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ABSTRACT

Protein phase behavior encompasses the formation of dense phases, which
include amorphous aggregates, gels, dense liquids, and crystals. The major solution
variables that dictate the type of dense phase that is formed are pH, temperature, type
of precipitant, precipitant concentration, and protein concentration. Because of the
large parameter space and rich variety of phase transitions possible, protein phase
behavior is a complex phenomenon. Fundamentally, macroscopic phase transitions
are governed by the molecular interactions between proteins in solution. One
promising way of quantifying protein-protein interactions and relating them to phase
behavior is through the osmotic second virial coefficient B,;, a dilute-solution property
that characterizes two-particle interactions. The relationship of B,, to overall phase
behavior of proteins is explored in this work.

The goal of this thesis is to quantitatively relate protein-protein
interactions to protein phase diagrams in order to develop predictive models of phase
behavior under different solution conditions. A continuum-level approach is used
initially to relate experimental B, data and phase diagrams of proteins by appealing to
existing thermodynamic models, with the expectation that a simple continuum model
could provide a useful mechanistic framework for predicting protein phase behavior.
The first approach attempted was to relate protein interactions and phase behavior
within the Flory-Huggins theory of polymer solutions. The second approach utilized
the model of Haas and Drenth, which is based on the free energy of mixing for hard

spheres. Finally, phase equilibrium was predicted from virial coefficients using the

XV



osmotic virial equation. A qualitative relationship was found between By, and phase
behavior from these continuum models; however, quantitative agreement could not be
obtained. The isotropic assumption shared among these models in addition to the
orientationally-averaged nature of By, suggests that the anisotropic character of protein
interactions cannot be neglected, demonstrating the need for more detailed molecular-
level models.

The role of anisotropy in protein interactions was explored through
analysis of “patch-antipatch” pairs in the computation of By, in atomistic detail.
Patch-antipatch pairs represent highly attractive orientations resulting from geometric
complementarity between protein surfaces. Previous work used simple Monte Carlo
integration for the calculation of By, from atomistic models of proteins. However, the
presence of patch-antipatch pairs led to significant numerical concerns. These
concerns warranted a reexamination of the numerical methods for computing B,,.

A hybrid Monte Carlo/patch integration approach is utilized to calculate
Bz, for lysozyme and chymosin B. This method involves a combination of numerical
integration techniques in an attempt to obtain better convergence in predicting By,.
The overall B, for the proteins studied was separated into three components:
contributions from the excluded volume, from the patch-antipatch pairs, and from
background configurations. The excluded volume component was found to be
adequately determined using simple Monte Carlo integration. The contributions from
individual patch-antipatch pairs were accounted for by carefully integrating the
subregions of the configuration space occupied by these pairs using a globally

adaptive integration routine. The background component to B,, was also calculated by

XVi



simple Monte Carlo integration in which the regions of the configuration space
occupied by the patch-antipatch pairs were excluded.

The calculations performed that account for the full protein structure
emphasize the importance of several features of protein interactions. First, the
difference in the interaction behavior of the two proteins studied was found to be
largely attributed to the charge anisotropy of patch-antipatch pairs. However, the
relation of the results to experimental data is limited by the omission of accounting for
the specific hydration of proteins. Hydration effects are known to affect, and usually
attenuate, patch-antipatch configurations, and therefore would be expected to
significantly impact the accurate prediction of B,,. Classical colloidal as well as
atomistic models that omit these important features are inadequate in providing a
quantitative representation of protein interactions for a wide range of solution

conditions.
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Chapter 1

INTRODUCTION

Protein phase behavior refers to the appearance of various condensed
phases that proteins can form in solution. It encompasses the formation of amorphous
aggregates, gels, dense liquids, and crystals. The types of dense phases formed are
sensitive to the solution conditions, which include pH, temperature, type of
precipitant, precipitant concentration, and protein concentration. Because of the large
parameter space and rich variety of phase transitions possible, protein phase behavior
is a complex phenomenon.

The phase behavior of proteins plays a key role in many
biopharmaceutical processes. Undesired phase separation of protein therapeutics can
occur during processing and storage, which can raise serious efficacy and safety
concerns. However, phase separation may be desired in other situations, and
operations such as precipitation can be employed in downstream protein purification
processes because of their low cost. One specific form of phase separation of wide
interest is protein crystallization, which is a prerequisite step for determining protein
structure by x-ray diffraction; however, the growth of high-quality crystals is often the
bottleneck. Crystallization is also of interest in the pharmaceutical industry because it
offers an advantageous way for delivery of doses of highly concentrated protein
therapeutics. Phase separation of proteins can have serious medical implications as
well. The onset of neurodegenerative diseases such as Alzheimer’s disease has been

attributed to the formation of fibrillar protein aggregates called amyloids.



Understanding the conditions and mechanisms that lead to formation of
protein dense phases from solution is therefore crucial to predicting and ultimately
controlling phase transitions in these diverse systems. Such knowledge will be
invaluable in a wide variety of applications. This work aims to contribute towards this
endeavor by utilizing and evaluating quantitative models that construct the pathway

from molecular structure to the thermodynamic solutions properties of proteins.

1.1 The Protein Phase Diagram

Early experimental studies of liquid-liquid phase separation of globular
proteins have led to interpretion of protein phase behavior within the framework of
colloidal systems. Ishimoto and Tanaka first presented evidence of temperature-
induced liquid-liquid phase separation of aqueous lysozyme solutions (1). These
results were questioned by Phillies (2), but Taratuta et al. confirmed them by
performing extensive cloud-point temperature measurements at different pH values,
salt types, and salt concentrations (3). It was later observed that the liquid-liquid
phase separation was actually metastable with respect to the solid-liquid transition (4),
behavior characteristic of colloidal particles experiencing short-ranged attractions (5,
6). Similar phase behavior was also observed experimentally for several different y-
crystallins (7—10). The similarities in the metastability of the liquid-liquid phase
separation for both proteins and colloids suggest that protein phase behavior follows
the same physics as the phase transitions of colloids.

The phase diagram of proteins can be theoretically interpreted within the
context of the theoretical phase diagram for colloidal systems experiencing short-
ranged interactions (5, 6) (Figure 1.1). The colloidal phase diagram is most directly

compared to experimental protein phase behavior results when presented in a two-



dimensional plane where the colloid concentration is plotted on the ordinate and the
reduced temperature on the abscissa. The direction of decreasing temperature
corresponds to increasing interparticle attraction, a trend that is qualitatively analogous

to increasing precipitant concentration under salting-out conditions.

Liquid-liquid,/ 7
1

i/
/
!
\

Fluid

\
"\ Spinodal
\\ \

\\ \

Colloid Concentration

+— Reduced Temperature
Attraction —»p
Salt concentration —p

Figure 1.1: Theoretical colloidal phase diagram adapted from Foffi et al. (6).

The main feature of this phase diagram is a solid-liquid equilibrium
region, which corresponds to protein crystals in equilibrium with a protein-lean
supernatant fluid. Within this region lies the metastable liquid-liquid coexistence
envelope (bounded by the binodal curve) in which the protein partitions into a dilute

and more concentrated liquid phases. Inside this liquid-liquid coexistence region is



the spinodal boundary beyond which phase separation occurs instantaneously through
spinodal decomposition. Thus, knowing the relative locations of the phase boundaries
as a function of the solution conditions is important in navigating through the phase
diagram.

The metastable nature of the liquid-liquid phase separation is an important
feature of protein phase behavior. A correlation exists between the metastable liquid-
liquid coexistence and crystallization (11). Liquid-liquid phase separation has been
suggested to significantly change the kinetic pathway for crystal nucleation (12, 13).
Specifically, the free energy barrier for crystal nucleation is drastically reduced near
the liquid-liquid critical point due to critical density fluctuations. Therefore, knowing
the location of the liquid-liquid coexistence region can have implications for selecting

optimal solution conditions for protein crystallization.

1.2 Protein-Protein Interactions

Protein phase behavior is governed fundamentally by the molecular
interactions between protein molecules, which are still not completely understood.
What is known is that the interactions include contributions from van der Waals
forces, electrostatics, hydration effects (including hydrophobic interactions), and
depletion effects (where relevant). Attractive van der Waals forces arise from three
different contributions: permanent dipole-induced dipole interactions (Debye
interaction), permanent dipole-permanent dipole interactions (Keesom interaction),
and induced dipole-induced dipole interactions (London dispersion interaction) (14,
15). These attractions are complemented by long-ranged electrostatic interactions due

to the charges that some amino acid residues carry on the protein surface.



Solvation forces, which are associated with water structuring around the
protein surface, include effects that may be classified as hydrophobic or as hydration
effects (15, 16). The hydrophobic effect results from the presence of nonpolar patches
on the surface, with which water molecules are unable to form hydrogen bonds. To
minimize the free energy, the nonpolar regions associate with one another, driving
water molecules away from the surface to more extensive formation of hydrogen
bonds in the bulk of the solution. Hydration effects may occur in hydrophilic regions
on the solute molecules, where hydrogen bonding with adjacent water molecules may
result in a steric and hence effectively repulsive barrier to association with other solute
molecules. Solvation forces are still poorly understood and a quantitative explanation
is presently lacking.

Additional depletion attraction is induced due to the osmotic pressure
gradient caused by the addition of nonadsorbing polymers such as polyethylene glycol
(PEG) (17). Depletion interactions are a result of an entropic effect; when two protein
molecules are in sufficient proximity, the polymer-excluded volumes of the molecules
overlap. Consequently, the polymer molecules cannot penetrate into the space
between the protein molecules, resulting in effective attraction due to the osmotic
pressure of the polymer in the bulk solution.

In addition to the different contributions to protein-protein interactions, an
important feature is also their anisotropy, which is a consequence of the nonspherical
shape of the protein molecule and the heterogeneous properties of the protein surface.
The shape anisotropy of proteins has a profound effect on the van der Waals

attractions. Computations have shown that shape anisotropy has an appreciable effect



on the magnitude and orientational distribution of van der Waals interaction energies
compared to calculations based on the ideal sphere approximation (18).

There is a complex interplay among the different forces that govern
protein-protein interactions and solution conditions. For example, at low salt
concentrations protein interactions are dominated by long-ranged electrostatic forces,
which are usually repulsive. At high concentrations of salt, electrostatic forces are
screened and short-ranged van der Waals forces and hydrophobic interactions tend to
drive the precipitation of protein from solution. The phenomenon where proteins
become less soluble as more salt is added is known as salting-out. One explanation
for this behavior is that the salt ions alter the hydrogen bonding network of the layer of
water that shields the protein surface hydration layer (19). Consequently, protein
molecules interact less with water, resulting in an increase in the protein-protein
interactions. Different ions have been found to have varying impacts on protein phase
behavior. The salting-out effectiveness of different ions is reflected in the Hofmeister
series (20), which is an empirical ranking of the ability of different ions to disrupt the
hydration layer.

A quantitative understanding of the underlying mechanism of specific ion
effects on phase behavior is still incomplete, but much progress has been made in the
past fifteen years (21-26). It was long believed that the Hofmeister effect was due to
the influence of the ion on the hydrogen bonding network of bulk water, but
experimental results suggest that this influence does not extend beyond the first
hydration shell (27-29). Rather, direct ion-protein interactions appear to contribute

significantly to the ability of a specific ion to salt out proteins from solution.



Two recent developments have emerged that have led to the development
of salt-specific models of protein interactions. The first cites significant contribution
from dispersion forces between ions and protein molecules (24, 30-33). The
polarizabiltity of the ion is the unique physical characteristic that determines the ion’s
specificity. Including ion dispersion contributions in calculating protein-protein
interactions has been shown to qualitatively capture the reverse Hofmeister behavior
exhibited by lysozyme (34, 35), where the salting-out trend follows the opposite order
of the Hofmeister ranking. These findings are consistent with experimental
observations (36).

The second development emphasizes the role of solvent-assisted ion
binding to the hydrophobic regions of the protein surface. Efforts to model this effect
have used molecular dynamics simulations of ions and hydrophobic interfaces to
determine the effective interactions between proteins (37—40). Models of protein
interactions incorporating effects of ion binding have also yielded predictions that are

qualitatively consistent with the salting-out behavior for lysozyme (41).

1.3 Theoretical and Simulation Studies

The interactions between protein molecules play a central role in defining
the macroscopic thermodynamic properties of protein solutions. The key to relating
the microscopic and macroscopic properties is the potential of mean force (PMF). The
PMF represents the effective interaction between two molecules in a system of n
molecules as a combination of the direct interactions between the molecules and
indirect forces from the other species, which include the solvent and ions (42, 43).
Another way of interpreting the PMF is that it is the free energy required to bring two

molecules in an n body system from infinite separation to a particular configuration in



solution. In principle, specifying the PMF fixes the thermodynamic properties of the
system. However, the intermolecular interactions of proteins are quite complex and
are strongly dependent on the solution conditions. Therefore, it is not possible at
present to determine an exact PMF model of protein-protein interactions. An
alternative approach is to start with simple idealized models with a few parameters
based on the physics of the system, and fit the parameters to correlate experimental
data.

Experimental evidence of a metastable liquid-liquid phase transition in
proteins has led to theoretical efforts to relate the phase behavior and intermolecular
interactions of proteins within the framework of model colloids (44, 45). It is well
known from theory (46), experiment (47), and simulation that the phase behavior of
colloidal dispersions is sensitive to the range of the interaction between the particles.
Colloidal particles experiencing an attraction that is short-ranged with respect to its
diameter exhibit a metastable liquid-liquid phase transition. Since proteins exhibit
similar phase behavior, idealized colloidal models can serve as a starting point for
describing the thermodynamics of protein solutions.

Early theoretical work attempted to approximate protein solutions as a
one-component system and model the effective interactions between proteins with a
simple form of the pair potential. Within this framework, the solvent is treated as a
continuum background and the protein molecules are represented as hard spheres
experiencing attraction that is a function only of the center-to-center distances (Figure
1.2).

Several simple potentials have been used to model protein interactions,

including the adhesive hard sphere (48-51), square-well (52-55), Yukawa (6, 56, 57),



and modified Lennard-Jones (12, 58) potentials. While the forms of these potentials
are different, each of these models has parameters for the interaction strength,
interaction range, and particle diameter. In these models, the interaction range is the
dominant parameter that controls the shape and location of the phase boundaries (58).
Large values of the range parameter lead to phase diagrams that have a stable vapor-
liquid phase separation, which is analogous to a liquid-liquid phase transition for the
colloidal system. As the range parameter becomes sufficiently small, this transition
becomes metastable with respect to the solid-liquid phase transition. In addition, it has
been shown that these isotropic potential models follow an extended law of
corresponding states (59). The consequence of this is that the thermodynamic phase
behavior of systems that interact through short-ranged attraction becomes insensitive

to the details of the interaction potential if they are scaled by the proper parameters.

Figure 1.2: Cartoon of simple isotropic model of proteins. Protein molecules are
represented as perfect spheres of diameter o and the interactions
depend only on the center-to-center distance r.

A more complex formulation that has been used to characterize colloidal

interactions and has been applied to proteins comes from DLVO theory (14, 15, 60,



61). In this theory the particles are modeled as ideal spheres with a homogeneous
charge distribution that interact via short-ranged van der Waals attraction and long-
ranged Coulombic repulsion. The solvent is assumed to be a structureless continuum
with a uniform dielectric constant. The potential function that reflects this framework

is the sum of three contributions

UpLyo = Uns T Upaw T Uelec 11
where uys is the hard-sphere excluded volume contribution to the potential, uyqw is the
contribution from the van der Waals attraction, and ueec is the contribution from the
electrostatic repulsion. Within the DLVO framework, the salt screens the electrostatic
interaction between protein molecules, thereby reducing the repulsive electrostatics.
The advantage of DLVO theory is that the model parameters can be directly related to
the solution conditions and physical properties of the system. The van der Waals
contribution is characterized by the Hamaker constant and the size and the separation
distance between the two spheres. The Coulombic repulsion is governed by pH,
which determines the net charge of the protein, and the solution ionic strength, as well
as the size and separation distance.

Studies using simple isotropic models have provided qualitative insight
into the relationship between interactions and the phase behavior of proteins.
Specifically, the metastable liquid-liquid transition exhibited by protein solutions can
be explained in terms of attraction that is short-ranged relative to the size of the
protein. The phase diagrams from these simple models are in qualitative agreement
with experimental observation; however, the model parameters cannot always be
physically related to the solution conditions (pH, temperature, ionic strength), which

are known to determine the protein-protein interactions and therefore phase behavior

10



(62, 63). Consequently, the parameters of these simple models cannot be determined
a priori and can only be used to fit experimental data (62, 63). In addition, the
metastable critical point for protein systems has been shown to be sensitive to the
solution conditions, and this sensitivity cannot generally be captured by spherically
symmetric potentials (64, 65). Thus, simple intermolecular potentials can only be
used as empirical models and cannot be used to predict protein phase behavior for a
wide range of solution conditions.

