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ABSTRACT 

Protein phase behavior encompasses the formation of dense phases, which 

include amorphous aggregates, gels, dense liquids, and crystals. The major solution 

variables that dictate the type of dense phase that is formed are pH, temperature, type 

of precipitant, precipitant concentration, and protein concentration.  Because of the 

large parameter space and rich variety of phase transitions possible, protein phase 

behavior is a complex phenomenon.  Fundamentally, macroscopic phase transitions 

are governed by the molecular interactions between proteins in solution.  One 

promising way of quantifying protein-protein interactions and relating them to phase 

behavior is through the osmotic second virial coefficient B22, a dilute-solution property 

that characterizes two-particle interactions. The relationship of B22 to overall phase 

behavior of proteins is explored in this work.  

The goal of this thesis is to quantitatively relate protein-protein 

interactions to protein phase diagrams in order to develop predictive models of phase 

behavior under different solution conditions.  A continuum-level approach is used 

initially to relate experimental B22 data and phase diagrams of proteins by appealing to 

existing thermodynamic models, with the expectation that a simple continuum model 

could provide a useful mechanistic framework for predicting protein phase behavior.  

The first approach attempted was to relate protein interactions and phase behavior 

within the Flory-Huggins theory of polymer solutions.  The second approach utilized 

the model of Haas and Drenth, which is based on the free energy of mixing for hard 

spheres.  Finally, phase equilibrium was predicted from virial coefficients using the 
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osmotic virial equation.  A qualitative relationship was found between B22 and phase 

behavior from these continuum models; however, quantitative agreement could not be 

obtained.  The isotropic assumption shared among these models in addition to the 

orientationally-averaged nature of B22 suggests that the anisotropic character of protein 

interactions cannot be neglected, demonstrating the need for more detailed molecular-

level models. 

 The role of anisotropy in protein interactions was explored through 

analysis of “patch-antipatch” pairs in the computation of B22 in atomistic detail.  

Patch-antipatch pairs represent highly attractive orientations resulting from geometric 

complementarity between protein surfaces.  Previous work used simple Monte Carlo 

integration for the calculation of B22 from atomistic models of proteins.  However, the 

presence of patch-antipatch pairs led to significant numerical concerns.  These 

concerns warranted a reexamination of the numerical methods for computing B22.   

A hybrid Monte Carlo/patch integration approach is utilized to calculate 

B22 for lysozyme and chymosin B.  This method involves a combination of numerical 

integration techniques in an attempt to obtain better convergence in predicting B22.  

The overall B22 for the proteins studied was separated into three components: 

contributions from the excluded volume, from the patch-antipatch pairs, and from 

background configurations.  The excluded volume component was found to be 

adequately determined using simple Monte Carlo integration.  The contributions from 

individual patch-antipatch pairs were accounted for by carefully integrating the 

subregions of the configuration space occupied by these pairs using a globally 

adaptive integration routine.  The background component to B22 was also calculated by 
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simple Monte Carlo integration in which the regions of the configuration space 

occupied by the patch-antipatch pairs were excluded.    

The calculations performed that account for the full protein structure 

emphasize the importance of several features of protein interactions.  First, the 

difference in the interaction behavior of the two proteins studied was found to be 

largely attributed to the charge anisotropy of patch-antipatch pairs.  However, the 

relation of the results to experimental data is limited by the omission of accounting for 

the specific hydration of proteins.  Hydration effects are known to affect, and usually 

attenuate, patch-antipatch configurations, and therefore would be expected to 

significantly impact the accurate prediction of B22.  Classical colloidal as well as 

atomistic models that omit these important features are inadequate in providing a 

quantitative representation of protein interactions for a wide range of solution 

conditions.    
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Chapter 1 

INTRODUCTION 

Protein phase behavior refers to the appearance of various condensed 

phases that proteins can form in solution.  It encompasses the formation of amorphous 

aggregates, gels, dense liquids, and crystals. The types of dense phases formed are 

sensitive to the solution conditions, which include pH, temperature, type of 

precipitant, precipitant concentration, and protein concentration.  Because of the large 

parameter space and rich variety of phase transitions possible, protein phase behavior 

is a complex phenomenon.  

The phase behavior of proteins plays a key role in many 

biopharmaceutical processes.  Undesired phase separation of protein therapeutics can 

occur during processing and storage, which can raise serious efficacy and safety 

concerns.  However, phase separation may be desired in other situations, and 

operations such as precipitation can be employed in downstream protein purification 

processes because of their low cost.  One specific form of phase separation of wide 

interest is protein crystallization, which is a prerequisite step for determining protein 

structure by x-ray diffraction; however, the growth of high-quality crystals is often the 

bottleneck.  Crystallization is also of interest in the pharmaceutical industry because it 

offers an advantageous way for delivery of doses of highly concentrated protein 

therapeutics.  Phase separation of proteins can have serious medical implications as 

well.  The onset of neurodegenerative diseases such as Alzheimer’s disease has been 

attributed to the formation of fibrillar protein aggregates called amyloids.   
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Understanding the conditions and mechanisms that lead to formation of 

protein dense phases from solution is therefore crucial to predicting and ultimately 

controlling phase transitions in these diverse systems.  Such knowledge will be 

invaluable in a wide variety of applications.  This work aims to contribute towards this 

endeavor by utilizing and evaluating quantitative models that construct the pathway 

from molecular structure to the thermodynamic solutions properties of proteins.   

1.1 The Protein Phase Diagram  

Early experimental studies of liquid-liquid phase separation of globular 

proteins have led to interpretion of protein phase behavior within the framework of 

colloidal systems.  Ishimoto and Tanaka first presented evidence of temperature-

induced liquid-liquid phase separation of aqueous lysozyme solutions (1).  These 

results were questioned by Phillies (2), but Taratuta et al. confirmed them by 

performing extensive cloud-point temperature measurements at different pH values, 

salt types, and salt concentrations (3).  It was later observed that the liquid-liquid 

phase separation was actually metastable with respect to the solid-liquid transition (4), 

behavior characteristic of colloidal particles experiencing short-ranged attractions (5, 

6).  Similar phase behavior was also observed experimentally for several different -

crystallins (7–10). The similarities in the metastability of the liquid-liquid phase 

separation for both proteins and colloids suggest that protein phase behavior follows 

the same physics as the phase transitions of colloids.  

 The phase diagram of proteins can be theoretically interpreted within the 

context of the theoretical phase diagram for colloidal systems experiencing short-

ranged interactions (5, 6) (Figure 1.1).  The colloidal phase diagram is most directly 

compared to experimental protein phase behavior results when presented in a two-
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dimensional plane where the colloid concentration is plotted on the ordinate and the 

reduced temperature on the abscissa.  The direction of decreasing temperature 

corresponds to increasing interparticle attraction, a trend that is qualitatively analogous 

to increasing precipitant concentration under salting-out conditions. 

 

Figure 1.1: Theoretical colloidal phase diagram adapted from Foffi et al. (6). 

The main feature of this phase diagram is a solid-liquid equilibrium 

region, which corresponds to protein crystals in equilibrium with a protein-lean 

supernatant fluid.  Within this region lies the metastable liquid-liquid coexistence 

envelope (bounded by the binodal curve) in which the protein partitions into a dilute 

and more concentrated liquid phases.  Inside this liquid-liquid coexistence region is 
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the spinodal boundary beyond which phase separation occurs instantaneously through 

spinodal decomposition.  Thus, knowing the relative locations of the phase boundaries 

as a function of the solution conditions is important in navigating through the phase 

diagram.   

The metastable nature of the liquid-liquid phase separation is an important 

feature of protein phase behavior.  A correlation exists between the metastable liquid-

liquid coexistence and crystallization (11).  Liquid-liquid phase separation has been 

suggested to significantly change the kinetic pathway for crystal nucleation (12, 13).  

Specifically, the free energy barrier for crystal nucleation is drastically reduced near 

the liquid-liquid critical point due to critical density fluctuations.  Therefore, knowing 

the location of the liquid-liquid coexistence region can have implications for selecting 

optimal solution conditions for protein crystallization. 

1.2 Protein-Protein Interactions  

Protein phase behavior is governed fundamentally by the molecular 

interactions between protein molecules, which are still not completely understood.  

What is known is that the interactions include contributions from van der Waals 

forces, electrostatics, hydration effects (including hydrophobic interactions), and 

depletion effects (where relevant).  Attractive van der Waals forces arise from three 

different contributions: permanent dipole-induced dipole interactions (Debye 

interaction), permanent dipole-permanent dipole interactions (Keesom interaction), 

and induced dipole-induced dipole interactions (London dispersion interaction) (14, 

15).  These attractions are complemented by long-ranged electrostatic interactions due 

to the charges that some amino acid residues carry on the protein surface.     
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Solvation forces, which are associated with water structuring around the 

protein surface, include effects that may be classified as hydrophobic or as hydration 

effects (15, 16).  The hydrophobic effect results from the presence of nonpolar patches 

on the surface, with which water molecules are unable to form hydrogen bonds.  To 

minimize the free energy, the nonpolar regions associate with one another, driving 

water molecules away from the surface to more extensive formation of hydrogen 

bonds in the bulk of the solution.  Hydration effects may occur in hydrophilic regions 

on the solute molecules, where hydrogen bonding with adjacent water molecules may 

result in a steric and hence effectively repulsive barrier to association with other solute 

molecules.  Solvation forces are still poorly understood and a quantitative explanation 

is presently lacking. 

Additional depletion attraction is induced due to the osmotic pressure 

gradient caused by the addition of nonadsorbing polymers such as polyethylene glycol 

(PEG) (17).  Depletion interactions are a result of an entropic effect; when two protein 

molecules are in sufficient proximity, the polymer-excluded volumes of the molecules 

overlap.  Consequently, the polymer molecules cannot penetrate into the space 

between the protein molecules, resulting in effective attraction due to the osmotic 

pressure of the polymer in the bulk solution. 

In addition to the different contributions to protein-protein interactions, an 

important feature is also their anisotropy, which is a consequence of the nonspherical 

shape of the protein molecule and the heterogeneous properties of the protein surface.  

The shape anisotropy of proteins has a profound effect on the van der Waals 

attractions.  Computations have shown that shape anisotropy has an appreciable effect 
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on the magnitude and orientational distribution of van der Waals interaction energies 

compared to calculations based on the ideal sphere approximation (18). 

There is a complex interplay among the different forces that govern 

protein-protein interactions and solution conditions.  For example, at low salt 

concentrations protein interactions are dominated by long-ranged electrostatic forces, 

which are usually repulsive.  At high concentrations of salt, electrostatic forces are 

screened and short-ranged van der Waals forces and hydrophobic interactions tend to 

drive the precipitation of protein from solution.  The phenomenon where proteins 

become less soluble as more salt is added is known as salting-out.  One explanation 

for this behavior is that the salt ions alter the hydrogen bonding network of the layer of 

water that shields the protein surface hydration layer (19).  Consequently, protein 

molecules interact less with water, resulting in an increase in the protein-protein 

interactions.  Different ions have been found to have varying impacts on protein phase 

behavior.  The salting-out effectiveness of different ions is reflected in the Hofmeister 

series (20), which is an empirical ranking of the ability of different ions to disrupt the 

hydration layer. 

A quantitative understanding of the underlying mechanism of specific ion 

effects on phase behavior is still incomplete, but much progress has been made in the 

past fifteen years (21–26).  It was long believed that the Hofmeister effect was due to 

the influence of the ion on the hydrogen bonding network of bulk water, but 

experimental results suggest that this influence does not extend beyond the first 

hydration shell (27–29).  Rather, direct ion-protein interactions appear to contribute 

significantly to the ability of a specific ion to salt out proteins from solution.   
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Two recent developments have emerged that have led to the development 

of salt-specific models of protein interactions.  The first cites significant contribution 

from dispersion forces between ions and protein molecules (24, 30–33).  The 

polarizabiltity of the ion is the unique physical characteristic that determines the ion’s 

specificity.  Including ion dispersion contributions in calculating protein-protein 

interactions has been shown to qualitatively capture the reverse Hofmeister behavior 

exhibited by lysozyme (34, 35), where the salting-out trend follows the opposite order 

of the Hofmeister ranking.  These findings are consistent with experimental 

observations (36).     

The second development emphasizes the role of solvent-assisted ion 

binding to the hydrophobic regions of the protein surface.  Efforts to model this effect 

have used molecular dynamics simulations of ions and hydrophobic interfaces to 

determine the effective interactions between proteins (37–40).  Models of protein 

interactions incorporating effects of ion binding have also yielded predictions that are 

qualitatively consistent with the salting-out behavior for lysozyme (41).   

1.3 Theoretical and Simulation Studies 

The interactions between protein molecules play a central role in defining 

the macroscopic thermodynamic properties of protein solutions.  The key to relating 

the microscopic and macroscopic properties is the potential of mean force (PMF).  The 

PMF represents the effective interaction between two molecules in a system of n 

molecules as a combination of the direct interactions between the molecules and 

indirect forces from the other species, which include the solvent and ions (42, 43).  

Another way of interpreting the PMF is that it is the free energy required to bring two 

molecules in an n body system from infinite separation to a particular configuration in 
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solution.  In principle, specifying the PMF fixes the thermodynamic properties of the 

system.  However, the intermolecular interactions of proteins are quite complex and 

are strongly dependent on the solution conditions.  Therefore, it is not possible at 

present to determine an exact PMF model of protein-protein interactions.  An 

alternative approach is to start with simple idealized models with a few parameters 

based on the physics of the system, and fit the parameters to correlate experimental 

data.   

Experimental evidence of a metastable liquid-liquid phase transition in 

proteins has led to theoretical efforts to relate the phase behavior and intermolecular 

interactions of proteins within the framework of model colloids (44, 45).  It is well 

known from theory (46), experiment (47), and simulation that the phase behavior of 

colloidal dispersions is sensitive to the range of the interaction between the particles.  

Colloidal particles experiencing an attraction that is short-ranged with respect to its 

diameter exhibit a metastable liquid-liquid phase transition.  Since proteins exhibit 

similar phase behavior, idealized colloidal models can serve as a starting point for 

describing the thermodynamics of protein solutions. 

Early theoretical work attempted to approximate protein solutions as a 

one-component system and model the effective interactions between proteins with a 

simple form of the pair potential.  Within this framework, the solvent is treated as a 

continuum background and the protein molecules are represented as hard spheres 

experiencing attraction that is a function only of the center-to-center distances (Figure 

1.2).   

Several simple potentials have been used to model protein interactions, 

including the adhesive hard sphere (48–51), square-well (52–55), Yukawa (6, 56, 57), 
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and modified Lennard-Jones (12, 58) potentials.  While the forms of these potentials 

are different, each of these models has parameters for the interaction strength, 

interaction range, and particle diameter.  In these models, the interaction range is the 

dominant parameter that controls the shape and location of the phase boundaries (58).  

Large values of the range parameter lead to phase diagrams that have a stable vapor-

liquid phase separation, which is analogous to a liquid-liquid phase transition for the 

colloidal system.  As the range parameter becomes sufficiently small, this transition 

becomes metastable with respect to the solid-liquid phase transition.  In addition, it has 

been shown that these isotropic potential models follow an extended law of 

corresponding states (59).  The consequence of this is that the thermodynamic phase 

behavior of systems that interact through short-ranged attraction becomes insensitive 

to the details of the interaction potential if they are scaled by the proper parameters.   

 

Figure 1.2:  Cartoon of simple isotropic model of proteins.  Protein molecules are 

represented as perfect spheres of diameter and the interactions 

depend only on the center-to-center distance r.    

A more complex formulation that has been used to characterize colloidal 

interactions and has been applied to proteins comes from DLVO theory (14, 15, 60, 
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61).  In this theory the particles are modeled as ideal spheres with a homogeneous 

charge distribution that interact via short-ranged van der Waals attraction and long-

ranged Coulombic repulsion.  The solvent is assumed to be a structureless continuum 

with a uniform dielectric constant.  The potential function that reflects this framework 

is the sum of three contributions 

                      1.1  

where uHS is the hard-sphere excluded volume contribution to the potential, uvdW is the 

contribution from the van der Waals attraction, and uelec is the contribution from the 

electrostatic repulsion.  Within the DLVO framework, the salt screens the electrostatic 

interaction between protein molecules, thereby reducing the repulsive electrostatics.  

The advantage of DLVO theory is that the model parameters can be directly related to 

the solution conditions and physical properties of the system.  The van der Waals 

contribution is characterized by the Hamaker constant and the size and the separation 

distance between the two spheres.  The Coulombic repulsion is governed by pH, 

which determines the net charge of the protein, and the solution ionic strength, as well 

as the size and separation distance.   

Studies using simple isotropic models have provided qualitative insight 

into the relationship between interactions and the phase behavior of proteins.  

Specifically, the metastable liquid-liquid transition exhibited by protein solutions can 

be explained in terms of attraction that is short-ranged relative to the size of the 

protein.  The phase diagrams from these simple models are in qualitative agreement 

with experimental observation; however, the model parameters cannot always be 

physically related to the solution conditions (pH, temperature, ionic strength), which 

are known to determine the protein-protein interactions and therefore phase behavior 
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(62, 63).  Consequently, the parameters of these simple models cannot be determined 

a priori and can only be used to fit experimental data (62, 63).  In addition, the 

metastable critical point for protein systems has been shown to be sensitive to the 

solution conditions, and this sensitivity cannot generally be captured by spherically 

symmetric potentials (64, 65).  Thus, simple intermolecular potentials can only be 

used as empirical models and cannot be used to predict protein phase behavior for a 

wide range of solution conditions. 

The phase diagrams predicted by the DLVO model qualitatively correlate 

the experimental phase behavior data for lysozyme and -crystallin (66–68), but the 

model is unable to quantitatively predict phase behavior that agrees with experiment.  

There are several problems with DLVO theory that limits its predictive capability for 

the phase behavior of proteins.  First, the model does not account for other important 

solvation forces that are known to be significant, such as hydrophobic interactions and 

hydration effects.  Omission of these forces is one of the reasons that DLVO theory 

failed to describe phase behavior for some proteins such as apoferritin (69) and 

hemoglobins (HbS and HbA) even qualitatively (70).  In addition, DLVO theory does 

not properly take into account specific ion effects because the theory treats ions as 

point charges in solving the Poisson-Boltzmann equation (32, 60).  Consequently, the 

model cannot explain the varying salting-out abilities of different ions at high salt 

concentrations.  Another limitation of this theory is that it is not capable of explaining 

the salting-in behavior of some proteins.  This discrepancy is due to the assumption of 

a uniform charge distribution, which inherently treats the electrostatics as always 

repulsive.  However, the distribution of charges carried by the titratable amino acids 

can lead to attractive electrostatic interactions.  The screening of the attractive 



 12 

electrostatic interactions with increasing salt concentration leads to increasing stability 

of the protein solution, resulting in salting-in behavior.  Therefore, DLVO theory 

provides an incomplete description of protein-protein interactions, and cannot be 

expected to provide quantitatively accurate predictions of protein phase behavior. 

