rapovsl frwn water I 
I water to sediment deposition Pate I 
1 Uatcr to sediment diffusion rate 1 
I sediment to water resuspenaion rate I 
1 Scdimmt to uater diffusion rate . I 

I I water inventory change 
I sediment inventory ch-e I 
I I I water concentration ng/L or ug/m3 I 
I sediment concentration ng/g I 

I Total rate of runoval from sediracnt I 

*. 

1740.40 
2319.51 
4059.91 

1142.86 
0.00 

1000.00 
0.00 
0.00 
0.00 
0.00 

142.86 
1.81 
47.73 
4934 
33.82 
59.50 

296.70 
267.75 
21.13 I 

682.19 I 
124.91 I 
28.16 I 
529.12 I 
1247.78 I 
662.19 I 
676.853 I 
116.41 I 
8.51 I 
0.00 I 

0.00 I 
0.00 I 

1 
1.042 I 

123.900 I 

TABLE 1 
ILLUSTRATION OF A SIMPLE HOOEL (Continued) 



FOOD CHAIN RESULTS 

Log Kou 
Kou 
Sediment OC content 
Temperature deg C 
Mater concentration (total) ng/L% 
water concentration (dissolved) ng/L 
Sediment sol ids concentration ng/g 
Sediment organic C concn ng/g OC 

ORGANISM 
CONCN ng/kg 
CONCH ug/g 
CONCH ng/g lipid 
BICEfAGNI F FACTOR 
VOLUME (L) 
LIPID CONTENT 
kl (Mater uptake) 
Kd (food uptake) 
k2 (water loss) 
ke (egestn loss) 
km (metabolism) 
kg (growth) 
food concn (aver) 

Zooplnktn Benthos 
1.04€+05 7.55E+05 
1.04E-01 7.55E-01 

l.OOE+OO 7,28E+00 
O.OOE+OO O.OOE+OO 
5.OOE-02 5.00E-02 
O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 
O.OOE+OO 'O.OOE+OO 

2.07E+03 1.51E+04 

6.6 
3981070 
.02 
8 
1.0421 54 
.5210772 
123.9004 
6195.022 

Sculpin 
1.43E+06 
1.43E+00 
1 .78E+04 
~AOE+OO 

a. ODE - 02 5.4OE-03 

7.13E+02 
3.1 OE- 02 
2.24E-03 
6.2OE - 03 
O.OOE+OO 
5.68E-03 
6.38E45 

TABLE 1 
ILLUSTRATION OF A SIMPLE MOOEL (Continued) 

Alewife Smelt Lake trout 
8.8SE+05 1.20E+06 3.llE+06 
8.85E-01 1.20E+00 3.11E+00 
1 .26E+04 3.00E+O4 1 .95E+04 
6.09E+OO 1.45E+01 9.38E+00 
3.20E-02 1.60E-02 2.5OE+OO 
7.00E-02 4.00E-02 1.60E-01 

2.37E-02 2.63E-02 1.23E-02 
1.26E-03 2.9OE-133 9.61E-05 
4.7%-03 5.27E-03 2.47%-03 
0.00€+00 O.OOE+OO O.OOE+OO 
3.986-03 4.57E-03 1.67%-03 
3.64E+05 5.71E+05 1.06E+06 

3.50E+02 4.62E+02 6.12E+Ol 

FOOO PREFERENCES Food organisms 
Consuner Zooplnktn Benthos Sculpin Alewife Smelt Lake trout 
Sculpin 0.180 0.820 0.000 0.000 0.000 0.000 
A 1 eui f e 0.600 0.400 0.000 0.000 0.000 0.000 
Smelt 0.540 0.210 0.250 0.000 0.000 0.000 
Lake trout 0.000 0.000 0.100 0.500 0.400 0.000 
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classes with plankton (at equilibrium with water) at the base of the 
water food chain and benthos (at equilibrium with sediment) at the 
base of a benthic food chain. The other four organisms form a food 
web with defined food preferences. 
This model, or one similar to it, is regarded as the simplest possible 
credible model. To eliminate a compartment or a process would 
greatly weaken the model's applicability and for some chemicals at 
least it would remove any hope of achieving reasonable estimates 
of fate. A strong case can be made that this should be a starting 
point for models. a fiist-attempt which can be improved upon in the 
light of experience. 

A worrisome consideration emerges when more complexity is 
introduced. It is entirely possible that the paradigm on which even 
this simple model is bassd is wrong. Let us explore just two 
possibilities. 

Perhaps the well-mixed-water in contact with well-mixed-sediment 
concept is wrong. here may be a nepheloid layer, tens of 
centimeters deep, above the sediment in which there is active 
organic carbon conversion and contaminant release. When a 
hydrophobic contaminant does settle on the bottom, it may 
essentially remain there with virtually no release or diffusive mixing. 
Sorption may be essentially irreversible, If this is the case, dividing up 
the sediment into multiple byers is pointless. If the water column is to 
be meaningfully segmented vertically it may involve layers 10 cm 
deep above the sediment. It is thus essential that we better 
understand these phenomena (which are so difficult to investgate). 
A more complex model with the same basic misrepresentation 
merely adds a greater number of fundamentally erroneous 
parameters. 

Perhaps the two-film evaporation equations cease to apply at very 
low concentrations. There have been no actual measurements of 
fluxes of hydrophobic chemicals at typical lake concentrations. If, 
for some reason, surface microlayers become significant retarding 
factors at low concentrations, the expression for evaporation may 
be wrong. An erroneous equation may be easier to detect with a 
simple model in which there are fewer adjustable parameters. 

The key conclusion is that we must be absolutely sure that the basic 
physics and chemistry are understood so that the equations are 
fundamentally correct. Complex models tend to obscure such 
fundamental inadequacies. They merely compute more mistakes1 

A final issue relates to the scale of the model. It is certainly true that 
a simple lake Ontario model can not treat locally high shoreline or 
near-shore contamination. It could not include Hamilton Harbour or 
the Bay of Quinte. A more complex spatially resolved model could 
treat these areas. Perhaps each "Area of Concern" or region of high 
local contamination should be treated as a source to the simple 
whole lake mdel. The mass balance envelope would then be 
drawn to exclude such areas, but would accept contaminant input 
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from them, By judicious selection of the phase envelope it may be 
possible to treat 95% or more of Lake Ontario with a simple model, 
then apply other, separate simple models to "Areas of Concern" or 
near-shore regions. 

Is there not a case for developing a family of simple models which 
operate separately, at different scales and which "feed from each 
other? This approach would perhaps sati proponents of simplicity 
and complexity. 

I agree with the philosophy that models of toxic chemicals in the 
Greot lakes should not be made any more complicated than 
absolutely necessary. The case for additional model complexity 
shouM be driven by two principal, generic management questions: 

1. If external loadings are changed, what will be the new 
state of the system? 

2. If external loadings are changed, how long will it take 
the system to reach its new state? 

A corollary to the first question is: given an in-lake target state, what 
change in external loading (if any) is required to produce this state? 

Additional model complexity must have the potential to reduce 
uncertainties in answering one or both of these questions. While 
advances in scientific understanding should be a principal goal in 
model development, a reality is that most model development and 
applications research in the Great Lakes is supported by 
missiion-oriinted agencies. Consequentty, sponsors/managers can 
not be expected to pay for additional model complexity unless 
there is some reasonable expectation that uncertainties will be 
reduced in answering critical management questions. I believe that 
strong cases con be made for additional model complexity in 
several key a r m  that bar directly on such critical questions. 

Figure 2 contains a simple conceptual model for toxic chemicals. It 
is similar to the model proposed in Figure 1 There are three principal 
compartments: air, water and sediment. The state variables are 
particulate and dissolved phase toxic chemical concentratins in 
the water column and sedhent compartments. Sorbed chemicals 
are normalized to particulate organic carbon, as opposed to 
suspended/bedded solids. Within a compartment phase 
concentratins are related by a simple equilibrium equation. The 
usual process mechanisms are included: settling, resuspension, deep 
burial, air-water and sediment-water transfers, decay, photolysis, 
etc. 

The principal purpose for introducing this simple model is to 
emphasize the importance of organic carbon as the principal 
controlling sorbent volume for hydrophobic. organic chemicals. It is 
not possible to understand or predict the behavior of these 



chemicals in the Great Lakes without understanding the dynamics 
and fate of organic camn. This model will be used below for 
several Lake Ontario examples. 

Load-response relationships in coupled water-sediment systems such 
as the Great Lakes can have complex ramifications for addressing 
critical management questions These complexities were discussed 
in considerable detail for Lake Ontario during an IJC-sponsored 
modeling workshop (February 1819, 1987) that involved 
comparisons among three different toxic chemical models. The 
principai points to be made here are the following: 

1. Toxic chemical concentrations in the sediments respond 
at different rates than toxic chemical concentrations in the 
water column. 

2. Sediments can act as toxic chemical sources or toxic 
chemical sinks, depending on the dynamic state of the 
system. 

3. In-lake toxic chemical concentrations are not 
proportional to external loadings under non-steady-state 
conditions. 

These points support the case that toxic chemical models for the 
Great Lakes must be time variable. Steady-state models alone are 
not suffkient. Furthermore, these time variable models must include 
both water column and sediment compartments, and explicit 
representation of settling, resuspension, deep burial and 
sediment-water diffusion. 

For the idealized example in Figure 3, total toxic chemical 
concentrations in the water column and sediment are zero at t = 0. 
At t = 0 a constant external loading is imposed. Water 
concentrations quickly approach near-equilibrium values 
(approximately 90% in 2-3 years) while sediment concentrations 
show a much slower approach ( 90% after 20 years). During this 
temporal period the sedlments are a sink for toxic chemicals, At t = 
20 years external loading is step-reduced to zero. Water 
concentratbns show a two-component response: a fast initial 
decrease folbwed by a much sbwer decrease toward eventual 
equilibrium. It is crltlcal to note that this decreasing water column 
concentratbn trajectory is not the inverse of me increasing 
trajectory. Sediment concentratbns follow an exponentially 
decreasing trajectory with a relatively small time constant. During 
this recession period the sediments are a source for toxic chemicals 
because "sediment bleeding" controls the long-term response 
trajectory of water column toxic chemical concentration, 

This example can be made more concrete by considering some of the 
management implications of sediment qualii criteria (SQC) now being 
developed by the U.S. Environmental Protection Agency. The SQC can be 
used to prevent future sediment contamination or to remediate present 
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sediment amtamination Lad< of a unique loading-sediment response 
relationship can confound implementation of the appropriate management 
strategy, as depicted in Figure 4. Under the appiication of a constant 
external load that is less than the total maximum daily load (TMDL), 
sediment concentrations will ckpend on the dynamic state of the system, 
homer, they will remain less than the indicated SQC. Prevention is the 
proper management strategy in this case. Under the application of a 
constant e x t d  load that is greater than the TMDL sediment 
COncentraHons could be lese than or greater than the SQC, depnding on 
when they are measured Cansequerluy, in order to implement the proper 
management strategy, the dynamic state of the system must be known. 
Finally, if the system is in equilibrium with an external load that is greater 
than the TMDL remedim is required and a steady-state analysis might 
suggest the indicated loading redudion to meet the TMDL However, even 
if this reekrctbn is irnpiemented instantaneousty, sediment concentrations 
could remain in violation ofthe SQC for a considerable period of time before 
reaching equilibrium 

From these idealized examples it can be seen that for a given 
external loading, in-lake concentrations for both water column and 
sediment compartments depend on the dynamic state of the 
system. That is, for a given external loading, there does not 
necessarily exist a unique set of water column and sediment 
response concentrations. This behavior has direct bearing on both 
of the above principal management questions. To understand and 
predict the behavior of such a system, time variable mass balance 
models must be used, in conjunction with long time-series data for 
loadings and in-lake concentrations. 

&&?E?$ Having established that sediment dynamics can confound 
load-response relationships, attention shoukt be directed to factors 
controlling sediment response times and their associated 
uncertainties. The principal point is that there is a large range of 
uncertainty in sediment response times for a reasonable range of 
values for assumed mixed layer sediment depth. This point supports 
the case that toxic chemical models for the Great Lakes must 
incorporate additional complexity in the surface sediments. 

-Taner 

As a simple example, the conceptual model in Figure 2 was used to 
estimate 9% response times for sediment toxic chemical 
concentratbns in response to a step change in external loading. 
The modd parameters used in this example were the following: 

Resuspension velocity = 1.38 x 104 m/yr 
Burialvelodty=1.25xlWm/yr 
Porosity = 0.90 
Partide density = 2.45 gmlcm3 
Fraction organic carbon = 0.02 
Koc = 106 U g  organic carbon 
Decayrate=O 
Diffusion caeffident = 3 X 10-5 mas. 

The resuspension and burial velocities were taken from the Lake 
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Ontario models presented at the above-mentioned UC Workshop. 
They correspond to a steady-state solids balance for the lake. 
Values for the other parameters are estimated, but fall within 
reasonable ranges for illustrative purposes. Mixed layer sediment 
depth was the independent variable. 

Figure 5 illustrates 9l% sediment response times as a function of 
assumed mixed layer sediment depth. Response time ranges from 
approximately two yeaw for a sediment depth of 0.5 cm to 
approximately 65 years for a sediment depth of 5 cm. The principal 
point is not that these estimates are accurate, but that there is a 
large range of uncertainty in response time corresponding to a 
reasonable range of values for assumed mixed layer sediment 
depth. 

This example supports the case for additional model complexity in 
the surface sediments. Specification of mixed layer sediment depth 
in simple models is somewhat arbitrary and is usually based on %est 
professional judgment". More realistic process representations would 
increase model accuracy and reduce prediction uncertainty for 
system response times. These processes should include vertical 
segmentation and explicit representation of advective and 
dkpersive mas transfer processes within the sediment bed. 
Attempts should be made to parameterize these processes in terms 
of molecular diffusion, boturbation and waveskurrents. 

Another aspect to the case for additional model complexity in the 
surface sediments is the need to distinguish between near-shore and 
open-water zones. In addition, there are critical management 
questions that can not be answered with whole-lake models. The 
principal points to be made here are the following: 

1. There are significant differences in resuspension potential 
between near-shore and open-water zones in large lakes. 

2. In Lake Ontario, the open-water depositional zone 
represents approximately one- half of the total lake area. 

3. In addition to wholelake target loading.% there are 
critical management questions related to waste load 
allocations for individual sources in near-shore areas and 
embayments, including in-place pollutants. 

Having established that load-response relationships are a sensitive 
function of sediment dynamics, it should be recognized that 
sediment-water exchange rates may differ greatly between 
near-shore and open-water zones due to differences in 
wavekurrent energies and animal densities/bioturbation. In Lake 
Ontario the open-water depositkmal zone represents only about half 
of the total lake area. Another argument supporting separation of 
these two zones is that most of the available sediment core data 
represent deposition areas, not highty-energetic near-shore areas. 
There do not exist 'lake-wide average sediment cores" with which to 
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compare output from lake-wide average models. 

From a management standpoint, whole-lake models can only be 
used to establish lake-wide target loading objectives. Such models 
can not be used to allocate individual point and non-point source 
loadings at their primary control points. In particular, whole-lake 
models can not be used to set NPDES permit limits or to evaluate 
localbed impacts of alternative remediation strategies for Great 
Lakes Areas of Concern. 

For hydrophobic organic chemicals, the controlling environmental 
sorbent volume is organic carbon, not water column or bedded 
solids per se. Normalization of particulate phase toxic chemical 
concentrations to organic carbon produces interesting and 
somewhat complex ramifications in mass balance models. These 
ramifications directly impact both of the principal management 
questions. The principal points to be made here are the following: 

1. Unequal fractions of particulate organic carbon between 
water column and sediment will generally cause unequal 
dissolved phase toxic chemical concentrations between 
water column and sediment, even at steady-state. 

2. A given loading condition for a particular chemical may 
satisfy a water quality criterion but not necessarily a sediment 
quality criterion. 

3. Toxic chemicals released in the nepheloid layer and/or at 
the sediment-water interface may "short circuit" slower 
sediment recycle processes and be recycled quickly back to 
the water column. 

4. Toxic chemicals released within the sediment bed, if they 
are not buried into deeper sediment layers, will recycle back 
to the water column over a much longer period of time. 

These points support the case that toxic chemical models for the 
Great Lakes must incorporate additional complexity to represent the 
mass balance cycle for organic carbon and the fate of associated 
toxic chemicais. 

As another simple example, the conceptual model in Figure 2 was 
used to estimate the ratios of dissolved phase toxic chemical 
concentrations in the sediment to dissolved phase toxic chemical 
concentrations in the water column. The independent variable was 
fraction organic carbon content in water column particles (focl). 
Fraction organic carbon content in the sediment (foc2) remained 
filed at a value of 0.02. Sediment mixed layer depth was fixed at a 
value of 2 cm. All other parameters were the same as in the 
preceding example. All computations correspond to steady-state 
conditions. 

Figure 6 illustrates that sedimenkwater dissolved phase 
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concentration ratio ranges from 1 for focl = 0.02 to 17 for focl = 
0.50. The reason for this behavior is mat unequal organic carbon 
fractions produce unequal partitioning in the water column and 
sediment compartments, and hence unequal dissolved phase toxic 
chemical concentrations It should be noted that this behavior is not 
a consequence of me "solids concentration effect" on partitioning. 
Water column and sediment partiion coefficients (Kocl and Koc2 
respectively) were set equal in this example, consistent with the best 
current understanding that the "solids concentration effect" is not 
operative in stationary, bedded sediments. Apparent unequal 
partitioning occurs because in terms of organic carbon 
normalization, the operative partition coefficient is the product 
Kocfoc (= L/kg solids). Field observations confirm that focl is 
generally 5 to 10 tknes greater than foc2. 

m e  significance of this example is that a given loading condition will 
produce different dissolved phase toxic chemical concentrations in 
the water column and sediment compartments, even at 
steady-state. Dissolved phase toxic chemical concentrations are 
generalty considered to represent the bioavailable fractions of total 
chemical concentrations. Consequently, benthic and pelagic biota 
will have different toxic chemical exposure concentrations. With the 
advent of sediment quality criteria, determination of target loadings 
will become more complex because the external loading for a 
given chemical may satisfy the water quality criterion, but not the 
sediment quality criterion. 

Simple models can and do account for the above behavior by 
assigning observed values for focl and foc2 to the water column 
and sediment compartments, respectively. However, hidden within 
this simple approach, and in the simple example presented here, is 
the assumption that the organic carbon associated with settled 
particulates decays completely within the sediment bed, thus 
releasing the associated toxic chemicals completely within the 
sediment bed. These toxic chemicals then re-equilibrate with 
sediment particulate organic carbon. 

These simple assumptions ignore any organic carbon transformation 
and fate processes (and hence any toxic chemical recycle 
processes) that may occur in the benthic nepheloid layer and/or at 
the sediment-water interface. This distinction is not trivial because 
processes controlling water column dynamics are much faster than 
processes controlling movement of toxic chemicals within the 
sediment bed. Toxic chemicals released in the nepheloid layer may 
"short-circuit" slower sediment recycle processes and be recycled 
quickly back to the water column. Toxic chemicals released within 
the sediment bed, If they are not buried into deeper sediment 
layers, will recycle back to the water column over a much longer 
period of time. The ability to understand and predict these 
processes has direct bearing on the degree of certainty with which 
system responses can be predicted. 

This example and associated discussion support the ease for 
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additional model complexity to explicitly represent the mas 
balance cycle for organic carbon and the fate of associated toxic 
chemicals. More realistic process representations would increase 
model accuracy and reduce prediction uncertainty of system 
responses. These processes should include explicit representation of 
particulate and dissolved organic carbon as model state variables, 
and additional vertical segmentation to represent a separate 
benthic nepheloid layer. 

Explicit inclusion of organic carbon dynamics in toxic chemical mass 
babnce raises another importunt technical issue with direct 
management implications. Most of the organic carbon in the Great 
Lakes results from internal primary production, not external loadings. 
For example, in the ongoing Green Bay Mass Balance Study, it has 
been found that primary production is responsible for approximately 
65% of the total organic carbon "loading". For Lake Ontario, even a 
larger contributbn from primary production would be expected 
because it has a slower hydraulic flushing rate than Green Bay. 
Consequenw, responses to nutrient loadings and toxic chemical 
loadings are potentially coupled by in-lake organic carbon 
dynamics. A need to address the question of toxic chemical 
impacts as a functbn of lake trophic state strengthens the case for 
explicit inclusion of organic carbon dynamics and nutrient 
load-response relationships in toxic chemical mass balance models 
for the Great Lakes. 

To reduce uncertainties in answering critical management questions, 
the following recommendations ure made for additional complexity 
in toxic chemical mass balance models for the Great Lakes in 
general, and Lake Ontario in particular: 

1. Models should be fully time-variable and include coupled 
water column and sediment compartments with explicit 
representation of settling, resuspension, deep burial and 
sediment-water diffusive exchanges. 

2. Vertical segmentation and explicit representation of 
edvecthre and dispersive mass transfer precesses wimin m e  
sediment bed. 

3. Sediment-wter exchange processes should be 
parameterized in terms of molecukf diffusion, bioturbtion 
and shear stresses due to wave/current action. 

4. Horizontal segmentation to distmguish between near-shore 
and open-water zones. 

5. Explicit representation of the mass balance cycle for 
organic carbon and the fate of associated toxic chemicals, 
This should include explicit specification of internal organic 
carbon loadings due to primary production. 



6. Vertical segmentation in the water column to explicitty 
represent processes in the benthic nepheloid layer. 
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I. PREFACE 

This white paper addresses the issue of process parazteterization 
uncertainty in models of toxic chemicals in the Great Lakes. The 
paper is presented in two parts. The firs= part ciiscusses 
parameter uncertainty in mass balance models; the second part 
considers parameter uncertainty in models of bioaccumulation. 

The mass balance portion of the papabegins with an introduction 
to parameterization. This is followed by the description of a 
common mass balance formulation, azrd the identification of 
uncertainties in process parameterization. The impact of 
parameterization uncertainty on the results of a toxic chenical 
mass balance model is then presented as an illustrative example. 
Finally, prospects for reducing parameter uncertainty will be 
considered along with unresolved issues and questions. 

11. INTRODUCTION 

Parameterization may be defined as the selection of numerical 
values for input coefficients to a mathernatical mcdel. 
Obviously, uncertainty in garameterization will be reflected in 
uncertain model results. In a broader sense, however, 
par=eteriration nust also consider the process descripcion used 
in the model. In fact, parameterization is only meaningful in 
tke context of a given process description. Similarly, examining 
uncertainty in a model process must extend beyond the uncertain 
parameter values themselves to consider the formulation used to 
describe the process. Modelers intend to accurately describe 
significant model processes, yec conceptual errors and errcrs i-? 
assumptions, omissions and forsulations are still possible. In 
particular, a variety of process descriptions are relied upon 

- 
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that, although conmonly accepted, may be rslatively unvalidated. 
As a result, uncertainty in models due to mis-specification of 
parameters is compounded by inaccuracies in the process 
descrigtions. Therefore, the authors have chosen to address 
uncertainty in process description as well as in parameter values 
in this paper. 

Parameterization of mass balance models is preferably ackieved by 
calibration to a data set for the syst~', being nodeled. 
(Calibration data sets for mass balance models 2r2 LIe scbject of 
another white paper prepared for this workshop). Calibration is 
the selection of model paraeters that achieve an ogtimm fit 
between the model simulation and data for neasured state 
variables. A variety of optinization or tuninq methods are used 
far calibration, with I'fitI' being determined by visual 
inspectian, cjjective fmcticm (such as suz-of-square error) or 
ocher criteria. 
calibration is strongly dependent upon the quality and 
Farticularly the completeness of the data. Mass balance models 
are very sensitive to the specification of external forcing 
functions, including loads and initial and boundary conditions. 
Erroneous calibration parameterization is likely if forcing 
functions czntain even modest errors.' Other sources of 
parazzetaritztion unceztainty nay be izkzzZ-x=5 Sy bias or 
excessive variability in the calibration data, poor optimization, 
or insensitivity of some parameters to calibration. Calibration 
produces parameterization errors that are compensating; that is, 
error in one parameter will be offset or comgensated by an error 
in another. The deviation of model calibration simulation frcrm 
the Calibration data serves as a lower-bound escirnace of nods!, 
uncertainty due to parameterization. 
evaluation of model certainty is obtained by comparing podel 
predictions to data independent of the calibration datz set. 

The azzzzat.; cf gertm,etorFzation achieved by 

A more comprehensive 



However, such verification of Pass balance models has rarely been 
performed. The post-audit of eutrophication models for Lake Erie 
(Lan et al., 1987; Di Toro et al., 1987) and Saginaw Bay (Bierman 
and Dolan, 1986) represent the only documented verification of 
mass balance models in the Great Lakes. The lack of 
comprehensive data sets has prevented thorough calibration and 
verification of toxics mass balance models, and this lack of 
experience ultimately limits efforts to reduce model uncertainty. 

For a variety of reasons, modelers rely upon other 
parameterization methods either in conjunction with or in place 
of calibration. Mass balance models are usually 
ovarparairstarlzed; that is, the models contain more parameters 
than can be determined by calibration alone. 
calibration may yield a non-unique set of parameter values. 
Another case occurs when the calibration siixlation is 
insensitive to one or more paramecers; these parame=ars re,alx 
highly uncertain following calibration. These are circumstances 
in which parameterization by calibracion alone may pro- ..,uce 
uncertain predictions as the conditions of the model systzz 
change. In these cases, calibration must be augmented by 
external specification of some parameters. Even for the 
parameter values 'ulat are cbtaineli, by calibration, 
indeaendencly-aetersined valses ars useful to zssess *e ixez:al 
consistency of the model. 

As a result, 

Other methods of parameterization include direct measurement, 
estimation by correlation and by the use of experimental data, or 
same combination of the latter. Direct measurement of process 
parameters in %\e systsz being modeled is certainly preferabls to 
estimation. Most critical process parameters are not, however, 
directly measurable requiring that paramecer estimation be used. 
Correlation estimates make use of relationships observed between 

Reducfng Uncertainty in Mass Balance Models of Tarb 
tn the Greut Lakes- IAISG Ontario Cue Study 



I process parameters and properties of the chemical a3d/cr the 
system. These include QSAR and other advanced computational 
estimates of chemical properties and reactivity. 
and system-specific parameters may be obtained directly from 
experheztal data. Both correlations an& e2qerimental data have 
been reported extensively in the environmental literature. 
Bowever, the accuracy of parameters obtained by either course is 
questionable. Correlation estimates of parameters nay be highly 
sensitive to properties that are themselves uncertain, and are of 
course dependent of the accuracy on data used to construct t!!= 
correlation. 
alternative correlations are sometimes significantly different. 
It is not unusual for some parameterization estimates to vary by 
as much as several orders of magnitude. Parameterization by 
experimental data is also difficult because much of the data 
fcund in the literature are difficult to interpret or 
cenflicting, zze not aveila5Le for zany systezs ar.C chezicals, 
require extrapolacion or do not accoiint f=r variekles rffectinq 
the parax=eter in the systen of interest. When forcsd to rely 
upon such approaches fcr F~CCPSS parameterization, it may be 
useful to construct a probability distribution for the parameter 
value using all reliable estimates and data. In some cases, this 
will provide a best esthate parameter value and suggest upper 
and lower confidonct liziits. In other cases, it nay only be 
possible to bund the pessible value of a Fart=zt=r. 

Some chemical- 

Estimates of the same parameter obtained by 

In some applications, mass balance models must be developed 
Without extensive calibration. Czlibration is most.often 
precluded when forcing functions are unknown or uncertain, or 
when eitker t!\e quality or quantity of the chemical data are 
insufficient to define seate variable concentrations. In these 
cases, a majority of parameters must be estimated by correlation 
or experbental data. These applications include screening-level 



models, where uncertain results may be acceptable, as well as 
extrapolation of existing models to diffsrent system or chemical 
state variables. It is in such applications that defining 
parameter uncertainty and its relationship to model uncertainty 
becomes most critical. 
below describes an approach used for dealing wi&& 
parameterization uncertainty in this context. 

