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ABSTRACT

The first project involves our efforts toward the core structure of the
macrocyclic trichothecene (-)-verrucarol (3). We developed a short synthetic concept
for the enantioselective synthesis of the natural product. The key step is an
asymmetric intramolecular Mizoroki-Heck reaction. In order to evaluate the key step,
we synthesized several substrates and screened various reaction conditions.

The second project involves the discovery of a method for the functionalization
of aniline-N-oxides. Discovery of the method took place while searching for a general
method for the generation of aza-ortho-xylylenes in situ. We found the reaction to be
quite general, allowing us to access aminophenols, aminoarylsulfonates, alkylated
anilines, and aminoanilines in 29-95% yield in a single laboratory operation from
easily isolable, bench-stable N,N-dialkylaniline N-oxides.

The final project involves our efforts toward the total synthesis of the
meroterpenoid psiguadial A (190). The key step is an enolate—ortho-quinone methide
(0-QM) reaction followed by an oxa-Michael addition to form the seven-member
heterocyclic ring. The first generation synthesis toward the terpene derived silyl enol
ether (225) was investigated. In an effort to better understand and optimize the two
key steps in the synthesis, a model system of psiguadial A (190) was developed. We
successfully synthesized the product of the enolate—0-QM reaction, that is, the keto
phenol (254A). Evaluation of the oxa-Michael reaction, did not return the desired
products. Several synthetic strategies were developed and implemented, but did not

lead to the seven-member heterocyclic ring. Current efforts involve the synthesis of

XXii



intermediates of form the seven-member heterocycle to form the via copper-catalyzed
C-O coupling. A second generation of the silyl enol ether (225) is also being

investigated and addresses the major problems of the first generation’s synthetic

challenges.
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Chapter 1

EFFORTS TOWARD A TOTAL SYNTHESIS OF (-)-VERRUCAROL

1.1 Introduction to Macrocyclic Trichothecenes and (-)-Verrucarol

The trichothecenes are a collection of over 180 sesquiterpenes containing a
shared tricyclic core structure (1, ABC ring system, Figure 1.1). Two subclasses exist
within the trichothecenes, the verrucaroids (5, C27 compounds) and the roridoids (4,
C29 compounds), each of which are decorated with macrocyclic esters linking C4 and
C15 of the ABC ring system. The tricyclic core structure and the macrocyclic esters

contain varying degrees of oxygenation.1

trichothecane trichothecin (2) (-)-verrucarol (3)
skeleton (1)

HsC

roridoid subclass (4) verrucaroid subclass (5) verrucarin A (6)

Figure 1.1 Trichothecene Natural Products



In 1948, Freeman and Morrison isolated the first trichothecene, trichothecin
(2), from the fungus Trichothecium roseum.2 Following this initial discovery,
numerous unique trichothecenes have been isolated from plant and fungal sources.
For example, in the early 1960°s Tamm and Gutzwiller isolated the macrocyclic
trichothecene verrucarin A from extracts of the fungus Myrothecium verrucaria. They
then found that when verrucarin A (6) was subjected to basic hydrolysis conditions the
tricyclic core (-)-verrucarol (3) could be isolated and its structure fully elucidated.3

The biological activity of the trichothecenes interested both chemists and
biologists in understanding this group of sesquiterpenes natural products. The fungal
sources of the trichothecenes (genera Fusarium, Myrothecium, Trichothecium, and
Trichoderma) are parasitic on cereal grains and are thus commonly encountered as
food contaminants. The trichothecenes bearing a macrocyclic ester functionality (e.g.,
verrucarin A) are the most toxic in the class. The lethal dose is relatively high for oral
toxicity and higher when injected (LDso mg/kg for mice, rat, and rabbits, respectively,
1.5, 0.87, 0.54). This toxicity has led to a myriad of studies examining their biological
activity including potent antiproliferative, antiviral, antimalarial, antifungal, and
insecticidal activities.4

The trichothecenes have received attention from nine different synthetic
organic chemistry research groups over the past 40 years. Within this considerable
amount of chemical literature, four distinct syntheses of verrucarol have been
completed, three racemic and one enantioselective. The syntheses described to date
range from 17 to 43 individual steps.> Central to these classical syntheses lies the
problem of establishing the key C6 all-carbon quaternary center ring junction and the

stereochemistry of this critical structural feature.



