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ABSTRACT 

 

The ErbB family of receptors is dysregulated in a number of cancers, and the 

signaling pathway of this receptor family is a critical target for several anti-cancer drugs. 

Therefore, a detailed understanding of the mechanisms of receptors activation is critical. 

However, despite a plethora of biochemical studies and single particle tracking 

experiments, the early molecular mechanisms involving epidermal growth factor (EGF) 

binding and EGF receptor (EGFR) dimerization are not as well understood. Due to the large 

disparity of time and length scales involved in receptor dimerization reactions, we adapt the 

coarse-grained Monte Carlo (CGMC) simulation framework to enable the simulation of in 

vivo receptor diffusion and dimerization. 

Using the CGMC method, spatial modeling of ligand-mediated membrane 

receptor dimerization reaction dynamics was performed. Furthermore, the simulations 

demonstrate the importance of spatial heterogeneity in membrane receptor localization. 

Mathematical models, especially one that takes into account spatial heterogeneity, show 

mechanistic understanding of receptor activation that may in turn enable improved future 

cancer treatments.
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CHAPTER 1 

 

INTRODUCTION 

EGFR Background: 

Abnormal EGRF behavior is highly correlated with cancerous growth and it is 

extensively studied [1, 2], and EGFR irregularities have been implicated in breast, lung and 

prostate cancers, among others[3].  Cancerous cells often exhibit an intense overpopulation 

of EFGR molecules, compared to healthy counterparts[1].  Receptor aggregation and 

endocytosis rates are amplified nonlinearly with increasing receptor counts and change the 

ultimate signal sensitivity and fate decisions of the cell in cancerous cells.  By understanding 

the mechanism of cluster formation, directed research could be put into disrupting the 

overzealous cluster formation observed in cancerous cells [2].  
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Figure 1.1 - Domains of the epidermal growth factor receptor (EGFR) and their basic functions.  

While unbound to ligand, domains II and IV interact to ‘lock-out’ dimerization with steric 

hindrances.  Binding of the EGF ligand opens the receptor for dimerization, leading to cross-

phosphorylation of the kinase domain and initiation of the signaling cascade.  Reprinted from [4] © 

2004 National Academy of Sciences, USA. 

 

Although groups of EGFRs deliver discrete signals and form complex 

organizations, the fundamental, first tier of EGFR’s behavior (that of a single EGFR molecule) 

contains only a few basic reactions.  Each receptor is capable of surface diffusion, 

dimerization with a partner (and dissociation), ligand binding, and surface interaction (Figure 

1.1).  Membrane-bound molecules have been observed to diffuse across the surface on 

multiple time scales, supposedly as different domains of the membrane are occupied, 

altering the micro and macro diffusion rate [5, 6].  In order to initiate signaling, two receptors 

must form a dimer, bringing their intra-cellular kinase domains into proximity and starting 

cross-phosphorylation [7, 8].  Finally, each receptor is capable of binding a single extra-

cellular ligand, which modifies the receptor’s dimerization propensity thus regulating the 

initiation of the intra-cellular cascade [4, 9-11]. 
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Figure 1.2 - TEM image of a cell membrane with receptors tagged by gold particles (dark dots).  

Receptors preferentially localize in selective membrane areas, seen here as darker than surrounding 

areas.  The coordinate locations of receptors may be extracted via image analysis and used to 

analyze organization characteristics. Reprinted from [12], with permission from Elsevier 

The next tier of EGFR’s behavior is beyond single monomer-monomer binding to 

many-molecule clustering.  Besides bringing kinase domains together to initiate the signaling 

cascade, these localized and highly concentrated clusters of up to hundreds of members 

amplify the signal passed into the intracellular space[13, 14] and have also been observed to 

bud off into the cell in endosomes, bringing the activated receptors off the surface and into 

the cytoplasm.  Interaction with other receptors and hydrophobic or hydrophilic regions of 

the membrane influence this cluster formation and introduction of EGF (EGFR’s ligand) 

further increases EGFR clustering, implying a ligand-regulated modification of the 

dimerization rates and clustering propensity [15-18].  A notable characteristic of the clusters 

visible in TEM images (Figure 1.2) is the tendency to gather in darker areas – cholesterol rich 

clatherin pits [19].  The exact reasons for this specific localization of membrane proteins are 

not entirely clear, but the formation of the pits themselves is a phase separation of 

hydrophobic cholesterol-rich membrane components from the more hydrophilic 

phospholipids predominantly comprising the lipid bilayer.   
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Figure 1.3 – Single particle tracking of individual membrane proteins. Reprinted, with permission, 

from [20] © 2005 by Annual Reviews  www.annualreviews.org. 

The classic fluid mosaic model of the cell membrane, by which membrane 

proteins diffuse freely and react in a two-dimensional space, is insufficient to apply to the 

EGFR system.  Diffusion coefficients for proteins in artificial membranes are higher than 

those of a natural membrane, and the diffusion rate of dimers drop considerably lower than 

what would be expected.  Single particle tracking experiments explain these observations by 

revealing compartments, or ‘corrals’, in natural membranes (Figure 1.3).  Within each corral 

proteins freely diffuse as they would in the fluid mosaic model, but hopping from one corral 

to another is impeded by ‘fence’ barriers.  The fences themselves are created by steric 

hindrance from the underlying cytoskeleton [21] or by membrane proteins bound to the 

cytoskeleton (protein picket model [20]).  Since dimer fence hopping is impeded compared 

to monomers, we propose that the longevity of EGFR clusters may be explained by the 

combination of high-density areas and the kinetic diffusion barriers of corrals.   

Previous simulations aimed at reproducing EGFR’s surface clustering have used 

general attraction potentials to form oligomers [22].  A complementary explanation for 
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membrane cluster creation is a receptor-receptor attraction independent of the cholesterol 

rafts.  Simulations have demonstrated that small groups of receptors may be held together 

by reversible dimerization ‘partner-switching’[23].  Other experimental observations suggest 

that dimers may form a weak tetramer (weak in relation to the dimer bond) promoting 

clustering upon dimerization [16].   

In this work we apply the CGMC method and introduce adaptive coarse graining 

multiscale simulation concepts to accelerate stochastic simulation of spatial systems.  Since 

membrane diffusion exhibits such a range of scales (diffusion within a corral is fast relative to 

diffusion across corral interfaces), traditional KMC simulation is limited to small length and 

time scales.  CGMC assumes that diffusion within a CG cell is infinity fast while cell-to-cell 

diffusion is not.  By representing corrals as individual CG cells, the CGMC simulation could 

conceivably describe diffusion accurately while expanding the simulation’s scale limits 

tremendously.   

Background of CGMC and KMC: 

Traditional kinetic Monte Carlo (KMC) simulations have enjoyed impressive 

success in the engineering and computational scientific community due to their ability to 

capture, among others, noise, out-of-equilibrium processes, and complex particle 

interactions [24-31].  The KMC method allows the simulation of spatial heterogeneous 

systems with nanoscopic variation.  However, many systems are too computationally 

demanding for KMC simulation due to multiple reasons.  KMC simulations are capable of 

capturing roughly 10
4
 – 10

6
 lattice points (100 x 100 nm

2
 to 1000 x 1000 nm

2
, assuming a 

lattice constant of 1 nm), putting many systems of interest with correlation lengths at or 

above the micrometer range out of reach. Long timescale events, such as pattern formation 
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and aggregation, are also often intractable by KMC simulation [32-34].  Diffusion-controlled 

systems pose a particular difficulty for KMC simulation due to the hydrodynamic slowdown 

from the overwhelming number of small diffusion jumps that must be simulated [35].  

Calculating long-distance interactions consumes a large fraction of CPU time.  Finally, 

systems with large reaction networks involve too many individual processes for KMC to track, 

store and search through. This problem, termed as combinatorial complexity in this work, 

arises in many applications. Examples include biology, due to the huge number of 

conformations proteins can take [36-38], and epitaxy of metals, due to numerous diffusion 

barriers arising from different local atomic environments [39-41]. 

To extend the capabilities of the KMC method to longer time and length scales, 

the Coarse-Grained Monte Carlo (CGMC) method has recently been developed [30, 35, 42-

47].  In our approach, neighboring microscopic sites are grouped together into ‘coarse-

grained’ (CG) cells and a closure is applied at the stochastic level to resident atoms or 

molecules (here after termed adparticles) to describe their distribution in the cell [35, 46, 

47].  In the simplest closure, the local mean-field (LMF) approximation, adparticles within 

cells are assumed to be well-mixed [35, 46, 47].  Other closures are explored in Ref. [30] and 

strong interactions in Ref. [48].  The adparticles of each cell are then allowed to interact with, 

react with, and diffuse to nearby cells.   

The CGMC method efficiently addresses many of the stated weaknesses of the 

traditional KMC method.  First, the grouping of microscopic sites simply reduces the number 

of lattice nodes to be individually tracked and the number of processes to be simulated.  

Second, as the size of the CG cells increases, the interaction potential length (relative to the 

CG lattice constant) shrinks, leading to a much faster calculation of the coarse interaction 
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potential.  Third, simulated diffusion jumps are much larger, overcoming (in part) the 

hydrodynamic slowdown in diffusion-controlled systems.   

Thesis Organization  

The organization of this thesis is as follows.  First the theory of coarse graining 

for various processes on a heterogeneous surface, followed by numerical examples, is 

presented in Chapter 2.  Next, the performance of the CGMC method is quantified for 

reaction-diffusion systems with a wide variety of diffusion rates, reaction rates, and lattice 

coverage in Chapter 3.  Chapter 4 brings together the CMGC method from Chapter 2 and the 

diffusion reaction system analysis of Chapter 3 to apply the CGMC method to the EGFR 

system.  Lastly, conclusions are drawn. 
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CHAPTER 2 

 

COARSE-GRAINED KINETIC MONTE CARLO MODELS: COMPLEX LATTICES, 

MULTICOMPONENT SYSTEMS, AND HOMOGENIZATION AT THE STOCHASTIC LEVEL 

 

Reprinted with permission from Ref. [1]. © 2008, American Institute of Physics 

Abstract 

On-lattice kinetic Monte Carlo (KMC) simulations have extensively been applied 

to numerous systems.  However, their applicability is severely limited to relatively short time 

and length scales.  Recently, the Coarse-Grained MC (CGMC) method was introduced to 

greatly expand the reach of the lattice KMC technique.  Herein, we extend the previous 

spatial CGMC methods to multicomponent species and/or site types.  The underlying theory 

is derived and numerical examples are presented to demonstrate the method. Furthermore, 

we introduce the concept of homogenization at the stochastic level over all site types of a 

spatially coarse-grained cell. Homogenization provides a novel coarsening of the number of 

processes, an important aspect for complex problems plagued by the existence of numerous 

microscopic processes (combinatorial complexity). As expected, the homogenized CGMC 

method outperforms the traditional KMC method on computational cost while retaining 

good accuracy. 
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Introduction 

Previous CGMC simulations have focused on uniform surfaces comprised of a 

single type of microscopic site with a single type of adparticle.  In this chapter, we extend our 

previous CGMC method [2-4] to an arbitrary number of site types and/or adparticle species.  

Lattice-based simulations of multiple site type and adparticle species systems have been 

performed previously using a mean-field (MF) estimate[5].  This extension allows CGMC to 

be applied to a much wider range of systems of interest, such as catalytic reaction systems 

[6] (where various site types may represent different elements or lattice positions), diffusion 

on surfaces and in nanoporous materials [7-9], and biological signaling [10-12] (where site 

types may represent distinct areas of a cell membrane).  In order to overcome the problem 

of combinatorial complexity, the concept of homogenization at the stochastic level is 

introduced.  

The organization of this chapter is as follows.  First, the theory of coarse 

graining for various processes including adsorption, desorption, isomerization, reaction, and 

diffusion is described.  Next, a simple MC algorithm used to implement the theory is 

presented, followed by numerical examples. The concept of homogenization is then outlined 

and illustrated with an example from diffusion in zeolites.  Conclusions are finally drawn. 

 

Multicomponent and Multisite Coarse Grained Systems 

Coarse Lattice Description 

This model follows previously published coarse graining procedures. For a 

description of the underlying microscopic model and mechanisms, refer to Ref.[13].    Major 
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nomenclature is summarized in Table 2.1. As in the previous CGMC method, microscopic 

lattice sites are grouped into CG cells forming a coarse lattice cL . The CG cells are denoted 

as Ck ( k 1,...,m= ). While the number of occupants within each CG cell is recorded, exact 

locations are not.  Instead, the local mean field (LMF) approximation is assumed to hold 

within CG cells. Let Nsttype be the number of microscopic site types.  Each cell Ck contains kqϕ  

microscopic sites of type ϕ , sttype1,..., Nϕ = , such that kqϕ  is a non-negative integer 

number. For a non-uniform mesh, each cell Ck may have a different kqϕ  value. The total 

number of sites in Ck is given by 
sttypeN

k
1

qϕ
ϕ=
∑ . In the limit of no coarse-graining, i.e., when 

sttypeN

k
1

q 1ϕ
ϕ=

=∑ , the microscopic lattice description is recovered.  The number of different 

surface atomic or molecular species is Nsp.  Each adparticle type is referred to by an index α, 

α = 1, …,Nsp+1, and a site vacancy is the (Nsp+1)
th

 surface species, referred to as 

spN 1α = + = φ  for convenience. 
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Table 2.1 – Major Nomenclature 

Term Type Description 

st type1,..., Nϕ =  Integer Lattice site type 

sp1,..., Nα = ;α = φ  Integer Surface species type; Vacancy 

���
�  Integer Number of α  adparticles on ϕ  type sites in CG cell Ck 

kqϕ  Integer Number of ϕ  type sites in CG cell Ck 

k
α
ϕθ  Real Coverage of species α  on ϕ  type sites in CG cell Ck 

, 'k

α
ϕ α ϕ

θ
′
 Real 

Coverage of species α  on ϕ  type sites in CG cell Ck, 

given that one 'α  adparticle is on a 'ϕ  type site 

kUα
ϕ  Real 

The CG interaction energy of species α  on ϕ  type sites 

in CG cell Ck 

Γ  Real Microscopic event frequency 

Γ% Real Averaged event frequency 

Γ  Real Coarse-grained event transition probability rate  

c
Γ  

Real Lumped coarse-grained transition probability rate 

   

 

The CG occupation function for species α , sp1,..., N 1α = + , chemisorbed on 

ϕ  type of sites in cell Ck is given by 

 
k

k j
j C  

α α
ϕ ϕ

∈

η = σ∑
. (2.1) 

Furthermore, the exclusion principle requires that 
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spN 1

k k
1

q
+

α
ϕ ϕ

α=

η =∑
. (2.2) 

The CG occupancy tensor is defined as 

 

sttype spk 1,...,N ,k 1,...,m, 1,...,N 1{ }α
ϕ ϕ= = α= += ηηηηη

. (2.3) 

 

Energetics and Hamiltonian 

The LMF approximation is employed throughout this chapter to derive all 

coarse-grained quantities in terms of the coarse observable ηηηη  in a closed form. The coarse 

interaction potential is a projection over the two-body microscopic interaction potentials 

J (r)
′αα
′ϕϕ

r
 using Haar wavelets[4].  For all expressions, the microscopic interaction energy is 

recovered in the limit of zero coarse-graining. 

The CG interaction potential for two chemisorbed species on sites of the same 

type in Ck is given by 

 
k

k

k, k

j C rk k
j C

1
J J (r)

q (q 1)

′αα ′αα
ϕ ϕ ϕϕ

∈ϕ ϕ
′∈

=
− ∑ ∑r

r

, 

′ϕ = ϕ

, when 

kq 1ϕ >

 (2.4) 

and k, kJ 0
′αα

ϕ ϕ =  otherwise when kq 1ϕ ≤ . Herein, overbars denote coarse 

variables(an average across all possible configurations within the k
th

 cell that satisfy the 

constraints regarding the ηηηη  values). The term kq 1ϕ −  in the denominator of Eq. (2.4) arises 
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because of the exclusion principle. Based on the position of the j
th

 site, the position vector r
r

 

automatically specifies the position of site j′ . 

The CG interaction potential between two species on sites of different types in 

Ck is given by 

 
k

k

k, k

j C rk k
j C

1
J J (r)

q q

′αα ′αα
′ϕ ϕ ′ϕϕ

∈′ϕ ϕ
′∈

= ∑ ∑r
r

, 

′ϕ ≠ ϕ

 when 

k kq ,q 1′ϕ ϕ ≥

 (2.5) 

and k, kJ 0
′αα
′ϕ ϕ =  otherwise. 

