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PURPOSE. Epithelial cells in the equatorial region of the ocular lens undergo a remarkable
transition from randomly packed cells into precisely aligned and hexagon-shaped cells
organized into meridional rows. We investigated the function of nonmuscle myosin IIA
(encoded by Myh9) in regulating equatorial epithelial cell alignment to form meridional
rows during secondary fiber cell morphogenesis.

METHODS. We used genetic knock-in mice to study a common human Myh9 mutation,
E1841K, in the rod domain. The E1841K mutation disrupts bipolar filament assembly.
Lens shape, clarity, and stiffness were evaluated, and Western blots were used to deter-
mine the level of normal and mutant myosins. Cryosections and lens whole mounts were
stained and imaged by confocal microscopy to investigate cell shape and organization.

RESULTS. We observed no obvious changes in lens size, shape, and biomechanical prop-
erties (stiffness and resilience) between the control and nonmuscle myosin IIA–E1841K
mutant mice at 2 months of age. Surprisingly, we found misalignment and disorder of
fiber cells in heterozygous and homozygous mutant lenses. Further analysis revealed
misshapen equatorial epithelial cells that cause disorientation of the meridional rows
before fiber cell differentiation in homozygous mutant lenses.

CONCLUSIONS. Our data indicate that nonmuscle myosin IIA bipolar filament assembly is
required for the precise alignment of the meridional rows at the lens equator and that
the organization of lens fiber cells depends on the proper patterning of meridional row
epithelial cells. These data also suggest that lens fiber cell organization and a hexago-
nal shape are not required for normal lens size, shape transparency, or biomechanical
properties.
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The ocular lens is a transparent cellular organ whose
main function is to fine focus light onto the retina to

transmit a clear image.1,2 The lens is surrounded by a base-
ment membrane, called the capsule, and is composed of
two types of cells, a monolayer of epithelial cells at the
anterior surface overlying a bulk mass composed of fiber
cells (Fig. 1A). Near the lens equator, epithelial cells in
the germinative zone proliferate, and equatorial epithelial
cells undergo a remarkable transformation from randomly
packed, cobblestone-shaped cells to precisely aligned and
hexagon-shaped cells, forming the meridional row cells
(Fig. 1B) that further differentiate and elongate into
secondary fiber cells.3–8 Secondary fiber cells elongate
more than 1000-fold, yet retain morphological characteris-
tics from the meridional row cells, including precise align-
ment, tight packing, and hexagon cell shape (in equatorial
cross-section).2,8

The mechanisms that regulate lens meridional row align-
ment are not well-understood, with the only known path-
way being signaling through the receptor tyrosine kinase

EphA2.8,9 Eph receptors are the largest class of receptor
tyrosine kinases that regulate cell contact–dependent
communication, adhesion, and migration.10,11 Previous stud-
ies have shown that the EphA2 signaling pathway regulates
hexagon cell shape and alignment of meridional row cells,
as well as the subsequent ordered packing of fiber cells via
signaling to the actin cytoskeleton.8,9,12,13

In other tissues, actomyosin contractility regulates the
hexagonal packing of epithelial sheets and modulates cell
shape changes during development.14–17 Nonmuscle myosin
IIs (NMIIs) are conserved actin-binding proteins ubiqui-
tously expressed in various mammalian tissues in a tissue-
specific combination of three paralogs, NMIIA, NMIIB, and
NMIIC.18,19 NMII forms bipolar filaments that crosslink and
slide antiparallel actin filaments (F-actin), contracting F-
actin into actomyosin bundles.18,20–22 NMII–F-actin contrac-
tility regulates cellular processes, such as cell shape, polar-
ity, migration, and cytokinesis, all of which are critical
processes for tissue morphogenesis.21,23,24 The functions of
myosin II in epithelial cell hexagonal packing, alignment,

Copyright 2023 The Authors
iovs.arvojournals.org | ISSN: 1552-5783 1

This work is licensed under a Creative Commons Attribution 4.0 International License.

Version of Record at: https://doi.org/10.1167/iovs.64.4.20

mailto:vfowler@udel.edu
https://doi.org/10.1167/iovs.64.4.20
http://creativecommons.org/licenses/by/4.0/


Nonmuscle Myosin Controls Lens Cell Patterning IOVS | April 2023 | Vol. 64 | No. 4 | Article 20 | 2

FIGURE 1. Diagrams of mouse lens anatomy and NMIIA structure. (A) A cartoon of a sagittal view of the mouse lens. The ocular lens is
composed of two types of cells, epithelial cells (colored) and fiber cells (gray). The anterior epithelial cells are quiescent (blue), whereas the
equatorial epithelial cells (orange) have proliferative activity and can migrate further down to the equator to differentiate into meridional
row epithelial cells (green). The meridional row epithelial cells further differentiate into secondary fiber cells (grey). (B) A cartoon of the en
face view of the lens equator shows that the irregularly shaped and randomly packed equatorial epithelial cells (orange) become precisely
aligned, hexagon shaped and arranged in a honeycomb pattern (green). The green cells are arranged into meridional rows, which further
elongate and differentiate into secondary fiber cells (gray). (C) NMIIA molecules are hexamers containing two heavy chains (purple), each
consisting of an N-terminal motor domain with actin-activated ATPase activity, a flexible neck, and a rod domain. The essential light chain
(ELC) (green) and regulatory light chain (RLC) (orange) bind to the heavy chain in the neck region. NMIIA activity is increased or decreased
by RLC phosphorylation or dephosphorylation, respectively. The E1841K mutation (pink) in the rod domain is one of the most common
MYH9-RD mutations in humans. Cartoons not drawn to scale.

and cellular rearrangements have been studied previously
in Drosophila embryonic epithelial sheets and mammalian
cochlear ducts.17,25–33 The mouse ocular lens is an excel-
lent model system to study morphogenesis and epithelial
cell alignment because of the accessible location of the
lens epithelium on the surface, and the lifelong addition
of precisely aligned hexagonal epithelial cells during the
continuous differentiation of the meridional row epithelial
cells to fiber cells.2,6,34–38

