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Abstract.

This paper introduces two techniques for approximating the Biot-Savart integral for deforming
elliptical Gaussian functions. The primary motivation is to develop a high spatial accuracy vortex
method. The first technique is a regular perturbation of the streamfunction in the small parameter
ε = a−1

a+1
where a2 is the aspect ratio of the basis function. This perturbative technique is suitable

for direct interactions. In the far field, the paper studies the applicability of the fast multipole
method for deforming elliptical Gaussians since the multipole series are divergent. The noncompact
basis functions introduce a new computational length scale that limits the efficiency of the multipole
algorithm but by imposing a lower bound on the finest mesh size, one can approximate the far-field
streamfunction to any specified tolerance.
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1. Introduction. In this paper, we explore the calculation of Biot-Savart inte-
grals for elliptical Gaussian basis functions,

ψ = −
1

4π

∫∫ ∞

−∞

log(|~x− ~s|2)φ(~s)d~s, (1.1a)

φ(~s;σ, a) =
1

4πσ2
exp

[
−(x2/a2 + y2a2)

4σ2

]
, (1.1b)

to determine the flow field and its derivatives induced by an elliptical Gaussian distri-
bution of vorticity, or blob, in a two-dimensional incompressible fluid. The core size
σ2 and the aspect ratio a2 are included as parameters. Translations and rotations
of φ can be introduced through the symmetries in (1.1a), but we exclude them now
for simplicity. There are two reasons for creating a robust and accurate approxima-
tion for the Biot-Savart integral of an elliptical Gaussian. The first reason is the
impetus for this research, the development of high spatial order vortex methods for
two-dimensional, incompressible, viscous flows. For a vortex method, it is necessary
to have a consistent description for the velocity field for it to be convergent. Recent
results demonstrating that deforming elliptical Gaussian blobs can be used to achieve
fourth order spatial accuracy for the convection and diffusion of passive scalars open
the door to high order viscous vortex methods [29, 30]. While not emphasized in this
paper, the second reason for developing methods of approximating the Biot-Savart
integral is that elliptical Gaussian vortices may be useful as modeling elements. That
is, one could use a small number of elliptical Gaussians to model a more complex
geophysical or laboratory system. To assess the interactions within the reduced sys-
tem, one would need a means of evaluating the Biot-Savart integral of each element.
These reduced models yield helpful insights without resorting to specialized, large-
scale simulations. For example, Knio, Collorec and Juvé studied sound emissions from
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regular and chaotic systems of discrete vortices using three Gaussian vortices [17]. To
understand the vortex core deformations, they refined their computation by using a
large number of Gaussian elements to approximate the initial larger Gaussian. De-
forming elliptical Gaussians offer more internal degrees of freedom for reduced models
like these. Another use for exact solutions are as base states for stability studies.
For instance, Sipp et. al. recently studied the stability of a Gaussian vortex in an
inhomogeneous fluid [36]. Similarly, a number of investigations have been conducted
using interacting elliptical patches of constant vorticity (Kida vortices) to understand
vortex mergers [25, 33, 44]. Elliptical Gaussian in linear flow field provides another
family of base states for investigators to explore.

The primary purpose of this work is to the development of high accuracy viscous
vortex methods. Vortex methods are a category of Lagrangian schemes long associated
with successful computation of unsteady flow fields. For example, Rosenhead used
eight point vortices to compute the dynamics of an inviscid mixing layer in 1931 [26].
The common ingredient in all vortex methods is that the vorticity field of the flow
is approximated by a linear combination of localized basis functions. These basis
functions move with the local flow field which must determined via a Biot-Savart
integral over the basis functions. Overviews of a variety of vortex method techniques
and applications can be found in [6, 19, 32] although new methods and techniques
emerge regularly. Some more recent developments include large scale engineering
applications high Reynolds number flow past bluff bodies by Ploumhans et. al. [24]
and the use of radial basis functions for remeshing by Barba et. al [4]. This paper
focuses on deforming elliptical Gaussian basis functions because they provide a means
of achieving high spatial accuracy for fully viscous flow. The use of deforming blobs
for the 2D, incompressible Navier-Stokes equations

ωt + ~u · ∇ω =
1

Re
∇2ω, (1.2a)

∇ · ~u = 0, (1.2b)

(where ~u is the fluid velocity, ω = (∇×~u)·ẑ is the fluid vorticity and Re is the Reynolds
number) is a natural extension of existing work both on core spreading techniques for
Navier-Stokes and on the use of anisotropic elements to facilitate greater adaptivity
and accuracy for Euler equations.

Core spreading has considerable appeal because it is deterministic, grid-free and
exact for uniform flow fields. Furthermore, the uncorrected algorithm is easy to imple-
ment and computationally efficient. To the knowledge of the author, core spreading
was first proposed by Leonard [19] but concerns quickly arose over the consistency
of this approach [12] because the simplest implementation of the scheme imposes a
lower bound on the core size of the computational elements. The method was cor-
rected in [27] with a consistent splitting algorithm and augmented with a merging
algorithm [28]. Others have built upon these topics [15, 22, 34, 35]. Also, there have
been engineering computations with uncorrected core spreading methods (for example
[16, 40, 41, 42]) but the accuracy of such methods is questionable in lieu of the finite
core size issue as well as the lack of consistency in the core spreading formulation.
Barba explores the numerical issues involved in [3]. While there is cause for concern
about a lack of communication across disciplines, corrected core spreading is a strong
and robust method for unsteady flows.

Still, core spreading is one of a small number of families of schemes featuring
deforming blobs. There have been numerous efforts to use anisotropic elements for
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Euler and Navier-Stokes equations as a means of improving the efficiency of compu-
tations in large aspect ratio flows, a common situation in flows near solid boundaries.
Teng used rigid and deforming elliptical patches to resolve boundary layers and vor-
tex sheets more efficiently [37, 38, 39]. He establishes a theoretical O(l2 log l) rate of
convergence for his method where l is the core width of the computational elements.
Marshall and Grant designed highly anisotropic elements to satisfy the no-slip, no
normal flow boundary conditions [21]. Ojima and Kamemoto developed a scheme
for large scale simulations using deforming vortex elements that stretch with local
flow deviations, but the resulting element is replaced with an isotropic element of
equal volume at the end of each timestep to avoid having to calculate the Biot-Savart
integral for anisotropic elements [23]. Rigorous convergence studies have not been
reported for this method. Leonard used deforming elliptical Gaussian basis func-
tions to simulate the convection and diffusion of passive scalar quantities, (1.2a) but
where ~u is specified, motivated by the fact that they remain self-similar under the
linearized convection-diffusion equations [20]. Also, Moeleker and Leonard propose
using anisotropic elements with velocity field corrections based on subgrid scale for
when computing Gaussian filtered scalar quantities though they report modest gains
in accuracy at a high computational cost [22].

