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ABSTRACT

Difference sets exist at the intersection of algebra and combinatorics, and are

motivated by a practical and efficient constructive method for symmetric block designs.

Many of the seminal papers on the subject, such as those by Bose [10], Hall [40],

Singer [83], and Bruck [13], deal with this explicitly. More specific uses include the

construction of complex vector codes satisfying the Welch bound [93]. A short 1979

treatise by Camion [14] frames the entire study of difference sets in terms of linear

projective codes, and entire books on this subject have since been written as well [32].

For uses of difference sets and combinatorial designs in computer science, the paper of

Colbourn and van Oorschot [20] is fairly comprehensive, and difference sets have played

a large role in the field of cosmology, where they are used for special kinds of imaging

[103]. More recently, applications of difference sets to signal processing [101] and

quantum information and computing [78] have become active areas of research. Moore

and Pollatsek [72] note that member nations of the North Atlantic Treaty Organization

(NATO) have sponsored advanced study on difference sets as well.

In this work we define difference sets, give several standard results on abelian

difference sets, and discuss the uses of tools such as multipliers, the integral group

rings, and characters to prove existence and nonexistence of various possible difference

sets. We close with a brief survey of some recent work on some open conjectures (we

take ‘recent’ to mean ‘since the last major surveys were published’, i.e., the 1990’s)

and new results in the last few years.

We assume a basic knowledge of some requisite algebra and comfort with combi-

natorial manipulation, but all results and terminology specifically connected to differ-

ence sets are made explicit, regardless of their level of sophistication. We prove results
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which deal with difference sets explicitly or are particularly canonical, and provide

sources for proofs in other cases.
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Chapter 1

DESIGNS

While our discussion of difference sets (defined later) will mostly deal with a

special kind of design, a slightly generalized introduction is helpful.

Definition 1.1. A t-design with parameters t−(v, k, λ) is an incidence structure

D = (P ,B), where P is a point set of size v and B is a set of k-subsets of P called

blocks such that each t-subset of P is contained in exactly λ blocks.

Naturally, in the above definition, we require λ ≥ 1 and v > k so as to avoid

trivialities.

Example 1.2. We will give an example of a 2−(6, 3, 2) design. We present this

by distinguishing the two types of blocks on a pentagon with a vertex in the center.

Suppose the points are labeled with the first six natural numbers such that 1 is

the uppermost vertex and the numbering continues counterclockwise, with 6 being the

center vertex. Then the block set on the left is every triangle having the centroid as a

vertex. The block set on the right is every isosceles triangle having just one side on the

perimeter of the pentagon. Each such triangle in both figures is a block of size 3, and

every pair of points occurs in exactly 2 triangles. The block set of the 2-(6, 3, 2) design

is the union of these two block sets. This is aesthetically satisfying, but obscures the
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nature of the design, which could just as easily be presented using the first six natural

numbers, as so:

[126], [236], [346], [456], [156], [124], [235], [134], [245], [135].

From the definition, we can immediately derive several well-known properties of

t-designs.

Theorem 1.3. The number of blocks b in a t− (v, k, λ) design is given by:

b = λ

(
v

t

)(
k

t

)−1
.

Proof. We count pairs (T,B), where T ⊆ B such that T runs through all t-

subsets of P and B runs through all blocks of B, in two ways. There are
(
v
t

)
t-subsets

and each is in λ blocks. On the other hand, each block, of which there are b, contains(
k
t

)
t-subsets. Hence, by double counting, we have b

(
k
t

)
= λ

(
v
t

)
. �

Theorem 1.4. Let D be a t − (v, k, λ) design and let S be an s-set, with

1 ≤ s ≤ t. If λs denotes the number of blocks containing S, then we have:

λs = λ

(
v − s
t− s

)(
k − s
t− s

)−1
.

Proof. The proof proceeds by reasoning identical to that of Theorem 1.3. �

There is an important corollary to Theorem 1.4, the proof of which is obvious.

Corollary 1.5. Let λ1 denote the number of blocks incident with any one point.

Then:

λ1 = λ

(
v − 1

t− 1

)(
k − 1

t− 1

)−1
.

Note that λ1 is sometimes denoted by r and is called the number of replications

of a point in D. We can use double counting to prove two more fundamental relations

among the parameters of t-designs.

Theorem 1.6. For a t− (v, k, λ) design, we have vr = bk.
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Proof. Consider pairs (x,B) ∈ (P ,B) such that x ∈ B. There are v points and

each must be in r blocks. On the other hand, there are b blocks and each contains k

points. By double counting, we have our result. �

In the next chapter, we will study a special case of 2-designs called symmetric

designs. It is natural to prove a particular relationship for 2-designs here.

Theorem 1.7. In a 2− (v, k, λ) design, we have r(k − 1) = λ(v − 1).

Proof. Fix any point x in the point set of the design. We count the multiplicity

of pairs (x, y) such that x 6= y in two ways. There are v− 1 points distinct from x, and

since t = 2, any such pair must be in λ blocks. However, there are r blocks incident

with x and there must be k − 1 other points in such a block that form a pair with x.

By double counting, we are done. �

Interestingly, though perhaps not surprisingly, we can easily find an additional

design from any initial t-design D.

Definition 1.8. The complement design of a t-design D = (P ,B) is a design

D = (P ,B), where B = {P\B : B ∈ B}.

That is, the complement design D has the same point set P as D, and its block

set B is the complement set of blocks in B. In other words, if B is a block in D, then

Bc is a block in D.

It remains to prove that D is an s-design for some s ∈ N, and to find the largest

such s. Let λs denote the number of blocks in D disjoint from some fixed s-set S. To

ensure that S is in at least one block, we will require that 0 ≤ s ≤ min{t, v − k}.

Theorem 1.9. Let D be a t− (v, k, λ) design and let S be an s-subset of points

such that 0 ≤ s ≤ min{t, v − k}. Then the number of blocks of D disjoint from S is

independent of the choice of S and is given by:

λs = λ

(
v − s
k

)(
v − t
k − t

)−1
.

Proof. We first show the independence. For any s-set, by inclusion-exclusion,
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we have:

λs = b− sλ1 +

(
s

2

)
λ2 − ....

If we define λ0 = b, we obtain:

λs =
s∑
i=0

(−1)i
(
s

i

)
λi.

To prove the rest of the theorem, it is easier to proceed by double counting than

to manipulate the expression obtained above. We count pairs (B, S), where B is a

block of D and S is an s-set disjoint from B. If we first choose B from among the b

blocks, there are then
(
v−k
s

)
options for a disjoint s-set. On the other hand, we may

first choose the s-set in
(
v
s

)
ways, and then select from the λs blocks disjoint from the

s-set. By double counting, we have:

b

(
v − k
s

)
= λs

(
v

s

)
.

Employing Theorem 1.3 and simplifying gives the desired result. �

Since we have already seen cases satisfying b > v (see Example 1.2), it seems

natural to ask whether or not we can have a 2-design for which b < v. It turns out

that we cannot, provided we eliminate trivial cases by requiring the block sizes to be

less than the size of the point set (indeed, this is a perfectly natural requirement). We

prove this fact, known as Fisher’s Inequality, using the method of van Lint and Wilson

[86], but first require some new tools.

Consider a b× v binary matrix M with the columns labeled by points and the

rows labelled by blocks of a (v, k, λ)-design D. The entry mij is 1 if block i contains

point j, and is 0 otherwise. This is the incidence matrix of D, and we use it to prove

Fisher’s Inequality.

Theorem 1.10. Fisher’s Inequality: For a non-trivial 2− (v, k, λ) design with

b blocks, we have b ≥ v.

Proof. Since the design is non-trivial, we have v > k, and hence r > λ by
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Theorem 1.7. Then the incidence matrix M for the design obeys M>M = (r−λ)I+λJ .

To see this, we first consider the diagonal entries of M>M , which are just the result of

dotting the incidence vectors of each point with themselves, and each point is incident

with r blocks. For the non-diagonal entries, note that any two points must occur

together in exactly λ blocks. The resulting matrix M>M has determinant rk(r−λ)v−1

(to see the reasoning behind this claim, see Proof A in Appendix B for a proof of a

similar claim). Since r > λ, this determinant is nonzero, so M must have rank v, which

implies that b ≥ v (recall that M is a b× v matrix). �

We now turn our attention to a class of designs more specific to our eventual

study of difference sets: symmetric designs, which are a special case of 2-designs, and

satisfy the equivalence case of Fisher’s Inequality (Theorem 1.10)

Definition 1.11. A symmetric design with parameters (v, k, λ) is a 2-design for

which the additional condition that there are v blocks holds (that is, for which b = v).

As Example 1.2 shows, a 2-design need not be symmetric (in that example, the

point and block sets have different sizes). It is immediate from Theorem 1.6 that a

symmetric design also has the property that r = k. It is clear that the incidence matrix

of a symmetric design is a square matrix of size v (and we note that it is not necessarily

a symmetric matrix). We also have the following property.

Theorem 1.12. The v × v binary matrix M is the incidence matrix of a

symmetric (v, k, λ)-design if and only if MM> = M>M = (k − λ)I + λJ , where I is

the v × v identity matrix and J is the v × v matrix in which each entry is 1.

Proof. First, suppose D is a symmetric (v, k, λ) design. Multiplying row i of

M by column j of M> for i 6= j is the same as taking the dot product of two distinct

columns of M , and since any two points are in exactly λ blocks, the result is λ, so all

the non-diagonal entries in MM> are λ. If i = j, we see that the result will clearly

be k. It is easy to apply the same reasoning to M>M since any two distinct blocks

coincide in exactly λ points, for example.

For the reverse assertion, suppose we have a v × v binary matrix M such that

MM> = M>M = (k − λ)I + λJ . This immediately gives us the parameters (v, k, λ)

5



of a symmetric design. �

Note that the incidence matrix of a symmetric design is clearly full rank, and

is thus invertible. For symmetric designs, we can replace Theorem 1.7, since for a

symmetric design we have r = k.

Theorem 1.13. For a symmetric (v, k, λ)-design, we have λ(v− 1) = k(k− 1).

We end this chapter by noting that in view of Definition 1.8, the following

theorem is obvious:

Theorem 1.14. The complement design of a symmetric (v, k, λ)-design is a

symmetric (v, v − k, v − 2k + λ)-design.
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Chapter 2

AUTOMORPHISMS OF DESIGNS

Before formalizing the concept of an automorphism on a structure, we first

define and establish some preliminary material. We begin with the definition of a

group action.

Definition 2.1. Let G be a group and X a set. We say that G acts on X if

there exists a function f : G×X → X such that the following hold (below, 1 denotes

the group identity):

(i) f(1, x) = x ∀x ∈ X.

(ii) For all g, h ∈ G, f(gh, x) = f(g, f(h, x)) ∀x ∈ X.

Using the above language, we can define some notation. We can say that πg is

a permutation of X if we let πg(x) := f(g, x).

Suppose G is a group acting on a set X. Define ∼ to be the equivalence relation

such that x ∼ y indicates that there exists g ∈ G such that y = πg(x). For x ∈ X, this

equivalence class containing x is called the orbit of x under G and is denoted orbG(x).

The set {orbG(x) : x ∈ X} is the set of orbits of G on X. Furthermore, we call the

set {g ∈ G : πg(x) = x} the stabilizer of x in G. This is the set of all group elements

fixing x, and is denoted by stabG(x).

Our next theorem is one of the most important regarding group actions. Many

shorter and more elegant proofs exist, but here we choose an explicit demonstration,

eschewing more technical language in favor of a direct elementary approach.

Theorem 2.2. The Orbit-Stabilizer Theorem: If G is a finite group acting on

a set X, then for all x ∈ X, we have |G| = |stabG(x)||orbG(x)|.

Proof. Fix x ∈ X. Suppose we have π1, π2 ∈ stabG(x). Then π−12 ∈ stabG(x),

since if it is not, then π−12 (x) 6= x, so π−12 π2(x) 6= x, and hence π−12 π2 is not the identity
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operation, a contradiction. Hence, π1π
−1
2 (x) = x, so π1π

−1
2 ∈ stabG(x), and by the

one-step subgroup test, we have stabG(x) ≤ G. By Lagrange’s theorem, then, we have

|G| = |stabG(x)|[G : stabG(x)].

Define a mapping φ : orbG(x) → {πstabG(x) : π ∈ G} under which π(x) 7→

πstabG(x). To see that φ is well-defined, let π1(x) and π2(x) be elements of orbG(x)

such that π1(x) = π2(x). Then π−11 π2(x) = x, so π−11 π2 ∈ stabG(x), therefore π2 ∈

π1stabG(x), and hence π2stabG(x) = π1stabG(x).

Reversing this reasoning immediately gives that φ is injective, and, surjectivity

is also immediate since the preimage of any coset πstabG(x) under φ is clearly π(x).

So φ is a well-defined bijection and hence we have [G : stabG(x)] = |orbG(x)|, and we

are done. �

Definition 2.3. We say that the group G acts transitively on the set X if there

is only one orbit of G on X.

Definition 2.4. We say that the group G acts regularly on the set X if G acts

transitively and stabG(x) = {1} for all x ∈ X, where 1 is the identity in G. Note that

some authors, such as Isaacs [50], use the term sharply transitive in place of regular.

Our next theorem is well-known and has many names, the most common of

which are Burnside’s Lemma and the Cauchy-Frobenius Theorem. We will use ele-

mentary language in our proof, but many more sophisticated proofs are known (e.g.,

see Isaacs [50]).

Theorem 2.5. Burnside’s Lemma: The number O of orbits of G in X is given

by:

O =
1

|G|
∑
g∈G

|{x ∈ X : πg(x) = x}|.

Proof. We will start by counting pairs (g, y) ∈ G × X such that πg(y) = y in

two ways. On the one hand, for each g ∈ G, we have exactly |{x ∈ X : πg(x) = x}|
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such pairs, so:

|{(g, y) ∈ G×X : πg(y) = y}| =
∑
g∈G

|{x ∈ X : πg(x) = x}|.

On the other hand, there clearly must be exactly
∑

x∈X |stabG(x)| such pairs.

It is obvious that if two elements of X are in the same orbit of G, then their respective

orbits are the same. By Theorem 2.2, we know that their stabilizers in G have the

same size. As such, for any y ∈ X, we have:

∑
t∈orbG(y)

|stabG(t)| = |G|.

Summing over all orbits, we obtain:

∑
x∈X

|stabG(x)| = O|G|.

By our double counting argument, this must also equal:

∑
g∈G

|{x ∈ X : πg(x) = x}|,

completing the proof. �

Because we will later see that difference sets are intimately connected with

symmetric designs, we now focus our study of automorphisms on those objects.

Definition 2.6. Let D = (P ,B) be a symmetric design. An automorphism of

D is a permutation of P that sends blocks to blocks and preserves incidence.

We could switch P and B in the definition above, as we shall see later. Note that

Definition 2.6 is not meaningfully distinct from the usual definition of an automorphism

as a mapping from some object to itself which preserves the structure of the object.

Such an automorphism as that defined above also clearly permutes the blocks of D.

It is easy to check that the set of all automorphisms of a symmetric design is a group

9



with function composition as the group operation.

Theorem 2.7. An automorphism α of a symmetric design D fixes the same

number of blocks as points.

Proof. Let A denote the incidence matrix for D. The automorphism α cor-

responds to matrices PB and Pp, which permute blocks and points, respectively, and

PBAPp = A. We have PBAPp = A, and thus PB = AP−1p A−1. This is valid since per-

mutations must have an inverse, and since incidence matrices for symmetric designs

are non-singular. Noting that the inverse of a permutation matrix P is given by P>,

we have PB = AP>p A
−1, from which it follows that PB is similar to P>p . Therefore,

tracePB = traceP>p = tracePp. But the trace of a permutation matrix is precisely the

number of elements it fixes. Hence, PB and Pp fix the same number of elements, and

we are done. �

Perhaps it is not too surprising, in light of Theorem 2.7, that we can say a little

more regarding the behavior of automorphisms on symmetric designs.

Theorem 2.8. A group of automorphisms of a symmetric design has as many

orbits on points as on blocks.

Proof. Writing Theorem 2.5 for the orbits of the block and point sets gives the

result immediately. �

The following two corollaries are then entirely self-evident:

Corollary 2.9. A group of automorphisms of a symmetric design is transitive

on points if and only if it is transitive on blocks.

Corollary 2.10. The automorphism group of a symmetric design acts regularly

on points if and only if it acts regularly on blocks.
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Chapter 3

DIFFERENCE SETS

Definition 3.1. Let G be a group of size v written multiplicatively. A (v, k, λ)-

difference set D in G is a k-subset of the elements of G such that for all g ∈ G\{1}

there exist exactly λ pairs (d1, d2) ∈ D ×D such that d1d
−1
2 = g.

We note that some authors in early literature used the term “perfect difference

set” in place of “difference set” [8]. A different but obviously equivalent definition of a

difference set is given by de Launey and Flannery [27]: Let 1P (x) denote the indicator

function, which equals 1 if P is true for x and equals 0 otherwise. Let G be a finite

group of size v and let 1 be the identity in G. Then D is a (v, k, λ)-difference set in G

if and only if: ∑
(a,b)∈D×D

1(ab−1=x)(x) =

k, if x = 1,

λ, if x ∈ G\{1}.

It is helpful to begin with an example.