NMIIA and NMIIB are encoded by the Myh9 and Myh10
genes, respectively, and are abundant in the mouse lens
epithelium, whereas NMIIC (encoded by the Myh14 gene)
has significantly lower expression in the lens compared
with the other NMII isoforms.39 Low expression levels
of NMIIA and NMIIB are also observed in lens fiber
cells, where weak immunostaining is observed colocaliz-
ing with F-actin at the short vertices of the fiber cells
in cryosections of mature mouse lens.39,40 Mutations in

the human MYH9 gene can cause cataracts and are
also associated with various tissue pathologies, includ-
ing thrombocytopenia, platelet macrocytosis, proteinuric
neuropathy, and sensorineural deafness.41–46 These disor-
ders are collectively called MYH9-related diseases (MYH9-
RD).41,42,47–49 More than 40 different mutations in MYH9
are associated with MYH9-RD in human patients.24 One
of the most common MYH9 mutations is E1841K in
the rod domain (Fig. 1C).41,42,50–52 Mouse models with
NMIIA knock-in mutations for E1841K recapitulate the
human disease with low platelet counts, neutrophil inclu-
sions, kidney abnormalities, hearing loss, and lens opaci-
tites.50,53,54

Previous work from our laboratory and others shows that
the NMIIA–E1841K mutation causes abnormal bipolar fila-
ment formation.55,56 Rotary shadowing electron microscopy
of purified NMIIA filaments indicates that mutant NMIIA–
E1841K bipolar filaments are abnormal55 with longer and
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thicker bipolar filaments.55 NMIIA–E1841K mutant bipolar
filaments also displayed myosin heads (motors) all along
their length, leading to the loss of the central bare zone
and disruptions in filament bipolarity.55 The bare zone is
normally in the middle of bipolar filaments where the
rod domains associate with each other, and myosin heads
are not present in that region.57 This aberrant NMIIA–
E1841K filament organization most likely contributes to
the misaligned actomyosin structures that are observed in
megakaryocytes from mice with the NMIIA–E1841K muta-
tion.55

Here, we used the NMIIA–E1841K knock-in mouse to
study the lens phenotype and investigate whether disrup-
tion of NMIIA filament assembly by the E1841K mutation
leads to changes in lens transparency, size, shape, and/or
biomechanical properties. We also determined the effect
of the NMIIA–E1841K mutation on lens cellular organiza-
tion, in particular the alignment and hexagonal packing of
secondary fiber cells and meridional row epithelial cells
near the lens equator. Our data demonstrate that the NMIIA-
E1841K mutation has no effect on whole lens size, shape,
or biomechanical properties, but leads to impaired equato-
rial epithelial cell alignment into meridional row cells during
fiber cell morphogenesis. Subsequently, there is disordered
fiber cell packing in mutant lenses. Thus, this work suggests
that normal NMIIA bipolar filaments are required for the
organization of lens equatorial epithelial cells into neatly
packed meridional rows, and are consistent with previ-
ous studies showing that the organization of the merid-
ional rows is required for normal fiber cell alignment and
shape.8,9

METHODS

Mice

All animal procedures were conducted in adherence to the
ARVO Statement for the Use of Animals in Ophthalmic
and Vision Research and performed in accordance with
approved animal protocols from the Institutional Animal
Care and Use Committee guidelines at the Scripps Research
Institute and the University of Delaware. Genetic knock-in
mice with the Myh9–E1841K mutation53 were obtained from
Dr. Robert Adelstein (National Heart, Lung, and Blood Insti-
tute, National Institutes of Health, Bethesda, MD).

We intercrossed NMIIAE1841K/+ mice to generate
NMIIA+/+, NMIIAE1841K/+, and NMIIAE1841K/E1841K litter-
mate mice. The E1841K strain was created in a mixed strain
background of FvBN/129SvEv/C57Bl6. The FvBN strain
carries an endogenous mutation in the Bfsp2 gene that
causes a spontaneous knockout of CP49, a beaded interme-
diate filament protein that is critical for maintaining mature
fiber cell morphology and whole lens biomechanical prop-
erties.58–61 Therefore, we backcrossed the NMIIAE1841K/E1841K

mice with C57BL6/J wild-type mice and screened the
offspring for the presence of the wild-type CP49 allele.61

Mice were maintained with two copies of wild-type CP49.
Intercrosses of NMIIAE1841K/+ mice over 2 years produced
mice with 35% NMIIA+/+, 53% NMIIAE1841K/+, and 12%
NMIIAE1841K/E1841K genotypes (Supplementary Table S1). The
number of homozygous NMIIAE1841K/E1841K pups per litter
(12%) was lower than expected from Mendelian genetics
(approximately 25%), suggesting that mice homozygous for
the NMIIA–E1841K mutation have a survival disadvantage,
consistent with previous results.50

Lens Morphometrics and Biomechanical Testing

Lenses from 2-month-old littermate control and mutant mice
were dissected immediately from freshly enucleated eyeballs
at room temperature in 1× phosphate buffered saline (PBS,
14190, Thermo Fisher Scientific, Grand Island, NY, USA).
Lens pictures were acquired with an Olympus SZ11 dissect-
ing microscope using a digital camera (Nikon Coolpix
995). Lens axial and equatorial diameters were measured
on acquired images using FIJI software. To calculate lens
volume, we used the formula, volume = 4/3 × π × rE2
× rA, where rE is the equatorial radius and rA is the axial
radius.37,40,62,63 The lens aspect ratio was calculated by divid-
ing the equatorial diameter by the axial diameter.61,63 Eight
to 10 lenses from 4 to 5 mice were used for morphometric
analysis. Lenses from 2-month-old mice were imaged on a
200-mesh grid (Electron Microscopy Sciences, Hatfield, PA,
USA; Catalog G300H-Cu) in 1× PBS under light- and dark-
field optics (Zeiss Stemi SV dissecting microscope; Carl Zeiss
Meditec, Jena, Germany). The materials for grid imaging
were provided by Dr. Salil Lachke (University of Delaware).

Lens biomechanics were tested by the sequential appli-
cation of glass coverslips, as previously described.37,61–63

Briefly, freshly dissected lenses were transferred to a custom
chamber filled with 1× PBS and sequentially compressed
with glass coverslips (≤10 coverslips; Fisherbrand Cover-
slip #1 catalog 12-542-AP, Thermo Fisher Scientific, Waltham,
MA, USA; 18 mm × 18 mm; 129.3 mg each), followed
by removal of the coverslips to examine lens recovery
after load removal. Side view images of uncompressed and
compressed lenses were obtained via a 45° angle mirror.
Measurements of the lens axial and equatorial diameters
were performed using FIJI. To calculate either axial or equa-
torial strain, we used the formula ε = (d − d0)/d0, where
ε is strain, d is the axial or equatorial diameter at a given
load, and d0 is the corresponding axial or equatorial diam-
eter at zero load. Recovery of lens shape after compression
(resilience) was measured as the ratio between the precom-
pression and postcompression axial diameters. Six lenses
from three mice of each genotype were used for biomechan-
ical analysis.

