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ABSTRACT

This research focuses on recovering the coefficient of a two speed hyperbolic system of

partial differential equations from the reflection boundary data, where the source and

the receiver are at the same location. We study the associated initial value problem

(the forward problem) and then the coefficient determination inverse problem using a

fixed point argument. We then implement the inversion scheme numerically.

We also study the inverse problem of recovering the coefficient of this system from

the transmission boundary data, where the source and receiver are at different loca-

tions. We obtain an upper bound of the coefficient in terms of the transmission data,

and we also obtain a relation between transmission and reflection data.

For multi-dimensional problems, we study the regularity at the origin of spherical

harmonic expansions because solutions of some PDEs are constructed using spherical

harmonic expansions.
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Chapter 1

INTRODUCTION

The thesis is mainly devoted to the study of an inverse problem for a first order system

of hyperbolic PDEs, in one space dimension, with two different speeds of propagation.

This problem originates in the determination of the twist in an optical fiber. In this

chapter we state the problem, survey earlier work on related problems, state the main

results and then summarize the contents of each of the chapters.

1.1 Background

Consider a fiber stretching along the z axis, with two channels twisting around each

other. Each channel has a different travel speed associated with it, and the twist is

represented by a function β(z), with β(z) = 0 for z ≤ 0 (see Figure 1.1). The fiber is

probed by a signal from the left end, and the response is measured at the same end.

The goal is to determine the twist β(z) for z > 0 from the medium response.

Figure 1.1: Fiber model

By scaling we may assume that the channels have two speeds c and 1, where 0 < c < 1.

Let M(z, t) = [M1(z, t),M2(z, t),M3(z, t),M4(z, t)]
T be a vector function, with M1,M3

denoting the left moving waves of speeds 1 and c respectively, and M2,M4 the right

moving waves of speeds 1 and c (see Figure 1.2).
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Figure 1.2: Left and right moving waves

We show in Chapter 2 that the intertwining of the waves due to the twist is governed

by the following system of hyperbolic PDEs:

Mt − AMz − β(z)BM = 0, (z, t) ∈ R
2 (1.1a)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 c 0

0 0 0 −c

⎤
⎥⎥⎥⎥⎥⎥⎦

B =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1− c −1 + c

0 0 1− c 1 + c

1 + c −1 + c 0 0

1− c −1− c 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.1b)

with initial condition

M(z, t) = [0, δ(t− z), 0, 0]T , t < 0. (1.1c)

The initial condition represents a plane wave sent from the left end of the fiber along

the faster channel (see Figure 1.3). We show in Chapter 2 that (1.1a)− (1.1c) can be

converted to the following IBVP

Mt = AMz + βBM, z ≥ 0, t ∈ R, (1.2a)

M2(0, t) = δ(t), M4(0, t) = 0, t ≥ 0, (1.2b)

M(z, t) = 0, t < 0, z ≥ 0. (1.2c)

Our goal is to recover the twist β(z) from the reflection boundary data M1(0, t) and

M3(0, t).

2



Figure 1.3: Signal and response

For the rest of the thesis, we use CBVP to stand for characteristic boundary value

problem, and IBVP for initial boundary value problem. Also, l � r will mean that

l ≤ Cr where C is a constant and

L := I∂t − A∂z + βB.

1.2 Literature

Inverse problems for a hyperbolic PDE with a single speed of propagation were first

studied by Gelfand and Levitan (1955) and others. Browning’s thesis [7] and [10]

contain a thorough survey of these results. The more recent book [21] describes re-

sults for many one dimensional inverse problems for hyperbolic PDEs with real valued

coefficients, including those for systems of equations with multiple coefficients to be

determined. Numerical methods for solving inverse problems for one dimensional hy-

perbolic PDEs with a single speed and real valued coefficients may be found in [8], [9]

and [27].

3



For one speed problems in one space dimension, the inverse problem associated with

the following initial boundary value problem was studied in [17]:

uz − ut = q(z)v, (z, t) ∈ R
2,

vz + vt = q̄(z)u, (z, t) ∈ R
2

with the initial conditions

u(z, t) = 0, v(z, t) = δ(t− z), t < 0.

From a knowledge of the reflection data u(0, t), the coefficient q(z) was recovered by

applying the downward continuation method discussed in [25]. Also, good results for

the real valued q case are presented in [7].

The study of inverse problems for hyperbolic systems with multiple speeds of prop-

agation was initiated in [5] and [2] by Belishev. Let E(z), G(z) be 2 × 2 coefficient

matrices, and let λ, μ be any positive real numbers with λ < μ. Consider the two

speed IBVP:

ΛU := HUtt − Uzz − EUz −GU = 0, (z, t) ∈ [0,∞)× R, (1.3a)

U = 0, t < 0, (1.3b)

U(0, t) = δ(t)I2, t ∈ R (1.3c)

where U(z, t) = [u, ū] is a 2× 2 matrix of functions, H =

⎡
⎣λ2 0

0 μ2

⎤
⎦, and I2 is the 2× 2

identity matrix. Belishev studied the recovery of E(z) and G(z) from a knowledge of

Uz(0, t) and a special function l(t) which we describe next.

For arbitrary f1(t), f2(t), let v(z, t) ∈ R
2 be the solution of the IBVP

Hvtt − vzz − Evz −Gv = 0, (z, t) ∈ [0,∞)× R, (1.4a)

v = 0, t < 0, (1.4b)

v(0, t) = [f1(t), f2(t)]
T , t ∈ R. (1.4c)

4



Knowing Uz(0, t) is equivalent to knowing vz(0, t) corresponding to all possible f1, f2. If

f1, f2 are supported in the region t ≥ 0 then, because of the finite speed of propagation,

v(z, t) is supported in the fast region t ≥ λz (see Figure 1.4). In [19], Belishev showed

that there exists a unique l(·) such that v is supported in the slow region t ≥ μz if

f2 = l ∗ f1, where ∗ represents convolution with respect to t.

Figure 1.4: Fast and slow regions

Given the reflection data, for single speed inverse problems inversion is accomplished

by creating a map, by solving a sideways forward problem, whose fixed point is the

sought after coefficient. For two speed problems, such a map cannot be constructed

because of the mismatch between the z interval over which the coefficient is to be

recovered and the z interval over which the PDE must be solved to setup the map.

This mismatch occurs because of the two speeds of propagation. If one knows l(t) in

addition to the reflection data, this mismatch can be avoided. It was shown in [3] that

if Λ is self adjoint (the diagonal entries of E are zero and G − GT = E ′), then G can

be recovered from Uz(0, t) and l(t).

Reference [19] gives a proof of the stability for the inverse problem of (1.3a) − (1.3c),

which suggests that given the reflection data Uz(0, t) over the interval [0, T ], one should

5



be able to recover some of the coefficients of E and G over the interval [0, T
2μ
], deter-

mined by the slower speed of transmission.

Belishev in [4] showed that given E and the reflection data vz(0, ·) (but l(·) not given),
one can recover l(·) over a small interval, and therefore recover G over a small inter-

val. The question of recovering l(t), and hence G(z), over the full interval, from the

reflection data, remains open.

Our work focuses on recovering a single coefficient of a hyperbolic system of PDEs

without the knowledge of l(t). Since we are given less data, we focus on recovering

only one coefficient β(z). Applications of two speed problems on wave propagation in

elastic solids are discussed in [1] and [14], and [15] is a good starting point for inverse

problems for two speed systems.

1.3 Main Results

We study the question of recovering β(z) from a knowledge of M1(0, t) and M3(0, t) or

just one of these two functions. Before going into the details of the main results, we

need to introduce some notation.

Let c,K, T > 0, Y = 2cT
1+c

, and define

Θ := {β ∈ C1[0, T ] | ||β(·)||2L2[0,T ] ≤ K}.

Theorem 1.1. (inverse stability) Let 0 < c < 1, and M, M̃ be the solutions of

(1.1a)− (1.1c) corresponding to β, β̃ ∈ Θ, then

||(β − β̃)(·)||2L2[0,Y ] ≤ C(||(M1 − M̃1)(0, ·)||2L2[0,2T ] + ||(M3 − M̃3)(0, ·)||2L2[0,2T ])

where C is a constant dependent only on c, T,K.
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If we define the forward map

F : Θ → C1[0, 2T ]× C1[0, 2T ],

β(z) 
→ [M1(0, t),M3(0, t)]

which maps the coefficient to the full reflection data, then Theorem 1.1 implies that F

is injective, and F−1 is continuous.

The above result corresponds to an incoming source wave moving at the fast speed

of 1 unit. One could attempt to obtain similar results if the incoming source wave

was travelling at the slower speed c (i.e. the initial condition (1.1c) is replaced by

M(z, t) = [0, 0, 0, δ(t−z/c)]T ), but we do not have any results for this case since down-

ward continuation techniques do not apply to this situation because of the existence

of precursor waves as noticed by Belishev.

Now consider the following CBVP

Lh = 0, 0 ≤ z ≤ T, z ≤ t ≤ 2T − z, (1.5a)

h1(z, z) = h3(z, z) = h4(z, z) = 0, 0 ≤ z ≤ T, (1.5b)

h2(0, t) = φ(t), h4(0, t) = 0, 0 ≤ t ≤ 2T. (1.5c)

In Chapter 3 we show that (1.5a)− (1.5c) is well-posed. Define the reflection operator

R : C1[0, 2T ] → C1[0, 2T ]× C1[0, 2T ],

R(φ) = [h1(0, t), h3(0, t)]

where h(z, t) is the solution of (1.5a)− (1.5c). R is completely determined by M1(0, ·)
and M3(0, ·) because

Rφ(t) =

[∫ t

0

M1(0, s)φ(t− s)ds,

∫ t

0

M3(0, s)φ(t− s)ds

]
.

As seen in Chapter 4,

7



Theorem 1.2. If R is the reflection operator corresponding to β ∈ C1[0, T ], then

||R|| ≤ 1.

Theorem 1.2 gives a necessary condition on M1(0, t),M3(0, t).

Theorem 1.3. (Reconstruction) If the reflection data (M1(0, t),M3(0, t)) corre-

sponds to a β which is in C1[0, T ], then one can recover β(z) from (1.1a)− (1.1c).

Note that one can recover β(z) for z in [0, 2cT/(1 + c)] and not on the whole interval

[0, T ].

The recovery of β(z) is done by a fixed point argument, step by step in the z direction,

first within the interval [0, δ], then [δ, 2δ] and so on. The reconstruction scheme will

terminate in a finite number of steps because δ has a positive lower bound.

1.4 Overview

Our research focuses on recovering the coefficient of a two speed hyperbolic system

of partial differential equations given the reflection data. This involves first studying

a general form of a characteristic boundary value problem (CBVP) for a two speed

system of first order hyperbolic PDEs in one space dimension. Then we recover the

coefficient using a fixed point argument.

Chapter 2 contains the derivation of (1.2a) − (1.2c) from Maxwell’s equations and

also shows how the solution of (1.2a)− (1.2c) may be reduced to solving a CBVP using

a progressing wave expansion. This reduces a problem with singular solutions to one

with no singularities.

Chapter 3 discusses the well posedness of the CBVP derived in Chapter 2. We show

the existence and uniqueness of the classical and the weak solution for this CBVP.

To recover the coefficient, we need to study a CBVP with full Cauchy data on z = 0

8



and fewer conditions on the characteristics, called the sideways problem. This CBVP

is different from the CBVP studied in Chapter 3. Chapter 4 shows the well posedness

of this new CBVP. We use the sideways CBVP to construct a map whose fixed point

is the coefficient that we wish to recover.

Chapter 5 discusses recovering the coefficient numerically from the reflection boundary

data. We use the sideways CBVP discussed in Chapter 4 to construct a map whose

fixed point is the coefficient that we wish to recover, and find the fixed point by recur-

sively solving the sideways CBVP.

Chapter 6 discusses recovering the coefficient from the transmission boundary data,

where the source and receiver are at different locations. We obtain an upper bound of

the coefficient in terms of the transmission data, and we also obtain a relation between

the transmission and the reflection data.

Chapter 7 studies the regularity at the origin of spherical harmonic expansions.

9



Chapter 2

MODEL DERIVATION

In this chapter we model the twist in the optical fiber as the solution of the IVP

Mt = AMz + β(z)BM, z ≥ 0, t ∈ R, (2.1a)

M2(0, t) = δ(t), M4(0, t) = 0, t ≥ 0, (2.1b)

M(z, t) = 0, t < 0, z ≥ 0 (2.1c)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 c 0

0 0 0 −c

⎤
⎥⎥⎥⎥⎥⎥⎦

B =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1− c −1 + c

0 0 1− c 1 + c

1 + c −1 + c 0 0

1− c −1− c 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We also show how the solution of (2.1a) − (2.1c) may be reduced to solving a CBVP

using a progressing wave expansion. This reduces a problem with singular solutions to

one with no singularities.

2.1 Model

This model was proposed by Andrew Lacey during the MPI workshop at University

of Delaware in 2000 (see [6] and [13]). Since this derivation is not readily available we

have included the derivation in the thesis.

Consider a fiber stretching along the z axis. Let E(z, t),P(z, t) be the electric field and

the polarization at the point z units away from the left end of the fiber, and we assume

that E and P have no component along the fiber. E and P obey Maxwell’s equations

∇2E−∇(∇ · E) = 1

c2
∂2E

∂t2
+

1

ε0c2
∂2P

∂t2
(2.2)

10



where c is the speed of light in vacuum and ε0 is the permittivity of free space. Noting

that E and P depend only on z and t and have no components in the k direction, we

have:

∇2E−∇(∇ · E) = Ezz −∇(0) = Ezz.

So (2.2) reduces to

Ezz =
1

c2
Ett +

1

ε0c2
Ptt. (2.3)

At every point in the fiber, we can find two unit orthogonal vectors v1(z) and v2(z)

perpendicular to the fiber, which represent the polarization directions of the two chan-

nels. As the fiber twists along its length, the polarization directions change. Since

v1 and v2 are unit vectors in a plane and othogonal, dv1/dz is orthogonal to v1(z)

and hence parallel to v2(z), which implies that dv1/dz = β(z)v2 for some real valued

function β(z) that captures the twist in the fiber. Also, dv2/dz is perpendicular to v2

so parallel to v1. But differentiating v1 · v2 = 0, we have:

0 =
dv1

dz
· v2 + v1 · dv2

dz
= β + v1 · dv2

dz
, z ∈ R (2.4)

which implies that dv2/dz = −βv1. Summarizing, the principal directions propagate

as

dv1

dz
= βv2,

dv2

dz
= −βv1. (2.5)

Let E1, E2 be the components of E along the principal directions, so that E = E1v1 +

E2v2. We further assume that the polarization vector is related to the electric field via

P = ε0(α1E1v1 + α2E2v2)

where α1, α2 are real constants. Now

1

c2
Ett +

1

ε0c2
Ptt =

1

c2
(E1ttv1 + E2ttv2) +

1

c2
(α1E1ttv1 + α2E2ttv2)

=
1 + α1

c2
E1ttv1 +

1 + α2

c2
E2ttv2

=
1

c21
E1ttv1 +

1

c22
E2ttv2 (2.6)

11



where we have assumed that 1 + αi > 0 and defined ci = c/
√
1 + αi. Now E =

E1v1 + E2v2 combined with (2.5) gives:

Ez = E1zv1 + E2zv2 + βE1v2 − βE2v1 = (E1z − βE2)v1 + (E2z + βE1)v2, (2.7a)

Ezz = (E1z − βE2)zv1 + (E2z + βE1)zv2 + β(E1z − βE2)v2 − β(E2z + βE1)v1

= {(E1z − βE2)z − β(E2z + βE1)}v1 + {(E2z + βE1)z + β(E1z − βE2)}v2.

(2.7b)

Using (2.7a) − (2.7b) and (2.6) in (2.3) and matching the components of v1,v2, we

have:

(E1z − βE2)z − β(E2z + βE1) =
1

c21
E1tt, (2.8a)

(E2z + βE1)z + β(E1z − βE2) =
1

c22
E2tt. (2.8b)

This is the end of the derivation due to Andrew Lacey.

We assume that the fiber is extended to the left of z = 0 and that β(z) = 0 for

z ≤ 0. The incoming wave is modeled as

E1(t, z) = −H(c1t− z), E2(t, z) = 0, t < 0. (2.9)

We now convert (2.8a) − (2.8b) to a first order system of PDEs in the left and right

moving waves. We start by defining the variables

N1 = E1z − βE2, N2 = E2z + βE1, N3 =
1

c1
E1t, N4 =

1

c2
E2t.

Then (2.8a)− (2.8b) can be rewritten as

c1N1z − c1βN2 = N3t,

c2N2z + c2βN1 = N4t

combined with the relations

N1t = E1zt − βE2t = c1N3z − βc2N4,

N2t = E2zt + βE1t = c2N4z + βc1N3.

12



So if N = [N1, N2, N3, N4]
T , then (2.8a) − (2.8b) can be replaced by the first order

system

Nt = GNz + βHN (2.10)

where

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 c1 0

0 0 0 c2

c1 0 0 0

0 c2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 −c2

0 0 c1 0

0 −c1 0 0

c2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Since G is symmetric, it may be diagonalized by an orthogonal matrix. In fact,

P−1GP = A where

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
, A =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 0 0 0

0 −c1 0 0

0 0 c2 0

0 0 0 −c2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that P is almost orthogonal in that P TP = 2I. So if we introduce a new dependent

variable M = P−1N, then (2.10) may be rewritten as

Mt = AMz + βBM (2.11)

where

B = P−1HP =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −c1 − c2 −c1 + c2

0 0 c1 − c2 c1 + c2

c1 + c2 −c1 + c2 0 0

c1 − c2 −c1 − c2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that BT = −B.
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Let M = [M1,M2,M3,M4]
T . If we backtrack we obtain the following relation between

Mi and Ei

2M1 = E1z − βE2 +
1

c1
E1t, 2M2 = E1z − βE2 − 1

c1
E1t, (2.12a)

2M3 = E2z + βE1 +
1

c2
E2t, 2M4 = E2z + βE1 − 1

c2
E2t (2.12b)

and because of the form of A, M1,M2 are, loosely speaking, the left and right mov-

ing waves propagating with speed c1, and M3,M4 the left and right moving waves

propagating with speed c2. We may assume for convenience that c1 = 1, c2 = c with

0 < c < 1 (see Figure 2.1), then we still have (2.11) but with A,B defined as in (1.1b).

Figure 2.1: Left and right moving waves

2.2 Goal

The fiber is probed by a right moving wave coming from the left end and one of the com-

ponents of the response is measured at the same end for a certain period of time, and

the goal is the recovery of β(z). Mathematically speaking, the measurement consists

of either E1(0, t) or E2(0, t) over a certain interval t ∈ [0, T ]. The goal is to recover β(z).

14



The initial conditions for E in (2.9) and the relationship between Ei and Mi in

(2.12a)− (2.12b) imply that

2M(t, z) = [0, 2δ(t− z),−βH(t− z),−βH(ct− z)]T , t < 0, z ∈ R.

Since H(t− z) is supported in t ≥ z, and β(z) = 0 for z ≤ 0, we may conclude that

M(t, z) = [0, δ(t− z), 0, 0]T , t < 0, z ∈ R.

Since β(z) = 0 for z ≤ 0, (2.11) implies that

Mt = AMz, z ≤ 0, t ∈ R.

Since A is diagonal, for z ≤ 0, M has the form

M(z, t) = [f1(t+ z), f2(t− z), f3(ct+ z), f4(ct− z)]T , z ≤ 0, t ∈ R

for some functions fi. From the initial condition (2.1c), we know that M(0, t) = 0 for

t < 0, which implies that fi are supported in t ≥ 0. Also, for any ε > 0, we have

M(z,−ε) = [f1(−ε+ z), f2(−ε− z), f3(−cε+ z), f4(−cε− z)]T

= [0, f2(−ε− z), 0, f4(−cε− z)]T , z ≤ 0.

So the initial condition ofM and the support of f2, f4 imply that f2(t) = δ(t), f4(t) = 0.