Example 3.2. Let G = (GF (7),+) and define D to be the set of nonzero

squares in GF (7). Then D = {1, 2, 4} and there is exactly one way to write each

nonzero element of G as a difference of the elements of D. We list them here, though

we will rarely do this going forward: 1 = 2 − 1, 2 = 4 − 2, 3 = 4 − 1, 4 = 1 − 4,

5 = 2− 4, 6 = 1− 2. Because |G| = 7, |D| = 3, and there is only 1 way to write each

element of G as a difference (i.e., λ = 1), D is a (7, 3, 1)-difference set in G. In fact,

this is an example of a Paley (4n− 1, 2n− 1, n− 1)-difference set, where q = 4n− 1 is

a prime power and G = (GF (q),+).

In the above example, because λ = 1, D is called planar or simple (and indeed,

planar difference sets can be developed to give projective planes, as we shall see).
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Similarly, D is said to inherit properties of G. That is, if G is abelian or cyclic, we

say that D is as well. Notice also that in the above example, G is abelian with usual

addition as the standard group operation. The ways to write each element of G are

literal differences (subtractions) in this case, and it is from this observation that the

term “difference set” originates. Indeed, early literature occasionally uses the outdated

term “quotient set” when a group is written multiplicatively [8]. We now give a less

obvious example.

Example 3.3. In the “twin prime power” difference set, we require q and q+ 2

to be prime powers. Let G = (GF (q),+)⊕ (GF (q + 2),+) and define

D = {(x, y) ∈ G : y = 0 or x, y are both squares or x, y are both non-squares}. Then

D is a
(
q2 + 2q, q

2+2q−1
2

, q
2+2q−3

4

)
-difference set in G. For q = 3, we have:

D = {(1, 0), (2, 0), (1, 1), (1, 4), (2, 2), (2, 3), (0, 0)},

and D is a (15, 7, 3)-difference set in G.

The following cyclotomic example can be found in Ionin and Shrikhande [48].

Example 3.4. Let D = {x8 : x ∈ GF (q)}. Then D is a difference set in

(GF (q),+) if (q − 49)/8 is an odd square and (q − 441)/64 is an even square.

It is instructive to note that the difference sets in Example 3.3 and Example

3.4 contain the identity element, but that in Example 3.2 does not. We also caution

the reader that difference sets as we have defined them are largely unrelated to the

difference sets A−B = {a−b : a ∈ A, b ∈ B} in additive combinatorics and information

theory, though some connections exist (e.g., see Wallis [87])

We should establish immediately the so-called ‘trivial’ difference sets. These

occur for k ∈ {0, 1, v− 1, v}. In the first two cases, it is clear that λ = 0. In the third,

we simply have D = G\{1}. In the fourth case, D = G. These are not interesting

situations, though they follow the usual rules and are perfectly valid as difference

sets. As Davis and Jedwab [25] note, they are useful as the initial cases of recursive

constructions of some families of difference sets. We now prove a lemma for difference
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sets that is essentially a special case of Theorem 1.7 (and an exact duplicate of Theorem

1.13). It is insightful to state and prove the claim in a context specific to difference

sets.

Lemma 3.5. Let D be a (v, k, λ)-difference set in a group G. Then we have

λ(v − 1) = k(k − 1).

Proof. We proceed by double counting. Define the multiset ∆ as:

∆ =
[
d1d
−1
2 : d1, d2 ∈ D, d1 6= d2

]
.

There are k(k − 1) differences, so |∆| = k(k − 1). Because D is a difference

set, there are v − 1 non-identity elements of G that must each occur λ times in ∆, so

|∆| = λ(v − 1). By double counting, we have our result. �

Definition 3.6. The order, n, of a (v, k, λ)-difference set is given by n = k−λ.

As an example, the difference set D in Example 3.3 has order n = 4.

In view of the above definition, we could rephrase Lemma 3.5 to say that for a

(v, k, λ)-difference set D in a group G, we have λv = k2 − n.

We will begin to focus now on abelian difference sets, our main objects of study.

Non-abelian difference sets are known [72] and are a valuable tool in the study of

groups, but are not our area of interest here.

Theorem 3.7. Let p be an odd prime, and define D to be the set of nonzero

squares in Zp. If D is a difference set in the group G = (Zp,+), then p ≡ 3 (mod 4).

Proof. Suppose D is a difference set in G. Note that H = (Z∗p,×) is also a

group, where Z∗p denotes Zp without its additive identity. Define φ : H → H so that

φ(x) = x2 for all x ∈ H. Then for all x and y in H, we observe that because H is

abelian, we have φ(xy) = (xy)2 = x2y2 = φ(x)φ(y), so φ is a homomorphism. Since H

has characteristic p, we know −1 6= 1, and so from x2 = 1 we have x = ±1. Hence,

| kerφ| = 2, and thus we have |D| = |H|/| kerφ| = (p− 1)/2. So, k = (p− 1)/2 and by

Lemma 3.5 and some algebra, we have λ = (p− 3)/4. But since λ ∈ N, it must be the

case that 4|(p− 3). In other words, p ≡ 3 (mod 4). �
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From now on, we will denote the automorphism group of an object G by Aut(G).

A natural theorem involving the automorphism group of a group follows.

Theorem 3.8. Let D be a (v, k, λ)-difference set in an abelian group G. Then

the following hold:

(i) For all g ∈ G, Dg is a (v, k, λ)-difference set.

(ii) If α ∈ Aut(G), then α(D) = {α(d) : d ∈ D} is a (v, k, λ)-difference set.

Proof. To prove (i), we note that upon multiplication by g, we know h ∈ G

maps to hg ∈ G and there are now exactly λ ways to write hg = (hd1)(hd2)
−1, but

since G is abelian, (hd1)(hd2)
−1 = d1d

−1
2 , and we are done. The proof of (ii) is more

or less identical. �

The objects in result (i) in Theorem 3.8 invite some new terminology.

Definition 3.9. The difference sets Dg (with g ∈ G) described in Theorem 3.8

are called the translates of D with offset g. When the group operation is addition,

these are written as D+g, which is the source of the term. Because we are considering

only abelian cases, we shall be rather cavalier about writing translates of a set D by

an element g as both Dg and gD, depending on context.

We now demonstrate the existence of an infinite class of difference sets.

Theorem 3.10. The existence of the Paley Difference Sets: Let q be a prime

power such that q ≡ 3 (mod 4) and let G = (GF (q),+). Let D be the set of nonzero

squares in GF (q). Then D is a
(
q, q−1

2
, q−3

4

)
-difference set. (This is the converse of

Theorem 3.7.)

Proof. Let GF (q)∗ be the multiplicative group of nonzero elements of GF (q).

It is obvious that D ≤ GF (q)∗ and that the map φ : GF (q)∗ → D such that a 7→ a2 is

a homomorphism. Similarly, it is easy to see that ker(φ) = {−1, 1}. Since GF (q) has

odd characteristic, −1 6= 1, so |D| = q−1
2

, and −1 /∈ D. Hence a ∈ D if and only if

−a /∈ D.

To see that D is in fact a difference set, define ∆ as in the proof of Lemma 3.5

and choose a nonzero element a ∈ GF (q). If a is a square, then for s, d1, d2 ∈ D, we

have a = d1 − d2 if and only if sa = sd1 − sd2, so all squares appear in the multiset
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∆ the same number of times. If a is a non-square, then −a is a square, and we have

a = d1 − d2 if and only if −a = d2 − d1, so each non-square appears in ∆ the same

number of times as each square. To find λ, we may use Lemma 3.5, completing the

proof. �.

We have hinted many times at an intimate connection between difference sets

and symmetric designs. We now make that connection explicit.

Definition 3.11. Given a difference set D in a group G, the development of D,

denoted devD, is an incidence structure whose points are the elements of G and whose

blocks are the translates of D. In other words, the blocks are the set B = {Dg : g ∈ G}.

Assmuss and Key [8] report that “translate design” is a term synonymous with

“development”. We will show that developments are designs.

Theorem 3.12. Let D be a (v, k, λ)-difference set in a group G. Then devD is

a symmetric (v, k, λ)-design.

Proof. The fact that devD is a structure on v points and that there are k points

in each translate (i.e., in each block) is obvious. Choose g, h ∈ G such that g 6= h.

Suppose a ∈ (Dg ∩Dh). Then, there exist d1, d2 ∈ D such that a = gd1 = hd2 if and

only if gh−1 = d2d
−1
1 . Since gh−1 is not the identity and D is a difference set, there are

λ choices of pairs (d1, d2) ∈ D × D such that gh−1 = d2d
−1
1 . It follows that if g 6= h,

then Dg and Dh are different blocks. Hence, there are v blocks, establishing symmetry

of the (alleged) design and that any two blocks have λ common points.

To see that r = k, note that a fixed g ∈ G is in the translate Dh if and only if

g = dh for some d ∈ D. There are k ways to choose d, so g is in k blocks, and hence

r = k. It follows that the elements of each pair (g, h) ∈ G × G appear together in

exactly λ blocks, and we are done. �

We now see the connection between difference sets and symmetric designs, but

we can establish even stronger relationships. If D is a difference set in a multiplicative

group G, we can define πg : x 7→ gx for all g ∈ G, so in addition to being the source of

the points of devD, the group G is also an automorphism group of devD. We can say

more still. Our next theorem is due to Singer [83] and is one of the seminal results in
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the study of difference sets. Our proof is that of Moore and Pollatsek [72].

Theorem 3.13. Singer’s Theorem: Let G be a finite group of size v. Then G

acts regularly on both the points and blocks of a symmetric (v, k, λ)-design if and only

if G contains a (v, k, λ)-difference set.

Proof. First, assume G contains a (v, k, λ)-difference set D. By Theorem 3.12,

it is immediate that devD is a symmetric (v, k, λ)-design. We write G multiplicatively,

defining πg(x) = gx. We have already established that G is an automorphism group of

devD. The group G must act regularly on the points of devD, since otherwise there

exists g ∈ stabG(x)\{1}, which means gD is not a translate unless it fixes all of D. But

then there exists h ∈ G such that h 6= g but hD = gD, a contradiction. Because G

acts regularly on the points of devD, we have by Corollary 2.10 that G acts regularly

on the blocks as well.

For the reverse assertion, suppose G acts regularly on a symmetric (v, k, λ)-

design D = (P ,B). Choose a point po ∈ P . Since G acts regularly on D, it acts

regularly on P . Hence, for each p ∈ P , there exists a unique g ∈ G such that g(po) = p.

We identify g with p, and the identity element in G is identified with po. Now choose

a block Bo ∈ B. By identical reasoning, for each B ∈ B, there exists a unique g ∈ G

such that g(Bo) = B. Define D = {g ∈ G : g(po) ∈ Bo}. This is the set of elements

of G identified with points of Bo. We introduce notation to keep track of things. Let

D = {d1, ..., dk} and let Bo = {p1, ..., pk}. Then for each i ∈ [k] there exists a unique

j ∈ [m] such that pi = dj(po). As a result, for a block B there exists a unique g ∈ G

such that B = g(Bo) = {g(p1), ..., g(pk)} = {gd1(po), ..., gdk(po)}, so B is identified

with the elements of gD. It remains to show that D is, in fact, a (v, k, λ)-difference

set in G. Choose x ∈ G such that x is not the identity. Fixing g ∈ G, we can write

x = h−1g for h ∈ G, h 6= g. Then, we note that g(Bo) and h(Bo), being different

blocks, have λ common points, and there exist i, j ∈ [k] such that gdi(po) = hdj(po).

Since the action of G is regular, we have gdi = hdj, and so h−1g = djd
−1
i . Hence there

are λ ways to write x. This completes the proof. �

We note that some authors, such as Jungnickel [52], express Theorem 3.13 in
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slightly less deliberate language by saying that a symmetric (v, k, λ)-design with a

regular automorphism group G is equivalent to a (v, k, λ)-difference set in G.

While Jungnickel’s use of the term ‘equivalent’ is literal, we should define equiv-

alence, as the term applies to difference sets in a slightly non-obvious way.

Definition 3.14. Let D1 and D2 be difference sets in a group G. Then D1

and D2 are said to be equivalent if there exists g ∈ G and σ ∈ Aut(G) such that

D2 = gσ(D1).

It is worth noting that g and σ above could be the identity elements of their

respective groups. Indeed, any difference set is obviously equivalent to itself. We now

provide a more useful example.

Example 3.15. Let G = 〈a, b : a4 = b4 = 1, ab = ba〉. Then G is clearly

abelian and has size 16. It is a simple exercise to check that D1 = {1, a, a2, b, b3, a3b2}

is a (16, 6, 2)-difference set in G. It is equivalent to the (16, 6, 2)-difference set D2 =

{ab, ab2, ab3, a2b2, 1, a3b2}, since abσ(D1) = D2 if we define σ ∈ Aut(G) such that

σ(a) = b and σ(b) = ab.

It should be clear that if two difference sets in a group are equivalent, they

have the same parameters (v, k, λ). A natural question follows: Does the converse

hold? Unfortunately, it does not, as the proof of the next claim will demonstrate. This

particularly concise counterexample comes from the work of Kibler [55].

Claim 3.16. Consider the multiplicative abelian group G of size 16 defined

by G = 〈a8 = b2 = 1, ab = ba〉. Let D1 = {1, a, a2, a4, ab, a6b} and let D2 =

{1, a, a2, a5, b, a6b}. We claim that D1 and D2 are inequivalent (16, 6, 2)-difference sets

in G.

Proof. Towards a contradiction, suppose that D1 and D2 are in fact equivalent

difference sets in G. Then there exist g ∈ G and σ ∈ Aut(G) such that gσ(D1) = D2,

which implies σ(D1) = g−1D2. Since 1 ∈ D1 and automorphisms map the identity to

itself, 1 ∈ σ(D1), so 1 ∈ g−1D2. In other words, g ∈ D2. To find candidates for σ(D1),
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we list the translates of D2 by the inverses of its elements:

1D2 = {1, a, a2, a5, b, a6b}

a−1D2 = {a7, 1, a, a4, a7b, a5b}

a−2D2 = {a6, a7, a, ab, a6b, a4b}

a−5D2 = {a3, a4, a5, a, a3b, ab}

b−1D2 = {b, ab, a2b, a5b, a, a6}

(a6b)−1D2 = {a2b, a3b, a4b, a7b, a2, 1}

Now, note that the respective orders of the elements of D1 are 1, 8, 4, 2, 8, 4.

Since σ must preserve the orders of the elements of D1, we can immediately eliminate

a and a5 as possible values of g, since the translates of D2 by their inverses, which

must equal σ(D1), each have four elements of order 8 instead of the necessary two. We

now have g ∈ {1, a2, b, a6b}. Consider a4 ∈ D1. It has order 2, and so must map to

an element of G of order 2 under σ. The only elements of order 2 in G are a4, b, and

a4b. Let σ(a) = aibj. But then σ(a4) = a4ib4j = a4i since b has order 2. Therefore,

σ(a4) = a4, yet a4 is an element of g−1D2 only for g ∈ {a, a5}, which we have already

established is false. Hence, we have a contradiction, and our claim is proved. �

An immediate corollary follows.

Corollary 3.17. Suppose D1 and D2 are equivalent difference sets in a group

G. Then devD1 is isomorphic to devD2.

We end this chapter with some examples of the many generalizations and mod-

ifications to the definition of a difference set that have been studied.

Definition 3.18. Let G be a group of size v and let H ≤ G have size m.

A k-subset D in G is a (v, k,m, λ)-relative difference set with index λ and forbidden

subgroup H if the following conditions hold:

(i) The multiset [ab−1 : a, b ∈ D] contains each element of G\H exactly λ times

(ii) The multiset [ab−1 : a, b ∈ D] contains each element of H\{1} exactly 0

times.
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Flannery and de Launey [27] note that a difference set is a relative difference

set with H = {1} (i.e., with trivial forbidden subgroup), and give several results

dealing with relative difference sets. Ionin and Shrikhande [48] give the following

characterization of relative difference sets, as well as several examples.

Theorem 3.19. A subset R of a group G is a (v, k,m, λ)-relative difference set

in G with forbidden normal subgroup N of size m if and only if RR(−1) = k−λN +λG

in the integral group ring ZG (see Definition 6.1).

There is a useful extension of this concept.

Definition 3.20. Let G and N be groups. A relative difference set in the group

G×N relative to the subgroup {1} ×N is called a splitting relative difference set.

Often (e.g., in [48]), a (v, k,m, λ)-relative difference set having parameters given

by: (
qd+1 − 1, qd,

qd+1 − 1

q − 1
, qd−1

)
is said to be a relative difference set with classical parameters.
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Chapter 4

EXISTENCE AND THE BRUCK-RYSER-CHOWLA THEOREM

We have seen that a (v, k, λ)-difference set can be developed into a symmetric

(v, k, λ)-design. Hence, many existence proofs for symmetric designs function just as

well as existence proofs for difference sets. One of the most important such tools is the

Bruck-Ryser-Chowla (BRC) Theorem (see [12], [19]).

Theorem 4.1. The Bruck-Ryser-Chowla Theorem: Suppose D is a symmetric

(v, k, λ)-design.

(i) If v is even, then n = k − λ is a square.

(ii) If v is odd, then the equation x2 = ny2 + (−1)(v−1)/2λz2 has a non-trivial

solution in integers x, y, z.

Proof. The proof of (ii) is somewhat tedious and would be rather distracting

to include here. It is included as Appendix A. We prove (i) here. If D is a symmetric

(v, k, λ)-design with v even, then its incidence matrix M is a v × v matrix obeying

MM> = nI + λJ . Since detM = detM>, we then have detM =
√

det(nI + λJ). In

Appendix B as Proof A, we prove that det(nI + λJ) = (n+ λv)nv−1. Because M is a

(0, 1)-matrix, detM ∈ Z, so (n + λv)nv−1 must be a square. Recall from Lemma 3.5

and Definition 3.6 that n+ λv = k2, so nv−1 must be a square. But v is even, so v− 1

is odd, and hence n must be a square. �

We give two examples of the application of the BRC theorem. Many more can

be found in Moore and Pollatsek [72], Chapter 5.