The sptcific zodel applicztion presented 

111. MASS BALANCE MODEL FRAMEWORK 

In order to introduce the formulation of mass balance processes 
found in the WASTOX, WASP4 and other water quality models, an 
exaiaple will be presentad which is also the nodel used in the 
application presented below. This is the two-compartment model, 
the simplest framework that incorporates the significant 
processes for the mass balance of persisrent toxic chemicals in a 
lake. This model simulates the chemical concentration in a 
completely-mixed water column (C,) and underlying sediment layer 

(Cz). The differential equation for chemical mass balance in the 
water column is: 

(Equation 1) 
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dC, The accumulation of mass W,-I equals the summacion of the m 
following terns: loading (w); water column exchange (in this 
case, ourflow) {- Q CJ; sedinent-water exchange I- v , A ~ ~ C ~ + V ~ A F ~ C ,  + 

v[var +fdY - 
kJf=C,)/H - &C,)]} ; and translormation/-degradatioa (- Ek& VICll. 

c, +f,)C,]l ; air-water exchange I+ A[(v, + vJw>c0 + 

For the sediment layer the chemical mass balance equation is: 

(Equation 2) 

dC: . 
t Accumulation of mass in the sediment CV,-l equais seaimenc-wacer 

exchange Iv,AfdC1 - v,4fdC, - K#[v1, +fu)ll - (fd *f,)C,]} minus burial {vbAfrZCZ} 
and sediment transf ormationldegraciation (- EkhJa V,CJ . 

The terns in these two equations have been arranged to group the 
mass balance processes in an organization of process categories 
that will be utilizsd for the bzlazce of .t!!is pgsr. 
(Nomenclature is defined ac ths end of the p.aF;er-.) 

c2 

%V. IDENTIFICATION OF UNCERTAINTY IN PROCESS PARAMETERIZATION 

a. SEDIZ5EST-mTSR EXCSANGE 

Sediment-water exchange includes the processes of sectling, 
resuspension and diffusion. 
wit5 the other particle-transpxt terns, burial will be 
considered as a sediment-water exchange process, although it is 

Because it is usually associated 
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not. Similarly, the sedhent layer volume will be considered as 
a sediment-water exchange process parameter. Accuracy in the 
description and parameterization of sediment-water exchange 
processes is critical in models of toxic chemicals in the Great 
Lakes, as toxics are persistent largely due to association wicn 
and accumulation in sediment. These processes define the 
long-term response of the Great Lakes to toxic chemical 
contamination and control efforts. Uncertainty in sediment-water 
exchange processes ccmes from uncertainty in both the process 
descriptions and parameterization. 

1. Partitioning 

B process of fundamental importance for sedisent-water exchange 
is partitioning, which defines the distribution of chemical 
betxeen cliffermt phases. Psrtitioning is represented in the 
mass baiancs fa,Tcl:lttiorc.s as fractions f of the total chemical in 

each phase. Exazinaticn of equations 1 and 2 reveals that 
partitioning fractions arb- distributed throughout the model. 
Partitioning affects nearly all other processes in the mass 
balance model by (1) defining particulate chemical fractions 
transported by particles, (2) defining dissolved chemical 
fraction subject to air-water exchange and transf ohnation/ - 
degradation processes asd available for direct ugtake by biota 
and (3) defining mobile chemical fractions in sediment pore 
water. 
uncertainty throughout the mass balance formulation. 
the effect of partitioning uncertainty is more pronounced in the 
water column, because practically all chemical in the sediment is 
in the sorbed (particulate) fo-q. 

Uncertainty in partitioning parameterization propagates 
Generally 

Chemical fractions included in the nodel description of 
partitioning include freely dissolved V;), sorbed u,) to one or 
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more particle classes and, in some models, colloidal "bound" V;) 
phase. 
reaches equilibrium rapidly, at least in comparison to other 
process rates. The chemical fractions are then related 
algebraically to the concentration of sorbent and partition 
coefficients defining the equilibrium chemical distribution 
between phases. 

It is generally assumed that chemical partitioning 

For example, the disselved fraction in a simple two-phase 
(dissolved/sorbed) system is 

1 
fd a 1 + K?M/R 

where KpCKp = r/Cd; r = &C/M, C, = fdc) is the partition coefficient and M 
is tibe gazticle concentration. For hydroFhobic organic 
chemicals, organic carton zar-zllzzticn gonerally reduces 
variability in partition coefficients observed for a chemical. 
Therefore, K, is usually renlaced by an organic-carbon partition 

coefficient, K,(K, = Kplf-; f- is the organic carbon fraction) in 
models for hydrophobic organic chemicals (HOCs) 
normalization of partition coefficients for metals has been 
defined, a notable shortccning.) K, is either parameterized by 

calibration or estimated by regressions vith caexical 
hydrophobicity, either solubility or octanol-water partition 
coefficient, K,. Rarikhoff's (1979) regression 

(No similar 

log K, = 1.0 log K, - 0.2 
is a classic example; many other correlations may be found in the 
literatura (Lyman et al., 1982:. Considerable unexplained 
variability in partitioning apparently relates to the 
semi-empirical nature of K,. Sufficient data suggests that 



organic carbon is not a unifom sorbent phase, and that the 
relationship betveen K- and hydrophobicity varies anong classes 
of HOCs. Order-of-magnitude variability in K, is thus possible, 

based upon either measurements or estimation. In the case of K., 
estimation, this variability is related to the fact that the 
hydrophobicity (expressed as K,) itself is an uncertain parameter 

for maRy HOCs of interest. 

has been greatly improved by the development of generator column 
methods, which unfortunately have not been applied to many toxics 
of concern. Alternatively, estimation of K” by correlation with 

molecular properties such as total molecular surface area (TSA) 
nay ixprove reliability of chPmical hydroohobicity 
determinations. 

The reliability of K, measurements 

Uncertainty in the parameterization or’ pzrzition coefficients 
also comes from the operational difficulties of making chemical 
separations consistent with the model procsss description. 
Particularly difficult is the separation of freely-dissolved 
chemical from the colloidal (or microparticulate) phase. Neither 
filtration nor centrifugation is apparently capable of cleanly 
separating the dissolved chemical fraction. 

These conventional separation methods ac-lcaily raszlt i,? the 
measurement of a distribution co6fficient K, 

where B is the concentration of colloid (usuaily seasursd as DCC) 

and K, is a binding coefficient (Kd = KJ(1 *EX,) . 
related to chenical hydrophobicity in a mznner analoqous to K,. 
Depending upon the amount of colloidal material presenc and its 

K, is apparently 
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affinity for bixding HOCs, measured &may be several orders of 

nagnitude smaller than if,. 

apparently mors significazxt in sedbent pore water than in the 
water column. Although refined separation methods have 
been developed, they sometimes produce considerably different 
results, and none are practical for routine sample processing. 

This Vhird-phase'@ effect is 

The Llird-phase effect was offered as an explanation for the 
observation that measured partition coefficients often vary 
inversely with sorbent concentration. WheWer the '@particle 
effect", first described by.0'Connor and Connolly (1980), is 
adequately exylained as an artifact of dissolvedjcolloidal 
ssparation is continuously debated. Di Taro (1935) has kr~zsd 
that colloidal binding alone cannot explain the magnitude of the 
particle effect. If so, then both the third-phase and particle 
effects must be retained in the description of the partitioning 
qocess. Reqardless of the mechanism, the particle effect serves 
to reduce the sensitivity of to variation in partition 

coefficients and sorbent concentrations, a useful outcome. 
Sorbed chemical fractions observed for HOCs in the Great Lakes 
are generally in the range of 20-50%. 

Finally, the validity of the equilibrium parzitioning assumpcion 
skoul2 be consi2ered. Xesults of sor>tion/desorptFon rat= 
experiments (Karickhoff and Morris, 1985; Wu and Gschwend, 1986; 
Ceatas and ElZenan, 1986) suggest thit partitioning equilibria 
for HOCs may require from days to months to achieve, depending 
cpon chaical hydrophobicity and sorbent particle size and 
concsntration. If these rates are applicable to sorption/- 
desorption in natural systtms, then parcitioning kinetics would: 
be comparable or slower than other ssdel process rates including 
particle transport, thereby invalidatinq the equilibrha 
partitioning assumpcion in at least some model applications. 



Furthermore, the results of many exaezbents conductac to measure 
partition coefficients are questionable because the duration of 
the experiments were considerably shorter than the equilibration 
times suggested by Lle so,r$ion/desorption rate experiments. 
More research is necessary to confin the kinetic data, and to 
develop rate data for a wider range of chemicals and experimental 
conditions. A nu913er of partitioning process models 
incorporating kinetic effects ara available, although for 
practical reasons, the equilibrium partitioning desci9tion is 
still employed in toxic chenical mo8els. 

2. Particle Transport 

The three most important sediment-water exchange processes, 
settling, resuspension an6 hrial, are-controlled by particle 
transport. Ssccling and resuspsnskn =e2irta the exckznge of 
particulate chemical between the wacer aiid s-~-ficial sediment, 
and burial represents a loss prscess as particulate cnemical is 
transported to deeper sedizent lzyers (these deeper layers are 
sometines added as additional model seqents). Settling, 
resuspension and burial appear in the mass balance formulations 
as velocitiss (v,.~, cd vb) , which are agcjrogate parameters 
representing a graa+y si=&fid 2oscriztion of ?article 
transport processes. In the siinples= czss, Fzrtlcle transPort 
velocities are parameterized as armual average rates. 
steady-state mass balance for particles, ei*&er 1s a single class 
or multiple particle classes, is used to simulate the particle 
transport fluxes in toxic chemicai models. 

Usually a 

Because the sediment segnent is treated as completely-mixed in 
the mass balance, its volume V: is properly defined by the 
thickness of the mixed sediment layer. The mixing of the 
surficial sediment is considered to be the result of 



bioturbation. 
the burial velocity determines the residence time of particles 
(and presumedly of particulate chemical) in this well-mixed 
layer. The sediment segment also represents the reservoir of 
particles and particulate chemical available for resuspension. 
The sediment residence time controls the accumulation rate in 
the sediment mass balance, and resuspension of particulate 
chemical ties the long-term water column accumulation to this 
rate as well. 

Calibration of particle transport parameters in the 
2-compartment model is based upon cesium-137 and 
plutonium-239/240, products of atmospheric bomb testing in the 
early 1960s. Accurate descriptions of the atmospheric loading 
of these constituents to the Great Lakes are available 
(Robbins, 1985a), as are measurements of water and sediment 
concentrations following their introduction to the lakes. 
Because Cs-137 and Pu-239/240 partition extensively, they 
serve as tracers for particle transport. Figure 1 illustrates 
the calibration achieved for 2-compartment models of.each of 
the Great Lakes. It should be noted that this model fails to 
simulate the observed depletion of radionuclides during 
stratification, which isolates the epilimnion from resuspended 
sediment particles (Robbins and Eadie, 1991). Furthermore, 
this calibration is sensitive to the partition coefficients 
for Cs-137 and Pu-239/240 (Thommann and Di Toro, 19831, so 
mis-specification of partition coefficients results in errors 
in the calibration. The calibrated burial rates may be 
confirmed against sedimentation velocities determined by 
Cs-137 and lead-210 profile analysis in sediment cores, 
although analysis of a large number of cores may be necessary 
to define lake-wide averages. Similarly, settling and 
resuspension velocities may be confirmed by measuring particle 
accumulation in sediment traps. Calibrated sediment 

Dividing the mixed sediment layer thickness by 



Figure 1 
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particle residence times are on the order of 20 years for all the 
Great Lakes, which is again confimed by sedisent core 
measurements of surface mixed layer depth. 

One enhancement to the simple description cf particle transporc 
that appears significant for the accurate mass balance of toxic , 

The description of particle transport presented above has several 
limitations, which should be considered in the context of 
parameter uncertainty. 
resolution on other than a whole-lake, annual basis. As one 
moves towards greater resolution, the process descriptions become 
more complex. For instance, study in %e Great Lakes reveals 
that particle transport processes are subject to considerable 
spatial and tesporal variability. 
considerakdy betxeen nearshore and open-lake locations and at 
different depths in the water column. In addition, lateral 
particle trznsport, redistribution m d  accunulatisn result in 
distinct degositional patterns in the lake basins. 
transport alsc vzrries te=;orzlly, both with seasonal procclsses 
and during s t o m  events. 
gredominance of cohesive sedisents, which undergo aggregation/- 
disaggregation during transgort which alters their properties, 
and detrital particles which mineralize during settling. 
significance of the nephloid layer upon particle and contaminant 
cycling is another phenomenon which has yet to be addressed in 
models. The potmtial irzfluence of the complexity of particle 
'aanspost en pazmetezization wncorftinty in tclxic chezicil 
models is addressed'by another paper prepared for this workshop. 
At a minimum, spatial and temporal variability of particle 
transport introduces parameter uncertainty via averaging errors 
in parameters obtained lay measurenent. 

First, this description provides no 

Vertical transport rate varies 

Particle 

FuA%ks= cc=;lici:ion is ir),trn&~cerl by a 

The 



chemicals is the simulation of multiple particle classes. 
Multiple particle classes can be used to represent variations in 
transport and sorption properties of the principal components of 
the natural particle assemblage. For instance, this allows the 
acearate reprasentaticn of partitioning of both suspended and 
transported particles in the water column. A multiple particle 
class formulation also facilitates the coupling of the toxic 
chemical model to simulations of biotic particle production and 
decay. 

3. Sediment-Uater Diffusion 

The fourth sediment-water exchange process is diffusion between 
the two compartments. The diffusion process is considered to be 
a minor component of sediment-water exchange, althcugh eata to 
canZizx this is lacking. The diffusive exchanqe coefficient, Kf, 

is often estimated by cne ckerical frea liqui5 &iffasivi?y 
modified for pathlength tortuosity. This produces a K,of 0.1 co 

1 cn/d, a range of values also suggesced by Thornann and Xueller 
(1987). Although a single exchange coefficient is applied to 
both dissolved and bound chemical fractions in the equations, K' 
for colloidal-bound chemical is probably smaller. Diffusive 
exchange cannot be uniquely decenined in tbe calihratfon 
procedure, and the aFplicability of experimental aeasurexents cf 
Kfto the field is uncertain. Either bioturbation, which would 

shorten the pathlength and lower the exchange resistance, or pore 
water transport by ground water infiltration could increase the 
flux of pore water chemical to the water column. Further 
research is necessary to develop and apply field measurement . 

methods to measure diffusive exchange in sits, in order to reE'2ve 
uncertainty in parameterization of this process. 
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B. AIR-WATER EXCBANGE 

Air-water exchange includes t!ze processes of rainfall washout, 
Lzy deoosition, absorption and volatilization. Because these 
exchanges occur across an open model. boundary and measurement is 
difficult, process garaeterization is particularly uncerrain. 
Rainfall washout and dry deposition represent the atmospheric 
load to the water co1Ur;m; both are described as deposition 
velocities ( v - d v J J  multiplied by the total chemical 
concentration in air-C,. Since both deposition processes are 
usually speciiried as external forcing functions to water quality 
models they will not be considered further, except to note that 
both deposition velocitias and air concentrations are difficult 
to measure, resulting in uncertain atmospheric loadings. The 
anparent spatial and tenperal variability in depositional 
processes sqqests that cou;aiing tfne water quality model to 
simulations of at=osgheric chemicai transport nay be garticulariy 
valuable in reducing this uncertainty. 

The process descriptiocs for absorption and volatilization may be 
combined as an expression for net volatile exchange 

the proauct of a volatilization rzta k, and the gradienr: betxea.? 
atmospheric uwCa/H) and water column (pdl Cl) dvail&le c,k,s.mical. 
Depending upon m e  direction of this gradient, net vclatilization 
may represent either a source or sink of chemical. 
theory of Liss and SPater (1974) describes the volatilization 
rate as a function of serial mass transfer resistances in liquid 
and gas films at the air-water interface, with the overall rate 
constant given as: 

The two-film 



effi where Kf is the liquid film mass transfer ient [L/T] , K~ i 
the gas film mass transfer coefficient [L/T] and H is the 

diiaensionless Henry's constant defining chemical equilibrium 
between vapor and dissolved phases. While there is general 
agreement in this description of volatilization, there is 
considerable uncertainty in its parameterization. Obviously, 
there are many parameters exerting influence upon the 
volatilization process. Hen-q's constant is particularly 
critical, as it defines the chemical gradient and determines 
which resistance controls k.. For the semi-volatile chemicals of 

qreatest concern in the Great Lakes, H is in the range IO-' to 
;ihs.re direct experhsntal measurement is difficult and 

produces uncertain results. Estimating H as the ratio of 
solubility to vapor pressure is a questionable alternative, as 
these properties are themselves uncertain for many chemicals. 
Henry's constant is also fairly temperature dependent, so values 
measured or estimated at 2 5 O  must be adjusted to appropriate 
enviromental temperatures. Factor of 5-10 variability in H is 
not uncomnon; sligntrly less variability fcr extensively studied 
chemicals including PCBs and TCDD. QSAR estimates, available for 
some chemical classes (Brunner et al., 1990), may also provide 
more accurate values. 

Liquid and gas-phase transfer coefficients are usually 
extrapolated from reaeration and evaporation rates for the water 
body of interest. Reaeration and evaporation have been studied 
extensively, and fairly reliable corrslaticns with environmentzl 
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factors such as wind speed, drag coefficient and water and air 
viscosity have been developed. 
esthates of these rates, presumably due to a dependence of the 
rates upon scale. 
bodies predict genertL1y higher =ass transfer coefficients. 
Extrapolation of the reaeration and evaporation rates to liquid 
and gas-phase transfer coefficients for a chemical is 
accomplished by scaling according to diffusivity ratios (Mills et 
al., 1982; Rathbun, 1990), based upon limited experimental data. 
Estimates of KI and & can vary by 3-5, deFending upon the 
particular method f oilowed. 

Correlations produce variable 

Correlations based upon data from large water 

Volatilization rates detemined in the calibration of mass 
balance models represent perhaps the best estimates for this 
process, although few examples can be cited. Richardson et al. 
(1983) dete,Timd voiatilizaticn rztss of 0.2 and 0.05 m/d for 
Aroclors 1242 and 1260, respectively, in Saghaw Bay, Lake Eurcz. 
However, abso-tion of PCBs was neglected in thac caiibration; 
including absorption would have increased the calibrated k,s. 

Schwarzenbach et a1.(1979) calibrated a volatilization rate of 
0.24 m/d for dichlorobenzene in Lake Zurich. 
importance of volatilization in mass balance models, further 
field-scale dezerxination of volatilirztion rates for the purpse 
of reducing parameterization urrcer'caiaty zggezzs necessary. 
Simultaneous process calibration of air and water compartments 
should be considered in any such design. 

Considering the 

c. TRANSFOR?IATION/BEGIATION 

Transformation and deqradation processes alter the mass balance 
for certain ckenicals by biclogical and chemical reaction. 
Transfornation is operationally defined as a process converting 
one constituent of concern to another; both will usually be 



retained in the mass balance. Examples include mercury 
methylation, mirex photolysis, DDT transfornation to DDE and PCS 
dehalogenation. Degradation is a transformation to constituents 
of no interest (or unknown chemical products) that are not 
retained in the mass balance. Transformation processes of 
concern include photolysis, hydrolysis, oxidation and aerobic and 
anaerobic biodegradation. Except for photolysis, which is 
limited to the upper water column, these processes may he 
particularly important in the sediment where even relatively slow 
transformation rates can alter chemical accumulation. 

Transformation/degradation are described zs first-order kinetic 
processes in the mass balance fornulation, and are parameterized 
by a first-order reaction rate, k,. For hydrolysis, oxidaxion 
and biodegradation this is an approximation since these are 
second-order reactions, clthough first-order with respect to 
chemical concentraticn. kd =GS= usuzlly be estimated fro3 
experimental data, although transformation rates have been 
inferred from vertical chsmical distributions in sedixent pore 
water (Oliver, Carlton and Durham, Ua9). The reliability of 
transformation rate data and its applicability to environmental 
conditions make estimation of this parameter particularly 
izncertain. Practically, the obserred persistence of a chenical 
can be used to define a FrzSaSle uFger bound for transZomaticn 
sate; this may be essentially zero for many persisrenc toxics. 
If not, then uncertainty in estimates of kd can exert a strong 
influence on the mass balance. 

-.lr- - 

D. WITER COLUMW EXCBANGE 

Water column exchange includes the processes of advection and 
dispersion. In the 2-com~artment rcodel the only water column 
exchange process is outflaw, which has a minor influence on the 



mass balance for most chexicals. 
presumes that lake circulation is adequate to maintain uniforsa 
chezical concentrations throughout the water calm. 
assumption may be valid on an annual basis, thermal 
stratification in gmicuiar may seasonally rsdsce circulation 
allowing concentration gradients to develop. 
alters particle transport, as previously mentioned. It may 
affect other processes as well because of their first-order 
relationship to chemical concentration. For example, a chemical 
trznsformation or volatilization rate will be effectively reduced 
if the chemical is depleted in the epilimnion during 
stratification. 
coacentratiens zequires additional model segmentation, and the 
addition of vater column exchange processes to the model 
formulation. 

In fact, equations f and 2 form a basis comonly ussi for z=ze 
ccaplex, multisey-erk models. Such models are made up of severai 
water column and sediment compartments in which the mass balance 
equations I and 2 apply, with minor modification. This 
medification is necessary to account for mass exchange between 
water column segments. If segment 1 receives flow & from an 
adjacent water c o l m  segment 3, and soPe deqrae of mixi.?g 
(pra?neterizedgs a QuUe dispersion coefficient, EIJ e a r s  
between the segments, then the modification to equation f would 
%a to add the terns 

The completely-mixed assumption 

While this 

Stratification 

To simulate spatial variability in chemical 

Q31C3 + E31(C3 - C,) 

to the water column exchange tern previcusly defined. Flows and 
&ispersion coefficients are texporally varied to regrcaduce the 
observed circulation patterns. This is usually dclne by 



calibration, either to a conservacive tracer such as chloride, or 
to tmperature. Calibration is only possible if gradients in the 
tracer are observed; this limitation has prevented, for instance, 
the calibration of large-scale horizontal exchange in Lake 
Michigan (Rodgers and Salisbury, 1981). The predictive accuracy 
of calibrated exchange beyond the period of calibration may also 
be unc3rtain. 

Hydrodynanic sinulation hzs often been proposed as an alternative 
to calibration for exchange parameterization. 
offers the prospect of more accurate prediction of water column 
exchange, yet applications for mass balance model- 
parameterization have been limited. Because hydrodynamic 
simulations take place on tiae and space scales reuch smaller than 
those of interest for mass balance, either hydrodynamic results 
must be averaged to produce exchange parameters or the mass 
balance equations must be solved on the hydrodynamic grid. The 
averaging schemes necessary to implement the first option are nor 
generally developed, and the conputational expense of the second 
option has been prohibitive. This latter option may becone 
feasible with the growing availability of supercomputers and 
high-performancz computer workstations. 

Hydrodynamics 

v. EXAMPLE: LAKE ONTARIO LEVEL 1 FATE OF TOXrCSlaODEL 

A preliminary ("level 1") model for toxic chemicals in Lake 
Ontario was Oeveloped to support the Lake Ontario Toxics 
Management Plan development. The model was applied to predict 
the relationship between loading and chemical concentrations in 
water, sediment and biota for toxic chemicals of concern 
including chlordane, DDT, dieldrin, hexachlorobenzene, ziirex, 
octachloroscyrene, PCBs (modeled as homologs) and TCDD. This 
model was based upon earlier nodels of radionuclides (Robbins, 
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198513; Thomann and Di Toro, 1983), PCBs (IJC, 1988) and TCDD 
(Endicott et al., 1989) in Lake Ontario. The mass balance was 
based upon the tm-conpart-,ent formulation presented above. 
mass balance model was coqled to a bioaccumulation model to 
extend pradictioas to toxic cheaical concentrations in biota, 
although the bioaccumulation model will not be discussed here. 
Because of limitations of the toxic chemical database, 
particularly the lack of rsliable loadinq estimates, calibration 
of the model was not atteEated. Loadings were treated as a 
single forcing function, including atiaospheric deposition and 
absorption. The initial steady-state application of the model is 
presented here, although ayn&mic model applicati'ons have been 
subsequently developed. 

The 

Because of the preliminary, uncalibrated nature of this model 
esthation of predictive czcertainty w2s a particnlarly izigortant 
aspecc of this model application. 
to relate parameter uncerTainty to uncertainty in model 
predictions. Results of this analysis provided estiiaates of 
confidence for model prediccions. Cenceptual and deserigtive 
errors in the nodel were neglected, because these factors relate 
to possibilities which would change model results to an unknown 
ex='-ant. Zncertainty due =o these errors can only be id;entified 
by aodel calikratlon a,?& ceriflcaticn, al-,hough soae &ease or̂  the 
relative kportawee of mcciel error was gained by comparing 
results to predictions gernerated by a coneept~ally-dissimilar 
model, TQXFATE (XiaPfon, 1990). 

Lncer=ai,?t-g azalysis ;as cs& 

A. ANALYSIS OF MODEL UNCERTAINTY 

Uncertainty analysis may be performed by either first-order or 
Monte Carlo methods, the latter being used for this application. 
The Monte Carlo method allows direct: analysis sf the consequence 



of model parameter uncertainty, since the model can be used to 
compute changes in concentration resulting from changes in 
parameter values. This is achieved by perforaing repeated 
simulations of the model with randonly selected values from 
defined probability distributions. 
values are chosen at random from specified frequency 
distributions. 
(McXay et cl., 1979). The process is repeated for a number of 
iterations sufficient to converge upon an estinatcl of the 
frequency distribution of the outgut variables. 
analysis allows a'probabilistic statement of uncertainty to be 
made because a distribution of model predictions is produced 
(Gardner and O'Neill, 1983). The output probability 
distributions for 200 and 300 iterztions were found to be the 
same; 300 iterations were used to assure convergence in the Monte 
Carlo analysis. 

For each simulation parameter 

This is known as the Latin Hypercube method 

Monte Carlo 

In Monte Carlo analysis probability distributions are used to 
represent the confidence, or uncerrainty, in the parameter 
values. 
model parasleter depends upon the information used to estimate the 
parameter. No distinction was Eade bet-deen parameters thzt iiere 
uncertain and those that were variable, because the level 1 model 
simulates aaly average conditions in -the lake. SevOral 
probability distributions were used to regresent paramecer 
uncertainty in this exercise. 
number of data values, then the probability distribution of the 
sample mean was used. More often, however, parameter uncertainty 
was specified as a range of values. If it was assumed that the 
parameter could be anywhere in the range with equal probability, 
a uniform probability discribucion was used. If instead the 
range was interpreted as confidence linits, with the actual value 
probably lying in the midc?le of tbe ranqe, the normal or 

The selection of the probability distribution for each 

If a parameter was based upon a 
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lognormal distributicn was us&. 
preferring the lognorzzal distribution (Endicott et al., 1989). 
Far a narrow range the lognormal distribution approximates the 
normal, but for wide range the lognormal distribution is centered 
on the geometric mean and produces fewer extremely large values. 
In practice, the lognormal distribution is preferred because 
values generated are always positive. In a previous study the 
sensitivity of the Monte Carlo analysis to the assuced parmeter 
distribution was investigated (Endicott et al., 1989). It was 
concluded that the choice of uncertainty probability distribu*' cion 
for the most sensitive model parameter (photolysis rate consttnt) 
did not significantly affect the results of Monte Carlo analysis. 

mere are several reasons for. 