The phase diagrams predicted by the DLVVO model qualitatively correlate
the experimental phase behavior data for lysozyme and y-crystallin (66—68), but the
model is unable to quantitatively predict phase behavior that agrees with experiment.
There are several problems with DLVO theory that limits its predictive capability for
the phase behavior of proteins. First, the model does not account for other important
solvation forces that are known to be significant, such as hydrophobic interactions and
hydration effects. Omission of these forces is one of the reasons that DLVO theory
failed to describe phase behavior for some proteins such as apoferritin (69) and
hemoglobins (HbS and HbA) even qualitatively (70). In addition, DLVO theory does
not properly take into account specific ion effects because the theory treats ions as
point charges in solving the Poisson-Boltzmann equation (32, 60). Consequently, the
model cannot explain the varying salting-out abilities of different ions at high salt
concentrations. Another limitation of this theory is that it is not capable of explaining
the salting-in behavior of some proteins. This discrepancy is due to the assumption of
a uniform charge distribution, which inherently treats the electrostatics as always
repulsive. However, the distribution of charges carried by the titratable amino acids

can lead to attractive electrostatic interactions. The screening of the attractive
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electrostatic interactions with increasing salt concentration leads to increasing stability
of the protein solution, resulting in salting-in behavior. Therefore, DLVO theory
provides an incomplete description of protein-protein interactions, and cannot be
expected to provide quantitatively accurate predictions of protein phase behavior.
More complex models that go beyond spherically symmetric potentials
have been used to predict the phase behavior of proteins. These models emphasize
different features of protein-protein interactions and have predicted phase behavior
with varying degrees of success. An embedded charge model has been used to
account for the charge anisotropy of proteins (71), but the phase diagrams predicted
from this representation were found to agree only qualitatively with experiment (72).
One class of models that have been used for colloids and have been used to represent
the anisotropy of the short-ranged attractions of proteins are patch models (73-78).
Patch models represent protein molecules as spheres that carry attractive regions on
the surface to account for orientationally local strong interactions. Patch models have
been shown to provide more accurate quantitative representations of protein phase

diagrams (73, 75, 79).

1.4 The Osmotic Second Virial Coefficient: By,

One method for characterizing the effective protein-protein interactions is
through the osmotic second virial coefficient, B,,. Bs; is a dilute solution property that
is a measure of effective two-body interactions in solution, and it provides a link to the
PMF via the statistical mechanical expression for By, which, accounting for

orientation dependence is given as (42, 80)
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Here W is the PMF, r1 is the center-to-center distance, ¢ and & are the spherical
angles representing the location of the second molecule relative to the first, and ¢, S,
yare the Euler angles denoting the rotation of the second molecule (81).

Extensive computations explicitly accounting for the full structural details
of proteins have shown that due to the Boltzmann weighting of the PMF, a few highly
attractive complementary configurations contribute disproportionately to the
calculation of By, (82, 83). That protein-protein interactions can be dominated by a
few highly attractive configurations has been demonstrated experimentally by a single
point mutation of a crystal contact for T4 lysozyme (84). These attractive
configurations that control bulk solution properties are characteristic of molecular
recognition stemming from the geometric complementarity of apposing regions.
These attractive regions can serve as contacts for crystal formation, which suggest a
plausible correlation with crystallization (85) and protein phase behavior (45, 86-88).
For example, when By, is positive, the protein molecules on balance repel one another
and remain stable in solution. As B, becomes negative, the protein interactions are
net attractive and may lead to the formation of condensed phases. The region of
slightly negative B, values known as the crystallization slot (-1x10™ to -8x10™ mol
ml/g®) was identified empirically by George and Wilson to be conducive to the
formation of protein crystals (88). If By, is too negative, the strong attractions may
prevent the protein molecules from rearranging and forming the specific contacts that

lead to a crystalline lattice, resulting in amorphous precipitates and gels.
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1.5 Objective and Thesis Outline

The objective of this thesis is to quantitatively relate protein-protein
interactions to protein phase diagrams in order to develop predictive models of protein
phase behavior at different solution conditions. The motivation stems from the need
for providing a rational methodology for the design and optimization of bioseparation
processes. Developing such rational strategies can be significantly aided by
knowledge of the phase diagram. Experimental measurements of phase diagrams for
proteins is a nontrivial task; it can be expensive in terms of time, labor, and supply of
protein due to the difficulty of characterizing the various dense phases, time to attain
true equilibrium, and the wide range of possible solution conditions. In addition, if
crystallization conditions are not known for a protein, measurement of the solid-liquid
phase boundaries is not possible since crystals are needed. Consequently, complete
phase diagrams have been measured for only a few proteins (89). Therefore,
developing predictive models of protein phase behavior is essential and can have
significant industrial and scientific benefits.

The following chapters aim to elucidate the path from molecular structure
to the thermodynamic properties of proteins. Proteins can be represented at various
levels of coarse-graining, from simple spheres to a full atomistic structure. The level
of structural representation directly impacts the ability to model protein interactions
(PMF), which ultimately allows the prediction of bulk solution properties such as By,
and phase behavior. The conceptual path from molecular structure to thermodynamic
properties is illustrated in Figure 1.3. In this thesis, models that represent proteins at
various levels are explored to evaluate their capability of providing the link between

protein interactions and phase behavior.
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In Chapter 2, an attempt is made to model protein solutions within the
framework of existing continuum thermodynamic models that have been established
for polymer and colloidal systems. This was done by quantitatively evaluating the
relationship of measured B,, and phase behavior data for a model globular protein
using these models. In addition, phase equilibrium is modeled from the osmotic virial
equation derived from McMillan-Mayer solution theory. Chapter 3 focuses on the
anisotropy of protein-protein interactions on the molecular level and how this feature
impacts the prediction of B,,. The anisotropy arising from the shape complementarity
between protein surfaces and the charge distribution is analyzed within the context of
the “patch-antipatch” representation of protein interactions. Further, the numerical
technique for computing B, from atomistic descriptions of proteins is reexamined,
and a new approach is proposed and outlined. This thesis is concluded by
summarizing the findings from this work and recommendations are made for future

directions.

15



Osmotic 2™ Virial
Coefficient: B,,

—

=)

Protein Coarse-Grained Potential of
Structure Model Mean Force ‘

Salt Concentration —»

W(r)kT

Phase
Diagram

Protein Concentration —»

Salt Concentration —

Figure 1.3: Schematic of the conceptual path from molecular structure to
thermodynamic solution properties of proteins, which includes the
osmotic second virial coefficient By, and phase behavior.
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Chapter 2

CONTINUUM THERMODYNAMIC MODELS OF PROTEIN
INTERACTIONS AND PHASE BEHAVIOR

2.1 Motivation and Goal

Unlike previous studies that have taken a molecular approach to develop
predictive models (12, 53, 56, 66-68), a continuum-level approach is explored here to
relate protein-protein interactions and phase behavior. Previous work has
demonstrated a correlation between the osmotic second virial coefficient, By,, and
phase diagrams found from experiments (45, 86, 87). Therefore, there is evidence to
suggest that By, may offer a reasonable quantitative measure of the effective
interactions between protein molecules. That is, the evidence suggests that the overall
effects of the solution conditions (pH, temperature, and precipitant concentration) on
protein-protein interactions can collectively be represented by By,. The aim of this
chapter is to use experimental B, data to quantitatively predict the phase diagrams of
proteins by utilizing existing classical thermodynamic models. The hope is that a
simple continuum model with few parameters can provide a useful mechanistic
framework for predicting the phase behavior of protein solutions.

The models investigated in this work were the Flory-Huggins model (90),
the Haas-Drenth model (91-93), and the osmotic virial equation (94). These models
were used to calculate values of B, and the phase behavior for ribonuclease A in
ammonium sulfate solutions at pH 7 and 23°C and to compare the calculated values to
experimental data obtained by Dumetz et al. (45, 86) (Figure 2.1). The B, values for

this system were measured using self-interaction chromatography (95, 96) and the
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dilute boundary of the liquid-liquid coexistence region of the phase diagram was
obtained by a microbatch technique. This particular system was chosen because the
B2, values partially overlap the binodal curve over the range of 0.90 M to 1.25 M
ammonium sulfate (Figure 2.1). It was therefore possible to make a direct correlation
of By, data with phase behavior within this salt range using the models listed above. It
should be noted that By, is often difficult to measure at salt concentrations in which
phase separation is observed since the attractions are very strong. As a result, B, data
rarely overlap phase behavior data for proteins over the same range of salt
concentration, if at all. This difficulty makes relating complementary sets of data with
the above models challenging.

This chapter of the thesis is organized as follows. The modeling structure
used for relating B, and phase behavior within the framework of the continuum
models is briefly described. For each model, the theoretical foundation is introduced
and the equations that govern phase equilibrium are presented. These equations
provide the modeling structure used for relating B,, and phase behavior. Next, results
of the correlations between experimental B,, and phase behavior data for ribonuclease
A for each of the models are presented and discussed. Finally, conclusions are drawn
on the capability of these continuum models to relate protein interactions and phase

behavior based on the results for ribonuclease A.
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Figure 2.1: (W) Binodal, (®) spinodal, and (¥) B, data for ribonuclease A in
ammonium sulfate system at 23°C, pH 7. The dotted rectangle
encloses the region where B, and phase behavior data overlap.
Results were taken from Dumetz et al. (45, 86).
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2.2 Modeling Structure

The physical parameters for ribonuclease A and the solvent (water) used
for this study are presented in Table 2.1 and Table 2.2, respectively. The specific
volume of ribonuclease A used in these calculations is a value generally used in the

literature for globular proteins (91), which is v,=0.735 ml/g.

Table 2.1: Physical properties of ribonuclease A used in the continuum models.

Property Value Ref

pl 9.6 (45)
MW (g/mol) 13700  (45)
o (nm) 3.1 (86)

w(mllg) 0735  (91)

Table 2.2: Physical properties of water used in the continuum models.

Property Value
MW (g/mol) 18.02
o (g/ml) 0.998
V (ml/mol) 18.06

A schematic of the modeling structure that was followed for relating B,
and phase behavior using the three continuum models is shown in Figure 2.2. With
the Flory-Huggins and Haas-Drenth models, the phase behavior can be predicted
directly from By, values at each salt concentration, or vice versa. In using phase
behavior to calculate B,,, the larger salt range available in the phase behavior data can
be taken advantage of to predict B,,. By following this path, By, predictions can be
made for salt concentrations beyond the experimental range of the B,, data. However,

using measured B, data to find phase behavior predictions is restricted to the window
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of conditions for which both By, and phase diagrams are available. Consequently,
phase behavior calculations cannot be made at higher salt concentrations due to the
lack of By, data.

For the osmotic virial equation, only one approach was followed, in which
experimental By, data were used as inputs to predict the corresponding phase behavior.
The reason this path was chosen is that By, data are needed to compute higher virial
coefficients necessary for the osmotic virial equation to relate interactions and phase
behavior. The reverse approach of using experimental phase behavior data to
calculate virial coefficients could not be utilized because of the need to calculate both

B2, as well as at least one higher virial coefficient.

Flory-Huggins
Haas-Drenth

Salt Concentration —
—— ﬁ

Osmotic virial
equation

—

B,,
Protein Concentration ——

Salt -
Concentration

Figure 2.2: Schematic of the modeling pathways used to relate B,, and phase
behavior with the continuum models.
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2.3 Flory-Huggins Model

2.3.1 Theory

The Flory-Huggins model of polymer solutions is derived from simple
lattice theory for fluids and has historically been used to predict the phase behavior of
polymer-solvent systems (90). In this model, the system is considered to be composed
of uniform lattice sites that can be occupied by either one solvent molecule or a
polymer subunit (monomer). The polymer is represented as a linear, flexible chain of
interconnected subunits in which the chain is free to adopt any configuration. Each
monomer is allowed to occupy any one lattice site as long as the monomers remain
interconnected. Because of its simplicity and few parameters, the Flory-Huggins
model was deemed worth exploring. The excess free energy of the system has been
derived as (97)

Q—ex = [xl ]nﬂ + x, lnﬁ] + x(xy + mx,) P10, 2.2
RT X1 X2

where 1 and 2 refer to water and protein, respectively, x; is the mole fraction of species
i, and ¢ is the volume fraction of species i. The m parameter reflects the degree of
polymerization of the polymer relative to the size of the solvent molecule and can be

calculated as the ratio of the molar volumes of the polymer to the solvent
m=—= 2.3

where V; is the molar volume of species i. Based on the physical parameters listed in
Tables 2.1 and 2.2, a value of 559 was set for the m parameter. The y parameter is an
adjustable parameter that represents the effective interaction between the solute and

solvent.
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For the Flory-Huggins model, it can be shown that liquid-liquid phase
equilibrium is modeled by

1— ¢! 1
In (1_—@21)+(1—E) (@ — i)+ 2[(P? — (@21 =0 24

1n(%,>+ (m = DI - ¢5) - (1 - ¢ + -
my[(1—¢3)* — (1 —¢3)?] =0
The interaction parameter y is linearly related to By, by (14)
B,, = V—22<1 - x) 26
v, \2
where v, is the specific volume of the protein in units of volume/mass. The spinodal
region of the phase diagram can be determined by the criterion for thermodynamic
stability given as (97)
0%AGmix
¢’

From the criterion given by equation 2.7, the spinodal curve from the Flory-Huggins

=0 2.7

model is

_ ¢p,(m—-1)+1
x= 2me, (1 — ¢,)

2.8

The critical point of the phase diagram occurs at the maximum of the spinodal curve

and therefore can be determined by setting the derivative of equation 2.8 with respect
to the volume fraction ¢, equal to zero. From this procedure it can be shown that the
critical volume fraction and y are related to the m parameter by

1

2 critical = Tevm 2.9
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Xcritical = 2 \/ﬁ '

The critical By, is obtained by substituting equation 2.10 into equation 2.6, which

yields

BZZ,critical = 2_ m 2.11

4

vz <2\/ﬁ + 1)

2.3.2 Results

The By, predictions made from experimental phase behavior data using the
Flory-Huggins model are presented in Figure 2.3. The model predictions correctly
capture the qualitative trend of decreasing B, values with increasing salt
concentration, but the results differ quantitatively from the experimental values. The
Flory-Huggins model predicts stronger protein-protein attractions than those reflected
by the experimental measurements for the entire By,-phase behavior overlap region
(0.90 M to 1.25 M). In addition, the steep slope observed in the experimental B,, data
is an important feature not captured by the model.

The reverse path in which phase behavior was predicted from
experimental By, data was also followed using the Flory-Huggins model. The model
predicts phase separation to occur at higher salt concentrations, as suggested by its
critical point, which is located at 1.22 M ammonium sulfate (Figure 2.4). The critical
point represents the threshold for phase coexistence, with phase separation not
observed at salt concentrations less than that at the critical point. The critical point
predicted by the model indicates that phase separation occurs only at salt
concentrations beyond the overlap region for which both B,, and phase behavior data

are not available. As a result, binodal calculations could not be performed using the
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model due to the lack of experimental By, values at the higher salt concentrations.

Despite this limitation, the location of the critical point suggests that the Flory-

Huggins model does not predict phase equilibrium over the same salt range as the

experimental data, and hence does not adequately describe the phase behavior.
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Comparison of B, predictions from the (®) Flory-Huggins model
with (M) experimental By, data.
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Figure 2.4: Critical point predicted by the Flory-Huggins model compared with
(m) experimental binodal data. The critical point is located at a salt
concentration of 1.22 M. The location of the critical point
demonstrates that the equilibrium phase boundary is located at
higher salt concentrations.

A sensitivity analysis was performed to probe the response of the B;;
predictions to small perturbations in the Flory-Huggins model parameters. The
parameter that was perturbed was the m parameter, which characterizes the size of the
protein, which is directly related to the specific volume of the protein v,. The m
parameter was adjusted by +10% from the original value of m=559 used for

ribonuclease A and B, values were then recalculated from the model. The predicted

26



B2, values for the small adjustments in m are presented in Figure 2.5. Perturbing the m
parameter causes a shift in the predictions; decreasing m causes the By, predictions to
shift to higher values whereas increasing m causes them to shift to lower values.
However, tuning the m parameter does not lead to a significant change in the slope of
the By, predictions. Thus, based on the results from the sensitivity analysis, there does
not appear to be a value of m that would lead to B, predictions that match the

experimental data more convincingly.
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Figure 2.5: By, predictions from Flory-Huggins model calculated from values of
(¥v) m=503 and (¥) m=615 compared with original predictions from
(®) m=559 and (M) experimental By, values.
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The effect on the phase behavior predicted from By, data using adjusted
values of the m parameter was also investigated. As previously mentioned, the model
yielded a critical point that was located at higher salt concentrations than the
experimental data suggest. For the Flory-Huggins model, the critical point location
depends solely on the value of the m parameter, as shown in equations 2.9 and 2.10.
Figure 2.6 shows the effect of changing m by +10% from the original value (m=559)
on the location of the critical point. Increasing m shifts the critical point towards
higher salt concentrations and lower protein concentrations whereas decreasing m
shifts the critical point towards lower salt concentrations and higher protein
concentrations. Based on this trend, m should be decreased in order for phase
separation to be predicted at the lower salt concentrations found in the experimental
data. The m parameter was subsequently decreased by 50% of the original value used,
to a value of 279. The predicted binodal curve was calculated since phase coexistence
shifted to lower salt concentrations, for which B,; interaction data were available
(Figure 2.7). However, it does not appear that there is a physically reasonable value of
m that would lead to predicted phase behavior from By, data that matches the
experimental results. Consequently, extension of this analysis to lower m values was

not performed.
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2.4 Haas-Drenth Model

2.4.1 Theory
The Haas-Drenth model is based on the free energy of mixing for hard
spheres in a solvent and has been used to describe the protein-water phase diagram.

The free energy per unit volume in this model is given as (91-93, 98)

b3 (0P ¢, — 645 + 4¢§}l

1
G((p):a[(a)gl'i'kT(pzlnz—kT{ (1_¢2)2

where 2 is the molecular volume of the protein, m represents the size of the protein

2.12

relative to the solvent molecule, k is the Boltzmann constant, T is the absolute
temperature, g, represents the interaction between protein molecules in solution, ¢, is
the volume fraction of protein, and ¢ is the protein volume fraction in the crystal
(usually taken to be 0.50). Based on the physical parameters listed in Tables 2.1 and
2.2, a value of 559 was set for the m parameter. The first term of equation 2.12
represents the enthalpic contribution from protein-protein interactions. The second
and third terms together represent the contribution from the entropy of mixing for hard
spheres (14, 15). Liquid-liquid coexistence for this model is obtained from the two

equilibrium conditions

0G! oG"!
Gl(d)é) - G”(d)él = ¢£ < 1> - qbél < 11> 2.13
ad)z ¢” ad)z ¢I
2 2
(aa’) B (ac“) )14
001 \99Y ), |
The g;interaction parameter is linearly related to By, by
V2 ga
B,, = 4
22 MW( + kTqu) 2.15
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where MW is the molecular weight of the protein.