Gel Electrophoresis and Western Blots

Western blots were performed on lenses isolated from
6- to 8-week-old mice, as previously described.40 Lenses
were dissected from freshly enucleated eyes and stored at
–80°C until homogenization. Two lenses from each mouse
were pooled into one protein sample. At least three pairs
of lenses of each genotype were used to make separate
protein samples. Lenses were homogenized on ice in a
glass Dounce homogenizer in 250 μL of lens homogeniza-
tion buffer (20 mM Tris-HCl pH 7.4 at 4°C, 100 mM NaCl,
1 mM MgCl2, 2 mM EGTA and 10 mM NaF with 1 mM DTT,
1:100 Protease Inhibitor Cocktail [P8430, Sigma-Aldrich, St.
Louis, MO, USA], and 1:1000 Phosphatase Inhibitor [78420,
Thermo Fisher Scientific] added on the day of the exper-
iment) per 10 mg of lens wet weight. The lysates in the
homogenization buffer were then diluted in 1:1 with a
2× Laemmli sample buffer (1610737, Bio-Rad Laborato-
ries, Hercules, CA, USA). Samples were briefly sonicated
with a Q55 Sonicator (Qsonica, Newtown, CT, USA) and
boiled for 5 minutes. Proteins were separated on a 4%
to 20% linear gradient SDS-PAGE mini-gels (XP04205BOX,
Thermo Fisher Scientific) and transferred to nitrocellulose
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membranes (10600011, Amersham Protran, Slough, UK) at
150 V in 1× transfer buffer (25 mM Tris, 192 mM glycine in
ddH2O) with 20% methanol + 0.1% SDS (myosin buffer40,55)
in a trans-blot tank (Bio-Rad) at 4°C for 1 hour. Membranes
were then stained with Ponceau S (09189, Fluka BioChemica,
Mexico City, Mexico), and gently washed with ddH2O until
the protein bands were pink and the surrounding membrane
was white. The blots were scanned with a Bio-Rad Chemi-
doc MP to reveal total protein levels in each lane. Blots were
blocked with 5% BSA in 1× PBS for 1 hour at room tempera-
ture. The blots were then incubated with primary antibodies
diluted in 5% BSA + 0.1% Triton X-100 in 1× PBS overnight
at 4°C with gentle rocking. For primary antibodies, we
used anti-NMIIA (ab55456, 1:1000, Abcam, Cambridge, UK)
and anti–nonmuscle myosin IIB (anti-NMIIB, M7939, 1:1000,
Sigma-Aldrich). The blots were then washed with PBST (1×
PBS + 0.1% Triton X-100, 3 × 5 minutes/wash) before incu-
bation in secondary antibodies diluted with 5% BSA + 0.1%
Triton X-100 in 1× PBS for 2 hours at room temperature in
the dark with gentle rocking. Secondary antibodies (1:20,000
dilution) were IRDye-680LT-conjugated goat anti-mouse IgG
(926-68020, LI-COR, Lincoln, NE, USA) and IRDye-800CW-
conjugated goat anti-rabbit IgG (926-32211, LI-COR). After
secondary antibody incubation, blots were washed again
with PBST (4 × 5 minutes/wash). The band intensities of the
blot were quantified using ImageJ with background subtrac-
tion and then normalized to the total protein level (Ponceau
S staining).

Immunostaining of Frozen Cryosections

Frozen lens sections from 6-week-old mice were prepared as
previously described.40,64 Briefly, a small opening was made
at the corneal–scleral junction of freshly dissected eyeballs
to allow penetration of fixative. Eyeballs were fixed in freshly
made 1% paraformaldehyde (15710, Electron Microscopy
Sciences, Hatfield, PA, USA) in 1× PBS at 4°C for 4 hours.
Samples were washed briefly twice in ice-cold 1× PBS,
cryoprotected in 30% sucrose in 1× PBS for 3 to 4 hours
until the eyes sank to the bottom of the tube, and embed-
ded in OCT medium (Sakura Finetek, Torrance, CA, USA)
in the cross-sectional orientation. Frozen blocks were stored
at −80°C until sectioning. Equatorial cryosections (approx-
imately 12 μm thick) were obtained with a Leica CM1950
cryostat and collected on glass slides. The sections were
stored at –20°C until further use. Sections were rehydrated
twice in PBST for 1 minute, permeabilized in 1× PBS with
0.3% Triton X-100 for 30 minutes, and blocked with 3%
BSA, 1% goat serum, and 0.1% Triton X-100 in 1× PBS
(blocking buffer) for 1 hour. Lens sections were labeled
with mouse anti-NMIIA heavy chain (raised against NMIIA
rod/tail domain) primary antibody (ab55456, 1:200, Abcam)
in blocking buffer overnight at 4°C, washed three times for
5 minutes per wash in PBST, and then labeled for 1.5 to
2.0 hours with fluorescent-conjugated secondary antibody,
rhodamine-phalloidin for F-actin (R415, 220 nM, Thermo
Fisher Scientific), and Hoechst 33342 (62249, 1:1000 dilu-
tion, Thermo Fisher Scientific) for nuclei. Alexa-Fluor-647-
conjugated goat anti-mouse IgG (A21236, Thermo Fisher
Scientific) was used as the secondary antibody (1:200 dilu-
tion). The sections were then washed three times for
5 minutes per wash in PBST. ProLong Gold antifade reagent
(Thermo Fisher Scientific) was used to mount coverslips on
the slides. Imaging was performed using a Zeiss 780 laser-
scanning confocal microscope (20× objective, NA 0.75 or

a 100× objective, NA 1.4), or a Zeiss 880 laser-scanning
confocal microscope (20× objective, NA 0.8 or 63× oil
objective, NA 1.4). The equatorial region in the lens cross-
sections was identified based on the thickness of the lens
epithelium.65

Whole-Mount Staining and Imaging of Fixed
Lenses

Freshly dissected whole lenses were fixed by immersing
in 4% paraformaldehyde in 1× PBS at room temperature
for 1 hour. Fixed lenses were washed in 1× PBS (3 ×
5 minutes) and labeled overnight at 4°C with 220 nM
rhodamine-phalloidin (Thermo Fisher Scientific), CF®640R
WGA (Biotium, 1:250), and Hoechst 33342 (1:500) in perme-
abilization/blocking solution (3% BSA, 3% goat serum and
0.3% Triton). After overnight incubation, lenses were washed
in 1× PBS (3× for 5 minutes/wash) before imaging the
lens epithelium and fiber cells by confocal microscopy. To
prevent movement of lenses during imaging, lenses were
immobilized in FluoroDish cell culture dishes (FD35-100,
WPI) within a triangular divot that was created using a
disposable razor blade, in a thin layer of 4% agarose in
PBS.8,37,62 The whole mount z-stacks were acquired at a digi-
tal zoom of 1.0 with z-step sizes of 0.5 μm (20× objective)
and 0.25 μm (63× objective). All images were processed in
the Zen software (Carl Zeiss) for further analysis.