The parameterization of the mass balance model fallowed the . 

izethods described above; details of the parameterization may be 
found in a report (Endicott et al., 1990). Probability 
dkkzibutions were also estinatnd for the parameters to quantify 
i;bica.t,ainty in tlbe vzlues. Systezt-specific parmeterization is 
summarized in Table 1; the chemical-specific parameterization is 
presented in Tables 2, 3 and 4. Uncertainty was expressed in 
terms of the coefficient of variation (CV), a normalized measure 
of variability, For normal distributions, the coefficiRnt of 
variation is the standard deviation (0) divided by the mean (p): 

F Q ~  lognormal distributions the coefficient of variation is 
defined (Aitchison and Brown, 1969) as: 
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TABLE 1. LAKE ONTARIO MODEL PARAMETERS 

UNITS IJfEnNVAtuE cv DISTRIBUTION 

Volume 
Interfacial Area 
Flow 
Suspended 
Particle 
Concentration 
Sedimented 
Particle 
Concentration 
Pkrticle 
Settling 
Velocity 
Particle 
Resuspension 
Ve 1 o c i ty 
Particle 
Sedimentation 
Velocity 
Diffusive 
Exchange 
Coefficient 
Suspended- 
Particle f, 
Sediaent sd 
Particle f, 
Water Column 
NSOM Conc. 
Sediment soli& 
Density 
Solids Loading 

1.68E+12 
1.95E+10 

6770 
1.2 

270000 

1 

0.741 

0.889 

0.1 

0.15 - 

0.0328 

4 

2.4 

1.4E+07 

constant 
constant 

0.109 lognormal 
0.0932 lognormal 

0.266 lognormal 

adjusted to balance 
sediment particle 
fluxes 
0.430 lognormal 

0.426 lognormal 

0.642 lognomal 

0.0937 - leqnomal 
0.236 noxal 

0.239 lognormal 

constant 

adjusted to balance 
waxer colunn particle 
fluxes 
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TABLE 2. SELECTED LOG K, VALUES FOR CHEMICALS OF INTEREST 

Chlordane 6.00 

DDT 6.00 

Dieldrin 5-50 

HCB 5-84 

Mirex 7.14 

ocs 6.20 

PCB-3 5.46 

0.693 

0.289 

0 e 990 

0 e 475 

0.612 

0.990 

0.262 

PCB-4 I PCB-5 5.89 

6.28 

B. 287 
0.301 

0.274 

PCB-6 6.74 

PCB-7 7.12 

PCB-8 7.51 0.270 

f TCDZ 6.76 0-422 
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TABLE 4. TRANSFORMATION (PHOTOLYSIS) RATES FOR CHEMICALS 
OF INTEREST 

CEEXICAI; kp (l/d) DISTRIBUTION CV 

Chlordane 
DDT 
Dieldrin 
HCB 
Mirex 
ocs 
PCB-3 
PCB-4 
PCB-5 
PCB-6 
PCB-7 
- 

0 

7 9E-4 

4 ZE-6 
2. IE-5 
S.4E-5 

0 

0 

0 

0 

0 

0 

lognormal 1.731 

lognorma 1 1.73 

lognormal 1.73 

lognormal 1.73 

PCB-8 0 

TCDD 2 e 3E-3 leguniform over 



where = standard deviation of the natural logarithm of 
the parameter value. 

Deterministic and Monte Carlo simulation runs were made with unit 
loadings of 1 kg/day. Sample Monte Carlo output histograms, in 
this case for TCDD, are presented in Figure 2. "Count I* in the 
figure is the frequency of model predictions lying in a 
particular concentration interval, from a total of 300 Monte 
Cirlo realizations. 
Monte Carlo analysis were approximately lognormal for all 
chenicals. Reproducibility of the Xonte Carlo outgut 
distributions was verir'iec2. The ltgarltbic nean, coefficient of 
variation (CV) and 952 confidence intervals of ehe distribiiticn 
of model predictions are presented In Table 5. 
limits represent the model uncertainty as detozined by ?lor?te 
Carlo analysis. The logarithmic means of the Monte Carlo outr;ut 
distributions agree with the corresponding deterministic 
predictions. The variability of water and sedlsent 
concentrations are generally sizlilar for each chemical, with CVs 
in the rangiof 0.2 to 0.7. 
relationship between total loading and concentration is linear, 
these predictions can be proportioned for any other total lead to 
the lake. The load-concentration relationships can also be 
represented graphically, as shown in Figure 3. 

The model output distributions produced by 

The confidence 

Because -the steady-gtam scdel 

The variability of model output may be compared to input 
parameter variability, to indicate whether input er, rors are 
accumulates or attenuated by the model. For each chemical, the 
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Figure 2. Monte Carlo Output Distribution for TCDD 
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TABLE 5. SUMMARY OF MONTE CARLO RESULTS 

CHEMICAL DISSOLVED WATER (pg/ 1) Q SORBED SEDIMENT (ng/g) 

109 .m (95% CI) log cv (95% CI) 
MEAN MEAN 

, 

Predicted Steady State Concentrations for Total Lake 
Loading of 1 kg/day 

Chlordane 

DDT 

Dieldrin 

fICB 

Mirex 

ocs 
PCB-3 

PCB-4 

PCB-5 

PCB-6 

PCB-7 

PCB-8 

Aroclor 1248 
Aroclor 1254 

TCDD 

17 1 

140 

387 

67.8 

77.6 

111 

87.0 

93.8 

90.3 

75.9 

66.5 

-50.6 

94.9 

87.1 

67.2 

0,538 

0.608 

0.661 

0.239 

0.710 

0.487 

0.345 

0.436 

0.473 

Q. 609 

0.658 

0.640 

0.260 

0.354 

0.584 

63.8 

46.8 

119 

42.5 

22.2 

44.9 

44.2 

41.4 

37.4 

25.2 

20.5 

16.0 

57.5 

44.4 

23.2 

460 

422 

1260 

loa 

272 

274 

17 1 

2 12 

218 

228 

216 

159 - 

157 

17 1 

194 

36.3 

30.1 

48.8 

12.2 

53.4 

29.0 

10.5 

17.7 

25.3 

34.5 

44.7 

50.6 

23.9 

32.7 

31.1 

0.503 

0.629 

0.368 

0.671 

0.451 

0.596 

0.728 

0.703 

0.567 

0.592 

0.460 

0~401- 

0.325 

0.369 

14.3 

9.71 

24.3 

3.68 

23.0 

9.84 

2.94 

5.12 

9.20 

11.8 

18.9 

23.7 

12.8 

16.2 

0.581 10.8 

92.2 

93.2 

98.0 

40.2 

12 4 

86.3 

37.3 

61.4 

72.9 

101 

105 

44.4 
lo8 I 
89.5 65.8 ll 
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Figure 3. Load-Concentration Relationships for PCSs 
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input parameter CVs were compared to the output concentration 
CVs. For water and sediment concentrations, the output CVs were 
generally similar or somewhat smaller than the input parameter 
CVs, indicating that input errors do not significantly accumulate 
Llough the =ass balance zade!,. For example, +he large 
uncertainties in volatilization rate constant for DDT, dieldrin 
and mirex are not reflected in proportionately greater outpuc 
variabilities of watrrr and sediment concentration for those 
chemicals. 

C. IDENTIFICATION OF CRITICAL PARAMETERIZATION UNCEXTAINTY 

Given that uncertainty in model predictions is large and, hence, 
confidence in predictions is low, how can the situation be 
improved? Aside from estimating the confidence intervals for 
model predictions, Monte Carlo analysis may be used to examine 
how confidence in model prediczions is improved by reducing cz 
eliminating uncertainty (variability) in the model paramecers. 
An application of such analysis would be to prioritize research 
efforts intended to improve the accuracy of nodel predicticcs by 
accurately measuring one or more parameters. 
correlation observed between model inputs and outputs indicates 
the relative importance of input parameter uncertainty in 
contrihting to predicted concentrztion variability. 
Carlo method is modified by simply redefining the uncertaincy in 
the parameter OP parameters of interest, and comparing the 
results to the original (base case) output distribution. 

The degree of 

The Xcnte - rr 

DDT, a chemical with significant variability in water and 
sediment concentration predictions, will be used to illustrate 
the method. Cross-correlation analysis of the base case Monte 
Carlo run identified the bgK, regression error, &gK, azd the 
rates of transformation, volatilization and sedimentation as the 



parameters most responsible for model variability. 
eases, representing different levels of parameter uncertainty 
reduction, were prepared: 

Three test. 

Case 1: eliminate hgK, regression errsr (use2 to 
represent uncertainty in K,) 

Case 2: eliminate hgK- regression error and uncertainty 
in k,, kp and 9, 

Case 3: eliminate logK, regression error and uncertainty 

in k,, k,, 2v, and log K, 

Eliminating variability would be equivalent to perfectly accurate 
parameterization. 
uncertainty upon predictions: 

A fourtk ease tested the impact af load 

Case 4: base case uncertainty plus uncertainty in the 
chemical load 

Monte Carlo analysis was applied to each of these cases. The 
results, in terns ef logarithnic mean axd. C? for the distribution 
of water predaztions, are presented in *able 6, 
eases test the impact of seqyentially renoving variability in Lhe 
model parameters most affecting output variability. 
in predicted water concentration is reduced 30% by eliiiiinating 
the logK, regression error, and by 90% by additionally eliminating 
variability in k,, k. arid 9,. Eliminating variability in [OgK, has 

only marginal impact upon Lye uncertainty or' predicted xatar 
concentrations. 

Tk; fTrst three 

Variability 



TABLE 6. MONTE CARLO OUTPUT FOR TESTS OF PARAMETER 
VARIABILITY REDUCTION FOR DOT 

Dissolved water concentration (pg/ll 

log HEAN cv 95% CI 

base case 140 0.608 46.8 - 422 
case 1 14 6 0.492 58.4 - 363 
case 2 17 6 0.089 148 - 210 
case 3 177 0.069 155 - 203 
case 4 13 9 0,771 36.6 - 532 

To this ? o h t ,  all aodel predicticns heve keen =&e with a 
conscanc unit ioad. Sne should not loss si~kt cf tke fact :kat 
chemical loading is, in fact, another uncertain input to the 
nodel. Case 4 tests L3e significance of an uncertain load uFon 
output variability. Loading is treated as having a lognorrnal 
is treated as having a lognormal probability distribution with a 
CY of 0.428 (the width of the 95% confidence interval for the 
loading distribution is a factor of five, sixilaz to that for 
other inportant sodel inputs). The iztpact of load varizbili.51 
upon predicted water concentrations is significant; variability 
is increased by 60% over the base case. 

-f - -  

The results of the parameter variability reduction analysis for 
DDT may be extended to the other toxic chemicals. Figure 4 
illustrates the contribution of variability in key model 
parameters to variability in wator concentrations. The square of 
the correlation coefficient, i is an estinato of the fraction of 
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Figure 4. Sources of Uncertainty in Water Concentration 
i n  “1 . . 
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output variability attributable to each uncertain parameter. 
Variability is controlled by chemical loss rates (k., k, and v,) 

and hydrophobicity (&g X- regression and log K,) alL&ough the 
relative importance of each parameter varies from chemical to 
chemical. 
hydrophobicity; there is a general trend of increasing 
significance in partitioning uncertainty ("IC, error") and a 
declining significance of volatilization and transformation rate 
for the more hydrophobic chemicals. 

In this figure the chemicals are ordered according to 

0. IXPLICXTXONS OF UNCERTAINTY ANALYSIS FOR MODEL APPLICATION 

The uncertainty analysis performed on the Illeve1 1" mass balance 
model indicates that predicted steady-state water and sediment 
chemical concentrations are confident to within about a factor of 
ten. This rqresents a large uncertainty in colrparison to the 
porencial accuracy of a calibrated iimeel, xhozo, =.? acsrrrzcy on 
the order of f 50% may be achieved. However, even with the 
factor-of-ten uncertainty, the results of the "level 1" model 
have apparently proven useful for preliminary applications in the 
Lake Ontario Toxics Management Plan. For instance, the 
load-concentration predictions confirm that virtual elimination, 
the stated goal of the Toxics Managellent Plan, must be achieved 
to meet- stringent watar quality cziteria being &eloped for the 
Plan (Zafonte, 1990); Mass balance modeling will play a 
continual role in guiding toxics managenent efforts by predicting 
the effectiveness of loading reductions. 

- -u?- 

Even if model uncertainties were too large for predictions to be 
useful, the analysis of uncertainty is useful to identify 
critical uncertain paraneters, which may be prioritized for 
further research investigation. 
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E. IMPROVEMENTS 

This mass balance application could be improved in a number of 
ways. Most importantly, the influence of non-steady state 
conditions and specification of atmospheric concentration and 
exchange, independent from loading, should be incorporated in the 
model results. Load-concentration diagrams incorporating these 
effects as well as parameterization uncertainty are being 
developed, to provide.additiona1 inqight to the simulation of 
this critical relationship. Figure 5 illustrktes how the linear 
steady-state load-concentration relationship, and its confidence 
limits based upon uncertainty analysis, compare to results under 
more complex and realistic conditions. 

VI. PROSPECTS FOR REDUCING PARAMETERIZATION UNCERTAINTY 

Reducing parameterization uncer2aisty in zass baler.c= models will 
reqaire the development of a research strategy combining (I) the 
deteninaticn of critical process descriptions and parameters 
(including field measurement and verification) with (2) the 
further development of comprehensive data sets for model 
calibration, vecification and post-audit, Critical I - 
parameterization uncertainties may be identified by the 
application of mcertainty analysis as vel1 as by testing the 
sensitivity of model predictions to different process 
descriptions. More experimental process research will allow more 
advanced process descriptions to be used, as will more powerful 
computer resources. However, modelers will still rely upon the 
experience gained by calibration and verification to reduce 
parameterization uncertainty. 



Figure 5. Impact of System Lag Time and Constant Air 
Concentration Upon Load-Concentration Relationships 
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VII. UNRESOLVED ISSUES/QUESTIONS 

A. WHAT UNC-AINTY IS INTRODUCED BY COMMON ASSUMPTIONS IN 
MASS BALANCE MODELS? 

1. Equilibrium partitioning 
2. Mixed-layer sediment model 
3. Constant settling/resuspension/deposition particle 

4. Completely-mixed water colunn 
5. Single sediment compartment 
6. Single, constant air concentration (C,) driving 

,. 

flues . 

air-to-water chemical fluxes 

B. DO UNCXLIBRATED AND/OR SIMPLISTIC MASS BALANCE MODEZS HAVE 
VALUE FOR DECISION MAKIBG? 

6. ARE TEERE BETTER WAYS TO ESTIMATE/PRESEd3T MODEL 
UNCERTAINTY? 



MASS BALANCE NOMENCLATURE 

Water column and sediment layer volumes [L3] 

Chemical concentrations in water column and 

Chemical loading rate 

Flow rate through lake 

Chemical concentration in water column 

Flow rate from water column segment 3- 

Bulk dispersion coefficient between 

Diffusive exchange coefficient between 

Interfacial area between segments [L] 

Dissolved, bound (to non-settling organic 

sediment [ M/ L3 3 

segment 3 .[M/L3] 

to segment 1 [L3/T] 

segments 3 and 1 [L3/T] 

water column and sediment [L/T] 
2 

matter), and sorbed (to settling particles 
chemical fractions in water column 

Dissolved, bound, and sorbed chemical 

Porosity of sediment layer 

Volatilization mass transfer coefficients 

Transformation/degradation rate of chemical 

Transformation/degradation of rate of 

Gas phase atmospheric chemical concentration 

Total atmospheric chemical concentration 

Wet deposition velocity [L/T] 

Dry deposition velocity [L/T] 

fractions in sedinent layer 

- -  
W T I  

CVTI 

chemical in sediment [1/T] 

[M/L~I 

[M/L31 
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= 

= Dimensionless H e m ' s  constant 

= Solids settling velocity, resuspension 
velocity, and burial (sedimentation) 
velocity [L/TI 

Particulate and vapor fractions of chemicals 
in atmosphere 

- -  
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SUMMARY OF TH. PROCESSES 

Exposure to the Chemical. The flux rate of chemical to an aquatic animal is depen- 
dent on the chemical concentrations in the two media contacting the -al; water and 
food Bioaccumulation models explidtly sped& the dissolved chemid concentration and. 
sornezirues, the chemical concentration in the detritus or phytoplankton at the base of rhe 
food chain as forcing functions. In general, these concentrations are areal averages for a 
defined se-ment of the water body. Where concentrations vary spatially, such that a 
migrating animal experiences a sipficant temporal variation in exposure to the chemical, 
several segments are defined. Seasonal migration is accounted for by moving the migrating 
animd between the segments. 

The model is usually directed to a top predator fish of commercial or sport fishing 
value. The chemical concentration in the prey of this fish is dependent on the concentra- 
tion in the food of the prey, and so on to the base of the food chain. Thus, to correctly 
specify the chemid concentration in the food of the top predator it is necessary to define 
the food web below the top predator and to sequentially calculate concentrations from the 
base of the food chain through the top predator. The definition of the &ood web is gener- 
ally simpiified by using a single species as a representative of all the prey species inhabiting 
closely related ecological niches. 

Uptake and Loss of Chemical. Tne accumulation of toxic chemicals by aqJatic ani- 
mals is generally described by the following equation (1): 

where 

v = concentration of chemical in species i in the food chain [ug/g(w), where g(w) is gams 
wet weight] 
K,, = rate constant for chemical uptake across the $11 of species i [L/g(w)-d] 
K = rate constant for excretion of chemical by species i (l/d) 
ati = efficiency at which ingested chemical from prey j is assimilated by species i 
C = ingestion or consumption rats of species i on species j [g(w)prey/g(w)pred,/d] 



G = growth rate of species i (,o(w)/p(w)/d) 
c = dissolved chemical concentration (ug/L) 
n = number of species (including different year classes of a single species) preyed on by 
species i 

The fint term of Equation (1) represents the direct uptake of chemical by the anima! 
from water. The second term represents the flux of chemical into the animal through feed- 
ing. The third term is the loss of chemical due to desorption and excretion plus the change 
in concentration due to growth. Equation (1) is applied to each of the animals that 
comprise the food web. For the upper levels of the food web changes in chemical 
concentration with age are sometiines si-gificant and each year class of the species at these 
levels is modeled separately. 

The rate constani KUi parameterizes the transport of chemical across the gill to the 
blood. It is essentially the body weight normalized product of a mass transfer rate constant 
and the gill surface =ea. Several equations have been proposed to define the mass transfer 
rate constant based on mechanistic descriptions of the processes occurring at the gill sur- 
face (2-4). A simpler approach that does not require explicit definition of the mass transfer 
rate defines KUi from the uptake rate for oxygen (1). Oxygen transfer rate is defined by the 
respiration rate of the animal and the oxqrgen concentration of the water (~02): 

where r -i is thEespirarion rate in units g02/g(w)-d. Mechanisticdly tB uptake rate may 
be described in terms of a mass transfer rate constant at the gill (K Liot), the gill surface 
area (A), and the weight or" ~ 5 e  animal, W: 

-- 

Similariy, the mass transfer rate for a chemical is: 



If equations (2) and (3) are equated, solved for A/W and substituted into equation (4), the 
uptake rate of the toxicant may be written as: 

From this equation it follows thst the uptake rate of a chemical can be computed from the 
respiration rate of the animal if the ratio of the mass transfer coefficients for the chemical 
and oxygen is known. Estimates of the ratio may be obtained from measurements of chem- 
ical and oxygen uptake efficiencies. The ratio of mass transfer coefficients is equal to &e 
ratio of uptake efficiencies measiired when the body burden of the animal is zero. 

The excretion rate constant Ki includes all of the processes by which the animal is 
able to depurate chemical. For most organic chemicals it appears that the gill is the major 
sire of depuration (5) ana that K,i and Ki define the rates of uptake and eIirninarion for a 
reversibk diffusive process. The racio of these rate constants defines the equilibrium con- 
dition for this process, or what is generally calIed the bioconctntration factor, N. 

It has been demonstrated that the bioconcentration factor of neutral organic chemicals 
measured in laboratory studies can be predicted from the Kow of the organic chemical 
(6-9). In fact. it appears that the lipid-normalized bioconcentration factor is approximately 
equal to KOw, at least for log Gw values up to about 6. Therefore, it is possible KO com- 
pute N for a neutd3rganic chemical from the KOw of the chemical and theTiaction lipid 
of the animal (k), i.e.,: 

-- 

Using this value of N for animal i in the food chain and the computed value of Kui it is 
then possible to compute Ki: 

ur K i  = - :v L 



Above a log GW value of 6 a loss or'lineariv has been observed in correlations of N 
and KOw (10-12). N appears to reach a maximum in the log KOw range 6.5 to 7 and begins 
to decrease at higher log KOw values. Several hypotheses exist to e.upIain this behavior. 
Gobas et al. (5) have reviewed and evaluated these hypotheses and have concluded that the 
dominant effem are the increasing impomace of feu1 elimination and a decrease in fkeeiy 
dissolved chemical (due to complexation with dissoived and colloidal organic material) as 
KOw increases. The latter effect is an experimental artifact dependent on the concentra- 
tion of organic matter in the water used in the experiment. Fecal elimination was shown to 
lower the slope of the &KOw relationship but not cause a decreasing relationship. 

Transfer of chemical across the mt wall is defined by an empirical constant; the 
chemical assimilation efficiency. This constant specifies the fraction of ingested chemical 
assumed to be transferred from the gut EO the animal. The rate at which chemical is 
ingested is defined by the rate of food consumption Ci and the concentration of chemical in 
the food. The food consumption rate is calculaxed from the rate of enerz usage. Energy 
usage is estimated from the rates o€ production and metabolism of body tissue by the ani- 
mal. G r o d  raze defines the net production of body tissue (g(w)/g(w)/d). The rate of 
metabolism of body tissue, Ri, may be computed from the respiration rate by: 1) 
stoichiometricaiiy converting respiration from g02/g(w)/d to gC/g(w)/d; 2) converting 
carbon to dry weisht by assuming all animals are 40 percent carbon on a dry weight basis; 
and 3) converting dry weight to wet weight using observed ratios. Given the caloric density 
of the animal's tissue in units cal/g(w), he the energy usage rate, Pi, is then; 

- 
Dividing Pi by the fraction of ingested energy that isasshilated, a, Geldzhe rate of energy 
intake by the animaI. The rate of cornmution of food. Cij, is the energ intake rat? 
divided by the caloric density of the food, X ,: 

Where food is a lower trophic level animal, differences in caloric density are assumed to be 
related to differences in wet weight:tiry weight ratio, Le., the caloric density of dry tissue is 
assumed to be the same for predator and prey. Tne caloric densitj ratio in Equation (9) is 
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thus replaced by the ratio of the dry weight fracrions of the predator and its prey. Doing 
this ignores differences in body composition, particularly differences in lipid conrenr. 
While such differences do effect the caloric density ratio, they are much less significant 
than the effect of diiferences in water content. 

For deposit feeding animals consumption is based on carbon rather than enerp. C; 
is computed as above except that caloric density is not considered, Pi is expressed as 
gC/g(w)/d using the conversion factors mentioned above and food assimilation efficiency, 
a, is interpreted as the fraction of ingested carbon that is assimilated. In the applicarion of 
Equation (1) v the chemical concentration in the food (Le., sediment), is expressed as 
ug/gc. 

Respiration and gowth are defined by empirical relationships. Respiration is a spe- 
cified function of weight and temperature, T, of the form: 

.4n exponential growth rate that varies with age is assumed (see I). The respiration- 
weight-temperature function for each species is determined by regression of data frorn lab- 
oratory respiration studies. The growth rates are established from Eield observed 
Iengh-weight, Iensth-age and weight-age relationships. 

LiNcERTAINTY IN PROCESS DESCRIPTIOIV 

Migration. mration may be defined as the movement of fishes b6twem three ypes 
of habitats: one suitabk for reprod&an, one suitauk for feeding and one suitable 2s 3 
refugz In periods of unfavorable abiotic or biotic conditions (13). The movement between 
habitats is strongly influenced by the diel pattern of ]light and dark, the annual ternperam? 
and photoperiod cycles and the age ana sex of the fish. In addition, the habitats suitabie 
for feeding and refuge may be different at different stages in the life cycle. 

The general migration patterns of individual fish species can be determined from tag- 
ging studies. These data generally indicate that migration timing and extent vary greatly 
between individual fish. In addition, some species include a sub-population that do not 
participate in migration. FOP exampie. the Green Bay walleye include a sub-population 



that permanently resides in the Fox River and a sub-population that migrares between the 
river and the bay. Other species, such as stripped bass, only begin migrating after a, me two 
or three (14). 

The variability of migration bchavior within a fish population can make assignment of 
a single deterministic migration pattern problematic. h unquantified bias may be intro- 
duced into the model. Further, the comparison of computed and observed fish contam- 
inant concentrations ignores possible differences between the movement history of the fish 
sampled and the migration pattern defined in the model. Also, the variability of migration 
behavior increases the variance of the contaminant concentration distribution in the 
population, particularly if the different habitats have significantly different e.xposure con- 
centrations. These factors increase the inherent uncertainty of the calibrated model. 

Migration uncertainty limited calibration in the modeling of Kepone in the stripped 
bass food web of the James River Estuary (IS). Two migratory species were included in 
that model: stripyed bass and Atlantic croaker. The cioaker has a well-defined migration 
pattern and the model calibration was excellent Figure 1). The migration pattern of the 
stripped bass is more complicated because immature fish do not migrate and the age at 
which migration begins may vary between individual fish and between year classes (11). In 
addition, the timing of the migratory movements is somewhat variable. As a result, the 
temporal Kepone pattern in the stripped bass is less structured than that of the Atlantic 
croaker and the model calibration is weaker (Figure 1). 

Additionabaspem of migration that are not considered in the-cumnt models are the 
changes in energy expenditure and energy uptake. The activity level of the fish is increased 
during migration and feedins may cease. Fat resewes may be used and stored cke,?lcal 
may be released. The significance of these changes to the seasonal and annual contam- 
inant concentration profile are uncertain. 

Food W e b  Structure. The computed contaminant concentration in top predator fish 
is largely dependent on the structure of the food web. Of particular importance are the 
number of trophic levels in the food web and the association of the components of the food 
web with the water column and sediment environments. 
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The bioaccumulation models are generally built around the classical description of 
the aquatic food web; phytoplankton to zooplankton to forage fish to top predator fish. 
This description is now viewed as inadequate because of the demonstrated contribution of 
the bacteria to nanozooplankton to microzooplankton "microbial loop" to carbon flow (16). 
Fi,we 2 shows the classical food web and the positioning of the microbial loop. The si-pif- 
icance of this microbial loop in contaminant accumulation has not been established. In 
freshwater systems the ability of cladocerans to graze the full microbial loop may reduce 
the impact that biomagnification through the loop has on higher trophic levels. In 
estuarine/marine systems the plankton food web is fairly linear and the microbial loop may 
be of greater importance. 

Contamhated sediments are a dominant toxic chemical problem, and the pathway of 
chemical movement between these sediments'and top predator fish is an important compo- 
nent in toxic chemical models. This pathway generally involves forage fish who feed at or 
near the sediment surface. These forage fish generally consume a variety of benthic 
animals including insect larvae, amphipods, oligochaetes, gastropods and bivalves. The 
benthic animals may live on the surface of the sediment or they may dwell in the sub- 
surface. They may be suspension feeders, surface-sediment feeders or sub-surface sedi- 
ment feeders. The water they take in for respiration and the particles they ingest may be 
characteristic of the overlying water column, the sediment or the benthic boundary layer. 
They may be selective feeders: ingesting particies whose physical characteristics and 
contaminant concentration are different from those of the bulk particulate material. 
Defining a prototype benthic food web component is difficult because of the variery of 
characteristics and because benthic ecologists have not yet determined these characteristics 
at the level regujred to define the contaminant e.xposure of the ben_thic - animals. Uncer- 
zainty in defining the exposureregime of the benthic animals is of particular concern in 
model projections in which the rate of contaminant concentration change in the sediment is 
different from that in the water. 

Transfer Across the Gut Wail. The equation describing contaminant uptake from 
food specifies the assimiIation efficiencies of food and contarninant as independent param- 
eters. Recent experiments with zooplankton (17) and polychaetes (18) indicate that these 
parameters are directly related and suggest that it is the contaminant released as tissue is 
digested that is available for transfer across the gut wall. Thus, model uncertainty could be 
reduced if empirical relationships between food and contaminant assimilation efficiencies 
were available. 
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If only contaminant in digestible food is available for uptake, then the use of bulk 
food contaminant concentration is also a cause for uncertainty. The significance of this 
uncertainty will depend on the variability of the digestible food:bulk food contaminant con- 
centration ratio. It may be most important for deposit feeding animals. These animals 
preferentially digest the more-labile components of the organic matter on the particles they 
ingest. A large fraction of this organic matter is bacterial. It is likely that the bacteria 
associated with sediment particles have a lower contaminant concentration per unit carbon 
weight than does the bulk sediment carbon; a consequence of their being composed of s h -  
pler carbon compounds than the bulk sediment carbon Also, bacterial particuiate organic 
carbon (POC) is essentially new carbon, whereas bulk sediment carbon is old carbon that 
has resistant& bound contamham Thus, only a small fraction of the ingested chemical is 
probably available for uptake and this fraction probably varies depending on the age of the 
sediment and the density of bacteria on the particles. 

