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Abstract

The shear flow of non-Brownian glass spheres suspended in a concentrated colloidal dispersion that exhibits non-Newtonian rheology is

investigated. At low volume fractions, the addition of non-Brownian spherical particles to the colloidal dispersion leads to an increase in the

steady shear viscosity as well as the dynamic moduli. The flow curves of these suspensions are qualitatively similar to the suspending

colloidal dispersion medium, and as such, in this semidilute regime, the suspension data can be shifted on to that of the colloidal dispersion

medium at constant shear stress with shift factors comparable to those predicted for spherical particles in a Newtonian fluid. At higher

volume fractions of non-Brownian spheres, the shear thickening power law exponent increases with the addition of non-Brownian particles.

This increase in the shear thickening power law exponent is shown to be consistent with the effects of confinement on the shear thickening

colloidal dispersion by the larger non-Brownian particles. VC 2016 The Society of Rheology. [http://dx.doi.org/10.1122/1.4935445]

I. INTRODUCTION

Rigid spherical particles immersed in a fluid acquire

translational and rotational motion as a result of an imposed

bulk laminar shear flow. The fluid flow between particles in

a flowing suspension is complex in comparison to laminar

flow. However, for creeping shear flow with a Newtonian

suspending fluid, a universality in the flow behavior exists

such that the suspension viscosity is independent of the parti-

cle size and size distribution, and only a function of the

volume fraction relative to maximum packing [1]. Einstein

[2] calculated the particle contribution to the viscosity in

the dilute limit as the linear term in an expansion in particle

volume fraction

gr ¼ 1þ 2:5/þ k2/
2 þ � � � ; (1)

where gr is the relative viscosity of the suspension and / is

the volume fraction of spherical particles. Additional terms

are needed to account for the contribution of particle interac-

tions to the viscosity. For the case of a randomized micro-

structure, Batchelor and Green [3] calculated the value of k2

to be 5.2 for monodisperse hard spheres, which was later

refined to a value of 5.0 by Wagner and Woutersen [4]. A

plethora of models have been proposed for more concen-

trated suspensions (see, for example, a recent comparison by

Faroughi and Huber [5]). In particular, the semiempirical

model of Morris and Boulay [6] can correlate the measured

and simulated viscosity and normal stress differences, with

coefficients recently reported by Cwalina and Wagner [7].

Including Brownian motion introduces a time scale and the

viscosity becomes dependent on the P�eclet number, such that

the low and high shear viscosities, as the well as the viscosity

in the shear-thickened state can be defined [8] and are suc-

cessfully described by semiempirical models [7,9]. This very

brief introduction demonstrates that extensive research has

mapped out the rheological properties of suspensions of hard

spheres in Newtonian fluids with and without Brownian

motion, although much remains to be determined concerning

the effects of size polydispersity [10,11], particle shape, the

presence of any additional interparticle interactions such as

friction [12], particle inertia [13], as well as the effects of

shear-induced particle migration and shear banding [14].

Many real-world industrial processes involve the flow of

suspensions of non-Brownian particles suspended in colloi-

dal dispersions. Concrete—formed by mixing cement with

water, sand, and gravel—is the most widely consumed

construction material in the world [15]. Cement itself is com-

prised of colloidal particles that exhibit shear thinning and

shear thickening rheology [16]. Highways in the United

States are made almost exclusively out of Portland cement

concrete along with asphalt and bitumen wearing surfaces

[17]. In the energy sector, concentrated coal-water slurries

are being investigated as replacements for petroleum-derived

fuels [18]. Transporting these slurries through long pipelines

has motivated a recent surge in the study of their non-

Newtonian flow properties [19]. Additionally, large quanti-

ties of mineral tailings from mining operations must be

pumped to disposal facilities where knowledge of non-

Newtonian flow behavior is essential for transport optimiza-

tion [20]. On a more tasteful level, ice cream is formed from

a liquid suspension containing tiny ice crystals and fat glob-

ules in a syrup of sugars and polysaccharides [21]. These

applications are representative of the broad use of suspensions

comprised of both Brownian and non-Brownian particles,

which will benefit from a basic, quantitative understanding of
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how the flow properties of a non-Newtonian suspending me-

dium comprised of a colloidal dispersion will be affected by

the addition of non-Brownian particles.

Despite comprising some of the most significant materi-

als used by mankind in terms of mass and volume, there is a

notable absence in the literature of systematic studies of

model suspensions of non-Brownian particles in shear thick-

ening colloidal dispersions. Liard et al. [22] studied suspen-

sions of >50 lm glass beads in a shear thickening

suspension of cornstarch and water, but the cornstarch par-

ticles were outside of the colloidal size range. Recent meas-

urements were also made in pressure-driven rheometry on

suspensions of non-Brownian spheres in yield stress emul-

sions [23]. In contrast, there exists significant research into

the rheology of suspensions of non-Brownian particles in

viscoelastic fluids, such as polymer and surfactant solutions

and polymer melts (for a review, see [1]). The non-

Newtonian nature of the suspending fluid has been shown to

directly affect particle motion [24–29]. The fore-aft symme-

try between two approaching particles is lost [30], which

can lead to a number of surprising microstructural changes

for dilute suspensions under shear flow, including particle

chaining [31–33]. With regards to shear thickening colloidal

dispersions, a recent report documents the rheological and

morphological properties of “suspoemulsions,” where at

high colloidal dispersion concentrations, the multiphase

fluid can exist as an emulsion suspended in a shear thicken-

ing fluid [34]. Here, the presence of a low viscosity emul-

sion within the colloidal dispersion systematically shifts the

non-Newtonian shear rheology, and an important observa-

tion is that the shear thickening transition for the suspoemul-

sions scales more closely with the applied shear stress than

the shear rate.