Hence, we have

M(z, t) = [f1(t+ z), δ(t− z), f3(ct+ z), 0]T , z ≤ 0, t ∈ R

which implies that

M(0, t) = [f1(t), δ(t), f3(t), 0]
T , t ∈ R (2.13)

with f1(t), f3(t) supported in t ≥ 0. Summarizing, M(z, t) is the solution of the IBVP

Mt = AMz + βBM, z ≥ 0, t ∈ R, (2.14a)

M2(0, t) = δ(t), M4(0, t) = 0, t ≥ 0, (2.14b)

M(z, t) = 0, t < 0, z ≥ 0. (2.14c)

Our goal is that, given M1(0, t) or M3(0, t) or both within some interval t ∈ [0, T ],

determine β(z) within some interval z ∈ [0, Z].
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2.3 Linearization at β = 0

In this section we analyze the linearized inverse problem corresponding to (2.14a) −
(2.14c), around β = 0, to get an indication of what reflection data is needed for the

nonlinear inverse problem. Define the forward map

F : C1[0, T ] → C1[0, 2T ]× C1[0, 2T ],

β(z) 
→ [M1(0, t),M3(0, t)]

which maps the coefficient to the reflection data. We want to analyze the formal

derivative of F at β = 0. Formally,

F ′ : C1[0, T ] → C1[0, 2T ]× C1[0, 2T ],

dβ(z) 
→ [dM1(0, t), dM3(0, t)]

where dβ is a small perturbation of β, and dM is the small perturbation of the solution

of (2.14a)−(2.14c) with respect to β, that is, M+dM is the solution of (2.14a)−(2.14c)

with respect to β + dβ. Then from (2.14a), we have

(M+ dM)t − A(M+ dM)z − (β + dβ)B(M+ dM) = 0. (2.15)

If we subtract (2.14a) from (2.15) for β = 0, and only keep the linear terms, we get

(dM)t − A(dM)z = (dβ)BM in R
2 (2.16)

with the initial condition

dM(z, t) = 0, t < 0. (2.17)

When β = 0, the solution of (2.14a)− (2.14c) is M(z, t) = [0, δ(t− z), 0, 0]T . Since

B[0, δ(t− z), 0, 0]T =
δ(t− z)

2
[0, 0, c− 1,−1− c]T

so (2.16) becomes

(dM)t − A(dM)z =
(dβ)(z)

2
δ(t− z)[0, 0, c− 1,−1− c]T in R

2.
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Since the equations decouple, the initial condition (2.17) implies that

(dM)1 = (dM)2 = 0 in R
2.

And (dM)3 is the solution of

(dM)3t − c(dM)3z =
c− 1

2
(dβ)(z)δ(t− z), (z, t) ∈ R

2,

(dM)3(z, t) = 0, t < 0, z ∈ R

which implies that

d

ds
(dM)3(z + ct− cs, s) =

c− 1

2
(dβ)(z + ct− cs)δ(s− z − ct+ cs), (2.18a)

(dM)3(z, t) = 0, t < 0. (2.18b)

Integrating (2.18a) over (−∞, t], for t ≥ 0, we obtain

(dM)3(z, t) =
c− 1

2

∫ t

−∞
(dβ)(z + ct− cs)δ(s− z − ct+ cs) ds

=
c− 1

2(c+ 1)

∫ (c+1)t

−∞
(dβ)

(
z + ct− cr

c+ 1

)
δ(r − z − ct) dr

=
c− 1

2(c+ 1)
(dβ)

(
z + ct

c+ 1

)
H((c+ 1)t− (z + ct))

=
c− 1

2(c+ 1)
(dβ)

(
z + ct

c+ 1

)
H(t− z)

which implies that

(dM)3(0, t) =
c− 1

2(c+ 1)
(dβ)

(
ct

1 + c

)
H(t).

Similarly, (dM)4 is the solution of

(dM)4t + c(dM)4z =
−c− 1

2
(dβ)(z)δ(t− z), (z, t) ∈ R

2, (2.19a)

(dM)4(z, t) = 0, t < 0, z ∈ R. (2.19b)
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Integrating (2.19a) over (−∞, t], for t ≥ 0, we obtain

(dM)4(z, t) =
−c− 1

2

∫ t

−∞
(dβ)(z − ct+ cs)δ(s− z + ct− cs) ds

=
−c− 1

2(1− c)

∫ (1−c)t

−∞
(dβ)

(
z − ct+

cr

1− c

)
δ(r − z + ct) dr

=
−c− 1

2(1− c)
(dβ)

(
z − ct

1− c

)
H((1− c)t− (z − ct))

=
−c− 1

2(1− c)
(dβ)

(
z − ct

1− c

)
H(t− z)

which implies that

(dM)4(0, t) =
−c− 1

2(1− c)
(dβ)

( −ct

1− c

)
H(t) = 0, t > 0.

So to solve the linearized inverse problem about β = 0, the values of (dM)3(0, t) over

the interval [0, T ] will determine the value of (dβ)(z) for z ∈ [0, cT
1+c

]. Further, values

of (dM)1(0, t), (dM)2(0, t), (dM)4(0, t) do not contain any information about dβ. This

suggests, for the original non-linear problem, that having M3(0, t) is crucial for the

recovery of β(z).

2.4 Progressing Wave Expansion

In this section, we show, using a progressing wave expansion, how the solution of

(2.14a) − (2.14c) may be reduced to solving a CBVP . This reduces a problem with

singular solutions to one with no singularities.

Let M(z, t) be the solution of (2.14a)− (2.14c). We look for a solution of the form

M(z, t) = p(z)δ(t− z) + q(z, t)H(t− z) + r(z)δ
(
t− z

c

)
+ s(z, t)H

(
t− z

c

)
(2.20)

where p,q, r, s are vector functions. Then we have

Mt = pδ′(t− z) + qδ(t− z) + qtH(t− z) + rδ′
(
t− z

c

)
+ sδ

(
t− z

c

)
+ stH

(
t− z

c

)
,

Mz = −pδ′(t− z) + (pz − q)δ(t− z) + qzH(t− z)− r

c
δ′
(
t− z

c

)

+
(
rz − s

c

)
δ
(
t− z

c

)
+ szH

(
t− z

c

)
.
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Recall that L = I∂t − A∂z − βB, then we have

LM = (I + A)pδ′(t− z) + ((I + A)q+ Lp)δ(t− z) + LqH(t− z)

+

(
I +

A

c

)
rδ′

(
t− z

c

)
+ ((I + A/c)s+ Lr)δ

(
t− z

c

)
+ LsH

(
t− z

c

)
.

Since LM = 0, we have

(I + A)p = 0 on z = t, (2.21a)

(I + A)q+ Lp = 0 on z = t, (2.21b)(
I +

A

c

)
s+ Lr = 0 on z = ct, (2.21c)

(
I +

A

c

)
r = 0 on z = ct, (2.21d)

LqH(t− z) + LsH
(
t− z

c

)
= 0 on R

2. (2.21e)

Let pi, qi, ri, si be the ith components of p,q, r, s, then (2.21a), (2.21d) imply that

p1, p3, p4 are zero on t − z = 0, and r1, r2, r3 are zero on t = z
c
, which imply that

p1, p3, p4, r1, r2, r3 are zero for all z ≥ 0. From (2.20), (2.13), we have

p2(0) = 1, r4(0) = 0, (q2 + s2)(0, t) = (q4 + s4)(0, t) = 0 (2.22)

and (2.21b), (2.21d) imply that

(I + A)q = −p2z[0, 1, 0, 0]
T +

β

2
p2[0, 0,−1 + c,−1− c]T on z = t, (2.23a)(

I +
A

c

)
s = −cr4z[0, 0, 0, 1]

T +
β

2
r4[−1 + c, 1 + c, 0, 0]T on z = ct. (2.23b)

From the second component of (2.23a) and the fourth component of (2.23b), we have

p2z = 0 on z = t,

cr4z = 0 on z = ct.

Using the initial conditions p2(0) = 1, r4(0) = 0, we conclude that p2(z) = 1, r4(z) = 0.

Using this in the other three components of (2.23a)− (2.23b), we have

q1(z, t) = 0, q3(z, t) =
c− 1

2(1 + c)
β(z), q4(z, t) =

1 + c

2(c− 1)
β(z) on z = t,

s1(z, t) = 0, s2(z, t) = 0, s3(z, t) = 0 on z = ct.
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Figure 2.2: Ray geometry

Noting that c < 1, from the above calculations we conclude that (see Figure 2.2),

M(z, t) = δ(t− z)[0, 1, 0, 0]T + g(z, t)H(t− z/c) + f(z, t)(H(t− z)−H(t− z/c))

(2.24)

where g = q+ s, f = q, are the solution of the following characteristic BVP

Lf = 0 on 0 ≤ ct ≤ z ≤ t, (2.25a)

Lg = 0 on 0 ≤ z ≤ ct, (2.25b)

f1(z, z) = 0, f3(z, z) =
c− 1

2(1 + c)
β(z), f4(z, z) =

1 + c

2(c− 1)
β(z), z ≥ 0,

(2.25c)

(g1 − f1)(z, t) = (g2 − f2)(z, t) = (g3 − f3)(z, t) = 0 on z = ct, z ≥ 0, (2.25d)

g2(0, t) = g4(0, t) = 0, t ≥ 0. (2.25e)

The IBVP (2.1a) − (2.1c) corresponds to a source initially travelling right along the

faster channel. For future use we also compute the progressing wave expansion of the

solution corresponding to the situation when the source is initially travelling right but

at the slower speed c.
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Let M(z, t) be the solution of the IBVP

Mt = AMz + βBM, z ≥ 0, t ∈ R, (2.26a)

M2(0, t) = 0, M4(0, t) = δ(t), t ≥ 0, (2.26b)

M(z, t) = 0, t < 0, z ≥ 0. (2.26c)

Proceeding as above, we can show that

M(z, t) = δ(t− z/c)[0, 0, 0, 1]T + g(z, t)H(t− z/c) + f(z, t)(H(t− z)−H(t− z/c))

(2.27)

where f ,g is the solution of the following CBVP

Lg = 0 on 0 ≤ z ≤ ct, (2.28a)

Lf = 0 on 0 ≤ ct ≤ z ≤ t, (2.28b)

(g1 − f 1)(z, t) =
c(c− 1)

2(c+ 1)
β(z), (g2 − f 2)(z, t) =

c(c+ 1)

2(c− 1)
β(z)

(g3 − f 3)(z, t) = 0 on z = ct, z ≥ 0, (2.28c)

f 1(z, t) = f 3(z, t) = f 4(z, t) = 0 on z = t, z ≥ 0, (2.28d)

g2(0, t) = g4(0, t) = 0, t ≥ 0. (2.28e)
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Chapter 3

WELL-POSEDNESS OF THE CHARACTERISTIC BOUNDARY
VALUE PROBLEM

In this chapter, we study the well-posedness of the IBVPs

Mt = AMz + βBM, z ≥ 0, t ∈ R, (3.1a)

M2(0, t) = δ(t), M4(0, t) = 0, t ≥ 0, (3.1b)

M(z, t) = 0, t < 0, z ≥ 0, (3.1c)

and

Mt = AMz + βBM, z ≥ 0, t ∈ R, (3.2a)

M2(0, t) = 0, M4(0, t) = δ(t), t ≥ 0, (3.2b)

M(z, t) = 0, t < 0, z ≥ 0, (3.2c)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 c 0

0 0 0 −c

⎤
⎥⎥⎥⎥⎥⎥⎦

B =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1− c −1 + c

0 0 1− c 1 + c

1 + c −1 + c 0 0

1− c −1− c 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

These are the two forward problems associated to our inverse problem, and their well-

posedness is important for the solution of the inverse problem. The first problem

corresponds to a plane wave initiated in the fast channel while the second one corre-

sponds to a plane wave initiated in the slow channel.
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From section 2.4 we know that (see Figure 3.1),

M(z, t) = δ(t− z)[0, 1, 0, 0]T + g(z, t)H(t− z/c) + f(z, t)(H(t− z)−H(t− z/c))

(3.3)

where g, f is the solution of the following CBVP

Figure 3.1: Ray geometry

Lf = 0 on 0 ≤ ct ≤ z ≤ t, (3.4a)

Lg = 0 on 0 ≤ z ≤ ct, (3.4b)

f1(z, z) = 0, f3(z, z) =
c− 1

2(1 + c)
β(z), f4(z, z) =

1 + c

2(c− 1)
β(z), z ≥ 0, (3.4c)

(g1 − f1)(z, t) = (g2 − f2)(z, t) = (g3 − f3)(z, t) = 0 on z = ct, z ≥ 0, (3.4d)

g2(0, t) = g4(0, t) = 0, t ≥ 0. (3.4e)

Similarly, from section 2.4, we have

M(z, t) = δ(t− z/c)[0, 0, 0, 1]T + g(z, t)H(t− z/c) + f(z, t)(H(t− z)−H(t− z/c))

(3.5)
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where f ,g is the solution of the following CBVP

Lg = 0 on 0 ≤ z ≤ ct, (3.6a)

Lf = 0 on 0 ≤ ct ≤ z ≤ t, (3.6b)

(g1 − f 1)(z, t) =
c(c− 1)

2(c+ 1)
β(z), (g2 − f 2)(z, t) =

c(c+ 1)

2(c− 1)
β(z),

(g3 − f 3)(z, t) = 0 on z = ct, z ≥ 0, (3.6c)

f 1(z, t) = f 3(z, t) = f 4(z, t) = 0 on z = t, z ≥ 0, (3.6d)

g2(0, t) = g4(0, t) = 0, t ≥ 0. (3.6e)

We study the well-posedness of (3.4a) − (3.4e) and (3.6a) − (3.6a). For T > 0, we

first show the existence and uniqueness of the classical solutions for β(z) ∈ C1[0, T ],

then we show that the solution depends stably on β(z) ∈ C1[0, T ]. Lastly, we show the

existence and uniqueness of the weak solution for β(z) ∈ L2[0, T ].

3.1 Existence and Uniqueness of the Classical Solution

In this section we study the existence and uniqueness of the classical solutions of

(3.4a) − (3.4e) and (3.6a) − (3.6a). We work on a more generalized CBVP that has

jumps in the middle.

For T > 0, define (see Figure 3.2)

D1 := {(z, t) | 0 ≤ z ≤ ct, z + t ≤ 2T},
D2 := {(z, t) | ct ≤ z ≤ t, z + t ≤ 2T},
D := D1 ∪D2.

The existence and uniqueness of classical solutions for (3.4a)−(3.4e) and (3.6a)−(3.6e)
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Figure 3.2: D1 and D2

will follow from the existence and uniqueness for the more general CBVP

Lf = 0 in D2, (3.7a)

Lg = 0 in D1, (3.7b)

(gi − fi)(ct, t) = hi(t), i = 1, 2, 3, t ∈
[
0,

2T

1 + c

]
, (3.7c)

f1(t, t) = a(t), f3(t, t) = b(t), f4(t, t) = j(t), t ∈ [0, T ], (3.7d)

g2(0, t) = d(t), g4(0, t) = e(t), t ∈ [0, 2T ]. (3.7e)

Proposition 3.1. If hi(t) ∈ C1[0, 2T
1+c

] for i = 1, 2, 3, a(t), b(t), j(t) ∈ C1[0, T ],

d(t), e(t) ∈ C1[0, 2T ], and β(z) ∈ C1[0, T ], then there exists a unique solution f ∈
C1(D2),g ∈ C1(D1) of (3.7a)−(3.7e), and |f(·)|, |g(·)| are bounded above by a function

of c, T,N where

N = max( sup
t∈[0,2T/(1+c)]

|h1(t)|, sup
t∈[0,2T/(1+c)]

|h2(t)|, sup
t∈[0,2T/(1+c)]

|h3(t)|,

sup
t∈[0,T ]

|a(t)|, sup
t∈[0,T ]

|b(t)|, sup
t∈[0,T ]

|j(t)|, sup
t∈[0,2T ]

|d(t)|, sup
t∈[0,2T ]

|e(t)|, sup
z∈[0,T ]

|β(z)|).
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In addition, the solution of (3.7a)− (3.7e) is in C1(D) if

hi(t) = 0, t ∈ [0, 2T/(1 + c)], i = 1, 2, 3, (3.8a)

e(0) = j(0), (1− c)e′(0) =
β(0)

2
((1− c)a(0)− (1 + c)d(0))− cj′(0). (3.8b)

Remark: We make an observation which we will use in the rest of the thesis. If

β ∈ C1[0, T ] such that β(0) = β′(0) = 0 then the compatibility conditions (3.8a)−(3.8b)

for (3.4a)− (3.4e) are satisfied, and the solution is in C1(D), so (3.4a)− (3.4e) can be

written as the following CBVP

Lm = 0 in D, (3.9a)

m2(0, t) = m4(0, t) = 0, t ≥ 0, (3.9b)

m1(z, z) = 0, m3(z, z) =
c− 1

2(c+ 1)
β(z), m4(z, z) =

c+ 1

2(c− 1)
β(z), z ≥ 0. (3.9c)

The proof of Proposition 3.1 requires the existence and uniqueness for a system of

Volterra-like integral equations described next.

Suppose ζl, ζh, τl, τh ∈ R such that ζl ≤ ζh and τl ≤ τh; here l, h are mnemonics for low

and high. Let α(z), γ(z) ∈ C0[ζl, ζh] and ξ(t), η(t) ∈ C0[τl, τh] such that α(z) ≤ γ(z)

for z ∈ [ζl, ζh] and ξ(t) ≤ η(t) for t ≤ [τl, τh]. Suppose D̃ ∈ R
2 is a convex domain of

the form I

D̃ := {(z, t) | ζl ≤ z ≤ ζh, α(z) ≤ t ≤ γ(z)}

or the form II

D̃ := {(z, t) | τl ≤ t ≤ τh, ξ(t) ≤ z ≤ η(t)}

and l is a line cutting D̃ into two parts D̃1 and D̃2 with non-empty interiors. Note D̃1

and D̃2 will be convex (see Figure 3.3). For an arbitrary function g(z, t) ∈ C1(D̃1) ∪
C2(D̃2), define the C1 norm

||g||1 := sup
(z,t)∈D̃

|g(z, t)|+ sup
(z,t)∈D̃

|gt(z, t)|+ sup
(z,t)∈D̃

|gz(z, t)|,
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Figure 3.3: Two kinds of regions for D̃

and for any vector function v(z, t) ∈ C1(D̃2) ∪ C1(D̃2) of dimension n, define

||v||1 :=
n∑

i=1

||vi||1.

Theorem 3.1. Suppose D̃ is of form I and n an integer. If E = (eij(z, t; s)) is an n×n

matrix with each eij(z, t; s) ∈ C1(D̃×R), and f(z, t), a(z, t),b(z, t) ∈ C1(D̃1)∪C1(D̃2),

d(z, t; s) ∈ C1(D̃ × R) are vector functions of dimension n, then the following system

of Volterra-like integral equations

vi(z, t) =

∫ bi(z,t)

ai(z,t)

n∑
j=1

eij(z, t; s)vj(di(z, t; s), s) ds+ fi(z, t), (z, t) ∈ D̃, i = 1, ..., n

(3.10)

has a unique solution v(z, t) ∈ C1(D̃1) ∪ C1(D̃2), and ||v||1 is bounded above by a

function of n,N, τh − τl where

N = max

(
sup

1≤i,j≤n
||eij||1, sup

1≤i≤n
||fi||1, sup

1≤i≤n
||ai||1, sup

1≤i≤n
||bi||1, sup

1≤i≤n
||di||1, 1

)
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if

(di(z, t; s), s) ∈ D̃ for all ai(z, t) ≤ s ≤ bi(z, t), i = 1, ..., n, (z, t) ∈ D̃

and one of the following two conditions hold

• τl ≤ ai(z, t) ≤ bi(z, t) ≤ t, i = 1, ..., n, (z, t) ∈ D̃;

• t ≤ ai(z, t) ≤ bi(z, t) ≤ τh, i = 1, ..., n, (z, t) ∈ D̃.