Example 4.2. Let (v, k, λ) = (22, 7, 2). These parameters obey the necessary

condition that k(k − 1) = λ(v − 1) (as will all parameters in future examples of this

sort). Since v is even, we know that if a symmetric design, and hence a difference set,
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with parameters (22, 7, 2) exists, then n = k− λ = 5 must be a square. Since it is not,

neither a symmetric (22, 7, 2)-design nor a (22, 7, 2)-difference set exists.

Example 4.3. Consider the parameters (49, 16, 5). For a difference set or

symmetric design with these parameters to exist, since 49 is odd, the equation x2 =

11y2 + 5z2 must have a non-trivial integer solution. Note that such a solution is given

by (x, y, z) = (4, 1, 1), and we can not say whether or not such a design or difference

set exists based on the BRC Theorem.

A natural concern, in light of the previous example, is whether or not the con-

verse of the BRC theorem is true. That would be very convenient indeed, but sadly it

is not the case, as our next example shows.

Example 4.4. Consider the parameters (111, 11, 1). This would be a projective

plane of order 10, which does not exist, as was proved by Lam in 1989 (see [57], [58]).

However, the equation x2 = 10y2 − z2 has (x, y, z) = (1, 1, 3) as a solution. So the

BRC theorem does not rule out the existence of a projective plane of order 10. This

example shows that the converse of the BRC theorem does not hold.
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Chapter 5

MULTIPLIERS

In addition to the BRC theorem, another important tool for demonstrating

existence and nonexistence of difference sets is the concept of a multiplier.

Definition 5.1. Let D be a difference set in a group G. Then an automorphism

σ of G is called a multiplier for D if σ maps D to aDb for some a, b ∈ G. If b = 1 we

call σ a left multiplier.

For our purposes, G will always be an abelian group, so we have aDb = abD,

and all multipliers are in fact left multipliers (as well as right multipliers). We will

simply use the term ‘multipliers’ from now on. According to Assmus and Key [8], the

term comes from the classical case of a difference set in the cyclic additive group Zp,

where p is a prime. The automorphism group in this case is Z?p, and it acts on Zp by

multiplication. A specific kind of multiplier will be of particular use to us.

Definition 5.2. Let G be an abelian group of order v, and suppose t ∈ Z such

that v and t are mutually prime. Define φt : g 7→ gt. Suppose D is a difference set in

G. We call φt (and, by abuse of terminology, t) a numerical multiplier if there is an

h ∈ G such that φt(D) = hD.

We should alert the reader that a cursory glance at the literature will show that

numerical multipliers are considered specifically so often that the word ‘numerical’ is

sometimes neglected. It is often clear from the context whether authors are speaking

about general multipliers or numerical ones specifically, and it is usually the latter.

Note that if D is a difference set in a cyclic group G, then any automorphism of G is

clearly a numerical multiplier for D, which is the source of this confusion. Additionally,

the reader can easily convince themselves that the numerical multipliers for a difference

set form a group of their own.
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Example 5.3. In the cyclic multiplicative group G = 〈a〉 of order 13, the set

D = {a2, a3, a5, a11} is a difference set. The mapping φ3 is a numerical multiplier for

D since D3 = {a6, a9, a2, a7} = a4D. Note that we denote the set of cubes of elements

of D by D3, although this notation will take on a different meaning when we discuss

the integral group ring in Chapter 6.

Example 5.4. Let G = 〈a, b, c, d : a2 = b2 = c2 = d2 = 1〉 be abelian and let

D = {1, a, b, c, d, abcd}. Then D is a difference set in G and α = (abcd) is a multiplier

since αD = D. But α is not of the form φt described in Definition 5.2, so α is not a

numerical multiplier for D.

We need two lemmas to prove our first result dealing with multipliers.

Lemma 5.5. Let S be a k-subset of a symmetric (v, k, λ)-design D. Suppose

S meets each block of D in at least λ points. Then S is itself a block of D.

Proof. Our proof is a greatly expanded version of the somewhat terse proof

given by Beth and co-authors [9]. Let the block set of D be labeled B1, ..., Bv and

define ai = |S ∩ Bi|. Counting pairs (x,Bi) with x ∈ S and x ∈ Bi obviously gives∑v
i=1 ai on the one hand, and on the other must give k2, since there are k choices each

for x, and each point has k replications. So we have
∑v

i=1 ai = k2.

We can count triples (x, y, Bi) as well, with x 6= y, x, y ∈ S. On the one

hand, our choices for x, y give us
∑v

i=1 ai(ai − 1). On the other hand, since each

pair is in λ blocks and each block contains k points, we have λk(k − 1). Therefore∑v
i=1 ai(ai − 1) = λk(k − 1).

Now, we use these results to obtain the following two equations, where we note

that Lemma 3.5 gives k − λ = k2 − λv:

v∑
i=1

(ai − λ) = k2 − λv = k − λ = n,
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and

v∑
i=1

(ai − λ)2 =
v∑
i=1

ai(ai − 1)−
v∑
i=1

(2λ− 1)ai +
v∑
i=1

λ2 = k2 − kλ− λk2 + λ2v

= k2 − kλ− λ(k − λ) = (k − λ)2 = n2.

Now, since ai−λ ≥ 0 for each i ∈ [v] by hypothesis, the only way for both of the

above equations to hold is if there exists j ∈ [v] such that aj − λ = n, with ai − λ = 0

for all i 6= j. In other words, S meets each block in exactly λ points except for one,

with which it has all points in common. This is the same as saying that S is a block.

�

Lemma 5.6. Let M denote the Z-module generated by the columns e1, ..., ev

of the incidence matrix N of a symmetric (v, k, λ)-design D. If 〈·, ·〉 denotes the usual

inner product on Zv, then for each vector a ∈M , where a = (a1, ..., av), we have:

〈a, ej〉 ≡
v∑
i=1

ai (mod n) ∀j ∈ [v].

Proof. Any two different blocks of D share λ points, and n = k− λ, so we have

λ ≡ k (mod n). Therefore, for i 6= j, we have 〈ei, ej〉 ≡ k (mod n). We know that for

some constants ci, i ∈ [v], we can write a =
∑v

i=1 ciei. Then for all j ∈ [v], we have:

〈a, ej〉 = 〈
v∑
i=1

ciei, ej〉 =
v∑
i=1

ci〈ei, ej〉 ≡ k
v∑
i=1

ci =
v∑
i=1

ai (mod n). �

We can now prove some key results about multipliers.

Theorem 5.7. The First Multiplier Theorem: Let D be an abelian (v, k, λ)-

difference set in a group G. Suppose p is a prime such that p | n but p - v. If p > λ

then p is a multiplier (and clearly, furthermore, a numerical multiplier) for D.

Proof. Our proof is due to Jungnickel [52]. Let p be a prime greater than λ such

that p | n. If G is written multiplicatively, we see that the columns of the incidence

matrix N of devD are just the translates gD, where g ∈ G. Since p - v, we see that
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〈D〉 is a Zp-module of the columns of N . We denote this module by M . Clearly,

Dp ∈ M . By Lemma 5.6, we have |Dp ∩ gD| ≡ λ (mod p). Since p > λ, we can say

|D(p) ∩ gD| ≥ λ for each g ∈ G. Hence, it follows from Lemma 5.5 that Dp is a block,

and therefore that p is a (numerical) multiplier for D. �

Multiple sources (e.g. [52], [72]) report that all known difference sets have as

multipliers every prime divisor of their orders, including those which are less than

or equal to λ. It is natural to ask, then, if the hypothesis of Theorem 5.7 can be

weakened. That is, can we remove the requirement that p > λ? Indeed, it has been an

open problem for quite some time.

Conjecture 5.8. It is not necessary to assume p > λ in the First Multiplier

Theorem (Theorem 5.7).

Recall that projective planes with regular automorphism groups are equivalent

to the developments of planar (λ = 1) difference sets. It has been reported (e.g., by

van Lint and Wilson [86]) that the conjecture that all projective planes with a regular

automorphism group have prime power order has been settled for orders less than 3600

using, in part, the First Multiplier Theorem.

Most remaining results dealing with multipliers are an attempt to make progress

towards a proof of Conjecture 5.8. A fairly comprehensive overview of its implications

is given by Arasu and Stewart [3], and van Lint and Wilson [86]. We mention the

concept of so-called “extraneous” multipliers below.

Definition 5.9. Suppose t is a multiplier of a difference set D having order n.

If t - n, t is said to be an extraneous multiplier.

Jungnickel [52] reports that “small primes are not (usually) extraneous multi-

pliers”, and gives the following theorem of Xiang and co-authors [94]. We do not prove

it, as the proof requires the use of tools we will discuss in Chapter 6.

Theorem 5.10. Let D be an abelian (v, k, λ)-difference set. Then the following

hold:

(i) No extraneous multiplier for D is equal to 2.

(ii) If 3 is an extraneous multiplier for D, then −1 is a multiplier for D.
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(iii) If 5 is an extraneous multiplier for D, then λ 6= 1.

It serves us now to define a new term.

Definition 5.11. The least common multiple of the orders of all elements of

an abelian group G is called the exponent of G, and is denoted exp(G).

It is obvious that groups of exponent 2 are abelian, but the converse is not true.

There of course exist abelian groups of exponent greater than 2. Hence, the following

theorem makes sense. It is due to Menon [69].

Theorem 5.12. The Second Multiplier Theorem: LetD be an abelian (v, k, λ)-

difference set in a group G. Let m > λ be a divisor of n co-prime to v. Let exp(G)

denote the exponent of G. Let t be a co-prime integer to v satisfying the following:

for every prime divisor p of m, there exists a nonnegative integer f that satisfies

t ≡ pf (mod exp(G)). Then t is a (numerical) multiplier for D.

We present the theorem without proof, to avoid a lengthy diversion into number

theory. However, several different proofs are available [9], [52], [69], [77]. There is a

natural corollary, with a proof due to Jungnickel [52].

Corollay 5.13. Let D be an abelian (v, k, λ)-difference set such that n is a

prime power for some prime p. If p is coprime to v, then p is a numerical multiplier

for D.

Proof. In the context of Theorem 5.12, suppose n = m. It is clear that a

difference set D and its complimentary difference set D′ have the same multipliers. As

such, it must be true that k ≤ v/2. From Theorem 1.13, we have:

λ = k(k − 1)/(v − 1) ≤ k((v/2)− 1)/(v − 1) = (k/2)((v − 2)/(v − 1)) < k/2,

so Theorem 5.12 applies. �

It is worth noting that though it sounds extremely similar, a careful reading will

convince the reader that Corollary 5.13 cannot be obtained from Theorem 5.7.

Example 5.14. Recall Example 3.3, and take q = 5. Then there exists a

(35, 17, 8)-difference set in G = (Z5,+) ⊕ (Z7,+) ' (Z35,+). We have n = 32, so by
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Corollary 5.13, 3 should be a numerical multiplier for D, as gcd(35, 3) = 1. It is easy

to check that this is indeed the case.

We now give some of the less-obvious properties of multipliers.

Theorem 5.15. Let D be a difference set in a group G, and let α be a multiplier

for D. Then α is an automorphism of devD.

Proof. To be an automorphism of devD, α must be a permutation of both

the point and block sets of devD. The first is true by definition, since the elements

of G are the point set of devD. We will prove the second. Since α is a multiplier,

α(D) = hD for some h ∈ G. That is, α gives a translate of D. For all g ∈ G,

α(gD) = α(g)α(D) = α(g)(hD), which is clearly a translate of D, and hence is a block

in devD. It is now clear that α permutes the block set of devD, and we are done. �

We can use this result to prove an even more striking one.

Theorem 5.16. Let D be a difference set in a group G having left multiplier

α. Then α fixes at least one block in devD.

Proof. By Theorem 5.15, α is an automorphism of devD. Therefore, it must

map the identity in G to itself. Hence, α fixes at least one point. By Theorem 2.7, it

must also fix at least one block. �

We are primarily concerned with abelian difference sets, and so the following

theorem of McFarland and Mann [64] is of interest, and indeed is much stronger than

Theorem 5.16.

Theorem 5.17. Let D be an abelian (v, k, λ)-difference set in a group G. If

gcd(v, k) = 1, then there is a b ∈ G such that bD is fixed by every multiplier for D.

Proof. Of course, |D| = k. Define φk : g 7→ gk. Because gcd(v, k) = 1, it follows

that φk ∈ Aut(G). Hence, there is a unique element b ∈ G such that bk
∏
d∈D

d = 1,

where ‘1’ is the identity element in G. Let α be a multiplier for D. Then there exists

c ∈ G such that α(bD) = cD. It is sufficient to prove that b = c. Consider:

1 = α(1) = α

(
bk
∏
d∈D

d

)
= α

(∏
g∈bD

g

)
=
∏
h∈cD

h =
∏
d∈D

cd = ck
∏
d∈D

d,
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so we can conclude that ck = bk, and hence that c = b. �

It is worth noting that our assumption that G is abelian is absolutely vital in

our proof above. Without it, not a single one of our manipulations is valid. The

requirement that gcd(v, k) = 1 is also necessary, since otherwise φk is not necessarily

an automorphism. However, without it, we can essentially prove the same theorem,

but only for the numerical multipliers of a difference set. The theorem and proof are

due to McFarland and Rice [67].

Theorem 5.18. If D is a difference set in an abelian group G, then there is a

translate of D fixed by all of its numerical multipliers.

Proof. The lengthy proof requires some character theory (Chapter 8), and is

therefore included (partially) as Proof B in Appendix B. �

We now show various ways to use the multipliers we have said so much about.

We begin with several simple examples, taken from Moore and Pollatsek [72]. First,

we note that for a difference set D in a group G with multiplier α such that α(D) = D,

D must clearly be some union of orbits for α acting on G.

Example 5.19. Let G = Z15. We need to find all the parameters k and λ

such that 1 < k < v/2 and k(k − 1) = λ(v − 1). A little experimentation shows

that this is only achieved for k = 7 and λ = 3. So, if a difference set in G exists, it

has parameters (15, 7, 3). Given that n = 22 and 2 is coprime to v = 15, Corollary

5.13 assures us that 2 must be a numerical multiplier for such a D. The orbits in G

under φ2 are: (0), (5, 10), (1, 2, 4, 8), (3, 6, 12, 9), and (7, 14, 13, 11). Since D must have

seven elements, it is clear that D must contain 0, 5, 10 and one of the other orbits. A

little further experimentation shows that D = {0, 1, 2, 4, 5, 8, 10} is indeed a (15, 7, 3)-

difference set in G. In fact, this is the twin-prime power difference set with q = 3 from

Example 3.3.

Example 5.20. We claim that no (79, 13, 2)-difference set exists. First, as

79 is prime, G = Z79. Upon looking for the easiest proofs of our claim, we note

that the parameters solve the necessary conditional equation (k(k − 1) = λ(v − 1)).

Furthermore, upon appealing to the Bruck-Ryser-Chowla Theorem, we note that the
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equation x2 = 11y2−2z2 does indeed have a solution, given by (x, y, z) = (3, 1, 1). Our

only hope rests with multipliers. Thankfully, they prove our claim efficiently. Since

11|n but 11 - v and 11 > λ, The First Multiplier Theorem (Theorem 5.7) says 11 is a

numerical multiplier for any (79, 13, 2)-difference set. Upon writing the orbits for φ11

on G, however, we find that there are only three: one of size 1 and two of size 39. We

cannot form a set of elements of G of size 13 consisting of a union of orbits, so this

difference set does not exist.

Other examples, such as a proof that no difference sets having parameters

(253, 28, 3) or (352, 27, 2) can exist, can be found in Beth [9]. The latter is espe-

cially interesting, as it quotes a result of Arasu [2] which eliminates all seven possible

cases of abelian groups having size 352 simultaneously.

The following extremely strong result gives a bound on the possible number of

multipliers of a difference set in a cyclic group, and is due to Xiang and Chen [95].

Their proof is short, but subtle, and requires in-depth knowledge of many other results,

so we do not repeat it here.

Theorem 5.21. Let D be a (v, k, λ)-difference set in a cyclic group G, and let

M be its multiplier group. Then |M | ≤ k, unless D is the (21, 5, 1)-difference set in

Z21, in which case |M | = 6.

Other sophisticated results may be obtained when information about the mul-

tipliers of a given difference set are known in advance. A good example is Wilbrink’s

Theorem [91]. A particularly simple proof is given by Jungnickel [52], and we expand

upon that proof here.

Theorem 5.22. Wilbrink’s Theorem: Let D be an abelian (v, k, λ)-difference

set in a group G, and let p be a prime such that p - v. Assume that p | n but that p2 - n,

and further that p is a multiplier of D. Then, in the context of ZpG (see Definition

6.1), we have:

Dp−1 + (D(−1))p−1 = 1± vp−2G,

where the positive case occurs when p - λ and the negative case when p | λ.
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Proof. Because the proof requires us to work in the integral group ring, covered

in the next chapter, we will relegate the proof to Appendix B as Proof C. �

Wilbrink’s Theorem can be used to obtain powerful restrictions of the param-

eters of difference sets. We give an example of Jungnickel [52] below. The proof is

almost elementary by considering elements with coefficient 1 in Z2G once the integral

group ring is understood.

Theorem 5.23. Let D be a planar abelian difference set of order n, and suppose

that n is even. Then either n = 2 or n is a multiple of 4.

