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ABSTRACT

In this dissertation, we conduct direct simulations of particle-laden viscous flows
with dual objectives: the first is the implementation and validation of the mesoscopic
lattice Boltzmann (LB) approach for particle-laden viscous flows, and the second con-
cerns two specific applications of this approach, namely, turbulent suspension flow and
microscale porous media flow with colloid deposition and migration.

The LB approach solves continuum-fluid flows indirectly by discretizing the
Boltzmann equation using a minimum set of discrete velocities. It reproduces the
incompressible Navier-Stokes equation in the limit of low effective Mach number of
the system. Most previous validations of the LB approach concern relatively simple
viscous flows. In this study, we apply the LB approach to more complex problems
with curved fluid-solid interfaces, and compare directly with a novel hybrid Navier-
Stokes based approach (Physalis) developed by Professor Prosperetti’s group at Johns
Hopkins. We have demonstrated systematically the accuracy and parallel efficiency
of the LB approach and showed that the LB approach is particularly effective for
simulating fluid-flow systems containing a large number of spherical solid particles.

The study of turbulent suspension flow was motivated by the open question
concerning the impact of the presence of finite-size inertial particles on the turbulent
carrier flow, and the interaction between the particles. For this purpose, a particle-
resolved simulation method was developed based on the multiple-relaxation-time lattice
Boltzmann equation (MRT-LBE). The no-slip boundary condition on the moving par-
ticle boundaries was handled by a second-order interpolated bounce-back scheme. The
mesoscopic particle distribution functions at a newly converted fluid lattice node were
constructed by the equilibrium distribution with non-equilibrium correction. An elastic

repulsive force model was utilized to prevent particle-particle overlap. The code was

XV



parallelized with MPI and was found to be computationally efficient with an excellent
scalability.

The method is first validated using unsteady sedimentation of a single particle
and a multi-particle random suspension. It is then applied to a decaying isotropic
turbulence laden with particles of Kolmogorov to Taylor microscale size. At a given
particle volume fraction, the dynamics of the particle-laden flow is found to depend
mainly on the effective particle surface area and particle Stokes number. The pres-
ence of finite-size particles enhances viscous dissipation at small scales while reducing
kinetic energy at large scales. This is in accordance with related studies. However,
the normalized pivot wavenumber is found to depend not only on the particle size,
but also on the relative ratio of particle size to flow dissipation range scales as well as
the particle-to-fluid density ratio. Moreover, strong modulation is observed within half
particle radius near particle surface, and local profiles are are found to be self similar
with proper normalization.

The second application pertains to colloid and colloid-facilitated contaminant
transport and retention in soil porous media. Specifically, we intend to quantify the col-
loid deposition mechanism under unfavorable conditions where both the colloid surface
and grain surface are negatively charged. This application consists of two components,
the simulation of microscopic viscous flow in a three-dimensional porous channel, and
the transport of sub-micron colloids in this model geometry. We apply simultaneously
the MRT-LBE method and the hybrid Physalis method. The latter handles the no-slip
boundary condition by coupling an analytical Stokes expansion valid in a narrow but
finite region near a particle surface with the numerical solution outside the particle.
The mesoscopic LBM is shown to be superior to the hybrid macroscopic approach,
especially when there exist multiple grain-grain and grain-wall contact points.

Colloid transport and deposition were then simulated by a Lagrangian tracking
approach, under the combined influence of hydrodynamic forces, Brownian force, and

physicochemical forces. With the given solution ionic strength and physicochemical

xvi



condition, capture of colloids by the secondary energy minimum (SEM) were demon-
strated. The local hydrodynamic retardation is shown to reduce the ability for colloids
to move into the SEM, but does not prevent this to occur. Before being captured by the
SEM, colloid trajectories are shown to depend on local porosity, flow convergence, and
contact points. After capture, the interaction between particle inertia, DLVO forces
and local hydrodynamic interaction play a prominent role. These results provide a
new level of details on colloid transport and retention that are not easily achievable in

physical experiments.

xvii



Chapter 1

INTRODUCTION

1.1 Background and Motivation
1.1.1 Particle Suspension in Turbulence

Turbulent flows laden with solid particles, small droplets, and gas microbubbles
are ubiquitous in engineering, biological and environmental applications. Examples in-
clude fluidized bed reactors, spray atomization, pneumatic conveyors, bubble columns,
plankton contact dynamics in ocean water, transport of blood corpuscles in the human
body, sediment transport, warm rain process, volcanic ash eruptions, dust storms, and
sea sprays. In these applications, particles are usually suspended in a turbulent carrier
fluid. The interactions between the dispersed and the carrier fluid phases impact the
dynamics of suspended particles (e.g., dispersion, deposition rate, collision rate, set-
tling velocity) and the bulk properties of the multiphase flow (e.g., wall or surface drag,
turbulence intensity and structures). Understanding turbulent particle-laden flows can
help us better design engineering devices such as coal combustors and better predict
natural phenomena such as warm rain and hurricane.

A turbulent particle-laden flow system is more complicated than its single-phase
counterpart owing to a broader range of length and time scales and the additional pa-
rameters associated with the dispersed phase (Balachandar and Eaton, 2010). To this
end, many experimental investgations have been performed to understand turbulence-
particle interactions by means of using a reduced set of parameters in the system, espe-
cially for the turbulence modifications by particles. Gore and Crowe (1989) reviewed
a large number of particle-laden turbulent jet and pipe experiments. They showed
that the ratio of the particle diameter to the turbulent integral length scale qualita-

tively determined the type of turbulence modification, but its quantitative level could



depend on other factors, including particle Stokes number, particle Reynolds number,
and mass loading. Paris and Eaton (2001) studied fully developed channel flow laden
with copper and glass particles with size near Kolmolgorov length. Their experimen-
tal results indicated that turbulence attenuation increased monotonically with particle
mass loading. More recently, Eaton (2006) and Tanaka and Eaton (2008) integrated
previous particle-laden experiments to generalize the turbulence modification. Eaton
(2006) reported that particles with Stokes number of O(1) ~ O(10) led to attenuation
of turbulent kinetic energy (TKE), whereas particles with larger Stokes number caused
TKE augmentation induced by unsteady particle wakes. Further analysis by Tanaka
and Eaton (2008) suggested that physical mechanisms for turbulence augmentation
or attenuation could be depicted by a novel non-dimensional number Pa integrating
particle Stokes number, Reynolds number based on a representative large scale of tur-
bulence, and the ratio between the Kolmogorov length scale and the representative
turbulent large scale. When Pa was small (Pa < 10%), turbulence augmentation oc-
curred due to preferential particle concentration around intense vortical structures. In
the intermediate range of 103 < Pa < 10°, turbulence was attenuated by the presence
of particles. Further increases in Pa would again lead to turbulence augmentation as
a result of superposition of turbulent wakes.

Although many experimental studies have been conducted, it is still difficult
to address clearly the physics of turbulence-particle interactions. For a turbulent flow
laden with non-deforming spherical particles, the length scales range from the particle
diameter (dp) and flow Kolmogorov length (n) to the integral length scale (L). When
d,/n is small and the volume fraction (¢) of the dispersed phase is low, the response
of a particle to the local flow can be well described by an equation of motion (Maxey
and Riley, 1983), making it unnecessary to resolve the disturbance flow on the scale
of the particle size. Most theoretical understanding for turbulent particle-laden flows
has been developed based on these assumptions. Computationally, the condition of
d,/n < 1 partially justifies the use of point-particle based simulation (Wang et al.,
2009).



Over the past two decades, the point-particle model has been employed to dis-
cover and quantify a number of important phenomena in turbulent particle-laden flows,
including preferential concentration (Squires and Eaton, 1991; Wang and Maxey, 1993),
turbulence modulation by inertial particles (Squires and Eaton, 1990; Elghobashi and
Truesdell, 1993), particle deposition rate (McLaughlin, 1989; Swailes and Reeks, 1994),
and turbulent collision rate of inertial particles (Sundaram and Collins, 1997; Zhou et
al., 2001; Ayala et al., 2007; Wang et al., 2009; Jin et al., 2010). However, even for the
relative simple case of small particle size, the interactions between the dispersed phase
and the carrier phase are difficult to describe in general. For heavy particles whose
density (p,) is much larger than the fluid density (pys), the ratio of the particle inertial

response time (7,) to the flow Kolmogorov time (74), known as the Stokes number, can

L
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be expressed as St = 7,/7 = & (d,/n)’ py/ps, implying that particles could interact
with a range of flow time scales depending on the relative magnitudes of the density
and size ratios.

Many applications entail particle sizes comparable to, or larger than the flow
Kolmogorov length (Burton and Eaton, 2005) so that the scales contained in the distur-
bace flows overlap with the scales of motion in the carrier turbulence. In this situation,
the point-particle model is no longer a valid description and the finite-size effect of the
dispersed phase must be resolved together with the carrier fluid turbulence. Currently,
the only rigorous method is to numerically resolve the disturbance flows around par-
ticles, known as the particle-resolved simulation. Due to the requirement of explicit
implementation of the no-slip boundary condition on the surface of each particle, the
particle-resolved simulation is computationally more demanding than the point-particle
model. For this reason, particle-resolved simulation has so far been limited to either
low flow Reynolds numbers or to large particle size relative to the Kolmogorov scale.

Several computational methods have been developed to perform particle-resolved
simulation. Finite element methods (Hu, 1996; Johnson and Tezduyar, 1999; Hu et al.,
2001) employ body-fitted mesh to implement solid particle boundary conditions. The

frequent mesh regeneration due to the geometry change as a result of particle motion



is computationally expensive, especially in three-dimensional simulations. Therefore,
methods using a fixed and structured grid have received more attention in recent years.
The fictitious domain or direct forcing method (Patankar et al., 2000; Glowinski et al.,
2001; Wu et al., 2011; Shao et al., 2012) applies a field of Lagrange multipliers to
enforce constraints on the particle so that the fluid inside the particle domain is forced
to mimic rigid body motion. The immersed boundary method (IBM) (Peskin, 2002;
Uhlmann, 2005, 2008) realizes the no-slip boundary condition on particle surface by
imposing a localized forcing field. Similarly, the force coupling method (Maxey and
Patel, 2001; Yeo et al., 2010) uses smoothed body force field to represent the effects of
particles on the fluid phase, in terms of low order force multiple expansion. The hy-
brid Physalis method (Takagi et al., 2003; Zhang and Prosperetti, 2003, 2005) handles
the no-slip boundary condition by coupling an analytical Stokes expansion valid in a
narrow but finite region near each particle surface with the numerical solution outside
the particle. The pseudo-penalization method (Homann and Bec, 2010) imposes a
strong drag to the fluid velocity at the particle location, so that it relaxes quickly to
the particle solid-body motion.

In contrast to the above macroscopic CFD approaches based on the Navier-
Stokes equations, in the mesoscopic lattice Boltzmann method (LBM) (Aidun et al.,
1998; Ladd, 1994a, 1994b; Ten Cate et al., 2004) the fluid field is realized through
local moments of a lattice Boltzmann equation on a uniform lattice grid. The no-slip
boundary condition can be imposed by using a simple interpolated bounce-back scheme.
To reduce force oscillations on the particles, the immersed-boundary-lattice-Boltzmann
method (IB-LBM) (Feng and Michaelides, 2004, 2005) has also been developed by
replacing the conventional bounce-back scheme with a direct forcing scheme applied
on a set of Lagrangian boundary points representing particle surfaces.

The first motivation of this dissertation is to better understand the motion
and hydrodynamic interactions of finite-size inertial particles suspended in a turbulent
flow. One of the major challenges is to develop an efficient and accurate approach to

resolve the disturbance flows around particles suspended in a turbulent carrier fluid.



In this work, we will adopt the lattice Boltzmann method to perform the particle-
resolved simulation. The particle-turbulence two-way coupling and particle-particle
interactions will be simultaneously considered. Results concerning decaying turbulent
flow laden with finite-size particles will be discussed. Several validation cases will also
be presented where the results of the LB simulations are compared directly with those

from the Physalis approach.

1.1.2 Porous Media Flow and Colloidal Particle Transport

Unlike the first application where fundamental questions of particle-laden tur-
bulence are explored, this second application concerns a specific transport problem of
sub-micron sized colloids. The moving particles in the first application are now fixed
and used to construct a model porous medium, based on which the complex porous
media flows are solved. The colloidal particle transport phenomenon is then examined
by tracking colloid’s position and its interactions with surrounding flow and granular
collectors.

In recent years, colloid retention and transport in the subsurface porous media
has received increasing attention due to its great significance in a number of environ-
mental fields, such as waste water treatment, riverbank filtration, bioremediation, and
protection of groundwater supplies from colloid and colloid-associated pollutants (Stef-
fan et al., 1999; Ferguson et al., 2003; de Jonge et al., 2004; Tufenkji, 2007). The large
surface area of mobile colloids can be an effective means to adsorb or bind pollutants,
e.g., organics pesticides, heavy metals, and radio nuclides, which can travel significant
distances through soil porous media via colloids transport. In addition, some colloids
can themselves be contaminants, such as viruses, bacteria, and protozoa. These col-
loids may be introduced into the subsurface from various sources including leaking
landfills, or land disposal of treated water effluents (Mawdsley, et al., 1995; Smith and
Perdek, 2004). The migration of these colloids poses potential risk to contaminate
groundwater and hence could be a serious public health concern (Jin and Flury, 2002;

Johnson et al., 2007). Moreover, some other natural and industrial processes involving



colloid transport include migration of clay minerals and the consequent nutrient loss in
soil fertility (McGechan and Lewis, 2002), infiltration of rain water in urban areas with
pollutants from road traffic and building roofs, manufactured nanomaterials (Metreveli
and Frimmel, 2005), and effective waste water treatment (Yao et al., 1971). All these
important environment impacts necessitate the full understanding of the mechanisms
and kinetics of colloidal deposition and mobilization in porous media.

Deposition of colloids onto grain surfaces from a flowing suspension in porous
meida involves two sequential steps: transport, which is dominated by convection and
diffusion, and deposition, which is controlled by interaction forces between colloids
and collector surfaces. The interaction forces include van der Waals attraction and
electrostatic double-layer interaction, as described by the Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory (Derjaguin and Landau, 1941; Verwey and Overbeek, 1948),
which has been extended to include additional forces such as Lewis acid/base and
hydrophobic interactions (van Oss, 1994). A DLVO interaction profile is constructed
by the total interaction energy as a function of separation distance between a colloid
surface and a collector surface. When the interactive surfaces are oppositely charged,
both electrostatic and van der Waals forces are attractive thus there is no energy barrier
to colloid deposition. This is regarded as the favorable surface condition. However,
when the interactive surfaces are like-charged, the electrostatic double-layer force is
repulsive and a typical DLVO energy profile is characterized by a deep attraction
well (the primary energy minimum) at a very small separation distance, a maximum
energy barrier, and a shallow attraction well (the second energy minimum) at a larger
separation distance. This is referred to as the unfavorable condition, which is the most
prevalent condition in natural subsurface environments.

The classic filtration theory (CFT) has been found to accurately predict colloid
retention in granular porous meida when there is no energy barrier to colloid deposi-
tion (Rajagopalan and Tien, 1976; Tufenkji and Elimelech, 2004). In this case, colloid

retention occurs primarily through strong attachment in the primary energy minimum



(PEM), and the hydrodynamic drag or Brownian force is not strong enough to cause de-
tachment. Therefore, the concentrations of mobile colloids decrease exponentially with
distance from the source (Tufenkji and Elimelech, 2004; Li et al., 2004, 2005). Under
strongly unfavorable conditions where colloid and collector surfaces are like charged
and the energy barrier is high, CFT predicts no deposition because colloids cannot
overcome the energy barrier to become attached in the PEM. This is in contradiction
with a number of experimental studies, which have demonstrated colloid deposition
under such conditions (Elimelech and O’Melia, 1990; Tufenkji and Elimelech, 2004;
Bradford et al., 2002, 2006; Li et al., 2004, 2005; Shen et al., 2007).

The significant deviation from CFT has been addressed through several re-
tention mechanisms, among which deposition at secondary energy minimum (SEM)
is believed to be one of the major reasons for the failure of CFT. Experiments have
shown colloid deposition is reversible when solution ionic strength decreases (Hahn and
O’Melia, 2004; Tufenkji and Elimelech, 2005; Shen et al., 2007, 2008), which should
not occur for the deposition in PEM. Indeed, colloids are retained in the shallow at-
tractive energy well, i.e., the SEM, and is released back into the bulk suspension due
to the reduced or eliminated SEM as a result of reduced solution ionic strength. This
is the so called re-entrainment/detachment process. Colloids weakly retained in SEM
can also translate along the grain surfaces owing to tangential hydrodynamic drag and
finally reside in the flow stagnation region where the fluid drag force is insufficient
to drive colloid motion (Johnson and Tong, 2006; Bradford et al., 2007). Under cer-
tain solution chemistry conditions, a fraction of the colloids deposited in the SEM can
jump over the energy barrier and be deposited in the PEM due to the fluctuations of
their internal energy (Franchi and O’Melia, 2003). They can also be released into the
bulk solution when the magnitude of the SEM and the Brownian kinetic energy are
comparable (Shen et al., 2007).

Another mechanism contributing to the deviation from CFT is straining/wedging.

CFT is originated from the Happel sphere-in-cell model (Happel, 1958) represented by



an isolated solid sphere with a uniform layer of liquid film. Hence the trapping of col-
loids at grain-to-grain contact region (wedging) or at pore throats that are too small
to allow passage (straining) are not considered in CFT. Early studies treat straining
as a process that only depends on the ratio of colloid diameter to collector diameter,
and reported threshold ratio in a wide range from 0.154 (Herzig et al., 1970) to as low
as 0.005 (Bradford et al., 2002). More recent work suggests that straining is influenced
by both physical and chemical factors. Bradford et al. (2007) asserted that colloids
retained in the SEM can be transported to straining sites by hydrodynamic torques,
and then be further immobilized due to the limitation of size, enhanced DLVO inter-
actions with multiple interfaces and attenuated hydrodynamic effects in regions of low
flow velocity. This hypothesis is yet to be corroborated by experimental evidence.

The third reason that contributes to the discrepancies between CFT and ex-
perimental observation is surface heterogeneity. While most previous studies assume
surface charges for both colloids and collector are averagely distributed, this is not
the case in complex natural environment (McCarthy and McKay, 2004). In an over-
all negative-charged environment, some minor mineral components may be positively
charged and thus serve as attachment sites where the energy barrier is reduced or
eliminated (Song and Elimelech, 1993, 1994). In addition to charge heterogeneities,
physical heterogeneities resulting from surface roughness, irregularly-shaped grains,
and pore geometry may also have strong impacts on re-entrainment by altering the
local hydrodynamic conditions.

Despite considerable progress made to improve the understanding of colloid
transport behaviors, some important issues still remain unclear due to the limitations
of experimental setup and theoretical modeling, especially for unfavorable conditions.
For example, how would the pore-scale flow geometry, including the grain-to-grain
contact region and physcical surface heterogeneity, contribute to colloid retention and
re-entrainment? What are the coupled effects of hydrodynamic forces, colloidal inter-
action forces, and Brownian motion on colloid deposition?

The second motivation of this dissertation is to fill the simulation gap and



build up our ability to predict colloid retention and transport in saturated soil porous
media in the presence of energy barrier, complex pore-scale flow geometry, and surface
heterogeneities. Again, two numerical methods, the LBM and Physalis, will be applied
to the same model geometry for cross-validation. Lagrangian particle-based approach
will be adopted to track the trajectory of each colloid. Physicochemical, hydrodynamic,
and Brownian forces will be included in the colloids equation of motion. Effects of flow

speed, solution ionic strength, and local hydrodynamic interactions will be explored.

1.2 Previous Work
1.2.1 Particle-Resolved Turbulent Flow Simulation

In recent years, there have been a few studies of particle-resolved simulation of
turbulent particle-laden flows as summarized in Table 1.1. The interaction of a single
fixed or moving particle with a turbulent flow has been studied by several researchers
(Burton and Eaton, 2005; Homann and Bec, 2010; Naso and Prosperetti, 2010; Kim and
Balachandar, 2012). Using direct-forcing IBM, Xu and Subramaniam (2010) studied
flow modulation by a group of fixed particles, and Tenneti et al. (2011) examined
drag forces on a random cluster of fixed spheres. These studies provided a better
understanding on the nature of flow modulation near the surface of the particle due
to the finite-size effect that depends on the particle Reynolds number. Using a direct-
forcing fictitious domain method, Wu et al. (2011) and Shao et al. (2012) investigated
flow modulation by finite-size particles in a pipe and channel flow.

Ten Cate et al. (2004) conducted a particle-resolved simulation of forced tur-
bulent flows laden with solid particles using LBM. The carrier-fluid turbulence was
maintained at Taylor microscale Reynolds number Re), = 61 using a spectral forc-
ing scheme. The no-slip boundary condition on the particle surface was implemented
by applying a body force field to the fluid domain. A subgrid lubrication force was
computed based on relative location and velocities of approaching particles (Nguyen
and Ladd, 2002). The simulation considered up to 3,868 particles, corresponding to

volume fractions ranging from 2% to 10%. The density ratio between the solid and



Table 1.1: Particle-resolved simulations of turbulent particle-laden flows.

Chronological

Method

Physical issues studied

Ten Cate et al.
(2004)

Burton & Eaton
(2005)

Zhang & Prosperetti

(2005)

Uhlmann
(2008)

Yeo et al.
(2010)

Lucci et al.
(2010)

Naso & Prosperetti

(2010)

LBM

Finite volume
/ overset grid

Finite-difference

/ Stokes flow exp.

LBM with IBM

Force coupling
method

Finite-difference
with IBM

Finite-difference

/ Stokes flow exp.

Turbulent modulation, particle-
particle hydrodynamic interaction
and collision. Forced.

Turbulent flow on a single fixed
particle: dissipation rate and kinetic
energy as a function of distance from
particle surface; force acting on the
particle. Decaying.

Turbulence modulation and force on
particle. Decaying.

Turbulent suspension in a vertical
channel.

Turbulent modulation by particles
and bubbles; Lagrangian statistics.
Forced.

Turbulent modulation; local
variation around particle; energy
spectra. Decaying.

Turbulent flow on a single fixed
particle. Forced.

Homann & Bec Pseudo-penalization A single neutrally buoyant particle
(2010) method in a forced turbulent flow.

fluid phase ranges from 1.15 to 1.73. The particle diameter is set to 8 grid spacing
in the simulations. It was demonstrated that particle-fluid relative motion results in
an enhancement of kinetic energy E(k) and energy dissipation rate (k) at large wave

numbers and a reduction of both spectra at small wave numbers. Oscillations in E(k)
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were found at large wave numbers, although they are negligible when compared to the
total kinetic energy of the system.

Zhang and Prosperetti (2005) applied the hybrid method Physalis to study de-
caying particle-laden turbulence. A periodic cubic domain of 643 contains 100 spherical
particles with radius equal to 39% of the initial Taylor microscale. Particle-fluid density
ratio was set to 1.02. Gravity was neglected and particle-particle short range interac-
tions were represented by an elastic model. The Taylor microscale Reynolds number
changed from 29 to 14 during the time interval of the simulation. It was reported
that, compared with the point-particle model, the finite-size particles decrease the ki-
netic energy, show less diffusion in terms of mean particle displacement, and exhibit a
stronger tendency of clustering.

Uhlmann (2008) considered particulate suspensions in a vertical turbulent chan-
nel flow, using the immersed boundary method to treat the solid particles. The in-
compressible Navier-Stokes equations were solved by a fractional-step scheme on a
staggered grid. Up to 4,096 particles were simulated in a turbulent flow sustained at a
bulk flow Reynolds number of 2,700. The particle diameter was set to approximately
11 wall units, corresponding to a volume fraction of 0.42%. The density ratio varied
from 2.2 to 10. It was found that the presence of particles induced large scale streaklike
velocity perturbations, although no significant aggregation of particles was observed.

Using the force coupling method, Yeo et al. (2010) studied turbulence modu-
lation by finite-size particles and bubbles. The flow was forced at large scales. They
demonstrated that the pivot wavenumber characterizing the transition from damped to
enhanced energy content is mainly a finite-size effect of particles and that the transition
scale is almost independent of the particle to fluid density ratio.

Lucci et al. (2010) applied the immersed boundary method to study modulation
of decaying turbulence by solid particles ofsize comparable to the Taylor microscale.
The carrier flow had an initial Taylor Reynolds number of 75. Density ratio varied

from 2.56 to 10.0. Volume fraction of the dispersed phase was 10% or less, and a
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maximum number of 6,400 particles were considered in their simulations. They stud-
ied turbulence modulation by particles and structure of disturbance flow around the

particles.

1.2.2 Pore-Scale Colloid Dynamic Modeling

Due to the low concentration and vanishing Stokes number of colloids, it is
generally assumed that in pore-scale colloid dynamic simulation, the fluid flow is inde-
pendent of the presence of colloids, and the motion of colloid is governed by the viscous
flow around it. Consequently, pore-scale dynamic modeling can be decomposed into
two parts. The first is the simulation of liquid flow through soil porous media. The
second is a method to model or simulate the transport of colloids by the liquid flow and
its interaction with grain surfaces. Some recent studies (Bradford et al., 2007; Johnson
et al., 2007; Shen et al., 2007) have shown that pore geometry affects local flow distri-
bution through large local variations of flow velocity and shear rate, and can contribute
significantly to colloid retention. Therefore, an accurate pore-scale flow simulation in
realistic three-dimensional porous media becomes essential for the development of a
quantitative pore-scale modeling tool.