Direct numerical simulation results for spherical particles

suspended in a viscoelastic medium are available for a num-

ber of constitutive models for the suspending fluid, but such

simulations are generally limited to investigating the detailed

motion of a small number of particles. The large disparity in

time and length scales required for a direct particle simula-

tion of a suspension of non-Brownian spheres in a dispersion

of Brownian spheres that properly includes hydrodynamic

interactions is beyond current computational capabilities

[35]. Note that such systems cannot be merely viewed in

terms of particle size polydispersity. The treatment of a

suspension of non-Brownian particles mixed with Brownian

particles requires simulating particles separated by an order

of magnitude or more difference in length scales, which

translates into over three orders of magnitude in mass for

equivalent densities. We also note that the effect of mixing

binary size mixtures of stable colloidal particles is under-

stood in terms of hydrodynamic effects [36], whereas binary

mixtures of non-Brownian particles are also well understood

in terms of the dependence on the maximum packing fraction

[37,38].

Remarkably, despite the complex local flows between

particles in suspensions, a plethora of experimental evidence

shows the bulk viscosity of suspensions of non-Brownian

spherical particles in viscoelastic fluids largely reflects the

non-Newtonian viscosity of the suspending medium, and as

a result, scaling laws have been proposed. Early work on

polymer solutions by Highgate and Whorlow [39] first

suggested that relative fluidities of suspensions could be

collapsed on to that of the suspending fluid with simple shift

factors over a wide range of particle fractions. Additional

authors [40–47] investigated other types of viscoelastic

suspending fluids and observed similar behavior. Using an

effective shear rate concept, Ohl and Gleissle [48] formal-

ized a general shifting procedure to collapse suspension data

on to that of the suspending medium at a constant shear

stress

Shift Factor ¼ _c / ¼ 0ð Þ
_c /ð Þ

����
r

¼ g /ð Þ
g / ¼ 0ð Þ

����
r

: (2)

This shifting procedure works remarkably well to collapse

suspension data across a broad range of volume fractions and

for various types of viscoelastic media. It is important to

note that the premise for this shifting procedure is the treat-

ment of the viscoelastic medium as a continuous fluid phase.

Although not formulated specifically for analyzing suspen-

sions of non-Brownian particles in colloidal dispersions, this

body of literature provides a possible framework in the

absence of other theories.

In the present work, we explore and report on the shear

flow behavior of non-Brownian spherical particles suspended

in model, non-Newtonian colloidal dispersions. This particu-

lar choice of suspending medium is of particular interest in

that colloidal dispersions exhibit a rich shear-rate dependent

rheology that includes a zero-shear viscosity [9], viscoelas-

ticity [49], shear thinning, a high shear viscosity plateau, and

shear thickening at high shear rates [7,50]. In this study, the

non-Brownian and colloidal particles are separated by more

than an order of magnitude in size and more than three

orders of magnitude in mass. As such, we explore treating

the colloidal dispersion as a continuous fluid and test the

applicability of the viscosity shifting hypothesis of Ohl and

Gleissle [48] to this particular class of suspensions in non-

Newtonian fluids. The dynamic moduli and normal stress

differences are also investigated and their behavior com-

pared to that observed for suspensions of non-Brownian

particles in various other viscoelastic media.

II. EXPERIMENTAL SECTION

A. Rheological characterization

Rheological measurements were performed on a torque-

controlled Discovery Hybrid Rheometer from TA

Instruments (New Castle, DE). A 20 mm parallel plate tool

was used for steady shear and dynamic oscillatory measure-

ments. A cone and plate tooling was also studied, but diffi-

culties were encountered due to the large particle size

relative to the truncation gap. In steady shear measurements,

the shear stress, r, was extracted from Eq. (3) as

r ¼ M

2pR3
3þ d ln M

d ln _cR

� �
; (3)
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where M is the applied torque, R is the plate radius, and _cR is

the shear rate at the rim of the plate. The difference between

the first and second normal stress differences, N1 and N2,

respectively, was obtained as

N1 � N2 ¼
FZ

pR2
2þ d ln Fz

d ln _cR

� �
; (4)

where FZ is the axial thrust on the tool, and _cR is the shear

rate at the rim. In oscillatory measurements, the dynamic

moduli were computed as

G0 xð Þ ¼ 2HM cos d
pR4h

; (5)

G00 xð Þ ¼ 2HM sin d
pR4h

; (6)

where H is the gap height, d is the phase angle, and h is the

angular displacement [51].