This paper builds upon findings that fourth order spatial accuracy can be achieved
with deforming elements when the basis functions advect with a velocity field given
by the physical velocity field plus a velocity curvature correction [29]. These studies
with an uncorrected method are limited to convection-diffusion equations. However,
the analysis suggests that the same performance should be achieved for Navier-Stokes
as long as the velocity field computed via the Biot-Savart integral and the exact field
are close to one another because the errors are introduced through the nonlinear
term at second order. In §4, we shall see that this is the case. For convection-
diffusion equations, the advantages of using more accurate but more computationally
complex basis functions over less accurate simpler radial basis functions are realized
at moderate problem sizes [30]. In short, deforming basis functions are better than
axisymmetric basis functions in the sense that the former can compute a more accurate
solution in the same amount of CPU time. This paper is a step in the same direction,
building a better vortex method for Navier-Stokes. The vortex method described in
this paper is an elliptical corrected core spreading vortex method and for convenience,
it shall be termed ECCSVM. It is beyond the scope of this paper to explore corrections
(the first “C”) but techniques such as remeshing, splitting and merging are applicable
to deformable blobs as well as axisymmetric blobs.

For a vortex method to be viable for scientific computation, it is not enough to
evaluate the Biot-Savart integral directly to find the velocity field at each basis func-
tion location. If this were the case, the computational complexity of determining the
velocity field at N blob positions would be O(N 2). A number of fast summation al-
gorithms have been developed over the past two decades that are capable of reducing
certain particle computations from O(N 2) to O(N logN) or even O(N). These meth-
ods all hinge upon a separation of length scales. For instance, the Greengard-Rohklin
algorithm uses Laurent expansions of complex Coulomb potentials to collect far field
influences. The effects of distant elements are approximated as an aggregate while
velocity contributions from nearby elements are computed directly. The Greengard-
Rohklin fast multipole method (FMM) has demonstrably reduced the computational
complexity from O(N2) to O(N) for potential kernels [13]. The multipole coefficients
for the Laurent series can be collected on an hierarchy of meshes over the domain,
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so that the separation of near and far fields can be nested. There have been many
extensions and augmentations to FMM (for instance [1, 2, 5, 14, 43]). The original
FMM concepts have also been extended for fast polynomial interpolation and differ-
entiation [10] and for a much broader class of velocity kernels [11]. An alternative to
this algorithm based on Taylor series expansions has been analyzed and demonstrated
by Draghicescu and Draghicescu [7, 8, 9]. This technique requires that one be able
to Taylor expand the core shape function, and it achieves O(N logN) complexity.
While the Draghicescu algorithm offers more flexibility in the types of core shapes
one could use, the method requires that all elements have the same shape, so the
Draghicescu method would not be suitable for the evolving anisotropic elements that
are the focus of this paper. One of several difficulties in using FMM under these cir-
cumstances is that the Biot-Savart integral (i.e. the velocity kernel) cannot be written
in terms of elementary functions. The approach developed in this paper is to expand
the Coulomb potential inside the integral (1.1a) as a Laurent series, and then perform
the integration term by term. We shall see later that the resulting series is divergent
but useful as an approximation, and will yield an accurate O(N) algorithm for finding
the velocity field induced by a distant collection of elliptical Gaussian basis functions.

This paper has a simple organizational structure. This section reviews different
perspectives and contributions in the use of anisotropic elements for particle com-
putations. The next section §2 derives and demonstrates how one can approximate
the streamfunction and its derivatives for an elliptical Gaussian basis function for
direct pairwise interactions. In §3, the fast multipole method is modified for use with
anisotropic elliptical Gaussians. In this section, we rely heavily on the work of Green-
gard and Rohklin [13]. Finally in §4, we certify these methods by approximating
solutions to the Navier-Stokes for the Lamb-Oseen vortex and compare the numerical
solutions with an exact solution.

2. Asymptotic evaluations for direct interactions in the near field. The
evolution equations for the elliptical Gaussian basis functions (1.1b) depend upon
~u and D~u 1, but unlike the most other basis functions used for vortex methods,
there is no known elementary formula for these induced fields. However, the induced
velocity and velocity derivatives can be written as a regular perturbation in the small
parameter

ε =
a− 1

a+ 1
. (2.1)

For simplicity, we let R2 = x2/a2 + y2a2, so that (1.1b) becomes,

φ(R;σ, a) =
1

4πσ2
e−R

2/4σ2

. (2.2)

The variable R is a continuous index of level sets of the elliptical Gaussian element.
Though one could express the velocity fields as a full two dimensional Biot-Savart
integral, one can also use the fact that the streamfunction (and therefore all deriva-
tives) of an elliptical patch of vorticity with unit density and semimajor and minor

1See [29] for the dynamics, and fourth order accuracy also requires knowing the second partial
derivatives of the velocity components.
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axes of l1 and l2 can be determined using elliptical coordinates [18]:

ψ =





1
2π(l1+l2)

(
x2

l1
+ y2

l2

)
, (x, y) ∈ E(l1, l2)

1
2π

[
ln
(
α+β
l1+l2

)
+

x2

α
+ y2

β

α+β

]
, (x, y) /∈ E(l1, l2)

(2.3a)

α =
√
l21 + ξ, (2.3b)

β =
√
l22 + ξ, (2.3c)

1 =

(
x2

l21 + ξ

)
+

(
y2

l22 + ξ

)
, (2.3d)

where E(l1, l2) is the support of the ellipse and

~u =

[
u
v

]
=

[
−∂ψ∂y
∂ψ
∂x

]
.

.
The streamfunction induced by an elliptical blob can be expressed as an infinite

sum of uniform elliptical patches. For each value of R in (2.2), the constituent patch
would have density πR2(−∂Rφ)dR and axes l1 = Ra and l2 = R/a. Adding all these
patches together to form an elliptical Gaussian blob, one can calculate the value of
the streamfunction at a point (x∗, y∗):

ψ(x∗, y∗) = −

∫ R∗

0

ψ1∂RφR
2dR−

∫ ∞

R∗

ψ2∂RφdR, (2.4a)

ψ1 =
1

2




(
x∗

2

α + y∗
2

β

)

α+ β
+ ln

(
α+ β

Ra+R/a

)
 , (2.4b)

ψ2 =
1

2

x∗

2

a + y∗
2a

a+ 1/a
, (2.4c)

α =
√
R2a2 + ξ, (2.4d)

β =

√
R2

a2
+ ξ. (2.4e)

Rather than using the implicit relation in equation (2.3d), we can use the quadratic
solution

ξ =
1

2



ρ∗

2 −R2

(
a2 +

1

a2

)
+

√[
R2

(
a2 +

1

a2

)
− ρ∗2

]2
+ 4R2(R∗

2 −R2)



 ,

(2.5)

where ρ∗
2 = x∗

2 + y∗
2 and R∗

2 = x∗

2

a2 + y∗
2a2. Important limits to be used later are

ξ → ρ∗
2 as R→ 0 and ξ → 0 as R→ R∗.