Growth. Growth rates used in the models are usually annual average values deter- 
mined from measured weight and age data for fish from the water body being modeled. 
Because growth varies seasonally, the models tend to underestimate growth during the 
summer and overestimate growth during the winter. This error may not be significant 
because growth affects both uptake and loss of chemicai concentration. An increase in 
gowth will increase the rate of intake of contaminated food: but it will also increase the 
rate at which chemical is diluted by increasing body weisht. Figure 3 shows computed 
annual cycles of PCB in three year old Green Bay walleye assuming either that the annual 
gromh occurs uniformly throughout the year or only during the time that temperature 
exceeds 1OOC. The hypothetical temperamre profile used in the caiculations is also shown. 
Restricting gou& to a growing season results in a greater concentr~tio~ariability through 
the year, but the differences between the calculations are small. The differences, however, 
do not include the effects of the annual variabiliv in fish lipid content, nor the effects of 
seasonal variability in exposure concentration. The growth related annual cycle of storase 
ana metabolism of fat reserves will afiect the rate at which contaminants are excreted and 
alter the contaminant patterns shown in Figure 3. UnformnateIy, in most cases insufficient 
data are available to descriie the Iipid reserve cycle. In rivers, the seasonal flow variability 
will result in a seasonal exposure concentration variability. Depending on whether the con- 
taminant is derived from an external source or from bed sediment, the exposure concentra- 
tions will be highest or lowest during the summer low flow period when maximum growth is 
occurring. This variability will tend to increase the effect of the seasonal growth Variability. 
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UNCERTAINTY IN PROCESS DESCRIPTION PARAMETER VALUES 

Bioaccumulation models have numerous coefficients that define the processes being 
described. Using the models developed by the Manhattan College group (1, 15,19-21) as 
the paradigm, the Coefficients are presented in Table 1. Previous applications of the mod- 
els have indicated that sensitiviq to the various coefficients is dependent on the particular 
contaminant being modeled. However, the contaminants may be categorized in three 
groups: metals (with the exception of mercury) and low to moderately lipophilic organic 
chemicals, lipophilic organic chemicals and super-lipophilic organic chemicals. 

Models of Metals and Low to Ifoderately Lipophilic Chemicals. Most metals (exce- 
pting mercury), and organic chemicals with log hW values less than 5, do not biomagnify. 
The metals tend to be poorly absorbed from food (Z), possibly because they are generally 
stored in relatively inert components of cells which are not readily digested (23). The 
lower GW organic chemicals are excreted sufficiently fast to limit their accumulation (20). 
Modeis of these contaminants are most sensitive to coefficients associated with uptake 
across the gill and excretion. 

Respiration, contaminant:oxygen mass transfer ratio and bioconcentration factor are 
the controlling parameters. Since uptake from food is not important €or this group of 
chemicals and excretion rate is usually greater than growth rate, the steady-state concentra- 
tion is defined by the bioconcentration factor and the concentration of bioavailable con- 
taminant in the water. Thus, uncertainty in the bioconcentration factor tends to dominate 
the model uncertainty. As discussed above, the bioconcentration factor for neutral organic 
chemicals can be estimated from the lipid content of the animal and the KOw of the 
chemical. This relationship is probabiy accurate to factors of 2 or 2s Metals bioaccumula- 
tion facton are much more difficult to predict because of species specific enzymatic 
responses to metal accumulation. 

Models of Lipophilic Organic Chemicals. Organic chemicals with log hw values in 
the range of 5 to 7 or 8 do biomagnify, with the extent of biomagnification increasing as 

increases (19-21,24). "his phenomenon occurs because uptake from food becomes 
an increasingly more significant flux of chemical to the animal as increases (20,24). 
The increasing importance of food as a contaminant source is due to an increasing contam- 
inant pamtion coefficient for the plankton and sediment that constitute the base of the . 
food web. Thus, the coefficients associated with food consumption, the assimilation 
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efficiency across the gut wall and the partition coefficient at the base of the food web are 
the signiiicant model parameters for these chemicals. In addition, growth ciiiution is impor- 
tant because the high Iipid soIubility of these chemicals results in very low aqueous blood 
concentrations and low excretion rates (19,21). 

Gut wall assimilation efficiency values used in the models are derived from labora- 
tory experiments. W e  have compiled over two hundred published values encompassing a 
variety of organic compound classes including polychlorinated and polybrominated 
biphenyls, chlorinated insecticides, benzenes, toluenes, napthalenes and diphenylethers, 
polyaromatic hydrocarbons a d  polychlorinated dibenzo-p-dioxins and dibenzofurans. 
Approximately half of these d u e s  are for PCB congeners. Viewed in total the data are 
highly variable. E€ficienci& range from less than 0.1 to greater than 0.9 with little correla- 
tion to KOw, although values at the lowest and highest qw values tend to be toward the 
low end of the range. Within skdy variabiliry is generally significantly less than cross study 
variability, sugesting that much of the variability is due to differences in methodolog or 
differences between individual animals or speaes. 

The significance of assimilation efficiency across the gut wall is illustrated by a model 
calibrated to PCB homologs 3,4,5 and 6 in the lobster and flounder food chains of Sew 
Bedford Harbor (21). The flounder is pan of a largely benthic based food web. Sediment 
forms the base of this food web and its PCB homolog concentrations were fued by observa- 
tion. Polychaetes represented the deposit feeding animals that constitute the buik of the 
flounder diet. To compute a PCB homolog distribution consistent with that observed in the 
polychaetes and the flounder the assimilation efficiency was decreased as PCB chlorine 
level increased. PCB homolog 3 through 6 assimiIation efficiency values observed in Iabo- 
ratory studies exhibit €Me evidence of a dependency on chlorine level, although wide cross- 
smdy variability exists (21). Calibration was not pessibie if the same assimilation efficiency 
value was used for all homologs. For example, applying the homolog 3 calibration 
as&dation efficiency to the other homologs results in an over prediction of as much as 
one and one-half orders of magnitude (Figure 4). 

Values of the partition coefficient at the base of the food chain are generally calcu- 
lated from KOw. For non-living particulate materid, a particulate carbon weight based 
partition coefficient is generally used. ?Pie uncertainty associated with this coefficient has 
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been discussed Part 1 of this paper. Published data indicate that the plankton bioconcen- 
tration factor for organic chemicals (BCF) is proportional to KOw up to a log hW of about 
5. At higher KOw values the BCF tends to be independent of KOw, although significant 
variability exists. For example, BCFs for various PCB congeners in Lake Ontario plankton 
show no trend with KOw (Figure 5). These data were reported by Oliver and Niimi (25). 
Laboratory phytoplankton BCF data for PCB congeners (26-28) and other organic cherni- 
cals (29) show the same behavior (Figure 5b). Phytoplankton PCB data collected at van- 
ous times over a year as part of the Green Bay Mass Balance Study (Debra Swackhammer, 
Universiry of Minnesota, unpublished data) show relationships to KOw that vary from a 
tendency to plateau at higher hWs to a continuous proportionality to 

Recent laboratory experimental studies (Debra Swackhammer, University of 1 M' mne- 
sot% unpublished data) suggest that the depression of phytoplankton BCF below its 
e.xpected linear relationship to KOw is related to growth rate. These data show that as 
growth rate is decreased the BCF values approach the values defined by Equation (6). The 
mechanisms controlling the BCF-Fowth relationship have not been elucidated. 

Alternately, it is possible that the observed BCF-GW relationship is an artifact 
caused by the use of total dissolved chemical, rather than bioavailable dissolved chemical, 
in the BCF calculation. Dissolved or colIoidal organic matter present in the water wouid 
decrease the bioavailable fraction of measured dissolved chemical in prophrtion to its con- 
centration 'apd the hW of the chemicai. Such a "third phase" is known to cause appzitnt 
independence of partitionin,o and GW 

The significance of uncertainty in the phytoplankton bioconcentration factor value is 
iIIustrated using a steady-state bioaccllmulation model of PCBs in the Lake Ontario lake 
trout food chain (30). A linear food chain of phytoplankton, zooplankton, alewife and lake 
trout was assumed Consistent with the observed dat& the phyto&nkton biocsncenuaeion 
facror was assumed to be constant across all of the PCB congeners. The observed and 
computed bioaccumuiatisn factors for each level of the food chain are shown in relation to 
hW in Figure 6. Two computed lines are presented the calibrated model with constant 
phytopladcton bioconcentration factor and a mode1 that assumes a linear relationship 
between phytoplankton bioconcentration factor and GW At log GW values less than 6 
the models are nearly identical at all trophic levels above the phytoplankton. Above 6 the 
models begin to diverge. At log KOw of 7 thexomputed concentrations in lake trout differ 
by about one order of magnitude. Assuming that the bioaccumulation factor vanes 
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between the limits of the two assumptions used here, the use of either assumption may not 
be appropriate. However, use of a time-variable partitioning requires deriving a valid 
mechanistic description of the uptake and loss of contaminant by phytoplankton. 

Models of Super-Lipophilic Organic Chemicals. Super-lipophilic organic chemicals 
(log > about 7 to 8) have been shown to have reduced uptake efficiencies at both the 
@in and the gut, and appear to biomagmfy somewhat less than the lipophilic chemicals. 
However, the available data are too limited to adequately model these chemicals. In par- 
ticular, the lack of detectable dissolved concentrations tends to dominate the uncertainty of 
the models. Also, the limited data on gill versus gut uptake do not allow an assessment of 
the relative importance of these uptake routes md, thus, the relative significance of their 
associated parameters. Additional laboratory and field data are needed before a credible 
uncertainty analysis can be conducted for this class of chemicals. 

PROSPECTS FOR REDUCING UNCERTAINTY 

Tne most si,g.ificant uncertainties relate to the following processes or parameters: 

(1) the species and contaminant specific uptake efficiencies and bioconcentration 
factors of metals, 

(2) gut wall assimilation efficiencies of lipophilic and superlipophilic chemicals and 
their relationship to food assimilation efficiency, 

(3) phytoplankton bioconcentration factors, 

(4) sources of contaminants to benthic animals, 

(59 migratioqand 

(6) seasonal changes in animal growth and lipid content 

Of these, the second, third and fourth on the list probably have had the most impact on the 
models that have been developed and are likely to be the most important sources of uncer- 
tainty in the modeling contemplated for Lake Ontario. 
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The greatest reduction in overall model calibration uncertainty would probably result 
from better quantification of gut wall contaminant assimilation efficiency. Laboratory stu- 
dies directed to understanding the relationship between the assimilation efficiencies of con- 
taminant and food d probably significantly reduce the uncertainty of this parameter. 

The uncertainty associated with the phytoplankton bioconcentration factor could 
most easily be reduced by field sampling sufficient to describe seasonal variability in this 
parameter. In the short term these field data would be used to specify phytoplankton con- 
taminant concentration in the model calibration. These data should also be coupled with 
laboratory studies in an effort to develop mechanistic descriptions of contaminant uptake 
and loss in phytoplankton. Such descriptions are necessary to reduce uncertainty in 
projections to conditions not iepresented by the calibration data set. 

Food webs that include a benthic animal component are subject to uncertainty asso- 
ciated with defining a prototype for that component. A means to reduce that uncertainty 
may be to analyze stomach contents of the animals feeding on the benthos. However. not 
all animals in the stomach are easily identified and a biased estimate could result from this 
type of data Stable isotope data may allow a determination of the extent to which the bot- 
tom feeding animals are receiving water column associated or sediment associated carbon 
in their diet. Such data could be used to define the sources of contaminant to the benrhic 
component. 

UNRESOLVED ISSUES/QUESTIONS TO BE DISCUSSED AT THE WORKSHOP 

A number of issues have been raised in this paper and, although, several approaches 
to reducing uncertainty are suggested. most issues remain unresolved. These issues do got 
encompass all of the parameterization related sources of uncertainty in models of chemical 
accumulation in aquatic animals, however, they provide a basis for discussion. A summary 
of the principal questions follows. 

(1) What are the major sources of uncertainty in modeis of super-lipophilic chemi- 
cals? 

(2) What types of experiments are needed to progress towards a mechanistic 
description of contaminant uptake and loss by phytoplankton? 



(3) What types of experiments are needed to permit the deveiopment of a better 
description of gut wall contaminant assimilation efficiency and its relationship to 
food assimilation efficiency? 

(4) How can migration be better quantified; both in terms of the time-locarion rela- 
tionship and changes in bioenergetics that occur during migration? 

(5) How can the differences in chemical content beween digestibIe and 
bulk food be determined, partidarIy for deposit-feeding animals? 

(6) What is the significance of the "micrabid loop" in models of biomagnifying 
chemicals? 

(7) How should the uptake and loss (bioconcentration) of metals be described? 
Should specieskpecific enzymatic processes be considered? 

(8) How important is fat storage and metabolism to contaminant dynamics, and how 
should this process be described in the models? 

(9) How significant are seasonal differences in growth rate to contaminant uptake 
and loss, particularly in river systems? 
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Organic 
Contam in ants 
In Lake 
Ontario, 
1968-1 991 : 
A Review and 
a Data Base 

January 1992 

Approximately 500 publications have been reviewed for 
concentration data of toxic organic contaminants in Lake Ontario 
(Throughout the search, it was often discovered that the same data 
were published in a variety of sources. Whenever possible the 
primary article is referenced, and exclusion of the secondary 
Sources has occurred, thus the reference list is much smaller than 
those read and reviewed), This search has been limited to 
"published" data readily available to the scientific community. Of 
interest are the concentrations in water, sediments (at the bottom 
and in suspension), and in biota (plankton, benthos and fish) over 
time. AU these concentrations have now been collected into a 
freely distributable data base (The data base also contains food 
web information in energy terms). We have found that 
Comprehensive data, meaning data in all compartments 
mentioned above and for many years, exist only for very few 
chemicals; mainly PC8s. dieldrin, Mirex, DDT. and some 
chbrobenzenes. Data exist for many other chemicals (various di-, 
tri-, tetra- and penta chbrobenzenes, HCBD, HCE, various PCB 
congeners, Ihdane, OCS, PCP, chlorotoluenes, photomirex, PCT, 
TTCP, HCE, heptachlor epoxide and methoxychlor) but in a much 
more limited form. The existence of published data is important to 
modelkrs for comparison with lheir simulations, and to statisticians 
involved with trend analysis. As of December 1991, most available 
data are for 1990 and previous years: this lag is due to both 
analytical work and publication delay. 
In the past two decades the presence of toxic organic 
contaminants in Lake Ontario has been reported: hundreds of them 
might be present. Eadie (1 984), Shear (1984), Strachan and Edwards 
(1984). Blberhofer and Stevens (1987), Thomas .& A. (1987), Allan 
and Ball (1990) and the Government of Canada (1991) made 
comprehensive reviews of contaminants in the Great Lakes region. 
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One of the drawbacks, for modellers and statisticians alike, has 
been the lack of a readily available data base to compare 
simulations with and to assess trends. This review tries to overcome 
this problem. An extensive literature search on the organic 
contamination of Lake Ontario was performed. Approximately 500 
papers were reviewed. A small parf of the data can be made 
available in printed form here, but all data are freely available in 
PARADOX, QUATrRO PRO, LOTUS 1-2-3, ASCII, and DBASE II, 111,111 PLUS, 
or IV formats. 

The data base contains information not only on concentrations of 
toxic contaminants in Lake Ontario but also information on the food 
web (Schito and Halfon, 1992). Once a fate model, TOXFATE (Halfon 
and Oliver, 1990, Halfon, 1992a), was completed, we realized that 
the food chain models in TOXFATE (plankton - alewife - lake trout; 
benthos - sculpin - lake trout) did not include the complex food web 
realities in the lake. Transfer of contaminants to the top fish 
predators was dependent on the knowledge of how energy 
collected by plankton was transferred to the top five predators in 
.the lake. This food web has been published and its data are also 
available. 

As a final point we acknowledge the fact that the systematic name 
of h a  has recently been changed to Dinoreia sp. 
(busfieid, 1989). However, in thB paper we refer to it as Pontomreia 
&& the name commonty used by Great lakes researchers# 

Data presented here are available in the literature (1 970 to 1991). A 
major drawback is that not much recent data was discovered in the 
literature. Our database contains information as current as 1990 
(published up to 1991). As a norm, contaminant data take about a 
year to be analyzed in a laboratory. Publication usually adds a two 
year delay. 

Throughout the search, it was often discovered that the same date 
were, published in e variety of places. Whenever possible the 
primary article is referenced, and exclusbn of the secondary 
sources has occurred. The number of articles cited here is therefore 
much smaller than those read and reviewed. Data from the same 
government agencies are not always published in the same report 
series and had to be tracked down. 

DaCamigsionfrm 
database 

~ 

Samethes it was necessary to omit published concentrations from 
the data base. Potential data was rejected if the year of sampling 
was not explicitly stated in the article, or if the concentration in an 
organism was not measured on a whole organism basis. For 
example, coneentratlons measured in the muscle portiin of a 



standard fh fillet were not included. In the event that the reported 
concentration was based on a sampling plan that spanned a 
number of years, the most recent year was assumed to be the year 
that me concentration level occurred. 

This approach has provided a data base that spans a period of 
approximately tw decades and contains the observations from 
many different researchers. Therefore, me concentrations of 
toxkants in the various compartments are not always directly 
comparable; one must consider the experimental conditbns 
associated with each reported vakre. Furthermore, some older 
data were measured using obsolete analytical methods. Some very 
high concentrations published in the 1970's have been weeded out, 
but some are still present. Users should carefully Screen old data 
before using them. 

Dataconwrsl 'on to a 
standard basis 

.The reported data were converted to ng/L (for water) and ng/g dry 
weight (for all other compartments). This conversion was necessary 
to be able to compare data with simulations. When necessary. 
concentrations on a wet weight basis were converted to dry weight. 
This conversion was done using the following assumptions: the dry 
weight of phytoplankton and zooplankton is la of wet weight, the 
dry weight of benthos is 15% of wet weight (Strayer and Liken, 1986), 
the dry weights of and Pontomreiq are 21 and 27% of wet 
weight, respectively (Evans and Landrum, 1983), and the dry weights 
of all fishes are 23% of wet weight, 

Separate datafiles were constructed for each of the following: 
flshes, E. benthos, Mysis. plankton, sediments, and water. All 
datafiles include "standard' fields with the sampling location and 
year, number of samples, toxlcant, reported concenbatbn, and 
converted concentrotion. There is also a reference datafile, which is 
linked to the above datafiles by a field called "reference W. In 
addtion to the "standard" fields, the fish datafle includes fields fer 
fish age, weight, and length. These fields are used when data are 
available from the literature. 

The datafibs for benthos and E. hpyi are essentially the same. Both 
datafiles include the "standard" fie, as well as a field to record the 
depth of the site sampled. The benthos datafile includes one 
additional field: a field to record the type of benthic organism used 
in the contamination monitoring (for example, an amphipod or 
oligsc haete). 

The plankton datafile contains the "standard' fields, in addition to 
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fields for organism type (Le. zooplankton, phytoplankton, or both, 
and minimum size of the organisms, if available), depth of site, and 
depth of sampling below me water surface. 

The datafile is more limited than me plankton datafile; it does 
not contain fields to record either me depth of site, or the depth of 
sampling. These fields were eliminated from the datafile because 
no researchef identified these variables in their reports. 

The water datafk contains information regarding the site depth, in 
addition to the information provided by the "standard" fiids. 

Besides the "standard" fields, the sediment datafile contains a field 
called "sedknent tvpe" that is used to specify whether the 
contaminant is measured in suspended, surficial, or bottom 
sediments. Depth of site. depth of sampling below water surface, 
and depth into sediments are also recorded when available. 

Resldtr Even though me data base includes many contaminants. to reduce 
'the amount of printed information. Tables 1 to 8 present only 
concentratins of polychlorinated biphenyls (PCBS), dieldrin, Mirex, 
and chlorobenzenes (1,2,3TCB, 1,2,3,4-TeCB, and HCB) in Lake 
Ontarb water, sediments, and aquatic life (excluding macrophytes). 
These Contaminants were chosen since they are found widely in 
Lake Ontario, the data bas@ is fairly complete, and past loadings 
have been computed (Halfon and Oliver, 1990) to drive a model. 
Since most information of interest to rmders is the data base, the 
results section only mentions points of interest, such as the availability 
(or missing measurements) of recent data in selected 
compartments. 

Surpriiingly, a fuU data base is only available for a few of the many 
contaminants in Lake Ontario. Concentrations of 8HC. various 
chlorobenzenes, chlordane, DDT and metabolites, dieldrin, 
hexachlorobutadiene, lindane, Mirex, octachlorostyrme, 
photoMirex, and total PCBS in Lake Ontario biota, water, and 
sediments were found in the literature. Less information is available 
on the concentrations of other chernkab (for example dioxins, 
pentachlorotoluene, and TTCP) in varbus compartments. Tables 1 
though 6 provide a summary of the occurrence of selected 
contaminants in Lake Ontario biota. Water eoncentratbns are 
summarized in Table 7 and concentrations in Lake Ontario sediments 
are in fable 8. 

Biota The largest numbers of data were found for C8s in biota, water, 
and sediments Table 1 shows concentrations in bbta. Most data 
ere averages reported in the literature: authors of each report 
should be contacted for the raw data. Figure 1 shows PCBs 



concentrations- in lake trout; this species is among the best 
documented. The fish datafile contains close to 100 records on 
concentrations of PCBs in spottail shiner, slimy sculpin, rainbow smelt, 
alewife, brown trout, lake trout, and rainbow trout (Haile &d., 1975; 
Borgmann and Whittle, 1983; Whiffle and Fitzdmons, 1983; Shear, 
1984; Strachan and Edwards, 1984: Whiffle, 1986; Oliver and Niimi. 
1988; Stevens, 1988; Niimi and Oliver, 1989; Borgmann and Whittle, 
1991). Data for PCBS in alewife are very scarce; only one value was 
reported for 1982 (Oliver and Niimi, 1988). while all other reported 
values were for 1973 (Haile &;t9i., 1975). Niimi and Oliver (1989) were 
the only researchers that reported concentrations of PCBS in brown 
and rainbow trouts. 

PCB concentrations in e. (Borgmann and WhiMe, 1983: Whittle 
and Fitzimons, 1983; Oliver and Niimi, 1988; Stevens. 1988) have 
been reported from 1978 through to 1985 (with the exception of 
values for 1982 and 1984). No literature was located with 
concenirations after 1985. 

pCBs in Lake Ontario benthos have been investigated thoroughly 
(Cook and Johnson, 1974 Haile & d., 1975; Fox & gj.. 1983; 
Strachan and Edwards. 1984; Oliver and Niimi. 1988: Stevens, 1988). 
The majority of data k for amphipods or oligochaetes and reported 
for the years 1972 to 1985. 

The datatile for && contains 1 1  records on the concentration of 
PCBs. These values have come from a variety of sourc~s (Borgmann 
and Whittie, 1983; whime and Fibimons. 1983; Oliver and Niimi, 
1988; Stevens, 1988). and cover the years 1977 to 1984 (Fig. 2). 

The majority of concentrations found for PCPs in other planktonic 
organisms were from years before 1980 (Haile & d.. 1975; Borgmann 
and Whittle, 1983; strachan and Edwards, 1984; Stevens, 1988). 
Whittle and Fitsimons (1983) report two concentrations in net 
plankton mpled from the lake in 1981. A concentration from 1982 
was reported by Oliver and Niimi (1988). 

Water Concenlrabions of PCBS in water are contained in approximately 30 
records (Fig. 3). lhe vasf majority are samples taken in 1973 (Haile & 
s$.. 1975) or 1983 (Biberhofer and Stevens, 1987; Stevens. 1988). 
There is one record for each of the years 1975 (Glooschenko and 
Glooschenko, 1975). 1984 (Oliver and Niimi, 1988). and 1986 (Stevens 
and Neilson. 1989). Serge L'ltalien (NWRI, Burlington) provided a 
large amount of data (to 1990) not yet available in the literature. 

Sediments A concentration of FCBs in suspended sediments from Lake Ontario 
in 1986 (Oliver and Niimi. 1988) was the only value found. PCB 



Diekb-in 

Biota 

Water 

concentrcrtions in surficial sediment (0 - 3 cm) are available for the 
years 1968 (Frank & d., 1979). 1974 Ohomas, 1983). 1981 
(burbonniere &d., 1986; Oliver&& 1987). and 1982 (Oliver&& 
1989). Measurements in the upper 2 cm were reported by Stevens 
(1988) for the year 1981. Note that caution must be used when 
comparing data in the sediment datafile; earlier collection 
techniques. and storage of samples has apparently yielded 
concentrcrtions lower ikm the actual ones. 

This chemical is water soluble and is quite widespread in Lake 
Ontario. The data base is quite comprehensive. 

About 75 records exist in the fish datafile. A large portion of these 
records is the result of lake trout (Fig. 4) monitoring (Whiffle and 
Fitsimons. 1983; Shear, 1984; Whittle, 1986; Borgmann and Whiffle, 
1991). Concenfrutions of dieldrin (Table 2) in alewives were only 
'found for 1973 (Haile & 91.. 1975). Over halt the records for slimy 
sculpin was for the year 1973 (Haile at d.* 1973, while only one 
record was for data collected in the 1980s (Stevens, 1988). 

Coxenfrutions of dieldrin in the amphipod E, were only found 
for the years 1978 to 1983 (Whitlie and FiWmons, 1983; Stevens, 
1988). Likewise, no data WQS fourtd in the literature for dieldrin 
cmcentrdsrps in benthos mpied after 1983 (Cook and Johnson. 
1974 Haiiedd.. 1975; Stevens, 1988). 

The literature search provided eight concentrations of dieldrin in 
Mysis, from the years 1977 to 1982 (Whime and Fitzsimons. 1983; 
Stevenss. 1988). No source provides insight into the more recent 
concenfrdons in this zooplankter (Fig. 5). Data regarding the 
concentration of dieldrin in other planktonic species is also limited 
before 1982 (Haile at d., 1975; Whitiie and Fitzsimsns, 1983: Stevens, 
1988). 

Of the 27 records in the water datde that are concerned with the 
cmcentrdons of dielelrin (Fig. 6). eight refer to samples taken in 
1973 (Haile &d., 1975). and 18 to samples taken in 1983 (Biberhofer 
and Stevens. 1987: Stevens, 1988). The remaining record is for 
samples taken in 1986 (Stevens and Neilson. 1989). Vast amounts of 
duta (to 1996) not yet aV9iluble in the literature was provided by 
Serge L'ttalien (MNRI, Burlington). 



Sediments 

cYk3??3- 

Biota 

The database on dieldrin concentrations in Lake Ontario sediments 
is extremely limited. No published values were found for suspended 
sediments. Concentrations in surficial sediments (0 - 3 cm) were only 
reported for 1968 (Frank & 1.. 1979) and 1974 Ohomas, 1983). 
Concenirdm in bottom sediments (depth into sediment not 
specified) from vaious locations throughout the lake were reported 
for 1973 (Haile&d.. 1975). 

Chlorobenzenes enter Lake Ontario mainly from the Niagara River 
(Halfon and Oliver, 1W). Halfon (1-9 reports a large source of 
dichlorobenzenes from Toronto. Dichlorobenzenes are used in 
public lavatories as disinfectants. Several chlorobenzenes (Tables 3 
to 5) are found in Lake Ontario: trichlorobenzenes GCB). 
tetrachloroberuenes (TeCB), pentachlorobenzene (QCB) and 
hexachlorobenzene (HCB). Data for these chemicals is quite 
'extensive axl the computation of past loadings since 1909 (Halfon 
and Oliver. 19Fo) allows the driving of fate models. A comparison of 
model simulations and data is in preparation (Halfon and Schito, 
1992). The following Section shows some interesting data features. 

Data on specific chlorobenzenes concentrations in Lake Ontario 
biota are incomplete. Data on HCB are the most widely published. 
Chlorobenzenes in biota have been measured since 1980 (Oliver 
and Nicol, 1982: Fox & d.. 1983; Oliver and Niimi. 1988; Niimi and 
Oliver, 1989). with the exception of 1978 values reported for HCB in 
coho salmon, and lake (Fig. 7) and rainbow trouts (Niimi. 1979). 

Fox & d. (1983) reported chlorobenzene concentrations in both 
anphipods and oligochaetes collected from the western basin in 
1981. Oliver cnd Niimi (1988) scmpled benthic organisms from the 
Niagara basin in 1985. and they reported concentrations much 
smaller thcn those reported by Fox & a. (1983). These two are the 
only articles found that pertain to chlorobenzenes concentrations in 
benthos from Lake Ontario. T&les 3 to 5 present the available data 
for 12.3-TCB, 123d-TeCB and HCB. 

