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ABSTRACT 

A one dimensional model of blood flow in the human arterial system has been 

reformulated to handle recirculation of blood, a phenomenon that occurs in the 

cerebral arteries of the brain. This model has also been made modular and the input 

requirements have been streamlined, thus allowing an easy adaptation to any particular 

system. Information on blood rheology and the vessel network has been updated to 

accurately reflect physiological conditions. 

Most importantly, an alternate approach to develop and solve the 

(approximate) governing equations has been successfully implemented. The approach 

is based on a nonlinear system of hyperbolic equations that are now solved through a 

specially developed numerical method. This complements the original analytical 

solution, which requires a linearized version of the problem in order to be applied 

successfully. By incorporating nonlinear fluid mechanic effects, the new method may 

be used to validate the previous version, or replace it where the analytical assumptions 

break down. The results of the two methods on a single test vessel indicate that for low 

Reynolds numbers both are in agreement, but at high Reynolds numbers small 

nonlinear inertial effects do exist that create sizeable differences in the outcomes. 
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Chapter 1 

INTRODUCTION 

1.1 Overview and Motivation 

Developing an accurate model for blood flow provides medical professionals 

and scientists with an extremely useful tool for diagnostics and research. An 

individual’s pressure pulse patterns can be recorded and be compared over time, 

allowing doctors to quickly detect abnormalities. A model tailored to a specific patient 

could also be a useful tool for determining risk for a dangerous surgery. The list of 

applications extends far past these examples. 

We already have the ability to construct a 3D image of an artery bifurcation 

and examine the pressure and flow profiles around it. However, these 3D simulations 

are limited in scope by the computational power and time required for them to 

converge. A full three dimensional model would be too complex to accurately take 

into account the full arterial system. A one dimensional model of blood flow is 

computationally much simpler, yet can still provide accurate pressure and flow 

information on human arteries. However, the majority of one-dimensional blood flow 

models that have been put forth thus far make rather severe simplifications on the 

blood flow problem. Physical data on human arteries are very scarce, and any that can 

be found in literature are usually only measured to two or three digits. Thus, 

simplifications are needed that may introduce unacceptable errors on the solution. Our 

goal for this research project was to refine a recently developed blood flow model to 
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be as accurate as possible, while simultaneously extending its applicability to more 

complex arterial networks, such as those in the brain that also possess recirculation. 

A main focus during the software development was keeping as much 

physiological information as possible in input files rather than in the code itself. We 

hope that this software, implemented in MATLAB (as before, but now in a more 

modular and user-friendly fashion) may eventually be used in a diagnostic setting, 

where it can be applied to individual patients. Every person has unique vessel 

characteristics and network topologies. Therefore the software must be user-friendly 

and designed in a way that allows it to provide accurate outputs for different networks 

and parameters.  The MATLAB framework also facilitates its portability. 

A direct application of the new model’s capabilities to handle brain arterial 

flow may eventually be to analyze how blood flow irregularities in the brain will 

affect cognitive function. With an accurate flow model, one can make simple changes 

to allow for the partial or full occlusion of arteries that supply the brain or bridge the 

two hemispheres. The model will then be able to compute the new results for flow to a 

given vessel, and correlations between blockages and reduced flows can be made. If 

the model is combined with data about where various cognitive functions take place 

and what vessels supply these areas, the model can even be used to predict effects on 

cognition in patients by copying the unique topology of their cerebral arterial system. 

This one dimensional model is a relatively simple yet extremely powerful tool for 

analyzing the behavior of blood in not only the brain, but any bodily tissue. 
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1.2 Objectives 

 To reformulate the original 1D blood arterial flow model developed by Johnson   

et al. (2011) so that it is capable of handling flow recirculation, which is present in 

the Circle of Willis in the brain. 

 To reformulate the original MATLAB code to be modular, with separate input 

files, thus allowing seamless extension to more extensive arterial network 

descriptions as well as patient personalization. 

 To update crucial information on  

o the arteries (involving the most important brain arteries and the Circle of 

Willis) 

o the blood flow rheology, involving the latest steady state viscoplastic 

rheology modeling by Apostolidis and Beris (2014). 

o the vessel elasticity 

o the Fahraeus and Fahraeus-Lindqvist effects 

 To develop an alternative method of solving the 1D model equations that then can 

be used to check the previous approach and/or substitute for it as needed on an 

individual vessel-based case. 

1.3 Relevant Literature 

Cardiovascular diseases represent the leading cause of non-accidental death in 

the United States, causing roughly one out of three deaths and contributing more than 

three hundred billion dollars annually to health costs1. This explains the enormous 

interest and the many research activities centered on the investigation of blood flows 

today, as it can be testified from the many books that have been dedicated partly or 
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fully to this subject2
,3,4,5,6,7,8,9,10,11,12,13,14,15,16, many of which have appeared within 

the last decade . 

Unfortunately, when it comes to understanding the exact local fluid dynamics 

of the cardiovascular system, there is much difficulty in reproducing the in vivo flow 

profiles for simulation purposes, or even using simulations to effectively represent the 

arterial flow in regions of higher risk. Three-dimensional (3D) computational fluid 

dynamic simulations have been performed with increasing frequency on various 

vascular geometries, ranging from the carotid17,18,19,20,21,22,23,24,25,26,27,28, the 

coronary29,30,31,32,33,34,35,36,37,38,39, the abdominal aorta40,41, as well as the 

cerebral42,43,44,45,46, and pulmonary47,48 arteries to name a few. However, even here, 

the physical accuracy of the simulations is questionable as crucial issues such as the 

non-Newtonian nature of the blood rheology49, the inhomogeneous red blood cell 

concentration50, and the appropriate conditions describing the blood vessel wall51 and 

their tethering within the human body
2
 are often neglected or at best severely 

simplified. Characteristically, non-Newtonian blood rheology effects are at best 

approximated through generalized Newtonian models
19,22,27,52,53,54. However, as we 

know from theory55 and given the historical dependence of blood rheology56, such a 

description is only valid for steady shear flows. Moreover, even without taking all of 

these physical effects into account, the full time-dependent and three-dimensional 

solution within a system of vessels corresponding to real patient data (as extracted, for 

example, through MRI), represents such a geometrical complexity as to typically 

necessitate large-scale massively parallel and grid-distributed computational 

resources57. 
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Another issue associated with appropriately capturing the in vivo nature of 

blood fluid dynamics comes from the specification of the appropriate outflow 

boundary conditions. One way to address this issue involves 3D MRI velocity 

profiles
18,25,37,58,59,60. These are very accurate and detailed data but also expensive and 

time consuming; they can only be used to reproduce the existing flow. A different 

route
14,38,61 is to couple the 3D to more approximate, typically one dimensional (1D) 

blood flow models developed to represent the entire arterial tree. Reymond et al.
45

 

have concisely tabulated the principal components of the major 1D blood flow models 

that were available at the time for that use. 

Distributed 1D models have merit on their own, however. They were the first 

to develop, especially after the pioneering work of Womersley62,63 in the 1950s based 

on the analytical solution for pulsatile flow in an elastic vessel. Several publications 

eventually extended the work to cover the full arterial tree
9,45,51,64,65,6667,68,69. 1D 

models have the flexibility of being easily adapted to various patients and vascular 

systems. They allow simple and elegant solutions to the pressure and flow profiles 

across the network to be readily obtained with minimum computational resources, 

while allowing for the closed network condition to still be met. In a short time, the 

sophistication of the 1D models has improved significantly. 

With the use of simplified 1D models to generate the boundary conditions in 

full scale 3D simulations, one can consider the final result as a hybrid method
14

. This 

definitely represents a significant step forward, although these methods tend to be 

even more computationally demanding. As a step to decrease the computational 

workload, yet simultaneously make those hybrid methods more versatile, a novel 

approach has very recently been developed for matching the outlet 3D flow boundary 
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conditions to the 1D model requirements
38

. This method utilizes a special simulant as 

a connection between the full 3D and the outlet impedance-type conditions supplied 

from the use of a 1D blood flow model
68

. This allows for the easy and efficient 

implementation of the outlet impedance conditions in commercial Computational 

Fluid Dynamics (CFD) software, such as FLUENT. However, because of their use of 

1D simplified models, they also suffer from the same limitations. At best those models 

can be used to obtain certain trends, such as those seen in the pressure profiles as a 

result of pathological increases in certain critical parameter values like viscosity or 

arterial wall elasticity
69

. More involved nonlinear 1D models have also been 

developed, as well as approaches to combine them in a consistent fashion to 3D 

simulations (see the review by Berger70 and the recent comprehensive account for 

those methods in Formaggia et al.
14

). These however require quite sophisticated 

methods that involve even more computational resources and consequently have not 

been tried in an extensive simulation.   

Despite the tremendous amount of efforts in this area, especially in the last 

decade (see the recent monograph on this subject by Formaggia et al.
14

) there are 

several issues concerning the existing state of the art of blood flow modeling and 

simulations. First, in relation to even the most detailed 3D and time dependent 

simulations (besides the fact that most of them use a rigid wall assumption), most of 

them rely to the assumption of Newtonian flow, which is not accurate for blood, a 

viscoelastic/viscoplastic material. Even when non-Newtonian effects were 

considered
19

 these simulations typically only included shear-thinning and only for the 

steady state flow. Valencia et al.
22

 tried to also include some non-Newtonian 

(viscoplastic; through the Herschel-Bulkley phenomenological constitutive equation) 
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flow effects in a numerical study of a secular aneurism. Incidentally, this type of effect 

has also been considered within our previous 1D model, but with old parametrization 

of the model parameters. 

Moreover, just being able to perform more accurate 3D simulations cannot 

possibly be considered transformative of this field, to enhance our capabilities to 

control and understand blood flow arterial circulation with or without macromolecular 

additives. Many applications still demand simulations that can be performed quickly 

and require minimal physical information. This information can be more easily 

generated from existing statistics and scaling analyses, and is amenable to an easily 

personalized adaptation based on limited and readily accessible patient-specific data. 

For example, there is a tremendous push towards a lower health cost, a significant 

component of which is triggered by unnecessary and expensive medical diagnostic 

tests. Of course, one does not want to lower our capabilities for early detection of 

diseases, as this greatly contributes not only to an increased life span and a better 

quality of life, but also to lowering the health cost by potentially eliminating the need 

for much more expensive treatment, often required at later stages of disease detection. 

Nowhere is this more true than in cardiovascular diseases, especially atherosclerosis. 

Developing a model that can potentially help the interpretation of easily acquired 

measurements in the general physician’s office (as simple as measuring the blood 

pressure at a few locations), and therefore providing advice as for the likelihood of 

diseased arteries and the need or lack thereof for further testing, can be invaluable. 

This is, however, something that can only be accomplished with simpler, lower 

dimensional blood flow models that result in simulations which can be run quickly and 

reliably on an arbitrary PC. Such a plan requires development of this model to allow 
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for a representation of recirculation, such as occurs in the brain. The model also 

requires a solution method, or combination of methods, that is appropriate for all 

vessels. Moreover, there is information to be transferred from the recent Beris NSF-

sponsored research that addresses the full non-Newtonian character of blood flow 

rheology. A significant result obtained from that work was a new parametric 

representation of the steady state shear flow behavior for blood, which for the first 

time quantitatively represents the effect of both hematocrit and fibrinogen 

concentration (as well as temperature) on the rheological model parameters
39

. These 

relationships, derived on a large number of available blood flow data from the 

literature, represent the first improvement over the previously widely used but rather 

obsolete relations offered by Pries et al.
49

. This new non-Newtonian model has not as 

of yet been incorporated into the original 1D model on which this work is based. 

1.3.1 Original Model 

Before my work began on this model, it was originally developed over several 

years by researchers at the University of Delaware
38

. The majority of code written for 

this model was used at first for my work as well. Sections were replaced or deleted as 

deemed necessary during the process of updating the model. The governing equations 

for the Womersley-like method were used directly from Johnson et al.
38

, with a few 

modifications that will be discussed later. This work set out the mathematical analysis 

behind the model code, but it relied on outside sources for physical data of the major 

arteries of the human body. This information was taken exclusively from Alastruey et 

al. (2007)
43

, which included physical data on 45 major arteries, and well as a diagram 

of the network. To simulate the remainder of the arterial network, biological scaling 

laws were utilized
66,71.  
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Chapter 2 

EXTENSION TO RECIRCULATION 

Prior to the 2015-2016 academic year, I worked on refining the model used for 

the Womersley-like calculations. These changes did not affect the mathematical 

concepts involved. Rather, they improved empirical relationships that we already used 

and incorporated a more detailed network, in an attempt to maximize the accuracy of 

our model. 

2.1 Expanded Network and Cerebral Arteries 

One of the first changes to the model was the network data used as input. The 

data from Alastruey et al.1 included only 45 vessels. We wanted to increase the 

accuracy of our model, which means delaying the implementation of scaling laws until 

absolutely necessary. Thus, we want to include as many explicitly defined vessels as 

possible. We chose to input the data from Reymond et al.2 which contains information 

on 103 vessels, including the cerebral arteries around the Circle of Willis (subnetwork 

D, Figure 1). The inclusion of the cerebral arteries is especially important because of 

the possibility of recirculation of blood. This phenomenon will be discussed further in 

Section 2.2. 