The second term on the right side of (2.4a) is elementary to integrate because
ψ2 does not vary with R. ψ1 is not readily expressed in terms of the variable R
making the first term problematic. However, one can expand ψ1 in powers of the
small parameter ε. Expanding in ε rather than R has the advantage that unlike R/σ,
ε is a small number that is less than 1. The variable R is not guaranteed to be small
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relative to σ since one may wish to use the streamfunction anywhere in the domain.
Thus, expanding in ε will yield a uniformly valid approximation of ψ1 over the entire
domain. The elliptical radius, R, is the natural variable of integration. At the same
time, R∗ is a parameter representing one possible combination of x∗ and y∗. One
possible complement is T∗ where T∗

2 = x∗
2/a2 − y∗

2a2. Combined with the fact
that the streamfunction must retain symmetries about the major and minor axes, the
streamfunction can be expressed as a function of R∗ and T∗. One could use radially
symmetric coordinates such as x∗

2 + y∗
2 and x∗

2 − y∗
2, but it was found that these

parameters yield a less accurate streamfunction approximation.
To perform an expansion of ψ1, we make the substitutions,

x∗
2 =

a2

2

(
R∗

2 + T∗
2
)
, (2.6a)

y∗
2 =

1

2a2

(
R∗

2 − T∗
2
)
, (2.6b)

a =
1 + ε

1− ε
, (2.6c)

the latter arising from (2.1). Thus, it follows that

ρ∗
2 = R∗

2 + 4εT∗
2 + 8ε2R∗

2 + 12ε3T∗
2 + 16ε4R∗

4 +O(ε5). (2.7)

Substituting this expression into the streamfunctions (2.4e) and (2.5), one can obtain
an asymptotic expression for the streamfunction of the elliptical patch. If one expands
these expressions out to a power of εn, then one obtains a polynomial in R of order
2n. For example, if we expand in powers of ε for n = 4, we capture the following
approximation for the streamfunction:

ψ1 =
1

4

[
1 + ln

(
R∗

2

R2

)]
+ ε

(
T∗

2

R∗
2 −

1

2

T∗
2R2

R∗
4

)
+

ε2
[
1− 2

T∗
4

R∗
4 +

(
−2 + 4

T∗
4

R∗
4

)
R2

R∗
2 +

(
1− 2

T∗
4

R∗
4

)
R4

R∗
4

]
+

ε3
[
16

3

T∗
6

R∗
6 − 5

T∗
2

R∗
2 +

(
37

2

T∗
2

R∗
2 − 24

T∗
6

R∗
6

)
R2

R∗
2 +

(
−24

T∗
2

R∗
2 + 32

T∗
6

R∗
6

)
R4

R∗
4 +

(
10
T∗

2

R∗
2 −

40

3

T∗
6

R∗
6

)
R6

R∗
6

]
+

ε4
[
−4 + 20

T∗
4

R∗
4 − 16

T∗
8

R∗
8 +

(
20− 136

T∗
4

R∗
4 + 128

T∗
8

R∗
8

)
R2

R∗
2 +

(
−42 + 324

T∗
4

R∗
4 − 320

T∗
8

R∗
8

)
R4

R∗
4 +

(
40− 320

T∗
4

R∗
4 + 320

T∗
8

R∗
8

)
R6

R∗
6 +

(
−14 + 112

T∗
4

R∗
4 − 112

T∗
8

R∗
8

)
R8

R∗
8

]
+O(ε5) (2.8)

ψ2 =
1

2

[
1

2
R∗

2 +
(
ε− ε3

)
T∗

2

]
+O(ε5). (2.9)

Using this expansion, the calculation of an approximate streamfunction together with
its derivatives reduces to computing moments of elliptical Gaussians. Since ψ2 does
not vary with R, the second term of (2.4a) can be evaluated with the exact form of
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ψ2 from (2.4e) or with the approximate form from (2.9). The advantage to using the
approximation is that it makes the integrand and one derivative of the integrand con-
tinuous across R∗, so that one need not use Leibnitz’s rule when calculating velocities,
but this is a minor consideration.

Next, we would like to calculate the derivatives of ψ. To be more precise, knowing
the nth derivatives of ψ, we would like to be able to quickly compute the (n + 1)st

derivatives. While these operations can be performed using finite differences, the cost
is high because ψ would have be evaluated many times over a stencil near the origin.
Instead, we shall determine the derivatives exactly from the asymptotic expression.

The regular perturbation in ε approximates ψ1 as a polynomial in R whose coeffi-
cients depend upon ratios of powers T∗ and R∗. Using the polynomial approximation,
finding ψ in (2.4a) reduces to summing moments of the Gaussian. Differentiation of
ψ reduces to a transformation of the polynomial coefficients in (2.8) followed by the
summation of all the resulting moments. For instance, we can rewrite (2.8) as

ψ1 =
1

4

[
1 + ln

(
R∗

2

R2

)]
+

(
ε2 − 4ε4

)
+
(
ε− 5ε3

) T∗2

R∗
2 +

(
−2ε2 + 20ε4

) T∗4

R∗
4 +

16

3
ε3
T∗

6

R∗
6 − 16ε4

T∗
8

R∗
8 +

[(
−2ε2 + 20ε4

)
+

(
−

1

2
ε+

37

2
ε3
)
T∗

2

R∗
2

+
(
4ε2 − 136ε4

) T∗4

R∗
4 − 24ε3

T∗
6

R∗
6 + 128ε4

T∗
8

R∗
8

]
R2

R∗
2 +

[(
ε2 − 42ε4

)
− 24ε3

T∗
2

R∗
2 +

(
−2ε2 + 324ε4

) T∗4

R∗
4 + 32ε3

T∗
6

R∗
6 − 320ε4

T∗
8

R∗
8

]
R4

R∗
4 +

(
40ε4 + 10ε3

T∗
2

R∗
2 − 320ε4

T∗
4

R∗
4 −

40

3
ε3
T∗

6

R∗
6 + 320ε4

T∗
8

R∗
8

)
R6

R∗
6 +

(
−14ε4 + 112ε4

T∗
4

R∗
4 − 112ε4

T∗
8

R∗
8

)
R8

R∗
8 +O(ε5). (2.10)

If we terminate the expansion of ψ1 after finding the coefficients for εn, the result will
be a polynomial of order 2n in R.