Image Analysis

To measure fiber cell disorder, single optical section images
of F-actin–labeled equatorial cryosections that were acquired
with a 20× objective were used to investigate fiber cell
organization. Disordered fiber cell patches were outlined
manually, and disordered areas were measured using FIJI.61

Three different sections from three 3 different mice per
genotype were used for fiber cell disorder analysis (for a
total of nine sections). We measured peripheral fiber cell
morphology in whole mount images at a standardized depth
by identifying the fulcrum region of the lens, where the
apical tips of elongating epithelial cells constrict to form
an anchor point before fiber cell differentiation and elonga-
tion at the equator.9,62,66,67 Peripheral fiber cell morphology,
revealed by F-actin and WGA staining, was determined at
the lens equator, approximately 5.0 to 5.5 μm inward from
the fulcrum.62 Raw images were processed and exported to
FIJI. Four lens images from four biological replicates for
NMIIA+/+ lenses and eight lens images from five biolog-
ical replicates for NMIIAE1841K/E1841K lenses were observed
to determine if peripheral fiber cells seemed to be irregu-
lar in the NMIIAE1841K/E1841K lenses compared with control
lenses.

The percent disordered area in the region of the merid-
ional rows was measured from single optical sections from a
z-stack of a lens whole mount acquired with a 20× objective.
A single optical section of the meridional row cells approx-
imately 5 μm peripheral to the fulcrum (toward the lens
capsule) was selected for each lens. The entire region of
the meridional row cells was outlined (region of interest),
and the disordered areas were manually outlined in FIJI.
The area of the disordered patches was divided by the total
region of interest area to calculate the percent of disordered
area. Four to eight different lens images from at least four
different mice per genotype were used for this analysis (four
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lens images from four NMIIA+/+ mice and eight lens images
from five NMIIAE1841K/E1841K mice). The average disordered
area and standard deviation were calculated and plotted in
GraphPad Prism 9.

To determine the hexagonal packing of the meridional
row cells, we identified an optical section at the basal
region of the meridional row cells immediately below the
lens capsule where all cells are in focus and on the same
plane. We manually traced the boundary of each merid-
ional row cell at the basal region and counted the number
of adjacent cells. Forty to fifty cells from five different lens
images were analyzed for each genotype (five lens images
from four NMIIA+/+ mice and five lens images from five
NMIIAE1841K/E1841K mice). The frequency distribution and the
average percentage of hexagonal and six adjacent cells were
calculated and plotted in GraphPad Prism 9.

Statistical Analyses

The mean, SD, and frequency distribution were all calcu-
lated and plotted. One-way ANOVA and two-tailed Student
t-tests were performed in GraphPad Prism 9 for statistical
significance.

RESULTS

Lenses From Mice With the NMIIA–E1841K
Mutation Are Transparent With Normal Focusing
Ability, Shape, Size, and Biomechanical Properties

Lenses from 2-month-old control and NMIIA–E1841K mutant
mice were transparent with no loss of clarity or apparent
cataracts (Fig. 2A). To test focusing ability, we placed control

FIGURE 2. The NMIIA E1841K mutation has no effect on whole lens size and shape. (A) (Upper panel) Top-view images of freshly dissected
2-month-old NMIIA+/+, NMIIAE1841K/+, and NMIIAE1841K/E1841K lenses. All lenses were transparent without obvious opacities. Lower panel,
side view images of lenses. Scale bars, 1 mm. (B) Whole lens volume and (C) aspect ratio (equatorial to axial diameter ratio) from 2-month-
old control and mutant mice show no significant differences in whole lens size and shape. Plots reflect mean ± SD of 8–10 lenses from 4–5
biological replicates per genotype.
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and mutant lenses on electron microcopy grids. Both the
control and NMIIA–E1841K mutant lenses are able to focus
on the electron microscopy grid below the lens, and no qual-
itative differences in focusing ability were observed between
control and mutant lenses (Supplementary Fig. S1A). Whole
lens volume and aspect ratio (equatorial to axial diameter
ratio) from 2-month-old mice were also calculated. The mean
lens volumes of 2-month-old NMIIA+/+, NMIIAE1841K/+, and
NMIIAE1841K/E1841K mice were 6.06 ± 0.32 mm3, 6.17 ± 0.31
mm3, and 5.87 ± 0.27 mm3, respectively, and the mean lens
aspect ratios of 2-month-old NMIIA+/+, NMIIAE1841K/+ and
NMIIAE1841K/E1841K mice were 1.17 ± 0.03, 1.16 ± 0.02, and
1.18 ± 0.33, respectively (Figs. 2B and 2C). The morpho-
metric analysis of 2-month-old lenses shows no signifi-
cant changes in volume and aspect ratio between control,
heterozygous, and homozygous mice (Figs. 2B and 2C).

Previous studies have suggested that myosin II activ-
ity influences whole lens biomechanics.68,69 Therefore, we
measured lens stiffness using a coverslip compression
method in which coverslips are sequentially loaded onto
individual lenses resulting in axial compression and equato-
rial expansion of the lens from which the strain can be calcu-
lated (Supplementary Fig. S1B).61–63 Lens resiliency (recov-
ery after load removal) was also measured. No significant
differences in lens stiffness or resiliency were observed
between control, heterozygous, and homozygous lenses
from 2-month-old mice (Supplementary Fig. S1B).

NMIIA–E1841K Mutant Proteins Form
Intracellular Puncta in Lens Fibers

The mouse lens expresses two NMII isoforms, NMIIA and
NMIIB.39 Western blots of whole lens extracts indicate
that NMIIA and NMIIB protein levels in NMIIAE1841K/+ and
NMIIAE1841K/E1841K heterozygous and homozygous mutant
lenses are comparable with control NMIIA+/+ lenses
(Figs. 3A and B). Coomassie blue staining of protein gels
shows no obvious changes in total protein levels in mutant
E1841K lenses compared with control lenses (Fig. 3C).

