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Abstract. We provide an error analysis of a fully discrete finite element – Fourier series method for approximating
Maxwell’s equations. The problem is to approximate the electromagnetic field scattered by a bounded, inhomogeneous and
anisotropic body. The method is to truncate the domain of the calculation using a series solution of the field away from this
domain. We first prove a decomposition for the Poincaré-Steklov operator on this boundary into an isomorphism and a compact
perturbation. This is proved using a novel argument in which the scattering problem is viewed as a perturbation of the free
space problem. Using this decomposition, and edge elements to discretize the interior problem, we prove an optimal error
estimate for the overall problem.

1. Introduction. Motivated by the problem of computing the interaction of microwave radiation with
biological tissue, we shall analyze a finite element method for approximating Maxwell’s equations in an infinite
domain. We suppose that there is a bounded anisotropic, conducting object, called the scatterer, illuminated
by a time-harmonic microwave source. The microwave source produces an incident electromagnetic field that
interacts with the scatterer and produces a scattered time harmonic electromagnetic field. It is the scattered
field that we wish to approximate.

From the mathematical point of view, the problem can be reduced to that of approximating the total
electric field E = E(x), x ∈ R3, which satisfies Maxwell’s equations in all space:

∇× µ−1
r ∇×E − k2εrE = 0 , in R3(1.1)

where µr and εr are respectively the relative permeability tensor (real 3× 3 matrix) and the relative permit-
tivity tensor (complex 3×3 matrix) describing the electromagnetic properties of the scatterer. The constant
k is the wave number of the material in the background medium. Recall that the magnetic field H can be
computed from the electric field using

H =
1
ik
µ−1

r ∇×E.

The boundedness of the scatterer implies the existence of a radius a > 0 such that

µr(x) = εr(x) = I if |x| > a

where I is the identity matrix.
The incident field Ei is assumed known and to satisfy Maxwell’s equations in the background medium

∇×∇×Ei − k2Ei = 0 in R3,

so Ei is a wave propagating in the background homogeneous medium. We have in mind the plane wave

Ei = p exp(ikx · d)(1.2)

where |d| = |p| = 1 and p is orthogonal to d. Other incident fields can be incorporated into the theory
including for example the field due to a point source provide the source is outside the sphere of radius a
enclosing the scatterer.

The total field E consists of the known incident field Ei and the scattered field denoted Es so that

E = Ei + Es in R3.(1.3)

Finally the scattered field is assumed to be “outgoing” so that it satisfies the Silver-Müller radiation condition

lim
r→∞

[
(∇×Es)× x− ikrEs

]
= 0(1.4)
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where r = |x|.
Under suitable assumptions on the coefficients in the model described shortly, the scattering problem

(1.1)-(1.4) has a unique solution (for a general discussion of problems of this type see [5]). The theory
presented here will produce an alternative proof of this fact.

There are a variety of ways to approximate the solution of (1.1)-(1.4). One way is by integral equations
based on a volume formulation (see for example [5, 22]). This handles the infinite domain precisely, but
requires the evaluation of singular integrals and the approximate inversion of a large dense system (of course
using a suitable iterative method).

An alternative method, which is the focus of this paper, is to use a finite element method. To do this the
infinite spatial domain must be truncated by introducing an artificial boundary containing the scatterer in
it’s interior. A suitable boundary condition must then be formulated on the artificial boundary to mimic the
scattering behavior of the infinite part of the domain. Using an appropriate Calderon operator (or Dirichlet-
to-Neumann map) we proposed and analyzed such a scheme (see [27] and the correction in [28]). That
method however supposed that the Calderon operator is computed exactly. In a related work Demkowicz
and Pal [9] analyzed the same method this time discretizing the Calderon operator but not the interior
problem. In this paper we shall use a domain decomposition approach to analyze a fully discrete problem
(discretizing with finite elements in the interior and discretizing the Calderon operator). The analysis of the
fully discrete problem is desirable to illuminate potential stability conflicts.

Of course the use of the Steklov-Poincaré operator and its application to computing the Dirichlet to
Neumann map has a long history. In particular we draw attention to the following work related to using a
special function expansion in the exterior of a ball as we shall do here [17, 23, 19, 7, 8, 18]. In our paper we
shall present an a priori analysis of this method applied to Maxwell’s equations.

The approach we adopt here is a natural extension of our work on the Helmholtz equation [26]. This
proves convergence of the Keller-Givoli Dirichlet-to-Neumann map absorbing boundary condition [24, 13]
which is presented in detail by Ihlenburg [21]. In our paper in two dimensions, and later in the paper of
Grote and Keller [15] in three dimensions, stability is proved without requiring a relationship between the
number of modes on the artificial boundary and the mesh size of the finite element method. Unfortunately
we have been unable to prove this for Maxwell’s equations, and instead must require that the mesh size be
sufficiently small compared to the number of modes used on the boundary (see Theorem 5.1).

A similar approach to obtaining artificial boundary conditions for Maxwell’s equations has been proposed
by Grote and Keller [16] using the special function expansion of the solution that we use in this paper. They
showed how to implement the method efficiently for the time dependent problem, but did not provide error
estimates. For more recent results in this direction (again for the time domain problem) see [14]. Our
results show that, for the time-harmonic problem, the use of truncated spherical-harmonic expansions on
the artificial boundary produces a well-posed discrete problem (under the conditions of Theorem 5.1) that
converges to the exact solution.