Differentiating the approximate streamfunction with respect to position, x∗ or

y∗ reduces to differentiating ratios of the form T∗

2m

R∗

2n where m ≤ n. For instance, if
m > 0,

∂

∂x∗

(
T∗

2m

R∗
2n

)
=

(
m
T∗

2(m−1)

R∗
2n − n

T∗
2m

R∗
2(n+1)

)
2x∗
a2

, (2.11a)

∂

∂y∗

(
T∗

2m

R∗
2n

)
= −

(
m
T∗

2(m−1)

R∗
2n + n

T∗
2m

R∗
2(n+1)

)
2y∗a

2. (2.11b)
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Similarly, when m > 0, we find

∂2

∂x∗2

(
T∗

2m

R∗
2n

)
=

(
m
T∗

2(m−1)

R∗
2n − n

T∗
2m

R∗
2(n+1)

)
2

a2
+

[
m(m− 1)

T∗
2(m−2)

R∗
2n − 2mn

T∗
2(m−1)

R∗
2(n+1)

+ n(n+ 1)
T∗

2m

R∗
2(n+2)

]
4x∗

2

a4
. (2.12)

However, if we make the substitution 4x∗
2/a4 = 2(R∗

2+T∗
2)/a2, and perform similar

substitutions on terms involving y∗
2 = (R∗

2−T∗
2)/(2a2), we determine the following

relations:

∂2

∂x∗2

(
T∗

2m

R∗
2n

)
=

2

a2

[
m(m− 1)

T∗
2(m−2)

R∗
2(n+1)

+m(m− 2n)
T∗

2(m−1)

R∗
2n

+n(n− 2m)
T∗

2m

R∗
2(n+1)

+ n(n+ 1)
T∗

2(m+1)

R∗
2(n+2)

]
, (2.13a)

∂2

∂y∗2

(
T∗

2m

R∗
2n

)
=2a2

[
m(m− 1)

T∗
2(m−2)

R∗
2(n+1)

+m(2n−m)
T∗

2(m−1)

R∗
2n

+n(n− 2m)
T∗

2m

R∗
2(n+1)

− n(n+ 1)
T∗

2(m+1)

R∗
2(n+2)

]
, (2.13b)

∂2

∂x∗∂y∗

(
T∗

2m

R∗
2n

)
=4x∗y∗

[
m(1−m)

T∗
2(m−2)

R∗
2n + n(n+ 1)

T∗
2m

R∗
2(n+2)

]
. (2.13c)

Relations (2.11) and (2.13) create an opportunity to calculate the partial derivatives
of ψ. If we represent the streamfunction as a vector of coefficients with indices m
and p because n = m + p for terms of the form T∗

m

R∗

nR2p as shown in (2.10), the
coefficients of the partial derivatives of ψ1 are linear combinations of the coefficients
for ψ1. Specific algorithms arising from these expressions provided in Appendix A.

Now we can approximate the Biot-Savart integral by calculating moments of the
elliptical Gaussian. For instance, if n = 4, we calculate the elementary integral,

I =−

∫ R∗

0

R2(C0 + C1R
2 + C2R

4 + C3R
6 + C4R

8)∂RφdR− C5φ(R∗)

=
γ

2π

{
2C0 + 16C1σ

2 + 192C2σ
4 + 3072C3σ

6 + 61440C4σ
8

−

[
C0

(
R∗

2

2σ2
+ 2

)
+ C1

(
R∗

4

2σ2
+ 4R∗

2 + 16σ2

)

+ C2

(
R∗

6

2σ2
+ 6R∗

4 + 48R∗
2σ2 + 192σ4

)

+ C3

(
R∗

8

2σ2
+ 8R∗

6 + 96σ2R∗
4 + 768σ4R∗

2 + 3072σ6

)

+C4

(
R∗

10

2σ2
+ 10R∗

8 + 160σ2R∗
6 + 1920σ4R∗

4 + 15360σ6R∗
2 + 61440σ8

)

−
C5

2σ2

]
exp

(
−
R∗

2

4σ2

)}
. (2.14)
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Fig. 2.1. Relative field errors for the fourth order approximation of ψ for ε = 0.20 (aspect
ratio 2.25) and σ = 1/4. The relative error is calculated using (2.15) where the reference solution
is calculated using a high precision quadrature. The scale as shown in the colorbar on the ψyyy plot
spanning an relative error of ±2% is used for all the plots.

where I could approximate ψx, ψy, ψxx, etc, and the Ci are polynomials in T∗

m

R∗

n .

To assess the accuracy of these approximations, the errors associated with the
approximate solutions are compared to a reference solution using finite differences on
a precise double-exponential quadrature of (2.4e) with fourteen digits of precision so
that the third order finite differences could be adequately resolved. The results of a
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0.1 0.2 0.3
ε

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

er
ro

r

n=4
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Slope = 5
Slope = 7
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Fig. 2.2. Behavior of asymptotic approximation for the streamfunction and its derivatives as
one varies ε and n. The graph presents the absolute error versus ε on logarithmic axes along with
reference slopes to show that the predicted convergence rates are realized.

typical calculation is shown in Fig. 2.1. The displayed relative error e is

e =
‖f(x, y)− fref(x, y)‖sup

‖fref‖sup
(2.15)

where f(x, y) is the approximation, fref(x, y) is the reference solution and the supre-
mum is taken over the displayed domain.

As computational elements grow more eccentric and ε grows closer to one, the
approximation becomes less accurate. On the other hand, the regular perturbation can
be expanded for any n. Thus, there are competing trends. Fig. 2.2 is an exploration
of variations in ε and n, and we see the predicted rates of convergences are realized
in practice.

3. Far field calculations using fast multipoles. Far field calculations of
anisotropic elements can be handled separately and more efficiently than direct calcu-
lations using fast summation. Fast summation algorithms all hinge upon a separation
of length scales, either artificial or physical. For instance, the Greengard-Rohklin
algorithm uses Laurent expansions for complex potential to collect far field influences
where the series is guaranteed to converge. At first glance, the Greengard-Rokhlin
would also appear to be unsuitable for this method because the basis functions have
infinite support and the kernel is singular, so the Laurent series will not converge at
any point in the domain. We shall see in this section that lacking compact support
does not completely sink the idea because the partial sums contain useful informa-
tion. By necessity, some details of Greengard-Rokhlin summation will be presented,
but other aspects not related to anisotropic elements will be omitted in the interest of
brevity. For a complete discussion of this method, the reader is referred to Greengard
and Rokhlin’s original article [13] or its successors some of which are cited in §1.