Earlier numerical study on soil porous media flow typically employed the unit-
cell-based flow representation due to its computational efficiency. Examples include
the sphere-in-cell model (Happel 1958; Rajagopalan and Tien, 1976), 2D and 3D con-
striction tube models (Payatakes et al. 1974a, 1974b; Paraskeva et al., 1991; Burganos
et al., 1994). These unit-cell models take advantage of symmetry properties of flow
passage and make use of either the available analytical creepingf flow solution or nu-
merical solution of the viscous flow in simple model geometries. But they only provide
a phenomenological representation of soil pore-scale geometry without consideration of
grain-grain contact and grain surface irregularities. Cushing and Lawler (1998) con-
sidered grain-grain contact in a unit cell representing densely packed regular array of

spheres and solved the creeping fluid flow using an approximate Galerkin’s method
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(Snyder and Stewart, 1966). They then studied colloid attachment efficiency by solv-
ing trajectories of colloids. While their model clearly demonstrated colloid deposition
in the presence of an energy barrier, the attachment efficiency was found to be insensi-
tive to the presence or absence of the energy barrier, which was in direct contradiction
with experimental evidence and theoretical expectation. They attributed this to the
random nature of the grain packing not represented in their unit cell model. Johnson
et al. (2007) adopted the same unit-cell approach to solve the pore-scale flow and a
trajectory approach for colloids; they confirmed colloid retention in flow stagnation
zones and wedging in grain-to-grain contacts. They also indicated the need to solve
viscous flows through pore domains rendered from actual porous media, in order for
such approach to become a useful quantitative tool.

In addition to the pore-scale viscous flow simulation, the colloids transport
modeling is of concern as well. It can be performed in either an Eulerian or a Lagrangian
fashion. The Eulerian approach considers the distribution of particle concentration as
a mean-field variable over space and time (Bradford and Toride, 2007; Bradford et
al., 2007). This approach applied to particle deposition yields an extended advection-
dispersion equation with source/sink terms that parameterize the effects of colloid-
surface interactions. The specification of these source/sink terms involves modeling
assumptions, e.g., constant deposition and release rate coefficients, that may not be
applicable to unfavorable conditions (Bradford and Toride, 2007).

The Lagrangian approach focuses on a single colloid and tracks its position
and velocity over time according to Newton’s second law. The colloid’s equation of
motion may include physicochemical, hydrodynamic, Brownian and body forces and
torques. The physicochemical forces typically include contributions from the electro-
static, Lifshitz-van der Waals, and Lewis acid/base interactions (van Oss 1994). The
hydrodynamic forces may include Stokes drag, added mass, and fluid acceleration force.
The hydrodynamic forces can be modified by a grain surface, nearby presence of other

colloids, and local flow shear (Rajagopalan and Tien, 1976; Kim and Karrila, 1991).
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While the Lagrangian approach is computationally more expensive than the Eule-
rian approach, it provides a more direct mechanistic description of microscopic colloid
transport that can be helpful for elucidating the relevant processes. Furthermore, the
discrete nature of the Lagrangian approach makes it much more feasible to include com-
plex interactions with heterogeneous grain surface properties. For these reasons, most

previous mechanistic modeling studies adopted the Lagrangian trajectory approach.

1.3 Dissertation Layout

The rest of the dissertation is organized into four chapters. A brief summary of
each is given as follows.

The main contribution of this work is the development and implementation
of the lattice Boltzmann method (LBM) and the hybrid Physalis method, and their
applications to the study of particle-resolved turbulent flow, as well as porous media
flow. In Chapter 2, we shall first review the development and formulation of these two
methods in detail, and then demonstrate their cabability in simulating an unsteady
particle-resolved flow, i.e., the gravitational settling of two spherical particles in a
square channel. The well-documented “drafting, kissing, and tumbling” process is
reproduced by both methods. The quantative agreement of the results cross-validates
the implementation of the two methods.

In Chapter 3, we simultaneously apply the two methods to solve the viscous
flows in porous media represented by a channel packed with spherical grain particles.
Detailed comparison reveals better accuracy of LBM in simulating the 3D pore-scale
flows with multiple grain-grain and grain-wall contact points. The well-resolved pore-
scale flow is then employed in the simulation of colloid transport and retention under
unfavorable conditions using a Lagrangian trajectory approach. Results demonstrate
the capture of colloids by the secondary energy minimum. The effects of colloid-grain
surface local hydrodynamic interaction will be discussed.

In Chapter 4, we focus on the particle-resolved simulation for turbulent flow
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laden with finite-size particles. The multiple-relaxation-time lattice Boltzmann equa-
tion (MRT-LBE) is implemented under the framework of MPI parallelization. Issues
addressed includes the no-slip boundary condition on the moving particle boundaries,
construction of particle distribution functions at newly converted fluid lattice nodes,
and particle-related MPI implementation details in order to boost the computational
efficiency. The method is first validated using unsteady sedimentation of a single par-
ticle and then a multi-particle random suspension, followed by a further verification for
the case of decaying turbulence laden with a single fixed particle. It is then applied to
a decaying isotropic turbulence laden with large loading of particles of Kolmogorov to
Taylor microscale sizes. Turbulent modulation due to the presence of finite-size iner-
tial particles is found to be in accordance with related studies. The simulation results
also suggest the dependence of the pivot wavenumber on the particle size, the ratio
of particle size to flow dissipation range scales, as well as the particle-to-fluid density
ratio. In addition, local profiles relative to particle surface are examined to shed light
on the strong modulation occurring near particle surface.

Finally, in Chapter 5, we present a summary of major conclusions and provide

recommendations for future work.
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Chapter 2

SIMULATION METHODS: THE LATTICE BOLTZMANN METHOD
AND THE PHYSALIS APPROACH

For particle-laden flows of practical interest, analytical solutions are typically
not available due to the complex geometries involved. In this work, we will simulta-
neously apply two numerical methods to perform direct simulations for viscous flows
laden with finite size particles. In this way the simulations can be cross-validated in the
absence of analytical solutions. The two methods adopted here are the lattice Boltz-
mann method (LBM) based on the mesoscopic lattice Boltzmann equation (LBE), and
the macroscopic continuum-based hybrid method, namely, Physalis. In this chapter,
we will first review the LB method, starting from its origin in the lattice gas automata,
followed by the development of the single-relexation-time (SRT) LBE model, and then
the more recent multiple-relaxation-time (MRT) LBE model. Due to its superior sta-
bility and accuracy relative to SRT LBE, the MRT LBE model is adopted in our LB
simulation. Details of the theory and numerical implementation of the model are pro-
vided, which is essential for developing the MRT LBE solver. Next, we will review the
Navier-Stokes based Physalis method. This hybrid method couples the local spectral
representation near the particle boundary with the numerical solution obtained on the
rest of the domain. Three major components, including the construction of the ana-
lytical solution, the second-order projection method for the numerical solver, and the
coupling procedure are discussed in detail to give a complete understanding of this ap-
proach and its numerical implementation. Finally, we will demonstrate these methods
by simulating the sedimentation of two spherical particles in a square channel. The
LBM and Physalis results are in good agreement, which validates our implementation

of the two methods.
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2.1 Lattice Boltzmann Method
2.1.1 Single-Relexation-Time LBE

Historically, the lattice Boltzmann method originated from the lattice gas au-
tomata (LGA), a discrete particle kinetics utilizing a discrete lattice and discrete time.
In the LGA model, a set of Boolean variables n;(x,t)(i = 1,--- ,N) is defined on a
regular lattice to describe particle occupation at site x and time ¢. The evolution

equation of the LGA is
ni(x +e;,t+ 1) = ni(x,t) + Q(n(x,t)), i=1,---,N (2.1)

where e; is the local particle velocity, and €2; is the collision operator which represents
presence or absense of n;(x,t) due to collision. The evolution of the system consists of
two steps: streaming and collision. At each time step, each particle moves to the nearest
node in the direction of its velocity. When particles arrives at a node, they interact
and change their velocity directions according to scattering rules which conserve mass,
momentum, and energy locally. Frisch et al. (1986) and d’Humiéres et al. (1986)
have shown that Navier-Stokes equations can be recovered from this model, and the
Galilean invariance is restored as well. The use of Boolean variables in Eq. (2.1),
however, introduces statistical noise in the LGA model, and large lattice regions over
long times of simulation must be averaged to obtain the results.

To overcome the noisy behavior of LGA, McNamara and Zanetti (1988) replaced
the Boolean variables n; with single-particle distribution functions (real variables) f; =
(n;), where () denotes an ensemble average. The discrete kinetic equation for the

particle distribution is similar to the kinetic equation in LGA in Eq. (2.1),
fi(x+ei(5t,t—|—(5t) :fi(x,t)-FQi(f(X,t))a 1= 1, ,N (22)

where f; is the particle distribution function along the ¢th direction, €2; is the collision

operator which represents the rate of change of f; resulting from collision. Note that
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(); depends only on local distribution function and is required to satisfy mass and

momentum conservation at each lattice

N N
» Q=0 D Qe =0. (2.3)
=1 =1

The collision operator in Eq. (2.2) is nonlinear, which implies that excessive
memory and computational cost are required when calculating the term. Higuera and
Jiménez (1989) simplified the LBE model by assuming the distribution is close to the
local equilibrium state, thus the collision operator can be expressed in a quasilinear

form,

Q(f) = —Ai(fi = ;9 (2.4)

where the distribution function f; is expanded into equilibrium component f;? and
nonequilibrium part f;*?, A;; is the quasilinear scattering matrix.

A further simplified collision operator was proposed by Higuera et al. (1989).

In this approach, a particular simple linearized collision operator is designed using a

single relaxation time 7 towards the local equilibrium. The relaxation term is known

as the Bhatnagar-Gross-Krook (BGK) collision operator (Bhatnagar et al., 1954), and

the correspondent LBE is referred to as the lattice BGK (LBGK) equation,

fz‘(X + eiét, t+ 5t) = fi(X7 t) - -

(2.5)

The LBGK model is noise-free and has Galileian invariance with the velocity indepen-
dent of pressure. Navier-Stokes equations are obtained from this model at the second
order of approximation with an appropriate equilibrium distribution (Qian et al., 1992;
Chen et al., 1992). The discrete equilibrium distribution function f;/? is inspired by

the Maxwell-Boltzmann equilibrium function,

eq __ p (ei - U)2
1= Grrryoor P (‘ 9RT ) (26)

where Dy, R, T, p, and u are the dimension of space, gas constant, temperature,

macroscopic density and velocity, respectively. Assuming the fluid velocity u is a small
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Figure 2.1: Schematic for the D3Q19 lattice model.

parameter compared with the sound speed, Eq. (2.6) can be approximated up to a

second-order Taylor series,

Fea =
2

o ) [1+ (e-w) (ei-w)? w? (2.7)

p
(2rRT)Do/2 P < 2RT RT " 2(RT)?. 2RT
He and Luo (1997a,b) defined the LBE sound speed ¢, = VRT. With the particle
velocity e; and fluid velocity u being normalized by vV3RT = ¢ = §,/d;, where §, and
§; are lattice spacing and time, respectively, ¢, = ¢/v/3 = 1/v/3. Eq. (2.7) can then be

written as
9(e; -u)?  3u?

fi' = wip |1+ 3(ei - u) + = .

(2.8)

where the weight w; = exp(—3e;%)/(27/3)P°/% can be evaluated by Gaussian-type
quadrature (He and Luo, 1997a). For the D3Q19 lattice applied in this thesis (Fig-
ure 2.1), the weighting coefficients are determined as wy = 1/3, w; = --- = wg = 1/18,

and wy; = --- = wig = 1/36.
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The relaxation time 7 is a parameter characterizing the constitutive behavior
of the fluid at a microscopic level. For incompressible isothermal flows, it is connected

with the macroscopic kinematic viscosity of the fluid according to
1 21 —1

v=c26(T — 5) =3

The macroscopic variables, p, u and T" are the microscopic velocity moments of

(2.9)

the particle distribution function f;:

N N N
1
pP= Zfz', pu = Zfieia Pe=73 Zfi(ei —u)? (2.10)
i=1 i=1 i=1

D D
with ¢ denotes the kinetic energy ¢ = 70RT = 7ONAkBT , where N4 and kp are the
Avogadro’s number and the Boltzmann constant, respectively. Pressure is related to

the density by the equation of state

p=cp (2.11)
Although the LBE model was originally derived from the LGA model, it has also
been shown that the LBE can be obtained from the continuum Boltzmann equation for
discrete velocities by using a small Mach number expansion. The details are described
in He and Luo (1997).
The numerical implementation of the LBE method are realized in a two-step
stream-and-collide procedure as follows.
1. Collision:

e Calculate the macroscopic flow variables using Eq. (2.10).
e Determine the equilibrium distribution functions using Eq. (2.8).

e Compute the intermediate distribution function for each lattice velocity di-
rection at each site

fz*(X,t):fz(X,t)-i-QZ(f(X,t)), 7’:1’ aN
e Modify f; for boundary nodes according to the boundary conditions.
2. Streaming:

e Particle distribution functions are simply advected in the direction of cor-
responding discrete velocities, towards the neighbor lattice nodes

fi(x+ei(5t,t+5t) :fi*(X,t), Z:L ,N
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2.1.2 Multiple-Relexation-Time LBE

The single-relexation-time lattice BGK equation in Eq. (2.5) has become the
most popular lattice Boltzmann model due to its extreme simplicity. However, the
use of a single relaxation parameter also introduces some obvious defects of the LBGK
model, such as a fixed Prandtl number (Pr = 1) and reduced numerical stability at
large Reynolds number. In contrast, the multiple-relaxation-time (MRT) LBE, also
referred to as the generalized LBE, allows different relaxation times to be individually
tuned for different moments of the discrete velocity set. Consequently, the MRT LBE
model is much more stable than its LBGK counterpart, and the Prandtl number can
be arbitrary if MRT LBE simulations of thermal flows are desired.

The evolution of particle distribution function (Eq. (2.5)) can be rewritten in a
concise vector form for the generalized LBE model (d’Humiéres, 1992; d’Humiéres et

al., 2002)

[f(x+eidt, t+6t)) — [ f(x,1)) = =S[[f(x, 1)) — [f“(x,1))] (2.12)

where S is the collision matrix, Dirac notation ket |-) is used to denote column vector,

£ 8) = (folx, 1), fi(x,8), -+, fr(x, )T,
‘feq(xa t)> = ( Sq(xa t)a fq(X’ t)a T ]c;?(xﬂ t))T:

|f(x + et t 4 6t)) = (fo(x + eodt, t + 6t),- -+, fn(x + endt, t + 6t))",

Il

and the superscript “I” denotes the transpose operator. Note that the LBGK model is
a special case of the generalized LBE, in which the collision matrix S = I/7, where I
is the identity matrix, and 7 is the single relaxation time, i.e., the (N + 1) relaxation
times are all equal for LBGK model.

d’Humieres et al. (2002) have shown that the collision matrix S is designed
based on its eigenvector matrix M and a diagonal matrix S consisting of corresponding

eigenvalues, namely,

S=M"'.§-M (2.13)
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The transformation matrix M consists of orthogonal basis set constructed by orthog-
onalizing the polynomials of the column vectors {|e,), |ey),|e,)} by standard Gram-
Schmidt procedure. The velocity space spanned by |f) = (fo, fi,---, fn)! can then
be related to the moment space spanned by |m) = (mg,my,---,my)” by a linear
mapping:

m)=MIf), and [f)=M"m). (2.14)

Combining Eq. (2.12) to Eq. (2.14), the evolution equation of the MRT LBE becomes
S+ et t+00) — |f(x,6) = M S [Imlx,0) — [m1(x )] (2.15)

Note that in Eq. (2.15), the advection process is naturally executed in the discrete
velocity space, while the collision process is accomplished in the moment space. The
reason in favor of using the moment representation is due to the fact that various
physical process in fluids can be approximately described by coupling of different modes
of the collision operator, which are directly related to the moments. Since the MRT
LBE allows the independent control of each mode, this mechanism provides an effective

way to incorporate the flow physics into the LBE models in the context of kinetic theory.
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For the D3Q19 lattice model used in this dissertation (Figure 2.1), the trans-

formation matrix is given by

M = ([p), le), €}, [3z): |aa); 1) [9y) 1720 142), [3Paa) 13Tae) s [Pww)s [Tww), [Pay) s [Pyz), [Pez),

[ma), Imy), [m2))" =

(1 1 1 1 1 1 1 11111111111 1 \
30 411 -11 -11 -11 -11 -11 8 8 8 8 8 8 8 8 8 8 8 8
12 4 4 4 4 4 4 1111 1111111 1
o 1 -1 0 0 0 0 1 -11 11 -11-1020 0 0
O 4 4 0 0 0 0 1 -11 11 -11-1020 0 0
o 0 0 1 -1 0 0 1 1 -1-102020 0 1 -11 =1
0O 0 0 -4 4 0 0 1 1 -1-1020 0 01 -11 -1
o 0 0 0 0 1 -1 000011 -1-111 -1 -1
O 0 0 0 0 -4 4 02000 1 1 -1-11 1 -1 -1
o 2 2 1 -1 -1 -1 11111111 22 -2 -2
0O -4 4 2 2 2 2 11111111 22 -2 -2
o 0o 0o 1 1 -1 -1 11 1 1 -1-1-1-10200 0
o 0 0 2 2 2 2 1111 -1-1-1-102020 0
o 0 0 0 0 0 0 1 -1-11102000000 0
O 0 0 0 0 0 0 0000000 O0 1 -1-1 1
o 0 0 0 0 0 0 000 O0T1-1-1120200 0
o 0 0 0 0 0 0 1 -11 <1-11-11202020 0
o 0 0 0 0 0 0 -1-11 10000 1 -11 -1

\0 0o 0 0 0 0 0 0000 1 1 -1-1--11 1 }

(2.16)

Note that the row vectors in M (Eq. (2.16)) have explicit physical significance related
to the moments of {f;|i = 0,1,---,18}, as shown in Table 2.1. The 19 moments can
be categorized into two groups: the hydrodynamic moments that are locally conserved

in the collision process (e.g., the mass density p and momentum J = {j,, j,, j.} for
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Table 2.1: The physical significances related to the moments of { f;} in D3Q19 model.

Order Quantity Moment
0 Mass density: p={plf) = (flp)
2 Kinetic energy: e = (e|f) = (fle)
4 Kinetic energy square: e=(e|lf) = (fle)
1 Momentum: jz,y,z = <Jzyz f) = <f|3myZ>
3 Energy flux: Ty = (Gog,s ) = (fldzy,s)
2 Diagonal viscous stress: Daz,yy,zz = <pzw,yy,zz‘f )y =(f |pm,yy,zz)
2 Diagonal viscous stress: Puww = Dyy — Pazy Pra + Dyy + P2z =0
2 Off-diagonal viscous stress: Payyzas: = Poyyeaz| [) = (f|Poyyzaz)
4 Same symmetry as dianonal stress: Tz ww = (Tazww|f) = (f1Tzzww)
3 Parts of a third rank tensor: Mgy = My |f) = (flMzy.z)

isothermal flows), and the kinetic moments not conserved in the collision process.
Accordingly, the equilibria of the moments can be separated into two groups as well:
p? = p and J = J for conserved moments, and functions of p, J, and ||J||* for
non-conserved moments. The details are described in d’Humieéres et al. (2002).

The diagonal eigenvalue matrix S is defined as

S = diag(so, $1,- - , S18) (2.17)
where the eigenvalues {s;} are the inverse of the relaxation times towards equilibria of
their corresponding moments. For the conserved moments of density and momentum,

eq __

; my;, thus s = s3 = s5 = s; = 0. For viscous stress moments, the relaxation

m
times are related to kinematic viscosity v as sg = s11 = $13 = S14 = 815 = 2/(6v + 1).
The rest of the relaxation times can be found by optimizing the isotropy and Galilean
invariance of the model through linear analysis (Lallemand and Luo, 2000; d’Humiéres
et al., 2002), which gives s; = 1.19, s9 = s19 = 1.4, s4 = 1.2 and s;6 = 1.98.

It should be stressed that MRT lattice Boltzmann equation allows the maxi-

mum freedom in constructing the non-conserved kinetic moments, as well as maximum

number of adjustable relaxation times. An immediate consequence of using MRT LBE
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instead of the LBGK model is a significant improvement in numerical stability, as
demonstrated in d’Humiéres et al. (2002).

The numerical implementation of the generalized lattice Boltzmann equation
involves a stream-and-collide procedure similar to that for the LBGK model. The
difference lies in need of the projection from velocity space |f) to the moment space

|m), and vice versa, as follows:
e Project |f) to |m) by |f) = M |m).
e Compute equilibria of the moments |m®?) following d’Humieres et al. (2002).

e Perform collision step in moment space using multiple relaxation parameter

|Am) = S [Jm) — [m?)]

e Project |m) back to |f) by |m) = M|f), and perform advection step in velocity
space
\f(x 4 edt,t+0t)) =|f(x,t)) + M~ HAm).

With proper coding optimization techniques, the computational efficiency of the MRT
LBE model can be fairly close to that of the LBGK method. d’Humieéres et al. (2002)
have shown the overhead due to the projection between the velocity and moment space

accounts for about 15% computational time of the LBGK algorithm.

2.1.3 No-Slip Boundary Conditions in the LBM

LBM is ideal for simulating fluid flows in complex geometries, such as flow
through porous media and particle suspensions. This is partly due to the simple im-
plementation of the no-slip velocity conditions at wall boundaries by using the bounce-
back scheme. This scheme evolved from the boundary conditions of lattice gas and has
been used in many particle-laden flow simulations to couple the freely-moving particles
to the carrier fluid (Ladd, 1994a,b; Aidun et al., 1998).

The bounce-back scheme means when a particle distribution streams to a wall
node, the particle distribution scatters back to the node it came from. This operation

is efficient in handling the scenario when a node locates near a boundary, with some
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Figure 2.2: Schematics for the implementation of bounce-back scheme based on the
boundary-cutting location on the link: (a) interpolation performed before
streaming step when the percentage of the link outside the wall satisfies
g < 0.5; (b) interpolation done after streaming when ¢ > 0.5. Adapted
from Lallemand and Luo (2003a).

of its neighboring nodes lie outside the flow domain. For example, in Figure 2.2, the
distribution function of node A is supposed to be streamed from node S located inside
wall after advection step, i.e., fa(A,t+ 6t) = f5(S,t). Here subscript o and & denote
the discrete velocity direction moving into and away from the solid wall, f and f refer
to particle distribution function before and after streaming step, respectively. In our
implementation, however, the LBE evolution only applies to the fluid nodes where the
particle distribution functions are defined. No distribution function is defined for solid
lattice node lying within the solid region, thus f@(S ) does not exist. This obstacle can
be overcome by applying the bounce-back scheme as follows.

For the lattice node A near a particle surface, the relative boundary-cutting lo-
cation on the link moving into the wall surface can be identified, namely, the percentage

q of a link located outside the surface. Two scenarios are handled seperately in terms
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Figure 2.3: Schematic for the bounce-back scheme with moving wall.

of the ¢ value to achieve better numerical stabiity (Lallemand and Luo, 2003a). When
q < 0.5, the interpolated bounce-back is performed before streaming, as shown in Fig-
ure 2.2(a), where fa(A,t+ 6t) = fo(B,t) can be obtained by first and second-order

interpolation, respectively,

fa(A) = fa(B)

) 20fa(4) + (1= 20 fu(A), 2-point
q(2q + 1) fa(A) + (1 — 2¢) (1 + 29) fa(A") — q(1 — 29) fa(A"), 3-point
(2.18)

When ¢ > 0.5, the interpolated bounce-back is done after streaming, as shown in
Figure 2.2(b). Note that in this case, bounce-back gives fs(B,t+ 6t) = f4(A,t), and
streaming step gives fs(A',t + 6t) = f3(A,t), and f5(A",t + 6t) = f3(A",t). The
interpolation method yields

(2¢—-1)

1 4
g o)+ —5—fa(4), 2-point

fa(A) =1 1( | o (2g (_ 1)) (2¢—1) ) (2.19)
mfa(A) + q fa(A,) - (2(] + 1) f&(A”)a 3-p0int

Furthermore, when the wall boundary is in motion, an extra term should be
considered to account for the additional momentum change due to the moving wall,
as illustrated in Figure 2.3. In this case, the equilibrium function on the wall node is

similar to that given by Eq. (2.8),

fAW) =wip |14 3(eq - uy) + g(ea Sy )% — g(uw ‘) (2.20)

27



where u,, is the wall velocity. The moment change due to the moving wall can then be

counted as
fout - fm = ;q(W) - fgq(W) = _6wip(ea ) u’w) (221)

When ¢ < 0.5, the term —6w;p(e, - u,) can be directly added to Eq. (2.18); when

1
g > 0.5, prior to being applied to Eq. (2.19), this term is reduced by a factor of 5 and
q

1
———  for the first and second-order interpolation, respectively.
q(2q+1)
With f5(A) readily obtained, the hydrodynamic force Fy4r, acting on a solid
particle emerged in the fluid is calculated by summing up the loss of fluid momentum

on all the links across the surface of the particle, namely,

Fh,ydro X 0t
=loss of momentum of fluid

=momentum before streaming - momentum after streaming

= Y |falxtea— falxt+ dt)eq]

all boundary links

- ¥ [ Falx, ) + fal(x,t + 5t)] Cu (2.22)

all boundary links

This ensures the exact balance between the moment loss of the continuous fluid phase
and the moment gain of the dispersed paticle phase, so that the total momentum of

the particle-fluid system is conserved.

2.2 The Physalis Method

To validate the mesoscopic lattice Boltzmann approach and compare it with
traditional Navier-Stokes based computational methods, we also developed indepen-
dently a code using a macroscopic hybrid method proposed by Prof. Prosperetti and
co-workers (Takagi et al., 2003; Zhang and Prosperetti, 2003, 2005). The method
was named Physalis (Takagi et al., 2003). Physalis combines a numerical discrete
representation of the Navier-Stokes viscous flow around particles and an analytical

representation imbedded near the surface of each particle.

28



The basic idea behind Physalis is as follows. Because of the no-slip boundary
conditions on its surface, a solid particle induces a specific local flow structure that
could be used to linearize the Navier-Stokes equations in the neighborhood of the
particle surface. The fluid velocity, pressure, and vorticity near the particle surface
can be expressed analytically using series solutions of Stokes flow equations. As a
result, the geometric surface of the particle can be replaced by a Stokes flow solution
valid in a narrow but finite region near the surface, known as the cage region.