To evaluate whether the NMIIA–E1841K mutation affects
NMIIA localization, we immunolabeled equatorial cryosec-
tions from control and mutant lenses for NMIIA, F-actin, and
nuclei. As reported previously,39,40 NMIIA is predominantly
expressed in lens epithelial cells, with lower levels observed
in fiber cells (Fig. 4; leftmost panel 0 to approximately
65 μm deep). In fiber cells, the NMIIA colocalizes with F-
actin at the short vertices of the peripheral cortical fiber
cells (Fig. 4, arrows). Similar NMIIA staining patterns are
observed in NMIIA+/+, NMIIAE1841K/+, and NMIIAE1841K/E1841K

lens sections, although NMIIA staining seems to be
somewhat brighter in fiber cells of NMIIAE1841K/E1841K

sections compared with fiber cells in NMIIA+/+ and
NMIIAE1841K/+ sections (first and second panels from
the left in Fig. 4, 0 to approximately 130 μm deep)
(Figs. 4A, B, and C; arrows).

We also observed small NMIIA puncta in the cyto-
plasm of mature fiber cells of NMIIAE1841K/E1841K sections,
which are not observed in NMIIA+/+ and NMIIAE1841K/+

lens sections (third panel from left, approximately 130
to approximately 195 μm deep; rightmost panel, approx-
imately 195 to approximately 260 μm deep). In addition
to the altered NMIIA staining patterns, we also noticed
that NMIIAE1841K/+ and NMIIAE1841K/E1841K lens sections have
areas of disorder in the normally well-aligned radial columns

FIGURE 3. The NMIIA-E1841K mutation does not affect the global
expression of NMIIA/B isoforms in the lens. (A) Western blots
of NMIIA and NMIIB heavy chains in whole lens lysates from 6-
to 8-week-old NMIIA+/+, NMIIAE1841K/+, and NMIIAE1841K/E1841K

mice. (B) Relative NMIIA/B heavy chain expression in NMIIA+/+,
NMIIAE1841K/+, and NMIIAE1841K/E1841K whole lenses. NMIIA and
NMIIB heavy chain protein levels were normalized to total protein
level (Ponceau S staining), which shows no significant changes
in protein expression level in the NMIIA-E1841K mutant lenses
compared with control lenses. Plots reflect the mean ± SD of
n = 3 biological replicates per genotype. *P < 0.05. (C) Coomassie
blue staining of total lens extracts from 6- to 8-week-old NMIIA+/+,
NMIIAE1841K/+, and NMIIAE1841K/E1841K mice. No noticeable changes
in total protein levels were observed between control and mutant
lens lysates. Three or four biological replicates were tested for each
genotype.

of hexagonal lens fiber cells, which is most obvious in
the homozygous mutant lens section (Figs. 4B and C,
asterisks).

To visualize the weak NMIIA staining in fiber cells,
it was necessary to saturate the NMIIA staining intensity
in the epithelium. Therefore, we obtained lower inten-
sity images of NMIIA staining in control and mutant lens
sections (Supplementary Fig. S2). Similar to the fiber cells,
the intensity of NMIIA staining is considerably brighter
in the NMIIAE1841K/E1841K epithelial cells as compared with
control and heterozygous epithelial cells. However, as shown
in Figure 3, Western blots show no significant changes in
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FIGURE 4. NMIIA is predominantly localized in lens epithelial cells of NMIIA+/+, NMIIAE1841K/+, and NMIIAE1841K/E1841K lenses. Immunos-
taining of frozen sections in the cross-orientation for (A) NMIIA+/+, (B) NMIIAE1841K/+, and (C) NMIIAE1841K/E1841K lenses for NMIIA (green),
F-actin (red), and cell nuclei (blue). Images are equatorial sections, with sequential panels showing from left to right, the lens epithelium
(Epi) and peripheral fiber cells (leftmost panel) inwards to the mature fiber cells (rightmost panel, approximately 260 μm deep). The first
and second leftmost panels are 0 to approximately 65 μm deep and approximately 65 μm to approximately 130 μm deep, respectively.
The mature fiber cells are seen in the third panel from the left (approximately 130 to approximately 195 μm deep) and rightmost panel
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(approximately 195 to approximately 260 μm deep). Although NMIIA is mostly localized to the lens epithelium, faint NMIIA puncta are present
along the short vertices of the fiber cells (arrows). F-actin staining shows misaligned fiber cells in NMIIAE1841K/+ and NMIIAE1841K/E1841K

lens sections. Asterisks indicate regions of disorder. Scale bar, 20 μm.

FIGURE 5. NMIIAE1841K/E1841K lenses display large areas of fiber cell disorganization. (A, B) Equatorial cryosections of NMIIA+/+,
NMIIAE1841K/+, and NMIIAE1841K/E1841K lenses were immunolabeled with rhodamine-phalloidin (F-actin). (A) Cryosections without outlined
disordered regions, whereas (B) shows regions of disorder outlined in yellow. Both NMIIAE1841K/+ and NMIIAE1841K/E1841K lenses displayed
more areas of fiber cell disorder as compared with NMIIA+/+ lenses. Scale bar, 50 μm. (C) The percent disordered area was significantly
greater in the NMIIAE1841K/+ and NMIIAE1841K/E1841K lenses compared with NMIIA+/+ lenses. (D) Disordered patch sizes were significantly
higher in NMIIAE1841K/E1841K lenses compared with NMIIA+/+ and NMIIAE1841K/+ lenses, whereas the patch size is not significantly different
between NMIIA+/+ and NMIIAE1841K/+ lenses. Plots reflect the mean ± SD of n = 9 independent immunostained sections from three different
mice per genotype. **P < 0.01; ***P < 0.001; ****P < 0.0001.
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FIGURE 6. Peripheral fiber cells are disordered in the NMIIAE1841K/E1841K lenses. Whole fixed lenses were labeled with rhodamine-phalloidin
(F-actin) (red), WGA (cell membrane, green), and nuclei (blue). (A) A single optical section of the peripheral fiber cells in the region of
the lens fulcrum is shown in the XY plane. The fulcrum can be identified by a change in cell morphology and bright phalloidin staining
(red dashed line). The fulcrum is irregular and discontinuous (short red dashed line) in the homozygous mutant lens, and peripheral fiber
cells are not aligned in parallel rows in NMIIAE1841K/E1841K lenses in contrast to the NMIIA+/+ lenses. Scale bars, 20 μm. (B) Images of
a single optical section of peripheral fiber cells approximately 5.0 to 5.5 μm inwards from the fulcrum. The F-actin and WGA staining
reveal irregularly spaced and misaligned fiber cells in the NMIIAE1841K/E1841K lens, while precisely aligned and regularly spaced fiber cell
membranes are observed in the NMIIA+/+ lens. Scale bars, 50 μm.

