
Small Deviations of Stable Processes

via Metric Entropy

Wenbo V. Li∗†

Werner Linde‡

Technical Report No. 2002-11

DEPARTMENT

OF

MATHEMATICAL SCIENCES

University of Delaware
Newark, Delaware

∗Supported in part by NSF Grant DMS-0204513
†Department of Mathematical Sciences, University of Delaware, Newark, DE 19711. Email:

wli@math.udel.edu
‡Friedrich-Schiller-Universität Jena, Institut für Stochastik, Ernst-Abbe-Platz 1-4, 07743 Jena,

Germany. E-mail: lindew@minet.uni-jena.de



Small Deviations of Stable Processes via
Metric Entropy

Wenbo V. Li1,2 Werner Linde3

Abstract

Let X = (X(t))t∈T be a symmetric α–stable, 0 < α < 2, process with paths in the

dual E∗ of a certain Banach space E. Then there exists a (bounded, linear) operator u

from E into some Lα(S, σ) generating X in a canonical way. The aim of this paper is

to compare the degree of compactness of u with the small deviation (ball) behavior of

φ(ε) = − logP (‖X‖E∗ < ε) as ε → 0. In particular, we prove that a lower bound for

the metric entropy of u implies a lower bound for φ(ε) under an additional assumption

on E. As applications we obtain lower small deviation estimates for weighted α–stable

Levy motions, linear fractional α–stable motions and d–dimensional α–stable Levy

sheets. Our results rest upon an integral representation of Lα–valued operators as well

as on small deviation results for Gaussian processes due to Kuelbs and Li and to the

authors.
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1 Introduction

Let T 6= ∅ be an index set and let E be a Banach space of functions over T . Assume

that for some separable Hilbert space with orthogonal normal base (ONB) (fk)k≥1 and a

given operator v from H into E the sum
∑∞

k=1 ξk v(fk) exists a.s. in E. Here and later on we

always denote (ξk)k≥1 as an i.i.d. sequence of standard normal distributed random variables,

i.e. ξk ∼ N (0, 1) . Then

X(t) :=
∞∑

k=1

ξk(vfk)(t) , t ∈ T , (1.1)

defines a centered Gaussian process X over T possessing a.s. paths in E. As discovered in

Kuelbs and Li [5] and completed in Li and Linde[6], the degree of compactness of v is tightly

related to the behavior of the so–called small deviation (or small ball) function

φ(ε) = − logP (‖X‖E < ε) as ε→ 0. (1.2)

One very useful way to measure the degree of compactness of an operator is the behavior

of its entropy numbers. They are defined as follows: Let v map a Banach space E into

another Banach space F , then

en(v) := inf

{
ε > 0 : v(BE) ⊆

2n−1⋃
j=1

{v(xj) + εBF} , xj ∈ BE

}
(1.3)

where BE and BF are the (closed) unit balls in E or F , respectively.

The precise relation between the sequence (en(v))n≥1 and the behavior of (1.2) asserts

the following.

Proposition 1.1 Let X and v be in relation (1.1) and let θ ∈ (0, 2) be given. Defining

λ > 0 by 1/λ = 1/θ − 1/2, the following are equivalent:

(1) en(v) ≈ n−1/θ as n→∞

(2) − logP (‖X‖E < ε) ≈ ε−λ as ε→ 0 .

Here and throughout the paper, f(x) ≈ g(x) as x → a means c ≤ f(x)/g(x) ≤ C for x

near to a and with some absolute constants 0 < c ≤ C <∞.

A natural question is whether or not there are stochastic processes other than Gaussian

that allow an entropy description of their small deviation behavior similar to ones in Propo-

sition 1.1. Natural candidates are symmetric α–stable processes with 0 < α < 2. This seems

very likely based on our investigation in this paper, yet several difficult problems appear
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even in the basic formulation. For example, in contrast to the Gaussian case, not every

α–stable process allows a representation (1.1) with standard α–stable r.v.’s instead of the

ξk’s. Consequently, at the beginning it is not clear at all for which operator the degree of

compactness should be investigated. Another important difference is that almost all stable

processes of interest have non–continuous paths. Thus the Banach space C(T ) of continuous

functions over T is not suitable in this case. More suitable Banach spaces such as, e.g. B(T ),

the space of bounded functions over T , are non–separable, hence measurability problems

arise.

One possible way to overcome all these difficulties is to regard a stable process X as

random variable with values in a dual Banach space E∗ endowed with the weak–∗–topology.

This is the setup we use and under some natural assumptions on X there exists an operator

u : E → Lα satisfying

E ei〈x,X〉 = e−‖u(x)‖αα , x ∈ E . (1.4)

The main result of this paper (Theorem 4.5 below) asserts in particular the following one-

sided extension of Proposition 1.1 to the α–stable case, α < 2. Namely, if X and u are

related via (1.4), then under an additional assumption on E∗, en(u) ≥ c · n−1/θ for some

θ > 0 with 1/θ > [1− 1/α]+ implies

− logP (‖X‖E∗ < ε) ≥ c′ · ε−λ (1.5)

where 1/λ = 1/θ + 1/α− 1. It is very likely this is true without any additional assumption

about E∗ or E, respectively. The answer remains open because it is closely related to

the famous duality problem for entropy numbers, cf. Bourgain et al.[2] and Milman and

Szarek[12]. As applications of (1.5) we obtain lower estimates for the small deviation function

of weighted α–stable Levy motions, linear fractional α–stable motions and d–dimensional α–

stable Levy sheets. For a comprehensive survey of various small deviation results for stable

processes, see Li and Linde[7].