More complex models that go beyond spherically symmetric potentials 

have been used to predict the phase behavior of proteins.  These models emphasize 

different features of protein-protein interactions and have predicted phase behavior 

with varying degrees of success.  An embedded charge model has been used to 

account for the charge anisotropy of proteins (71), but the phase diagrams predicted 

from this representation were found to agree only qualitatively with experiment (72).  

One class of models that have been used for colloids and have been used to represent 

the anisotropy of the short-ranged attractions of proteins are patch models (73–78).  

Patch models represent protein molecules as spheres that carry attractive regions on 

the surface to account for orientationally local strong interactions.  Patch models have 

been shown to provide more accurate quantitative representations of protein phase 

diagrams (73, 75, 79).  

1.4 The Osmotic Second Virial Coefficient: B22 

One method for characterizing the effective protein-protein interactions is 

through the osmotic second virial coefficient, B22.  B22 is a dilute solution property that 

is a measure of effective two-body interactions in solution, and it provides a link to the 

PMF via the statistical mechanical expression for B22 which, accounting for 

orientation dependence is given as (42, 80) 
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1.2  

Here W is the PMF, r12 is the center-to-center distance,  and  are the spherical 

angles representing the location of the second molecule relative to the first, and , , 

are the Euler angles denoting the rotation of the second molecule (81).   

 Extensive computations explicitly accounting for the full structural details 

of proteins have shown that due to the Boltzmann weighting of the PMF, a few highly 

attractive complementary configurations contribute disproportionately to the 

calculation of B22 (82, 83).  That protein-protein interactions can be dominated by a 

few highly attractive configurations has been demonstrated experimentally by a single 

point mutation of a crystal contact for T4 lysozyme (84).  These attractive 

configurations that control bulk solution properties are characteristic of molecular 

recognition stemming from the geometric complementarity of apposing regions.  

These attractive regions can serve as contacts for crystal formation, which suggest a 

plausible correlation with crystallization (85) and protein phase behavior (45, 86–88).  

For example, when B22 is positive, the protein molecules on balance repel one another 

and remain stable in solution.  As B22 becomes negative, the protein interactions are 

net attractive and may lead to the formation of condensed phases.  The region of 

slightly negative B22 values known as the crystallization slot (-1×10
-4

 to -8×10
-4

 mol 

ml/g
2
) was identified empirically by George and Wilson to be conducive to the 

formation of protein crystals (88).  If B22 is too negative, the strong attractions may 

prevent the protein molecules from rearranging and forming the specific contacts that 

lead to a crystalline lattice, resulting in amorphous precipitates and gels. 
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1.5 Objective and Thesis Outline 

The objective of this thesis is to quantitatively relate protein-protein 

interactions to protein phase diagrams in order to develop predictive models of protein 

phase behavior at different solution conditions.  The motivation stems from the need 

for providing a rational methodology for the design and optimization of bioseparation 

processes.  Developing such rational strategies can be significantly aided by 

knowledge of the phase diagram.  Experimental measurements of phase diagrams for 

proteins is a nontrivial task; it can be expensive in terms of time, labor, and supply of 

protein due to the difficulty of characterizing the various dense phases, time to attain 

true equilibrium, and the wide range of possible solution conditions.  In addition, if 

crystallization conditions are not known for a protein, measurement of the solid-liquid 

phase boundaries is not possible since crystals are needed.  Consequently, complete 

phase diagrams have been measured for only a few proteins (89).  Therefore, 

developing predictive models of protein phase behavior is essential and can have 

significant industrial and scientific benefits.   

The following chapters aim to elucidate the path from molecular structure 

to the thermodynamic properties of proteins.  Proteins can be represented at various 

levels of coarse-graining, from simple spheres to a full atomistic structure.  The level 

of structural representation directly impacts the ability to model protein interactions 

(PMF), which ultimately allows the prediction of bulk solution properties such as B22 

and phase behavior.  The conceptual path from molecular structure to thermodynamic 

properties is illustrated in Figure 1.3.  In this thesis, models that represent proteins at 

various levels are explored to evaluate their capability of providing the link between 

protein interactions and phase behavior.   
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In Chapter 2, an attempt is made to model protein solutions within the 

framework of existing continuum thermodynamic models that have been established 

for polymer and colloidal systems.  This was done by quantitatively evaluating the 

relationship of measured B22 and phase behavior data for a model globular protein 

using these models.  In addition, phase equilibrium is modeled from the osmotic virial 

equation derived from McMillan-Mayer solution theory.  Chapter 3 focuses on the 

anisotropy of protein-protein interactions on the molecular level and how this feature 

impacts the prediction of B22.  The anisotropy arising from the shape complementarity 

between protein surfaces and the charge distribution is analyzed within the context of 

the “patch-antipatch” representation of protein interactions.  Further, the numerical 

technique for computing B22 from atomistic descriptions of proteins is reexamined, 

and a new approach is proposed and outlined.  This thesis is concluded by 

summarizing the findings from this work and recommendations are made for future 

directions.    
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Figure 1.3: Schematic of the conceptual path from molecular structure to 

thermodynamic solution properties of proteins, which includes the 

osmotic second virial coefficient B22 and phase behavior. 
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Chapter 2 

CONTINUUM THERMODYNAMIC MODELS OF PROTEIN 

INTERACTIONS AND PHASE BEHAVIOR 

2.1 Motivation and Goal 

 Unlike previous studies that have taken a molecular approach to develop 

predictive models (12, 53, 56, 66–68), a continuum-level approach is explored here to 

relate protein-protein interactions and phase behavior.  Previous work has 

demonstrated a correlation between the osmotic second virial coefficient, B22, and 

phase diagrams found from experiments (45, 86, 87).  Therefore, there is evidence to 

suggest that B22 may offer a reasonable quantitative measure of the effective 

interactions between protein molecules.  That is, the evidence suggests that the overall 

effects of the solution conditions (pH, temperature, and precipitant concentration) on 

protein-protein interactions can collectively be represented by B22.  The aim of this 

chapter is to use experimental B22 data to quantitatively predict the phase diagrams of 

proteins by utilizing existing classical thermodynamic models.  The hope is that a 

simple continuum model with few parameters can provide a useful mechanistic 

framework for predicting the phase behavior of protein solutions.   

 The models investigated in this work were the Flory-Huggins model (90), 

the Haas-Drenth model (91–93), and the osmotic virial equation (94).  These models 

were used to calculate values of B22 and the phase behavior for ribonuclease A in 

ammonium sulfate solutions at pH 7 and 23°C and to compare the calculated values to 

experimental data obtained by Dumetz et al. (45, 86) (Figure 2.1).  The B22 values for 

this system were measured using self-interaction chromatography (95, 96) and the 
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dilute boundary of the liquid-liquid coexistence region of the phase diagram was 

obtained by a microbatch technique.  This particular system was chosen because the 

B22 values partially overlap the binodal curve over the range of 0.90 M to 1.25 M 

ammonium sulfate (Figure 2.1).  It was therefore possible to make a direct correlation 

of B22 data with phase behavior within this salt range using the models listed above.  It 

should be noted that B22 is often difficult to measure at salt concentrations in which 

phase separation is observed since the attractions are very strong.  As a result, B22 data 

rarely overlap phase behavior data for proteins over the same range of salt 

concentration, if at all.  This difficulty makes relating complementary sets of data with 

the above models challenging.   

 This chapter of the thesis is organized as follows.  The modeling structure 

used for relating B22 and phase behavior within the framework of the continuum 

models is briefly described.  For each model, the theoretical foundation is introduced 

and the equations that govern phase equilibrium are presented.  These equations 

provide the modeling structure used for relating B22 and phase behavior.  Next, results 

of the correlations between experimental B22 and phase behavior data for ribonuclease 

A for each of the models are presented and discussed.  Finally, conclusions are drawn 

on the capability of these continuum models to relate protein interactions and phase 

behavior based on the results for ribonuclease A.   
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Figure 2.1: () Binodal, () spinodal, and () B22 data for ribonuclease A in 

ammonium sulfate system at 23°C, pH 7.  The dotted rectangle 

encloses the region where B22 and phase behavior data overlap. 

Results were taken from Dumetz et al. (45, 86). 
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2.2 Modeling Structure 

The physical parameters for ribonuclease A and the solvent (water) used 

for this study are presented in Table 2.1 and Table 2.2, respectively.  The specific 

volume of ribonuclease A used in these calculations is a value generally used in the 

literature for globular proteins (91), which is v2=0.735 ml/g.   

Table 2.1: Physical properties of ribonuclease A used in the continuum models. 

Property Value Ref 

pI 9.6 (45) 

MW (g/mol) 13700 (45) 

 (nm) 3.1 (86) 

2 (ml/g) 0.735 (91) 

Table 2.2: Physical properties of water used in the continuum models. 

Property Value 

MW (g/mol) 18.02 

 (g/ml) 0.998 

V (ml/mol) 18.06 

 

A schematic of the modeling structure that was followed for relating B22 

and phase behavior using the three continuum models is shown in Figure 2.2.  With 

the Flory-Huggins and Haas-Drenth models, the phase behavior can be predicted 

directly from B22 values at each salt concentration, or vice versa.  In using phase 

behavior to calculate B22, the larger salt range available in the phase behavior data can 

be taken advantage of to predict B22.  By following this path, B22 predictions can be 

made for salt concentrations beyond the experimental range of the B22 data.  However, 

using measured B22 data to find phase behavior predictions is restricted to the window 
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of conditions for which both B22 and phase diagrams are available.  Consequently, 

phase behavior calculations cannot be made at higher salt concentrations due to the 

lack of B22 data.    

For the osmotic virial equation, only one approach was followed, in which 

experimental B22 data were used as inputs to predict the corresponding phase behavior.  

The reason this path was chosen is that B22 data are needed to compute higher virial 

coefficients necessary for the osmotic virial equation to relate interactions and phase 

behavior.  The reverse approach of using experimental phase behavior data to 

calculate virial coefficients could not be utilized because of the need to calculate both 

B22 as well as at least one higher virial coefficient.   

 

 

Figure 2.2: Schematic of the modeling pathways used to relate B22 and phase 

behavior with the continuum models.  
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2.3 Flory-Huggins Model  

2.3.1 Theory 

The Flory-Huggins model of polymer solutions is derived from simple 

lattice theory for fluids and has historically been used to predict the phase behavior of 

polymer-solvent systems (90).  In this model, the system is considered to be composed 

of uniform lattice sites that can be occupied by either one solvent molecule or a 

polymer subunit (monomer).  The polymer is represented as a linear, flexible chain of 

interconnected subunits in which the chain is free to adopt any configuration.  Each 

monomer is allowed to occupy any one lattice site as long as the monomers remain 

interconnected.  Because of its simplicity and few parameters, the Flory-Huggins 

model was deemed worth exploring.  The excess free energy of the system has been 

derived as (97) 

 
   

  
      

  

  
     

  

  
                2.2  

where 1 and 2 refer to water and protein, respectively, xi is the mole fraction of species 

i, and i  is the volume fraction of species i.  The m parameter reflects the degree of 

polymerization of the polymer relative to the size of the solvent molecule and can be 

calculated as the ratio of the molar volumes of the polymer to the solvent 

   
  

  
 2.3  

where Vi is the molar volume of species i.  Based on the physical parameters listed in 

Tables 2.1 and 2.2, a value of 559 was set for the m parameter.  The  parameter is an 

adjustable parameter that represents the effective interaction between the solute and 

solvent.   
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 For the Flory-Huggins model, it can be shown that liquid-liquid phase 

equilibrium is modeled by 
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2.5  

The interaction parameter  is linearly related to B22 by (14)  

     
  

 

  
 
 

 
    2.6  

where 2 is the specific volume of the protein in units of volume/mass.  The spinodal 

region of the phase diagram can be determined by the criterion for thermodynamic 

stability given as (97) 

 
       

   
    2.7  

From the criterion given by equation 2.7, the spinodal curve from the Flory-Huggins 

model is  

   
         

          
 2.8  

The critical point of the phase diagram occurs at the maximum of the spinodal curve 

and therefore can be determined by setting the derivative of equation 2.8 with respect 

to the volume fraction 2 equal to zero.  From this procedure it can be shown that the 

critical volume fraction and  are related to the m parameter by 

             
 

    
 2.9  
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 2.10  

The critical B22 is obtained by substituting equation 2.10 into equation 2.6, which 

yields 

              
  

 

   
 
     

 
  2.11  

2.3.2 Results  

 The B22 predictions made from experimental phase behavior data using the 

Flory-Huggins model are presented in Figure 2.3.  The model predictions correctly 

capture the qualitative trend of decreasing B22 values with increasing salt 

concentration, but the results differ quantitatively from the experimental values.  The 

Flory-Huggins model predicts stronger protein-protein attractions than those reflected 

by the experimental measurements for the entire B22-phase behavior overlap region 

(0.90 M to 1.25 M).  In addition, the steep slope observed in the experimental B22 data 

is an important feature not captured by the model. 

 The reverse path in which phase behavior was predicted from 

experimental B22 data was also followed using the Flory-Huggins model.  The model 

predicts phase separation to occur at higher salt concentrations, as suggested by its 

critical point, which is located at 1.22 M ammonium sulfate (Figure 2.4).  The critical 

point represents the threshold for phase coexistence, with phase separation not 

observed at salt concentrations less than that at the critical point.  The critical point 

predicted by the model indicates that phase separation occurs only at salt 

concentrations beyond the overlap region for which both B22 and phase behavior data 

are not available.  As a result, binodal calculations could not be performed using the 
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model due to the lack of experimental B22 values at the higher salt concentrations.  

Despite this limitation, the location of the critical point suggests that the Flory-

Huggins model does not predict phase equilibrium over the same salt range as the 

experimental data, and hence does not adequately describe the phase behavior. 

 

 

Figure 2.3: Comparison of B22 predictions from the () Flory-Huggins model 

with () experimental B22 data.   
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Figure 2.4: Critical point predicted by the Flory-Huggins model compared with 

() experimental binodal data. The critical point is located at a salt 

concentration of 1.22 M.  The location of the critical point 

demonstrates that the equilibrium phase boundary is located at 

higher salt concentrations. 

 A sensitivity analysis was performed to probe the response of the B22 

predictions to small perturbations in the Flory-Huggins model parameters.  The 

parameter that was perturbed was the m parameter, which characterizes the size of the 

protein, which is directly related to the specific volume of the protein 2.  The m 

parameter was adjusted by 10% from the original value of m=559 used for 

ribonuclease A and B22 values were then recalculated from the model.  The predicted 
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B22 values for the small adjustments in m are presented in Figure 2.5.  Perturbing the m 

parameter causes a shift in the predictions; decreasing m causes the B22 predictions to 

shift to higher values whereas increasing m causes them to shift to lower values.  

However, tuning the m parameter does not lead to a significant change in the slope of 

the B22 predictions.  Thus, based on the results from the sensitivity analysis, there does 

not appear to be a value of m that would lead to B22 predictions that match the 

experimental data more convincingly.   

 

Figure 2.5: B22 predictions from Flory-Huggins model calculated from values of 

() m=503 and () m=615 compared with original predictions from 

() m= 559 and () experimental B22 values.  
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 The effect on the phase behavior predicted from B22 data using adjusted 

values of the m parameter was also investigated.  As previously mentioned, the model 

yielded a critical point that was located at higher salt concentrations than the 

experimental data suggest.  For the Flory-Huggins model, the critical point location 

depends solely on the value of the m parameter, as shown in equations 2.9 and 2.10.  

Figure 2.6 shows the effect of changing m by 10% from the original value (m=559) 

on the location of the critical point.  Increasing m shifts the critical point towards 

higher salt concentrations and lower protein concentrations whereas decreasing m 

shifts the critical point towards lower salt concentrations and higher protein 

concentrations.  Based on this trend, m should be decreased in order for phase 

separation to be predicted at the lower salt concentrations found in the experimental 

data.  The m parameter was subsequently decreased by 50% of the original value used, 

to a value of 279.  The predicted binodal curve was calculated since phase coexistence 

shifted to lower salt concentrations, for which B22 interaction data were available 

(Figure 2.7).  However, it does not appear that there is a physically reasonable value of 

m that would lead to predicted phase behavior from B22 data that matches the 

experimental results.  Consequently, extension of this analysis to lower m values was 

not performed.    
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Figure 2.6: Predicted critical point from the Flory-Huggins model for () m=503, 

( ) m=559, and () m=603 relative to the () experimental binodal 

boundary.   
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Figure 2.7: Predicted binodal boundaries from the Flory-Huggins model for () 

m=279 compared with () experimental results. 
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2.4 Haas-Drenth Model  

2.4.1 Theory 

The Haas-Drenth model is based on the free energy of mixing for hard 

spheres in a solvent and has been used to describe the protein-water phase diagram.  

The free energy per unit volume in this model is given as (91–93, 98)  

      
 

 
  

  
 

  
          

  

 
    

      
     

 

       
   2.12  

where   is the molecular volume of the protein, m represents the size of the protein 

relative to the solvent molecule, k is the Boltzmann constant, T is the absolute 

temperature,    represents the interaction between protein molecules in solution, 2 is 

the volume fraction of protein, and c is the protein volume fraction in the crystal 

(usually taken to be 0.50).  Based on the physical parameters listed in Tables 2.1 and 

2.2, a value of 559 was set for the m parameter.  The first term of equation 2.12 

represents the enthalpic contribution from protein-protein interactions.  The second 

and third terms together represent the contribution from the entropy of mixing for hard 

spheres (14, 15).  Liquid-liquid coexistence for this model is obtained from the two 

equilibrium conditions  
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The   interaction parameter is linearly related to B22 by  

     
  

  
   

  

    
  2.15  
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where MW is the molecular weight of the protein.   

 The spinodal curve can be derived by applying the condition for 

thermodynamic stability given by equation 2.7 to the free energy model in equation 

2.12.  The critical point occurs at the maximum of the spinodal curve and therefore, by 

taking the derivative of the equation for the spinodal curve, it can be shown that the 

Haas-Drenth free energy model predicts a critical volume fraction and    as 

                 2.16  

 

                         2.17  

The critical B22 is obtained by substituting equation 2.17 into equation 2.15, which 

yields 

              
       

  
 2.18  

2.4.2 Results  

 The B22 predictions made from experimental phase behavior data using the 

Haas-Drenth model are presented in Figure 2.8.  Similar to the predictions from the 

Flory-Huggins model, the Haas-Drenth model predictions correctly capture the 

qualitative trend of decreasing B22 values with increasing salt concentration.  