To begin, we will express positions in the domain (x, y) as a complex variable
z = x+iy. Then, the complex potential for a point vortex at the origin with circulation
γ will be

ϕ(z) = −
iγ

2π
ln z. (3.1)



ELLIPTICAL GAUSSIAN KERNELS FOR VORTEX METHODS 11

If the velocity field has horizontal and vertical components u and v respectively,
then ϕ′ = u − iv. Velocity derivatives in the far field can be computed by repeated
differentiation of ϕ. If the point vortex were at a point z∗, the complex potential
could still be evaluated relative to the origin using a power series expansion.

ϕ(z) = −
iγ

2π
ln(z − z∗)

= −
iγ

2π

[
ln z + ln

(
1−

z∗
z

)]

= −
iγ

2π


ln z −

∞∑

j=1

1

j

(z∗
z

)j

 (3.2)

Thus, a singular potential displaced from the origin can be represented through a
multipole expansion relative to the origin. The power series for ln(1− z) has a radius
of convergence of 1, so that as long as the point of evaluation is further from the
origin than the point vortex, the series will converge. In fact, one could design a
simple algorithm where one uses direct velocity calculations if, say, |z∗/z| > 1/2 and
use the series approximation otherwise. In the latter case, one could compute enough
terms of the series to satisfy any desired error tolerance. The precise ratio 1/2 is
not so important, but it is crucial that one define the far field. For the remainder of
this paper, we shall fix a parameter δ1 < 1, and define what is far from the origin as
|z∗/z| ≤ δ1. Contributions to the velocity field from elements that are not deemed
far from the point of measurement will be computed directly as described in §2, but
for elements that are far from the point of measurement, we shall take advantage of
the series solutions described in this section. When the point of measurement z is far
from the point vortex z∗, series (3.2) converges.

One can approximate ϕ when |z∗/z| ≤ δ1 by truncating the convergent power
series,

ϕ(z) = −
iγ

2π


ln z −

p∑

j=1

1

j

(z∗
z

)j
−

1

p+ 1

(w
z

)p+1


 , (3.3)

where w is a point on the line segment connecting 0 and z∗ in the complex plane.
If we consider p as a controllable parameter in a calculation, we can choose p large
enough to guarantee that the multipole approximation is as close as one would like
to the exact potential.

Next, we can think about many elements with circulation γk and position zk
clustered near the origin. Following the same procedure as (3.2), we can find the
complex potential at some point z relative to the origin.

ϕ = −
∑

k

iγk
2π

ln(z − zk),

= −
∑

k

iγk
2π


ln z −

p∑

j=1

1

j

(zk
z

)j
−

1

p+ 1

(wk
z

)p+1


 ,

= a0 ln z −

p∑

j=1

aj
jzj

+Rp+1, (3.4a)
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Fig. 3.1. Overview of fast multipole summation. At left, we can see how simple cluster can speed
a calculation. If we seek to calculate the streamfunction and its derivatives for the computational
element (shown in bold) at the bottom left box, we can treat distant elements in the upper right
box as an aggregate rather than through individual interactions. Once one calculates the multipole
coefficients for all the elements in the upper right box relative to the origin labeled with axes in the
figure, (3.4) can be used anywhere in the far field including the position of the basis function in
the bottom left box. At right, we can see how one can save more computational effort by shifting
multipole coefficients from the four small boxes in the upper right to the larger superbox by performing
multipole expansion about the new origin labeled in the figure. The shifts are indicated by the bold
arrows.

where wk is on the line segment connecting 0 and zk in the complex plane and

a0 = −
∑

k

iγk
2π

, aj = −
∑

k

iγk
2π

zjk, |Rp+1| ≤
δp+1
1

2π(p+ 1)

∑

k

|γk|. (3.4b)

Thus, one can calculate the multipole coefficients aj once for a cluster of elements
grouped near the origin, and use (3.4) many times in the far field as shown in Fig.
3.1.

Substantial economy is added to the technique if one shifts multipole expansions
relative to one another. That is, one can expand (3.2) or (3.4a) about another point
(not the origin) and combine it with other clusters. In Fig. 3.1, we see an example
where four localized clusters can be combined into a single larger cluster when calcu-
lating distant interactions. The original Greengard-Rokhlin algorithm nests clusters
in this arrangement to an arbitrarily fine level. The finest level can be defined as a
mesh where no box has more than k elements in it, so there are no more than Nk
direct interactions.

Applying multipole summation to elliptical Gaussian basis functions poses a chal-
lenge because the basis functions have infinite support, so the Laurent series will not
be convergent anywhere. However, even divergent series can provide useful informa-
tion. In fact, one can use the leading partial sums to compute a useful approximation
for the streamfunction and its derivatives.

We begin by calculating a multipole expansion for an elliptical Gaussian basis
function that is displaced from the origin to some point (x0, y0), with circulation
γ, aspect ratio a2, width σ and orientation θ. The complex potential would be the
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superposition

ϕ(z) = −
i

2π

∫∫ ∞

−∞

ln(z − z∗)
γ

4πσ2
exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx∗dy∗, (3.5)

where z = x+ iy, z∗ = x∗ + iy∗ and,

x̃ = cos(θ)(x∗ − x0) + sin(θ)(y∗ − y0), ỹ = − sin(θ)(x∗ − x0) + cos(θ)(y∗ − y0).
(3.6)

Writing the truncated multipole expansion inside the integral, interchanging the sum-
mation and integration, and changing variables,

ϕ(z) =−
iγ

2π

∫∫ ∞

−∞


ln(z)−

p∑

j=1

1

j

(z∗
z

)j
−

1

p+ 1

(w∗

z

)p+1




×
1

4πσ2
exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx∗dy∗,

=−
iγ

2π



ln z −

p∑

j=1

1

jzj

∫∫ ∞

−∞

(z∗)
j 1

4πσ2
exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx∗dy∗ +Rp+1



 ,

=−
iγ

2π



ln z −

p∑

j=1

1

jzj

∫∫ ∞

−∞

ηj
1

4πσ2
exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx̃dỹ +Rp+1



 ,

(3.7)

where

η = (x0 + iy0) + (cos θ + i sin θ)x̃+ (− sin θ + i cos θ)ỹ (3.8)

and

Rp+1 = −
1

4πσ2

∫∫ ∞

−∞

1

p+ 1

(w∗

z

)p+1

exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx∗dy∗. (3.9)