1.2 Prior Syntheses of (-)-Verrucarol

The first completed synthesis was reported by Schlessinger and Nugent in
1982 (Figure 1.2).5f The biomimetically inspired racemic synthesis began with the
ketone 7 undergoing an m-CPBA mediated oxidation, then ozonolysis with loss of two
carbon atoms, and another oxidation to furnish the keto acid 8. Wittig conditions
converted the ketone to an exocyclic olefin, and selenium dioxide oxidation yielded
the allylic alcohol which was immediately converted to the corresponding lactone.
Finally, deprotonation and trapping with monomeric formaldehyde made the a-
methylene lactone 9. The key C6 all-carbon quaternary center ring junction and the
stereochemistry at this center was constructed via a Diels—Alder [4+2] cycloaddition
reaction between 1-methyloxy-3-trimethylsiloxy-1,3-butadiene (Danishefsky’s diene,
10) and the methylene lactone 9 to give the enone 11. The remainder of the synthesis
consisted of installation of a methyl group at C9, reduction of the lactone to the triol
12 with lithium aluminum hydride. The triol 12 was then converted to 13 via an acid-
mediated allylic substitution. Due to the concomitant oxidation between the
trisubstituted olefin and the exocyclic olefin, additional steps were required to install
the epoxide present in the natural product. These steps required masking the 9,10-
trisubstituted olefin, cleavage of the tert-butyl protecting group, and then
stereospecific epoxidation of the exocyclic olefin. Finally, unmasking of the 9,10-
trisubstituted olefin produced racemic verrucarol in 17 linear steps and 3.4% overall

yield.



()-verrucarol, (3)

(@) LDA, THF, —78 °C, then TMSCI, Et;N, THF, 0 °C. (b) m-CPBA, NaHCO3, hexane, t-BuOH, 0 °C.
(c) O3, MeOH, -78 °C. (d) NalO,, CrO;, AcOH, H,0, 22 °C. (e) (Ph);PCHsBr, NaOt-Am, PhCH,, 110
°C. (f) SeO,, t-BuOOH, CH,Cl,, 22 °C, 53% over 5 steps. (g) p-TSA, CH,Cl,, 22 °C 55%. (h) LDA,
THF, —78 °C, then CH,0 THF, 22 °C, 62%. (i) 10, methylene blue, PhCH3;, 140 °C. (j) Amberlite IR-
120, CH,Cl,, 22 °C, 76% over 2 steps. (k) MeLi, THF, —78 °C, 93%. (I) LAH, DME, reflux. (m) p-
TSA, CH,Cl,, 22 °C, 73% over 2 steps. (n) NBS, acetone, 22 °C. (0) TiCl,, CH,CI,, 0 °C, 85% over 2
steps. (p) m-CPBA, CH,Cl,, 22 °C, 70%. (q) Na°, EtNH,, THF, 0 °C, 62%.

Figure 1.2 Schlessinger’s Total Synthesis of (£)-Verrucarol

In the same year, Trost and McDougal presented a total synthesis of racemic
verrucarol starting with the prochiral 14 produced in four steps from 2-methyl-1,3-
cyclopentanedione (Figure 1.3).>*%) The dienophile 14 and 1-(trimethylsilyloxy)-3-
methyl-1,3-butadiene (15), underwent a Diels—Alder [4+2] cycloaddition reaction
producing 16 and forming the key C6 all-carbon quaternary center ring junction. The
product 16 left a carbonyl in the correct position to undergo an ene reaction generating
17. Reduction and lactonization produced 18 and thermolysis resulted in a further
retro-ene to give the polycyclic ketone 19. Formation of the final ring came first with
introducing a leaving group a to the ketone in 19, then production of a hemiketal
under thermodynamic conditions, 20. Treatment of the hemiketal 20 with fluoride
induced a skeletal rearrangement and then a Wittig reaction installed the exocyclic

olefin seen in 21. Finally, reduction of the lactone, chemoselective silylation generated