However, the predictions are still quantitatively different from the experimental 

values.  The model predicts values of B22 that are on the same order of magnitude as 

the data, but seems to underpredict the attractions at higher salt concentrations.  In 

addition, the steep slope observed in the experimental B22 data is an important feature 

not captured by the model.   
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Figure 2.8: Comparison of B22 predictions from the () Haas-Drenth model with 

() experimental B22 data.   

 To fully explore the prediction capability of the Haas-Drenth model, the 

reverse path in which phase behavior was predicted from experimental B22 data was 

also followed.  The predicted equilibrium binodal boundary and critical point are 

presented in Figure 2.9.  The Haas-Drenth model appears to provide a better 

description of the phase behavior than the Flory-Huggins model.  Phase separation is 

predicted to occur in the small overlap salt range of the experimental data.  The 

predicted binodal phase boundary also decays more sharply when compared with the 

experimental data.  While the phase behavior results appear to be reasonable, the 
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experimental data show that the actual critical point occurs at a lower salt 

concentration than that predicted by the model, which is at 1.02 M ammonium sulfate.  

Therefore, it would seem that the Haas-Drenth model does not predict phase 

equilibrium over the same salt range as the experimental results.  

 

Figure 2.9: Phase behavior predictions from experimental B22 values with the 

Haas-Drenth model compared with () experimental binodal data.  

The Haas-Drenth model does predict () the binodal boundary to 

exist within the overlap region.  The predicted () critical point 

occurs at an ammonium sulfate concentration of 1.02 M and a protein 

concentration of 177 mg/ml.   

 The sensitivity of the B22 predictions to perturbations in the model 

parameters was explored.  The m parameter was adjusted by 10% from the original 
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value of m=559 used for ribonuclease A and B22 values were then recalculated.  The 

predicted B22 values for the adjusted values of m are presented in Figure 2.10.  Similar 

to the Flory-Huggins model, decreasing m causes the B22 predictions to shift to higher 

values whereas increasing m causes the predictions to shift to lower values.  However, 

the B22 predictions seem to be insensitive to small adjustments in m.  In addition, 

tuning the m parameter does not lead to a change in the slope of the B22 predictions.  

Thus, there does not appear to be a value of m that would lead to B22 predictions that 

match the experimental data.   

 

Figure 2.10: B22 predictions from the Haas-Drenth model calculated from values 

of () m=503 and () m=615 compared with original predictions 

from () m= 559 and () experimental B22 values. 
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The effect on the phase behavior predicted by the Haas-Drenth model for 

adjustments in the value of the m parameter was also explored.  The location of the 

critical point of this model depends primarily on the specific volume of the protein 2, 

which in turn is directly related to the m parameter.  Increasing m shifts the critical 

point towards higher salt concentrations and lower protein concentrations, whereas 

decreasing m shifts the critical point towards lower salt concentrations and higher 

protein concentrations.  Since the original calculations did not predict phase separation 

to occur at the lower salt concentrations seen experimentally, m had to be decreased in 

order to shift the predicted boundary in the direction of lower salt concentration.  The 

m parameter was subsequently decreased by 50% of the original value used to a value 

of 279.  The resulting binodal curve from this adjustment compared with the original 

prediction is shown in Figure 2.11.  The adjustment did not shift the boundary 

significantly enough to capture the correct phase behavior over the entire salt range.  

Thus, it appears that there is no physically realistic value of m that would lead to phase 

behavior predictions consistent with the experimental data.  
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Figure 2.11: Predicted binodal boundaries from the Haas-Drenth model for () 

() m=279 compared with the original predictions from m=559 and 

the () experimental results. 
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2.5 Osmotic Virial Equation 

2.5.1 Theory 

 The osmotic virial equation was derived by McMillan and Mayer to 

describe the nonideality of dilute solutions and is given by (94) 

 
 

  
 

 

  
     

       
    2.19  

where   is the osmotic pressure, R is the molar gas constant, and c is the protein 

concentration in units of mass/volume.  Equation 2.19 is frequently truncated at the 

B22 term; however, in order for the model to predict phase separation, it must include 

at least the term in the osmotic third virial coefficient B222, which represents three-

body interactions in solution.  The governing equations for liquid-liquid coexistence 

for the osmotic virial equation can be derived as (see Appendix A) 
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 Predicting fluid phase equilibrium requires that the third virial coefficient 

B222 be specified.  B222 can be theoretically calculated using a simple model of the 

potential of mean force (PMF) for protein-protein interactions.  The hard-core 

attractive Yukawa potential was chosen as the PMF model because it has been used to 

describe colloidal interactions (6, 56).  The Yukawa potential was originally derived 

as a screened Coulombic PMF model to capture long-ranged repulsive electrostatic 

interactions (101), but it has been modified to model the short-ranged attractions that 
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dominate phase separation in protein solutions.  This Yukawa potential consists of a 

hard-sphere contribution and an attractive tail and is given by (2, 17) 

       
     

 
  

 
            

  2.22  

where r is the center-to-center intermolecular distance,  is the interaction well depth, 

 is the particle diameter, and b is a parameter that characterizes the range over which 

the attraction occurs in units of inverse length.  The potential can be rewritten in terms 

of reduced variables, in which the parameters of the potential are scaled by 

characteristic values.  If reduced variables are defined as b*=b, r*=r/, and u*=u/, 

the Yukawa potential can be expressed as  
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A plot of the Yukawa potential for different values of the range parameter b* is shown 

in Figure 2.12.   

 B222 was calculated from experimental B22 data for different values of b*.  

To determine a starting value for these calculations, b* was chosen such that the 

Yukawa potential approximately overlapped with the 140-35 Lennard-Jones potential.  

The 140-35 Lennard-Jones potential was empirically found to adequately describe 

short-ranged non-electrostatic interactions between protein molecules based on more 

extensive atomistic simulations of protein-protein interactions (78).  From this 

procedure, a value of b*=22 for the Yukawa potential was found to approximately 

overlay with the 140-35 Lennard-Jones potential (Figure 2.13).   
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Figure 2.12: Plot of the Yukawa potential in reduced units for b* values of (–) 5, 

(–) 10, (–) 20, and (–) 30. The (–) hard-sphere repulsion occurs at 

r*=1.0.  Increasing b* corresponds to a decrease in the range of 

attraction. 
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Figure 2.13: Comparison of the (–) 140-35 Lennard-Jones potential with the (–) 

Yukawa potential for b* = 22. 

 The procedure for calculating B222 from B22 involved the following steps:  

1)  The reduced interaction range parameter b* was fixed and the molecular diameter, 

 of ribonuclease A was taken to be the sphere-equivalent value of 3.1 nm (86). 

2)  The  parameter was determined from the isotropic model for the second virial 

coefficient, which is given by (42) 
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where NA is Avogadro’s number and u(r) is the Yukawa potential.  The experimental 

B22 values were used as inputs into equation 2.24 and the corresponding  values were 

calculated at each salt concentration. 

3)  Values of the  parameter from step 2) were used to calculate B222 values from the 

equation for third virial coefficients (102–104)  
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where rij is the intermolecular separation between particle i and j and f(rij) is the Mayer 

cluster function defined as (42)  
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The model for the third virial coefficient represented by equation 2.25 assumes that 

the molecules are spherically symmetric, the interactions are pairwise additive and 

multibody interactions are neglected.  To compute B222 using the Yukawa potential in 

equation 2.25, the method of Alder and Pople (103) for calculating third virial 

coefficients for potentials with hard-sphere cores was utilized.  This method was 

previously used by Graben and Present to calculate third virial coefficients for the 

Sutherland potential (104).  The computed third virial coefficients were compared 

with the results of Naresh and Singh (105), who utilized the Mayer sampling 

technique to calculate the virial coefficients for the Yukawa potential.  All calculations 

and data analysis were performed using appropriate numerical tools in Matlab (see 

Appendix B for actual code). 
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2.5.2 Results  

 The computed B222 values are presented in Figure 2.14.  Different trends 

were observed in the behavior of B222 for different b* values as a function of salt.  For 

b*=25, B222 initially increases with increasing salt concentration but then sharply 

decreases to negative values.  This trend has been observed in the behavior of third 

virial coefficients for other potential models (102).  For b*=35, B222 is positive 

throughout the salt range of interest, but the values appear to plateau around 1.25 M, 

which suggests that the values would begin to decrease at higher salt concentrations.  

When b* is further increased to a value of 45, B222 increases over the entire salt range.  

Thus, it can be inferred that as b* increases, B222 predicted from the Yukawa potential 

increases over a wider range of salt concentration. 

 The phase diagram predictions from the experimental B22 data using the 

osmotic virial equation are presented in Figure 2.15.  Phase separation was predicted 

by the model for B222 values calculated using b* values of 22 or greater in the Yukawa 

potential, which corresponds to an interaction range that is 1/22 of the particle 

diameter , or less than 1.5 Å.  It was determined from these calculations that positive 

B222 values are needed in order for the osmotic virial equation to predict phase 

separation.  Phase behavior calculations with the model were made for b* values of 

25, 35, and 45, corresponding to decreasing interaction distances.  Calculations were 

not performed for higher values of b* because such short interaction ranges were 

considered physically unrealistic.  The phase behavior predictions follow the correct 

qualitative trend of decreasing solubility with increasing salt concentrations; however, 

none of the values of b* yield phase behavior that matches the experimental data.  In 

each case, phase separation is not predicted at lower salt concentrations, for which it is 

observed experimentally.   



 44 

 

Figure 2.14: Computed B222 from the Yukawa potential for b* values of () 25, 

() 35, and () 45. 
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Figure 2.15: Phase behavior predictions from the osmotic virial equation based 

on B222 calculated from the Yukawa potential.  Predictions were 

made for b* values of () 25, () 35, and () 45 and compared with 

the () experimental binodal data. 
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 The sensitivity of the phase equilibrium predictions from the osmotic 

virial equation to experimental errors in B22 was also explored.  An approximate 

estimate of 2 10
-4

 mol ml/g
2
 was assumed for the error in the experimental B22 data.  

The original experimental B22 values were adjusted by either +2 10
-4

 mol ml/g
2
 or  

-2 10
-4

 mol ml/g
2
 and corresponding B222 values were recalculated for fixed values 

b*.  The phase diagrams were subsequently recalculated from the osmotic virial 

model.  The resulting phase diagram predictions for b* values of 35 and 45 are 

presented in Figures 2.16 and 2.17, respectively.  Decreasing the B22 values by -2 10
-4

 

mol ml/g
2
 causes the predicted equilibrium phase boundary to fall back to lower 

protein concentrations, which essentially means that the binodal curve becomes 

broader.  This trend is to be expected because decreasing B22, i.e., increasing the 

strength of attraction, would lead to the protein being less soluble in solution and 

therefore would push the equilibrium phase boundary to lower concentrations.  

However, it does not appear that the predictions are sufficiently sensitive to B22 

changes that errors in B22 would account for the discrepancy between the predicted 

binodal and the experimental phase behavior results.   
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Figure 2.16: Binodal predictions based on b*=35 compared with the () 

experimental binodal data.  Osmotic virial predictions were made 

from the experimental B22 values with an assumed error of () 

+2 10
-4

 mol ml/g
2
 and () -2 10

-4
 mol ml/g

2
.  The results are 

compared with the predictions from the () original B22 data set.   
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Figure 2.17: Binodal predictions based on b*=45 compared with the () 

experimental binodal data.  Osmotic virial predictions were made 

from the experimental B22 values with an assumed error of () 

+2 10
-4

 mol ml/g
2
 and () -2 10

-4
 mol ml/g

2
.  The results are 

compared with the predictions from the () original B22 data set.   

Because the predicted phase coexistence computed using the Yukawa 

potential did not match experiment, other potential of mean force models were 

explored to determine if they could lead to better phase behavior results.  These 

models included the square-well potential, 140-35 Lennard-Jones potential, and the 

ten Wolde-Frenkel potential.  The square-well potential was chosen because of its 

simplicity and the fact that since the interactions between proteins are very short-
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ranged, a potential of mean force model of this form may be adequate to describe the 

interaction.  The 140-35 Lennard-Jones potential (78) was used because this isotropic 

potential provides a reasonable approximation to detailed atomistic simulations of 

protein-protein interactions.  The ten Wolde-Frenkel potential was also investigated 

because it has been used to account for both direct and for solvent-induced interactions 

between globular proteins (12).  The same methodology as that for calculating B222 

from the Yukawa potential was utilized for these potential models.   

The square-well potential is the simplest attractive potential and is given 

in terms of reduced variables as 

         
      

          

         

  2.27  

where  is the parameter that characterizes the range of attraction.  B222 for the square-

well potential has the analytical form (106, 107) 
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where x is defined as  

       
 

  
    2.29  

A plot of B222 values calculated from equation 2.28 for different values of  is 

presented in Figure 2.18.  For low values of , B222 initially remains fairly flat but then 

decreases sharply as the salt concentration increases.  When  is sufficiently large, B222 

instead increases monotonically within the salt range of interest.  The results suggest 
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that the B222 values determined from higher values of  would be more suitable for 

calculating phase equilibrium since positive values of B222 are needed for the osmotic 

virial equation to predict phase separation.  

 

Figure 2.18: B222 computed from the square well potential for values of () 1.05, 

() 1.20, () 1.50, and () 2.10. 

 B222 was also computed from the 140-35 Lennard-Jones potential, which is 

given by 
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A plot of the resulting B222 values is presented in Figure 2.19.  The computed B222 

values are mostly negative over the range of salt concentration and decrease sharply at 

higher salt concentrations.   

 

Figure 2.19: B222 computed from the 140-35 Lennard-Jones potential.  

 The ten Wolde-Frenkel potential is a generalized Lennard-Jones potential 

and is given as  
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where  is the parameter that controls the range of attraction.  As  increases, the 

interaction range decreases and vice versa.  A plot of the potential for different values 

of  is shown in Figure 2.20.  An  value of 50 was determined previously to 

qualitatively reproduce the phase behavior of proteins (12), so this value was used as a 

starting point in the B222 calculations.  The  parameter was then adjusted and the 

corresponding B222 values were computed, as shown in Figure 2.21. 

 

Figure 2.20: Plot of the ten Wolde-Frenkel potential for  values of (–) 10, (–) 20, 

(–) 30, and (–) 50.  
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Figure 2.21: B222 computed from the ten Wolde-Frenkel potential for  values of 

() 10, () 20, and () 30. 

 Phase behavior calculations were subsequently performed using B222 

values calculated from the above potential of mean force models.  However, the 

resulting B222 values did not lead to phase separation with the osmotic virial equation.  

The inability to predict phase coexistence suggests that these potential models are not 

adequate for describing the interactions for ribonuclease A.  However, the problem 

may arise from the need to include higher-order virial coefficients to obtain better 

phase coexistence predictions.  



 54 

2.6 Discussion 

The discrepancies between the model predictions and experimental data 

may be the result of the simplifying assumptions inherent in the continuum models.  

The lattice representation used by Flory-Huggins theory allows the polymer chain to 

adopt any random configuration, which is unrealistic for proteins since they are known 

to have a preferred native conformation.  In addition, the interaction parameter 

assumes that each monomer interacts equally with the solvent molecules and that the 

magnitude is dependent on the number of contacts.  This assumption effectively 

represents the interactions as being isotropic since the theory does not account for 

strongly attractive regions of the polymer chain.  The Haas-Drenth model treats 

protein molecules as interacting hard spheres where with no regions that display 

strong attractions.  The framework of hard spheres also implies the assumption of 

isotropic interactions.  The inability of the osmotic virial equation predictions to match 

experimental phase behavior could be partially due to the assumptions made in 

calculating B222 from B22 data.  B222 was determined by assuming pairwise additivity 

and neglecting multibody interactions in addition to the isotropic assumption.   

Another possible reason for the inability to predict phase behavior could 

be the form of the potential of mean force used to calculate B222.  The Yukawa 

potential is a simple isotropic potential model that would not be expected to 

realistically capture the complex anisotropic interactions of proteins in solution.  The 

other potential models that were utilized to calculate B222, which included the square-

well potential, 140-35 Lennard-Jones potential, and ten Wolde-Frenkel potential, did 

not result in B222 values that led to prediction of phase equilibrium.  Furthermore, 

improvements in predicting phase behavior with the osmotic virial equation may 

require inclusion of higher-order virial coefficient terms; however, calculating such 
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virial coefficients from PMF models is a difficult task and therefore may not be an 

efficient path to follow for future work.   

Another issue that may explain the quantitative disagreement between 

prediction and experiment could be the orientation-averaged nature of B22.  While B22 

is dominated by a few attractive configurations due to the Boltzmann weighting of the 

PMF (82), the orientational averaging essentially washes out the molecular details of 

the interactions.  Because of this averaging, B22 provides an incomplete representation 

of protein-protein interactions and thus would be expected to be limited in its ability to 

quantitatively predict phase behavior.   

2.7 Conclusions 

Isotropic interactions are commonly assumed in the models used, and may 

be the reason for the limited quantitative capabilities of the models to predict protein 

phase behavior.  Therefore, based on the work that has been done with the continuum 

models, it can be concluded that the anisotropic character of protein-protein 

interactions should be taken into account to quantitatively predict protein phase 

behavior.  In order to account for anisotropy of protein interactions to predict phase 

behavior, molecular-level modeling methods will be needed.  

 One class of models that has been used to account for the anisotropy of 

colloidal particle interactions and has recently been applied to proteins are patch 

models (74).  These models have been used to simulate colloidal phase behavior and 

the results from these models have been shown to be different from those resulting 

from isotropic models.  The use of patch models to model protein-protein interactions 

is the subject of the next chapter.  



 56 

Chapter 3 

PATCH-ANTIPATCH MODEL OF PROTEINS AND THE CALCULATION 

OF B22 

3.1 Introduction 

3.1.1 Review of Patch Models 

The interactions of protein molecules are inherently anisotropic.  The 

physical basis of this anisotropy stems from the nonuniform charge distribution, 

nonspherical shape, rough local topography, and heterogeneous functionality on the 

protein surface.  Anisotropic interactions are responsible for the wide range of solution 

phenomena observed in proteins, which include the formation of clusters, gels, 

glasses, and crystal nucleation.  Incorporating this feature in modeling protein-protein 

interactions is important in the simulation of protein phase behavior.  However, direct 

molecular simulations of phase behavior using models of proteins represented in full 

atomistic detail with explicit solvent are not presently computationally tractable.  A 

more feasible approach entails utilizing a simplified coarse-grained representation of 

protein molecules that captures the essential physics of protein interactions.  One such 

approach is the use of patch models.   