Also if D̃ is of the form II, the following system of Volterra-like integral equations

vi(z, t) =

∫ bi(z,t)

ai(z,t)

n∑
j=1

eij(z, t; s)vj(s, di(z, t; s)) ds+ fi(z, t), (z, t) ∈ D̃, i = 1, ..., n

(3.11)

has a unique solution v(z, t) ∈ C1(D̃1) ∪ C1(D̃2), and ||v||1 is bounded above by a

function of n,N, ζh − ζl if

(s, di(z, t; s)) ∈ D̃ for all ai(z, t) ≤ s ≤ bi(z, t), i = 1, ..., n, (z, t) ∈ D̃

and one of the following two conditions hold

• ζl ≤ ai(z, t) ≤ bi(z, t) ≤ z, i = 1, ..., n, (z, t) ∈ D̃;

• z ≤ ai(z, t) ≤ bi(z, t) ≤ ζh, i = 1, ..., n, (z, t) ∈ D̃.

Proof. We prove Theorem 3.1 when D̃ has form I and τl ≤ ai(z, t) ≤ bi(z, t) ≤ t, since

the proofs for the other three cases are similar. Define a linear operator A

A : C1(D̃1) ∪ C1(D̃2) → C1(D̃1) ∪ C1(D̃2),

(Av)i(z, t) =

∫ bi(z,t)

ai(z,t)

n∑
j=1

eij(z, t; s)vj(di(z, t; s), s) ds, i = 1, ..., n

for any n-dimensional vector function v(z, t) ∈ C1(D̃1) ∪ C1(D̃2), then solving the

integral equation (3.10) corresponds to finding a fixed point of the map v 
→ Av + f

in C1(D̃1) ∪ C1(D̃2).
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Clearly, (Av) ∈ C1(D̃1) ∪ C1(D̃2), and for all (z, t) ∈ D̃ and i = 1, ..., n

|(Av)i(z, t)| ≤
n∑

j=1

∫ τh

τl

||eij||1 · ||vj||1 ds ≤ N(τh − τl)||v||1,

|(Av)iz(z, t)| ≤
n∑

j=1

(∫ τh

τl

||eij||1 · ||vj||1 · (1 + ||di||1) ds+ ||eij||1 · ||vj||1 · (||ai||1 + ||bi||1)
)

≤ 2N2(τh − τl + 1)||v||1,

|(Av)it(z, t)| ≤
n∑

j=1

(∫ τh

τl

||eij||1 · ||vj||1 · (1 + ||di||1) ds+ ||eij||1 · ||vj||1 · (||ai||1 + ||bi||1)
)

≤ 2N2(τh − τl + 1)||v||1,

so

||(Av)i||1 ≤ 5N2(τh − τl + 1)||v||1, i = 1, ..., n,

and hence A is bounded. We construct a sequence vj(z, t) with

v0 = f , vj+1 = Avj + f (3.12)

and the limit of vj will be the fixed point we seek because of the continuity of A.

From (3.12), we have

||v0i ||1 ≤ N, i = 1, ..., n.

We show that the sequence {vj}∞j=0 converges in C1(D̃1)∪C1(D̃2) by proving that the

series
∞∑
j=1

||vj − vj−1||1 converges uniformly in D̃. First, for i = 1, ..., n, we have

|v1i (z, t)− v0i (z, t)| =
n∑

i=1

∫ bi(z,t)

ai(z,t)

|eij(z, t; s)v0j (di(z, t; s), s)| ds

≤
n∑

i=1

∫ t

τl

N2 ds ≤ nN2(t− τl), (z, t) ∈ D̃.
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Given that for some k ≥ 1,

|vki (z, t)− vk−1
i (z, t)| ≤ N(nN(t− τl))

k

k!
, (z, t) ∈ D̃, i = 1, 2, ..., n, (3.13)

we have

|vk+1
i (z, t)− vki (z, t)| =

n∑
j=1

∫ bi(z,t)

ai(z,t)

|eij(z, t; s)||vkj (di(z, t; s), s)− vk−1
j (di(z, t; s), s)| ds

≤
n∑

i=1

∫ t

τl

N
nkNk+1(s− τl)

k

k!
ds

=
N(nN(t− τl))

k+1

(k + 1)!
, (z, t) ∈ D̃.

Hence by induction, (3.13) holds for all k = 1, 2, ..., implying

|vk(z, t)− vk−1(z, t)| =
n∑

i=1

|vki (z, t)− vk−1
i (z, t)| ≤ nN

(nN(t− τl))
k

k!
, (z, t) ∈ D̃

and hence

∞∑
j=1

|vj(z, t)− vj−1(z, t)| ≤ nN
∞∑
j=1

(nN(t− τl))
j

j!
≤ nNenN(τh−τl), (z, t) ∈ D̃.

Now for vz, we have

|v1iz − v0iz|(z, t)

≤|biz(z, t)
n∑

j=1

eij(z, t; bi)fj(di(z, t; bi), bi)|+ |aiz(z, t)
n∑

j=1

eij(z, t; ai)fj(di(z, t; ai), ai)|

+

∫ bi(z,t)

ai(z,t)

n∑
j=1

|eijz(z, t; s)fj(di(z, t; s), s) + eij(z, t; s)diz(z, t)fjz(di(z, t; s), s)| ds

≤2nN3 + n(N2 +N3)(t− τl)

≤2nN3(1 + (t− τl)), (z, t) ∈ D̃, i = 1, 2, ..., n.

We show by induction that for all (z, t) ∈ D̃ and i = 1, ..., n

|vkiz − vk−1
iz |(z, t) ≤ 2knkN2k+1

(
(t− τl)

k−1

(k − 1)!
+

(t− τl)
k

k!

)
. (3.14)
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(3.14) is true for k = 1. Now assume that (3.14) is true for some k > 1, then from

(3.13)

|vk+1
iz − vkiz|(z, t)

≤|biz(z, t)
n∑

j=1

eij(z, t; bi)(v
k
j − vk−1

j )(di(z, t; bi), bi)|

+ |aiz(z, t)
n∑

j=1

eij(z, t; ai)(v
k
j − vk−1

j )(di(z, t; ai), ai)|

+

∫ bi(z,t)

ai(z,t)

n∑
j=1

|eijz(z, t; s)(vkj − vk−1
j )(di(z, t; s), s)

+ eij(z, t; s)diz(z, t)(v
k
jz − vk−1

jz )(di(z, t; s), s)| ds

≤2nN2N(nN(t− τl))
k

k!
+N

(nN(t− τl))
k+1

(k + 1)!
+ 2knk+1N2k+3

(
(t− τl)

k−1

(k − 1)!
+

(t− τl)
k

k!

)

≤2(k + 1)nkN2k+1

(
(t− τl)

k−1

(k − 1)!
+

(t− τl)
k

k!

)
.

Hence by induction, (3.14) holds for all k = 1, 2, ..., implying

|vk
z (z, t)− vk−1

z (z, t)| =
n∑

i=1

|vkiz(z, t)− vk−1
iz (z, t)|

≤ 2knk+1N2k+1

(
(t− τl)

k−1

(k − 1)!
+

(t− τl)
k

k!

)
, (z, t) ∈ D̃

and hence
∞∑
j=1

|vj
z(z, t) − vj−1

z (z, t)| is convergent and bounded above by a function

of n,N, τh − τl. Similarly, one can show by induction that
∞∑
j=1

|vj
t (z, t) − vj−1

t (z, t)|
is convergent and bounded above by a function of n,N, τh − τl, which implies that
∞∑
j=1

||vj − vj−1||1 is convergent and bounded above by a function of n,N, τh − τl. So

the sequence {vj}∞j=0 has a limit v ∈ C1(D̃1)∪C1(D̃2), and ||v||1 is bounded above by

a function of n,N, τh − τl.
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Now we show the uniqueness of the solution of (3.10). If v and ṽ ∈ C1(D̃1) ∪ C1(D̃2)

are the solutions of (3.10), and we define u := v − ṽ, then u satisfies

ui(z, t) =

∫ bi(z,t)

ai(z,t)

n∑
j=1

eij(z, t; s)uj(di(z, t; s), s) ds, i = 1, ..., n. (3.15)

From (3.15), for i = 1, ..., n and (z, t) ∈ D̃

|ui(z, t)| ≤
∫ bi(z,t)

ai(z,t)

n∑
j=1

|eij(z, t; s)uj(di(z, t; s), s)| ds ≤ N

∫ t

τl

n∑
j=1

|uj(di(z, t; s), s)| ds,

which implies that for all (z, t) ∈ D̃

n∑
i=1

|ui(z, t)| ≤ N
n∑

i=1

∫ t

τl

n∑
j=1

|uj(di(z, t; s), s)| ds = Nn

∫ t

τl

n∑
j=1

|uj(di(z, t; s), s)| ds.

(3.16)

Define U(t) := max
z∈[ξ(t),η(t)]

n∑
i=1

|ui(z, t)| for t ∈ [τl, τh]; noting that (di(z, t, s), s) ∈ D̃,

from (3.16) we have

U(t) ≤ Nn

∫ t

τl

U(s) ds, t ∈ [τl, τh]

and hence from the Gronwall’s inequality

U(t) ≤ 0, t ∈ [τl, τh],

so that u(z, t) = 0 for all (z, t) ∈ D̃, and the uniqueness is proved.

Proof of Proposition 3.1:

Proof. Define r(v, z, t) := β(z)Bv(z, t) and pick an arbitrary point P (z, t) ∈ D. Inte-

grating (3.7a)− (3.7b) along the characteristics and using the boundary conditions, we

have (see Figure 3.4)
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Figure 3.4: Downward moving lines through P (z, t) with slopes ±1 and ±1/c

v1(z, t) =

⎧⎨
⎩

∫ t

sH
r1(v, z + t− s, s) ds+ a(sH) + h1(sI) if P ∈ D1∫ t

sH
r1(v, z + t− s, s) ds+ a(sH) if P ∈ D2

(3.17a)

v2(z, t) =

⎧⎨
⎩

∫ t

sE
r2(v, z + s− t, s) ds+ d(sE) if P ∈ D1∫ t

sE
r2(v, z + s− t, s) ds+ d(sE)− h2(sK) if P ∈ D2

(3.17b)

v3(z, t) =

⎧⎨
⎩

∫ t

sG
r3(v, z + ct− cs, s) ds+ b(sG) + h3(sJ) if P ∈ D1∫ t

sG
r3(v, z + ct− cs, s) ds+ b(sG) if P ∈ D2

(3.17c)

v4(z, t) =

⎧⎨
⎩

∫ t

sF
r4(v, z + cs− ct, s) ds+ e(sF ) if P ∈ D1∫ t

sF
r4(v, z + cs− ct, s) ds+ j(sF ) if P ∈ D2.

(3.17d)

One may verify from Figure 3.4 that 0 ≤ sE, sF , sG, sH , sI , sJ , sK ≤ t, so from Theorem

3.1, (3.17a) − (3.17d) has a unique solution v(z, t) ∈ C1(D1) ∪ C1(D2), which is the

unique solution of (3.7a)− (3.7e).
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Clearly, v1, v2, v3 are C0 across z = ct if hi = 0 for i = 1, 2, 3. Since

sF =

⎧⎨
⎩

ct−z
c

(z, t) ∈ D1

z−ct
1−c

(z, t) ∈ D2,
(3.18)

then from (3.17d), v4 is continuous across z = ct if e(0) = j(0), which means that

v ∈ C0(D). Now since v ∈ C0(D), using (3.7a) − (3.7b), the derivative of v1, v2, v3

along the lines of slopes −1, 1,−c respectively is continuous across z = ct. Since these

lines are transversal to z = ct and since the derivatives of v1, v2, v3 along lines of slope

c are also continuous across z = ct, v1, v2, v3 are in C1(D̃).

If the compatibility conditions (3.8a) − (3.8b) hold then, on z = ct, v4 is determined

by (3.7a) − (3.7b) and the boundary condition (3.7c) − (3.7e). So v4 is continuous

across z = ct and its derivative along z = ct is also continuous across z = ct. From

(3.17d) and (3.18), and using the fact that r4(v, ·) involves only v1, v2, v3 which are C1

across z = ct, we can show that the derivative of v4 in a direction transversal to z = ct

is continuous across z = ct if the second equation of (3.8b) is satisfied (see a similar

derivation in the proof of Proposition 4.3). Hence the z and t derivatives of v4 are C1

across z = ct.

3.2 Stability

In this section we study the stability of the solution of (3.9a)− (3.9c).

For arbitrary T > 0, K > 0, define

Ċ1[0, T ] := {β(z) ∈ C1[0, T ] | β(0) = β′(0) = 0},
Θ := {β(z) ∈ Ċ1[0, T ] | ||β(z)||2L2[0,T ] ≤ K}.

Proposition 3.2. (Stability for the forward problem) If m and m̃ are the solu-

tions of (3.9a)− (3.9c) corresponding to β and β̃ in Θ, then

4∑
i=1

∫ 2T−z

z

(mi − m̃i)
2(z, t) dt � ||β − β̃||2L2[0,T ], 0 ≤ z ≤ T
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with the constant dependent only on c, T and K.

Define

J(m, z) :=

∫ 2T−z

z

(m2
1 +m2

2 + cm2
3 + cm2

4)(z, t) dt, z ∈ [0, T ].

The proof will require an upper bound on J(m, z) and that is what we obtain first.

Proposition 3.3. If m is the solution of (3.9a)− (3.9c) corresponding to β ∈ Θ, then

J(m, z) ≤ C0, z ∈ [0, T ], (3.19)

where C0 is a constant dependent only on c, T,K.

Proof. Since m is the solution of (3.9a)− (3.9c) and B = −BT , we have

(m2
1 +m2

2 +m2
3 +m2

4)t − (m2
1 −m2

2 + cm2
3 − cm2

4)z = 0. (3.20)

Integrating (3.20) over OAB (see Figure 3.5), we obtain

Figure 3.5: Energy function

C

∫
OA

β2(z) dz =

∫
AB

2m2
2 + (1− c)m2

3 + (1 + c)m2
4 dt+

∫
OB

m2
1 + cm2

3 dt, (3.21)
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where C = (1+c)2

4(1−c)
+ (1−c)2

4(1+c)
, then from (3.21)

J(m, 0) � K,

∫
AB

2m2
2 + (1− c)m2

3 + (1 + c)m2
4 dt � K, (3.22)

with the constant dependent only on c.

Now if we multiply both sides of (3.9a) by qT = [−m1, m2, −m3, m4], we have

(−m2
1 +m2

2 −m2
3 +m2

4)t + (m2
1 +m2

2 + cm2
3 + cm2

4)z = (1− c)β(m1m4 +m2m3)

(3.23)

Integrating the LHS (3.23) over OCDB, we have

∫∫
OCDB

LHS of (3.23) dA

=k

∫
OC

β2(z) dz −
∫
DB

2m2
2 − (1− c)m2

3 + (1 + c)m2
4 dt− J(m, z) + J(m, 0),

where k = (1+c)2

4(1−c)
− (1−c)2

4(1+c)
, so from (3.22)− (3.23)

J(m, z) � K +

∫∫
OCDB

|β(z)|
4∑

i=1

m2
i dA

� K +

∫ z

0

|β(y)|J(m, y) dy, z ∈ [0, T ],

with the constant dependent only on c, and hence from Gronwall’s inequality

J(m, z) � Ke
∫ z
0 |β(y)| dy ≤ Ke

√
KT ,

and the proof is completed.

Proof of Proposition 3.2:

Proof. Define s := m− m̃ where m and m̃ are the solutions of (3.9a) − (3.9c) corre-

sponding to β and β̃ in Θ, then s2 = s4 = 0 on z = 0, and

st − Asz − βBs = (mt − Amz − βBm)− (m̃t − Am̃z − β̃Bm̃) + (β − β̃)Bm̃

= (β − β̃)Bm̃. (3.24)
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If we multiply 2sT to both sides of (3.24), we have

(s21 + s22 + s23 + s24)t − (s21 − s22 + cs23 − cs24)z = 2sT (β − β̃)Bm̃ (3.25)

Integrating (3.25) over OAB, from (3.19) we have

− C

∫
OA

(β − β̃)2(z) dz +

∫
AB

2s22 + (1− c)s23 + (1 + c)s24 dt+

∫
OB

s21 + cs23 dt

≤2

∫∫
D

|sT (β − β̃)Bm̃| dA ≤ ε

∫ T

0

J(s, z) dz +
4C0

ε

∫ T

0

(β − β̃)2(z) dz

for any ε > 0, and so

∫
AB

2s22 + (1− c)s23 + (1 + c)s24 dt+

∫
OB

s21 + cs23 dt

≤ a

∫ T

0

(β − β̃)2(z) dz + ε

∫ T

0

J(s, z) dz, (3.26)

where a is a constant dependent only on c, T,K, ε.

Now define pT := [s1,−s2, s3,−s4] and multiplying 2pT to both sides of (3.24), we

have

(s21 − s22 + s23 − s24)t − (s21 + s22 + cs23 + cs24)z = 2pT (β − β̃)Bm̃− (1− c)β(s1s4 + s2s3).

(3.27)

Integrating (3.27) over OCDB, we have

− k

∫
OC

(β − β̃)2(y) dy + J(s, z)− J(s, 0) +

∫
DB

2s22 − (1− c)s23 + (1 + c)s24 dt

≤ε

∫ T

0

J(s, z) dz +
4C0

ε

∫ T

0

(β − β̃)2(z) dz +

∫ z

0

|β(z)|J(s, y) dy, z ∈ [0, T ]. (3.28)

Define J∗ := max
z∈[0,T ]

J(s, z), then from (3.26) and (3.28) we have

J∗ � 2a

∫ T

0

(β − β̃)2(z) dz + 2ε

∫ T

0

J(s, z) dz +

∫ z

0

|β(z)|J(s, y) dy,

which implies that

(1− 2εT )J∗ ≤ 2a

∫ T

0

(β − β̃)2(z) dz +

∫ z

0

|β(z)|J(s, y) dy. (3.29)
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Choose ε = 1
4T
, then from (3.29) we have

J(s, z) �
∫ T

0

(β − β̃)2(z) dz +

∫ z

0

|β(z)|J(s, y) dy, z ∈ [0, T ],

with the constant dependent only on c, T,K, hence from Gronwall’s inequality

J(s, z) �
∫ T

0

(β − β̃)2(z) dz, z ∈ [0, T ],

with the constant dependent only on c, T,K.

3.3 Existence and Uniqueness of the Weak Solution

In this section we study the existence and uniqueness of the weak solution of (3.9a)−
(3.9c).

Recall that

D1 := {(z, t) | 0 ≤ z ≤ ct, z + t ≤ 2T},
D2 := {(z, t) | ct ≤ z ≤ t, z + t ≤ 2T},
D := D1 ∪D2.

Given β(z) ∈ Ċ1[0, T ], let m(z, t) ∈ C1(D) be the solution of (3.9a)− (3.9c). We may

define the forward map

F : Ċ1[0, T ] → C1(D),

β(z) 
→ m(z, t).

Proposition 3.4. F has a well-defined extension as a map from L2[0, T ] to L2(D).

Proof. Fix R > 0. For any β ∈ L2[0, T ] with ||β||2L2 ≤ R, we can find a sequence

{βi} ∈ Ċ1[0, T ] with ||βi||2L2 ≤ R + 1 and βi → β ∈ L2[0, T ]. For each βi, there is an

mi ∈ C1(D) and from Proposition 3.2 with K = R + 1 we have

J(mi −mj, z) ≤ CR+1||βi − βj||2, z ∈ [0, T ].
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So mi is a Cauchy sequence in L2(D) and hence has a limit m ∈ L2(D), and we define

the extension

F̃ : L2[0, T ] → L2(D),

β(z) 
→ m(z, t).

Further if {βi}∞i=1, {β̃i}∞i=1 in Ċ1[0, T ] are two sequences that converge to β in the L2

norm, and mi, m̃i ∈ L2(D) are the solutions of (3.9a)− (3.9c) corresponding to βi, β̃i,

then from Proposition 3.2

lim
i→∞

||mi − m̃i||2L2 = lim
i→∞

∫ T

0

J(mi − m̃i, z) dz

≤CR+1T lim
i→∞

||βi − β̃i||2L2 ≤ CR+1T lim
n→∞

(||βi − β||2L2 + ||β̃i − β||2L2) = 0,

so F̃ is well defined and is a continuous extension of F .