The organization of the paper is as follows. Section 2 contains a representation theorem,

see (2.3), for operators u. This is more or less a different way to state a well–known and

very useful representation theorem for stable processes as mixture of Gaussian ones. In

Section 3 we compare the entropy numbers of an operator u represented via (2.3) with those

of the vδ’s appearing there. Here we follow the ideas developed in Marcus and Pisier[11]

with refinements. Our key results are contained in Section 4. Especially, Lemma 4.2 turns

out to be crucial for our later investigations. The idea is to precise an important Lemma
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of Kuelbs and Li[5] since the original one is not sufficient for our purposes. This allows us

to prove Theorem 4.5 which contains the above mentioned relation between entropy and

small deviations for stable processes. Of course, Theorem 4.5 is considerably weaker than

Proposition 1.1, but to our knowledge it is the first general small deviation result for non–

Gaussian processes. Finally, Section 5 is devoted to the problem of representing stable

processes by suitable operators. As a consequence we get some applications of Theorem 4.5

for special stable processes.

Acknowledgement: The authors would like to thank the support by the RiP program in

Oberwolfach in which this work originated.

2 Integral Representation of Lα–valued Operators

The aim of this section is to transform a very useful representation theorem for stable

stochastic processes into the language of linear bounded operators. Thus let E be a Banach

space with topological dual E∗ and let (S, σ) be a finite measure space. All our later inves-

tigations are also valid for σ–finite measure spaces by an obvious change of density. A linear

and continuous operator u from E into Lα(S, σ) for some α > 0 is said to be order bounded

if

sup

{∫

S

sup
1≤j≤n

|u(xj)(s)|α dσ(s) : xj ∈ E , ‖xj‖ ≤ 1

}
<∞ . (2.1)

There exist useful equivalent characterizations of order bounded operators (cf. Bourbaki[1],

Vakhania el al.[22] and Linde[10]): An operator u from E into Lα is order bounded iff there

is a function f ∈ Lα(S, σ) such that for any x ∈ E with ‖x‖ ≤ 1, |u(x)(s)| ≤ f(s), σ–a.e.

Another characterization is as follows. Let Bσ(E∗) be the σ–algebra on E∗ generated by

the σ(E∗, E), the weak–∗–open subsets of E∗. Then u satisfies (2.1) iff there is a function

ϕ : S → E∗, measurable with respect to Bσ(E∗) such that

∫

S

‖ϕ(s)‖αE∗ dσ(s) <∞ and u(x) = 〈x, ϕ〉 , x ∈ E . (2.2)

We shall say that the E∗–valued function ϕ decomposes u weakly.

Now we state an abstract version of the representation theorem for stable processes as

mixtures of Gaussian ones.

Proposition 2.1 For 0 < α < 2 let u be an order bounded operator from E into Lα(S, σ).

Then there are probability space (∆,Q) as well as (bounded) operators vδ, δ ∈ ∆, from a
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separable Hilbert space H into E∗ such that

exp(−‖u(x)‖αα) =

∫

∆

exp(−1

2
‖v∗δ (x)‖2

H)dQ(δ) (2.3)

for all x ∈ E.

Remark: Here and in the sequel we always regard the dual v∗ of an operator v from H into

E∗ as a mapping from E into H, i.e. we restrict v∗ to E ⊆ E∗∗.

Proof: Let ϕ be the Bσ(E∗)–measurable function satisfying (2.2) for u : E → Lα(S, σ).

Without lose of generality we can assume u : E → Lα(S, σ) to be weakly decomposed by a

function ϕ : S → E∗ satisfying ‖ϕ(s)‖ = 1 σ–a.s. and, moreover, σ(S) = 1. To construct

(∆,Q) and operators vδ, δ ∈ ∆, we choose an i.i.d. sequence (Vj)j≥1 of S-valued random

variables possessing law σ and an i.i.d. sequence (ηj)j≥1 of standard exponential distributed

random variables, independent of the Vj’s. With these ηj’s we construct dependent Gamma

random variables Γj := η1 + · · ·+ ηj, j ≥ 1 . Let us also define the constant

cα :=

(∫ ∞
0

x−α sinx dx

)1/α

· (E |ξ|α)
−1/α

for ξ ∼ N (0, 1). Suppose that the Vj’s and ηj’s are defined on the same probability space

(∆,Q). If H is a separable Hilbert space we choose some fixed ONB (fj)j≥1 in H and define

for each δ ∈ ∆ the element vδ(fj) ∈ E∗ by

vδ(fj) := cα · Γj(δ)−1/α · ϕ(Vj(δ)) , j = 1, 2, . . .

Note that the strong law of large numbers implies limj→∞ Γj/j = 1 a.s. Hence, using the

fact that ‖ϕ(Vj(δ))‖ = 1 a.s., we see

∞∑
j=1

‖vδ(fj)‖2 ≤ c2
α ·

∞∑
j=1

Γj(δ)
−2/α <∞ a.s. ,

i.e. the vδ’s can be extended for almost all δ ∈ ∆ to bounded operators from H into E∗. Let

(ξj)j≥1 be an i.i.d. sequence of N (0, 1)–distributed random variables, defined on (Ω,P) and

independent of all other sequences. For x ∈ E fixed we set

ψ(ω, δ) := cα

∞∑
j=1

ξj(ω) Γj(δ)
−1/α 〈x, ϕ(Vj(δ))〉 .

This sum is known, cf. Samorodnitsky and Taqqu[17], to exist for almost all pairs of (ω, δ)

and, moreover,

E δE ω exp(i ψ(ω, δ)) = exp(−E δ |〈x, ϕ(V1(δ))〉|α) = exp(−‖u(x)‖αα) . (2.4)
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On the other hand,

E ω exp(i ψ(ω, δ)) = exp
(
− 1

2
c2
α

∞∑
j=1

Γ(δ)−2/α |〈x, ϕ(Vj(δ))〉|2
)

= exp
(
− 1

2
‖v∗δx‖2

H

)
,

which by (2.4) implies

exp(−‖u(x)‖αα) = E δ exp
(
− 1

2
‖v∗δx‖2

H

)

for all x ∈ E. This completes the proof.