The spinodal curve can be derived by applying the condition for
thermodynamic stability given by equation 2.7 to the free energy model in equation
2.12. The critical point occurs at the maximum of the spinodal curve and therefore, by
taking the derivative of the equation for the spinodal curve, it can be shown that the

Haas-Drenth free energy model predicts a critical volume fraction and g, as

¢critical =0.130 2.16

Yrcritical = —10.601kT ¢, 2.17
The critical By, is obtained by substituting equation 2.17 into equation 2.15, which
yields

6.601v,

BZZ,critical = W 2.18

2.4.2 Results

The By, predictions made from experimental phase behavior data using the
Haas-Drenth model are presented in Figure 2.8. Similar to the predictions from the
Flory-Huggins model, the Haas-Drenth model predictions correctly capture the
qualitative trend of decreasing B, values with increasing salt concentration.
However, the predictions are still quantitatively different from the experimental
values. The model predicts values of By, that are on the same order of magnitude as
the data, but seems to underpredict the attractions at higher salt concentrations. In
addition, the steep slope observed in the experimental B,, data is an important feature

not captured by the model.
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Figure 2.8: Comparison of By, predictions from the (A) Haas-Drenth model with

(m) experimental B, data.

To fully explore the prediction capability of the Haas-Drenth model, the

reverse path in which phase behavior was predicted from experimental B, data was
also followed. The predicted equilibrium binodal boundary and critical point are
presented in Figure 2.9. The Haas-Drenth model appears to provide a better
description of the phase behavior than the Flory-Huggins model. Phase separation is
predicted to occur in the small overlap salt range of the experimental data. The
predicted binodal phase boundary also decays more sharply when compared with the

experimental data. While the phase behavior results appear to be reasonable, the
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experimental data show that the actual critical point occurs at a lower salt
concentration than that predicted by the model, which is at 1.02 M ammonium sulfate.
Therefore, it would seem that the Haas-Drenth model does not predict phase

equilibrium over the same salt range as the experimental results.
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Figure 2.9: Phase behavior predictions from experimental B, values with the
Haas-Drenth model compared with (W) experimental binodal data.
The Haas-Drenth model does predict (A) the binodal boundary to
exist within the overlap region. The predicted (#) critical point
occurs at an ammonium sulfate concentration of 1.02 M and a protein
concentration of 177 mg/ml.

The sensitivity of the B, predictions to perturbations in the model

parameters was explored. The m parameter was adjusted by +10% from the original
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value of m=559 used for ribonuclease A and B, values were then recalculated. The
predicted B, values for the adjusted values of m are presented in Figure 2.10. Similar
to the Flory-Huggins model, decreasing m causes the By, predictions to shift to higher
values whereas increasing m causes the predictions to shift to lower values. However,
the B, predictions seem to be insensitive to small adjustments in m. In addition,
tuning the m parameter does not lead to a change in the slope of the By, predictions.
Thus, there does not appear to be a value of m that would lead to B, predictions that

match the experimental data.
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Figure 2.10: B, predictions from the Haas-Drenth model calculated from values
of (®) m=503 and (©) m=615 compared with original predictions
from (A) m=559 and (M) experimental B, values.
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The effect on the phase behavior predicted by the Haas-Drenth model for
adjustments in the value of the m parameter was also explored. The location of the
critical point of this model depends primarily on the specific volume of the protein 1,
which in turn is directly related to the m parameter. Increasing m shifts the critical
point towards higher salt concentrations and lower protein concentrations, whereas
decreasing m shifts the critical point towards lower salt concentrations and higher
protein concentrations. Since the original calculations did not predict phase separation
to occur at the lower salt concentrations seen experimentally, m had to be decreased in
order to shift the predicted boundary in the direction of lower salt concentration. The
m parameter was subsequently decreased by 50% of the original value used to a value
of 279. The resulting binodal curve from this adjustment compared with the original
prediction is shown in Figure 2.11. The adjustment did not shift the boundary
significantly enough to capture the correct phase behavior over the entire salt range.
Thus, it appears that there is no physically realistic value of m that would lead to phase

behavior predictions consistent with the experimental data.
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Figure 2.11: Predicted binodal boundaries from the Haas-Drenth model for (A)
(®) m=279 compared with the original predictions from m=559 and
the (M) experimental results.

37



2.5 Osmotic Virial Equation

2.5.1 Theory
The osmotic virial equation was derived by McMillan and Mayer to
describe the nonideality of dilute solutions and is given by (94)

I c
ﬁ=W+BZZC2+B222C3+.“ 2'19

where /7 is the osmotic pressure, R is the molar gas constant, and c is the protein
concentration in units of mass/volume. Equation 2.19 is frequently truncated at the
B2, term; however, in order for the model to predict phase separation, it must include
at least the term in the osmotic third virial coefficient B,y,, which represents three-
body interactions in solution. The governing equations for liquid-liquid coexistence
for the osmotic virial equation can be derived as (see Appendix A)

MW

v

- Mw\?
M-I_BZZ <_> (¢IZ_¢IZI)+B222<

v v

3
) @i-otr=0 220

2
In (ﬁ> + (M - 1> (¢ — du)

¢II ZZ 221

3B,,,MW?  By,MW? By, MW?
2 72 22

Predicting fluid phase equilibrium requires that the third virial coefficient
B222 be specified. Bgp, can be theoretically calculated using a simple model of the
potential of mean force (PMF) for protein-protein interactions. The hard-core
attractive Yukawa potential was chosen as the PMF model because it has been used to
describe colloidal interactions (6, 56). The Yukawa potential was originally derived
as a screened Coulombic PMF model to capture long-ranged repulsive electrostatic

interactions (101), but it has been modified to model the short-ranged attractions that
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dominate phase separation in protein solutions. This Yukawa potential consists of a
hard-sphere contribution and an attractive tail and is given by (2, 17)

00, r<o

u(r) = _g_o-e—b(r—a)’ r>go 2.22
r

where r is the center-to-center intermolecular distance, ¢ is the interaction well depth,
ois the particle diameter, and b is a parameter that characterizes the range over which
the attraction occurs in units of inverse length. The potential can be rewritten in terms
of reduced variables, in which the parameters of the potential are scaled by
characteristic values. If reduced variables are defined as b*=bao, r*=r/o, and u*=ul/e¢,
the Yukawa potential can be expressed as
00, r'<i1
W) =4 0D 2.23
{—T, r'=1
A plot of the Yukawa potential for different values of the range parameter b* is shown
in Figure 2.12.
B2 was calculated from experimental B, data for different values of b*.
To determine a starting value for these calculations, b* was chosen such that the
Yukawa potential approximately overlapped with the 140-35 Lennard-Jones potential.
The 140-35 Lennard-Jones potential was empirically found to adequately describe
short-ranged non-electrostatic interactions between protein molecules based on more
extensive atomistic simulations of protein-protein interactions (78). From this
procedure, a value of b*=22 for the Yukawa potential was found to approximately

overlay with the 140-35 Lennard-Jones potential (Figure 2.13).
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Figure 2.12: Plot of the Yukawa potential in reduced units for b* values of (-) 5,
(<) 10, (=) 20, and (-) 30. The (-) hard-sphere repulsion occurs at
r*=1.0. Increasing b* corresponds to a decrease in the range of
attraction.
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Figure 2.13: Comparison of the (=) 140-35 Lennard-Jones potential with the (-)
Yukawa potential for b* = 22.

The procedure for calculating B,,, from By, involved the following steps:
1) The reduced interaction range parameter b* was fixed and the molecular diameter,
o, of ribonuclease A was taken to be the sphere-equivalent value of 3.1 nm (86).
2) The &parameter was determined from the isotropic model for the second virial

coefficient, which is given by (42)

_ _ 2nly _1|r24 2.24
22 = MWZf r2dr :
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where Np is Avogadro’s number and u(r) is the Yukawa potential. The experimental
B2, values were used as inputs into equation 2.24 and the corresponding ¢ values were
calculated at each salt concentration.

3) Values of the ¢ parameter from step 2) were used to calculate By,, values from the

equation for third virial coefficients (102-104)

T12+723
3222= 3MW f f JI- f(ri)raf (ri3)rs 2 25

T12—T23l
X f(1rp3)123 drypdry3drys
where rj; is the intermolecular separation between particle i and j and f(r;;) is the Mayer

cluster function defined as (42)

f(ry) = exp (- %) —1 2.26
The model for the third virial coefficient represented by equation 2.25 assumes that
the molecules are spherically symmetric, the interactions are pairwise additive and
multibody interactions are neglected. To compute B, using the Yukawa potential in
equation 2.25, the method of Alder and Pople (103) for calculating third virial
coefficients for potentials with hard-sphere cores was utilized. This method was
previously used by Graben and Present to calculate third virial coefficients for the
Sutherland potential (104). The computed third virial coefficients were compared
with the results of Naresh and Singh (105), who utilized the Mayer sampling
technique to calculate the virial coefficients for the Yukawa potential. All calculations
and data analysis were performed using appropriate numerical tools in Matlab (see

Appendix B for actual code).
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2.5.2 Results

The computed By,, values are presented in Figure 2.14. Different trends
were observed in the behavior of By, for different b* values as a function of salt. For
b*=25, By, initially increases with increasing salt concentration but then sharply
decreases to negative values. This trend has been observed in the behavior of third
virial coefficients for other potential models (102). For b*=35, By, is positive
throughout the salt range of interest, but the values appear to plateau around 1.25 M,
which suggests that the values would begin to decrease at higher salt concentrations.
When b* is further increased to a value of 45, B,y increases over the entire salt range.
Thus, it can be inferred that as b* increases, By, predicted from the Yukawa potential
increases over a wider range of salt concentration.

The phase diagram predictions from the experimental By, data using the
osmotic virial equation are presented in Figure 2.15. Phase separation was predicted
by the model for B, values calculated using b* values of 22 or greater in the Yukawa
potential, which corresponds to an interaction range that is 1/22 of the particle
diameter o, or less than 1.5 A. It was determined from these calculations that positive
B222 values are needed in order for the osmotic virial equation to predict phase
separation. Phase behavior calculations with the model were made for b* values of
25, 35, and 45, corresponding to decreasing interaction distances. Calculations were
not performed for higher values of b* because such short interaction ranges were
considered physically unrealistic. The phase behavior predictions follow the correct
qualitative trend of decreasing solubility with increasing salt concentrations; however,
none of the values of b* yield phase behavior that matches the experimental data. In
each case, phase separation is not predicted at lower salt concentrations, for which it is

observed experimentally.
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Figure 2.14: Computed B,,, from the Yukawa potential for b* values of (®) 25,
(4)35,and () 45.
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Figure 2.15: Phase behavior predictions from the osmotic virial equation based
on By, calculated from the Yukawa potential. Predictions were
made for b* values of (®) 25, (A) 35, and () 45 and compared with
the (M) experimental binodal data.
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The sensitivity of the phase equilibrium predictions from the osmotic
virial equation to experimental errors in B,, was also explored. An approximate
estimate of +2x10™ mol ml/g” was assumed for the error in the experimental B, data.
The original experimental By, values were adjusted by either +2x10™* mol ml/g?® or
-2x10™ mol ml/g? and corresponding Baz, values were recalculated for fixed values
b*. The phase diagrams were subsequently recalculated from the osmotic virial
model. The resulting phase diagram predictions for b* values of 35 and 45 are
presented in Figures 2.16 and 2.17, respectively. Decreasing the B,, values by -2x10™
mol ml/g? causes the predicted equilibrium phase boundary to fall back to lower
protein concentrations, which essentially means that the binodal curve becomes
broader. This trend is to be expected because decreasing B, i.e., increasing the
strength of attraction, would lead to the protein being less soluble in solution and
therefore would push the equilibrium phase boundary to lower concentrations.
However, it does not appear that the predictions are sufficiently sensitive to B,
changes that errors in B,, would account for the discrepancy between the predicted

binodal and the experimental phase behavior results.
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Figure 2.16: Binodal predictions based on b*=35 compared with the (H)
experimental binodal data. Osmotic virial predictions were made
from the experimental By, values with an assumed error of (®)
+2x10™* mol ml/g? and () -2x10™ mol ml/g?. The results are
compared with the predictions from the (4) original B, data set.
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Figure 2.17: Binodal predictions based on b*=45 compared with the (H)
experimental binodal data. Osmotic virial predictions were made
from the experimental B, values with an assumed error of (®)
+2x10™* mol ml/g? and () -2x10™ mol ml/g?. The results are
compared with the predictions from the (4) original B, data set.

Because the predicted phase coexistence computed using the Yukawa
potential did not match experiment, other potential of mean force models were
explored to determine if they could lead to better phase behavior results. These
models included the square-well potential, 140-35 Lennard-Jones potential, and the
ten Wolde-Frenkel potential. The square-well potential was chosen because of its

simplicity and the fact that since the interactions between proteins are very short-
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ranged, a potential of mean force model of this form may be adequate to describe the
interaction. The 140-35 Lennard-Jones potential (78) was used because this isotropic
potential provides a reasonable approximation to detailed atomistic simulations of
protein-protein interactions. The ten Wolde-Frenkel potential was also investigated
because it has been used to account for both direct and for solvent-induced interactions
between globular proteins (12). The same methodology as that for calculating B2,
from the Yukawa potential was utilized for these potential models.

The square-well potential is the simplest attractive potential and is given
in terms of reduced variables as

00, r <1
w*(r*) =4-1, 1<r <y’ 2.27
0, yr<r*<oo

where yis the parameter that characterizes the range of attraction. B, for the square-

well potential has the analytical form (106, 107)

(y® — 18y* + 32y3 — 15)x

+(=2y° + 36y* — 32y3 — 32y? + 16)x?
—(6y® — 18y* — 18y2 — 6)x3] fory <2

Byyy = ——=

2.28
= —_ — 3 _ 2 _ 2
TTE [5—17x + (32y° — 18y° — 48)x
—(5y° —32y3 + 18y% + 26)x3] fory = 2
where x is defined as
£
X = exp (k_T) -1 2.29

A plot of By, values calculated from equation 2.28 for different values of y is
presented in Figure 2.18. For low values of y, B,y initially remains fairly flat but then
decreases sharply as the salt concentration increases. When yis sufficiently large, B,z

instead increases monotonically within the salt range of interest. The results suggest
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that the By,, values determined from higher values of y»would be more suitable for
calculating phase equilibrium since positive values of B, are needed for the osmotic

virial equation to predict phase separation.
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Figure 2.18: By, computed from the square well potential for yvalues of (W) 1.05,
(@) 1.20, (¢) 1.50, and (4A) 2.10.

B222 was also computed from the 140-35 Lennard-Jones potential, which is

given by

w(r*) = 2.1165 l( ! )140 _ (i)gsl 2.30

F r*
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A plot of the resulting By,, values is presented in Figure 2.19. The computed B,

values are mostly negative over the range of salt concentration and decrease sharply at

higher salt concentrations.
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Figure 2.19: B,y computed from the 140-35 Lennard-Jones potential.

The ten Wolde-Frenkel potential is a generalized Lennard-Jones potential

and is given as

u(r?) = 4 1 o 1 2.31
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where « is the parameter that controls the range of attraction. As « increases, the
interaction range decreases and vice versa. A plot of the potential for different values
of ais shown in Figure 2.20. An « value of 50 was determined previously to
qualitatively reproduce the phase behavior of proteins (12), so this value was used as a
starting point in the B, calculations. The « parameter was then adjusted and the

corresponding B, values were computed, as shown in Figure 2.21.
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Figure 2.20: Plot of the ten Wolde-Frenkel potential for a. values of (-) 10, (=) 20,
() 30, and (-) 50.
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Figure 2.21: By, computed from the ten Wolde-Frenkel potential for o values of
(m) 10, (A) 20, and (®) 30.

Phase behavior calculations were subsequently performed using B,
values calculated from the above potential of mean force models. However, the
resulting B;, values did not lead to phase separation with the osmotic virial equation.
The inability to predict phase coexistence suggests that these potential models are not
adequate for describing the interactions for ribonuclease A. However, the problem

may arise from the need to include higher-order virial coefficients to obtain better

phase coexistence predictions.
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2.6 Discussion

The discrepancies between the model predictions and experimental data
may be the result of the simplifying assumptions inherent in the continuum models.
The lattice representation used by Flory-Huggins theory allows the polymer chain to
adopt any random configuration, which is unrealistic for proteins since they are known
to have a preferred native conformation. In addition, the interaction parameter
assumes that each monomer interacts equally with the solvent molecules and that the
magnitude is dependent on the number of contacts. This assumption effectively
represents the interactions as being isotropic since the theory does not account for
strongly attractive regions of the polymer chain. The Haas-Drenth model treats
protein molecules as interacting hard spheres where with no regions that display
strong attractions. The framework of hard spheres also implies the assumption of
isotropic interactions. The inability of the osmotic virial equation predictions to match
experimental phase behavior could be partially due to the assumptions made in
calculating Ba,, from By, data. By, was determined by assuming pairwise additivity
and neglecting multibody interactions in addition to the isotropic assumption.

Another possible reason for the inability to predict phase behavior could
be the form of the potential of mean force used to calculate B,,,. The Yukawa
potential is a simple isotropic potential model that would not be expected to
realistically capture the complex anisotropic interactions of proteins in solution. The
other potential models that were utilized to calculate B,,,, which included the square-
well potential, 140-35 Lennard-Jones potential, and ten Wolde-Frenkel potential, did
not result in B,y values that led to prediction of phase equilibrium. Furthermore,
improvements in predicting phase behavior with the osmotic virial equation may

require inclusion of higher-order virial coefficient terms; however, calculating such

54



virial coefficients from PMF models is a difficult task and therefore may not be an
efficient path to follow for future work.