We now motivate the definition of a weak solution of (3.9a) − (3.9c). Let (see Figure

3.6)

Figure 3.6: Region for the weak solution

Λ := {N ∈ C1(D) | N1 = N3 = 0 on OB, N2 = N3 = N4 = 0 on AB}.
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If β(z) ∈ Ċ1[0, T ] and m ∈ C1(D) is the solution of (3.9a) − (3.9c) corresponding to

β, then for any function N ∈ Λ we have

0 =

∫∫
D

NT (mt − Amz − βBm) dA

=

∫
∂D

NTm dz −
∫∫

D

(NT
t −NT

z A+NTβB)m dA−
∫
∂D

NTAm dt,

which implies that
∫∫

D

(LN)Tm dA =

∫
BA

NT (I − A)m dz −
∫
OA

NT (I + A)m dz +

∫
OB

NTAm dt

=

∫
OA

NT

(
1− c

2
β +

1 + c

2
β

)
dz =

∫
OA

NTβ dz.

This suggests the following definition.

Definition 3.1. We say that w ∈ L2(D) is a weak solution of (3.9a) − (3.9c) corre-

sponding to β ∈ L2[0, T ] if
∫∫

D

(LN)Tw dA =

∫
OA

NTβ dz (3.30)

for all N ∈ Λ.

So far, we have shown the existence of the extension F̃ ; now we show the existence of

a weak solution of (3.9a)− (3.9c) by showing that F̃ (β) is a weak solution of (3.30).

Proposition 3.5. If β(z) ∈ L2[0, T ], there exists a weak solution of (3.9a)− (3.9c).

Proof. Since C1 is dense in L2, for any β(z) ∈ L2[0, T ], there exists a sequence {βi}∞i=1

in Ċ1[0, T ] that converges to β(z) in the L2 norm. For each βi, there exists a unique

solution wi(z, t) ∈ C1(D) of (3.9a)−(3.9c). From Proposition 3.2, {wi}∞i=1 is a Cauchy

sequence that converges to w in L2(D), which is F̃ (β). Due to the derivation of (3.30),

(3.30) is satisfied for each βi and wi and fixed N ∈ Λ, then take the limit of both sides

of (3.30), (3.30) is satisfied for β and w, which implies that w is a weak solution of

(3.9a)− (3.9c) for β ∈ L2(D).

Now we show that the weak solution is unique. As a first step we study the existence

of a solution of a CBVP.
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Proposition 3.6. Let F ∈ C1(D) and β ∈ C1[0, T ], then (see Figure 3.7)

Lv = F in D, (3.31a)

v1 = v3 = 0 on OB, (3.31b)

v2 = v3 = v4 = 0 on AB, (3.31c)

has a unique solution v ∈ C1(D).

Proof. Define r(v, z, t) := β(z)Bv(z, t) +F(z, t), and pick an arbitrary point P (z, t) ∈
D. Integrating (3.31a) along the characteristics and using the boundary conditions,

we have (see Figure 3.7)

Figure 3.7: Upward moving lines through P (z, t) with slopes ±1 and ±1/c

v1(z, t) = −
∫ sC

t

r1(v, z + t− s, s) ds, (3.32a)

v2(z, t) = −
∫ sD

t

r2(v, z + s− t, s) ds, (3.32b)

v3(z, t) = −
∫ sE

t

r3(v, z + ct− cs, s) ds, (3.32c)

v4(z, t) = −
∫ sF

t

r4(v, z + cs− ct, s) ds. (3.32d)
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One may verify from Figure 3.4 that t ≤ sE, sF , sG, sH ≤ 2T , so from Theorem 3.1,

(3.32a) − (3.32d) has a unique solution v(z, t) which is C1 on OBG and ABG. Not-

ing that the compatibility condition is satisfied because of the boundary conditions

(3.31b)−(3.31c), then v ∈ C1(D), which is the unique solution of (3.31a)−(3.31c).

Proposition 3.7. There is exactly one weak solution of (3.7a) − (3.7e) that satisfies

(3.30).

Proof. Suppose v, ṽ ∈ L2(D) are the weak solutions of (3.7a) − (3.7e). Define p :=

v − ṽ, then from (3.30), we have

∫∫
D

(LN)Tp dA = 0, ∀ N ∈ Λ.

Since C1 is dense in L2, there exists a sequence {pn} ∈ C1(D) such that pn → p in

L2(D). Also, from Proposition 3.6, there exists a sequence {Nn}∞n=1 ∈ Λ such that

£Nn = pn. Hence we have

0 = lim
n→∞

∫∫
D

(LNn)
Tp dA = lim

n→∞

∫∫
D

pT
np dA =

∫∫
D

pTp dA,

which implies that p = 0 in D.

3.4 Summary of Main Results

In this section we summarize the results obtained. Based on Proposition 3.1-3.7, we

have

Theorem 3.2. If β ∈ L2[0, T ], then (3.4a) − (3.4e) has a unique weak solution. Fur-

thermore, if β ∈ Ċ1[0, T ], then (3.4a)− (3.4e) has a unique solution in C1(D).
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Chapter 4

THE RECONSTRUCTION

Given a function β(z) ∈ C1[0,∞), let M(z, t) be the solution of the following IBVP

Mt = AMz + βBM, z ≥ 0, t ∈ R, (4.1a)

M2(0, t) = δ(t), M4(0, t) = 0, t ≥ 0, (4.1b)

M(z, t) = 0, t < 0, z ≥ 0 (4.1c)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 c 0

0 0 0 −c

⎤
⎥⎥⎥⎥⎥⎥⎦

B =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1− c −1 + c

0 0 1− c 1 + c

1 + c −1 + c 0 0

1− c −1− c 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In this chapter we study the inverse problem of recovering β(z) from M1(0, t), M3(0, t).

In the process we show that the map β(·) → (M1(0, ·),M3(0, ·)) is injective and has a

Lipschitz continuous inverse. We obtain necessary conditions for a function to be in

the range of this map. Finally, we give an algorithm for the reconstruction of β from

M1(0, ·) and M3(0, ·) and we prove that this algorithm will recover β.

For arbitrary T > 0, K > 0, define Y = 2cT
1+c

and (see Figure 4.1)

D := OAB = {(z, t) | z ≥ 0, z ≤ t, z + t ≤ 2T},
D̃ := OCB = {(z, t) | 0 ≤ z ≤ Y, z ≤ t ≤ 2T − z/c},

Ċ1[0, T ] := {β(z) ∈ C1[0, T ] | β(0) = 0, β′(0) = 0}.
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Figure 4.1: D and D̃

4.1 Inverse Stability from Single Reflection Data

We define the forward map F : β 
→ M3(0, t) that maps β(z) to the reflection data

M3(0, t). In this section, we show that F is injective and its inverse is Lipschitz

continuous in the sup norm. We note that the reflection data M3(0, t) corresponds

to a left moving wave travelling with the slower speed c, where as the source is a right

moving travelling with the faster speed 1.

Theorem 4.1. (Injectivity and Stability) If M and M̃ are the solutions of (4.1a) −
(4.1c) corresponding to β, β̃ ∈ Ċ1[0, T ], then

|(β − β̃)(z)| � max
[0,2T ]

|(M3 − M̃3)(0, ·)|, ∀z ∈ [0, Y ]

with the constant dependent only on c, T and ||β||L∞[0,T ], ||β̃||L∞[0,T ].

Proof. If M and M̃ are the solutions of (4.1a)− (4.1c) corresponding to β and β̃ and

N := M− M̃, then N satisfies LN = (β − β̃)BM̃. Now ∀τ ∈ [0, 2T ], define

M∗(z, t) := [M2(z, τ − t), M1(z, τ − t), M4(z, τ − t), M3(z, τ − t)]T
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where M(z, t) is the solution of the IBVP

Mt = AMz + βBM, (z, t) ∈ [0,∞)× R, (4.2a)

M2(0, t) = 0, M4(0, t) = δ(t), t ∈ R, (4.2b)

M(z, t) = 0, t < 0, z ≥ 0. (4.2c)

One may verify that £M∗ = 0 and as seen in (2.13),

M(0, t) = [m1(t), δ(t), m3(t), 0]T , (4.3)

M∗(0, t) = [0, m∗
2(t), δ(τ − t), m∗

4(t)]
T (4.4)

with m1,m3 supported in t ≥ 0, and m∗
2,m

∗
4 supported in (−∞, τ ]. For arbitrary vector

functions u,v ∈ C1([0,∞)× R), since BT = −B, we can verify that

uT (Lv) + (Lu)Tv = (uTv)t − (uTAv)z. (4.5)

Since N(z, t) = 0 for t < 0 and M∗(z, t) = 0 for t > τ , and M∗ and N are compactly

supported in z, t space when 0 ≤ t ≤ τ , we have

∫ ∞

0

∫ ∞

−∞
M∗T (β − β̃)BM̃ dt dz =

∫ ∞

0

∫ ∞

−∞
M∗T (LN) dt dz

=

∫ ∞

0

∫ ∞

−∞
M∗T (LN) + (LM∗)TN dt dz

=

∫ ∞

0

∫ ∞

−∞
(M∗TN)t − (M∗TAN)z dt dz

= −
∫ ∞

−∞
M∗T (0, t)AN(0, t) dt (4.6)

where

NT (0, t) = [m1(t)− m̃1(t), 0, m3(t)− m̃3(t), 0]. (4.7)
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Estimating the LHS of (4.6) involves the following estimates for continuous vector

functions v(z, t),w(z, t), a continuous β(z), and σ1, σ2 taking values 1 or 1/c;

∫ ∞

0

∫ ∞

−∞
vTβwδ(τ − t− σ1z)H(t− σ2z) dt dz �

∫ ∞

0

|β(z)|H(τ − σ1z − σ2z) dz

�
∫ τ

σ1+σ2

0

|β(z)| dz, (4.8)

∫ ∞

0

∫ ∞

−∞
vTβwH(τ − t− σ1z)H(t− σ2z) dt dz �

∫ ∞

0

|β(z)|H(τ − σ1z − σ2z) dz

�
∫ τ

σ1+σ2

0

|β(z)| dz, (4.9)

with the constant determined only by the upper bounds of |v| and |w| on {(z, t) | 0 ≤
σ2z ≤ t ≤ τ − σ1z}.

From the progressing wave expansions of M and M∗ in (3.3) and (3.5),

M(z, t) = δ(t− z)e2 + g(z, t)H(t− z/c) + f(z, t)(H(t− z)−H(t− z/c)), (4.10)

M∗(z, t) = δ(τ − t− z/c)e3 + g∗(z, t)H(τ − t− z/c)

+ f∗(z, t)(H(τ − t− z)−H(τ − t− z/c)) (4.11)

where e3 = [0, 0, 1, 0]T , e2 = [0, 1, 0, 0]T , and f ,g, f∗,g∗ satisfy CBVPs similar to

(3.4a)− (3.4e). Note that from Proposition 3.1, |f |, |g|, |f∗|, |g∗| can be bounded above

by c, T , ||β||L∞[0,T ] and ||β̃||L∞[0,T ]. Using (4.10)− (4.11), the LHS of (4.6) is the sum

of integrals of products. The most significant term comes from the product of delta

functions which is

∫ ∞

0

∫ ∞

−∞
(β − β̃)e3

TBe2δ
(
τ − t− z

c

)
δ(t− z) dt dz =

c(−1 + c)

2(1 + c)
(β − β̃)(Zτ ) (4.12)

where Zτ = cτ
1+c

. All other product terms of the LHS of (4.6) may be estimated using

(4.8) − (4.9), which can be bounded by c, T , ||β||L∞[0,T ] and ||β̃||L∞[0,T ]. Then from

(4.6)− (4.12),

|(β − β̃)(Zτ )| � |RHS of (4.6)|+
∫ Zτ

0

|β(z)− β̃(z)| dz (4.13)
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with the constant dependent only on c, T , ||β||L∞[0,T ] and ||β̃||L∞[0,T ]. Also from (4.4)

and (4.7),

RHS of (4.6) = −
∫ ∞

−∞
cδ(τ − t)(m3 − m̃3)(t) dt = −c(m3 − m̃3)(τ). (4.14)

Then from (4.13)− (4.14), ∀τ ∈ [0, 2T ],

|(β − β̃)(Zτ )| � |(m3 − m̃3)(τ)|+
∫ Zτ

0

|β(z)− β̃(z)| dz

� max
[0,2T ]

|(m3 − m̃3)(·)|+
∫ Zτ

0

|β(z)− β̃(z)| dz.

Hence by Gronwall’s Inequality,

|(β − β̃)(Zτ )| � max
[0,2T ]

|(M3 − M̃3)(0, ·)|

with the constant dependent only on c, T , ||β||L∞[0,T ] and ||β̃||L∞[0,T ]. As τ varies in

[0, 2T ], Zτ takes all values in [0, 2cT/(1 + c)]; hence the theorem is proved.

4.2 Coefficient Recovery from the Full Reflection Data

In this section, we reconstruct β(z) from the full reflection data M1(0, t) and M3(0, t),

where M(z,t) is the solution of (4.1a)− (4.1c).

Recall that Y = 2cT/(1 + c) and

D := {(z, t) | 0 ≤ z ≤ T, z ≤ t ≤ 2T − z},
Θ := {β(z) ∈ Ċ1[0, T ] | ||β||2L2[0,T ] ≤ K}.

For an arbitrary β ∈ Θ, based on the progressing wave expansion (3.3), the solution

M(z, t) of (4.1a)− (4.1c) can be written as

M(z, t) = δ(t− z)e2 +m(z, t)H(t− z),
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where m(z, t) ∈ C1(D) is the solution of the CBVP (see remark at the end of Propo-

sition 3.1)

Lm = 0 in D, (4.15a)

m2(0, t) = m4(0, t) = 0, t ∈ [0, 2T ], (4.15b)

m1(z, z) = 0, m3(z, z) =
c− 1

2(c+ 1)
β(z), m4(z, z) =

c+ 1

2(c− 1)
β(z), z ∈ [0, T ].

(4.15c)

Remark: Hence knowing M1(0, t),M3(0, t) is equivalent to knowing m1(0, t),m3(0, t).

We want to recover β(z) from the full reflection data m1(0, t) and m3(0, t). We define

the forward map

F : β(z) 
→ (m1(0, t),m3(0, t))

that maps the coefficient to the full reflection data. F is already known to be injective

and its inverse is Lipschitz continuous by Theorem 4.1 - just m3(·) is enough - but we

used themax norm there. For reconstruction we need the Lipschitz continuity of F−1 in

the L2 norm. We also obtain an upper bound of ||β||L2[0,T ] in terms of ||m1(0, t)||L2[0,2T ]

and ||m3(0, t)||L2[0,2T ] and the reflection operator R (defined by m1(0, t) and m3(0, t))

which will be defined later. Further we give a necessary condition on the range of F .

To recover β(z), we need to study a CBVP with full Cauchy data on z = 0 and

fewer conditions on the characteristics than in the CBVP (4.15a)− (4.15c) studied in

Section 3.1-3.3. We show the well posedness of this new CBVP and use it to construct

a map whose fixed point is the coefficient β that we wish to recover.

4.2.1 Inverse Stability

Here we show that that the inverse of the injective forward map F : β(z) 
→ (m1(0, t),m3(0, t))

is locally Lipschitz continuous in the L2 norm instead of the max norm in Theorem

4.1.
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Theorem 4.2. (inverse stability) If m and m̃ are the solutions of (4.15a)− (4.15c)

corresponding to β and β̃ in Θ, then

||(β − β̃)(·)||2L2[0,Y ] � ||m1(0, ·)− m̃1(0, ·)||2L2[0,2T ] + ||m3(0, ·)− m̃3(0, ·)||2L2[0,2T ]

with the constant depending only on c, T,K.

Define

D̃ := {(z, t) | 0 ≤ z ≤ Y, z ≤ t ≤ 2T − z/c}.

For any vector function p(z, t) ∈ C1(D̃) and ε ∈ (0, 1], define (see Figure 4.2)

J(p, z) :=

∫
CD

(p21 + p22 + cp23 + cεp24)(z, t) dt, z ∈ [0, Y ],

|p(z, t)|2 :=
4∑

i=1

p2i (z, t), (z, t) ∈ D̃,

|(Lp)(z, t)|2 :=
4∑

i=1

|Lpi|2(z, t), (z, t) ∈ D̃.

Figure 4.2: Energy function

The proof of Theorem 4.2 will require the following result.

49



Proposition 4.1. If p(z, t) ∈ C1(D̃), then for all λ > 0, ε ∈ (0, 1] and z ∈ [0, Y ]

(see Figure 4.2)

J(p, z) +

∫
OC

(2p21 + (1 + c)p23 − ε(1− c)p24) dy

≤J(p, 0) + λ

∫∫
OCDB

|(Lp)(y, t)|2 dA+
1

cε

∫ z

0

(
4|β(y)|+ 1

λ

)
J(p, y) dy.

(4.16)

Furthermore, if ε ≤ (1−c)3

4(1+c)3
and p satisfies

Lp = 0, in D̃, (4.17a)

p1(z, z) = 0, p3(z, z) =
(c− 1)2

(c+ 1)2
p4(z, z), z ∈ [0, Y ], (4.17b)

then

J(p, z) ≤ e4
√
KY /(cε)J(p, 0), z ∈ [0, Y ]. (4.18)

Proof. Define q := [p1, − p2, p3, − εp4]
T , and multiplying both sides of Lp =

pt − Apz − βBp by −2qT , we have

−2qT (Lp+ βBp) =2qT (Apz − pt)

=(p21 + p22 + cp23 + εcp24)z − (p21 − p22 + p23 − εp24)t. (4.19)

Integrating the RHS of (4.19) over OCDB, we have

∫∫
OCDB

(p21 + p22 + cp23 + cεp24)z − (p21 − p22 + p23 − εp24)t dA

=

∫
∂OCDB

(p21 − p22 + p23 − εp24) dz +

∫
∂OCDB

(p21 + p22 + cp23 + cεp24) dt

=

∫
OC

(p21 + p22 + cp23 + cεp24) dt+ J(p, z)− J(p, 0) +

∫
DB

(p21 + p22 + cp23 + cεp24) dt

−
∫
DB

c(p21 − p22 + p23 − εp24) dt+

∫
OC

(p21 − p22 + p23 − εp24) dt

=

∫
DB

((1− c)p21 + (1 + c)p22 + 2cεp24) dt+

∫
OC

(2p21 + (1 + c)p23 − ε(1− c)p24) dt

+ J(p, z)− J(p, 0). (4.20)
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Also∫∫
OCDB

LHS of (4.19) dA

≤
∫∫

OCDB

( |p(y, t)|2
λ

+ λ|(Lp)(y, t)|2 + 4|β(y)| · |p(y, t)|2
)

dA

≤ λ

∫∫
OCDB

|(Lp)(y, t)|2 dA+
1

cε

∫ z

0

(
4|β(y)|+ 1

λ

)
J(p, y) dy (4.21)

for all λ > 0 and ε ∈ (0, 1], so (4.16) follows directly from (4.20)− (4.21).

If p satisfies (4.17a)− (4.17b) and ε ≤ (1−c)3

4(1+c)3
, then∫

OC

(2p21 + (1 + c)p23 − ε(1− c)p24) dy ≥ 0.

In (4.16) using (4.17a) and letting λ → ∞, we have

J(p, z) ≤ J(p, 0) +
4

cε

∫ z

0

|β(y)|J(p, y) dy,

so (4.18) follows directly from Gronwall’s inequality.