Fox d d. (1983) and Oliver and Niimi (1988) investigated the level of 
chlorobenzenes contamination in My&. HCB (Fig. 8),12.3-TCB. and 
1 23bTeCB concentrations were reported for samples taken in 198 1 
(Foxdfd.. 1983) and 1982 (Oliver and Niimi, 1988). 
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Water Concentrutions of HCE (Fig. 9). 12.3-TCB. and 12Jd-TeCB in Lake 
Ontario water have been reported by Oliver and Nicol (1982). 
Biberhofer and Stevens (1987). Stevens (1988), Oliver and Niimi 
(1988). m d  Stevens and Neilson (1989). The majority of the 
chlorobenzene records in the water datafile have come from 
samples collected in 1983 (Biberhofer and Stevens, 1987: Stevens, 
1987). M e  a limited nunber is for sanples from 1984 (Oliver and 
Niimi. 1988). and 1986 (Stevens wtd Neilson, 1989). The 1983 open 
lake concentrations of specific chlorobenzenes reported by 
Biberhofer and Stevens (1987) a e  well w'thin the 1983 ranges 
reported by Stevens (1988). Serge L'ltalien (NWRI. Burlington) 
provided large mounts of data (to 1990) not yet available in the 
literatwe. 

Sediments 

overall 
C0-n 

Some chlorobenzenes concenfrations in suspended sediments have 
been reported for 1982 (Oliver and Chariton, 1984) m d  1986 (Oliver 
and Niimi, 1988). As for bottom sediments, Oliier and Nicol (1982) 
were the only researchem to report on chlorobenzene vertical 
dihilon within a core sample. They reported concentrations 
based OR a core mpie taken from the Niagara basin in 1988. 

Concmtrutions of chlorobenzenes in suficial sediments (0 - 3 cm) 
were only located in the literature for 1981 (Oliver and Nicol, 1982 
burbonniere at d.. 1986: Oliver & 91.. 1987). and 1982 (Oliver & d.. 
1989). For 1981. Oliver d. (1987) reported values that were all 
lower than the lowest values reported by Bourbsnniere .& d. (1986) 
also for 1981. Stevens (1988) summarized chlorobenzene 
concentrations in samples of surficial sediments (top 2 cm only) 
collected in 1981. 

Tatde 6 shows Mirex concentrations in Lake Ontario biota. Mirex is a 
chemical extensively studied by Kaiser (1978) and his csworkers. 
Comba a. (192) has recam computed past loadings of Mirex 
since '1952 arid berefore tkis chemical is a good object for 
modeling work. 

Tables 7 m d  8 summarize water and bottom sediment 
concmfrdon of the PCBs, Mirex. deldn and chlorobenzenes. As 
mentioned above, more data on other chemicals are available in 
the data base. Also in these tables we note the lack of published 
recent concentrations. 

A large time gap exists between data collection. analysis and 
publiedon. Some selected data might be published with short. 
delays. but complete data bases thaf include all water. sediment. 
and biota compartments. take many years before being properly 



published. A complete data set exists for few chemicals. Even 
when a complete data b e  exists, often some compartments are 
rarely sampled, for example, Contaminants in alewives. A careful 
review of the data base shows that even water concentrations are 
not often reported in the literature. A fluny of activity has occurred 
in the early 1980's when the importance of the contaminants 
problems was realized and large data collections programs were 
organized. These large efforts must be repeated in the 1990's. All 
compartments must be measured for as many contaminanfs as 
possible to obtain reference data. Since these efforts are very 
expensive. we recommend that these be repeated only every ten 
yea. Smaller surveillmce programs on toxic contaminants should 
be done every year and should focus on compartments where few 
data are available even now. Some compartments were 
contaminant data CYB rrksing are ihe alewives. benthic organisms. 
all salmonids but lake trout. plankton and suspended sediments. 
We win tty to keep this data base as current as possible and we 
invite any interested puties, including agencies and individuals to 
provide us with the organic contaminant data in a prompt fashion 
.so that they can be made available in electronic form to the 
scientific community at large. 
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TABLE 1. Summary of the concentration of PCBs in various Lake Ontario biota. 
(See footnotes for comments and assumptions). 

Organism Location 
Converted Conc.2 

Year Mean Concentration' (ngg dry) Sources 

plankton 

net >153um 

net %4um 

net 

net >153um, n*=2 
net >153um, n=5 

n=3, 10m depth 

zooplankton s153um 

Lake Ontario 

midlake, Lake Ontario 
Hamilton, Lake Ontario 
midlake, Lake Ontario 
midlake, Lake Ontario 
Cobourg, Lake Ontario 
Deep Hole, Lake OnPario 

Lake Ontario 

Eastern Lake Ontario 
Western Lake Ontario 

Lake Ontario 

n=20, lm depth 
n=4, lm depth 

Eastern I+ke Ontario 
Western Lake Ontario 

-- Mvsis dicta 

n=12 Eastan M e  Ontario 
n=4 Western Lake Ontario 

n= 13, Eastem Lake Ontario 
n=5 Western Lalee Ontario 

1972 
1977 
1978 
1979 

1973 
1973 
1973 
1973 
1973 
1973 

1973 
1975 

1981 
1981 

1982 

7.17 ugfg dry weight 
0.19 uglg dry weight 
0.26 uglg dry weight 
0.15 uglg dry weight 

10.6 uglg dry weight 
3.4 uglg dry weight 
3.6 ug/g dry weight 
6.0 ug/g dry weight 
7.6 uglg dry weight 
11.5 uglg dry weight 

6.1 ug/g dry weight 
1.9 uglg dry weight 

110 ndg dry weight 
280 ng/g dry weight 

50 ndg wet weight 

1979 0.20 uglg dry weight 
1979 0.31 ug/g dry weight 

1977 
1978 
1979 
1980 
1981 
1982 

1979 
1979 

1981 
1981 

031 ugfg dry weight 
0.U ugfg dry weight 
0.64 ug/g dry weight 
0.76 ugfg dry weight 
0.60 ug/g dry weight 
058 ugfg dry weight 

0.29 ug/g dry weight 
0.39 ugfg dry weight 

150 ng/g dry weight 
580 ngfg dry weight 

7170 
190 
260 
150 

lo600 
3400 
3600 
6000 
7600 
11800 

6100 
1900 

110 
280 

500 

200 
310 

310 
140 
640 
760 
600 
580 

290 
390 

150 
580 

Stevens, 1988 

HaiIe gal., 1975 

Strachan and Edwards, 1984 

Whittle and Fitzsimons, 1983 

Oliver and Niimi, 1988 

Borgmann and Whittle, 1983 

Stevens, 1988 

Borgmann and Whittle, 1983 

Whittle and Fimimons, 1983 
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n=2 Lake Ontario 1984 330 npjg dry weight 330 

980 
1570 

97 

470 

341 
976 

9000 

2600 
4700 
5200 
5300 
6600 
7900 

OIiver and Niimi. I958 

benthos 

n=3 
n=ll 

Western Lake Ontario 1972 0.98 uglg dry weight 
1983 157 ug/g dry weight 

Stevens, 1988 

Oswego, Lake Ontario 1973 97 nglg dry weight Cook and Johnson, 1974 

Strachan and Edwards, 1984 

Naile e t L 9  1975 

M details 

mixed, includes 
P. hovi 

amphipods 
M details 

amphipods 
mixed, includes 
P. hovi 

-- 
Lake Ontario 1973 0.47 ugig dry weight 

Rochester, Lake Ontario 
Hamilton, Lake Ontario 

1973 341 nglg dry weight 
1973 976 nglg dry weight 

Lake Ontario 1975 9.0 ug/g dry weight Strachan and Edwards, 1984 

Fox aJ., 1983 Western M e  Ontario 1981 2600 nglg dry weight 
1981 4700 ngfg dry weight 
1981 5200 ng/g dry weight 
1981 5300 nglg dry weight 
1981 G O O  npjg dry weight 
1981 7900 n@g dry weight 
1981 11000 nag. dry weight 11000 
1981 1’9000 nglg dry weight 17000 

oligochaetes 
no details Strachan and Edwards, 1983k 

Fox &., 1983 
1975 1.9 ugig dry weight 1900 

930 
1400 
1500 
1800 
2000 
2400 
2600 
5300 

1200 

1730 
1830 
1260 
1890 
1350 

1670 
1700 

Lake Ontario 

Western Lake Ontario oligochaetes 
no details 

1981 
1981 
1981 
1981 
1981 
1981 
1981 
1981 

930 ng/g dry weight 
1400 ng/g dry weight 
1500 ng/g dry weight 
1800 ng/g dry weight 
2000 nglg dry weight 
2400 ng/g dry weight 
2600 ng/g dry weight 
5300 ng/g dry weight 

oligechaeres 
n=6 19$5 180 ng/g wet weight Oliver and Niimi, 19% Niagara basin 

Pontonoreia !IOVJ 

Stevens, 1988 n=16 
n= 13 
n=S 
n=5 
n=ll 

Lake Ontario 1978 1.73 uglg dry weight 
1979 1.84 ueJg dry weight 
1980 1.26 ug/g dry weight 
1981 1.89 ug/g dry weight 
1983 1.35 ug/g dry weight 

Borgmann and Whittle, 198% Western Lake Ontario 
Eastern Lake Ontario 

1979 1.67 ugfg dry weight 
1979 1.70 ug/g dry weight 

n=4 
n=8 



n=5 
n=13 

n=6 

Western Iake Ontario 1981 
Eastern Lake Ontario 1981 

Niagara basin 1985 

spottail shiner 

Lake Ontario 1975 
1977 
1978 
1979 
1980 

n=S,58mm length 

n=5,58mm length 
n=6,54mm length 
n=5,58mm length 
n=10,60mm length 
n=9,55rnm length 
n=8,62mm length 
n-449mm length 
n=8,51mm length 
n=8,60mm length 
n=8,58rnm length 
n=5,45mm length 
n=8,53mm length 
n=8,49mm length 
u=8,56mm length 
n=8,53mm length 
n=3,49mm length 
n=8,51mm length 
n=8,60mm length 
n=7,61mm length 
n=7,48mrn length 
n=7,53mm length 
n=7,62mm length 
n=7,47mm length 
n=6,62mm length 
n=7,57mm length 
n=6,54mm len_mh 
n=6,62mm length 
n=5,68mm length 
n=6,54mm length 
n=7,49mm length 
n=7,48mrn length 
n=7,52mm length 
n=4,56mm length 
n=7,41mm length 
n=6,58rnm length 
n=7,65mm length 
n=7,63mm length 
n=7,G4mm length 
n=7,6Omm length 
n=7,57mm length 
n=7,68mm length 
n=7,70mm length 

Glenom Lake Ontario 1975 

Darlington, Lake Ontario 1975 
Prcsqu’ile, M e  Ontario 1975 
Twelve Mile Creek, Lake Ont 
Darlington, Lake Ontario 1976 
Burlington, Lake Ontario 1977 
Humber River, Lgke Ontario 
Cobourg Creek, Lake Ontario 
Twelve Mile Creek, Lake Ont 
Credit River, Lake Ontario 
Humber River, Lake Ontario 
Rouge River, Lake Ontario 
Outlet River, Lake Ontario 
Presqu’ile, Lake Ontario 1979 
Credit River, Lake Ontario 
Bronte Creek, Lake Ontario 
Gages Creek, Lake Ontario 
Twelve Mile Creek, Lake Ont 
Humber River, Lake Ontario 
DufFrin Creek, LaLe Ontario 
Twelve Mile Creek, Lake Ont 
Outlet River, Lake Ontario 
Credit River, Lake Ontario 

Humber River, Lake Ontario 
Ganaraska River, Lake Ont 
Twelve Mile Creek? Lake Ont 
Humber River, Lake Ontario 
Mimico Creek, Lake Ontario 
Wolfe Island, Lake Ontario 
Outlet River, Lake Ontario 
Welland Canal, Lake Ontario 
Credit River, Lake Ontario 
Oshawa Creek, Lake Ontario 
Twelve Mile Creek, Lake Ont 
Humber River, Lake Ontario 
Wolfe Island, Lake Ontario 
Welland Canal, Lake Ontario 
Twelve Mile Creek, Lake Ont 
Credit River, Lake Ontario 
Burlington, Like Ontario 1983 
Humber River, Lake Ontario 
Mimico Creek, hire Ontario 

Burlington, Ontaifo 1980 

1378 ng/g dry weight 
1849 ng/g dry weight 

790 ng/g wet weight 

0.69 ugfg wet weight 
0.65 ug/g wet weight 
0.37 ug/g wet weight 
0.15 ug/g wet weight 
0.27 ug/g wet weight 

11 1 ug’kg wet weight 
420 ug/kg wet weight 
505 u@g wet weight 
1975 
360 uy’kg wet weight 
833 ugkg wet weight 
1977 
1978 
I978 
1978 
1978 
1979 
1979 
122 ugikg wet weight 
1979 
1979 
1979 
1979 
1979 
1980 
1980 
1mo 
1980 
250 ugikg wet weight 
1980 
1980 
1981 
198 1 
1981 
1982 
1982 
1982 
1982 
1982 
1982 
1982 
1383 
1983 
1983 
1983 
375 ugkg wet weight 
1983 
1983 

1378 
1849 

2926 

2760 
2600 
1280 
600 
1080 

444 
1680 
2020 

Whittle and Fitzsimons, 1983 

Oliver and Niimi, 1988 

Shear, 1984 

suns, 1986 

890 ugkg wet weight 3560 
1440 
3332 

3218 ugkg wet weight 8872 
270 ug’kg wet weight 1080 
349 ug’kg wet weight 1396 
590 ugikg wet weight 2360 
2938 ugikg wet weight 11752 
82 ugkg wet wei- 
112 ugkg wet weight 448 

186 u@g wet weight 744 
188 ug’kg wet weight 752 
197 ugikg wet weight 788 
271 ugkg wet weight 1084 
1337 ugkg wet weight 4592 
111 ugikg wet weight 444 
148 ugkg wet weight 592 
185 uflg wet weight 740 
238 ugkg wet weight 952 

621 ug’kg wet weight 2483 
1202 ug/kg wet weight 4808 
205 ugkg wet weight 820 
954 ug/kg wet weight 3816 
1051 ugkg wet weight 4204 
121 ug’kg wet weight 484 
128 ugikg wet weight 512 
158 ugkg wet weight 632 
183 ugikg wet weight 732 
227 ugkg wet weight 908 
279 ugkg wet weight 1116 

. 353 ugkg wet weight 1412 
81 ugkg wet wei- 
229 ug’kg wet weight 916 
236 ugkg wet weight 944 
329 ugkg wet weight 1316 

537 ugkg wet weight 2148 
542 uflg wet weight 2168 

488 

IO00 

1500 

259 



n=G,G6mm length 
n=7,58mm length 
n=7,43rnm length 
n=6,33mm length 
n=G,48mm length 
n=6,54mm length 
n=6,69mm length 
n=7,57mm length 
n=7,57mm length 
n=4,57mm length 
n=7,4lmm length 
n=7,64mm length 
n=5,74mm length 
n=10,62mm length 

slimy sculpin 

no details 

Mimico Creek, Like Ontario 
Wolfe Island, Lake Ontario 
OutIer River. Lake Ontario 
Burlington, Lake Ontario 1984 
Welland Canal, Lake Ontario 
Twelve Mile Creek, Lake Ont 
Mimico Creek, Lake Ontario 
Welland Canal. Lake Ontario 
Bronte Creek, Lake Ontario 
Twelve lMiie Creek. Lake Ont 
Burlington. Lake Ontario 1985 
Humber River. Lake Ontario 
Toronto main STP, Lake Ont 
Credit River. Lake Ontario 

Lake Ontario 1975 
1976 
1977 
1978 
1979 
1980 

Lake Ontario 19.773, 
n=lO,man wet=5.l0g 
n=S,mean wetd.34g 
n=ll,mean wet=7.47g 
no details Prince Edward Point 1973 

Hamilton, Lake Ontario 1973 
GallooStoney, Lake Ont 1973 
Rochester, Lake Ontario 1973 
Mexico Bay, La@ Ontario 1973 
Olcott, Lake Ontario 1973 

n=S3, mean dry=.66g Eastern Lake Ontario 1979 

5 fish composite Lake Ontario 1986 

rainbow melt 

no detaiIs Lake Ontario 1972 
1984 

no details Lake Ontario 1977 
1978 
1979 
1980 

n=73,mean wet=24.lg Lake Ontario 1978 
n47,rnean wet=283g 
nt48,rnean wet=31.9g 
n=36,rnean wet=29.8g 
nt56,me.m wet=21.9g 
n=49,mean wet=17.2g 

1983 
1984 
1984 
113 ug/kg wet weight 
1984 
1984 
1984 
1985 
1985 
1985 
502 ug’kg wet weight 
1985 
1985 
1986 

0.69 ug/g wet weight 
1.3 ug/g wet weight 
1-5 ug/g wet weight 
1.1 ugig wet weight 
0.G ug/g wet weight 
0.31 ug/g wet weight 

572 ug’kg wet weight 2238 
XI u@g wet weih0 
112 ugkg wer weight 338 

157 ug’kg wet weight 628 
267 ugkg wet weight 1068 
378 ug/kg wet weight 1512 
5 5  ug’kg wet weight 1020 
317 uglkg wet weight 1268 
337 u@g wet weight 1348 

524 ug’kg wet weight 3,096 
676 ug’kg wet weight 2704 
1315 ug/kg wet weight 5260 

2760 Strachan and Edwards, 19% 
5200 
6000 
4400 
1840 
1240 

4552 

2008 

4.63 ug/g wet weight 18520 Stevens. 1985 
1977 0.74 ug/g wet weight 7,960 
1979 1.09 udg wet weight 4360 
1982 1.74 ug/g wet weight 6%0 

1.58 uglg wet weight 6320 
289 uglg wet weight 11560 
333 ug/g wet weight 13320 
4.32 ug/g wet weight 17280 
6.49 ug/g wet weight 25960 
9.17 uglg wet weight 36680 

3.82 ugig dry weight 3820 

lG00 ng/g wet weight 6400 

2.65 ug/g wet weight 10600 
1.73 ug/g wet weight 6920 
1.50 uglg wet weight 6OOO 
1.82 ug/g wet weight 73630 
0.80 ug/g wet weight 32QO 
1.12 ug/g wet weight 4480 

Haile d., 1975 .~ 

Borgmann and Whittle, 1983 

Olives and Niimi, 1988 

1.74 mgkg wet weight 6960 Whittle, 1986 
1981 
1982 
1983 
1984 
1985 

6.90 m@g wet weight 3600 
1.66 mgkg wet weight 6640 
1.48 m@.g wet weight 5920 
1.01 mgkg wet weight 4040 
0.55 mgkg wet weight Z O O  



n=109,mean dry=4.22g Eastern Lake Ontario 1979 238 ug/g dry weight 
n=jO,mean dry=6.90 Western Lake Ontario 1979 6.75, ug/g dry weight 

n=23,mean wet=l8.3g Western Lake Ontario 1981 858 ngg wet weight 
n=12 

20 fish composite 
6 8-fish composite 

alewife 

no details 

12 fish composite 

brown trout 

Eastern M e  Ontario 1981 1000 ng/g wet weight 

Vineland, Lake Ontario 1982 1400 ng/g wet weight 
Port Credit 1986 620 ng/g wet weight 

n=lO,mean wk1430g 
and Oliver, 1989 

Prince Edward Point 1973 0.14 ug/g wet weight 
Mexico Bay, Lake Ontario 1973 0.93 ug/g wet weight 
Olcott, Lake Ontario 1973 1.73 ug/g wet weight 
Hamilton, Lake Ontario 1973 3.12 udg wet weight 
Gailoo-Stoney, Lake Ont 1973 3.81 ug/g wet weight 
Rochester, Lake Ontario 1973 4.3 ug/g wet weight 

Lake Ontario 1982 1300 ng/g wet weight 

coho salmon 

Vineland, Lake Ontario 

n=206, mean dry=434g Western Lake Ontario 1979 9.14 uglg dry weight 

no details Lake Ontario 1977 3.03 ugg wet weight 
1978 3.00 ug/g wet weight 
1979 1.21 uglg wet weight 
1980 23 ugg wet weight 

no details Lake Ontario 1975 0.69 ug/g wet weight 
1976 13 uglg wet weight 
1977 15 ugg wet weight 
1949 18 ugg wet WU&t 

~ 1 0 ,  total wt3026g Lake Ontario 1981 4.24 udg wet weight 

n=9, mean wt=3330g 
and Oliver, 1989 

Credit River, Lake Ont 

2380 
6750 

3432 
4000 

5600 
7,480 

560 
3760 
6920 
13,450 
15240 
17440 

5200 

Borgrnann and Whittle, 1983 

Whittle and Fitzsimons, 1983 

Oliver and Niimi, 1988 

Haile ai., 1975 

Oliver and Niimi, 1988 

1986 2380 ng/g dry wei-0 

5130 Borgmann and Whittle, 1983 

12120 Shear, 1984 
12000 
4840 
9200 

2760 Strachan and Edwards, 1984 
5200 
6000 
11100 
16960 Whittle and Fitzsirnons, 1983 

1986 4.650 ugkg dry w e w  

~ 1 0 ,  mean wt=tl90g Vineland, Lake Ontario 1986 1970 ugkg dry weight 1970 

lake trout 

n=216, mean dry=246g Fastern Lake Ontario 1979 14.1 ug/g dry weight 14100 Bargrnann and Whittle, 1983 
n-110, mean dry=l77g Western Eake Ontario 1979 20.7 ug/g dry weight 20700 

no details Lake Ontario 1977 4.95 ugfg wet weight 19800 Shear, 1984 
I978 7.10 ug/g wet weight 28400 
1979 3.79 udg wet weight 15160 
1980 4.79 ug/g,wet weight 19160 
1981 282 ug/g wet weight 11280 



n=32,mean wet=2102g Lake Ontario 
n= 1 1 ,mean wet = 1200g 
n=72,mcan wet=2068g 
n=82,rnean wet=1792g 
n-43,rnean wet=1538g 
n=36,rnean wet=l862g 
n=46,mean wet=1769g 
n=47,mean wet=1547g 
n=14,mean wet=1714g 

nd0, age=4+yrs Eastern Lake Ontario 
n=98, age=&yrs Western Lake Ontario 

n=lO,rnean wt=241Og 
and Oliver, 1989 

a g d y r s  Lake Ontario 

no details Cobourg, Lake Ontario 
Eastern Lake Ontario 
Hamilton, Lake Ontario 
Kingston basin 
Lake Ontario * 

Niagara River, Lake Ont 
Port Credit, Lake Ont 

asesJy= Lake Ontario 

1977 8.00 mghg wet weight 32000 Whittle, 1986 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 

5.06 m@g wet weight 20240 
4.73 m@g wet weight 18920 
4.77 mg’kg wet weight 19080 
3.67 rnykg wet weight 14680 
5.87 m@g wet weight 33480 
6.44 mgkg wet weight 25760 
5.91 mgikg wet weight 23640 
780 mg’kg wet weight 11200 

1981 3370 ng/g wet weight 9480 Whittle and Fitzsimons, 1983 
1981 3890 ng/g wet weight 15560 

Port Credit, Lake Ont 1986 9970 ug/kg dry w e w  r%i 

1977 
1978 
1979 
1980 
1980 
1980 
1980 
1980 
1980 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 

6.84 ug/g wet weight 
8.04 ug/g wet weight 
3.G7 ugg wet weight 
3.31 ug/g wet weight 
2.88 ug/g wet weight 
4.90 ug/g wet weight 
3.47 ug/g wet weight 
3.94 ug/g wet weight 
3.98 ug/g wet weight 
5.25 ug/g wet weight 
7S5 ug/g wet weight 
5.31 ug/g wet weight 
5.43 ug/g wet weight 
4.84 ugfg wen weight 

3.13 ug/s wet weight 
3.43 ug/g we% weight 
254 uglg wee weight 

254 ugg wet weight 

27360 Borpann and Whittle, 1W1 
32160 
14680 
13240 
11520 
19600 
13880 
15760 
15920 
21000 
114OO 
21240 
21720 
19360 
10160 
1320 
13720 
10160 

n=213,mean wet=l587.4gLake Ontario 1981 3.2 utjg wet weight 13000 Stevens. 1988 
n=178,mean wet=146Q.Og 1982 5.64 u$g wet weight 22560 
n=lU 1983 5.30 ug/g wet weight 21200 

rainbow trout 

n=E, mait wt=3380g Credit River, Lake Ont 1986 5660 u@g dry weight 5660 Niimi and Oliver, 1989 
n 4  mean w=114Bg Vineland, Like Ontario 1986 1450 u@g dry weight 1450 

‘In mst cases only mean concentrations reported; contact author@) for raw data 
‘All reported values converted to ng/g dry weight using the following assumptions; 

1. dry weight of plankton is 10% its we! weight 
2. dry weight of _Mvsis is 21% its wet weight (Evans and Landrum, 1983) 
3. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986) 
4. dry weight of Pontoporeia is 24% its wet weight @vans and Landrum, 1983) 
5. dry weight of all fishes is 25% its wa weight 

’Sources include published literature from 1970 to 1991 only. 
‘n = number OC samples for plankton, Mvsis, Pontowreia, or benthos, and n = number of organisms o r  ail fishes. 



TABLE 2 Summary of the concentration of dieldrin in various Lake Ontario biota 
(See footnotes for comments and assumptions). 