Another issue that may explain the quantitative disagreement between
prediction and experiment could be the orientation-averaged nature of By,. While By,
is dominated by a few attractive configurations due to the Boltzmann weighting of the
PMF (82), the orientational averaging essentially washes out the molecular details of
the interactions. Because of this averaging, B,, provides an incomplete representation
of protein-protein interactions and thus would be expected to be limited in its ability to

quantitatively predict phase behavior.

2.7 Conclusions

Isotropic interactions are commonly assumed in the models used, and may
be the reason for the limited quantitative capabilities of the models to predict protein
phase behavior. Therefore, based on the work that has been done with the continuum
models, it can be concluded that the anisotropic character of protein-protein
interactions should be taken into account to quantitatively predict protein phase
behavior. In order to account for anisotropy of protein interactions to predict phase
behavior, molecular-level modeling methods will be needed.

One class of models that has been used to account for the anisotropy of
colloidal particle interactions and has recently been applied to proteins are patch
models (74). These models have been used to simulate colloidal phase behavior and
the results from these models have been shown to be different from those resulting
from isotropic models. The use of patch models to model protein-protein interactions

is the subject of the next chapter.
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Chapter 3

PATCH-ANTIPATCH MODEL OF PROTEINS AND THE CALCULATION
OF B2,

3.1 Introduction

3.1.1 Review of Patch Models

The interactions of protein molecules are inherently anisotropic. The
physical basis of this anisotropy stems from the nonuniform charge distribution,
nonspherical shape, rough local topography, and heterogeneous functionality on the
protein surface. Anisotropic interactions are responsible for the wide range of solution
phenomena observed in proteins, which include the formation of clusters, gels,
glasses, and crystal nucleation. Incorporating this feature in modeling protein-protein
interactions is important in the simulation of protein phase behavior. However, direct
molecular simulations of phase behavior using models of proteins represented in full
atomistic detail with explicit solvent are not presently computationally tractable. A
more feasible approach entails utilizing a simplified coarse-grained representation of
protein molecules that captures the essential physics of protein interactions. One such
approach is the use of patch models.

Several classes of patch models have been proposed to account for the
orientation dependence in protein-protein interactions. One of the earliest patch
models applied for proteins was the aeolotopic model developed by Lomakin et al. for

describing the phase behavior of y-crystallin (75). In this model, the protein molecule
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is represented as a sphere of which the surface includes a number of attractive spots.
Neighboring protein molecules are said to make contact when the interactions are
between these spots, with the interaction modeled by a square-well potential.

Lomakin et al. found that by including this directionality in modeling the interactions,
the predicted fluid-fluid coexistence curve broadens and more closely matches
experimental measurements than does the isotropic square-well model. Sear (76) later
developed a conical site model for globular proteins in which the particle is modeled
as a hard sphere and interactions occur between paired sites. Using Wertheim
perturbation theory to predict phase behavior, he found that this model was capable of
predicting a metastable fluid-fluid phase transition. Kern and Frenkel (73) proposed a
patch model for colloidal particles in which the specific directional interactions
between patches depend on the relative orientations of two interacting protein
molecules. Their model offered greater flexibility in the number of patches, patch
coverage, and range of patch-patch interactions. Liu et al. (79) later extended the Kern
and Frenkel model by adding a background isotropic square-well attraction in addition
to the patch interactions to simulate protein phase behavior.

The various patch models that have been used to represent proteins have
different characteristics, but they do share common features. They generally represent
each protein molecule as a hard sphere with specific attractive regions on the surface.
In most of the models studied, each patch on one sphere can interact equally with all
other patches on surrounding spheres. The interactions between these regions are
strongly attractive and short-ranged with respect to the particle size. Most work with
patch models has described the patch-patch attractions using the square-well potential,

but there have been studies that have used different potential models (77, 78, 108).
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Patch models involve a larger parameter set, which includes the number of patches,
patch size, patch arrangement, and range and strength of patch-patch interactions.
Thus, patch models offer greater flexibility and potential for describing the rich variety
of dense phases and their phase boundaries observed experimentally for proteins.

The phase behavior predicted by patch models is both qualitatively and
quantitatively different from the behavior predicted by isotropic potential models.
Similar to isotropic models, patch models are able predict a metastable fluid-fluid
transition region for short-ranged interactions (73, 76, 77, 109, 110). However, the
number of patches is one of the key parameters that controls the phase diagram (79,
111-115). For patch models, it has been shown by theory and simulation (79, 1009,
113, 114) that decreasing the number of patches shifts the critical point to lower
temperatures and densities. When compared in reduced units, the fluid-fluid
coexistence curve is broader and the form is in quantitative agreement with
experimental data for lysozyme and y-crystallin (73, 75, 109). This result indicates the
importance of patchiness in modeling phase behavior for proteins. Patch models also
open the possibility of describing competing crystalline phases that can be
orientationally ordered or disordered (108, 110, 116-120). The types of stable crystal
structures predicted depend on the compatibility of the patch arrangement on the
surface. Most studies of patch models so far have focused on symmetric arrangements
of patches, although the distribution of attractive patches on actual protein surfaces is
certainly non-uniform. Incorporating anisotropy through patch models has been useful
in describing the rich phase behavior known experimentally for proteins.

Current patch models provide a useful framework for incorporating

anisotropy; however, they are inadequate in representing some of the unique
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molecular details of proteins. First, these models assume that the protein molecules
are spheres, which is a major simplification since even globular proteins are not
perfectly spherical. In addition, most studies of patch models have assumed symmetric
patch distributions where each patch can interact equally with all other patches. In
reality, the attractive regions are non-uniformly distributed on the protein surface.
Also, specific interactions between geometrically complementary regions are known
to be an intrinsic feature of protein-protein interactions (121). It is these highly
specific attractions that play an important part in determining solution properties, such
as the osmotic second virial coefficient By, and that control protein crystallization
(82). Therefore, current patch-patch models cannot truly describe the structure of any
real protein solid phase. So far, there have been no studies that have explored the
effect of non-uniform patch distribution on the structure of crystals and other dense
phases. Theoretical examination of protein phase behavior with patch models could
be improved by realistically representing the structural details of protein shape, patch
distribution, and specific interactions between geometrically complementary regions.
One model that takes a step in this direction is the patch-antipatch model developed by

Hloucha et al. (78), which is explored in this chapter.

3.1.2 The “Patch-Antipatch” Model

The patch-antipatch model explicitly accounts for highly specific
interactions that arise from complementary regions on the protein surface. In this
model, the protein is represented as a sphere decorated with patches and corresponding
antipatches on the surface (Figure 3.1). In addition to the weak, distance-dependent

isotropic interaction, there are strong interactions that occur only between patch-
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antipatch pairs, which reflect the specific pairwise attractions between geometrically

complementary regions. The interaction potential that describes this framework is

Np
w(r) = ieo () + ) S (@, @)ttpa, (1) 3.1
mn
in which
([ 2a,\° 2a,\°
|<1 _ﬂ> < _ﬂ> Jif @y < ap/z'“n < “p/z
St @) = | “ % 3.2

0, otherwise

where Nj is the number of patch-antipatch pairs and uis, and upam,» are the isotropic
and patch-antipatch contributions to the interaction potential, respectively. Each
unique patch m interacts only with its corresponding antipatch n. The patch-antipatch
interactions are modulated by the scaling function S(am, an), which is dependent on
the relative orientations of the patch and antipatch o, and a,, respectively, and on the
size of the patches . The virtue of this model over other patch models is that it
explicitly represents the molecular recognition phenomenon characteristic of protein-

protein interactions.
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Figure 3.1: A cartoon of a “patch-antipatch” model of protein molecules. The
“patch” is colored in blue and the corresponding “antipatch” is
colored in red. Specific interactions occur only between unique blue
and red colored regions, which depend on the angles of alignment auy,
and a,.

3.1.3 Objective

The objectives of this work are to 1) identify patch-antipatch pairs for
specific model proteins and determine the physical patch-antipatch parameters and 2)
analyze the impact of these highly attractive patch-antipatch pairs on the computation
of By, at the atomistic level. Understanding the role of these patch-antipatch pairs will
give insight into the anisotropic nature of protein-protein interactions and the influence
it has on the solution properties of proteins, which includes phase behavior.

The unique patch-antipatch parameters for individual proteins are
determined using a hybrid atomistic/continuum methodology for calculating
interaction energies between protein molecules (82, 122). This method involves
simulation of two protein molecules modeled in full in atomistic detail and calculating

the energy of interactions for different angular configurations. This method is capable
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of capturing the effects of geometric complementarity between the surfaces of protein

molecules. The parameters are:

1) The number of patch-antipatch pairs Np

2) The location and arrangement of the patch-antipatch pairs specified by the
translation angles ¢, @and rotation angles «, g,

3) The size of the patch-antipatch pairs o

4) The strength of patch-antipatch interactions &,

These patch-antipatch parameters are determined for two model proteins that exhibit

different solution behavior: lysozyme and chymosin B. Lysozyme has been

extensively studied in the literature and is known to exhibit salting-out behavior for a

wide range of pH values (123). Chymosin B, on the other hand, exhibits salting-in

behavior at pH values near its pl, which is thought to be due to the anisotropy of its

charge distribution (124). The structural data from the PDB files and physical

properties of these model proteins are presented in Table 3.1.

Table 3.1: Proteins studied for patch-antipatch analysis and their physical

properties.
Protein PDB ID MW (g/mol) Residues  pl
Lysozyme 4LYZ 14300 129 11
Chymosin B 1CMS 35673 323 4.6

3.2 Theory and Methods

3.2.1 Determining “Patch-Antipatch” Pairs
Patch-antipatch pairs were determined from calculations of short-ranged

attractions (primarily van der Waals interactions) between two protein molecules
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represented in full atomistic detail. Protein structures were obtained from the atomic
coordinates contained in PDB files from the RCSB Protein Data Bank (www.pdb.org).
The protein molecules were assumed to be rigid bodies in their native conformation.
Because of the short-ranged nature of van der Waals attractions, these interactions are
sensitive to the local geometry of the surfaces. In fact, the level of detail used for the
protein structure has a profound effect on the magnitude of the van der Waals
attraction (18). Thus, regions where there is geometric complementarity of apposing
surfaces lead to stronger attraction. Shape complementarity of the surfaces plays an
important role in the “lock and key” mechanism that is intrinsic in the biological
specificity of protein-protein interactions.

The attraction between two protein molecules was quantified by
calculation of the interaction energies, which depends on the relative orientations of
the molecules. The interactions for a unique angular configuration were determined
by fixing one protein molecule at the origin and translating the second molecule
towards the first in fixed steps, with the interaction energy calculated at each step. For
orientations where attractions are strong, this leads to a potential with a larger well
depth. Thus, a “patch-antipatch” pair is characterized by angular orientations that lead

to interaction potentials with particularly deep wells.

3.2.2 Interaction Energies

3.2.2.1 Short-Range Interactions
A hybrid atomistic/continuum method was used to calculate the short-
ranged interactions (82, 122); a brief review of the model formulation is given here.

In this formulation, interactions between two protein molecules are calculated as a
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sum of the pairwise interactions between the atoms of the proteins, with solvent
effects implicitly taken into account. The interactions between atom pairs are modeled
based on the separation distances between the atoms. For atom pairs separated by a
center-to-center distance of more than 6 A, the interactions are determined by the

continuum Lifshitz-Hamaker formulation of van der Waals interactions given by

A 1
Ukt = ——’;f f — dV,dV 3.3

= Jy, Jy;
where rjj is the center-to-center separation distance between two volume elements dV;
and dVj, and Ay is the Hamaker constant, which for protein-water-protein interactions
has been determined to be 3.1 kT (125). If two atoms are represented as spheres of
radii Rj and R;, it can be shown from equation 3.3 that the interaction potential is (126)
Ay
6

2R;R; 2R;R;
J + J
2 2
ri—(Ri+R) 15—-(Ri—R)

2
tIn (rﬁ' —(Ri+R) )

rs— (Ri— R;)’

LH _ _

3.4

) lf rij > 6A

The total free energy of interaction in the Lifshitz-Hamaker approach, Wy, is the sum

of all atom-atom pair interactions described by equation 3.4

Wiy = ZZ UiLjH 3.5
J

i
For atom pairs separated by a center-to-center distance of less than 6 A,

the continuum approximation for the solvent breaks down, and therefore equation 3.4

cannot be used. For this situation, the atomistic Lennard-Jones formulation is used to

determine the short-range interaction
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12 6
o O;: .
(r”) 4e;j [(7‘;}) — (;lj) ], if ryj < 6A 3.6

where Uj; is the interaction energy, rijis the center-to-center distance between two
atoms, gj; is the size parameter, and &; is the strength of interaction parameter. The
total free energy of interaction in the Lennard-Jones approach, W, is the sum of all

atom-atom pair interactions described by equation 3.6

i J

The parameters for the Lennard-Jones model were taken from the OPLS-AA force
field (127). The issue with utilizing equation 3.6 to model the dispersion interaction is
that the solvent molecules need to be included explicitly. To take into account effects
from solvation forces, an empirical parameter « is introduced to correct the magnitude
of the Lennard-Jones contribution. It has been shown that a value of 0.50 for «
provides a reasonable adjustment when compared with experimental binding free
energies for proteins (128). The total non-electrostatic interaction Wi, is the sum of
both free energy contributions from the Lifshitz-Hamaker and Lennard-Jones
approaches

Whe = Wiy + aWy, 3.8
in which the Lennard-Jones contribution W is scaled by the empirical factor « =

0.50.

3.2.2.2 Electrostatic Interactions
The electrostatic interactions are a result of the charges carried by

titratable amino acid residues and partial charges of the atoms. A pairwise screened
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Coulombic potential was utilized in computing the electrostatic contribution to the
interactions between protein molecules Wejec

qiq9; _
W, =z ) prer 3.9
elec d €&, T

i
where @; and g; are the charges on the two interacting atoms, & is the permittivity of
free space, & is the dielectric constant of the solvent, and « is the Debye parameter
that characterizes the length scale for screening of electrostatic interactions by the free

ions in solution. The Debye parameter is related to the ionic strength by

1
o §Zi(zie)zci 3.10
\I Eo&rkT

where ¢; is the concentration of the ion i, e is the elementary charge, and z; is the
valence of the ion i. Within this framework, the solvent is treated as a structureless
continuum in which its effects are characterized solely by its dielectric constant &,
which for water was taken to be approximately 80.

The partial charges carried by each atom were taken from the OPLS-AA
force field. The effects of pH are reflected in the distribution of charges that are
assigned to ionizable amino acid residues. The protonation state of these residues for
a given pH depends on the pK; values of the titratable groups on the amino acids.
Because the folding of the protein places ionizable residues in environments different
from the solvent-exposed one typical of free amino acids, the local electrochemical
environment of such residues may be altered. These effects can alter the pK, values of
the side chains relative to those for the corresponding free amino acid. To address

these effects, pK, values were determined from the web server propKa (129, 130)
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(http://propka.ki.ku.dk). From these pK, values and the known pH, the magnitudes of
the charges were computed.

Previous methods of accounting for electrostatics involved solving the
Poisson-Boltzmann equation using a finite-difference method or a boundary-element
approach (131, 132). The advantage of the method used in this work is that it provides
a simple and computationally faster method to account for the effect of protein shape

on the electrostatic interactions.

3.2.3 Calculation of By,

The calculation of B, for proteins involves sampling angular
configurations between two protein molecules, calculating the interaction energies
using the models described above, and integrating over all possible configurations.
Similar calculations using atomistic models of proteins have been made with more
elaborate approaches (133, 134). However, the emphasis in this work is on simulating
two protein molecules because B,; is by definition a dilute solution property that
characterizes the interactions between two molecules. Allowing for the relative

orientation of two anisotropic molecules, By, is given as (42, 80)

1 2T ,TT 2T 2T T OO
B, = —— -W/KkT _ 1
22 16MW2n2f0 fo fo fo fo fo (e ) 3.11

X r2,dry, sin 8d0d¢da sin BdBdy
where W is the PMF, ry; is the center-to-center distance, ¢ and @are the spherical
angles representing the translation of the second molecule relative to the first
molecule, and ¢, S, y are the Euler angles denoting the rotation of the second
molecule. The potential of mean force W represents the interactions between the

molecules and is modeled as the sum of the contributions from the non-electrostatic
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(van der Waals and solvation forces) W, and electrostatic Weec contributions. Itis a
function of both the relative orientation and center-to-center distance between two
molecules. Equation 3.11 can be rearranged by decomposing the radial integral and

consolidating the angular integrals to give

oo

1 1
By =T f 3% - f (e”W/KT — 1) dry,|dQ 312
Q Te

where the orientation angles are collectively represented by 2. The first term in
brackets in Equation 3.12 represents the excluded volume contribution to B,,and is
dependent on rc, the center-to-center distance at contact. The center-to-center distance
at contact r, was approximated by linearly interpolating between the points in the PMF
in which the interaction energy transitioned from negative (attraction) to positive
(repulsion due to overlap). The second term is the distance-dependent integral, which
is referred to as the inner integral li,, and is a direct measure of the energetic
contribution to B,, due to the interactions between molecules for a specific set of
orientation angles 2. To calculate I;, for a given 2, the cubic splines method was
used to interpolate the points of the PMF and then a one-dimensional Gaussian
quadrature from the Fortran subroutine library QUADPACK was used to perform the
integration. By designating the distance integral as l;,, Equation 3.12 can be
represented as

1 1
BZZ = W f §T'C3d.Q - f Il'nd.Q 3.13
Q Q

The key challenge is evaluating the two configuration integrals in equation
3.13. Previous work (82, 84, 135-137) utilized Monte Carlo integration to compute

these integrals due to the irregular nature of the integrands. In this approach, N
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different orientations are randomly sampled from the global configuration space. For
each of these configurations, unique values r. and I, are computed. B,; is calculated
as the arithmetic average of all rcand I;, computed for all N sampled configurations

(138)

N

Z (%rg). - i(lin)i] 3.14
L

i=1

1 \"

By =—————
22 7 16MW?2r2 N

where V is the hypervolume of the configuration space that is explored. The full

angular space for the configuration integral in equation 3.12 is

szdﬂ

Q 3.15
2T ,T 2T 2T 0T
= j j j f f sin 8dOd¢da sin fdBdy = 32r3
0 0o Jo 0 0
The error in By, is determined by the variance of the integrand f as
(f2)—(f)?
= + 3.16
AB2 = X e ywone N

The angle brackets in equation 3.16 denote the arithmetic mean of the integrand over
the N sample points.