Proof of Theorem 4.2:

Proof. If m and m̃ are the solutions of (4.15a)− (4.15c) corresponding to β and β̃ in

Θ, and p = m− m̃ then p satisfies Lp = (β − β̃)Bm̃. Choose ε = (1−c)3

8(1+c)3
, then

∫
OC

((1 + c)p23 − ε(1− c)p24) dy =
(1− c)3

8(1 + c)3

∫
OC

(β − β̃)2(y) dy,

so from (4.16) in Proposition 4.1 and (3.19) in Proposition 3.3 we have

J(p, z) +
(1− c)3

8(1 + c)3

∫ z

0

(β − β̃)2(y) dy

≤ J(p, 0) + 4C0λ

∫ z

0

(β − β̃)2(y) dy +
1

cε

∫ z

0

(
4|β(z)|+ 1

λ

)
J(p, y) dy,

(4.22)

where C0 is a constant dependent only on c, T,K. Choose λ = (1−c)3

64C0(1+c)3
, then from

(4.22) we have

J(p, z) +
(1− c)3

16(1 + c)3

∫ z

0

(β − β̃)2(y) dy ≤ J(p, 0) +
1

cε

∫ z

0

(
4|β(z)|+ 1

λ

)
J(p, y) dy,

(4.23)
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which implies that

J(p, z) ≤ J(p, 0) +
1

cε

∫ z

0

(
4|β(z)|+ 1

λ

)
J(p, y) dy,

and hence from Gronwall’s inequality

J(p, z) ≤ CJ(p, 0), z ∈ [0, Y ],

where C is a constant dependent only on c, T,K, so from (4.23) we have

(1− c)3

16(1 + c)3

∫ z

0

(β − β̃)2(y) dy ≤ J(p, 0) +
C

cε

∫ z

0

(
4|β(z)|+ 1

λ

)
J(p, 0) dy, z ∈ [0, Y ],

which implies that

∫ Y

0

(β − β̃)2(y) dy � J(p, 0) ≤
∫ 2T

0

((m1 − m̃1)
2 + (m3 − m̃3)

2)(0, t) dt,

with the constant dependent only on c, T,K.

4.2.2 Range Characterization

In this section we attempt to characterize the range of the forward map from the coef-

ficient β(z) ∈ Ċ1[0, T ] to the reflection data m1(0, t) and m3(0, t), where m(z, t) is the

solution of (4.15a)− (4.15c).

Define

Ċ1[0, 2T ] := {φ ∈ C1[0, 2T ] | φ(0) = φ′(0) = 0},
D := {(z, t) | 0 ≤ z ≤ T, z ≤ t ≤ 2T − z}.

For an arbitrary φ(t) ∈ Ċ1[0, 2T ] and β ∈ Ċ1[0, T ], consider the CBVP

Lh = 0 in D, (4.24a)

h1(z, z) = h3(z, z) = h4(z, z) = 0, 0 ≤ z ≤ T, (4.24b)

h2(0, t) = φ(t), h4(0, t) = 0, 0 ≤ t ≤ 2T. (4.24c)
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From Proposition 3.1, (4.24a) − (4.24c) has a unique solution in C1(D), so we define

the reflection operator

R : Ċ1[0, 2T ] 
→ C1[0, 2T ]× C1[0, 2T ],

R(φ) = [h1(0, t),
√
c h3(0, t)]. (4.25)

Note that R is completely determined by m1(0, t) and m3(0, t) because if

H(z, t) =

⎧⎪⎨
⎪⎩
h(z, t), if t ≥ z

0, if t < z,

then H(z, t) is the solution of (4.1a)− (4.1c) except with φ(t) replacing δ(t); here φ(t)

has been extended by zero for t < 0. So H(z, t) = M(z, t) ∗ φ(t) and in particular, for

t ≥ 0, h(0, t) = H(0, t) = M(0, t) ∗ φ(t), so

(Rφ)(t) = (m1(0, t) ∗ φ(t),
√
c m3(0, t) ∗ φ(t)).

Proposition 4.2. If R is the reflection operator associated to β(z) ∈ Ċ1[0, T ], then

||R|| ≤ 1, where ||R‖ represents the norm as an operator on L2 functions.

Remark: Proposition 4.2 gives a necessary condition on the range of the forward map

F : β(z) → (m1(0, t),m3(0, t)). For inverse problems for the single speed case, as in say

[17], the range is characterized by the necessary and sufficient condition ||R|| < 1. For

our problem, necessary condition ||R|| ≤ 1 is probably not sharp and we don’t believe

||R|| < 1 is a sufficient condition.

Proof. Let h(z, t) ∈ C1(D) be the solution of (4.24a)− (4.24c). Multiplying both sides

of (4.24a) by hT and using B = −BT , we have

(h2
1 + h2

2 + h2
3 + h2

4)t − (h2
1 − h2

2 + ch2
3 − ch2

4)z = 0. (4.26)

Integrating (4.27) over D, we obtain

0 =

∫
OA

(2h2
1 + (1 + c)h2

3 + (1− c)h2
4) dz −

∫
AB

(2h2
2 + (1− c)h2

3 + (1 + c)h2
4) dt

−
∫
OB

(h2
1 − h2

2 + ch2
3 − ch2

4) dt. (4.27)
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Substituting the boundary values of h, we obtain:

||φ||2L2[0,2T ] = ||R(φ)||2L2[0,2T ] +

∫
AB

(2h2
2 + (1− c)h2

3 + (1 + c)h2
4) dt (4.28)

implying ||R|| ≤ 1.

4.2.3 Well-posedness for the Sideways Problem

To recover the coefficient, we need to study a CBVP with full Cauchy data on z = 0

and fewer conditions on the characteristics, which we call the sideways problem. In

this section, we discuss the well posedness of the sideways problem. For T > 0, we

first show the existence and uniqueness of the classical solution for β(z) ∈ C1[0, T ],

then we show that the solution depends stably on β(z) ∈ C1[0, T ]. Lastly, we show the

existence and uniqueness of the weak solution for β(z) ∈ L2[0, T ].

Let Y = 2cT
1+c

and recall that

D̃ := {(z, t) | 0 ≤ z ≤ Y, z ≤ t ≤ 2T − z/c}.

For arbitrary functions a(t), b(t), d(t), e(t) ∈ C1[0, 2T ], consider the CBVP

Lh = 0 in D̃, (4.29a)

h3(z, z) =
(c− 1)2

(c+ 1)2
h4(z, z), 0 ≤ z ≤ Y, (4.29b)

h1(0, t) = a(t), h2(0, t) = b(t), h3(0, t) = d(t), h4(0, t) = e(t), 0 ≤ t ≤ 2T.

(4.29c)

If h is a C1 solution of (4.29a) − (4.29c) then from (4.29b) we obtain the matching

conditions for a C1 solution of (4.29a)− (4.29c).

(c+ 1)2h3(0, 0) = (c− 1)2h4(0, 0), (4.30)

(c+ 1)2(h3z(0, 0) + h3t(0, 0)) = (c− 1)2(h4z(0, 0) + h4t(0, 0)). (4.31)

From the third and forth equation of (4.29a) we have

h3t(0, 0)− ch3z(0, 0) =
β(0)

2
((1 + c)a(0)− (1− c)b(0)), (4.32)

h4t(0, 0) + ch4z(0, 0) =
β(0)

2
((1− c)a(0)− (1 + c)b(0)). (4.33)
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Combining (4.30)−(4.33), and noting that h3t(0, 0) = d′(0), h4t(0, 0) = e′(0), we obtain

the matching conditions for a C1 solution of (4.29a)− (4.29c);

(c+ 1)2d(0) = (1− c)2e(0), (4.34a)

(c+ 1)2
(
(1 + c)d′(0)− β(0)

2
((1 + c)a(0)− (1− c)b(0))

)

= (c− 1)2
(
(c− 1)e′(0) +

β(0)

2
((1− c)a(0)− (1 + c)b(0))

)
. (4.34b)

Proposition 4.3. If β ∈ C1[0, Y ], and a(t), b(t), d(t), e(t) ∈ C1[0, 2T ] that satisfy

(4.34a)− (4.34b), then there exists a unique solution h ∈ C1(D̃) of (4.29a)− (4.29c).

Proof. Define r(h, z, t) := β(z)Bh(z, t), and pick an arbitrary point P (z, t) ∈ D̃. Inte-

grating (4.29a) along the characteristics and using the boundary conditions (4.29b) −
(4.29c), we have (see Figure 4.3)

Figure 4.3: Leftward moving lines through P (z, t) with slopes ±1 and ±1/c
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h1(z, t) =

∫ z

0

r1(h, y, z + t− y) dy + a(sC), (4.35a)

h2(z, t) =

∫ z

0

r2(h, y, y + t− z) dy + b(sD), (4.35b)

h3(z, t) =

∫ z

0

r3

(
h, y,

z + ct− y

c

)
dy + d(sE), (4.35c)

h4(z, t) =

⎧⎨
⎩

∫ z

0
r4

(
h, y, y+ct−z

c

)
dy + e(sF ) if z ≤ ct∫ z

yH
r4

(
h, y, y+ct−z

c

)
dy + (1+c)2

(1−c)2
(
∫ yH
0

r3(h, y,
y−(1−c)yE

c
) dy + d(sF )) if z ≥ ct.

(4.35d)

One may verify from Figure 4.3 that 0 ≤ yC , yD, yE, yF , yH ≤ z. So from Theorem 3.1,

(4.35a)− (4.35d) has a unique solution h(z, t) ∈ C1(OAG) ∪ C1(OBG). By repeating

an argument similar to the one used in Prop 3.1, we can show that the compatibility

conditions (4.34a)− (4.34b) imply that h ∈ C1(D̃).

Now we study the stability of the solution of (4.29a) − (4.29c) with respect to the

coefficient β.

Recall that Y = 2cT
1+c

and

Θ := {β(z) ∈ Ċ1[0, Y ] | ||β||2L2[0,Y ] ≤ K}.

Without loss of generality, we assume that

max(||a(·)||2L2[0,2T ], ||b(·)||2L2[0,2T ], ||d(·)||2L2[0,2T ], ||e(·)||2L2[0,2T ]) ≤ K.

Proposition 4.4. (stability) If h, h̃ ∈ C1(D̃) are the solutions of (4.29a) − (4.29c)

corresponding to β, β̃ ∈ Θ, then (see Figure 4.2)

4∑
i=1

∫
CD

(hi − h̃i)
2(z, t) dt ≤ C||β − β̃||2L2[0,Y ], ∀ 0 ≤ z ≤ Y,

where C is a constant dependent only on c, T,K.
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Proof. If h ∈ C1(D̃) is the solution of (4.29a) − (4.29c) corresponding to β, then h

satisfies (4.17a)− (4.17b), so from (4.18) in Proposition 4.1 we have

J(h, z) ≤ J(h, 0)e4
√
KY /(cε) = C0, ∀z ∈ [0, Y ], (4.36)

where C0 depends only on c, T,K.

If h and h̃ are the solutions of (4.29a)−(4.29c) corresponding to β and β̃ and p := h−h̃

then p satisfies Lp = (β − β̃)Bh̃ with p(0, t) = 0 for t ∈ [0, 2T ]. Hence from (4.16) in

Proposition 4.1 we have (taking λ = 1),

J(p, z) ≤
∫∫

OAB

|(Lp)(z, t)|2 dA+
1

cε

∫ z

0

(1 + 4|β(y)|)J(p, y) dy;

so from (4.36) and Gronwall’s inequality

J(p, z) ≤ e
1
cε

∫ Y
0 (1+4|β(y)|) dy

∫ Y

0

4(β − β̃)2(y)J(h̃, y) dy � ||β − β̃||2L2[0,Y ], ∀z ∈ [0, Y ],

with the constant dependent only on c, T,K.

Now we study the existence and uniqueness of the weak solution of (4.29a)− (4.29c).

From Proposition 4.3, given β(z) ∈ Ċ1[0, Y ], there is a unique h(z, t) ∈ C1(D̃) which

solves (4.29a)− (4.29c), so we may define the forward map

Q : Ċ1[0, Y ] → C1(D̃),

β(z) 
→ h(z, t).

Since C1 is dense in L2 and Q is locally Lipschitz continuous in the L2 norm because

of Proposition 4.4, Q has a continuous extension Q̃

Q̃ : L2[0, Y ] → L2(D̃),

β(z) 
→ h(z, t),
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where h, as defined and shown below, is the weak solution of (4.29a) − (4.29c) corre-

sponding to β. Now we motivate the definition of a weak solution of (4.29a)− (4.29c).

Let (see Figure 4.2)

Λ := {N ∈ C1(D̃) | N1 = 0, (1− c)N3 + (1 + c)N4 = 0 on OA, N1 = N2 = N4 = 0 on AB}.

If β(z) ∈ Ċ1[0, Y ] and h ∈ C1(D̃) is the solution of (4.29a)− (4.29c) corresponding to

β, then for all N ∈ Λ

0 =

∫∫
D̃

NT (ht − Ahz − βBh) dA

= −
∫
∂D̃

NTh dz −
∫
∂D̃

NTAh dt+

∫∫
D̃

(NT
z A−NT

t −NTβB)h dA,

which implies that

∫∫
D̃

(LN)Th dA =

∫
AB

NT (cI − A)h dt−
∫
OA

NT (I + A)h dt+

∫
OB

NTAh dt.

(4.37)

Since N1 = N2 = N4 = 0 on AB, then NT (cI − A) = 0. Also, since N1 = 0 and

(1− c)N3 + (1 + c)N4 = 0 on OA

NT (I + A)h = (1 + c)N3h3 + (1− c)N4h4 =
(1− c)2

1 + c
N3h4 + (1− c)N4h4

=
1− c

1 + c
h4((1− c)N3 + (1− c)N4) = 0.

Hence from (4.37)

∫∫
D̃

(LN)Th dA =

∫
OB

NTAh dt =

∫
OB

N1a−N2b+ cN3d− cN4e dt.

This suggests the following definition.

Definition 4.1. For a, b, d, e ∈ C1[0, 2T ], we say that h ∈ L2(D̃) is a weak solution of

(4.29a)− (4.29c) corresponding to β ∈ L2[0, Y ] if (see Figure 4.3)

∫∫
D̃

(Nt − ANz − βBN)Th dA =

∫
OB

N1a−N2b+ cN3d− cN4e dt (4.38)

for all N ∈ Λ.
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The existence of a weak solution of (4.29a)− (4.29c) follows from an argument similar

to the one used to prove Proposition 3.5; in fact the weak solution is Q̃β where Q̃ is

the extension of Q. Now we show that the weak solution is unique. As a first step we

study the existence of a solution of a special adjoint CBVP.

Proposition 4.5. If F ∈ C1(D̃) and β ∈ C1[0, Y ], then (see Figure 4.4)

Lv = F in D̃, (4.39a)

v1 = 0, (1− c)v3 + (1 + c)v4 = 0 on OA, (4.39b)

v1 = v2 = v4 = 0 on AB. (4.39c)

has a unique solution v ∈ C1(D̃).

Proof. Define r(v, z, t) := β(z)Bv(z, t) +F(z, t), and pick an arbitrary point P (z, t) ∈
D̃. Integrating (4.39a) along the characteristics and using the boundary conditions,

Figure 4.4: Rightward moving lines through P (z, t) with slopes ±1 and ±1/c
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we have

v1(z, t) = −
∫ yC

z

r1(v, y, z + t− y) dy (4.40a)

v2(z, t) = −
∫ yD

z

r2(v, y, y + t− z) dy (4.40b)

v3(z, t) = −
∫ yE

z

r3

(
v, y,

z + ct− y

c

)
dy +

1 + c

1− c

∫ yG

yE

r4

(
v, y,

y + cyE − yE
c

)
dy

(4.40c)

v4(z, t) =

∫ yF

z

r4

(
v, y,

y + ct− z

c

)
dy. (4.40d)

One may verify from Figure 4.4 that z ≤ yE, yF , yC , yD, yG ≤ T . So from Theorem

3.1, (4.40a) − (4.40d) has a unique solution v(z, t) ∈ C1(OGA) ∪ C1(BGA). From

(4.39b)− (4.39c), no compatibility conditions are needed for v to be in C1(D̃).

Applying techniques similar to those in the proof of Proposition 3.7, we obtain

Proposition 4.6. There is exactly one weak solution of (4.29a)− (4.29c) that satisfies

(4.38).

Based on Proposition 4.3-4.6, we have

Theorem 4.3. If β ∈ Ċ1[0, Y ], and a(t), b(t), c(t), d(t) ∈ C1[0, 2T ] that satisfy (4.34a)−
(4.34b), then there exists a unique solution h ∈ C1(D̃) of (4.29a) − (4.29c). Fur-

thermore, if β ∈ L2[0, Y ], then there exists a unique weak solution h ∈ L2(D̃) of

(4.29a)− (4.29c).

4.2.4 Reconstruction

We will reconstruct β(z) over a small interval [0, δ], then over [δ, 2δ], then [2δ, 3δ], and

so on. The crux of the reconstruction is a proposition about reconstructing β(z) on

[Z,Z + δ] if β(z) is known on [0, Z] - and crucially, δ is independent of Z.

Given T > 0 and Z, δ > 0 such that 0 ≤ Z < Z + δ ≤ Y , define

D̃Z,δ := {(z, t) | (z, t) ∈ D̃, Z ≤ z ≤ Z + δ}.
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For any KZ > 0, define the complete metric space (in the L2 norm)

ΘZ := {β ∈ L2[Z,Z + δ] | ||β||2L2[Z,Z+δ] ≤ KZ},

which has a dense subset

ΛZ := {β ∈ C1[Z,Z + δ] | ||β||2L2[Z,Z+δ] ≤ KZ}.

Proposition 4.7. Let 0 ≤ Z ≤ Y and d, e, a, b ∈ C1[Z, 2cT−Z
c

] such that

e(Z) =
(1 + c)2

(1− c)2
d(Z),

(c+ 1)2
(
(1 + c)d′(Z)− β(Z)

2
((1 + c)a(Z)− (1− c)b(Z))

)

= (c− 1)2
(
(c− 1)e′(Z) +

β(Z)

2
((1− c)a(Z)− (1 + c)b(Z))

)
.

There exists a δ > 0 and KZ > 0 such that there is a unique β(z) ∈ ΘZ with

h3(z, z) =
c− 1

2(c+ 1)
β(z), Z ≤ z ≤ Z + δ, (4.41)

where h(z, t) ∈ L2(D̃Z,δ) is the unique weak solution of

Lh = 0 in D̃Z,δ, (4.42a)

h3(z, z) =
(c− 1)2

(c+ 1)2
h4(z, z), Z ≤ z ≤ Z + δ, (4.42b)

h1(Z, t) = a(t), h2(Z, t) = b(t), h3(Z, t) = d(t), h4(Z, t) = e(t). (4.42c)

Actually, it is sufficient that

KZ ≥ 8(1 + c)2

(1− c)2
JZ , δ = min

(
Y − Z,

c2ε2

256KZ

)
, (4.43)

where JZ = ||a||2L2 + ||b||2L2 + c||d||2L2 + cε||e||2L2 and ε = c(1−c)3

(1+c)4
.

Proof. From Proposition 4.1 applied to h (see Figure 4.5) we obtain

J(h, z) +

∫
CF

(2h2
1 + (1 + c)h2

3 − ε(1− c)h2
4) dy

≤JZ + λ

∫∫
DCFE

|(Lh)(y, t)|2 dA+
1

cε

∫ z

Z

(
4|β(y)|+ 1

λ

)
J(h, y) dy, z ∈ [Z,Z + δ].