22 while inversion of the secondary alcohol and a directed epoxidation lead to the

racemic verrucarol in 18 linear steps and 2% overall yield.

OTMS o OTMS
me |1 HsC Lorus CHy0,C
3 a ‘ CH; o 0 b-c & o
—_— . —_— R
3 H,C H,C
H,C0O,C g oTMS H3c°23 . HsC fi,C
HO HO
18

17

(+)-verrucarol, (3)

(@) 15, mesitylene, 155 °C, 63%. (b) NaBH,4, MeOH, 92%. (c) CrO3 -2pyr, CH,Cl,, 92%. (d) hot tube,
16 cm, 470 °C, 89%. (e) Lithium tetramethylpiperidide, THF, 0 °C, then TMSCI, 0 °C, then
Br,-dioxane, CH,ClI,, pyridine, =78 °C. (f) TFA in ethylene dichloride, H,0, 32 to 45 to 55 °C. (g) (n-
Bu)4;NF, THF, 70% over 3 steps. (h) PhsPCH,, LiBr, THF, 60 °C, 95%. (i) DIBALH, PhCHa;, 95%. (j)
TBSCI, DMAP, CH,ClI,, 0 °C, 82%. (k) TsCl pyridine, 34 °C, 79%. (I) CsO,CCH,CHjs, 1,3-dimethyl-2-
imidazolidinone, 150 °C, then TBSCI, imidazole, DMF. (m) K,COs, wet MeOH, 31% over 2 steps. (n)
Mo(CO)g, t-BuOOH, PhH, 63 °C, 85%. (0) (n-Bu)4NF, THF, 91%.

Figure 1.3 Trost’s Total Synthesis of (+)-Verrucarol

In 1983, Roush and D’ Ambra concluded a series of manuscripts describing a
racemic synthesis of verrucarol beginning with the protected a-methylene lactone 24
produced in 12 steps from (methylcyclopentadienyl)trimethyl silane (23) (Figure
1.4).°*#" A Diels-Alder [4+2] cycloaddition reaction between the a-methylene
lactone 24 and 3-methyl-1-acetoxybuadiene 25 produced the spiroannulation product

26 and established the key C6 all-carbon quaternary center ring junction. Reduction



with LAH produced a triol which was then treated with PPTS affecting an acid
catalyzed Sy’ cyclization to form the triol 27, constituting the tricyclic skeleton of
verrucarol. To complete the sequence, the diol was mono acylated, the secondary
alcohol was oxidized, and necessary protection/masking of the C15 hydroxyl groups
and the 9,10- trisubstituted olefin with NBS produced the bromo ether 28. A Wittig
reaction installed the exocyclic olefin and cleaved the acetate protecting group to
produced 29. Epoxidation and cleavage of the bromo ether afforded racemic

verrucarol in 21 linear steps.

HsC___CH
M H O\I/CH3
12 steps o o o a
¢ CH
H,C ®  AcO
\[‘;

24

(£)-verrucarol, (3) 3 29 28
(@) 25, PhCHg3, BHT, 140 °C, 57%. (b) LAH, DME, reflux. (c) PPTS, PhH, reflux. 65% over 2 steps. (d)
NBS, CHsCN. (e) Ac,0, pyridine. 30% over two steps. (f) CrOs, H,SO,, acetone, 88%. (g) PhsPCH,,
THF, 60 °C, 60%. (h) m-CPBA, NaHCOs, CH,Cl,, 95%. (i) Zn-Ag, THF, EtOH, reflux, 82%.