The new network is shown in Figure 1, which corresponds to Fig.2 in 

Reymond et al. The Circle of Willis can be seen on the far right. 
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Figure 1: New arterial network, from Reymond et al. Fig.2 

The network expansion went hand in hand with adding modularity to the 

model code. Any information specific to the given system was moved to input files, 

and the code now reads in these files and constructs the network itself. In this way, the 

main software does not have to be changed for any network or set of parameters, so 

long as the user inputs files constructed in the correct way. This makes it dramatically 

easier to apply the model to networks of various sizes or to the different networks of 

various patients. The pressure data is input through a simple text file with two 

columns. Physical data of the blood vessels is recorded in a MATLAB.m file. A small 

.m file with the necessary connectivity information is also required. Every other piece 

of information is calculated by the code.  
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2.2 Simultaneous Solution and Recirculation 

In the original model, the network always branched downstream. Thus, the 

entire system could be solved recursively by starting at the pressure boundary 

condition of the capillaries and working upstream until the aorta was reached. The 

new network does not allow for this recursion-only method. This is due to the 

inclusion of the Circle of Willis (Figure 1). The CoW is an arterial loop made up of 

the cerebral arteries. Because blood has the ability to flow all the way around, there is 

no “upstream” or “downstream.” The vessels generated with scaling laws can be 

solved for recursively as before. However, once the main vessels are reached, the 

entire system of 103 vessels must be solved simultaneously, so as not to assume a 

particular direction of flow anywhere in the CoW. This required coding a system of 

206 equations, to account for the forward and backward pressure waves in each vessel. 

More specifics about the calculations will be discussed in Chapter 4. 

Including recirculation capabilities has additional impact on future studies of 

blood flow in the CoW. Only about 50% of the human population has a full Circle of 

Willis. Common alternate topologies are shown in Figure 2. By changing our network 

to match these variations, it is possible to analyze the effect they have on blood flow 

profiles in the brain, which was an original goal of this research project. 
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Figure 2: Alternate Circle of Willis networks, with estimates of their probability of 

occurance; from Alastruey et al. 

Now that the new model uses a simultaneous solution to find pressures, a 

subnetwork involving recirculation could be added to other areas in the body as well. 

Abstracting from the assumed direction of flow is just another way that this model has 

been improved and its possible uses extended. 
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Chapter 3 

MODELING THE FAHRÅEUS EFFECT 

The Fåhræus effect describes the decrease in relative concentration of red 

blood cells as the diameter of a vessel decreases. In blood vessels with diameters less 

than about 600 μm, the hematocrit decreases with decreasing capillary diameter1,2. 

This effect contributes to the Fåhræus–Lindqvist effect, where red blood cells are 

excluded from the volume near the tube wall, leading to an increase in relative 

viscosity along the center line. 

To model the Farhåeus effect in the code, the hematocrit was calculated as a 

function of the vessel diameter following an expression provided by Pries et al. 3: 

   0.415 0.0111 1 1.7e 0.6D DT
D D

D

H
H H e

H

      , (3-1) 

where TH  is the local tube hematocrit, DH  is the discharge hematocrit, and D is the 

vessel diameter in microns. We undertook a study to check that expression based on 

other data from the literature. The first test involved plotting this equation from Pries 

et al. against Eq.18 from James Barbee’s PhD dissertation4: 
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 (3-2) 

where fH  is the feed hematocrit, assumed to equal 0.45 for this test. The result is 

shown in Figure 3 below. There is general agreement for larger diameters, although 
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Barbee’s equation underpredicts that of Pries et al. However, the Barbee data diverge 

sharply lower than 29μm, indicating a possible error in his piecewise formula. 

 

Figure 3: Comparison of two empirical relationships between vessel diameter and 

discharge hematocrit: Barbee dissertation
4
 (o) vs. Pries et al. (-)

3
 

Additionally I tested if there was an ideal fibrinogen concentration  fc  for 

our parametric relationships that would best recreate Fig.17 in Barbee’s dissertation
2
. 

The data was plotted for 0.421DHct  , the closest to the value of 0.45 which is used 

in our model. The results are in Figure 4 below. There is no obvious choice because 

the data create a line that runs right through those produced by our model equations. It 
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should be noted that the feed hematocrit reported by Barbee was assumed equal to the 

DHct  we used, and the temperature correction was neglected because the difference 

was less than 0.05°F. 

 

Figure 4: Wall stress vs. pseudo-shear rate, Barbee dissertation data
4
 (o) versus our 

model results 

Lastly, I attempted to convert the data from Barbee Fig.17 to a Couette 

geometry, to more easily determine if the Casson model5 was accurate for this blood 

data. The yield stress was found with Eq.4 in Apostolidis and Beris (2014)6 (see 

Chapter 4), and the root of the wall stress was plotted against the root of the shear rate. 
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The data was plotted along with theoretical curves from our model with varying 
fc  

values. The data does not exhibit a linear trend, indicating that the Casson model may 

not be valid. The shape is closer to a square root curve. This plot is shown in Figure 5. 

 

Figure 5: Root of wall stress versus root of shear rate, Barbee dissertation data
4
 (o) 

plotted against sample cf  values using a Couette geometry 

Based on Figure 3, there seems to be some error with Barbee’s piecewise 

characterization of local hematocrit. We can see that the equation breaks down below 

d=18μm, so we wanted to see for how large a diameter the other parts are valid. The 
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piecewise equation has five parts. The first we eliminated completely. Then we 

extended the second to include diameters down to 18μm. 

Values using Barbee’s equation with varying discharge hematocrits were 

plotted against the upper and lower bounds of relative hematocrit from Goldsmith et 

al. (1989), Fig.17. The results are shown in Figure 6. Aside from the 0.1DHct   case, 

Barbee’s equations look valid up to 250μm. In the future, a new equation could be 

derived that exhibits a curve similar to the Goldsmith bounds as one approaches large 

diameters. 

 

Figure 6: Barbee dissertation piecewise Equation 18
4
 vs. bounds from Goldsmith et 

al.
7
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Chapter 4 

CURRENT 1D MODEL PRESENTATION BASED ON WOMERSLEY 

SOLUTION OF TRANSIENT FLOW PROBLEM 

4.1 Womersley’s Method Setup 

Our blood flow model is run entirely in MATLAB. All necessary information 

regarding the network of vessels or the governing equations is either inputted into, 

generated in, or computed by the MATLAB program. As discussed in Johnson et al. 

(2011)1, which used an earlier version of this model, MATLAB is a powerful yet easy 

to use computational tool. It is equipped with many options for displaying the results 

of the model’s computations. MATLAB also excels when operating with systems of 

equations, a necessary part of working with a network that incorporates redundancy 

(see Section 2.2). It is a natural choice as the computational system to carry out our 

work. 

The code used in the current model has been adapted from the work of Johnson 

et al. Many of the governing equations used and discussed below, as well as 

references to their original works, are found in this paper. The previous version of this 

model incorporated the physiological data found in Alastruey et al. (2007)2. We 

however opted to use data from Reymond et al. (2009)3. The data from the latter work 

includes physiological information on many more arteries as well as detailed 

schematics of the arterial network. This network, which we have used to refine our 

current model, contains 103 main vessels connected at 100 nodes. The corresponding 

information for the vessels of the remainder of the arterial system is generated using 
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biological scaling laws from West (1997, 1999)4,5. To generate information for these 

“sub-networks,” we assume that every parent vessel either bifurcates or trifurcates into 

symmetric daughter vessels all the way to the capillary level. 

An important goal of our model is the possibility of being applied 

diagnostically, and therefore it must be able to correctly compute pressures and flows 

for many patients with varying physiological parameters and unique arterial networks. 

Thus MATLAB must be provided with a way to construct the network itself (rather 

than incorporate it into the code) while still developing correct outputs. This was the 

largest change from the model used by Johnson et al. Other changes were much 

simpler, such as parameter values or coefficients of certain expressions, which were 

altered to correct mistakes found in referenced works and our own model. The original 

scaling laws were also altered to better match results found by West (1997). 

The model code consists of a large script with several smaller routines that 

serve very specific purposes. For instance, the first of these routines computes steady 

state wall stress effects. Because wall stress  w  and flow are interdependent, this 

routine runs iteratively until the values for wall stress converge to at least 5 significant 

digits. The final values for wall stress generated by this routine are then used in the 

main script. Other subroutines produce plots of pressure or flow rate in various 

arteries. 

The model code requires several inputs, the first of which is a simple text file 

with two columns representing time and pressure over the time of a single heartbeat. 

This pressure information is used to develop the steady state and transient solutions to 

the model by solving systems of equations. The code also requires an input of 

physiological parameters, such as residual capillary pressure and the dimensions of 
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each main vessel. Ideally, this information would be provided in a unique input file 

representing a given patient. As long as the input data is formatted correctly, the 

model can be used for many patients with varying arterial network topologies. The 

final piece of necessary input is a small file that notes which vessels are connected to 

each other. The main script allows MATLAB to construct all other relevant 

connectivity information. 

4.1.1 User-defined Parameters 

Several physical parameters must be specified in MATLAB so that the 

necessary equations may be computed. Those used in our model are found in Table 1. 

Table 1: Physical parameters used in the current model. 

Parameter Value Units 

Discharge Hematocrit DHct
 0.45 - 

*Plasma Viscosity (at 296.16K) P  1.67x10
-3

 Pa s  

Plasma Density P  1030 3kg m  
Red Blood Cell Density RBC

 1090 3kg m  

Minimum Capillary Radius MinCapr
 3x10

-6
 m 

*Capillary Length-to-Diameter Ratio l d  35 - 

Residual Capillary Pressure - 2000 Pa 

*Fibrinogen Concentration fc
 1 3kg m  

Poisson Ratio   0 - 

* “N bar” N  16 - 

 

Unless noted by a star (*), these parameters have the same value found in Johnson et 

al. The value for plasma viscosity used in that work was
31.35 10 Pa s  , but we use a 

corrected value of 
31.67 10 Pa s   from Apostolidis and Beris (2014)6. The 

hematocrit is equivalent to the volume fraction of red blood cells. Knowing the 
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concentration of fibrinogen in the blood ( )fc  is necessary to compute the critical 

hematocrit ( )cHct  with the equation
6
 

 
20.3126 0.468 0.1764c f fHct c c     (4-1) 

 We do not currently have an expression for 
fc , but it commonly falls 

into the range of 0.1 to 0.4 g/dl7. In order to develop results for cardiac output and 

overall network resistance that best match values found in literature, the minimum 

value of 0.1 g/dl has been chosen. The expression for 
cHct (4-1) developed by 

Apostolidis and Beris and utilized by our model code is calculated using this value. 

The capillary length-to-diameter ratio was also changed from Johnson et al. to 

better match the outputs discussed above.  They used a value of 50 (the maximum 

value found in literature); we use 35. N , which refers to the number of sub-network 

generations scaled by a one-third power law, was not used in their work. 

4.1.2 Governing Equations 

The steady state solution of the model relies heavily on the Hagen-Poiseuille 

formula for flow of a viscous fluid through a cylinder: 
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In this case, the radii r and lengths L of the main vessels are input directly into the 

model. An expression for the pseudo shear rate *U  can be found in Truskey et al8: 
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Wall stress is calculated using
6
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Combining (4-2), (4-3), and (4-4), we see that 
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at steady state. This equation does not account for non-Newtonian effects of blood 

rheology. To encapsulate these effects as well, Merrill et al. include a coefficient 

dependent on the ratio of yield stress to wall stress: 
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 (4-6) 

For a simple verification of the Poiseuille solution, (4-5) will suffice, but we use (4-6) 

in our model code. 

The steady state viscosity may be calculated by an empirical relationship used 

by Apostolidis and Beris: 

  21 2.0703 3.7222SS p Hct Hct      . (4-7) 

Using (4-4) and (4-7), the shear rate    can be found with the Casson model: 
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The yield stress  y  is found with Equation 14 from Apostolidis and Beris: 
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The local hematocrit is calculated using9 
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where D is the vessel diameter in μm. 

The flow resistance of each main vessel can easily be calculated by a 

relationship similar to Ohm’s Law
1
, namely, 

 
4

8
SS

P L
R

Q r






    (4-11) 



 34 

Here, the pressure drop corresponds to a voltage drop and flow rate to an electric 

current. For vessels with non-constant radii, a correction must be made to the 

resistance due to a changing pressure drop. The approach used by Johnson et al. 

(Equation 7) is the lubrication approximation, in which the resistance is a function of 

axial distance along the vessel: 
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4

, 4

8 1
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K in this expression is 
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where bottomr  is the distal radius, 
topr  is the proximal radius, and L is the length of the 

vessel. 

4.1.2.1 Additional Transient Equations 

To develop time-dependent flow solutions, the characteristic (local) impedance 

Z  must be found for each vessel. These values represent the local ratio of pressure to 

flow and are generally complex. To find these values, Johnson et al.
1
 use the equation 
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
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  (4-13) 

where   is the blood density, r  is the vessel radius, and 0c  is the Moens-Korteweg 

wave velocity10,11. The term 
2

1

1 
 is sometimes used as a correcting factor where   is 

the Poisson ratio, but in our code   is set to 0 so the term cancels. To account for effects of 

viscosity, the complex wave speed c  is also necessary. 0c  is found using the equation
1
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c

r
   (4-14) 
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Here, E  is the modulus of elasticity of the vessel and h  is the vessel wall thickness. 