Two theorems of Mann [63] are discussed at some length in Jungnickel [52],

where the first is referred to as “probably the most important nonexistence result for

difference sets”. We include both here, and refer the reader to Jungnickel for the

substantial list of alternate proof sources and the proofs themselves, which can also be

found in Beth [9], since they require material we will discuss later. The first of these

two theorems is sometimes known as the Mann Test.

Theorem 5.24. The Mann Test: Let D be a (v, k, λ)-difference set in a group

G of order v. Let u 6= 1 be a natural number such that u | v, and denote by U a

normal subgroup of G having order s and index u. Define H = G/U , and suppose

H is abelian with exponent exp(H). Let p be a prime such that p - exp(H), and

suppose there exists a nonnegative integer f and numerical multipler t for G/U such

that tpf ≡ −1 (mod exp(H)). Then the following are true:

(i) p does not divide the square-free part of n. That is, for some j ∈ N, it is the

case that p2j | n but p2j+1 - n.

(ii) pj ≤ s.

(iii) If u > k, then pj | k.

(iv) All of the intersection numbers (see Definition 6.3) of D relative to U are

congruent modulo pj. Let y denote their value modulo pj for (v) below.

(v) yu ≡ k (mod pj), and the smallest nonnegative y such that this holds

satisfies yu ≤ k.
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Example 5.25 Neither the group Z2 × Z20 nor the group Z2 × Z2 × Z2 × Z5

contains a (40, 13, 4)-difference set. The same arguments apply to both groups, which

we will refer to generically as G. Select U ≤ G such that U is of order 2 and G/U

has exponent 10. Note that for p = 3, we have p - 10 and p2 ≡ −1 (mod 10), but

p2 > s = 2, a contradiction with statement (ii) of The Mann Test.

Including Example 5.25, Beth [9] gives no less than 10 distinct examples of uses

of The Mann Test, and also gives the following generalization.

Theorem 5.26. Let D be an abelian (v, k, λ)-difference set in a group G, and

let w be a natural number such that w | v. If there exists h ∈ N and a multiplier

m of D such that mh ≡ −1 (mod w), then either n is a square or has the form a2b3

for some a, b ∈ N, where w is a power of b and b is a prime. In the second case, let

r 6= q be a prime such that r | v. Then every multiplier of D has odd order modulo r,

q ≡ 1 (mod 4), v is odd, and m is a quadratic residue in Fq.

We close this chapter by mentioning that we are not through dealing with mul-

tipliers. Difference sets having multiplier −1 are especially important. Because we

need a few more tools to discuss them, we will save their study for the end of Chapter

6.
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Chapter 6

GROUP CONDITIONS

We have discussed many properties of difference sets that help us to show their

existence or nonexistence in various scenarios, but so far we have said little about

the groups themselves. To correct that, we begin with what at first appears to be a

digression.

Definition 6.1. Let G be a finite group written multiplicatively. Then ZG

denotes the integral group ring, which consists of formal sums of the form:

∑
g∈G

agg, ag ∈ Z, ∀g ∈ G.

Note that the sums are truly formal, since G is not additive, and even if it

was, the addition operation in G would need to be clearly distinguished from that in

ZG, since they are operations on different types of objects. We define addition in the

integral group ring in the following predictable manner:

∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g.

We define multiplication similarly:(∑
g∈G

agg

)(∑
h∈G

ahh

)
=
∑
g∈G

∑
h∈G

agahgh.

It should be obvious that 0 =
∑

g∈G 0g, and that 0 =
∑

g∈G agg if and only if

ag = 0 for every g ∈ G. Furthermore, it is easy to see that the integral group ring ZG

is commutative if and only if G is abelian. We have followed the development for the
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integral group ring used by Moore and Pollatsek [72]. An alternative, yet equivalent,

development of the concept of an integral group ring is given by Assmus and Key [8].

We now specify some notation. For A =
∑

g∈G agg, we define A(t) :=
∑

g∈G agg
t.

Note that any S ⊂ G can be written in the form
∑

g∈G agg by letting ag = 1S(g), which

is the indicator function for S. More often, we will just write S =
∑

g∈S g, and (by

abuse of terminology) consider this to be an element of the corresponding integral

group ring.

Theorem 6.2. Let D ( G be non-empty such that |D| = k, and let |G| = v.

Then D is a (v, k, λ)-difference set in G if and only if DD(−1) = n+ λG in ZG.

Proof. This is merely a restatement of Definition 3.1. �

We should note that as Jungnickel and Pott [53] point out, Theorem 6.2 is

technically false. If D is a (v, k, λ)-difference set, then indeed DD(−1) = n + λG, but

the converse actually only holds when ZG has characteristic zero. This is no problem,

though, for this will almost always be the case, and for this treatise, is indeed always

true. We will use the above results to prove an important result relating to intersection

numbers, which we will define momentarily.

Let D be a difference set in a group G. If N is a normal subgroup in G, then

the cosets of G modulo N form a partition of G.

Definition 6.3. Let G be a group with a normal subgroup N such that N

satisfies [G : N ] = r, and let {g1, ..., gr} be a complete set of coset representatives of

N in G. Suppose D is a difference set in G. The numbers |D ∩ giN |, denoted ni, are

called the intersection numbers for D with respect to N . Sometimes we instead say

the intersection numbers are ‘for D mod N ’.

Example 6.4. By now we are familiar with the twin-prime power difference

sets, and they make a nice subject here. Letting q = 5, we have G = Z5 ⊕ Z7.

Then the twin-prime power difference set D in G is a (35, 17, 8)-difference set. If

N1 = {(a, 0) | a ∈ Z5} and N2 = {(0, b) | b ∈ Z7}, then N1 and N2 are both obviously

normal subgroups in G. Writing out D and the cosets of N1 and N2 shows that for

N1, we have intersection numbers of 5 (once) and 2 (six times). For N2, we have
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intersection numbers of 1 (once) and 4 (four times).

It will not have escaped the observant reader that in both cases in the above

example, the intersection numbers sum to k. This fact should now be obvious, but

more can be said.

Theorem 6.5. Let D be a (v, k, λ)-difference set in a group G. Let N be a

normal subgroup of G with index r and size s. Suppose {g1, ..., gr} is a complete set

of coset representatives for N in G. Then the following are true:

r∑
i=1

ni = k and
r∑
i=1

(ni)
2 = n+ λs.

Proof. The first equation is obviously true. To prove the second, recall Theorem

6.2: in the integeral group ring ZG, we have DD(−1) = n+λG. We may also write the

right-hand side of this result as n + λN + λ(G/N), so that it is clear that the sum of

coefficients of the elements ofN is n+λs. Now, letDi denoteD∩giN , and write the left-

hand side as (D1 + · · ·+Dr)(D1 + · · ·+Dr)
−1 =

∑
i 6=j DiD

−1
j +

∑r
i=1DiD

(−1)
i . Observe

that DiD
(−1)
j has nonzero coefficients only for elements of gig

−1
j N . Such elements are in

N if and only if i = j, so the sum of all coefficients in N is the same as in
∑r

i=1DiD
(−1)
i ,

which is precisely the sum of the squares of the intersection numbers. �

The concept of the integral group ring has many other uses, and it suits us to

now prove a useful result relating two such rings.

Theorem 6.6 Let G and H be groups and φ : G → H be a homomorphism.

Define φ̂ : ZG→ ZH by:

φ̂

(∑
g∈G

agg

)
=
∑
g∈G

agφ(g).

Then φ̂ is a ring homomorphism.

Proof. The proof is a straightforward one in which the identity element is

preserved since φ is a homomorphism, and the nature of the map makes it clear that

both addition and multiplication in the group ring sense are respected. �
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In light of this result and Theorem 6.2, the following should be not at all sur-

prising, and the proof is intuitive.

Theorem 6.7. Let D be a (v, k, λ)-difference set in a group G and let H be

a group as well. We retain the notation of Theorem 6.6. Suppose φ : G → H is a

surjective homomorphism. If D̂ = φ̂(D) and s = | kerφ|, then D̂ satisfies the following

in the integral group ring ZH:

D̂D̂(−1) = n+ sλH.

The integral group ring concept invites a somewhat natural generalization of a

difference set, called a difference list, first described by Arasu and Ray-Chauduri [1].

Definition 6.8. An element E ∈ ZG written as E =
∑

g∈G agg is a (r, k, s, λ)-

difference list over G if the following conditions hold:

(i) s, k ∈ N

(ii) λ ∈ N ∪ {0}

(iii) ag ∈ N ∪ {0}, ∀g ∈ G

(iv) |H| = r

(v)
∑
h∈H

ah = k

(vi) EE(−1) = k − λ+ sλH.

Some observations regarding Definition 6.8 should be made plain. E is usually

thought of strictly as a multiset of elements of H. That is, it contains each h ∈ H

exactly ah times. If s = 1 and ah ∈ {0, 1} for each h ∈ H, then E thought of as a

subset of H is an (r, k, λ)-difference set in H.

Difference lists can be obtained in the following manner, though Beth and co-

authors assert that it is not exhaustive [9]. A difference list obtained in the way

described below is a homomorphic image of a difference set. If D is a difference set in a

group G and φ : G→ H is a homomorphism such that H ' G/N for some N /G, then

D 7→ E under φ̂ : ZG → ZH and E is a difference list, which can be seen simply by
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writing out the result of applying φ̂ to D written as an element of ZG. Furthermore,

suppose that E =
∑

h∈H ahh. Then ah = |D ∩ hN |.

The BRC Theorem (Theorem 4.1) has an analogue in difference lists, though

Beth and co-authors [9] assert that it is actually a stronger statement. Our proof is

based on their outline, though their statement of the theorem seems to leave out a nec-

essary condition: namely that it only works on difference lists which are homomorphic

images of difference sets. We have included that detail here. The theorem itself is due

to Bruck [13] as well as Hall and Ryser [41].

Theorem 6.9. If E =
∑

h∈H ahh is the homomorphic image of a difference set

D with |D| = v, and is an (r, k, s, λ)-difference list over a group H with r odd, then

the equation given by:

x2 = ny2 + (−1)(r−1)/2rz2

has a non-trivial solution (x, y, z) in integers.

Proof. Suppose E =
∑

h∈H ahh is a homomorphic image of such a difference set,

and furthermore that it is an (r, k, s, λ)-difference list over a group H. Let h1, ..., hr be

a list of the elements of H. Let M = (mij) be the r × r matrix with entries defined

by mij = ahihj , where the coefficients are taken from E. That is, the entry mij is the

coefficient on the element hihj in the difference list E.

By the definition of a difference list, and by Theorem 6.7, we have:

∑
h∈H

aihajh =

{
n+ λs, if i = j,

λs, if i 6= j.

Hence, MM> = nI + λsJ , and therefore, by the BRC Theorem, the equation

a2 = nb2 + (−1)(r−1)/2sλc2 has a non-trivial solution in integers (a, b, c). Recall that

v = rs since |H| = |G/N | for some group G such that N /G and so we have k2 − n =
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λv = λrs. Hence, the following holds:

(k2 − n)a2 = n(k2 − n)b2 + (−1)(r−1)/2r(λsc)2.

From the above, we obtain, after some minor arithmetic:

(ak − nb)2 = n(bk + a)2 + (−1)(r−1)/2r(λsc)2,

and (x, y, z) = (ak − nb, bk + a, λsc) is our solution. �

There is a notion of a numerical multiplier for difference lists as well, and it is

a natural extension of that for difference sets.

Definition 6.10. Let S be (r, k, s, λ)-difference list over a group H. Any integer

t coprime to r such that S(t) = hS holds in Z for some h ∈ H is said to be a numerical

multiplier for S.

Beth [9] gives two relevant multiplier theorems for difference lists that are nat-

ural generalizations of The Second Multiplier Theorem (Theorem 5.12).

Two of the more important results dealing with the existence of difference sets

and the properties of their containing groups are Turyn’s Exponent Bound (discussed

and proved in Chapter 9) and Dillon’s so-called ‘dihedral trick’, which we discuss now.

We first introduce a new concept.

Definition 6.11. Let G and H ⊂ G be abelian groups and suppose there exists

g ∈ G\H with g2 = 1 and ghg−1 = h−1 for each h ∈ H such that G = H + gH in the

integral group ring ZG. Then G is called a generalized dihedral extension of H, and g

is referred to as the extension element.

Some authors (e.g., see [72]) state that g /∈ H instead of that g ∈ G\H in the

above definition, but notice that g ∈ G is clear, since G = H + gH in ZG means the

elements of G are precisely those of H and those of gH. Since H is a group, it has an
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identity, which we denote 1, and gH contains g1 = g so g ∈ G, and we make this plain

by writing g ∈ G\H.

Example 6.12. If H = 〈a, b|a6 = b2 = 1, ab = ba〉, then G = 〈a, b, c|a6 =

b2 = c2 = 1, ab = ba, ac = ca−1, bc = cb〉 is a generalized dihedral extension of H with

extension element c.

Theorem 6.13. Dillon’s Dihedral Trick: Let H be an abelian group and let

G be a generalized dihedral extension of H. If G contains a difference set, then any

abelian group K such that [K : H] = 2 also contains a difference set.

Proof. Suppose G = H + gH in ZG is a generalized dihedral extension of

H and let D be a (v, k, λ)-difference set in G. Then we have subsets X and Y of

H such that D = X + gY . We know from our proof of Theorem 6.5 that we have

(X + gY )(X + gY )(−1) = n + λG. Observe that g = g−1 from the definition of a

generalized dihedral extension and XY = Y X since H is abelian. Then, we have

Xg = gX(−1) and (gY )(−1) = Y (−1)g = gY . Therefore, in ZG, we have:

n+ λG =(X + gY )(X(−1) + Y (−1)g) = (X + gY )(X(−1) + gY )

=XX(−1) +XgY + gY X(−1) + gY gY

=XX(−1) +XgY + gY X(−1) + Y (−1)g−1gY

=XX(−1) +XgY + gY X(−1) + Y Y (−1) = XX(−1) + Y Y (−1) + 2gY X(−1).

Equating elements of H and gH, we obtain:

XX(−1) + Y Y (−1) = n+ λH and 2Y X(−1) = λH = 2XY (−1),

where the last equality follows from H = H(−1) since H is abelian.

Now, let K be an abelian group such that [K : H] = 2. We have K = H + kH
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for some k ∈ K\H. Since k2 ∈ H, we have k2H = H. Let C = X + kY . Then:

CC(−1) =(X + kY )(X + kY )(−1) = XX(−1) + Y Y (−1) + kY X(−1) + k−1XY (−1)

=XX(−1) + Y Y (−1) + k
(
Y X(−1) + k−2XY (−1)) = n+ λ(H + kH) = n+ λK,

and we are done. �

As promised at the end of the previous chapter, we now return to multipliers,

and specifically discuss difference sets having multiplier −1.

If −1 is a multiplier of a difference set D, then by Theorem 5.17 we can assume

it fixes D. In such a case, D is called reversible or, more archaically, symmetric.

Jungnickel [52] notes that all known reversible difference sets obey the condition v = 4n

and are referred to as Menon difference sets, with the exception of one. The exception is

a (4000, 775, 250)-difference set which can be constructed using a method of McFarland

described in Chapter 7. It occurs in the group G = E125 × E32, where En is the

elementary abelian group of size n (in this group, take q = 5 and d = 2 in the context

of McFarland’s construction, Chapter 7).

Whether further non-Menon reversible difference sets exist is an open problem.

Several authors conjecture that the one mentioned above is the only such example,

and results due to McFarland and Ma [68] have been further generalized by Ma [62] to

show that no other non-Menon reversible difference sets exist for n ≤ 108.

Most results dealing with Menon difference sets are summed up in the following

large theorem, collected by Jungnickel [52] from several sources. We will prove only

part of it, following a proof of McFarland and Ma [68].

Theorem 6.14. Let D be a reversible (v, k, λ)-difference set in a group G.

Then the following hold:

(i) 2 divides both v and λ, and n is a square.
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(ii) v and n share all odd prime divisors.

(iii) If p is a prime such that p | n, then D(p) ≡ 0 (mod p).

(iv) It t ∈ N is coprime to v, then t is a multiplier for D.

(v) The Sylow subgroups of G are non-cyclic.

(vi) Suppose for some i ∈ N that p2i | n for a prime p. Then pi+1|v, pi | k, and

pi | λ. Furthermore, if t is the greatest integer such that pt | v, then k(pi−1) ≤ λ(pt−1).

Proof. We prove the first three results, and refer the reader to the many sources

given by Jungnickel [52] for the others.

Since D is a difference set, its complement in G must also be one, so we can

assume k < v/2. By Theorem 5.17, we may also assume that D(−1) = D, so that

in ZG, D2 = n + λG. Towards a contradiction, suppose v is odd. Then the squares

of the elements of G are all distinct. Hence there must exist g, h ∈ G\{1} such that

the coefficients ah and ag equal 0 and 1 respectively in D(2) =
∑

d∈D add
2. But since

D2 ≡ D(2) (mod 2), ag and ah must be either both even or both odd, a contradiction.

Hence, v is even, and by Lemma 3.5, so is λ. By Theorem 4.1, this means n is a square,

and we are done with result (i).

Now, we prove (iii). Let p be an odd prime. We have:

Dp = D(D2)(p−1)/2 = D(n+ λG)(p−1)/2,

so there exists some u such that k | u and the above becomes uG+(
√
n)p−1D. Suppose

p | n. Then we have D(p) ≡ uG (mod p). We know p | v, since otherwise all p-th

powers of elements of G are distinct, meaning D(p) 6≡ uG (mod p). Since λk = k2− n,

then p | k as well, and hence p | λ. Therefore D(p) ≡ 0 (mod p). If p = 2, then n and

k are even, and we immediately have D(2) ≡ 0 (mod 2). This proves part (iii).