When the cage region is set up, there are three main components in the Physalis
method. The first component is an analytical representation of the flow within the cage
region. This is obtained by the method of separation of variables applied to Stokes flow
equations. The general form in 2D is given in Zhang and Prosperetti (2003) and in 3D
is found in Zhang and Prosperetti (2005) and Gao and Wang(2007). As the regular
mesh extends to the interior of the particle surface, the velocity cage essentially defines
an internal boundary for the viscous flow where the Stokes solution is employed to
specify the boundary conditions there.

The second component is the numerical method for Navier-Stokes equations on
a regular staggered mesh (the flow solver). The second-order project method (Brown et
al., 2001) is used. The intermediate velocity in the fractional step procedure is solved
by a factorization method (Kim and Moin, 1985), while the Poisson equation for the
projection step is solved by a combination of transformation and tridiagonal inversion.

The most essential component is the coupling between the numerical solution on
the regular mesh and the Stokes solution in the cage region. This coupling is achieved
by an iterative procedure in which (a) the numerical solution is used to refine the
coeflicients in the Stokes flow representation and in turn (b) the numerical solution is
refined by an updated boundary conditions at the velocity cage from the refined Stokes
flow.

An important advantage of this hybrid method is that the force and torque
acting on the particle can be calculated directly from the Stokes solution, avoiding

often tedious numerical integration of local viscous force on the particle surface that is
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Figure 2.4: The cage used to represent a two-diemnsional glass bead in Physalis.
Solid circles denote pressure cage nodes, open circles are vorticity cage
nodes, filled triangles are u-velocity cage nodes, and open triangles are
v-velocity cage nodes. The thick line denotes the glass bead surface. The
two dash circles roughly indicate the scope of the cage region.

necessary for other non-hybrid numerical methods.

2.2.1 Cage Construction

The proper specification of the cage region and cage nodes requires a rather
laborious effort, especially in three dimensions. Three types of cage nodes are defined,
as shown in Figure 2.4 for 2D and Figure 2.5 for 3D: the pressure cage nodes located
at cell centers, the velocity cage nodes at the centers of cell faces, and vorticity cage
nodes at the centers of cell edges. The procedure for constructing the cage nodes and
cage boundary is as follows.

First, the grid cell closest to the center of the glass bead is identified. A cubic

30



N’ [ﬂ T‘ i ‘ .!v ' oL oy ® — @ ,lo\olal '
8889 . .!Ty L @) e e s
\%’ ). N8B 88 ‘v -ye —® L%’ clbltlo!u'
@ ) @ TQ\|¢ 9\.&10%
?.ﬁ - xndddb‘t@ v m..: )06 qw
—ﬁﬂﬁ — . 18 )8)8)e) @) ) Im

e @ @) @) e @ @ @& @ SN

)
cicltl!.u

& & tu‘_ﬁ!
% ﬁt.ﬁg‘

respectively; (c) red, blue, and yellow

pressure cage nodes are marked as yel-
spheres mark the location of vorticity cage nodes in x, y, z directions,
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with radius equal to 5. (a)
respectively. Blue membrane represents the internal velocity boundary

low spheres; (b) green, blue, and red cubes mark the location of velocity
for all cases.

cage nodes in z, y, z directions,

Figure 2.5: Illustration of various cage nodes for a spherical glass bead centered at
(8,8,8)



box centered at this cell is built with a lateral length of dpeqq + 4Ax, where dpeqq is the
diameter of the glass bead, and Az is the grid spacing. The extra length of 4Ax is
to ensure that all potential cage nodes around the bead’s surface are contained in the
box.

Second, all the nodes in the box are examined in terms of their center distance
to the acutal surface of a glass bead. The pressure cage nodes are identified as the cells
whose centers are immediately inside the actual surface of the glass bead, but have at
least one adjacent cell outside the surface. Care were taken to pick only a minimum
set, of such cells as pressure cage nodes, so that a connected interior boundary can be
formed by connecting interior cell faces of these connected cells. The spherical glass
bead surface is then replaced by the cage interior surface, in other words, the fluid
region is virtually extended into a glass bead to the cage interior boundary.

Third, the velocity cage nodes for all three velocity components are determined
by using a combination of the boundary faces and cell surfaces that are normal to the
interior boundary and immediately inside the interior boundary. These velocity cage
nodes allow all fluid velocity nodes inside the extended fluid region to set up proper
finite-difference equations according to the Navier-Stokes equation.

Finally, the vorticity cage nodes are defined on all the edges of the pressure
cage cells that are not located on the interior cage boundary. By this construction
procedure, the pressure and vorticity cages nodes are typically within one grid spacing
from the physical surface of the glass bead.

While this procedure is described in Zhang and Prosperetti (2005), it took us a
long time to set up the cage properly and validate the locations of the different types
of cage nodes, in order to make sure that there is no hole in the cage region and there

is no unnecessary redundancy.

2.2.2 Stokes Solution in the Particle Rest Frame
In this work, we consider viscous flows containing several spherical particles

with translational velocity w(t) and angular velocity €2(¢). The flow velocity U in the
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inertial frame is related to its counterpart u in the non-inertial particle rest frame as
U=u+w+Qxr (2.23)

where r is the position relative to the particle center. By applying Eq. (2.23), the

momentum equation in the particle rest frame can be written as

) .
P24 (u-V)u+292 xu :—vp+w2u+pg—p[w+9xr+nx(er)

ot
(2.24)
where p and p are the fluid density and viscosity, respectively, p is the pressure, g is
the body force. The supercript ‘-’ denotes Lagrangian time derivative following the
particle.

With the change of variables

u=1u-+ T1501_/ri59 X T, p:ﬁ+%p(ﬂ xT)’+p(g—W) T (2.25)
where 7 = ||r||, v is the kinematic viscosity, and a is the particle radius, Eq. (2.24)
then takes the form
ou . 9
p a-l—(u-V)u-l—?qu =-Vp+ uV-a (2.26)

It is noted that u = 0 on the particle surface. Therefore, by continuity, u is a small
quantity near the particle surface, thus there exists a region near the particle where

the left-hand side of Eq. (2.26) is small, such that it approximates the Stokes equation

~Vp + uVia =0, V-i=0 (2.27)

As Reynolds number increases, the region contracts where Eq. (2.27) represents a
good approximation to Eq. (2.26), but for any finite Reynolds number, the region is
nonvanishing.

In presence of no-slip boundary on the particle surface, the solution of Eq. (2.27)
in 3D can be found in Zhang and Prosperetti (2005). However, their paper contains sev-

eral typos which have been corrected in our recent paper (Gao and Wang, 2007). It is
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readily shown that the series solutions of Stokes equations consists of two components:
the regular solid spherical harmonics and their corresponding singular harmonics. The
regular harmonics represent the incident flow and the singular ones represent the dis-
turbance induced by the particle. The final form of pressure, velocity , and vorticity
field are expressed in spherical coordinates centered at the particle center, with dimen-
sionless coefficients P,,,, an, @nm,énm,Xnm,f(nm, and associated Legendre functions
P™. Detailed formulae for p, @1, and @ are given in Appendix A.

It is noted that the force and torque acting on each particle can be found directly
from the low-order dimensionless coefficients associated with the Stokes solution. In

the inertial frame, the hydrodynamic force and torque on the particle are written as

Fra = pv(W — g) + muv(Pyy + 6@y, Py + 6, Py + 601), (2.28)

Lhd = ,O’UU/2Q + 87TIUJ/CL(X11, Xlla XlO)a (229)

where v is the volume of the particle. In this way, one avoids the difficulty of high-order
extrapolations to obtain the stress distribution on the particle surface that is typically

encountered with other numerical methods.

2.2.3 Coupling Procedure

With the local flow structure expressed by the analytical solution of the Stokes
equations, it can now be used to transfer the no-slip condition from the particle surface
to the adjacent grid nodes. In this way, the physical boundary of the particle, which
usually represents a complex geometry to the underlying regular mesh, is relplaced by
a simpler boundary consisting of grid nodes. The non-local effect of the presence of
particles on the flow fields is then imposed by matching the local analytical solution
to the global numerical solution in an iterative manner.

The coupling procedure between the local and global fields is as follows. Suppose
a provisional estimate of velocity and pressure fields is available, e.g., from the results

obtained at previous time step, the auxiliary fields p and @ defined in Eq. (2.25) can be
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calculated. The vorticity field is then found by discretizing @ = V X 1 on a standard
staggered grid arrangement.

Next, the provisional values of p and & are matched to the analytic expression
(as shown Appendix A) on the cage nodes, yielding a linear system for the coefficients
(Prm, an), (Prms i)nm), and (X, Xnm) Truncation of the series solution to a finite
number of order n = N, retains a total of 3N.(N, + 2) + 1 coefficients, while there
are about 4 x (4ma?/Axz?) pressure and vorticity cage nodes, where a is the particle
radius and Ax the grid spacing. Therefore, the matching operation gives rise to a linear
system of approximately 4 x (4ma?/Az?) equations and 3N, (N, + 2) + 1 unknowns.
This rectangular matrix system with many more rows than columns is solved in a least
square sense by applying the singular value decomposition algorithm.

Using the values of coefficients determined at previous step, one can now com-
pute the provisional velocity @ from the analytic formula (see Appendix A) at the
velocity cage nodes, and subsequently find the values of u in the particle rest frame
and U in the inertial frame from Eq. (2.25) and Eq. (2.23), respectively. The full
Navier-Stokes equations is then solved on the finite-difference grid over the entire do-
main, with the new velocity field U imposed as boundary conditions on the velocity
cage nodes of each particle. After that, the pressure and velocity field resulting from
the flow solver can be used to determine the new provisional values of p and &, which
starts another iteration as above-mentioned. This procedure repeats until convergence
is achieved.

It is noted that a fast flow solver is applied in the iterative procedure over the
entire grid, without differentiating the fields outside and inside the cages. Thus the
resultant flow field can be decomposed into two parts: one is the velocity field outside
the cage, which is desired; the other is inside the cage, which is driven by the imposed
velocity boundary conditions on the cage nodes. Although the two parts share the
common velocity on the cage nodes, the inside solution is completely irrelated to the
outside one, so that it can be disregarded. The final flow field is given by the finite

difference solution outside the cages and the analytic representation in the thin region
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between the actual particle surface and their surrounding cage.

2.2.4 Numerical Solution and Flow Solver

As described in the previous section, during each time step t", the analytic
solution is reconciled to the finite difference solution in an iterative procedure, so
that the non-local effect of the particle is embodied in the global field. The numerical
solution is obtained by adopting a second-order projection method (Brown et al., 2001)
which is modified to suit our present purposes.

Using a two-step time-advancement scheme, the Navier-Stokes equations for the

incompressible viscous flows can be written as

u* —u” vp\* 3. 1.4 Voo 9
_ = — | — —H" — _Hn - n * 9.
A7 (p)+<2 5 +2(Vu+Vu), (2.30)
k+1 _ g%
- At == v (2.31)
with
V-u*tt =0. (2.32)

where H = (u - V)u is the convective term, ¢ is a scalar related to pressure, and
superscript k£ is the counter for iteration. Here we use the second-order explicit
Adams-Bashforth scheme for the convective term, and the second-order implicit Crank-
Nicholson scheme for the viscous term. All the spatial derivatives are approximated
with second-order central differences on a staggered grid. Specifically, at the cage
nodes, the velocity obtained from the analytic solution are imposed directly on u*
using the most recently updated values of the coefficients.

Following the fractional step method by Kim and Moin (1985), Eq. (2.30) can

be rewritten as

k
At
(]_ - Al - AQ - A3)(u* - lln) = — (@) At+ 7 (3Hk - anl) + 2(A1 +A2 +A3)lln

P
(2.33)
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where A; = (vAt/2)(6%/623), Ay = (VAL/2)(6%/6x3), Az = (vAt/2)(6%/6x3). Perform-
ing factorization on the left-hand side of Eq. (2.33) gives

(1= A1) (1= 4s) (1= A3) (u* —u”) = — (@>k At+ A; (3HF — H" 1) 42(A, + Ag+ A0
’ (2.34)
which represents an O(At#®) approximation of Eq. (2.33). However, Eq. (2.34) requires
inversions of tridiagonal matrices rather than inversion of a large sparse matrix, as
in the case of Eq. (2.33). In this way the computational efficiency is significantly
increased.
With the intermediate velocity u* readily obtained from Eq. (2.34), Eq. (2.31)
and (2.32) can be solved as a coupled system for u**! and ¢**!, which satisfies

V-u*

2  k+1 __
Vit = At

(2.35)

Note that at the interior boundary on the cage nodes, the zero-normal-gradient condi-
tion is required, namely,

n, - Vo*t! =0, (2.36)
where n, is the unit normal pointing outward from the cage. To enforce Eq. (2.36), a
deferred-correction term is added to the right-hand side of Eq. (2.35). For instance, at
a velocity cage node in the z—direction, Eq. (2.35) is modified as

k-+1 k-+1 k+1 k+1 .
L gsz__l 235k — ¢ ,;—, ¢ ,;—, — & +1,J, 4= V-u + ¢§+1,j,k B (ﬁf,j,k
Az Ax Az At (Az)z

(2.37)

where the dots in the left-hand side stand for the remaining terms of the discretized
Laplacian. At convergence, the extra term (¢f,, ;, — ¢F;,)/(Az)? in the right-hand
side cancels the term (qﬁfjll’j B ¢fj,1€) /(Az)? in the left-hand side. In this way the
Laplacian form is maintained over the entire domain, without the necessity of singling
out the cage nodes as interior boundaries. This feature enables the use of a fast Poisson
solver combining transformation and tridiagonal inversion for Eq. (2.35).

At the end of the iteration, the pressure is given by

k+1 k
(1—’) = (3) Lot ol (2.38)
p p 2
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and the velocity is calculated as
u ! = ut — AtVeF (2.39)

After convergence, the position y, translational velocity w, and angular velocity

2 of each particle are updated from

At
At
yn+1 = y" + 7 (Wn+1 + Wn) , (241)
n+l _ on ﬁ n+1 n n+l n
Q =Q" + o7 (Lhd + Lhd + Lemt + Lewt) ’ (2'42)

where m and I are the particle mass and moment of inertia, F.,; and L., are the

external force and couple other than their hydrodynamic counterparts, respectively.

2.3 Cross-Validation: Settling of Two Spherical Particles

In this section, we present results from simulations involving gravitational sedi-
mentation of two spherical particles using both the MRT LBE model and the Physalis
method. The purpose is to demonstrate the two methods’ capability in simulating
particle-resolved viscous flows, and to cross-validate our implementation of the two
codes.

Here we consider two solid particles that are allowed to fall along the centerline
of a square channel under gravity. Similar problems have been studied intensively
by several researchers (Glowinski et al., 1999, 2001; Patankar et al., 2000; Singh et
al., 2000, 2003; Zhang and Prosperetti, 2003; Apte et al., 2009) and the concomitant
“drafting, kissing, and tumbling” phenomenon is well-documented. In our simulation,
the channel has equal width and height W = H = 12a, and length L = 80a. The
particles have a radius of a = 1mm and are released at distances 76a and 72a above the
bottom of the domain. Initially, the lower particle is located exactly on the centerline

of the channel, while the higher one slightly deviates from the centerline with a distance
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of 1072a in the z—direction. This setup is to disturb the symmetric flow under low
Reynolds number, and thus to prompt the particles to drift away from each other
during sedimentation. The liquid density and kinematic viscosity are p; = 1000kg/m?
and v, = 1.0 x 107®m?/s, and the particle density p, = 1010kg/m3. Gravitational
accelaration is ¢ = 9.8m/s? in the y—direction. In both LBM and Physalis simulation,
the particle diameter is set to 2a/Axz = 20. No-slip boundary conditions are imposed
on all the side walls of the channel and on the particle surfaces. Neumann bondary
conditions are set at top and bottom of the domain, specifying zero velocity derivatives
in y—direction.

When the two particles are in close contact, the physical lubrication forces
between the particles are under-estimated due to lack of resolution of the flow. In
order to prevent the particles from overlapping, a pair-wise repulsive force is introduced
acting on the ith particle due to its interaction with jth particle (Glowinski et al., 2001;
Feng and Michaelides, 2005):

0, Tij > 2a + C
= 2

where r;; = ||y; — y;l| is the distance between the particle centers, ¢ is the thickness of
a buffer zone within which the model repulsive force becomes active, c;; is a force scale,
and ¢, is a stiffness parameter. In this work, ( is set as two grid (lattice) spacing, and
€p 1s set to be small enough to prevent particle collision.

Figure 2.6 shows the particle position and angular displacement at different
times, and Figure 2.7 illustrates the velocity vectors near the particles on a plane-cut
through the particle centers at corresponding time moments. The “drafting, kissing,
and tumbling” phenomenon is clearly visible. The higher particle gets caught in the
low pressure wake of the lower particle, thus accelerates and catches up with the lower
one (drafting). The two particles then fall with nearly the same velocity (kissing) until

they tumble and separate due to the unstable nature of the flow.
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Figure 2.6: Snapshots of particle location and angular displacement of the two set-
tling spheres at times (a) ¢ = 0.0s, (b) t = 2.0s, (¢) t = 3.5s, and (d)
t = 5.9s.

Figure 2.8 shows the time evolution of the translational velocities and center
location for each particle. The results from LBM are in good agreement with those
from Physalis method. This cross-validates our particle-resolved simulation codes de-
veloped from the two fundamentally different methods. Qualitative agreement is also
achieved by comparing present results with those reported by Glowinski et al. (2001),
though some quantitative differences are observed. This can be addressed as follows.

Ideally, the two falling particles would remain aligned and indefinitely approach each
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numerical disturbance present in the simulation method.

Another point worth notifying is that LBM appears less susceptible to numerical
perturbations compared with Physalis method, as shown in Figure 2.8(c) and (f). As
desired, LBM results show that particle traverse velocity in z—direction is very close
to zero, consequently the particle center location remains unchanged in z—direction.
In contrast, the Physalis results in z—direction depart from the desired values with
discernible magnitude, though the difference is still negligible if compared with the
values in z— and y—directions. The better accuracy in LBM can be partly attributed
the local treatment of moment change between the fluid and particle, which is not only
simpler in implementation but also more accurate than the global treatment in Physalis
via coupling the analytic Stokes solution around particle surface with the numerical

solution resolved in rest of the fluid domain.
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Figure 2.8: Temporal evolution of particle velocity and location by both LBM and
Physalis method: (a,b,c) velocity component in x—, y—, and z—direction,
respectively; (d,e,f) particle center location in z—, y—, and z—direction,
respectively. Note the seemingly large difference in z—direction is indeed
negligible as the magnitude of the difference is extremely small compared

with that in the other directions.
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Chapter 3

THREE-DIMENSIONAL MICROSCALE FLOW SIMULATION AND
COLLOID TRANSPORT MODELING IN SATURATED SOIL POROUS
MEDIA

Transport of sub-micron colloid particles in soil porous media has been mostly
studied numerically with unit-cell-based grain-scale geometries. In this chapter, we
develop a more general approach by combining a multiple-grain pore-scale flow simula-
tion with Lagrangian tracking of individual colloids. First, two numerical methods are
applied simultaneously to solve viscous flows in a channel partially or fully packed with
spherical grain particles, this allows cross-validation of the numerical methods for con-
sidered model geometries. It is demonstrated that the mesoscopic lattice Boltzmann
approach can more accurately simulate three-dimensional pore-scale flows with mul-
tiple grain-grain and grain-wall contact points. Colloid transport is simulated under
the combined influence of hydrodynamic forces, Brownian force, and physicochemical
forces. Preliminary results demonstrate the capture of colloids by the secondary en-
ergy minimum (SEM) well. The local hydrodynamic retardation is shown to reduce the
ability for colloids to move into the SEM well, but does not prevent this. Trajectories

before and after the capture are also discussed.

3.1 Introduction

The attachment of colloids on grain surface and retention of colloids in small
soil pores and their subsequent release when the solution or hydrodynamic conditions
change determine the distribution and penetration of colloids in groundwater, and
are important topics to groundwater contamination and remediation treatments. Most

previous studies on colloid retention and transport address issues such as breakthrough
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curves at the macroscopic column scale. Research in recent years at the soil grain scale
reveals that the retention and release depend on the competing effects of physicochem-
ical and hydrodynamic forces acting on the colloids (Bradford et al., 2007; Johnson et
al., 2007; Shen et al., 2007), indicating a need to better understand and model pore-
scale flow in realistic three-dimensional (3D) porous media, particularly under unfa-
vorable conditions as commonly encountered in natural porous media. Additionally,
pore geometry affects local flow distribution and can contribute significantly to colloid
retention. Important 3D flow features such as large local variations of flow velocity
magnitude, direction, and shear rate depend on both grain-grain relative configuration
and grain surface heterogeneity.

While the overall objective of our research is to develop an integrated experi-
mental and computational approach focusing on pore-scale processes related to colloid
transport (Gao et al., 2008; Qiu et al., 2012), here we focus on developing a compu-
tational method to simulate the interaction of colloids with pore-scale flow and grain
surfaces under various physicochemical and hydrodynamic conditions. In general, there
are two components to pore-scale computational modeling: simulation of liquid flow
and simulation of transport of colloids by the liquid flow and interactions of colloid
with grain surfaces. The second part could be performed in either an Eulerian or a
Lagrangian fashion.

Limited by its mean-field nature, the Eulerian approach requires a closure as-
sumption of the driving source/sink terms in the advection-dispersion equation, thus
may not be applicable to unfavorable conditions. In contrast, the Lagrangian approach
focuses on a single colloid and tracks its position and velocity over time, providing a
more direct mechanistic description of microscopic colloid transport. The equation of
motion for colloids can be easily modified to include colloidal force and other forces
that act over a vast range of characteristic lengths, which makes it much more feasi-
ble to include complex interactions with grain surface. Therefore, most mechanistic
modeling studies adopt the Lagrangian trajectory approach.

Under the Lagrangian trajectory approach, unit-cell-based flow representation
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were typically employed to solve the liquid flow in porous media due to its compu-
tational efficiency. However, this approach does not take full account of grain-grain
contact and grain surface irregularities. Previous studies have indicated the need to
solve viscous flows through pore domains rendered from actual porous media, in order
for such approach to become a useful quantitative tool.

Here we intend to study colloid transport and retention involving multiple grain-
grain and grain-wall contacts in a model porous channel. To accurately simulate the
pore-scale viscous flow, both the mesoscopic lattice Boltzmann method (LBM) and a
Navier-Stokes-based hybrid method (i.e., Physalis) (Zhang and Prosperetti, 2005; Gao
and Wang, 2007) are applied to the same 3D flow configurations. The first part of
this study concerns inter-comparison of simulated 3D viscous flows in a channel. This
extends the previous unit-cell flow representations. Simultaneous applications of two
numerical methods provide a cross-validation step for simulating flows in the considered
model geometry. Such inter-comparison has been performed recently for 2D pore-scale
viscous flows by Gao et al. (2008).

We then present a preliminary study of colloid transport in a simulated porous
channel packed with 25 spherical grain particles (or glass beads). A preliminary study
in 2D without considering local hydrodynamic interaction showed that the retention
rate of colloids depends on both the mean flow speed and solution ionic strength (Gaoet
al., 2008). Here we will extend our previous work to include local hydrodynamic inter-

actions and 3D flow effects to more realistically model colloid transport and retention.

3.2 Flow Simulation

In this section, we first briefly introduce the two numerical methods for solving
viscous flows in complex geometries. Several benchmark cases are then used to compare
the results from the two methods. The general problem to be solved is flow through
a three-dimensional channel with fixed spherical grain particles occupying part of the

channel.
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3.2.1 The Mesoscopic Lattice Boltzmann Approach

The mesoscopic approach is based on a lattice Boltzmann equation with the
multiple-relaxation-time (MRT) collision model using 19 discrete particle velocities in
three dimensions (i.e., the D3Q19 model), as described in detail in d’Humiéres et al.
(2002) and Chapter 2 of this dissertation. In the MRT-LBM, the evolution equation
for the discrete particle density distribution function, f;, for « = 0, 1, 2,... ,18, is

written as
fi(X + e,-(St, t+ 6t) = fi(X, t) — Miglsjk [mk — ml(ceq)j| + wi(X, t), (31)

where the collision operation is performed in a properly defined moment space through

the transform matrix M;; of rank 19 x 19, namely,
m; = My; f;,  fi= Mz';lm]" (3.2)

The detail of the transform matrix M;; is given in Eq. (2.16). By construction, the
inverse matrix M ! can be easily obtained by the transpose of M;; with a renormal-
ization as the product of M;; and its transpose yields a diagonal matrix. In Eq. (3.1),
1); is a prescribed forcing field designed to model the driving pressure gradient or body
force. In this work, ; is specified as v;(x,t) = e; - Fg/10, where Fp is the macro-
scopic force per unit volume acting on the fluid. This forcing implementation is rather
simple and does not explicitly consider the potential lattice effects associated with
forcing, which has been described in Guo et al. (2002). Since the forcing field is a con-
stant pressure gradient, there is no lattice effect (Wang and Afsharpoya, 2006). The
correct specification of the forcing function in the mesoscopic space for a general non-
uniform time-dependent physical-space forcing has been discussed in detail in Wang et

al. (2013). The 19 discrete velocities in the D3Q19 model are ordered as

(0’070)7 Z: 0,
(£1,0,0), (0,£1,0), (0,0, 1), i=1to6, (3.3)
(£1,£1,0), (£1,0,%1), (0, £1,%1), i=7 to 18.

€;
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Specifically, the moment vector m; contains four conserved elements, the density
fluctuation 6p = p—py = my and the flow momentum (pouz, potiy, pou,) = (ms, ms, mz).