Eh

r
 defines the characteristic “pseudo-compliance” of each vessel, denoted  . 

0c  is 

generally real, but to account for viscoelastic effects we add an imaginary component to E  

equal to 15% of the real part. To find the complex wave speed c , Johnson et al.use 
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  (4-15) 

In this expression nJ  is the Bessel function of the n
th

 order and 

 r





   (4-16) 

is the dimensionless Womersley number. 

A necessary part of finding the transient solution is knowing the reflection 

ratio R  of each vessel. Zamir12 defines this ratio as 

 
 

 

,

,

b

f

p l t
R

p l t
   (4-17) 

bp  is the backward pressure wave created when the forward wave hits the junction of 

the daughter vessels, while 
fp  is the corresponding forward wave. The pressure wave 

equations are also found in Zamir: 

    , expfp x t i t x c      (4-18) 

and 

    , exp 2bp x t R i t x c l c       (4-19) 

4.1.3 Model Input and Preliminary Calculations 

The first objective of the model is to extract the required input data from the 

files used. The text file containing the heartbeat information and the two MATLAB 

data files are loaded. Critical hematocrit is calculated using (4-1). The capillary 

length-to-radius ratio is then calculated for each main vessel. This parameter can be 
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changed within the model to account for higher or lower flows to specific tissues. For 

instance, due to the brain’s high demand for blood, cerebral terminal arteries have 

been given a smaller capillary l r  ratio (50) than the rest of the network (70). 

The code next generates additional connectivity information. The maximum 

number of main arteries connected at a single node is found, along with the total 

number of nodes. These include junctions between two main arteries or between a 

main artery and a branching secondary network. MATLAB then iterates through each 

node to find which arteries (and thus which other nodes) they are connected to. The 

connected vessels and nodes are stored separately in memory. The final piece of 

connectivity information is an array that tracks which main arteries are direct parents 

of a generated sub-network. 

Input pressure data is then organized and the mean pressure and fundamental 

frequency of the signal are computed. Then several local parameters for each main 

vessel are found. The first is local hematocrit ( )Hct  which is calculated using (4-10). 

The local density is found next: 

 (1 )P RBCHct Hct     . (4-20) 

The code then finds viscosity values using (4-7). An initial wall stress value of 1 is 

assigned to each main vessel. The iterative procedure for finding the actual wall stress 

values will be explained below. 

The lubrication approximation (4-12) is applied to arteries with varying radii. 

The Poiseuille resistance (corrected for tapering) is calculated for all main vessels. An 

additional correction to the resistance values using the Casson relationship cannot be 

applied until after the wall stress has been calculated. 

The code then uses scaling laws to generate sub-systems, completing the full 

closed arterial network. This allows the remaining resistances to be calculated. The 
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full network must be explicitly known so that parallel and series resistances can be 

calculated, much like in an electric circuit. The scaling laws used for our model are 

slightly modified versions of those found in West (1997 & 1999)
4,5

. Lengths of 

generated vessels always scale down by a power of 1/3. Radii of generated vessels 

scale by a 1/2 power law until a critical generation k  is reached. At this point along 

the sub-network, viscosity effects in the smaller vessels take over and the cross-

sectional areas of the daughter vessels must increase, rather than preserve the area of 

the parent vessels. The scaling thus changes to a power of -1/3 at k
4
. The calculations 

to generate sub-networks are obviously only carried out for terminal main arteries, and 

each sub-network is associated with the index of its main parent vessel. 

The first calculation finds the critical radius r  associated with the k  

generation using 

 

 1/3

MinCap

N

r
r

n
 , (4-21) 

where 
MinCapr  is the user-defined minimum capillary radius, n is the number of 

daughter vessels at the first junction (3 in our case), and N  is the number of 

generations (counted from the capillaries) that scale by a 1/3 power law. The value of 

N  is constant for all sub-networks, unless the total number of generations N is less 

than N  . In this case N N  . r  may turn out to be larger than the distal radius of the 

main parent vessel of the given sub-network. This means that the terminal vessel is 

small, so the sub-network immediately scales by the -1/3 power law. If this is the case 

k  is set to 0 and the total number of generations N is found with 
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 (4-22) 
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rounded down to the nearest integer, where Pr   is the parent radius. If Pr r  , 
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 (4-23) 

and N N k   . For our current model n = 2. We found that the best results occurred 

when a switch from bifurcations to trifurcations was made during the scaling process. 

We elected to apply this switch at the k  generation. Thus for scaling above k  (4-23), 

the value of n is 2, but for scaling below k  (4-22) n = 3. 

Sub-network radii are then calculated with the laws discussed above. The 

methodology is straightforward. For the first vessel of the sub-network the radius is 

based off of the terminal main vessel; all others are based off the radius of the 

previous generation. As long as the generation number is less than or equal to k  , the  

-1/2 power law is used. Past this point a substitution is made for -1/3. 

Finally, the lengths must be back-calculated based on the radii of the sub-

network vessels. It is far more accurate to start at the capillaries and generate the 

lengths in an upstream direction rather than from the terminal vessel, because small 

differences in vessel dimensions can make large changes in the viscosity effects of the 

smallest vessels. The length of the last vessel (generation number N) is first found with 

the relation 

 
,

,

cap j

N N

cap j

l
l r

r
  , (4-24) 

where 
,

,

cap j

cap j

l

r
 is the previously defined length to radius ratio for the sub-network 

associated with terminal artery j. Once the capillary length is found, the rest may be 

easily computed by applying the 1/3 power law all the way up the sub-network, 

making sure to switch to bifurcations once k  is reached. 
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4.1.4 Test Case Description 

For the purposes of refining our model using a simple case, we have applied 

our code to an arbitrary vessel designated “vessel0.” This is a single artery whose 

dimensions exactly match those of the right common carotid artery, taken from 

Reymond et al
3
. We have also taken pressure information about this vessel from our 

previously developed 1D model code. The pressures (in Pa) at the inlet and outlet 

nodes have been recorded and are implemented into the new special-case code. They 

are kept in an Excel file, making them easier to load since there are now multiple sets 

of pressures as functions of time. 

4.2 Steady State Solution 

The initial step involves a subroutine which iteratively calculates wall stress. 

The total resistance of every main artery is first computed. Yield stress is found using 

(4-9). The total resistance is found using (4-6) and (4-11) (or (4-12) for tapered 

vessels) for both main and sub-network vessels with w  assumed to be 1 as mentioned 

previously. Because the sub-networks are regular in nature, the cumulative resistance 

of each tree may be found by using (4-11) recursively. The resistance of a parent 

vessel 
,SS pR  will be equal to the resistance of the individual daughter vessels 

, 2SS dR  

at a bifurcation or 
, 3SS dR  at a trifurcation. The cumulative resistance of every sub-

network is calculated with this relationship by beginning at the capillary level and 

working upstream. The cumulative resistance of each tree is then simply added to the 

tree’s parent vessel resistance to account for the full network. 

The subroutine then utilizes a system of equations to solve for the pressure at 

every node. The difference in the resistances between two connecting vessels is used 

to find the pressure drop over each artery. The equations take the form 
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,1 ,2

1 1
0

SS SS

P
R R

 
    

 

 . Knowing the mean input pressure and every pressure drop, the 

pressure at each node can be found. Because flow is conserved at each node, the 

inverse of the resistances are used as the pressure coefficients. For terminal main 

arteries, the only difference is that the inverse cumulative resistance of the attached 

sub-network is also used. 

Once the pressures of the nodes are computed, the pressure drops along each 

vessel are recalculated and stored by subtracting the pressures at the two connecting 

nodes. Several other pieces of information are then found such as the steady state flow 

and average velocity of the blood in each main vessel. Entrance resistances are 

currently excluded. Should an expression for this term be found, it may be easily 

incorporated into the model for increased accuracy. Excluding this term in our current 

model does not alter any values significantly. Wall stress is then found with (4-4). In 

the model code, Shank’s transform is used to increase the rate at which w  converges. 

The shear rate is then calculated using the Casson model (4-8). The same calculations 

are performed for the vessels in the arterial trees. The code iterates 15 times, which is 

enough for wall stress to converge to 5 significant digits. 

Upon completing the iterative procedure described above, the final values for 

resistance, steady state pressure drop, and flow rate are computed using the converged 

values of w  by following the exact procedure used in the subroutine. MATLAB then 

displays several key outputs, such as the total cardiac output (the pressure difference 

between the first two nodes divided by the resistance of the aorta), the total pressure 

drop, mean flow rate to the brain, and cumulative network resistance. 
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4.2.1 Alternate Method for Single Vessel 

The new code is very similar to our previously developed model code. Many 

sections have been copied directly from that script. Specifically, the parts that solve 

for resistances and other variables of vessels in generated subnetworks have been left 

in. Since our test system is a single user-defined vessel, every calculation involving 

subnetworks is skipped over. All of the calculations for main vessels are the same as 

in our old code up to the iterative calculation of wall stress. 

Wall stress is found using a separately coded function based on our older code, 

but is much simpler because it does not involve a system of equations to solve for 

pressure. The other calculations to find w , including Shank’s transform, are the same 

as before. The value of wall stress for this system converges after a single iteration, 

because we assign the pressure boundary conditions directly. Resistances and steady 

state flows are then found and reported just as in the old code. 

4.3 Transient Solution 

The Womersley method involves initially decomposing the transient signal 

into a set of harmonics using a Fourier transformation. This solution has complex 

values until it is transformed back into the time domain. It accounts for the pulsatile 

motion of the flow and pressure waves. The transient solution is ultimately found 

using the steady state results and an inverse Fourier transformation. 

The model code first calculates variables for each vessel associated with the 

pulsatile nature of blood flow. First a value for pseudo-compliance 
Eh

r

 
 
 

 is calculated 

based on an empirical relation from Olufsen13. E  and h  are computed based on 

which range of values the vessel radius falls within. 0c  can then be found for each 

vessel by solving(4-14). With these values, the dimensionless Womersley number, 
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complex wave speed, and impedance are calculated for each vessel and Fourier 

harmonic using (4-16), (4-15), and (4-13), respectively. These calculations of pulsatile 

characteristics are performed for the sub-network vessels using the same methods. 

In order to incorporate the time-dependent behaviors of pressure and flow into 

our model, a Fourier transformation with 10 harmonics is used to convert the input 

pressure into the frequency domain. In every vessel (except at the capillary level) there 

is a forward and a backward pressure wave which together make up the total pressure 

in the vessel at any given axial distance and time. The forward and backward flows 

through each vessel are thus also based on axial distance and time. We next describe 

how to generate these time dependent outputs. 

For each vessel, R  must be found for all 10 harmonics used in the 

transformation. The reflection ratios of vessels in secondary networks are found first. 

We assume a perfect termination of the vessels at the capillary level, meaning the 

backward pressure is nonexistent and 0R  . R  is found recursively for the other sub-

network vessels by moving upstream and utilizing the pressures and reflection ratios 

found previously. With this information the reflection ratios of the terminal main 

arteries are also found, using the equation 

 

1,
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1,
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input
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









  (4-25) 

for a given main vessel and harmonic. The subscript 0 refers to the terminal main 

artery while the subscript 1 refers to the first generation after that vessel branches.   

is a scaling factor: 2 for a bifurcation or 3 for a trifurcation. The 
1,inputZ  term is found 

using 
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  (4-26) 

The transient pressures of the main arteries are still unknown at this point, so a system 

of equations is necessary to solve for them simultaneously. 

The number of equations in this system is twice the number of main vessels, 

because a forward and backward pressure component for each must be found. The 

equations that must be solved differ depending on if the vessel in question is terminal. 

If so, the equation 

 0f bP R P    (4-27) 

is used. The forward pressure coefficient is thus the reflection ratio and the backward 

coefficient is -1. The reflection ratios of the main vessels have not been calculated, so 

an alternative method must be used for these arteries. 

For every node, the number of equations to solve is equal to the number of 

main arteries connected to it. The first equation is 

 
0jQ    (4-28) 

for node j. The others equations set the pressures in the connected ends of each vessel 

equal to each other. For the flux equation, the inverse complex impedances of the 

main vessels are used for the pressure coefficients because 
( )

( )
P t

Q t
Z

 . To stay 

consistent, each node must be designated as either the “beginning” or “end” of each 

vessel it connects. If it is the end of a vessel, a correction to the impedance must be 

applied that accounts for how the pressure changes as it travels along the artery to that 

point. The designation is arbitrary so long as it does not change for the entire system 

of equations. In the matrix that contains the connected nodes to each vessel, the first 

node is designated as the beginning. 
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If the specified node is the beginning of the vessel, the forward pressure does 

not need a correction and is simply
fP . However, the backward pressure must travel 

the length of the vessel before reaching the node, and therefore is corrected to

expb

i l
P

c

 
 
 

 , where ω is the frequency of the Fourier harmonic, l is the vessel 

length and c is the complex wave speed for the given vessel and harmonic (not to be 

confused with the Moens-Korteweg wave velocity). Similarly, if the node is at the end 

of a vessel, the forward pressure must be written as expf

i l
P

c

 
 
 

 , while the 

backward pressure stays as bP . Thus the expressions for flux are 
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and 
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i l
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 
 
     (4-30) 

for beginning and end nodes, respectively. The end node expression(s) are subtracted 

from the beginning node expression(s) to give the left hand side of (4-28) for a given 

node. 