the total NMIIA protein levels (Figs. 3A and B). This find-
ing suggests that the NMIIA rod/tail domain epitope recog-
nized by the antibody used for immunostaining may be more
accessible to labeling in the NMIIA–E1841K molecules. It
is possible that increased accessibility may be due to the
abnormal bipolar filaments formed by the NMIIA–E1841K
molecules.55

Lens Fiber Cells Are Disorganized in
NMIIA–E1841K Lenses

We noticed that the lens fiber cells seemed to be disor-
dered and displayed various degrees of misalignment in
equatorial sections of NMIIAE1841K/E1841K lenses (Fig. 4C). To
further evaluate the extent of disorder in the control versus
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FIGURE 7. Equatorial epithelial cells in meridional rows are misaligned in NMIIAE1841K/E1841K lenses. (A) Whole mounts of fixed lenses
from NMIIA+/+ and NMIIAE1841K/E1841K mice labeled for nuclei (top) and F-actin (middle). Merged images (bottom) with nuclei in blue
and F-actin in red. A single optical section in the XY plane displays the middle region of the meridional row cells at low magnification.
Meridional row cells are hexagonal and precisely aligned, with nuclei arranged in parallel rows in the NMIIA+/+ lens, whereas merid-
ional rows are misaligned and branching (yellow circles), with disordered and misaligned nuclei in the NMIIAE1841K/E1841K lens. Scale bar,
50 μm. (B) Percent disordered area, plotted as the mean ± SD of four NMIIA+/+ and eight NMIIAE1841K/E1841K lenses from at least four to
five different mice. Each dot represents an individual lens, and there is a statistically significant increase in disordered area in homozygous
mutant lenses compared with the control lenses. ****P < 0.0001. (C) High magnification view of meridional row cell nuclei in NMIIA+/+ and
NMIIAE1841K/E1841K lenses. A single optical section in the XY plane displays the nuclei at the mid-region of meridional row cells (i.e., middle
of the lateral membrane with respect to apical–basal cell domains). The mid-region of the meridional row cells was identified based on the
maximum diameter of the nuclei. The nuclei of the NMIIAE1841K/E1841K lens seem to be misaligned, out of plane, and abnormally shaped, in
contrast with the aligned and regular pattern of nuclei in the NMIIA+/+ lens. Scale bar, 20 μm.

mutant lenses, we obtained low-magnification images of
large regions of equatorial cryosections stained for F-actin
(Figs. 5A and B). Because F-actin is enriched at the fiber
cell membranes,61,65,70 F-actin can be used as a marker for

fiber cell boundaries, allowing an assessment of the cellu-
lar organization. We quantified the extent of disorder by
outlining regions of disorder (Fig. 5B) and measuring their
area relative to the section area, as previously described.7,61
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FIGURE 8. Cells in meridional rows exhibit aberrant cell shapes and irregular packing in NMIIAE1841K/E1841K lenses. (A) F-actin staining in
single optical sections at the basal region of meridional row cells in NMIIA+/+ and NMIIAE1841K/E1841K lenses, shown in XY plane. F-actin is
enriched along all six sides of meridional row epithelial cells. Scale bar, 20 μm. Yellow boxes, regions enlarged in (B). (B) High magnification
of a region from A (yellow boxes), showing an individual cell (C) (central cell) surrounded by six neighboring cells (numbered) in the
NMIIA+/+ lens, but surrounded by seven neighboring cells in the NMIIAE1841K/E1841K lens. Scale bar, 10 μm. (C) Frequency distribution (%)
of the number of adjacent cells for 200 cells from 5 different lenses. Almost all cells in NMIIA+/+ lenses have six nearest neighbors, whereas
cells in NMIIAE1841K/E1841K lenses have variable numbers of nearest neighbors (4–8). (D) Percentage of hexagonal adjacent cells in NMIIA+/+
and NMIIAE1841K/E1841K lenses. The plot represents the mean ± SD of five different lens images from at least four different mice. *P < 0.05.

The percent disordered area was very low at 1.9 ± 1.0%
in NMIIA+/+ lens sections (Fig. 5C). The disordered area
percentage is significantly higher in both NMIIAE1841K/+ lens
sections (10 ± 1.9%) and in NMIIAE1841K/E1841K lens sections
(44.7 ± 9.0%), as compared with controls (Fig. 5C). The aver-
age size of the disordered patches is also significantly greater
in the NMIIAE1841K/E1841K lens sections (2026 ± 894.2 μm2)
compared with either the NMIIA+/+ lens sections (316.5 ±
128.6 μm2) or NMIIAE1841K/+ lens sections (547.4 ± 111.7
μm2) (Fig. 5C). Although the average size of the disor-
dered patches is somewhat greater in the lens sections
from NMIIAE1841K/+ heterozygous mice as compared with
NMIIA+/+ controls, this difference did not reach statistical
significance.

We also examined the organization of cortical fiber
cells near the equator to determine whether newly formed
fiber cells were disordered. We stained whole lenses from
6- to 8-week-old NMIIA+/+ and NMIIAE1841K/E1841K mice for
F-actin, wheat germ agglutinin (WGA) as a membrane
marker,71 and nuclei, followed by whole mount z-stack
confocal imaging at the lens equator. We observed that
F-actin colocalizes with WGA at the cell membranes in
both NMIIA+/+ and NMIIAE1841K/E1841K lenses (Fig. 6). For
depth standardization, we identified the fulcrum region

of the lens, where the apical tips of elongating epithelial
cells constrict to form an anchor point before fiber cell
differentiation and elongation at the equator.9,62,66,67 The
fulcrum is well-defined in NMIIA+/+ lenses and appears
as a continuous and relatively straight F-actin–enriched
line at the equator (Fig. 6A, red dashed line). Although
differentiating epithelial cells in NMIIAE1841K/E1841K lenses
form a fulcrum that can still be located for depth stan-
dardization, the fulcrum is irregular and discontinuous
(Fig. 6A, short red dashed line). Moreover, immediately
below the fulcrum, the F-actin– and WGA–stained fiber cell
membranes in the NMIIAE1841K/E1841K lens are not aligned
vertically in regular parallel rows. The disrupted F-actin
and WGA staining patterns suggest changes in the cell
membranes and/or cell morphology in the NMIIAE1841K/E1841K

lenses (Fig. 6A). We further examined the peripheral fiber
cells located approximately 5 μm inward from the fulcrum
(Fig. 6B). We observed vertically aligned, evenly spaced F-
actin and WGA staining at fiber cell membranes in NMIIA+/+

lenses, whereas misaligned and irregularly spaced F-actin
and WGA staining were observed in the NMIIAE1841K/E1841K

lenses, suggesting that the newly differentiating cortical
fiber cells are disordered in the NMIIA–E1841K homozygous
mutant lenses.
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Equatorial Epithelial Cells in Meridional Rows
Are Misaligned in NMIIAE1841K/E1841K Lenses