Several classes of patch models have been proposed to account for the 

orientation dependence in protein-protein interactions.  One of the earliest patch 

models applied for proteins was the aeolotopic model developed by Lomakin et al. for 

describing the phase behavior of -crystallin (75).  In this model, the protein molecule 
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is represented as a sphere of which the surface includes a number of attractive spots.  

Neighboring protein molecules are said to make contact when the interactions are 

between these spots, with the interaction modeled by a square-well potential.  

Lomakin et al. found that by including this directionality in modeling the interactions, 

the predicted fluid-fluid coexistence curve broadens and more closely matches 

experimental measurements than does the isotropic square-well model.  Sear (76) later 

developed a conical site model for globular proteins in which the particle is modeled 

as a hard sphere and interactions occur between paired sites.  Using Wertheim 

perturbation theory to predict phase behavior, he found that this model was capable of 

predicting a metastable fluid-fluid phase transition.  Kern and Frenkel (73) proposed a 

patch model for colloidal particles in which the specific directional interactions 

between patches depend on the relative orientations of two interacting protein 

molecules.  Their model offered greater flexibility in the number of patches, patch 

coverage, and range of patch-patch interactions.  Liu et al. (79) later extended the Kern 

and Frenkel model by adding a background isotropic square-well attraction in addition 

to the patch interactions to simulate protein phase behavior.    

The various patch models that have been used to represent proteins have 

different characteristics, but they do share common features.  They generally represent 

each protein molecule as a hard sphere with specific attractive regions on the surface.  

In most of the models studied, each patch on one sphere can interact equally with all 

other patches on surrounding spheres.  The interactions between these regions are 

strongly attractive and short-ranged with respect to the particle size.  Most work with 

patch models has described the patch-patch attractions using the square-well potential, 

but there have been studies that have used different potential models (77, 78, 108).   
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Patch models involve a larger parameter set, which includes the number of patches, 

patch size, patch arrangement, and range and strength of patch-patch interactions.  

Thus, patch models offer greater flexibility and potential for describing the rich variety 

of dense phases and their phase boundaries observed experimentally for proteins.   

The phase behavior predicted by patch models is both qualitatively and 

quantitatively different from the behavior predicted by isotropic potential models.  

Similar to isotropic models, patch models are able predict a metastable fluid-fluid 

transition region for short-ranged interactions (73, 76, 77, 109, 110).  However, the 

number of patches is one of the key parameters that controls the phase diagram (79, 

111–115).  For patch models, it has been shown by theory and simulation (79, 109, 

113, 114) that decreasing the number of patches shifts the critical point to lower 

temperatures and densities.  When compared in reduced units, the fluid-fluid 

coexistence curve is broader and the form is in quantitative agreement with 

experimental data for lysozyme and -crystallin (73, 75, 109).  This result indicates the 

importance of patchiness in modeling phase behavior for proteins.  Patch models also 

open the possibility of describing competing crystalline phases that can be 

orientationally ordered or disordered (108, 110, 116–120).  The types of stable crystal 

structures predicted depend on the compatibility of the patch arrangement on the 

surface.  Most studies of patch models so far have focused on symmetric arrangements 

of patches, although the distribution of attractive patches on actual protein surfaces is 

certainly non-uniform.  Incorporating anisotropy through patch models has been useful 

in describing the rich phase behavior known experimentally for proteins. 

Current patch models provide a useful framework for incorporating 

anisotropy; however, they are inadequate in representing some of the unique 
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molecular details of proteins.  First, these models assume that the protein molecules 

are spheres, which is a major simplification since even globular proteins are not 

perfectly spherical. In addition, most studies of patch models have assumed symmetric 

patch distributions where each patch can interact equally with all other patches.  In 

reality, the attractive regions are non-uniformly distributed on the protein surface.  

Also, specific interactions between geometrically complementary regions are known 

to be an intrinsic feature of protein-protein interactions (121).  It is these highly 

specific attractions that play an important part in determining solution properties, such 

as the osmotic second virial coefficient B22, and that control protein crystallization 

(82).  Therefore, current patch-patch models cannot truly describe the structure of any 

real protein solid phase.  So far, there have been no studies that have explored the 

effect of non-uniform patch distribution on the structure of crystals and other dense 

phases.  Theoretical examination of protein phase behavior with patch models could 

be improved by realistically representing the structural details of protein shape, patch 

distribution, and specific interactions between geometrically complementary regions.  

One model that takes a step in this direction is the patch-antipatch model developed by 

Hloucha et al. (78), which is explored in this chapter. 

3.1.2 The “Patch-Antipatch” Model 

The patch-antipatch model explicitly accounts for highly specific 

interactions that arise from complementary regions on the protein surface.  In this 

model, the protein is represented as a sphere decorated with patches and corresponding 

antipatches on the surface (Figure 3.1).  In addition to the weak, distance-dependent 

isotropic interaction, there are strong interactions that occur only between patch-
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antipatch pairs, which reflect the specific pairwise attractions between geometrically 

complementary regions.  The interaction potential that describes this framework is  
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where Np is the number of patch-antipatch pairs and uiso  and uPAm,n are the isotropic 

and patch-antipatch contributions to the interaction potential, respectively.  Each 

unique patch m interacts only with its corresponding antipatch n.  The patch-antipatch 

interactions are modulated by the scaling function S(m,n), which is dependent on 

the relative orientations of the patch and antipatch m andn, respectively, and on the 

size of the patches p.  The virtue of this model over other patch models is that it 

explicitly represents the molecular recognition phenomenon characteristic of protein-

protein interactions.   
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Figure 3.1: A cartoon of a “patch-antipatch” model of protein molecules. The 

“patch” is colored in blue and the corresponding “antipatch” is 

colored in red.  Specific interactions occur only between unique blue 

and red colored regions, which depend on the angles of alignment m 

and n. 

3.1.3 Objective 

The objectives of this work are to 1) identify patch-antipatch pairs for 

specific model proteins and determine the physical patch-antipatch parameters and 2) 

analyze the impact of these highly attractive patch-antipatch pairs on the computation 

of B22 at the atomistic level.  Understanding the role of these patch-antipatch pairs will 

give insight into the anisotropic nature of protein-protein interactions and the influence 

it has on the solution properties of proteins, which includes phase behavior.  

The unique patch-antipatch parameters for individual proteins are 

determined using a hybrid atomistic/continuum methodology for calculating 

interaction energies between protein molecules (82, 122).  This method involves 

simulation of two protein molecules modeled in full in atomistic detail and calculating 

the energy of interactions for different angular configurations.  This method is capable 
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of capturing the effects of geometric complementarity between the surfaces of protein 

molecules.  The parameters are:  

1) The number of patch-antipatch pairs Np 

2) The location and arrangement of the patch-antipatch pairs specified by the 

translation angles ,  and rotation angles , ,  

3) The size of the patch-antipatch pairs p 

4) The strength of patch-antipatch interactions p 

These patch-antipatch parameters are determined for two model proteins that exhibit 

different solution behavior: lysozyme and chymosin B.  Lysozyme has been 

extensively studied in the literature and is known to exhibit salting-out behavior for a 

wide range of pH values (123).  Chymosin B, on the other hand, exhibits salting-in 

behavior at pH values near its pI, which is thought to be due to the anisotropy of its 

charge distribution (124).  The structural data from the PDB files and physical 

properties of these model proteins are presented in Table 3.1.   

Table 3.1: Proteins studied for patch-antipatch analysis and their physical 

properties. 

Protein PDB ID MW (g/mol) Residues pI 

Lysozyme 4LYZ 14300 129 11 

Chymosin B 1CMS 35673 323 4.6 

3.2 Theory and Methods 

3.2.1 Determining “Patch-Antipatch” Pairs 

Patch-antipatch pairs were determined from calculations of short-ranged 

attractions (primarily van der Waals interactions) between two protein molecules 
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represented in full atomistic detail.  Protein structures were obtained from the atomic 

coordinates contained in PDB files from the RCSB Protein Data Bank (www.pdb.org).  

The protein molecules were assumed to be rigid bodies in their native conformation.  

Because of the short-ranged nature of van der Waals attractions, these interactions are 

sensitive to the local geometry of the surfaces.  In fact, the level of detail used for the 

protein structure has a profound effect on the magnitude of the van der Waals 

attraction (18).  Thus, regions where there is geometric complementarity of apposing 

surfaces lead to stronger attraction.  Shape complementarity of the surfaces plays an 

important role in the “lock and key” mechanism that is intrinsic in the biological 

specificity of protein-protein interactions.  

 The attraction between two protein molecules was quantified by 

calculation of the interaction energies, which depends on the relative orientations of 

the molecules.  The interactions for a unique angular configuration were determined 

by fixing one protein molecule at the origin and translating the second molecule 

towards the first in fixed steps, with the interaction energy calculated at each step.  For 

orientations where attractions are strong, this leads to a potential with a larger well 

depth.  Thus, a “patch-antipatch” pair is characterized by angular orientations that lead 

to interaction potentials with particularly deep wells. 

3.2.2 Interaction Energies 

3.2.2.1 Short-Range Interactions 

A hybrid atomistic/continuum method was used to calculate the short-

ranged interactions (82, 122);  a brief review of the model formulation is given here.  

In this formulation, interactions between two protein molecules are calculated as a 
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sum of the pairwise interactions between the atoms of the proteins, with solvent 

effects implicitly taken into account.  The interactions between atom pairs are modeled 

based on the separation distances between the atoms.  For atom pairs separated by a 

center-to-center distance of more than 6 Å, the interactions are determined by the 

continuum Lifshitz-Hamaker formulation of van der Waals interactions given by 

    
    

  

  
  

 

   
       

    

 3.3  

where rij is the center-to-center separation distance between two volume elements dVi 

and dVj, and AH is the Hamaker constant, which for protein-water-protein interactions 

has been determined to be 3.1 kT (125).  If two atoms are represented as spheres of 

radii Ri and Rj, it can be shown from equation 3.3 that the interaction potential is (126)  

 

   
   

   

 
 

     

   
         

  
     

   
         

 
  

     
   

         
 

   
         

              

3.4  

The total free energy of interaction in the Lifshitz-Hamaker approach, WLH, is the sum 

of all atom-atom pair interactions described by equation 3.4 

          
  

  

 3.5  

 For atom pairs separated by a center-to-center distance of less than 6 Å, 

the continuum approximation for the solvent breaks down, and therefore equation 3.4 

cannot be used.  For this situation, the atomistic Lennard-Jones formulation is used to 

determine the short-range interaction 
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            3.6  

where Uij is the interaction energy, rij is the center-to-center distance between two 

atoms, ij is the size parameter, and ij is the strength of interaction parameter.  The 

total free energy of interaction in the Lennard-Jones approach, WLJ, is the sum of all 

atom-atom pair interactions described by equation 3.6 

          
  

  

 3.7  

The parameters for the Lennard-Jones model were taken from the OPLS-AA force 

field (127).  The issue with utilizing equation 3.6 to model the dispersion interaction is 

that the solvent molecules need to be included explicitly.  To take into account effects 

from solvation forces, an empirical parameter is introduced to correct the magnitude 

of the Lennard-Jones contribution.  It has been shown that a value of 0.50 for  

provides a reasonable adjustment when compared with experimental binding free 

energies for proteins (128).  The total non-electrostatic interaction Wne is the sum of 

both free energy contributions from the Lifshitz-Hamaker and Lennard-Jones 

approaches   

              3.8  

in which the Lennard-Jones contribution WLJ is scaled by the empirical factor = 

0.50. 

3.2.2.2 Electrostatic Interactions 

The electrostatic interactions are a result of the charges carried by 

titratable amino acid residues and partial charges of the atoms.  A pairwise screened 
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Coulombic potential was utilized in computing the electrostatic contribution to the 

interactions between protein molecules Welec  

         
    

     
    

  

 3.9  

where qi and qj are the charges on the two interacting atoms, 0 is the permittivity of 

free space, r is the dielectric constant of the solvent, and  is the Debye parameter 

that characterizes the length scale for screening of electrostatic interactions by the free 

ions in solution.  The Debye parameter is related to the ionic strength by 

 
   

 
 

          

      
 

3.10  

where ci is the concentration of the ion i, e is the elementary charge, and zi is the 

valence of the ion i.  Within this framework, the solvent is treated as a structureless 

continuum in which its effects are characterized solely by its dielectric constant r, 

which for water was taken to be approximately 80.   

 The partial charges carried by each atom were taken from the OPLS-AA 

force field.  The effects of pH are reflected in the distribution of charges that are 

assigned to ionizable amino acid residues.  The protonation state of these residues for 

a given pH depends on the pKa values of the titratable groups on the amino acids.  

Because the folding of the protein places ionizable residues in environments different 

from the solvent-exposed one typical of free amino acids, the local electrochemical 

environment of such residues may be altered.  These effects can alter the pKa values of 

the side chains relative to those for the corresponding free amino acid.  To address 

these effects, pKa values were determined from the web server propKa (129, 130) 
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(http://propka.ki.ku.dk).  From these pKa values and the known pH, the magnitudes of 

the charges were computed.       

 Previous methods of accounting for electrostatics involved solving the 

Poisson-Boltzmann equation using a finite-difference method or a boundary-element 

approach (131, 132).  The advantage of the method used in this work is that it provides 

a simple and computationally faster method to account for the effect of protein shape 

on the electrostatic interactions.   

3.2.3 Calculation of B22 

The calculation of B22 for proteins involves sampling angular 

configurations between two protein molecules, calculating the interaction energies 

using the models described above, and integrating over all possible configurations.  

Similar calculations using atomistic models of proteins have been made with more 

elaborate approaches (133, 134).  However, the emphasis in this work is on simulating 

two protein molecules because B22 is by definition a dilute solution property that 

characterizes the interactions between two molecules. Allowing for the relative 

orientation of two anisotropic molecules, B22 is given as (42, 80) 

 
     

 

       
                

 

 

 

 

  

 

  

 

 

 

  

 

 

    
                        

3.11  

where W is the PMF, r12 is the center-to-center distance,  and  are the spherical 

angles representing the translation of the second molecule relative to the first 

molecule, and , , are the Euler angles denoting the rotation of the second 

molecule.  The potential of mean force W represents the interactions between the 

molecules and is modeled as the sum of the contributions from the non-electrostatic 
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(van der Waals and solvation forces) Wne and electrostatic Welec contributions.  It is a 

function of both the relative orientation and center-to-center distance between two 

molecules.  Equation 3.11 can be rearranged by decomposing the radial integral and 

consolidating the angular integrals to give  

     
 

       
  

 

 
  

                
     

 

  

   

 

 3.12  

where the orientation angles are collectively represented by .  The first term in 

brackets in Equation 3.12 represents the excluded volume contribution to B22 and is 

dependent on rc, the center-to-center distance at contact.  The center-to-center distance 

at contact rc was approximated by linearly interpolating between the points in the PMF 

in which the interaction energy transitioned from negative (attraction) to positive 

(repulsion due to overlap).  The second term is the distance-dependent integral, which 

is referred to as the inner integral Iin, and is a direct measure of the energetic 

contribution to B22 due to the interactions between molecules for a specific set of 

orientation angles .  To calculate Iin for a given , the cubic splines method was 

used to interpolate the points of the PMF and then a one-dimensional Gaussian 

quadrature from the Fortran subroutine library QUADPACK was used to perform the 

integration.  By designating the distance integral as Iin, Equation 3.12 can be 

represented as 

     
 

       
  

 

 
  

   

 

       

 

  3.13  

 The key challenge is evaluating the two configuration integrals in equation 

3.13.  Previous work (82, 84, 135–137) utilized Monte Carlo integration to compute 

these integrals due to the irregular nature of the integrands.  In this approach, N 
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different orientations are randomly sampled from the global configuration space.  For 

each of these configurations, unique values rc and Iin are computed.  B22 is calculated 

as the arithmetic average of all rc and Iin computed for all N sampled configurations 

(138) 

     
 

       

 

 
   

 

 
  

  
 

 

   

        

 

   

  3.14  

where V is the hypervolume of the configuration space that is explored.  The full 

angular space for the configuration integral in equation 3.12 is 

 

      

 

 

                        
 

 

  

 

  

 

 

 

  

 

      

3.15  

The error in B22 is determined by the variance of the integrand f as  

       
 

       
  

         

 
 3.16  

The angle brackets in equation 3.16 denote the arithmetic mean of the integrand over 

the N sample points.   

 Equation 3.16 demonstrates that the rate of convergence using Monte 

Carlo integration is proportional to 1/ N.  However, the irregular, highly peaked 

nature of Iin due to the Boltzmann weighting of the PMF combined with its 

multidimensionality make the reliability of Monte Carlo integration questionable.  

Because there are highly peaked regions in the Iin landscape due to highly attractive 

patch-antipatch interactions, much of the sampling should focus on these regions since 

they make the most significant contribution to B22.  However, Monte Carlo integration 
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approximates the integral by determining the mean value of Iin and multiplying it by 

the domain of integration.  The linear averaging involved in this scheme weights the 

contributions from each sampled individual configuration equally.  Thus, the few tall 

peaks that occupy a small fraction of the global configuration space skew the linear 

average, and consequently the integrated value is overestimated.  In addition, the 

configuration space of Iin is very large due to its high dimensionality, and therefore 

there is always uncertainty in the identification of all the peaked regions.  The 

numerical concerns associated with Monte Carlo integration warrant a reexamination 

of the numerical method for computing the configuration integral, and ultimately B22.     

 To address these numerical concerns, a hybrid Monte Carlo/patch 

integration method is proposed and utilized to compute B22.  In this approach, B22 is 

broken into the sum of three contributions 

        
      

      
          

 3.17  

where    
   is the excluded volume contribution,    

   is the contribution from the 

patch-antipatch interactions, and    
          

 is the contribution from the non-patch-

antipatch interactions.  Configurations with well depths more attractive than -20 kT 

were considered to be patch-antipatch pairs and were included in    
  .  Conversely, 

configurations with less attractive wells were incorporated in    
          

. 

 The excluded volume contribution is computed using the Monte Carlo 

integration method described above 

    
   

 

       

 

 
  

 

 
  

  
 

 

   

 3.18  

The landscape of the integrand rc is expected to be relatively flat since physically the 

center-to-center distance at contact is expected to have a limited range.  Therefore, 



 71 

random sampling of the global space is sufficient to yield adequate convergence using 

Monte Carlo integration.  

 The energetic contribution to B22 from the patch-antipatch interactions 

requires a more careful and detailed integration procedure.  Suppose there are Np 

known unique patch-antipatch pairs and the central orientation for the i
th

 patch-

antipatch pair is i  = {iiiii}.  Furthermore, suppose that the boundary of the 

subregion that each patch-antipatch pair occupies is  around its respective central 

orientation, which represents the size of the patch.  The localized patch integration  

    
     

 

       
        

   

 3.19  

is then performed where the domain of local integration is PA = [i-,i+] [i-

,i+] [i-,i+] [i-,i+] [i-,i+] .  The integration over this subregion 

is computed using the globally adaptive multidimensional integration routine 

DCUHRE (139, 140).   