These conserved moments and the pressure field are calculated from f; as
op = Zfz', POUZZfz’ei, p = dpcs, (3.4)

where u is macroscopic fluid velocity, the sound speed ¢, is 1/4/3, and the mean den-
sity po is set to 1.0. The use of the density fluctuation instead of the total density
in the above reduces the round-off error. The equilibria of all the non-conserved mo-
ments are related to dp and pou (d’Humiéres et al. 2002). The diagonal matrix S =
diag (s, $1, ..., S18) specifies the relaxation rates of the non-conserved moments towards
their respective equilibrium. The specific values used here are s;g = s3 = s5 = s7 = 0,
s1 = 1.19, s9 = s19 = S19 = 1.4, s4 = s¢ = sg = 1.2, s16 = s17 = s18 = 1.98,
Sg = S11 = 813 = S1u = 815 = 1/(3v + 0.5), where v is the kinematic fluid viscos-
ity. Other details of the MRT-LBM model can be found in Chapter 2. It should
be noted that the previous single-relaxation-time LBGK model is recovered when all
the relaxation rates are set to a same value. Recently, Ginzburg et al. (2008a and
2008b) have developed a two-relaxation-time (TRT) LBM approach that is more ef-
ficient and suitable for viscous flow through porous media. This TRT-LBM could be
used to find suitable choice of the various relaxation rates. The MRT-LBM has been
shown to improve numerical stability at higher flow Reynolds numbers (d’Humiéres
et al., 2002). In our previous 2D pore-scale flow simulations (Gao et al., 2008), we
found that MRT-LBM yields a more robust steady-state viscous flow solution for a
wider range of relaxation parameter (or viscosity setting), when compared to the usual
LBGK collision model.

A uniform cubic lattice is used to cover the computational domain. The straight
channel walls are located in the middle of lattice links so a second-order accuracy is
achieved with a simple mid-link bounce-back implementation. The inlet and outlet
are also located half way on the lattice links to facilitate the implementation of the

periodic boundary condition in the bulk flow direction.
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The key implementation issue here is the treatment of solid particle surfaces.
For each lattice node near a particle surface, we identify all links moving into the
surface and their relative boundary-cutting location, namely, the percentage (q) of
a link located outside the surface. Since particles are fixed, this information is pre-
processed before the flow evolution. Before the streaming step, the missing population
is properly interpolated in terms of ¢ and two populations lying before and after the
path of the missing population (Lallemand and Luo, 2003a; Yu et al., 2003). For results
in this paper, we used the first-order interpolation based on two known populations,
and found that the results are quite similar to the second-order interpolation based
on three nodes (Lallemand and Luo, 2003a). The above simple interpolated bounce-
back treatment represents a great advantage of LBM over traditional CFD approach.
It handles complex boundary geometry using local lattice-link operations. All lattice
nodes lying within the solid particles (including the fluid-solid interface) are excluded
from LBE evolution, their velocities are simply set to the values according to solid
body translation and rotation, for the purpose of field energy spectrum or to zero for
the visualizations of the fluid flow. As a validation check, the total mass for the fluid
nodes (excluding the fluid-solid interface nodes) is computed and found to essentially
remain constant as time is advanced.

Another issue with the bounce-back interpolation is that two fluid lattice nodes
may not be available when glass beads are in contact with one another or with channel
walls. In this case, a simple one-node bounce back is used instead. This does not cause
much problem as the fluid velocity near a contact point in such a case is typically very

small.

3.2.2 The Macroscopic Hybrid Approach: Physalis

To validate the mesoscopic LBM-MRT method, the same flow problems are also
solved by a macroscopic Navier-Stokes-based hybrid approach (i.e., Physalis) developed
by Prof. Prosperetti and co-workers (Zhang and Prosperetti, 2003, 2005). The basic

idea for Physalis is to combine an analytical Stokes flow representation valid near the
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surface of each spherical glass bead and the finite-difference numerical solution on the
computational grid. Because of the no-slip boundary conditions on the surface, a glass
bead induces a specific local flow structure that could be used to linearize the Navier-
Stokes equations in the neighborhood of the glass-bead surface. The fluid velocity,
pressure, and vorticity near the particle surface can be expressed analytically using
series solutions of Stokes flow equations. As a result, the geometric surface of the
particle can be replaced by a Stokes flow solution valid in a narrow but finite region
near the surface, known as the cage region.

The proper specification of the cage region and cage nodes requires considerable
effort, especially for the 3D case. Here we shall briefly describe the major elements of
the procedure. More details can be referred to Chapter 2. For the cage region, three
types of cage nodes are defined, including the pressure cage nodes, velocity cage nodes,
and vorticity cage nodes. The pressure cage nodes are first defined at cell centers by
identifying all cells whose centers are immediately inside the actual surface of a glass
bead. A minimum set of such connected cells form the pressure cage nodes. Meanwhile,
an interior boundary is specified by connecting interior cell faces of these connected
cells. The spherical glass-bead surface is then replaced by the cage interior surface.
Second, the velocity cage nodes for all three velocity components are determined at
centers of cell faces by using a combination of the boundary faces and cell surfaces that
are normal to the interior boundary and immediately inside the interior boundary.
Finally, the vorticity cage nodes are defined on all the centers of the cell edges of the
pressure cage nodes that are not located on the interior cage boundary.

The fact that the pressure cage nodes are located completely inside the glass
bead has the advantage of handling physical contact of two or more glass beads or
contact of a glass bead with a channel wall. Care is taken to make sure that no
pressure or vorticity cage nodes from one glass bead are located in the interior of
another glass bead or channel wall. Since currently a separate analytical Stokes flow
must be constructed for each glass-bead surface, the method is not ideal for solving

flow in a porous channel packed with many glass beads.
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Figure 3.1: The time evolution of mean velocity in the y direction, normalized by uy,
for s = 0.

Upon construction of the cage region, three major components are involved in
the Physalis methods. These are (1) the analytical representation of the flow within the
cage region, (2) the numerical solution outside the cage region, and (3) the coupling
of the two. More details can be found in Chapter 2 on the analytical solution, the
numerical flow solver, and their coupling procedure.

Overall, from the viewpoint of computer code implementation, the treatment
of glass-bead surfaces in this macroscopic hybrid method is much more complex than
the local interpolated bounce-back scheme in the LBM. As will be demonstrated in
the next section, the accuracy of Physalis is deteriorated when many glass beads are

in contact with one another or with channel walls.

3.2.3 Inter-Comparison of the Two Approaches: Viscous Flows in a 3D
Porous Channel
Our first goal is to ensure that the viscous flow in a 3D porous channel is
accurately solved. This is achieved by establishing a good quantitative comparison
between the results from LBM and Physalis. The inter-comparison of the two numerical
methods includes the mean flow rate, local velocity profiles, as well as forces and torques

acting on glass beads.
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To proceed in a systematic manner, we consider three geometric settings below.
In all cases, the y direction is the mean flow direction with a periodic length L so the
computation domain covers 0 < y < L. The channel cross-section has a width H in
the x direction and a height W in the z direction. so 0 < x < H and 0 < 2z < W. The
body force Fp per unit volume used to drive the flow is expressed as 8uu/ W2, where
p is the fluid dynamic viscosity and uy is a characteristic fluid velocity if there were

no glass beads in the channel.

3.2.3.1 Single Glass Bead in a Square Channel

The first general case involves a single fixed glass bead in the square channel of
radius R. In terms of the grid spacing §, H = 1006, L = 806, W = 804, and R = 256.
The center of the glass bead is located at x = 42), y = 406, and Z = R+ sd, where s is
a nearest gap distance between the glass-bead surface and the channel wall normalized
by 4.

The Reynolds number based on uy is Duy/v = 2.5 (D = 2R), but the Reynolds
number based on the actual steady-state mean speed (v) is about one order of magni-
tude smaller. The overall porosity in this case is 0.898.

Figure 3.1 compares the simulated mean speed (v) in the y direction, normalized
by uy, as a function of the dimensionless time vt/D?, for s = 9. The steady-state values
of (v)/uy are 0.08730 and 0.08766, for LBM and Physalis, respectively. In this case,
the relative difference between the predicted mean flux is only 0.4%. We then reduce s
to 3 and 0, the relative difference between the predicted mean flux becomes 0.37% and
0.35%, respectively. Therefore, regardless whether the glass bead touches the channel
wall or not, the predicted mean flow speeds by LBM and Physalis are almost identical.

Since it is assumed that the fluid is at rest at ¢ = 0, the body force then accel-
erates the flow. At the same time, the channel walls and the glass bead create viscous

resistance to the flow. The time it takes for the flow to reach to the steady state would

be on the order of (voo)/(Fg/po) = 0.125(W/D)*((veo)/us)(D?/v) = 0.02794D?/v,
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where (vy) is the steady-state mean flow speed. The actual e-folding time based on
Figure 3.1 is about 1.7 x 0.02794D?/v.

Figure 3.2 shows the y-component velocity profiles at z = 33.50 and three
y locations. The line in Figure 3.2(b) cuts through the glass bead and the surface
locations of the glass bead are marked by the two horizontal lines. Since the z location
is very close to the center of the glass bead, the blocking effect of the glass beads is
shown at all three y locations. LBM and Physalis yield essentially the same velocity
profile at each location.

Next we compare the force and torque acting on the glass bead in Table 3.1
for s = 3 and Table 3.2 for s = 0. The force on a glass bead is calculated by sum-
ming particle momentum changes along all boundary interaction lattice links, while
torque is computed by summing the cross products of surface location vector and lo-
cal momentum change, again along all lattice links. The detail for force and torque
calculation can be found, for example, in Yu et al. (2003).The force components have
been normalized by the net body force g = [LHW — 4n R?/3]|F g|/po, and the torque
components by FgR. For s = 3, results from the two methods agree very well (to
within 1% relative error), except for torque component in the y direction (Table 3.1).
The y torque component is two to three orders of magnitude smaller than the other
torque components, thus it is not surprising to observe a large relative error. For s = 0,
again results from the two methods agree very well (Table 3.2), except for the torque
component in the y direction (17.6% relative error) and the force component in the z
direction (4.2% relative error). This implies that the force in the wall normal direction
may not be treated accurately as s — 0, due to a strong pressure gradient in the local
region near the contact point between the glass bead and the channel wall, when the
glass bead touches the channel wall. Overall, LBM seems to be more accurate when
the glass bead touches a channel wall. As another consistency check, we observe the

following overall force balance at the steady state

F

Po
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Table 3.1: Normalized force and torque acting on the glass bead (Case 1, s=3).

(w)/u; F, F, F, T, T, T,

LBM 9.9308 1.2552 3.6952 1.3902 —6.5705 1.1633 2.5717
x1072 x10® x107' x10=® x107? x10™* x107?
Physalis  9.9678 1.2486 3.7104 1.3908 —6.6119 1.3762 2.5892
x1072  x107% x10~' x10=® x107%2 x10=* x1072
RE. (%) 037 053 041 005 064 183  0.68

Table 3.2: Normalized force and torque acting on the glass bead (Case 1, s=0).

(wyu; F, F, F, T, T, T,
LBM 1.0811 1.2265 3.6510 2.5210 —8.2583 1.4397  2.4909

x10~1 x1073  x107! x10™3  x1072 x10™*  x107?
Physalis 1.0848 1.2190 3.6534  2.6265 —8.4009 1.6940  2.5053

x1071  x10™%® x107!' x10™® x107%? x107* x1072
R.E. (%) 0.35 0.61 0.07 4.18 1.73 17.6 0.58

where the two terms on the left hand side are force acting on the glass bead and force
acting on the four channel walls, respectively; and the right hand side denotes the net

body force, Fp, acting on the fluid. The above balance was indeed observed in each

method for each s value.

3.2.3.2 Case 2: Two Beads in a Square Channel

Here we consider a case with two glass beads which both touch the channel
walls and also touch each other in the plane y = 0.5L. The channel dimensions
and glass-bead radius are identical to Case 1, the centers of the two glass beads
are (0.25H,0.5L,0.3125W) and (0.65H,0.5L,0.6875W). The porosity for this case
is 0.7955. Figure 3.3 compares the time evolution of the normalized mean flow speed

for this case. At the steady state, LBM and Physalis predict the value of (v)/us to
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Figure 3.3: The time evolution of the mean velocity in the y direction for the case
with two glass beads. The results from LBM and Physalis have a relative
error of 1.87%.

be 0.04248 and 0.04328, respectively, with Physalis giving a mean speed 1.87% larger
than that of LBM. Again, the transition time to the steady state is on the order of
(Voo)/(F/po) = 0.125(W/D)*((Veo)/us)(D?/v) = 0.01359D?/v. The actual e-fold
time based on Figure 3.3 is about 2.4 x 0.01359D?/v. Note that the factor 2.4 here
is larger than the corresponding factor 1.7 in Case 1, due to a more complex porous
geometry in the channel.

In Figure 3.4 we compare the y component velocity profiles on three lines along
the = direction. The glass-bead surfaces are marked with horizontal lines and only the
velocity profiles in the fluid region is plotted. Overall, the velocity profiles agree well
quantitatively, although some minor differences are visible in Figure 3.4.

The total forces acting on glass beads and on channel walls are compiled in
Table 3.3, and the sum is compared with the net body force. The last two columns
of Table 3.3 are the relative error (defined as the difference between Physalis and
LBM results, normalized by the LBM result) and the normalized error (defined as
the force difference between Physalis and LBM, normalized by the net body force).
The normalized error is less than 2%, indicating a reasonable comparison between the

two methods. In LBM, overall balance as shown in Eq. (3.5) is observed precisely
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Table 3.3: Normalized forces and balance for Case 2. All forces are normalized by
the net body force.

LBM Physalis R.E. (%) N.E. (%)
fGB
x 45587 x 107™*  4.2787 x 107* 6.2 2.8 x 1073
y 5.6642 x 1071 5.8297 x 107! 2.9 1.7
2 —3.7450 x 10™* —3.7915 x 10™* 1.3 4.7 x 1074
FCW
x —4.5587 x 10~* —4.0881 x 10~* 10.3 47 x 1073
y 43239 x 1071 4.3184 x 107!  0.13 5.5 x 1072
z 3.7451 x 10~*  3.8574x 10~* 3.0 1.1 x 1073
Fap+Few
x 0.000 1.91 x 107° - 1.91 x 1073
y 0.9988 1.0148 1.6 1.6
z 0.00 6.59 x 1076 - 6.59 x 1074
TBI
x 0.0 0.0 — —
y 1.0 1.0 - -
z 0.0 0.0 - —

(Table 3.3). In Physalis, the sum of forces acting on the beads and walls is found to be
1.015 times the net body force, namely, there is a 1.5% relative error in Physalis on force
balance. This suggests that LBM code is superior to the current version of Physalis
code. This is likely due to the following reasons: (1) the coupling of Stokes flows and
the numerical flow in Physalis becomes less accurate when there are particle-particle
and particle-wall contacts; (2) since the force calculation in LBM is based on precise
local momentum exchanges between the mesoscopic particles and a solid surface, the

integral force balance follows more naturally in LBM.

3.2.3.3 Case 3: 25 Beads in a Square Channel
In the last inter-comparison case, 25 glass beads are placed in the channel.

The front and side views of the 25 glass beads relative to the channel are shown in

Figure 3.5. In this case, L = 706, H = W = 1600, and R = 206. Sixteen glass beads
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Figure 3.5: Geometric configuration of 25 glass beads in 3D channel: (a) front (z—2)
view; (b) side (y — z) view. This configuration is densely packed in the
center of the cell, but not closely packed at the inlet and outlet.

are located at y = 206 and nine are at y = 506. The porosity for this case is 0.5325.
Again the flow is forced by a body force in the y direction with Fp = 8uu;/W2.

In both LBM and Physalis, » = 1/9 and u; = 0.2. The simulated steady-state
mean speed is 0.000521uy in LBM, so the Reynolds number based on the mean speed
and the diameter of the glass bead is D(v)/v = 0.03733. In the Physalis simulation, the
simulated steady-state mean speed is 0.000589u;. Therefore, the mean flux in Physalis
is 13.1% larger than the value in LBM. The reason for the larger flux in Physalis is
partly due to the poor representation of no-slip boundary condition, as shown below.

Figure 3.6 shows the velocity profiles for x and y components at y =0 and z =
0.5W. Since this is a center cut at the inlet plane, by symmetry the z-component ve-
locity is zero. On this particular line, there are three contact points (z/W = 0.25,0.50,
and 0.75) which are marked by the three horizontal lines. Both z— and y— velocity
components are zero at these contact points. Figure 3.6(b) shows clearly that LBM
does better than Physalis in satisfying the no-slip boundary condition at the contact
points. The y component velocity is larger than zero everywhere on the selected line,
but the z component velocity takes both positive and negative value as the fluid finds
its path through the gap regions in between the glass beads. LBM and Physalis give

qualitatively similar profiles, both showing very complex velocity distributions. There
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Figure 3.6: Velocity profiles at y = 0 and z = 0.5W: (a) u profile, (b) v profile.
LBM simulation gives exact zero w velocity on the same line (not shown
here), while Physalis yields a slightly non-zero value with magnitude
below 0.6u; x 107.

are some quantitative differences between the LBM and Physalis results. The max-
imum y— component velocity is found near the channel wall as the local porosity is
larger due to the unfilled space in the 9-bead layer.

The velocity distributions along a diagonal line (x = z) at the inlet plane are
shown in Figure 3.7. This time there are 7 glass-bead contact points as marked by
the 7 horizontal lines. The LBM simulation gives zero value for all the three veloc-
ity components at the 7 contact points, but the y-component velocity in Physalis at
the contact points (computed by interpolating from the numerical grid, not from the
analytical Stokes flow) are not exactly zero. Due to the symmetry, the x-component
and z-component velocity should have an identical profile. The LBM results meet this

symmetry requirement, but the Physalis results do not meet this condition (not shown
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Figure 3.7: Velocity profiles at y = 0 and along the diagonal line z = x: (a) u profile,
(b) v profile.

here). These observations plus a convergence test with varying mesh resolutions indi-
cate that again LBM is better in handling viscous flow through a porous passage with
many solid-solid contact points.

In summary, while LBM and Physalis yield almost identical results for a porous
channel with one glass bead, the accuracy of Physalis appears to deteriorate as the
number of glass beads (and contact points) is increased. In general, the local treat-
ment of the no-slip boundary condition in LBM (interpolated bounce back) is not only
simpler but also more accurate than the whole-particle treatment in Physalis (via ana-
lytical Stokes flow solution on each glass bead). It may be possible that a higher mesh
resolution is required for Physalis to accurately capture the very nonuniform flows in
between the glass beads. In the following, the LBM flow is used when the transport of

colloids is studied.
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Figure 3.8: A dense cubic packing of glass beads in a square channel used for pre-
liminary colloidal transport study: (a) 3D view; (b) side view.

3.3 Transport of Colloids

Now we consider a 3D porous medium flow through a square channel densely
packed with spherical glass beads, as shown in Figure 3.8. The glass beads were used
in our parallel microscopic visualization (Qiu et al., 2012).

The geometry is similar to Case 3 discussed in the last section, except that now
even at the inlet and outlet the glass beads are packed. The flow simulation covers
a region from the center of 25-bead layer to the center of the next 25 beads layer, as
shown by the two red solid lines in Figure 3.8(b). The mesh resolution are set as:
H =W = 1606 = 800 um, L = 576 = 285 um, and R = 205 = 100 um, where the
mesh spacing is 5 ym (Table 3.4). The 16-bead layer is centered at y = 0 and the
9-bead layer at y = 142.5 um. The nearest center-to-center distance between a bead in

the 9-bead layer and a bead in the 16-bead layer is \/142.52 + (100v/2)2 = 200.764 pum,

so there is a tiny gap of 0.764 um. Since this gap is much smaller than the grid spacing
(5 um) and is not resolved numerically, we may view that all beads are in contact with
the nearby beads. The colloid diameter is 1 um.

The mean flow speed (v) = Us, defined as the flux over the channel cross
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Table 3.4: Physical parameters and their values in the 3D numerical simulation.

Symbol Physical value Numerical value
water density p 1000 kg/m? 1
water viscosity L 0.001 kg/(m - s) 0.128
grid spacing dz, dy o pum 1
channel width (/height) H 800 pm 160
periodicity length L 285 um 57
glass bead radius R 100 pum 20
colloid radius e 0.5 um 0.1
velocity used in setting Fg U, 10800 m/day 0.08
mean speed realized U, 3.52 m/day 2.608 x 1075
porosity € 0.426 0.426
nominal flow speed Us/e 8.263 m/day 6.122 x 1075
colloid density Pe 1055 kg/m? 1.055
time step dt 32x107" s 0.1
mass of colloid (actual) me 5.524 x 10716 kg 4.42 x 1073
mass of colloid (assumed) m} 6.033 x 10712 kg 48.264
response time (actual) T, 5.86 x 1078 s 1.831 x 1072
response time (assumed) T* 6.4 x 107* s 200
unit length 1.0m 2.0 x 10°
unit mass 1.0 kg 8.0 x 1012
unit time 1.0 s 3.125 x 10°
unit velocity 1.0 m/s 0.64
unit force 1.0N 1.6384 x 107

sectional area is 40.75 um/s, which is designed to match a value of about 40 um/s

in our parallel experimental microscope visualization (Qiu et al., 2012). The ratio of

(v)/us was found to be 3.26 x 10*. The flow Reynolds number based on this mean

speed and glass-bead diameter is 0.00815. The porosity € of the channel is 0.4259.
The nominal flow speed, Us/e is about 8.26 m/day. Other parameters of the flow

simulations are shown in Table 3.4.
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3.3.1 Equation of Motion for Colloids

Colloids are randomly injected into the flow at the inlet plane (y=0 plane) with
initial velocity equal to the local flow velocity, and at a rate of about 260 colloids per
second to simulate a number concentration of about 10* colloids per mm? water solu-
tion. The velocity and location of each colloid are obtained by numerically integrating

the equation of motion of the form

dv (1)

me—— = Firae L Ffa L pam L FP L F& 4+ FB 4 F°, (3.6)
dY ()
7 = V(¢ 3.
pn (t) (3.7)

where V (¢) is the instantaneous (Lagrangian) velocity of the colloid, m, = 4w p.a2/3 is
the mass of the colloid, p. is the material density of the colloid, and a. is the radius
of the colloid. The hydrodynamic forces include the quasi-steady drag force F428, the
fluid acceleration force F™, the added mass F*™  and the buoyancy force F°. F8 is
the gravitational body force. FP® is a random force designed to simulate Brownian
motion of the colloid due to local thermal fluctuations of solvent molecules. Finally,
F¢ represents interaction forces of the colloid with the glass (grain and wall) surface
or other deposited colloids. An original derivation of the equation of motion can be
found in Maxey and Riley (1983). The deviations relevant to the present application
are explained below.

When a colloid is not close to a surface, the drag is the quasi-steady Stokes
drag. However, when the distance between a colloid and a glass surface is on the order
of colloid diameter, the drag force will be modified as a result of colloid-surface local
hydrodynamic interaction (Spielman 1977; Johnson et al., 2007). Under the Stokes
flow assumption, the flow field around a colloid near a surface can be solved. The
net result of the colloid-surface hydrodynamic interaction is usually represented by a
correction factor to the Stokes drag. It is convenient to consider these corrections in

the directions normal and tangential to the surface separately. In the normal direction,
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the drag force may be written as

Firae — ¢ ( fou, — &) (3.8)
fi

where ¢ = 6rpac, p is the solvent viscosity, u, = (u-n)n, V, = (V-n)n, u(x,t) is
the Eulerian solvent velocity at the instantaneous location of the colloid, 1 is the unit
normal vector pointing from the center of the nearest glass bead to the center of the
colloid.

In the tangential direction, the drag force is

Fims = < (fsur — Vi) (3.9)

Ja

where yy =u—1u,, V;=V -V,
The correction factors f; are functions of h, the gap distance, normalized by
colloid radius, between the colloid surface and its nearest solid surface (Spielman 1977;

Johnson et al., 2007):

f1 (h) = 1.0 — 0.443exp (—1.299h) — 0.5568exp (—0.321%7) (3.10)
fo (h) = 1.0 + 1.455exp (—1.2596h) + 0.7951exp (—0.56h%°) (3.11)
f3 (h) = 1.0 — 0.487exp (—5.423h) — 0.5905exp (—37.83h*) (3.12)

f1 (k) = 1.0 — 0.35exp (—0.25h) — 0.40exp (—10.0h) (3.13)

These factors all reduce to 1 when A is larger than 3, and the Stokes drag is recovered.
The tangential direction is determined according to the sum of all tangential

forces acting on the colloid, namely,

ZF - ZFn
SF S, (3.14)

t =
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The fluid acceleration force is the force due to the background moving fluid and
is given as

F = my (3.15)
where m; = 4mpral /3, py is the density of the fluid, and du/dt is the fluid Lagrangian
acceleration.

The added mass is a force due to the relative acceleration and is expressed as

1 (dV du
Fom = g, (20 T8 1
2" ( dt dt) (3.16)

The buoyancy force and body force together is given as
F*5 = F* 4 F% = m (1 — 22)g (3.17)
Pec
where p,, is the solvent density and g is the gravitational acceleration.
The Brownian force is specified as F®? = (F?, F>, F*), where each component

FP is an independent Gaussian random variable of zero mean and the following stan-

[2CKT
O-FiB = 7, (318)

where dt is the time step size, T is the temperature (assumed to be 293 K), k =

dard deviation

1.38 x 1072 J/K is the Boltzmann constant. When a simple explicit Euler scheme
is applied, the Brownian force would generate the desired mean square value (k7 /m.)

of velocity fluctuation in each direction (Elimelech et al., 1995). The ratio of the

Brownian force to the drag force is estimated to be \/27.kT/(m.U2dt) = 2.84, implying
that the Brownian effect is as important as the drag force in transporting the colloidal
particles. The above treatment for the Brownian motion is based on a stochastic
(Langevin equation) model. It should be noted that an alternative method would be
to directly introduce fluctuating hydrodynamics (Landau and Lifshitz, 1959) within
the lattice Boltzmann equation, known as the fluctuating lattice Boltzmann equation.
This has been formulated in Ladd (1993, 1994a, 1994b) and Diinweg et al. (2007) and

shown to yield correct thermal fluctuations. We adopted the particle-based Langevin
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equation approach since the pore-scale flow in the absence of thermal fluctuations was
assumed to be steady and was solved first by MRT-LBM. It is important to note that
in this work the disturbance flows near colloids are not directly resolved. The motion
of colloids was then integrated via a modeled equation of motion, using a large number
of time steps with a small time step size. A small time step size is necessary in view of
a small inertial response time of colloid and rapid changes of hydrodynamic drag and
electrostatic interaction force when a colloid is approaching a grain surface. On the
other hand, the fluctuating lattice Boltzmann equation would require a simultaneous
evolution of the pore-scale flow with thermal fluctuations and the motion of colloids
without Brownian force. This could be computationally more expensive if a small time
step size has to be used.