(4.44)

61



Figure 4.5: Local Reconstruction

If h is the solution of (4.42a)− (4.42c) and we choose ε = c(1−c)3

(1+c)4
then

∫
CF

((1 + c)h2
3 − ε(1− c)h2

4) dt =

∫
CF

h2
3 dt. (4.45)

So letting λ → ∞ in (4.44) we have

J(h, z) +

∫
CF

h2
3 ≤ JZ +

4

cε

∫ z

Z

|β(y)|J(h, y) dy, z ∈ [Z,Z + δ], (4.46)

and hence from Gronwall’s inequality

J(h, z) ≤ e4
√
KZδ/(cε)JZ , z ∈ [Z,Z + δ]. (4.47)

Define J∗(h) := max
y∈[Z,Z+δ]

J(h, y), then from (4.46) we have

J∗(h) +
∫
CG

h2
3 dz ≤ 2JZ +

8

cε

∫ Z+δ

Z

|β(y)|J∗(h) dy ≤ 2JZ +
8
√
δKZ

cε
J∗(h),

which implies that

(
1− 8

√
δKZ

cε

)
J∗(h) +

∫
CG

h2
3 dz ≤ 2JZ .
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So if δ ≤ c2ε2

64KZ
, we have

∫
CG

h2
3 dz ≤ 2JZ . (4.48)

Let h, h̃ be the unique C1 solutions of (4.42a)− (4.42c) corresponding to β and β̃, and

define p := h− h̃; then L(p) = (β − β̃)Bh̃ and p is zero on z = Z. Choose ε = c(1−c)3

(1+c)4

and

λ =
cε(1− c)2

64(1 + c)2e4
√
KZδ/(cε)JZ

, (4.49)

then from (4.47) and Proposition 4.1 applied to p we obtain

J∗(p) +
∫
CG

p23 dz ≤ 8λ

cε

∫ Z+δ

Z

(β − β̃)2(y)J(h̃, y) dy +
2

cε

∫ Z+δ

Z

(
4|β(y)|+ 1

λ

)
J∗(p) dy

≤ (1− c)2

8(1 + c)2

∫ Z+δ

Z

(β − β̃)2(y) dy +
2δ/λ+ 8

√
δKZ

cε
J∗(p),

which implies that

(
1− 2δ/λ+ 8

√
δKZ

cε

)
J∗(p) +

∫
CG

p23 dz ≤ (1− c)2

8(1 + c)2

∫ Z+δ

Z

(β − β̃)2(y) dy.

So choosing δ ≤ min
(

cλε
4
, c2ε2

256KZ

)
, we have

∫
CG

p23 dz ≤ (1− c)2

8(1 + c)2

∫ Z+δ

Z

(β − β̃)2(y) dy. (4.50)

Note that since δ ≤ c2ε2

256KZ
, from (4.49) we have λ ≥ cε(1−c)2

64(1+c)2e1/4JZ
, implying that (4.50)

is satisfied if we choose

δ = min

(
c2ε2(1− c)2

256(1 + c)2e1/4JZ
, Y − Z,

c2ε2

256KZ

)
. (4.51)

Define the map

Q : ΛZ 
→ ΛZ ,

(Qβ)(z) =
2(c+ 1)

c− 1
h3(z, z).
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Note that if we choose KZ ≥ 8(1+c)2

(1−c)2
JZ , from (4.48) we have

||Qβ||2L2[Z,Z+δ] =
4(1 + c)2

(1− c)2

∫ Z+δ

Z

h2
3 dz ≤ 8(1 + c)2

(1− c)2
JZ ≤ KZ ,

which implies that the map Q is well defined, and from (4.50) we have

||Qβ −Qβ̃||2L2[Z,Z+δ] =
4(1 + c)2

(1− c)2
||(h3 − h̃3)(z, z)||2L2[Z,Z+δ] ≤

1

2
||β − β̃||2L2[Z,Z+δ],

(4.52)

and hence Q is a contraction. Since C1 is dense in L2, Q has an extension Q̃ : ΘZ → ΘZ

which is still a contraction. So Q̃ has a fixed point β ∈ ΘZ . Since KZ ≥ 8(1+c)2

(1−c)2
JZ , we

have

c2ε2(1− c)2

256(1 + c)2e1/4JZ
≥ c2ε2

256KZ

.

So from (4.51), one can choose δ = min
(
Y − Z, c2ε2

256KZ

)
.

Let {βi} ∈ ΛZ be a sequence which converges to the fixed point β in the L2 norm. Let

h(z, t) ∈ L2(D̃Z,δ) be the weak solution of (4.42a)−(4.42c) corresponding to β(z) ∈ ΘZ .

If hi ∈ C1(D̃Z,δ) is the the solution of (4.42a)− (4.42c) corresponding to βi, then from

(4.50), (hi)3(z, z) is a Cauchy sequence in L2[Z,Z + δ] whose limit is h3(z, z), so

Q̃β = lim
i→∞

Qβi = lim
i→∞

2(c+ 1)

c− 1
(hi)3(z, z) =

2(c+ 1)

c− 1
h3(z, z),

which implies that h3 has a trace on z = t and

2(c+ 1)

c− 1
h3(z, z) = β(z).

Recall that we defined the forward map F

F : Ċ1[0, T ] 
→ C1[0, 2T ]× C1[0, 2T ],

(Fβ)(z) = [m1(0, t),m3(0, t)]

where m is the solution of (4.15a)− (4.15c).
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Theorem 4.4. If φ(t), ψ(t) is in the range of F , then we can construct the unique

β(z) ∈ Ċ1[0, Y ] that corresponds to this φ, ψ and a function h(z, t) ∈ C1(D̃) so that

Lh = 0 in D̃, (4.53a)

h2(0, t) = h4(0, t) = 0, h1(0, t) = φ(t), h3(0, t) = ψ(t), 0 ≤ t ≤ 2T, (4.53b)

h3(z, z) =
(c− 1)2

(c+ 1)2
h4(z, z), 0 ≤ z ≤ Y, (4.53c)

for which

h3(z, z) =
c− 1

2(c+ 1)
β(z), 0 ≤ z ≤ Y. (4.54)

Note that if φ(t), ψ(t) is in the range of F , and (4.54) is satisfied, then from the

uniqueness of the solution of the sideways problem (4.29a) − (4.29c), the remaining

boundary condition

h1(z, z) = 0

is also satisfied.

Proof. The reconstruction of β is done by a repeated application of Proposition 4.7

with a predetermined constant δ > 0.

Since φ(·), ψ(·) is in the range of F , there is a β ∈ Ċ1[0, Y ] and an m(z, t) ∈ C1(D̃)

so that (4.15a) − (4.15c) holds and m1(0, t) = φ(t) and m3(0, t) = ψ(t). Let h(t, z) =

m(t, z); then h(t, z) is the solution of (4.29a)− (4.29c) corresponding to β. Hence from

(4.18) in Proposition 4.1

J(h, z) ≤ J(h, 0)e4
√
Y ||β||L2[0,Y ]/(cε)

= (||φ(·)||2L2[0,2T ] + ||ψ(·)||2L2[0,2T ])e
4
√
Y ||β||L2[0,Y ]/(cε), ∀z ∈ [0, Y ]. (4.55)

(4.55), combined with (4.43), suggests how to define K0, δ0 that will work for all Z ∈
[0, Y ]. Define K0, δ0 by

K0 =
8(1 + c)2

(1− c)2
(||φ||2L2[0,2T ] + ||ψ||2L2[0,2T ])e

4
√
Y ||β||L2[0,Y ]/(cε),

δ0 = min

(
c2ε2

256K0

, Y

)
.
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Now we proceed to construct the unique h(z, t) and β(z) satisfying (4.53a)−(4.54). We

start by applying Proposition 4.7 with Z = 0, δ = δ0, d = φ, f = ψ, e = g = 0, then one

can recover β(z) within the interval [0, δ0]. Then similarly, for the next step, one can

apply Proposition 4.7 with Z = δ0, δ = δ0, d = h1(δ0, t), e = h2(δ0, t), f = h3(δ0, t), g =

h4(δ0, t), and recover β(z) through [δ0, 2δ0], and so on. Finally, the iteration will stop

after N = Y
δ0

steps, and one can recover β(z) in the whole interval [0, Y ].

4.3 Summary

We summarize the main results obtained for the inverse problem. If the source comes

from the fast channel, we can reconstruct β from the full reflection data m1(0, ·) and
m3(0, ·) (knowing only one of them is not enough). Given only m3(0, ·), we can only

show the injectivity and continuity of β corresponding to the reflection data in the max

norm, and can not reconstruct β.
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Chapter 5

NUMERICAL WORK

In this chapter we recover β(z) numerically from the reflection boundary data.

Let 0 < c < 1, T > 0 and Y = 2cT
1+c

. Define (see Figure 5.1)

Df := {(z, t) | 0 ≤ z ≤ T, z ≤ t ≤ 2T − z},
Ds := {(z, t) | 0 ≤ z ≤ Y, z ≤ t ≤ 2T − z/c},

the domains for the forward and the sideways problem.

Figure 5.1: Domains for the forward and sideways problem
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Let m(z, t) be the solution of the CBVP

Lm = 0 in Df , (5.1a)

m2(0, t) = m4(0, t) = 0, t ∈ [0, 2T ], (5.1b)

m1(z, z) = 0, m3(z, z) =
c− 1

2(c+ 1)
β(z), m4(z, z) =

c+ 1

2(c− 1)
β(z), z ∈ [0, T ].

(5.1c)

We recover β(z) on z ∈ [0, Y ] from the knowledge ofm1(0, t) andm3(0, t) for t ∈ [0, 2T ].

Given the full reflection data d1(t) = m1(0, t) and d3(t) = m3(0, t), we define the map

Q

C1[0, Y ] 
→ C1[0, Y ],

β(z) → 2(c+ 1)

c− 1
p3(z, z),

where p(z, t) is the solution of the following sideways CBVP

Lp = 0 in Ds, (5.2a)

p2(0, t) = p4(0, t) = 0, p1(0, t) = d1(t), p3(0, t) = d3(t), t ∈ [0, 2T ], (5.2b)

p4(z, z) =
(c+ 1)2

(c− 1)2
p3(z, z), z ∈ [0, Y ]. (5.2c)

We have shown in Proposition 4.7 that Q has a unique fixed point, and we recover β(z)

by finding the unique fixed point of Q via the following recursive scheme

i) guess a β;

ii) solve the sideways problem (5.2a)− (5.2c);

iii) if ||β − 2(c+ 1)

c− 1
p3(z, z)||L∞[0,Y ] is within some tolerance (usually 0 numerically),

then stop, and this is the correct β, otherwise set β(z) =
2(c+ 1)

c− 1
p3(z, z),

and go to step ii.

68



5.1 The Forward Problem

To generate the reflection data, we build a forward solver for the following inhomo-

geneous CBVP for arbitrary functions F(z, t) ∈ C1(Df ) and f(t) ∈ C1[0, 2T ], g(t) ∈
Ċ1[0, 2T ] and h1(z), h3(z) ∈ C1[0, T ], , h4(z) ∈ Ċ1[0, T ] and β(z) ∈ C1[0, T ].

Lu = F in Df , (5.3a)

u2(0, t) = f(t), u4(0, t) = g(t), t ∈ [0, 2T ], (5.3b)

u1(z, z) = h1(z), u3(z, z) = h3(z), u4(z, z) = h4(z), z ∈ [0, T ]. (5.3c)

We rewrite (5.3a) as:

du

dc
= βCu+ F, (5.4)

where du
dc

denote differentiation along the characteristics. We solve (5.4) using finite

differences and the method of characteristics together with interpolation. Please refer

to Figure 5.2 for the details of the scheme.

We implemented the Crank-Nicolson method to solve the ODE along the characteris-

tics, which gives second order convergence rate in space and time, and unconditional

stability. We tested the forward solver with various choices of elementary functions

for β,F and boundary conditions, e.g. polynomials, trig, log, exponential, and their

composition.

We applied our scheme to the following example. We chose c = 0.5, T = 2π, and
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Figure 5.2: Solution of the forward problem

β(z) = z sin(100z) log(z + 1), (5.5a)

u1(z, t) = 2z2 + 3t2 + 4zt+ z + t+ 1, (5.5b)

u2(z, t) = ez+t, (5.5c)

u3(z, t) = 1 + log(z + ct+ 1), (5.5d)

u4(z, t) = cos(100z − ct), (5.5e)

F = Lu. (5.5f)

Let Nt, Nz be the number of grid points in t and z directions, and let {zi}, i = 1, ..., Nz

and {tj}, j = 1, ..., Nt be the grid points in t and z directions. Let u, ũ be the exact

and numerical solutions of (5.3a) − (5.3c). Define the L2 error vectors E, Ẽ and the
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maximum relative error vectors R, R̃ in t and z directions as follows

Ek(tj) :=

√√√√ T

Nz

Nz∑
i=1

(uk − ũk)
2(zi, tj), k = 1, ..., 4, j = 1, ..., Nt,

Ẽk(zi) :=

√√√√ T

Nt

Nt∑
j=1

(uk − ũk)
2(zi, tj), k = 1, ..., 4, i = 1, ..., Nz,

Rk(tj) := max
uk(zi,tj) 	=0

∣∣∣∣(uk − ũk)(zi, tj)

uk(zi, tj)

∣∣∣∣ , k = 1, ..., 4, j = 1, ..., Nt,

R̃k(zi) := max
uk(zi,tj) 	=0

∣∣∣∣(uk − ũk)(zi, tj)

uk(zi, tj)

∣∣∣∣ , k = 1, ..., 4, i = 1, ..., Nz.

Figure 5.3 plots R̃1(0), R̃3(0), Ẽ1(0), Ẽ3(0); Figure 5.4 plots Rk(T ), k = 1, ..., 4; Figure

5.5 plots Ek(T ), k = 1, ..., 4 for different number of grid points. All the plots are in log

scale.

5.2 The Sideways Problem

Given the relfection data m1(0, t) and m3(0, t), the recursive scheme to obtain β(z)

requires solving the sideways problem (5.2a)− (5.2c). So we build a sideways problem

solver by numerically implementing the following more generalized sideways problem

Lu = F in Ds, (5.7a)

ui(0, t) = fi(t), i = 1, 2, 3, 4, t ∈ [0, 2T ], (5.7b)

u4(z, z) =
(1 + c)2

(1− c)2
u3(z, z), z ∈ [0, Y ] (5.7c)

for arbitrary functions F(z, t) ∈ C1(Ds) and f(t) ∈ C1[0, 2T ] and g(z), β(z) ∈ C1[0, Y ].

Again, we use Crank-Nicolson method with interpolation to solve (5.4) (see Figure 5.6)

We test the algorithm for the sideways problem by applying it to the example in

(5.5a)− (5.5f). Let N be the number of grid points, and {zi}, i = 1, ..., N be the grid

71



10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

step size

m
ax

 r
el

at
iv

e
 e

rr
or

 in
 u

1(0
,t)

max relative error in u
1
(0,t) in log scale

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

step size

m
ax

 r
el

at
iv

e
 e

rr
or

 in
 u

3(0
,t)

max relative error in u
3
(0,t) in log scale

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

10
2

step size

L2  e
rr

or
 in

 u
1(0

,t)

L2 error in u
1
(0,t) in log scale

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

step size

L2  e
rr

or
 in

 u
3(0

,t)

L2 error in u
3
(0,t) in log scale

 

 

numerical result

a line with slope 2

Figure 5.3: R̃1(0), R̃3(0), Ẽ1(0), Ẽ3(0)

points in z direction. Let u and ũ be the exact and numerical solution of (5.7a)−(5.7c),

define the L2 and maximum relative errors vectors L,R as follows

Lk :=

√√√√Y

N

N∑
i=1

(uk − ũk)
2(zi, zi), k = 1, 2, 3, 4,

Rk := max
uk(zi,zi) 	=0

∣∣∣∣(uk − ũk)(zi, zi)

uk(zi, zi)

∣∣∣∣ , k = 1, 2, 3, 4.

Figure 5.7 plots Pk, k = 1, 2, 3, 4; Figure 5.8 plots Lk, k = 1, 2, 3, 4. All plots are in log

scale.
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Figure 5.4: Rk(T ), k = 1, ..., 4

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

10
2

step size

L2  e
rr

or
 in

 u
i(z

,T
)

L2 error in u
1
(z,T) in log scale

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

10
2

step size

L2  e
rr

or
 in

 u
2(z

,T
)

L2 error in u
2
(z,T) in log scale

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

step size

L2  e
rr

or
 in

 u
3(z

,T
)

L2 error in u
3
(z,T) in log scale

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

step size

L2  e
rr

or
 in

 u
4(z

,T
)

L2 error in u
4
(z,T) in log scale

 

 

numerical result

a line with slope 2

Figure 5.5: Ek(T ), k = 1, ..., 4
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Figure 5.6: Solution of the sideways problem

5.3 Coefficient Recovery

We want to recover β(z) numerically from the following CBVP

Lm = 0 in Df , (5.8a)

m2(0, t) = m4(0, t) = 0, t ∈ [0, 2T ], (5.8b)

m1(z, z) = 0, m3(z, z) =
c− 1

2(c+ 1)
β(z), m4(z, z) =

c+ 1

2(c− 1)
β(z), z ∈ [0, T ].

(5.8c)

We first solve the forward problem (5.8a)− (5.8c) to get the full reflection data d1(t) =

m1(0, t) and d3(t) = m3(0, t), then we use the reflection data d1(t) and d3(t) to solve

the sideways CBVP

Lp = 0 in Ds, (5.9a)

p2(0, t) = p4(0, t) = 0, p1(0, t) = d1(t), p3(0, t) = d3(t), t ∈ [0, 2T ], (5.9b)

p4(z, z) =
(c+ 1)2

(c− 1)2
p3(z, z), z ∈ [0, Y ]. (5.9c)

74



10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

step size

m
ax

 r
el

at
iv

e
 e

rr
or

 in
 u

1(z
,z

)

max relative error in u
1
(z,z)

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

step size

m
ax

 r
el

at
iv

e
 e

rr
or

 in
 u

2(z
,z

)

max relative error in u
2
(z,z)

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

step size

m
ax

 r
el

at
iv

e
 e

rr
or

 in
 u

3(z
,z

)

max relative error in u
3
(z,z)

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

step size

m
ax

 r
el

at
iv

e
 e

rr
or

 in
 u

4(z
,z

)

max relative error in u
4
(z,z)

Figure 5.7: Rk, k = 1, 2, 3, 4

for different β and then use a fixed point method to determine the correct β. Consider

the map Q

C1[0, Y ] → C1[0, Y ],

β(z) → 2(c+ 1)

c− 1
p3(z, z).

We have shown in Proposition 4.7 that β is the unique fixed point of Q and we find β

using the following recursive scheme:

i) guess a β;

ii) solve the sideways problem (5.2a)− (5.2c);

iii) if ||β − 2(c+ 1)

c− 1
p3(z, z)||L∞[0,Y ] is within some tolerance (usually 0 numerically),

then stop, and this is the correct β, otherwise set β(z) =
2(c+ 1)

c− 1
p3(z, z),

and go to step ii.
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Figure 5.8: Lk, k = 1, 2, 3, 4

We use the Crank-Nicolson method with interpolation to solve (5.8a) − (5.8c) and

(5.9a) − (5.9c) as in section 5.1 and 5.2. In the following examples, we take c =

0.5, T = π
2
. Let N be the number of grid points, and {zi}, i = 1, ..., N be the grid

points in z direction. Let β and β̃ be the exact and numerical value of the coefficient,

define the L2 error L and the maximum relative error R as follows

L :=

√√√√ T

N

N∑
i=1

(β − β̃)2(zi),

R := max
β(zi) 	=0

∣∣∣∣∣
(β − β̃)(zi)

β(zi)

∣∣∣∣∣ .

5.3.1 First Example

Here we choose β(z) = z sin(100z) log(z + 1), and the initial guess of β is βig(z) = z.

Figure 5.9 plots L and P in log scale for different step sizes; Table 5.1 shows the number

of iterations for each step size; Figure 5.10 plots the exact and numerical result of β(z).
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Figure 5.9: L and R errors

# of grid points in z direction 26 27 28 29 210 211

# of iterations 17 17 17 17 17 17

Table 5.1: Iterations needed for the inversion

5.3.2 Second Example

Here we choose β(z) = 9z2 cos(100z) log(z+1), and the initial guess of β is βig(z) = z.

Figure 5.11 plots L and P in log scale for different step sizes; Table 5.2 shows the

number of iterations for each step size; Figure 5.12 plots the exact and numerical

result of β(z).

# of grid points in z direction 26 27 28 29 210 211

# of iterations 14 14 14 14 14 14

Table 5.2: Iterations needed for the inversion
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Figure 5.10: Comparing exact β with reconstructed β
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Figure 5.11: L and P errors
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Figure 5.12: Comparing exact β with reconstructed β

5.3.3 Third Example

Here we choose β(z) = z sin(100z)eaz for a ∈ N, and the initial guess of β is βig(z) = z.