Now, suppose p - n for some odd prime p. We have (
√
n)p−1 ≡ 1 (mod p) by

40



Fermat’s Little Theorem, so we can write D(p) − D ≡ uG (mod p). Then k < v/2

implies that D(p) and D both have a coefficient of zero on at least one mutual element

of G, so that u ≡ 0 (mod p), and hence D(p) ≡ D (mod p). Then it must be true that

D(p) = D. Hence:

n+ λG = D2 =
(
D(p)

)2
= (D2)(p) = (n+ λG)(p) = n+ λG(p).

Therefore, G = G(p), and hence p - v. As such, all odd prime divisors of v are

divisors of n, and we have already shown the reverse. �
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Chapter 7

CONSTRUCTIONS AND FAMILIES

In this chapter, we will present several explicit constructions for some of the

most well-studied difference sets. We will then give some general families of difference

sets as well, and occasionally mention some more narrow constructions. Many more

are given, for example, in [48]. We begin with the construction of Singer [83].

Consider PG(2, q), the projective plane of order q constructed from the 3-

dimensional vector space GF (q)3 (in other words, the Desarguesian plane of order

q), where q is a prime power. An example for q = 2, known as the Fano Plane, is given

below.

The projective plane denoted by PG(2, q) contains q2 + q+ 1 points, with q+ 1

points on a given line, and any pair of points occurring together on exactly 1 line.

Hence, PG(2, q) gives a symmetric (q2 + q+ 1, q+ 1, 1)-design. Notice that any line of

PG(2, 2) gives a (7, 3, 1)-difference set. It is important to remember that difference sets

are always defined in a group, not a set. We naturally ask, then: What is the group

in which a line in PG(2, 2) is a difference set? To answer this question thoroughly, we

generalize our considerations.
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We will work in projective geometries in higher dimensions, such as projective

volumes PG(3, q), or even more generally, PG(m, q) for any integer m ≥ 2. Then we

have v points, k points on each hyperplane, and each pair of points will occur together

on λ hyperplanes, where:

v =
qm+1 − 1

q − 1
, k =

qm − 1

q − 1
, λ =

qm−1 − 1

q − 1
.

There is a natural model of PG(m, q) using the field GF (qm+1). Equipped with

multiplication, GF ∗(qm+1)/GF ∗(q) is a group of size v, which represents the points

of PG(m, q) and hence any hyperplane in PG(m, q) gives a (v, k, λ)-difference set in

GF ∗(qm+1)/GF ∗(q). We will prove this explicitly.

Theorem 7.1. Let q be a prime power and let m ≥ 1 be an integer. Then the

symmetric design defined by the points and hyperplanes of PG(m, q) has an automor-

phism ϕ of order (qm+1− 1)/(q− 1), and G = 〈ϕ〉 is a cyclic group acting regularly on

points of PG(m, q).

Proof. The group GF ∗(qm+1) is cyclic and GF (qm+1) is an (m+ 1)-dimensional

vector space over GF (q). Let V = GF ∗(qm+1)/GF ∗(q). Suppose ω is a generator

for GF (qm+1). Then 〈ω〉 is a cyclic group under multiplication, and GF ∗(q) ≤ 〈ω〉.

Furthermore, |GF ∗(q)| = q − 1. In other words, if we let v = (qm+1 − 1)/(q − 1),

then 〈ωv〉 = {1, ωv, ω2v, ..., ω(q−2)v}, and as such, GF (q) = {0, 1, ωv, ω2v, ..., ω(q−2)v}.

Treat GF (qm+1) as a vector space over GF (q). The elements ωi and ωj such that

i, j ∈ N span the same 1-dimensional subspace of GF ∗(qm+1) if and only if there exists

α ∈ GF ∗(q) such that ωi = αωj. In this way, we establish a bijection between the

1-dimensional subspaces of GF (qm+1) and the cosets xi = ωiGF ?(q), where we let

xi = {ωi, ωv+i, ω2v+i, ..., ω(q−2)v+i}.

Suppose ϕ is a map such that xi 7→ xi+1, where the subscripts are modulo v
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(i.e., xv−1 7→ x0). Then ϕ is an automorphism of V and 〈ϕ〉 is obviously regular on

V . To show that ϕ is an automorphism of the symmetric design defined by the points

and hyperplanes of PG(m, q), consider the obvious fact that ϕ(xi) = ωxi. This clearly

maps blocks to blocks (that is, hyperplanes to hyperplanes) and preserves incidence of

the points and hyperplanes, and is hence an automorphism of the design. �

By Singer’s Theorem (Theorem 3.13), Theorem 7.1 tells us that G = 〈ϕ〉 as

defined in the proof above contains a difference set with parameters:

(
qm+1 − 1

q − 1
,
qm − 1

q − 1
,
qm−1 − 1

q − 1

)
.

We can find these difference sets by letting H be an m-dimensional subspace of

GF (qm+1). Then the set {i ∈ Zv : xi ∈ H}, where we retain the definitions and

symbols in the proof of Theorem 7.1, is a Singer difference set.

Put more plainly, Singer’s construction gives difference sets in the group of

automorphisms generated by ϕ of the projective geometry PG(m, q).

We now discuss McFarland’s construction [65], which allows us to create an

enormous variety of diverse difference sets in a straightforward way. A rather different

treatment of McFarland’s construction is given by Ionin and Shrikhande [48].

Let V be an (s + 1)-dimensional vector space over GF (q), and further, let

r = (qs+1−1)/(q−1). There are r 1-dimensional subspaces and therefore r hyperplanes

in V , which we denote H1, ..., Hr. Define E = (V,+) to be the additive group of V and

let K be any group of order r + 1.

Define G = E ×K. Furthermore, let {k1, ..., kr} be a set of elements in K and

{e1, ..., er} be a multiset in E. That is, the ki are distinct, but the ei are not necessarily

distinct. Then Hi + ei is a coset in E with coset representative ei for all i ∈ [r], and
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hence (Hi+ei, ki) is a coset in G with coset representative (ei, ki). Define D as follows:

D =
r⋃
i=1

{(h+ ei, ki) : h ∈ Hi}.

Theorem 7.2. Using the notation established above, D is a (v, k, λ)-difference

set in G = E ×K with:

v = qs+1

(
qs+1 − 1

q − 1
+ 1

)
, k = qs

(
qs+1 − 1

q − 1

)
, λ = qs

(
qs − 1

q − 1

)
.

Proof. By Theorem 6.2, it is enough to show that DD(−1) = n + λG in ZG.

Observe that as a multiset,
r⋃
i=1

Hi contains the identity in E exactly r times and contains

any other element of E exactly (qs − 1)/(q− 1) times. Similarly, viewed as a multiset,

Hi +Hi = {h1 + h2 : h1, h2 ∈ Hi} contains any h ∈ Hi exactly qs times for any i ∈ [r].

For x ∈ E, we know Hi +Hj contains x exactly qs−1 times for any (i, j) ∈ [r]× [r] such

that i 6= j.

To avoid confusing addition in G with addition in ZG, we will write G multi-

plicatively from here until the completion of the proof. Then D =
∑r

i=1Hieiki and

from our observations, we obtain:

r∑
i=1

Hi = r +

(
qs − 1

q − 1

)
(E − 1) and HiHj =


qsHi, i = j,

qs−1E, i 6= j.
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Then, we have the following for DD(−1):

DD(−1) =

(
r∑
i=1

Hieiki

)(
r∑
j=1

Hje
−1
j k−1j

)
=

r∑
i=1

HiHi +
∑
i 6=j

HiHjeie
−1
j kik

−1
j

=qs
r∑
i=1

Hi + qs−1
∑
i 6=j

(Ee−1j ei)(k
−1
j ki)

=qs
(
qs +

(
qs − 1

q − 1

)
E

)
+ qs

(
qs − 1

q − 1

)
E(K − 1)

=q2s + qs
(
qs − 1

q − 1

)
(E ×K) = n+ λG. �

It is worth noting that G inherits nearly all of its properties from the choice of

K. As an interesting example, if K is non-abelian, then G will be non-abelian. Also

of note is that McFarland difference sets are not cyclic, in general. The already very

general construction was further generalized to arbitrary products of groups by Dillon

[30]. In his work, Dillon gave the following conjecture, which he proved for some types

of groups, and which Davis [23] expanded upon just six years later. The rest of the

proof was given by Kraemer [56] shortly after this.

Conjecture 7.3. Dillon’s Conjecture: Let d ∈ N. Then any group of order

22d+2 contains a difference set if it has a normal subgroup isomorphic to Zd+1
2 .

A special kind of matrix also gives efficient ways to construct difference sets.

Definition 7.4. An m ×m Hadamard matrix H is a square matrix in which

all entries are either 1 or −1 such that HH> = mIm, where Im is the m×m identity

matrix. We say that H is of order m in this case.

It should be immediately clear from the definition that we have H>H = mI as

well, where we drop the m designation on the identity matrix, since the size is clear

from the context. Indeed, H> is a Hadamard matrix if and only if H is.

Example 7.5. A Hadamard matrix H of order 4 is given below, and it can be

easily verified that HH> = 4I.
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H =


1 1 1 1
−1 −1 1 1
−1 1 −1 1
1 −1 −1 1


Theorem 7.6. Multiplying any row or column of a Hadamard matrix by −1

gives another Hadamard matrix, as does permuting columns and rows.

Proof. We first prove the statement about multiplication by −1. It is clear

that for any two rows u and v of an m-order Hadamard matrix, 〈u, v〉 = mδuv, where

〈·, ·〉 is the usual dot product and δuv is 1 when u = v and 0 otherwise. Therefore,

multiplication by −1 in the case u 6= v still gives zero, and in the case u = v gives a

scaling by (−1)2 = 1 and leaves the result HH> = mI unchanged. When columns are

permuted, it is obvious that 〈u, v〉 = mδuv still holds. �

Definition 7.7. Two Hadamard matrices are said to be equivalent if we can

obtain one from the other via only the operations described in Theorem 7.6.

Theorem 7.6 also allows us to assume that any Hadamard matrix has all 1’s on

both the first row and column. Such a matrix is said to be normalized.

Upon attempting to construct a Hadamard matrix of order 3, one would quickly

become frustrated and perhaps even conjecture that it is impossible. This is true, and

much more can be said.

Theorem 7.8. If H is a Hadamard matrix of order m, then either m = 1,

m = 2, or m ≡ 0 (mod 4).

Proof. Hadamard matrices of orders 1 and 2 are trivial to construct, so suppose

H is of order m > 2. By Theorem 7.6, we may assume H is normalized. Further, we

can arrange the columns of H so that the entries of the second row have some number

w of 1’s followed by some number x of −1’s, followed by some number y of 1’s, followed

by some number z of negative 1’s. The third row, then, by the obvious orthogonality

rules for the rows of a Hadamard matrix, must be sortable so that we have w 1’s,
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followed by x −1’s, followed by y −1’s, followed by z 1’s and such that our statement

about the second row still holds. In other words, the first three rows of H are as so for

some integers w, x, y, z:

w columns︷ ︸︸ ︷ x columns︷ ︸︸ ︷ y columns︷ ︸︸ ︷ z columns︷ ︸︸ ︷ 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1
1 · · · 1 1 · · · 1 −1 · · · −1 −1 · · · −1
1 · · · 1 −1 · · · −1 −1 · · · −1 1 · · · 1


Then since HH> = mI, we derive the following from considering the dot prod-

ucts of rows 1 and 2, 1 and 3, and 2 and 3 respectively:

w + x− y − z = 0

w − x+ y − z = 0

w − x− y + z = 0.

We also have, of course, that w + x + y + z = m. Solving this system of four

equations gives w = x = y = z = m/4, and we are done. �

The converse of Theorem 7.8 is still an open problem and an active area of

research. With the discovery in 2004 of a Hadamard matrix of order 428 by Kharaghani

and Tayfeh-Rezaie [54], the smallest order for which the existence of a Hadamard matrix

is open is 668. These gaps are mainly due to constructions such as the following

one, which prove the existence of infinite families of Hadamard matrices within the

constraint m ≡ 0 (mod 4).

Definition 7.9. Let A and B be Hadamard matrices of respective dimensions

m × n and k × l. The Kronecker product A ⊗ B of A and B is the mk × ln matrix

consisting of mn blocks, and has the following form, where aij denotes the ij-th entry

as usual of A:
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
a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .

The following theorem is easy to prove by considering the form of a Kronecker

product’s transpose.

Theorem 7.10. If A and B are Hadamard matrices, then A⊗B is a Hadamard

matrix.

Definition 7.11. A Hadamard matrix is said to be regular if it has all row and

column sums equal.

Note that, obviously, no normalized Hadamard matrix can be regular, and that

regularity is not preserved as part of the operations which give equivalent Hadamard

matrices. To see this, consider a regular Hadamard matrix H with not all row and

column sums equal to zero and multiply the first row by −1 to get a new Hadamard

matrix H ′. Then H and H ′ are equivalent, despite the fact that H is regular and H ′

is clearly not.

One family of difference sets related to Hadamard matrices is called, perhaps

unsurprisingly, the Paley-Hadamard family. An explicit connection between symmetric

designs and Hadamard matrices exists.

Theorem 7.12. A Hadamard matrix of order 4n exists if and only if a sym-

metric (4n− 1, 2n− 1, n− 1)-design exists.

Proof. Suppose first that H is a Hadamard matrix of order 4n. We may assume

that H is normalized. Delete the first row and column of H to form a new matrix H ′,

and further, replace by 0 all instances of −1 in H ′ to obtain a matrix H ′′. Then H ′′

gives an incidence matrix for some design. Since the rows of H are orthogonal and H

is normalized, each row and each column in H ′′ must have exactly 2n− 1 entries equal

to 1, and so the design associated with H ′′ has equal replication number and block
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size.

With appropriate column permutations, we may consider the first two rows of

H ′ to consist of 1’s and −1’s as such for some natural numbers w, x, y, z: the first row

has w 1’s, then x 1’s, then y −1’s, then z −1’s. The second row has w 1’s, then x −1’s,

then y 1’s, then z −1’s. Hence, it follows that:

w + x+ y + z = 4n− 1

w + x = 2n− 1

w + y = 2n− 1,

and since H was a Hadamard matrix, the dot product of the first two rows of H ′ must

give w − x− y + z = −1. From this system, we obtain w = n− 1 and x = y = z = n,

so any two different blocks in the design given by H ′′ must share n−1 common points.

Therefore, H ′′ is the incidence matrix of a symmetric (4n− 1, 2n− 1, n− 1)-design.

For the reverse assertion, suppose there exists a symmetric (4n−1, 2n−1, n−1)-

design D with incidence matrix A. Denote by A′ the matrix obtained by replacing all

0 entries of A with −1. Denote by A′′ the matrix obtained by attaching a leading row

and column of 1’s to A′. Let w, x, y, z play the same roles as in the forward proof,

and consider any two rows of A′. Since A is the incidence matrix of D, we have the

following:

w + x+ y + z = 4n− 1

w = n− 1

w + x = 2n− 1

w + y = 2n− 1,

50



from which we obtain (as before) x = y = z = n and w = n − 1. Hence, taking the

dot product of the two corresponding rows in A′′ to those in question above, we have

1 +w− x− y+ z = 0. Taking the dot product of either of these rows with the leading

row (which consists entirely of 1’s) gives 0. Furthermore, it is obvious that any row of

A′′ dotted with itself gives 4n, and so we have A′′(A′′)> = 4nI, completing the proof.

�

From Theorem 3.7, we know that for q ≡ 3 (mod 4) a prime power, the set of

nonzero squares D in GF (q) is a difference set in (GF (q),+). This family of difference

sets is called the Paley family, and are related to the Hadamard matrices, since setting

n = (q + 1)/4, D is a (4n− 1, 2n− 1, n− 1)-difference set.

A particularly specialized family known as the Hall family is worth noting. Hall

details two proofs for his construction, though the prerequisite information and proof

that the construction indeed gives a family of difference sets are highly technical and

lengthy, and are not repeated here. His first proof can be found in [42] and a slight

generalization can be found in [43].

It is worth mentioning that a slightly less-structured type of set can be obtained

when q ≡ 1 (mod 4). We must first define the new terms.

Definition 7.13. A subset D of elements of a group G is called a (v, k, λ, µ)-

partial difference set in G if |G| = v, |D| = k, and for all g ∈ G\{1}, g appears exactly

λ times in ∆ (as defined in the proof of Lemma 3.5) if g ∈ D and g appears µ times in

∆ if g ∈ G\D.

Note that for λ = µ, D is a (v, k, λ)-difference set. When q ≡ 1 (mod 4)

is a prime power, and D is the set of all nonzero squares in GF (q), then D is a

(q, (q − 1)/2, (q − 5)/4, (q − 1)/4)-partial difference set in (GF (q),+).

The sets in the Hadamard family of difference sets satisfy v = 4n, where we are

using v as usual and still have n = k−λ. By the Bruck-Ryser-Chowla Theorem, there
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exists m ∈ N such that v = 4m2. We note here that as Beth and co-authors [9] point

out, we are using the contemporary definition of Hadamard difference sets. An older

use of this term referred to what are now known as the Paley-Hadamard difference

sets, as discussed above. The Hadamard family makes more explicit use of Hadamard

matrices, and there is a theorem that connects them directly. We first require a simple

lemma.