The CG interaction potential between two species in two different CG cells Ck 

and kC ′  (regardless of site types) is given by 

 
k

k

k, k

j C rk k
j C

1
J J (r)

q q
′

′αα ′αα
′ ′ϕ ϕ ′ϕϕ

∈′ ′ϕ ϕ
′∈

= ∑ ∑r
r

, 

k k′≠

 when 

k kq ,q 1′ ′ϕ ϕ ≥

 (2.6) 

and k, kJ 0
′αα
′ ′ϕ ϕ =  otherwise. Note that the CG interaction potential is symmetric, 

i.e., k, k k, kJ J
′ ′αα α α

ϕ ϕ ϕ ϕ=  and k, k k, k k , kJ J J
′ ′ ′αα α α αα
′ ′ ′ ′ ′ ′ϕ ϕ ϕ ϕ ϕ ϕ= = . 

The CG Hamiltonian is given by 

 

( ) ' '
k, k k, k k, kk k k k

k k

k
k

1
H( ) J 1 J J

2

h ,

′ ′αα αα ααα α α α
′ ′ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ

′ ′ ′α ϕ α ϕ′α
′α ≠α

α α
ϕ

α ϕ

 
 = − η η − + η + η +  
 

η

∑∑∑ ∑ ∑∑∑

∑∑∑

ηηηη

(2.7) 

where hα
 is the external field interaction per particle of type α .The CG 

interaction energy kUα
ϕ  of species α on site ϕ in CG cell Ck is written as a sum of 

contributions from within and between CG cells, such that 
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c

k k,k k,k
k
k k

U U Uα α α
′ϕ ϕ ϕ

′∈
′≠

= + ∑
L

 (2.8) 

where the within-cell contribution is given by 

 

' '
k ,k k, k k k, k k k, k 'kU J ( 1) J J′ ′α αα α αα α αα α

′ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
′ϕ′ ′α α

′ϕ ≠ϕ′α ≠α

= η − + η + η∑ ∑∑
 (2.9) 

and the CG cell interactions between two different CG cells are given by 

 

'
k ,k k, k 'kU J ′α αα α

′ ′ ′ϕ ϕ ϕ ϕ
′ϕ ′α

= η∑∑
, 

k k′≠

. (2.10) 

 

Coarse-grained (CG) process dynamics 

CG transition probability rates are derived for various processes, listed below. In 

the limit of no coarse-graining, the microscopic transition probability rates are obtained. 

Adsorption 

The CG transition probability rate for adsorption on sites of type ϕ in cell Ck is 

derived as a function of the expected value of the microscopic adsorption rates as 

 
k k k

ads ads, j j ads, j k ads, k k
j C j C j Ck

1
( , , j) .

q
α α φ α φ α φ

ϕ ϕ ϕ ϕ ϕ ϕ
∈ ∈ ∈ϕ

 
Γ ϕ = Γ σ ≈ Γ η = Γ η  

 
∑ ∑ ∑ %σσσσ

 (2.11) 

In (2.11), ads, k
α

ϕΓ%  is the average adsorption frequency for Ck, a function of the 

microscopic adsorption frequency, Γ, and the number of vacant sites in Ck.  The 

approximation sign indicates that the local adsorption rate constant is replaced with a spatial 
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average if there is variation in the adsorption frequency between sites.  Summarizing, the CG 

adsorption transition probability rate is given by 

 . 

 ads ads, k k( , , k)
α α φ

ϕ ϕΓ ϕ = Γ η%ηηηη  
(2.12) 

 

The CG dissociative adsorption transition probability rates have a form similar to 

the corresponding CG transition probability rates for surface disproportionation reactions 

derived below. 

Desorption and Isomerization Reaction 

The CG transition probability rate for desorption from sites of type ϕ in cell Ck is 

derived as 

 

j j

k k k k

k k

k

U U
des des, j j des, j j

j C j C j C j Ck

U U
des, j k des, k k

j Ck

1
( , , j) e e

q

1
e e .

q

α α
ϕ ϕ

α α
ϕ ϕ

−β −βα α α α α
ϕ ϕ ϕ ϕ

∈ ∈ ∈ ∈ϕ

−β −βα α α α
ϕ ϕ ϕ ϕ

∈ϕ

 
Γ ϕ = Γ σ ≈ Γ σ  

 

 
≈ Γ η = Γ η  
 

∑ ∑ ∑ ∑

∑ %

σσσσ

 (2.13) 

The same assumption regarding the desorption frequencies, mentioned above 

for adsorption, is employed here as well. Summarizing, the CG desorption transition 

probability rate is given by 

 

kU
des des, k k( , , k) e .

α
ϕ−βα α α

ϕ ϕΓ ϕ = Γ η%ηηηη

 (2.14) 
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Likewise, the CG isomerization reaction transition probability rate is given by 

 

iso iso, k k( , , k) .
′α α→α α

ϕ ϕΓ ϕ = Γ η%ηηηη

 (2.15) 

Here, 

 
k

iso, k iso, j k
j C

/ q
′ ′α→α α→α

ϕ ϕ ϕ
∈

Γ = Γ∑%

 (2.16) 

is the average reaction frequency for a non-activated isomerization reaction 

process. 

Surface Disproportionation Reaction 

The CG transition probability rate for the disproportionation reaction 

′ ′′ ′′′α + α → α +α  in cell Ck is partitioned into reactions inside Ck and reaction at the 

boundaries with neighboring cells, i.e., 

 
k k k k k

rxn, rxn,
rxn, j j j j

j C j C j C j C k j C
k kj j

1
( , , j, , j )

2 n n
′

′ ′′ ′′′ ′ ′′ ′′′αα →α α αα →α α
′ ′′ ′′′ ′ ′′ ′ϕϕ ϕϕαα →α α α α α α

′ ′ ′ ′ ′ϕϕ ϕ ϕ ϕ ϕ
′ ′ ′∈ ∈ ∈ ∈ ∈′ ′ϕϕ ϕϕ

′′ ≠≠

Γ Γ
′ ′Γ ϕ ϕ = σ σ + σ σ∑ ∑ ∑ ∑∑ ∑σσσσ

, 

 (2.17) 

where j and j′  are adjacent sites, and n ′ϕϕ  gives the number of adjacent ′ϕ  

sites around a ϕ  site.  This is divided by n ′ϕϕ  to arrive at the reaction frequency per pair of 

reactants.  The first term in the R.H.S. of (2.17) gives the sum of reaction transition 

probability rates on sites inside the cell, while the second term gives the sum of reaction 

transition probability rates when one of the reacting sites belongs to cell Ck and other one 

belongs to cell kC ′ . The factor of ½ prevents double-counting of the same pair of sites within 
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Ck. Due to the exclusion principle, the first term is absent in the microscopic 

disproportionation reaction transition probability rate expression ( kq 1ϕ = ). 

Using the LMF approximation inside a CG cell, the average species ′α  coverage 

on ′ϕ  sites in Ck is given by k k/ q
′α
′ ′ϕ ϕη .  To use this to find CG reaction transition probability 

rates boundary corrections and the exclusion principle need to be accounted for in the case 

of a finite-size CG cell. The average number of ′α − α  reacting pairs within cell Ck is given by 

 

k kB
k k, k

k neighbor of k k k

(n q q )
q q

′α α
′ϕ ϕ

′ ′ ′ϕϕ ϕ ϕ ϕ
′ ′∈ ϕ ϕ

η η
− ∑

, and (2.18) 

 

k kB
k k, k

k neighbor of k k k

(n q q )
q (q 1)

′α α
ϕ ϕ

′ϕϕ ϕ ϕ ϕ
′∈ ϕ ϕ

η η
−

−∑
, (2.19) 

for ′ϕ ≠ ϕand ′ϕ = ϕ , respectively.  The difference in the denominator of Eq. 

(2.19) reflects that when both reactants use the same site type, the first reactant necessarily 

occupies one of the potential sites of the second reactant, restricting the number of potential 

host sites within a finite CG cell for the second reactant by 1.  Here 
B

k, kq ′ ′ϕ ϕ  gives the number 

of ′ϕ −ϕ  pair sites at the boundary kkB ′  between cells Ck and kC ′ , such that the ′ϕ  sites lie 

in cell kC ′ . The term in the parenthesis indicates the number of pairs of sites within cell Ck. 

Using Eqs. (2.17), (2.18), and (2.19) the CG reaction transition probability rate inside the CG 

cell Ck is given by 

 

,
rxn rxn, k k( , ,k, , k)
′′ ′′′ ′ ′′ ′′′ ′α α αα →α α α α

′ ′ϕϕ ϕ ϕ′Γ ϕ ϕ = Γ η η%ηηηη

, (2.20) 

where 
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B
k k, k

rxn, k
rxn, k k

k k

n q q

n q q

′ ′′ ′′′αα →α α ′ ′ ′ϕϕ ϕ ϕ ϕ
′ ′′ ′′′ ′ϕϕαα →α α ′

′ϕ ϕ
′ ′ϕϕ ϕ ϕ

 −
Γ  Γ =   

 

∑
%

 or (2.21) 

 

B
k k, k

rxn, k
rxn, k k

k k

n q q

n q (q 1)

′ ′′ ′′′αα →α α ϕϕ ϕ ϕ ϕ
′ ′′ ′′′ ϕϕαα →α α ′
ϕ ϕ

ϕϕ ϕ ϕ

 −
Γ  Γ =  − 

 

∑
%

 (2.22) 

is the CG hopping frequency.  Note that the factor of ½, present in Eq. (2.17) to 

prevent double-counting of pairs is absent from Eq. (2.20) because the number of pairs when 

′ϕ ≠ ϕ  or ′α ≠ α  is given by Eqs. (2.18) and (2.19).  However, when ′α = α  and ′ϕ = ϕ , a 

modified form of Eq. (2.20) is obtained due to the exclusion principle 

 
rxn rxn, k k

1
( , , k, , k ) ( 1)

2
′′ ′′′ ′′ ′′′αα→α α αα→α α α α

ϕϕ ϕ ϕ′Γ ϕ ϕ = Γ η η −%ηηηη
. (2.23) 

As in Eq. (2.17), the factor of ½ prevents double-counting of the same pair of 

reactants within Ck.  In arriving at Eq. (2.21), it has been tacitly assumed that all sites of the 

same type have the same frequency for reaction. 

The CG disproportionation reaction transition probability rate for reactions 

between the CG cell Ck and kC ′  accounts for the missing boundary reaction terms in Eq. 

(2.17 – 2.23). Starting with the second term in the R.H.S. of Eq. (2.17), one gets a CG 

disproportionation reaction transition probability rate for each pair of cells k kC C ′−  given by 

 

j j

k k k kk k kkj j

rxn, rxn,
j j j j

j C j C j C B j C Bn n
′

′ ′ ′ ′′

′ ′′ ′′′αα →α α ′ ′′ ′′′αα →α α
′ϕ ϕ ′ ′′ϕϕα α α α

′ ′ ′ ′ϕ ϕ ϕ ϕ
′ ′∈ ∈ ∈ ∩ ∈ ∩′ ′ϕ ϕ ϕϕ

Γ Γ
σ σ = σ σ∑ ∑ ∑ ∑

. (2.24) 



23 

 

The summation occurs over sites common to a CG cell along the boundary with 

the neighboring CG cell. Defining the average reaction frequency at the k kC C ′−  boundary 

as 

 

B
rxn, k, k

rxn, k k
k k

q

n q q

′ ′′ ′′′αα →α α
′ ′′ ′′′ ′ ′ ′ϕϕ ϕ ϕαα →α α

′ ′ϕ ϕ
′ ′ ′ϕϕ ϕ ϕ

Γ
Γ =%

, 

k k′≠

, (2.25) 

the CG disproportionation reaction transition probability rate at the k kC C ′−  

boundary is given by 

 

,
rxn rxn, k k k k( , ,k, , k )
′′ ′′′ ′ ′′ ′′′ ′α α αα →α α α α

′ ′ ′ ′ϕ ϕ ϕ ϕ′ ′Γ ϕ ϕ = Γ η η%ηηηη

 

k k′≠

. (2.26) 

One can define an effective CG disproportionation reaction transition 

probability rate for cell Ck by combining Eq. (2.20) or (2.23) and Eq. (2.26) given by 

 

rxn, k k k rxn, k k k k
k

k k

rxn

rxn, k rxn, k k k k
k

k k

1
( ) ,

2
( , , k, )

1
( ( 1) ) , otherwise

2

′ ′′ ′′′ ′ ′ ′′ ′′′ ′αα →α α α αα →α α α α
′ ′ ′ ′ ′ ′ϕ ϕ ϕ ϕ ϕ ϕ ϕ

′
′≠′ ′′ ′′′αα →α α

′′ ′′′ ′′ ′′′αα→α α α αα→α α α α
′ ′ ′ ′ϕϕ ϕ ϕ ϕ ϕ ϕ

′
′≠

 ′Γ η + Γ η η α ≠ α
′Γ ϕ ϕ = 
 Γ η − + Γ η η



∑

∑

% %

% %
ηηηη

.

 (2.27) 

Herein, the contributions from reactions at the cell boundaries are equally split 

between two adjoining cells, and hence the factor of ½ in Eq. (2.27).  One can easily see the 

possibility for a very large number of transition probability rates with relatively few 

molecular species combining in many ways as reactants or products on various hosting site 

types.  This explosion in the number of processes that must be tracked and searched through 



24 

 

can be very challenging for a simulation.  To address this problem we introduce the concept 

of CG cell homogenization in a later section. 

Diffusion 

A CG hopping transition probability rate for an adparticle of species type α on 

site of type ϕ in cell kC  hopping to site of type ϕ  in cell kC ′  is postulated and is given by 

 

kk k U
mig mig, k k

k k

( , , k, k ) e
q q

α
ϕ

α φ
α ′ϕ ϕ −βα

′ϕ →ϕ
′ϕ ϕ

η η
′Γ ϕ = Γ%ηηηη

. (2.28) 

An expression for the unknown CG hopping frequency m, k k
α

′ ′ϕ →ϕΓ%  is derived next 

such that Eq. (2.28) reduces to the microscopic one in the limit of no coarse-graining. The cell 

coverages are defined in terms of an ensemble average k kc (r) / qα α
ϕ ϕ ϕ= η

r
 and the 

mesoscopic diffusion flux equations are derived using Taylor expansions. 

As an example, a Taylor expansion in the α  species coverage at ϕ  sites is 

written for cell kC ′  about the spatial coordinates of cell Ck and is given by 

 

2

k 2 2 2
k k k k k k k k xy

k k

1
c (a . ) c (a . ) c (a .x)(a .y) c

q 2

α
′ϕ α α α α

′ ′ ′ ′ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ ξ ϕ ϕ ϕξ
ξ ξ′ϕ

η  
= + ξ ∂ + ξ ∂ + ∂ 
 

∑ ∑
r r r r r r r r

 (2.29) 

where {x, y}ξ =
r r r

 are the Cartesian coordinates of the diffusion hop’s direction 

vector.  This framework is easily extended to systems of any number of dimensions. Here, 

k ka ′ ′ϕ ϕ

r
 is the center-to-center vector from kC ′  to kC . In this case, the center of Ck is the 

average spatial location of ϕ sites in Ck.  For large cells one can typically use the geometric 

cell center.  Likewise, the Arrhenius factor is expanded to give 
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k
k

2

UU

2 2 2 2
k k k k

U

2 2
k k k k x y xy

k

e e

1
1 (a . ) U (a . ) ( ( U ) U )

2e

(a .x)(a .y)( U U U )

α
α ′ϕ

′ϕ

α
ϕ

−β−β

α α α
′ ′ϕ ϕ ϕ ϕξ ϕ ξ ϕ ϕξ−β

ξ ξ

α α α
′ ′ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= =

  − ξ β∂ + ξ β ∂ −β∂  
  
  + β ∂ ∂ −β∂  

∑ ∑
r r r r

r r r r . (2.30) 

Using Eqs. (2.29) and (2.30) the net rate of α adparticles diffusing from kC  to 

kC ′  along the positive ξ
r

 axis is given by 

  

 

k kk k k kU U
mig, k k mig, k k

k k k k

N. e e
q q q q

α α
′ ′ϕ ϕ

α φ α φ
′ ′ϕ ϕ ϕ ϕ−β −βα α

′ ′ ′ϕ →ϕ ϕ →ϕ
′ ′ϕ ϕ ϕ ϕ

η η η η
ξ = Γ −Γ

ur r
% %

, (2.31) 

and matching the resulting terms with the corresponding continuum equation 

obtained from the microscopic hopping transition probability rate, one gets 

 

mig, k k mig, k k mig, kk .α α α
′ ′ ′ϕ →ϕ ϕ →ϕ ϕΓ = Γ = Γ% % %

 (2.32) 

Using Eqs. (2.31) and (2.32), the CG flux is given by 

 

U
mig, kk

k k kB
k k k k

e
N. N (a . )(c c c c c c U )

2 q

α α−β
′ϕ φ α α φ α φ α

′ ′ϕ ϕ ϕ ξ ϕ ϕ ξ ϕ ϕ ϕ ξ ϕ
′ ′ ′ ′ϕ ϕ

Γ
ξ = = − ξ ∂ − ∂ −β ∂∑ ∑

%ur r ur r r
% % %%

 (2.33) 

when only terms k ka . 0, k′ϕ ϕ ′ξ > ∀
r r

 are included in the summation (diffusion 

with a positive ξ
r

 component), and 

 

U
mig, kk

k k kB
k k k k

e
N. N (a . )(c c c c c c U )

2 q

α α−β
′ϕ φ α α φ α φ α

′ ′ϕ ϕ ϕ ξ ϕ ϕ ξ ϕ ϕ ϕ ξ ϕ
′ ′ ′ ′ϕ ϕ

Γ
ξ = = ξ ∂ − ∂ −β ∂∑ ∑

%ur r ur r r
% % %%

 (2.34) 



26 

 

when only terms k ka . 0, k′ϕ ϕ ′ξ < ∀
r r

 are included in the summation (diffusion 

with a negative ξ
r

 component). Comparing the terms in the CG and microscopic diffusion flux 

expression, one gets 

 

j jB
jm, k k

mig, kk
k k

(a . )
q

n a .