Remark: By the construction of the operators vδ the following is valid: Suppose that the

decomposing function ϕ of u attains a.s. values in a (closed) subspace F ⊆ E∗. Then there

are operators vδ from H into F satisfying (2.3). A consequence of this observation is the

following formulation.

Corollary 2.2 Suppose that u maps from the dual space E∗ into Lα(S, σ), 0 < α < 2,

and that u is decomposed by a function ϕ : S → E with s → 〈ϕ(s), x∗〉 measurable for each

x∗ ∈ E∗ and satisfying
∫
S
‖ϕ(s)‖αE dσ(s) < ∞. Then there are operators vδ : H → E such

that

exp(−‖u(x∗)‖αα) =

∫

∆

exp
(
− 1

2
‖v∗δx∗‖2

H

)
dQ(δ)

for all x∗ ∈ E∗.

3 Entropy Estimates for Lα–valued operators

Suppose an operator u from E into some Lα admits representation (2.3) for suitable

operators vδ : H → E∗, δ ∈ ∆. Then this implies, cf. Marcus and Pisier[11], that for each

x ∈ E the random variable δ → 2−1 ‖v∗δx‖2
H / ‖u(x)‖2

α is α/2–stable and non–negative. In

particular, for any ε > 0 we have

Q

(
δ ∈ ∆ :

‖v∗δx‖2
H

‖u(x)‖2
α

≤ ε

)
≤ exp

(− A · ε−α/(2−α)
)

(3.1)

for some universal constant A > 0.

The next proposition is a slightly improved version of a result in Marcus and Pisier[11].

Proposition 3.1 Suppose that u : E → Lα and vδ : H → E∗, δ ∈ ∆, are given in the

representation (2.3). With A > 0 from (3.1), set

ρ0 := 2−1 · (A/3)1/α−1/2 (3.2)
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and for m ∈ N define ∆m ⊆ ∆ by

∆m :=

{
δ ∈ ∆ : en(v∗δ ) ≥ ρ0

en(u)

n1/α−1/2
, n ≥ m

}
. (3.3)

Then there is a universal constant κ > 0 such that Q(∆m) ≥ 1− κ · e−m for all m ∈ N.

Proof: Given x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ε > 0 we define

Dε(x, y) :=

{
δ ∈ ∆ :

‖v∗δ (x− y)‖H
‖u(x− y)‖α

≤ ε

}
,

and obtain by (3.1) the estimate

Q(Dε(x, y)) ≤ exp
(− A · ε−2α/(2−α)

)
. (3.4)

Fix n ∈ N for now and set η := en(u). Then there are 2n−1 elements x1, . . . , x2n−1 in the unit

ball of E for which

‖u(xi)− u(xj)‖α ≥ η/2 , i 6= j .

Consequently, if

Dε(n) :=
2n−1⋃
i,j=1

Dε(xi, xj) ,

then from (3.4) we obtain

Q
(
Dε(n)

) ≤ 22n−2 · e−A·ε2α/(2−α)

. (3.5)

For δ /∈ Dε(n) it follows that

‖v∗δ (xi)− v∗δ (xj)‖H ≥ ε η/2 , i 6= j ,

and hence

en(v∗δ ) ≥ ε η/2 = 2−1ε · en(u) (3.6)

for those δ’s. Next we apply this construction to each n ∈ N with ε = εn depending on n as

follows:

εn := (3n/A)1/2−1/α (3.7)

where A > 0 is as in (3.1) or (3.5). Plugging these εn’s into (3.5) leads to

Q
(
Dεn(n)

) ≤ 22n · e−3n ≤ e−n (3.8)

and, furthermore, if δ /∈ Dεn(n), then by (3.6), (3.7) and (3.2) we obtain

en(v∗δ ) ≥ ρ0 · en(u)

n1/α−1/2
.
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In other words, for ∆m defined in (3.3) we have
⋂
n≥mDεn(n)c ⊆ ∆m, which by (3.8) implies

Q
(
∆m

) ≥ 1−
∞∑
n=m

e−n = 1− e

e− 1
· e−m

as asserted.

The preceding Proposition tells us that certain lower estimates of en(u) lead for almost

all δ’s to lower estimates of en(v∗δ ). However this is not sufficient for our purposes because we

have to know lower estimates for en(vδ), not for en(v∗δ ). To overcome this difficulty, we have

to use the strongest known form of duality results. To be more precise, let F be a Banach

space. We shall say that it possesses property D if there are constants a, b > 0 such that for

all compact operators v from a Hilbert space H into F the estimate

e[a·n](v
∗) ≤ b · en(v) (3.9)

is valid. It is an long standing open problem whether or not every Banach space F possesses

property D. As shown in Pajor and Tomczak–Jaegermann[14], Thm. 3.3, spaces of so–called

weak cotype 2 have this property, in particular, all Lp–spaces with 1 ≤ p ≤ 2.

Corollary 3.2 Let u : E → Lα and vδ, δ ∈ ∆ be given in (2.3) and suppose that almost

all vδ’s, mapping H into a subspace F ⊆ E∗, possessing property D. If

en(u) ≥ c1 · n−1/γ (log n)β (3.10)

for certain γ > 0 and β ∈ R, then there are constants ρ, κ, a > 0 such that for all m ∈ N

Q
(
δ ∈ ∆ : en(vδ) ≥ ρ · n−1/γ−1/α+1/2(log n)β , n ≥ m

) ≥ 1− κ e−am . (3.11)

Proof: ¿From Proposition 3.1 and (3.10) we derive

Q
(
δ ∈ ∆ : en(v∗δ ) ≥ ρ0 · c1 · n−1/γ−1/α+1/2(log n)β , n ≥ m

) ≥ 1− κ e−m ,

and by (3.9) this implies

Q
(
δ ∈ ∆ : en(vδ) ≥ ρ · n−1/γ−1/α+1/2(log n)β , n ≥ m− 1

a

)
≥ 1− κ e−m (3.12)

where a > 0 is as in (3.10) and ρ > 0 depends on c1, γ, β and a, b from (3.9). Changing κ in

(3.12) suitably, (3.11) follows by direct calculations.
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4 Small Ball Estimates of Stable Measures

Let (K, d) be a precompact metric space and denote by en(K) = en(K, d) the dyadic

entropy numbers of K, i.e. en(K) is the minimal ε > 0 for which there exists an ε–cover of

K with at most 2n−1 elements in K. In certain situations it is easier to work with the metric

entropy H(ε,K) = logN(ε,K) of K, where

N(ε,K) := inf {n ∈ N : ∃ ε–cover of cardinality less than n of K} .