Samples were loaded to a gap height of 300 lm using a

force-gap control with a constant rate of 5 lm/s and a maxi-

mum allowable axial force of 0.5 N. Frequency sweeps were

performed at 1% strain and data acquired over 10 cycles. In

steady shear experiments, at a given applied torque, 10 s

were allowed for equilibration, and the viscosity and normal

force were recorded over the following 60 s. Particle migra-

tion can be a significant complication for the measurement

of non-Brownian suspensions at high shear rates. However,

in our work, the frequency sweeps and steady flow curves

were found to be reversible, indicating that particle migra-

tion and sedimentation were negligible on the timescale of

our measurements. Slip measurements were made previously

[7] on one of the colloidal dispersions considered in this

work, and wall slip was shown to be insignificant with regard

to the measured flow curves.

B. Materials

Two different colloidal dispersions consisting of similar

particles varying in size were formulated as suspending fluids.

The first consisted of silica nanoparticles (Seahostar KE-P10,

Nippon Shokubai Co., Tokyo, Japan) dispersed in a polyethyl-

ene glycol (PEG) MW¼ 200 (Aldrich Chemical Company,

Allentown, PA; gf ¼ 0.05 Pa*s, q¼ 1.12 g/cm3) solvent.

Small angle neutron scattering found the particle radius of

these KE-P10 particles to be a¼ 60 nm and the particle den-

sity determined from densitometry was qp¼ 1.89 g/cm3 [52].

The second suspending fluid consisted of silica nanoparticles

(Seahostar KE-P50, Nippon Shokubai Co., Tokyo, Japan)

of radius a¼ 260 nm and particle density, qp¼ 1.96 g/cm3

[52] in a PEG-200 solvent. The colloidal dispersions were

prepared by roll mixing for one week, and the suspending

fluid compositions are reported in Table I.

The non-Newtonian behavior of hard-sphere colloidal

dispersions is the result of a competition between thermody-

namic Brownian forces and hydrodynamic forces resulting

from the imposed shear flow that leads to shear-induced

changes in the microstructure. This has been extensively

characterized for these colloidal dispersions by rheology and

small angle neutron scattering under flow [53]. The appropri-

ate dimensionless group to gauge this competition is the

P�eclet number (Pe) given by

Pe ¼
6pgf _ca3

kT
; (7)

where gf is the viscosity of the suspending fluid, _c is the

shear rate, a is the particle radius, k is the Boltzmann con-

stant, and T is the absolute temperature. For oscillatory

measurements, the shear rate in Eq. (7) can be replaced by

the product of the strain amplitude and the frequency

( _c ! cox). Measurement across a broader range of Pe num-

ber was achieved by recognizing that Pe scales as a3 and that

the Brownian stress, and hence elasticity, scales inversely

with a3 [54]. Thus, the use of two colloidal dispersions with

widely varying particle sizes as suspending fluids enables

exploring a broad range of non-Newtonian phenomena asso-

ciated with near hard-sphere dispersions, namely, viscoelas-

ticity at low Pe and shear thickening at large Pe. This also

enables probing the effects of size ratio upon the addition of

non-Brownian particles. The flow curves of both colloidal

dispersions are shown together in Fig. 1 as a function of the

Pe number. The use of the two different dispersions enables

exploring the non-Newtonian behavior of near hard-spheres

dispersions over 8 orders of magnitude in Pe number within

the measurement range of our rheometer and tooling. The KE-

TABLE I. Composition of suspending fluids.

Dispersion Wt. % Solids q (g/cm3) /

KE-P10 in PEG-200 50 1.41 0.37

KE-P50 in PEG-200 54 1.46 0.40

FIG. 1. Steady and complex viscosity as a function of the Pe number for the

colloidal dispersions used as suspending fluids in this work. The dashed line

is the predicted value of the shear-thickened state viscosity for a /¼ 0.40

near hard-sphere colloidal dispersion [7], the dotted line is the limiting value

of the high shear plateau viscosity for a /¼ 0.40 hard-sphere dispersion

[57], and the dashed–dotted line is the limiting value of the zero-shear

viscosity for a /¼ 0.37 dispersion calculated using the analysis of [56].
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P10 in PEG-200 dispersion has measureable viscoelastic mod-

uli while the KE-P50 in PEG-200 dispersion allows exploring

the high shear viscosity plateau and shear thickening behavior

at higher Pe number. At the largest Pe numbers explored in

this study, the viscosity tends toward a plateau value. This pla-

teau in the viscosity is the emergence of the colloidal shear-

thickened state, predicted from theory [8,55], and recently

confirmed to exist by the experiments in [7]. The suspending

colloidal fluids are compared in Fig. 1 to expected hard-sphere

behavior through the values of the zero-shear viscosity [56],

the high shear plateau viscosity [57], and the viscosity in the

shear-thickened state [7]. The values of the high shear plateau

and shear-thickened state viscosities for the /¼ 0.40

(a¼ 260 nm) dispersion are very close to the expected limiting

hard-sphere behavior. The viscosity curve of the /¼ 0.37

(a¼ 60 nm) dispersion clearly tends toward a zero-shear vis-

cosity above the limiting hard-sphere value. Nearly identical

viscosity measurements were obtained on this exact dispersion

and volume fraction by [52], and attractive interactions

between these particles are likely the source of this deviation

from ideal hard-sphere behavior.

The non-Brownian spherical particles used in this

study were polydisperse (d10¼ 5 lm, d50¼ 10 lm, and

d90¼ 21 lm) hollow fused borosilicate glass (Sphericel
VR

110P8, Potters Industries LLC, Valley Forge, PA) with a

manufacturer reported particle density, qp¼ 1.10 g/cm3. The

non-Brownian particles (abbreviated “NBP” in subscripts to

follow) are nearly density matched to the PEG-200 such that

gravitational settling is not a factor on the timescale over

which rheological characterization takes place. The non-

Brownian particles have an average diameter 20 times that

of the KE-P50 particles and are 4000 times more massive.