′ϕ →ϕα
′′ϕ→ϕ ϕ ϕα

′ϕ
′ϕ ϕϕϕ

ξ
Γ

Γ =
ξ

∑
r r

% r r

, (2.35) 

such that j ja . 0, j′ϕ →ϕ ′ξ > ∀
r r

 and k ka . 0′ϕ ϕ ξ >
r r

 (only microscopic diffusion hops 

and CG cell hops, respectively, with a positive ξ
r

 component are considered), and 

 

mig, kk 0, ifα
′ϕΓ =%

 

k ka . 0.′ϕ ϕ ξ =
r r

 (2.36) 

The microscopic hopping transition probability rate is recovered from Eq. (2.35) 

in the limit of no coarse-graining. 

 For the case of hopping between different site types, , ′ϕ ϕ , ′ϕ ≠ ϕ , k k′ ≠ , 

Eq. (2.35) is adapted to give 

 

j jB
jm, k k

mig, k k
k k

(a . )
q

n a .

′ ′ϕ →ϕα
′′ ′ ′ϕ→ϕ ϕ ϕα

′ ′ϕ ϕ
′ ′ϕ ϕ′ϕϕ

ξ
Γ

Γ =
ξ

∑
r r

% r r  (2.37) 

with the same constraints applying as in Eq. (2.35).  Eq. (2.37) assumes that the 

microscopic transition probability rate for diffusion from ϕ  to ′ϕ  ( )m,
ˆ α

′ϕ→ϕΓ  is 

representative of the average microscopic transition probability rate for diffusion within each 

cell. A summary of transition probability rates for CGMC is given in Table 2.2. 
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Table 2.2 – Summary of transition probability rates for CGMC (without homogenization). 

Process 

Coarse transition probability rate

( )( , ,k, ,k )′ ′Γ ϕ ϕηηηη  Coarse rate constant ( )Γ%  

Adsorption 

( )α+φ⋅ϕ→α⋅ϕ  

 
k

ads ads, k
kq

φ
α ϕα

ϕ
ϕ

η
Γ = Γ%  

k

ads, j
ads, k

j C kq

α
ϕα

ϕ
∈ ϕ

Γ
Γ = ∑%  

Desorption 

( )α⋅ϕ→α+φ⋅ϕ  

 
kk U

des des, k
k

e
q

α
ϕ

α
ϕα α −β

ϕ
ϕ

η
Γ = Γ%  

k

des, j
des, k

j C kq

α
ϕα

ϕ
∈ ϕ

Γ
Γ = ∑%  

Isomerization Reaction 

( )′α ⋅ϕ→ α ⋅ϕ  

k
iso iso, k

kq

α
′ ϕα α→α

ϕ
ϕ

η
Γ = Γ%  

k

iso, j
iso, k

j C kq

′α→α
′ ϕα→α

ϕ
∈ ϕ

Γ
Γ = ∑%  

Surface Hopping (Diffusion) 

( )′ ′α ⋅ϕ+ φ⋅ϕ → φ⋅ϕ+ α ⋅ϕ  
  

 k k′≠  
kk k U

mig m, k k
k k

e
q q

α
α φ

α ′ϕ ϕα −β
′ ′ϕ →ϕ

′ϕ ϕ

η η
Γ = Γ%  

*
j jB

jm, k k k k
m, k k

k k

(a . )
q

n a .′

′ϕ →ϕα
′′ ′ ′ ′ϕ →ϕ ϕ ϕα

′ ′ϕ →ϕ
′ϕ ϕϕϕ

ξ
Γ

Γ =
ξ

∑
r r

% r r  

   
Disproportionation reaction 

( )′ ′ ′′ ′′′ ′α ⋅ϕ+ α ⋅ϕ → α ⋅ϕ+ α ⋅ϕ  
   

 k k , ,′ ′ ′= ϕ = ϕ α = α  
( )
( )

kk'

rxn, k k rxn, k k
k k

1

q q 1′ ′ ′ ′

αα
ϕ′ ′′ ′′′ ′′ ′′′ ϕαα →α α αα →α α

ϕ ϕ ϕ ϕ
ϕ ϕ

η −η
Γ = Γ

−
%  

rxn, k k B
krxn, k k k, k

k k

n q q
n

′ ′

′ ′ ′ ′ ′

′

′ ′′ ′′′αα →α α
′ ′′ ′′′ ϕ ϕαα →α α

ϕϕ ϕ ϕϕ ϕ ϕ
′≠ϕϕ

Γ  
Γ = − 

 
∑%   k k , ,′ ′ ′= ϕ = ϕ α ≠ α  ( )

k k
rxn, k krxn, k k

k kq q 1

′

′ ′

α α
′ ′′ ′′′ ′ ′′ ′′′ ϕ ϕαα →α α αα →α α

ϕ ϕϕ ϕ
ϕ ϕ

η η
Γ = Γ

−
%  

 k k ,′ ′= ϕ ≠ ϕ  
k k

rxn, k k rxn, k k
k k

q q

′

′

′ ′ ′ ′

′

αα
′ ′′ ′′′ ′ ′′ ′′′ ϕ ϕαα →α α αα →α α

ϕ ϕ ϕ ϕ
ϕ ϕ

ηη
Γ = Γ%  
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 k k′≠   
k k

rxn, k k rxn, k k
k k

q q

′

′ ′

′ ′ ′ ′

′ ′

αα
′ ′′ ′′′ ′ ′′ ′′′ ϕ ϕαα →α α αα →α α

ϕ ϕ ϕ ϕ
ϕ ϕ

ηη
Γ = Γ%  

rxn, k k B
k, krxn, k k

q
n′ ′

′ ′′ ′′′αα →α α
′ ′′ ′′′ ′ ′ϕ ϕαα →α α

′ ′ϕ ϕϕ ϕ
′ϕϕ

Γ
Γ =%  

* - Subject to the constraints of Eq. (2.35) 
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Monte Carlo Algorithm 

A flowchart of the CGMC algorithm is shown in Figure 2.1.  Initially, a 

microscopic lattice (no coarse-graining) is constructed with user-specified site types and 

initial adparticle placement.  Spatially CG cells are then constructed given the number of 

microscopic sites they contain.  The LMF is applied to all sites within the same CG cell.  To 

execute a fully microscopic simulation (traditional KMC), each cell is given a size of one (q = 

1).   

Once the attributes of each cell are established, the number of adparticles is 

recorded in the main observable of the simulation, �
��
�  (the concentration of adparticle type 

α on site type φ in the kth CG cell).  Using the �
��
�  values, the interaction potentials and all 

transition probability rates are calculated and cataloged into the arrays U and Γ, respectively.   

As happens with a microscopic KMC simulation[14], different algorithms can be 

used to implement the CGMC method. Herein, a null-event selection process is used.  At the 

beginning of each simulation loop, a CG cell, Ck, is randomly selected.  Another random 

number is generated and multiplied by the normalization rate, maxΓ , ensuring that all 

probabilities are less than 1.  The normalization rate is the maximum expected value for the 

sum of all transition probability rates associated with all CG cells.  The product of maxΓ  and 

the random number is used to select a process corresponding to Ck from Γ, otherwise, a null 

event occurs.  
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Figure 2.1 - Flowchart of null-event CGMC algorithm.  The cell coverage θ and cell coarse-grained 

transition rate Γc will only be used if CG cell homogenization is applied. 
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Upon a successful step, the simulation’s average real time is updated using 

1/t P∆ =  where P represents the sum of all transition probability rates.  The 
α
ϕη k  values are 

then updated.  Only affected interaction potentials and transition probability rates are 

recalculated (a local update algorithm) using the new 
α
ϕη k  values and cataloged in U and Γ, 

respectively.   

 

Numerical Examples 

Example A: Adsorption/Desorption on a (100) Surface with Multiple Site Types 

To demonstrate the CGMC method with multiple types of microscopic sites and 

adparticle-adparticle interactions, the following example is adapted from Ref.[14].  A 

molecular species, A, adsorbs on either a top ( Tφ ) or a bridge ( Bφ ) site of a (100) crystal 

plane (a schematic of the lattice is shown in Figure 2.2a), forming surface species TA ⋅φ  or 

BA ⋅φ , respectively.  Species A from both site types are allowed to desorb.  The various 

processes are summarized in Table 2.3.  A microscopic lattice of size 40a by 40a is used, 

where a is the lattice constant, representing 1600 top (T) sites and 3200 bridge (B) sites.  

Initially the lattice is empty.  Periodic boundary conditions are implemented. 
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Figure 2.2 (a) Schematic of Top (T) and Bridge (B) sites of a (100) surface (Reprinted with permission 

from Ref. [14]. © 2007, American Institute of Physics).  (b) Layout of CG cells over the microscopic 
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lattice in Example A.  CG cells are uniform squares with a side length of 4 lattice constants.  Periodic 

boundary conditions are used. (c) Coverage evolution against simulated time.   

 

 

Microscopic Description 

The microscopic transition probability rates for adsorption are: 

 

, ,( , , ) (1 )ads ads T T jT jσ σΓ = Γ −

, (2.38) 

 

, ,( , , ) (1 )ads ads B B jB jσ σΓ = Γ −

, (2.39) 

where ,T jσ  and ,B jσ  denote the occupancy of the j
th

 top or bridge site, 

respectively.  The presence of a vacancy is denoted using the exclusion principle ,(1 )T jσ− .  

The transition probability rate prefactors for adsorption are 
1

, 0.4a T s−Γ =  and 

1
, 0.2a B s−Γ = . 

The transition probability rates for desorption are 

 

, ,( , , ) TjU
des des T T jT j e

βσ σ −Γ = Γ

, (2.40) 

 

, ,( , , ) TjU
des des B B jB j e

βσ σ −Γ = Γ

. (2.41) 

Competitive attractive and repulsive adparticle interactions can introduce 

complex phase behavior.  Following Ref [14] with ω = 2, the top-top (TT), top-bridge (TB), and 
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bridge-bridge (BB) adparticle-adparticle interactions are given by JTT(r)/kBTs = 0.0605, 

JTB(r)/kBTs =JBT(r)/kBTs = -0.0155, JBB(r)/kBTs = 0.00415, respectively, when 0 3r< ≤ and zero 

otherwise (fairly short interactions).  Here r is the dimensionless distance between two 

interacting adsorbed particles (in terms of lattice constants).  Each top site has 28 TT and 52 

TB neighbor interactions, whereas each bridge site has 26 BT and 60 BB neighbor 

interactions.  The difference in the number of neighbors is due to bridge sites having twice 

the density of the top sites. 

 

 

Table 2.3 - Summary of processes and transition probability rates for Example A. 

Process Microscopic (KMC) - Γ  Coarse Grained - Γ  

Top site adsorption: T TA A+ φ → ⋅φ  
, ,(1 )a T T jσΓ −  

A
a,Tk Tk

φΓ η%  

Bridge site adsorption: B BA A+ φ → ⋅φ  
, ,(1 )a B B jσΓ −  

A
a,Bk Bk

φΓ η%  

Top site desorption: T TA A⋅φ → + φ  
, ,

TjU
d T T je

βσ −Γ  
A
TkA A U

d,Tk Tke
−βΓ η%  

Bridge site desorption: B BA A⋅φ → + φ  
, ,

BjU
d B B je

βσ −Γ  
A
BkA A U

d,Bk Bke
−βΓ η%  

 

CGMC Description 

A schematic of the CG lattice is shown in Figure 2.2b.  Uniform CG cells of size 

4a by 4a (16 T sites, 32 B sites) are used.  Adparticles on T (B) sites are considered to be 

spatially well-mixed over all T (B) sites in the same CG cell.  The coverage on T sites and B 

sites within a CG cell are tracked independently.   
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The CGMC equations describing the adsorption and desorption transition 

probability rates are given by Eqs. (2.12) and (2.14).  For this example, they become 

 

A A
ads ads,Tj Tk( ,T,k) φΓ = Γ η%ηηηη

, (2.42) 

 

A A
ads ads,Bj Bk( ,B,k) φΓ = Γ η%ηηηη

, (2.43) 

 

A
TkA A A U

des des,Tk Tk( ,T,k) e−βΓ = Γ η%ηηηη

, (2.44) 

 

A
BkA A A U

des des,Bk Bk( ,B,k) e−βΓ = Γ η%ηηηη

, (2.45) 

corresponding to the four processes (see also Table 2.3).  Similarly, the coarse-

grained interaction potentials are obtained from Eqs. (2.4)-(2.10). 

Figure 2.2c compares the KMC and CGMC simulation results.  The agreement is 

very good for all trajectories.  The small discrepancy between KMC and CGMC is attributed to 

small clusters seen in KMC (see Ref. [14]).  The LMF assumption in CG cells does not resolve 

these small clusters well, as small-scale spatial detail is lost as the coarse-grained cell size 

increases.  Despite this, the CGMC method performs very well as a consequence of the 

relatively large number of interacting neighbors that render the coarse-graining fairly 

accurate.  
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Example B: Diffusion and Reaction of Multiple Species on a Single Crystal 

Diffusion and reaction of multiple surface species is demonstrated in the 

presence of spatial gradients and adparticle-adparticle interactions with the following 

example adapted from Ref. [14].  On a (100) crystal plane, adparticles are allowed to reside 

on hollow sites, creating a lattice with a square pitch and one available site type.  The lattice 

is 50a x 50a in the x and y directions (2500 lattice nodes).  Periodic boundary conditions are 

employed.  Two adparticle species, A and B, initially reside in stripes on the surface.  The 

probability of finding species A at a spatial location (x,y) at time t=0 is given by 

 

1 x 15 x 35
p(x, y, t 0) tanh tanh

2 2 2

 − −    = = −         , (2.46) 

where x is the dimensionless position in the x dimension with respect to the hop 

distance (a).  Species B initially occupies all sites not occupied with species A.  Note that 

there are no gradients in the y direction.   

Each adparticle is allowed to diffuse to an adjacent vacancy according to the 

respective transition probability rate, which is a function of adparticle-adparticle 

interactions.  Additionally, an A adparticle may react with an adjacent B adparticle, followed 

by immediate desorption of the product, leaving behind two vacant sites.  The processes are 

summarized in Table 2.4. 

No vacancies are initially available.  As the simulation proceeds, a local 

population of vacancies at the interface of the two species develops, allowing reactants to 
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diffuse to the interface.  This leads to moving reaction fronts as areas predominantly 

occupied by a single species begin to diffuse to and react with the other species.   

 

Table 2.4 - Summary of processes and transition probability rates for Example B. 