The metric entropy function H(ε,K) may be regarded as a inverse to that of entropy num-

bers. To be more precise and make it applicable to random setting, we need the following

lemma with relevant constants expressed explicitly.

Lemma 4.1 Let (K, d) be a metric space such that for certain γ > 0 and β ∈ R holds

en(K) ≥ c1 · n−1/γ (log n)β (4.1)

whenever n ≥ m for some m ∈ N. Then this yields

H(ε,K) ≥ c2 · ε−γ log(1/ε)β γ (4.2)

provided that ε < ε0 = ε0(m) with

ε0 := c1 ·m−1/γ (logm)β . (4.3)

The constant c2 > 0 in (4.2) depends only on c1 > 0 of (4.1) and on γ and β.

Proof: Of course, it suffices to prove this for m sufficiently large. Hence we may assume

that n → n−1/γ (log n)β is decreasing for n ≥ m. Consequently, for ε0 defined by (4.3) and

ε < ε0 we find a unique n ≥ m such that with c1 > 0 as in (4.1)

c1 · (n+ 1)−1/γ(log(n+ 1))β ≤ ε < c1 · n−1/γ(log n)β . (4.4)

Thus by (4.1) we obtain en(K) > ε, i.e. it holds N(ε,K) ≥ 2n−1 and using (4.4) this leads

to

H(ε,K) ≥ (n− 1) log 2 ≥ log 2

2
· cγ1 · ε−γ

(
log(n+ 1)

)β γ
. (4.5)

Our lemma then follows by using (4.4) and some simple calculation.

Before proceeding further let us recall some basic facts about centered Gaussian measures

and the operators generating them. If ν is a probability measure on the weak–∗–Borel sets
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Bσ(E∗) of E∗, then its characteristic function ν̂ is a mapping from E into the complex

numbers defined by

ν̂(x) :=

∫

E∗
exp(i 〈x, x∗〉)dν(x∗) , x ∈ E . (4.6)

The measure ν is said to be centered Gaussian if there are a separable Hilbert space H and

an operator v mapping H into E∗ such that

ν̂(x) = exp
(− 1

2
‖v∗(x)‖2 ) (4.7)

for all x ∈ E. Denote by Kν ⊆ E∗ the unit ball of the reproducing kernel Hilbert space of

ν, which coincides with {v(h) : h ∈ H, ‖h‖ ≤ 1} in our situation, i.e. for ν generated by v

via (4.7). The set Kν is known to be precompact with respect to the norm topology on E∗.

By Sudakov’s Theorem[19] it even holds supn≥1 n
1/2 en(Kν) <∞. For a probability measure

ν on Bσ(E∗) we define its small ball function φν at the log–level by

φν(ε) := − log ν {x∗ ∈ E∗ : ‖x∗‖ ≤ ε} . (4.8)

As discovered in Kuelbs and Li[5] for Gaussian ν the function φν is tightly related with the

degree of compactness of Kν . One of the basic estimates in the paper asserts

H
( ε
λ
,Kν

)
≤ λ2

2
+ φν(ε) (4.9)

for all ε, λ > 0. Note that we investigate measures ν on Bσ(E∗) here and it may happen,

even in the Gaussian case, that φν(ε) = ∞ for all ε < ε0. In order to be applicable to

random setting, we need the following lemma based on (4.9) that expresses relevant constants

explicitly.

Lemma 4.2 Let ν on Bσ(E∗) be generated by v via (4.7) and suppose that for some

γ ∈ (0, 2) and β ∈ R we have

H(ε,Kν) ≥ c2 · ε−γ log(1/ε)β γ (4.10)

provided that ε < ε0 for a certain ε0 > 0. Then this implies

φν(ε) ≥ c3 · ε−2γ/(2−γ) log(1/ε)2βγ/(2−γ) (4.11)

for all ε < ε1 where

ε1 = c4 · ε1− γ/2
0 log(1/ε0)βγ/2 . (4.12)

Here the constants c3, c4 > 0 in (4.11) and (4.12) depend only on c2, γ and β.
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Proof: In view of (4.10), the basic estimate (4.9) leads to

c2 ·
( ε
λ

)−γ
· log

(
λ

ε

)βγ
≤ λ2

2
+ φν(ε) (4.13)

provided that ε/λ < ε0. We define now a constant a ∈ (0, 1] as follows: If β > 0, let a = 1,

while for β < 0 we choose a > 0 small so that

aγ ·
(

3

2− γ
)βγ
− a2

2
:= a′ > 0 . (4.14)

Recall that we have 0 < γ < 2. With this number a and with c2 > 0 in (4.10) we apply

(4.13) for

λ := a · c1/(2−γ)
2 · ε−γ/(2−γ) · log(1/ε)βγ/(2−γ). (4.15)

The remaining step is to treat the log–term appearing on the left hand side of (4.13) with

λ given in (4.15). First note that it suffices to prove the Lemma for ε0 sufficiently small.