Additionally, they are approximately 80 times larger and

300,000 times more massive than the KE-P10 particles.

Suspensions were prepared by the addition of the non-

Brownian particles to the colloidal dispersions and roll mix-

ing for one week. The suspensions were formulated by

weight and the volume fractions calculated using the meas-

ured densities. Throughout the remainder of this paper, the

volume fraction of non-Brownian particles, /NBP, is calcu-

lated as the volume of non-Brownian particles divided by the

total volume of the suspension, noting that the volume frac-

tion of the colloidal particles in the suspending liquid me-

dium remains constant. The suspension compositions studied

are reported in Table II.

Although the particles were nearly neutrally buoyant, par-

ticle inertia can create shear thickening for a particle

Reynolds number (Rep) on the order of 10�1 or larger [59].

The particle Reynolds number is defined using the particle

radius as the relevant length scale

Rep ¼
_ca2q
gf

: (8)

During rheological measurement, the largest particle

Reynolds number encountered in any of the suspensions was

on the order of 10�3 so particle inertia was not a contributing

factor to the measured suspension viscosity.

III. RESULTS AND DISCUSSION

A. Linear viscoelastic regime

Brownian motion within a colloidal dispersion gives rise

to viscoelasticity [49], which is evident in the dynamic mod-

uli of the /¼ 0.37 dispersion of KE-P10 in PEG-200 shown

in Fig. 2. The effect of adding small amounts of non-

Brownian spheres to the dispersion is also shown in this

figure. At a given frequency, the addition of non-Brownian

particles results in a vertical shift of both dynamic moduli,

while the shape of the curve reflects that of the colloidal dis-

persion as the suspending medium. This result is consistent

with measurements of the dynamic moduli in other visco-

elastic suspending fluids [60–64]. As nondeformable spheri-

cal particles are added to the colloidal dispersion medium,

the local strain amplitudes in the colloidal dispersion are,

on average, greater than the applied strain amplitudes.

Consequently, the dynamic stresses are higher, and, when

divided by the applied deformation, yield higher moduli.

Visual inspection suggests that a single scalar shift should

be sufficient to shift the dynamic moduli data onto that of the

colloidal dispersion medium and form a master curve.

Indeed, such a single vertical shift factor for a given volume

TABLE II. Suspension compositions used in this study.

Suspending Fluid: KE-P10 (a¼ 60 nm) in PEG-200 (/¼ 0.37)

Suspension Wt. % NBP q (g/cm3) /NBP /KE-P10 /Total Solids

1 4 1.41 0.05 0.35 0.40

2 8 1.40 0.10 0.33 0.43

3 12 1.38 0.15 0.31 0.46

Suspending Fluid: KE-P50 (a¼ 260 nm) in PEG-200 (/¼ 0.40)

Suspension Wt. % NBP q (g/cm3) /NBP /KE-P50 /Total Solids

1 3 1.44 0.04 0.39 0.43

2 7 1.42 0.09 0.36 0.45

3 12 1.40 0.15 0.34 0.49

4 30 1.33 0.36 0.26 0.62

5 38 1.30 0.45 0.22 0.67

6 41 1.29 0.48 0.21 0.69

FIG. 2. Dynamic moduli of suspensions of non-Brownian glass spheres in a

/¼ 0.37 KE-P10:PEG-200 colloidal dispersion.
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fraction of non-Brownian spheres successfully forms a mas-

ter curve, as shown in Fig. 3. Furthermore, the dynamic mod-

uli can be shifted onto the values for the colloidal dispersion

medium with roughly the same shift factor, as reported in

Fig. 4. This result has already been demonstrated for suspen-

sions of non-Brownian spheres in Newtonian fluids where

the suspension relative viscosity and elastic modulus have

been shown to collapse onto a master curve when plotted

against the proximity to maximum packing [1,37].

Figure 5 shows the moduli after the purely hydrodynamic

component of the loss modulus (xg01) has been subtracted

so as to show the contribution arising from Brownian and

interparticle interactions. This enables identifying the char-

acteristic relaxation time from the crossover frequency. The

value of the crossover frequency is shown to be independent

of the concentration of non-Brownian particles in this semi-

dilute concentration regime. The high frequency viscosity

relative to that of the underlying colloidal dispersion medium

is plotted as a function of the volume fraction of non-

Brownian particles in Fig. 6 along with the results expected

for non-Brownian particles in a Newtonian fluid [Eq. (1)].

As shown the high frequency viscosity for these suspensions

in a non-Newtonian colloidal dispersion medium can be well

approximated by Eq. (1) in the semidilute concentration

regime.

B. High shear plateau and shear thickening
upturn: Semidilute regime

To access the high shear plateau and a significant shear

thickening regime within the measurement range of the

rheometer, we studied the same non-Brownian spheres sus-

pended in the colloidal dispersion comprised of the larger

KE-P50 (a¼ 260 nm) colloidal particles in PEG-200. The

viscosity of suspensions over a range of concentrations of

added non-Brownian particles is shown in Fig. 7.