 Equation 3.19 represents the contribution to B22 from an individual patch-

antipatch configuration, and the integral in the equation is referred to in what follows 

as the configurational integral Iconfig.  If all patch-antipatch pairs occupy distinct, non-

overlapping subregions, then the total contribution to B22 of all Np patch-antipatch 

pairs is obtained simply by summation  

    
       

   

  

   

 3.20  

 To complete the calculation of the overall B22, the background 

contributions from the non-patch-antipatch configurations are accounted for by Monte 

Carlo integration.  However, instead of sampling the entire global configuration space, 
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the subregions that the patch-antipatch pairs occupy are excluded from the sampling.  

By excluding the configurations that fall in the peaked regions and retaining the ones 

that are low to moderately peaked, the Iin landscape is presumably flatter and therefore 

Monte Carlo integration would be suitable for calculating this contribution   

    
          

 
 

       

 

 
       

 

   

 3.21  

where T is the size of the hypervolume occupied by the non patch-antipatch 

interactions. 

3.3 Results  

3.3.1 Identification of Patch-Antipatch Pairs 

The histograms representing the distributions of the well depths for non-

electrostatic interactions from 10
4
 randomly sampled configurations for lysozyme and 

chymosin B are shown in Figure 3.2.  For each protein, most of the configurations 

sampled are weakly to moderately attractive, with the modes of the histograms 

occurring between -1 kT and -2 kT.  The linear average of the well depths for each 

protein is about -3 kT.  However, for each of the proteins, relatively few strongly 

interacting configurations were found, with the strongest configuration identified for 

chymosin B having a well minimum of -16.6 kT.  However, the question that arises is 

whether all high complementary configurations have been identified from the initial 

orientation sampling.   
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Figure 3.2: Histograms of the distribution of the short-ranged interaction well 

minima for 10
4
 randomly sampled configurations for () lysozyme 

and () chymosin B. The inset histograms for each protein are meant 

to magnify the tails of the distributions.  

The effect of more extensive orientation sampling on patch-antipatch 

identification was subsequently explored.  The number of random configurations 

sampled for each protein was increased by an order of magnitude to 10
5
 

configurations.  The histograms showing the distributions of the well depths for those 

sampled orientations are presented in Figure 3.3.  The shapes of the distributions are 

similar to those for the 10
4
 configurations initially sampled for each protein; however, 

upon closer inspection of the tails of the histograms, more highly attractive 
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configurations were identified as a result of the increase in sampling.  The results 

indicate that not all patch-antipatch pairs were identified from the initial 10
4
 random 

configurations sampled.  A further increase in the number of orientations sampled was 

therefore needed to adequately explore the configuration space and identify patch-

antipatch pairs.  A sampling of 10
6 

random configurations was performed and the 

distributions of the well depths are shown in Figure 3.4.  Once again more attractive 

angular configurations were detected, with the largest well depths being -22.3 kT for 

lysozyme and -27.1 kT for chymosin B.  Thus, the challenge in the orientation 

sampling is to be able to properly and effectively sample the tails of the well depth 

distribution.  It is interesting to note that more configurations with < -20 kT were 

identified for chymosin B than for lysozyme even though the number of 

configurations sampled was the same for both proteins.  The configurations with < -

20 kT for each protein are presented in Tables 3.5 and 3.6.  

The relative frequencies of the well depth distribution for both proteins 

appear to be independent of the degree of sampling, with the exception of the 

histogram tails (Tables 3.3 and 3.4).  The shapes of the histograms suggest that the 

well depth variable for both proteins follows approximately a log normal probability 

distribution.  The probability distribution function that describes such a variable is 

given by (141) 

      
 

     
    

         

   
        3.22  

where f is the probability of observation, x is the random variable,  is the location 

parameter, and  is the scale parameter.  The  and  parameters characterize the log 

normal distribution and are computed from the unbiased estimators (141) 
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3.23  

 Because the log normal distribution is defined only for positive values of x, the well 

depth random variable is defined as the absolute value of /kT   

    
 

  
  3.24  

The parameters for both proteins were determined from well depths computed from 

the 10
6
 sampled configurations and are shown in Table 3.2.  The fits of the 

distributions from these parameters are shown in Figure 3.5.  For both proteins, the log 

normal probability distribution provides a reasonable description of the relative 

frequencies of the well depths in the peaked region of the histograms.  However, this 

distribution does not provide a good distribution of the tails of the histograms since the 

tails do not provide a representative sample of the population of very strongly 

attractive configurations.   

Table 3.2: Log normal probability distribution function parameters for lysozyme 

and chymosin B estimated from the 10
6
 sampled configurations. 

Protein  

LYZ 0.975 0.652 

CMS 1.067 0.628 



 76 

 

 

Figure 3.3: Histograms of the distribution of the short-ranged interaction well 

minima for 10
5
 randomly sampled configurations for () lysozyme 

and () chymosin B.   
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Figure 3.4: Histograms of the distribution of the short-ranged interaction well 

minima for 10
6
 randomly sampled configurations for () lysozyme 

and () chymosin B.  The largest well depth identified was on the 

order of -20 kT. 
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Table 3.3: Absolute and relative frequencies of lysozyme well depths for different 

sampling.  

 
10

4
 Configurations 10

5
 Configurations 10

6
 Configurations 

Bin Frequency Rel. Freq. Frequency Rel. Freq. Frequency Rel. Freq. 

(0,-1) 766 7.65 10
-2

 7155 7.15 10
-2

 74269 7.43 10
-2

 

(-1,-2) 2479 2.48 10
-1

 25450 2.55 10
-1

 253823 2.54 10
-1

 

(-2,-3) 2248 2.25 10
-1

 22552 2.26 10
-1

 225918 2.26 10
-1

 

(-3,-4) 1694 1.69 10
-1

 16298 1.63 10
-1

 163073 1.63 10
-1

 

(-4,-5) 1106 1.11 10
-1

 11249 1.12 10
-1

 109809 1.10 10
-1

 

(-5,-6) 724 7.24 10
-2

 7042 7.04 10
-2

 70141 7.01 10
-2

 

(-6,-7) 415 4.15 10
-2

 4327 4.33 10
-2

 43472 4.35 10
-2

 

(-7,-8) 249 2.49 10
-2

 2543 2.54 10
-2

 25850 2.59 10
-2

 

(-8,-9) 152 1.52 10
-2

 1482 1.48 10
-2

 15077 1.51 10
-2

 

(-9,-10) 83 8.30 10
-3

 882 8.82 10
-3

 8567 8.57 10
-3

 

(-10,-11) 44 4.40 10
-3

 477 4.77 10
-3

 4665 4.67 10
-3

 

(-11,-12) 23 2.30 10
-3

 266 2.66 10
-3

 2482 2.48 10
-3

 

(-12,-13) 8 8.00 10
-4

 127 1.27 10
-3

 1360 1.36 10
-3

 

(-13,-14) 7 7.00 10
-4

 71 7.10 10
-4

 723 7.23 10
-4

 

(-14,-15) 2 2.00 10
-4

 35 3.50 10
-4

 394 3.94 10
-4

 

(-15,-16) 0 0 23 2.30 10
-4

 188 1.88 10
-4

 

(-16,-17) 0 0 9 9.00 10
-5

 88 8.80 10
-5

 

(-17,-18) 0 0 5 5.00 10
-5

 50 5.00 10
-5

 

(-18,-19) 0 0 3 3.00 10
-5

 27 2.70 10
-5

 

(-19,-20) 0 0 1 1.00 10
-5

 15 1.50 10
-5

 

(-20,-21) 0 0 2 2.00 10
-5

 5 5.00 10
-6

 

(-21,-22) 0 0 1 1.00 10
-5

 1 1.00 10
-6

 

(-22,-23) 0 0 0 0 2 2.00 10
-6

 

(-23,-24) 0 0 0 0 1 1.00 10
-6
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Table 3.4: Absolute and relative frequencies of chymosin B well depths for 

different sampling. 

 
10

4
 Configurations 10

5
 Configurations 10

6
 Configurations 

Bin Frequency Rel. Freq. Frequency Rel. Freq. Frequency Rel. Freq. 

(0,-1) 498 4.98 10
-2

 4700 4.70 10
-2

 47522 4.75 10
-2

 

(-1,-2) 2502 2.50 10
-1

 24660 2.47 10
-1

 247585 2.48 10
-1

 

(-2,-3) 2261 2.26 10
-1

 23024 2.30 10
-1

 229386 2.29 10
-1

 

(-3,-4) 1675 1.68 10
-1

 16587 1.66 10
-1

 166303 1.66 10
-1

 

(-4,-5) 1129 1.13 10
-1

 11564 1.16 10
-1

 114250 1.14 10
-1

 

(-5,-6) 787 7.87 10
-2

 7420 7.42 10
-2

 74522 7.45 10
-2

 

(-6,-7) 467 4.67 10
-2

 4717 4.72 10
-2

 47298 4.73 10
-2

 

(-7,-8) 284 2.84 10
-2

 2967 2.97 10
-2

 29520 2.95 10
-2

 

(-8,-9) 164 1.64 10
-2

 1802 1.80 10
-2

 17750 1.78 10
-2

 

(-9,-10) 92 9.20 10
-3

 1066 1.07 10
-3

 10703 1.07 10
-2

 

(-10,-11) 68 6.80 10
-3

 637 6.37 10
-3

 6611 6.61 10
-3

 

(-11,-12) 37 3.70 10
-3

 373 3.73 10
-3

 3783 3.78 10
-3

 

(-12,-13) 22 2.20 10
-3

 190 1.90 10
-3

 2077 2.08 10
-3

 

(-13,-14) 4 4.00 10
-3

 103 1.03 10
-3

 1217 1.22 10
-3

 

(-14,-15) 4 4.00 10
-4

 79 7.90 10
-4

 644 6.44 10
-4

 

(-15,-16) 3 3.00 10
-4

 42 4.20 10
-4

 381 3.81 10
-4

 

(-16,-17) 0 0 21 2.10 10
-4

 202 2.02 10
-4

 

(-17,-18) 0 0 6 6.00 10
-5

 112 1.12 10
-4

 

(-18,-19) 0 0 11 1.10 10
-4

 78 7.80 10
-5

 

(-19,-20) 0 0 2 2.00 10
-5

 21 2.10 10
-5

 

(-20,-21) 0 0 1 1.00 10
-5

  16 1.60 10
-5

 

(-21,-22) 0 0 1 1.00 10
-5

 14 1.40 10
-5

 

(-22,-23) 0 0 0 0 2 2.00 10
-6

 

(-23,-24) 0 0 1 1.00 10
-5

 1 1.00 10
-6

 

(-24,-25) 0 0 0 0 0 0 

(-25,-26) 0 0 0 0 0 0 

(-26,-27) 0 0 0 0 1 1.00 10
-6

 

(-27,-28) 0 0 0 0 1 1.00 10
-6
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Figure 3.5: Comparison of relative frequencies of () lysozyme and () chymosin 

B absolute well depths with respective fits from (–) log normal 

probability distribution function.  The fits are based on parameter 

values of  = 0.975,  = 0.652 for lysozyme and  = 1.067,  = 0.628 

for chymosin B. 
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Table 3.5: Ten most attractive angular configurations for short-range 

interactions of lysozyme identified from 10
6
 randomly sampled 

orientations.  

      kT
1 1.191 0.975 5.309 1.505 4.201 -22.28 

2 2.213 1.292 2.358 0.763 1.862 -20.70 

3 3.513 1.002 4.286 0.681 1.800 -20.05 

4 3.301 1.228 0.607 1.424 2.635 -23.32 

5 5.211 0.575 4.674 1.283 5.123 -20.62 

6 1.110 1.145 4.566 1.696 4.923 -21.09 

7 3.276 1.010 2.392 0.831 2.138 -20.18 

8 2.338 1.019 0.422 0.110 2.240 -22.36 

9 1.776 2.791 4.207 1.594 4.237 -20.94 

10 1.565 2.830 2.183 2.465 0.545 -19.98 
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Table 3.6: Thirty-five most attractive angular configurations for short-range 

interactions of chymosin B identified from 10
6
 randomly sampled 

orientations. 

#      kT

1 4.298 2.105 1.138 2.030 1.845 -23.63 

2 4.074 1.347 4.930 2.051 2.096 -26.12 

3 4.299 0.977 5.746 0.751 0.217 -20.97 

4 3.909 1.157 5.566 0.448 5.185 -20.43 

5 4.399 2.511 0.031 1.757 5.561 -20.94 

6 4.084 0.746 0.395 2.584 5.010 -20.35 

7 3.607 1.295 2.076 1.657 0.177 -21.27 

8 5.884 1.458 3.317 0.997 5.614 -20.03 

9 5.888 1.565 1.271 2.518 2.597 -20.58 

10 3.599 2.140 5.977 0.252 0.706 -21.38 

11 6.025 1.461 0.227 1.556 0.962 -20.77 

12 6.233 1.303 4.536 1.702 1.704 -20.68 

13 0.048 2.491 2.023 0.158 0.812 -20.59 

14 3.026 1.342 2.839 2.825 0.116 -27.36 

15 3.016 1.126 6.121 2.775 3.114 -22.30 

16 1.168 2.841 3.861 1.119 2.824 -20.16 

17 2.722 2.274 0.056 2.153 0.649 -21.12 

18 2.694 0.945 6.057 2.047 5.737 -20.93 

19 0.567 0.818 0.489 1.655 5.215 -21.06 

20 0.994 2.640 3.606 2.428 4.930 -21.95 

21 0.447 1.413 3.793 1.225 5.585 -21.55 

22 0.512 1.594 2.939 1.809 0.381 -21.99 

23 0.577 1.249 2.706 1.075 5.117 -21.63 

24 1.122 2.518 1.715 1.153 0.248 -21.99 

25 2.476 2.103 1.461 0.973 5.029 -20.36 

26 0.870 2.331 3.964 1.604 3.330 -21.08 

27 2.096 2.440 3.645 1.933 2.479 -21.26 

28 2.495 1.400 0.534 1.085 4.471 -20.62 

29 1.164 2.290 6.260 2.271 3.240 -20.56 

30 1.802 2.312 4.456 1.532 3.731 -20.83 

31 2.204 2.035 1.788 1.511 0.062 -20.00 

32 1.644 2.268 0.733 1.815 2.108 -21.42 

33 0.969 1.238 4.187 2.865 5.352 -21.18 

34 1.084 1.130 2.555 1.397 3.987 -22.94 

35 1.744 2.180 1.114 1.999 4.534 -21.30 
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 Another issue that arises in the random orientation sampling is whether the 

patch-antipatch pairs identified are sampled at the optimally aligned orientation that 

represents the true well depth.  To explore this, the first highly attractive configuration 

for lysozyme in Table 3.5 (entry 1) was selected as a test case.  Each individual 

orientation angle for this configuration was varied within 0.20 radian around the 

central orientation while holding the other angles fixed at their respective central 

values.  The response in the well depth to these variations is shown in Figure 3.6.  If 

the central orientation were at the true optimum alignment, the minimum in the 

interaction energy profile would occur at a variation of 0 radian.  However, Figure 3.6 

indicates that this configuration is in fact not the optimally aligned one.  A similar 

result was obtained by Hloucha et al. (see Figure 2 in reference (78)).  Thus, it can be 

inferred that the orientations that are identified in the random sampling may not, in 

general, be at their energy minima.   

 To approximate the optimal alignment that leads to the energy minimum, 

a local sampling around the central orientation for each patch-antipatch configuration 

was performed.  This local sampling entailed sampling 10
5
 random orientations 

confined within the limits of 0.10 radian around each angle of the central orientation.  

This local sampling procedure was performed for several of the patch-antipatch pairs 

for lysozyme and chymosin B and the fined-tuned orientations are shown in Tables 3.7 

and 3.8, respectively.  When compared with the initial sampled configurations, the 

differences in each of the angles are small, yet these small variations can lead to 

substantial changes in the well depths.  The most significant case is for the first patch-

antipatch pair for lysozyme, in which a configuration with a well depth on the order of 

-40 kT was identified.  Similar results can be seen for the chymosin B patch-antipatch 
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configurations in which the refinement led to a well-depth as high as -39 kT.  The 

interactions between patch-antipatch pairs for proteins are quite sensitive to small 

perturbations in orientation; a slight change in the alignment can lead to a significant 

change in the attraction.  This sensitivity indicates that the region representing a given 

patch-antipatch interaction is only a minute fraction of the global angular space and 

that these patch regions are very small.      

 

Figure 3.6: Well depth as a function of the angles for the orientation listed in 

entry 1 of Table 3.5.  The largest change occurs when is decreased 

by -0.02 radian, which indicates that the originally sampled 

orientation is not the optimum alignment. 
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Table 3.7: Refined orientations for lysozyme identified from the local sampling in 

0.10 radian around the central orientation in Table 3.4. The resulting 

angular configurations are significantly more attractive than the 

originally sampled orientations. 

#      kT Initial kT 

1 1.184 0.907 5.274 1.540 4.158 -40.48 -22.28 

2 2.203 1.273 2.269 0.747 1.897 -24.30 -20.70 

3 3.478 1.050 4.245 0.773 1.856 -26.34 -20.05 

4 3.244 1.190 0.612 1.369 2.537 -29.06 -23.32 

5 5.260 0.597 4.640 1.189 5.123 -25.05 -20.62 

6 1.085 1.125 4.504 1.754 4.905 -24.97 -21.09 

7 3.244 0.963 2.332 0.919 2.235 -26.04 -20.18 

8 2.355 0.987 0.505 0.134 2.163 -22.88 -22.36 

9 1.808 2.754 4.295 1.621 4.184 -24.76 -20.94 

10 1.533 2.818 2.122 2.469 0.608 -24.60 -19.98 
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Table 3.8: Refined orientations for patch-antipatch pairs for chymosin B 

identified from the local sampling in 0.10 radian around the central 

orientation in Table 3.5. 