Hence, if β > 0 we have by using 2/(2− γ) > 1

log(λ/ε) ≥ log(1/ε) (4.16)

for ε < ε0. If β < 0, the constant a is less than 1, and hence

log(λ/ε) ≤ 2

2− γ log(1/ε) +
log c2

2− γ ≤
3

2− γ log(1/ε) (4.17)

again for ε0 sufficiently small. Consequently, (4.16) and (4.17) lead to

log(λ/ε)βγ ≥ log(1/ε)βγ , β > 0, and

log(λ/ε)βγ ≥
(

3

2− γ
)βγ
· log(1/ε)βγ , β < 0 .

Combining this with (4.13) and (4.14) yields, in dependence of β < 0 or β > 0, respectively,

that

φν(ε) ≥
[
aγ
(

3

2− γ
)βγ
− a2

2

]
· c2/(2−γ)

2 · ε−2γ/(2−γ) · log(1/ε)2βγ/(2−γ) , (4.18)

φν(ε) ≥ 1

2
· c2/(2−γ)

2 · ε−2γ/(2−γ) · log(1/ε)2βγ/(2−γ) . (4.19)

This proves (4.11) with c3 = a′ · c2/(2−γ)
2 for β < 0 and with c3 = c

2/(2−γ)
2 /2 if β > 0.

Finally observe that (4.18) or (4.19) only hold under the assumption ε/λ < ε0 with

λ = λ(ε) defined in (4.15). It is easy to see that ε/λ admits two–sided estimates with

multiples of ε2/(2−γ) · log(1/ε)−βγ/(2−γ) where the appearing constants only depend on c2, β

10



and γ. Consequently, there is some c4 > 0 depending only on these numbers such that with

ε1 := c4 · ε(2−γ)/2
0 · log(1/ε0)βγ/2 the estimate ε < ε1 always yields ε/λ < ε0. This completes

the proof.

Combining Lemma 4.1 with Lemma 4.2 leads to the following.

Proposition 4.3 Let ν and Kν be as before and suppose that for all n ≥ m we have

en(Kν) ≥ c1 · n−1/γ (log n)β (4.20)

for some c1 > 0, some γ ∈ (0, 2) and β ∈ R. Then

φν(ε) ≥ c3 · ε−2γ/(2−γ) · log(1/ε)2βγ/(2−γ)

for all ε < ε1 = ε1(m) where

ε1 := c4 ·m−1/γ+1/2 · (logm)β (4.21)

and c3, c4 > 0 depend only on c1, γ and β.

Before stating and proving the main result of this paper let us recall some facts about

symmetric α–stable (SαS) measures. A probability measure µ on Bσ(E∗) is said to be SαS,

0 < α ≤ 2, if there is some operator u : E → Lα(S, σ) for some finite measure space (S, σ)

such that the characteristic function µ̂ of µ can be written as

µ̂(x) = exp(−‖u(x)‖αα) , x ∈ E . (4.22)

We are mainly interested in the non–Gaussian case, i.e. we suppose 0 < α < 2. Since µ is

Radon on the locally convex space [E∗, σ(E∗, E)], by Tortrat’s theorem[21], we can always

assume u to be weakly decomposed by an α–integrable E∗–valued function. Consequently,

according to Proposition 2.1 there exist a probability space (∆,Q) and operators vδ : H →
E∗, δ ∈ ∆, such that

µ̂(x) = exp(−‖u(x)‖αα) =

∫

∆

e−
1
2‖v∗δx‖2

HdQ(δ) (4.23)

for x ∈ E.

The next result asserts that for Q–almost all δ ∈ ∆ the function x→ exp(−‖v∗δx‖2
H /2)

appearing at the right hand side of (4.23) is characteristic function of a σ(E∗, E)–Radon

(Gaussian) measure on E∗. For a proof we refer to Sztencel[18].
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Proposition 4.4 If µ and the vδ’s satisfy (4.23), then for almost all δ ∈ ∆ there exist

centered Gaussian measures νδ on Bσ(E∗) satisfying

ν̂δ(x) = exp
(
− 1

2
‖v∗δx‖2

H

)
, x ∈ E .

Moreover, for any B ∈ Bσ(E∗)

µ(B) =

∫

∆

νδ(B) dQ(δ) . (4.24)

Our next objective is to prove the main result of the present paper. It relates the behavior

of the small ball function φµ for an SαS measure µ on E∗ with the degree of compactness of

u : E → Lα. Here µ and u are related via (4.22). Let us also mention that we necessarily

have en(u1) = en(u2) for two operators u1, u2 both related to µ by (4.22).

Theorem 4.5 Let E be a Banach space for which E∗ possesses property D and let µ be an

SαS measure on Bσ(E∗) with characteristic function represented by an operator u : E → Lα.

If u satisfies

lim inf
n→∞

n1/θ · (log n)−β · en(u) ≥ C > 0 (4.25)

for some θ > 0 with 1/θ > [1− 1/α]+ and some β ∈ R, then

lim inf
ε→0

ελ · log(1/ε)−βλ · φµ(ε) ≥ c0 · Cλ > 0 (4.26)

with 1/λ = 1/θ + 1/α − 1 and some universal c0 > 0 depending only on α, θ, β and the

constants a, b > 0 appearing in (3.9).