Equation 3.16 demonstrates that the rate of convergence using Monte
Carlo integration is proportional to 1/A/N. However, the irregular, highly peaked
nature of l;, due to the Boltzmann weighting of the PMF combined with its
multidimensionality make the reliability of Monte Carlo integration questionable.
Because there are highly peaked regions in the I;, landscape due to highly attractive
patch-antipatch interactions, much of the sampling should focus on these regions since

they make the most significant contribution to B,,. However, Monte Carlo integration

69



approximates the integral by determining the mean value of I;, and multiplying it by
the domain of integration. The linear averaging involved in this scheme weights the
contributions from each sampled individual configuration equally. Thus, the few tall
peaks that occupy a small fraction of the global configuration space skew the linear
average, and consequently the integrated value is overestimated. In addition, the
configuration space of I, is very large due to its high dimensionality, and therefore
there is always uncertainty in the identification of all the peaked regions. The
numerical concerns associated with Monte Carlo integration warrant a reexamination
of the numerical method for computing the configuration integral, and ultimately By,.
To address these numerical concerns, a hybrid Monte Carlo/patch
integration method is proposed and utilized to compute B,,. In this approach, By, is

broken into the sum of three contributions

By, = BS + BE4 + Boickoround 3.17

where BEY is the excluded volume contribution, BE4 is the contribution from the
patch-antipatch interactions, and Boy'““97°*" is the contribution from the non-patch-
antipatch interactions. Configurations with well depths more attractive than -20 kT
were considered to be patch-antipatch pairs and were included in B25. Conversely,
configurations with less attractive wells were incorporated in By, <97 "%,

The excluded volume contribution is computed using the Monte Carlo

integration method described above

N
1 Vv 1
BEX = —_Z <_ 3) 3.18
2 " 1MW n? N L \37 ),
=
The landscape of the integrand r. is expected to be relatively flat since physically the

center-to-center distance at contact is expected to have a limited range. Therefore,
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random sampling of the global space is sufficient to yield adequate convergence using
Monte Carlo integration.

The energetic contribution to By, from the patch-antipatch interactions
requires a more careful and detailed integration procedure. Suppose there are N,
known unique patch-antipatch pairs and the central orientation for the i patch-
antipatch pair is €2 = {4,8,.5.,%}. Furthermore, suppose that the boundary of the
subregion that each patch-antipatch pair occupies is +4 around its respective central
orientation, which represents the size of the patch. The localized patch integration

. 1
P4 —

22 T T 16MW2p2 j lindQpa 49

Qpa

is then performed where the domain of local integration is £2pa = [#-4, ¢+A]x[8-

A, B+AIX[ai-A, i+ AX[Gi-A, fitAlX[5-4, n+A] . The integration over this subregion
is computed using the globally adaptive multidimensional integration routine
DCUHRE (139, 140).

Equation 3.19 represents the contribution to B,, from an individual patch-
antipatch configuration, and the integral in the equation is referred to in what follows
as the configurational integral Iconiig. If all patch-antipatch pairs occupy distinct, non-
overlapping subregions, then the total contribution to By, of all N, patch-antipatch

pairs is obtained simply by summation
Np
BPA = Z B§2A" 3.20
i=1

To complete the calculation of the overall B,,, the background
contributions from the non-patch-antipatch configurations are accounted for by Monte

Carlo integration. However, instead of sampling the entire global configuration space,
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the subregions that the patch-antipatch pairs occupy are excluded from the sampling.
By excluding the configurations that fall in the peaked regions and retaining the ones
that are low to moderately peaked, the I;, landscape is presumably flatter and therefore
Monte Carlo integration would be suitable for calculating this contribution
N
Blzgnggmund = 16M—i|/27'[2 %;(Iin)i 3.21
where T is the size of the hypervolume occupied by the non patch-antipatch

interactions.
3.3 Results

3.3.1 Identification of Patch-Antipatch Pairs

The histograms representing the distributions of the well depths for non-
electrostatic interactions from 10* randomly sampled configurations for lysozyme and
chymosin B are shown in Figure 3.2. For each protein, most of the configurations
sampled are weakly to moderately attractive, with the modes of the histograms
occurring between -1 kT and -2 kT. The linear average of the well depths for each
protein is about -3 kT. However, for each of the proteins, relatively few strongly
interacting configurations were found, with the strongest configuration identified for
chymosin B having a well minimum of -16.6 kT. However, the question that arises is
whether all high complementary configurations have been identified from the initial

orientation sampling.
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Figure 3.2: Histograms of the distribution of the short-ranged interaction well
minima for 10* randomly sampled configurations for (M) lysozyme
and (M) chymosin B. The inset histograms for each protein are meant
to magnify the tails of the distributions.

The effect of more extensive orientation sampling on patch-antipatch
identification was subsequently explored. The number of random configurations
sampled for each protein was increased by an order of magnitude to 10°
configurations. The histograms showing the distributions of the well depths for those
sampled orientations are presented in Figure 3.3. The shapes of the distributions are
similar to those for the 10* configurations initially sampled for each protein; however,

upon closer inspection of the tails of the histograms, more highly attractive
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configurations were identified as a result of the increase in sampling. The results
indicate that not all patch-antipatch pairs were identified from the initial 10* random
configurations sampled. A further increase in the number of orientations sampled was
therefore needed to adequately explore the configuration space and identify patch-
antipatch pairs. A sampling of 10° random configurations was performed and the
distributions of the well depths are shown in Figure 3.4. Once again more attractive
angular configurations were detected, with the largest well depths being -22.3 kT for
lysozyme and -27.1 kT for chymosin B. Thus, the challenge in the orientation
sampling is to be able to properly and effectively sample the tails of the well depth
distribution. It is interesting to note that more configurations with &< -20 kT were
identified for chymosin B than for lysozyme even though the number of
configurations sampled was the same for both proteins. The configurations with £< -
20 KT for each protein are presented in Tables 3.5 and 3.6.

The relative frequencies of the well depth distribution for both proteins
appear to be independent of the degree of sampling, with the exception of the
histogram tails (Tables 3.3 and 3.4). The shapes of the histograms suggest that the
well depth variable for both proteins follows approximately a log normal probability
distribution. The probability distribution function that describes such a variable is

given by (141)

) = 1 {—(lnx—a)2
f(x —xﬁmexp 25

where f is the probability of observation, x is the random variable, « is the location

};0<x<oo 3.22

parameter, and £ is the scale parameter. The a and S parameters characterize the log

normal distribution and are computed from the unbiased estimators (141)
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N
i=11nx;

§V=1(ln X — a)?
N-1

3.23

L=
Because the log normal distribution is defined only for positive values of x, the well

depth random variable is defined as the absolute value of &kT
x= || 3.24
kT

The parameters for both proteins were determined from well depths computed from
the 10° sampled configurations and are shown in Table 3.2. The fits of the
distributions from these parameters are shown in Figure 3.5. For both proteins, the log
normal probability distribution provides a reasonable description of the relative
frequencies of the well depths in the peaked region of the histograms. However, this
distribution does not provide a good distribution of the tails of the histograms since the
tails do not provide a representative sample of the population of very strongly

attractive configurations.

Table 3.2: Log normal probability distribution function parameters for lysozyme
and chymosin B estimated from the 10° sampled configurations.

Protein a Y]
LYZ 0.975 0.652
CMS 1.067 0.628
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Figure 3.3: Histograms of the distribution of the short-ranged interaction well
minima for 10° randomly sampled configurations for (®) lysozyme
and (M) chymosin B.
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Figure 3.4: Histograms of the distribution of the short-ranged interaction well
minima for 10° randomly sampled configurations for (M) lysozyme
and (W) chymosin B. The largest well depth identified was on the
order of -20 KT.
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Table 3.3: Absolute and relative frequencies of lysozyme well depths for different

sampling.
10* Configurations 10° Configurations 10° Configurations

Bin Frequency Rel.Freq. Frequency Rel. Freq. Frequency Rel. Freq.
(0,-1) 766 7.65%x10 7155 7.15%107 74269  7.43x10°
(-1,-2) 2479 2.48x10% 25450  2.55x100 253823  2.54x10
(-2,-3) 2248 2.25x10" 22552 2.26x10" 225918  2.26x10™
(-3,-4) 1694 1.69x10" 16298 1.63x10" 163073  1.63x10™
(-4,-5) 1106 1.11x10" 11249 1.12x10" 109809  1.10x107
(-5,-6) 724 7.24x10% 7042 7.04x10% 70141  7.01x107?
(-6,-7) 415 4.15x10 4327 4.33x10% 43472  4.35x107
(-7,-8) 249 2.49x107 2543 2.54x10% 25850  2.59x107
(-8,-9) 152 1.52x10% 1482 1.48x10° 15077  1.51x107
(-9,-10) 83 8.30x10° 882 8.82x10° 8567 8.57x10°
(-10,-11) 44 4.40x10° 477 4.77x10° 4665 4.67x10°
(-11,-12) 23 2.30x10° 266 2.66x10° 2482 2.48x10°°
(-12,-13) 8 8.00x10™ 127 1.27x10° 1360 1.36x10°
(-13,-14) 7 7.00x10™ 71 7.10x10™ 723 7.23%10™
(-14,-15) 2 2.00x10™ 35 3.50x10™ 394 3.94x10™
(-15,-16) 0 0 23 2.30x10™ 188 1.88x10™
(-16,-17) 0 0 9 9.00x107 88 8.80x107
(-17,-18) 0 0 5 5.00x10° 50 5.00x10°
(-18,-19) 0 0 3 3.00x10° 27 2.70x10°
(-19,-20) 0 0 1 1.00x10° 15 1.50%x10°
(-20,-21) 0 0 2 2.00x107° 5 5.00x10°®
(-21,-22) 0 0 1 1.00x10” 1 1.00x10°
(-22,-23) 0 0 0 0 2 2.00%x10°
(-23,-24) 0 0 0 0 1 1.00x10°®
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Table 3.4: Absolute and relative frequencies of chymosin B well depths for
different sampling.

10* Configurations 10° Configurations 10° Configurations
Bin Frequency Rel. Freq. Frequency Rel.Freq. Frequency Rel. Freq.
(0,-1) 498 4.98%x107 4700 4.70x10% 47522  4.75x10°
(-1,-2) 2502 2.50x10% 24660 247x10" 247585  2.48x10*
(-2,-3) 2261 2.26x10" 23024 2.30x10" 2209386  2.29x10"
(-3,-4) 1675 1.68x10" 16587 1.66x10" 166303  1.66x10™
(-4,-5) 1129 1.13x10" 11564 1.16x10" 114250  1.14x10"
(-5,-6) 787 7.87x10% 7420 7.42x10 74522  7.45x107
(-6,-7) 467 4.67x107 4717 4.72x10% 47298  4.73x10°
(-7,-8) 284 2.84x107 2967 2.97x10 20520  2.95x107
(-8,-9) 164 1.64x10% 1802 1.80x10% 17750  1.78x107
(-9,-10) 92 9.20x10° 1066 1.07x10® 10703 1.07x107
(-10,-11) 68 6.80x10° 637 6.37x10° 6611 6.61x10°
(-11,-12) 37 3.70x10° 373 3.73x10° 3783 3.78x10°
(-12,-13) 22 2.20x10° 190 1.90x10° 2077 2.08x10°
(-13,-14) 4 4.00x10° 103 1.03x10°® 1217 1.22x10°®
(-14,-15) 4 4.00x10™ 79 7.90x10™ 644 6.44x10™
(-15,-16) 3 3.00x10™ 42 4.20x10™ 381 3.81x10™
(-16,-17) 0 0 21 2.10x10™ 202 2.02x10™
(-17,-18) 0 0 6 6.00x10° 112 1.12x10™
(-18,-19) 0 0 11 1.10x10™ 78 7.80x10°
(-19,-20) 0 0 2 2.00x10° 21 2.10x10°
(-20,-21) 0 0 1 1.00x10° 16 1.60x10°
(-21,-22) 0 0 1 1.00x10° 14 1.40%x10°
(-22,-23) 0 0 0 0 2 2.00%x10°
(-23,-24) 0 0 1 1.00x10° 1 1.00x10°
(-24,-25) 0 0 0 0 0 0
(-25,-26) 0 0 0 0 0 0
(-26,-27) 0 0 0 0 1 1.00x10°
(-27,-28) 0 0 0 0 1 1.00x10°®
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Figure 3.5: Comparison of relative frequencies of (M) lysozyme and (M) chymosin
B absolute well depths with respective fits from (=) log normal
probability distribution function. The fits are based on parameter
values of = 0.975, #=0.652 for lysozyme and a = 1.067, #=0.628
for chymosin B.
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Table 3.5: Ten most attractive angular configurations for short-range
interactions of lysozyme identified from 10° randomly sampled
orientations.

# ¢ [ a p ¥ ekT
1 1191 0975 5309 1505 4201 -22.28
2 2213 1292 2358 0.763 1862 -20.70
3 3513 1.002 4286 0.681 1.800 -20.05
4 3.301 1228 0.607 1424 2635 -23.32
5 5211 0575 4674 1283 5123 -20.62
6 1.110 1145 4566  1.696 4923 -21.09
7 3276 1010 2392 0831 2138 -20.18
8 2338 1.019 0422 0110 2240 -22.36
9 1.776 2791 4207 1594 4237 -20.94
10 1565 2830 2183 2465 0545 -19.98
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Table 3.6: Thirty-five most attractive angular configurations for short-range
interactions of chymosin B identified from 10° randomly sampled
orientations.

# P 0 o B y ekT

1 4298 2105 1138 2030 1845  -23.63
2 4074 1347 4930 2051 2096  -26.12
3 4299 0977 5746 0751 0217  -20.97
4 3909 1157 5566 0448 5185  -20.43
5 4399 2511 0031 1757 5561  -20.94
6 4084 0746 0395 2584 5010  -20.35
7 3607 1295 2076 1.657 0177  -21.27
8 5884 1458 3.317 0997 5614  -20.03
9 5888 1565 1271 2518 2597  -20.58
10 3599 2140 5977 0252 0706  -21.38
11 6025 1461 0227 1556 0962  -20.77
12 6233 1303 4536 1702 1704  -20.68
13 0048 2491 2023 0158 0812  -20.59
14 3026 1342 2839 2825 0116  -27.36
15 3016 1126 6121 2775 3114  -22.30
16 1.168 2841 3861 1119 2824  -20.16
17 2722 2274 0056 2153 0.649  -21.12
18 2694 0945 6.057 2047 5737  -20.93
19 0567 0818 0489 1655 5215  -21.06
20 0994 2640 3606 2428 4930 -21.95
21 0447 1413 3793 1225 5585  -2155
22 0512 1594 2939 1809 0381  -21.99
23 0577 1249 2706 1.075 5117  -21.63
24 1122 2518 1715 1153 0248  -21.99
25 2476 2103 1461 0973 5029  -20.36
26 0870 2331 3964 1.604 3.330 -21.08
27 2096 2440 3645 1.933 2479  -21.26
28 2495 1400 0534 1085 4471  -20.62
29 1164 2290 6260 2271 3240  -20.56
30 1802 2312 4456 1532 3731  -20.83
31 2204 2035 1788 1511 0062  -20.00
32 1644 2268 0733 1815 2108  -21.42
33 0969 1238 4187 2865 5352  -21.18
34 1084 1130 2555 1.397 3987  -22.94
35 1744 2180 1114 1.999 4534  -21.30
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Another issue that arises in the random orientation sampling is whether the
patch-antipatch pairs identified are sampled at the optimally aligned orientation that
represents the true well depth. To explore this, the first highly attractive configuration
for lysozyme in Table 3.5 (entry 1) was selected as a test case. Each individual
orientation angle for this configuration was varied within +0.20 radian around the
central orientation while holding the other angles fixed at their respective central
values. The response in the well depth to these variations is shown in Figure 3.6. If
the central orientation were at the true optimum alignment, the minimum in the
interaction energy profile would occur at a variation of 0 radian. However, Figure 3.6
indicates that this configuration is in fact not the optimally aligned one. A similar
result was obtained by Hloucha et al. (see Figure 2 in reference (78)). Thus, it can be
inferred that the orientations that are identified in the random sampling may not, in
general, be at their energy minima.

To approximate the optimal alignment that leads to the energy minimum,
a local sampling around the central orientation for each patch-antipatch configuration
was performed. This local sampling entailed sampling 10° random orientations
confined within the limits of +0.10 radian around each angle of the central orientation.
This local sampling procedure was performed for several of the patch-antipatch pairs
for lysozyme and chymosin B and the fined-tuned orientations are shown in Tables 3.7
and 3.8, respectively. When compared with the initial sampled configurations, the
differences in each of the angles are small, yet these small variations can lead to
substantial changes in the well depths. The most significant case is for the first patch-
antipatch pair for lysozyme, in which a configuration with a well depth on the order of

-40 KT was identified. Similar results can be seen for the chymosin B patch-antipatch
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configurations in which the refinement led to a well-depth as high as -39 kT. The
interactions between patch-antipatch pairs for proteins are quite sensitive to small
perturbations in orientation; a slight change in the alignment can lead to a significant
change in the attraction. This sensitivity indicates that the region representing a given
patch-antipatch interaction is only a minute fraction of the global angular space and

that these patch regions are very small.