Process Microscopic (KMC) - Γ  Coarse Grained - Γ  

Species A diffusion: A A⋅ φ + φ→ φ+ ⋅φ  
'

j

A
UAm

j j e
n

βφσ σ −Γ
 

A
k

A
A Uk k '
m,k k

k k '

e
q q

φ
−β

′→

η η
Γ%  

Species B diffusion: B B⋅ φ + φ→ φ+ ⋅φ  
'

j

B
UBm

j j e
n

βφσ σ −Γ
 

B
k

B
B Uk k '
m,k k

k k '

e
q q

φ
−β

′→

η η
Γ%  

Reaction of A and B: A B AB 2⋅ φ + ⋅φ→ + φ  
'

AB
A Brxn
j jn

σ σ
Γ

 
AB A B
rxn,k,k ' k k 'Γ η η%  

 

Microscopic Description 

Adparticles hop in the x and y directions according to the microscopic rate: 

 
'( , , ') (1 ) jUmig

j jj j e
n

α
βσ σ σ −Γ

Γ = −
,  

1

0j

if site j occupied

otherwise
σ

 
=  
   (2.47) 

n represents the number of possible hop directions from site j, and m
ˆ αΓ

represents the hopping frequency of an adparticle on site j.  For our example on the (100) 

surface, n = 4, reflecting that each site has 4 neighbors.  The hopping frequencies of A and B 

are taken to be 
A B
mig mig 4Γ = Γ = .  The adparticle-adparticle interaction potentials defined for 

AA, AB, BA, and BB pairs are: ( ) 0.0214AA
B sJ r k T= , 
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( ) ( ) ( ) 0.0107AB BA BB
B sJ r J r J r k T= = = , when 0 3r< ≤  and zero otherwise.  Microscopic 

interactions for the jth site are calculated with each occupied site according to: 

 

' '
'

r '

(r)j jU Jα αα α

α

σ=∑∑
 (2.48) 

An A adparticle reacts with a neighboring B adparticle with a transition 

probability rate of  

 
'( , , ') ,

AB
AB A Brxn
rxn j jj j

n
σ σ σ

Γ
Γ =

 (2.49) 

where the reaction frequency is 0.1AB
rxnΓ = . 
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Figure 2.3 (a) Schematic of the CG mesh.  Each CG cell encompasses 1x50 microscopic sites.  Periodic 

boundary conditions are used.  (b) Coverage of vacancies at increasing times (t=10, t=100, t=300).  

CGMC is compared against traditional KMC.  The slight difference is attributed to the well-mixed 

assumption along the y-axis. 
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CGMC Description 

For this example, the microscopic lattice is divided into 50 uniform CG cells.  

Each CG cell is 50a by 1a, effectively creating a 1D simulation, shown in Figure 2.3a.  The 

reaction/desorption transition probability rate, Eq. (2.49), is spatially coarse grained using 

Eqs. (2.20) and (2.25) to 

 

A,B AB A B
rxn rxn,k,k ' k k '( , k,k ')Γ = Γ η η%ηηηη

  (2.50) 

 

Boundary
AB k k,k

AB rxn k
rxn,k,k

k k

nq q

n q (q 1)

′
′

 −
Γ  Γ =  − 

 

∑
%

 (2.51) 

 

BoundaryAB
k,kAB rxn

rxn,k,k '
k k '

q

n q q
′ Γ

Γ =   
 

%

, 

k k′≠

. (2.52) 

Similar to the microscopic equations, n = 4.  All cells have 50 microscopic sites (

kq 50= ) and 50 site pairs along each boundary (
Boundary
k,kq 50,k neighbor of k′ ′= ).  

The diffusion transition probability rate, Eq. (2.47), is spatially coarse grained 

using Eqs. (2.28) and (2.35) to 

 

kUk k '
mig mig,k k

k k '

( , k,k ) e
q q

α
α φ

α α −β
′→

η η′Γ = Γ%ηηηη
, with (2.53) 

 

Boundary
mig kk

mig, kk

q

n

α
′α

′ϕ

Γ
Γ =%

, (2.54) 
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 since 

j j

j

kk

(a . )

1
a .

′→

′

′

ξ

=
ξ

∑
r r

r r .  

As in Example A, the CG interaction energy is calculated using Eqs. (2.4)-(2.10). 

Figure 2.3b shows that the agreement between CGMC and KMC simulations is 

reasonably good.  CGMC successfully predicts the diffusion and reaction of multiple species 

in spatial gradients.  Deviations observed between the KMC and CGMC simulations are 

attributed to the LMF assumption in the CGMC simulation that in the case of nonlinear 

chemical reactions is not as accurate, as found also in previous work [7]. 

 

Homogenization over Multiple Site Types 

Homogenization Concept and Coarse-Graining 

As noted for the surface disproportionation reaction, Eq. (2.27), relatively few 

molecular species can combine in many ways as reactants or products on available site types, 

creating a combinatorial explosion.  The term ‘combinatorial complexity’ refers to the 

proliferation of transition probability rates that must be tracked and searched through when 

many microscopic reactants, products, and host site types must be considered.  

Combinatorial explosion can lead to large memory and CPU requirements. In deterministic 

modeling, combinatorial explosion in the numbers of species or conformations amounts to 

writing a huge number of differential equations that have to be solved. At the partial 

differential equation (PDE) (macroscopic) scale, variation of a parameter, such as the 

diffusivity, over nanoscopic length scales imposes a computational challenge due to 
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separation of length scales, i.e., one needs nanoscopic resolution to simulate macroscopic 

length scales, obviously an impossible task. This latter problem has been solved at the PDE 

level using the now well-established homogenization theory [15-17], whereby an effective 

PDE is written with a CG diffusivity that depends on the microscopic variation of diffusivity 

over a unit cell. The resulting CG PDE ‘blurs’ microscopic details and provides the effective 

concentration field and flux, which are of practical interest. Herein we introduce such a 

method at the stochastic level that does not currently exist for CGMC or KMC simulation.  

A method to compress this explosion of data involves homogenization within 

the CG cells such that the coverage of adparticles on different sites is no longer kept 

independently, allowing use of fewer coarse observables. In essence, this idea allows 

additional coarse-graining whereby we lump appropriate transition probability rates 

together (coarsening the number of processes).  This is made possible by the application of 

the LMF over all site types within a CG cell (homogenization).  By contrast, in Example A the 

LMF approximation was applied to site types T and B independently. The idea of lumping has 

previously been used in a different context, i.e., in classic chemical kinetics networks[18] and 

also for grouping reversible processes together to remove stiffness (the net-event MC 

method) [19, 20]. 

 In the homogenization framework, the main coarse observable becomes k
αη , 

the number of α  adparticles in cell Ck: 

 

sttype sttype

k

N N

k k j
j C  

α α α
ϕ ϕ

ϕ ϕ ∈

η = η = σ∑ ∑ ∑
. (2.55) 

 

spk k 1,...,m; 1,...,N 1{ }α = α= += ηηηηη

. (2.56) 
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 All CG transition probability rates for events with identical adparticle 

stoichiometry, ν  (the reactants and products of a process without consideration of the 

underlying lattice site types), and participating CG cells, kC  and kC ′ , are lumped into a 

coarse transition probability rate:   

 

,,
, , .c

st type st typeN N

k kk k
k

ϕ ϕ
ϕ ϕ

′ ′′
′

= ∀Γ ∑ ∑ Γ
ν ν

ν

 (2.57) 

For example, all diffusion processes of α  adparticles from cell kC  to cell kC ′  

are lumped together regardless of site type (see Figure 2.4c). Lumping transforms Γ into the 

smaller, coarsened array Γc.  The algorithm then selects coarse processes from Γc.  The 

smaller size of Γc reduces memory requirements and provides CPU savings when searching 

through the transition probability rates to selecting a process.  
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Figure 2.4 Schematic of 1D diffusion through window (W) and intercage (S) sites.  Traditional KMC 

will store and simulate all potential events shown in (a).  The CGMC method with q = 2 assumes 

neighboring W and S sites are in equilibrium with each other (b).  The two diffusion rates between 

neighbors are lumped into one coarse process via homogenization (c). 

Reconstruction 

 Since adparticle interactions and transition probability rates are usually 

functions of the occupancy on a particular site type, the coverage on each site type must be 

found to determine the corresponding transition probability rates Γc from the updated ηηηη .  

Due to variation of coarse observables among cells, the coverages of adparticles on each site 

SW W S

SW W S

W/S W/S

(c)

(b)

(a)

kC kC ′

SW W S

SW W S

W/S W/S

(c)
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(a)

kC kC ′
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type must then be solved in principle for all CG cells and at each time step.  In essence, this 

task translates into a reconstruction process: given the coarse variable k
αη , one needs to find 

k
α
ϕθ  (the average coverage of α  adparticles on ϕ  site types in cell Ck) for all sites ϕ . The 

LMF approximation, inherent to the coarse-graining, can provide exactly this reconstruction, 

i.e., the partitioning of each species on all sites subject to the constraint of a fixed k
αη .  The 

main observable, ηηηη , translates into 

 

sttype spk 1,...,N ,k 1,...,m, 1,...,N 1{ } .α
ϕ ϕ= = α= += θθ

 (2.58) 

 Finding θ  fromηηηη  can be accomplished via a deterministic or a stochastic 

reconstruction approach. In the former method, one uses a nonlinear solver, such as the 

Newton’s method, to compute the coverages on all site types given the constraint k
αη  and 

the local equilibrium (LMF) assumption within a coarse cell. Obviously, the resulting coarse 

variables k
α
ϕθ  are non-integers. In the latter method, one can use short KMC simulations over 

small lattices (with respect to the CG cells) to compute the time-averaged equilibrium 

partitioning of each species on the various sites. This is a constrained KMC simulation at fixed 

k
αη , i.e., a canonical ensemble simulation. The results from these KMC simulations can be 

tabulated and used for all cells and at all times. Alternatively, one can perform a KMC 

simulation in each CG cell on-the-fly, especially if cataloging each state is unreasonable.  For 

example, if long-range spatial interactions are relevant the occupancy of nearby CG cells 

could be incorporated into each reconstruction process. This reconstruction idea was 

formally introduced in Ref. [13] (two grid approach) to improve accuracy of the CGMC 

method.  
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 Since the concentration of adparticles on individual sites is now described 

using a real-type variable, θ  (no longer ηηηη , an integer), the task of preventing adparticles 

from energetically interacting or reacting with themselves becomes more complex.  

Previously, this was accomplished using the exclusion principle (see Eqs. 2.9, 2.22, 2.23).  

However, if this same method is applied to k
α
ϕθ , negative transition probability rates could 

potentially result.  As an example, consider the adaptation of Eq. 23 by replacing k
α
ϕη  with 

k kqα
ϕ ϕθ : 

 

,
rxn rxn, k k k k

1
( , ,k, , k ) q ( q 1)

2
′′ ′′′ ′′ ′′′α α αα→α α α α

ϕϕ ϕ ϕ ϕ ϕ′Γ ϕ ϕ = Γ θ θ −%ηηηη

. (2.59) 

If k k0 q 1α
ϕ ϕ< θ < , the resulting transition probability rate would be negative!  

This is clearly unacceptable.  This in fact is a general problem with using the deterministic 

LMF approximation [21], which was also addressed in previous work in a different context (in 

removing stiffness from KMC simulations) discussed in Ref. [22]. 

To address this issue, when a transition probability rate of a multi-site reaction 

within a CG cell is calculated, the concentration of reactants must be carefully considered.  

The concentration of one reactant must be estimated with the other reactant’s presence as a 

constraint.  For instance, consider an arbitrary cell Ck with 2k
αη =  and 4k kq qϕ= =  (Nsttype = 

1).  The probability of finding a reactant for Eq. 59 on any site is 
2

4
k

k
k

p
q

α
α
ϕ

ϕ

η
θ= = = .  The 

probability of picking a site with a valid second reactant is now ,

1 1

1 3
k

k
k

p
q

α
α
ϕ αϕ

ϕ

η
θ

−
= = =

−
, 

assuming LMF and knowing that one α  adparticle already occupies a ϕ  site (a conditional 

probability).  Therefore, Eq. 59 may be re-written as: 
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,
rxn rxn, k k k, k

1
( , , k, , k ) q (q 1)

2
′′ ′′′ ′′ ′′′α α αα→α α α α

ϕϕ ϕ ϕ ϕ αϕ ϕ′Γ ϕ ϕ = Γ θ ⋅θ −%ηηηη

. (2.60) 

Here 
, 'k

α
ϕ α ϕ

θ
′
 is the average coverage of α adparticles on type ϕ  sites within CG 

cell Ck, given the constraint that one 'α  adparticle is already on a type ϕ ′  site.   

 Using the reconstruction approach, transition probability rates as functions 

of coverages for adsorption, desorption and isomerization are adapted from Eqs. (2.11)-

(2.16) for surface disproportionation, from Eqs. (2.18)-(2.27), and for surface diffusion, from 

Eq. (2.28).  The correction noted in Eq. (2.60) is included where appropriate.  The two-body 

interactions presented in Eqs. (2.4)-(2.6) remain the same, while Eqs. (2.9) and (2.10) become 

( )k,k k, k k, k k, k k k k, k k kU J q 1 J q J q′ ′ ′ ′α αα α αα α αα α
′ ′ ′ϕ ϕ ϕ ϕ αϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

′ϕ′ ′α α
′ϕ ≠ϕ′α ≠α

= ⋅θ ⋅ − + ⋅θ ⋅ + ⋅θ ⋅∑ ∑∑
  (2.61) 

 

k,k k, k k kU J q′ ′α αα α
′ ′ ′ ′ ′ ′ ′ϕ ϕ ϕ ϕ ϕ

′ϕ ′α

= θ∑∑
, 

k k′≠

. (2.62) 

Direct Stochastic Calculation 

 Here we briefly discuss an alternative approach to computing Γc directly from 

ηηηη , bypassing reconstruction.  Small KMC simulations similar to ones used for reconstruction 

are run allowing reactions and diffusion.   The corresponding transition probability rates are 

computed from the number of reactions within a CG cell divided by time.  As in the stochastic 

reconstruction process, the results can be tabulated and used for all cells at all times or 

simulations may be performed for each CG cell on-the-fly.  

 Calculation of adparticle interactions, U, requires resolution of specific site 

coverages in nearby cells, so θ  must still be recorded.  Additionally, transition probability 
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rates for reactions and diffusion across CG cell borders are more complicated to 

stochastically calculate since adjacent CG cells are involved in the simulation.  A massive 

number of combinations of k
αη , k

′α
′η , kqϕ , kq ′ϕ , kUα

ϕ  and kU ′α
′ϕ  are possible, making 

simulation and storage demanding.  A reconstructed θmay be used in these cases while 

direct stochastic synthesis generates the rest of Γc.  It is worth noting that using the direct 

stochastic method for intra-cell transition probability rates negates the need for the 

correction noted in Eq. (2.60).  A summary of transition probability rates for CGMC with 

homogenization is given in Table 2.5. 



49 

 

Table 2.5 - Summary of transition probability rates for CGMC (with homogenization). 

Process 

Coarse transition probability rate

( )( , ,k, ,k )′ ′Γ ϕ ϕηηηη  Coarse rate constant ( )Γ%  

Adsorption 

( )α+φ⋅ϕ→α⋅ϕ  
 ads ads, k k

α α φ
ϕ ϕΓ = Γ θ%  

k

ads, j
ads, k

j C kq

α
ϕα

ϕ
∈ ϕ

Γ
Γ = ∑%  

Desorption 

( )α⋅ϕ→α+φ⋅ϕ  
 

kU
des des, k ke

α
ϕα α α −β

ϕ ϕΓ = Γ θ%  

k

des, j
des, k

j C kq

α
ϕα

ϕ
∈ ϕ

Γ
Γ = ∑%  

Isomerization Reaction 

( )′α ⋅ϕ→ α ⋅ϕ  
iso iso, j k

′α α→α α
ϕ ϕΓ = Γ θ%  

k

iso, j
iso, k

j C kq

′α→α
′ ϕα→α

ϕ
∈ ϕ

Γ
Γ = ∑%  

Surface Hopping (Diffusion) 

( )′ ′α ⋅ϕ+ φ⋅ϕ → φ⋅ϕ+ α ⋅ϕ  
  

 k k′≠  
kU

mig m, k k k k
e

α

′

α α α φ −β
′ ′ϕ →ϕ ϕ ′ϕ

Γ = Γ θ θ%  

*

j jB
jm, k k k k

m, k k
k k

(a . )
q

n a .′

′ϕ →ϕα
′′ ′ ′ ′ϕ →ϕ ϕ ϕα

′ ′ϕ →ϕ
′ϕ ϕϕϕ

ξ
Γ

Γ =
ξ

∑
r r

% r r  

   
Disproportionation reaction 

( )′ ′ ′′ ′′′ ′α ⋅ϕ+ α ⋅ϕ → α ⋅ϕ+ α ⋅ϕ  
   

 k k′=  krxn, k k rxn, k k k,

′

′ ′ ′ ′ ′

′ ′′ ′′′ ′ ′′ ′′′αα →α α αα →α α α α
ϕϕ ϕ ϕ ϕ ϕ αϕ

Γ = Γ θ θ%  
rxn, k k B

krxn, k k k, k
k k

n q q
n

′ ′

′ ′ ′ ′

′

′ ′′ ′′′αα →α α
′ ′′ ′′′ ϕ ϕαα →α α

ϕ ′ϕ ϕ ϕϕ ϕ ϕ
′≠ϕϕ

Γ  
Γ = − 

 
∑%  

 k k′≠   
'

krxn, k k rxn, k k k′ ′ ′ ′ ′ ′

′ ′′ ′′′ ′ ′′ ′′′αα →α α αα →α α α α
ϕϕ ϕ ϕ ϕ ϕ

Γ = Γ θ θ%  
rxn, k k B

k, krxn, k k
q

n′ ′

′ ′′ ′′′αα →α α
′ ′′ ′′′ ′ ′ϕ ϕαα →α α

′ ′ϕ ϕϕ ϕ
′ϕϕ

Γ
Γ =%  

*- Subject to the constraints of Eq. (2.35) 

 



50 

 

Example C: Diffusion in a Zeolite-like Membrane 

Homogenization is demonstrated with one-dimensional (1D) diffusion through a 

zeolite-like membrane, adapted from Ref. [7].  A 1D zeolite-like chain is comprised of 

alternating window (W) and intercage (S) sites.  Only diffusion is considered. There are 3 

separate diffusion processes (see Figure 2.4a, Table 2.6).  Two diffusion processes are to a 

nearest neighbor (W�S and S�W), and to a next-nearest neighbor (W�W), skipping over 

the intermediate S site. Coarse cells are shown in Figure 2.4b. Each cell was homogenized 

over all site types (dotted line in Figure 2.4b).  This allows the lumping of all transition 

probability rates from cell k to cell k’ into a single rate (Figure 2.4c). 