Proof: We first suppose

en(u) ≥ n−1/θ (log n)β (4.27)

whenever n ≥ n0 for a certain n0 ∈ N. Let νδ, δ ∈ ∆, be centered Gaussian measures on

Bσ(E∗) related to µ as in (4.24) and possessing characteristic functions

ν̂δ(x) = exp
(
− 1

2
‖v∗δx‖2

H

)
, x ∈ E ,

for some operators vδ : H → E∗. An application of Corollary 3.2 leads in view of (4.27) to

the following: There exist constants ρ, κ, a > 0 such that for all m ≥ m0 it follows that

Q
(
δ ∈ ∆ : en(vδ) ≥ ρ · n−1/λ−1/2 · (log n)β , n ≥ m

) ≥ 1− κ · e−am . (4.28)

Next we apply Proposition 4.3 with c1 = ρ from (4.28) and with γ ∈ (0, 2) defined by

1/γ := 1/λ+ 1/2. Then for ε > 0 small there are integers mε ∈ N satisfying

ε ≈ m−1/λ
ε · (logmε)

β (4.29)
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such that, if

en(Kν) ≥ ρ · n−1/λ−1/2 · (log n)β

for all n ≥ mε, then

φν(ε) ≥ c3 · ε−λ · log(1/ε)βλ . (4.30)

Now we apply this for ν = νδ with δ’s satisfying the condition in (4.28). Observe that

en(Kνδ) = en(vδ). Thus, if we define for c3 > 0 given in (4.30) the set

∆(ε) :=
{
δ ∈ ∆ : φνδ(ε) ≥ c3 · ε−λ · log(1/ε)βλ

}
, (4.31)

then we get

Q(∆(ε)) ≥ 1− κ · e−amε (4.32)

for every small ε > 0. Since (4.29) is equivalent to mε ≈ ε−λ · log(1/ε)βλ we finally obtain

for a certain c̃ > 0,

Q(∆(ε)) ≥ 1− κ · e−c̃ ε−λ log(1/ε)βλ . (4.33)

With this preparation we are now in position to prove (4.26) under the special assumption

(4.27). ¿From (4.33) and (4.31) we derive

µ(‖x∗‖ < ε) =

∫

∆

νδ(‖x∗‖ < ε) dQ(δ)

≤
∫

∆(ε)

exp
(− φνδ(ε)

)
dQ(δ) +Q(∆(ε)c)

≤ exp
(−c3 · ε−λ · log(1/ε)βλ

)
+ κ · exp

(−c̃ · ε−λ · log(1/ε)βλ
)
.

Consequently, there is some constant c0 > 0 such that (4.27) implies

φµ(ε) ≥ c0 · ε−λ · log(1/ε)βλ (4.34)

for small ε > 0. In particular, it follows that

lim inf
ε→0

ελ · log(1/ε)−βλ · φµ(ε) ≥ c0 . (4.35)

Here the constant c0 > 0 in (4.34) or (4.35), is, of course, independent of the operator u (or,

equivalently, of the corresponding measure µ).

As the final step, we remove the condition (4.27). Assume (4.25) and let µ0 be defined

by

µ̂0(x) := exp(−‖u(x)/C‖αα) , x ∈ E.

13



Then condition (4.27) is satisfied and hence

lim inf
ε→0

ελ · log(1/ε)−βλ · φµ0(ε) ≥ c0 . (4.36)

By noticing φµ0(ε) = − log µ(‖x∗‖ < εC) = φµ(εC) , we complete the proof.

There are several remarks to Theorem 4.5. First, suppose that almost all measures νδ

are concentrated on a subspace F ⊆ E∗ (or, equivalently, almost all operators vδ map into

F ). Then for the validity of Theorem 4.5 it suffices that F possesses property D. Second,

the restriction 1/θ > 1 − 1/α for 1 < α < 2 is natural due to a lower entropy estimate

for bounded SαS–processes, see, Marcus and Pisier[11] or Samorodnitsky and Taqqu[17],

Thm. 12.3.1. Finally, as shown in Ryznar[15], for 0 < α < 1 and all SαS–measures µ,

φµ(ε) ≤ c · ε−α/(1−α) , 0 < ε < 1 .

This explains why the λ appearing in (4.26) always satisfy λ < α/(1− α).

5 Examples and Applications

A stochastic process X = (X(t))t∈T over an index set T 6= ∅ is said to be SαS for some

α ∈ (0, 2] if for all t1, . . . , tn ∈ T and all real numbers λ1, . . . , λn, the real random variable
∑n

j=1 λjX(tj) is SαS–distributed.

We shall restrict ourselves to SαS–processes possessing a version (the finite dimensional

distributions coincide) which admits an integral representation in the sense of Ch. 13 in

Samorodnitsky and Taqqu[17]. In other words, we investigate SαS–processes X for which

there exist a finite measure space (S, σ) and a kernel K : T × S → R such that for each

t ∈ T the function s→ K(t, s) is measurable with
∫

S

|K(t, s)|α dσ(s) <∞

and for all λ1, . . . , λn ∈ R and all t1, . . . , tn ∈ T we have

E exp

(
i

n∑
j=1

λjX(tj)

)
= exp

(
−
∫

S

∣∣∣∣∣
n∑
j=1

λjK(tj, s)

∣∣∣∣∣

α

dσ(s)

)
. (5.1)

The class of those SαS–processes is very broad and contains all special processes of interest

such as those processes with property S given in Samorodnitsky and Taqqu[17].

Let X be an SαS–process generated by K : T ×S → R via (5.1). Our aim is to construct

a suitable Lα–valued operator u tightly related to X. This allows us to transform entropy

estimates of u into those of sets generated by X and vice versa.
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As a first example of such a construction we investigate bounded processes. Suppose that

X has a bounded version, i.e. there is a version X̃ of X, defined on Ω̃, such that for each

ω̃ ∈ Ω̃ we have

sup
t∈T

∣∣∣X̃(t)(ω̃)
∣∣∣ <∞ .