-10 -
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-30 T T | |
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variation (radians)

Figure 3.6: Well depth as a function of the angles for the orientation listed in
entry 1 of Table 3.5. The largest change occurs when @is decreased
by -0.02 radian, which indicates that the originally sampled
orientation is not the optimum alignment.
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Table 3.7: Refined orientations for lysozyme identified from the local sampling in
+40.10 radian around the central orientation in Table 3.4. The resulting
angular configurations are significantly more attractive than the
originally sampled orientations.

p P ] a B y kT Initial kT
1 1184 0907 5274 1540 4158 -40.48 -22.28
2 2203 1273 2269 0747 1897 -24.30 -20.70
3 3478 1050 4245 0773 1856 -26.34 -20.05
4 3244 1190 0612 1369 2537  -29.06 -23.32
5 5260 0597 4.640 1189 5123  -25.05 -20.62
6 1085 1125 4504 1754 4905  -24.97 -21.09
7 3244 0963 2332 0919 2235 -26.04 -20.18
8 2355 0987 0505 0134 2163 -22.88 -22.36
9 1808 2754 4295 1621 4184 -24.76 -20.94
10 1533 2818 2122 2469 0608 -24.60 -19.98
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Table 3.8: Refined orientations for patch-antipatch pairs for chymosin B
identified from the local sampling in +0.10 radian around the central
orientation in Table 3.5.

# ] 0 a g y ekT Initial ekT
1 4322 2148 1212 2105 1919 -26.88 -23.63
2 4028 1379 4833 2064 2.040 -39.11 -26.12
3 4311 0940 5784 0708 0.192 -26.90 -20.97
4 3.921 1.144 5.648 0.446 5.110 -25.38 -20.43
5 4480 2548 0106 1806 5.660 -25.22 -20.94
6 4110 0.764 0494 2622 5109 -24.98 -20.35
7 3555 1243 1987 1715 0.193 -25.83 -21.27
8 5853 1452 3268 1022 5663 -28.84 -20.03
9 5930 1563 1355 2525 2589 -22.89 -20.58
10 3593 2122 5890 0.179 0.769 -24.69 -21.38
11 5994 1448 0177 1526 0.999 -25.66 -20.77
12 6.214 1.347 4517 1.614 1.754  -27.06 -20.68
13 0.036 2515 1924 0195 0.861 -25.32 -20.59
14 2972 1340 2831 2771 0.208 -35.80 -27.36
15 2954 1126 6.109 2861 3.213 -33.06 -22.30
16 1267 2860 3.836 1106 2.823 -24.05 -20.16
17 2691 2312 -0.007 2146 0.650 -25.77 -21.12
18 2756 0896 6.132 2146 5686 -25.16 -20.93
19 0580 0.805 0538 1705 5241 -23.76 -21.06
20 0950 2.620 3512 2428 4868 -28.02 -21.95
21 0.453 1426 3781 1324 5642 -28.02 -21.55
22 0.483 1567 2881 1763 0.360 -26.92 -21.99
23 0536 1.249 2618 1087 5129 -27.48 -21.63
24 1.073 2518 1677 1091 0.186 -27.09 -21.99
25 2451 2091 1411 0955 5128 -2251 -20.36
26 0872 2310 3968 1562 3.338 -28.43 -21.08
27 2090 2402 3.629 1895 2504 -28.19 -21.26
28 2495 1432 0521 1022 4446 -23.66 -20.62
29 1.065 2278 6.198 2259 3.325 -23.99 -20.56
30 1727 2350 4358 1544 3830 -25.02 -20.83
31 2230 1979 1.713 1610 -0.037 -24.60 -20.00
32 1743 2293 0.832 1828 2027 -27.89 -21.42
33 0918 1250 4125 2766 5301 -25.59 -21.18
34 1.097 1074 2557 1297 3937 -27.08 -22.94
35 1.744 2137 1120 2.057 4596 -38.82 -21.30
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3.3.2 Calculation of B,

The excluded volume contribution to B, was first calculated using the
Monte Carlo integration approach, where the global configuration space was randomly
sampled and the center-to-center contact distance was calculated for each
configuration sampled. The final numerical values are presented and compared with
the theoretical hard sphere B,, values based on the equivalent sphere diameter of each
protein (Table 3.9). The values are comparable in magnitude, but the value is higher
when the protein is modeled atomistically than when it is represented as a hard sphere.
This result is consistent with the findings of Neal and Lenhoff (142), who
demonstrated that the magnitude of the excluded volume contribution depends on the
level of structural detail of the protein considered. They found that when protein
molecules are resolved atomistically, the excluded volume contribution can be as
much as 40% greater than the result obtained when the protein is modeled as an ideal
sphere. The disparity in the excluded volume B, predicted by the two representations
is attributed to the roughness of the protein surface. In the atomistic case, groups of
atoms that protrude on the surface limit the closeness of approach when two protein
molecules come in contact. Consequently, there is a greater effective center-to-center
distance leading to a greater excluded volume contribution to B, than for the ideal
sphere representation.

The contributions from the molecular interactions were subsequently
included in the B, calculations. As a starting point, only the short-ranged non-
electrostatic interactions were considered in the calculation. The B, values based on
the excluded volume and van der Waals interactions calculated using Monte Carlo
integration are presented in Table 3.9. There are two symptoms of computational

challenges evident in these results. First, the B,, values computed for each protein do
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not appear to converge even after 10° configurations are sampled and second, the final
computed values are orders of magnitude greater than typical experimentally
measured values. To understand why the magnitudes of the computed B, value are so
large, the histograms of the computed I;, values for the 10° configurations sampled for
lysozyme and chymosin B are shown in Figures 3.7 and 3.8, respectively. The range
of i, computed spans many orders of magnitude, from as low as 1x10* A2 to as high
as 1x10™ A%, This wide range is due to the nature of the integrand in lip;
configurations with large well depths are magnified as a result of the Boltzmann
weighting of the PMF. Because the Monte Carlo integration method takes the linear
average of all i, values, the few configurations that have extremely large I;, values
contribute disproportionately to the mean value of I;, and consequently the integral is
overestimated. Thus, the linear averaging used in Monte Carlo integration cannot

provide an accurate numerical estimate of the configurational integral to compute By,.

Table 3.9: By, calculated from 10° randomly sampled configurations based on
excluded volume contribution and both excluded volume and short-
range attraction. The o value is the sphere equivalent diameter
determined from the empirical correlation of Neal and Lenhoff (142).
The error in the Monte Carlo estimate is calculated from equation

3.16.
ng o Bgﬁg Total Bo»
Protein  (x10°mlmol/g®)  (A)  (x10*mImol/g’)  (ml mol/g?)
LYZ 2.997 £ 0.001 32.0 2.02 -0.24 £ 0.07
CMS 1.3990 + 0.0005 42.9 0.783 -0.95+0.59
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Figure 3.7: Histogram of the computed I;, for the 10° randomly sampled

configurations for lysozyme. The inset shows an enlarged view of the
high-I; tail of the distribution.
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Figure 3.8: Histogram of the computed I;, for the 10° randomly sampled
configurations for chymosin B. The inset shows an enlarged view of
the high-I;, tail of the distribution.
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To address the numerical issues associated with Monte Carlo integration, a
hybrid Monte Carlo/patch integration method was utilized to compute B,,. Different
configurations of varying strengths for each protein, which included the highly
attractive patch-antipatch pairs, were selected and integrated within the limits of +4
radians around the central orientations using the DCUHRE integration routine. The A
parameter directly determines the size of the subregion over which the interaction
energy is strongly attractive before it decays, and therefore represents the patch size.
However, increasing A enlarges the hypervolume of the integration and consequently
lconig INCreases monotonically. This can be seen in Figure 3.9 in which lconfig IS
computed using the integration routine for the fourth lysozyme patch-antipatch pair
listed in Table 3.7. Thus, the size of a patch-antipatch pair cannot be determined
directly from the dependence of lconfigOn A. To estimate an appropriate value for A4,
lcontig Was normalized by the hypervolume of integration vo and the result was plotted
against A. The integration hypervolume vy is directly related to 4 through equation
3.15 with the appropriate integration limits. This normalization filters the effect of the
hypervolume size in the integration and gives some indication of how the rate of
growth of the integral decreases due to the decay of the interaction potential. Figure
3.10 shows that at approximately A4 = 0.10 radian the normalized integral decreases by
a factor of about 10 from its highest value. This significant decay would indicate that
the effects of the attraction on lonsig dissipates and therefore A4 = 0.10 radian
characterizes the patch size for this particular orientation. Although the patch size for
each patch-antipatch pair may be different, 4 = 0.10 radian was chosen as a universal
value for all integration of patch-antipatch pairs in order to simplify further

computations.
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Figure 3.9: l¢ontig computed from the DCUHRE routine as a function of A for
lysozyme patch-antipatch pair 4 in Table 3.7. lconfig inCreases
monotonically as A4 increases due to the increase in the hypervolume
of the integration.
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Figure 3.10: lconfig Normalized by the volume of integration v as a function of A
for lysozyme patch-antipatch pair 4 in Table 3.7. The normalized
integral decreases as A4 is increased.

The localized integration was performed for the cases where only short-
range interactions were considered and where both short-range and electrostatic
interactions were included. The local integration represents the contribution of these
individual patch-antipatch regions to By,. The results of the integration, in units of A®,
are plotted as a function of the total well depth (short-range and electrostatics) of the
configuration with the lowest energy minimum for each patch-antipatch pair in Figure

3.11 for lysozyme and in Figure 3.12 for chymosin B. The results were fitted using an
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exponential regression model. There is some scatter in the results, which is to be
expected since there is variability in the shapes of the energy profiles and uncertainty
in the energy minima, and not all patch-antipatch interactions may be confined
completely within +£0.10 radians. Despite this scatter, there is a consistent, well-
behaved relationship in which the computed localized configurational integral Iconig
increases as the strength of interaction increases. The correlations for both proteins are
similar; both regressions have comparable preexponential factors, but the regressed fit
for chymosin B possesses a less negative exponent. The trends demonstrate that
configurations with stronger attractions make a greater contribution to By,.
Electrostatics can tune a configuration’s contribution to By, by either reducing its
attraction through addition of repulsion or enhancing its attraction. Repulsive
electrostatics result in decreasing lconfig Whereas attractive electrostatics corresponds to
increasing lconig- BY knowing a patch-antipatch pair’s well depth, Figures 3.11 and
3.12 can be used to empirically estimate its contribution to B, without the need for

performing a detailed integration using the DCUHRE routine.
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Figure 3.11: Plot of the localized configuration integration for lysozyme as a
function of the total well depth. I¢nfigwas computed based on (+)
short-range interactions alone and (M) short-range interactions with
electrostatics. Integration was performed within the limits of +0.10
radian around the central orientation of each patch-antipatch
configuration using the DCUHRE routine. The regressed curve is
F(x)=0.0200 exp(-0.805x), R?=0.9941.
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Figure 3.12: Plot of the localized configuration integration for chymosin B as a
function of the total well depth. I¢nfig Wwas computed based on (x)
short-range interactions alone and (®) short-range interactions with
electrostatics. Integration was performed within the limits of £0.10
radian around the central orientation of the configurations. The
regressed curve is F(x)=0.0195 exp(-0.770x), R?=0.9806.

The By, contributions for the individual lysozyme pairs are presented in
Table 3.10, which include contributions resulting from the short-range interactions
alone and from both short-range and electrostatic interactions. The results show that
inclusion of electrostatics significantly reduces the attractions for most of the patch-
antipatch pairs, as indicated by the increased contribution to B,; as the ionic strength

increases. This indicates the electrostatic interactions in the configurations
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represented by the patch-antipatch pairs for lysozyme are predominantly repulsive.
However, two of the ten patch-antipatch pairs with ¢ < -20 kT (entries 1 and 8 in Table
3.10) appear to have an increased By, contribution when electrostatics are
incorporated, which suggests that this particular pair possesses attractive electrostatics.
It is interesting to note that the configuration in entry 1 of Table 3.10, which is the -40
KT patch identified after local sampling refinement, has a contribution that is orders of
magnitude greater than those of the other pairs. The contribution by this lone patch-
antipatch pair would therefore overwhelm the contributions from the other patches if
they were summed together.

The trends in the By, contributions from the chymosin B patch-antipatch
pairs appear to show different behavior. Although some of the pairs exhibit repulsive
electrostatics, some of the configurations show the opposite trend. In fact, almost one-
third of the patch-antipatch pairs with &< -20 KT were found to have increased By,
contributions when electrostatics are incorporated. Thus, chymosin B was not only
found to have a larger number of strongly attractive patch-antipatch pairs than
lysozyme, but also a greater percentage of the attractive patch-antipatch pairs possess
attractive electrostatics. For a few configurations, the differences are within the errors
of integration and may be statistically insignificant, but the results indicate that in
general there are smaller repulsive electrostatic effects for chymosin B than for
lysozyme. Given that the local integration for each pair occurs over a very small
portion of the global configuration space, the B, contributions from these patch-

antipatch pairs are quite remarkable.
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Table 3.10: Contributions to By, from individual patch-antipatch pairs for

lysozyme based on short-range non-electrostatic interaction energies
alone and with electrostatics at pH 7. The contributions were
determined by integrating within £0.10 radian around the central
orientation using the DCUHRE integration routine.

Non-electrostatics pH7,0.10M pH 7, 0.20M pH 7, 0.30M
B B B B

dkT  (molmlig’) | &kT  (molmlig®) | &kT  (molml/g®) | &kT  (mol mlig?)
-40.48 -4.37x10' | -40.82 -8.00x10 | -41.27 -1.06x10° | -41.31 -1.13x10°
2431 -554x10° | -22.00 -851x10° | -22.71 -1.60x10° | -23.01 -2.10x10°
-26.34 -6.06x10" | -22.62 -1.48x10° | -23.69 -4.03x10° | -2421  -6.65x10°
-29.77 -2.01x10? | -25.89 -1.12x10° | -26.57 -2.17x10° | -27.05 -3.35x10°
-25.05 -2.09x10* | -24.77 -9.72x10° | -25.13 -2.01x10* | -2521  -2.13x10™
2497 -9.14x10° | -23.45 -2.58x10° | -23.95 -4.45x10° | -24.12 -5.32x10°
-26.05 -7.08x10* | -22.86 -2.92x10° | -23.70 -6.90x10° | -24.14  -1.05x10™
2236 -3.02x10° | -23.39 -5.02x10° | -23.82 -6.68x10° | -23.85 -6.90x10°
2476  -2.69x10* | -23.05 -5.60x10° | -23.82 -1.11x10" | -24.11  -1.47x10™
2460 -3.69x10" | -20.66 -7.46x10° | -21.93 -2.45x10° | -2255  -4.40x10°
-19.09 -1.43x10° | -17.70 -1.19x10° | -18.09 -1.58x10° | -18.16 -1.74x10°
-18.65 -1.17x10° | -16.87 -2.12x107 | -17.73 -4.24x107 | -18.02 -5.67x10”
-15.77  -1.24x107 | -16.27 -1.85x107 | -16.33 -2.26x107 | -16.39  -2.30x10”
-12.91  -1.62x10° | -11.69 -5.02x10° | -12.24 -8.39x10° | -12.46 -1.03x10®
-11.32  -1.84x10° | -10.46 -1.00x10° | -10.98 -1.54x10° | -11.16 -1.74x107
937 -758x10%° | -9.09 -572x10%° | -939 -7.64x10™° | -9.46 -8.16x10%°
7.72  -330x10%° | 592 -4.95x10™M | 654 -1.01x10"° | -6.84 -1.35x10
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Table 3.11: By, contributions from individual patch-antipatch pairs for chymosin

B based on short-range non-electrostatic interaction energies alone
and with electrostatic interactions at pH 5. The contributions were
determined by integrating within 40.10 radian around the central

orientation using the DCUHRE integration routine.