Lemma 7.14. If a symmetric (v, k, λ)-design exists and v = 4n, then there

exists m ∈ N such that (v, k, λ) = (4m2, 2m2 −m,m2 −m).

Proof. We know that λ = k −m2 and by Theorem 1.7 and Definition 1.11, we

have k(k − 1) = λ(v − 1), which we may rewrite as k2 − 4λm2 = m2. Substituting the

first equation into the second gives k2 − 4m2k + 4m4 −m2 = 0, so that k = 2m2 ±m.

However, k = 2m2 + m does not satisfy the necessary condition k(k − 1) = λ(v − 1),

so we have k = 2m2 −m and hence λ = m2 −m. �

Theorem 7.12 is similar to our next theorem, but since in the following theorem

we assume H is regular, we have a bit more flexibility in the parameters of our design.

Theorem 7.15. A symmetric (v, k, λ)-design with v = 4n exists if and only if

a regular Hadamard matrix of order 4n exists.

Proof. Suppose H is a regular Hadamard matrix, and let k denote the number

of 1’s in each row and column (this value is indeed the same for each row and column

by regularity of H). Let H ′ be the matrix found by replacing all −1’s in H by 0’s.

Then H ′ is an incidence matrix. For any two rows of H, denote by x the number of

columns having a 1 in both rows, and denote by y the number of columns having a −1

in both rows. Since each row must have exactly k 1’s, we know that there are k − x

columns such that the first row has a 1 and the second a −1. Similarly, there must

be 4n − k − y with the reverse true. Hence, x + 4n − y − k = k and by dotting the

two rows, we obtain x − (k − x) − (4n − k − y) + y = 0. Therefore, x = k − n and
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y = 3n− k. We thus have λ = k − n and there exists a symmetric (v, k, λ)-design.

Now, assume a symmetric (v, k, λ)-design exists with v = 4n. Let A be its

incidence matrix and let A′ be the matrix obtained by replacing all 0’s in A with −1’s.

Choose two rows of A′ and let w be the number of columns sharing a 1, x the number

of columns having a 1 in the first row and a −1 in the second, y the number of columns

with the reverse, and z the number of columns having a −1 in both columns. We know

that:

w + x+ y + z = v

w + x = k

w + y = k

w = λ,

and from Lemma 7.14, there exists m ∈ N such that (v, k, λ) = (4m2, 2m2−m,m2−m).

Then it is clear that any two different rows of A′ have dot product w+ z−x− y = v−

4k+4λ = 0. The dot product of any row with itself is w+z+y−x = w+z−y+x = 4m2,

so A′(A′)> = 4m2I. Finally, it is now obvious that the rows and columns of A′ each

sum to w + x− y − z = w − x+ y − z = −2m, and we are done. �

The small Hadamard family described below was constructed by Dillon in his

1974 doctoral thesis [29]. The proof involves manipulations in the relevant integral

group ring.

Theorem 7.16. Let G be a group of order 4u2 for some even prime power u.

Assume G contains u subgroups H1, ..., Hu such that |Hi| = 2u for each i ∈ [u] and that

Hi∩Hj = {1} for each i 6= j, where 1 is the identity element. Then D =

(
u⋃
i=1

Hi

)
\{1}

is a difference set in G.

Menon [70] has demonstrated extensive connections directly between difference
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sets and Hadamard families. Note that his theorem (given below) is immediately

generalizable to arbitrary products of groups.

Theorem 7.17. Let j represent either 1 or 2. Suppose Dj is (vj, kj, λj)-

difference set in a group Gj. Let Dj represent the (vj, vj − kj, λj) complementary

difference set in Gj to Dj. Define G = G1×G2 and D = (D1×D2)∪ (D1×D2). Then

D is a difference set in G if and only if vj = 4nj for j ∈ {1, 2}. Furthermore, we have

|G| = 4n1n2.

Proof. We first need to establish some formalism in the integral group ring ZG.

We write all groups multiplicatively, so that the identity element in G is (1, 1). For

some S ∈ ZG, when S = (X, Y ) with X ⊆ G1 and Y ⊆ G2, we write:

S = (X, Y ) =
∑

x∈X,y∈Y

(x, y) =

(∑
x∈X

x,
∑
y∈Y

y

)
.

Suppose X,Z ⊆ G1 and Y,W ⊆ G2. It is easy to check the following in ZG:

(X, Y )(Z,W ) = (XZ, YW )

(X + Z, Y ) = (X, Y ) + (Z, Y )

(X, Y +W ) = (X, Y ) + (X,W ).

Furthermore, for m ∈ N, we have (mX,Y ) = m(X, Y ) = (X,mY ). Since for

j ∈ [2] we know that Dj is a difference set in Gj, we may write the following:

DjD
(−1)
j = nj + λjGj

DjD
(−1)
j = nj + λjGj

DjD
(−1)
j = DjD

(1)
j = nj(Gj − 1).
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In ZG, we have:

D = (D1, D2) + (D1, D2)

D(−1) = (D
(−1)
1 , D

(−1)
2 ) + (D

(−1)
1 , D

(−1)
2 ),

so that

DD(−1) =
[
(D1, D2) + (D1, D2)

] [
(D

(−1)
1 , D

(−1)
2 ) + (D

(−1)
1 , D

(−1)
2 )

]

= (n1 + λ1G1, n2 + λ2G2) + 2(n1(G1 − 1), n2(G2 − 1)) + (n1 + λ1G1, n2 + λ2G2).

Note that (G1− 1, G2− 1) = (G1, G2)− (G1, 1)− (1, G2)− (1, 1), and using the

equations above, we can obtain:

DD(−1) = 4n1n2(1, 1) + n1(λ2 + λ2 − 2n2)(1, G2) + n2(λ1 + λ1 − 2n1)(G1, 1)

+(2n1n2 + λ1λ2 + λ1λ2)(G1, G2).

Now, our proof can truly begin. It is quite short compared to the setup! First,

we assume that D1 and D2 are Hadamard difference sets in G1 and G2, respectively.

Then v1 = 4n1 and v2 = 4n2, and by Lemma (7.14), for j ∈ [2] there exists mj ∈ N

such that nj = m2
j , kj = 2m2

j −mj, and λj = m2
j −mj. Additionally, λj = m2

j + mj,

so that λj + λj = 2m2
j . Define m = 2m1m2 so that v = 4m2 and k = 2m2 + m. Then

we have DD(−1) = n(1, 1) + λ(G1, G2), and we are done.

The reverse assertion is even quicker. If D is a difference set in G, then the

coefficients for (G1, 1) and (1, G2) in our final expression for DD(−1) must be zero.

Hence, for j = 1 and for j = 2, we see that 2nj = λj + λj, from which it follows that

vj = 4nj, and that D1 and D2 are Hadamard difference sets. �

The following is readily apparent from Theorem 7.17.
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Corollary 7.18. A (v, k, λ)-difference set with v = 4n such that n is a square

implies the existence of a (v′, k′, λ′)-difference set such that v′ = 16n. In other words,

n′ = 4n.

Further relationships among the Hadamard families have been studied by Turyn

[85] and McFarland [66], as well as by Davis and Jedwab [24]. McFarland’s result is

intriguing enough that we state it here, but we defer to McFarland’s paper for the

lengthy proof.

Theorem 7.19. Let G be an abelian group of order 4p2 such that p is an odd

prime. If G contains a difference set, then p = 3.

Two further families we have not mentioned are the Chen [17] and Spence [84]

families. We refer the reader to the sources, but include the parameters below out of

interest.

The Chen family of difference sets, for q a prime power and d a nonnegative

integer, has parameters (v, k, λ) given by:

(
4q2d+2

(
q2d+2 − 1

q2 − 1

)
, q2d+1

(
2(q2d+2 − 1)

q + 1
+ 1

)
, q2d+1(q − 1)

(
q2d+1 + 1

q + 1

))
.

The Spence family of difference sets, for d a nonnegative integer, has parameters

(v, k, λ) given by:

(
3d+1

(
3d+1 − 1

2

)
, 3d
(

3d+1 + 1

2

)
, 3d
(

3d + 1

2

))

Davis and Jedwab [25] give some relationships between base cases of various

families of difference sets, including those above.

The last family of difference sets we discuss will be based on hyperovals in

PG(2, q). Xiang [97] gives a fairly nice introduction to the necessary preliminaries (for

the reasonably experienced reader), which we follow here.
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Recall that PG(2, q) denotes the Desarguesian projective plane of order q, where

we will assume here that q is an even prime power.

Definition 7.20. A hyperoval in PG(2, q) is a set of q + 2 points, no three of

which are colinear.

Definition 7.21. A quadrangle in PG(2, q) is a set of four distinct points. The

set {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} is known as the fundamental quadrangle.

Definition 7.22. Two hyperovals are said to be projectively equivalent if one

can be mapped to the other by some projective linear transformation on PG(2, q).

Projective linear transformations on PG(2, q) are transitive on quadrangles (see

Xiang [97]), so we will focus on hyperovals which contain the fundamental quadrangle.

We begin with a theorem of Segre. The proof requires some technical knowledge of

projective geometry and would amount to a digression from our main goal, but can be

found in Hirschfeld [45].

Theorem 7.23. Let q > 2 be an even prime power. Then any hyperoval in

PG(2, q) containing the fundamental quadrangle can be written as:

D(f) = {(1, t, f(t) : t ∈ Fq)} ∪ {(0, 1, 0), (0, 0, 1)},

where f is a permutation polynimial over Fq of degree at most q − 2. Furthermore, f

is such that f(0) = 0, f(1) = 1, and forall s ∈ Fq, we have:

fs(x) =


f(x+ s) + f(s)

x
if x 6= 0,

0 if x = 0.

Definition 7.24. A hyperoval which is projectively equivalent to D(th), where

h > 2 is a natural number is said to be a monomial hyperoval.
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Xiang and co-authors [98] demonstrated a very direct connection between hy-

perovals and difference sets, which we sketch below, via a theorem of Maschietti. We

give their first lemma without proof for the same reason that we neglected to give the

proof of Theorem 7.23, but we give the proof of the main result, which they simplified.

Lemma 7.25. Let q be a power of 2 and let D(xh) be a (q+ 2)-set in PG(2, q).

Then D(xh) is a hyperoval if and only if both h and q − 1 are coprime and the map

τ : x→ xh is precisely a two-to-one map Fq → Fq.

Theorem 7.26. Let q be a power of 2, and define τ as in Lemma 7.25. If D(xh)

is a hyperoval in PG(2, q), then the image of τ with {0} removed is a difference set in

F∗q with parameters (q − 1, (q/2)− 1, (q/4)− 1).

Proof. The proofs requires the use of character theory, which we cover in Chapter

8. As such, this proof will be given in Appendix B as Proof D. �

Xiang and co-authors [98] also show that projectively equivalent monomial hy-

perovals in PG(2, q), with q > 2 an even prime power, give rise to equivalent difference

sets according to the construction of Theorem 7.26. Their paper contains many more

results on difference sets, especially as they relate to number theory, a subject we will

discuss in Chapter 9.
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Chapter 8

CHARACTERS OF GROUPS

Almost every major tool in abstract algebra is useful in the study, discovery,

and construction of difference sets. Character Theory is no different.

Definition 8.1. Let G be a finite abelian group and let χ : G→ C∗ be a group

homomorphism. Then χ is a character of G. The trivial character is the character

such that g 7→ 1 for every g ∈ G. Some authors (e.g., [33]) use the term principal

character instead of trivial character.

There are other definitions of characters (see [72], for example), but ours is

highly efficient for our purposes.

Theorem 8.2 Let G be a finite multiplicative group of order n, and let χ be a

character of G. Then for all g ∈ G, χ(g) is an n-th root of unity.

Proof. Since χ is a homomorphism and G has order n, χ(g)n = χ(gn) = χ(1),

and χ(1) = 1 for every g ∈ G. �

It follows that χ(g−1) = χ(g)−1 = χ(g) for g ∈ G, where z denotes the conjugate

of z.

Theorem 8.3. Let G be a finite abelian group and let χo denote the trivial

character. Then: ∑
g∈G

χ(g) =


|G|, ifχ = χo,

0, ifχ 6= χo.
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Proof. If χ is the trivial character, then χ(g) = 1 for all g ∈ G and we are done.

Otherwise, there must exist some g′ ∈ G such that χ(g′) 6= 1, and we have:

∑
g∈G

χ(g) =
∑
g′g∈G

χ(g′g) =
∑
g′g∈G

χ(g′)χ(g) = χ(g′)
∑
g′g∈G

χ(g),

and since g′ is fixed, our index includes all elements of G, and we can write:

∑
g∈G

χ(g) = χ(g′)
∑
g∈G

χ(g),

and since χ(g′) 6= 1, we must have
∑

g∈G χ(g) = 0. �

Corollary 8.4. Let χ1 an χ2 be complex characters of a finite group G. Then

∑
g∈G

χ1(g)χ2(g) =


n if χ1 = χ2,

0 if χ1 6= χ2.

Proof. If χ1 = χ2, then for all g ∈ G, χ1(g)χ2(g) = χ1(gg
−1) = 1. Otherwise,

χ1χ2 is not a principal character, and the sum is zero by Theorem 8.3. �

Theorem 8.5. Let G be a finite abelian group, and let G? be the set of all

complex characters of G. Let 1 denote the identity in G. Then:

∑
χ∈G?

χ(g) =


|G|, if g = 1,

0, if g 6= 1.

Proof. If g = 1, the result is obvious. If g 6= 1, let χ′ ∈ G? be such that

χ′(g) 6= 1. Then:

χ′(g)
∑
χ∈G?

χ(g) =
∑
χ∈G?

χ′(g)χ(g).

It is easy to check that G? is a group under multiplication. Therefore, by a
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reindexing argument similar to that in the proof of Theorem 8.3, we can say:

∑
χ∈G?

χ′(g)χ(g) =
∑
χ∈G?

χ(g),

and since χ′(g) 6= 1, we are done. �

Definition 8.6. Let G be a finite abelian group and let χ be a character of G.

Suppose
∑

g∈G agg is an element of CG. We define χ? to be the map from CG to C

such that:

χ?

(∑
g∈G

agg

)
=
∑
g∈G

agχ(g).

We note that some texts (e.g., [52]) abuse the notation slightly and make little

or no distinction between the maps we formally refer to as χ and χ?, though their

meaning when discussion characters is typically quite clear from the context. The

above definition makes it easy to verify the inversion formula for the coefficients ag. If

G is a finite abelian group, and if A =
∑

g∈G agg in CG, then:

ah =
1

|G|
∑
χ∈G?

χ?(A)χ(h−1), ∀h ∈ G,

where G? is the set of all characters of G. Indeed, we simply write:

∑
χ∈G?

χ?(A)χ(h−1) =
∑
χ∈G?

∑
g∈G

agχ(g)χ(h−1) =
∑
g∈G

∑
χ∈G?

agχ(gh−1) = |G|ah.

To prove our next Theorem, we require a Lemma of Ionin and Shrikhande [48].

Lemma 8.7. Denote by ZG? the set of characters on ZG. Let G be a finite

abelian group, and let α, β ∈ ZG. If χ?(α) = χ?(β) for every χ? ∈ ZG?, then α = β.

Proof. Let α =
∑

g∈G agg and β =
∑

g∈G bgg. Suppose χ?(α) = χ?(β) for every
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χ? ∈ ZG?. By Theorem 8.5, we have the following for all h ∈ G:

∑
χ?∈ZG?

χ?(αh−1) = |G|ah and
∑

χ?∈ZG?

χ?(βh−1) = |G|bh.

Now, χ?(αh−1−βh−1) = 0 for every χ? ∈ ZG?, so we have ah = bh for all h ∈ G,

and hence α = β. �

Theorem 8.8. Let G be an abelian group of size v. Let G? be the set of all

characters of G, and let χ0 denote the trivial character. Let D ⊆ G have size k, and

suppose λ ∈ N, where λ = k(k−1)
v−1 . Then D is (v, k, λ)-difference set in G if and only if:

χ?(D)χ?(D) =


n, if χ = χ0,

k2, if χ = χ0,

for all χ ∈ G?.

Proof. If D is a (v, k, λ)-difference set in G, the claim is obvious from Theorem

6.2 and the fact that χ?0(D) = k. For the converse, suppose D ⊆ G is a set such that:

χ?(D)χ?(D) =


n, if χ = χ0,

k2, if χ = χ0,

holds. Then, for non-trivial χ, we can write χ?(D)χ?(D) = χ?(n+ λ(G)) by Theorem

8.3. Additionally, |D| = k by the fact that χ?0(D) = k. Let D = {d1, ..., dk}. Then

DD(−1) = (d1 + · · · + dk)(d
−1
1 + · · · + d−1k ) = k +

∑
g∈G\{1} agg, where ag ∈ Z for all

g ∈ G. Therefore, by Theorem 8.5, we have:

∑
χ?∈ZG?

χ?(D)χ?(D) =
∑

χ?∈ZG?

χ?(DD(−1)) = |G|k.
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However, it is also true that:

∑
χ?∈ZG?

(k − λ+ λG) =
∑

χ?∈ZG?

(k − λ(G− 1)) = |G|k.

From the above, it is clear that χ?(DD(−1)) = χ?(n + λG) for all non-trivial

χ? ∈ ZG?. Therefore, it follows that we must have χ?0(DD
(−1)) = χ?0(n + λG) as well.