If K is the corresponding kernel to X (or X̃) by Thm. 10.2.3 in Samorodnitsky and Taqqu[17]

it follows that

sup

{∫

S

sup
t∈T0

|K(t, s)|α dσ(s) : T0 ⊂ T countable

}
<∞ . (5.2)

Hence, if the Banach space l1(T ) is defined by

l1(T ) :=

{
x = (xt)t∈T :

∑
t∈T
|xt| <∞

}
,

then the operator u with

u(x)(s) :=
∑
t∈T

xt ·K(t, s) , x = (xt)t∈T ∈ l1(T ) , (5.3)

is well–defined and bounded from l1(T ) into Lα(S, σ) because of (5.2). Recall that for

x ∈ l1(T ) at most countable many of the xt’s are different from zero. By similar arguments,

u is even order bounded. Fix now a positive number r < α. By a well–known property of

stable random variables

(
E

∣∣∣∣∣
n∑
j=1

λjX(tj)

∣∣∣∣∣

r)1/r

= cα,r ·
∥∥∥∥∥

n∑
j=1

λj ·K(tj, · )
∥∥∥∥∥
α

for some universal cα,r > 0. Thus, if we define

s(X) :=

{
n∑
j=1

λjX(tj) :
n∑
j=1

|λj| ≤ 1 , tj ∈ T
}

and regard it as subset of Lr(Ω,P), by the definition of u via (5.3) it easily follows that

en(u) = c−1
α,r · en(s(X)) (5.4)

where the entropy on the right hand side of (5.4) is taken with respect to the Lr–distance.

In other words, compactness properties of the operator u are equivalent to those of the

set s(X), the set of symmetric convex combinations of paths of X. Unfortunately, it is not

known whether or not the dual of l1(T ) (space of bounded functions on T ) possesses property

D, and thus in the moment we are not able to apply Theorem 4.5 here.
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Let us suppose now that there is a metric d on the index set T for which (T, d) is

separable. Define B(T ) as σ–algebra of Borel sets (w.r.t. the topology generated by d). We

assume now that the SαS–process X has a measurable version, i.e. there is a version X̃ of X

for which (t, ω̃)→ X̃(t, ω̃) is measurable on T×Ω̃ w.r.t. the product σ–algebra. Note that by

Cor. 11.1.2 in Samorodnitsky and Taqqu[17] such a measurable version exists iff the kernel

K with (5.1) may be chosen measurable on T ×S. Next let X be a measurable SαS–process

over T and let ρ be some finite measure on (T,B(T )). Then we are interested in processes

X that satisfy

P
(∫

T

|X(t)|p dρ(t) <∞
)

= 1 (5.5)

for some p ∈ [1,∞] with the usual modification for p =∞. In particular, (5.5) implies that

for each g ∈ Lq(T, ρ), q−1 + p−1 = 1, the random variable

Xg :=

∫

T

X(t) g(t) dρ(t) (5.6)

is well–defined. In fact, it is not clear at all that Xg is SαS.

Proposition 5.1 Let X be a measurable SαS–process over a separable metric space T

satisfying (5.5) for some p ∈ [1,∞]. For g ∈ Lq(T, ρ) define Xg by (5.6). Then the following

are valid:

(1) The random variable Xg is SαS.

(2) It follows that

E eiXg = exp

(
−
∫

S

∣∣∣∣
∫

T

K(t, s)g(t) dρ(t)

∣∣∣∣
α

dσ(s)

)
. (5.7)

Proof: For g’s in Lq(T, ρ) with g ≥ 0, both assertions follow directly from Thm. 11.4.1 in

Samorodnitsky and Taqqu[17]. The arguments there can be modified to treat the general

case by considering the positive and negative part of g ∈ Lq separately. We omit the details.

The preceding Proposition implies in particular that
∫

T

K(t, · )g(t) dρ(t) ∈ Lα(S, σ)

for each g ∈ Lq(T, ρ). Hence, if

(ug)(s) :=

∫

T

K(t, s)g(t) dρ(t) , g ∈ Lq(T, ρ) ,

then u maps Lq(T, ρ) into Lα(S, σ) and it is bounded by the Closed Graph Theorem. In this

notation (5.7) may now be written as

E exp

(
i

∫

T

X(t)g(t) dρ(t)

)
= exp (−‖u(g)‖αα) .
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Using similar arguments as in the case of bounded processes it follows

en(u) = c−1
α,r · en(sp(X)) (5.8)

where

sp(X) :=

{∫

T

X(t)g(t) dρ(t) : ‖g‖Lq(T,ρ) ≤ 1

}
(5.9)

and the entropy numbers of sp(X) are taken w.r.t. Lr–norm for a certain positive r < α.

Since for 1 ≤ p ≤ 2 the space Lp(T, ρ) possesses property D, Theorem 4.5 applies here

and leads to the following.

Proposition 5.2 Let X be a measurable SαS–process satisfying (5.5) for a certain p ∈
[1, 2]. If

en(sp(X)) ≥ c · n−1/θ · (log n)β (5.10)

for some θ > 0 with 1/θ > [1− 1/α]+, then

− logP
(∫

T

|X(t)|p dρ(t) < εp
)
≥ c′ · ε−λ · log(1/ε)βλ

where 1/λ = 1/θ + 1/α− 1.

Remark: Note that the preceding Proposition gives also some information for the case

p =∞ (provided X is bounded). Indeed, since ‖X‖p ≤ ρ(T )1/p · ‖X‖∞, condition (5.10) for

some p ≤ 2 implies

− logP
(

sup
t∈T
|X(t)| < ε

)
≥ c′ · ε−λ · log(1/ε)βλ

for the same λ.

Next we present some interesting examples.

Example 1: Let u from Lq[0, 1] to Lα[0, 1] be defined by

(ug)(s) :=

∫ 1

s

g(t) dt .

This operator is tightly related with α–Levy motion Zα on [0, 1], i.e. for g ∈ Lq[0, 1] we have

E exp

(
i

∫ 1

0

Zα(t)g(t) dt

)
= exp(−‖u(g)‖αα) .

Since (cf. Lifshits and Linde[9]) for all p and α we have en(u) ≈ n−1, Proposition 5.2 and

the following remark imply

− logP
(
‖Zα‖p < ε

)
≥ c · ε−α
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for 1 ≤ p ≤ ∞ and 0 < α < 2. This is the correct order as shown in Chen et al.[3] and

Mogulski[13].