Oqanism Location 
Converted Conc: 

Year Mean Concentration' (ngfg d 7 )  Sourc~' 

W t e  Ontario 

Deep Hole, Lakc Onlvio 
Rochester. Lake Ontario 
midlake, U e  Ontano 
aid!aite CSL %t Oat 
Hamilton, Lake Ontario 
midlake wesr. M e  Om 

Western U e  Ontario 
&tern Lb 0nru;o 

Lake Ontario 1977 
19-5 
:r? 
1980 
1961 
1932 

0.13 u31g dry wei@ 
0.0s u3/3 dry weight 
0.03 ugg dry weight 

0.01 u3/g dry weight 

0.02 115'3 dry weight 
0.02 ugfg dry weight 
0.16 ugg dry weight 

024 ugg dry weight 
0.3 ug'g dry weight 

17 ngi3 dry weight 

9-01 23'g "-y we* 

0.19 ug.3 cry weigit 

19 ngg cry weight 

130 Ste~ens, 1988 
50 
30 
10 
10 

20 Haile ZJ 1975 
20 
160 
Is0 

1-50 

17 Whittle and Fiusirnons, 1983 
19 

0.10 u& dry wci3ht la0 StWeM, 1988 

0.03 ugg d? weipt 30 
0.05 ug3 dp weignt 50 

0.07 ugg dry weignr 70 

10 ng'g dp *ish[ 10 Whinle and Emirnous. 1983 
17 ngg dry wei@ 17 

0.13 ugg dr). we:gnr 150 

0.06 ugy dr). we1glt 60 

benrhw 

n=j Western *&e Oman0 192 0.15 a$g dry weight 150 Str~es. :%Y 
n=l 1 1983 0.17 u& dry weight 270 

OSWC~O. 'A 0-0 19;a 3.0 ng: dry wei3ht 3 Cook and Johnson 1974 

mixed includes Hamiltoa L&e Ontario 1 5 3  14.8 ng3 dry w e i p  14.5 Hailc g &., 1975 -- P. hovi Rochestu, Lake ODvrio I973 -23 ngy dry weight 7,9 

Lake omalio 1978 0.13 uugdryarrighc 130 stnrem. 1988 
1819 038uJgdyweigh1 380 
1980 023u~gdryweight 2 0  
1981 0.45 uc$y dv weight U J  
1983 0.28 uc$gddy weight 250 

1972 " 0 . 0 6 ~ u ~ g W a w e i ~ ~  240 SleVeru,1988 
;PI7 0.08 ugg wet weight 320 
1979 0.14 ug3 wet wei@ 560 
1987- 0.W u3/3 wet weight 360 



no duaib GallMStoney, L3kc on1 I973 0.04 ug3 wet weigh1 
ilochcster, Ljke Ontario 1973 0.05 ugg wet weight 
Olcofr, M e  Ontario 1973 0.06 ugg wet weieht 
Mexico Bay, H e  Ontario I973 0.10 u g g  wet weight 
Trince Eaward Point 1975 0.11 ugg wet wcigix 

rainbow smelt 

M d d l s  Lakc onlati0 I972 0.04 11347 wet weight 
1984 0.04 ugg wet weigm 

no details Olcon. Lakc Ontario 1973 0.02 uys wet weight 
Rochester, Lake Onmi0 1973 0.03 ug/g w a  weighK 
Hamilma Lakc Oncano 1973 0.W ugf3 wa weight 
Prince Edward Point 1973 0.06 ug/g wet weight 
Galloo-stonq. Lalct om m 0.07 ULgT wet wept 

deraik Lake Ontario 1977 0.02 ug& wet weight 
1978 0.05 ugg wet weight 
1979 0.W u& wet weight 
1980 0.00 up2 wet weight 

wre amario 
1982 
1953 
1984 
1985 

alevice 

W i e  g &., 197.5 

Shear, 1981 

coho salmon 

110 details Like onprio 

talrc m u e  

110 details 

a g d y n  

110 details 

is1 6.M mgkp we; weighe 

0.05 zgkg wet wdat 300 
0.03 mgkg wet weigh! E O  
0.03 mgk3 wet weighf 120 
0.02 mgkg wa weight So 

260 !Vbinlc and Fimimons, 1983 
1981 50 nag wec WCIghK '23 

Lake Ontario 

Lake Olunrio 

Niagarr River, Lakc.Oni. 
Eartern Lake Ondriu 
Kingston bsin, Lake 0111 
Lake Ontario 
POII Cndil, Lake om 
Hamilton, Lake Oniurio 
Cthiirg. I :ikc 0111:iiio 

19Tl 0.07uglgwetweight 7-80 Shear. 1984 
197s 0.10 "g3 wa weight JOO 
1979 0.05 u g g  wet weight 200 
1980 0.07upgwawaght 2% 

1977 0.04 up/g Wa weight 
1978 0.18 ugg wet weighl 
1979 0.20 I& wet weight 
198u 0.10 ugjg wct weight 
1981 0.15 uug wet weight 

1977' 
1979 
1%1t 
1980 
1980 
1980 
1980. 
1980 
19x11 

0.05 ugfg WCI weight 
0.19 us& wet weight 
0.08 ug/g wet weight 
0.09 uJg wet weight 
0.09 udg wet weight 
0.09 ug/g wct weigh1 
0.09 ug/g wet weight 
0.11 ug/g wet weigh1 
0.12 aS/s rv~? weisht 

160 Shear, 1981 
T.20 
8M) 
w 
600 

200 Phrymvln and Whittle. 19% 
760 
320 
360 
360 
360 
360 
44Q 
480 



age=4yrs Lake Ontario 

n=ll,mean wet=1200g 
Whittle, 1986 
n-72,mean wet=2068g 
namean wet=1792g 
n=83,mean wet=1538g 
n=36,mean wet=1862g 
n-46,meau wet4769g 
n47,mean wet=1547g 
n=l4,mean wet=1714g 
n=10, age=4+yrs Eastern Lake Ontario 
n=98, age=4+yrs Western Lake Ontario 

n=213,rnean wet=1587.4g 
Stevens, 1988 
n = 1 4  

1981 0.18 ug/g wet weight 
1982 0.13 ug/g wet weight 
1983 0.13 ug/g wet weight 
1985 0.10 ug/g wet weight 
1986 0.11 ug/g wet weight 
1987 0.11 uglg wet weight 
1988 0.09 ug/g wet weight 

Lake Ontario 

1979 
1980 
1981 
1982 
1984 
1984 
1985 

1981 190 ngg we! weight 
1981 190 ng/g wet weight 

Lake Ontario 

1983 0.12 ug/g wet weight 

720 
520 
520 
400 
440 
440 
360 

1978 0.21 m@g wet weight 

0.23 mgkg wet weight 920 
0.12 mgkg wet weight 480 
0.19 mgkg wet weight 760 
0.15 mgikg wet weight 600 
0.14 mg'kg wet weight 564 
0.15 mglkg wet weight 600 
0.11 m o g  wet weight 440 

840 

760 Whittle and Fitzsimons, 1983 
760 

1981 0.20 ug/g wet weigB00 

480 

''In most cases only mean concentrations reported; contact author(s) for mw data. 
'All reported values converted to ngfg dry weight using the following assumptions; 

1. dry weight of plankton is 10% its wet weight 
7,. dry weight of Mvsis is 21% its wet weight (Evans and Landrum. 1983) 
3. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986) 
4. dry weight of Pontowreia is 27% its wet weight (Evans and Landrum, 1983) 
5. dry weight of all fishes is 25% its wet weight 

3%ourees include published literature from 1970 to 1991 only. 
'n = number of samples for plankton, Mvsis, Pontowreia, or benthos, and n = number of organisms for all fishes. 



n----: ’ .“A? - rr- TABLE 3 Summary of he concentration 01 nLD iii vsiioiis TkXe U l i c C A I ~  3 1 U L -  

(Set footnotes for comments and assumptiom). 

~~ 

CGnversd Con;’ 
Organism Location Year >lean Cancentnrion’ \nS’g d?) SOUrcP 

lake omario 1982 1.6 ng/g wet weight 

YVaiem 3 6  Oii-aie !9S1 
1981 
1981 
1981 
1981 
1981 
I581 
1981 
2% 

slimy milpin 

5 fish composilc Giimsby. Lrkc Oiiiariii 19RB 38 II& WCI weishi 

Olivax nrad Niimi. l!WS 

Olivsr and Niiriii. 19tB 



brown trout 

Vineiand, Jske Ontario 1536 3 u3k3 dry weight 25 n=lO,rnean wet=1430g 
and Oliver, 1989 

coho salmon 

1978 36 nglg dry weight 36 

Credit River. W e  Ont 

Vineland, Lake Ontario 

1986 24 u-&g dry weight 24 

1986 26 ugkg dry weight 26 

n=9,mcyl wei=3330g 
and Oliver, 1989 
n=lO,mean wet=l190g 

lake m u t  

1975 80 n@g dry weight SO n=l4,mean wc=l.O2g 
1979 

1% GI dy weigti! 
1950 117 ppb dry weight) 

61 Oliver and Xcol. 1982 
117 

?OR Credit, &e Ont 1956 90 ugkg dry weight 90 

ninbow trout 

?OR :ope. Lice Cnt 1973 62 npg dry weight 51 

n=l,wet weight=l.39kg 
and Niimi. 1983 
n= i, wet weight= 1 .S6xg 
n= 1,wet weight=J.671;~ 

n=l,wet wei@;hr=?.&Skg , 

n=i.wec weight=-L.Vsg 
n=l.wer weight=j.O5kg 
n=l.wet weightS.94kg 
n=!,wet wei@t=3.73kg 
a= 1, wet weight=3 .%kg 

n-amsan wer=ll.lc)g 
aad Oliverv 1989 
n = b b u n  wet-3380g 

rI==!,wer weight=lJ,ks 1 

Ganamb 2.. L&e Ont 1981 15 ngg dry weight 15 

l?Sl 
198 1 
198 1 
1981 
1981 
1981 
.I93 I 
1981 
i38 1 

20 ngg d y  weicjht20 
10 n@g dry weight20 
11 rids dry weight21 
27 ngg dry weight27 
18 ngfg dry weighas 
40 ngfg dry weight40 
48 npg dry weights 
50 ngg dry weigh50 
58 ngg dry weigh68 

1986 20 uglig dry weight 20 

1986 22 upkg dry weight 42 Credit River. Lake Onr 

‘In most c3w only mun concenations nped: c n n m  z ~ ~ o < s )  5: zw kitz 
‘-411 reported values converted to mJg drj weight using the fol1owir.g zssscmptions; 

1. dry weight of plankton is 10% its wet weight 
2. dry wciat: of - is 21% its we1 weighr (2.x~ mi: iiiiarurn, 1983) 
3. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986) 
4. dry weight of Tontomreia is 27% its we: weight [Evans and Landrum, 1953) 
5. dry weight of all fishes is 3% its wet weight 

’Sources incfude published literature from 1970 to 1991 only. 
‘n = number of samples for plankton, Mvsis. Pontoporeia or benthos, and n = number of organisms for all fishes. 

Reducing Uncertainty br Mass Balance, Mod& of Tales 267 
in the Great Lukes- L.ke On- Cue Study 



TA3E 4. Summary of the concentration of 1,2,,3-TCB in various Lake Ontario 
biota (See footnotes for comments and assumptions). 

plankton 

d=3, 10m degth 

Wesrrrn Wce Ontario 

1982 0.03 nqg wa reiaht 

M i  
1481 
1981 
1981 

1981 
1981 
1981 
1981 

1981 
iEI 
1% 
1581 
1981 
1981 

igai 

19 ngg dry weigh 
6.7 ngg dry waght 
9.a ngg dry weight 
95 !I& dry wu&t 
io ng3 dry waghi 
I4 nsfg dry wap 
19 ngg dry nrip 
20 ngg dry weight 
29 ngfg dry weip 

13 ns/g dry weit 
62 ngp dry waghr 
,- ngg dry weighi 
93 ng3 dry waght 
11 ng/g dry weight 
13 ngg dry wci@ 

- -  

03 Oliver and Ximi, 1988 

2 Foxa&, 1983 

0.43 Oliver and Xiid. 1988 

19 Fox g &. i963 
6.7 
9 
05 
IO 
i4 
I9 
20 
29 

13 Fox err. 1983 
6i 

93 
- -  
I- 

I1 
u 

596 Oliver snd Niimi. 1988 

spotpi1 shiner 



TABLE 5. Summary of the concentration of 1,2,3,4-TeCB in various Lake Ontario 
biok (Set foctnotes for comnens and assnqtionc). 

piankton 

S, 10m depth Lakc 0ntai.a 

Monrpds 
sixerr Includes 
P. '"W -- 

ibntnmreia 

a6- 

Jliw scnlpin 

5 fuh composite 

westun kkc  onrario 

1982 

1981 

19&1 

1981 

1981 
1981 
la1 
1981 
1981 
1981 
1981 

1981 
1981 
1981 
1981 
1981 
1981 
1981 
1981 

1985 

1981 

1985 

Yiaaia basin. L;Lre Om 1980 
Paint Per% LaLC Qm 1980 

0.4 nug urc( weight 

19 ngfg dry weicght 

15 n!3/3 wet waght 

9.0 nglg dry wash 
13 ngg dry we~got 
18 ngig dry weight 
14 ngg dry weight 
4 n3/3 dry weight 
76 ngg dry weight 
!70 ne/n dn, weigh 
95 ngcg dry weignt 
I30 ngk dry vegr 

93 ng/g dry wei@ 
19 ngl3 dry weight 
ZO ng/g dry weight 
I1 ng'g dry =ei# 
?S ngfg dry weigh1 
38 ngfg dry weight 
42 ugIg dry wagu 
69 ng/g dry wei@ 

03 ng/g wa weight 

0.9 ngig aM WE@ 

12 ppb wet weight 
4 ppb wa weight 

.$ 

19 

7.14 

9 
13 
18 
I4 
18 
76 
% 
9s 
'70 
I 

93 
19 
20 

25 
58 
42 
69 

-7 -* 

-I - 

176 

Fox %ai., 1983 

Oiiver md Niimi. 1988 

Elx et&, 1983 

Oliver md Ximi, 1988 

Oliver and Niimi, 1988 

3.6 Oliver and Niimi. 1988 

12 
16 

Oliver and Nicai, 1982 



rainbow trout 

‘In most cases onIy mean concentrations reported; cont;l~t authoris) for rmv dam. 
zAll reported vaiues conveaed to nglg dry weight using the following assumptions; 

1. dry weight of plankton is 10% its wet weight 
2 dry weight of &&& is 21% its wet weight (Evans and Landrum, 1983) 
3. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986) 
4. dry weight of Pontowreia is 27% its wet weight (Evans and Landrum, 1983) 
5. dry weight of all fishes is 25% its wet weight I 

’Sources include published literature from 1970 to 1991 only. 
‘n = number of samples for plankton, Mvsis. Pontowreia, or benthos, and n = number of organisms for all fishes. 1 

1 

n=l,wet weight=2.39kg 
and Niimi, 1983 
n=l,wet weight=4.67kg 
n=l,wet weight= 1.86kg 
n= 1,wet weight= 1.52kg 
n=l,wet weight4.ir;lkg 
n=l,wet weighk3.05kg 
n=l,wet weighk3.94kg 
n=l,wet weight=2.%kp 
n=l,wet wei@t=3.73kg 
n=l,wet weighti3.88kg 

Ganaraska R., Lake Ont 

1981 
1981 
1981 
1981 
1981 
1981 
1981 
1981 
1981 

1982 0.4 ndg dry weight 0.4 Qs 

0.6 ng/g dry weight 0.6 
0.6 nglg dry weight 0.6 
0.7 nglg dry weight 0.7 
0.9 ng/g dry weight 0.9 
0.9 ng/g dry weight 0.9 
1.2 ng/g dry weight 1.2 
1.4 ng/g dry weight 1.4 
1.4 ng/g dry weight 1.4 
1.4 ng/g dry weight 1.4 



TABLE 6. Summary of the concentration of mirex in various Lake Ontario biota 
(See footnotes for comments and assumptions). 

~ 

Converted Conc: 
Organism Location Year Mean Concentration' (ng/g dry) Source3 

plankton 

n4=3, 1Om depth 
Oliver and Niimi, 1988 

Lake Ontario 1982 1.3 nglg wet weight 13 

Mvsis reIicta 

n=2 Lake Ontario 1984 330 nglg wet weigfit571 

-- 

benthos 

oligochaetes 
n=6 Niagara basin 1985 6.9 nglg wet weight 46 

PontoDoreia hovi 

n=16 Lake Ontario 1978 0.08 uglg dry weight 80 
n=13 1979 0.04 uglg dry weight 40 
n=5 1980 0.12 ug/g dry weightl20 

Oliver and Niimi, 1988 

Oliver and Niimi, 1988 

Stevens, 1988 

n=%3 Eastern Lake Ontario 1981 41 nglg dry weight 41 
Whittle and Fitzsimons, 1983 
a=5 Western Lake Ontario 1981 228 ngfg dry weighQ28 

n=6 Niagara basin 1985 12 ngfg wet weight 44 Oliver and Niimi, 1988 

spottail shiner 



Lake Ontario 

n=lO,mean wet=g.llg 
Skinner, 1988 
n=lO,mean wet=10.6g 
n=lO,mean wet=ll.lg 
n=9,mean wet=11.8g 

n=l0,60mm length 
1986 
n=8,62mm length 
n=9,55mm length 
n=8,49mm length 
n=8,58mm length 
n=8,5 1m.m length 
n=8,60mm length 
n=3,49mm length 
n=8,53mm length 
n=7,57mm length 
n=7,53mm length 
n=7,48mm length 
n=Y , 5 2 m  length 
n=7,49rrun length 
n=6,54mm length 
n=4,56mm length 
n=7,41mm length 
n=7,60mm length 
n=7,57mm length 
n=7,65mm length 
n=7,64mm length 
n=6,48mm length 
n=7,43mm length 
n=6,54rnm length 
n=4,58mm length 
n=P0,62fIlm length 

1975 0.013 ug/g wet weigh62 Shear, 1984 
1978- 0.029 ug/g wet weig316 
1979 0.001 ug/g wet weight 4 
1980 0.011 ugfg wet weight44 

Salmon River, Lake Ont 1984 3.5 nglg wet weight 14 

Oswego Harbor, Lake Ont 1984 3.8 ng/g wet weight 15.2 
Black R. Bay, Lake Ont 1984 3.9 ng/g wet weight 15.6 
Salmon River, Lake Ont 1985 4 ngig wet weight 16 

Darlington, Lake Ontario 1976 6 u@g wet weight 24S# 

Humber River, Lake Ontario 1977 
Burlington,- Lake Ontario 1977 
Cobourg 'Creek, Lake Ont 1978 
Humber River, Lake Ontario 1978 
Twelve Mile Creek, Lake Ont 1978 
Credit River, Lake Ontario 1978 
Gages Creek, Lake Ontario 1979 
Outlet River, Lake Ontario 1979 
Ganaraska River, Lake Ont 1980 
Outlet River, Lake Ontario 1980 
Wetland Canal, Lake Ontario 1982 
Credit River, Lake Ontario 1982 
Outlet River, Lake Ontario 1982 
Wolfe Island, Lake Ontario 1982 
Oshawa Creek, Lake Ontario 1982 
Twetve Mile Creek, Lake Ont 1982 
Credit River, Lake Ontario 1983 
Burlington, Lake Ontario 1983 
Wolfe Island, Lake Ontario 1983 
Twelve Mile Creek, Lake Ont 1983 
Welland Canal, Lake Ontario 1984 
Outlet -aver, Lake Ontario 1984 
Twelve Mile Creek, Lake Ont 1984 
Wolfe Island, Lake Qntario 1984 
Credit River9 Lake Ontario I986 

5 u@g wet weight 20 
9 ugkg wet weight 36 
6 u@g wet weight 24 
15 ugkg wet weight60 
20 u@g wet weight80 
28 ugkg wet weigMl2 
6 ug/kg wet weight 24 
10 ugkg wet weight40 
6 ugikg wet weight 24 
8 ugkg wet weight 32 
6 u@g wet weight 24 
'7 ugkg wet weight 28 
7 ugkg wet weight 28 
8 ugkg wet weight 32 
9 ugkg wet weight 36 
21 ugkg wet weight84 
5 ugkg wet weight 20 
7 u&g - wet weight 28 
7 ugkg wet weight 28 
8 uskg wet weight 32 
5 u@g wet weight 20 
6 u b g  wet weight 24 
'7 u@g wet weight 28 
7 u@g wet weight 28 
32 ugkg wet weiglit28 



slimy sculpin 
1 

n=lO,mean wet=5.lOg Lake Ontario 
n=j,mean wet=4.34g 

5 fish composite 
Oliver and Niimi, 1988 

rainbow smelt 

no details Lake Ontario 

n=73,mean wet=24.4g Lake Ontario 
n=73,mean wet=24.2g 
n=33,mean wet=28.7g 
n=47,mean wet=28.3g 
n=48,mean wet=31.9g 
n=36,mean wet=29.8g 
n=56,mean wet=21.9g 
n=49,mean wet= 17.2g 

no details Lake Ontario 

1977 0.06 uglg wet weight240 Stevens, 1988 
1979 0.08 ug/g wet weigh320 

Grimsby, Lake Ontario 1986 57 ng/g wet weight228 

1977 0.11 ugfg wet weight440 Shear, 1884 
1978 0.06 ugjg wet weighQ40 
1979 0.06 ugjg wet weight240 
1980 0.08 ugfg wet weigh820 

1978 0.05 mg/kg wet wei@O Whittle, 198 
1979 
1980 
1981 
1982 
1983 
1984 
1985 

0.05 mgkg wet weight 200 
0.04 mgkg wet weight 160 
0.04 mgkg wet weight 160 
0.02 mgkg wet weight 80 
0.05 mgkg wet weight 200 
0.01 mgkg wet weight 40 
0.01 mgkg wet weight 40 

1981 0.06 ug/g wet weight240 Strachan and Edwards, 1984 

n=12 Eastem Lake Ontario 1981 50 ng/g wet weight 200 
Whittle and Fitzsimons,' 1983 
n=23,mean wt= 18.3g Western Lake Ontario 1981 35 nglg wet weight140 

20 fish composite Vineland, Lake Ontario 1982 53 ngfg wet weight212 
Oliver and Niimi, 1988 
6 8-fish composites P Q I ~  Credit, bake Ont 1986 26 nglg wet weight 104 
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alewife 

12 fish composite 
Oliver and Niimi, 1988 

I brown trout 

n=lO,mean wt=143Og 
and Oliver, 1989 

Vineland, Lake Ontario 1982 45 ngig wet weight180 

Vineland, Lake Ontario 1986 77 u@g dry weight7m 

coho salmon 

no details Lake Ontario 1977 0.16 uglg wet weigh640 Shear, 1984 
1978 0.08 ugg wet weigh020 
1979 0.10 uglg wet weighffO0 
1980 0.10 ug/g wet weight400 

no details Lake Ontario I981 0.04 u g g  wet weighP60 Strachan and Edwards, 1984 

n=9,mean wt=3330g 
and Oliver, 1989 
n=lO,mean wt=llWg 

Credit River, Lake Ont 1986 203 ugkg dry weigM3E 

Vineland, Lake Ontario 1986 45 ug’kg dry weight45 



lake trout 

no details Lake Ontario 

n=32,mean wet=2102g 
Whittle, 1986 
n=ll,mean wet=1200g 
n=72,mean wet=2069g 
n=82,mean wet=1792g 
n=83,mean wet=1583g 
1p=36,mean wet=1862g 
n=46,mean wet= 1769g 
n= 14,mean wet= 17 14g 

1977 0.27 ug/g wet weigB080 Shear, 1984 
1978 0.21 ugjg wet weigh840 
1979 0.23 ug/g wet weigh820 
1980 0.18 ugg wet weight720 
1981 0.15 ug/g wet weigh600 

Lake Ontario 

1978 
1979 
1980 
1982 
1983 
1984 
1985 

age=4yrs Lake Ontario 1977 
no details Cobourg, Lake Ontario 

Eastern Lake Ontario 
Hamilton, Lake Ontario 
Kingston basin 1980 
Niagara River, Lake Ont 
Port Credit, Lake Ont 

age=4yrs Lake Ontario 1981 
1983 
1984 
1986 
1987 
1988 

1977 0.49 m a g  wet w@3tl 

0.15 mgkg wet weight 600 
0.25 mgkg wet weight 1000 
0.14 mgkg wet weight 560 
0.16 m&g wet weight 640 
0.21 mg/kg wet weight 840 
0.08 mg/kg wet weight 320 
0.13 m a g  wet weight 520 

0.38 ug/g wet weigE620 
1980 0.14 ugfg wet weigh560 
1980 0.09 ug/g wet weigl36O 
1980 0.19 ug/g wet weigU6O 
0.12 ug/g wet weightG30 
1980 0.14 ug/g wet weigh560 
1980 0.16 ugjg wet weigh540 
0.12 ug/g wet weightl80 
0.18 ug/g wet weight720 
0.07 ug/g wet weighQ80 
0.06 ug/g wet weight240 
0.10 ug/g wet weighQOO 
0.17 ug/g wet weigh680 

Borgmann and Whittle, 1991 

n=14l,mean wet=956.7g Lake Ontario 1978 0.18 ug/g wet weigB20 
Stevens, 1988 
n=176,mean wet=1554.8g 1979 0.22 ugfg wet weigM80 
n= 133 ,mean wet=1660.4g 1980 0.17 ugfg wet weigM80 
n= 178,mean wet= 146O.Og 1982 0.17 ugfg wet weigM80 
n=144 1983 0.17 ug/g wet weigh680 

no details Lake Ontario 1981 0.14 ugfg wet weigh660 Strachan and Edwards, 1984 

n=lO, age=4+yrs Eastern Lake Ontario 1981 130 ngig wet weigIfl20 
Whittle and Fitzsimons, 1983 
n=98, age=4+yrs Western Lake Ontario 1981 150 ng/g wet weigM00 

n=lO,mean wt=241Og 
and Oliver, 1989 

Port Credit, Lake Ont 1986 430 u@g dry weiSON 



rainbow trout 

n=12,mean wt=3380g 
and Oliver, 1989 
n4,mean wt=l14Og 

Credit River, Lake Ont 1986 246 ugkg dry we$46?5 

Vineland, Lake Ontario 1986 51 ugkg dry weight51 

‘In most cases only mean concentrations reported; contact author(s) for raw data. 
2M reported values converted to ng/g dry weight using the following assumptions; 

1. dry weight of plankton is 10% its wet weight 
2. dry weight of Mvsis is 21% its wet weight (Evans and Landrum, 1983) 
3. dry weight of benthos is 15% its wet weight (Strayer and Liken, 1986) 
4. dry weight of Pontowreia is 27% its wet weight (Evans and Landrum, 1983) 
5. dry weight of all fishes is 25% its wet weight 

3Sources include pubtished literature from 1970 to 1991 only. 
n = number of samples for plankton, Mvsis, Pontowreia, or benthos, and n = number of organisms for 
all fishes. 
4 



TABLE 7. Summary of the organic contaminant concentrations in Lake Ontario 
water (See footnotes for comments). 

Contaminant and Location # of samples Year 
sourceJ 

&an concentration' ng/La 

PCBs 
Toronto, Lake Ontario 
Rochester, Lake Ontario 
Olcott, Lake Ontario 
Cobourg, Lake Ontario 
Hamilton, Lake Ontario ' 
Deep Hole, Lake Ontario 
omwego, Lake Ontario 
Niagara River, Lake Ontario 

Lake Ontario 

open lake, Lake Ontario 
open lake, Lake Ontario 
open lake, Lake Ontario 

eastern Lake Ontario 
Kingston basin, Lake Cntario 
midlake, Lake Ontario 
Rochester basin, Lake Ontario 
Humbcr River, Lake Ontario 
Oswego, Lake Ontario 
Bay of Quinte, Lake Ontario 
Laka Ontario 
Niagara River, Lake Ontario 
northshore, Lake Ontario 
Helland Canal, Lake Ontario 
18 Mile Creek, Lake Ontario 
western Lake Ontarin 
Black River, Lake Ontario 
Burlington, Lake Ontario 

Lake Ontario 

Lake Ontario 

Toronto, Lake Ontario 

Lake Ontario 

dieldrin 
Deea 'Hole, Lake Ontario 
Niagara River, Lake Ontario 
Rochester, Lake Ontario 
Hamilton, Lake Ontario 
Toronto, Lake Ontario 
Olcott, Lake Ontario 
Cobourg, Lake Ontario 
Oswego, Lake Ontario 

1973 
1973 
1973 
1973 
1973 
i973 
1973 
197 3 

1975 

14 1983 
1983 
1983 

1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 

31 1986 

7 1984 

94 1987 

33 1988 
46 1990 

35 ng/L 
40 ng/L 
44 ng/L 
45 ng/L 
49 ng/L 
56 ng/L 
77 ng/L 
97 ng/L 

30 ng/L 

0.430 ng/L 
0.320 ng/L 
1.140 ng/L 

0.320 ng/L 
0.430 ng/L 
0.430 ng/L 
0.430 ng/L 
0.580 ng/L 
0.700 ng/L 
0.720 ng/L 
0.78 ng/L 
0.830 ng/L 
0.840 nq/L 
0.870 ng/L 
1.010 ng/L 
1.140 ng/L 
1.920 ng/L 
3.100 ng/L 

1.41 ng/L 

1100 pg/L 

1.33 ng/L 

1.18 ng/L 
1.31 ng/L 

1973 1.3 ng/L 
1973 2.1 ng/L 
1973 2.2 ng/L 
1973 3.1 ng/L 
1973 3.5 ng/L 
1973 3.9 ng/L 
1973 9.9 ng/L 
1973 12.6 ng/L 

35 
40 
44 
45 
49 ~~ 

56 
77 
97 

30 

0.43 
0.32 
1.14 

0.32 
0.43 
0.43 
0.43 
0.58 
0.70 
0.72 
0.78 
0.83 
0.84 
0.87 
1.01 
1.14 
1.92 
3.10 

1.41 

1.10 

1.33 

1.18 
1.31 

1.3 
2.1 
2.2 
3.1 
3.5 
3.9 
.9.9 
12.6 

Haile et al., 1975 

Glooschenko and 
Glooschenko, 1975 

Biberhofer and 
Stevens, 1987 

Stevens, 1988 

Stevens and 
Neilson,1989 

Oliver and Niimi, 
1988 

ELI Eco Lab., 1988 

L'Italien, pers. 
comm . 