The other equations involving pressure at a given node will have solutions with 

orders of magnitude close to 1. However, the values for impedance are much larger, 

meaning these solutions will have extremely small orders of magnitude (about 10
-8

). 

The coefficients involving impedances must be weighted so that the orders of all 

numbers in the matrix stay close. Otherwise MATLAB may find a singularity error 

when attempting to solve the system. To avoid this issue, the inverse of the first 

coefficient for every node is stored as the weighting value. Each coefficient of the flux 
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equation is then multiplied by the weighting value. Since all of these terms are very 

small in magnitude, the re-weighting brings them much closer to 1. Additionally, since 

each coefficient is multiplied by the same factor, the overall system is not affected. 

The remaining equations set the pressures of the connecting vessels equal to 

each other at the specified node. The total pressures must be equal, so the sum of the 

forward and backward pressures of one vessel must equal those of the other. However, 

the specified node will be at the beginning of one of these arteries and at the end of the 

others. Therefore a correction similar to the one applied before must also be applied 

here. If vessel 1 ends at the node and vessel 2 begins at the node, the pressure equation 

is 

 1 2
,1 ,1 ,2 ,2

1 2

P exp P P P exp 0f b f b

i l i l

c c

        
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  (4-31) 

Likewise, if vessel 1 begins at the specified node and vessel 2 ends at the node the 

equation becomes 

 1 2
,1 ,1 ,2 ,2

1 2

P P exp P exp P 0f b f b

i l i l

c c
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      
  (4-32) 

In the first case the pressure coefficients are 1 1exp( )i l c  (forward) and 1 

(backward) for the first vessel, and -1 (forward) and 2 2exp( )i l c   (backward) for 

the second vessel. In the second case these coefficients are 1 (forward) and 

1 1exp( )i l c  (backward) for vessel 1, and -1 (forward) and 2 2exp( )i l c   

(backward) for vessel 2. The first vessel connected to the node will be designated as 

vessel 1 and this procedure will be carried out for each other connected vessel. After 

finding these coefficients, all of the equations will have been stated. The system is 

solved in this way for each harmonic. 

To then find the reflection ratio for each non-terminal main artery, the equation 
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is used, where j is the vessel number and n is the harmonic. The total impedance of the 

network is calculated for each harmonic using 
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  (4-34) 

The magnitude (modulus) and phase lag of the total impedance may now be found and 

plotted against experimental results to validate the model. 

To find true transient pressures in specific main arteries, results of the system 

of equations (denoted by *) are altered for the specific vessel dimensions and then 

summed over each harmonic. For each vessel and time point, these equations are 

  *

, , exp stepf n f n nP P i    (4-35) 

and 
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  (4-36) 

for the n
th

 harmonic. The total forward and backward pressure components are found 

using 
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where N is the number of steps in the input signal, P is the result of either (4-35) or 

(4-36), and SSQ  and SSR  are the steady state flow and resistance, respectively. The 

transient pressure contribution is relative to the first term in the transient system of 

equations, which we set equal to 1 for convenience. For any vessel, totalP  must be 

multiplied by
*

,1fP  . This total transient pressure still only accounts for the oscillations 
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in the flow. Therefore, the mean steady state pressure of the given vessel is added to 

the transient component. This result may be plotted against time to view the 

characteristic pressure and flow waves of each main artery. 

4.3.1 Alternate Method for Single Vessel 

We again utilize our single vessel0 to test our model against a simple case. The 

changes to our model that allow for two distinct boundary conditions are described 

here. 

First, a normalized Fourier transform of the two pressure input waves is found 

using the fast Fourier transform function (fft) and dividing by N, the number of time 

points. A completely new system of equations is then solved to find the complex 

coefficients of the transient pressures. 

The principle behind these calculations is that both pressure waves (forward 

and backward) may be accurately approximated by a complex coefficient multiplied 

by a complex exponential term dependent on both time and linear distance. These two 

complex coefficients may be found at the end points by utilizing boundary conditions. 

They then may be applied to all interior points. The overall set up is as follows: 

    , 0
( ) exp expinlet k f k b k x Lx

P t C i t kx C i t kx 


     (4-38) 

and 

    , 0
( ) exp expoutlet k f k b k xx L

P t C i t kx C i t kx 


    , (4-39) 

where the subscript k indicates the Fourier harmonic. The pressure contributions from 

each harmonic are summed and added to the steady state pressure to give the full 

solution. The coefficients of the exponentials (C) are split into their real and imaginary 

parts, thus f rf ifC C iC   and b rb ibC C iC  . The coefficients of the length terms (k) 

are equal to the fundamental frequency divided by the complex wave speed 
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characteristic of this specific vessel. This term is also split into real and imaginary 

parts, thus   2

k k
r i

i
k ic c

c c

 
   by multiplying the numerator and denominator by 

the complex conjugate of c. The two components of k are 
2

k i
r

c
k

c


  and 

2

k r
i

c
k

c


  

such that r ik k ik  . The exponential term is manipulated as follows: 

           exp exp exp exp cos sink i k r i k r k ri t kx k x i t k x k x t k x i t k x               

 by Euler’s formula. The new forms of the forward and backward waves are 
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and 
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x L

C iC t k x k x i t k x k x 


        , (4-41) 

respectively. 

These expressions may be simplified by expanding them and keeping only the 

real terms. The sinusoidal terms are further expanded by utilizing two sine identities: 

          sin sin cos cos sinx y x y x y    (4-42) 

and 

          cos cos cos sin sinx y x y x y  . (4-43) 

This leads us to the final form of the pressure wave components as used in the system 

of equations within our code: 
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sin cos exp cos sin exp

cos cos exp sin sin exp

sin cos exp cos sin exp

rf k r i rf k r i

k

if k r i if k r i

rb k r i rb k r i

ib k r i ib k r i

C t k x k x C t k x k x
P x t

C t k x k x C t k x k x

C t k x k x C t k x k x

C t k x k x C t k x k x

 

 

 

 

 
  

   

   
  

    

, (4-44) 

where  kP t  is the pressure corresponding to the k
th

 Fourier harmonic at time t, 

evaluated at 0x   for the inlet or x L  for the outlet. 



 49 

To apply the boundary conditions, we must utilize the Fourier coefficients at 

the inlet and outlet found previously. After we applied Euler’s formula above, we were 

left with a real coefficient of  cos kt  and an imaginary coefficient of  sin kt . 

These sine and cosine terms are the common factors in our system. Taking the real 

part of the Fourier coefficient results in the cosine term; taking the imaginary part will 

give the sine term. Thus (4-38) and (4-39) may be rewritten as 

          , 2Re cos 2Im sininlet k in k in kP t fft P t fft P t          (4-45) 

and 

          , 2Re cos 2Im sinoutlet k out k out kP t fft P t fft P t         . (4-46) 

The factor of 2 is included to account for the negative signal frequencies not captured 

by the Fourier transformation. We find kP  for each harmonic by evaluating (4-44) at 

the two boundary points. We are left with four equations: the real (cosine) and 

imaginary (sine) sets of terms at both the inlet and outlet(4-47). 

               

               

 

 

 

2Re1 0 1 0

2Im0 1 0 1

cos exp sin exp cos exp sin exp 2Re

sin exp cos exp sin exp cos exp 2Im

in
rf

inif

r i r i r i r i rb out

r i r i r i r i ib
ou

fft PC

fft PC

k L k L k L k L k L k L k L k L C fft P

k L k L k L k L k L k L k L k L C fft P

     
        
                   t

 
 
 
 
 
    

 

 (4-47) 

This system is solved for every harmonic. The pressure profile along the vessel 

is then split into 100 equal steps, and a linear gradient is assumed; this is the steady 

state value for the given length point. A correction for tapering will later be added in, 

since this vessel varies in radius. For each time and length point, the steady state and 

transient contributions are summed. The transient part is reconstructed from the 

complex coefficients using 

  
10

1

expr i k

k

x
C iC i t

c




  
   

  
  (4-48) 

and 
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  
10

1

expr i k

k

L x
C iC i t

c




   
   

  
  (4-49) 

for the forward and backward components, respectively. The final value for pressure is 

    , ( , ) Re ( , ) ,ss f bP x t P x t P x t P x t     . (4-50) 
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Chapter 5 

ALTERNATE NUMERICAL APPROACH TO THE 1D VISCOUS FLOW IN 

AN ELASTIC TUBE 

5.1 Governing Equations and Problem Setup 

An alternative method of solving the individual vessel flow problem is 

maintaining the nonlinear form of the governing equations. Our nonlinear method is 

more expensive computationally, but it allows us to identify any nonlinear effects that 

are not captured in our Womersley-like calculations. The three equations are as 

follows: 

Continuity: 
 

( ) 0
A

Au
t x




 
 

 
  (5-1) 

Conservation of Momentum:
  2

8 0
2

u u u
P

t x A

 


  
    

   
  (5-2) 

Constitutive Relationship: 0A A P    (5-3) 

The three variables we must solve for are cross-sectional area A, fluid velocity u, and 

pressure P. The pressure terms here are all relative to the exterior so that 0A  is the 

vessel area at zero relative pressure.   is the total mass density. It is dependent on the 

local hematocrit Hct (the volume fraction of red blood cells) by (4-20), where the p 

subscript indicates plasma density. The local hematocrit is in turn found for a given 

vessel using Equation 1 from Pries et al. (1990)1 (4-10), where D is the vessel 

diameter in μm. This correction only becomes significant at diameters greater than 

about 600 microns. DHct  is the discharge hematocrit of larger arteries, a user defined 

parameter to which we assign a value of 0.45. The dependence of hematocrit on vessel 
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diameter is explained by the Fahraeus effect2. The local viscosity   is also dependent 

on Hct  by (4-7)3. Variations in blood viscosity are caused by Fahraeus-Lindqvist 

effects
2
. 

p  is the average plasma viscosity, defined by the user.   is a small 

parameter equal to the inverse pseudo-compliance, a function of vessel viscoelasticity. 

The constitutive relationship (5-3) may be solved for A, so that our system 

involves only two equations. The modified forms of the continuity and momentum 

equations are 

    
2 2

0 0 0P A u P A
t x
   

       
       

 (5-4) 

and 

 
 

 

2

2

0

8
0

2

u u u
P

t x P A

  



  
    

    

, (5-5) 

respectively. 

5.1.1 Dimensionless Conversion 

In order to both gain a greater understanding of the fluid mechanics involved 

and simplify our calculations, we utilized dimensionless variables and parameters in 

our nonlinear equations. The relevant variables were scaled by characteristic constants 

to make them unitless. The conversions are found in Table 2. 
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Table 2: Scaling of dimensionless variables 

Dimensionless Variable Physical Equivalent 

û  *u u  

   0
ˆ ˆˆ ˆˆ ˆ, , ,A x t A x t  

* *

0,A A A A  

P̂  
*P P  

x̂   *x L   

t̂    * *t u L   

 ˆˆ ˆ,x t   
*    

 ˆˆ ˆ,x t   
*    

 

Stars indicate reference values, which may be suitably chosen based on the given 

problem. The dimensionless area and viscosity include dependences on distance and 

time in case one wants to include phenomena such as vasodilation or viscoelastic 

effects, respectively. The density is dependent on the hematocrit (4-20), which may 

depend on distance and time as well. Thus, we list this dependence explicitly. 

In order to make the relevant equations fully dimensionless, two dimensionless 

groups must be defined. These factors are listed in Table 3. Rem represents a modified 

Reynolds number, which involves the radius-based Reynolds number Rer

ur


  as 

well as the aspect ratio
*

*

A

L
. The dimensionless ̂  will become very important to our 

analytical method used to validate the nonlinear numerical solution. 

The two governing equations can now be rewritten in a dimensionless form. 

The continuity and momentum equations now become 
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 

 

0
0

0

0
0 0

0

ˆˆ ˆ ˆˆˆˆ ˆ ˆ2
ˆ ˆ ˆˆ

ˆˆ ˆ ˆˆ ˆˆ ˆˆ ˆˆˆ ˆ ˆ ˆˆ ˆ2 ( ) 0
ˆ ˆ ˆ ˆˆ

dAdP d
P A

dt dt dtA

dAdP u d du
u u P A P A

dx dx dx dxA

 
 

 
   

 
   
 
 

      

 (5-6) 

and 

 
2

2

0

ˆˆ
ˆ ˆ

ˆ ˆ

ˆˆˆ ˆ ˆ1 1
ˆ ˆ ˆ 0

ˆ ˆ ˆ2 Re ˆˆˆRe ( )m
m

du d
u

dt dt

du d dP u
u u

dx dx dx P A




 






    


 (5-7) 

respectively. (5-6) and (5-7) are a set of hyperbolic equations that require two initial 

conditions to solve. We accomplish this by setting explicit pressure boundary 

conditions at the inlet and outlet of the vessel. The steady state solution is found first, 

before moving to the time-dependent transient solution. 