While the drag force and the Brownian force are active in all regions of the flow
domain, the colloidal interaction force is only relevant when a colloid is very close to a
solid surface or another deposited colloid. It consists of the electrostatic, Lifshitz-van

der Waals, and Lewis acid/base interaction forces (van Oss 1994),
F¢ = FEPL 4 IV 4 pAB (3.19)

where all interaction forces are assumed to act in the direction normal to a surface, with
a positive value indicating a repulsive force and negative an attractive force. The for-
mulation of these forces is primarily based on the Derjaguin-Landau-Verwey-Overbeek
(DLVO) interaction potential (Derjaguin and Landau, 1941; Verwey and Overbeek,
1948). The electrostatic double layer (EDL) force results from the interaction of a
charged particle with the ions in the liquid medium. For colloid-glass surface interac-
tion, the EDL force may be written as (Hogg et al., 1966; Qiu et al., 2012)

ack

FEDL,cg —
1 — exp(—2kh)

X [a1 exp(—kh) — ag exp(—2kh)], (3.20)

where h is the minimum gap between the colloid and a glass surface (the distance
from the center of the colloid to the surface minus a.), & is the inverse Debye-Huckel

screening length which depends on the solution ionic strength. Here we shall only
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consider an ionic strength at 100 mM in NaCl electrolyte solution, and in this case
1/k = 0.963 nm. The coefficients a; and «y are related to the surface potentials of the
glass surface (—69.74 mV) and colloid (—76.99 mV) as well as the dielectric constant
of the medium (Qiu et al., 2012). The surface potentials are computed based on the
measured (-potentials (—41.31 mV and —45.56 mV, respectively (Qiu et al., 2012).
For the electrolyte solution used in this study (Qiu et al., 2012), a; = 4.648 x 107! N
and oy = 4.671 x 107! N. With the above parameters, the EDL force is repulsive
and F®PL/(CU,) > 1 when h/a. < 0.02 (Figure 3.9). For the case of colloid-colloid
interaction at 100 mM ionic strength, the EDL force is computed by (Elimelech et al.,
1995)

FEPLce — (1.847 x 107 N)ak exp(—kh), (3.21)

where h is the minimum gap between the two approaching colloids.

The attractive Lifshitz-van der Waals (LW) interaction accounts for intermolec-
ular interaction including London dispersion, Keesom dipole-dipole, and Debye induc-
tion. For the purpose of this paper, the LW force can be written as (van Oss, 1994;
Qiu et al., 2012)

B\ 2
F'™W = _Bq, (f) : (3.22)
where hy is an equilibrium distance used to model the occurrence of physical contact
and is set to 0.157 nm (Elimelech et al., 1995). The constant § has been determined
to be 0.0434 J/m? for colloid-surface interaction and 0.0469 J/m? for colloid-colloid
interaction, based on the thermodynamic parameters of colloids, glass, and the liquid
solution.

The Lewis acid/base (AB) force originates from the bonding reaction of a Lewis
acid and a Lewis base. It can be expressed as (van Oss, 1994; Qiu et al., 2012)

pae o S (ho — h) , (3.23)
X X

where x = 0.6 nm is the water decay length (van Oss 1994), the constant 7 is de-

termined, using the relevant electron-accepter and electron-donor parameters, to be
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—0.0322 J/m? and —0.170 J/m? for colloid-surface and colloid-colloid interactions,
respectively.

The numerical method for integrating the equation of motion follows our 2D sim-
ulations (Gao et al., 2008; Qiu et al., 2012), namely, a fourth-order Adams-Bashforth
scheme for colloid equation of motion excluding the Brownian force term, and Euler
scheme for the Brownian force. Then the colloid location is updated by a fourth-order
Adams-Moulton scheme. The time step size used to integrate the colloid equation of
motion is dt = 3.2 x 1077 s, thus one colloid is injected at the inlet every 12,000 time
steps. A total of 12 million time steps were calculated by the code, during this period
1,000 colloids were injected and the injected fluid volume covers roughly 1.29 periodic
lengths.

From Table 3.4, it is also noted that the flow time scale is on the order of
7 = a./Us; = 0.0123 s, therefore the Stokes number is St = 7./7; = 4.764 x 109,
where 7. = 2p.a2/(9u) is the inertial response time of a colloid. To reduce the stiffness
of the colloid equation of motion, an adjusted colloid inertial response time 77 was used
(Table 3.4), leading to St* = 7 /7 = 0.05203 but still maintaining St << 1. A colloid
is assumed to have deposited if the gap distance between the colloid surface and grain

surface is less than 0.157nm (Qiu et al., 2012).

3.3.2 Results on Colloid Trajectories and Retention

Here some preliminary results on transport and retention of colloids in 3D porous
channel are discussed. Our main interest is to understand if and how a colloid will
deposit on a solid surface (glass-bead surface and channel wall) when it is being trans-
ported through the porous flow passage.

Two runs (Table 3.5) were performed to isolate the effect of local hydrodynamic
interactions. In Run 1 the hydrodynamic interactions were turned off by setting all the
correction factors (f; to fi) to one. In Run 2, Eq.’s (3.10) to (3.13) were used. The
comparison of the two runs allows us to understand the role of local hydrodynamic

interactions on colloid retention.
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Figure 3.9: DLVO potential energy and force as a function of the gap distance: (a)
full view; (b) zoom-in view near SEM; (¢) zoom-in view near peak energy
barrier.
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Table 3.5: Force combinations tested in simulations of colloid transport and deposi-

tion.
Brownian Local Colloidal ~ Added Fluid Gravity &
force hydrodynamic interaction mass  acceleration buoyancy
interaction force force force
Run1 ON OFF ON ON ON OFF
Run 2 ON ON ON ON ON OFF

Table 3.6: Number of deposited colloids and residence for different runs.

PEM deposition SEM deposition near surface residence
(counts) (counts) (occurrence)
(heqg = 0.157Tnm)  (hgep < 13.3nm)  (hgep < 13.3nm)  (13.3 < hgqp <
100nm,)
Run 1:
0/ 1,000 93 / 1,000 4.37 x 108 3.10 x 108
Run 2:
0 / 1,000 43 / 1,000 1.85 x 108 5.28 x 10°

For each run, the simulation was repeated twice. First, only retention at the
primary energy minimum (PEM) was counted by using a gap distance of 0.157nm
as the criterion for deposition. The gap distance 0.157nm corresponds to the left
of peak energy barrier (3,324kT located at 0.191nm). The DLVO energy and force
are shown in Figure 3.9. For the specific conditions considered here, the peak energy
barrier is extremely high, but the secondary energy minimum (SEM) is also significant,
and the SEM well covers a larger region. The repeated run, while keeping all other
conditions, used a gap distance of 13.3nm as the retention criterion, namely, a colloid
located below 13.3nm at the end of simulation is viewed as a deposited colloid. 13.3nm
corresponds to a location with a negative energy potential of —10&T, slightly to the
right of secondary energy minimum (SEM), with DLVO energy of —15.25kT at a gap
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distance of 7.58nm. The idea here is that the first run captured retention at PEM only,
while the second run capture both retention at both PEM and SEM. The differences
between the numbers of retention from the two sub-runs may be loosely interpreted as
the number of retention at SEM, as a retention at —10k7T location is likely to move
further down to the SEM well and thus is unlikely to escape the SEM well — some
evidence of this will be shown in Figure 3.13(b) below. For the discussions below, the
first sub-runs will be called Run 1a and Run 2a, and the repeated runs will be denoted
as Run 1b and Run 2b.

Table 3.6 shows that the total number of deposited colloids at a time when a
total of 1,000 colloids have been injected at the inlet. No deposition was observed in
both Run la and Run 2a, this is consistent with the very high (3, 324kT") value of peak
energy barrier'. Out of the 1,000 colloids injected, 93 were found to be deposited at
SEM when local hydrodynamic interactions were not considered. This number reduced
to 43 when the hydrodynamic interactions (or hydrodynamic retardation effect) were
included. This implies a factor of 2.2 reduction in deposition at SEM.

Also listed in Table 3.6 are the numbers of near-surface residence occurrence —
an occurrence is counted if a colloid was found to be located within a selected gap dis-
tance range at any time step. Two gap distance ranges were considered: hgy,, < 13.3 nm

and 13.3 nm < hgep < 100 nm. Interestingly, while the near-surface residence for

! Before we arrived at this result, we tested convergence of the results with changing
time step size. In the process, we found that too large of a time step could lead to
deposition simply due to a numerical artifact: an overprediction of colloid velocity
near a grain surface can lead to unstable oscillations of colloid position, first outside
the peak energy barrier; then the oscillations amplified and led to a jump across the
peak energy barrier which became counted as a deposition at PEM. Such numerical
artifact is more severe when the local hydrodynamic interactions are considered — this
is expected as the correction factors are very sensitive function of gap distance when
the gas distance is small. The results presented here used a very small time step size
of dt = 77/2,000. Physically, such small time step size is needed only when a colloid
is very close to the grain surface (say below 100nm) where the correction factors and
the DLVO energy profile changes very rapidly. Outside this region, a larger time step
size can be used. We are currently investigating the use of variable time step size for
Lagrangian tracking of colloids.
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hgap < 13.3 nm was reduced to 1.85/4.37 = 42.3% when the hydrodynamic retarda-
tion was introduced, the residence time for the gap range 13.3 nm < hgp < 100 nm
was 70% higher with the hydrodynamic retardation. This in part is due to slower
velocity of a colloid in this region. Also a trapped colloid will also take longer time
to escape this region. Taken together, the total residence times for hgy,, < 100 nm
were 7.47 x 10% and 7.13 x 10® for Run 1 and Run 2, respectively. In other words,
the hydrodynamic retardation shifted colloids from the secondary energy well region
to a region slightly outside (but still close to the grain surface). Note that the DLVO
energy is —1.31k7T at 100 nm. Therefore, a portion of the colloids located in the range
13.3 nm < hyqp < 100 nm could still be viewed as temporarily deposited. We are work-
ing to generate local number concentration profile as a function of the gap distance,
similar to what has been presented in Yang et al. (1998) for an impinging jet system.
This will require more samples (longer-time run) and more in-depth post-processing.
Nevertheless, the above data implies that the concentration profile near the SEM is
less peaked when the hydrodynamic retardation is considered.

We shall now examine some representative colloid trajectories. Figure 3.10(a)
shows 10 colloid trajectories within a y — z slice defined by 595 < z < 616 (i.e., a
thickness of 10 um). This slice contains the centers of the glass beads in the 16-beads
layers. Although the slice is centered at the contact point of the 9-beads layer, the
finite thickness of the slice implies a finite size of the 9-bead layer is intercepted, in
this case, the projected radius is v/1002 — 952 = 0.312R. More precisely, a range of
interceptions from 0 to 0.312R are made, this is why a filled circle is drawn around the
centers of the glass beads in the 9-beads layer. In contrast, the range of interceptions
for the 16-beads layer is from R to V1002 — 52 = 0.9987R, so a thin line is drawn there.
The z—axis points out of the paper. Each trajectory is marked by a different color and
an identification number. A fixed time interval of 0.064s is used to plot the locations
of a colloid on a trajectory. Colloid 1 in Figure 3.10(a) enters the cell in the negative x
direction (such detail can only be obtained by zooming in the trajectory), then stays in

the slice and moves along a curved streamline first upward (diverging streamlines seem
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Figure 3.10: 3D trajectories seen within a narrow 2D slice of thickness 10 um: (a)
for a slice with 596 < x < 610, where glass beads in the 16-beads layer
contact each other; (b) for a slice with 795 < z < 819, where glass
beads in the 9-beads layer contact each other.
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Figure 3.11: Local porosity as a function of . The three pairs of vertical lines mark
the slices considered in Figure 3.10 and Figure 3.12.

in the y-z plane) then downward (converging in the y-z plane). When it approaches
the converging zone, it gets deposited there (within SEM well). Most of the colloids
(Colloids 2 to 7, and 10) find a more optimal flow region in between the glass beads
and move more quickly (judged by the larger spacing between consecutive locations).
In fact, they leave the slice temporally to avoid the strong convergence zone in the slice
and re-enter the slice at a later time. Colloid 8 travels very slowly near the contact
point in the 9-beads layer but eventually leaves that region. Colloid 9 travels into the
convergence zone near the contact point in 16-bead layer, and comes very close to the
glass-bead surface, but it was not captured. The above suggests that the convergence
zone near the contact point is likely the preferred site for colloid attachment.

Figure 3.10(b) shows 10 colloid trajectories within a y — z slice defined by
799 < x < 816. This slice contains the centers of the glass beads in the 9-beads
layers. In this case, colloids (1,2,9,10) can travel very easily near the channel walls
due to large local porosity. Away from the wall regions, the trajectories are similar to
Figure 3.10(a).

The colloid trajectories shown in the two slices in Figure 3.10 are mostly two-
dimensional because the two slices are located in region of high local porosity (larger

than the mean porosity) as illustrated in Figure 3.11. Figure 3.10(a) corresponds to
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295um < z < 305um and Figure 3.10(b) for 395um < z < 405um.

Figure 3.12 shows 10 trajectories within a y — z slice defined by 71§ < x < 736.
In this slice, glass beads in 16-beads (or 9-beads) layers do not touch one another, but
glass beads in the 16-beads layer are in contact with those in the 9-beads layer. The
range of interception radii is 0.760R to 0.835R for the 16-beads layer, and 0.893R to
0.937R for the 9-beads layer. There is a strong cross flow (relative to the streamwise
flow velocity) in this slice due to the layer-layer contact blocking, so colloids do not
stay very long in this slice, rather they wander in and out of this slice frequently. Note
that the average porosity (0.300) in this slice is lower than the mean porosity (0.426).
The slice is also shown in Figure 3.11, we note that the porosity increases with x locally
so the cross flow tends to be directed to the positive x direction (out of the paper).

The above pore-scale visualizations do not provide any details on the motion
of colloids near a grain surface. Furthermore, Brownian motion does not show up
since the motion caused by the fluid flow dominates thetrajectories visualized at the
pore scale in Figure 3.10 and 3.12. Next, we shall probe into the region in the grain
surface. Figure 3.13 shows two representative trajectories, using a deposited colloid
from Run 1 and Run 2. The gap distance from the grain surface is plotted as a function
of time. Several important observations can be made here. First, since these two
deposited colloids happened to be injected at an exact same location, their trajectories
are similar initially. At about hgqp = 1100 nm ~ 2a., the effect of hydrodynamic
retardation started to separate the two trajectories, with hydrodynamic retardation
slows down the approach to the grain surface. This is seen clearly by the different
slopes of the two trajectories. Second, the fluctuations are caused by the Brownian
motion. A close examination reveals that the fluctuations are reduced as the colloids
make its way to the surface, this reduction of the level of fluctuations is also due to
the hydrodynamic retardation effect — a drag larger than the Stokes drag causes a
smaller movement of the colloid when hit by thermal fluctuation force. In the Eulerian
approach when the concentration is solved, the hydrodynamic retardation decrease the

effective diffusion coefficient, as seen in the study of Yang et al. (1998). Third, right
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before deposition, the approach speed is increased due to increased van der Waals force
near the SEM well. Finally, Figure 3.13(b) shows the time evolution of gap distance
after the colloids are captured by the SEM well. Colloids can move around the SEM
due to Brownian energy, but cannot escape the SEM well as the depth of SEM well is
—15.25kKT. Interestingly, without the hydrodynamic retardation, the trajectory shows
a quasi-periodic oscillation with a time period of about 2 x 10~% s or about 0.31257.
This period is roughly 625 time steps, so it must have been fully resolved. Qualitatively,
we may expect a physical oscillation around SEM as the DLVO force changes direction
there, if the viscous drag (the damping) is weak. We will show this is the case below.

Figure 3.14 shows the drag force, DLVO force, and Brownian force for the same
colloid from Run 2 discussed in Figure 3.13(b) after the capture by SEM. Brownian
force is by far the most dominant force. Due to its short time scale and large relative
magnitude, Brownian force is plotted only for a small time duration in Figure 3.14(b).
The drag force shows intermediate magnitude and time scale of oscillation, showing that
colloids frequently change its velocity direction. We note that the drag force shown in
Figure 3.14 is about a factor 5 larger than the drag force experienced by colloids when
they are in the inner pore region (i.e., flow region not very close to the grain surface),
due to the significant augmentation by local hydrodynamic interaction, although the
relative velocity between the colloid and the flow in the inner pore region is much larger.
The DLVO force only depends on location, having the smallest magnitude and longest
time scale of oscillation. The above picture clearly shows that Brownian motion is the
driving force for the random motion after the capture.

Finally, Figure 3.15 shows the drag force, DLVO force, and Brownian force for
the same colloid from Run 1 discussed in Figure 3.13(b) after the capture by SEM.
In this case, without the hydrodynamic retardation, the colloid can move more freely
around SEM, the DLVO force becomes comparable in magnitude as the Brownian
force, and the drag force which acts as damping is negligible. This then implies that the
system can oscillate with a period on the order of T' = 2m+/(7/(3.125 x 10°))/(kU;) =~

7.87 x 10~*V/k, where kCU, is the spring constant corresponding to the local average
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slope shown in Figure 3.9(b) near SEM. An estimate from Figure 3.9(b) for £ is k =
15¢U, (N/nm). Then the period of the oscillation is 7= 2.03 x 10~* s, precisely the
period observed in Figure 3.13(b).

In summary, we present preliminary results on microscopic viscous flow simu-
lation in a 3D porous channel and on the transport of sub-micron colloids in a model
porous medium. Two numerical methods, namely, the MRT-LBE method and the
hybrid Physalis approach, are applied simultaneously to solve the same viscous flow
problem in a porous channel. Results from the two methods were shown to be in
qualitative agreement, while the mesoscopic MRT-LBE approach demonstrated better
accuracy than the macroscopic Physalis method, especially in the presence of multiple
grain-grain and grain-wall contacts.

Upon the fully resolved porous media flow, we then track the deposition and
migration of colloids in the bulk suspension using a Lagrangina approach. At the
given solution ionic strength and physicochemical setting, no deposition at the primary
energy minimum was found due to the presence of extremely high energy barrier.
Instead, retention by the shallow secondary energy minimum (SEM) well was detected.
Careful examination shows that the local hydrodynamic interaction between colloid and
grain surface defers the process of colloid deposition in the SEM, but does not prevent
it to occur. Prior to being captured by the SEM, the colloid trajectories are shown
to be dependent on the local porosity, flow convergency, and contact points. At large
local porosity, the colloid trajectory is quasi-two-dimensional, whereas at small local
porosity, the variation in trajectory becomes much more acute. After the colloids being
captured by the SEM well, the local hydrodynamic interaction plays an important role
in suppressing the quasi-periodic motion, which is induced by the combined effect of

particle inertia and DLVO forces near SEM.
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Figure 3.12: 3D trajectories seen within a narrow 2D slice of thickness 10 um for a
slice with 716 < z < 730: (a) 2D view; (b) 3D view.
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Figure 3.13: Gap distance between a colloid and a collector surface as a function
of time: (a) from the moment of release to the SEM deposition; (b) a
zoom-in view after the capture of colloids by SEM well. The horizontal
line represents the SEM location of 7.58nm at the given ionic strength
of 0.1M.
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Figure 3.15: Forces acting on a colloid without LHI after the capture by the SEM
well: (a) drag force and physicochemical force as a function of time, and
the corresponding gap distance; (b) a zoom-in portion of (a), including
drag force, physicochemical force, and Brownian force.
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Chapter 4

LATTICE BOLTZMANN SIMULATION OF TURBULENT FLOW
LADEN WITH FINITE-SIZE PARTICLES

In this chapter, we develop a particle-resolved simulation method and apply it
to study turbulent flow laden with finite size particles. The method is based on the
multiple-relaxation-time lattice Boltzmann equation. The no-slip boundary condition
on the moving particle boundaries is handled by a second-order interpolated bounce-
back scheme. The populations at a newly converted fluid lattice node are constructed
by the equilibrium distribution with non-equilibrium corrections. MPI implementation
details are described and the resulting code is found to be computationally efficient
with a good scalability. The method is first validated using unsteady sedimentation
of a single particle and sedimentation of a random suspension. It is then applied to a
decaying isotropic turbulence laden with particles of Kolmogorov to Taylor microscale
sizes. At a given particle volume fraction, the dynamics of the particle-laden flow
is found to depend mainly on the effective particle surface area and particle Stokes
number. The presence of finite-size inertial particles enhances dissipation at small
scales while reducing kinetic energy at large scales. This is in accordance with related
studies. However, the normalized pivot wavenumber is found to not only depend on
the particle size, but also on the ratio of particle size to flow scales and particle-to-
fluid density ratio. Further examination of local profiles illustrates strong turbulent
modulation within half particle radius to the particle surface, as well as self-similarity

of the profiles with proper scaling.
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4.1 Introduction

Turbulent particle-laden flows have seen their occurrence and applications in a
large number of natural and industrial processes. Over the past two decades, significant
efforts have been devoted to advance computational and experimental methods in order
to quantify the interactions between the dispersed particle phase and the carrier fluid
phase. Since turbulent particle-laden flows usually encompass a wide range of length
and time scales, it is computationally demanding to simultaneously resolve both the
carrier-phase turbulent flow and the disturbance flows due to the particles. A common
practice is to employ the point-particle model so that the computational cost can be
substantially reduced. The point-particle model implicitly assumes that the particle
size is much smaller than the Kolmogorov length scale of the carrier fluid turbulence,
and particle Reynolds number is small so the disturbance flow around a particle is a
Stokes flow. Using this approach, substantial progress has been made towards studies
on preferential concentration of inertial particles, turbulent modulation by inertial
particles, and turbulent collision rate of inertial particles.

Despite the successful application of the point-particle model, its validity is often
questionable when particle mass loading is significant or particles form aggregates yield-
ing strong multiscale couplings between the particulate phase and the carrier phase.
Furthermore, in many engineering applications, particle size can be of the same order
as or larger than Kolmogorov scale. The scales contained in the disturbance flows then
overlap with the scales of motion in the carrier turbulence. In this situation, the point-
particle model is no longer a valid description and the finite-size effect of the dispersed
phase must be resolved together with the carrier fluid turbulence.

The motivation of this work is to understand the motion and hydrodynamic
interactions of finite-size inertial particles suspended in a turbulent flow. One of the
major challenges is to develop an efficient and accurate approach to resolve the distur-
bance flows around particles suspended in a turbulent carrier fluid.

In recent years, several computational methods have been proposed along this

direction. Examples include the arbitrary Lagrangian-Eulerian-based finite element
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method, fictitious domain method, immersed boundary method, force coupling method,
hybrid Physalis method, the mesoscopic lattice Boltzmann method (LBM), and its vari-
ation, the immersed-boundary-lattice-Boltzmann method. More details about these
methods are described in Chapter 1.

To date, many of the above-mentioned particle resolved simulation methods
have been applied to study particle-particle interaction or particulate suspension in a
non-turbulent fluid (Qi, 1999; Ding and Aidun, 2000; Nguyen and Ladd, 2002; Climent
and Maxey, 2003), but with only a few studies on turbulent particle-laden flows. In this
case, the challenge is the multiscale nature involving a wide range of scales from the
integral scale of the background turbulence to the scales of disturbance flows around
each particle. For this reason, particle resolved simulation of turbulent particle-laden
flows requires the state-of-the-art supercomputers.

The main objectives of this work are to describe our own implementation of
LBM using interpolated bounce back and to present our preliminary results. Following
the description of the simulation method, we first validate our code using unsteady
sedimentation of a single particle. We then apply the method to study statistics in a
random suspension at finite particle Reynolds numbers and compare our results with
those reported in Climent and Maxey (2003). The main results concern decaying
turbulent flows laden with finite-size particles. We first show that our method can re-
produce the results for a single fixed particle residing in dacaying turbulence in Burton
and Eaton (2005), and then demonstrate the capability of our method in capturing the
interactions between several thousands of freely moving particles and turbulent flows
in Lucci et al. (2010). A key new physical result discussed is the dependence of nor-
malized pivot wavenumber on the dimensionless particle size. Timing and scalability

of the code are also briefly discussed.

4.2 Simulation Method
In this section, we first introduce the lattice Boltzmann approach aimed at sim-

ulating a turbulent flow laden with finite size particles. Due to the high computational
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demand, the code needs to be parallelized to run on a scalable computer such that re-
sults can be obtained in a timely manner. Hence the MPI implementation of the code
represents an important effort. We will describe the general strategy and some specific
details related to the MPI implementation in order to achieve a good computational

efficiency.