Previous work showed that ordered packing of the lens
fiber cells depends on the organization of hexagon-shaped
equatorial epithelial cells into aligned meridional rows.8,9

We examined equatorial epithelial cells in the meridional
row region for cell shape and alignment by whole-mount
imaging of lenses stained for F-actin and nuclei. Imag-
ing of the equatorial epithelial cells in control NMIIA+/+

lenses at low magnification shows that initially disordered
and randomly packed equatorial epithelial cells transform
into precisely aligned meridional row cells as they move
toward the lens equator (Fig. 7A). The meridional row
epithelial cells in control lenses are hexagon shaped and
well-aligned. In contrast, in NMIIAE1841K/E1841K lenses, we
observe focal regions of meridional cell disorder with cellu-
lar misalignment and abnormal branching of rows (Fig. 7A,
circles). The extent of the disorder in meridional row regions
of NMIIA+/+ and NMIIAE1841K/E1841K lenses was measured,
revealing that the meridional rows of NMIIAE1841K/E1841K

lenses exhibit an approximately 12% disordered area, with
no measurable disorder in NMIIA+/+ lenses (Fig. 7B). Nuclei
are also precisely aligned and stacked above one another
in the NMIIA+/+ lens. However, in the NMIIAE1841K/E1841K

lens, nuclei are misaligned and irregularly packed (Figs. 7A
and C). Moreover, some of the nuclei appear deformed and
distorted in NMIIAE1841K/E1841K lenses compared with control
lenses (Fig. 7C, arrows).

Loss of Regular Hexagonal Packing Is Observed
in the Meridional Rows of NMIIAE1841K/E1841K

Lenses

We next used whole-mount imaging of lenses to examine the
meridional row cells at high magnification to investigate the
extent of hexagonal cell packing in NMIIAE1841K/E1841K lenses.
F-actin staining was used to assess cell shapes and packing,
since it is enriched around the entire perimeter of meridional
row cells and at all six vertices of the basal regions of cell
membranes in the NMIIA+/+ lens (Figs. 8A and B). Although
the organized meridional row cells in NMIIA+/+ lenses are
hexagon shaped and similar in size, the shapes of some of
the meridional row cells in the NMIIAE1841K/E1841K mutant
lens are distorted and not hexagon shaped (Figs. 8A and B).
Compared with control cells, mutant cells are asymmetrical
with varying cell shapes and sizes, leading to defective pack-
ing organization. In control lenses, a single hexagon-shaped
meridional row cell is normally surrounded by six other
cells (Figs. 8B–D). The average percentage of cells with six
neighbors and the frequency distribution analysis show 99%
of NMIIA+/+ cells have six neighboring cells, whereas only
67.5% of the NMIIAE1841K/E1841K cells have six neighboring
cells (Figs. 8C and D). In addition, the number of neighbors
for NMIIAE1841K/E1841K cells is highly variable compared with
a consistent six neighbors for NMIIA+/+ cells (coefficient of
variation: NMIIA+/+ = 2.3% and NMIIAE1841K/E1841K = 28%).

DISCUSSION

Here, we have identified a novel function of NMIIA in regu-
lating the alignment and hexagonal packing of lens merid-
ional row epithelial cells and fiber cells. The NMIIA–E1841K
mutation disrupts the formation of neat meridional rows by

equatorial epithelial cells and the transition of meridional
row cells to form organized fiber cells (Figs. 4–8). Consis-
tent with previous studies,8,9 the alignment of meridional
row epithelial cells is required for subsequent fiber cell orga-
nization. Our work demonstrates that proper NMIIA bipolar
filament assembly regulates the precise alignment of lens
epithelial cells into meridional rows during secondary fiber
cell differentiation.

The establishment of hexagonal honeycomb packing in
meridional row epithelial cells at the equator is the genesis
of the hexagonal packing observed in secondary fiber cells
(i.e., hexagonal profiles of secondary fiber cells in cross-
section).72 Previous work indicates that a loss of hexag-
onal packing in secondary fiber cells can occur in two
possible ways. First, the precursor meridional row epithelial
cells are disordered during initial differentiation with disor-
der persisting in newly formed fiber cells and maintained
throughout their continued differentiation and elongation,
as observed in EphA2−/− and Src−/− lenses.8,9 Alternatively,
despite normal organization of meridional row cells, corti-
cal fiber cells can become disordered during subsequent
elongation and maturation as seen in Tmod1−/−;CP49−/−

lenses.7,61 Our analysis of the extent of disordered area in
NMIIAE1841K/E1841K lenses reveals that approximately 12% of
the meridional row cells are disorganized whereas approx-
imately 44.7% of the fiber cells are disorganized. Because
NMIIA is expressed predominantly in the lens epithelial
cells39 (Fig. 4), it is likely that the disorder is initiated
in meridional row cells, which persists as the secondary
fiber cells differentiate and elongate in NMIIA-E1841K
lenses. The increased extent of fiber cell disorder may be
explained by the process of fiber cell formation in which
new layers of disordered fiber cells are continuously added
on top of previous layers of disordered cells, leading to a
greater extent of disorder. Alternatively, or additionally, the
expression of NMIIA-E1841K mutant proteins in fiber cells
during elongation could result in further disordered pack-
ing by interfering with normal fiber cell–cell interactions.
It is thought that F-actin:NMII:N-cadherin complexes at the
posterior basal surface of the elongating fiber cells transmit
equal contractile tension between adjacent cells to stabilize
the hexagonal cell shape, which may be required for appro-
priate cell packing, migration, and alignment of differentiat-
ing fiber cells.2,73 The abnormal NMIIA–E1841K filaments
could disrupt the normal organization of F-actin:NMII:N-
cadherin complexes and the balance of forces between cells,
leading to irregular and disordered fiber cell packing.