Haile et al., 1975 
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open lake, Lake Ontario : 
open lake, Lake Ontario 
open lake, Lake Ontario 

Bay of Quinte, Lake Ontario 
western Lake Ontario 
Black River, Lake Ontario 
Rochester, Lake Ontario 
18 Mile Creek, Lake Ontario 
eastern Lake Ontario 
Oswego, Lake Ontario 
Lake Ontario 
Niaqara Riv@r, Lake Ontario 
Barlington, Lake Ontatio 
midlake, Lake Ontario 
Welland Canal, Lake Ontario 
HumbaE River, Lake Ontario 
Xingston basin, Lake Ontario 
northshore, Lake Ontario 

Lake Ontario 

Lake Ontario 

mirex 
Lake Ontario 

Toronto, Lake Ontario 

Lake Ontario 

HCB 
Lake Ontaisio 

open lake, Lake Ontario 
open lake, Lake Ontario 
oprn lake, Lake Ontario 

05Weq0, Lake Ontario 
Black aver, Lake Ontario 
eastern Lake Ontario 
Kingston basin, Lake Ontario 
Bay o€ Quinte, Lake Ontarao 
midlake, Lake Ontario 
eastern Lake Ontario 
Rochester, Lake Ontario 
western Lake Ontario 
Lake Ontario 
midlake, Lake Ontario 
western Lake Ontario 
Welland Canal, Lake Ontario 

14 1983 
1983 
1983 

1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 

31 1986 

33 1988 
46 1990 

0.259 ng/L 
0.361 ng/L 
0.470 ng/L 

0.047 ng/L 
0.259 ng/L 
0.300 ng/L 
0.325 ng/L 
0.352 ng/L 
0.361 ng/L 
0.442 ng/L 
0.448 ng/L 
0.453 ng/L 
0.456 ng/L 
0.470 ng/L 
0.510 ng/L 
0.527 ng/L 
0.538 ng/L 
0.631 ng/L 

0.331 ng/L 

0.36 ng/L 
0.28 ng/L 

0.259 
0.361 
0.470 

0.047 
0.259 
0.300 
0.325 
0.352 
0.361 
0.442 
0.448 
0.453 
0.456 
0.470 
0.510 
0.527 
0.538 
0.631 

0.331 

0.36 
0.28 

7 1984 31 pg/L 0.031 

95 1987 0.0071 ng/L 0.0871 

33 1988 0.013 ng/L 0.013 
46 1990 0.0029 ng/L 0.0029 

14 

1980 

1983 
1983 
1983 

1983 

1983 
1983 

1983 
1983 
1983 
1983 
1983 
I983 
19813 
1983 
1983 
1983 

0.0s ng/L 

0.033 ng/L 
0.036 ng/L 
0.043 ng/L 

0.019 ng/L 
0.033 ng/L 
Q.031 ng/L 
8.034 ng/E 
0.036 ng/L 
0.04 ng/L 
0.042 ng/L 
0.043 ng/L 
0.05 ng/L 
0.05 np/L 

0.017 Rg/L 

0.05 ng/L 
0.05% Rg/L 

0.06 

0 033 
0.036 
0.043 

0.017 
0.019 
0.033 
0 e 031 
0.034 
0.036 
0.04 
0.042 
0.043 
O.Q5 
0.05 
0.Q5 
0.892 

Biberhofer & Stevens, 
1987 

Stevens, 1988 

Stevens ana Neilson, 
1989 

L'Italien, pers. 
corn. 

Oliver and Niimi, 
1988 

EZI Eco Lab., 1988 

L'Ptalien, pers. 
corn. 

Oliver and Nicel, 
1982 

Biberhof er L Stevens, 
1987 

Stevens, 1988 



Burlington, Lake Ontario 
northshore, Lake Ontario 
western Lake Ontario 
Humber River, Lake Ontario 
Niagara River, Lake Ontario 
18 Hile Creek, Lake Ontario 
western Lake Ontario 

Xifigston basin 
eastern basin 
eastern 'rasin 
eastern basin 
nidlake, Lake Ontario 
western basin 
Niagara basin 
Niagara basin 

Lake Oatario 

Lake Ontario 

1989 

Toronto, Lake Ontario 

Lake Ontario 

7 

31 

95 

33 
46 

1 2,3-TCB 
Lake Ontario 

ogen lake, Lake Ontario 14 
open lake, Lake Ontario 
open lake, Lake Ontario 

Black River, Lake Ontario 
Welland Canal, Lake Ontario 
midlake, Lake Ontario 
Kingston basin, Lake Ontario 
Bay of Quinte, Lake Ontario 
Oswego, Lake Ontario 
northshore, Lake Ontario 
Rochester, Lake Ontario 
eastern Lake Ontario 
aurlington, Lake Ontario 
Humber River, Lake Ontario 
Niagari River, Lake Ontario 
western Lake Ontario 
18 Mile Creek, Lake Ontario 

Lake Ontario 7 

Lake Ontario 31 

Toronto, Lake Ontario 86 

Lake Ontario 33 
46 

1983 
1983 
1983 
1983 
1983 

1983 

1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 

1984 

1983 

1986 

1987 

1988 
1990 

1980 

1983 
1983 
1983 

1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 

1984 

1986 

1987 

1988 
1990 

0.068 ng/L 
0.068 ng/L 
0.08 ng/L 
0.089 ng/L 
0.095 ng/L 
0.103 ng/L 
0.12 ng/L 

0.03 ng/L 
0.03 ng/L 
0.03 ng/L 
0.04 ng/L 
0.05 ng/L 
0.05 ng/L 
0.08 ng/L 
0.12 ng/L 

150 pg/L 

0.063 ng/L 

0.063 ng/L 

0.068 ng/L 
0.087 ng/L 

0.1 ng/L 

0.024 ng/L 
0.065 ng/L 
0.140 ng/L 

0.008 ng/L 
0.020 ng/L 
0.024 ng/L 
0.040 ng/L 
0.048 ng/L 
0.055 ng/L 
0.056 ng/L 
0.056 ng/L 
0.065 ng/L 
0.084.ng/L 
0.111 ng/L 
0.133 ng/L 
0.140 ng/L 
0.672 ngi'L 

170 pg/L 

0.097 ng/L 

0.072 ng1L 

0.110 ng/L 
0.660 ng/L 

0.068 
0.068 
0.08 
0.089 
0.095 
0.103 
0.12 

0.03 
0.03 
0.03 
0.04 
0.05 
0.05 
0.08 
0.12 

0.15 

0.063 

0.063 

0.068 
0.087 

0.1 

0.024 
0.065 
0.140 

0.008 
0.020 
0.024 
0.040 
0.048 
0.055 
0.056 
0.056 
0.065 
0.084 
0.111 
0.133 
0.140 
0.672 

0.170 

0.097 

0.072 

0.110 
0 a 660 

Oliver, 1984 

Oliver and Niimi, 
1988 

Stevens and - 
ELI 3co Lab., 1988 

L'Italien, pers. 
corn. 

Oliver and Nicol, 
1982 

Biberhafer h Stevens, 
1987 

Stevens, 1988 

Oliver and Niimi, 
1988 

Stevens and Neilson, 
1989 

ELI Eco Lab., 1988 

L'Italien, pers. 
COnrm. 
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1,2,3,4-TeCB 
Lake Ontario 

open lake, Lake Ontario 
open lake, Lake Ontario 
open lake, Lake Ontario 

Bay of Quinte, Lake Ontario 
Kingston basin, Lake Ontario 
Welland Canal, Lake Ontario 
Burlington, Lake Ontario 
northshore, Lake Ontario 
Rochester, Lake Ontario 
Oswego, Lake Ontario 
eastern Lake Ontario 
eastern Lake Ontario 
Niagara River, Lake Ontario 
western Lake Ontario 
midlake, Lake Ontario 
eastern Lake Ontario 
eastern Lake Ontario 
Humber River, Lake Ontario 
Lake Ontario 
midlake, Lake Ontario 
western Lake Ontaio 
western Lake Ontario 
18 Mile Creek, Lake Ontario 

Kingston basin 
eastern basin 
eastern basin 
eastern basin 
midlake, Lake Ontario 
Niagara basin 
Niagara basin 
weatern basin 

Lake Ontario 

Lake Ontario 

Toronto, Lake Ontario 

Lake Ontario 

1980 

14 1983 
1983 
1983 

1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 

1983 
1983 
1983 
1983 
1983 
1983 
1983 
1983 

7 1984 

31 1986 

94 1987 

33 1988 
46 1990 

0.1 ng/L 

0.082 ng/L 
0.086 ng/L 
0.091 ng/L 

0.014 ng/L 
0.017 ng/L 
0.034 ng/L 
0.037 ng/L 
0.037 ng/L 
0.057 ng/L 
0.058 ng/L 
0.07 ng/L 
0.08 ng/L 
0.081 ng/L 
0.082 ng/L 
0.086 ng/L 
0.091 ng/L 
0.11 ng/L 
0.125 ng/L 
0.13 ng/L 
0.15 ng/L 
0.16 ng/L 
0.27 ng/L 
0.572 ng/L 

0.07 ng/L 
0.08 ng/L 
0.09 ng/L 
0.11 ng/L 
0.15 ng/L 
0.16 ng/L 
0.16 nq/L 
0.27 ng/L 

140 pg/L 

0.104 ng/L 

0.095 ng/L 

0.132 ng/L 
0.070 ng/L 

0.1 

0.082 
0.086 
0.091 

0.014 
0.017 
0.034 
0.037 
0.037 
0.057 
0.058 
0.07 
0.08 
0.081 
0.082 
0.086 
0.091 
0.11 
0 125 
0.13 
0.15 
0.16 
0.27 
0.572 

0.87 
0.08 
0.09 
0.11 
0.15 
0.16 
0.16 
0.27 

0.14 

0.104 

0.095 

0.132 
0.070 

Oliver and Nicol, 
1982 

Biberhofer & Stevens, 
1987 

Stevens, 1988 

Oliver, 1984 

Oliver and Niimi, 
1988 

Stevens and Neilson, 
1989 

ELI ECQ Lab., 1988 

L'Italien, pers. 
corn. 

'In m s t  cases mean concentration reperted; contact author(s) for raw data. 
'A11 reported values converted to ng/L. 
'Published literature from E970 to 1991 only. 



TABLE 8. Summary of the organic contaminant 
concentrations in Lake Ontario sediments (See 

footnotes for comments). 

Charical h Details # of samples Year m a n  Concencration' ng/g dry veiqht2 
source' 

bottm mdiwuts 

0 - 3.- 
inshore 
-e Ontario 
nississauga basin 
basin zone 
Hiagara basin 
Rocheater basin 

Cohurg 
udlake 
0lcott 
Rochester basin 
Niagara basin 
oawego 
Welland Canal 

0 - 2 c m  
Lake Ontario 

229 1968 
1968 
1968 
1968 
1968 
1968 

1973 

31 ppb dry weight 
57 ppb dry weight 
77 ppb dry weight 
85 pph dry weight 
89 ppb dry weight 
89 ppb dry weight 

43 ng/g dry weight 
79 ng/g dry weight 
80 ng/g dry weight 
04 ng/g dry weight 
155 ng/g dry weight 
158 ng/g dry weight 
245 ng/g dry weight 

32 Frank et g., 1979 
57 
77 
85 
89 
a9 

43 
79 
80 
84 
155 

245 
isa 

Haile -1.. 1975 
1973 
1973 
1973 
1973 
1973 
1973 

Stevens, 1988 260 ng/g dry Might 
380 ng/q dry weight 
470 ng/q dry weight 
670 ng/g dry veight 
680 ng/g dry weight 
730 ng/g dry weight 
810 ng/g dry weight 
840 ng/g dry weight 

1981 
1981 
1981 
1981 
1981 
1981 
1981 
1981 

260 
380 
470 
670 
680 
730 
810 
840 

0 - 3 c m  

1986 
Rocheiter basin 

Hiagara basin 
Niagara basin 
Wississauga basin 
Hiagara basin 
Rochester basin 

0 - 3 -  
Hiagara basin 
Rochester basin 
Hississauga basin 

Kingston basin 
Hiagara basin 
Rochester basin 
His8issauga basin 

0 - 3 -  

1 630 ng/g dry weight 

874.8 ng/g dry weight 
910 nq/g dry Weight 
1041 ng/g dry weyht 
1100 ng/g dry weight 
1500 ng/g dry weight 

630 Eourbonniere &., 

874.8 
910 
1041 
1100 
1500 

1981 

1982 
1981 
1981 
1981 
1981 

35 1981 
1981 
1981 

360 ng/g dry weight 
100 ng/g dry weight 
430 ng/g dry weight 

Oliver 5 al, 1987 360 
400 
430 

35 1982 
1982 
1982 
1982 

200 ng/g dry weight 
510 ng/g dry weight 
630 ng/g dry we+qht 
690 ng/q dry wight 

Oliver &., 1989 200 
510 
630 
690 

.S8Pmdrd Hd-Ut8 

Lake Ontario 10 

Toronto, Lake Ontario 20 

440 nq/g dry weight 

300 pot 

440 olivar ani Hiimi. 1988 

3 E m  Eco Labs., 1988 

1986 

1987 

dieldrin 
bottom ndiwnts 

0 - 3 -  
Lake Ontario 22) 196I 0.6 ppb dry wiqht ?rank s., 1979 0.6 
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0 - 3 -  
niagara basin 

midlake 
cobourg 
Osvego 
0lcott 
Rochester basin 
Niagara basin 
nidlake-east 
Walland 

1968 

1973 
1973 
1973 
1973 
1973 
1973 
1973 
1973 

2.8 ng/g dxy weight 

0.5 ng/g dry weight 
0.6 ng/g dry weight 
0.8 ng/g dry weight 
0.9 ng/g dry veight 
0.9 ng/g dry weight 
1.4 ng/g dry weight 
2.1 ng/g dry weight 
2.6 ng/g dry weight 

0.5 Haile el: al, 1975 
0.6 
0.8 
0.9 
0.9 
1.4 
2.1 
2.6 

mirex 
bottom d f m t .  

0 - 3 -  
W e  Ontario 
Oswego anomaly 
t4iagara anomaly 

Western W e  Ontario 

0 - 3 c m  

1986 
Hiaqara basin 

Rochester basin 
Rochester basin 
Hississauqa basin 
Niaqara basin 
Niaqara basin 

Niaqara basin 
Rochertar basin 
Miasiasrauga basin 

Hiaqara basin 

Kingston basin 
Niaqara basin 
Rochester basin 
Waaissauga basin 

0 - 3 -  

0 - 3 -  

Niagara bamin 
1984 

Lake Ontario 

Toronto, M e  Ontario 

16 
27 
30 

1 

1 

35 

12 

35 

21 

10 

8 

1968 
1968 
1968 

1980 
1980 
1980 
1980 
1980 
1980 
1980 

1981 

1981 
1981 
1981 
1981 
1981 

1981 
1981 
1981 

1982 

1982 
1982 
1982 
1982 

1982 

1982 
1982 
1982 

1986 

19.7 

5.6 ppb dry weight 
7.3 ppb dry weight 
10 ppb dry weight 

8.2 ppb dry wight 
16 ppb dry weight 
17 ppb dxy wight 
20 ppb dry weight 
33 ppb dry weight 
37 ppb dry weight 
62 ppb dry weight 

45.7 ng/g dry wight 

59.0 ng/q dry weight 
93.0 ng/p dry weight 
98.1 ng/g dry veight 
110.0 ng/g dry weight 
110.0 ng/g dry weight 

6.4 ng/g dry weight 
30 nq/g dry weight 
33 nq/g dry weight 
38 ng/g dry wight 

5.2 ng/g dry wight 

7.3 nq/g dry weight 
9.3 nq/g dry weight 
16 ng/g dry weight 

15 ng/q dry weight 

14 opt 

5.6 
7.3 
10 

8.2 
16 
17 
20 
33 
37 
62 

45.7 

59.0 
93.0 
98.1 
110 * 0 
110.0 

18 
23 
25 

48 

6.4 
io 
33 
38 

Haldrinez 5 s., 1978 

Kaainsky et &.. , 1983 

Bourbonniere 1- , 

Oliver 9.. 1987 

ollw arrl Qlarltcn.1984 

Oliver 1.. 1989 

5.2 Oliver and Charlton. 

7.3 
9.3 
16 

15 Oliver and N-, 1988 

llLI ECO Lab., 1988 



HCB 
1 bottom ssdhnts 

Western Lake Ontario 1 

0 - 3 c m  
Lake Ontario 

Niagara basin 
0 - 1 -  
1 - 2 c m  
2 - 3 m  
3 - 4 -  
4 - 5 -  
5 - 6 a  
6 - 7 c m  
7 - 8 -  

0 - 2 c m  
Lake Ontario 

0 - 3 c m  

1986 
Rochester basin 

liagara basin 
Niagara basin 
Rochester basin 
Misrissauga basin 
Niagara basin 

liagara basin 
Missisrauga basin 
Rochester basin 

0 - 3 -  

0 - S C m  
Kingston basin 
Rocheseer basin 
Niagara basin 
Hisaissauga basin 

Niagara basin 
1981 

0 - 3 -  
Lake Ontario 

ammprudad sadirnts 

Niagara hain 
1984 

1 

1 

35 

35 

12 

21 

Niaqara basin 6 

Lake Ontario IO 

Toronto, Kake Ontario 13 

1980 
1980 
1980 
1980 
1980 
1980 
1980 
1980 
1980 
1980 
1980 

1980 

1980 
1980 
1980 
1980 
1980 
1980 
1980 
1980 

1981 
1981 
1981 
1981 
198% 
1981 
1981 
1981 
1981 

1981 

1981 
1981 
1981 
1981 
1981 

1981 
1981 
1981 

1982 
1982 
1982 
1982 

1982 

1983 

1982 

1982 
1982 
1982 

1982 

1986 

1987 

7.6 ppb dry veight 
7.7 ppb dry weight 
10 ppb dry weight 
17 ppb dry weight 
47 ppb dry weight 
51 ppb dry weight 
52 ppb dry weight 
57 ppb dry weight 
58 ppb dry weight 
65 ppb dry weight 
89 ppb dry weight 

itaminsky s., 1983 7.6 
7.7 
10 
17 
47 
51 
52 
57 
58 
65 
89 

97 PPb 97 Oliver and Nicol. 1982 

Oliver and Nicol. 1982 
270 ppb 
460 ppb 
220 ppb 
160 ppb 

16 epb 
0.8 ppb 
0.5 ppb 

75 eeb 

62 ng/g dry weight 
71 nq/g dry weight 
73 ng/g dry weight 
110 ng/g dry weight 
120 ng/g d q  *eight 
210 ng/g dry weight 
230 ng/g dry weighc 
260 ng/g dry weight 
840 ng/g dry weight 

150.0 nq/g dry weight 

188.9 ng/g dry weight 
200.0 ng/g dry weight 
210.0 ng/g dry weight 
228.0 ng/g dry veiqht 
380.0 ng/g dry weight 

42 ng/g dry weight 
51 ng/g dry weight 
64 nq/g dry weight 

14 ng/g dry weight 
100 ng/g dry weight 
110 nq/g ary weigh-c 
130 ng/g dzy sediments 

110 ng/g dry weight 

270 
460 
220 
160 
76 
16 
0.8 
0.5 

62 
71 
73 
110 
120 
210 
230 
260 
840 

150.0 

188.9 
200.0 
210.0 
228.0 
380.0 

42 
51 
64 

14 
100 
110 
130 

110 

Stevens, 1988 

Bourbonniere &., 

Oliver e &., 1987 

Oliver 1.. 1989 

Oliver and Charlton, 

100 ng/g dry wei4Ufon andlOIiver, 1990 

Oliver and Charlton, 26 ng/g dry weight 26 

27 ng/g dry weight 27 
41 ng/g dry weight 41 
42 ng/g dry wight 42 

14 ng/g dry weight @liver, 1984 

36 ng/q dry w i g h t  36 olivor and Niimi, 1988 

xLI Leo Lab.. 1988 4.1 ppt 



1,2,3-TCB 
hottom ssdhntr 

Niagara basin 
O - l c m  
1 - 2 c m  
2 - 3 n n  
3 - 4 c m  
4 - 5 m  
5 - 6 c m  
6 - 7 -  

0 - 3 c m  
Lake Ontario 

0 - 2 c m  
Lake Ontario 

Oliver and Nicol, 1982 1 1980 
1980 
1980 
1980 
1980 
1980 
1980 

10 
11 
10 
3 
2 
3 
1 

1980 7 Ppb Oliver and Bicol, 1982 

1981 
1981 
1981 
1981 
1981 
1981 
1981 
1981 

Stevens. 1988 7.2 7.2 ng/g dry veight 
7.6 nq/g dry weight 7.B 
8.6 ng/g dry weight 8.6 
9.0 ng/g dry weight 9 

11 ng/g dry weight 11 

25 ng/g dry weight 2s 

9 ng/g dry wight 9 

10 10 ng/g dry weight 

14 ng/g dry weight 14 

Oliver and Charltou, Niagara basin 
1984 

12 1982 

rumpmudmi Mdiwntr 

Niagara basin 
1984 * 

6.9 

7.7 
7.8 
64 

Oliver and CharltM, 6.9 ng/g dry weight 

7.7 ng/g dry veight 
7.8 nq/g dry weight 
64 ng/g dry weight 

1982 

1982 
1982 
1982 

. 

1,2,3,4-TeCB 
bottom sadiamntr 

0 - 3 c m  
Lake Ontario 

Niagara basin 
0 - L c m  
1 - z c m  
2 - 3 -  
3 - 4 -  
4 - 5 -  
5 - 6 c m  
6 - 7 c m  
7 - a c m  

0 - z c m  
Lake Ontario 

1980 33 peb 33 OLiver urd Nicol, 1982 

Oliver and Nicol, 1982 1 1980 
1980 
1980 
1980 
1980 
1980 
1980 
1980 

76 
68 
32 
12 
9 
4 
1 
0.5 

Stevens, 1988 23 ng/g dry wight 
31 ng/g dry weight 
32 ng/g dry weight 
34 ng/g dry wight 
39 r.g/g dry weight 
46 ng/g dry wight 
49 ng/g dpy weight 
110 nq/g dry weight 

1981 
1981 
1981 
1981 
1981 
1981 
1981 
1981 

23 
31 
32 
34 
39 
46 
49 
110 

0 - 3 -  

1) 86 
RochesteE basin 

Niagara basin 
Rochestmb Basin 
N h 9 U 8  b a r b  
Hiagar8 basin 
nirsissauga basin 

37.0 ng/g dry wight 

41.8 nq/g dry weight 
50.0 ng/g dry veight 
52.0 ng/q dry wight 
53.0 nq/q dry might 
33.3 mJ/g dry wight 

37.0 Bourbonniere a&., 1 1981 

1981 
1981 
1981 
1912 
1981 

41.8 
50.0 
52.0 
53.0 
531.5 



0 - 3 -  
Niagara basin 
Hississauga basin 
Rochester basin 

Niagara basin 
1984 

0 - 3 m  
Lake Ontario 

mspodad srdimentm 

Riagara basin 
1984 

Riagara basin 

lake Ontario 

Toronto. Lake Ontario 

35 

12 

21 

1981 
1981 
1981 

1982 

1983 

1982 

1982 
1982 

6 1982 

10 1986 

8 1987 

17 ng/g dry weight 17 Oliver et 2.' 1987 
20 ng/g dry weight 20 
20 ng/g dry weight 20 

41 ng/g dry weight 41 Oliver and Charlton, 

36 ng/g dry weighlfon and Osiver, 1990 

20 ng/g dry weight 20 Oliver and Charlton, 

23 ng/g dry wight 23 

5.3 ng/g dry weight OSiSer, 1984 

15 ng/g dry weight 15 Oliver and NU, 1988 

21 ng/g dry weight 21 

17 ppt lELI ECO Lab., 1988 

~ ~~~ 

'In most cases mean concentration reported; contact author(.) for raw data. 
*All reported values converted to ng/q dry wight. 
'Publirhsd literature frol 1970 to 1991 only. 
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Abstract 

Sediment resuspension in rivers and lakes is a very nonlinear function of the cuiints 

in these systems. It is shown here that because of this and other nonlinear msport 
processes, large events such as stoms on lakes and large run-offs in rivers, despite their 

infrequent occurrence, are responsible for most of the sediment ;ransport in rivers and 
Iakes. 

It is atso demonstrated that the flux of contaminants from the bottom sediments to the 
overlying water due to resuspension and deposition of sediments is generally larger, 

sometimes by as much as several orders of magnitude, than the ffuxes due to bioturbation 

and molecillar diffusion. As a result, large events are also responsibie for most of the 

contaminant UXISPOR in rivers ahd lakes. * 

For cany hydrophobic chemicals. che ssumudon of chernicd equiIibs%m &Lrns 

rzsuspensiow'deposiaon is not vaiid Therefore, in order to predict the flux of hydrophobic 

cheinicals dcmtely, the races at which adsorpaon and desorption occur and the parameten 

on which these rates depend must also be deredned accurately, especially as they affect 

the partitiming of these chemicals between solids and water during large 

resuspensionideposition events. 

The rx~sport of szdirnents snd conurninants is a very dynamic process with the 

tluxcs changing continuously in magnitude and direction. There is no steady state. 

Because of this and the nonlinearity of the processes involved in this EIRSPOK, an avexge 

stace is difficult to define and may not be rneaninsful. It is the time-dependent event, 

especially the large run-off and/or scorn, that must be considered in the modeling and 

prediction of the ~ S ~ O K  and fate of sediments and conmminults. 



I 
In geology, in particular in the interpretation of the strati,gaphic record, there has 

been a long standing conuoversy between the uniformitarionists and the catasmphists. 

The uniformitarionists believe in the 'gentle rain from heaven' theory; that is, sedimentary 

conditions and rates are uniform with time, and the stratigraphic record can be interpreted 

from a knowledge of the present day conditions and rates. Camsmphisrs on the other hand 

believe that the sedimentary record is primarily determined by large episodic events 

separated by long periods of time where very little occurs. 

The history of this controversy is quite fascinating with the origin4 confrontation 
occurring during the nineteenth century between people with suong religious beiiefs 

(catasuophists) and presumably more logical scientists (uniformitarionisk). The religious 

sector !x!iesed that G d  intenened in the dsy-ccday &in of man and caused catastrophic 

events from time to time (for example, the seat flood of Noah's rime), and ~!3t t!ese 

events were observable in the stratigraphic record. The scientists had a somewhat more 

logical approach; however, their approach was based on an over-simplified idea of the 

invariance of natural laws which was then exrended to the presumption of uniform rares 

ar.d conditions in the past. In the latter part of the nineteenth cennuy, the emphasis on 

Gods intervention dec:essed, the uniiorrnitarionisrs' sere able to SatisfacroriIy inzeTrt: 

much of the geologic record, and catastrophe theory became less favored. 

However. in more recent times, the importance of large events in geology has 

received increasingly more attention. Ager (198 l), in a delightful book entitled, "The 

Nature of the Stratigraphical Record", is a suong and persuasive proponent of the 

importance of large eyents in the interp-meon of the suati-aaphic record In the book, he 

presents informadon on numerous catsmphie events and their effects on the srratigaphic 

record and emphasizes the spasmodic n a w e  of szdimentation. 

Of many events that he describes in derail, Iet m e  mention only a few. (1) The rloods 

from the glacially-dammed Lake Missoula in the northwestern part of the United States 
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which o c c d  during the Pleistocene Epoch, about one to two miZlion years ago. During 

this time, cataswphic floods from Lake Missoula occmed several times. An event was 
typically initiated when a 2000 ft glacial dam broke; this was followed by a flood of water 

up to So0 it deep which ran for about 2 weeks from Lake Missoula to ~e Pacific 0c:z 

about 430 miles away. Basins as deep as 135 ft w m  scourcd out, the U p p a  Grand 

Coulee (25 nriles long) was formed, boulders many feet in diamem w m  rolled for miles, 
and m n t  ripples up to 10 ft in height wen formed. (2) Turbidity cuxren~~ in the Italian 
Apennines. For this region, it has been proposed that Iarge turbidity currtnts caused the 

formarion of scdimenrary beds up to 20 m thick, all deposited by a singIe 'whoosh' of 

turbid water. (3) Hurricanes in the Gulf of Mexico. h mon recent times, it is estimated 
that then is a 95 per cent probability that a hurricane will pass over any particular point on 

the coast of the Gulf of Mexico at least once every 3000 years. The maximum amount of 
sediment deposited over &at period is estimated to be about 30 cm. Bur hurricanes, by 
resuspension and subsequent deposition, can certainIy rearrange that amount of sediment 

In other words, the rare hurricane is probably the main event recorded in the stratigraphy of 
this region and probably of other similar parts of the world, even in the prtsent time. 

Ager describes many other large and rare events and also the causes of these events. 
including tsunamis, met&tcs, climatic changes, and plate tectonics. As far as catastrophic 
events are concerned, he concludes that "Nothing is world-wide, bur everything is 

episodic." 

Of course, as Ear as pollution in rivers and lakes is concerned, the spatial and 
especially the temporal scales of concan are much smaller than those described by Ager. 
Neverrhdess, a careful examination of presentday sediment dynamics at the smajla spatial 
and temporal scaies of intmst in pollution problems also leads to a recognition of the 
impmance of the large and rare event in the uanspon and fate of sediments. More 
imporcandy, it follows &at the large event is also of inajor si@cance in the transport and 

fare of contaminants and in the resultant exposure of organisms to these contaminants. The 
specit?c hypothesis that will be argued hm is that large episodic events such as smrms on 
lakes and large runsffs in riva-s, despite their infrequent occurrence, are responsible for 
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most of the sediment and contaminant transport in rivers and lakes. A corollary to this is 
that, over a long enough period of time, exceptional events are not the exception but the 

rule. 