The Rp+1 determines the accuracy of the truncated series, so we will compute an
upper bound on this quantity. Without loss of generality, we assume that a > 1 and
that p is odd. Then, from (3.8) and (3.9), we can apply the triangle inequality and
change to polar coordinates to find that

|Rp+1| ≤
1

p+ 1

1

4πσ2

∫∫ ∞

−∞

|z0|
p+1 + |z̃|p+1

|z|p+1
exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx̃dỹ,

≤
1

p+ 1

[(
|z0|

|z|

)p+1

+
2π

4πσ2

∫ ∞

0

rp+2

|z|p+1
exp

(
−

r2

4a2σ2

)
dr

]
,

≤
1

p+ 1

[(
|z0|

|z|

)p+1

+
2π

4πσ2

∫ ∞

0

rp+2

|z|p+1
exp

(
−

r2

4a2σ2

)
dr

]
. (3.10)

If we let

Cp+2 =
2π

4πσ2

∫ ∞

0

rp+2

|z|p+1
exp

(
−

r2

4a2σ2

)
dr, (3.11)



14 LOUIS F. ROSSI

then integrating by parts, we find that

Cp+2 = (p+ 1)
2σ2a2

|z|2
Cp. (3.12)

Since C1 = a2,

Cp+2 = a2((p+ 1)/2)!

(
4σ2a2

|z|2

)(p+1)/2

. (3.13)

Therefore,

|Rp+1| ≤
1

p+ 1

[(
|z0|

|z|

)p+1

+ a2

(
p+ 1

2

)
!

(
4σ2a2

|z|2

)(p+1)/2
]
. (3.14)

From this expression, we see two dominant mechanisms controlling the error of the
multipole series. The first term inside the []’s is the traditional ratio discussed earlier

requiring that |z0|
|z| < 1. In other words, the singular potential has no natural length

scale. In the second term, we see that that core size of the anisotropic element imposes
a characteristic length scale 2σa based on the computational resolution of the basis

functions. If |z|2

4σ2a2 < 1, the upper bound on Rp in the multipole series grows without

bound. However, if |z|2

4σ2a2 > 1, the upper bound on Rp decreases initially and then
grows. For fast multipole summation with point vortices, one can fix δ1 and compute
a p that makes Rp+1 smaller than any desired tolerance, and one can set the finest
mesh level for direct interactions based on memory and computational performance
criteria. In other words, with point vortices, the investigator can control the number
of computational elements per box at the finest mesh level and then carry out the
multipole expansion as far as needed to achieve a specified tolerance. However, for
elements with finite cores, this is not the case because the number of terms in the
multipole series that are guaranteed to be accurate depends upon the distance to the
point of measurement |z| relative to the numerical length scale 2σa. So, we must

define a new parameter δ2 that characterizes the far field as |z|2

4σ2a2 > δ2. One can
estimate the number of useful terms by finding the value of p for which the ratio of
consecutive upper bounds (3.14) is approximately one in the special case when z0 = 0.
This turnaround point is when

(
p− 1

2

)(
4σ2a2

|z|2

)
≈ 1,

p ≈
|z|2

2σ2a2
+ 1. (3.15)

This suggests a practical value for p would be p̄ = 2δ2
2 +1. If we substitute (3.15) into

(3.14) and apply the bounds δ1 and δ2 judiciously, we can obtain a useful estimate
for the upper bound on |Rp̄+1| in (3.14):

|Rp̄+1| ≤
1

2(δ2 + 1)

[
δ
2(δ2+1)
1 + a2Γ (δ2 + 2) δ

−(δ2+1)
2

]
, (3.16)

which is plotted in Fig. 3.2. In practice, p is a discrete variable, but we have ex-
tended it as a continuum value and replaced the factorial with a gamma function. By
inspection, the contributions from δ2 dominate this expression.
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Fig. 3.2. Exponential decay of multipole residual. This curve represents (3.16) for a2 = 1 and
δ1 = 0. Other values of a2 will simply translate the curve vertically by a2. The number of multipole
terms requires varies linearly with δ2 as in (3.15). For instance, at δ2 = 8 corresponds to 17 terms
in the multipole series.

While the convergence rate is exponential, accuracy requirements place a lower

bound on the size of the finest mesh level via the parameter δ2. When |z|2

2σ2a2 is too
small, one must calculate the potential and its derivatives directly using the methods
described in §2.

Fixing p̄ to achieve a desire accuracy, we calculate the multipole coefficients.

an =
1

4πσ2

∫∫ ∞

−∞

ηn exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx̃dỹ, (3.17)

where from (3.7),

ϕ(z) = −
iγ

2π


ln z −

p∑

j=1

aj
jzj

+R


 . (3.18)

Integrating directly, we see that a1 = x0 + iy0 = z0. If n > 1, we develop a recurrence
relation for the an’s.

an =
1

4πσ2

∫∫ ∞

−∞

ηn exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx̃dỹ

=
1

4πσ2

∫∫ ∞

−∞

[x0 + iy0 + (cos θ + i sin θ)x̃+ (− sin θ + i cos θ)ỹ] ηn−1

× exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx̃dỹ

=z0an−1

+
1

4πσ2

∫∫ ∞

−∞

ηn−1 [(cos θ + i sin θ)x̃+ (− sin θ + i cos θ)ỹ] exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx̃dỹ
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Integrating by parts once, we obtain the relationship,

an =z0an−1

+
1

4πσ2
(n− 1)2σ2

[
a2(cos θ + i sin θ)2 + (− sin θ + i cos θ)2/a2

]

×

∫∫ ∞

−∞

ηn−2 exp

[
−
x̃2/a2 + ỹ2a2

4σ2

]
dx̃dỹ,

=z0an−1 + 2(n− 1)σ2
[
a2(cos θ + i sin θ)2 + (− sin θ + i cos θ)2/a2

]
an−2,

=z0an−1 + 2(n− 1)σ2e2iθ
(
a2 − a−2

)
an−2. (3.19)

If one is differentiating to find the velocity field, one finds that a0 = −1 from the
logarithmic term. With (3.19), one can quickly generate the multipole coefficients for
an elliptical Gaussian.