#      kT Initial kT 

1 4.322 2.148 1.212 2.105 1.919 -26.88 -23.63 

2 4.028 1.379 4.833 2.064 2.040 -39.11 -26.12 

3 4.311 0.940 5.784 0.708 0.192 -26.90 -20.97 

4 3.921 1.144 5.648 0.446 5.110 -25.38 -20.43 

5 4.480 2.548 0.106 1.806 5.660 -25.22 -20.94 

6 4.110 0.764 0.494 2.622 5.109 -24.98 -20.35 

7 3.555 1.243 1.987 1.715 0.193 -25.83 -21.27 

8 5.853 1.452 3.268 1.022 5.663 -28.84 -20.03 

9 5.930 1.563 1.355 2.525 2.589 -22.89 -20.58 

10 3.593 2.122 5.890 0.179 0.769 -24.69 -21.38 

11 5.994 1.448 0.177 1.526 0.999 -25.66 -20.77 

12 6.214 1.347 4.517 1.614 1.754 -27.06 -20.68 

13 0.036 2.515 1.924 0.195 0.861 -25.32 -20.59 

14 2.972 1.340 2.831 2.771 0.208 -35.80 -27.36 

15 2.954 1.126 6.109 2.861 3.213 -33.06 -22.30 

16 1.267 2.860 3.836 1.106 2.823 -24.05 -20.16 

17 2.691 2.312 -0.007 2.146 0.650 -25.77 -21.12 

18 2.756 0.896 6.132 2.146 5.686 -25.16 -20.93 

19 0.580 0.805 0.538 1.705 5.241 -23.76 -21.06 

20 0.950 2.620 3.512 2.428 4.868 -28.02 -21.95 

21 0.453 1.426 3.781 1.324 5.642 -28.02 -21.55 

22 0.483 1.567 2.881 1.763 0.360 -26.92 -21.99 

23 0.536 1.249 2.618 1.087 5.129 -27.48 -21.63 

24 1.073 2.518 1.677 1.091 0.186 -27.09 -21.99 

25 2.451 2.091 1.411 0.955 5.128 -22.51 -20.36 

26 0.872 2.310 3.968 1.562 3.338 -28.43 -21.08 

27 2.090 2.402 3.629 1.895 2.504 -28.19 -21.26 

28 2.495 1.432 0.521 1.022 4.446 -23.66 -20.62 

29 1.065 2.278 6.198 2.259 3.325 -23.99 -20.56 

30 1.727 2.350 4.358 1.544 3.830 -25.02 -20.83 

31 2.230 1.979 1.713 1.610 -0.037 -24.60 -20.00 

32 1.743 2.293 0.832 1.828 2.027 -27.89 -21.42 

33 0.918 1.250 4.125 2.766 5.301 -25.59 -21.18 

34 1.097 1.074 2.557 1.297 3.937 -27.08 -22.94 

35 1.744 2.137 1.120 2.057 4.596 -38.82 -21.30 
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3.3.2 Calculation of B22 

The excluded volume contribution to B22 was first calculated using the 

Monte Carlo integration approach, where the global configuration space was randomly 

sampled and the center-to-center contact distance was calculated for each 

configuration sampled.  The final numerical values are presented and compared with 

the theoretical hard sphere B22 values based on the equivalent sphere diameter of each 

protein (Table 3.9).  The values are comparable in magnitude, but the value is higher 

when the protein is modeled atomistically than when it is represented as a hard sphere.  

This result is consistent with the findings of Neal and Lenhoff (142), who 

demonstrated that the magnitude of the excluded volume contribution depends on the 

level of structural detail of the protein considered.  They found that when protein 

molecules are resolved atomistically, the excluded volume contribution can be as 

much as 40% greater than the result obtained when the protein is modeled as an ideal 

sphere.  The disparity in the excluded volume B22 predicted by the two representations 

is attributed to the roughness of the protein surface.  In the atomistic case, groups of 

atoms that protrude on the surface limit the closeness of approach when two protein 

molecules come in contact.  Consequently, there is a greater effective center-to-center 

distance leading to a greater excluded volume contribution to B22 than for the ideal 

sphere representation. 

The contributions from the molecular interactions were subsequently 

included in the B22 calculations.  As a starting point, only the short-ranged non-

electrostatic interactions were considered in the calculation.  The B22 values based on 

the excluded volume and van der Waals interactions calculated using Monte Carlo 

integration are presented in Table 3.9.  There are two symptoms of computational 

challenges evident in these results.  First, the B22 values computed for each protein do 
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not appear to converge even after 10
6
 configurations are sampled and second, the final 

computed values are orders of magnitude greater than typical experimentally 

measured values.  To understand why the magnitudes of the computed B22 value are so 

large, the histograms of the computed Iin values for the 10
6
 configurations sampled for 

lysozyme and chymosin B are shown in Figures 3.7 and 3.8, respectively. The range 

of Iin computed spans many orders of magnitude, from as low as 1 10
1
 Å

3
 to as high 

as 1 10
14

 Å
3
.  This wide range is due to the nature of the integrand in Iin; 

configurations with large well depths are magnified as a result of the Boltzmann 

weighting of the PMF.  Because the Monte Carlo integration method takes the linear 

average of all Iin values, the few configurations that have extremely large Iin values 

contribute disproportionately to the mean value of Iin and consequently the integral is 

overestimated.  Thus, the linear averaging used in Monte Carlo integration cannot 

provide an accurate numerical estimate of the configurational integral to compute B22.   

Table 3.9:  B22 calculated from 10
6
 randomly sampled configurations based on 

excluded volume contribution and both excluded volume and short-

range attraction. The  value is the sphere equivalent diameter 

determined from the empirical correlation of Neal and Lenhoff (142). 

The error in the Monte Carlo estimate is calculated from equation 

3.16.  

Protein 

   
       

   Total B22 

( 10
4
 ml mol/g

2
) (Å) ( 10

4 
ml mol/g

2
) (ml mol/g

2
) 

LYZ 2.997 ± 0.001 32.0 2.02 -0.24 ± 0.07 

CMS 1.3990 ± 0.0005 42.9 0.783  -0.95 ± 0.59 
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Figure 3.7: Histogram of the computed Iin for the 10
6
 randomly sampled 

configurations for lysozyme.  The inset shows an enlarged view of the 

high-Iin tail of the distribution.  
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Figure 3.8: Histogram of the computed Iin for the 10
6
 randomly sampled 

configurations for chymosin B. The inset shows an enlarged view of 

the high-Iin tail of the distribution. 
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 To address the numerical issues associated with Monte Carlo integration, a 

hybrid Monte Carlo/patch integration method was utilized to compute B22.  Different 

configurations of varying strengths for each protein, which included the highly 

attractive patch-antipatch pairs, were selected and integrated within the limits of  

radians around the central orientations using the DCUHRE integration routine.  The  

parameter directly determines the size of the subregion over which the interaction 

energy is strongly attractive before it decays, and therefore represents the patch size.  

However, increasing  enlarges the hypervolume of the integration and consequently 

Iconfig increases monotonically.  This can be seen in Figure 3.9 in which Iconfig is 

computed using the integration routine for the fourth lysozyme patch-antipatch pair 

listed in Table 3.7.  Thus, the size of a patch-antipatch pair cannot be determined 

directly from the dependence of Iconfig on .  To estimate an appropriate value for , 

Iconfig was normalized by the hypervolume of integration v0 and the result was plotted 

against .  The integration hypervolume v0 is directly related to  through equation 

3.15 with the appropriate integration limits.  This normalization filters the effect of the 

hypervolume size in the integration and gives some indication of how the rate of 

growth of the integral decreases due to the decay of the interaction potential.  Figure 

3.10 shows that at approximately  = 0.10 radian the normalized integral decreases by 

a factor of about 10 from its highest value.  This significant decay would indicate that 

the effects of the attraction on Iconfig dissipates and therefore = 0.10 radian 

characterizes the patch size for this particular orientation.  Although the patch size for 

each patch-antipatch pair may be different,  = 0.10 radian was chosen as a universal 

value for all integration of patch-antipatch pairs in order to simplify further 

computations. 
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Figure 3.9: Iconfig computed from the DCUHRE routine as a function of  for 

lysozyme patch-antipatch pair 4 in Table 3.7.  Iconfig increases 

monotonically as  increases due to the increase in the hypervolume 

of the integration. 
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Figure 3.10: Iconfig normalized by the volume of integration v0 as a function of  

for lysozyme patch-antipatch pair 4 in Table 3.7.  The normalized 

integral decreases as  is increased. 

 The localized integration was performed for the cases where only short-

range interactions were considered and where both short-range and electrostatic 

interactions were included.  The local integration represents the contribution of these 

individual patch-antipatch regions to B22.  The results of the integration, in units of Å3, 

are plotted as a function of the total well depth (short-range and electrostatics) of the 

configuration with the lowest energy minimum for each patch-antipatch pair in Figure 

3.11 for lysozyme and in Figure 3.12 for chymosin B.  The results were fitted using an 
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exponential regression model.  There is some scatter in the results, which is to be 

expected since there is variability in the shapes of the energy profiles and uncertainty 

in the energy minima, and not all patch-antipatch interactions may be confined 

completely within 0.10 radians.  Despite this scatter, there is a consistent, well-

behaved relationship in which the computed localized configurational integral Iconfig 

increases as the strength of interaction increases. The correlations for both proteins are 

similar; both regressions have comparable preexponential factors, but the regressed fit 

for chymosin B possesses a less negative exponent.  The trends demonstrate that 

configurations with stronger attractions make a greater contribution to B22.  

Electrostatics can tune a configuration’s contribution to B22 by either reducing its 

attraction through addition of repulsion or enhancing its attraction.  Repulsive 

electrostatics result in decreasing Iconfig whereas attractive electrostatics corresponds to 

increasing Iconfig.  By knowing a patch-antipatch pair’s well depth, Figures 3.11 and 

3.12 can be used to empirically estimate its contribution to B22 without the need for 

performing a detailed integration using the DCUHRE routine. 
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Figure 3.11: Plot of the localized configuration integration for lysozyme as a 

function of the total well depth.  Iconfig was computed based on (+) 

short-range interactions alone and () short-range interactions with 

electrostatics.  Integration was performed within the limits of 0.10 

radian around the central orientation of each patch-antipatch 

configuration using the DCUHRE routine. The regressed curve is 

F(x)=0.0200 exp(-0.805x), R
2
=0.9941. 
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Figure 3.12: Plot of the localized configuration integration for chymosin B as a 

function of the total well depth. Iconfig was computed based on ( ) 

short-range interactions alone and () short-range interactions with 

electrostatics. Integration was performed within the limits of 0.10 

radian around the central orientation of the configurations. The 

regressed curve is F(x)=0.0195 exp(-0.770x), R
2
=0.9806. 

 The B22 contributions for the individual lysozyme pairs are presented in 

Table 3.10, which include contributions resulting from the short-range interactions 

alone and from both short-range and electrostatic interactions.  The results show that 

inclusion of electrostatics significantly reduces the attractions for most of the patch-

antipatch pairs, as indicated by the increased contribution to B22 as the ionic strength 

increases.  This indicates the electrostatic interactions in the configurations 
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represented by the patch-antipatch pairs for lysozyme are predominantly repulsive.  

However, two of the ten patch-antipatch pairs with  < -20 kT (entries 1 and 8 in Table 

3.10) appear to have an increased B22 contribution when electrostatics are 

incorporated, which suggests that this particular pair possesses attractive electrostatics.  

It is interesting to note that the configuration in entry 1 of Table 3.10, which is the -40 

kT patch identified after local sampling refinement, has a contribution that is orders of 

magnitude greater than those of the other pairs.  The contribution by this lone patch-

antipatch pair would therefore overwhelm the contributions from the other patches if 

they were summed together. 

 The trends in the B22 contributions from the chymosin B patch-antipatch 

pairs appear to show different behavior.  Although some of the pairs exhibit repulsive 

electrostatics, some of the configurations show the opposite trend.  In fact, almost one-

third of the patch-antipatch pairs with  < -20 kT were found to have increased B22 

contributions when electrostatics are incorporated.  Thus, chymosin B was not only 

found to have a larger number of strongly attractive patch-antipatch pairs than 

lysozyme, but also a greater percentage of the attractive patch-antipatch pairs possess 

attractive electrostatics.  For a few configurations, the differences are within the errors 

of integration and may be statistically insignificant, but the results indicate that in 

general there are smaller repulsive electrostatic effects for chymosin B than for 

lysozyme.  Given that the local integration for each pair occurs over a very small 

portion of the global configuration space, the B22 contributions from these patch-

antipatch pairs are quite remarkable.   
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Table 3.10: Contributions to B22 from individual patch-antipatch pairs for 

lysozyme based on short-range non-electrostatic interaction energies 

alone and with electrostatics at pH 7. The contributions were 

determined by integrating within ±0.10 radian around the central 

orientation using the DCUHRE integration routine.  

Non-electrostatics pH 7, 0.10M pH 7, 0.20M pH 7, 0.30M 

/kT 

   
    

(mol ml/g
2
) /kT 

   
    

(mol ml/g
2
) /kT 

   
    

(mol ml/g
2
) /kT 

   
    

(mol ml/g
2
) 

-40.48 -4.37 10
1
 -40.82 -8.00 10

1
 -41.27 -1.06 10

2
 -41.31 -1.13 10

2
 

-24.31 -5.54 10
-5

 -22.00 -8.51 10
-6

 -22.71 -1.60 10
-5

 -23.01 -2.10 10
-5

 

-26.34 -6.06 10
-4

 -22.62 -1.48 10
-5

 -23.69 -4.03 10
-5

 -24.21 -6.65 10
-5

 

-29.77 -2.01 10
-2

 -25.89 -1.12 10
-3

 -26.57 -2.17 10
-3

 -27.05 -3.35 10
-3

 

-25.05 -2.09 10
-4

 -24.77 -9.72 10
-5

 -25.13 -2.01 10
-4

 -25.21 -2.13 10
-4

 

-24.97 -9.14 10
-5

 -23.45 -2.58 10
-5

 -23.95 -4.45 10
-5

 -24.12 -5.32 10
-5

 

-26.05 -7.08 10
-4

 -22.86 -2.92 10
-5

 -23.70 -6.90 10
-5

 -24.14 -1.05 10
-4

 

-22.36 -3.02 10
-5

 -23.39 -5.02 10
-5

 -23.82 -6.68 10
-5

 -23.85 -6.90 10
-5

 

-24.76 -2.69 10
-4

 -23.05 -5.60 10
-5

 -23.82 -1.11 10
-4

 -24.11 -1.47 10
-4

 

-24.60 -3.69 10
-4

 -20.66 -7.46 10
-6

 -21.93 -2.45 10
-5

 -22.55 -4.40 10
-5

 

-19.09 -1.43 10
-6

 -17.70 -1.19 10
-6

 -18.09 -1.58 10
-6

 -18.16 -1.74 10
-6

 

-18.65 -1.17 10
-6

 -16.87 -2.12 10
-7

 -17.73 -4.24 10
-7

 -18.02 -5.67 10
-7

 

-15.77 -1.24 10
-7

 -16.27 -1.85 10
-7

 -16.33 -2.26 10
-7

 -16.39 -2.30 10
-7

 

-12.91 -1.62 10
-8

 -11.69 -5.02 10
-9

 -12.24 -8.39 10
-9

 -12.46 -1.03 10
-8

 

-11.32 -1.84 10
-9

 -10.46 -1.00 10
-9

 -10.98 -1.54 10
-9

  -11.16 -1.74 10
-9

  

-9.37 -7.58 10
-10

 -9.09 -5.72 10
-10

 -9.39 -7.64 10
-10

 -9.46 -8.16 10
-10 

-7.72 -3.30 10
-10

 -5.92 -4.95 10
-11

 -6.54 -1.01 10
-10

 -6.84 -1.35 10
-11
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Table 3.11: B22 contributions from individual patch-antipatch pairs for chymosin 

B based on short-range non-electrostatic interaction energies alone 

and with electrostatic interactions at pH 5.  The contributions were 

determined by integrating within 0.10 radian around the central 

orientation using the DCUHRE integration routine.  

Non-electrostatics pH 5, 0.10M pH 5, 0.30M pH 5, 0.40M 

/kT 

   
    

(mol ml/g
2
) /kT 

   
    

(mol ml/g
2
) /kT 

   
    

(mol ml/g
2
) /kT 

   
    

(mol ml/g
2
) 

-26.88 -2.10 10
-5

 -27.66 -5.65 10
-5

 -27.12 -3.11 10
-5

 -27.00 -2.93 10
-5

 

-39.11 -1.08 10
0
 -37.43 -2.67 10

-1
 -37.87 -4.17 10

-1
 -37.98 -4.57 10

-1
 

-26.90 -2.97 10
-5

 -25.74 -1.23 10
-5

 -25.87 -1.39 10
-5

 -25.94 -1.49 10
-5

 

-25.38 -1.05 10
-5

 -24.41 -4.56 10
-6

 -24.85 -6.87 10
-6

 -24.92 -7.33 10
-6

 

-25.22 -1.99 10
-5

 -23.83 -5.72 10
-6

 -24.64 -8.89 10
-6

 -24.68 -1.18 10
-5

 

-24.89 -1.04 10
-5

 -25.15 -1.63 10
-5

 -25.14 -1.68 10
-5

 -25.09 -1.49 10
-5

 

-25.83 -2.80 10
-5

 -24.56 -1.03 10
-5

 -25.15 -1.63 10
-5

 -25.23 -1.75 10
-5

 

-28.84 -3.06 10
-4

 -28.71 -9.31 10
-5

 -28.80 -1.14 10
-4

 -28.83 -1.21 10
-4

 

-22.89 -2.71 10
-6

 -23.30 -3.77 10
-6

 -23.19 -3.45 10
-6

 -23.19 -3.45 10
-6

 

-24.69 -1.49 10
-5

 -22.58 -2.57 10
-6

 -23.76 -8.13 10
-6

 -23.94 -9.64 10
-6

 

-25.66 -9.85 10
-6

 -25.78 -1.19 10
-5

 -25.84 -1.21 10
-5

 -25.80 -1.17 10
-5

 

-27.06 -3.58 10
-5

 -23.60 -4.77 10
-6

 -25.27 -1.79 10
-5

 -25.59 -2.32 10
-5

 

-25.32 -1.86 10
-5

 -25.27 -1.79 10
-5

 -25.53 -2.20 10
-5

 -25.54 -2.23 10
-5

 

-35.50 -1.66 10
-1

 -35.73 -2.06 10
-1

 -35.72 -2.03 10
-1

 -35.68 -1.93 10
-1

 

-33.06 -1.02 10
-2

 -32.66 -7.20 10
-3

 -32.83 -8.67 10
-3

 -32.84 -8.84 10
-3

 

-24.05 -1.63 10
-5

 -23.40 -1.14 10
-5

 -24.02 -1.65 10
-5

 -24.05 -1.69 10
-5

 

-25.77 -1.35 10
-5

 -25.96 -2.29 10
-5

 -25.74 -1.84 10
-5

 -25.65 -1.72 10
-5

 

-25.16 -1.54 10
-5

 -24.65 -1.48 10
-5

 -24.72 -1.46 10
-5

 -24.71 -1.43 10
-5

 