In the following, recent work on the effects of large events on sediment transport and 
fate in rivers and Iakes is briefly discussed. The fluxes of contaminants h m  the bottom 

sediments to the overlying water due to resuspension/deposinon, bioturbation, and 

molecular diffusion (as well as the effect of non-equilibrium sorption on these pmesses) 
arc then briefly described and compared. A summary and concluding remarks are 

presented in the final section. 

Sedirnen t Transport 

The resuspension and uansport of fine-pined sediments in Lake Erie has been 
calculated for a variety of wind conditions (Lick et al, 1991). The emphasis was on the 

effects of major storms. Calculations were made for different cansmt wind speeds md 

wind directions and also for the Armisace Day storm in Yovember 1940, one of the largest 

in the last century. Only a brief sum- of the results will be presented here: the report by 

Lick et ala should bz consulted for the denilils. 

However. before considering 2 few of the resuits. it is informative to consider a 

qualitative argument for the relative importance of large storms in resuspending and 
mnspomng large mounts or‘ sediments. Consider the forcing of currents and/or wave 

action in a lake by a wind with speed U. The magnitude of the steady-state wind-driven 
cumnts and/or wave acrion is approximately proportional to the wind s p e d  It is ais0 well 
known that the bottom shear smss T due to currents andor wave action is approximately 
proportional to the squvt of the magnitude of the cuqnrs andor wave action. From rhis it 
follows [hat T is proportional to the square of the wind speed, i.e., 
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Recent expe.rimenral evidence has demonstrated that the amount of sediment resuspended E 

is proponional to the c~be of the shev stress, Le., 

From the above equations, it follows that the amount of sediment resuspended for a 

particular wind speed is approximately proportional to the sixth power of the wind speed, 

lee., 

E - v 6  (3) 

For example, when &e wind speed is doubled, she amount of sediment resuspended is 
increased by a factor of 64; when the wind speed is increased by four, the amount of 

sediment resuspended is inciesed by a factor of N96. It can be rc3diiy seen that the 

resuspension of bottom sediments is a very nodinear and rapidly inncuiig f.;ndon of &e 
wind speed The amount of sediment transported of course depends on the m-ount of 
sediment resuspended s well as the currents and is thenfore also a very nonlinear funcrion 

of the wind speed. 
In order to qumify these arguments. calculations of sediment uanspon were made 

for winds of 1 1  m p h  I iie average wind at the Buffalo airport). 22-5 rnph, and 15 rnph (the 

approximate mkximum susrainable winds during the yes). For each of these wind speeds, 

cslculations were d o x  for a southwest wind (the dominant wind direction throughout the 

year), a northeast wind (the dominant wind during large storms). a southeast wind, and a 

northwest wind. 

In the middle of he Eztern Basin, cores have been taken and analyzed by Robbins et 
al. (1975). Geochronologizal data from these cores will be referred to below. For 

purposes of compai,zg the tffecrs of different wind magnitudes and directions. the net 

deposition at this core location has been calculated and is shown in Table 1. For the 

average 11 m p h  wind. net deposition at this location is less than lod gm/cm2 for all wind 
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directions. For the 21.5 mph wind, the net deposition is largest for the southwest wind 
(0.01 p"nv'cm2) and decreases to 0.0003 pgn/cm2 for the southeast wind. For the 45 mph 
wind, net deposition is relaavely large for all wind directions, is largest for the southwest 

wind (2.4 gm/cm2), and is least for the northeast wind (0.7 gm/cmz), but is generally on 

the order of 1 ,.m/cm'. The very nonlinear effect of increasing wind speed is quite evident 

as is the lesser effect of wind direction. 

For purposes of verification, calculations of sediment deposition wen then compared 

with the 21oPb and 13?Cs data at the Eastern Basin core location. The data indicates that 
deposition at this site was very non-uniform with time with infnquent large depositions 
caused by major storms which were separated by long periods of a m e  in which very little 
deposition occurred. The results of the calculated deposition are consistent with this idea, 

thus substantiating the model and the approximations used in the mode1. Depositions at 

this site due to major storms (defined as abour 3 once-in-five year storm) typically are on 

the order of a few centimeters. 

From the above and other similar calculations, it can be shown in general that winds 

with average and below average speeds cause negligible m s p o n  compared to the 1940 

stom or any equivalent large storm. As the wind speed increases, the probability of an 
event with this speed decreases, but the net uansporr of sediment caused by all evenrs with 

a given wind speed increases. The largest storms. despite their infrequent occurrence, 

cause 'the most uansporr of any class of wind events, and are responsible for more of the 

transport in Lake Erie than the total of all of the lesser storms and wind events. I 

Fox River 

Sediment RYUIS~OK in the lower Fox River (defined as the pan of the River h m  the 

DePerc Dam to Green Bay) has been studied intensively as pan cf the Green Bay Mass 
Balance Program. A s  part of the sedimenr transport study, cdculations were made of the 

concenmaons of suspended sediments in the Fox at steady high, medium, and low flow 
rates as well as for time-varying flow events (Gailani et al, 1991). In particuiar, three large 
flow events were modeled in detail, and the results of the calculations were then compared . 
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with observations. Excellent ageement between the calcuIations and observations was 

obtained, thereby validating the model and the description of the physical processes implied 

in the modeling. Calculations are presently being extended to include other storms, bed 

!cad, exi &e c h a ~ g ~ s  in sediment bed thic!mess due t0 resqension and bed load. At the 

present time, reasonable agreement between the calculations and observations of the 

changes in sediment bed thickness is being obtained. 

In the lower Fox under almost all conditions, the source of most sediment is the 
suspended sediment in the flow over the DePere Dam and not the resuspensioddeposition 
of bottom sediments. Pas the flow rate increases, the sediment -aansport in the River 
increases even more rapidy due to higher sediment concentrations in the flow over the Dam 
as well as the increased flow. Erosion also increases rapidly with flow rate, for similar 

reasons to those described above for a Iake. 

T3e flow in the Fox is controlled by darns so that nanrral e x m e  high and low flows 

do not occur. Nevertheless, for the i989-90 period examined by us in detail, 

approximateiy 80% of the sedinient transport occurred in 20% of the time. For other rivers 

which are not controlled, a much lvger fnction of the mnspon can be caused by fewer 
events. For example, the ratio of the once-in-five year flow rate to the median flow rate for 

the Fox is about S; in the Buffalo River, this ratio is about 60; while in the Saginaw River, 

this ratio is about 30. In these latter rivers, because af these much higher ratios and 

kc3use of h e  very nonlinezr response of sediment resuspension to flow me. it is ecpecud 

that a much ,&ater fraction of the sediment IXIIISPOR will occur during the Iaqe but rare 

event compared to the Fox. A preliminary estimate indicates that in these rivers a once-in- 
five year flow will msporr an mount of sediment comparable to, or perhaps more than, 

tine mount aansportcd by all the other flows during the same five year period. In addition, 
the amount of erosion during a once-in-five year flow will be far ageam than that caused by 

all other flows during that period. 
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Chemical Fluxes 

Chemical fluxes from the bottom sediments occur primariy by a combination of three 

processes: resuspensioddeposition, biosurbation, and diffusion. Each of these processes 

is quite complex and also is distinctly Merent from the others. In general, they occur 
simultaneously, and there are interactions between them However, for simplicity, each of 

these processes will be briefly described below independently of the others. In many 

realistic situations, one of the processes is dominant over the others and so, to a good 

approximation, can be considered independently. Other possible flux mechanisms are (a) 
diffusion and convecrion of chemicals adsorbed on colloids in the interstitid waters of the 
haom sediments and (b) convection of dissolved chemicals in the intersthial waters. 

Convection of the pore waters is possible due to pressure differences caused by oscillatory 

wave 3ccrion. Tnese latter two dux mechanisms have not been investigated quantitatively, 

but are thought to be less imporrant than the three mechanisms mentioned above and so will 
not be discussed funher here. 

Chemical reactions czn significantly affect the sediment-water fluxes. For 

hydrophobic organic chemicals (HOCs), the adsorpaoddesorption process (especially its 
non-equilibrium nmre) is pY.;,cuMy sigificmnr Because oi this, its effect on the flux is 

also brietly discussed below. 

Resusuension/D+uosirion 

As bottom sediments are resuspended, the contaminants associated with these 
sediments are also transponed into the water coiumn where they may adsorb or desorb 

depending on the conditions in the overiying water relative to the conditions in the bottom 

sediments. This sorption does not occur instantaneously but at a finite rate. This will be 
discussed furrher below. Significant amounts of contaminants can be fluxed in this manner 

compared to bioturbation md diffusion. 

For example, in Lake Erie during major sroms, up to a meter or more of sediment 
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can be eroded from near-shore areas while up to 20 crn of sediment can be deposited in 
other areas funher off shore (Figure 1). It should be noted that almost all areas in the Lake 
are neither uniquely erosional nor depositional; erosion generally occurs in almost ail areas 
at the beginnhg of the stam while deposition o c c m  her in t!!e storm. It k the difference 
between these two which determines whether there is net erosion or deposition at a 

parricuiar site. 

For the Fox, therc is a similar 'conflict' between erosion and deposition with erosion 
occurring primarily at the beginning of the flood while deposition occurs later, especially 

during moderating and-fw flows: Tn the Fox,'the amounts of'sedimenc disturbed during a 
large run-off are somewhat smaller than in Lake Erie during a large stom. Figure 2 shows 
the net changes in bed thickness due to large flows in the period hrn Octoixr 27,1989 to 

September 20, 1990. It can be seen that more than 50 cm of sediment have k e n  eroded in 
some x e s  while up to 20 cm of sediment have k n  d:posited in other areas. For rivers 
which are not as controiled as the Fox, greater changes in bed thickness due to 

resuspensioddeposirion are expected. 

Biorurbadon 

Bioturbation is mother significant facror in the flux of contaminants from the boaom 

sediments. Benthic organisms burrow in the sedimenrs and ais0 plow through the 
sediments: in the process, they stir the sediments, force water &rough pores and burrows 

in the sediments, disrupt the exisang sediment fabric, change the water contcnL and secrete 

mucus within the sediments. Their effects are many, quite diverse, and depend on the 

organism. In order to be specific. the vertical mixing of the bottom sediments by tubificid 
olipchaetes in Lake Erie (Fisher et al, 1980) is discussed here as a typical example of 
biorurbation. Tubificid oligochaetes an vertically oriented subsurface deposit feeders; they 
feed It depth and defecate at the surface, thus mixing the sediments by a combination of 

venical msporr due to feeding and diffusion due to slumpins and ciosing of old burrows 

and development of new burmws. 

From the activity of these organisms as measured in the laboratory and from their 
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densities as measured in the Lake, a reworking rate (reponed as a subduction velocity) can 

be caiculared and is shown ii Figure 3. In most of the Western Basin and in the near-shore 

areas of the Central and Eastern Basins, the subduction velocities are abour 1.0 x 
cdday. In most of the ofi-shore areas of the C e n d  Basin, these su'oduction velocities 

decrease to about 0.5 x lo-? cdday, while in the center of the Eastern Basin, these 
velocities are still lower, about 0.1 x 10-2 d d a y .  In a few isolated areas (mouths of the 
Detroit, LWumee, Sandusky, and Cuyahoga Rivers), the subduction velocities may be as 

high as 5 x cdday. 

Diffusion 

The flux of chemicals h m  the bottom sediments can also occur by diffusion; in fact, 

all of the chemical flux from the bottom sediments is quite often amibuted to this process. 

In the absence of resuspen~i~n/depssition, bioturbation, and chemical reaction. diffusion 

can be aescribea relatively simply, i.e., the flux q is given by 

ac 
aZ q = -D- (4) 

where aC,'az is the vertical ,-oncenuation gradient in the sedimen; at the sediment-water 
interfae. and D is rhe rnolerilar diffusion coefficient. When chemical sorption is present, 
molecular diffusion is retarctd because of this sorption. If sorption rates are sufficiently 

rapid that equilibrium is atmied, then an effective diffusion coefficient which includes this 

sorption equilibration can be defined by (Berner, 1980) 

where $ is the equilibrium ?artidon coefficient defined as the ratio of the concentration of 
the sorbed chemical to the concenuation of the dissolved chemical, p is the density of the 



solid particles, and n is the porosity of the sediment bed. For hydrophobic chemicals, this 
effective diffusion coefficient will be many orders of magnitude less than the molecular 

diffusion coefficient 

Somtion 

In quantifying the transport and fate of HOCs in aquatic system, it is necessary to 
know the extent to which these chemicals sorb to particles in the water. In most previous 
work, it has been assumed that chemical equilibrium exists and that this equilibrium can be 
quantiiied by means of the partition toe-fficient K,. However, in recent work, it has been 

noted that although the initial adsorption or desorption of a hydrophobic chemical can be 

quite rapid, with time scales of minutes to hours, the final equilibration may take days to 

weeks or even longer (Er3Lckhoff and Moms, 1985; Coates and Elzennan, 1986; Van 
Hoof and Andrcn, 1991). For e,uunple, it h s  been dernonsmted that an equilibration rime 

for hexachlorobenzene may be one to two months while equilibration times for PCBs may 
be months to years. By comparison, the rime of mnsport of a sediment particle in a river 

or lake may be as short as minutes to hours. Because of this. the assumption of chemical 

.. 

equilibrium for HOCs sorbed to bottom sediments after these sediments are resuspended 
and as they are uansponed in an aquatic system may not be valid. Even the assumption of 
sorption chemical equilibrium in the. suificid bottom sediments may be quesrionabie when 

ie is noted char the times Seween resuspension events (hours to days) may be quite small 

compared to sorption equilibration times. For these reasons, it follows hat the rate of 

sorption as well as the equilibrium partition coefficient is a significant quantity and needs to 

be determined, both for suspended solids and for deposited bottom sediments. 

hi quantifying the rate of sorption, significant processes that must be considered are 

the convecrivediffusive mass ansfer from h e  waer to the particle and the diffusion of the 
contaminant into the interior of the particle. The available data is consistent with the idea of 

a rapid mass transfer from the water to the surface followed by a slow diffusion into the 

interior. In both cases, the size of the panicle is an important parameter. Since fine- 

grained particles exist as Aocs, the effective sizes and densities of these flocs are also 
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signficant in determining sorption rates. 

ComDarison of Fluxes 

A comparison of he reiacive effects of resuspensionideposicion, bioturbation, and 

diffusion is difficult because these processes affect transport in different ways and on 

different time scales. Molecular diffusion is probably simplest to quantify. It occurs 

continuously. Molecular diffusion coefficients for non-nacting substances, e.g. NaC1, are 

typically about lov5 cmz/s. For reacting substances, the diffusion coefficients can be 

considerably lower. For example, for PCBs, the effective diffusion coefficients arc on the 
order of cm2/s (from Eq. (5) or Fisher et id, 1983). A n  effective distance Liz over 

which diffusion affects the sediments is given by 

where At is the time internal. Consider the depth of penerntion in 3 one-year period 

(approximately 3 x 10 s). For non-reacting substances (D = cm2/s), Az is then 

approximately 17 c m  If D is Io'" cm%, then Az is reduced to 5 x loo3 em 

7 

Benc!!ic organisms mi, the sediments down to a depth of about 10 cm. This does not 
occur instantaneously bur over a period of time that depends on the reworking m e ,  which 

in turn depends on the concentrations of the organisms and their activities. For a 
subduction veiocity of cdday (as for tubificids in Lake Erie), it would take IO00 days 

for the sediments to be well-rnixed to a depth of 10 cm. In order to compare bioturbation 
with molecular diffusion, an effective diffusion coefficient can be defined as 

A 2  D=- 
Ae 

For the present case, D would be about lo4 cm'ls. This is somewhat smaller than the 

molecular diffusion coefficient for non-reacting substances, but much larger than the 
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effective diffusion coefficients for smngly reacting substances. 

In many areas of lakes, it has be:n assumed that benthic organisms are primarily 

responsible for the mixing of the upper layers of the sediments. The justification for this 
has been the well-mixed surficial Iayen deduced from the radiomemc dating of the 
sediments. From a consideration of sediment dynamics, an alternative and more plausible 

explanation in many instances is that this mixing is due to episodic nsuspensionldeposiaon 

events. 

The effects of resuspension/deposition are highly variable in space and time, 

depending on water depth, topography, and meteorological conditions. During calm 
periods and average winds, the effects of rcsuspension/deposidon are nlativeiy small and 

are probably comparable with the effects of bioturbation and diffusion. However, major 

storms can cause mixing of sediments to depths much greater than that possible by benthic 

organisms or chernical diffusion. The =lese of contaminvlts from the bottom sediments 

due to this resuspensionideposition ana subsequent desorption would also then be much 

grcater than that due to biorurbarion ar diffusion. 

The effects of contaminant sorption on resuspension/deposition, biocurbarion, and 

diffusion depend on the particular mnspon process as well as the rates of adsorption and 

desorption. but have not yet been quantified. However, consideraaon of the differences in 

the fluxes for the two limiting cases of fast sorption (equilibrium panitioning) and slow 

sorption (frozen partitioning) shows that the effects of sorption rates can bz significant and 

must be considered in determining the flux of contaminants. 

Concluding Remarks 

Some geologists, in their version of cansmphe theory, have recently emphasized the 

imporrance of the large but rare event and believe that the sedimentary ncord is primarily 

determined by large episodic events separated by long periods of time w h e n  very little 

occurs. A careful examination of present-day sediment dynamics at the s d c r  spatial and 
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temporal scales of inrerest in pollution problems also leads to a recognition of the 

importance of larse events. In the present paper, it is specifically argued that large episodic 

events such as storms on lakes and large run-offs in rivers, despite their infrequent 

occurrence, are responsible for most of the sediment and contaminant msport in rivers 

and lakes. 

Quantitative results were presented for Lake Erie which demonstrated (a) the very 

nonlinear response of sediment transport and fate to the Wind speed over the Lake, (b) that 
major storms can be identified in the geochronological record, and (c) that major storms are 

responsible for most of the sediment msport in the Lake. For the Fox River, detailed and 
verified calcularions of sediment transport have demonstrated that a few large run-off 

events are responsible for most of the transport in the River, despite the fact that the River 

is conmlled and the natural exuemes of flow do not occur. For other rivers which are less 

conmlled. even a greater fraction of the msport wouId be caused by fewer events. For 

example, for the Buffalo and Saginaw Rivers, preliminary calculations indicate that a once- 

in-five year flow will transpon more sediment than dl the other flows during that same five 

year period. 

.5. 

The i m p o m c e  of the effecs of resuspension and deposition of botrom sediments on 

the flux of nutrients and contnninmna from the !&e bottom to b e  overiying. water was also 

emphasized. In fact, it was argued that the net chemical flux due to 

resuspensiorddeposition is'generally larger, in some cases by several orders of magnitude, 

than the chemical flux due 10 both molecular diffusion and bioturbaaon. In order to predict 
the net flux riccmtely, the finite rate at which sorption occurs and the parameters on which 

this sorption depends must also bt determined accurately. 

A geendzed conclusion th3t follows from these studies is that, during any specified 

period of h e  (whether it is one year or twenty yeas), h e  largest event (either storm or 

run-off) expected during that period is responsible for more of the sediment and 
contaminant transport than all of the other events during that period In other words, 
during a one-year perid the once-in-a-year high flow or storm will cause more sediment 

and contaminant m s p o ~  than all the other flows or storms during that year. During a 
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five-year period, the once-in-five year high flow or storm will cause more sediment and 

contaminant transport than all the other flows or storms during that five-year period. Le., 

more than the five once-in-a-year high flows or storms. During a twenty-year period, the 

once-in-twenty year high flow or storm will cause more sediment and contaminant 

U~JISPOK than all the other flows or storms during that twenty-year period, Le., more than 

four once-in-five year high flows or storms and more than twenty once-in-a-year high 

flows or storms. 

The above statements may be reprieve and may even be slightly over-staml for some 

cases, but the repetition is meant in order to make a point. In attempting to prtdict the acnd 

of water quality in rivers and lakes over Long periods of time, it is the large run-off andlor 
storm that must be considered in the modeling and prediction of the transport and fate of 

sediments and contaminants. This of c o m e  is connary to the conventional wisdom which 
emphasizes the uniform deposition of sediments m d  the chemical flux from the bottom 

sediments due to diffusion. hi contrast, the above studies emphasize the dynamic n a m  of 

sediment and contaminant uanspon and the importance of I q e  events in this dynamics. 

There is no stendy state. Because of this and the noniinevity of the processes, an average 

state is difficult to define and may not be meminful. 

From this it follows that, in order to predict sediment and contaminant msport more 

accmtely, data and modeling relevant to I q e  storm and run-off events are needed. In 
particular, data is needed 'on the resuspension of sediments 3f high shear suesses, the 
changes in bathymetry due to erosioddeposition during luge events, the variation of 

sediment propemes with depth and not just near the sediment-water interface, and westher 

conditions, flows, and sediment and contaminant concenuations during large storms and 

mn-offs. More xcumz informarion on the probability of the c c c m n c e  of a large event of 
a certain magnitude is also needed. The non-equilibrium nature of HOC sorption needs to 
be investigated, first 3s a rate process and second 3s it affecs the panitioning and flu of 
contaminants during large events controiled by resuspensioddeposition. 
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1 Appendix D 
Summary of Post-Conference Survey Results 

The conference was aimed at reducing uncertainty in mas 
balance models but specific models were not presented nor 
discussed in any detail. Qualitatively, the uncertainties will differ 
from toxicant to toxicant -- different loadings via different routes and 
different processes governing their fates. The workshop might have 
benefited by bing more specific in its charges to the partii+ipants. 
A selection of pollutants with different properties and modes of 
import and export could have been given which covered the span 
for substances to be encountered; a definition or comparison of the 
sorts of model (and therefore the inputs) to be considered would 
have helped focus the discussions. 

* Smaller working groups with more specific charges. 

A p&r/ budgeting for a follow up meeting to be held the 
following year. 

=s invite speakers to introduce the notion of value of 
information as a framework for guiding mass balance 
modeling research. 

Examples of such work: 
Reichard and Evans, 1989. "Assessing the Value of Hydrogeologic 

Information for Risk Based Remedial Action Decisions." 
~ 2 5 ( 7 ) : 1 4 5 1 6 0 .  

Knopman and Voss, 1987." Behavior of Sensitivities in 
OneD imensional Advec tbnDispersion Equation : 
Implications for Parameter Estimation and Sampling Design," 
-rcR 23(2):253-275. 

In retrospect. I think I would de the following: 

* Provide more detailed guidance to the working groups and 
facilitators. There seems to be some confusion as to what 

the actual goals of the workshop were. As a result, it seems 
that the working group discussions and repoh were either 
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based by facilitator's preconceptions of what he/she 

thought the workshop goals were, or dominated by 
particular individuals, who, in the absence of more definite 
guidance, put forth their own agendas. 

I thought I understood the workshop goals from reading the 
prospectus and from discussions with the organizers in 
advance of preparing a white paper. However, most 
people focused on what I think of as application and 
implementation issues only (e.g., which chemicals should be 

monitored, how many cruises should we have) instead of 

more technical issues (e.g., how do we quantify uncertainty, 

how does model uncertainty affect management 

decisions). Both issues are important and I think that the 

workshop was intended to deal with them both. However, I 
think the technical issues should have been dealt with first. 
An understanding of these more basic problems would put 
the implementation questions into a more general and 

manageable context. However, given the time that we 

had, it would have been very difficult to consider both. 

My second suggestion is that I would have allowed more 

time for the workshop and perhaps involved fewer people. I 

thought the plenary presentations on the first afternoon 

were excellent and a great way to start off the conference 
but all. of the work of the meeting was done on day 2 The 

sue of the working groups (about 15 people) was too large 

to really work efficiently and it was very difficult to get into 
any great depth about the questions the groups were 
charged with. I think this is why the groups tended to focus 
on fairly narrow implementation issues rather than on the 

broader technical issues. If more time was allowed (maybe 
another day) and if we had spent the first day on the 

fundamentals and the second day on the speciflcs of a 

Lake Ontario model, I, for one, would have been more 

satisfiid with the result. I realize, of course, that it is hard 
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enough to get people to a meeting for three days, to say 

nothing of four. Perhaps if the original group were smaller it 

could have been done. 

A strawman proposal for Lake Ontario would have focused 
discussion a bit better. This should have included samples 

per year, tributary schedule, lake stations, biota sampling, 

process experiments, etc. 

I thought the conference went well and was exactly what 
was needed, however next the I would hope we could get 
more managers to participate. With many workshops like 

this the results get stuck and never get communicated to 

those who can implement m e  recommendations. Let's 

make sure we put a presentation package together for use 

by the key organuers and perhaps as a group we could 
present it to different management groups. I would hope 
that each participant would take the results to appropriate 
forums. 

The conference was very well organized and run. One 
suggestion for next lime - professional facilitators in m e  work 
group meetings would have helped keep groups on track. 

Group leaders could be "resource persons" for technical 

input. A recorder could have just kept notes. Asking a 
group leader to do all three jobs is almost impossible. 

* More time with mall groups. Possibly smaller groups. 
+ I might have made it a bit more structured, Le.. pased a 

series of questbns to focus each workgroup. 

+ Have more of the Managers integrated into the workgroups. 



Effective treatment of uncertainty in mass balancing modeling of 
Great Lakes toxics requires supplementing best available mass 
balance models with sensitivity/uncertainty and decision analytic 
methods to produce a more useful policy research tool. 
Sensitivity/uncertainty and decision analytic methods provide 
rigorous documentation of objectives and modeling assumptions 
and a rational framework for thinking about the value of reducing 
uncertainty in mass balance models. 

The effectiveness/usefulness of models in regulating pollution 
sources is dbninkhing. The real value is in understanding the 
ecqsystems so that the necessary societal changes can be made 
with respect to persistent toxic substances. 

That modelers and experimentalists interested in water quality 
evaluation and forecasting must work together to develop holistic 
models. Piecemeal research never results in a complete systems 
approach and can lead to confusion, contradiction, and poor 
decision making. 

Given that the workshop was to address reducing the uncertainties 
in mass balance models, I feel that the role of the biota in the 
models should not have been included -- except as a check on 
predictions or a surrogate for some other aspect of the models. It 
would be nice to have "the mother-of-all-madelS' but the resources 
to validate (or even develop) such a model are not and will not be 
made available. We should learn to walk before we run. If we 
cannot predict/account for 90% of the disposition of chemicals, how 
then are we going to do 99.95% of them? 

I feel that a sensitivity analysis of the models to each of the different 
process parameters and the input functions should be done. There 
are some which need only be known roughly and others which 
should be more precise. This might help in determining the source@) 
of the uncertainty. 

The point I tried to make is that there are contaminant data from 
Lake Ontario to compare models with and there are loading data 
that can be used to drive the models. There is a white paper with 
data, a published paper with data up to 1983 and the later loadings 
from the Niagara river are available from CCIW. In a paper in 
preparation we will show that those loadings for four 
chlorobenzenes. PCB's and mirex can drive the model well enough 
to match the data well. The model was calibrated with 1983 data 
and therefore a good match with post-1983 data can be 
considered a post-audit. 

The modeling proposals are onty incremental improvements over 
the Green Bay Study. While I welcome the progress that Bob 
Thomann and others have made in their thinking, we need to go still 
further in improving the state of the art. We should not be distracted 
by the difficulties of the Green Bay Study. Many of these problems 
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can be avoided by the improved management of resources and 
investigators that was being learned during the study as quickly as 
new things were being learned about modeling. 

Up-front planning and understanding of objectives by all study 
participants is essential. Omission of mercury from the list because it 
is difficult to analyze is irresponsible and naive, 

When models are well understood, pathwys and kinetics well 
documented, rates known etc.. the model is no longer needed. 
Once we understand how a system works, we con effectively 
manage it and make intelligent decisions. It is precisely where we 
don't understand, have the highest uncertainty and least insight 
where models are needed the most. A mass balance model 
exposes our lack of knowledge in ways individual research projects 
never could. The discussion on mercury is a case in point. We know 
less about mercury than most other toxics. Trying to do a mass 
balance model will very clearly show what our knowledge needs 
are. 

I 
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