Table 5.3 shows the maximum value of a such that the algorithm will coverge. So when

the exponential function eaz is involved, the algorithm needs more grid points to find

the fixed point, while in the same time increasing the running time.

# of grid points in z direction 26 27 28 29 210 211

max value of a 3 4 4 5 5 6

Table 5.3: Max value of a for the algorithm to converge
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Chapter 6

INVERSE PROBLEM WITH TRANSMISSION DATA

In previous chapters, we discussed the recovery of the coefficient of a hyperbolic system

of PDEs from the reflection data, where the source and receiver are at the same end.

In this chapter, we discuss the recovery of β(z) from the transmission data, where the

source and receiver are at different ends.

6.1 Introduction

Let 0 < c < 1, Z > 0 and define

Ċ1
Z [0,∞) := {β(z) ∈ Ċ1[0,∞) | β(z) = 0 for z ≥ Z}.

Consider the IBVP

Mt − AMz − βBM = 0, z ≥ 0, t ∈ R, (6.1a)

(M1 −M2)(0, t) = δ(t), (M3 −M4)(0, t) = 0, t ∈ R, (6.1b)

M(z, t) = 0, t < 0, (6.1c)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 c 0

0 0 0 −c

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1− c −1 + c

0 0 1− c 1 + c

1 + c −1 + c 0 0

1− c −1− c 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

with M1,M3 denoting the left moving waves with speed 1 and c, and M2,M4 denoting

the right moving waves with speed 1 and c. (See Figure 6.1)
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Figure 6.1: Left and right moving waves

Note that the boundary condition (6.1b) is different from the boundary condition

(4.1b) used for the reflection data inverse problem. (4.1b) corresponds to an incoming

delta function plane wave of speed 1 with the z = 0 boundary being transparent. The

boundary condition (6.1b) also corresponds to an incoming plane of speed 1 but the

boundary z = 0 is now fully reflecting. The boundary z = 0 being fully reflecting is

important for the solution of the transmission data inverse problem.

Since the source is localized to (z = 0, t = 0), from the speed of propagation we

obtain that M1(Z, t) = 0,M3(Z, t) = 0 for t < Z. Since β(z) = 0 for z ≥ Z, we have

M1(Z, t) = M3(Z, t) = 0, t ∈ R because nothing comes from the right of the bound-

ary z = Z. So the goal is to recover β(z) from the transmission data M2(Z, t) and

M4(Z, t) or more, which means that we may also need the transmission data M̃2(Z, t)
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and M̃4(Z, t) where M̃(z, t) is the solution of the IBVP

M̃t − AM̃z − βBM̃ = 0, z ≥ 0, t ∈ R, (6.2a)

(M̃1 − M̃2)(0, t) = 0, (M̃3 − M̃4)(0, t) = δ(t), t ∈ R, (6.2b)

M̃(z, t) = 0, t < 0. (6.2c)

Much work has been done on one dimensional inverse problems for the wave equation,

but most of it has been on inversion from reflection data, where the source and re-

ceiver are at the same location. Inversion from reflection data has been thoroughly

analyzed, see [22] and [26] for reference. Inversion from transmission plus reflection

data is analyzed in [12]. Inversion from reflection data is in some sense a local problem

since M(0, t) for t ∈ [0, Z] is influenced by the value of β(z) only if z ∈ [0, Z/2]. This

allows the use of so-called layer stripping techniques to resolve the inverse reflection

problem. In contrast, for inversion from transmission data M(Z, t), even the earliest

signal sensed at z = Z has been influenced by the complete medium z ∈ [0, Z], which

makes inversion from transmission data more difficult.

Rakesh and Sacks in [18] showed how to recover coefficients from transmission data

for the Webster’s Horn equation, based on an idea of Claerbout in [11] for solving the

discrete version of that problem. Rakesh in [16] proved an analogue of the result in

[18] for the one dimensional plasma equation. Suppose q(z) ∈ C[0,∞) and is zero for

z ≥ Z for some known positive number Z. Consider the IBVP

utt − uzz + q(z)u = 0, z ≥ 0, t ∈ R, (6.3a)

u = 0, t < 0, (6.3b)

uz(0, t) = −δ(t), t ∈ R. (6.3c)

The author showed that q may be reconstructed from the transmission data m(t) =

u(Z, t)−H(t− Z) provided we are given an upper bound on ||q||∞. The main step is

82



to relate the transmission data to the reflection data for a related problem, for which

one can apply downward continuation method. Consider the Goursat problem

Ftt − Fzz + qF = 0, |t| ≤ z, (6.4a)

F (z,±z) =
1

4

∫ z

0

q(σ) dσ, z ≥ 0. (6.4b)

Rakesh in [16] showed that

F (Z, t) =
1

2
[α(Z + t) + α(Z − t)− α(2Z)], (6.5a)

Fz(Z, t) =
1

2
[α′(Z + t) + α′(Z − t)], (6.5b)

where

m′(t+ Z) + α(t) +

∫ t

0

m′(Z + t− s)α(s) ds = 0, 0 ≤ t ≤ 2Z. (6.6)

So given the transmission data m(t) for t ∈ [Z, 3Z], one can solve the Volterra equa-

tion (6.6) to get α(t) for t ∈ [0, 2Z], then from (6.5a)− (6.5b), one can obtain the data

F (Z, t) and Fz(Z, t) in t ∈ [0, 2Z] for the reflection problem (6.4a)− (6.4b). So one can

apply downward continuation method to recover q(z) for z ∈ [0, Z].

So far, for the transmission data inverse problem, all work has been for a single speed

PDE. Here we study the two speed inverse transmission data problem.

In this chapter we obtain an upper bound of the coefficient in terms of the trans-

mission data in an infinite interval.

If M(z, t) satisfies (6.1a)− (6.1c) and M̃(z, t) satisfies (6.2a)− (6.2c) corresponding to

β ∈ Ċ1
Z [0,∞), then using the progressing wave expansion

M(z, t) = δ(t− z)[0,−1, 0, 0]T +m(z, t)H(t− z), z ≥ 0, t ∈ R, (6.7a)

M̃(z, t) = δ(t− z/c)[0, 0, 0,−1]T + m̃(z, t)H(t− z), z ≥ 0, t ∈ R, (6.7b)
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where m(z, t) is supported in t ≥ z and satisfies the CBVP

mt − Amz − βBm = 0, 0 ≤ z ≤ t, (6.8a)

(m1 −m2)(0, t) = 0, (m3 −m4)(0, t) = 0, t ≥ 0, (6.8b)

m1(z, z) = 0, m3(z, z) =
1− c

2(c+ 1)
β(z), m4(z, z) =

c+ 1

2(1− c)
β(z), z ≥ 0. (6.8c)

and m̃(z, t) =

⎧⎨
⎩

g̃(z, t), 0 ≤ z ≤ ct

f̃(z, t), 0 ≤ ct ≤ z ≤ t
is supported in t ≥ z and satisfies the CBVP

Lg̃ = 0, 0 ≤ z ≤ ct, (6.9a)

Lf̃ = 0, 0 ≤ ct ≤ z ≤ t, (6.9b)

(g̃1 − f̃1)(z, z/c) =
c(1− c)

2(1 + c)
β(z), (g̃2 − f̃2)(z, z/c) =

c(1 + c)

2(1− c)
β(z),

(g̃3 − f̃3)(z, z/c) = 0, z ≥ 0, (6.9c)

f̃1(z, z) = f̃3(z, z) = f̃4(z, z) = 0, z ≥ 0, (6.9d)

g̃1(0, t) = g̃2(0, t), g̃3(0, t) = g̃4(0, t), t ≥ 0. (6.9e)

Also note that since M1(Z, ·) = M3(Z, ·) = 0 and M̃1(Z, ·) = M̃3(Z, ·) = 0 we will have

m1(Z, t) = 0, m3(Z, t) = 0, t ≥ Z. (6.10a)

m̃1(Z, t) = 0, m̃3(Z, t) = 0, t ≥ Z.. (6.10b)

Theorem 6.1. If m(z, t) is the solution of (6.8a)− (6.8c) for β(z) ∈ Ċ1
Z [0,∞), then

C||β||2L2[0,Z] =

∫ ∞

Z

(m2
2 + cm2

4)(Z, t) dt, (6.11)

where C = 1
4

(
(1−c)2

1+c
+ (1+c)2

1−c

)
.

We also obtain a relation between the reflection data m1(0, ·),m3(0, ·) and the trans-

mission data m2(Z, ·),m4(Z, ·) and m̃2(Z, ·), m̃4(Z, ·).
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Theorem 6.2. If m(z, t) and m̃(z, t) are the solution of (6.8a)− (6.8c) and (6.9a)−
(6.9e) corresponding to β(z) ∈ Ċ1

Z [0,∞), then for s > 0 we have

m1(0, s) = m2(Z,Z + s)−m2(Z,−s) ∗m2(Z, s)− cm4(Z,−s) ∗m4(Z, s), (6.12a)

cm3(0, s) = cm4(Z,Z/c+ s)−m2(Z, s) ∗ m̃2(Z,−s)− cm4(Z, s) ∗ m̃4(Z,−s),

(6.12b)

where ∗ stands for convolution with respect to s.

The boundary condition (6.1b) and (6.2b) play an important role in obtaining (6.12a)−
(6.12b). One can not obtain a relation of the type (6.12a)− (6.12b) if (6.1b) and (6.2b)

were replaced by the boundary condition used in Chapters 2-5 for the inversion from

the reflection data problem, namely,

M2(0, t) = δ(t), M4(0, t) = 0, t ∈ R.

Given the transmission data M2(Z, t) and M4(Z, t) for t ∈ R, one can compute the

reflection data M1(0, s) and M3(0, s) for s ∈ R from Theorem 6.2. One can then ap-

ply a downward continuation method similar to the one used in Chapter 4 to recover

β(z) step by step through the z direction. However, this conversion of a transmission

data inverse problem to a reflection data inverse problem requires knowledge of the

transmission data over an infinite time interval. We would prefer to be able to do this

with transmission data over a finite time interval as done in [18] for the single speed

problem, but we are unable to do that. A lower bound on the step size is guaranteed

because we obtain an upper bound of the coefficient β(z) in terms of the transmission

data M2(Z, t) and M4(Z, t) in Theorem 6.1.

In the following sections, we first show the well-posedness of (6.1a) − (6.1c), then

we analyze the linearized problem of (6.1a) − (6.1c) for β = 0, which gives an indi-

cation of what transmission data we need. Next we show that the solution m(z, t) of

(6.8a) − (6.8c) decays as t → ∞, which is essential for obtaining the upper bound of

β in terms of the transmission data. Lastly, we show a relation between reflection and

transmission data.
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6.2 Well-posedness of the Transmission Problem

In this section we study the existence and uniqueness of the solution of (6.8a)− (6.8c).

Let 0 < c < 1, Z > 0, and define (see Figure 6.2)

DZ := {(z, t) | 0 ≤ z ≤ Z, z ≤ t ≤ 2Z − z}.

Figure 6.2: The region DZ

Proposition 6.1. If β(z) ∈ Ċ1
Z [0,∞), then (6.8a) − (6.8c) has a unique solution

m(z, t) ∈ C1(DZ) for Z > 0.

Proof. Define r(m, z, t) := β(z)Bm(z, t) and pick an arbitrary point P (z, t) ∈ DZ (see

Figure 6.3). Integrating (6.8a) and using the boundary conditions, we have
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Figure 6.3: Downward moving lines through P (z, t) with slopes ±1 and ±1/c

m1(z, t) =

∫ t

sC

r1(m, z + t− s, s) ds, (6.13a)

m2(z, t) =

∫ t

sD

r2(m, s+ z − t, s) ds+

∫ sD

sE

r1(v, z + t− s, s) ds, (6.13b)

m3(z, t) =

∫ t

sF

r3(m, z + ct− cs, s) ds+
1− c

2(c+ 1)
β(yF ), (6.13c)

m4(z, t) =

⎧⎨
⎩

∫ t

sH
r4(m, cs+ z − ct, s) ds+ c+1

2(1−c)
β(yH), if z ≥ ct∫ t

sG
r4(m, cs+ z − ct, s) ds+

∫ sG
sH

r3(m, z + ct− cs, y) ds+ 1−c
2(c+1)

β(yH), if z ≤ ct

(6.13d)

One may verify from Figure 6.3 that 0 ≤ sC , sD, sE, sF , sG, sH ≤ t, so from Theorem

3.1, (6.13a) − (6.13d) has a unique solution m(z, t) ∈ C1(OBI) ∪ C1(OAI). Since

β ∈ Ċ1
Z [0,∞), one can use an argument similar to the proof of Proposition 3.1 to show

that m ∈ C1(DZ).

6.3 Linearization on β = 0

In this section we analyze the linearization of (6.8a) − (6.8c) around β = 0 to get

an indication of what transmission data we need for the inverse problem. Define the
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forward map

F : Ċ1
Z [0,∞) → C1[Z,∞)× C1[Z,∞),

β(z) → (m2(Z, t),m4(Z, t)),

which maps the coefficient to the transmission data. We analyze the formal derivative

of F at β = 0, namely

F ′ : Ċ1
Z [0,∞) → C1[Z,∞)× C1[Z,∞),

dβ(z) → (dm2(Z, t), dm4(Z, t)),

where dβ is a small perturbation of β and dm is the small perturbation of the solution

of (6.8a)− (6.8c) corresponding to β, that is, m+ dm is the solution of (6.8a)− (6.8c)

corresponding to β + dβ. Hence from (6.8a)

(m+ dm)t − A(m+ dm)z − (β + dβ)B(m+ dm) = 0. (6.14)

If we subtract (6.8a) from (6.14) for β = 0, and only keep the linear terms, we have

(dm)t − A(dm)z = (dβ)Bm in z ≥ 0, t ≥ z. (6.15)

When β = 0, the solution of (6.8a)− (6.8c) is m(z, t) = 0. So (6.15) becomes

(dm)t − A(dm)z = 0 in z ≥ 0, t ≥ z, (6.16)

with the boundary conditions

(dm)1(0, t) = (dm)2(0, t), (dm)3(0, t) = (dm)4(0, t), t ≥ 0, (6.17a)

(dm)1(z, z) = 0, (dm)3(z, z) =
1− c

2(c+ 1)
(dβ)(z), (dm)4(z, z) =

c+ 1

2(1− c)
(dβ)(z), z ≥ 0.

(6.17b)

Integrating the (dm)2 and (dm)4 equations of (6.16) and using (6.17a) − (6.17b), we

have (see Figure 6.4)

(dm)2(Z, t) =

∫ t

sD

0 ds+

∫ sD

sE

0 ds+ (dm)1(yE, yE) = 0, t ≥ Z,

(dm)4(Z, t) =

∫ t

sF

0 ds+ (dm)4(yF , yF ) =
c+ 1

2(1− c)
(δβ)

(
Z − ct

1− c

)
, t ≥ Z,

which implies that one needs m4(Z, t) in [Z,Z/c] to recover β in [0, Z].
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Figure 6.4: Rays for the linearized problem

6.4 Estimating β by the Transmission Data

We now prove Theorem 6.1 whose proof will also need an energy decay result which is

also proved here.

For Z > 0, define (see Figure 6.5)

D := {(z, t) | 0 ≤ z ≤ t},
DZ := {(z, t) | 0 ≤ z ≤ Z, t ≥ z}.

For any four-dimensional vector functionm(z, t) ∈ C([0, Z]×R), define the time energy

E(m, t) :=
4∑

i=1

∫ Z

0

mi(z, t) dz, t ≥ Z.

Proof of Theorem 6.1:
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Figure 6.5: The region DZ

Proof. Let m(z, t) ∈ C1(D) be the solution of (6.8a) − (6.8c), then multiplying both

sides of (6.8a) by 2mT we have

Ut − Vz = 2βmTBm = 0, (6.18)

where U = m2
1 +m2

2 +m2
3 +m2

4, V = m2
1 −m2

2 + cm2
3 − cm2

4. Integrating (6.18) over

the trapezoidal region OABC (see Figure 6.5), we have

0 =

∫
∂OABC

(m2
1 +m2

2 +m2
3 +m2

4) dz +

∫
∂OABC

(m2
1 −m2

2 + cm2
3 − cm2

4) dt

=

∫
OA

(2m2
1 + (1 + c)m2

3 + (1− c)m2
4) dt−

∫ t

Z

(m2
2 + cm2

4)(Z, s) ds− E(m, t)

=C||β||2L2[0,Z] −
∫ t

Z

(m2
2 + cm2

4)(Z, s) ds− E(m, t),

where C = 1
4

(
(1−c)2

1+c
+ (1+c)2

1−c

)
, which implies that

C||β||2L2[0,Z] =

∫ t

Z

(m2
2 + cm2

4)(Z, s) ds+ E(m, t), t ≥ Z. (6.19)

Since m(Z, t) = 0 for t < Z, from (6.10a) and (6.19) we have

∫ ∞

−∞
(m2

1 +m2
2 +m2

3 + cm2
4)(Z, s) ds =

∫ ∞

Z

(m2
2 + cm2

4)(Z, s) ds ≤ C||β||2L2[0,Z],
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implying that m(Z, t) ∈ L2[Z,∞), and since (as shown in Proposition 6.2 below)

lim
t→∞

E(m, t) = 0, we obtain (6.11).

Proposition 6.2. If β ∈ Ċ1
Z [0,∞) and m(z, t) ∈ C1(D) is the solution of (6.8a) −

(6.8c), then lim
t→∞

E(m, t) = 0.

Proof. Fix T > 1+c
c
Z and choose a > 0 so that T − a ≥ 1+c

c
Z. Define (see region

ABCD in Figure 6.6)

D(a, T ) := {(y, s) | 0 ≤ y ≤ Z,−y + c(T − a) ≤ cs ≤ y + c(T + a)}.

In Figure 6.6, CB and HG are lines of slope −1/c, and DA is a line of slope 1/c.

Figure 6.6: Energy Decay

Let m(z, t) be the solution of (6.8a) − (6.8c) and define u := [m1,−m2,m3,−m4]
T .

Multiplying both sides of (6.8a) by 2uT , we have

Ht −Gz = 2βuTBm, (6.20)
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where H = m2
1 −m2

2 +m2
3 −m2

4, G = m2
1 +m2

2 + cm2
3 + cm2

4. Define (see Figure 6.6)

V (m, z;T, a) :=

∫
FE

(m2
1 +m2

2 + cm2
3 + cm2

4)(z, s) ds, z ∈ [0, Z].

Integrating both sides of (6.20) over ABFE we have∫∫
ABFE

LHS of (6.20) dA

=−
∫
BA

G dt+

∫
BF

G dt+

∫
FE

G dt+

∫
EA

Gdt− c

∫
BF

H dt+ c

∫
EA

H dt

=− V (m, Z;T, a) + V (m, z;T, a) +

∫
EA

((1 + c)m2
1 + (1− c)m2

2 + 2cm2
3) dt

+

∫
BF

((1− c)m2
1 + (1 + c)m2

2 + 2cm2
4) dt (6.21)

and ∫∫
ABFE

|RHS of (6.20)| dA ≤ 4
4∑

i=1

∫∫
ABFE

|β(y)|m2
i (y, t) dA

≤ 4

c

∫ Z

z

|β(y)|V (m, y;T, a) dy. (6.22)

Then from (6.21)− (6.22)

V (m, z;T, a) ≤ V (m, Z;T, a) +
4

c

∫ Z

z

|β(y)|V (m, y;T, a) dy,

and hence from Gronwall’s inequality

V (m, z;T, a) ≤ V (m, Z;T, a)e
4
c

∫ Z
0 |β(z)|dz ≤ e

4
c
||β||L2[0,Z]

√
ZV (m, Z;T, a), z ∈ [0, Z].