5.2 Steady State Solution 

For the steady state solution, all time-dependent derivatives will reduce to zero, 

leaving 

  0
0 0

0

ˆˆ ˆ ˆˆ ˆˆ ˆˆ ˆˆˆ ˆ ˆ ˆˆ ˆ2 ( ) 0
ˆ ˆ ˆ ˆˆ

dAdP u d du
u u P A P A

dx dx dx dxA

 
          (5-8) 

and 

 2

2

0

ˆˆˆ ˆ ˆ1 1
ˆ ˆ ˆ 0

ˆ ˆ ˆ2 Re ˆˆˆRe ( )m
m

du d dP u
u u

dx dx dx P A

 



   


. (5-9) 

5.2.1 Test Case 

We again chose the representative artery vessel0 as a test vessel on which to 

apply our model. The values for our dimensionless parameters are listed in Table 3, 

and reference conditions for this case are listed in Table 4. 
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Table 3: Scaling of other dimensionless parameters 

Dimensionless Parameter Physical Equivalent Test Case Values 

Rem  
* * *

*

* * *
Re

8 8
r

A A
u

L L



  

   
          

 3.434 

̂  
*

*

P

A


 1.534x10

-4
 

 

Table 4: Test case reference conditions, all constant 

Variable Reference Condition Value for Test Case 

*u  Poiseuille velocity, 
 0

0

08

in outA P P
u

L


  0.3 m/s 

*A   average resting area ( 0A ), d = 10.25mm 8.25x10
-5

 m
2 

*P  steady state pressure drop 29.0 Pa 
*L   entire vessel length 9.4x10

-2
 m 

*   average local viscosity 0   3.3x10
-3

 Pa s 

*   average density 0   1057 kg/m
3 

 

For our current case where both area and viscosity lack dependence on either x̂  or t̂  

and hematocrit is constant, 0Â , ̂  , and ̂  will equal 1 and the governing equations 

further simplify to 

 
ˆ ˆˆˆ ˆˆ2 ( 1) 0
ˆ ˆ

dP du
u P

dx dx
     (5-10) 

and 

 
2

ˆˆ ˆ1
ˆ 0

ˆˆ ˆRe ˆRe ( 1)m m

du dP u
u

dx dx P
  


  (5-11) 

Before the numerical method is applied, we generate an initial solution using 

an analytical perturbation expansion of P̂ , Â , and û . We apply a Taylor-like series 

expansion beginning from the steady state values and continually adding more 
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coefficients that are respectively multiplied by increasing powers of the small 

parameter ̂ . Thus 
2 3

0 1 2 3
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ...P P P P P        until the subsequent terms are so 

small that they no longer appreciably change the total value. Because ̂  is small to 

begin with, only terms up to the second or third order should be necessary. 

The perturbation approach requires solving each variable for a given order 

before moving to the next higher power. Thus we must first solve the zero order terms. 

This calculation is mostly trivial; it will simplify to the steady state values. The zero 

order solution is found in Table 5 (reference area, viscosity, and density are again 

assumed constant). 

Table 5: Zero-order solution of perturbation expansion 

0û  1 

0Â  1 

0P̂  ˆ1 x  

 

The solution is trivial; it reduces to the Poiseuille solution which we used to set up the 

problem. Additionally, the results make physical sense; at steady state û  and Â  are 

constant while P̂  is linearly dependent on x̂ . 

The first order solution is obtained by expanding the variables in terms of ̂  

and manipulating the equations so they are in polynomial form. Then all terms 

multiplied by 1̂  are grouped and solved for using the zero-order solution. The results 

of these calculations are listed in Table 6. 
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Table 6: 1
st
-order solution of perturbation expansion 

1û  Re 1 2m x   

1Â   ˆ2 1x   

1P̂   ˆ ˆ3 2 1 x x  

 

Again, the results make sense, since each variable is now dependent on one 

additional power of x̂ . Area is expected to be highest when the pressure is at a 

maximum. A pressure drop occurs over the entirety of the vessel, and we can see that 

1Â  also decreases with x̂ . For simplicity, we have only used the first two orders of this 

method in our expansion. The perturbation approach is only used as an initial guess for 

a numerical method, and a way to validate that scheme. However, the second or third 

order could easily be included after a few algebraic calculations, should we opt to add 

them later. 

We now move to Newton’s method, a numerical technique to solve our 

nonlinear system. The blood vessel in question is first discretized into small steps of 

length h  . We will eventually use finite differences to solve the derivatives in the 

governing equations. Thus h must be sufficiently small to preserve accuracy. 

The initial guesses from the perturbation expansion are added to a matrix 

denoted 
initial

y . A system of equations is then solved: 

     0initial initialg y J y y    . (5-12) 

Here,  initialg y  represents a residual function, the solution to the governing system 

minus 
initial

y , leaving a small difference for all û  and P̂  . J  is the Jacobian matrix, 

thus  i
initial

i

g
J y

y





. A new set of variables newy  is then found by adding the initial 

vector to y  and the process iterates until a convergence criterion is reached. It should 
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be noted that for a single vessel system, we impose inlet and outlet pressure boundary 

conditions directly. 

The nonlinear code currently incorporates physical information of the system 

(such as length, radius, density, etc.) directly into the script. This could easily be 

changed to loading data from another file just as in the Womersley method code. The 

steady state area is found by assuming an average radius over the length of the vessel. 

The Poiseuille velocity is then found by assuming a linear pressure gradient. 

Dimensionless parameters are then defined using these steady state values (Table 4). 

Tapering of the vessel is not accounted for at this time; a correction for this could be 

added after verifying this method against additional results from the alternative 

method. The initial y matrix is defined and the Newton function is called. We use 20 

as our maximum number of iterations and a tolerance of 710 . Once convergence is 

reached, area is calculated from the pressure values. 

5.3 Transient Solution and Numerics 

(Unless otherwise noted, all variables are assumed to be in their non-dimensional 

forms for the entirety of this section.) 

The numerical method for solving the transient pressure and flow in a blood 

vessel involves evaluating derivatives in the governing equations and tracking them 

from the boundaries along “characteristics.” The characteristics are defined by the first 

order wave equation: 

 
f f

t x


 


 
, (5-13) 

where f can be either u or P. For the forward moving characteristic, 1  defines the 

slope and fs  is the x-intercept such that 1 fx t s   . For the backward moving 
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characteristic, 2 bx t s   ( 2  is negative). The characteristics track how changes with 

respect to time and length propagate along the vessel from the end points. The velocity 

and pressure waves will propagate along these lines; thus, we can track and evaluate 

them at any x and t. In order for this method to be successful, the discretized time 

interval must be less than the maximum wave speed. 

Initially, the physical information used for the steady state solution is defined, 

including the linear pressure gradient. We also define a dimensionless characteristic 

time, 

 
*

*
ˆ

u T
t

L
 , (5-14) 

where T is the period of the pulse (we use 1.25 sec) and *u  is the reference velocity. A 

time step value is found by dividing t̂  by a suitable number, usually 10
3
-10

4
. A 

characteristic frequency is also defined: 

 
0

2
ˆ

t̂


  . (5-15) 

Dimensionless groups are then defined and the initial solution based on the 

perturbation expansion is found, just as for the steady state solution. We then set up a 

system of equations in matrix form that loops for all time and length points: 

  
2

ˆ1 Re

0

u
u u

PA
P Pt x



 
      

              

, (5-16) 

where 

 

1

Re

ˆ1

ˆ2

m

u

A
P

u




 
 
 
 

 
 

. 

A  is broken up into its eigenvalue and eigenvector matrices such that 
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1

A Q Q Q R


    . (5-17) 

We assign 
1

R Q


  simply to clarify notation. A bit of analysis reveals 

Re 1

1 1 ˆ 2 ˆ1 1
0 2

Re Re ˆ ˆ2Re 2Re
, ,

Reˆ ˆ 11 1 ˆ1
0

ˆ ˆ 2 ˆ2Re 2Re 1ˆ2Re
2

ˆ2Re

m

m m m m

m

m m m

m

P P
u

Q R
P P P

u
P

 

 

  

  



 
    
   
                  
        
 

. 

To evaluate the length-dependent derivatives in this system, we utilize the 

finite difference method. Assuming our step sizes are sufficiently small, this 

estimation should be a good approximation for the actual value. However, because the 

characteristic waves are propagating along the vessel in a certain direction, it is 

important to evaluate the finite difference from the correct side. The first equation 

contains the positive eigenvalue, which contains information traveling in the positive 

x-direction. Conversely, the second equation corresponds to the characteristic traveling 

along the negative x-direction. 

We split the calculations at each point into two parts. First the vector v  is 

defined such that 

 

1 11 12

2 21 22

u P
r r

x x
v

u P
r r

x x





    
      
   
   

   

. (5-18) 

We evaluate a one-sided finite difference for each derivative in v  . For the first 

equation, 

 1 23 4

2

i i i iu u u u

x h

   



 (5-19) 

and 

 1 23 4

2

i i i iP P P P

x h

   



. (5-20) 
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For the second equation, 

 1 23 4

2

i i i iu u u u

x h

    



 (5-21) 

and 

 1 23 4

2

i i i iP P P P

x h

    



. (5-22) 

Then a vector z  is defined such that 

 z Qv b  , (5-23) 

where 

  
2

ˆ1 Re

0

m

u

Pb 

 
 

  
  

. 

z  can readily be solved with the information we have in MATLAB at this point. 

The method described above works for most interior points, but as we near the 

boundaries we must alter our calculations somewhat. Specifically, for N+1 points in N 

increments of h, points 2 and N are problematic because there is insufficient 

information to compute a one-sided FD. For these two points, we instead calculate a 

1st order finite difference. At point 2 the first equation has insufficient information, so 

we instead use 

 2 2 1u u u

x h

 



 (5-24) 

and 

 2 2 1P P P

x h

 



. (5-25) 

At point N the second equation has insufficient information, so we use 

 1N N Nu u u

x h

 



 (5-26) 

and 
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 1N N NP P P

x h

 



. (5-27) 

The values at points 1 and N+1 also cause trouble, but we go about the solution 

in a different way. At these two points, we impose the pressure conditions directly. 

Thus 
1,Pz  and 

1,N Pz 
 are the derivatives of the inlet and outlet pressures with respect to 

time, inputted directly by the user. We then calculate 
1,uz  and 

1,N uz 
 using these 

values. Specifically, 

 
22 1, 1, 21 1 22 2

1,

21

P P

u

r z v r b r b
z

r

   
   (5-28) 

and 

 
12 1, 1, 11 1 12 2

1,

11

N P N u

N u

r z v r b r b
z

r

 



  
   (5-29) 

z  is now specified for every length point. To update the model with time, we 

employ Euler’s method: 

 tt t t
y y z t


     (5-30) 

We continue with this method for every time point, recording the values for u and P at 

every t and x. Finding the dimensional values of velocity or pressure simply involves 

multiplying by the reference value. Additionally, we can now get area by using the 

constitutive equation (5-3). 

For the full pulse waveform, a derivative of the pressure boundary conditions 

is not available. For this case, we compute a finite difference using the input pressure 

conditions to obtain 
1,Pz  and 1,N Pz  : 

 
   1

,

j k j k

j P

P t P t
z

t

 



. (5-31) 

We then simply implement (5-28) and (5-29) to get the corresponding velocity entries. 

The rest of the calculations follow as before. 
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Chapter 6 

RESULTS AND DISCUSSION 

The results of the original analytical and numerical model solutions are 

reported and compared here based on our single vessel case. Relevant parameters are 

listed in Table 7, which correspond to the dimensionless values in Table 3. 

Table 7: Model input parameters for test case; both methods 

Parameter Value Units 

Length 0.094 m 

Average Radius 0.0052 m 

Blood Viscosity 0.0033 Pa*s 

Blood Density 1057 kg/m
3
 

6.1 Womersley-like Method 

A sample plot (Figure 7) has been generated that shows the transient pressure 

waves at several points along the vessel. The graphs exhibit a slight pressure lag, 

which is to be expected for a vessel of this length. A plot of the corresponding 

volumetric flowrates (Figure 8) is also included. 
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Figure 7: Total transient pressures at various points along test vessel, Womersley 

method 
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Figure 8: Volumetric flow rates at various points along test vessel, Womersley 

method 

6.2 Numerical Method 

6.2.1 Steady State Validation 

We must first validate the transient code by running it for 0
f

t





 and checking 

that the result is equal to the steady state solution. The average steady state values 

from the numerical code are listed in Table 8. 

Table 8: Steady state values, numerical code 

Pressure drop (Pa) Velocity (m/s) Cross-sectional Area (m
2
) 

29 0.3067 8.253x10
-5
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The values for pressure ,velocity, and area over time and space for constant 

pressure boundary conditions are shown in Figures 9, 10, and 11, respectively. 

 

Figure 9: Numerical solution for pressure, steady state boundary conditions 
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Figure 10: Numerical solution for fluid velocity, steady state boundary conditions 

 

Figure 11: Numerical solution for area, steady state boundary conditions 
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The results are just as expected. The pressure drops along the vessel equal to 

the Poiseuille pressure drop used as input. The area drops along the vessel linearly, but 

only very slightly. The velocity increases very slightly along the length of the vessel. 