Figure 1.4 Roush’s Total Synthesis of (+)-Verrucarol

In 1988, Koreeda et. al. reported a formal synthesis toward verrucarol (Figure
1.5).5k In four steps, 2-methyl-1,3-cyclopentanedione (30) was converted to the keto
lactone 31. A Witting reaction to 31 and allylic oxidation yielding the single

diastereomer 32. Necessary inversion of the allylic alcohol and masking of the



forthcoming dienophile by enolate formation and sulfenylation generated 33.
Installation of the Z-dienol ether function furnished the penultimate synthetic
intermediate 34. The key C6 all-carbon quaternary center ring junction was generated
via an intramolecular Diels—Alder reaction under the action of neutral alumina for the
formation of the A/B ring system in 35. Koreeda described 35 as synthetically
identical intermediate to Trost’s intermediate 21 (Figure 1.3). Thus, the Koreeda
group generated the advanced intermediate 35 over 17 linear steps in 16.6% overall
yield and based on this report, a theoretical racemic synthesis of verrucarol would be

possible in 24 steps.

35/21 35

(@) crotyl alcohol, p-TSA, PhCHj, reflux, 95%. (b) KMnQ,4, CH,Cl,, H,0, AcOH, 0 °C. (c) CH3N,, Et,0,
77% over two steps. (d) LiAI(Ot-Bu);H, THF, —78 to 20 °C, 95%. (e) PhsPCH;3Br, KOt-Bu, t-BuOH,
THF, 93%. (f) SeO,, t-BuOOH, dichloroethane, reflux 75%. (g) TBSOTT, 2,6-lutidine, CH,Cl,, 98%.
(h) LDA, THF, —78 °C, then Ph,S,, HMPA THF, 20 °C, 95%. (i) (n-Bu),NF, THF, 90%. (j) PhsP,
DEAD, PhCO;H, THF, 91%. (k) K,COs, CH;OH, H,0, 95%. (I) TIOEt, PhH, then BrCH,CO,Et,
CH5CN, 95%. (m) LDA, THF, , —78 °C, then methacrolein, —78 °C, 80%. (n) m-CPBA, NaHCO3,
CH,Cl,, 0 °C, then CaCOs;, CCl,, reflux, 75%. (0) neutral alumina, hexane, ethyl acetate, 83%.

Figure 1.5 Koreeda’s Formal Synthesis of (+)-Verrucarol



The first enantioselective total synthesis of verrucarol was reported by Tadano
and coworkers in 1997 (Figure 1.6).mn The sequence began with a three step
sequence in which D-glucose (36) was transformed into the allylic alcohol 37. At this
point, the key C6 all-carbon quaternary center ring junction and the associated
stereochemistry required for the trichothecane skeleton was produced via a Johnson
ortho—ester Claisen rearrangement.6 The product of this acid-mediated rearrangement
reaction between 37 and triethyl orthoacetate gave the tetrahydrofuran intermediate
38. Continuing the sequence, the enantiomerically pure a-methylated bicyclic y
lactone 39 was generated in 19 linear steps. The mesylate 40 was fashioned in 12
more steps before it was subjected to fluoride. The spontaneous ring expansion of the
mesylate 40 to give 41 was similar to the ring expansion executed with Trost’s
bromide 20 (Figure 1.3). Finally, the synthesis of (-)-verrucarol (3) was completed in

10 more operations for a total of 43 steps.
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(-)-verrucarol, (3) M 40 39