Non-electrostatics pH5,0.10M pH 5, 0.30M pH 5, 0.40M
B/ B B B}

dkT  (molmlig’) | kT (molml/g®) | &kT  (molmlig®) | &kT  (mol ml/g?)
-26.88 -2.10x10° | -27.66 -5.65x10° | -27.12 -3.11x10° | -27.00 -2.93x10°
-39.11 -1.08x10° | -37.43 -2.67x10" | -37.87 -4.17x10" | -37.98 -4.57x10*
26.90 -2.97x10° | -25.74 -1.23x10° | -25.87 -1.39x10° | -25.94 -1.49x10°
-25.38 -1.05x10° | -24.41 -456x10° | -24.85 -6.87x10° | -24.92 -7.33x10°
2522  -1.99x10° | -23.83 -5.72x10° | 2464 -8.89x10° | -24.68 -1.18x10°
24.89 -1.04x10° | -25.15 -1.63x10° | -25.14 -1.68x10> | -25.09 -1.49x10°
-25.83 -2.80x10° | -2456  -1.03x10®° | -25.15 -1.63x10° | -25.23 -1.75x10°
-28.84 -3.06x10" | -28.71  -9.31x10° | -28.80 -1.14x10™ | -28.83 -1.21x10™
2289 -2.71x10° | -2330 -3.77x10° | -23.19 -3.45x10° | -23.19 -3.45x10°
2469 -1.49x10° | -2258 -2.57x10° | -23.76 -8.13x10° | -23.94 -9.64x10°
2566 -9.85x10° | -25.78  -1.19x10° | -25.84 -1.21x10° | -25.80 -1.17x10°
27.06 -3.58x10° | -23.60 -4.77x10° | -2527 -1.79x10° | -2559 -2.32x10°
-25.32  -1.86x10° | -2527  -1.79x10° | -2553 -2.20x10° | -25.54 -2.23x10°
3550 -1.66x10" | -35.73  -2.06x10" | -35.72 -2.03x10" | -35.68 -1.93x10*
-33.06 -1.02x102 | -32.66 -7.20x10° | -32.83 -8.67x10° | -32.84 -8.84x10°
2405 -1.63x10° | -23.40 -1.14x10° | -24.02 -1.65x10° | -24.05 -1.69x10°
2577 -1.35x10° | -25.96 -2.29x10° | -25.74 -1.84x10° | -25.65 -1.72x10°
2516 -1.54x10° | -24.65 -1.48x10° | -24.72 -1.46x10° | -24.71 -1.43x10°
23.76 -6.76x10° | -22.68 -2.30x10° | -23.42 -4.11x10° | -23.49 -4.38x10°
-28.02 -2.40x10° | -2570 -3.67x10° | -26.99 -7.07x10° | -27.20 -1.59%x10°
-28.02 -9.45x10™ | -26.44 -2.24x10° | -27.22 -4.96x10° | -27.32 -5.43x10°
2712 -7.85x10° | -2534 -1.91x10° | -26.46 -4.62x10° | -26.65 -5.39x10°
2748 -1.04x10* | -26.47 -2.07x10° | -27.37 -9.54x10° | -27.45 -1.02x10*
27.09 -5.72x10° | -2820 -1.33x10" | -27.94 -1.05x10* | -27.83 -9.44x10°
2251 -5.98x10° | -21.88 -3.98x10° | -22.17 -5.17x10° | -22.21 -5.40%x10°
-28.43 -1.04x10* | -27.31 -551x10° | -27.73 -8.20x10° | -27.79 -8.60x10”
28.19 -2.44x10* | -30.39  -1.05x10° | -30.08 -8.20x10™ | -29.89 -7.09x10™
-23.66 -5.84x10° | -21.99 -1.71x10° | -22.67 -3.29x10° | -22.81 -3.73x10°
23.99 -3.46x10° | 2460 -1.05x10° | -2430 -8.28x10° | -24.22 -7.79x10°
-25.02 -2.44x10° | -2355 -571x10° | -24.22 -1.15x10° | -24.35 -1.31x10°
2460 -9.13x10° | -24.72  -7.61x10° | 2475 -7.72x10° | -24.73  -7.70x10°
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-27.89
-25.59
-27.15
-38.82
-19.34
-16.16
-14.78
-13.06
-10.33

-1.36x10™
-5.35x107
-8.03x10°
-3.58x10!
-3.31x10”’
9.54x10°
-2.40x10°°
-1.54%107
-2.69x10™%°

-28.63
-23.72
-26.21
-37.64
-18.35
-16.71
-14.32
-12.76
-9.88

-3.81x10™
-8.40x10°
-3.81x10°
-1.19x10*
-1.59x10°’
-1.09x10°%
-1.78x10°°
-1.13x10°
-2.56x10™%°

-28.16
-24.32
-26.52
-38.08
-18.78
-16.70
-14.54
-12.88
-9.93

-2.27x10™
-1.50x10°
-4.84x10°
-1.86x10*
-2.50x10’
-1.07x10°®
-2.29x10°°
-1.27x10°
-2.58x1010

-28.04
-24.41
-26.54
-38.19
-18.83
-16.73
-14.56
-12.91
-9.98

-2.01x10™
-1.72x10°
-4.94x10°
-2.07x10
-2.61x107"
-1.11x10°
-2.24x107°
-1.33x107
-2.62x1010
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The background contribution from the non-patch-antipatch configurations
was accounted for using Monte Carlo integration. The subregions occupied by the
patch-antipatch pairs with £ < -20 kT were excluded in the orientation sampling. The
calculated background contributions to B, are shown in Table 3.12 and 3.13. The
results show that that the two proteins have differing background B, trends. The
background By, is reduced when electrostatics are incorporated for lysozyme, but this
contribution increases as the electrostatics are screened. On the other hand, the
background By, for chymosin B is enhanced when electrostatics are included. Typical
experimentally measured By, values are on the order of 10™ to 10” mol ml/g®.
However, the magnitude of the background contribution is still beyond experimentally
measured values despite the exclusion of the strongly attractive patch-antipatch
configurations. This is due to the cumulative contribution from the configurations that
display moderately attractive well depths. These configurations still
disproportionately impact the mean value I, in the Monte Carlo averaging. It suggests
that Monte Carlo integration may not be suitable even for these moderate
configurations and that the same detailed integration procedure used for the patch-
antipatch pairs is needed. To obtain a better numerical estimate, the background
contribution to By, was broken down into two components: weak interactions and

moderate interactions.
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Table 3.12: Background B,; for lysozyme based on short-range non-electrostatic
interactions alone and with addition of electrostatics at pH 7. Patch-
antipatch pairs with €< -20 KT were excluded in the Monte Carlo
integration.

BBackground

22 2
(mol ml/g?)
Non-electrostatics -0.10 £ 0.01

0.10M -0.046 + 0.003
0.20M -0.060 = 0.003
0.30M -0.078 £ 0.003

Table 3.13: Background B,, for chymosin B based on short-range interactions
alone and with addition of electrostatics at pH 5. Patch-antipatch
pairs with £<-20 kT were excluded in the Monte Carlo integration.

BBackground

22 9
(mol ml/g?)
Non-electrostatics -0.055 + 0.003

0.10M -0.070 = 0.005
0.30M -0.062 + 0.004
0.40M -0.061 + 0.004

The configurations that are considered to display weak interactions were
identified by specifying a cutoff well depth & and determining the contributions to
Bz, from the configurations with &> &orr by the Monte Carlo method. To estimate
&utoff, @ USeful benchmark is the unweighted average well depth from all the sampled
10° configurations, i.e. = -3 kT, which corresponds to li, ~ 3.9x10* A%, This value
can be seen as the baseline in the I;, landscape around which most of the peaks from
the weakly attractive configurations are scattered. Monte Carlo integration estimates
an integral | by the product of the mean value of a function (f ) and the region of

integration v

I = v(f) 3.25
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For a function that is characterized as a peak within a domain, the mean value is the
average height that is located somewhere between the apex and base of the peak. The
lin landscape can be viewed as being composed of discrete peaks in a
multidimensional domain, with each peak having its own mean value (li,).
Configurations with stronger attractions will have taller peaks in the I;, landscape and
therefore will have a greater (li). Because there are peaks that disproportionately
influence the overall mean value of the I, function, those peaks should be excluded in
the Monte Carlo averaging. Furthermore, because the baseline I;, defines the
boundary between weak and moderate configurations in the I;, landscape, it is
postulated that configurations with (li,) that is equal to or less than the baseline Ii, are
appropriate for inclusion in the Monte Carlo integration.

From the general expression in equation 3.25, (l;,) for a configuration is
determined by scaling its local integrated peak lconsig by the subdomain of integration

Vo

I .
(L) = S22L%9 3.26
Vo

For 4 =0.10 radian, the average hypervolume occupied by a patch-antipatch pair is vo

=1.97x10™. Furthermore, the empirical correlations of lcontig from Figures 3.11 and

3.12 provide the functional relationship between lconsig and &/kT for both proteins

€

Leonfig = 0.0200 exp (—0.805 k_T)' for lysozyme 3.27
g ]

Leonfig = 0.0195 exp (—0.770 k_T)' for chymosin B 3.28

Substituting equations 3.27 and 3.28 into equation 3.26 gives the relationship between

a configuration’s mean value in the I;, landscape and &KkT for a configuration. Using
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the postulated condition that the weak configurations are ones that have (li,) <
3.9x10* A3, it was determined that &~ -7 kT satisfies this criterion. Therefore, it was
concluded that configurations that have &> & =-7 KT were appropriate for inclusion
in the Monte Carlo averaging.

The contribution from configurations with stronger interaction &< gyt =
-7 KT had to be determined by the patch integration method. However, there is a large
number of such configurations and performing integration for individual patches
would be computationally expensive. Rather than perform a detailed local integration
for each orientation, therefore, this explicit approach was reserved for the strongest
patch-antipatch pairs with £ < -20 kT (Tables 3.10 and 3.11) and the remaining
integrals with moderate interactions were evaluated using the empirical correlations
for lconfig for both proteins from equations 3.27 and 3.28. The individual contributions
were summed together, achieving a significant savings in computing time.

The number of moderate configurations was determined using the
observation that the relative frequency of the well depths as a function of &is
relatively consistent even as the degree of sampling increases (Figures 3.2 to 3.4). It
was postulated that the relative frequency of the well depth distribution f. provides an
estimate of the fraction of the configuration space that is occupied by configurations in
a particular range of well depths de. Therefore, the size of the hypervolume V.,
occupied by configurations with well depth & can be represented as

V, =Vf.(e) 3.29

such that the total hypervolume is conserved

V=J V.(e)de 3.30
0

104



where V is the total hypervolume of the global space equal to 327°. As mentioned
previously, the relative frequency of &KkT for both proteins is adequately described by
a log normal probability distribution function (Figure 3.5). By knowing the
hypervolume occupied by configurations in a particular range of £and the
hypervolume of a single patch (which is set by the A parameter), the absolute number
of moderate configurations N in this range can be approximated by

Ve
N, =— 3.31
Vo

The total B, contribution from the moderate configurations that have & < gy IS

1
Mod _
B¢ =~ 16 MW 212 Z Ne (ICUnfig)g 3.32
E<Ecutoff
B2ackaround cajculated using the procedure outlined above at different

ionic strengths for lysozyme at pH 7 and chymosin B at pH 5 is shown in Table 3.14
and Table 3.15, respectively. For lysozyme, Bo2<*97°%" decreases as the ionic
strength increases. The background B,; contributions from the weak and moderate
configurations are similar when only short-range interactions are considered.
However, the addition of electrostatics leads to decreased contributions from both
components and the overall background contribution decreases. At each level of ionic
strength, configurations with weak interactions actually contribute more than the
moderate interactions. In other words, the moderate configurations display more
repulsive electrostatics and these electrostatic effects have slightly more impact on By,
for lysozyme.

Bekaroundsor chymosin B exhibits different behavior. The addition of

electrostatics increases the overall attraction. Although the weak contribution shows a

trend of increasing attraction as the ionic strength increases, the magnitude of the
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moderate contribution increases when electrostatics are incorporated, indicating that it
is the moderately attractive configurations that are most responsible for this effect.
The net result is increased attraction due to offsetting the effect of repulsion by the

moderate configurations with attractive electrostatics.

Table 3.14: Background B,; for lysozyme based on short-range non-electrostatics
interactions alone and with addition of electrostatics at pH 7. Patch-
antipatch pairs with £< -7 kT were excluded in the Monte Carlo

integration.
Brackarornd (s 10*mol mi/g?)
Weak Moderate Total
Non-electrostatics -10.3 -10.4 -20.7
0.10M -5.62 -5.45 -11.1
0.20M -7.76 -6.99 -14.8
0.30M -8.66 -8.58 -17.2

Table 3.15: Background B,;, for chymosin B based on short-range non-
electrostatics interactions alone and with addition of electrostatics at
pH 5. Patch-antipatch pairs with &< -7 kKT were excluded in the
Monte Carlo integration.

Brackaronnd (s 10*mol ml/g?)
Weak Moderate Total

Non-electrostatics -3.66 -1.73 -5.39
0.10M -3.58 -2.04 -5.62
0.30M -3.65 -1.98 -5.63
0.40M -3.65 -1.76 -5.41

3.4 Discussion
The identification of patch-antipatch pairs for proteins is strongly

dependent on the density of orientation sampling of the two protein molecules.
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However, the degree of sampling is limited by the available computational power.
Present computing speeds readily allow sampling of order 10° angular configurations
to be performed for identifying patch-antipatch pairs, which is two orders of
magnitude greater than the sampling reported previously by Hloucha et al. for bovine
chymotrypsinogen (78). In their work, the strongest patch-antipatch pairs that were
identified possessed well depths between -13 kT and -15 kT. From this work, most of
the strongest configurations were on the order of at least -20 KT.

The presence of strongly attractive patch-antipatch configurations with
well depths on the order of -20 kT led to significant numerical issues when Monte
Carlo integration was used. While this integration approach was found to be
appropriate for determining the excluded volume contribution to By, it fails when the
energetic contributions are included. The convergence issues were addressed using a
hybrid Monte Carlo/patch integration method. By performing a detailed integration
over the patch-antipatch subregions using a globally adaptive integration routine, a
functional relationship between the strength of attraction for a configuration and its
contribution to By, was obtained. However, calculation of By, could not be completed
for both proteins due to the skewed contributions from anomalously strong patch-
antipatch pairs that possessed well minima that were on the order of -30 kT to -40 kT
(Tables 3.10 and 3.11). This indicates that other effects need to be accounted for in
the calculation of By,.

To make complete and accurate predictions of By,, the effect of hydration
must be accounted for explicitly. In these interaction calculations, an implicit solvent
assumption was made where the effects of the solvent were accounted for by the

Hamaker constant in the Lifshitz-Hamaker model and by an empirical factor in the

107



Lennard-Jones model. The hybrid method is capable of capturing surface
complementarity well, but the effect of strongly bound water molecules is lost.
Explicit inclusion of hydration effects can lead to elimination of high complementarity
protein-protein configurations (patch-antipatch pairs) (135, 136). Such an effect
would be expected to play an important role in accurately calculating B,,. This is
illustrated by the contribution of a -40 kT patch-antipatch pair for lysozyme, which
was found to have a dominant B,, contribution that was orders of magnitude greater
than what is experimentally measured. Such an anomalously attractive configuration
could very well be eliminated by one or more strongly bound water molecules. Thus,
hydration effects cannot be neglected and are crucial in the accurate prediction of By,.
The calculations of By, using the proposed hybrid method include
additional potential sources of uncertainty. First, there is the issue of whether all
patch-antipatch pairs can be identified by a random sampling. The configuration
space is large due to the degrees of freedom in defining the relative orientation of two
protein molecules. Another uncertainty is whether the identified patch-antipatch pairs
are in the optimally aligned orientation. While refinement was attempted by a local
sampling within +0.10 radian around the central orientations of the strongest
configurations, a different energy minimum may or may not be detected if the limits
are expanded. Once again, this issue is due to the size of the configuration space. The
uncertainties in the optimal alignment and absolute population of patch-antipatch pairs
are a cause for concern in calculating B, using atomistic models. However, the
statistical distribution of well depths from a finite sampling provides valuable
information on the fraction of the global angular space occupied by the different

configurations. This is because the relative frequency of orientations with various

108



levels of attractions is independent of the sample size taken, as shown by the
consistent distribution of well depths for different levels of sampling performed.
Furthermore, the distribution was found to be adequately described by an ideal log
normal probability distribution function. This information significantly aided in the
computation of the background contribution to B,,. Another significant uncertainty is
the size of the patch-antipatch pairs. A simplification was made in which all
configurations were assumed to be confined within +0.10 radian around their
respective central orientations. The localized patch integration calculations were
performed using this assumption. Although the By, contributions from the patch
integration approach are very much dependent on what is chosen for A, it is has been
shown that the interactions of the patch-antipatch configurations may be quite
sensitive to perturbations in orientation. Therefore, it can be inferred that these patch-
antipatch pairs occupy only a small fraction of the global configuration space. For A4 =
0.10 radian, the subregion of the configurational hypervolume occupied by each patch-
antipatch pair is on average approximately 1.97x10™, which is a very small portion of

the global configurational space.

3.5 Conclusions

A detailed numerical approach for computing B, from atomistic models
of proteins was proposed and carried out. The issues this work has attempted to
address illustrate the difficulty and uncertainties of computing B, at the atomistic
scale. The results highlight the influence of structure on the anisotropy of protein-
protein interactions and therefore the solution properties of proteins. The
heterogeneity of the I;, function makes calculation of the By, integral particularly

challenging. The proposed hybrid approach appears to provide a better method of
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calculating By, at the atomistic scale when compared to the Monte Carlo approach.
However, the identification of anomalously attractive configurations with well depths
~-30 KT to -40 KT strongly emphasizes the importance and necessity of incorporating
hydration effects to make accurate predictions of By, which will require the use of
molecular dynamics simulations.

A particular aspect of this work is accounting for the charge distribution of
the protein surface in representing protein interactions. The effect of electrostatics on
the By, trends for lysozyme and chymosin B was captured by incorporating a screened
Coulombic potential contribution in the pairwise atomistic interaction calculations.
This approach provided a simple and computationally efficient way of accounting not
only for the charge distribution, but also the effect of shape on the electrostatic
interactions. By incorporating the effects of electrostatics, the qualitative trends in B,
were distinguished for the two proteins studied that agreed with experimental
observations. Simple colloidal models that do not account for this important feature

are unable to qualitatively predict differences in the solution behavior of proteins.
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Chapter 4

CONCLUSIONS AND RECOMMENDATIONS

The central theme of this thesis is elucidation of the relation between
the molecular structure of proteins and their continuum thermodynamic properties.
The structural properties of proteins are complex, and it is this complexity that has a
profound impact on the molecular interactions that ultimately dictate their
macroscopic solution properties. The osmotic second virial coefficient, B,,, provides
a promising qualitative link between the protein-protein interactions and phase
behavior of proteins. This relationship was explored quantitatively, which yielded
significant insights into which essential aspects of protein interactions must be
incorporated in thermodynamic models in order to lead to accurate predictions of the
solution behavior for proteins. In this chapter, the findings and conclusions from this

work are summarized and recommendations for future investigations are put forth.

4.1 Conclusions

4.1.1 Continuum Thermodynamic Models

In Chapter 2, an attempt was made to quantitatively relate experimental
B2, values with the phase diagrams for the model protein ribonuclease A. Several
continuum models derived from classical theories for polymers and colloids were
explored in an effort find a mechanistic framework for protein solutions. While a
qualitative correlation between By, and phase behavior was found, quantitative

agreement could not be obtained using the continuum models. Phase equilibrium was
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also predicted from osmotic virial coefficients using the osmotic virial equation
derived from McMillan-Mayer solution theory. Although theoretically calculated
third virial coefficients along with B, values were used in the phase equilibrium
calculations, the phase diagram predicted from this model only qualitatively agreed
with experimental results.