By Lemma 8.7, then, we have DD(−1) = n + λG. By Theorem 6.2, if we let |G| = v,

then D is a (v, k, λ)-difference set in G, and we are done. �
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Chapter 9

NUMBER THEORY AND TURYN’S EXPONENT BOUND

When we discussed multipliers and the First and Second Multiplier Theorems

(Theorems 5.7 and 5.12), it was clear that we could make little progress for situations

involving difference sets for which n | v. In Chapter 7, we met the Hadamard family

of difference sets, for which such a hurdle is present. Thankfully, Turyn’s Exponent

Bound, which we mentioned briefly in Chapter 7, will provide us with a (partial) way

around the hurdle. Some preliminary material is required.

We work in C, and say that η is a primitive m-th root of unity when η = e2πli/m

for m and l coprime.

Definition 9.1. Let η be a primitive m-th root of unity. Let Q(η) denote the

subfield of C obtained by adjoining η to Q. We call Q(η) the m-th cyclotomic field.

Note that if we define:

Z[η] :=


φ(m)−1∑
j=0

ajη
j : aj ∈ Z

 ,

where φ is the totient function, then Z[η] is a subring of Q(η). We refer to it as the

set of cyclotomic integers in Q(η).

Theorem 9.2. Let η be a primitive pq-th root of unity, where p is a prime.

Suppose
∑pq−1

j=0 ajη
j = 0, where aj ∈ Q for each j ∈ [pq − 1]. If j ≡ l (mod pq−1) for

some j, l ∈ [pq − 1], then aj = al.
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Since this result will only be a tool in our study of difference sets, we forgo the

proof here, and instead refer the reader to Iiams’ proof [47]. We will do this with most

of the proofs relating strictly to number theory in this chapter.

Theorem 9.3. Let η be a primitive m-th root of unity. If r ∈ Z[η] and rr = 1,

then r is a root of unity.

Theorem 9.3 is given as Corollary 15.9 in [9], where a proof sketch is also given.

Definition 9.4. An ideal A in a commutative ring R is said to be a prime ideal

if a, b ∈ R and ab ∈ A together imply that either a ∈ A or b ∈ A. We define the

product of ideals A and B as:

AB =

{
n∑
i=1

aibi : ai ∈ A, bi ∈ B, n ∈ N

}
.

Theorem 9.5. Let η be a primitive m-th root of unity and let R = Z[η]. Then

every ideal in R can be written as a product of prime ideals.

The proof of Theorem 9.5 is given by Ireland and Rosen on page 180 of [49].

Theorem 9.6. Let η be a primitive m-th root of unity and let R = Z[η].

Suppose p is a prime. Then the following hold:

(i) Suppose p - m. If f is the smallest integer such that pf ≡ 1 (mod m), then

there exist distinct prime ideals Pi, i ∈ [g], for g = φ(m)/f , such that pR = P1 · · ·Pg.

(ii) If m = p, then (1− η)R is a prime ideal in R and pR = ((1− η)R)p−1.

(iii) Suppose P is a factor of pR. Then for odd p, P has multiplicity greater

than 1 if and only if p | m. For p = 2, P has multiplicity greater than 1 if and only if

4 | m.

The proof of Theorem 9.6 is given on page 196 of [49].

Definition 9.7. Let p be a prime. For m ∈ N, let m = pam′, where a is the

highest power of p dividing m, and as such p - m′. If there exists an integer j > 0 such
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that pj ≡ −1 (mod m′), then we say p is self-conjugate modulo m.

Theorem 9.8. Let η be a primitive m-th root of unity and let R = Z[η]. Let

p be a prime that is self-conjugate modulo m, and let P be a prime ideal factor of pR.

Then P = P .

The proof of Theorem 9.8 is given by Beth and co-authors on page 438 of [9].

Existence results using algebraic number theory are typically somewhat intri-

cate.

It is almost time to prove Turyn’s exponent bound. We note that some authors

(e.g. [72]) distinguish two versions of Turyn’s exponent bound. The first is really a

special case of the second, and we will treat the second, and more general, version here.

Before that, we require two lemmas. Our first is traditionally attributed to Ma [61],

though Moore and Pollatsek [72] note that a similar result was obtained by Lander [59]

prior to Ma’s result, using different methods. We defer to Ma for the highly technical

proof, and state his result here.

Recall that for a prime p, a Sylow p-subgroup P of a group G is a subgroup of

the largest size possible in G such that all elements of P have order p. Recall also that

any Sylow p-subgroup of an abelian group is unique. We refer the reader to Isaacs [50]

for a review of Sylow’s Theorems and their consequences.

Lemma 9.9. Ma’s Lemma: Let G be a finite abelian group with a cyclic

Sylow p-subgroup P , and let Q be the unique subgroup of P having order p. Suppose

Y ∈ ZG such that χ?(Y ) ≡ 0 (mod pa) for all non-trivial characters χ of G, where a

is some natural number. Then there exist X1, X2 ∈ ZG such that Y = paX1 + QX2.

Additionally, if the coefficients of Y in ZG are nonnegative, then X1 and X2 can be

chosen to have nonnegative coefficients in ZG as well.

Lemma 9.10. Let η be a primitive m-th root of unity and let R = Z[η]. Let

p ∈ Z be a self-conjugate prime modulo m, and suppose there exists z ∈ R such that
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zz = n for some n ∈ N. Suppose further that there exists a ∈ N such that p2a | n.

Then z ≡ 0 (mod pa).

Proof. Let Z1, ..., Zs represent the factorization of zR into prime ideals, which we

assume there to be s of, without loss of generality. Let P1, ..., Pt be similarly defined for

pR. Because p is self-conjugate modulo m, Pi = P i for each i ∈ [t]. Since p2a | n, there

must exist q ∈ Z such that p2aq = n. As such, we can write (zR)(zR) = (pR)2a(qR),

and hence:

(Z1 · · ·Zs)(Z1 · · ·Zs) =(P1 · · ·Pt)a(P 1 · · ·P t)
a(qR)

=(P1 · · ·Pt)2a(qR).

Since each Pj is self-conjugate, it occurs equally often among the prime ideals

of zR and among their conjugates. Therefore, each P a
i occurs among the Zj, for i ∈ [t]

and j ∈ [s]. Hence, there exists some ideal A such that zR = (paR)A, and thus that

there exists r ∈ R such that z = par, completing the proof. �

In our next proof, we will use the Structure Theorem for finitely-generated

abelian groups: specifically that any finite abelian group is isomorphic to a direct sum

of cyclic groups having prime power order. With these basic facts in hand, we will

prove Turyn’s exponent bound. We will use the proof of Moore and Pollatsek [72],

with additional details and expansions.

Theorem 9.11. Turyn’s Exponent Bound: Let G be an abelian group which

contains a (v, k, λ)-difference set D. Let p be a prime such that p | v and let P denote

the Sylow p-subgroup of G. Suppose there exists a ∈ N such that p2a | n, and let

U ≤ G such that U ∩ P = {1}, where 1 is the identity in G. If p is self-conjugate
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modulo the exponent of G/U , then:

exp(P ) ≤ |U ||P |
pa

,

where exp(P ) is the exponent of P .

Proof. By the Structure Theorem, P can be decomposed into a sum of cyclic

subgroups, of which there is some natural number t. Thus, we can write:

P '
t⊕
i=1

Ci,

where for each i ∈ [t], Ci is a cyclic group of order p and size pai for some ai ∈ N.

Reordering the Ci if necessary, we can assume without loss of generality that if i ≥ j,

then ai ≥ aj. There must exist W ≤ P such that:

W '
t⊕
i=2

Ci.

Then P/W ' C1 and P/W has order pa1 . Additionally, P/W must be cyclic,

so |W | = |P |/exp(P ), since exp(P ) is also the exponent of C1 by construction. Chose

U ≤ G such that U ∩ G = {1}. We are assured that such a U exists since we could

select U to be the group containing just the identity element. Let K = 〈U,W 〉. That

is, K is the group generated by the generators of U and of W . Then |K| = |U ||W |.

Let H = G/K. As such, H has a cyclic Sylow p-subgroup of order pa1 .

Define φ : G→ H naturally (that is, φ sends elements to their relevant cosets),

and consider ZH. Let E = φ̂(D). By Theorem 6.2, we have EE(−1) = n + λ|K|H

(recall that D is a difference set in G, not in H). Now, let χ be a non-trivial character

of H. Define z := χ?(E) and let exp(H) denote the exponent of H. Let η be the

primitive exp(H)-th root of unity. It must be true that z ∈ Z[η], and we can write
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zz = n by Theorem 9.3.

The exponent of G/U can be written wpb for some positive integer b < a and w

coprime to p. By hypothesis, p is self-conjugate modulo the exponent of G/U . Now,

consider the exponent of G/W . Since K = 〈U,W 〉, we note that U ∩ P = {1}, and

also that W ⊂ P , so elements of G/K have the same orders as those of G/U . As such,

we must be able to write the exponent of G/ as wpc, where b + c = a. Therefore, p is

also self-conjugate modulo the exponent of G/K. Therefore, by Lemma 9.10, we have

z ≡ 0 (mod pa).

For every non-trivial character χ of H, have χ?(E) ≡ 0 (mod pa). By Lemma

9.9, we can therefore find X1 and X2 in ZH such that E = paX1 + QX2, where Q is

the subgroup of order p in the Sylow p-subgroup of H. Because E has nonnegative

coefficients, we can assume X1 and X2 do as well.

Towards a contradiction, suppose that X1 = 0. Then E = QX2. Let χ′ be

a character of H and let χ′|Q be the restriction of χ′ to Q. We may assume χ′|Q

is non-trivial, and therefore that χ′?(Q) = χ′?|Q(Q) = 0. Then z = χ′?(E) = 0, a

contradiction since we have zz = n. As such, X1 6= 0. Therefore there must exist at

least one coefficient in E = paX1 +QX2 which is greater than or equal to pa. However,

since the coefficients of E are precisely the intersection numbers for D with respect to

K, no coefficient of E can be greater than |K|. As |K| = |U ||W |, we obtain:

pa ≤ |U ||W | = |U ||P |
exp(P )

,

which is easily rearranged to give the desired result. �

A slightly different, though equivalent, treatment of Turyn’s Exponent Bound

is given by Beth [9].

A much more general exponent bound was given by Schmidt [80]. Its proof
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is extremely technical and we do not attempt to replicate it here. It uses a function

F (m,n), the domain of which is N×N, which deals with the relationship of the square-

free part of m and the prime divisors of n. We refer the reader to Beth [9] and Schmidt

[80] for a comprehensive treatment, and simply state the highly advanced result here.

Theorem 9.12. Schmidt’s Exponent Bound: Let D be a (v, k, λ)-difference set

in a group G. Suppose U / G such that G/U is cyclic of order k. Then:

k ≤
(

2s−1F (k, n)

n

)1/2

v,

where s is the number of distinct odd prime divisors of k.

70



Chapter 10

RECENT DEVELOPMENTS AND ACTIVE RESEARCH

As a reference, we note that useful tables of difference sets are given by Jung-

nickel [52], Kibler [55], and Lander [59]. Literal hundreds of results relating to various

combinations of parameters of difference sets and groups can be found in Beth [9], as

a fairly comprehensive reference for the subject until the year 1999.

The comprehensive work of Beth and co-authors [9] is one of the last major

overviews or surveys of the subject of difference sets, and was published in 1999. That

same year, Pott and co-editors issued a volume (see [25], [53], [97]) collecting several

surveys of more specific areas of difference sets by such major researchers as Davis,

Jedwab, Xiang, Jungnickel, Arasu, Dillon, Pott, and others. Since then, other ma-

jor works have been published, such as the volume of Moore and Pollatsek [72] used

throughout this work, which serves as one of the first textbook-style introductions to

the study of difference sets and is meant to be accessible to non-experts. Occasional

smaller reviews of the subject are found in the literature. The 2005 review by Xiang

[100] is a notable one. Additionally, conference proceedings relating to difference sets

continue to be released as collected works (two such examples are [21] and [44]).

As comprehensive monographs constituting broad surveys of major results have

not been published in over fifteen years, we will close with a brief review of some

developments in the study of difference sets in that time frame. The reader is cautioned

that a comprehensive survey could occupy several volumes, and we make no claim to

such comprehensiveness here. Rather, we simply offer a cursory glance, with a non-rigid
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focus on authors cited elsewhere in this work. We will prove one of the new results,

but cannot possibly make even a small dent in this manner. Indeed, a cursory search

on just one popular aggregation service reveals no less than 600 articles containing the

phrase ‘difference sets’ in the last fifteen years - an astonishing amount of activity -

published in just a small handful of journals.

Constructions of difference sets and families of difference sets continue to ar-

guably dominate the field. The rich structure of difference sets invites many methods

and contexts for construction. In 2001, for example, Arasu and Chen settled the ques-

tion (affirmatively) of the existence of a (320, 80, 24)-difference set in Z4×Z4×Z4×Z5

using the methods of building sets and building blocks, which we have not covered in

this work. The reader is directed to the paper of Arasu and Chen [5] as well as the

work of Davis and Jedwab [25] and Beth [9] for a general overview of the methods of

building blocks and sets. Constructive methods for difference sets continue to appear

each year, whether for specific contexts (see [6], [18], [102]), or for new families (see

[31], [76], [81]).

Constructive methods for partial differences (and using them to construct other

difference sets) have also seen rich work. Briefly, Davis and Xiang have constructed a

family of partial difference sets in abelian 2-groups [26], and in other contexts as well

[99], as have Hou and co-authors [46]. Many papers have been published more recently

on using partial difference sets to construct Hadamard difference sets and strongly

regular graphs. For a very small sample, see the papers of Feng and Xiang ([37] and

[38]), as well as by Ott [73] and Michel [71].

In 2008, Feng and Xiang [36] constructed a class of relative difference sets having

notably large forbidden subgroups, and in 2016, Ott [75] unified several known families

of partial difference sets as special cases of a more general construction.

The astute reader will have noted while reading Chapter 7 that Hadamard
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matrices of all orders divisible by 4 up to 100 are very easy to construct, with the

exception or order 96, using the theorems presented. As such, Hadamard matrices of

order 96 (and therefore difference sets in groups of size 96) have attracted attention for

quite some time, and still do. As recently as 2010, new investigations into Hadamard

difference sets of order 96 have been undertaken [11].

Similarly, despite their classical nature and the great attention they have at-

tracted for several decades, difference sets with multiplier −1 are still a rich area of

research, either on their own merits [34], or as elements of a generalization of their

properties (see, for example, [88] and [89]).

Some other noteworthy work includes new nonexistence results by Arasu and

Ma [4] in 2001, which settled several previously open cases and may be thought of as

progress in the affirmative towards a resolution of Conjecture 5.8. Chandler and Xiang

showed in 2003 that two families, known as the HKM and Lin difference sets, were in

fact inequivalent, with non-isomorphic developments [16]. Weng and co-authors showed

an example of the power of difference sets as tools with the presentation of several new

results related to the Paley family of graphs in a 2007 paper [90], Cao proposed a new

generalization of difference sets in 2008 [15], and Coulter and Gutekunst introduced

the new concept of ‘special subsets’ for studying difference sets in 2009 [22]. In 2016,

Ott made several advances in the use of cyclotomy to study difference sets [74].

Among the many exciting constructive results in the last 15 years, a theorem of

Arasu and co-authors [7] is not only significant, but highly accessible. We present it

here, but first we require a lemma.

Lemma 10.1 Let a1, ..., am ∈ Z such that:

m∑
i=1

ai = n.
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If n = qm+ r, where q and r are integers satisfying 0 ≤ r < m, then:

m∑
i=1

a2i ≥ (m− r)q2 + r(q − 1)2,

with equality if and only if exactly m − r elements of {a1, ..., am} are equal to q and

exactly r are equal to q + 1.

Proof. Suppose our proposed conditions for equality above are not satisfied.

Then there exists at least one pair i, j ∈ [m] such that ai− aj > 1. Let the set {a′k}mk=1

be defined as follows: if k /∈ {i, j}, then a′k = ak. If k = i, then a′i = ai−1 and if k = j,

then a′j = aj + 1. Then it is clear that we still have:

m∑
k=1

a′k = n.

However:
m∑
k=1

(a′k)
2 =

m∑
k=1

a2k + 2(1 + aj − ai) <
m∑
k=1

a2k,

completing the proof. �

We are now ready to present and prove the theorem of Arasu and co-authors

[7].

Theorem 10.2. Let G be an abelian group of size v and let D1, ..., D2l+1 be

(v, k, λ)-difference sets in G with the property that n | λ. Suppose that:

nl |
2l+1∏
i=1

Di

in ZG. Then there exists a (v, k, λ)-difference set D in G such that:

2l+1∏
i=1

Di = nl

k
(

(1 + (λv/n))l − 1
)

v
G+D

 = (n+ λG)lD
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in ZG.

Proof. For each g ∈ G, define ag so that in ZG, we have:

2l+1∏
i=1

Di =
∑
g∈G

agg.

We know that we have:

(
2l+1∏
i=1

Di

)(
2l+1∏
i=1

Di

)(−1)

= (n+ λG)2l+1.

Furthermore, since k2 = n+ λv (see Lemma 3.5), we can write:

∑
g∈G

ag = k2l+1 = k(n+ λv)l = knl(1 + (λv/n))l

and

∑
g∈G

a2g = n2l+1 +
(n+ λv)2l+1 − n2l+1

v
= n2l+1

(
1 +

(1 + (λv/n))2l+1 − 1

v

)
.