Example 2: Let w : (0,∞)→ [0,∞) be a weight function such that for some p ∈ [1,∞)

we have

P
(∫ ∞

0

|w(t)Zα(t)|p dt <∞
)

= 1 . (5.11)

Here as before
(
Zα(t)

)
t≥0

denotes a standard α–stable Levy motion. Note that (cf. Samorod-

nitsky and Taqqu[17], p. 510) we have (5.11) iff

∫ ∞
0

w(t)p tp/α dt <∞ for 0 < p < α ,

∫ ∞
0

[∫ ∞
s

w(t)p dt

]α/p
ds <∞ for 0 < α < p .

In the case α = p property (5.11) is satisfied iff

∫ ∞
0

t w(t)p dt <∞

and, moreover,

∫ ∞
0

∫ ∞
s

w(t)p · log+

(
t ·
∫ ∞
s

w(x)p dx
)−1

dt ds <∞ .

A corresponding operator u : Lq(0,∞)→ Lα(0,∞) may be defined by

(uf)(s) =

∫ ∞
s

w(t) · f(t) dt . (5.12)

It was shown in Lifshits and Linde[9] that (for α ≥ 1) the operator u defined by (5.12) admits

the following lower entropy estimate:

lim inf
n→∞

n en(u) ≥ c · ‖w‖r (5.13)

where 1/r := 1/p+ 1/α. If we combine (5.13) with Theorem 4.5 we obtain the following.

Proposition 5.3 Suppose 1 ≤ p ≤ 2 and 1 ≤ α < 2. Let w be a weight function

satisfying (5.11). Then

lim inf
ε→0

εα ·
[
− logP

(∫ ∞
0

|w(t)Zα(t)|p dt < εp
)]
≥ c ·

(∫ ∞
0

w(t)αp/(α+p) dt

)1+α/p

for some universal c > 0.
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This result plays an important role in our further investigation in Li and Linde[8] on the

exact small ball constants for stable processes under weighted Lp-norm.

Example 3: For 1 < α < 2 and 1/α < H < 1 define the kernel K on [0, 1]× (−∞, 1] by

K(t, s) := (t− s)H−1/α
+ − (−s)H−1/α

+ .

The SαS–process XH = (XH(t))0≤t≤1 generated by this K is usually called linear fractional

α–stable motion (cf. Samorodnitsky and Taqqu[17] for more information). Let u : Lq[0, 1]→
Lα(−∞, 1] be the integral operator with kernel K from above. Then u may be written as

(ug)(s) :=

{
(u1g)(s) : 0 ≤ s ≤ 1
(u2g)(s) : −∞ < s < 0

where u1 : Lq[0, 1]→ Lα[0, 1] is given by

(u1g)(s) :=

∫ 1

s

(t− s)H−1/αg(t) dt , 0 ≤ s ≤ 1 ,

while u2 : Lq[0, 1]→ Lα(−∞, 0) acts as

(u2g)(s) :=

∫ 1

0

[
(t− s)H−1/α − (−s)H−1/α

]
g(t) dt , −∞ < s < 0 .

Of course, for all g ∈ Lq[0, 1],

‖ug‖αα = ‖u1g‖αα + ‖u2g‖αα ≥ ‖u1g‖αα ,

and hence (cf. Lifshits and Linde[9]) we get

en(u) ≥ en(u1) , n ∈ N . (5.14)

On the other hand, by a change of variables u1 may be isometrically transformed into

v : Lq[0, 1]→ Lα[0, 1] with

(vf)(t) :=

∫ t

0

(t− s)H− 1/αf(s) ds , 0 ≤ s ≤ 1 ,

thus en(v) = en(u1). But it is well–known (cf. Edmunds and Triebel[4] or Lifshits and

Linde[9]) that

en(v) ≈ n−(H−1/α+1) ,

and hence by (5.14) we finally obtain

lim inf
n→∞

nH−1/α+1 en(u) > 0 . (5.15)

An application of Theorem 4.5 (or Proposition 5.2) to (5.15) implies now the following.
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Proposition 5.4 Let XH = (XH(t))t∈[0,1] be a linear fractional α–stable motion of order

α ∈ (1, 2) and suppose 1/α < H < 1. Then for any p ∈ [1,∞] it follows that

− logP
(∥∥XH

∥∥
Lp[0,1]

< ε
)
≥ c · ε−1/H .

For p = ∞ this was proved in Samorodnitsky[16] by different methods. It is an open

question whether or not ε−1/H is the correct order.

Example 4: Our last example deals with an SαS–process indexed by [0, 1]d for some

d ≥ 1. If u from Lq[0, 1]d to Lα[0, 1]d is defined by

(ug)(s) :=

∫ 1

s1

· · ·
∫ 1

sd

g(t) dtd · · · dt1 , s = (s1, . . . , sd) ,

the generated SαS-process Zd
α will be called (d–dimensional) α–Levy sheet. Note that for

α = 2 we obtain the ordinary d–dimensional Brownian sheet. In view of Proposition 11.3.2

in Samorodnitsky and Taqqu[17], for any p ∈ [1,∞)

P
(∫

[0,1]d

∣∣Zd
α(t)

∣∣p dt <∞
)

= 1 .

An easy transformation gives en(u) = en(v) where v from Lq[0, 1]d to Lα[0, 1]d is defined by

(vf)(t) :=

∫ t1

0

· · ·
∫ td

0

f(s) dsd · · · ds1 , t = (t1, . . . , td) .

It is known (cf. Temlyakov[20]) that for α ≥ 1

en(v) ≈ n−1(log n)d−1 ,

and hence Proposition 5.2 applies with θ = 1 and β = d− 1 and this leads to

− logP
(∥∥Zd

α

∥∥
Lp[0,1]d

< ε
)
≥ c · ε−α log(1/ε)α(d−1) (5.16)

for all p ∈ [1,∞]. It is a challenge to find the correct rate in (5.16).
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