We can see that due to the initial guesses being a little off from the true value, the 

plots of pressure and velocity start out a bit jagged. They quickly smooth out and 

converge to the steady state value, however. An interesting result is that the correction 

via the perturbation expansion causes the numerical steady states to be a small 

percentage off of the Poiseuille solution. These are precisely the effects we want to 

capture with this method. Additionally, to see the velocity to converge to the new 

steady state, we used three times our normal period of the input. This allowed the 

velocity enough time to flatten out. 

6.2.2 Simple Oscillatory Input 

We next test the transient code on a simple oscillatory boundary condition 

before implementing the full time dependent pulse. The same three plots are generated 

for these new inputs. Additionally, the derivatives of the pressure conditions used for 

this case are also plotted (these go directly into the z  vector). 
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Figure 12: Numerical solution for pressure, oscillatory boundary conditions 

 

Figure 13: Numerical solution for fluid velocity, oscillatory boundary conditions 
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Figure 14: Numerical solution for area, oscillatory boundary conditions 
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Figure 15: Boundary conditions for z  vector, oscillatory case 

Several facts should be noted about this case. First, the plot for velocity 

contains four times as many time points as the pressure and area plots. This is because 

the velocity takes longer to converge to the new steady state, so more time had to be 

added. Also, the plot of the pressure boundary conditions (Figure 15) is the derivative 

of the actual imposed conditions. This explains why the curves fluctuate around zero. 

6.2.3 Full Pulse Solution 

We are now prepared to find the solution for the full pulse waveform. Figure 

16 shows the pressure across the vessel for the full duration of our sample pulse. 
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Subsequent periods follow this behavior very closely, so only one period is shown 

here. The boundary conditions are also plotted in Figure 17. This plot is not the 

derivative; rather these are the actual values versus time. The values of the x-axis are 

arbitrary; the full period is split into 10,000 evenly spaced time intervals. The values 

are simply a way to keep track of the pressure wave. 

 

Figure 16: Numerical solution for pressure, full pulse 
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Figure 17: Pressure boundary conditions, full pulse 

Figure 18 shows the solution for velocity over the first three periods. It is clear 

that the velocity has not converged after only three periods, so Figure 19 shows 

periods 4 through 6, indicating that the maximum converges around a dimensionless 

velocity value of 1.21. 
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Figure 18: Numerical solution for fluid velocity, first three periods of full pulse 

 

Figure 19: Numerical solution for fluid velocity, periods four through six of full 

pulse 
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Finally, Figure 20 shows the model solution for area, which matches the 

pressure behavior very closely. 

 

Figure 20: Numerical solution for area, full pulse 

6.3 Model Comparison 

The relevant steady state results are tabulated in Table 9. 

Table 9: Model results obtained using both methods, steady state 

Variable Original Numerical Units 

Pressure Drop 29.00 29.00 Pa 

Flow Rate 1.5188 1.5196 L/min 
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The old technique results in a solution for flow rate that is only 0.05% smaller than the 

numerical solution. The pressure conditions were imposed, so these results are exactly 

the same. 

We next compare the transient solutions. The following two figures plot 

volumetric flowrate versus time at the center point and two end points using the 

Womersley-like and numerical methods, respectively. The differences in the y-axis 

should be noted when comparing the two. Additionally, the Womersley solution is 

necessarily periodic, but we include several periods of the numerical solution to show 

convergence. 

 

Figure 21: Transient flowrate results, Womersley method 
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Figure 22: Transient flowrate results, numerical method 

The average transient flowrate values for both methods are found in Table 10. 

Table 10: Average flowrate values, both methods 

Method Avg. Flowrate (L/min) % difference 

Womersley 1.5188 
3.7 

Numerical 1.5750 

 

6.3.1 Single Harmonic Comparison 

The drastic differences between the two flowrate solutions could potentially be 

accounted for by the incorporation of many harmonics in the pulse waves. We now 

conduct a similar test, but with only a single harmonic of the transient system. This 

example should show more clearly any differences between the two methods. Indeed, 

in Figures 23 and 24 we can see the smooth curve of the Womersley solution versus 
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the oscillatory solution of the numerical method, respectively. These results confirm 

the different behaviors of the two methods as seen above. 

 

Figure 23: Single harmonic solution of the Womersley method, full pulse. 
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Figure 24: Single harmonic solution of the numerical method, full pulse. 

Lastly, we run a simulation to see if these differences are due to inertial effects 

or some other factor. Inertial effects can be significant in large arteries, such as our test 

vessel, where the Reynolds number is ≥1. In smaller vessels, where the Reynolds 

number is ≤0.1, inertial effects are often neglected. We now reduce both the length 

and radius of the test vessel by an order of magnitude, thus reducing the Reynolds 

number by a factor of 100. The results for three periods are shown below for both 

methods. The jagged areas in the numerical plot arise because the pressure signal is 

not perfectly periodic; however, it quickly converges back to the correct solution. 
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Figure 25: Womersley solution for the low Reynolds number case, three periods 

 

Figure 26: Numerical solution for the low Reynolds number case, three periods 
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6.4 Discussion 

It is obvious that the numerical method we employ is picking up effects not 

captured by the original model. Specifically, these effects seem to be inertial in nature. 

This is evidenced by the fact that we see large deviations for a large Reynolds number. 

However, once the Reynolds number is reduced by multiple orders of magnitude, the 

two methods show good agreement in both magnitude and phase. The differences in 

the former case are present even though the same input information is being used to 

generate the solutions. 

It is also evident that oscillations are very scarce in Figure 26. This fact 

indicates that flowrates at low Reynolds numbers may not require such a fine mesh to 

converge. 

While the Womersley method lacks incorporation of (apparently very 

important) inertial effects, the numerical method does not account for radial changes, 

which are included in the Womersley case by way of Bessel functions. Thus, although 

we have bolstered the argument that the approximations used in many linearization 

techniques over-simplify the blood flow problem, more analysis should be done to 

assess the accuracy of this numerical method as well. 
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

7.1 Conclusions 

The numerous additions and updates to our blood flow model have 

significantly improved its potential for application in fields such as diagnostics and 

research. It can successfully read in information on a single vessel or an entire 

network, generate trustworthy results, and display them in a user friendly fashion. It 

can handle cases involving recirculation of blood, which is present in areas of interest 

such as the brain. We have also implemented an entirely new method of solution, 

which can be used to validate our previous model. 

The tests we have run indicate that at low Reynolds numbers, the two methods 

agree well. However, at high Reynolds numbers there did indeed exist underlying 

effects, specifically inertial effects, that the original model was unable to capture. 

These effects will be better characterized as more vessels and small networks are 

analyzed. 

7.2 Recommendations for Future Work 

We now have the capability of running our model on any vessel, or network of 

vessels, that we so choose. Thus, the two methods should be compared for different 

vessel sizes and rheological parameters, as well as at vessel bifurcations. Once a vast 

amount of data has been obtained, we can attempt to identify exactly where the 

assumptions of the original model break down and inertial effects gain substantial 
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importance. Similarly, we can identify where the numerical method needs to 

incorporate radial variations. This distinction is especially important in the cerebral 

arteries, where blood is able to recirculate around the Circle of Willis. We desire to 

better understand the flow patterns that occur here, so the CoW should definitely be 

the focus of further simulations. 
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Appendix 

RECIRCULATION MATLAB CODE 

% FillenwarthFullModelSolution.m, taken from Main_PressureInput.m 
% Calculates Steady State and Transient Pressures and Flows in 

Arterial 
% Network; Includes Changes in Viscosity, Wall Stress Effects, and 

Tapering 
% Vessels; Input pressure location is specified by user (inart) 

  
% Revised code by John Fillenwarth with Prof. Antony Beris 

  
% Necessary files: 
%   Text files: 
%       p2dec.txt (or similar file with heartbeat pressure info) 
%   Data files: 
%       vessel_data.mat 
%       connectivity_data_uptodate.mat 
%   Function files: 
%       steadyiterate_P_density_SS_new.m 
%       aortapressure_density_SS_new.m 
% Additional files (currently commented out): 
%   vesselPressure_compute_vs_Time.m (P vs. t in main arteries) 
%   vesselFlow_compute_vs_Time.m (Q vs. t in main arteries) 
%   aorta_3D_Pressure_profile.m (P vs. t and length along aortic 

trunk - 3D plot) 

  
clear 
clear global 

  
global rho rhogen       % blood density [kg/m^3] 
global mu muSS          % blood viscosity   1 kg/(m-s)=10 g/(cm-s)=10 

Poise=1000 cP 
global nu w             % fundamental freq, vector of harmonic 

frequencies [Hz] 
global b1 b2 b3         % parameters to compute beta=vessel pseudo-

compliance 
global inart            % vessel that receives input pressure 
global N                % length of time, pressure input arrays 
global numModes         % number of Fourier harmonics 
global vesselLengths    % [m] 
global vesselProxRadii  % [m] 
global vesselDistRadii  % [m] 
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delE1 = 1*0.15/(4*pi*0.8); 
% delE1 = 0.2; 
% delE2 = 0.5; 
% delE3 = 0.5; 
delE2=delE1; 
delE3=delE1; 
Eadj=1; 
nscale2=2;      % bifurcating scaling factor for subnetworks 
nscale3=3;      % trifurcating scaling factor for subnetworks 

  
% Get input (filenames, etc) from user & read in data to analyze. 
% The inlet pressure profile from Olufsen (2004) is named p2dec.txt 

for the 
% aorta, so the input artery is "1" for the model 

  
inletPdata=load('p2dec.txt','-ascii');        %col.1=time[s], 

col.2=pres[mmHg] 
% allArts=input('Enter 1 to compute & save pressures in all arteries 

and trees: '); 
allArts = 1; 

  
load('vessel_data.mat'); 
% HctD =        discharge hematocrit (dimensionless) 
% Nbar =        number of generations from capillary where cubic 

scaling 
%               law is used for radii of arterial tree vessels 
% PEnd =        pressure at capillary level (usually about 2000 Pa) 
% Temp =        absolute temperature of experiment 
%               (for human body approx. 309.65K) 
% b1, b2, b3 =  pseudo-compliance factors 
% cap_LoverD =  capillary length-to-diameter ratio (dimensionless) 
% cf = 0.1      fibrinogen concentration [g/dl] 
%               (APPROXIMATION - MUST BE CHANGED WHEN AN ACCURATE 
%               EXPRESSION IS FOUND) 
% inart =       artery where input pressure is located 
%               (usually 1 for ascending aorta) 
% muP =         viscosity of blood plasma [Pa s] (at reference Temp) 
% nscale =      number of daughter vessels for each parent in sub-

networks 
% numArt =      number of main vessels in network 
% rhoP =        blood plasma density [kg/m^3] 
% rhoRBC =      red blood cell density [kg/m^3] 
% rmincap =     minimum capillary radius [m] 
% sigma =       Poisson Ratio 
% vesselLengths = single column array with vessel lengths in [m] 
% vesselProxRadii = single column array with proximal vessel radii in 

[m] 
% vesselDistRadii = single column array with distal vessel radii in 

[m] 

  
Hctc = 0.3126*cf^2-0.468*cf+0.1764; % critical hematocrit 
Temp0=296.16; % reference temperature for muP [K] 
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muPabs=muP*exp(-7.0276*(1-Temp0/Temp)); % corrected plasma viscosity 
for j=1:numArt 
    vesselAvgRadii(j)=(vesselProxRadii(j)+vesselDistRadii(j))/2; 
    LRcap_ratio(j)=2*cap_LoverD; % capillary L/r ratio (adjustable) 
end 

  
terminal_brain_arteries=[57,58,64,65,71,72,74,75,76,78,80,82,84,86,88

,90,91,92,93,94,100,102]; 
for j=1:length(terminal_brain_arteries) 
    LRcap_ratio(terminal_brain_arteries(j))=50; 
end 

  
load('connectivity_data_uptodate.mat'); 
% numArtConnected = matrix of all numbered vessels attached to given 

node 
maxVesselsConnected=length(numArtConnected(1,:)); 
% maximum number of main vessels connecting to a single node 

  
numNodes=length(numArtConnected(:,1)); 
% total number of nodes connecting main arteries 
% (includes terminal nodes and input pressure node) 

  
% numNodesConnected = 2 column matrix denoting which nodes are 

connected to 
% given main vessel 
numNodesConnected=zeros(max(max(numArtConnected(:,:))),2); 
for j=1:numNodes 
    for m=1:maxVesselsConnected 
        if numArtConnected(j,m)~=0 
            if numNodesConnected(numArtConnected(j,m),1)==0 
                numNodesConnected(numArtConnected(j,m),1)=j; 
            else 
                numNodesConnected(numArtConnected(j,m),2)=j; 
            end 
        end 
    end 
end 

  
% howmanynodesconnected = # of other nodes sharing a main vessel with 

given node 
howmanynodesconnected=zeros(numNodes,1); 
howmanynodesconnected(1)=1; 
for j=2:numNodes 
    nnum=0; 
    for m=1:maxVesselsConnected 
        if numArtConnected(j,m)>0 
            nnum=nnum+1; 
        end 
        if howmanynodesconnected(j)==1 
            howmanynodesconnected(j)=2; 
        else 
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            howmanynodesconnected(j)=nnum; 
        end 
    end 
end 

  
parentvessel=zeros(numArt,1); 
for j=2:numNodes 
    if numArtConnected(j,2)==0 
        parentvessel(numArtConnected(j,1))=1; 
    end 
end 
% The parentvessel array  returns 1 if the specified vessel is the 

direct 
% parent of a secondary network, or 0 if the vessel is instead 

connected 
% only to other numbered vessels 

  
% time and pressure data come directly from p2dec input file 
time=inletPdata(:,1);               %time increments of inlet 

pressure wave 
pressure=inletPdata(:,2)*133.322;   %pressure at each time increment 