4.2.1 Lattice Boltzmann Simulation

In this study, the mesoscopic lattice Boltzmann approach, based on the multiple-
relaxation-time (MRT) lattice Boltzmann equation (LBE) (d’Humieres et al., 2002),
is applied to simulate decaying homogeneous isotropic turbulence laden with finite
size spherical particles in a three-dimensional periodic domain. In the MRT-LBE, the

mesoscopic particle distribution function at a fluid lattice point is governed by
f(x +e6,t+6)=f(x,t)—M "S- [m-— m(eq)] : (4.1)

where M is an orthogonal transformation matrix converting the distribution function
f from discrete velocity space to the moment space m, in which the collision relaxation
is performed. The transformation between the particle velocity space and the moment
space is given as

m=M-f, f=M"1'-m (4.2)

The diagonal relaxation matrix matrix S specifies the relaxation rates for the non-
conserved moments. In this work, the D3Q19 model is utilized with the discrete veloc-

ities ordered as
(0,0,0), 1 =0,
e, =4 (£+1,0,0),(0,+1,0), (0,0, £1), 1=1-6, (4.3)
(£1,£1,0), (£1,0,£1), (0, 1, +1), i = 7—18.
The corresponding 19 x 19 transform matrix M, the 19 components of moment m and

its equilibrium counterpart m®®_ and the relaxation matrix S are described in detail

in d’Humieéres et al. (2002) and Chapter 2 of this dissertation.
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The macroscopic hydrodynamic variables, including density, momentum, and
pressure, are obtained from the moments of the mesoscopic distribution function f,

namely,

p=potdop, po=1 (4.4)

op = Z fi, pou= Zf,-e,-, p = dpc? (4.5)

where u is the macroscopic fluid velocity, and the sound speed c, is equal to 1/4/3 in
lattice units.

The computation domain is covered with a uniform cubic lattice. The periodic
boundary condition is applied in all three directions. The no-slip boundary condition
on solid particle surfaces are implemented using a second-order interpolated bounce-
back scheme (Lallemand and Luo, 2003a). First, for each fluid node near a particle
surface, all the links moving into the surface of a solid particle are identified, and the
boundary-cutting location on the link is calculated in terms of the percentage (¢) of the
link outside the surface. For better numerical stability, when ¢ < 0.5, the interpolation
is performed before streaming, while for ¢ > 0.5, it is done after streaming (Lallemand
and Luo, 2003a). When two particles are in close contact, two fluid lattice nodes may
not be available near the missing population to allow for a second-order interpolation.
In this case, a linear interpolation or a simple on the node bounce back is used instead.
For a moving solid boundary, the boundary links have to be identified and ¢ has to be
updated for each time step.

In our implementation, the above LBE evolution only applies to the fluid nodes
where the particle distribution functions are defined. No distribution function is defined
for solid lattice nodes lying within the particles. When a particle is moved, a solid node
may move out of the solid region and become a fluid node with unknown distribution

functions. In this work, all the 19 particle distribution functions for the new fluid
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Figure 4.1: A two-dimensional sketch illustrates how the lattice velocity direction
ey is defined, for the purpose of implementing the non-equilibrium cor-
rection. The filled circles denote fluid lattice nodes at the beginning of
a time step, filled squares are solid lattice nodes, and the open squares
represent newly created fluid lattice nodes. The thick curve represents
the solid surface at the beginning of the time step, and the dashed curve
the new particle surface at the end of the time step.

node are constructed by an equilibrium distribution plus a nonequilibrium correction

(Caiazzo, 2008), namely,
Fi(x) = £ (x; 1y, p) + F70(x + en) (4.6)

where u,, is the velocity of the moving boundary at the new fluid node @ (Figure 4.1)
using the center, translation and angular velocity of the solid particle at the end of
time step, p is the fluid density averaged over all the existing fluid nodes found in
the immediate neighborhood using the density value based on the latest distribution
functions. On extremely rare occasion when multiple solid particles are almost in
contact, no single neighborhood fluid node is available; in this case, p is set to pq.
Since the magnitude of u, is assumed to be much smaller than the sound speed c,,

in reality, the three points Py, @, and P; in Figure 4.1 are very close to one another.
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While the equilibrium part is calculated with u,, and p at x, the non-equilibrium part is
obtained from a neighboring node at x+ey. Here the ey is a specified discrete velocity
along which direction the quantity fi-ey takes the maximum value (Figure 4.1), where
n the unit normal vector pointing outwards of the moving boundary at the point P,
through which the solid node @ at the beginning of a time step will cross the particle
surface to enter the fluid domain. The equilibrium population is calculated as

2
it t (€€ — ¢
PO, 1) = W | o RSB poun (@i — ¢ ) (4.7)

Cs2 2¢,4

where I is the identity matrix, and the weight W; is given as

1/3, =0,
Wi=1<¢ 1/18, i=1-6, (4.8)
1/36, i=7-—18.
Our numerical tests suggested that the refilling technique as given by Eq. (4.6) yielded
smaller force oscillations when compared to other methods such as the extrapolation
method used in Lallemand and Luo (2003a).

The hydrodynamic force F; acting on the ith particle is calculated during the
interpolated bounce-back procedure by summing up the loss of fluid momentum on
all the links across the surface of the ith particle, and the torque I'; acting on the ith
particle is the sum of the cross product of the local position vector relative to the center
of the particle and the loss of fluid momentum, over all boundary links. This ensures
that the net loss (or gain) of momentum by the fluid lattice particles is exactly equal
to the gain (or loss) of momentum of the solid particles, so the total momentum of the
system is conserved. This represents a unique advantage of LBM as it avoids spatial
differentiations that would be needed for computing the net hydrodynamic force and
torque on each solid particle in terms of local stress distribution on the particle surface,
for Navier-Stokes based CFD methods.

In case particles are in close contact, the flow in the narrow gap between the par-
ticles is no longer fully resolved. The physical lubrication force, which is proportional

to the radial relative velocity and inversely proportional to the gap distance, cannot
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be directly simulated. One could add, by empirical tuning, the portion of physical
lubrication force that is not resolved to the portion that is directly resolved, as was
done in Nguyen and Ladd (2002). Since the lubrication force changes rapidly with the
gap distance and a finite time step must be used, a more effective approach to prevent
particles from overlap due to under-estimation of the physical lubrication force is to
introduce a soft-sphere like short-range repulsive force. In this preliminary study, we
simply adopt the following pair-wise repulsive force acting on the ith particle due to

its interaction with jth particle (Glowinski et al., 2001; Feng and Michaelides, 2005)

O, Tij > Rij + C, ( )

Fij=4¢ .. rii — Rii — C z 4.9
() (7)) m< Ry

where r;; =Y, =Y, r; = ||Y; = Y|, Rij = R; + Rj, c;; is a force scale and is set

to be the buoyancy force in this study. Y; and Y, represent the center location of
the ith and jth particle with radius of R; and R;, respectively. ( is a threshold gap
distance within which the model repulsive force becomes active. In this work, ( is set
as two lattice spacing. The stiffness parameter, ¢,, is set to be small enough to prevent
particles from overlapping.

At each time step, with the resolved hydrodynamic force, repulsive force, and
torque acting on particles readily obtained, the particle translational and angular veloc-
ities, center position and angular displacement are updated using the Crank-Nicolson
scheme for particle position and angular displacement integration and the forward Eu-
ler scheme for velocity and angular velocity (with force and torque being averaged over

the two half time steps to reduce fluctuations),

1 [FOU2 Rl
t+6t _ 7t i i t

weovieg (FE )

j

1 [t L ptot/?

I, 2
1

Y =yl 5 (VE4 Vi) gt (4.12)
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Figure 4.2: 1D domain decomposition and periodic boundary condition manifested
by particle movement.

O = ©f + L (9 + l) 6t (4.13)

=2
pP— 5

where M, and M?R; are the mass and moment of inertia of the ith particle.
To summarize, for each time step, the sequence of operations is as follows: (1)
MRT collision step, (2) interpolation of populations needed for bounce back on the
solid particle surfaces and calculations of force and torque acting on each solid parti-
cle, (3) streaming, (4) computation of solid particle short-range repulsive interaction
forces, (5) updating solid particle locations and velocities, (6) updating lattice links cut-
ting through solid particle surfaces, (7) refilling populations for the new fluid nodes,
(8) updating hydrodynamic variables, and (9) updating fluid flow and solid particle

statistics.
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4.2.2 MPI Implementation

The computational domain of the periodic box is decomposed in a given direc-
tion, e.g., the z direction, as shown in Figure 4.2, producing a sequential set of slabs
of dimension (nz, ny, nz/nprec), where nz, ny, and nz are the lengthscales in units of
lattice spacing in z,y, 2z direction, respectively, and 7., is the number of processes
employed. Each of these slabs is mapped to an individual process according to its
sequential number, and this one-to-one mapping is fixed during the computation. For
example, process 0 takes charge slab 0, process 1 corresponds to slab 1, and so on.
Since the 2nd-order interpolated bounce-back scheme may utilize the information of
two adjacent layers of fluid lattice nodes in the z direction to construct the missing
population at a lattice node in the immediate vicinity of a solid surface, the mini-
mum slab size has to be 2 lattice units in order to limit the data communication to
neighboring slabs only. This implies that, for the particle-laden flow simulation, the
maximum number of processes that can be utilized is nz/2 for our one-dimensional
domain decomposition approach. Multiple-dimensional domain decomposition should
be explored in the future to allow the use of a much larger number of processes.

The initial positions for the freely-moving particles are generated by a master
process, say, process 0, via a random number generator. The use of a fixed seed for
random number generation on only the master process ensures the repeatability of
the initial positions of the particles. The particles are then distributed to different
processes according to the z component of their center locations. If the center of a
particle is found to be moved to its neighboring slab at the end of a time step, all
other data related to this particle including its global index, center position, angular
displacement, force and torque acting on the particle, and translational and angular
accelerations, are transferred together to the neighboring slab. In addition to the global
particle index, a local particle index is also employed within each slab, to accelerate
certain operations involving particles belonging to the same process, for example, the
calculation of particle-particle repulsive force, the update of particle dynamic evolution,

and the re-ordering of particles in a slab after some new particles moving in and some
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Figure 4.3: A 2D schematic used to illustrate the essential concept of the efficient
scheme for computing the minimum distance of a lattice node to the
center of a solid particle, regardless where the solid particle is located. In
this figure, the center of the solid particle is located close the lower right
corner of the domain, representing one of the most challenging situations.
The three periodic images of the solid particle are also shown, with virtual
centers located outside the domain near the other three corners. The
red dot represents any lattice node of interest. By simply comparing
the coordinate of the real particle center and that of the node, one can
divide the domain into four quadrants (in 2D) and then easily find the
nearest particle center to the lattice node of interest, and thus the shortest
particle-to-node distance. In the figure, the nearest particle center to the
red dot is the one located in the upper left quadrant.

old particle leaving the slab.
Comparing with the point-particle based simulation, one of the most challenging
issues for finite-size particles is on the comprehensive and efficient handling of the

scenario when a particle is crossing the computational domain boundary. For instance,
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as illustrated in a 2D schematic shown in Figure 4.3, a particle could be close to a
corner of the cubic box, thus its volume could be distributed into eight portions (four
in 2D), each of which residing in one of the corners due to the periodic boundary
conditions applied in all directions. Clearly each portion of the particle can have either
a real center located inside or virtual particle centers located outside the computational
domain. Since LBM requires a lattice node to be classified as a fluid node within the
fluid region or a solid node inside a solid particle, it is necessary to calculate the
minimum distance from the solid particle center to the lattice node of interest. A
straightforward method is to calculate and compare all eight distance from the lattice
node to the real center and seven virtual centers, but it would be cumbersome.

A much more efficient scheme to find this minimum distance is as follows. First,
the = coordinate of the lattice node x,,4. is compared with the z-component of the
position of the real particle center x4+ , which is located within the computational
domain. The following three-step procedure allows this minimum distance to be com-
puted. First, if 2,40t — Tnode > n/2, then the replacement of x4+ by a virtual z center
at Tpgrt — ne would provide the minimum separation in magnitude in the z direction.
Second, if Zpert — Tnode < —nx/2, then the replacement of z,4,+ by a virtual = cen-
ter at Zpq+ + nz would provide the minimum separation in the z direction. Third, if
—nz /2 < Tpart — Tnode < N /2, the use of a real particle center is adequate. The essence
of this operation is to ensure that the magnitude of the separation in the x direction
is no larger than nz/2. This procedure is repeated in the y and z directions, together
they provide an efficient method to compute the minimum distance of a lattice node
to the particle center, requiring only one-time calculation of projected distance in each
spatial direction instead of eight times. Another benefit of this algorithm is that it can
handle any particle size relative to the slab width, as long as the particle diameter is
less than half of the computational domain size.

This algorithm has been applied extensively and consistently in the code to
reduce computational effort, such as the detection of particle overlap, construction of

the lattice links crossing the solid particle boundary, calculation of the interpolated
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bounce-back on particle surfaces, particle-particle repulsive force, and refilling of the
missing populations for the newly-generated fluid lattice nodes.

It is a common practice in an MPI code to have variables localized as much
as possible to reduce the memory usage and consequently the time to access memory,
which would lead to a higher computational efficiency. However, there exist circum-
stances that a global variable is preferred, in order to save communication time in
between processes and to simplify the code structure.

In this code, a small number of solid particle arrays are set to global ar-
rays, including the array of particle center position, translational and angular ve-
locity, and particle-particle repulsive force. This treatment introduces redundancy
and a small impact on data communication, but the extra memory requirement is
almost negligible when compared to other large local arrays already allocated in the
same process. For example, suppose the the code is set to contain 1 million par-
ticles and run at grid resolution of 10243 with 512 processes, thus the local distri-
bution function has a dimension of f(19,1024,1024,2), and the global array of par-
ticle position is yp(3,1M). With double precision, the former alone would occupy
memory of 19 x 1024 x 1024 x 2 x 8/1024%> = 304M B, while the latter consumes
3 x 1M x 8/10242 = 24M B, which has only a marginal effect on the total memory
usage, but eliminates the need for data communication.

Since the dispersed phase can move freely in the carrier flow, the boundary
links and the boundary cutting location ¢ on each link must be updated at every time
step. To identify if a fluid lattice node possesses boundary links, one needs to calculate
the distance between each particle center and the node of interest. Typically with
thousands of particles and millions of nodes available, the task of updating distances
could be computationally intensive, if one attempts to blindly compare each node to
each individual particle directly.

A solution to this problem is to only consider the fluid lattice nodes surrounding
the particle surface in a confined region, e.g., a small cubic box with a lateral length of

particle diameter plus four lattice spacings, which would encompass all the potential
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fluid nodes with links crossing particle boundary. All the other nodes outside this
range will be filtered out in a nested conditional screening as follows. First, check the
z-coordinate of the node of concern, keep the node for the next level of screening if
its ¢ coordinate falls within the truncation region, otherwise drop it and turn to the
next node in the z direction. This procedure is repeated in the y, and then in the
z direction. This nested screening ensures that only the lattice nodes in a minimal
region are considered in the search of boundary links for a given solid particle. Finally,
the distances between all selected lattice nodes and the center of the solid particle are
computed to identify all boundary links on the solid particle. For 2562 lattice resolution
and 6400 particles of radius of 4, tests have shown that the computational efficiency
for this boundary link search algorithm is faster than the unscreened algorithm, by a
factor of more than two thousand.

In summary, the above MPI implementation details yielded an overall efficient
MPI code for particle-resolved simulation of turbulent particle-laden flows, as will be

demonstrated by timing and scalability data to be presented in the next section.

4.3 Results

In this section, we will first present results from code validation simulations
involving a single particle and a random suspension in a non-turbulent background
carrier flow. The results for a decaying turbulent particle-laden flow will then be
discussed to demonstrate the capability and computational efficiency of the approach.
Preliminary results concerning turbulence modulation by finite-size solid particles will
be provided to reveal the effects of particles on the energy spectrum of the turbulent

flow and on the spatial distribution of dissipation rate around a solid particle.

4.3.1 Validation: Single Particle Settling
Mordant and Pinton (2000) measured the velocity of a steel bead settling under
gravity (9.8m/s?) in a large water tank. The steel bead was released from rest. Here

we consider one of their measured cases with the diameter of the bead equal to 0.8mm.
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Figure 4.4: Time evolution of the velocity of a small steel bead settling under gravity
in a large water tank.

The particle density is p, = 7710kg/m3. The water density and kinematic viscosity are
ps = 1000kg/m? and v; = 0.9 x 1075m?/s. In the LBM simulation, we set the particle
diameter to d = 8 (in lattice units). The system is governed by two dimensionless
parameters: the solid particle to fluid density ratio, p,/ps, and the dimensionless
gravity gd®/v?®, where g is the gravitational acceleration. These two dimensionless
parameters in the LBM simulation are matched with those in the experiment. A
domain size of 12.5d x 12.5d x 128d (or 100 x 100 x 1024 lattice units) is used. Figure 4.4
compares the simulated settling velocity with the measured curve. Also shown is the
result from Lucci et al. (2002) based on a finite-difference immersed-boundary scheme.
In both simulations, periodic boundary conditions are assumed in all three directions.
All results are in excellent agreement. The steady-state settling velocity obtained in
the LBM is 0.315m/s in physical units, which is very close to 0.316m/s measured in
Mordant and Pinton (2000). This validates our LBM particle-resolved simulation code.

To be complete, we note that, for a free sphere in an unbounded spatial domain,
the wake can become unstable. In a spectral simulation of a uniform flow around a
sphere in a large spatial domain, Bagchi et al. (2001) found steady and axisymmetric

flow when the particle Reynolds number is less than 210, steady and nonaxisymmetric
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flow without vortex shedding when the Reynolds number is between 210 and 270, and
unsteady three-dimensional flow with vortex shedding when the Reynolds number is
above 270. In our simulation, the final particle Reynolds number is 280. However,
we applied periodic boundary conditions in all three directions in a finite domain,
so it is not a free sphere in an unbounded domain. We suspect that the particular
setup we used delayed the development of non-axisymmetric and unsteady wakes. A
closer inspection showed that the particle did start to rotate towards the end of the
simulation with the total angular displacements of 8.6°, 1.76°, and 0.66°, respectively,
along the z, y, and z axes at the end of the simulation (¢ = 0.24s), where z and
y are the horizontal directions and z is the vertical direction. The particle was also
found to drift slowly in the y direction with a total translational displacement of about
one particle diameter at t = 0.24s. A non-axisymmetric wake was also observed near
the end of the simulation. It could be possible that an unsteady wake will develop
if the simulation were to continue for a much longer time than what is presented in

Figure 4.4.

4.3.2 Sedimentation of a Random Suspension

To further validate our implementation of LBM, we first consider a random
suspension at finite particle Reynolds numbers and compare our results with those of
Climent and Maxey (2003). Solid spherical particles were randomly seeded in an ini-
tially quiescent fluid domain of size 1283. Periodic boundary conditions were applied
in all three directions. A series of simulations were conducted to yield five different
volume concentrations, using 1, 40, 120, 240, 480 particles of a fixed radius of 5 grid
spacing. The single-particle case was used as the reference case. A volumetric body
force was applied to balance the excess weight of the particles in the vertical direction.
The gravitational acceleration was varied to give two different particle Reynolds num-
bers of roughly 4.1 and 11.2, based on the single-particle sedimentation velocity and
particle diameter. The sedimentation velocity was corrected to ensure that the system

has a zero net vertical mass flux. In a Stokes suspension flow, this additional correction
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Figure 4.5: (a) Average settling velocity normalized by V4 in 128% simulations: com-
paring the present study with Climent and Maxey (2003); (b) Fluctu-
ation of settling velocity normalized by its mean value, V,..s/Vinean, in
1283 simulations: comparing the present study with Climent and Maxey
(2003).

would not be needed. However, in a suspension at finite particle Reynolds number, the
system is no longer a linear system, a simple balance of the body force and the excess
weight cannot guarantee a net zero mass flux, due to nonlinear fluid inertial effects.
An important question for a random suspension is how the mean velocity varies
with the particulate volume concentration. Figure 4.5(a) shows the mean sedimentation

velocity normalized by V;, the terminal velocity of a single particle sedimenting in the
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same periodic domain. The estimated statistical uncertainties of our own data are also
plotted. This is known as the hindered settling function and it is plotted as a function
of particulate volume fraction. Also shown are results from Climent and Maxey (2003)
at particle Reynolds numbers of 1, 5, and 10. Clearly, the particle average settling
velocity is significantly reduced as its volume fraction is increased, and the larger the
particle Reynolds number the smaller the settling velocity. The results are in good
agreement with those of Climent and Maxey (2003), with our simulations predict a
somewhat smaller settling velocity. The differences could be due to two reasons. First,
there are statistical uncertainties in both studies. Second, the force coupling method
is an approximate method in which the disturbance flow is not fully resolved.

The relative vertical velocity fluctuations V,,s/Vinean are shown in Figure 4.5(b).
The overall trends are similar: the relative vertical velocity fluctuation increases with
the volume fraction, but decreases with the particle Reynolds number. Quantitatively,
our simulations yield smaller values. The origin for the quantitative differences between

our simulations and those of Climent and Maxey (2003) remains to be studied.

4.3.3 Decaying Turbulence Laden with a Fixed Particle

In order to further verify our LBM code, we performed a simulation of decaying
homogeneous isotropic turbulence with a fixed particle. The results concerning turbu-
lence modulation in the region near the particle are compared with those of Burton and
Eaton (2005) using a finite difference method together with an overset-grid technique.
In the simulation, we set a domain of 5122 grid points with periodic boundary condi-
tions applied in all three directions. An initial turbulent field is obtained by specifying

a Gaussian field with a prescribed kinetic energy spectrum as in Burton and Eaton

(2005) 2
wr= () (§) |- ()

where k is the wave number, k, is the wave number at which E (k) reaches a maximum,

, (4.14)

and ug is the initial r.m.s. velocity. Both k and k, have been normalized by the
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minimum wavenumber ky = 27/Lp, where Lp is the computational domain size. The

initial flow statistics can be derived from Eq. (4.14) as follows:

‘;’uims = /Ooo E (k)dk = gug or “u’: = 1.0, (4.15)
65_; - 2’; Ig’B /0 KB (k) di = 187r2k§u0 T (4.16)
f_; = Zu%TLB / ’ Elgk)dk - 4\/?7)?@’ (4.17)
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By v 27rk V3 v’ (4.20)

where 4,5 is the realized component r.m.s. fluctuation velocity, v is the fluid kinematic

viscosity, € is the viscous dissipation rate, L is the longitudinal velocity correlation
length, A is the transverse Taylor microscale, n is the Kolmogorov length, and R, is
the Taylor microscale Reynolds number. It is noted that the peak wavenumber k, can

be derived from the definitions of R, and n above

Ly 20 \*
Bo= (22 (—=——) . 4.91
P (27T> (27R§774> (4.21)

After the initialization of the velocity field, the populations f(x,t) were then
evolved iteratively to establish a consistent initial pressure field as described in Mei
et al. (2006). The parameter settings are shown in Table 4.1. Here we set the same
input parameters in our simulation as those in Burton and Eaton (2005), i.e., the same
Taylor microscale Reynolds number R, and the ratio between the Kolmogorov length

and particle diameter n/d. Note that due to the reduced size of our computational
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Table 4.1: Parameter settings for flow field initialization in our LBM code and in
the finite difference simulation of Burton and Eaton (2005). Here d is the
particle diameter.

grld LB LB/d Ug lfp/k'() 14 R)\ n/d
LBM 5123 512 64 0.0205 2.34 0.0193 64.34 0.48
BE (2005) 1923 192 192 0.447 7.03 0.122 65 0.5

domain (Lg/d = 64 < 192), the normalized peak wavenumber k,/k, in our simulation
is consequently decreased in order to maintain the same R, and 7/d as in Burton and
Eaton (2005). Nevertheless, the domain size Lg of our LBM simulation is verified to
be larger than 4 times the integral length Ly, which is 92.16 in the lattice Boltzmann
units at ¢ = 0, implying it is sufficient to encompass the largest length scale of the
turbulence at the specified Taylor microscale Reynolds number R).

The total time duration of our LBM simulation is from ¢ = 0 to ¢t = 0.79T¢,
corresponding to 10,000 time steps, where the initial eddy turnover time is defined as
T.o = u?,,/e. The high-order statistics of real turbulence is realized by evolving the
single-phase flow until the skewness of about —0.5 has been developed at ¢ = 0.167 ,
as shown in Figure 4.7(a) below. At this point, a single fixed particle with diameter of
about twice the Kolmogorov length scale of the unladen turbulence is inserted at the
center of the domain. No-slip boundary condition on the particle surface is achieved by
applying a second-order interpolated bounce-back scheme. For the fixed particle, the
information of the populations f(x, t) for the fluid nodes inside the particle is ignored.
The flow field is over-resolved as shown by k,,..n > 10 for the whole time interval.

Figure 4.6 displays zoom-in view of the vorticity contours on a center-cut plane
of z = 255.5. Both the laden and unladen flows are shown at two time points of 0.477, o
(6,000 lattice time steps) and 0.797,, (10,000 lattice time steps), respectively. The
enhanced vorticity near the particle surface indicates the local increase of dissipation,

which can be attributed to the effect of the no-slip boundary condition on the particle
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Figure 4.6: Zoom-in view of vorticity contour and particle location on a plane-cut
of z = 255.5 in the 512® simulation: (a) 0.477,, and (c) 0.797,,. Note
that the presence of particles is associated with high vorticity values (rep-
resented by the colors towards the red end), indicating relatively large
dissipation near particle surfaces. The corresponding vorticity contours
for single-phase flow at the two times are shown in (b) and (d), respec-

tively.

surface. At large radial distance from the particle surface, the particle-laden flow is

almost identical with the unladen flow results.