FIG. 3. Shifted dynamic moduli curves. Symbols are identical to those used

in Fig. 2.

FIG. 4. Shift factors required to collapse dynamic moduli data onto that of

the colloidal dispersion medium as a function of the volume fraction of non-

Brownian spheres.

FIG. 5. Dynamic moduli of suspensions of non-Brownian glass spheres in a

/¼ 0.37 KE-P10 in PEG-200 colloidal dispersion with the hydrodynamic

component of the loss modulus subtracted off. The dashed vertical line

marks the crossover frequency, which is observed to be independent of the

concentration of non-Brownian particles.

FIG. 6. Relative high frequency viscosity for non-Brownian glass spheres

suspended in a /¼ 0.37 KE-P10:PEG-200 colloidal dispersion. The dashed

line is the Einstein viscosity equation [Eq. (1), k2¼ 0] for dilute suspensions

of non-Brownian spheres in a Newtonian fluid and the solid line contains the

additional /2 term of k2¼ 5.0 [4].
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By plotting the suspension viscosity as a function of shear

stress, the addition of non-Brownian particles is observed to

shift the viscosity curves vertically without a change in

shape. Indeed, the exponent of the power law fits to the

viscosity in the shear thickening regime remains constant.

The critical stress for shear thickening is defined to be the

intersection of the high shear plateau with this power law

scaling. From Fig. 7, it is evident that the onset of shear

thickening occurs at a nearly constant value of the shear

stress independent of the volume fraction of non-Brownian

spheres. The onset of shear thickening in dispersions of

spherical colloids is well established to be stress-controlled

[36,65,66], and the data here suggest that the onset of shear

thickening in suspensions of non-Brownian particles in these

colloidal dispersions is also stress-controlled.

The fact that the onset of shear thickening occurs at the

same shear stress independent of the volume fraction of non-

Brownian spheres suggests a reduction of the viscosity

curves to a universal behavior using a single, vertical

shift factor. Such a reduction is indeed possible, as shown in

Fig. 8, which also plots the shift factor required to achieve a

master curve as a function of the volume fraction of non-

Brownian particles. These results for the steady shear viscos-

ity in the present study are consistent with the hypothesis of

Ohl and Gleissle [48]. This shift factor is the viscosity of the

suspension relative to that of the colloidal dispersion me-

dium (a type of relative viscosity) at constant shear stress.

As such, it is tempting to compare this relative viscosity to

that known for suspensions in Newtonian fluids [given by

Eq. (1) with k2¼ 5.0]. To a first approximation, the equations

derived for particles in a Newtonian fluid can be used to

estimate the viscosity in this concentration regime, although

the relative steady shear viscosities measured in this study

clearly lie above these predictions. Similar behavior has been

observed with suspensions in other viscoelastic media such as

Boger fluids [67], silicone oil [68], and polydimethylsiloxane

[64] over a similar range of particle concentrations.

C. Extension to higher particle concentrations

For particle suspensions at higher particle concentrations,

it is known that many-body interactions become important in

determining the suspension viscosity, such that Eq. (1) is no

longer applicable. The semiempirical model of Morris and

Boulay [6] has been demonstrated to be successful at

describing the viscosity of suspensions of non-Brownian

spheres in a Newtonian fluid

gr ¼ 1þ 2:5/ 1� /
/max

� ��1

þ Ks
/

/max

� �2

1� /
/max

� ��2

:

(9)

FIG. 7. Viscosity of non-Brownian glass spheres suspended in a shear thick-

ening colloidal dispersion of KE-P50 (a¼ 260 nm) particles in PEG-200 as a

function of the shear stress. Solid lines are extensions to power law fits to

the high shear plateau and shear thickening upturn.

FIG. 8. (Left) Shifted viscosity curves from Fig. 7 for suspensions of non-Brownian spheres in a colloidal shear thickening fluid. (Right) Relative steady shear

viscosity for suspensions in a colloidal dispersion medium as a function of the concentration of non-Brownian spheres. The dashed line is the Einstein viscosity

equation [Eq. (1), k2¼ 0] for dilute suspensions of non-Brownian spheres in a Newtonian fluid and the solid line contains the additional /2 term of k2¼ 5.0

[4]. Error bars are smaller than data points.
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In the equation above, /max is the maximum packing fraction

and Ks is an adjustable fitting parameter.

The flow curves for suspensions containing high volume

fractions of non-Brownian spheres are presented in Fig. 9.

The high shear viscosities are taken at 10 Pa and are com-

pared with the model of Morris and Boulay [6] in Fig. 10.

This semiempirical model can describe the shift in relative

viscosity in the high shear plateau with /max equal to 0.58,

which has been commonly reported as the maximum packing

fraction in a number of suspensions of non-Brownian spheri-

cal particles in Newtonian fluids [69–72]. This value of /max

is below the expected value of 0.638 for random close pack-

ing of monodisperse spheres. As our particles are polydis-

perse, the maximum packing fraction is expected to be larger,

and the discrepancy may reflect weak attractive interactions,

particle roughness, or particle shape anisotropy. Nonetheless,

this model developed for suspensions in Newtonian fluids

yields an excellent description of the suspension viscosity

data in the high shear plateau at r¼ 10 Pa. A recent study

[23] on suspensions of non-Brownian particles in yield stress

emulsions also found the semiempirical model of Morris and

Boulay [6] captured the viscosity data at high particle load-

ings. This particular model, originally proposed for particles

in Newtonian fluids, has now found an unanticipated level of

success at describing the behavior of suspensions in different

types of viscoelastic media.