Two lattice sizes are considered: 101 and 1001 microscopic sites to allow both 

boundaries to be W sites.  Dirichlet boundary conditions are implemented; specifically, the 

left boundary site is always occupied and the right boundary site is always empty.  The lattice 

is initially empty. 

 

Table 2.6 – Summary of processes and transition probability rates for Example C. 

Process Microscopic (KMC) - Γ  Coarse Grained - Γ  

W�W diffusion: W W W WA A⋅ φ + φ → φ + ⋅φ  ,
'(1 ) j

A
Umig W W

W j W j
WW

e
n

βσ σ −→Γ
−  

A
0A A U

mig,Wk Wk Wk Wk eφ −β
′ ′→Γ θ θ%  

W�S diffusion: W S W SA A⋅φ + φ →φ + ⋅φ  
,

'(1 ) j

A
Umig W S

W j S j
WS

e
n

βσ σ −→Γ
−  

A
0A A U

mig,Wk Sk Wk Ske
φ −β

′ ′→Γ θ θ%  

S�W diffusion: S W S WA A⋅φ + φ → φ + ⋅φ  
,

'(1 ) j

A
Umig S W

S j W j
SW

e
n

βσ σ −→Γ
−  

A
0A A U

mig,Sk Wk Sk Wke
φ −β

′ ′→Γ θ θ%  
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Microscopic Description 

The microscopic transition probability rate of adparticle diffusion is 

 '

'( , , ') (1 ) ,j

j j

Umig
j jj j e

n

α
β

ϕ ϕ

σ σ σ −Γ
Γ = − 1

0j

if site j occupied

otherwise
σ

 
=  
  . (2.63) 

Constants for the processes are presented in Table 2.7.  The temperature is 

assumed to be 700 K. Adparticle-adparticle interactions are considered to be negligible.   

 

 

Table 2.7 – Transition probability rate constants for Example C. 

φj φj Γmig (s
-1

) U0 (kJ mol
-1

) 

W  W 116.0 10⋅  1.1 

 W S 122.7 10⋅  17.0 

S  W 131.6 10⋅  44.8 

 

CGMC Description 

Simulations were performed at varying CG cell size with an adaptive mesh [23].  

To implement the boundary conditions, the two boundary CG cells were of size q = 1, 

representing a single microscopic site of defined occupancy.  Across the rest of the lattice, 

different levels of coarse graining were used (q = 2, 4, 8, and 16).  Starting at the site 

following the left boundary cell, the first q microscopic sites were lumped, followed by the 
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next q microscopic sites, and so on.  Since the 99 (or 999) intermediate lattice nodes did not 

evenly divide into uniform CG cells with these selections of q, upon reaching the right 

boundary the remainder of sites were grouped into a CG cell smaller than q. 

All spatially coarse diffusion rates between cells were calculated using the 

homogenized equations in Table 2.5.  For all site combinations, 
j j '

n 2ϕ ϕ = , reflecting that 

each site has two potential reacting neighbors for each process.  The center-to-center 

distance between cells, k ka .′ϕ ϕ ξ
r r

, depends on the CG cell size (q) chosen for the simulation: 

W Wa . 2→ ξ =
r r

, whereas W S S Wa . a . 1→ →ξ = ξ =
r r r r

, reflecting the extra distance between pairs of 

window sites.  For all cells, 
B

k kq 2′ ′ϕ ϕ = .  Transition probability rates for diffusion between the 

cells are lumped according to Eq. (2.57), 

 
,

,,
,

,c
k k

mig mig

k kk k
I

ϕ ϕ
ϕ ϕ ′

′ ′′
′∈

=Γ ∑ Γ
 (2.64) 

where ,k kI ′  is the kC  to kC ′  interface region of sites over which jumps are 

allowed.  For example, only boundary sites would be included when only nearest-neighbor 

jumps are allowed.  Applied to the present example, Eq. (2.64) becomes 

 

, , ,,c
mig mig mig mig

W k W k W k S k S k W kk k ′ ′ ′′
= + +Γ Γ Γ Γ

. (2.65) 
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Figure 2.5 (a) Steady state loading profiles in a 1D zeolite membrane with Dirichlet boundary 

conditions.  CGMC using a stochastic LMF closure with varying levels coarse graining compares well 

with traditional KMC.   Steady state solution based on the deterministic LMF closure  (θS only q = 2, 4 

is shown for clarity; θW not shown for clarity). (b) Zeolite loading vs. time.  (c) CPU relative to 
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traditional KMC of simulating the same amount of time at steady state with varying levels of spatial 

coarse graining on two lattice sizes. 

 

Note that the terms on the RHS of Eq. (2.65) describe diffusion events among 

microscopic lattice sites close to or at the interface of the two cells.  Some terms may be zero 

depending on what types of microscopic diffusion jumps are possible across the boundary 

from kC  to kC ′ .  For example, for a kC  and kC ′  corresponding to Figure 2.4b only the first 

and third terms are non-zero. 

Figure 2.5a compares steady state loading solutions for KMC (filled triangles) 

and CGMC (open circles, q = 4 and crosses, q = 16) using a stochastic LMF reconstruction.  In 

the stochastic LMF reconstruction, short KMC simulations were used to solve for k
α
ϕθ  

concentrations at various k
αη  occupancies and the results were tabulated. Figure 2.5b shows 

the loading against real time as the system approaches steady state. CPU comparison of 

simulating the same real time at steady state for the two lattice sizes is shown in Figure 2.5c. 

The CGMC method provides large CPU savings while retaining very good accuracy.  

Computational savings are larger the larger the level of coarse-graining q. Reducing 

combinatorial complexity by coarsening process rates succeeded without disrupting the 

accuracy of the solution.   

A deterministic reconstruction method to solve the LMF approximation returns 

incorrect k
α
ϕθ  values for CG cells in CGMC. In sufficiently large, well-mixed systems, 

equilibrium can accurately be described by solving the nonlinear set of equations describing 

the diffusion between sites: 

 (1 ) (1 )W S W S S W S Wk kθ θ θ θ→ →⋅ ⋅ − = ⋅ ⋅ −  (2.66) 
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W W S S W Sq qθ θ η η⋅ + ⋅ = +  .   (2.67) 



56 

 

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16

W sites, Deterministic
W sites, Stochastic
S sites, Deterministic
S sites, Stochastic

(a)

Occupancy of CG cell, η

C
o

ve
ra

ge

qtotal = 16

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

W sites, Deterministic

W sites, Stochastic

S sites, Deterministic

S sties, Stochastic

C
ov

er
a

ge

Occupancy of CG cell, η

(b)

qtotal = 4

 

Figure 2.6 - Examples of mean-field coverages within CG cells using the deterministic and stochastic 

LMF approximation.  The error in the deterministic LMF solution relative to the accurate stochastic 

LMF solution increases as the CG cell size, q, decreases.  (a) qw= qs = 8, (b) qw= qs = 2. 
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This set may easily be solved using a nonlinear solver, such as the Newton’s 

method.  However, errors occur due to the significant covariance of the concentrations (θW, 

θS) when applied to small CG cells with a finite number of sites. For large cells the covariance 

decreases, and consequently lower error is observed. 

In order to rationalize the error from the LMF approximation, Figure 2.6 shows 

the discrepancy in coverage between a deterministic nonlinear reconstruction and a 

stochastic reconstruction of specific site coverages of well-mixed adparticles on W and S 

sites.  At larger cell sizes, the discrepancy between the deterministic and stochastic solutions 

is small (Figure 2.6a).  As the coarse cell size decreases, the error increases (Figure 2.6b).  This 

also is apparent in the actual simulation.  Figure 2.5a shows two profiles for the S sites for q = 

2 and q = 4 using a deterministic LMF reconstruction (W sites and q > 4 are not shown for 

clarity). As q increases, the deterministic LMF reconstruction’s accuracy improves.  While we 

have only demonstrated this q relationship for the present diffusion system and extension to 

other systems has not been tested, this does demonstrate that deterministic reconstruction 

methods deliver incorrect results. 

 

Conclusions 

In this chapter, a framework for on-lattice, coarse-grained Monte Carlo (CGMC) 

simulation with an arbitrary number of site types and/or surface species has been derived.  

This enables efficient Monte Carlo calculations of many realistic systems for the first time.  

Numerical examples demonstrated the ability to capture adsorption, desorption, diffusion, 
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and reaction systems on spatially inhomogeneous surfaces and/or with multicomponent 

mixtures. Large computational savings are achieved for multicomponent systems compared 

to the traditional kinetic Monte Carlo (KMC) method. A novel homogenization approach at 

the stochastic level was introduced. The homogenization approach enables reduction in the 

number of processes over multiple sites with concomitant decrease in the memory and CPU 

requirements. It is expected that the homogenization method will be particularly important 

for systems exhibiting combinatorial explosion. 
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CHAPTER 3 

 

ERROR QUANTIFICATION IN COARSE-GRAINED MONTE CARLO 

SIMULATIONS OF CHEMICAL REACTIONS 

Abstract: 

The Coarse-grained Monte Carlo (CGMC) method was recently introduced and 

has demonstrated a considerable speedup over the traditional lattice-based kinetic Monte 

Carlo (KMC) method.  However, little work has been devoted to studying the errors in CGMC 

simulations in the presence of chemical reactions.  Density of reactants, ratio of diffusion to 

reaction, and the coarseness of the lattice all contribute to the accuracy of the CGMC 

method.  In this chapter, we investigate the error of CGMC simulations for prototype 

reaction systems. 

 

Introduction: 

Prior studies using the coarse-grained MC (CGMC) method [1, 2] have only been 

applied to a limited number of systems.  While the CGMC method offers large computational 

savings, the accuracy of the CGMC method is degraded by its (local mean-field) 

approximation.  Unfortunately there is no straightforward way to quantitatively predict the 

error associated with replacing a KMC method with a CGMC method.  By investigating and 
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quantifying simulation error, the CGMC method can be more confidently applied and 

techniques to correct for inaccuracies can be developed.   

There has been great interest in developing models of protein-protein 

interactions in signaling networks [3-7].  The KMC method is well suited to many of these 

systems as they often feature a small number of protein copies and spatial diffusive 

transport.  However, the large space (relative to the size of a protein) of the plasma 

membrane and the long time scales involved limit the KMC method to adequately simulate 

these systems in any reasonable amount of computational time.  We are therefore greatly 

interested in applying the CGMC method to these systems to reach these large scales.  Many 

of these protein interaction systems can be generally classed as reaction-diffusion systems 

[4, 8-10].   By investigating prototype reaction-diffusion systems, we can apply the results to 

these systems of immediate interest. 

Herein, we focus on error quantification for the CGMC method for two 

prototype reaction-diffusion systems.  Due to the interest in applying KMC to systems of 

small, discrete population (such as those found in biological system) we focus much of our 

simulations on these low-population situations.  We also assess the accuracy of the CGMC 

method at different ratios of reaction rate and diffusivity, represented as the dimensionless 

Damköhler number (Da). 
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Methodology 

Damköhler  number  

The accuracy of the CGMC against the KMC method is assessed at various values 

of the intrinsic reaction rate constant (kf) and the diffusitivity (D), by employing a 

dimensionless number, the second Damköhler number, which is defined as the ratio of the 

time scale of a collision event and the time scale of a reaction event [11].  Hereafter, we drop 

the prefix ‘second’ for brevity.  Precise calculation of the time for two reactants to diffuse to 

each other (the collision timescale) requires knowledge of the spatial arrangement of 

molecules, an output of KMC simulations.  To avoid carrying out KMC simulations, we 

estimate the distribution using the mean field (MF) approximation and the macroscopic 

parameters available (kf and D).     

Two simple diffusion-reaction systems are used in this work.  In the AA system, 

a single species diffuses upon the lattice and reacts with identical molecules.  In the AB 

system, two species diffuse upon the lattice and react with the opposite species but are 

nonreactive with identical molecules.  Following [11], the Da number is calculated as: 

Here, Γ�������  is the MF rate of reaction per unit site and ΓMF-collision is the MF 

rate of collision of two reactive species per unit site.  Γ�������  on a square lattice is 

calculated as 

 Γ������� � �f���� or 
(3.2) 

 Da � time scale of collision eventtime scale of reaction event � Γ�������
ΓMF-collision (3.1) 
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 Γ������� � �f��  
(3.3) 

For AB  and AA diffusion-reaction systems, respectively.  ΓMF-collision on a square 

lattice is calculated as 

for AB  and AA diffusion-reaction systems, respectively [12].  Species lattice coverage is noted 

as θA and θB, the sum of the diffusivities of the reacting species is D (For the AB system, D = 

DA+DB; the AA system, D = 2DA).  Γ��!  and Γ��! are the total transition rate of diffusion in all 

directions.  The lattice constant (distance between lattice sites) is s.   Inserting Eq. (3.2) & 

(3.4) into (3.1), 

 Da � �fΓ��! � �f4#��$ 
 (3.6) 

 Da � �fΓ��! � �f4#��$ 
 (3.7) 

for the AB and AA systems, respectively. 

Length Scales 

The average expected distance between reactants and the characteristic length 

of coarse diffusion in CGMC are useful in analysis of the results.  The distance traveled via 

diffusion is  

 % � √4#'.  
(3.8) 

 ΓMF-collision � ()*+ ���� � Γ��! ���� or (3.4) 

 ΓMF-collision � 4#$ �� � Γ��! ��  (3.5) 
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Here L is the diffusion distance, D is the sum of diffusivities of the colliding reactants, t is the 

time spent diffusing.  Using the inverse of the MF approximation of the rate of collision 

events (ΓMF-collision) we calculate the expected timescale for collisions per particle as 

 
'� ��� ,-!./ 0 12 3MF-collision145674 and (3.9) 

 '� ��� ,-!./ � '� ��� ,-!./ 0 8�ΓMF-collision8*9:.* (3.10) 

for the AA system and AB systems, respectively.  Since NA = NB and DA = DB in the AB system, 

the expected timescale of diffusion is the same for each reactant.  The expected length scale 

of diffusion may then be estimated by inserting Eq. (3.10) into Eq. (3.8): 

 %�� � ;4#'!9<< � =4#>'� ? '�@ 0 A 4>2#�@>28�@ΓMF-collision8*9:.* (3.11) 

 
%��$ 0 A 2�� � A 4�C (3.12) 

For the AA system, Eq. (3.9) is used, resulting in 

 
D22* 0 ; EF2. (3.13) 

D22*  and 
D2G*  are the diffusion lengths divided by the lattice constant s, resulting 

in the dimensionless diffusion length in terms of lattice steps.   

The characteristic length of coarse-graining is defined as the average length of a 

single coarse-grained hop.  This lnytength as a function of q is straightforward on the uniform 

square coarse lattice used in these simulations: 

 

%HI$ � =q (3.14) 
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where q is the number of sites in each square CG cell. 

Quantification of Simulation Error 

Simulation error is defined as the ratio of the reaction rates of the CGMC 

simulation method to the KMC method.   

 
ξ � rrL�M (3.15) 

The KMC rate of reaction, rKMC, is defined as the time average rate of 

microscopic events over some time at steady state.  The rates of reaction of the Gillespie 

(hereafter MF) and CGMC methods are denoted respectively as rMF and r.  The further ξ is 

from 1, the greater the inaccuracy relative to the KMC method.  Both the Gillespie and CGMC 

methods use MF approximation, which assumes infinitely fast diffusion, on some length 

scale.  This neglects the diffusion time necessary to bring together reactants and leads to a ξ 

> 1.   

 

Reaction-Diffusion Systems 

The two reaction-diffusion systems ( AA system with a single species diffusion 

and bimolecular reaction and the AB system with two-species diffusion and bimolecular 

reaction) are described in Table 3.1 and Table 3.2, respectively. 
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Table 3.1– The AA diffusion-reaction system and its parameters. 