Figure 4.7, 4.8, and 4.9 illustrate the impact of particle insertion on turbulence
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Figure 4.7: Time evolution of high-order statistics of turbulence for both particle-
laden and unladen flow: (a) skewness, (b) flatness.

evolution using various statistics, including the velocity derivative skewness and flat-
ness, Taylor microscale Reynolds number, and normalized turbulent dissipation rate.
Due to the small volume fraction of 2.0 x 107°, the particle-laden flow is almost in-
distinguishable from the unladen flow, except for the flatness shown in Figure 4.7(b),
where the two cases are distinct from the moment of particle insertion at ¢t = 0.167, ¢
to t = 0.557, ¢, corresponding to 2,000 ~ 7,000 lattice time units. It is of interest to
compare this time duration with the flow adjustment time required to establish the

boundary layer around the particle surface. The flow adjustment time can be roughly
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Figure 4.9: Time evolution of normalized dissipation rate for both particle-laden and
unladen flow.

estimated as Tpgjust = 0% /v, where the boundary layer thickness dp1, ~ a,/ \/}Tep , and
v is the fluid kinematic viscosity. In this case, the maximum particle Reynolds number
Re,, is approximately 20 (Burton and Eaton, 2005). Then the period of flow adjustment
is about Thgust ~ a2/ (Repv) = 42/ (20 x 0.0193) = 41.5 lattice time units, which is

much less than the aforementioned time duration of 5,000 lattice time units. After

this time duration, the flatness of the laden flow and unladen flow reconcile.
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Figure 4.10: Comparison with the results of Burton and Eaton (2005) and Stokes
disturbance flow. (a) normalized dissipation rate, and (b) normalized
turbulent kinetic energy. The horizontal line marks the level of 1.0.

Figure 4.10 shows the radial profiles of turbulent kinetic energy and dissipa-
tion rate calculated by volume-average in spherical shells around the particle. The
particle-laden flow results were first normalized by their unladen counterparts, and
then averaged temporally to produce a mean profile. Specifically, in this study, we
picked the normalized profiles at 7,000, 8,000, 9,000, and 10,000 lattice time units,
which is far from the flow adjustment period described in Figure 4.7(b), and conse-

quently allow us to avoid the transient effect introduced by the particle insertion. The
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four time points also correspond to ¢t = 0.667;, 0.807 ;,0.937, ;, 1.06T ;, respectively,
where T, ; is the eddy turnover time estimated at the moment when particle is inserted
into the domain, and is 7, 540 lattice time units. The time-averaged profile was then
compared with the results kindly provided by Prof. Burton and Prof. Eaton, where the
data were processed in a similar procedure. Note that the temporal average performed
for Burton and Eaton’s data includes ¢ = 0.717, ; and 1.077, ; in their case, which cover
approximately the same time duration as in our post-processing.

Considering the different configuration in our LBM simulation and the overset-
grid finite difference simulation in Burton and Eaton (2005), it is interesting to observe
that the results from the two fundamentally different methods reach quantitative agree-
ment. Figure 4.10(a) shows almost identical profiles for normalized dissipation rate,
where its value drops to within 20% of unit value prior to r/a, < 4, and then flat out
to unit value towards large radial distance. For turbulent kinetic energy profiles shown
in Figure 4.10(b), the overlapped data within the range of 1.0 < r/a, < 1.5 depicts a
substantial increase from zero to about 60% of unit value, followed by a gradual recov-
ery towards full turbulent kinetic energy within the range of 1.5 < r/a, < 9, where the
LBM results show marginally higher kinetic energy profile during the process. Over-
all, it is clear that the turbulence has been attenuated significantly near the particle
surface.

Additionally, a zeroth-order analytic model based on Stokes disturbance flow
(see Appendix D) is also presented in Figure 4.10 to be compared with the simulation
results. The prediction from the model shows smaller kinetic energe and larger dissipa-
tion rate, which can be mainly ascribed to the effect of finite particle Reynolds number,
such that the disturbance flow around the particle is no longer Stokes flow. In fact, the
maximum value of particle Reynolds number in the simulation is approximately 20, as

reported in Burton and Eaton (2005).
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Table 4.2: Parameter settings in our LBM code and in the finite difference simulation
of Lucci et al. (2010) for the single-phase decaying turbulence. Here Lp is
the computational domain size, kg = 27/Lp, and Az is the grid spacing.

grid  Lp U kp/ko v
LBM 2563 256 0.020494 4 2.4094 x 1073
PS 2563 2m 0.0503 4 1.4514 x 10~*
Lucci et al. (2010) 2563 1.0 0.0503 4 2.31 x 107°

dt ) UO/A./,E ULgcci LLicci TLfcci
LBM 0.02049 0.407437 256 628.32
PS 0.02049 1.0 6.2832 6.2832
Lucci et al. (2010) 0.02515 1.0 1.0 1.0

4.3.4 Decaying Turbulence Laden with Large Particle Loading

Prior to the simulation of particle-laden turbulence, the accuracy of our LBM
code was verified by a comparison with a pseudo-spectral code for particle-free decay-
ing homogeneous isotropic turbulence. The particle-free or single-phase flow will be
referred to as the Case 1 flow. For most simulations, we consider a periodic domain of
2562 grid points, indicating the potential range of wave number 1 < k < 128. Following
the work of Lucci et al. (2010), the initial velocity field at ¢ = 0 was specified by a

Gaussian field with a prescribed kinetic energy spectrum as

IO R B—

where £ is the wave number, £, is the wave number containing peak energy, and ug
is the initial r.m.s. velocity. Both k and k, have been normalized by the minimum
wavenumber ko = 27 /Lpg, where Lp is the computational domain size.

Here we performed two simulations of the single-phase decaying flow, one using
the LBM, and the second using the golden-standard pseudo-spectral method (Peng
et al., 2010). The settings of the simulation parameters are shown in Table 4.2. To

separate the time scales of acoustic waves from hydrodynamics, we used a small velocity
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scale in LBM, so the lattice time is much smaller than the hydrodynamic time scales.
For example, the Kolmogorov time scale at the initial time is equal to 117 lattice time
units. The relative velocity, length, and time scale ratios are listed Table 4.2 which can
be used to convert flow statistics from one to the another. Note also that the effective
time step sizes used in the different approaches are very similar.

It can be shown theoretically that this initial energy spectrum implies the fol-

lowing initial flow statistics:

;1} :/ E(k)dk:gug or Lrms _ 1, (4.23)
0

™ms U/O

Ly 2Ly [®
5 = ”33/ K2E (k) dk = 727k — (4.24)
U Uy Jo uoLp’
Ly _ /OoE(k)dk_i (4.25)
B o QU%LB 0 k N 8kp’ .
1 (15w 1
A L [1ovug 0 (4.26)

n 1 (v 151/u0
=__ [ = =4/ 4.2
Lg Lg < € ) 67T\/_l€ U()LB ( 7)

urms)‘ 1 ) U()LB
E = —_ 4.2
B v 27k, \/; v (4.28)

where u,.,,, is the realized component r.m.s. fluctuation velocity, v is the fluid kinematic

viscosity, € is the viscous dissipation rate, L is the longitudinal velocity correlation
length, X is the transverse Taylor microscale, 7 is the Kolmogorov length, and R) is the
Taylor microscale Reynolds number. It is noted that the peak wavenumber k, plays
an important role in determining the initial flow dissipation rate, all flow length scales,
and the flow Reynolds number.

In Table 4.3, we compare non-dimensional flow statistics for the Case 1 simu-

lation, namely, the single-phase decaying turbulence. At ¢t = 0, the above theoretical
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Table 4.3: Comparison of simulated flow statistics for single phase turbulence. LBM
and SP denote our LBM simulation and our pseudo-spectral simulation.
The simulation by Lucci et al. (2010) is a second-order finite-difference
simulation.

urms/uo ELB/US Lf/LB )\/LB ’I’]/LB R)\ RLf RLB

t/TLucci =0

Theoretical 1.00 5.22 0.0938 0.0363 0.00208 79.1 204 2177.5
LBM 0.997  5.27 0.0830 0.0361 0.00207 78.3 180 2169
PS 0.997 5.28 0.0829 0.0360 0.00207 78.3 180 2171
Lucci et al. (2010) 1.00 5.81 0.0684 0.0345 0.00202 75 149 2177
t/TLucci =1

LBM 0.886 6.919 0.0858 0.0280 0.00193 53.9 165 1926
PS 0.884 6.963 0.0860 0.0278 0.00193 53.5 165 1924
Lucci et al. (2010) 0.847  7.70 0.0685 0.0259 0.00188 49 129 1888
t/TLucci =95

LBM 0.506 1.688 0.108 0.0323 0.00275 35.6 119 1104
PS 0.503 1.668 0.115 0.0323 0.00276 35.4 126 1096

Lucci et al. (2010) 0.463  1.57 0.0891  0.0305 0.00280 31 89.8 1078

predictions are also listed. In the pseudo-spectral (PS) simulation, the energy spectrum
is truncated at kK = N/3. For the initial spectrum given by Eq. (4.22), it an be shown
theoretically that this truncation has no noticeable effect on the kinetic energy and
dissipation rate. The relative differences between the pseudo-spectral results and the
theoretical values are typically about 1% or less, except in L; where it is 11.6%. These
minor differences are due to the discretization effect in the wave vector space. Since
the integral length L is mostly determined by the large scale, the mode discretization
has a significant effect. In our LBM, an identical initial flow as in the pseudo-spectral
simulation was used. The initial populations f(x,t) were iterated following the proce-
dure described in Mei et al. (2006) to achieve a consistent initial pressure field; this
amounts to solving a pressure Poisson equation iteratively. It is clear that all flow
statistics from the LBM simulation are in excellent agreement with those from the PS

simulation. Almost identical kinetic energy and dissipation rate spectra between the
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Table 4.4: Parameters for particle-laden flow simulations at the release time.

Case N3 d oo/P; Ny d/n  d/X b, BOrm 7/ Tk
2 2563 8.0 2.56 6,400 16.1 1.1 0.10 0.23 36.8
3 2563 8.0 5.0 6,400 16.1 1.1 0.10 036 71.9
3H 5123 16.0 5.0 6,400 16.1 1.1 0.10 036 71.9
4 256  11.0 2.56 2,304 221 1.5 0.10 0.21 69.6
5 5123 8.0 5.0 51,200 8.08 0.559 0.10 0.36 18.1

LBM and SP simulations were also observed (not shown here). These provide a direct
validation of our LBM simulation and are consistent with the results shown in Peng et
al. (2010).

The flow statistics obtained by Lucci et al. (2010), also shown in Table 4.3,
however, have some inconsistencies even at the initial time. For example, the dissipa-
tion rate is larger than the theoretical value by about 11.3% and the Taylor microscale
is less by 5% when compared to the theoretical value. Part of these inconsistencies
could be a result of different random numbers used in the flow initialization. Since
our simulated flow statistics are much closer to the theoretical values at ¢t = 0, we
suspect there are some other problems in Lucci et al. (2010), either in their low-order
finite-difference scheme or in their processing of flow statistics. Overall, the data in
Table 4.3 imply that the numerical method used in Lucci et al. (2010) has a noticeable
numerical dissipation at earlier times, while our LBM simulation has negligible numer-
ical dissipation. We shall return to this point again when we compare time evolutions
of turbulence kinetic energy and dissipation rate.

For the particle-laden turbulence simulations, the single-phase flow field was
evolved for sometime until a converged velocity-derivative skewness of about —0.50
was developed. At this moment, particles were released in the domain at random loca-
tions with a gap distance of at least two grid spacing in between. Initial translational

velocities of particles are set as the instantaneous fluid velocity at the particle center,
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and angular velocity is set to zero. A set of five simulations, listed in Table 4.4, were
preformed to study the turbulence modulation by finite-size particles. Cases 2, 3, and
4 roughly match Cases D, E, and G in Lucci et al. (2010). The gravity was set to zero.
The simulations are run from ¢ = 0 to ¢t = 2.12T ;, corresponding to 5,000 time steps,
where the initial eddy turnover time 7,y = u2,,,/€ and it is 2,356 lattice time units.
The flow fields are well resolved as shown by k,,..n > 1 for the whole time interval.
All the simulations were performed on an IBM Power6 supercomputer at NCAR with
MPI parallelization using 32 processors (at 256°) to 128 processors (at 512%). Each
simulation takes 6 to 27h of wall-clock time.

Figure 4.11 displays the vorticity contour for Case 4 on the boundaries of the
computational domain at 3,000 lattice time step (1.277; () and 5, 000 lattice time step
(2.12T¢ ), respectively. A layer of fluid to the top is removed to show the locations
of a portion of the 2,304 particles. The magnitude of vorticity decreases with time as
expected, as can be seen from the color difference of Figure 4.11(a) and (b).

In Figure 4.12 we provide 2D visualizations of the vorticity magnitude on a slice
and locations of the particles cutting through the same slice, for two different times.
These are results from the Case 3 run at z = 128.5 (a & — y slice near the center
of the domain). It is observed that the presence of particles is often associated with
high voritcity values (the red spots), suggesting that motion of finite size particles can
generate small-scale flow structures near its surface. Note that Case 3 has the largest
density ratio and likely the largest slip velocity. We found that the enhanced activities
at small scales due to particles are self evident when compared to the particle-free case
as shown in Figure 4.12(b) and Figure 4.12(d). The vortical structures are larger in size
and more interconnected in the single-phase flow case. There is very little correlation
between the single-phase and two-phase vorticity fields at a given time. At the earlier
time ¢t = 0.5227, o, both the particles and the fluid have large kinetic energy and as such
there is a large slip velocity between a particle and its neighboring flow, the disturbance
near the particle surface is more visible. At later times, the system has less and less

kinetic energy and interphase slip velocity, the disturbance flow near the particles are
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Figure 4.11: Vorticity contour at (a) 1.277, 4 and (b) at 2.127, for case 4. A layer
of fluid is removed to show some of the 2304 particles.
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Figure 4.12: Snapshots of vorticity contour and particle location on a plane-cut of
z = 128.5 in 256 simulation of case 3: (a) 0.557,4 and (c) 1.217,,.
Note that the presence of particles is often associated with high vortic-
ity values (represented by the colors towards the red end), indicating
relatively larger dissipation near particle surfaces. The corresponding
vorticity contours for single-phase flow at the two times are shown in

(b) and (d), respectively.

weaker. The effect of particles on the viscous dissipation thus changes with time, as

will be shown in Figure 4.14 below.

Figure 4.13(a) shows the temporal evolution of turbulent kinetic energy (TKE)
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Figure 4.13: Temporal evolution of turbulent kinetic energy normalized by its initial
value. (a) Different cases simulated here; (b) Comparison with the
results of Lucci et al. (2010) and PS (for single-phase turbulence only).

normalized by 1.5u} computed at time ¢ = 0 for all the five cases. It should be
noted that the kinetic energy TKE/"!(t) we computed is the kinetic energy for the
full field, including the space occupied by the particles where a rigid body translation
and rotation together define the local velocity. The average kinetic energy of the fluid
domain, TK E/™(t), is related to TK E™(t) as

TKE™ (1) = TKE™ (1) (1 — ¢,) + b, (%(Vﬁ + ;—0d2<9§>> (4.29)
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Compared with the particle-free turbulence, the TKE decreases faster in the particle-
laden cases from the moment of particle release till about 1.67¢ o, and then the decaying
rate tends to be the same in all cases. In addition, the increase of particle number
results in an evident reduction of TKE, as shown by comparing the curves from Case
2 and Case 4. This may be associated with more surface areas in Case 2 than in Case
4. The increase of particle density has a marginal effect on decaying rate reduction,
based on a comparison of Case 2 with Case 3.

In Figure 4.13(b), we compare our results with the results of Lucci et al. and PS
(for single-phase turbulence only). Note that Case 1 and Case 3 of our LBM simulations
correspond to the parameter setting of Case A and Case E in Lucci et al. (2010). Our
LBM and PS results for the single-phase flow overlap, but the curve from Lucci et al.
(2010) for the single phase flow shows a faster decay of kinetic energy due to their
larger viscous dissipation at the early times, as has already been noted in Table 4.3
(also see in Figure 4.14(b) below). The larger viscous dissipation for the single phase
flow simulation in Lucci et al. (2010) could be partially due to the numerical dissipation
in the second-order finite-difference scheme that Lucci et al. used. Our result for Case
3 is closer to the result of Case E in Lucci et al. (2010). It should be noted that
our data represent TK E/*(t) while the result of Lucci et al. is for TKE/™4(t), so
the comparison is not a very direct comparison. The good comparison is somewhat
surprising as the results for even the single-phase flow case do not match. It may be
possible that the regularized three-point delta function used in the immersed boundary
implementation in Lucci et al. (2010) is a local filter that somewhat smooths out large
velocity gradient at the particle-fluid boundaries, reducing slightly the local dissipation
rate near the particle surface. The numerical dissipation in a low order finite-difference
scheme and the regularization filtering may happen to cancel one another, giving results
comparable to what observed in our LBM scheme. For these reasons, we believe that
our results for both the single-phase and the particle-laden flow are likely to be more
accurate than those of Lucci et al. (2010).

Figure 4.14(a) shows the modification of turbulent dissipation rate due to the

116



e(t)Ly / uy’

(b) 12— I R E Y B B

1 case 1, spectral i

10 < l'\ N — — — — Lucci et al. (2010) case E [

1 N e Lucci et al. (2010) case A [

’ \ — case 3 -

L 8 ,_Jl\ \ case 1 N

= Py

~

= L
=
N

w L

Figure 4.14: Temporal evolution of turbulent dissipation rate normalized by its initial
value. (a) Different cases simulated here; (b) Comparison with the
results of Lucci et al. (2010) and PS (for single-phase turbulence only).

presence of particles. The local dissipation inside the particles is zero, so the whole

field dissipation and the fluid-region averaged dissipation are related by
e () = (1 — ¢y) /™ (1) (4.30)

We computed /% (¢) directly and then divided by (1 — ¢,) to obtain e/ (¢) which is
what shown in Figure 4.14. At the moment of about 0.267 ¢, the injection of particles
into the fluid domain causes a sudden jump of the dissipation rate, followed by a

peak value at about 0.47;, and then the total dissipation decreases monotonically.
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The total particle surface area normalized by the domain size squared is equal to
6¢,L/d, implying that Case 5 has the largest effective surface areas and Case 4 has
the smallest effective surface. This explains why the peak dissipation of the system
after the introduction of solid particles is the largest for Case 5, and the smallest for
Case 4. The two intermediate cases, Case 2 and Case 3, have the same effective surface
area, but different Stokes numbers. The larger the Stokes number (Case 3 compared
to Case 2), the higher the peak dissipation value due to a larger slip velocity. Another
observation is that, after the peak is reached, the system dissipation rate decays faster
if the particle Stokes number is smaller, indicating a faster approach to an interphase
quasi-equilibrium stage of the system evolution (the later part of the time evolution
shown in Figure 4.13(a) and Figure 4.14(a)).

Figure 4.14(b) compared our LBM results of the average flow dissipation rate
to SP single-phase simulation and to the results of Lucci et al. (2010), in a manner
similar to Figure 4.13(b). Again for the single-phase flow simulation, our LBM result
matches the SP result, but Lucci et al. over-predicted the flow dissipation at earlier
times. The two particle-laden cases are in general agreement in that both have a higher
flow dissipation rate when compared to the single-phase turbulence for most of the time
after particle release. An important difference between our result for Case 3 and the
result of Lucci et al. for Case E is that, immediately after the particle injection, the
jump in the dissipation rate in Lucci et al. is much larger than in our result. As
the viscous boundary layers develop on the particle surface, the LBM result shows a
gradual increase in flow dissipation before reaching a second peak while the Lucci et al.
shows a monotonic decay. At the moment of particle injection, there is an unphysical
jump or mismatch of fluid velocity and particle surface condition. The LBM scheme is
a weakly compressible formulation while Lucci et al.’s is an incompressible flow solver.
The regularization function in the Lucci et al.’s immerse boundary treatment would
also have a strong impact at the moment of injection. At this moment, it is not
completely clear which method better handles the flow physics immediately after the

unphysical jump condition. Nevertheless, the time evolutions after the transition stage
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Figure 4.15: Kinetic energy spectrum at the end of simulation (2.127,).

(t/Teo > 0.6) are very similar.

An important characteristic of the particle-laden turbulent flow is the addition
of motion at the scale of particle size, at the cost of reduction of large-scale fluid motion,
since no energy is added to the system here. This is clearly shown in Figure 4.15 where
we compare the kinetic energy spectra at the end of simulations t = 2.127, o. It should
be noted that we use the full velocity field including the rigid-body velocity inside the
particles to compute the energy spectrum. Typically, the kinetic energy is higher at
higher wavenumbers when compared to the single phase flow. At intermediate and low
wavenumbers, this is reversed. Interestingly, wave-like oscillations are observed at the
tails of the spectra for turbulent particle-laden flow, as shown previously in Ten Cate
et al. (2004) and Lucci et al. (2010), due to the discontinuity of flow velocity gradient
at the finite-size particle surface. Compared to the results of Case 2 and Case 4, Case
3 possesses noticeably larger TKE at large wavenumbers due to large mass loading and
large Stokes number.

The result for Case 5 is more complicated. First, the cross-over at large wavenum-
bers becomes very evident with a clear attenuation of energy at the intermediate

wavenumbers. Second there is apparently a second cross-over at £ = 4 ~ 5. It could
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Figure 4.16: Normalized pivoting wavenumber as a function of particle size scaled by
(a) Kolmogorov length scale, and by (b) Taylor microscale. The slopes
are 0.091 and 0.037 in (a) and 0.93 and 0.43 in (b). The vertical lines
are at 11.3 and 0.98 in (a) and (b), respectively.

be due to some large-scale structures formed by the particles. This will need to be
studied in the future.

It is now well known that the cross-over wavenumber or pivot wavenumber,
kpivot , at the large-wave number end scales with the particle diameter. We intro-

duce kg = Lpop/d, where Ly, is the computational domain size. Figure 4.16 shows
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the dimensionless pivot wavenumber kp;yot/kq as a function of nondimensional parti-
cle diameter. In Figure 4.16(a), the diameter is normalized by the Kolmogorov scale
of the single-phase flow, and in Figure 4.16(b) by the transverse Taylor microscale of
the single phase flow. Each data point represents the result at a given time during
the decay. Additional simulations than those mentioned in Table 4.4 are performed
to cover different d ranges. All results available in the studies shown in Table 1.1
are also shown. Our results are in general agreement with one another, although the
simulations in Ten Cate et al. (2004) and Yeo et al. (2010) are obtained for forced
particle-laden turbulent flows. Despite some scattering of the data points partially due
to some uncertainty in reading the pivot wavenumbers, two important observations
can be made. First, the dimensionless wavenumber increases with the dimensionless
particle size. This is due to the different natures of the local flow: a particle of diameter
of the order of Kolmogorov scale senses a more uniform local velocity gradient, while
a particle much larger than the Kolmogorov scale experiences a more complex local
flow field including inertia-subrange fluctuations. Another observation is that there
appears to be two slopes in each of the plot, the dimensionless pivot wavenumber is
more sensitive to particle size when d/n < 11 or d/A < 1, and becomes less sensitive
for large particle sizes. The transition takes place apparently at d ~ A, as A represents
the scale of velocity gradient in the undisturbed turbulent flow. Finally, the magnitude
of kpivot/kq depends on the particle-to-fluid density ratio at a given volume fraction,
with denser particles leading to a smaller kpiyo/kq-

We shall now examine the effect of the no-slip particle-fluid interface at the
particle scale by gathering statistics as a function of distance from the surface of each
particle. Figure 4.17 shows the profile of bin-averaged < S;;5;; > computed at different
times for case 3 and case 3H, respectively. The calculation of strain rate S;; by LBM
is described in detail in Yu et al. (2006) and Appendix C. The distance r from a
fluid lattice node to the center of the nearest particle is normalized by particle radius

ap, and then divided into bins of given width of dy;, = 0.05a,. The averaged particle
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Figure 4.17: Profile of bin-averaged < S;;5;; > as a function of distance from the
particle center showing dependence on lattice resolution.

center-to-center distance [, can be estimated as

I Ar \?
2 = (3; ) ~ 3.47, (4.31)
D v

which implies that the statistics would be subjected to significant uncertainties due to

insufficient number of fluid lattice nodes at distance larger than 3.47a,. Indeed, this is
justified by the observation that the value of < §;;5;; > starts to fluctuate from about
3.8a,, and becomes almost negligible when r/a, > 4.4, as shown in Figure 4.17.

It is clear that for a single time, the < 5;;S;; > value dramatically decreases
from the surface of a particle to a distance of about 1.5a,, and then retains the low
value. This indicates the substantial impact of the solid particles to their surroundings
within this range. For both case 3 and case 3H, the magnitude of < 5;;S;; > reduces as
time evolves, which is expected for decaying turbulent flow simulations. We also noted
that the higher resolution (case 3H) yields smoother profiles, e.g., the fluctuations in
case 3 within the range of 1.3a, ~ 1.8a, is avoided in case 3H, due to larger number
of fluid nodes available in the latter case. For this reason, we will focus on the results
from case 3H for the following discussions.

Figure 4.18(a) shows the profile of normalized bin-averaged dissipation rate at

different times for case3H. The normalization is performed by scaling the dissipation
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Figure 4.18: Comparison with the results of Burton and Eaton

(2005) and Stokes

disturbance flow. (a) normalized dissipation rate, and (b) normalized
turbulent kinetic energy. The horizontal line marks the level of 1.0.

rate of the particle-laden turbulence with its particle-free counterpart simulated with

the same initial condition and lattice resolution. The trends are similar to those found

in Figure 4.17: the normalized dissipation rate drops substantially within a short

distance (~ 1.5a,) from the particle surface, and decreases with

turbulence.

time for decaying

Moreover, the results are compared with the averaged data from Figure 17 of

Burton and Eaton (2005) as kindly provided for us by Prof. T.M.

123

Burton and Prof.



J.K. Eaton, as well as results from a zeroth-order analytic model developed based on
Stokes disturbance flow (see Appendix D). The analytic model underestimates the
dissipation rate prior to a distance of ~ 3.5a, compared with Burton and Eaton’s data,
and then their results become almost identical at larger distance. This can be mainly
attributed to the fact that the particle Reynolds number is up to 20 in Burton and
Eaton’s simulation, which no longer justifies the Stokes flow assumption of the model.
It is also clear that the dissipation rate in case 3H are lower than that of Burton and
Eaton (2005). The difference could be due to the much larger particle size in case 3H,
where d = 16.17 belonging to the inertial range, while in Burton and Eaton (2005) the
particle size is d = 27 in the dissipative range, which could enhance the dissipation.