-23.76 -6.76 10
-6

 -22.68 -2.30 10
-6

 -23.42 -4.11 10
-6

 -23.49 -4.38 10
-6

 

-28.02 -2.40 10
-5

 -25.70 -3.67 10
-6

 -26.99 -7.07 10
-5

 -27.20 -1.59 10
-5

 

-28.02 -9.45 10
-5

 -26.44 -2.24 10
-5

 -27.22 -4.96 10
-5

 -27.32 -5.43 10
-5

 

-27.12 -7.85 10
-5

 -25.34 -1.91 10
-5

 -26.46 -4.62 10
-5

 -26.65 -5.39 10
-5

 

-27.48 -1.04 10
-4

 -26.47 -2.07 10
-5

 -27.37 -9.54 10
-5

 -27.45 -1.02 10
-4

 

-27.09 -5.72 10
-5

 -28.20 -1.33 10
-4

 -27.94 -1.05 10
-4

 -27.83 -9.44 10
-5

 

-22.51 -5.98 10
-6

 -21.88 -3.98 10
-6

 -22.17 -5.17 10
-6

 -22.21 -5.40 10
-6

 

-28.43 -1.04 10
-4

 -27.31 -5.51 10
-5

 -27.73 -8.20 10
-5

 -27.79 -8.60 10
-5

 

-28.19 -2.44 10
-4

 -30.39 -1.05 10
-3

 -30.08 -8.20 10
-4

 -29.89 -7.09 10
-4

 

-23.66 -5.84 10
-6

 -21.99 -1.71 10
-6

 -22.67 -3.29 10
-6

 -22.81 -3.73 10
-6

 

-23.99 -3.46 10
-6

 -24.60 -1.05 10
-5

 -24.30 -8.28 10
-6

 -24.22 -7.79 10
-6

 

-25.02 -2.44 10
-5

 -23.55 -5.71 10
-6

 -24.22 -1.15 10
-5

 -24.35 -1.31 10
-5

 

-24.60 -9.13 10
-6

 -24.72 -7.61 10
-6

 -24.75 -7.72 10
-6

 -24.73 -7.70 10
-6
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-27.89 -1.36 10
-4

 -28.63 -3.81 10
-4

 -28.16 -2.27 10
-4

 -28.04 -2.01 10
-4

 

-25.59 -5.35 10
-5

 -23.72 -8.40 10
-6

 -24.32 -1.50 10
-5

 -24.41 -1.72 10
-5

 

-27.15 -8.03 10
-5

 -26.21 -3.81 10
-5

 -26.52 -4.84 10
-5

 -26.54 -4.94 10
-5

 

-38.82 -3.58 10
-1

 -37.64 -1.19 10
-1

 -38.08 -1.86 10
-1

 -38.19 -2.07 10
-1

 

-19.34 -3.31 10
-7

 -18.35 -1.59 10
-7

 -18.78 -2.50 10
-7

 -18.83 -2.61 10
-7

 

-16.16 -9.54 10
-9

 -16.71 -1.09 10
-8

 -16.70 -1.07 10
-8

 -16.73 -1.11 10
-8

 

-14.78 -2.40 10
-9

 -14.32 -1.78 10
-9

 -14.54 -2.29 10
-9

 -14.56 -2.24 10
-9

 

-13.06 -1.54 10
-9

 -12.76 -1.13 10
-9

 -12.88 -1.27 10
-9

 -12.91 -1.33 10
-9

 

-10.33 -2.69 10
-10

 -9.88 -2.56 10
-10

 -9.93 -2.58 10
-10

 -9.98 -2.62 10
-10
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 The background contribution from the non-patch-antipatch configurations 

was accounted for using Monte Carlo integration.  The subregions occupied by the 

patch-antipatch pairs with  < -20 kT were excluded in the orientation sampling. The 

calculated background contributions to B22 are shown in Table 3.12 and 3.13.  The 

results show that that the two proteins have differing background B22 trends.  The 

background B22 is reduced when electrostatics are incorporated for lysozyme, but this 

contribution increases as the electrostatics are screened.  On the other hand, the 

background B22 for chymosin B is enhanced when electrostatics are included.  Typical 

experimentally measured B22 values are on the order of 10
-5

 to 10
-3

 mol ml/g
2
.  

However, the magnitude of the background contribution is still beyond experimentally 

measured values despite the exclusion of the strongly attractive patch-antipatch 

configurations.  This is due to the cumulative contribution from the configurations that 

display moderately attractive well depths.  These configurations still 

disproportionately impact the mean value Iin in the Monte Carlo averaging.  It suggests 

that Monte Carlo integration may not be suitable even for these moderate 

configurations and that the same detailed integration procedure used for the patch-

antipatch pairs is needed.  To obtain a better numerical estimate, the background 

contribution to B22 was broken down into two components: weak interactions and 

moderate interactions.  
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Table 3.12: Background B22 for lysozyme based on short-range non-electrostatic 

interactions alone and with addition of electrostatics at pH 7.  Patch-

antipatch pairs with  < -20 kT were excluded in the Monte Carlo 

integration. 

 

   
          

  

 

(mol ml/g
2
) 

Non-electrostatics -0.10 ± 0.01 

0.10M -0.046 ± 0.003 

0.20M -0.060 ± 0.003 

0.30M -0.078 ± 0.003 

Table 3.13: Background B22 for chymosin B based on short-range interactions 

alone and with addition of electrostatics at pH 5. Patch-antipatch 

pairs with  < -20 kT were excluded in the Monte Carlo integration. 

 

   
          

  

 

(mol ml/g
2
) 

Non-electrostatics -0.055 ± 0.003 

0.10M -0.070 ± 0.005 

0.30M -0.062 ± 0.004 

0.40M -0.061 ± 0.004 

 The configurations that are considered to display weak interactions were 

identified by specifying a cutoff well depth cutoff and determining the contributions to 

B22 from the configurations with  > cutoff by the Monte Carlo method.  To estimate 

cutoff, a useful benchmark is the unweighted average well depth from all the sampled 

10
6
 configurations, i.e. ≈ -3 kT, which corresponds to Iin 3.9×10

4 
Å

3
.  This value 

can be seen as the baseline in the Iin landscape around which most of the peaks from 

the weakly attractive configurations are scattered.  Monte Carlo integration estimates 

an integral I by the product of the mean value of a function f and the region of 

integration v 

        3.25  
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For a function that is characterized as a peak within a domain, the mean value is the 

average height that is located somewhere between the apex and base of the peak.  The 

Iin landscape can be viewed as being composed of discrete peaks in a 

multidimensional domain, with each peak having its own mean value Iin .  

Configurations with stronger attractions will have taller peaks in the Iin landscape and 

therefore will have a greater Iin .  Because there are peaks that disproportionately 

influence the overall mean value of the Iin function, those peaks should be excluded in 

the Monte Carlo averaging.  Furthermore, because the baseline Iin defines the 

boundary between weak and moderate configurations in the Iin landscape, it is 

postulated that configurations with Iin that is equal to or less than the baseline Iin are 

appropriate for inclusion in the Monte Carlo integration.   

 From the general expression in equation 3.25, Iin for a configuration is 

determined by scaling its local integrated peak Iconfig by the subdomain of integration 

v0 

       
       

  
 3.26  

For = 0.10 radian, the average hypervolume occupied by a patch-antipatch pair is v0 

= 1.97 10
-4

.  Furthermore, the empirical correlations of Iconfig from Figures 3.11 and 

3.12 provide the functional relationship between Iconfig and /kT for both proteins 

                          
 

  
                3.27  

  

                          
 

  
                  3.28  

Substituting equations 3.27 and 3.28 into equation 3.26 gives the relationship between 

a configuration’s mean value in the Iin landscape and /kT for a configuration.  Using 
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the postulated condition that the weak configurations are ones that have Iin   

3.9 10
4
 Å

3
, it was determined that  -7 kT satisfies this criterion.  Therefore, it was 

concluded that configurations that have  > cutoff =-7 kT were appropriate for inclusion 

in the Monte Carlo averaging. 

 The contribution from configurations with stronger interaction < cutoff  = 

-7 kT had to be determined by the patch integration method.  However, there is a large 

number of such configurations and performing integration for individual patches 

would be computationally expensive.  Rather than perform a detailed local integration 

for each orientation, therefore, this explicit approach was reserved for the strongest 

patch-antipatch pairs with < -20 kT (Tables 3.10 and 3.11) and the remaining 

integrals with moderate interactions were evaluated using the empirical correlations 

for Iconfig for both proteins from equations 3.27 and 3.28.  The individual contributions 

were summed together, achieving a significant savings in computing time.   

 The number of moderate configurations was determined using the 

observation that the relative frequency of the well depths as a function of  is 

relatively consistent even as the degree of sampling increases (Figures 3.2 to 3.4).  It 

was postulated that the relative frequency of the well depth distribution f provides an 

estimate of the fraction of the configuration space that is occupied by configurations in 

a particular range of well depths dThereforethe size of the hypervolume V 

occupied by configurations with well depth can be represented as 

           3.29  

such that the total hypervolume is conserved 

            

  

 

 3.30  
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where V is the total hypervolume of the global space equal to 32
3
.  As mentioned 

previously, the relative frequency of /kT for both proteins is adequately described by 

a log normal probability distribution function (Figure 3.5).  By knowing the 

hypervolume occupied by configurations in a particular range of  and the 

hypervolume of a single patch (which is set by the  parameter), the absolute number 

of moderate configurations N in this range can be approximated by 

    
  

  
 3.31  

The total B22 contribution from the moderate configurations that have < cutoff is  

    
     

 

       
   

         

         
 
 3.32  

    
          

 calculated using the procedure outlined above at different 

ionic strengths for lysozyme at pH 7 and chymosin B at pH 5 is shown in Table 3.14 

and Table 3.15, respectively.  For lysozyme,    
          

 decreases as the ionic 

strength increases.  The background B22 contributions from the weak and moderate 

configurations are similar when only short-range interactions are considered.  

However, the addition of electrostatics leads to decreased contributions from both 

components and the overall background contribution decreases.  At each level of ionic 

strength, configurations with weak interactions actually contribute more than the 

moderate interactions.  In other words, the moderate configurations display more 

repulsive electrostatics and these electrostatic effects have slightly more impact on B22 

for lysozyme.  

     
          

for chymosin B exhibits different behavior.  The addition of 

electrostatics increases the overall attraction.  Although the weak contribution shows a 

trend of increasing attraction as the ionic strength increases, the magnitude of the 
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moderate contribution increases when electrostatics are incorporated, indicating that it 

is the moderately attractive configurations that are most responsible for this effect.  

The net result is increased attraction due to offsetting the effect of repulsion by the 

moderate configurations with attractive electrostatics.     

Table 3.14: Background B22 for lysozyme based on short-range non-electrostatics 

interactions alone and with addition of electrostatics at pH 7. Patch-

antipatch pairs with  < -7 kT were excluded in the Monte Carlo 

integration. 

 

   
          

 ( 10
4
mol ml/g

2
) 

 
Weak Moderate Total 

Non-electrostatics -10.3 -10.4 -20.7 

0.10M -5.62 -5.45 -11.1 

0.20M -7.76 -6.99 -14.8 

0.30M -8.66 -8.58 -17.2 

Table 3.15: Background B22 for chymosin B based on short-range non-

electrostatics interactions alone and with addition of electrostatics at 

pH 5.  Patch-antipatch pairs with  < -7 kT were excluded in the 

Monte Carlo integration. 

 

   
          

 ( 10
4
mol ml/g

2
) 

  Weak Moderate Total 

Non-electrostatics -3.66 -1.73 -5.39 

0.10M -3.58 -2.04 -5.62 

0.30M -3.65 -1.98 -5.63 

0.40M -3.65 -1.76 -5.41 

3.4 Discussion 

The identification of patch-antipatch pairs for proteins is strongly 

dependent on the density of orientation sampling of the two protein molecules.  
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However, the degree of sampling is limited by the available computational power.   

Present computing speeds readily allow sampling of order 10
6
 angular configurations 

to be performed for identifying patch-antipatch pairs, which is two orders of 

magnitude greater than the sampling reported previously by Hloucha et al. for bovine 

chymotrypsinogen (78).  In their work, the strongest patch-antipatch pairs that were 

identified possessed well depths between -13 kT and -15 kT.  From this work, most of 

the strongest configurations were on the order of at least -20 kT.   

The presence of strongly attractive patch-antipatch configurations with 

well depths on the order of -20 kT led to significant numerical issues when Monte 

Carlo integration was used.  While this integration approach was found to be 

appropriate for determining the excluded volume contribution to B22, it fails when the 

energetic contributions are included.  The convergence issues were addressed using a 

hybrid Monte Carlo/patch integration method.  By performing a detailed integration 

over the patch-antipatch subregions using a globally adaptive integration routine, a 

functional relationship between the strength of attraction for a configuration and its 

contribution to B22 was obtained.  However, calculation of B22 could not be completed 

for both proteins due to the skewed contributions from anomalously strong patch-

antipatch pairs that possessed well minima that were on the order of -30 kT to -40 kT 

(Tables 3.10 and 3.11).  This indicates that other effects need to be accounted for in 

the calculation of B22. 

To make complete and accurate predictions of B22, the effect of hydration 

must be accounted for explicitly.  In these interaction calculations, an implicit solvent 

assumption was made where the effects of the solvent were accounted for by the 

Hamaker constant in the Lifshitz-Hamaker model and by an empirical factor in the 
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Lennard-Jones model.  The hybrid method is capable of capturing surface 

complementarity well, but the effect of strongly bound water molecules is lost.  

Explicit inclusion of hydration effects can lead to elimination of high complementarity 

protein-protein configurations (patch-antipatch pairs) (135, 136).  Such an effect 

would be expected to play an important role in accurately calculating B22.  This is 

illustrated by the contribution of a -40 kT patch-antipatch pair for lysozyme, which 

was found to have a dominant B22 contribution that was orders of magnitude greater 

than what is experimentally measured.  Such an anomalously attractive configuration 

could very well be eliminated by one or more strongly bound water molecules.  Thus, 

hydration effects cannot be neglected and are crucial in the accurate prediction of B22. 

The calculations of B22 using the proposed hybrid method include 

additional potential sources of uncertainty.  First, there is the issue of whether all 

patch-antipatch pairs can be identified by a random sampling.  The configuration 

space is large due to the degrees of freedom in defining the relative orientation of two 

protein molecules.  Another uncertainty is whether the identified patch-antipatch pairs 

are in the optimally aligned orientation.  While refinement was attempted by a local 

sampling within 0.10 radian around the central orientations of the strongest 

configurations, a different energy minimum may or may not be detected if the limits 

are expanded.  Once again, this issue is due to the size of the configuration space.  The 

uncertainties in the optimal alignment and absolute population of patch-antipatch pairs 

are a cause for concern in calculating B22 using atomistic models.  However, the 

statistical distribution of well depths from a finite sampling provides valuable 

information on the fraction of the global angular space occupied by the different 

configurations.  This is because the relative frequency of orientations with various 
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levels of attractions is independent of the sample size taken, as shown by the 

consistent distribution of well depths for different levels of sampling performed.  

Furthermore, the distribution was found to be adequately described by an ideal log 

normal probability distribution function.  This information significantly aided in the 

computation of the background contribution to B22.  Another significant uncertainty is 

the size of the patch-antipatch pairs.  A simplification was made in which all 

configurations were assumed to be confined within 0.10 radian around their 

respective central orientations.  The localized patch integration calculations were 

performed using this assumption.  Although the B22 contributions from the patch 

integration approach are very much dependent on what is chosen for , it is has been 

shown that the interactions of the patch-antipatch configurations may be quite 

sensitive to perturbations in orientation.  Therefore, it can be inferred that these patch-

antipatch pairs occupy only a small fraction of the global configuration space.  For = 

0.10 radian, the subregion of the configurational hypervolume occupied by each patch-

antipatch pair is on average approximately 1.97 10
-4

, which is a very small portion of 

the global configurational space. 

3.5 Conclusions 

A detailed numerical approach for computing B22 from atomistic models 

of proteins was proposed and carried out.  The issues this work has attempted to 

address illustrate the difficulty and uncertainties of computing B22 at the atomistic 

scale.  The results highlight the influence of structure on the anisotropy of protein-

protein interactions and therefore the solution properties of proteins.  The 

heterogeneity of the Iin function makes calculation of the B22 integral particularly 

challenging.  The proposed hybrid approach appears to provide a better method of 
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calculating B22 at the atomistic scale when compared to the Monte Carlo approach.  

However, the identification of anomalously attractive configurations with well depths 

~ -30 kT to -40 kT strongly emphasizes the importance and necessity of incorporating 

hydration effects to make accurate predictions of B22, which will require the use of 

molecular dynamics simulations.  

A particular aspect of this work is accounting for the charge distribution of 

the protein surface in representing protein interactions.  The effect of electrostatics on 

the B22 trends for lysozyme and chymosin B was captured by incorporating a screened 

Coulombic potential contribution in the pairwise atomistic interaction calculations.  

This approach provided a simple and computationally efficient way of accounting not 

only for the charge distribution, but also the effect of shape on the electrostatic 

interactions.  By incorporating the effects of electrostatics, the qualitative trends in B22 

were distinguished for the two proteins studied that agreed with experimental 

observations.  Simple colloidal models that do not account for this important feature 

are unable to qualitatively predict differences in the solution behavior of proteins.   
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Chapter 4 

CONCLUSIONS AND RECOMMENDATIONS 

 The central theme of this thesis is elucidation of the relation between 

the molecular structure of proteins and their continuum thermodynamic properties.  

The structural properties of proteins are complex, and it is this complexity that has a 

profound impact on the molecular interactions that ultimately dictate their 

macroscopic solution properties.  The osmotic second virial coefficient, B22, provides 

a promising qualitative link between the protein-protein interactions and phase 

behavior of proteins.  This relationship was explored quantitatively, which yielded 

significant insights into which essential aspects of protein interactions must be 

incorporated in thermodynamic models in order to lead to accurate predictions of the 

solution behavior for proteins.  In this chapter, the findings and conclusions from this 

work are summarized and recommendations for future investigations are put forth. 

4.1 Conclusions 

4.1.1 Continuum Thermodynamic Models 

In Chapter 2, an attempt was made to quantitatively relate experimental 

B22 values with the phase diagrams for the model protein ribonuclease A.  Several 

continuum models derived from classical theories for polymers and colloids were 

explored in an effort find a mechanistic framework for protein solutions.  While a 

qualitative correlation between B22 and phase behavior was found, quantitative 

agreement could not be obtained using the continuum models.   Phase equilibrium was 
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also predicted from osmotic virial coefficients using the osmotic virial equation 

derived from McMillan-Mayer solution theory.  Although theoretically calculated 

third virial coefficients along with B22 values were used in the phase equilibrium 

calculations, the phase diagram predicted from this model only qualitatively agreed 

with experimental results.   