We know that nl divides
∏2l+1

i=1 Di in ZG by hypothesis, so we have ag/n
l ∈ Z

for every g ∈ G. Additionally, we have:

∑
g∈G

ag
nl

= k(1 + (λv/n))l = k((1 + (λv/n))l − 1) + k,

and ∑
g∈G

a2g
n2l

= n

(
1 +

(1 + (λv/n))2l+1 − 1

v

)
.
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Now, we can easily verify that:

n

(
1 +

(1 + (λv/n))2l+1 − 1

v

)
=

(
k((1 + (λv/n))l − 1)

v

)2

(v − k)

+

(
k((1 + (λv/n))l − 1)

v
+ 1

)2

k.

By Lemma 10.1, there must exist a k-subset of D such that:

2l+1∏
i=1

Di = nl
(
k((1 + (λv/n))l − 1)

v
G+D

)
= (n+ λG)lD,

and we are done. �

Most excitingly, several conjectures relevant to difference sets have recently seen

progress towards a conclusion, or been settled altogether, and we close with those

encouraging results.

In 1983, Lander [58] made the following conjecture.

Conjecture 10.3. Let G be an abelian group of size v, and let D be a difference

set of order n in G. If p is a prime such that p | v and p | n, then the Sylow p-subgroup

of G is not cyclic.

Progress has been made in the affirmative by Feng and co-authors [39]. In a

2014 paper, they proved that Lander’s conjecture holds when n is a power of a prime

p > 3, though they note that the conjecture is unlikely to hold in total generality.

In Jungnickel [52], the following conjecture is given special attention.

Conjecture 10.4. Suppose there exists a (v, k, λ)-difference set with v = 4u2,

k = 2u2 ± u, and λ = u2 ± u for some integer u. Then u is of the form 2r3s for

nonnegative integers r and s.

In a 1992 paper (published almost concurrently with the volume in which Jung-

nickel stated the conjecture), Xia [92] gave a construction refuting it. A simplified

76



proof of Xia’s method was then given by Xiang and Chen in 1996 [96].

In fact, Jungnickel gives many open problems at the end of his work, and almost

all remain at least partially open. For example, he mentions the problem of finding non-

Menon reversible difference sets other than the case of the (4000, 775, 150)-difference

set already known, and mentions the following closely related conjecture.

Conjecture 10.5. Let p be an odd prime, let a ≥ 0 and let b, t, r ≥ 1. Then:

(i) Y = 22a+2p2t−22a+2pt+r + 1 is a square if and only if Y = 1, or, equivalently,

if t = r.

(ii) Z = 22b+2p2t−2b+2pt+r+1 is a square if and only if Z = 2401, or, equivalenly,

if (p, b, t, r) = (5, 3, 1, 2).

The second statement is still open, but Le and Xiang [59] proved the first in a

1996 paper.

Beth’s work [9] lists many open problems. Progress has been made on several,

most notably the following.

Conjecture 10.6. There exist no non-trivial dihedral difference sets.

While other specific cases of this conjecture were solved as early as 1985 [35]

and 1996 [82], Deng [28] was able to confirm this in 2004 for the case of groups having

order 4pt for a prime p and positive integer t.
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Appendix A

PROOF OF THE BRUCK-RYSER-CHOWLA THEOREM

We proved the case of v even in the text. We now give a proof of the case v

odd. Our proof draws from Moore [72] and the simplified proof given by Ryser [79].

We begin with a simple lemma.

Lemma A.1. Let p be an odd prime. Then for x, y ∈
[
0, p−1

2

]
∩ Z, x2 ≡

y2 (mod p) implies that x = y.

Proof. Since x2 ≡ y2 (mod p), we can say that p | (x2 − y2), from which we

obtain p | [(x+ y)(x− y)], but it is clear that 0 ≤ x+ y ≤ (p− 1) so p - (x+ y), so it

must be true that p|(x− y) and x− y ≤ x+ y, so we have x− y = 0, and x = y. �

Lemma A.2. If p is an odd prime, then there exist n, x, y ∈ N such that

np = x2 + y2 + 1 and 1 ≤ n < p.

Proof. By Lemma A.1, the set
∣∣{x2 mod p : x ∈

[
0, p−1

2

]
∩ Z}

∣∣ and the set∣∣{−y2 − 1 mod p : y ∈
[
0, p−1

2

]
∩ Z}

∣∣ both have cardinality p+1
2

. But there are only

p residues modulo p, so there must exist x, y ∈
[
0, p−1

2

]
∩ Z such that x2 ≡ −y2 −

1 (mod p), and hence x2 + y2 + 1 ≡ 0 (mod p), from which we know there must exist

n ∈ N such that x2+y2+1 = np. Further, we have np = x2+y2+1 ≤ 2
(
p−1
2

)2
+1 < p2,

so n < p, and since n ∈ N, we have 1 ≤ n < p. �

Theorem A.3. Lagrange’s Theorem: Every integer can be written as the sum

of four (not necessarily distinct) squares.

Proof. If a and b can be written as the sum of four squares, then we can write

a = w2 +x2 +y2 +z2 and b = q2 +r2 +s2 + t2. Then it is easy to check that ab = (qw+
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rx+sy+tz)2+(wr−rx+yt−sz)2+(ws−tx−qy+rz)2+(tw+sy−sx−qz)2. Therefore,

it is enough to prove Lagrange’s Theorem for primes. Note that 2 = 12+12+02+02, so

suppose p is an odd prime. By Lemma A.2, there exist n, x, y ∈ N such that 1 ≤ n < p

and np = x2 + y2 + 1. Thus, np = x2 + y2 + 12 + 02, and np is the sum of four squares.

If n is the smallest integer such that np is the sum of four squares a2 + b2 + c2 + d2, we

claim that n = 1.

Towards a contradiction, suppose n > 1. Define a ≡ A (mod n), b ≡ B (mod

n), c ≡ C (mod n), and d ≡ D (mod n). We can choose these such that each of

A,B,C,D is in the set (−n/2, n/2) ∩ Z, so that A2 + B2 + C2 + D2 ≡ 0 (mod n).

Hence, there exists m ∈ N such that mn = A2 + B2 + C2 + D2. We also have

0 ≤ A2 +B2 + C2 +D2 ≤ 4
(
n
2

)2
= n2, so that 0 ≤ m ≤ n.

If m = 0, then A = B = C = D = 0 and n divides each of a, b, c, and d. Then

n2|(a2 + b2 + c2 + d2) implies that n2|np, and thus n|p, a contradiction since p is prime

and 1 < n < p (specifically, the contradiction occurs since n 6= 1).

If m = n, then A = B = C = D = n
2

and a, b, c, d are all odd multiples on n
2
.

Again, then, n2|(a2 + b2 + c2 + d2), giving a contradiction. Hence, 0 < m < n.

Now, we can write:

(np)(mn) =(a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2)

=(aA+ bB + cC + dD)2 + (aB − bA+ cD − dC)2

+ (aC − bD − cA+ dB)2 + (aD + bC − cB − dA)2,

and note that each squared term is 0 modulo n, so each squared term has a natural

number j such that that term is equal to (jn)2. Dividing by n2 gives mp as a sum of

four squares with 0 < m < n. But we chose n to be the smallest natural number such

that np is a sum of four squares, so this is a contradiction. Hence n = 1 and we are
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done. �

Definition A.4. Square matrices of the same size with entries in Q are said

to be equivalent over Q if there exists an invertible matrix S with entries from Q such

that S>AS = B. In this case, S is said to transform A into B. We denote this by

writing A ∼ B. This is easily seen to be an equivalence relation.

Theorem A.5. Let I4 denote the 4 × 4 identity matrix. Then for all n ∈ N,

we have nI4 ∼ I4.

Proof. By Theorem A.3, there exist integers a, b, c, d such that n = a2 + b2 +

c2 + d2. Let S be defined as below:

S =


a b c d
b −a −d c
c d −a −b
d −c b −a

 .

Then it is easy to check that S is invertible with entries in Z ⊂ Q and that

S>I4S = nI4. �

Theorem A.6. Witt’s Cancellation Theorem: Let A and B be invertible n×n

matrices with entries in Q and also let c ∈ Q.

If

(
c 0
0 A

)
∼
(
c 0
0 B

)
,

then A ∼ B.

Proof. Our proof is due to Jones [51]. We must find S such that S>AS = B.

Since A and B are invertible, S must be as well. By hypothesis, there must exist a

matrix of the form:

(
t u>

v M

)
,

where u and v are elements of Qn, t ∈ Q, and M is an n× n matrix, such that:
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(
t v>

u M>

)(
c 0
0 A

)(
t u>

v M

)
=

(
c 0
0 B

)
.

Hence, the following must hold:

c = t2c+ v>Av

0 = tcu> + v>AM

0 = tcu+M>Av

B = cuu> +M>AM.

Let d := 1
t+1

for t 6= −1 and d := 1
t−1 otherwise, and let S = M − dvu>. Using

the relations derived above, we have:

S>AS =(M> − duv>)A(M − dvu>)

=M>AM − dM>Avu> − duv>AM + d2uv>AV u>

=M>AM + 2cdtuu> − d2cu(t2 − 1)u>

=M>AM + cd(2t− d(t2 − 1))uu>

=M>AM + cuu> = B,

and we are done. �

We now prove the BRC theorem for v odd. We assume a symmetric design D

with parameters (v, k, λ) exists. Let N be its v × v incidence matrix. Then N>N =

nI + λJ . We can assume λ > 0 and hence define the following, all of which are to be

understood as (v + 1)× (v + 1) matrices:
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A =


1

N
...
1

1 · · · 1 k/λ

 , D =


1 0 · · · 0

0
. . . 0

...
... 0 1 0
0 · · · 0 −λ

 , E =


n 0 · · · 0

0
. . . 0

...
... 0 n 0
0 · · · 0 −n/λ

 .

It is easy to check that D and E are invertible and that A>DA = E, so D ∼ E.

The proof now splits into two cases, since v is odd. We now use the notation di[a, b, c, ...]

to denote a matrix with diagonal entries respectively given in the array and 0 as every

non-diagonal entry.

Case 1 : Suppose v ≡ 1 ( mod 4). Then by Theorem A.5, E ∼ di[1, ..., 1, n,−nλ],

and both are diagonal, and hence invertible. By v − 1 applications of Theorem A.6

with D, then, we have ( 1 0
0 −λ ) ∼=

(
n 0
0 −n/λ

)
, so there must exist a matrix M such that

M> ( 1 0
0 −λ )M =

(
n 0
0 −n/λ

)
. Let M = ( a bc d ). Equating the top right matrix entry on

both sides gives a2 − c2λ = n, or a2 = n + λc2. In other words, (x, y, z) = (a, 1, c) is

a solution in Q to the equation x2 = ny2 + λz2, and multiplying by an appropriate

constant gives our solution in Z, completing the proof of Case 1.

Case 2. Suppose v ≡ 3 (mod 4). We know D ∼ E. It follows from Theorem

A.6 and a few basic properties about matrices, then, that the following holds, where

each is a (v + 2)× (v + 2) matrix:

di[1, ..., 1, n,−λ] ∼ di[n, ..., n, n,−n/λ].

By Theorem A.5, we can then write di[1, ..., 1, n,−λ] ∼ di[1, ..., 1, n,−n/λ], and

again by Theorem A.6 as in Case 1, we have ( n 0
0 −λ ) ∼

(
1 0
0 −n/λ

)
. By the same rationale

as in Case 1, then, there exist a, c ∈ Q such that a2n−c2λ = 1 so that (x, y, z) = (1, a, c)

is a solution in Q to x2 = ny2 − λz2 , and we can again multiply by an appropriate

constant to get a solution in Z. Our proof of Case 2, and hence the Bruck-Ryser-Chowla
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Theorem in its entirety, is now finished. �
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Appendix B

ADDITIONAL PROOFS

Proof A (See Theorem 4.1). We want to show that det(nI + λJ) = (n + λv)nv−1.

We proceed by adding each row to the first, removing a constant, subtracting the first

column from each entry, and exploiting the resulting convenient form:

det(nI + λJ) =

∣∣∣∣∣∣∣∣∣∣∣

k λ λ · · · λ
λ k λ · · · λ
λ λ k · · · λ
...

...
...

. . .
...

λ λ λ · · · k

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

k + λ(v − 1) k + λ(v − 1) k + λ(v − 1) · · · k + λ(v − 1)
λ k λ · · · λ
λ λ k · · · λ
...

...
...

. . .
...

λ λ λ · · · k

∣∣∣∣∣∣∣∣∣∣∣

= (k + λ(v − 1))

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
λ k λ · · · λ
λ λ k · · · λ
...

...
...

. . .
...

λ λ λ · · · k

∣∣∣∣∣∣∣∣∣∣∣
= (k + λ(v − 1))

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0
λ k − λ 0 · · · 0
λ 0 k − λ · · · 0
...

...
...

. . .
...

λ 0 0 · · · k − λ

∣∣∣∣∣∣∣∣∣∣∣
= (k + λ(v − 1))(k − λ)v−1 = (n+ λv)nv−1. �

Proof B (See Theorem 5.18). We will prove the theorem in a specific case,

and refer to the reader to the proof of McFarland and Rice [67] for the lengthy second

case. Let D be an abelian difference set in a group G. Then G is isomorphic to a
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direct product of m groups Gi each having prime power order for some m ∈ N. Using

the same logic as in Theorem 6.6, for each i ∈ [m] we define the ring homomorphism

φ̂i : ZG→ ZGi. Let Di = φ̂i. Define T to be the group of numerical multipliers of D,

and for each i ∈ [m], let Ti be the group of numerical multipliers of Di. There are two

cases.

If Ti is cyclic, then let t ∈ T be such that 〈t〉 = Ti and Dg is fixed by t for

some fixed g ∈ G. Then φ : g 7→ gi and Digi is fixed by t. Hence, Digi is fixed by all

elements of Ti, and hence of t.

We refer the reader to the detailed proof in [66] for the case in which Ti is not

cyclic. �

Proof C (See Theorem 5.22). Consider D in the context of ZG. It is obvious

that Dp ≡ D(p) (mod p), so since D(p) = D by hypothesis, we have D(Dp−1 − 1) =

Dp −D = pA for some A ∈ ZG. Therefore:

0 ≡(pA)(pA(−1)) = (Dp −D)
[(
D(−1))p −D(−1)

]
=Dp

(
D(−1))p −DpD(−1) −D

(
D(−1))p +DD(−1)

=
(
DD(−1))p +DD(−1)

[
1−Dp−1 −

(
D(−1))p−1] (mod p2).

Since it is clear that DG = D(−1)G = kG, and also by using Theorem 6.2, we

can write our last line above as:

(n+ λG)p + (n+ λG)
[
1−Dp−1 −

(
D(−1))p−1]

=(n+ λG)p + (n+ λG)− nDp−1 − n
(
D(−1))p−1 − 2λkp−1G.
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Therefore, we have:

n
[
Dp−1 +

(
D(−1))p−1] ≡ (n+ λG)p + (n+ λG)− 2λkp−1G (mod p2),

which we will refer to for the rest of this proof as “?”. We now break the problem into

cases.

Case (i): If p | λ, then p | k since p | n. As such, we can write (n + λG)p ≡

λkp−1 (mod p2). Since from Lemma 3.5 we have λv = k2 − n, we can write λv ≡

−n (mod p2), so that λ ≡ −nv−1 ≡ −nvp(p−1)−1 (mod p2). From ?, we obtain the

following by substitution:

n
[
Dp−1 +

(
D(−1))p−1] ≡ n+ λG ≡ n− nvp(p−1)−1G (mod p2),

and since p2 - n by hypothesis, we have Dp−1 −
(
D(−1))p−1 = 1 + vp−2G in ZpG,

completing our first case.

Case (ii): If p - λ, then p - k, since p | n. By Lemma 3.5, λ ≡ v ≡ k (mod p).

As such, if we let D′ be the complimentary difference set in G to D, and suppose it

has parameters (v′, k′, λ′), then p|λ′, and as such G−D obeys the hypothesis of Case

(i). As such, it must be true that:

(G−D)p−1 +
(
G−D(−1)) ≡ 1− vp−2G (mod p2).

We will refer to the above as “†”. Since (G−D)G = (v − k)G, we can write:

(G−D)p−1 ≡ −D(G−D)p−2 ≡ · · · ≡ (−D)p−2(G−D) ≡ −kp−2G+Dp−1 (mod p).
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It is now also clear that
(
G−

(
D(−1)))p−1−kp−2G+

(
D(−1))p−1 (mod p). Sub-

stituting into † and rearranging gives:

Dp−1 +
(
D(−1))p−1 ≡ 1 + (2kp−2 − vp−2)G ≡ 1 + vp−2G (mod p),

where the last equivalence comes from the fact that v ≡ k (mod p). Our proof of

Wilbrink’s Theorem is now complete. �

Proof D (See Theorem 7.26). To reiterate, this is the proof given by Xiang

and co-authors [98]. Let χ be a non-trivial character of Fq, and let the image of τ with

{0} removed be denoted as Dk. Since Dk is a hyperoval, we know that τ is precisely

two-to-one by Lemma 7.25. As such, working over ZFq we can write:

χ?(Dk) =
1

2

∑
x∈Fq

χ?(x+ xh) =
1

2

∑
x∈Fq

χ?(x)χ?(1 + xh−1).

By Lemma 7.25, we also know that q− 1 and h− 1 are coprime. As such, there

must exist a non-trivial character χ′ of Fq such that χ = χ′q−1. Then the above can be

written as:

1

2

∑
x∈Fq

χ′?(xh−1)χ?(1 + xh−1).

This last expression is precisely half of the Jacobi sum for χ and χ′. Since

the Jacobi sum is always equal to q, which is a power of two by hypothesis, we have

χ?(Dk)χ?(Dk) =
q

4
, and by Theorem 8.8, we are done. �
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