The discrepancy of the results from the continuum models may be due to
the isotropic assumption inherent in each model and also the molecular nature of B,,.
The orientationally-averaged character of By, provides an incomplete description of
protein-protein interactions and therefore By, is limited in its ability to predict phase
behavior. Itis clear that the anisotropic character of protein-protein interactions
cannot be neglected, providing the most likely explanation for the inadequacy of the
continuum models studied. This finding justified the need for exploring molecular-

level models that incorporate the anisotropy as an essential feature.

4.1.2 Patch-Antipatch Model of Proteins and the Calculation of B,

Patch models have proven to be useful in providing a coarse-grained
representation of proteins to model their anisotropic interactions. They have been
shown to provide a better description of protein phase behavior and much progress has
been made in understanding the phase diagrams predicted from these models.
Accounting for the specific interactions through incorporation of patches can explain
features of protein phase behavior not possible with isotropic models. However,
because of the large parameter space that is possible for different combinations of
patch parameters, much of the work in the literature has focused on simplified patch
representations that provide only a caricature of proteins. The parameters of patch

models should be faithful to the physical and structural attributes of proteins.
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The patch-antipatch parameters for two proteins were determined from
extensive atomistic simulations. Several new findings are reported in this thesis
beyond the work of Neal et al. (82) and Hloucha et al. (78). First, the orientational
sampling for identifying patch-antipatch pairs was increased from 10 configurations
to 10° configurations. As a consequence of this increase in sampling, a larger number
of patch-antipatch pairs with deeper attractive wells were identified. Local
refinements were performed to find the approximate energy minima, which in some
cases led to configurations with well depths as a high as -40 kT. The large size of the
global configurational space leads to uncertainties in identifying all patch-antipatch
pairs. However, the relative frequency distribution of interaction well depths was
found to be independent of the degree of orientation sampling and thus provides an
estimate of the fraction of the configuration space that is occupied by the different
patch-antipatch pairs.

It has been shown in this work that the patch-antipatch pairs contribute
significantly to the calculation of B,,. Due to these patch-antipatch configurations, the
Monte Carlo integration approach was found to be unsuitable for evaluating the
multidimensional integral necessary for computing B,,. The hybrid Monte
Carlo/patch integration approach that is proposed in Chapter 3 addresses some of the
numerical issues in calculating B,,. However, the presence of anomalously strong
patch-antipatch pairs gave rise to By, contributions that were orders of magnitude
greater than typical experimental values. This discrepancy may largely be attributed
to the fact that hydration effects were neglected in the calculations. Hydration effects
are known to attenuate the interactions of patch-antipatch pairs and will have a

significant impact on the calculation of By,. Thus, further refinements are needed in
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order to make accurate predictions of By,, which will allow for meaningful

comparisons with experimentally measured values.

4.2 Recommendations and Future Directions

4.2.1 The Calculation of By,

Accurate predictions of By, from atomistic models will require accounting
for the specific hydration of proteins, which is known to affect high-complementarity
configurations (patch-antipatch pairs) (135, 136). The hybrid continuum/atomistic
approach used to calculate the short-range non-electrostatic interaction energies
captures the effect of surface complementarity between proteins, but the effect of
strongly bound water molecules is not generally accounted for. These water
molecules strongly bound to the protein provide additional steric hindrance that can
effectively inhibit the interactions between patch-antipatch pairs. Accounting for such
effects will require the use of such methods as molecular dynamics simulations where
water molecules are explicitly included.

Another direction that should be explored is the calculation of electrostatic
interactions. The addition of a pairwise screened Coulomb contribution to the
interaction energies provided a simple way of accounting for the shape anisotropy of
the charge distribution in the calculation of By,. This approach was able to
qualitatively reflect the impact of this anisotropy on By, for lysozyme and chymosin B.
However, this model is simplistic in its treatment of the electrostatics since it does not
explicitly account for the local dielectric boundaries. It would be necessary to
compare how the magnitude of the electrostatic energies computed from the pairwise

screened Coulomb potential approach compares with the energies determined from
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solving the Poisson-Boltzmann equation for the full protein geometry. Several
software packages that utilize finite-difference or boundary-element approaches for
solving the Poisson-Boltzmann equation can be used for such a comparison.

Once these further refinements in the calculation procedure of By, are
performed and affirmed, the methodology can be extended to determining cross-
interaction virial coefficients B3, which characterize the association of two different
protein molecules. Experimental B,3 data for protein mixtures have previously been
measured and reported in the literature (123, 143). Quantitative predictions for the
cross-interactions of proteins can have relevant applications in industrial protein

separation processes.

4.2.2 Molecular Simulation of Protein Phase Behavior

Another avenue that should be explored further is predicting phase
behavior from the “patch-antipatch” representation of proteins. The patch-antipatch
parameters determined from the atomistic simulations performed in this work should
be utilized in the simulation of the phase behavior for these proteins. Although
atomistic models of the kind used in Chapter 3 are, in principle, suitable for describing
crystalline phases (144), such computations would be very challenging based on
current computational capabilities. However, patch models based on spheres may be
appropriate for simulating phases such as liquids since these disordered states do not
require a very specific 3-D molecular packing structure.

The logical route towards this endeavor is through the use of molecular
simulation (145, 146). The patch-antipatch parameters specific to the protein of
interest can be determined a priori from atomistic calculation methods described in

Chapter 3. There are various standard molecular simulation techniques for predicting
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phase behavior, which include the Gibbs ensemble Monte Carlo (147-150) and grand
canonical Monte Carlo/histogram reweighting techniques (150, 151). An in-depth
discussion of these techniques is beyond the scope of this work, but it is clear that
because of the strong attractions due to the specific patch interactions, particles may
be trapped by the very strong attractions in some configurations (152). As a result,
sampling of the entire configuration space becomes prohibitively long and the system
becomes nonergodic. Advanced simulation methods for strongly associating fluids
will need to be implemented. Several biased methods have been reported to address
such issues, which include the bond-biased Monte Carlo method (153), association-
biased Monte Carlo method (154), and aggregation volume bias Monte Carlo method
(155). These methods improve upon standard simulation methods by biasing the
acceptance criterion for accepting trial moves that allow for more efficient sampling of
the configuration space. These biased methods should be utilized to simulate the

equilibrium phases of proteins.
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Appendix A

DERIVATION OF LIQUID-LIQUID EQUILBIRIUM FROM THE OSMOTIC
VIRIAL EQUATION
The derivation of the equations for describing the liquid-liquid equilibrium

of protein solutions from the osmotic virial equation is presented in this appendix.
This derivation is consistent with the one reported by Débert et al. (156). The protein
solution is modeled as a binary mixture consisting of solvent (1) + protein (2) species.

It is assumed that there is no repartitioning of the salt species in the mixture. The
criterion for liquid-liquid equilibrium is the equality of the chemical potentials in the

mixture of both the solvent, 44, and the protein, s, in each phase:

52
where | and 11 designate the light and dense phases, respectively. To determine the
chemical potentials for the species, it can be shown that the chemical potential of the
solvent is directly related to the osmotic pressure 7 (14)

W — g =-nh (B.2)
where u2is the chemical potential of the pure solvent, and V; is the partial molar

volume of the solvent. The osmotic virial equation in terms of protein mass

concentration ¢ and truncated at the third virial term is

(B.3)
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where R is the molar gas constant, MW is the molecular weight of the protein, and B;
and B; are the second and third virial coefficients, respectively. Substituting equation

(B.3) into equation (B.2) yields the expression for the chemical potential of the solvent

et ) ) e

To determine the chemical potential of the protein species, the Gibbs-Duhem relation

(97) is invoked

N, (%) 1N, (a“ 2) ~0 (B.5)

ON, T,P,Ny

where N; and N, are the number of moles of the solvent and protein species,

respectively. Rearranging equation (B.5) in terms of . leads to

Ny (9
Ly = f ~2(5R)  amc (B.6)
N, N,/

where C is the constant of integration. To evaluate the derivative inside the integral of
equation (B.6), it is convenient to write z4 in equation (B.4) in terms of N; and Na.
The mass concentration of protein c is related to its mole fraction x, by

_ MW x,
v

c (B.7)

where V is the molar volume of the solution. For a binary system, V is the sum of the
partial molar volumes of the solvent and protein weighted by their respective mole
fractions x; and x;

V= x1V1 +x,V, (B.8)
Furthermore, a species mole fractions is the ratio of the number of moles of the

species to the total number of moles of the system
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(B.9)

By appropriate substitutions of equations (B.7), (B.8), and (B.9) into equation (B.4),

the chemical potential of the solvent z4 can be rewritten in terms of N; and N,

2
e 54 _ 2 LB 2
RTVI val + szz 2 val + N2V2

N 3
NV, + N,V,

Inserting equation (B.10) into equation (B.6), differentiating ; with respect to N4, and

(B.10)

integrating the result with respect to N, yields the expression for p,
N 2B N,V
11’1(%)4‘(1—_2)( _1 1_>
NV, + N,V, Vo ) \NV, + N,V,
— 2 — 3
3B B N,V B N,V
2V, V2 N,V + N,V, v, \ViV, + NV,

The initial condition that N; = 0 when u, = u is used to find the integration constant

1 B B
In <_—> - _—2 + _3 7
Va Vo 21,

where 1 is the chemical potential of the pure protein species. The integration

p2 = RT

(B.11)

C

(B.12)

constant C is inserted back into equation (B.11), and z, becomes
Ho — 3 _ szz 2B, szz
=1n — — +{=-1 I E—
RT NV, + N,V, V, NV, + N,V,

— 2 — 3
L(3Bs _Be\(__NoVe ) _Bs(_ Nolo (B.13)
2w Vo J\NV, +N,V,)  7,2\NiV, + N,V
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The chemical potentials can be expressed in terms of the protein volume fraction ¢ and

the osmotic virial coefficients. The protein volume fraction is

N,V,

NV, + NV,

The osmotic virial coefficients are defined as

B,

= YWz
M}gg (B.15)

Mw3

BZZ
By =
Using these relationships, the chemical potential of the solvent in equation (B.10) and

the chemical potential of the protein in equation (B.13) can be rewritten in terms of ¢,

B2, and B

0 2 3
Il S R <¢’M_W> +B,,, (‘W_W> (B.16)

RTV, 7, v, v,

—u? 2B, MW,?
Ha —Ha ¢+<#—1>¢

RT v,
3By MW,*  B,MW,?\
= T (B.17)
2V, 2
Ba2oMW,®\ BpoaMW,®  BaygpMW,*
- —2 ¢ - - — 2
VZ VZ 2V2

For dilute concentrations of protein, it can be assumed that the mixture is ideal enough
that the partial molar volume of the protein is equal to its molar volume, V,= V.
Applying the conditions represented in equation (B.1) yields the model for liquid-
liquid equilibrium

3

_ MW \? Mw
1= Pu + By, <7) (¢7 — &7 + Bazz <7) (p7 — i) =0 (B.18)
V2 V2

v
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2
In <ﬁ> + (M - 1> (¢r — du)

¢II ZZ
(B.19)
3B,,,MW?3  By,MW? B,y MW?
22 2 22

in which ¢ and ¢, are the concentration of protein in the light and dense liquid phases,
respectively. Equations (B.18) and (B.19) can be solved simultaneously to obtain the
equilibrium concentrations in the light and dense liquid phases, provided that the
physical properties of the protein (MW and V) are specified and the virial coefficients

B2, and By, at known solution conditions are used as inputs
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Appendix B

CALCULATION OF THE OSMOTIC THIRD VIRIAL COEFFICIENT By

This appendix contains the MATLAB source code for the calculation of
B2, from the Yukawa potential that is discussed in Chapter 2. The program utilizes
MATLAB’s numerical integration toolbox. In order to run this code, the numerical
integration toolbox needs to be in the same directory as the program files during
execution. This toolbox contains the functions implemented in the code for the
numerical integration of the third virial coefficient, which can be obtained from the
website http://www2.math.umd.edu/~jmr241/mfiles/nit/.

The file names and descriptions are given below. The range parameter b is
set at a value 35 in line 65 of the main driver file B222_Yukawa.m; however, this
value can be adjusted by the user. The user is also free to adjust the values of the
parameters in the file parameters.inp. Attached is a copy of the input files that are
needed. In principle, this code can be modified for any potential that possesses hard-
sphere repulsion with an attractive tail. It is left to the user to make such

modifications.
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File: parameters.inp — Input file which contains physical parameters

Temp 296

R 8.314

k 1.38E-23
Na 6.023E23
e 1.60E-19
epsr 78.54
eps0 8.85E-12
MW1 18.02
rhol 0.998
MW2 13700
rho?2 4.5

sigma 3.1E-9
phi c 0.5

File: B22_Data.dat — Input file which contains the experimental B, data

-1.27E-04
-1.55E-04
-1.88E-04
-2.24E-04
-2.65E-04
-3.10E-04
-3.61E-04
-4.17E-04
-4.79E-04
-5.48E-04
-6.24E-04
-7.07E-04
-7.98E-04
-8.97E-04
-1.01E-03
-1.12E-03
-1.25E-03
-1.39E-03
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File: B222_Yukawa.m — Main driver file for B,,, calculation

d° 0P 0 0 0° O° A° O A° A A A O A O° O A° A° A A ° O° O° J° o° o

oe

cl
cl
cl
cl
ad

gl

oe

o
°

o
°

fi

Z o~ o3 oo

a
e

This MATLAB program is used to calculate the third virial
coefficient from the Yukawa potential using the method of
Alder and Pople, J. Chem Phys., 1957. To run this file,

the numerical integration toolbox needs to be in the directory.

INPUT
parameters.inp
File with necessary physical parameters for calculations

B22 Data
File with the experimental B22 data. This data is used to
fit the epsilon parameter of the Yukawa potential for a
fixed value of the range parameter b*.

OUTPUT
T*
Reduced temperature T/epsilon
B222
Osmotic third virial coefficient

Authors: Leigh J. Quang
Abraham Lenhoff
Stanley Sandler

Last Modified: 11/29/2011
University of Delaware
Department of Chemical Engineering

c
ear all

ose all

ear global

dpath nit

obal T k Na e epsr epsO MWl V1 rhol phi ¢ MW2 m s

Experimental Data
Read in data

d = importdata ('parameters.inp');

Constants

= fid.data (1) ; % Temperature (K)

= fid.data(2); % Molar gas constant (J/molK)
= fid.data (3); % Boltzmann constant (J/K)

= fid.data(4); % Avogadro's number (1/mole)
= fid.data(5); % Elementary charge (C)
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o

Dielectric constant of solvent
Permitivity constant

epsr = fid.data(6);
eps0 fid.data(7);

o

[

% Water Properties
MWl = fid.data(8);
rhol = fid.data(9);
V1l = MWl/rhol;

o\

Molecular weight (g/mol)
Density (g/ml)
Molar volume (ml/mol)

o°

o°

% Protein Properties

MW2 = fid.data (10); % Molecular weight (g/mol)
rho2 = fid.data(11l); % g/cm”3

V2 = MW2/rho2; % Molar volume (ml/mol)

s = fid.data(12); % Diameter (m)

m = (rhol*MW2)/ (rho2*MWl) ;

phi c = fid.data(13);

%% B22 Data
ydata = importdata('B22 Data.dat');
n = length(ydata);

%% Range Parameter
b = [35];
m = length(b);

%% B222 Calculation
Syms x y r z

epsilon = zeros(n,m);

B3 = zeros(n,m);

Temp = zeros(n,m);

rmax = 5;

for 3 = 1:1:m

for i = 1:1:n

% Yukawa Epsilon Parameter Optimization
resid = @ (eps) norm (B2 (eps,b(j))- ydata(i)):;
epsilon(i,j) = fminsearch(resid, 500);

% Third Virial Coefficient from Yukawa
Tr = T/epsilon(i,J);

wx = —exp(-b(j)*(x-1))/x;

wy = —exp(-b(3)*(y-1))/y;

wz = —exp(-b(j)*(z-1))/z;

fx = exp (-wx/Tr)-1;

fy = exp(-wy/Tr)-1;

fz = exp(-wz/Tr)-1;

Cl = 5/8;

C2 = -12*numint2 ((1-0.75*x+0.0625*x"3) *x"2*fx,x,1,2,vy,0,1);

C3 = 36* [numint3 (x*y*z*fx*fy,z,x-y,1,vy,1,%x,%x,1,2) +
numint3 (x*y*z*fx*fy,z,x-y,1,y,x-1,%x,x,2,rmax) ];

C4 = -12*[numint3 (x*y*z*fx*fy*fz,z,1,x+ty,v,1,x,x,1,2) +

numint3 (x*y*z*fx*fy*fz,z,x-y,x+y,vy,1,x-1,x,2, rmax) +
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numint3 (x*y*z*xfx*fy*fz,z,1,x+y,vy,x-1,x,%x,2,rmax) ];
B3(i,j) = Cl+C2+C3+C4;
Temp (i,]) = Tr;
end
end

%% Output results
format short

disp('T*:")
disp (Temp)
disp(' ")

format short eng

disp('3rd Virial Coefficient B222 (cm”6*mol/g”3):")
disp(' ")

B222 = B3.*[((2*pi*Na*s”3)/3).72.*100%6.* (1/MW2"3)];
disp (B222)

File: B2.m — Integral equation for B,, in terms of reduced variables

function F = B2 (eps,b)

o\°

Function file for solving the B22 integral equation to determine
% epsilon. The range parameter b must be passed to this function.

global T k Na e epsr epsO MWl V1 rhol phi ¢ MW2Z m s
F = ((2.*pi.*Na.*s.”3)./3).*(1 + quadgk(@(r) f(r,eps,b),1,Inf));

end

File: f.m — Mayer cluster function for the Yukawa potential

function F = f(r,eps,b)

oe

Function file that contains the Mayer cluster function for the
Yukawa potential. This function is using in the function file B2.m
for MATLAB's quadgk integration function.

oe

oe

global T k Na e epsr epsO MWl V1 rhol phi ¢ MW2 m s

w = —eps.*exp(-b.*(r.”~(1/3)-1))./r.~(1/3);
1 - exp(-w/T);

3
Il

end
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