Figure 4.18(b) shows the profile of bin-averaged turbulent kinetic energy as a
function of distance from the center of a solid particle. Again, the results are normalized
by those from unladen turbulence, and are compared with the averaged data from
Figure 16 of Burton and Eaton (2005), as well as with the data from an analytic model
based on Stokes disturbance flow (see Appendix D). The turbulent kinetic energy first
declines to a lower value till the distance reaches about 1.1a,, followed by a jump to a
high value at about 1.3a,, and then reaches a plateau with slight increase till ~ 3.5a,,
after which the results are severely distorted due to the lack of sufficient number of
fluid lattice nodes. As time evolves, the normalized kinetic energy decreases, which is
consistent with the decrease of dissipation rate as seen in Figure 4.18(a). In addition,
the kinetic energy profiles are in general higher than that from Burton and Eaton (2005)
within the comparable distance range of ~ 3.5a,, due to the difference in particle sizes
as mentioned above. The analytic model, however, yields markedly smaller values
than Burton and Eaton’s simulation within the whole range, mainly because of the
inconsistency between the finite particle Reynolds number in the simulation and the
Stokes disturbance flow assumption in the model.

It is also of interest to probe the appropriate way to normalize the profiles near
the particle surface. Figure 4.19(a) shows the profiles of dissipation rate at different

times scaled by the corresponding values computed from the particle-free turbulence.
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Figure 4.19: Profile of bin-averaged dissipation rate as a function of distance from
(a) normalized by the values from unladen

the center of a particle:

turbulence, and (b) normalized by the values computed on the whole
domain including both particle phase and fluid phase.

As a comparison, Figure 4.19(b) demonstrates the scaling by using the transient values

of the whole domain from the particle-laden turbulence, including both solid and fluid

region. Clearly, the data reconcile better in the latter case. Similar trend is shown in

Figure 4.20: the normalization using values from particle-laden turbulence yields more

consistent results.
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Figure 4.20: Profile of bin-averaged turbulent kinetic energyas a function of distance
from the center of a particle: (a) normalized by the values from unladen
turbulence, and (b) normalized by the values computed on the whole
domain including both particle phase and fluid phase.

4.3.5 Timing and Scalability

Finally, we comment on the wall-clock times of the simulations, as shown in
Table 4.5. All 2562 runs in Table 4.5 used 32 processes and 5123 runs used 128 pro-
cesses. First, we note that the single phase flow simulation at 512% with 128 processes
takes about twice the wall-clock time as the flow simulation at 256 with 32 processes,
as expected from simple scaling of the problem size. A remarkable feature is that the

particle-resolved simulations only take a moderate overhead in terms of wall-clock time,
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Table 4.5: The wall-clock time per time step for various runs.

Case N3 d N, o Wall-clock  Additional
per time overhead
step (s) (%)

1 (flow only) 2563 - - - 3.11 —

9 2568 8.0 6,400  0.1023  3.84 23

3 2563 8.0 6,400 0.1023 3.85 24

4 2563 11.0 2,304 0.0957 3.74 20

1 (low only) 5123 - - - 7.01 -

3H 5123 16.0 6,400 0.1023 8.84 26

) 5123 8.0 51,200 0.1023 10.1 44

when compared to the single-phase flow simulation at the same resolution. This mod-
erate overhead is a result of the LBM algorithm and our careful MPI implementation.

Furthermore, the overhead reported in Table 4.5 depends on the number of solid
particles as well as the solid particle size. We could roughly partition the overhead into
three parts: (1) the overhead associated with exchanging two layers of fluid-particle dis-
tribution data when compared with just one layer in single-phase flow simulation, and
additional one layer slab-to-slab communication associated with the refilling procedure;
(2) the overhead for processing the boundary links on the solid particle surface which
is proportional to the total solid particle surface area (~ N,d?); and (3) the overhead
associated with updating the translational and angular locations and velocities of solid
particles and with MPI_ ALLREDUCE operations to collect single particle information
and to store in corresponding solid particle arrays. Assume the overhead associated
with the third part is relatively insignificant; we can use the results in Table 4.5 to
estimate the overheads for the first part and the second part. Note that the overhead
for the first part is independent of the number of solid particles, and the overhead for
the second part is proportional to N,d?. For example, by comparing Cases 2, 3, and 4,

we infer that the overhead for the first part is roughly 12.5% for 256° simulation. The
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Figure 4.21: Scalability: CPU time vs the number of processes for case 3 and case
3H.

overhead for the second part for Case 2 and Case 3 is roughly 11% and for Case 4 it is
roughly 7.5%. Likewise, a comparison of Case 3H and Case 5 shows the overhead for
the first part is 8% for 5123 simulations, the overhead for the second part for Case 3H
and Case 5 are 18% and 36%, respectively.

We also document the scalability of the code against the number of processes
used, in Figure 4.21. Case 3 and Case 3H are used and the wall-clock times per time
step are shown in the figure. The black line shows the ideal scalability curve of slope
—1. Clearly the code running time scales well with n,,,, .

To summarize, in this chapter, we have presented a particle-resolved simulation
method based on the multiple-relaxation-time lattice Boltzmann equation. The no-slip
boundary condition on the moving particle surface is realized by a second-order interpo-
lated bounce-back scheme. The mesoscopic particle distribution functions on a newly
converted fluid node were built by an equilibrium distribution plus a non-equilibrium
correction. A short-range repulsive force model was used to prevent particles from
overlap. The code was implemented under the MPI framework with 1D domain de-

composition, which has been proved to be efficient with an almost ideal scalability.
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The code was first validated with sedimentation of a single particle and a multi-
particle random suspension. It was then verified with the turbulence modulation data
provided by Burton and Eaton(2005), where a single fixed particle resides in the decay-
ing turbulence. Finally, it was applied to a decaying isotropic turbulence seeded with
particles of Kolmogorov to Taylor microscale sizes. The resultant flow statistics were
found to be in general agreement with those of Lucci et al. (2010), while better over-
all accuracy was achieved by our simulation. As expected, the presence of finite-size
particles enhances dissipation at small scales while reducing kinetic energy at large
scales. The effective particle surface area and particle Stokes number dominate the
dissipation rate of the system. Moreover, the scaled pivot wavenumber shows positive
correlation with the dimensionless particle size, and is more sensitive for small particle
sizes than large ones, with the transition particle size of d ~ A. At a given volume frac-
tion, the normalized pivot wavenumber is inversely propotional to the particle-to-fluid
density ratio. Profiles relative to the particle surface depict strong modulation that
occurs within half particle radius, and the local profiles are self similar with proper

normalization.
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Chapter 5

SUMMARY AND FUTURE WORK

5.1 Summary and Main Conclusions

The motivation of this dissertation is twofold: (1) to investigate the motion
and hydrodynamic interactions of finite-size particles suspended in a turbulent flow,
and (2) to quantify the colloid deposition mechanism in saturated soil porous media
in presence of energy barrier and complex pore-scale flow geometry. These apparently
different applications share the similar flow configuration, namely, interactions of a
viscous moving fluid with complex solid boundaries. The two applications involve
flows at very different Reynolds numbers. We have demonstrated that both problems
can be handled by multiple computational methods.

The first problem was motivated by the open question concerning the impact
of the presence of finite-size inertial particles on the tubulent carrier flow. For this
purpose, we developed a particle-resolved simulation method based on the multiple-
relaxation-time lattice Boltzmann equation (MRT-LBE) (d’Humieres et al., 2002).
The no-slip boundary condition on the moving particles boundaries was handled by
a second-order interpolated bounce-back scheme (Lallemand and Luo, 2003a). The
populations at a new fluid node were constructed by equilibrium distribution with
non-equilibrium correction (Caiazzo, 2008). A simple repulsive force model was uti-
lized to prevent particle-particle overlap. The code was parallelized with MPI and was
found to be computationally efficient, especially for current-day scalable computers
with (O(100,000) processors. A number of specific MPI implementation issues have
been resolved and explained. Up to 51,200 particles in 3D have been considered in

our simulations, representing one of the largest systems of this kind that have been
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treated in direct numerical simulations. A remarkable feature of the approach is that
the computational overhead is rather moderate even for a large number of particles in
a turbulent carrier flow. We also demonstrated a good scalability of the code.

The force and torque on a particle were computed based on summing mesoscopic
momentum exchanges at the boundary links. Apart from the refill problem, the method
essentially conserves the overall momentum of the system at the mesoscopic level,
which ensures the correct balance of kinetic energy of the whole system and viscous
dissipation.

The code was first validated by studying the settling of a single particle under
gravity, yielding excellent results compared to experimental data of Mordant and Piton
(2010) and simulated results of Lucci et al. (2010). The method was then applied to
two problems. The first is the sedimentation of a random suspension at finite parti-
cle Reynolds numbers. Results on the hindered settling function and relative particle
vertical velocity fluctuation are presented in terms of particulate volume fraction and
particle Reynolds numbers. These results are in reasonable agreement with the results
obtained by Climent and Maxey (2003) using an approximate force coupling method.
Furthermore, we verified our LBM simulation concerning a single fixed particle in a de-
caying turbulence. Profiles of turbulent kinetic energy and dissipation rate around the
particle surface are compared with those in Burton and Eaton (2005), and quantitative
agreement is achieved.

We then applied the method to study a decaying turbulence seeded with finite-
size particles. In the particle-free case, the flow statistics matched precisely the results
obtained from the accurate pseudo-spectral method, consistent with the observation
of Peng et al. (2010). Several particle-laden flow cases reported in Lucci et al. (2010)
were simulated here, with qualitatively similar results. Some inconsistencies in the
results of Lucci et al. (2010) have been noted, implying that our LBM may have
better overall accuracy than their second-order finite-difference scheme with immersed
boundary treatment at the particle-fluid interface. The immersed boundary method

introduces local smoothing, which is not present in our LB approach. The results show
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that particles of Kolmogorov to Taylor microscale sizes introduce small-scale features,
enhance the dissipation rate of the system, and alter the shape of energy spectrum.
The normalized pivot wavenumber depends on dimensionless particle size and this de-
pendence has a transition at d/\ ~ 1. This implies that the pivot wavenumber depends
not only on particle size, but also the relative ratio of particle size to flow dissipation
range scales as well as the particle-to-fluid density ratio. At a given particulate volume
fraction, the effective particle surface area and particle Stokes number play a prominent
role in the dynamic evolution of overall kinetic energy, energy spectrum, and the flow
dissipation rate. Profiles relative to the particle surface demonstrate high dissipation
rate and low kinetic energy in the region of 1.0 < r/a, < 1.5, indicating strong modu-
lation near particle surface. Also noted is the self-similarity of the profiles with proper
normalization.

The second application in this work concerns the important environment im-
pacts of colloid and colloid-facilitated contaminant transport and retention in soil
porous media. Here we report preliminary results on microscopic viscous flow simula-
tion in a three-dimensional porous channel and on the transport of sub-micron colloids
in a model porous medium. We apply simultaneously two fundamentally different nu-
merical methods, namely, the mesoscopic MRT-LBE method and the Navier-Stokes
based Physalis method, to solve viscous flows in a porous channel with different lev-
els of porosity and grain-grain contact. For a porous channel with one fixed spherical
grain, the two methods yielded identical velocity profiles and mean flow statistics, force
and torques on the grain. When two grains are introduced with both grain-grain and
grain-channel walls contact points, a reasonable inter-comparison is also achieved.

As the numbers of grains and contact points are increased, it appears that
the mesoscopic LBM approach is superior to the hybrid macroscopic approach. The
numerical implementation of the no-slip boundary condition on grain surface is simpler
in LBM, and the results of the simulated flow are more accurate near the contact points.
In LBM, the calculation of all fluid-surface interaction forces are straightforward and

the overall integral force balance was shown to be better satisfied. On the other hand,
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the Physalis method requires iterations to match the analytical Stokes flow solutions
on the surfaces of all particles to the numerical solutions slightly away from the particle
surfaces. The iteration converges more slowly as the numbers of particles and contact
points increase. In this sense, Physalis is not an ideal method for a system with a large
number of particles. Parallel implementation for Physalis is also a problem. It may
also be possible that our Physalis code could be further improved to reach the similar
consistency and accuracy as LBM.

Transport and deposition of colloids were simulated by Lagrangian tracking, un-
der a given solution ionic strength and physicochemical setting. Given the high energy
barriers (above 3,000kT") considered in our simulations, no deposition at the primary
energy minimum was found, but depositions at the secondary energy minimum (SEM)
were demonstrated. The local hydrodynamic retardation appears to reduce the ability
for colloids to move into the SEM well, but does not prevent this to occur. Visu-
alizations of colloid trajectories within thin slices show different levels of complexity
depending on the local porosity, flow convergence, and contact points. The trajecto-
ries are quasi-two-dimensional when the local porosity is high. A close examination of
colloid motion near the surface clearly shows the effect of local hydrodynamic interac-
tion in delaying the approach of a colloid to a collector surface due to van der Waals
attraction. After the colloids being captured by the SEM well, they may exhibit an
quasi-periodic motion if the local hydrodynamic interaction is not considered, due to
a relative weak drag force. The period of such oscillation can be predicted in terms
of particle inertia and directional change of DLVO force near SEM, based on a sim-
ple mass-spring oscillator model. Hydrodynamic interaction appears to introduce high
enough dissipation to eliminate such quasi-periodic motion. It was shown that a very
small time step size is needed when a colloid is close to the grain surface to correctly
account for the rapid change in DLVO force and the local hydrodynamic retardation
effect.

We wish to point out that both the results from this study and the computa-

tional approach have contributed to quite a few journal papers and follow-up studies,
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including Wang et al. (2013), Gao et al. (2013), Qiu et al. (2012), Gao et al. (2010),
Wang et al. (2009), and Gao et al. (2008). The full potential of the LB approach for
viscous flows laden with solid particles will be better realized as petascale computers

are becoming more readily available.

5.2 Future Work

First, with regard to the particle-laden turbulence, we have so far presented
some preliminary results using our particle-resolved simulations. A thorough analysis
on the statistics of the dispersed phase and the carrier fluid phase would be the next
step, if the resluts are to be compared with those of single-phase flows or results
of particle-laden turbulence using the point-particle method. The statistical data of
interest could include, for example, probability density functions of local velocity, local
velocity-gradient, local dissipation rate, and local vorticity. The radial distribution
function and collision rates of solid particles may also be studied. Towards this end,
the numerical method will be critically examined in order to improve the representation
of short-range particle-particle interaction. Other fundamental numerical issues related
to moving particles such as force oscillations and the refill problem also require further
research. Due to the multiscale nature of the particle-laden turbulent flow problem, it
requires the state-of-the-art computers to include all relevant scales into the simulations
with realistic physical parameters. Multiple-dimensional domain decomposition, as was
already undertaken in Stratford and Pagonabarraga (2008) and Wang et al. (2013),
represents an important step towards taking full advantage of the petascale computing
systems.

Second, concerning the colloid transport problem and porous medium flows, it
would be desirable to systematically investigate the colloid deposition mechanism un-
der different conditions and configurations using our simulation tool. A step in this
direction has been reported in Qiu et al. (2012) using a 2D model porous medium.

Further analysis involves the effects depending on flow speed, ionic strength, random
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grain packing, irregular grain shapes, suface roughness, and physical and charge het-
erogeneities. One future direction is to employ our simulation tool to study the depth-
dependent retention profile and time-dependent effluent concentration profile (i.e., the
breakthrough curve). This will allow us to compare our simulation results directly to
column experimental data and those in previous computational studies. Future work
would also include the inter-comparison with parallel microscopic visualization exper-
iments being conducted by Professor Yan Jin’s group at the University of Delaware

(Qiu et al., 2012).
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Appendix A

THE GENERAL 3D STOKES SOLUTION AROUND A SPHERICAL
PARTICLE

In the process of developing our code for the hybrid Physalis method, we found
quite a few typos in the Appendix of Zhang and Prosperetti (2005). Here we correct
these typos and present a complete 3D Stokes flow solution around a spherical particle

First the pressure field normalize by pv/a? can be shown to take the following

general form:

n(2n —1) Sn1:| Y [an cos(m¢) + P sin(m¢)] P (cosf)
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where s = r/a, 6 is the polar angle, ¢ is the azimuthal angle, P" is the associated

Legendre function.
The velocity components, normalized by v/a, should be written in spherical

coordinates as:
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The correct vorticity components, normalized by v/a?, are
o
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There are a total of six sets of the expansion coefficients, Pum, Poms ®rms Prms Xnms

and X,m. These are determined by matching the numerical solution near the particle.

150



Appendix B

TWO-DIMENSIONAL PARTICLE SETTLING BY LBM AND
PHYSALIS METHOD

In Chapter 2, we demonstrate the capability of LBM and Physalis in simulating
3D particle settling in a square channel. As a supplement, here we will show the
results from its 2D counterpart using both methods. In addition, we apply Physalis
to the simulation of the settling of a cluster of ten cylinder particles, in order to
test the behavior of a many-particle system under small perturbations in the initial
configuration of the particles.

The setup of the 2D simulation is similar to that of its 3D counterpart, and
it taken to mimic Patankar et al. (2000) and Zhang and Prosperetti (2003). Two
cylinder particles fall along the centerline of a channel under gravity. The channel has
a width 20a and height 80a. The particles have a radius of a = 1mm and are released
at distances 72a and 68a from the bottom of the domain. The lower particle is initially
positioned exactly on the centerline, while the higher one departs from the centerline
with a distance of 1072q in the z—direction, in order to accelerate the tumbling process.
The liquid density and kinematic viscosity are p; = 1000kg/m? and v; = 1.0x1076m? /s,
and the particle density p, = 1010kg/m?3. Gravitational accelaration is g = 9.8m/s?
in the y—direction. In both LBM and Physalis simulation, the particle diameter is
set to 2a/Axz = 20. No-slip boundary conditions are imposed on the side walls of the
channel and on the particle surfaces. Neumann boundary conditions are set at top and
bottom of the domain, specifying zero velocity derivatives in y—direction. An artificial
repulsive force is adopted (Eq. (2.43)) when the two partices are in close contact, to
account for the insufficient resolution for the lubrication force, and thus prevent the

particles from overlapping.
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Figure B.1: Snapshots of vorticity contour and particle location of the two settling
cylinder particles at times: (a) ¢ = 0.348s, (b) ¢ = 1.368s, and (c)

t = 2.724s.
Figure B.1 shows the vorticity contour around the two sedimenting cylinders at
different times. As in the 3D simulation, the “drafting, kissing, and tumbling” process is

reproduced. The colors towards the red end denote positive vorticity, whereas the blue
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Figure B.2: Temporal evolution of particle velocity and location by both LBM and
Physalis method: (a,b) velocity component in z— and y—direction, re-
spectively; (c,d) particle center location in in z— and y—direction, re-
spectively.

ones denote negative vorticity. The angular displacement of the particles is illustrated
by the inclination of the particle indices. The maximum Reynolds number reached
in the simulation is about 35, while the estimated value based on particle terminal
velocity is about 44. This is because the simulation is performed in a finite domain
with no-slip boundary conditions on both sides of the channel, so that the settling
velocity can be lower than that of a free particle in an unbounded domain, hence the
Reynolds number is reduced.

Figure B.2 shows the temporal evolution of the particle velocities and positions.
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Again, the results from LBM and Physalis are in reasonable agreement. The discernible
difference could be due to the force fluctuations present in both methods and sensitivity
of the dynamic evolution of the physical configuration at early times.

Figure B.3 and Figure B.4 show another example for Physalis method. In this
case the settling of a cluster of ten cylinders is illustrated by a sequence of snap-
shots depicting particle position and rotation. Here the channel has a width 16a and
height 80a. The particles have a radius of a = 5mm and are initially configured in
an upside down triangle-shaped symmetric array, as illustrated in Figure B.3(a) and
Figure B.4(a). Vertically, the centers of the top row particles (No.1, 2, 3, 4) are set
to be 4a apart from the top boundary of the domain. The second row (No.5, 6, 7) is
shifted downward from the particle centers of the first row with another 4a distance,
and similarly for the third and forth row. Horizontally, in each row, the center to center
distance from one particle to its immediate neighborhood is 4a as well, with the No.1,
5, 8, 10 particle positioned 2a, 4a, 6a, and 8a from the left wall, respectively. The liquid
density and kinematic viscosity are p; = 1000kg/m? and v; = 1.0 x 10™*m?/s, and the
particle density p, = 1050kg/m?®. The gravity is set to g = 9.8m/s? in the y—direction.
Boundary conditions are identical to those for the simulation of two particle settling.
The particle diameter is set to 2a/Az = 16. Time is normalized as t* = vt/a?.

The only difference between Figure B.3 and Figure B.4 lies in the initial ar-
rangement of the particles. In Figure B.3, all the particles are completely symmetric
about the centerline of the channel; whereas in Figure B.4, the No.6 particle is slightly
shifted towards x—direction with a distance of 0.0125a to prompt the tumbling pro-
cess. Clearly, in the former case, the particle arrangement remains symmetric about
the centerline throughout the simulation, which implies an absense of bias in the nu-
merics. In the latter case, however, symmetry is gradually lost after the occurrence of
particle-particle short range interactions, as a consequence of the instability mentioned

before.
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Figure B.3: Snapshots of settling of a cluster of 10 cylinder particles at times t* =
vt/a®: (a) t* =0, (b) t* = 15.0, (c) ¢t* = 30.0, and (d) t* = 40.0. The
initial particle arrangement is completely symmetric about the centerline
of the channel.
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Figure B.4: Snapshots of settling of a cluster of 10 cylinder particles at times ¢*

vt/a2 (a) t* =0, (b) t* = 15.0, (c) ¢* = 30.0, and (d) ¢* = 40.0. The

initial particle arrangement is mostly symmetric about the centerline of
the channel, except that the No.6 particle is shifted towards x—direction

with a distance of 0.0125a.
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Appendix C

STRAIN RATE AND LOCAL DISSIPATION RATE CALCULATION
BY LBM

The macroscopic strain rate is defined as

1 auz an

Il

and the local dissipation rate is
£ = 2VSijSij- (02)

In the single-relaxation-time LBGK model, the shear stress is related to the nonequi-

librium distribution as

QVSz'j = - <1 - %) ; [fa (x, t) - fgq (x, t)] €ai€aj (0-3)

where the relaxation time 7 is connected with the macroscopic kinematic viscosity of

the fluid
1 21 — 1

=26 (r— =) = : C4
The strain rate can then be computed as
3 N
S = — fo (x,t) = fo¥(x,1)] €ni€aj C.5
)= =g D2 o 050) = £ i (€5)

In the MRT-LBE method, the strain rate can also be computed from the

nonequilibrium moments defined as
mY = m, — m&, a=1,2,---,N (C.6)

Yu et al. (2006) shows that for the D3Q19 model

1 1 1
Spe & 3800, (slmg )+ 1959m£(, )) (C.7)
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where

38006
st
Syz = Say & —%mﬁ)
Syr = Sz, = —%mg?
89:%:% with ¢ = 6,/0;.

(C.11)

(C.12)

Yu et al. (2006) noted that the diagonal components of the strain rate tensor is slightly

different from those obtained from the LBGK counterpart due to the term slmgl). The

reason is that MRT-LBE accounts for the minor contribution related to V - J, whereas

it is often assumed V -J = 0 in the LBGK model. Otherwise, it can be easily shown

that the two methods are equilvalent.
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Appendix D

ANALYTICAL REPRESENTATION OF TURBULENT KINETIC
ENERGY AND DISSIPATION RATE BASED ON STOKES
DISTURBANCE FLOW

The Stokes solution for creeping motion of a stream of speed U past a solid

sphere of radius a can be written as

a®  3a
U,-:UCOSO<1+2—T3—2—T> (Dl)
) a®  3a
up = Usinf <—1 + 3 + Z) (D.2)
u, =0 (D.3)

using spherical polar coordinates (r, 6, ¢), where ¢ is the azimuthal angle. The kinetic
energy for the disturbance flow averaged over a spherical shell is

1Sy de [y (u + ud + u2) r2sin0dr df

<q2> 2 T .
2 [y de [ sinfr2drde

1 (™ 5 4 5y sind
= ——df
/0 (u,, + up + uw) 2

2
1 ad 3a\> 2 al 30\’
14+ — - — -\ —-14—+— D.4
3<+2r3 27°) +3( +4r3+4r) (D-4)

Assume that for the particle-free turbulence ¢%, = %U 2 a model for turbulent kinetic

= 1U2
2

energy can be obtained

<q_2):§<1+“___“> +§(—1+a—+§) (D.5)
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In spherical polar coordinates, the elements of the strain rate tensor for the

Stokes disturbance flow take the form

Spr = 887" = U cos ( 2@4 + 23_a) (D.6)
Sog = 18;00 — =Ucos¥f <3a4 — j—;) (D.7)
Sw=rsiln0%l;"+i +u6(;0t9—Ucosﬁ(i—ji—%> (D.8)
500 = 8121;0% (sm 0) 2r smH &p =0 (D-9)
o= g * 307 (1) =0 10
S = g% (2)+ 217%1;’ - —Usinei—:i (D.11)

Then the local dissipation rate is

£ = QVSZ'J'SZ']'

) (o s o) (3] Q) om

Similar to Eq. (D.4), the averaged dissipation rate can be calculated as

(e) = / sin 0 do + ew
0 2

_ 3:52 [3 (4)-6(2)" +5 (g)s] +eu (D.13)

where ¢, is added to account for the contribution from the background turbulence.

With g,; being defined as ¢, = 15uu’2//\2, where u' is the r.m.s. fluid velocity, A is
the Taylor microscale length, and assuming the slip velocity U is proportional to the

r.m.s. velocity, i.e., U = Su’, we then have

) B (A’ a\2 a\4 a\6

o 2(2) B(E) —6(B) +5(5) |+ D.14

cu 20 \'r T T + r + ( )
Burton and Eaton (2005) provides the values of 4’ and A in their Table 5, which allows

us to verify our zeroth-order model as seen in Eq. (D.5) and Eq. (D.14). The results

are shown in Figure 4.10 and Figure 4.18 in this work.
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