To summarize, the essential difference between classic FMM and fast summation
of anisotropic Gaussians is that the latter requires that one impose a numerical length
scale on the finest mesh level to achieve a specified accuracy via the partial summation
of a divergent series. After finding the finest mesh level, one applies the classic FMM
using (3.19) as coefficients. The computational expense of determining or manipulat-
ing the multipole coefficients for an elliptical Gaussian is no different than it would
be for any other basis function.

4. Sample calculations. To verify that the method actually achieves the pre-
dicted fourth order convergence rate, we apply the full vortex method to a standard
problem with a known analytic solution. The initial vorticity distribution is

ω(~x, 0) = 4 exp
(
4|~x|2

)
. (4.1)

The exact solution is

ω(~x, t) =
1

1
4 + 4t/Re

exp

(
|~x|2

1
4 + 4t/Re

)
, (4.2)

where Re is the Reynolds number of the flow.
To generate the initial conditions, computational elements are laid down in a

regular grid within a disk of radius 5/4 to approximate (4.1). This initial distribution
can be constructed using initially isotropic or anisotropic basis functions using exact
deregularization as explained in [31]. In these examples, the calculations always begin
with isotropic basis functions. For all sample calculations, N/σ2

0 remains constant
where σ0 is the initial core width and N is the number of computational elements
used in the calculation. In other words, the initial overlap between computational
elements is constant, σh = 2 where h is the initial grid width, as we refine the method.
The initial core sizes were selected to be σ2

0 = 6.4 × 10−3, 3.2 × 10−3, 1.6 × 10−3

and 8.0 × 10−4. The vortex method uses the dynamic equations provided in [29]
including curvature corrections to describe the movement and deformation of the
elliptical Gaussian basis functions. The velocity field and its derivatives are computed
using the methods described in this paper.

The results of these calculations at different Reynolds numbers are shown in Fig.
4.1. For larger times in the simulation, the aspect ratios grow large in the domain,
and the streamfunction approximation degrades to a point where the method falls
back to second order spatial accuracy. The circulation weighted mean aspect ratio
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Fig. 4.1. Convergence of ECCSVM at different Reynolds numbers with order 4 streamfunctions.
As time grows, computational elements become more elongated and the Biot-Savart approximation
becomes less accurate. Eventually, the velocity corrections break down, and the method reverts to
second order spatial accuracy. The effective core core 〈σ2〉 is a circulation-weighted average over all
elements.
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Fig. 4.2. Convergence of ECCSVM with order 4 and 6 streamfunctions. The sixth order
streamfunction permits more accurate velocity and velocity curvature computations than the forth
order one as the aspect ratios grow. Thus, we see the anticipated fourth order spatial accuracy is
sustained longer for the calculation using the sixth order calculation. The lower order behavior for
small time is a result of interpolation error when setting the initial conditions for the computation.

at T = 1.4 × 10−4 is approximately 2.8 (varying slightly from 2.7 to 2.9 depending
upon σ2

0 and the order of the streamfunction) with some aspect ratios in excess of
4.0 so that computations involve highly anisotropic elements in later phases of each
calculation. The impact of using a higher accuracy streamfunction calculations is
shown in Fig. 4.2. In this case, high order spatial accuracy is maintained throughout
the interval shown even when basis functions are substantially elongated. Calculations
were performed with and without the fast multipole method discussed in this paper
using δ2 = 16, but there is no noteworthy difference save the former is substantially
faster. For a single velocity evaluation on a single AMD Opteron CPU with a small
problem size of N = 1741 (σ = 6.4 × 10−3), direct evaluation required 151 CPU
seconds while the multipole computation required only 55 CPU seconds. At a problem
size of N = 13, 909 (σ2

0 = 8.0 × 10−4), direct evaluation required 9720 seconds while
the multipole computation required 496 CPU seconds.
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5. Conclusions. In this paper, we have explored a direct and far-field approx-
imation to the Biot-Savart integral for elliptical Gaussian basis functions with the
purpose of developing a high spatial accuracy vortex method. The direct method
uses regular perturbations and yields a consistent means of producing uniformly valid
estimates of the streamfunction and its derivatives for any order of accuracy. We
have shown that Greengard and Rohklin’s FMM algorithm is applicable to deform-
ing Gaussians as long as care is taken when choosing the finest mesh size, but this
paper also presents a means for calculating a fine mesh size that will meet specified
accuracy requirements while reducing the operation count to O(N). The result is a
vortex method for the 2D incompressible Navier-Stokes equations with fourth order
spatial accuracy.

As discussed in the introduction, this paper has not addressed corrections, the
first C in ECCSVM since it is the beyond the scope of the central problem. For large
scale computations, there is a need for remeshing or splitting/merging techniques.
Furthermore, splitting, merging and remeshing may serve the addition need to replace
large aspect ratio elements with lower aspect ratio elements to retain accuracy in
the Biot-Savart computation. Deformable elements introduce more internal degrees
of freedom and so may offer some advantages inaccessible to rigid or axisymmetric
elements. This remains fertile ground for future investigation.

6. Acknowledgements. The author would like to acknowledge the computa-
tional support of the National Science Foundation SCREMS DMS-0322583.
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Appendix A. Algorithms for calculation of velocities and derivatives.

We represent the approximation to the kernel of the streamfunction as combina-
tion of terms:

ψ1 =
1

4
ln

(
R∗

2

R2

)
+

N∑

p=0

N∑

m=0

cψ1

m,p

T∗
2m

R∗
2(m+p)

R2p. (A.1)

Knowing ε, all the cψ1 ’s can be calculated.

To calculate the vector, c∂x∗
ψ1 , we represent the function as

∂ψ1

∂x∗
=

N∑

p=0

N+1∑

m=0

c
∂x∗

ψ1

m,p x∗
T∗

2m

R∗
2(m+p+1)

R2p, (A.2)

and apply the following algorithm to determine c∂x∗
ψ1 from the cψ1 .

Algorithm for ∂
∂x∗

.

1. Initialize the vector for c∂x∗
ψ1 to zero.

2. c
∂x∗

ψ1

0,0 = 1
2a2 from the logarithmic term in ψ1.

3. p← 0 to N
4. m← 0 to N + 1
5. If m > 0 then

c
∂x∗

ψ1

m,p = c
∂x∗

ψ1

m,p +
2

a2
mcψ1

m,p

6.

c
∂x∗

ψ1

m,p = c
∂x∗

ψ1

m,p −
2

a2
(m+ p)cψ1

m,p

7. Next m.
8. Next p.

Both first and second derivatives increases the number of T∗

2m

R∗

2n terms in each power

of R as seen in (2.11) and (2.13), so the upper limit on the m loop is N + 1.