AA diffusion-reaction system 

Reactants 1 species (A).  The number of adparticles, NA, is held constant throughout 

the simulation. 

Simulation 

Space 

100x100 (Nsites = 10000) square lattice.  Each site may host a single 

adparticle.  All sites are identical. Periodic boundary conditions are used. 

Diffusion Diffusion is performed to immediate neighbors only (4 neighbors for each 

site). 

AO ? O P O ?AO 

Here, A* represents an A-occupied site and * represents a vacant site.   The 

transition rate of diffusion  for an adparticle from site i to neighboring site j 

is  
ΓQ � 14 #�$ S9>1 T SU@ 

DA is the adparticle’s diffusivity, σ is the discrete site occupancy value >1 if a site is occupied and 0 if vacant@, and s is the lattice constant. 
Reaction Adjacent A adparticles may react and desorb via the mechanism:  AO ? AO P AA ? 2 O 

Here, A* represents an A-occupied site and * represents a vacant site.  The 

transition rate of reaction is then  
Γ� � ka4 S9SU 

 

kf is the MF reaction rate constant, σ is the discrete site occupancy value 
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>1 if a site is occupied and 0 if vacant@.  To maintain a constant number of 

adparticles on the surface, each reaction-desorption event is followed with 

the immediate adsorbtion of two A adparticles on randomly selected vacant 

lattice nodes.   

Parameters 

Damköhler n

umber 
Da � �f 4>#� ? #�@$ b  

Species 

Coverage 
�� � NdNefghe 

Diffusion 

Length 
%��$ 0 A1�� 

Characteristic 

CG length 

%HI$ � =q 

Reaction rate 

ratio 
ξ � rrL�M 

Simulations were performed of the AA system (Table 3.1) and compared to KMC 

results to assess accuracy.  The Damköhler number was varied between (Da = 0.016-3.0).  

The total coverage of reactants on the lattice was varied from (θT = 0.0003-0.9).  CGMC 

simulations were performed using q = 4, 25, 100, 625. Results of the simulations are shown 

in Figure 3.2-Figure 3.1. 

 

Table 3.2 – AB diffusion reaction system 
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AB diffusion-reaction system 

Reactants 2 species (A and B).  The number of each species, NA and NB, are held 

constant throughout the simulation. 

Simulation 

Space 

100x100 (Nsites = 10000) square lattice.  Each site may host a single 

adparticle.  All sites are identical. Periodic boundary conditions are used. 

Diffusion Diffusion is performed to immediate neighbors only (4 neighbors for each 

site). 

AO ? O P O ?AO 

Here, A* represents an A-occupied site and * represents a vacant site.   The 

transition rate of diffusion  for an adparticle from site i to neighboring site j 

is  
ΓQ � 14 #�$ S9>1 T SU@ 

DA is the adparticle’s diffusivity, σ is the discrete site occupancy value >1 if a site is occupied and 0 if vacant@, and s is the lattice constant. 
Reaction Adjacent A and B adparticles may react and desorb via the mechanism:  AO ? BO � AB ? 2 O 

Here, A* represents an A-occupied site and * represents a vacant site.  The 

elementary, well-mixed reaction rate is 
Γ� � ka4 S9SU 

kf is the MF reaction rate constant, σ is the discrete site occupancy value >1 if a site is occupied and 0 if vacant@.  To maintain a constant number of 

adparticles on the surface, each reaction-desorption event is followed with 

the immediate adsorption of one A and one B adparticle on randomly 

selected vacant lattice nodes. 

Parameters 
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Damköhler  

number 
Da � �f 4>#� ? #�@$ b  

Species 

Coverage 

�� � jkjlmnol , �� � jpjlmnol, �C � �� ? �� 

Diffusion 

Length 
%��$ 0 A 2�� � A 4�C 

Characteristic 

CG length 

%HI$ � =q 

Reaction rate  

ratio 
ξ � rrL�M 

 

Simulations were performed of the AB system (Table 3.2) and compared to KMC 

results to assess accuracy.  The Damköhler number was varied between (Da = 0.01-10.0).  

The total coverage of reactants on the lattice was varied from (θT = 0.001-0.90).  CGMC 

simulations were performed using q = 4, 25, and 100.  The individual species coverage was 

kept equal (θA = θB = ½ θT) and each reactant had the same diffusivity (DA = DB).  Results of the 

simulations are shown in Figure 3.6-Figure 3.9. 
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Results of AA system 
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Figure 3.1– Error of CGMC method for AA system (Table 3.1), in the limit a single cell 
(Gillespie). 
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Figure 3.2 – Error of CGMC method for AA system (Table 3.1), q = 4. 
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Figure 3.3 – Error of CGMC method for AA system (Table 3.1), q = 25. 
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Figure 3.4 – Error of CGMC method accuracy for AA system (Table 3.1), q = 100. 
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Figure 3.5 – Error of CGMC method for AA system (Table 3.1), q = 625. 
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As θA�0, the distance reactants must travel to collide with another reactant 

increases (L�∞) and the travel time involved increases.  Since the fully MF simulation (Figure 

3.1) neglects this travel time, it becomes increasingly inaccurate as the coverage drops.  As θA 

drops, ξ increases, reflecting that larger and larger diffusion times are being neglected by the 

infinite-diffusion assumption of the MF model.  At the limit of θA�0, ξ�∞. 

As θA increases, reactants have less distance to travel and MF inaccuracies drop.  

Notably, L’s relevance to transport is eliminated at a critical packing density (θA = θ
Crit

 = ~0.3).  

At this density, the lattice is packed such that the coverage of the nearest neighbors of each 

reactant approximates the average concentration at all times.  For example, every site at θ
Crit

 

has a ~75% chance of at least one adjacent reactant, assuming a random distribution.  

Alternatively, this can be thought of as a state where the availability of reacting neighbors is 

not sensitive to position, and the variation in availability from site to site is not extreme.  

Spatial position is much more important at θA < θ
Crit

 where there are few sites which offer a 

reacting neighbor.   Once the spatial location of a reactant is not important, the rate of new 

lattice arrangements (the diffusion rate) is not relevant.  ξ becomes insensitive to Da at θA > 

θ
Crit

 = 0.3 for all CG levels (Figure 3.2-Figure 3.1).   

For θA < θ
Crit

, the lattice is sufficiently vacant such that L becomes relevant, 

diffusion is required to bring together reactants, and the value of the Da number impacts the 

accuracy of the simulation.  As noted above, this is most clearly shown in the results of the 

single cell (fully MF simulation; Figure 3.1).   This is also observed in the CGMC models (Figure 

3.2-Figure 3.5).  Within a single CG cell, the MF approximation is applied and travel time 

within the cell is negligible.  Small transport distances are neglected by the local MF 

approximation, causing ξ ≠1.  Unlike the fully MF model, transport from one CG cell to a 

neighboring cell is accounted for and because of this the CGMC method is always more 
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accurate than a single cell (the fully MF) method.  Additionally, the CG cell to cell hops 

capture large diffusion distances accurately.  At the limit of low coverage, the relatively small 

distance within each cell neglected by local MF assumption is an insignificant fraction of the 

overall diffusive journey of a reactant.  Therefore, ξ�1 as θA �0 and L�∞ for all CGMC 

models.   

The CGMC method is accurate (ξ�1) as θA�0 and as θA� θ
Crit

, but between 

these two limits ξ ≠1.  This implies a maximum in ξ between θA=0 and θA= θ
Crit

 (observed in 

Figure 3.2-Figure 3.5) at θA = θ
L
, where the diffusive transport transitions from primarily short 

distances to long distances relative to the characteristic length of CGing, LCG.  At θ = θ
L
, L is on 

the order of LCG (shown in Table 3.3).  As the coverage is increased toward the critical packing 

coverage, (θ
L
 < θA < θ

Crit
; L < LCG), the model is increasingly accurate (ξ �1) since the transport 

distances being neglected by local MF assumptions are shrinking.  As the coverage is 

decreased toward low coverage (0 < θA < θ
L
; L > LCG), the model is increasingly accurate (ξ�1) 

as the long distance transport time is properly accounted for by CG cell to cell hops.   

 

Table 3.3 – Comparison of the transport distance at the observed maximum error to the 

characteristic length scale of CGMC for the AA system. 

q θ
L
 (observed) 

qrrs 0 Atur 
qvws � =qqqq 

4 0.0025 6.3 2 

25 0.013 7.5 5 

100 0.018 8.8 10 
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625 0.025 20.0 25 

∞∞∞∞ (MF) �0 ∞ ∞ 

 

In summary, when densely packed (θA
 
> θ

Crit
), transport becomes irrelevant and 

all simulation methods are accurate.  As θA is reduced below θ
Crit

 the average diffusion 

distance increases, and the MF assumption leads to larger inaccuracies.  While the MF 

model’s inaccuracies reach a maximum as θA�0, the CGMC models have a maximum error at 

some 0 < θ
L
 < θ

crit
.  θ

L
 is related to the average diffusion length, L, and the characteristic CG 

length, LCG.  As θA �0 for θA < θ
L
, the CGMC simulation converges on the KMC solution since 

the long diffusion distances are properly accounted for by the coarse diffusion hop. 
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Results of AB system 
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Figure 3.6 - Error of CGMC method for AB system (Table 3.2); q = 4. 
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Figure 3.7– Error of CGMC method for AB system (Table 3.2); q = 25. 
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Figure 3.8– Error of CGMC method for AB system (Table 3.2); q = 100. 
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Figure 3.9– Error of a single cell (Gillespie) CGMC method for AB system (Table 3.2). 
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The AB reaction system is sensitive to Da at all levels of lattice coverage, 

including high lattice coverage.  This indicates that diffusive transport is significant even 

when reactants are very closely packed in a mean field sense (unlike the AA reaction-

diffusion system).  Analogous to the AA system, the CGMC methods (Figure 3.6-Figure 3.8) 

have a maximum in ξ for Da = 1.0 and 10 corresponding to neglected transport distance.  

However, Da = 0.1 and 0.01 do not show the same distinctive maximum but errors are small 

due to the systems being nearly kinetically controlled.   

As θT approaches the upper limit in Figure 3.6-Figure 3.9 (θT = 0.9), the error is 

increasing for lower Da values and decreasing for higher Da values.  This indicates that the 

reactants are now close enough together to not rely on long-distance transport but now 

have some amount of short-scale crowding resistance to transport.  This reordering 

resistance is characterized by a tightly packed lattice where mixing of the reactants, not 

transport distance, becomes the rate limiting transport step.  In our AB system, neighbors 

may be nonreactive (AA and BB pairs), unlike the AA system.  Once the lattice is sufficiently 

crowded, transport time is spent shuffling the lattice on a short length scale.  Local and 

global MF assumptions neglect this ordering of the lattice and overestimate the efficiency of 

mixing of the reactants.  Even the smallest of CG cells (Figure 3.6, q = 4) miss this 

organization to some extent, indicating that the relevant spatial detail is on a very short 

length scale.  It is possible that as θT � 1, the organization of the lattice will increase in 

length scale, resulting in behavior that cannot be extrapolated from Figure 3.6-Figure 3.8.   

At θT << 1, diffusion distance between reactants on the mostly vacant surface is 

the primary transport resistance.   Accuracy in this regime is sensitive to Da and θT in the 

same manner as the AA system.  Neglected transport distance, quantified by L in Eq. (3.12), is 

the dominant reason for inaccuracies of the MF approximation.  As θT �0, the fully MF 
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method of Figure 3.9 becomes increasing inaccurate due to neglecting larger and larger L, 

while the CGMC method, Figure 3.6-Figure 3.8, performs more accurately since large 

transport distances (relative to the size of CG cells) are well captured.  At high Da, the CGMC 

method exhibits a local maximum in error at θT = θ
L
.  θ

L
 is roughly where L ≈ LCG, the 

characteristic length of coarse graining (Table 3.4). 

 

Table 3.4 – Comparison of the transport distance at the observed maximum error to the 

characteristic length scale of CGMC for the AB system. 

q θ
L
 (observed) 

qrxs 0 A yuz 
qvws � =qqqq 

4 0.35 3.4 2 

25 0.25 4.0 5 

100 0.15 5.2 10 

∞∞∞∞ (MF) �0 ∞ ∞ 

 

Recommendations:  

For the simulation of a single species (AA system) only the distance between 

reactants must be considered when comparing KMC, CGMC and fully MF methods.  If Da < 

0.01 diffusion relative to reaction is fast enough that a single cell (fully MF) approach is 

appropriate at any coverage.  The exception may be at extreme coverage (θA≈0 and θA≈1) 

where ξMF tends to diverge.  If Da > 0.01, then diffusion is slow enough relative to reaction 
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that other methods should be utilized. At high-densities, θT > θ
Crit

, transport distance is not 

significant and a fully MF method is appropriate.  For low-densities, θT < θ
Crit

, where the 

transport distance (L) between reactants is large, the fully MF model is no longer accurate.  If 

L >> LCG, then CGMC accurately describes the system and should be applied to reduce 

computational overhead.  However, if L ≈ LCG or L < LCG, CGMC is too coarse and KMC will 

need to be used.   

For the simulation of multiple species (AB system), the distance between 

reactants and the order of the lattice must be considered when comparing KMC, CGMC and 

single cell (fully MF) methods.  If Da ≤ 0.01 and θT < 0.3 (Figure 3.9), then we may assume 

diffusion is fast enough relative to reaction that the fully MF method does well.  At extremely 

low coverage (θT ≈ 0), the increased transport distance will require Da << 0.01 for fully MF 

methods to be correct.  At this extreme, the CGMC method should be applied as it handles 

low coverages very well.  Otherwise, the CGMC method is accurate for Da ≤ 0.1, but does not 

produce very accurate reaction rates for Da ≥ 1.0.  Without improvements to the CGMC 

method, the KMC method appears be the method of choice for Da ≥ 1.0.  Also, at high 

coverage (θT > 0.3), the short length scale detail of the lattice demands the high resolution of 

the KMC method.      

Improvements to CGMC: 

To compensate for an expected inaccuracy of the CGMC method, an ‘effective’ 

reaction rate constant could be calculated based on the macroscopic parameters of the 

simulation (θ and Da).  The corrections as functions of the macroscopic parameters would 

ideally be known a priori but could also be simulated with short KMC simulations and 

recorded during the CG simulation.  This effective rate constant would then be used in a 
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CGMC simulation to deliver the computational saving of the CGMC method with little loss of 

accuracy.  To expand the effectiveness of this technique, individual CG cells could 

automatically adjust the local reaction rate constant based on local conditions.  This would 

allow highly heterogeneous systems to operate on a single lattice.  

All reaction-diffusion systems presented here were spatially homogeneous with 

all lattice nodes identical, and uniform and homogeneous CG meshes were applied.  

However, in a spatially heterogeneous system, a non-uniform CG mesh might be ideal.  If one 

region demands the detail of KMC while other areas suggest CGMC, a hybrid of the two 

methods could conceivable be constructed.  This ‘adaptive’ coarse-grain meshing would 

bring together the speed of CGMC where it is appropriate with the detail of KMC where it is 

needed.   Conceivably, this would be applied to non-uniform lattices, where the location of 

high detail can be predicted.  For systems like the high-density AB system, where clusters of 

single species form in unpredictable locations, a CGing method that applies adaptive meshes 

on high-detail areas as they form is conceivable.  This on the fly adaptive CGing would need 

to detect local concentrations of reactants and automatically rearrange the lattice around 

them.   

Application to real-world systems: 

The results of this study of model systems can be used to suggest approaches to 

other diffusion-reaction systems.   In the EGFR diffusion-reaction system of [13, 14] protein 

receptors participate in bimolecular dimerization reactions while in monomer form and do 

not while in dimer form.  Because both species occupy the same lattice positions, dimers 

may block monomer-monomer collisions in high-density situations, which have been 

experimentally shown to exist on the membrane. Compared to the AA and AB systems 
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presented here, the EGFR system is a sort of hybrid: An AA system (monomer-monomer) 

with a second, obstructive lattice species (dimers), as seen in the AB system.   

Assuming that diffusion control will be significant for the EGFR system (Da > 

0.01) and considering the high and low density domains, we expect fully MF methods will be 

inaccurate (this has been demonstrated in [13]).  When organization of the lattice species is 

important (high density areas where dimers will block monomers, the results of the AB 

system suggest that a high-resolution method should be applied.  For low-density regions 

with L < LCG, the AB and AA systems suggest that lower resolution is appropriate.  This 

suggests an adaptive mesh approach: the clustered areas are simulated with highly detailed 

KMC while the low density areas and simulated using a coarse lattice.    
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CHAPTER 4 

 

APPLICATION OF ADAPTIVE COARSE GRAINED MONTE CARLO 

SIMULATION TO HETEROGENEOUS PLASMA MEMBRANES 

 

Introduction 

The Epidermal Growth Factor (EGF) receptor (EGFR) is a well-studied member of 

the ErbB family of receptor tyrosine kinases (RTKs), which are involved in cell fate decisions 

and are implicated in numerous human cancers [1].  Like other RTKs, EGF activates its 

receptor by altering the receptor’s conformation and removing steric hindrances that 

prevent dimerization [2].  Upon activation, EGFR forms high-density membrane clusters 

presumably to amplify intra-cellular signaling and stimulate endocytosis [3].  A complex 

signaling cascade within the cell brings the signal to the nucleus for gene expression and 

signal response.  Understanding the mechanisms involved in this entire process, and 

combining simulations of both the surface and the cytoplasm hold great potential to assist 

with the design of cancer related pharmaceuticals [4, 5]. 