(converted to [Pa]) 
Pmean=mean(pressure);               %mean pressure (used in SS calcs) 
N=length(pressure);                 %length of pressure and time 

arrays 
nu=(N-1)/(N*(time(N)-time(1)));     %HR [Hz] 
fprintf('%d point pairs loaded; fundamental frequency = %g 

Hz.\n',N,nu); 

  
%Fraction of input wave power accounted for by # of harmonics used 

will be 
%displayed for user.  Increase numModes if <99% of power is accounted 

for. 

  
numModes=10;                % # of Fourier harmonics 
w=2*pi*nu*(1:numModes);     % frequency of each harmonic 

  
majarts=[1 15 21 22 52]; % major arteries 
% (aorta, L. common carotid, L. brachial, L. radial, L. femoral) 
if isempty(allArts) || (allArts~=1) 
    allArts=0; 
    arteries=majarts;       %calc pressure, flow in these arteries 
else 
    arteries=[1:numArt];    %calc pressure, flow in all arteries 
end 

  
% Calculate Viscosity in Each Main Artery, Based on Bottom Radius 
for j=1:numArt 
    D=2*vesselDistRadii(j)*1e6; % diameter, must be converted to 

microns for calculation 
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    HctT(j) = HctD*(HctD+(1-HctD)*(1+1.7*exp(-0.415*D)-0.6*exp(-

0.011*D))); 
    % local hematocrit - volume fraction of red blood cells 

(dimensionless) 
    alp = 4/(1+exp(-0.593*(D-6.74))); 
    mu(j) = muPabs*(1 + ((exp(HctD*alp)-1)/(exp(0.45*alp)-

1))*(110*exp(-1.424*D)+3-3.45*exp(-0.035*D))); % local viscosity 
    rho(j) = rhoP*(1-HctT(j)) + rhoRBC*HctT(j); % local density 
    muSS(j) = muPabs*(1+2.0703*HctT(j)+3.7222*HctT(j)^2); 
    tauw(j) = 1; % wall stress (will be corrected later) 
end 

  
% M-K Wave Speed, Pulse Wave Veloc, Impedance, Resistance (no 

entrance effects) 
% (for main vessels) 
for j=1:numArt 
    %Beta=E*h/r0, based on empirical fit to variation of beta with R 

across arteries     
    if vesselAvgRadii(j) > 5e-4 
    Beta(j)=b1*exp(b2*vesselAvgRadii(j))+b3; %[kg/(m-s2)] Pseudo-

Compliance 
    else 
    Beta(j)=b1*exp(b2*5e-4)+b3; 
    end 

     
    if vesselAvgRadii(j) > 2e-4 
        h = 0.07; 
%         E = (Beta(j)*Ravg(j)/h) + 

i*0.15*(Beta(j)*Ravg(j)/h)/(2*pi*2); 
        E(j) = Eadj*(Beta(j)*vesselAvgRadii(j)/h) + 

i*nu*(Beta(j)*vesselAvgRadii(j)/h)*delE1; 
        Beta(j) = E(j)*h/vesselAvgRadii(j); 
    elseif vesselAvgRadii(j) > 2e-5 
        h = 0.4; 
%         E = (Beta(j)*Ravg(j)/h) + 

i*0.15*(Beta(j)*Ravg(j)/h)/(2*pi*2); 
        E(j) = Eadj*(Beta(j)*vesselAvgRadii(j)/h) + 

i*nu*(Beta(j)*vesselAvgRadii(j)/h)*delE2; 
        Beta(j) = E(j)*h/vesselAvgRadii(j); 
        fprintf('error') 
    else 
        h = 0.17; 
%         E = (Beta(j)*Ravg(j)/h) + 

i*0.15*(Beta(j)*Ravg(j)/h)/(2*pi*2); 
        E(j) = Eadj*(Beta(j)*vesselAvgRadii(j)/h) + 

i*nu*(Beta(j)*vesselAvgRadii(j)/h)*delE3; 
        Beta(j) = E(j)*h/vesselAvgRadii(j); 
        fprintf('error') 
    end 
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Comp(j)=(3/2)*pi*vesselLengths(j)*((vesselDistRadii(j)^2+vesselProxRa

dii(j)*vesselDistRadii(j)+vesselProxRadii(j)^2)/3)/Beta(j); 
    c0(j)=sqrt(Beta(j)/(2*rho(j))); % [m/s] Moens-Korteweg Wave 

Velocity 
    for n=1:numModes 
        alpha(j,n)=sqrt(w(n)*rho(j)/mu(j))*vesselAvgRadii(j); % 

Womersley Number 
        c(j,n)=c0(j)*sqrt(-(1/(1-

sigma^2))*((besselj(2,i^(3/2)*alpha(j,n)))/(besselj(0,i^(3/2)*alpha(j

,n))))); 
        % ^Complex Wavespeed [m/s] 
        Z(j,n)=(1/(1-

sigma^2))*(c0(j))^2*rho(j)/(pi*(vesselAvgRadii(j))^2*c(j,n)); % 

Characteristic (Local) Impedance 
        Zphase0(j,n)=atan2(imag(Z(j,n)),real(Z(j,n))); 
        Zmag0(j,n)=real(Z(j,n))/cos(Zphase0(j,n)); 
    end 
end 
Emodulus=real(E); 
% Lubrication Integration of Resistance for Tapered Vessels 
for j=1:numArt 
    if vesselProxRadii(j)==vesselDistRadii(j) % (vessel does not 

change radius/does not taper) 
        

PoisRes(j)=8*muSS(j)*vesselLengths(j)/(pi*vesselProxRadii(j)^4);   

%[Pa-s/m^3] 
        K(j)=0; % exponential factor not needed 
    else 
        

K(j)=log(vesselDistRadii(j)/vesselProxRadii(j))/vesselLengths(j); 
        

PoisRes(j)=8*muSS(j)/(pi*((vesselProxRadii(j)+vesselDistRadii(j))/2)^

4)*(exp(-4*K(j)*vesselLengths(j))-1)/(-4*K(j)); 
        % ^Correction for tapering 
    end   
end 

  
% Scaling Trees Attached to Each Terminal Main Artery % 
global Lgen %lengths of vessels in generations stemming from terminal 

numbered arteries 
for j=1:numArt 
    Gentotal(j)=0; % number of generations after terminal main vessel 
    if parentvessel(j,1)==1 
        % First check critical radius 
        rbar(j)=rmincap/(nscale3^(-Nbar/3)); 
        if rbar(j)>=vesselDistRadii(j) % (scaling immediately follows 

cubic law) 
            kbar(j)=0; 
            Gentotal(j)=fix(-

3*log(rmincap/vesselDistRadii(j))/log(nscale3)); 
        else % (scaling follows square root up to kbar) 
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            kbar(j)=fix(-

2*log(rbar(j)/vesselDistRadii(j))/log(nscale2)); 
            Gentotal(j)=Nbar+kbar(j); 
        end 
        % Radii will scale by factor of 1/2 for generations < kbar, 

then 
        % change to factor of 1/3  
        for m=1:Gentotal(j) 
            if m<=kbar 
                if m==1 
                    Rgen(j,m)=vesselDistRadii(j)*nscale2^(-1/2); 
                else 
                    Rgen(j,m)=Rgen(j,m-1)*nscale2^(-1/2); 
                end 
            else 
                if m==1 
                    Rgen(j,m)=vesselDistRadii(j)*nscale3^(-1/3); 
                else 
                    Rgen(j,m)=Rgen(j,m-1)*nscale3^(-1/3); 
                end 
            end 
        end 
        % Back-calculate lengths based on ratio of capillary 

length/radius 
        % and move up through subnetworks 
        Lgen(j,Gentotal(j))=LRcap_ratio(j)*Rgen(j,Gentotal(j)); 
        for m=1:min(Nbar,Gentotal(j)-1) 
            Lgen(j,Gentotal(j)-m)=Lgen(j,Gentotal(j)-

m+1)*nscale3^(1/3); 
        end 
        if Gentotal(j)>Nbar+1 % (or if kbar(j)>0) 
            for m=1:kbar(j)-1 
                Lgen(j,kbar(j)-m)=Lgen(j,kbar(j)-m+1)*nscale2^(1/3); 
            end 
        end 
    end 
end 

  
% Calculate Viscosity in Arterial Trees % 
for j=1:numArt 
    if parentvessel(j,1)==1 
        for m=1:Gentotal(j) 
            D=2*Rgen(j,m)*1e6; % diameter of mth generation of jth 

terminal artery in microns 
            HctTgen(j,m) = HctD*(HctD+(1-HctD)*(1+1.7*exp(-0.415*D)-

0.6*exp(-0.011*D))); % local hematocrit of mth generation 
            alp = 4/(1+exp(-0.593*(D-6.74))); 
            mugen(j,m) = muPabs*(1 + ((exp(HctD*alp)-

1)/(exp(0.45*alp)-1))*(110*exp(-1.424*D)+3-3.45*exp(-0.035*D))); % 

local viscosity of mth generation 
            rhogen(j,m) = rhoP*(1-HctTgen(j,m)) + 

rhoRBC*HctTgen(j,m); % local density of mth generation 
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            mugenSS(j,m) = 

muPabs*(1+2.0703*HctTgen(j,m)+3.7222*HctTgen(j,m)^2); 
            tauwgen(j,m) = 1; % wall stress (will correct later) 
        end 
    end 
end 

  
% M-K Wave Speed, Pulse Wave Veloc, Impedance, Resistance (no 

entrance effects) 
% (for sub-networks) 
for j=1:numArt 
    if parentvessel(j,1)==1 
        for m=1:Gentotal(j) 
            

PoisResgen(j,m)=Lgen(j,m)*8*mugenSS(j,m)/(pi*Rgen(j,m)^4); %[Pa-

s/m^3] 

             
            if Rgen(j,m) > 5e-4 
            Betagen(j,m)=b1*exp(b2*Rgen(j,m))+b3;   %[kg/m-s^2] 

Beta=E*h/r0 
            else 
            Betagen(j,m)=b1*exp(b2*5e-4)+b3;    
            end 

             
            if Rgen(j,m) > 2e-4 
                h = 0.07; 
%                 E = (Betagen(j,m)*Rgen(j,m)/h) + 

i*0.15*(Betagen(j,m)*Rgen(j,m)/h)/(2*pi*2); 
                E = Eadj*(Betagen(j,m)*Rgen(j,m)/h) + 

i*nu*(Betagen(j,m)*Rgen(j,m)/h)*delE1; 
                Betagen(j,m) = E*h/Rgen(j,m); 
            elseif Rgen(j,m) > 2e-5 
                h = 0.4; 
%                 E = (Betagen(j,m)*Rgen(j,m)/h) + 

i*0.15*(Betagen(j,m)*Rgen(j,m)/h)/(2*pi*2); 
                E = Eadj*(Betagen(j,m)*Rgen(j,m)/h) + 

i*nu*(Betagen(j,m)*Rgen(j,m)/h)*delE2; 
                Betagen(j,m) = E*h/Rgen(j,m); 
            else 
                h = 0.17; 
%                 E = (Betagen(j,m)*Rgen(j,m)/h) + 

i*0.15*(Betagen(j,m)*Rgen(j,m)/h)/(2*pi*2); 
                E = Eadj*(Betagen(j,m)*Rgen(j,m)/h) + 

i*nu*(Betagen(j,m)*Rgen(j,m)/h)*delE3; 
                Betagen(j,m) = E*h/Rgen(j,m); 
            end 

             
            c0gen(j,m)=sqrt(Betagen(j,m)/(2*rhogen(j,m)));   %[m/s] 
            for n=1:numModes 
                

alphagen(j,m,n)=sqrt(n*2*pi*nu*rhogen(j,m)/mugen(j,m))*Rgen(j,m); 
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                cgen(j,m,n)=c0gen(j,m)*sqrt(-

((besselj(2,i^(3/2)*alphagen(j,m,n)))/(besselj(0,i^(3/2)*alphagen(j,m

,n)))));   %[m/s] 
                

Zgen(j,m,n)=(c0gen(j,m))^2*rhogen(j,m)/(pi*(Rgen(j,m))^2*cgen(j,m,n))

; 
                

Compgen(j,m)=(3/2)*pi*Lgen(j,m)*Rgen(j,m)^2/Betagen(j,m); 
            end 
        end 
    end 
end 

  
% Iterate to find entrance resistances and wall stress values that 

give convergence 
[Rentrance,Rentrancegen,Pmeanao,tauw,tauwgen,muSSeff,mugenSSeff,FlowF

rac,LCC,LR,RCA]=... 
    

steadyiterate_P_density_SS_new(parentvessel,Gentotal,kbar,numArt,numN

odes,howmanynodesconnected,numArtConnected,... 
    

numNodesConnected,Pmean,PEnd,vesselAvgRadii,vesselProxRadii,rho,rhoge

n,Lgen,vesselLengths,Rgen,... 
    