At these higher concentrations of non-Brownian particles, a

single, vertical shift factor cannot produce a master curve for

all shear stresses and deviations from the shifting procedure

become apparent in the shear thickening regime, as illustrated

in Fig. 10. Interestingly, the viscosity in the shear thickening

regime increases more rapidly for higher concentrations of

non-Brownian particles, as shown in Figs. 9 and 10. Recall

that the particle Reynolds number for these suspensions is on

the order of 10�3 in the shear thickening regime, such that

particle inertia is not contributing to the measured viscosity.

FIG. 9. Flow curves of suspensions of non-Brownian particles in a concentrated colloidal dispersion as a function of the shear stress (left) and shear rate

(right).

FIG. 10. (Left) Viscosity curves for suspensions shifted onto the high shear plateau of the colloidal dispersion medium at r¼ 10 Pa. (Right) Suspension viscos-

ity relative to that of the colloidal dispersion at r¼ 10 Pa. The solid line is a fit of the semiempirical model of Morris and Boulay [6] with Ks¼ 0.94.
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To quantitatively determine the power law exponent, we fit

the data for each volume fraction in the range of r¼ 100 to

400 Pa to the power law given by

r ¼ k _cn; (10)

where k is a constant and n is the power law exponent. In

this range of shear stresses, all of the dispersions exhibit a

power-law shear thickening upturn before the viscosity

begins tend toward the constant viscosity plateau of the

shear-thickened state. The shear thickening power law expo-

nent in this regime is shown to be an increasing function of

the volume fraction of non-Brownian spheres in Fig. 11.

To understand this increase in the shear thickening power

law exponent, it is useful to consider the average separation

distance between non-Brownian spherical surfaces in sus-

pension as a function of the volume fraction. A simple geo-

metric model for this average separation distance is [36,73]

h

2a
¼ /max

/

� �1=3

� 1; (11)

where h is the characteristic separation distance of particle

surfaces, a is the particle radius, / is the particle volume

fraction, and /max is the maximum packing fraction, which

is taken to be 0.58 to be consistent with the previous model-

ing. Figure 12 shows the shear thickening power law expo-

nent as a function of the separation distance between non-

Brownian particles (hNBP) normalized by the diameter of the

colloidal particles (2acolloids). This parameter physically rep-

resents the number of colloidal particles that could span the

characteristic gap between non-Brownian spherical surfaces.

Geometric confinement of a colloidal fluid is known to

enhance shear thickening as demonstrated by the narrow-gap

Couette measurements of Chow and Zukoski [74] and recent

simulation studies of suspensions under confinement [75]. In

both studies, gap confinement of order 10 particle diameters

increased the shear thickening power law exponent. The

change in the shear thickening power law exponent for our

suspensions suggests that confinement of the colloidal dis-

persion medium between non-Brownian spherical surfaces

may become relevant when the characteristic gap reduces

to approximately ten times the diameter of the colloidal

particles, as observed in Fig. 12. Below this average particle

surface-to-surface spacing, the power law exponent

increases. In our work, the large non-Brownian spheres pro-

vide a type of local confinement of the suspending colloidal

fluid. Under shear flow, the colloidal fluid is forced to flow

within the narrow gaps between the non-Brownian spheres.

Thus, it is reasonable to anticipate that this local confinement

can promote the formation of larger hydroclusters and stron-

ger shear thickening. Note that this confinement between

spherical non-Brownian particles is much less constrained

geometrically than for parallel plates as in the simulations.

Consequently, the confinement effects in suspension are not

expected to be as dramatic as for confinement between walls.

Furthermore, this enhancement in shear thickening is distin-

guishable from any changes in the molecular suspending

fluid due to confinement, which can lead to increases in the

viscosity when liquids are confined to gaps approaching the

molecular size [76]. For example, Lee and Wagner [77] dem-

onstrated that continuum hydrodynamics are maintained for

colloidal dispersions in molecular liquids down to surface-

to-surface length scales of only a few nanometers.

D. Normal stress differences

Negative normal stress differences have been reported by

authors for a number of suspensions consisting of non-

Brownian spheres in Newtonian fluids [69,78–80]. Negative

normal stress differences have also been observed in shear

thickening colloidal dispersions, both in Stokesian dynamics

simulations [81] and experimental measurements [82,83].

Cwalina and Wagner [7] recently reported measurements of

the first and second normal stress differences for a model

shear thickening colloidal dispersion of near hard spheres.

Both N1 and N2 were found to be negative in the shear-

FIG. 11. Shear thickening power law exponent as a function of the volume

fraction of non-Brownian spheres. Error bars are smaller than data points.
FIG. 12. Shear thickening power law exponent “n” from Eq. (10) as a func-

tion of the characteristic separation distance between non-Brownian spheres

as calculated from Eq. (11).
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thickened state with jN2j slightly larger than that of jN1j for

the most concentrated dispersions. The normal stress differ-

ences in colloidal dispersions are a consequence of the

highly anisotropic microstructure that develops under flow at

high Pe due to lubrication hydrodynamic interactions

between particles [55].