The kinetic Monte Carlo (KMC) method is well-suited to simulate the EGFR 

system.  With this method, individual receptor locations and different domains of the 

membrane are discretely represented, and the spatial heterogeneities in receptor density 

and membrane environment can easily be captured.  Furthermore, tracking of receptor 

locations allows straightforward comparisons to single particle tracking experiments.  
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However, membrane protein aggregation covers wide time and space scales rendering the 

KMC method CPU intensive.  A multiscale approach to bridge the separation of scales while 

preserving the attributes of KMC is needed. 

In this chapter, the coarse-grained kinetic Monte Carlo (CGMC) method is 

applied to investigate the long time and space scale behavior of EGFR on the membrane 

surface.  This model includes receptor diffusion, dimer formation, and membrane diffusion 

barriers.  Additionally, an ‘adaptive’ coarsening technique is used to improve accuracy of the 

CGMC simulation in high density areas while keeping CPU cost low.   

Methodology 

 CGMC Simulation Lattice  

In order to simulate a small fenced-in high density area within a large low 

density region, a single rectangular corral of side length equal to 48 nm was placed in the 

simulation space. This side length is within the generally accepted clatherin pit size of 10-200 

nm [6]. The coral represents a potentially ‘high density’ region of the membrane, which 

accounts for 4% of the entire simulation box.  Thus, for this simulation, the 48x48 nm corral 

is enclosed in a 240x240 nm simulation box to which periodic boundaries were implemented.  

A lattice constant (the distance between lattice sites) of a = 6 nm was chosen following [7] 

for which the whole simulation space consists of 40x40 (1600) sites, and the corral of 8x8 

(64) sites.    

To initialize the simulation, a group of concentrated monomers is placed in the 

corral.  This initial placement means most reactions will happen at short time scales in the 

high-density corralled region, with few in the extra-corral space. 
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We employ three on-lattice MC layouts:  (1) A traditional KMC simulation, 

whereby all microscopic sites are fully resolved.  (2) A Uniform CGMC (UCGMC) simulation, 

whereby the entire simulation space including the central corral is represented as 25 coarse-

grained cells of size 8x8 sites (48 nm x 48 nm).  (3) An Adaptive CGMC (ACGMC) simulation.  

In this approach, an adaptive mesh is applied.  The central corral region is microscopically 

resolved like a KMC simulation, while the rest of the lattice is uniformly coarse-grained into 

8x8 (48nm x 48nm) CG cells.  This multiscale approach attempts to combine the efficiency of 

the uniform CGMC method with the accuracy of the KMC method. 

KMC simulations have produced informative results [8], but are limited to a 

relatively short range of time scales.  The necessity of simulating fundamental EGFR 

processes (diffusion, dimerization, etc), combined with the need to observe long-scale 

structures (clusters), challenge the capabilities of KMC simulations.  Uniform mesh CGMC 

simulations have been shown to accelerate simulations of systems with a wide range of time 

and space scales [9, 10].  However, we expect spatial detail of the corral region to be critical, 

because the rate of monomer dimerization is on the order of the rate of monomer fence 

jumps (Table 4.2).  Thus, we expect the UCGMC to inaccurately simulate the proper ratio of 

reactions to fence jumps in the corralled region.  With the ACGMC method we overcome this 

problem by using a fully refined lattice on the high-reaction-density intra-corral region.  In 

choosing a level of coarse graining of the extracorral region we consult the results of Chapter 

3.   The rate of diffusion is roughly 3 orders of magnitude faster than monomer dimerization 

(Da < 10
-3

), and the concentration of monomers is expected to be low (θ < 0.01).  Spatial 

detail is therefore not important and any level of coarse graining is expected to return an 

accurate rate of reaction.  For convenience, a CG cell size of 8x8 is chosen for the extracorral 

region.    
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CGMC Simulation for Corralled Membranes 

In the CGMC method, the diffusion equations [10, 11] are accurate between 

coarse grained cells of different sizes when there is a single time scale of diffusion.  However, 

these equations cannot be directly applied to the special case of corrals separated by fences, 

where the hop over the interface is slower than the intracorral diffusion rate.  Both the fence 

and intracorral diffusion rate contribute to the effective diffusion rate between two cells.  

The effective diffusion rate between two cells separated by a single fence, Γ���������, as a 

function of the fence and intracorral diffusion rates was formulated and tested in [12].   

 �	

	��
�	 �

�
�
�����

���������������� � ��
 

(4.1) 

Here  Γ�� and Γ� are the intracorral and fence diffusion rates, respectively, for a 

single microscopic site jump.  LCG is the one-dimensional CG cell center-to-center distance of 

the two relevant coarse-grained cells perpendicular to the cell boundary over which diffusion 

occurs.   Eq. (4.1) was applied to corralled membrane EGFR simulations to test the accuracy 

of CGMC for the case of pure diffusion.  Intracorral and fence diffusion occur for the single 

species on the lattice (Table 4.1).  The simulation starts with concentrated receptors in the 

corralled area.  Over time, the receptors diffuse out of the corral. 

Table 4.1 – Diffusion model in CGMC simulations.  Notation: EGF receptor (R),  lattice vacancy 

(*), intracorral (X1), extracorral (X2) 

Description Mechanism Rate Constant 

Intracorral Diffusion R1 + *1 � *1 + R1 2.50 10
5
 s

-1
 

Extracorral Diffusion R2 + *2 � *2 + R2 2.50 10
5
 s

-1
 

Fence Diffusion R1 + *2 � *2 + R1 2.50 10
2
 s

-1
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Figure 4.1 – Demonstration of effective diffusion in ACGMC and UCGMC simulation methods.  

The central 48 nm corral starts fully covered with a local concentration of ~26000 Receptors/µm2.  

A fence barrier separates the intracorral area from the extracorral area.  KMC (b), ACGMC 

(Adaptive) (c), and UCGMC (Uniform) (d) layouts.  Both coarse-grained simulations perform 

accurately.   

The ACGMC and UCGMC methods produce the same result as the traditional 

KMC method (Figure 4.1), confirming that Eq. (4.1) correctly describes the effective diffusion 

rate.  Additionally, this shows that the CGMC method correctly handles diffusion for spatially 

heterogeneous systems with high-density areas separated by low-density areas (in the 

absence of intermolecular forces between receptors).  This allows us to attribute CGMC 

errors in later high-density simulations to reactions.   
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Figure 4.2 – CPU cost comparison of the KMC, ACGMC, and UCGMC methods in a diffusion-

only system with 48 nm corral.  This plot shows the instantaneous ratio of CPU time to simulated 

time.  This cost ratio shifts differently for each CG layout and as the simulation progresses.   

 

With regard to simulation cost, UCGMC simulations are cheaper than KMC by 

over three orders of magnitude, whereas the ACGMC method is cheaper by 0.5-2.5 orders of 

magnitude (Figure 4.2).  The efficiency of the ACGMC method is especially pronounced at 

longer times when the majority of receptors have jumped out of the intracorral region.  The 

two CGMC simulations are faster because they only simulate large coarse hops in the 

extracorral region, whereas the KMC simulation resolves all microscopic moves. 

While the KMC and UCGMC simulations increase in cost until reaching a steady 

state, the ACGMC simulation reaches a maximum cost at a time that corresponds to the 

corral being ~1/2 covered (initially the corral is fully covered).  At this point the number of 

molecules and vacancies on the fine-grid corral is equal, leading to the maximum frequency 

of expensive micro-diffusion hops.  As receptors leave the corral and the coverage of the 
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corral falls below 0.5, the ACGMC cost drops by an order of magnitude.  This is because there 

are fewer receptors in the expensive fine-grid corral, and more receptors in the coarse-

grained space outside the corral.   

Short Time EGFR Simulations 

The previous section demonstrated that the CGMC simulations provide the 

same result as the KMC simulation at a much reduced cost for a diffusion only system.  We 

expect similar CPU savings when extended to reacting systems, but the accuracy of the 

simulation comes into question.  In the following, we investigate the performance and 

accuracy of the CGMC method for diffusion-reaction systems. 

The reaction-diffusion model for the EGFR system is shown in Table 4.2.  The 

rates are taken from Table 4.3 of [12] and represent a diffusion-controlled system.  The 

diffusion of the dimer is taken to be half of that of the monomer.  The diffusion of monomers 

over a fence is three orders of magnitude slower compared to the intra and extracorral 

monomer diffusion, whereas that of dimers is four orders of magnitude slower than the intra 

and extracorral dimer diffusion.  All receptors start in the corral in monomer form. 
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Table 4.2 – EFGR diffusion-reaction model. 

Notation: EGF receptor monomer (M), dimer (D), lattice vacancy (*), intracorral (X1), 

extracorral (X 2).  Dimers occupy a single lattice site.  Monomerization and dimerization reactions 

do not occur over a fence. 

Description Mechanism Rate Constant 

Diffusion: 

Extracorral (M) M1 + *1 � *1 + M1 2.50 10
5
 s

-1
 

Intracorral (M) M2 + *2 � *2 + M2 2.50 10
5
 s

-1
 

Extracorral (D) D1 + *1 � *1 + D1 1.25 10
5
 s

-1
 

Inracorral (D) D2 + *2 � *2 + D2 1.25 10
5
 s

-1
 

Fence (M) M1 + *2  �  *1 + M2 2.50 10
2
 s

-1
 

Fence (D) D1 + *2 � *1 + D2 1.25 10
-1

 s
-1

 

Reactions: 

Monomerization D +*� M + M 1.70 10
-2

 s
-1

 

Dimerization M + M �  D + * 5.67 10
2
 s

-1
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Figure 4.3 –Short-time (t = 1 – 100 ms) density of receptors in monomer (M) and dimer (D) form.  

Overall density of 150 receptors/µm2, kinetic rates from Table 4.2.   

Typical results for the diffusion –reaction model are shown in Figure 4.3.  

Notable is the error made by the UCGMC method, and the accuracy of the ACGMC method.  

This error is due to the reactions happening inside the corral, which the ACGMC simulation 

handles accurately.  At very short times (Figure 4.3) the dimerization reaction and monomer 

fence jumps dominate.  As a result, a fine grid is necessary for accurate simulations.  At 

higher densities (the corral region) the fine-mesh of KMC and the ACGMC method results in 

accurate but expensive simulation.  At low-densities (extracorral regions), the coarse mesh of 

ACGMC and UCGMC simulations leads to accurate results with low computational intensity. 

Looking beyond simulation accuracy to the physical behavior of the system, we 

see that corrals can maintain clusters of receptors by stabilizing the dimer form inside a 

corral.  Initially, all receptors are in the monomer form and within a short time (t < 0.01 s), 
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they either leave the corral or dimerize.  Dimers have such a reduced rate of fence hopping 

that their formation essentially locks the dimerized receptors inside the corral. This highly 

concentrated area slowly dissipates via two slow mechanisms: i) dimers dissociate and the 

resulting monomers jump the fence before associating again; ii) receptors jump the fence in 

dimer form.  Counting of jumping events shows that the contributions of both mechanisms 

(i) and (ii) mechanisms are on the same order of magnitude; yet, the contribution of 

mechanism (i) is more significant under our conditions.   

Long Time EGFR Simulations 

The short-time simulations of Figure 4.3 show only the creation of receptor 

clustering.  To calculate the lifetime of these clusters and the factors controlling cluster 

longevity, long simulations were performed.   
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Figure 4.4 – Long-time (t = 0.1 – 200 s) profile of receptor density.  Overall density of 150 

Receptors/µm2 and rates from Table 4.2.  Dimer and monomers counts are combined.   
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Thus, the timecourses of receptor density simulated with the ACGMC and 

UCGMC methods (Figure 7) show that monomer coverage reaches quasi-steady-state (QSS) 

for t < 1 s, due to monomer fence diffusion between intracorral and extracorral regions.. On 

the other hand, dimer fence jumping and dimer dissociation is slow, and thus, the dimers are 

kinetically held in the corral and do not relax to a uniform density until t = ~30 s.  Due to this 

effect, the ACGMC method becomes more efficient as the kinetically held clusters dissipate 

(fewer receptors in the expensive high-resolution corral) around t = 1 s (Figure 8). This 

simulation demonstrates high-density spatial receptor heterogeneity of receptors persisting 

on the order of seconds.   

KMC is expensive to run at this timescale; as a result, KMC comparisons with the 

coarse-grained simulations were done up to only 20 s. These comparisons reveal that the 

ACGMC and UCGMC methods produce results that are in excellent agreement with those of 

the KMC simulation (Figure 4.4), and are able to easily reach the final steady state 

concentrations in reasonable CPU time (Figure 4.5).  The accurate ACGMC simulation reduces 

the cost of simulation by 2-3 orders of magnitude (Figure 8) allowing us to obtain accurate 

statistics and perform a sensitivity analysis.   
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Figure 4.5 – Long-time (t = 0.1 – 200 s) CPU cost comparison of the KMC, ACGMC, and 

UCGMC methods in the reaction-diffusion system of Table 4.2 with a 48 nm corral.   This plot 

shows the instantaneous ratio of CPU time to simulated time.  This cost ratio shifts differently for 

each CG layout and as the simulation progresses.  This plot begins approximately at the end time 

of Figure 4.2.  The ACGMC method shows an additional gain in efficiency once the corralled 

cluster dissipates between 101 and 102 s.  KMC simulations were only run to 20 s. 

Hopkin’s Test Statistic 

It is common in the MC literature to define clusters based on a first- or second-

nearest neighbor criterion.  However, the exact spatial location of some molecules is not 

known in CGMC and this criterion cannot be easily implemented.  Instead we employ a 

technique commonly applied to experimental microscopy images to test for clustering, the 

Hopkins spatial statistic [13, 14].  Given a spatial region (a microscopy image or a simulation 

lattice space), a set of particle coordinates are tested against randomly generated points for 

their proximity to other particles.  A homogenous Poisson process has an expected value of 
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½, whereas clustered particles will return a value closer to 1.  This procedure is repeated to 

construct a histogram which is compared to the expected distribution. 
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Figure 4.6 – Snapshots of receptor location and corresponding Hopkins statistic distributions.  

The distribution tends toward the expected value of ½ for a random distribution (shown by the 

solid line) as time goes on.  Three times are shown from the simulation presented in Figure 4.4.  

White dots represent monomers, while black dots represent dimers. 

Shown in Figure 4.6 are snapshots of receptor locations next to their 

corresponding Hopkins statistic distributions for three different times during the simulation 

described above for Figure 4.4 .  The dissipation of the intracorral cluster can be clearly seen 

as the average value of the Hopkins statistic moves toward ½.  Figure 4.6a shows distribution 
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heavily shifted to the right, indicating a high degree of clustering.  Figure 4.4 indicates that 

the intracorral and extracorral receptor concentrations reach equilibrium at t < 100 s, which 

is seen in Figure 4.6c (t = 100 s), where the Hopkins distribution shows a very weak spatial 

correlation of the receptors. 

Sensitivity Analysis 

In order to investigate the dominant mechanisms controlling the properties of 

receptor clusters, a sensitivity analysis of the diffusion-reaction model of Table 4.2 was 

performed.   
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Figure 4.7 - Comparison metrics for clustering simulation.   

 

To facilitate our analysis, we used two metrics, noted in Figure 4.7, which shows 

an example plot of the intracorral density of receptors (based on a weighted sum of 

monomers and dimers) normalized by the overall density (ρintracorral / ρoverall) vs. time. These 
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metrics are: i) initial cluster density and ii) cluster lifetime.  The initial cluster density is 

defined as ρintracorral / ρoverall
 
at t = 0.1 s.  At this time, the initial monomers have either 

dimerized or left the corral (Figure 4.3).  This metric can also be thought of as the 

effectiveness of monomer trapping by the corral when dimerization partners are readily 

available.  The cluster lifetime is defined as the time at which the concentration of receptors 

drops below 5 times the overall receptor density (namely ρintracorral / ρoverall = 5).  The cluster 

lifetime illustrates how effective the corral is at stabilizing receptors in the dimer form. 