The NMIIA–E1841K mutation in the coiled–coil rod
domain alters lateral associations of the NMIIA rod
domain74,75 such that myosin heads (motors) project all
along the length of bipolar filaments leading to the loss
of the central bare zone.55 NMIIA–E1841K mutant bipo-
lar filaments are also significantly thicker and wider.55

These structural changes in NMIIA filaments caused by
the E1841K mutation result in aberrant cellular acto-
myosin organization in mouse megakaryocytes, Sertoli cells,
and primary podocytes.50,55,76 We speculate that abnor-
mal NMIIA–E1841K filaments also result in altered acto-
myosin networks in NMIIAE1841K/E1841K lens epithelial cells,
resulting in distorted cell shapes, misalignment, and irreg-
ular packing arrangements of the meridional row cells
in NMIIAE1841K/E1841K lenses. Because Western blots show
that the E1841K mutation does not affect total NMIIA
protein levels, the brighter NMIIA staining observed in
the NMIIAE1841K/E1841K lenses (Fig. 4) is most likely a
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consequence of increased antibody access to an antigenic
site, consistent with structural changes in NMIIA bipolar
filaments owing to the E1841K mutation.55 NMIIA puncta
are also only seen in NMIIAE1841K/E1841K lens sections and
could indicate NMIIA aggregation, consistent with abnormal
NMIIA filament assembly. These structural changes in NMIIA
could also contribute to the loss of actomyosin function
during lens epithelial cell alignment and hexagonal packing
at the equator.

The only two proteins that are known to regulate merid-
ional row alignment are EphA2 and Src.8,9 EphA2 binds
and phosphorylates Src,13 which then activates cortactin
to recruit the actin cytoskeleton to cell–cell junctions and
enables the lens epithelial cells to form aligned meridional
rows.9,13 Previous studies show that EphA2−/− and Src−/−

lenses exhibited disruption of meridional row cell shape
and packing, along with subsequent fiber cell alignment,
similar to NMIIAE1841K/E1841K lenses.8 EphA2 signaling path-
way regulates Src and RhoA-GTPase, which then activates
Rho-associated protein kinase to phosphorylate myosin light
chain (increasing NMII activity).77–79 Therefore, NMIIA is a
potential downstream target of the EphA2 and Src signal-
ing cascade, which could explain the similarity in pheno-
type between EphA2–/–, Src–/–, and NMIIAE1841K/E1841K lenses.
However, in NMIIAE1841K/E1841K lenses, the shapes of cell
nuclei seem to be more distorted, tilted, and misshapen than
in the EphA2 or Src knockout lenses. Other actin-associated
proteins and cell–cell adhesion proteins such as periaxin,
Abi2, E/N-cadherin, β-catenins, and Arvcf (Armadillo repeat
gene deleted in velocardiofacial syndrome) have also been
implicated in secondary fiber cell organization,80–85 but the
etiology of meridional row and secondary fiber cell disor-
der in these knockout mice has either not been stud-
ied or cannot be investigated due to the severity of the
lens defects. Defects in secondary fiber cell elongation and
fulcrum formation have been observed in aPKCλ (cell polar-
ity protein) knockout mouse lenses, although meridional
row cells were not examined in detail.86 Further investiga-
tion is required to understand the interplay between Eph–
ephrin signaling, other actin-associated proteins, and NMIIA
in regulating equatorial lens epithelial and fiber cell align-
ment and packing.

Our studies overall indicate that fiber cell misalignment
and irregular hexagonal packing in the NMIIA–E1841K
lenses do not contribute to whole lens morphology, trans-
parency, or stiffness. Fiber cell misalignment and irregular
packing do not affect lens transparency in the 2-month-old
Tmod1−/−;CP49−/− mice.61 In aging mouse lenses, the fiber
cells near the lens periphery are disordered, yet the lens
outer cortex of old lenses is transparent.37 This finding indi-
cates that precise hexagonal packing is not required for lens
transparency. In addition, irregular lens meridional row and
fiber cell organization in EphA2–/– mice do not affect whole
lens stiffness,87 as also observed in NMIIA–E1841K mutant
mouse lenses (Supplementary Fig. S1). Previous work has
shown that pharmacological inhibition of myosin II contrac-
tile activity decreases whole lens stiffness in 7-day-old chick-
ens.68 The difference from our findings could be due to func-
tional compensation by NMIIB88 being sufficient to main-
tain lens stiffness in NMIIA–E1841K mutant lenses, whereas
the pharmacological inhibition of all myosin isoforms would
prevent compensation by other isoforms of NMII.

Between 16% and 18% of MYH9-RD patients present with
presenile cataracts with a mean onset age of 23 to 37 years
old.41,89 Genotype–phenotype correlation studies have cate-
gorized the patients with the E1841K substitution (n = 31

patients) as having a low risk of cataract development41;
however, owing to the low number of patients evaluated, the
actual incidence of cataracts associated with these mutations
may not be represented in this study. We observed that some
NMIIAE1841K/+ mice in the mixed FvBN/129SvEv/C57BL6 at
6 months53 presented with opacities before the backcross-
ing of mutant mice with C57BL/6J wild-type mice. Cataract
phenotype severity and variations in incidence due to mouse
strain variability have been observed previously in connexin
50,90 connexin 46,91 and ephrin-A58,12,92–94 knockout mice.
Strain variability could explain why a cataract pheno-
type in Myh9-RD mutant mice disappeared upon back-
crossing. We would also expect MYH9-RD human patients
from different populations to have different cataract pheno-
types and incidences as well. In future studies, it will
be interesting to evaluate whether mice with the NMIIA–
E1841K mutation may develop early onset cataracts with
aging.

In conclusion, NMIIA regulates meridional row align-
ment and hexagonal cell packing, which in turn contributes
to normal fiber cell morphogenesis during lens differ-
entiation and establishes subsequent hexagonal pack-
ing of mature fiber cells. The location of the NMIIA–
E1841K mutation in the NMIIA rod domain indicates that
normal bipolar filament assembly of NMIIA is required
for meridional row alignment and hexagonal packing. To
further elucidate how actomyosin remodeling promotes
cell shape transformation and precise alignment in the
lens, it will be important to investigate NMIIA:F-actin
network organization before, during, and after cell shape
changes during formation of meridional rows at the lens
equator.
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