Similarly, to calculate the vector, c∂y∗
ψ1 , we represent the function as

∂ψ1

∂y
=

N∑

p=0

N+1∑

m=0

c
∂x∗

ψ1

m,p y∗
T∗

2m

R∗
2(m+p+1)

R2p, (A.3)

and apply the following algorithm to determine c∂y∗
ψ1 from the cψ1 .
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Algorithm for ∂
∂y∗

.

1. Initialize the vector for c∂y∗
ψ1 to zero.

2. c
∂y∗

ψ1

0,0 = a2

2 from the logarithmic term in ψ1.
3. p← 0 to N
4. m← 0 to N + 1
5. If m > 0 then

c
∂y∗

ψ1

m,p = c
∂y∗

ψ1

m,p − 2a2mcψ1

m,p

6.

c
∂y∗

ψ1

m,p = c
∂y∗

ψ1

m,p − 2a2(m+ p)cψ1

m,p

7. Next m.
8. Next p.

Approximations for second derivatives can be computed directly from ψ1 rather
than using the first derivatives as a bootstrap.

We can calculate the vector c∂x∗x∗
ψ1 for the representation

∂2ψ1

∂x∗2
=

N∑

p=0

N+1∑

m=0

c
∂x∗x∗

ψ1

m,p
T∗

2m

R∗
2(m+p+1)

R2p, (A.4)

using the following algorithm to determine c∂x∗x∗
ψ1 from the cψ1 .

Algorithm for ∂2

∂x∗

2 .

1. Initialize the vector for c∂x∗x∗
ψ1 to zero.

2. c
∂x∗x∗

ψ1

1,0 = − 1
2a2 from the logarithmic term in ψ1. (This

step would not be included for general polynomials in
T∗

2m

R∗

2n .)
3. p← 0 to N
4. m← 0 to N + 1
5. If m > 0

c
∂x∗x∗

ψ1

m−1,p = c
∂x∗x∗

ψ1

m−1,p +
2

a2
(m+ p)(2p−m)cψ1

m,p

6. If m > 1

c
∂x∗x∗

ψ1

m−2,p = c
∂x∗x∗

ψ1

m−2,p +
2

a2
m(m− 1)cψ1

m,p

7.

c
∂x∗x∗

ψ1

m,p = c
∂x∗x∗

ψ1

m,p +
2

a2
(p+m)(p−m)cψ1

m,p

8. If m < N − 1

c
∂x∗x∗

ψ1

m+1,p = c
∂x∗x∗

ψ1

m+1,p +
2

a2
(p+m)cψ1

m,p

9. Next m.
10. Next p.
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We can calculate the vector c∂y∗y∗
ψ1 for the representation

∂2ψ1

∂y∗2
=

N∑

p=0

N+1∑

m=0

c
∂y∗y∗

ψ1

m,p
T∗

2m

R∗
2(m+p+1)

R2p, (A.5)

using the following algorithm to determine c∂y∗y∗
ψ1 from the cψ1 .

Algorithm for ∂2

∂y∗2 .

1. Initialize the vector for c∂y∗y∗
ψ1 to zero.

2. c
∂y∗y∗

ψ1

1,0 = 1
2a

2 from the logarithmic term in ψ1. (This step

would not be included for general polynomials in T∗

2m

R∗

2n .)
3. p← 0 to N
4. m← 0 to N + 1
5. If m > 0

c
∂y∗y∗

ψ1

m−1,p = c
∂y∗y∗

ψ1

m−1,p + 2a2(m+ p)(2p−m)cψ1

m,p

6. If m > 1

c
∂y∗y∗

ψ1

m−2,p = c
∂y∗y∗

ψ1

m−2,p + 2a2m(m− 1)cψ1

m,p

7.

c
∂y∗y∗

ψ1

m,p = c
∂y∗y∗

ψ1

m,p + 2a2(p+m)(p−m)cψ1

m,p

8. If m < N − 1

c
∂y∗y∗

ψ1

m+1,p = c
∂y∗y∗

ψ1

m+1,p − 2a2(p+m)cψ1

m,p

9. Next m.
10. Next p.

We can calculate the vector c∂x∗y∗
ψ1 for the representation

∂2ψ1

∂x∗∂y∗
=

N∑

p=0

N+1∑

m=0

c
∂x∗y∗

ψ1

m,p x∗y∗
T∗

2m

R∗
2(m+p+2)

R2p, (A.6)

using the following algorithm to determine c∂y∗y∗
ψ1 from the cψ1 .
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Algorithm for ∂2

∂x∗∂y∗
.

1. Initialize the vector for c∂y∗y∗
ψ1 to zero.

2. c
∂x∗y∗

ψ1

0,0 = −1 from the logarithmic term in ψ1. (This step

would not be included for general polynomials in T∗

2m

R∗

2n .)
3. p← 0 to N
4. m← 0 to N + 1
5. If m > 1

c
∂x∗y∗

ψ1

m−2,p = c
∂x∗y∗

ψ1

m−2,p − 4m(m− 1)cψ1

m,p

6.

c
∂x∗y∗

ψ1

m,p = c
∂x∗y∗

ψ1

m,p + 4(m+ p)(m+ p+ 1)cψ1

m,p

7. Next m.
8. Next p.

Higher order derivatives are calculated using first and second derivatives as build-
ing blocks and using these building blocks in the proper order. For instance, to cal-

culate ∂3ψ1

∂x∗

3 , we would begin with ψ1 and calculate ∂2ψ1

∂x∗

2 which has the form given in

(A.4). Then, we can apply the same ∂
∂x∗

operation given before but without step 2

because there is no logarithmic term and the index on the T∗

2m

R∗

2n terms is shifted by
one. Therefore, we develop the following representation,

∂ψ1

∂x∗3
=

N∑

p=0

N+1∑

m=0

c
∂x∗x∗x∗

ψ1

m,p x∗
T∗

2m

R∗
2(m+p+2)

R2p, (A.7)

using the algorithm below.

Algorithm for ∂
∂x∗

.

1. Initialize the vector for c∂x∗x∗x∗
ψ1 to zero.

2. p← 0 to N
3. m← 0 to N + 1
4. If m > 0 then

c
∂x∗x∗x∗

ψ1

m,p = c
∂x∗x∗x∗

ψ1

m,p +
2

a2
mc

∂x∗x∗
ψ1

m,p

5.

c
∂x∗x∗x∗

ψ1

m,p = c
∂x∗x∗x∗

ψ1

m,p −
2

a2
(m+ p+ 1)c

∂x∗x∗
ψ1

m,p

6. Next m.
7. Next p.
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