An extensive literature also exists for the measurement of

normal stress differences in suspensions of non-Brownian

spheres in viscoelastic media [39,40,42,46,47,68,67]. The

normal stress differences exhibit power law behavior when

plotted against the shear stress on logarithmic axes and shift

parallel to each other as the particle concentration is varied.

It is important to note that the normal stress differences in

these suspensions arise from the elasticity of the underlying

suspending fluid whereas the normal stress differences meas-

ured for suspensions in Newtonian fluids are a consequence

of viscous hydrodynamic forces acting between particles.

Measurement of the normal stress differences, N1-N2,

for the suspensions of non-Brownian particles in the colloi-

dal dispersion of KE-P50 particles in PEG-200 are shown

in Fig. 13. For guidance on the expected magnitude of

N1-N2 for the colloidal dispersion, we used the semiempiri-

cal model of Morris and Boulay [6] along with measure-

ments and model coefficients determined by Cwalina and

Wagner [7]

N1 � N2 ¼ K2 � K1ð Þ /
/max

� �2

1� /
/max

� ��2

gf _c: (12)

The values of K1 and K2 were reported by Cwalina and

Wagner [7] to be 0.177 and 0.240, respectively, in the shear-

thickened state. This limiting behavior of N1 – N2 in the col-

loidal shear-thickened state for /¼ 0.40 is shown in Fig. 13

as the solid line. This can be compared to the data for the

colloidal dispersion, which is largely below the value of

instrument resolution except at the highest shear rates. This

high shear rate data compares well with model predictions

for the limiting value. The parallel plate tooling limits the

attainment of higher shear rates due to sample ejection.

In the semidilute regime, the addition of non-Brownian

particles does not appreciably alter the values of N1 – N2 to

within instrument resolution, which is denoted by the dashed

lines in Fig. 13. This is consistent with measurements on sus-

pensions in other viscoelastic media, where the normal stress

differences are largely due to the underlying suspending fluid

at comparable shear rates [40,60]. However, at higher

volume fractions, large positive values of N1 – N2 are meas-

ured that greatly exceed those of the colloidal fluid itself.

The measured normal stress differences for the suspensions

are replotted in Fig. 14 as a function of the shear stress. A

semi-empirical prediction can be made for the scaling of the

normal stress differences in the shear-thickened state by

using Eq. (12) and dividing both sides by the shear stress to

obtain

N1 � N2

r
¼ K2 � K1ð Þ /

/max

� �2

1� /
/max

� ��2

gf

_c
r
: (13)

The right-hand side of Eq. (13) can be rewritten as

N1 � N2

r
¼ K2 � K1ð Þ /

/max

� �2

1� /
/max

� ��2
1

gr

: (14)

The measurements of Cwalina and Wagner [7] can be used

with Eq. (9) to obtain the predicted relative viscosity in the

shear-thickened state as: ðN1 � N2Þ=r¼ 0.046. This scaling

is shown by the dashed line in Fig. 14 and it captures the

observed behavior of the underlying colloidal fluid to a first

approximation. In our recent paper [7], we argue that the

FIG. 13. Measurements of N1 – N2 over a broad range of suspension volume

fractions plotted against the shear rate. The solid line is the predicted value

of N1 – N2 for the colloidal dispersion medium (/NBP¼ 0) in the shear-

thickened state using the semiempirical model of Morris and Boulay [6]

with the model parameters reported by Cwalina and Wagner [7]. The dashed

lines mark the resolution of the instrument.

FIG. 14. Measured normal stress differences plotted as a function of the

shear stress. Only data points lying above the instrument resolution are

shown. The dashed line is the expected ratio of the normal stress differences

to the shear stress for the underlying colloidal dispersion (/NBP¼ 0) in the

shear-thickened state [7]. The solid line is the ratio of the normal stress dif-

ferences to the shear stress for the underlying colloidal fluid in the limit

ð/=/maxÞ ! 1, which corresponds to the enhancement of shear thickening

in the suspending medium due to confinement between non-Brownian parti-

cle surfaces at high packing fractions.
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value of the relative viscosity in the shear-thickened state

increases with the particle volume fraction because the sys-

tem is closer to maximum packing due to the formation of

hydroclusters with an effective volume fraction larger than

just that of the constituent solid particles [84,85]. In Sec.

III C, the increase in the shear thickening power law expo-

nent at high packing fractions of non-Brownian particles

was attributed to confinement of the colloidal fluid between

particle surfaces, which promotes the formation of locally

larger hydroclusters. Thus, if we adopt the consistent view-

point that the formation of larger hydroclusters raised the

effective particle concentration in the colloidal fluid

(ð/=/maxÞ ! 1), the modeling of Cwalina and Wagner [7]

predicts the ratio of the normal stress differences to the shear

stress in the shear-thickened state for this /¼ 0.40 colloidal

fluid should be given by ðN1 � N2Þ=r¼ 0.11. This scaling is

shown by the solid line in Fig. 14. There is a large experi-

mental uncertainty in the data at high packing fraction of

non-Brownian particles. However, to a first approximation,

this scaling captures the behavior of the normal stress differ-

ences relative to the shear stress. This scaling of the normal

stress differences suggests the origin is from the colloidal

fluid and it further supports the hypothesis of confinement at

high packing fractions of non-Brownian particles.