(6.23)

Similarly, multiplying both sides of (6.8a) by 2mT we have

Ut − Vz = 2βmTBm = 0, (6.24)

where U = m2
1 +m2

2 +m2
3 +m2

4, V = m2
1 −m2

2 + cm2
3 − cm2

4. Integrating (6.24) over

PQSR (see Figure 6.6), and using (6.8b) and (6.10a) we have

0 =

∫
∂PQSR

(m2
1 +m2

2 +m2
3 +m2

4) dz + (m2
1 −m2

2 + cm2
3 − cm2

4) dt

=−
∫
QS

(m2
2 + cm2

4) dt− E(m, t2) + E(m, t1),
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which implies that

E(m, t2) ≤ E(m, t1), 0 ≤ Z ≤ t1 ≤ t2. (6.25)

From (6.25) and (6.23), we have

aE(m, T ) ≤
∫ T

T−a

E(m, s) ds ≤
4∑

i=1

∫∫
ABCD

m2
i dA ≤ 1

c

∫ Z

0

V (m, z;T, a) dz

≤ 1

c
e

4
c
||β||L2[0,Z]

√
Z

∫ Z

0

V (m, Z;T, a) dz =
Z

c
e

4
c
||β||L2[0,Z]

√
ZV (m, Z;T, a)

=
Ze

4
c
||β||L2[0,Z]

√
Z

c

∫ T+(Z
c
+a)

T−(Z
c
+a)

(m2
1 +m2

2 + cm2
3 + cm2

4)(Z, s) ds.

Since m(Z, t) ∈ L2[Z,∞), the integral on the right approaches zero as t → ∞, and

hence E(m, t) approaches zero as t approaches infinity.

6.5 Relation between Reflection and Transmission Data

In this section we obtain the relation between reflection and transmission data for

(6.1a)− (6.1c) and (6.2a)− (6.2c).

Proof of Theorem 6.2:

Proof. We give a formal proof using the distribution solutions M(z, t). A rigorous

proof using the smoother part m(z, t) can be constructed along the same lines except

instead of obtaining functional values obtained by integrating a dirac delta distribu-

tion, one would use the trace of m on z = t.

For arbitrary u(z, t),w(z, t) on R
2, we have

wTLu =wTut −wTAuz − βwTBu

=(wTu)t − (wTAu)z −wT
t u+wT

z Au− βwTBu

=(wTu)t − (wTAu)z − uTwt + uTAwz − βuTBTw

=(wTu)t − (wTAu)z − uTwt + uTAwz + βuTBw

=(wTu)t − (wTAu)z − uTLw,
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which implies that

wTLu+ uTLw = (wTu)t − (wTAu)z. (6.26)

Next, if M(z, t) is the solution of (6.1a) − (6.1c) and we take u(z, t) = M(z, t) and

w(z, t; s) = M(z, t + s) then Lu = 0 and Lw = 0 on [0, Z] × R and u(z, t) = 0 for

t < 0,w(z, t; s) = 0 for t < −s. So we have

0 =

∫ T

−∞

∫ Z

0

(wTu)t − (wTAu)z dz dt

=

∫ T

−∞
f(0, t; s) dt−

∫ T

−∞
f(Z, t; s) dt+

4∑
i=1

∫ Z

0

Mi(z, s+ T )Mi(z, T ) dz, (6.27)

where

f(z, t; s) =M1(z, t)M1(z, t+ s)−M2(z, t)M2(z, t+ s) + cM3(z, t)M3(z, t+ s)

− cM4(z, t)M4(z, t+ s).

Fix a real number s and take an arbitrary T so that T > Z and T + s > Z. We have

M(z, T ) = m(z, T ) and M(z, T + s) = m(z, T + s), so from Proposition 6.2 we have

4∑
i=1

∫ Z

0

Mi(z, s+ T )Mi(z, T ) dz ≤ E(m, s+ T ) + E(m, T ) → 0, as T → ∞,

implying that

0 =

∫ ∞

−∞
f(0, t; s) dt−

∫ ∞

−∞
f(Z, t; s) dt. (6.28)

From (6.7a) we have

M1(z, t) = m1(z, t), M2(z, t) = −δ(t− z) +m2(z, t),

M3(z, t) = m3(z, t), M4(z, t) = m4(z, t),

and from (6.1b) we have

M2(0, t) = M1(0, t)− δ(t), M4(0, t) = M3(0, t).
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Hence

∫ ∞

−∞
f(0, t; s) dt =

∫ ∞

−∞
M1(0, t)M1(0, t+ s)− (M1(0, t)− δ(t))(M1(0, t+ s)− δ(t+ s)) dt

=

∫ ∞

−∞
M1(0, t)δ(t+ s) +M1(0, t+ s)δ(t)− δ(t)δ(t+ s) dt

= M1(0,−s) +M1(0, s)− δ(s)

= m1(0,−s) +m1(0, s)− δ(s), s ∈ R.

Further, since M1(Z, t) = M3(Z, t) = 0 we have

∫ ∞

−∞
f(Z, t; s) dt = −

∫ ∞

−∞
M2(Z, t)M2(Z, t+ s) + cM4(Z, t)M4(Z, t+ s) dt

= −
∫ ∞

−∞
(−δ(t− Z) +m2(Z, t))(−δ(t+ s− Z) +m2(Z, t+ s))

+ cm4(Z, t)m4(Z, t+ s) dt

= m2(Z,Z + s) +m2(Z,Z − s)− δ(s)

−
∫ ∞

−∞
m2(Z, t)m2(Z, t+ s) + cm4(Z, t)m4(Z, t+ s) dt

= m2(Z,Z + s) +m2(Z,Z − s)− δ(s)

−
∫ ∞

−∞
m2(Z,−t)m2(Z,−t+ s) + cm4(Z,−t)m4(Z,−t+ s) dt

= m2(Z,Z + s) +m2(Z,Z − s)− δ(s)

−m2(Z,−s) ∗m2(Z, s)− cm4(Z,−s) ∗m4(Z, s), s ∈ R.

So from (6.28) we have

0 =

∫ ∞

−∞
f(0, t; s) dt−

∫ ∞

−∞
f(Z, t; s) dt

= m1(0,−s) +m1(0, s)−m2(Z,Z + s)−m2(Z,Z − s)

+m2(Z,−s) ∗m2(Z, s) + cm4(Z,−s) ∗m4(Z, s), s ∈ R.

Now m1(0,−s) = 0 and m2(Z,Z − s) = 0 for s > 0 so we obtain

m1(0, s)−m2(Z,Z + s) +m2(Z,−s) ∗m2(Z, s) +m4(Z,−s) ∗m4(Z, s) = 0, s > 0,
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proving (6.12a).

Similarly, let u(z, t) = M(z, t) and w(z, t; s) = M̃(z, t + s), where M̃ is the solu-

tion of (6.2a)− (6.2c), then £w = 0 on [0, Z]×R and w(z, t; s) = 0 for t < −s. So we

have

0 =

∫ ∞

−∞
f̃(0, t; s) dt−

∫ ∞

−∞
f̃(Z, t; s) dt, (6.29)

where

f̃(z, t; s) =M1(z, t)M̃1(z, t+ s)−M2(z, t)M̃2(z, t+ s) + cM3(z, t)M̃3(z, t+ s)

− cM4(z, t)M̃4(z, t+ s).

From (6.7b) we have

M̃1(z, t) = m̃1(z, t), M̃2(z, t) = m̃2(z, t),

M̃3(z, t) = m̃3(z, t), M̃4(z, t) = −δ(t− z/c) + m̃4(z, t),

and from (6.2b) we have

M̃2(0, t) = M̃1(0, t), M̃4(0, t) = M̃3(0, t)− δ(t).

Hence

∫ ∞

−∞
f̃(0, t; s) dt =

∫ ∞

−∞
M̃1(0, t+ s)(M1(0, t)−M2(0, t))

+ cM3(0, t)(M̃3(0, t+ s)− M̃4(0, t+ s)) dt

=

∫ ∞

−∞
M̃1(0, t+ s)δ(t) + cM3(0, t)δ(t+ s) dt

= M̃1(0, s) + cM3(0,−s)

= m̃1(0, s) + cm3(0,−s).
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Further, since M1(Z, t) = M3(Z, t) = 0 we have

∫ ∞

−∞
f̃(Z, t; s) dt = −

∫ ∞

−∞
M2(Z, t)M̃2(Z, t+ s) + cM4(Z, t)M̃4(Z, t+ s) dt

= −
∫ ∞

−∞
(−δ(t− Z) +m2(Z, t))m̃2(Z, t+ s)

+ cm4(Z, t)(−δ(t+ s− Z/c) + m̃4(Z, t+ s)) dt

= m̃2(Z,Z + s) + cm4(Z,Z/c− s)

−
∫ ∞

−∞
m2(Z, t)m̃2(Z, t+ s) + cm4(Z, t)m̃4(Z, t+ s) dt

= m̃2(Z,Z + s) + cm4(Z,Z/c− s)

−m2(Z,−s) ∗ m̃2(Z, s)− cm4(Z,−s) ∗ m̃4(Z, s).

So from (6.29) we have

0 = m̃1(0, s) + cm3(0,−s)− m̃2(Z,Z + s)− cm4(Z,Z/c− s)

+m2(Z,−s) ∗ m̃2(Z, s) + cm4(Z,−s) ∗ m̃4(Z, s), s ∈ R,

or equivalently

0 = m̃1(0,−s) + cm3(0, s)− m̃2(Z,Z − s)− cm4(Z,Z/c+ s)

+m2(Z, s) ∗ m̃2(Z,−s) + cm4(Z, s) ∗ m̃4(Z,−s), s ∈ R.

Since m̃1(0, t) = 0 for t < 0 and m̃2(Z, t) = 0 for t < Z we obtain

0 = cm3(0, s)− cm4(Z,Z/c+ s)

+m2(Z, s) ∗ m̃2(Z,−s) + cm4(Z, s) ∗ m̃4(Z,−s), s > 0,

proving (6.12b).
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Chapter 7

SPHERICAL HARMONIC EXPANSION

If the coefficients of certain linear PDEs have spherical harmonic expansions then one

may attempt to construct solutions of these PDEs in the form of a spherical harmonic

expansion. The regularity of the solution constructed in this manner, at all points

except the origin, is governed by the decay rate of the coefficients of the spherical har-

monic expansion. The regularity at the origin needs more careful attention and that

is what we study in this chapter, for the finite expansion case.

Let n be a positive integer and S the unit sphere in R
n. For every x ∈ R

n, x �= 0 we

define r = |x| and θ = x/|x|; conversely, to every r ≥ 0 and θ ∈ S we can associate

a unique x = rθ in R
n. For each non-negative integer k, let Hk be the (finite dimen-

sional) subspace of L2(S) consisting of the restrictions to S of all the homogeneous

polynomials of degree k which are harmonic and Rk the restriction to S of polynomials

of degree k. It is known that

1. Hk is orthogonal to Hk′ if k �= k′.

2. Rk =
k∑

j=0

Hj.

3. The direct sum of the Hk is dense in L2(S).

Hence, we can find an orthonormal basis {φi(θ)}∞i=1 of L2(S) with each φi(θ) the

restriction to S of a homogeneous harmonic polynomial φi(x). Below di will denote

the degree of homogeneity of φi(x) and we arrange the index i so that di ≤ di′ if i < i′.

Please see [23] for details.
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Given a continuous function f(x) on R
n, its restriction to the sphere of radius r > 0,

results in a continuous function on S via θ → f(rθ). Hence this function has an

expansion in terms of the {φi}∞i=1, namely

f(rθ) =
∞∑
i=1

fi(r)φi(θ), r > 0, θ ∈ S (7.1)

where

fi(r) =

∫
S

f(rθ)φi(θ) dθ, r ≥ 0.

Note that fi(r) makes sense even when r = 0 and in fact f1(0) = f(0), fi(0) = 0 for

i > 1. The expansion (7.1) is called the spherical harmonic expansion of f .

We are interested in studying the relationship between the regularity of f(x) and

the regularity of fi(r). For finite expansions, the relationship is fairly straightforward

at points x �= 0 but not so obvious at x = 0, and that is what we study in this short

chapter.

Spherical harmonic expansions are frequently used to analyze the forward and inverse

problems of multi-dimensional functions. Given R > 0 and σ > 0, let Aσ(R) denote

the Banach space of C∞ functions in the open ball of radius R in R
n for which

||f ||σ,R := sup
x∈Rn,|x|≤R

∞∑
|α|=0

σ|α|

α!
|(Dαf)(x)|

is finite. One can refer to [20] for some properties of Aσ(R), which are listed below

• Aσ(R) is a Banach space under the || · ||σ,R norm

• If 0 ≤ σ′ ≤ σ, then Aσ(R) ⊂ Aσ′(R) and ||f ||σ′,R ≤ ||f ||σ,R
• If f ∈ Aσ(R) for some σ > 0, then �f ∈ Aσ′(R) for all 0 < σ′ < σ and

|| � f ||σ′,R ≤ C
||f ||σ,R
|σ − σ′|2

with C independent of f and σ
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• If f, g ∈ Aσ(R), then fg ∈ Aσ(R) and

||fg||σ,R ≤ ||f ||σ,R||g||σ,R.

Inverse problems for multi-dimensional hyperbolic equations were studied by Romanov

in [20]. Consider the following IBVP

utt − uzz −Δu− q(x, z)u = 0, x ∈ R
n, z ≥ 0, t ∈ R, (7.2a)

u|t<0 = 0, uz|z=0 = −g(x)δ′(t). (7.2b)

Romanov worked on the inverse problem of (7.2a)− (7.2b), that is, given the reflection

data

u|z=0 = F (x, t), (x, t) ∈ R
n+1,

the goal is to recover q. Based on the progressive wave expansion, the reflection data

F (x, t) can be represented in the form

F (x, t) = g(x)δ(t) + f(x, t)H(t).

Romanov claimed that if f(x,+0) = 0, and g(x), 1/g(x) ∈ As0(r), and f(x, t), ft(x, t) ∈
C(As0(r), [0, T ]) for some T > 0, then there exists a number a such that for any

s ∈ (0, s0), there exists a unique solution to the inverse problem of (7.2a)− (7.2b), such

that q, u ∈ C(As0(r), Gs) where Gs = {(z, t) | z ∈ [0, a(s0 − s)], 0 ≤ z ≤ t ≤ T − z}.
That is, one can recover q(x, z) for z ∈ [0, a(s0 − s)].

We now state the main result of this chapter.

Theorem 7.1. If m,n,N are nonnegative integers such that n ≥ 2, N ≥ 1 and f(x) =

f(rθ) =
N∑
i=1

fi(r)φi(θ), then f(x) ∈ Cm(Rn) if and only if for i = 1, ..., N

• fi(r) ∈ Cm[0,∞),

• for all 0 ≤ k ≤ m, f
(k)
i (0) = 0 for all k ≥ di such that k − di is odd, and for all

k < di.
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The proof of Theorem 7.1 requires the following result.

Lemma 7.1. If f(x) ∈ C0(Rn)∩Cm(Rn\0) for some m,n ∈ N, and lim
x→0

Dαf(x) exists

for all |α| ≤ m, then f(x) ∈ Cm(Rn).

Proof. We show it by induction on m. First for m = 1, let

lim
x→0

Djf(x) = L, j = 1, ..., n.

Since f(x) ∈ C0(Rn) ∩ C1(Rn\0), for any h ∈ R, by the mean value theorem, there

exists a constant θh between 0 and h such that

Djf(θhej) =
f(hej)− f(0)

h
, j = 1, ..., n.

Take the limits on both sides, we have Djf(0) exists and

L = lim
h→0

Djf(θhej) = lim
h→0

f(hej)− f(0)

h
= Djf(0),

so by the definition of continuity, Djf(x) is continuous at x = 0, implying that

f(x) ∈ C1(Rn).

Now assume the result is true for some m ≥ 1. Let f(x) ∈ C0(Rn) ∩Cm+1(Rn\0) and
lim
x→0

Dαf(x) exists for all |α| ≤ m+1, then by assumption we know that f(x) ∈ Cm(Rn).

Fix α such that |α| ≤ m and define

g(x) := Dαf(x), x ∈ R
n; (7.3)

then g(x) ∈ C0(Rn) ∩ C1(Rn\0). Also, lim
x→0

Djg(x) = lim
x→0

DjD
αf(x) exists because

|α| + 1 ≤ m + 1. Hence by the m = 1 case, g(x) ∈ C1(Rn), implying that f(x) ∈
Cm+1(Rn).

Proof of Theorem 7.1:

Proof. We first show the necessity of the conditions. Since

fi(r) =

∫
|θ|=1

f(rθ)φi(θ) dθ, i = 1, ..., N, (7.4)
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by the theorem about differentiation of parameter dependent integrals we have fi(r) ∈
Cm[0,∞) for i = 1, ..., N , and

f
(k)
i (r) =

∫
|θ|=1

∑
|α|=k

(
k

α

)
θα(Dαf)(rθ)φi(θ) dθ, 0 ≤ k ≤ m,

implying that

f
(k)
i (0) =

∑
|α|=k

(
k

α

)
(Dαf)(0)

∫
|θ|=1

θαφi(θ) dθ. (7.5)

For any 0 ≤ k ≤ m and |α| = k, since θα is the restriction to S of a polynomial of

degree k, we have θα ∈
k∑

j=0

Hj, and so by the orthogonality we have

∫
|θ|=1

θαφi(θ) dθ = 0, |α| = k < di,

implying that

f
(k)
i (0) = 0, 0 ≤ k < di.

For k ≥ di and |α| = k,

∫
|θ|=1

θαφi(θ) dθ =
∑
|β|=di

cβ

∫
|θ|=1

θαθβ dθ = 0

if k + di is odd. So from (7.5), f
(k)
i (0) = 0 if k − di is odd.

We now show that the necessary conditions are sufficient. We are given that fi(r) ∈
Cm[0,∞) and for all 0 ≤ k ≤ m, f

(k)
i (0) = 0 for all k < di and for all k ≥ di such that

k − di is odd. The Taylor expansion (see [24]) of fi(r) is

fi(r) =
m∑
j=0

f
(j)
i (r)

j!
rj +Rm(r), i = 1, ..., N, (7.6)

where Rm(r) ∈ Cm[0,∞) and

Rm(r) = o(rm), r → 0+.
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We also observe that R
(k)
m (r) ∈ Cm−k[0,∞) and

R(k)
m (r) = o(rm−k), r → 0+ (7.7)

as shown next. For all 0 ≤ k ≤ m we have

f
(k)
i (r) =

m∑
j=k

f
(j)
i (r)

j!

j!

(j − k)!
rj−k +R(k)

m (r)

=
m∑
j=k

f
(j)
i (r)

(j − k)!
rj−k +R(k)

m (r) =
m−k∑
j=0

f
(k+j)
i (r)

j!
rj +R(k)

m (r), i = 1, ..., N.

So R
(k)
m (r) is the remainder of the Taylor expansion of f

(k)
i (r) after m − k terms, im-

plying (7.7).

From (7.6) we have

fi(r)φi(θ) =
m∑
j=0

f
(j)
i (r)

j!
rjφi(θ) +Rm(r)φi(θ)

=
m∑
j=0

f
(j)
i (r)

j!
rj−diφi(x) +Rm(r)φi(θ), i = 1, ..., N (7.8)

with the first term a sum of polynomials since rj−di is a polynomial if j − di is even,

so we need only analyze the regularity of the second term of (7.8):

e(x) := Rm(r)φi(θ) = Rm(r)r
−diφi(x).

Now e(x) ∈ C0(Rn) ∩ Cm(Rn\0). Further, for x �= 0, noting that φi(x) is a homoge-

neous polynomial of degree di, we have

Dje(x) = (R′
m(r)r

−di − diRm(r)r
−di−1)

xj

r
φi(x) +Rm(r)r

−di
∂φi

∂xj

(x), j = 1, ..., n,

and hence

|Dje(x)| ≤ C(|R′
m(r)|+ |Rm(r)|/r) = o(rm−1), r → 0+, j = 1, ..., n.

Similarly, for 0 ≤ k ≤ m and |α| = k

|Dαe(x)| ≤ C

k∑
j=0

|R(j)
m (r)|rj−k = o(rm−k), r → 0+,
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implying that

lim
x→0

Dαe(x) = 0, |α| ≤ m.

Hence from Lemma 7.1, e(x) ∈ Cm(Rn), and from (7.8), fi(r)φi(θ) ∈ Cm(Rn) for

i = 1, ..., N , implying that f(x) ∈ Cm(Rn).
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