vesselDistRadii,inart,Hctc,HctT,HctTgen,tauw,tauwgen,muSS,mugenSS,cf,

nscale2,nscale3); 

  
% Final Resistance = Final Entrance Resistance + Poiseuille 

Resistance 
% TotRes will contain resistances of numbered vessels in SI units 
for j=1:numArt 
    if HctT(j) > Hctc 
        tau0 = 0.1*((HctT(j)-Hctc)^2)*((0.5084*cf+0.4517)^2); 
        eps = 1-((1/21)*(tau0/tauw(j))^4)-

((16/7)*(tau0/tauw(j))^0.5)+((4/3)*(tau0/tauw(j))); 
        TotRes(j)=PoisRes(j)/eps+Rentrance(j); %[Pa-s/m^3] 
    else 
        tau0 = 0; 
        TotRes(j)=PoisRes(j)+Rentrance(j); %[Pa-s/m^3] 
    end 
end 

  
% Final Resistance = Final Entrance Resistances + Poiseuille 

Resistance (secondary networks) 
% TotResgen will contain individual resistances of vessels in each 

generation (SI units) 
for j=1:numArt 
    if parentvessel(j,1)==1 
        for m=1:Gentotal(j) 
            if HctTgen(j,m) > Hctc 
                tau0 = 0.1*((HctTgen(j,m)-

Hctc)^2)*((0.5084*cf+0.4517)^2);                 
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                if tauwgen(j,m) == 0 
                    eps=1; 
                else 
                    eps = 1-((1/21)*(tau0/tauwgen(j,m))^4)-

((16/7)*(tau0/tauwgen(j,m))^0.5)+((4/3)*(tau0/tauwgen(j,m))); 
                end                 
                TotResgen(j,m)=PoisResgen(j,m)/eps+Rentrancegen(j,m); 

%[Pa-s/m^3] 
            else 
                tau0 = 0; 
                TotResgen(j,m)=PoisResgen(j,m)+Rentrancegen(j,m); 

%[Pa-s/m^3] 
            end             
        end 
    end 
end 

  
% Equivalent Resistances of Each Vessel in Secondary Networks 
% Rcumgen(j,m) will contain the cumulative resistance from the start 

of 
% generation m in sub-network j, out to the capillary level, taking 

into 
% account the entrance resistances and series/parallel combinations 

of all 
% downstream vessels. 
for j=1:numArt 
    if parentvessel(j,1)==1 
        Rcumgen(j,Gentotal(j))=TotResgen(j,Gentotal(j)); 
        for m=1:(Gentotal(j)-1) 
            if (Gentotal(j)-m)>kbar(j) 
                Rcumgen(j,Gentotal(j)-m)=TotResgen(j,Gentotal(j)-

m)+Rcumgen(j,Gentotal(j)-m+1)/nscale3; 
            else 
                Rcumgen(j,Gentotal(j)-m)=TotResgen(j,Gentotal(j)-

m)+Rcumgen(j,Gentotal(j)-m+1)/nscale2; 
            end 
        end 
    end 
end 

  
% System of Equations to find SS Pressures at each Node 
PdropEffective=Pmean-PEnd;      % [Pa], accounts for actual capillary 

pressure 
a=zeros(numNodes,numNodes); 
b=zeros(numNodes,1); 
a(1,1)=1; 
b(1,1)=PdropEffective; 
for j=2:numNodes 
    for m=1:howmanynodesconnected(j) 
        if numArtConnected(j,m)==0 
            if kbar(j)==0 
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                a(j,j)=a(j,j)-

(nscale3/Rcumgen(numArtConnected(j,1),1));  % trifurcation 
            else 
                a(j,j)=a(j,j)-

(nscale2/Rcumgen(numArtConnected(j,1),1));  % bifurcation 
            end 
        else 
            

PairNode=numNodesConnected(numArtConnected(j,m),1)+numNodesConnected(

numArtConnected(j,m),2)-j; 
            a(j,PairNode)=1/TotRes(numArtConnected(j,m)); 
            a(j,j)=a(j,j)-(1/TotRes(numArtConnected(j,m))); 
        end 
    end 
end 
Pstar=a\b;          % Effective pressures at every node 
Poutcome=a*Pstar-b; % check - should be effectively zero for every 

node 

  
% Steady State Flow in all vessels 
for j=1:numArt 
    SteadyFlow(j)=abs(Pstar(numNodesConnected(j,1))-

Pstar(numNodesConnected(j,2)))/TotRes(j); 
    if parentvessel(j)==1 
        for m=1:Gentotal(j) 
            if m==1 
                if m<=kbar(j) 
                    SteadyFlowgen(j,m)=SteadyFlow(j)/nscale2; 
                else 
                    SteadyFlowgen(j,m)=SteadyFlow(j)/nscale3; 
                end 
            else 
                if m<=kbar(j) 
                    SteadyFlowgen(j,m)=SteadyFlowgen(j,m-1)/nscale2; 
                else 
                    SteadyFlowgen(j,m)=SteadyFlowgen(j,m-1)/nscale3; 
                end 
            end 
        end 
    end 
end 

  
% termflux = sum of flows at each terminal node 
% (should equal total cardiac output) 
termflux=0; 
for j=1:numArt 
    if parentvessel(j)==1 
        termflux=termflux+abs((Pstar(numNodesConnected(j,1))-

Pstar(numNodesConnected(j,2)))/TotRes(j)); 
    end 
end 
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% Total Steady Flow, Pressure Drop, & Cumulative Resistance 

Calculation 
Flowtotal=(Pstar(1)-Pstar(2))/TotRes(1);    % Total Cardiac Output 

(overall flow) based on pressure drop along first vessel [m^3/s] 
Rcum=(PdropEffective/Flowtotal);            % Cumulative Resistance 

of network 

  
% vesselflow gives flux through any main vessel [m^3/s] 
vesselflow=zeros(numArt,1); 
for j=1:numArt 
    vesselflow(j)=abs((Pstar(numNodesConnected(j,1))-

Pstar(numNodesConnected(j,2)))/TotRes(j)); 
end 

  
% flowtobrain gives total flux to the brain, taking into account 

flows through 
% common carotid and vertebral arteries [L/min] 
flowtobrain=(vesselflow(5)+vesselflow(6)+vesselflow(15)+vesselflow(20

))*6e4; 

     
fprintf('Total pressure drop = %f Pa\n',PdropEffective) 
fprintf('Total Cardiac Output = %f L/min\n',Flowtotal*6e4) 
fprintf('Total Blood Flow to Brain = %f L/min\n',flowtobrain) 
fprintf('Cumulative Resistance of Network = %f dyne/(cm^5 

sec)\n',Rcum*1e-5) 

  
% Determine Reflection Ratios (Alpha) in Arterial Trees 
for j=1:numArt 
    if parentvessel(j,1)==1 
        for n=1:numModes 
            for m=1:Gentotal(j) 
                k=Gentotal(j)-m+1; % (k counts backward to 1) 
                if k==Gentotal(j) 
                    Ztermgen=Zgen(j,k,n); % assume perfect 

termination at capillaries 
                elseif k>=kbar(j) 
                    Ztermgen=InputZgen(j,k+1,n)/nscale3; 
                else 
                    Ztermgen=InputZgen(j,k+1,n)/nscale2; 
                end 
                Alphagen(j,k,n)=(Ztermgen-

Zgen(j,k,n))/(Ztermgen+Zgen(j,k,n)); 
                InputZgen(j,k,n)=Zgen(j,k,n)*...    % Input Impedance 
                    ((1+Alphagen(j,k,n)*exp(-

2*i*w(n)*Lgen(j,k)/cgen(j,k,n)))/... 
                    (1-Alphagen(j,k,n)*exp(-

2*i*w(n)*Lgen(j,k)/cgen(j,k,n)))); 
            end 
        end 
    end 
end 



 107 

  
% Determine Reflection Ratios (Alpha) in Terminal Main Arteries 
for j=1:numArt 
    if parentvessel(j,1)==1 
        for n=1:numModes 
            if kbar(j)==0 
                Zterm(j,n)=InputZgen(j,1,n)/nscale3; 
            else 
                Zterm(j,n)=InputZgen(j,1,n)/nscale2; 
            end 
            Alpha(j,n)=(Zterm(j,n)-Z(j,n))/(Zterm(j,n)+Z(j,n)); 
            InputZ(j,n)=Z(j,n)*((1+Alpha(j,n)*exp(-

2*i*w(n)*vesselLengths(j)/c(j,n)))/... 
                (1-Alpha(j,n)*exp(-

2*i*w(n)*vesselLengths(j)/c(j,n)))); % Input Impedance 
            % (^see Milnor reference (7.20) in Johnson et al. 2011) 
        end 
    end 
end 

  
% System of Equations to find Forward and Backward Pressure Waves 

(complex) for each Vessel 
% A(j,1)*PstarTrans(1,n)+A(j,2)*PstarTrans(2,n)+...=B(j) for each 

harmonic 
PstarTrans=zeros(2*numArt,numModes); 
for n=1:numModes 
    A=zeros(2*numArt); 
    B=zeros(2*numArt,1); 
    A(1,1)=1; 
    A(1,2)=1; 
    B(1)=1; % all pressures are relative to Ptot (calculated by 

aortaP below) 
    ncounter=2; 
    for j=2:numNodes 
        if howmanynodesconnected(j)==2 
            % terminal network section 
            termVesselNumber=numArtConnected(j,1); 
            A(ncounter,2*termVesselNumber-

1)=Alpha(termVesselNumber,n); 
            A(ncounter,2*termVesselNumber)=-1; 
            ncounter=ncounter+1; 
        else 
            k=howmanynodesconnected(j); 
            % assign coefficients for forward and backward pressure 

waves 
            % by setting total flux at node = 0 
            for m=1:k 
                vesselNumber=numArtConnected(j,m); 
                if numNodesConnected(vesselNumber,1)==j 
                    % node is effectively at beginning of vessel 
                    A(ncounter,2*vesselNumber-1)=-

1/Z(vesselNumber,n); 
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                    A(ncounter,2*vesselNumber)=exp(-

i*w(n)*vesselLengths(vesselNumber)/c(vesselNumber,n))/Z(vesselNumber,

n); 
                else 
                    % node is effectively at end of vessel 
                    A(ncounter,2*vesselNumber-1)=exp(-

i*w(n)*vesselLengths(vesselNumber)/c(vesselNumber,n))/Z(vesselNumber,

n); 
                    A(ncounter,2*vesselNumber)=-1/Z(vesselNumber,n); 
                end 
                % weight coefficients to avoid singularity problems 
                % bring coefficients much closer to order of 1 
                if m==1 
                    weight=1/A(ncounter,2*vesselNumber-1); 
                end 
                A(ncounter,2*vesselNumber-

1)=A(ncounter,2*vesselNumber-1)*weight; 
                

A(ncounter,2*vesselNumber)=A(ncounter,2*vesselNumber)*weight; 
            end 
            ncounter=ncounter+1; 
            for m=1:k-1 
                % set all total pressures just outside of node equal 
                vesselNumber1=numArtConnected(j,1); 
                if numNodesConnected(vesselNumber1,1)==j 
                    % node is effectively at beginning of vessel 
                    A(ncounter,2*vesselNumber1-1)=1; 
                    A(ncounter,2*vesselNumber1)=exp(-

i*w(n)*vesselLengths(vesselNumber1)/c(vesselNumber1,n)); 
                else 
                    % node is effectively at end of vessel 
                    A(ncounter,2*vesselNumber1-1)=exp(-

i*w(n)*vesselLengths(vesselNumber1)/c(vesselNumber1,n)); 
                    A(ncounter,2*vesselNumber1)=1; 
                end 
                vesselNumber2=numArtConnected(j,m+1); 
                if numNodesConnected(vesselNumber2,1)==j 
                    % node is effectively at beginning of vessel 
                    A(ncounter,2*vesselNumber2-1)=-1; 
                    A(ncounter,2*vesselNumber2)=-exp(-

i*w(n)*vesselLengths(vesselNumber2)/c(vesselNumber2,n)); 
                else 
                    % node is effectively at end of vessel 
                    A(ncounter,2*vesselNumber2-1)=-exp(-

i*w(n)*vesselLengths(vesselNumber2)/c(vesselNumber2,n)); 
                    A(ncounter,2*vesselNumber2)=-1; 
                end 
                ncounter=ncounter+1; 
            end 
        end 
    end 
    PstarTrans(:,n)=A\B; 
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    %Pf for vessel j = PstarTrans(2*j-1,n) 
    %Pb for vessel j = PstarTrans(2*j,n) 
end 

  
% Find Reflection Ratios (Alpha) for non-terminal main vessels 
for j=1:numArt 
    if parentvessel(j,1)~=1 
        for n=1:numModes 
            Alpha(j,n)=PstarTrans(2*j,n)/PstarTrans(2*j-

1,n)*exp(i*w(n)*vesselLengths(j)/c(j,n)); 
        end 
    end 
end 

  
% aortaPressure.m computes aortic forward pressure wave harmonics 
% also plots floward and backward components of pressure and flow in 

aorta 
[Ptot,Pfao]=aortaPressure_density_SS_new(pressure,time,Flowtotal,vess

elLengths,Pmeanao,Pmean,Alpha,c,Z,inart); 

 