E. Comparison to other scaling theories

We conclude the discussion with a comparison of the pres-

ent work to the scaling theories proposed by Liard et al. [22]

for suspensions in generalized Newtonian fluids. In their work,

they explore a sequence of shifts that is formally equivalent to

the stress scaling of Highgate and Whorlow [39], Barnes [86],

and Gleissle and Hochstein [87]. However, the authors were

not able to achieve as successful a reduction of the data to a

master curve as shown here and in aforementioned references.

Indeed, the authors indicated that the viscosity shift factors

were higher for the shear thickening regime than the shear

thinning portion of their data. The deviations from a simple

stress scaling were more apparent at higher particle volume

fractions. The authors identified a different scaling with vol-

ume fraction between the distribution of local shear rates and

the bulk hydrodynamic viscosity as the likely source of this

violation of the simple scaling law for suspensions in general-

ized Newtonian fluids. Here, we propose a new mechanism for

violation of this simple stress scaling law for suspensions dis-

persed in colloidal shear thickening fluids. Namely, confine-

ment between the surfaces of non-Brownian particles at high

packing fractions leads to enhanced shear thickening of the

colloidal dispersion. This effect is specific to the use of a col-

loidal dispersion as the suspending medium and the possible

role of suspension particle shape in enhancing or mitigating

this confinement is to be explored further in the future.

IV. CONCLUSIONS

Measurements of the dynamic and steady shear rheology

for model suspensions comprised of non-Brownian spheres

suspended in a non-Newtonian medium, itself comprised of

a colloidal shear thickening dispersion, are found to strongly

reflect the underlying rheological properties of the colloidal

dispersion. The linear viscoelasticity of these suspensions is

found to mimic that of the suspending colloidal dispersion

such that the characteristic relaxation time of the suspension

remains unchanged upon the addition of non-Brownian

spherical particles. In a similar manner, for low volume frac-

tions of non-Brownian spheres, the steady shear viscosity

curves are found to superimpose through a vertical shift

when plotted against the shear stress. This behavior has been

reported for suspensions in molecular non-Newtonian fluids

and is consistent with the hypothesis of Ohl and Gleissle

[48]. Deviations from this simple shifting are observed at

higher volume fractions of non-Brownian particles at high

shear stresses, where the shear thickening power law expo-

nent is found to increase with the addition of non-Brownian

spheres. This violation of the simple scaling can be attributed

to the known effect of confinement on enhancing shear thick-

ening in colloidal dispersions [74], where the confinement is

due to the packing of the larger non-Brownian particles. The

normal stress differences are significantly enhanced at high

packing fractions and their scaling with the shear stress is

consistent with confinement of the underlying colloidal dis-

persion by the non-Brownian spheres, which enhances shear

thickening in the colloidal suspending medium.

This experimental investigation of model suspensions of

non-Brownian spherical particles suspended in a non-

Newtonian colloidal dispersion reveals a relatively simple

and predictable rheological response for shear stresses corre-

sponding to the shear thinning regime and high shear plateau

of the colloidal dispersion. However, when shear thickening

is evident in the colloidal dispersions, confinement effects

become evident at a higher concentration of non-Brownian

spheres. Such confinement effects may be even further

enhanced in the presence of discontinuous shear thickening

colloidal dispersions, and future work will address this as

well as the role of particle shape.

We note that recent work on novel shear thickening suspoe-

mulsions by Fowler et al. [34] has also shown unanticipated

effects in emulsion morphology when the colloidal dispersion

is in the shear-thickened state. Further, the present work com-

plements previous investigations of non-Brownian particles in

non-Newtonian media such as shear thinning polymer solu-

tions and melts, wormlike micelles, or Boger fluids where par-

ticles have been observed to chain along the flow direction

[31–33]. The results presented here motivate the need for fur-

ther exploration of the behavior of suspended non-Brownian

particles in a shear thickening colloidal dispersion.
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APPENDIX: MODIFIED CROSS MODEL

As shown in Fig. 1, a modified Cross model given by

Galindo-Rosales et al. [58] is used to extract the zero-shear

and high shear plateau viscosities, which are then compared
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to the expected limiting hard-sphere behavior. The model of

Galindo-Rosales et al. [58] divides the viscosity curve into

two regions. Region 1 models the viscosity as a function of

the shear rate up to the critical shear rate for shear thickening

as follows:

g1 _cð Þ ¼ gc þ
g0 � gc

1þ k1

_c2

_cc � _c

 !" #n1
; (A1)

where g0 and gc are the respective values of the zero-shear

viscosity and the viscosity at the critical shear rate, _cc. Only

g0 is extracted from the fit as gc is a fixed value taken from

the data. k1 and n1 are adjustable fitting parameters. In

Region 2, the viscosity data are fit from the critical shear rate

up to the maximum shear rate attained in the shear-thickened

state

g2 _cð Þ ¼ gmax þ
gc � gmax

1þ k2

_c � _cc

_cmax � _c

� �
_c

� �n2
; (A2)

where gmax is the value of the viscosity at the maximum shear

rate in the shear-thickened state, _cmax. Both of these values are

fixed values extracted from the data set. k2 and n2 are adjusta-

ble fitting parameters. All model parameters, both fixed and

adjustable, are reported in Table III for Regions 1 and 2.
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