(a) PCC, CHyClI,. (b) PhsPCHCO,EL, PhH, 80 °C, 60% over two steps. (c) DIBALH, 86%. (d)
CH3C(OEt)s, EtCO,H, 135 °C, 64%. (e) LAH, THF, 0 °C, quant. (f) PhsP, DEAD, Mel, THF,0 °C,
90%. (g) NaH, CH,(CO,CHy),, THF, 0 °. (h) 60% ag. AcOH, 99%. (i) NalO,4, MeOH. (j) NaOCHj,
MeOH, 94% over two steps. (K) Ac,0O, pyr. 92%. (1) Oz, MeOH, CH,CI,, —78 °C, then NaBH,, 98%.
(m) DMSO, H,0, NaCl, 160 °C, 47%. (n) MOMCI, i-Pr,NEt, 83%. (0) DIBALH, CH,Cl,, -78 °C,
quant. (p) PhsP, CCl,, PhH, reflux, 88%. (g) n-BusSnH, AIBN, PhCHj, reflux, quant. (r) 60% ag. TFA,
0 °C, 63%. (s) p-TSA, MeOH, 60%. (t) NaH, imidazole, THF, then CS,, then Mel, 96%. (u) n-BusSnH,
AIBN, PhCHjs, reflux, 90%. (v) Jones reagent, acetone, 0 °C, 76%. (w) LDA, Mel, THF, —78 °C, 96%.
(x) LDA, 4-O-(t-butyldiphenylsilyloxy)butanal, THF, PhCHs, —78 °C, 50%. (y) (n-Bu);NF, THF. (2)
PivCl, pyr. (aa) MOMCI, i-Pr,NEt, CHCIs, reflux. (bb) NaOCHs, MeOH, 58% over four steps. (cc)
Jone’s reagent, acetone, 0 °C. (dd) CH;,N,, Et,0, CHCls, 0 °C, 72% over two steps. (ee) KHMDS, THF,
—78 °C, 82%. (ff) TBSOTHT, 2,6-lutidine, CH,Cl,, 0 °C, 75%. (gg) 4 M KOH, MeOH, 80 °C, 81%. (hh)
WSC, DMAP, N-hydroxpyridine-2-thione, t-BuSH, O,, CH,Cl,, 84%. (ii) MsCl, pyr. 99%. (jj) (n-
Bu)4NF, THF, 98%. (kk) PhsPCH,, THF, 60 °C, 73%. (Il) TMSBr, 4A MS, CH,Cl,, —30 °C, 78%.
(mm) TBSOTHT, 2,6-lutidine, CH,Cl,, =78 °C, 40%. (nn) NBS, acetone, 0 °C, 94%. (00) (n-Bu)4NF,
THF, 96%. (pp) m-CPBA, NaHCO3;, CH,Cl,, 91%. (qq) Zn-Ag, THF, EtOH, reflux, 81%.

Figure 1.6 Tadano’s Total Synthesis of (—)-Verrucarol

1.3 Retrosynthetic Analysis of (-)-Verrucarol

We believe the central challenge and the key to efficiently constructing the
trichothecene core structure (and thus (-)-verrucarol (3)) is establishing the key C6 all-
carbon quaternary center ring junction. In order to produce a short synthetic sequence,
we envisioned this all-carbon quaternary center arising from 47 via an asymmetric
intramolecular Heck reaction to give the lactone 46 (Figure 1.7). Tackling this major

obstacle at the outset of the synthetic sequence addresses the crux of the trichothecene



problem as described in the context of previous syntheses. After the key step, we
envision opening of the lactone to give 45. This intermediate would then be subjected
to a diastereoselective allylation at the aldehyde function to produce 44. Finally, the
core of the trichothecene skeleton would be completed via an intramolecular Sy’
cyclization of an allylic silane to aldehyde to 43. The well-precedented epoxidation of
the exocyclic olefin 42 would produce the title natural product in as few as 16 linear

steps.

OCH;

HO HO'

49 50 51

Figure 1.7 Retrosynthetic Analysis of (—)-Verrucarol

1.3.1 Asymmetric Intramolecular Heck Reactions in Synthesis

The low-valent palladium-mediated cross coupling reaction joining an olefin
and an aryl or a vinyl halide was first described over 40 years ago in independent
studies by Mizoroki and Heck.”'® In 1989, Shibasaki and Overman disclosed the first

examples of an asymmetric intramolecular Heck reaction.® Shibasaki and his group

10



demonstrated the first enantioselective construction of a tertiary stereocenter (52) via

an intramolecular Heck cyclization (Figure 1.8).