The discrepancy of the results from the continuum models may be due to 

the isotropic assumption inherent in each model and also the molecular nature of B22.  

The orientationally-averaged character of B22 provides an incomplete description of 

protein-protein interactions and therefore B22 is limited in its ability to predict phase 

behavior.  It is clear that the anisotropic character of protein-protein interactions 

cannot be neglected, providing the most likely explanation for the inadequacy of the 

continuum models studied.  This finding justified the need for exploring molecular-

level models that incorporate the anisotropy as an essential feature. 

4.1.2 Patch-Antipatch Model of Proteins and the Calculation of B22  

Patch models have proven to be useful in providing a coarse-grained 

representation of proteins to model their anisotropic interactions.  They have been 

shown to provide a better description of protein phase behavior and much progress has 

been made in understanding the phase diagrams predicted from these models.  

Accounting for the specific interactions through incorporation of patches can explain 

features of protein phase behavior not possible with isotropic models.  However, 

because of the large parameter space that is possible for different combinations of 

patch parameters, much of the work in the literature has focused on simplified patch 

representations that provide only a caricature of proteins.  The parameters of patch 

models should be faithful to the physical and structural attributes of proteins.  



 113 

The patch-antipatch parameters for two proteins were determined from 

extensive atomistic simulations.  Several new findings are reported in this thesis 

beyond the work of Neal et al. (82) and Hloucha et al. (78).  First, the orientational 

sampling for identifying patch-antipatch pairs was increased from 10
4
 configurations 

to 10
6
 configurations.  As a consequence of this increase in sampling, a larger number 

of patch-antipatch pairs with deeper attractive wells were identified.  Local 

refinements were performed to find the approximate energy minima, which in some 

cases led to configurations with well depths as a high as -40 kT.  The large size of the 

global configurational space leads to uncertainties in identifying all patch-antipatch 

pairs.  However, the relative frequency distribution of interaction well depths was 

found to be independent of the degree of orientation sampling and thus provides an 

estimate of the fraction of the configuration space that is occupied by the different 

patch-antipatch pairs.  

It has been shown in this work that the patch-antipatch pairs contribute 

significantly to the calculation of B22.  Due to these patch-antipatch configurations, the 

Monte Carlo integration approach was found to be unsuitable for evaluating the 

multidimensional integral necessary for computing B22.  The hybrid Monte 

Carlo/patch integration approach that is proposed in Chapter 3 addresses some of the 

numerical issues in calculating B22.  However, the presence of anomalously strong 

patch-antipatch pairs gave rise to B22 contributions that were orders of magnitude 

greater than typical experimental values.  This discrepancy may largely be attributed 

to the fact that hydration effects were neglected in the calculations.  Hydration effects 

are known to attenuate the interactions of patch-antipatch pairs and will have a 

significant impact on the calculation of B22.  Thus, further refinements are needed in 



 114 

order to make accurate predictions of B22, which will allow for meaningful 

comparisons with experimentally measured values.   

4.2 Recommendations and Future Directions 

4.2.1 The Calculation of B22 

Accurate predictions of B22 from atomistic models will require accounting 

for the specific hydration of proteins, which is known to affect high-complementarity 

configurations (patch-antipatch pairs) (135, 136).  The hybrid continuum/atomistic 

approach used to calculate the short-range non-electrostatic interaction energies 

captures the effect of surface complementarity between proteins, but the effect of 

strongly bound water molecules is not generally accounted for.  These water 

molecules strongly bound to the protein provide additional steric hindrance that can 

effectively inhibit the interactions between patch-antipatch pairs.  Accounting for such 

effects will require the use of such methods as molecular dynamics simulations where 

water molecules are explicitly included.    

Another direction that should be explored is the calculation of electrostatic 

interactions.  The addition of a pairwise screened Coulomb contribution to the 

interaction energies provided a simple way of accounting for the shape anisotropy of 

the charge distribution in the calculation of B22.  This approach was able to 

qualitatively reflect the impact of this anisotropy on B22 for lysozyme and chymosin B.  

However, this model is simplistic in its treatment of the electrostatics since it does not 

explicitly account for the local dielectric boundaries.  It would be necessary to 

compare how the magnitude of the electrostatic energies computed from the pairwise 

screened Coulomb potential approach compares with the energies determined from 
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solving the Poisson-Boltzmann equation for the full protein geometry.  Several 

software packages that utilize finite-difference or boundary-element approaches for 

solving the Poisson-Boltzmann equation can be used for such a comparison.   

Once these further refinements in the calculation procedure of B22 are 

performed and affirmed, the methodology can be extended to determining cross-

interaction virial coefficients B23, which characterize the association of two different 

protein molecules.  Experimental B23 data for protein mixtures have previously been 

measured and reported in the literature (123, 143).  Quantitative predictions for the 

cross-interactions of proteins can have relevant applications in industrial protein 

separation processes.  

4.2.2 Molecular Simulation of Protein Phase Behavior  

Another avenue that should be explored further is predicting phase 

behavior from the “patch-antipatch” representation of proteins.  The patch-antipatch 

parameters determined from the atomistic simulations performed in this work should 

be utilized in the simulation of the phase behavior for these proteins.  Although 

atomistic models of the kind used in Chapter 3 are, in principle, suitable for describing 

crystalline phases (144), such computations would be very challenging based on 

current computational capabilities.  However, patch models based on spheres may be 

appropriate for simulating phases such as liquids since these disordered states do not 

require a very specific 3-D molecular packing structure. 

The logical route towards this endeavor is through the use of molecular 

simulation (145, 146).  The patch-antipatch parameters specific to the protein of 

interest can be determined a priori from atomistic calculation methods described in 

Chapter 3.  There are various standard molecular simulation techniques for predicting 
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phase behavior, which include the Gibbs ensemble Monte Carlo (147–150) and grand 

canonical Monte Carlo/histogram reweighting techniques (150, 151).  An in-depth 

discussion of these techniques is beyond the scope of this work, but it is clear that 

because of the strong attractions due to the specific patch interactions, particles may 

be trapped by the very strong attractions in some configurations (152).  As a result, 

sampling of the entire configuration space becomes prohibitively long and the system 

becomes nonergodic.  Advanced simulation methods for strongly associating fluids 

will need to be implemented.  Several biased methods have been reported to address 

such issues, which include the bond-biased Monte Carlo method (153), association-

biased Monte Carlo method (154), and aggregation volume bias Monte Carlo method 

(155).  These methods improve upon standard simulation methods by biasing the 

acceptance criterion for accepting trial moves that allow for more efficient sampling of 

the configuration space.  These biased methods should be utilized to simulate the 

equilibrium phases of proteins.   
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 Appendix A 

DERIVATION OF LIQUID-LIQUID EQUILBIRIUM FROM THE OSMOTIC 

VIRIAL EQUATION 

 The derivation of the equations for describing the liquid-liquid equilibrium 

of protein solutions from the osmotic virial equation is presented in this appendix.  

This derivation is consistent with the one reported by Döbert et al. (156).  The protein 

solution is modeled as a binary mixture consisting of solvent (1) + protein (2) species.  

It is assumed that there is no repartitioning of the salt species in the mixture.  The 

criterion for liquid-liquid equilibrium is the equality of the chemical potentials in the 

mixture of both the solvent, 1, and the protein, 2, in each phase:  

 
  

    
   

  
    

   
(B.1)  

where I and II designate the light and dense phases, respectively.  To determine the 

chemical potentials for the species, it can be shown that the chemical potential of the 

solvent is directly related to the osmotic pressure  (14) 

      
        (B.2)  

where   
 is the chemical potential of the pure solvent, and    is the partial molar 

volume of the solvent.  The osmotic virial equation in terms of protein mass 

concentration c and truncated at the third virial term is  
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where R is the molar gas constant, MW is the molecular weight of the protein, and B2 

and B3 are the second and third virial coefficients, respectively.  Substituting equation 

(B.3) into equation (B.2) yields the expression for the chemical potential of the solvent  

  
     

 

     
 

 

  
    

 

  
 

 

    
 

  
 

 

 (B.4)  

To determine the chemical potential of the protein species, the Gibbs-Duhem relation 

(97) is invoked  

    
   

   
 

      

    
   

   
 

      

   (B.5)  

where N1 and N2 are the number of moles of the solvent and protein species, 

respectively.  Rearranging equation (B.5) in terms of 2 leads to  

      
  

  
 
   

   
 

      

      (B.6)  

where C is the constant of integration. To evaluate the derivative inside the integral of 

equation (B.6), it is convenient to write 1 in equation (B.4) in terms of N1 and N2.  

The mass concentration of protein c is related to its mole fraction x2 by 

   
    

 
 (B.7)  

where   is the molar volume of the solution.  For a binary system,   is the sum of the 

partial molar volumes of the solvent and protein weighted by their respective mole 

fractions x1 and x2 

      
 

      (B.8)  

Furthermore, a species mole fractions is the ratio of the number of moles of the 

species to the total number of moles of the system 
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 (B.9)  

By appropriate substitutions of equations (B.7), (B.8), and (B.9) into equation (B.4), 

the chemical potential of the solvent 1 can be rewritten in terms of N1 and N2  

 

 
     

 

     
 

  

    
     

    
  

    
     

 

 

 

    
  

    
     

 

 

 

(B.10)  

Inserting equation (B.10) into equation (B.6), differentiating µ1 with respect to N1, and 

integrating the result with respect to N2 yields the expression for µ2 

 

         
  

    
     

     
   

  

  
    

    
     

   

  
   

   

  
  

   
  

    

    
     

 

 

  
  

  

  
    

    
     

 

 

    

(B.11)  

The initial condition that      when      
  is used to find the integration constant 

C  

     
        

 

  

  
  

  

 
  

   

   (B.12)  

where   
  is the chemical potential of the pure protein species.  The integration 

constant C is inserted back into equation (B.11), and 2 becomes 

 

     
 

  
    

    

    
     

   
   

  

    
    

    
     

  

  
   

   

  
  

   
  

    

    
     

 

 

 
  

  

  
    

    
     

 

 

 

   
  

  

 
  

   

  

(B.13)  
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The chemical potentials can be expressed in terms of the protein volume fraction  and 

the osmotic virial coefficients.  The protein volume fraction is 

   
    

    
     

 (B.14)  

The osmotic virial coefficients are defined as 

 
    

  

   
 

     
  

   
 

(B.15)  

Using these relationships, the chemical potential of the solvent in equation (B.10) and 

the chemical potential of the protein in equation (B.13) can be rewritten in terms of , 

B22, and B222 

  
     

 

     
 

 

  

     
   

  

 

 

      
   

  

 

 

 (B.16)  

 

 

     
 

  
      

       
 

   
     

  
        

 

   

  
      

 

   
    

  
       

 

  

       
      

 

  

 
       

 

   

  

(B.17)  

For dilute concentrations of protein, it can be assumed that the mixture is ideal enough 

that the partial molar volume of the protein is equal to its molar volume,   =   . 

Applying the conditions represented in equation (B.1) yields the model for liquid-

liquid equilibrium 

 
      

  
     

  

  
 

 

   
     

        
  

  
 

 

   
     

     (B.18)  
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(B.19)  

in which I and II are the concentration of protein in the light and dense liquid phases, 

respectively.  Equations (B.18) and (B.19) can be solved simultaneously to obtain the 

equilibrium concentrations in the light and dense liquid phases, provided that the 

physical properties of the protein (MW and   ) are specified and the virial coefficients 

B22 and B222 at known solution conditions are used as inputs 

. 
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Appendix B 

CALCULATION OF THE OSMOTIC THIRD VIRIAL COEFFICIENT B222 

 This appendix contains the MATLAB source code for the calculation of 

B222 from the Yukawa potential that is discussed in Chapter 2.  The program utilizes 

MATLAB’s numerical integration toolbox.  In order to run this code, the numerical 

integration toolbox needs to be in the same directory as the program files during 

execution.  This toolbox contains the functions implemented in the code for the 

numerical integration of the third virial coefficient, which can be obtained from the 

website http://www2.math.umd.edu/~jmr241/mfiles/nit/.  

The file names and descriptions are given below. The range parameter b is 

set at a value 35 in line 65 of the main driver file B222_Yukawa.m; however, this 

value can be adjusted by the user.  The user is also free to adjust the values of the 

parameters in the file parameters.inp.  Attached is a copy of the input files that are 

needed.  In principle, this code can be modified for any potential that possesses hard-

sphere repulsion with an attractive tail.  It is left to the user to make such 

modifications.  
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File: parameters.inp – Input file which contains physical parameters  

 
Temp    296 

R       8.314 

k       1.38E-23 

Na      6.023E23 

e       1.60E-19 

epsr    78.54 

eps0    8.85E-12 

MW1     18.02 

rho1    0.998 

MW2     13700 

rho2    4.5 

sigma   3.1E-9 

phi_c   0.5 
 

File: B22_Data.dat – Input file which contains the experimental B22 data 

 
-1.27E-04 

-1.55E-04 

-1.88E-04 

-2.24E-04 

-2.65E-04 

-3.10E-04 

-3.61E-04 

-4.17E-04 

-4.79E-04 

-5.48E-04 

-6.24E-04 

-7.07E-04 

-7.98E-04 

-8.97E-04 

-1.01E-03 

-1.12E-03 

-1.25E-03 

-1.39E-03 
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File: B222_Yukawa.m – Main driver file for B222 calculation 

 
% This MATLAB program is used to calculate the third virial  
% coefficient from the Yukawa potential using the method of  
% Alder and Pople, J. Chem Phys., 1957. To run this file,  
% the numerical integration toolbox needs to be in the directory. 
% 
% INPUT 
%      parameters.inp 
%           File with necessary physical parameters for calculations 
% 
%      B22_Data 
%           File with the experimental B22 data. This data is used to 
%           fit the epsilon parameter of the Yukawa potential for a 
%           fixed value of the range parameter b*. 
% 
% OUTPUT 
%      T* 
%           Reduced temperature T/epsilon 
%      B222 
%           Osmotic third virial coefficient 
% 
% Authors: Leigh J. Quang 
%          Abraham Lenhoff 
%          Stanley Sandler 
% 
% Last Modified: 11/29/2011 
% University of Delaware 
% Department of Chemical Engineering 

  
clc 
clear all 
close all 
clear global 
addpath nit 
global T k Na e epsr eps0 MW1 V1 rho1 phi_c MW2 m s  

  
%% Experimental Data 
% Read in data 
fid = importdata('parameters.inp'); 

  
% Constants 
T = fid.data(1);        % Temperature (K) 
R = fid.data(2);        % Molar gas constant (J/molK) 
k = fid.data(3);        % Boltzmann constant (J/K) 
Na = fid.data(4);       % Avogadro's number (1/mole) 
e = fid.data(5);        % Elementary charge (C) 
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epsr = fid.data(6);     % Dielectric constant of solvent   
eps0 = fid.data(7);     % Permitivity constant 

  
% Water Properties 
MW1 = fid.data(8);      % Molecular weight (g/mol) 
rho1 = fid.data(9);     % Density (g/ml) 
V1 = MW1/rho1;          % Molar volume (ml/mol) 

  
% Protein Properties 
MW2 = fid.data(10);     % Molecular weight (g/mol) 
rho2 = fid.data(11);    % g/cm^3 
V2 = MW2/rho2;          % Molar volume (ml/mol) 
s = fid.data(12);       % Diameter (m) 
m = (rho1*MW2)/(rho2*MW1); 
phi_c = fid.data(13); 

  
%% B22 Data     
ydata = importdata('B22_Data.dat'); 
n = length(ydata); 

  
%% Range Parameter 
b = [35]; 
m = length(b); 

  
%% B222 Calculation 
syms x y r z  
epsilon = zeros(n,m); 
B3 = zeros(n,m); 
Temp = zeros(n,m); 
rmax = 5; 
for j = 1:1:m 
    for i = 1:1:n 
        % Yukawa Epsilon Parameter Optimization 
        resid = @(eps) norm(B2(eps,b(j))- ydata(i));       
        epsilon(i,j) = fminsearch(resid,500); 

     
        % Third Virial Coefficient from Yukawa 
        Tr = T/epsilon(i,j); 
        wx = -exp(-b(j)*(x-1))/x; 
        wy = -exp(-b(j)*(y-1))/y; 
        wz = -exp(-b(j)*(z-1))/z; 
        fx = exp(-wx/Tr)-1; 
        fy = exp(-wy/Tr)-1; 
        fz = exp(-wz/Tr)-1; 

     
        C1 = 5/8; 
        C2 = -12*numint2((1-0.75*x+0.0625*x^3)*x^2*fx,x,1,2,y,0,1); 
        C3 = 36*[numint3(x*y*z*fx*fy,z,x-y,1,y,1,x,x,1,2) + ... 
                 numint3(x*y*z*fx*fy,z,x-y,1,y,x-1,x,x,2,rmax)];   
        C4 = -12*[numint3(x*y*z*fx*fy*fz,z,1,x+y,y,1,x,x,1,2) + ... 
             numint3(x*y*z*fx*fy*fz,z,x-y,x+y,y,1,x-1,x,2,rmax) + ... 
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                  numint3(x*y*z*fx*fy*fz,z,1,x+y,y,x-1,x,x,2,rmax)];     
        B3(i,j) = C1+C2+C3+C4; 
        Temp(i,j) = Tr; 
    end 
end 

  
%% Output results 
format short 
disp('T*:') 
disp(Temp) 
disp(' ') 
format short eng 
disp('3rd Virial Coefficient B222 (cm^6*mol/g^3):') 
disp(' ') 
B222 = B3.*[((2*pi*Na*s^3)/3).^2.*100^6.*(1/MW2^3)]; 
disp(B222) 

 

 

 

File: B2.m – Integral equation for B22 in terms of reduced variables 

 
function F = B2(eps,b) 

  
% Function file for solving the B22 integral equation to determine 
% epsilon. The range parameter b must be passed to this function. 

  
global T k Na e epsr eps0 MW1 V1 rho1 phi_c MW2 m s  

  
F = ((2.*pi.*Na.*s.^3)./3).*(1 + quadgk(@(r) f(r,eps,b),1,Inf)); 

  
end 
 

 

File: f.m – Mayer cluster function for the Yukawa potential 
 
function F = f(r,eps,b) 

  
% Function file that contains the Mayer cluster function for the  
% Yukawa potential. This function is using in the function file B2.m 
% for MATLAB's quadgk integration function. 

  
global T k Na e epsr eps0 MW1 V1 rho1 phi_c MW2 m s  

  
w = -eps.*exp(-b.*(r.^(1/3)-1))./r.^(1/3); 
F = 1 - exp(-w/T); 

  
end 

 