These metrics were calculated for a range of values for the following variables: 

corral size, overall receptors density, and dimer fence jumping propensity.  The corral sizes 

(48 nm and 24 nm) were chosen within the observed 10-200 nm size range of clatherin pits 

on living cells [6].   The overall density of receptors was also varied since the dramatically 

different density of receptors in cancerous and normal cells is suspected to play a large role 

in the dysregulation of cell communication. Finally, dimer fence diffusion was disabled in 

some simulations to reflect that dimers may cross the fence with an extremely low 

probability.   
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Figure 4.8 – Sensitivity of clustering to monomer-only fence diffusion, different corral sizes, and 

different overall receptor densities.  (a) Initial cluster density (ρintracorral  / ρoverall
 at t = 0.1 s). (b) 

Cluster lifetime (time when ρintracorral  / ρoverall = 5).  (c) ACGMC layout of 48 nm corral simulations.  

(d) ACGMC layout of 24 nm corral simulations. All receptors initially start at random locations 

in corrals. 
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The results of the sensitivity analysis on these metrics appear in Figure 4.8. The 

initial cluster density (Figure 4.8a) is most noticeably affected by the density of receptors in 

the simulation.  For fixed corral sizes, higher overall density simulations (833 receptors/μm
2
) 

exhibit more pronounced initial clustering relative to low density simulations.  This result can 

be attributed to the higher receptor density increasing the likely number of dimerization 

partners adjacent to any given monomer (higher dimerization rate), while not affecting the 

probability of a monomer to be bordering the corral edge (fixed monomer fence jumping 

rate).  Consequently, a higher proportion of receptors remain in the dimer form as the 

intracorral density of receptors in increase. 

Smaller corral sizes have a higher circumference to area ratio and therefore 

result in a higher likelihood for a monomer to border a corral edge (increased monomer 

fence jumping rate).  The diffusion time from the center of the corral to the circumference 

also drops.  As the above logic would suggest, these smaller corrals have a lower initial 

cluster density at the same overall densities as larger corrals. 

Disabling dimer fence diffusion (Figure 4.8a) has very little effect on the initial 

cluster density, reflecting that monomer fence diffusion is effectively the only path by which 

receptors leave the corral in the very early stages of the simulation.   

On the other hand, when dimer diffusion is taken into account, the smaller 

corrals have a much weaker hold on the receptors (Figure 4.8b).  Since the smaller corral has 

a higher circumference to area ratio, dimers capable of jumping have more contact with the 

fence and leave the corral at a faster rate than in larger corrals.  

Disabling dimer diffusion extends cluster lifetimes (Figure 4.8b) by half an order 

of magnitude in 48 nm corrals and one order of magnitude in 24 nm corrals.  This 
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disproportionate increase in small corrals is attributed to a higher chance of recombination 

of dissociated dimers.  We assume that past the initial stage (t > 0.01 s of Figure 4.3) the 

probability of more than 2 monomers at a time existing in the corral is negligible (since 2 

monomers will most likely dimerize or jump a fence long before another dimer breaks).  

Smaller corrals (24 nm) will hold the two monomers much closer together than the larger 

corral (48 nm) giving the monomers a higher chance of association before one monomer 

jumps a fence. 

It appears that in large corrals, the receptor density plays a secondary role in 

the cluster lifetime (Figure 4.8b).  This is in contrast to small corrals, where the density of 

receptors is a major factor for determining cluster longevity.  This suggests that the 

sensitivity of the cluster lifetime to receptor density is correlated with the size of the corral.  

At large corral sizes, the corral size itself has a dominant effect on cluster lifetime, whereas at 

smaller corral sizes the cluster lifetime is primarily a function of receptor density.  

Manipulating the size of corrals together with the receptor density has a greater overall 

effect on the dispersion rate of EGFR clusters than changing each variable individually.   
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Figure 4.9 – Sensitivity of clustering to reaction and fence diffusion rate constants.  (a) Initial 

cluster density (ρintracorral / ρoverall at t = 0.1 s). (b) Cluster lifetime (time when ρintracorral / 

ρoverall = 5).   

In order to understand the effect of rate constants for monomerization, 

dimerization, and monomer fence jumping (kM, kD, and DM-Fence, respectively), we defined a 
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new nominal case with an overall receptor density of ~833 receptors/μm
2
, disabled dimer 

fence diffusion, and a corral size of 48 nm (Figure 4.8c). The results of this sensitivity analysis 

are shown in Figure 4.9.  Each rate was increased by a factor of 2 and 10.   

It was observed that the initial cluster density is most dramatically affected by 

increasing the rate at which monomers jump the fence.  Initially, all receptors are in 

monomer form, and thus, an increase in the monomer fence jumping rate significantly 

decreases the initial cluster density.  Similarly, higher dimerization rates result in higher 

initial cluster densities, since monomers lock into the dimer state faster.  The rate of 

monomerization (dissociation of dimers) has little influence, which is to be expected, since at 

short times the primary reactions taking place are dimerization and fence jumps. 

Moreover, all kinetic rate constants affect the cluster lifetime.  Changes to the 

rate of monomerization and dimerization influence the lifetime more than changes to the 

monomer fence diffusion rate.  Increasing the dimerization rate by an order of magnitude 

increases the kinetic lifetime of the cluster by about half an order of magnitude and well into 

the range of minutes.  Increasing the rate of monomerization by an order of magnitude 

shortens the cluster lifetime by approximately an order of magnitude.   The increase in the 

rate of monomerization seems to have a relatively greater effect on cluster lifetime than 

proportional changes to the rate of dimerization. 

These results can be explained as follows. Clearly, more time spent in monomer 

form directly correlates with faster cluster dissolution.  This is because two monomers are 

only capable of associating to form a dimer if they both reside in the corral long enough for a 

dimerization event (a bimolecular reaction) to occur.  If either monomer resulting from dimer 

disassociation event (a monomolecular reaction) stochastically leaves the corral, the 
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remaining monomer will most likely leave the corral as well.  This causes the overall 

probability of dimerization of two monomers to be a function both of the rate of monomer 

fence jumping and the dimerization reaction rate constant, whereas the rate of 

monomerization is only a function of monomerization reaction rate constant.  

Given the uncertainty in kinetic and diffusion rate constants, it is quite possible 

that regions of high concentration of receptors could kinetically lock clusters over the period 

of minutes.  Eventually, though, in the lack of a thermodynamic stabilization or regeneration 

mechanism, no clustering will be observed. 

Large Scale Simulation 

A major incentive to develop CGMC methods is the ability to reach long time 

and length scales.  To demonstrate this, an ACGMC method simulation was performed on a 

lattice size 1024x1024, representing a membrane section size of ~38 μm
2
.  A receptor density 

of 5500 receptors per μm
2
 was used following [15], which is a representative value for 

cancerous cells [16].  Reaction rates from Table 4.2 were used.  The corrals covered 14% of 

the total surface (in contrast to the 4% used in the sensitivity analysis simulations) and were 

all 96 nm on a side (16x16 lattice sites).  In one simulation, 70% of all receptors were initially 

placed in the corrals, while 50% started in the corrals in a second simulation.  The intracorral 

(extracorral) space was resolved using q=4 (q = 256) CG cells. 
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Figure 4.10 – Large length scale simulations 

The simulation reached well into the μs timescale within a week of 

computational time despite the very large size (nearly 3 orders of magnitude increase), 14% 

high-resolution corral space, and high density of receptors.  Figure 4.10 shows the same 

fundamental behavior as Figure 4.3, namely, an initial leak of receptors and approach to an 

intracorral and extracorral receptor density QSS, and thus establishes our smaller length 

scale simulations as representative of a large system.  This simulation demonstrates that the 

ACGMC method is a feasible approach to spatially heterogeneous systems with length and 

time scales far beyond current KMC methods. While this simulation used a repeating surface 

corral pattern, it can easily be adapted to for similarly large simulations that incorporate 

surface feature patterns on the μm length scale.  
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Conclusions 

Adaptive Coarse-Grained kinetic Monte Carlo (CGMC), a multiscale spatial 

stochastic simulation, was applied to the EGFR diffusion-reaction system.  The novel Adaptive 

CGMC method was applied in order to properly capture the detailed spatial reactions in high 

receptor density corrals of the membrane while efficiently and accurately simulating the low 

density areas of the membrane with a low resolution method.  Kinetically preserved clusters 

(as defined by the Hopkins statistic) were observed on the order of minutes.  A sensitivity 

analysis of the density and longevity of these clusters was carried out.   

Given the uncertainty in the kinetic parameters of receptor chemistry, kinetic 

stabilization of EGFR clusters by diffusion fences is quite plausible.  EGFR clusters would only 

need to exist on the order of seconds or less to successfully pass on signals, or for 

endosomes to form around them.   

Our work demonstrates that diffusion barriers of the membrane surface play a 

significant role in the clustering behavior of EGFR.  We have shown that diffusion fences offer 

a clustering mechanism independent of others that have been theorized in the literature but 

were not included in this study, such as receptor oligomer formation (tetramers, etc), 

hydrophobic/hydrophilic membrane regions, and partner switching.  In view of our results, 

insights into the effective treatment of cancerous cells exhibiting high receptor densities 

could be obtained by focusing on methods to break, strengthen, reorganize, or otherwise 

manipulate membrane fences that localize trans-membrane receptors.   

The sensitivity studies in this work suggest a number of approaches to how one 

might control EGFR’s large-scale behavior, assuming that there are high-density and low-

density membrane domains.  Since an increase in receptor density corresponds to the 
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conditions found in many cancerous cells, than we would conceivably be interested in 

weakening the clustering behavior of EGFR.  Firstly, and most obviously, decreasing the 

number of receptors on the membrane weakens clustering behavior (Figure 4.8).  However, 

there are other methods besides directly manipulating receptor density to affect clustering 

behavior.  Large and small corrals with the same receptor density behave differently, and this 

changing sensitivity of EGFR’s clustering behavior suggests that direct manipulation of corral 

sizes may be an effective control method.  At relatively high receptor densities, smaller 

corrals exhibit stronger clustering than large corrals (Figure 4.8b).  Thus, by forcing many 

small domains to coalesce into larger ones, the overall clustering behavior may be weakened.  

Nevertheless, at low receptor densities clustering is weaker in smaller corrals than larger 

ones.  Under these conditions, dispersing large corrals to form smaller ones may effectively 

weaken clustering.  These corral size targeting strategies would not require direct 

manipulation of the EGFR protein (by genetic modification or ligand blocking).  

Regardless of the approach used, our results demonstrate that corral size must 

be considered in conjunction with receptor density, as they synergistically affect EGFR 

clustering behavior.  It would thus be inappropriate to compare the behavior of cells of 

similar receptor densities but with different corral domain sizes or dispersions.   

Regarding the simulation method presented, ACGMC successfully simulated the 

multiscale EGFR reaction-diffusion system by applying a KMC-resolution mesh on the high 

reaction density corralled area while applying an otherwise coarse grained mesh on the rest 

of the membrane space.  This method is promising for a wide variety of multiscale and 

spatially heterogeneous problems, such as catalyst-support simulation (high resolution at 

interface of catalyst and support with low-resolution over the bulk support metal), 

membrane separations (high resolution for membrane, low resolution in bulk space), and 
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other large-scale spatially heterogeneous reaction-diffusion systems that are too 

computationally intense for KMC, yet require discrete microscopic detail.  CGMC could also 

be conceivably expanded to three dimensions and applied to a whole new class of systems.  

Using the EGFR system as an example, the lifetime of an endosome, including receptor 

clustering, budding, and cytoplasmic transport may be simulated using ‘thin’ CG cells for the 

membrane and coarse 3D cells representing the cytoplasm.  Adaptive CGMC would allow 

detailed spatial resolution for high-reaction locations (local areas of the membrane), with 

coarse and computationally cheap cells for diffusion-heavy processes (cytoplasmic 

transport). 
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CHAPTER 5 

 

CONCLUSIONS 

 

On-lattice kinetic Monte Carlo (KMC) simulations have extensively been applied 

to numerous systems.  In response to the severe limitations of the KMC method at long time 

and length scales, the Coarse-Grained MC (CGMC) method was introduced.  CGMC method 

outperforms the traditional KMC method on computational cost while retaining good 

accuracy.  Through the work presented here, the CGMC model was developed (Chapter 2), 

explored (Chapter 3), and applied to the EGFR system (Chapter 4).   

The EGFR is an ideal system for the CGMC method, as the two domain structure 

(high-density corralled regions; low density extracorral regions) may be neatly mirrored by 

the adaptive CGMC method.  Since membrane diffusion exhibits a wide range of scales 

(diffusion within a corral is fast relative to diffusion across corral interfaces), traditional KMC 

simulation is limited to small length and time scales.  CGMC assumes that diffusion within a 

CG cell is infinitely fast while cell-to-cell diffusion is not.  By representing corrals as individual 

CG cells, the CGMC simulation describes diffusion accurately while expanding the 

simulation’s scale limits tremendously.  This approach is further refined by applying adaptive 

meshing to increase simulation detail in high density areas of the membrane. 
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In Chapter 2, the CGMC method was expanded beyond single species 

simulations on a homogeneous surface.  The framework for on-lattice, CGMC simulation 

with an arbitrary number of site types and/or surface species was derived and tested.  This 

enabled efficient calculations of many realistic systems that are beyond the realm of the 

traditional KMC method.  Numerical examples demonstrated the CGMC method’s ability to 

capture many types of elementary mono and bimolecular surface reactions on spatially 

inhomogeneous surface. Large computational savings were achieved compared to the KMC 

method.  

Additionally, a novel homogenization approach at the stochastic level was 

introduced. The homogenization approach reduces the number of processes in the 

algorithm, decrease memory and CPU requirements. The homogenization is expected to be 

particularly important for systems exhibiting combinatorial explosion, a concern for protein 

signaling networks such as the EGFR system due to the large number of surface 

heterogeneities, protein species, and protein conformations.   

Chapter 3 investigated the accuracy of the newly introduced multicomponent 

CGMC method.   Two general bimolecular reaction-diffusion systems were studied: the AA 

system (single species reaction-diffusion), and the AB system (a two-species reaction-

diffusion system).  The rates of diffusion relative to the rate of reaction, as well as the 

coverage of the lattice were varied and the reaction rate recorded for various levels of 

coarse graining.  The results were compared to the KMC method to assess their accuracy.  

In Chapter 4, the CMGC method was applied to the EGFR system.   The Adaptive 

Coarse-Grained kinetic Monte Carlo (ACGMC), a multiscale spatial stochastic simulation was 

introduced and applied to the EGFR diffusion-reaction system.  The ACGMC method properly 
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captures the detailed spatial reactions in high receptor density corrals of the membrane 

while efficiently and accurately simulating the low density areas of the membrane with a low 

resolution lattice. 

Kinetically preserved clusters (as defined by the Hopkins statistic) were 

observed on the order of minutes.  Sensitivity analysis of the density and longevity of these 

clusters was carried out.  This chapter demonstrated that the clustering behavior of EGFR is 

heavily influenced by diffusion barriers of the membrane surface.  In fact, diffusion fences 

offer a (transient) clustering mechanism independent of those theorized in the literature.  

The correlations seen in the sensitivity analysis demonstrated that corrals size and receptor 

density must be considered together and not independently.  For instance, it is inappropriate 

to compare the behavior of cells of similar receptor densities but with different corral 

domain sizes or dispersions since the impact of each variable is dependent on the other.   

Possibilities for future work go in a number of directions.  Leaping off chapter 3, 

effective reaction rate constants could be found as a function of the local macroscopic 

parameters of the simulation (such as θ and Da) to compensate for expected inaccuracies of 

the CGMC method.  The corrections as functions of the macroscopic parameters would 

ideally be known a priori but could also be simulated with short KMC simulations and 

recorded during the CG simulation.  This effective local rate constant would then be used in 

a CGMC simulation to deliver the computational saving of the CGMC method with a reduced 

loss of accuracy.  Individual CG cells would automatically adjust the local reaction rate 

constant based on local conditions, allowing highly heterogeneous systems to operate on a 

single lattice.  
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For high-density systems where clusters of single species form in unpredictable 

locations, a CGing method that applies adaptive meshes on high-detail areas as they form is 

conceivable.  This on-the-fly adaptive CGing would detect local concentrations of reactants 

and automatically rearrange the lattice around them.  Conceivably, this technique could be 

utilized for three dimensional CGMC and applied to a whole new class of systems.  Using the 

EGFR system as an example, the lifetime of an endosome, including receptor clustering, 

budding, and cytoplasmic transport may be simulated using ‘thin’ CG cells for the membrane 

and coarse 3D cells representing the cytoplasm.  On-the-fly adaptive CGMC would allow 

detailed spatial resolution for high-reaction locations as they form (i.e. endosome 

formation), with coarse and computationally cheap cells for long-scale diffusion processes 

(i.e. cytoplasmic transport). 
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