Pd(OAc), (3 mol%)
(R)-BINAP (9 mol%) CO,CH;
cyclohexene (6 mol%) :
l Ag,CO; (2 equiv.) B
NMP, 60 °C H
74%, 46% ee 52

CO,CH,

Figure 1.8 Shibasaki’s Intramolecular Heck Cyclization

Meanwhile, Overman reported the first direct formation of a quaternary carbon
stereocenter (53) (Figure 1.9), a milestone for the catalytic construction of quaternary

carbon stereogenic centers.

oTt ¢, Pd(OAC), (10 mol%)

_cH, (R,R)-DIOP (10 mol%)

h

o EtsN, PhH

90%, 45% ee

Figure 1.9 Overman’s Intramolecular Heck Cyclization

In 1990, Overman demonstrated the power of the palladium-mediated
quaternary carbon formation (54 — 55) in the total synthesis of the natural products

(%)-tazettine (56) and (z)-6a-epipretazettine (57) (Figure 1.10).10

11



Pd(OAGC), (10 mol%)
1 PhsP (40 mol%)

> .
o Ag,CO; (2 equiv.) H3;CO,CHN
k (o} THF, 56 °C

0 NHCO,Me
63 - 70% (after recryst.)
54 55 R4 = OH, R; = H, (1)-tazettine (56)

Ry = H, R; = OH, (+)-6a-epipretazettine (57)

Figure 1.10 Intramolecular Heck Cyclization for Natural Product Synthesis

In 1998, Overman and coworkers released a series of publications that
explored the effects of chiral diphosphine ligands, methods of catalyst generation,
reaction solvent and HX scavenger for the formation of enantioenriched asymmetric
Heck cyclizations products similar to the ester 59 and the lactam 61 (Figure 1.11).11
They found that by varying the HX scavenger (silver salt or tertiary amine), both

enantiomers could be accessed by means of the same chiral diphosphine ligand.

Pd,dbag (5 mol%) or Pd,dbaj (5 mol%) o o
(R)-BINAP (11 mol%) (R)-BINAP (11 mol%) ‘
PMP (5 equiv.) Ag,PO, (2 equiv.)
DMA, 100 °C, 6 h NMP, 60°C, 24 h Q
o
(-), 66%, 0-7% ee (+), 91%, 49-55% ee
59

\J

Pd,dbag (5 mol%) or Pd,dbag (5 mol%)
(R)-BINAP (11 mol%) (R)-BINAP (11 mol%) ‘
PMP (5 equiv.) Ag,PO, (2 equiv.) o
DMA, 110 °C, 8 h NMP, 80 °C, 26 h Q
N
“cH

(S), 71%, 66% ee (R), 86%, 70% ee 3

Figure 1.11 Examples of Heck Reactions to Form Spirocycles
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Most recently in the total synthesis of (+)-galanthamine, Guillou has shown
that a ligandless system can decrease the time required to produce quaternary carbons

through Heck cyclizations from 72 hours to 5 hours (62 — 63) (Figure 1.12).12

(o) (o} O, o
Pd,dbaj (10 mol%) or Pd,dba; (10 mol%)
Et3N (3 equiv. ) dppe (20 mol%) ‘

h
-

DMF, 140 °C, 5 h TIOAC (1.15 equiv)
0. CH4CN, 90 °C, 72 h
o” o

0
OCH, 60% 67% OCH;

62 63

Figure 1.12 Example of Ligandless Heck Reaction to Form Spirocycles

Our target Heck cyclization substrate contains the same alkene insertion
partner as much of the prototypical Heck platforms (e.g., Figure 1.11 and 1.12), and if
succ