The scattering problem is decomposed into two parts, one on the bounded domain inside the artificial
boundary and the other on it’s infinite complement. Matching is done on the artificial boundary using a
Poincaré-Steklov problem. As a result the method is said to be a non-overlapping scheme. An alternative
scheme proposed in [20] is to use an overlapping method. This introduces a coupling between some interior
points and points on the artificial boundary. Our method decouples the two problems (effectively only
coupling the nodes on the artificial boundary). Nevertheless, the method of [20] allows a very general
artificial boundary, whereas the method we describe here is restricted to a spherical outer boundary (more
general boundaries are possible, for example ellipsoidal boundaries, at the expense of working with suitable
basis functions in more general coordinate systems).

There are many other possible methods for approximating this scattering problem. For example the
interior finite element method can be coupled to a boundary element method that effectively computes the
Calderon operator (and allows a rather general artificial boundary), see for example [22]. Finally we note
that it is possible to use the perfectly matched layer of Bérénger [2] to terminate the finite element region.
The analysis of the perfectly matched layer for Maxwell’s equations has yet to be done.

The layout of the paper is as follows. In the next section, § 2, we describe in detail the assumptions on
εr and µr, and we formulate a domain decomposition scheme for the continuous problem. Then we show
that the domain decomposed problem possess a unique solution. The approach is novel in that we view the
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scattering problem as a compact perturbation of the free space problem in a suitable sense. We also show
that despite the fact that we do not explicitly handle the divergence condition, the solution is unique.

Section § 3 is devoted to describing the finite dimensional discrete problem based on using the edge finite
elements of Nédélec [31] in the interior and a Fourier space on the surface of the sphere.

In Section § 4 we analyze the interior finite element problem and derive an error estimate for the interior
scheme.

Finally in Section § 5 we analyze the overall discrete problem, prove that it possesses a unique solution
and derive an error estimate. The analysis of this problem is complicated by the fact that we have been
unable to write the boundary Poincaré-Steklov operator as a compact perturbation of a coercive operator
(see also [8]). Thus we have to adopt a more general splitting writing the operator as an invertible operator
plus a compact perturbation. This is possible because of the very special boundary space that we use on the
artificial boundary.

Throughout the paper we shall denote by ‖ · ‖ the
(
L2(ΩR)

)3 norm. For other normed spaces X we
denote the norm by ‖ · ‖X .

2. The Truncated Problem. Before we show how to reduce the scattering problem to a problem
posed on a bounded domain, we shall make explicit the assumptions on the coefficients εr and µr. Later,
in the section on numerical analysis, we shall further restrict the class of coefficients to enable us to prove
error estimates.

Our assumptions are essentially the same as those in [20] but modified to allow for matrix functions of
position. We suppose that R3 can be decomposed into N + 1 disjoint open sets with non-empty interior and
Lipschitz smooth boundaries. We denote these domains Ω0, . . . ,ΩN . We assume that Ω0 is unbounded and
that the remaining sub-domains are bounded. The coefficients µr and εr satisfy the following conditions:

• On Ω0, we have εr = µr = I (the scatterer is bounded).
• On each Ωn, 1 ≤ n ≤ N , the coefficients εr and µr are uniformly bounded, Lipschitz continuous

matrix functions of position. Furthermore <(εr) and µr are real symmetric uniformly positive definite
matrix functions of position.

• On at least one sub-domain (say ΩJ , for some J with 1 ≤ J ≤ N), =(εr) is strictly uniformly positive
definite. On every domain, either =(εr) is strictly positive definite or =(εr) = 0.

The assumptions are not very restrictive since they allow for piecewise smooth media. At least one sub-
domain is assumed to be absorbing, and this allows us to prove uniqueness of certain interior problems used
in the method. Obviously this assumption is satisfied for most biological media, but it could be dropped at
the cost of needing to pick the auxiliary boundary carefully.

2.1. Domain Decomposition. We introduce an artificial boundary ΓR that is the surface of the ball
of radius R. We assume R > a so that the scatterer is contained in the interior of the ball. We denote by
ΩR the ball of radius R.

Inside ΩR, the electric field satisfies the Maxwell system

∇× µ−1
r ∇×E − k2εrE = 0 in ΩR .

Outside ΩR, in R3 \ ΩR, the scattered field Es satisfies the following constant coefficient Maxwell system
together with the Silver-Müller radiation condition

∇×∇×Es − k2Es = 0 in R3 \ ΩR ,

lim
r→∞

[
(∇×Es)× x− ikrEs

]
= 0 .

Across the artificial boundary, these problems are linked by enforcing the continuity of the tangential com-
ponents of the electric and magnetic fields:

x̂× 1
ik
∇×E

∣∣∣∣
i

= x̂× 1
ik
∇×Es + x̂× 1

ik
∇×Ei on ΓR ,(2.1)

x̂×E
∣∣
i
= x̂×Es + x̂×Ei on ΓR .(2.2)

Next we want to explicitly decouple the two fields and pose the problem as an operator equation on ΓR. We
introduce the interior and exterior Calderon operators denoted Gi and Ge, respectively (see [4]). Proceeding
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formally, suppose that λ is a suitably smooth (to be made precise shortly) tangential vector field on ΓR,
then we define the exterior Calderon operator Ge by

Geλ = x̂× u(λ)|ΓR

where u = u(λ) is the solution of

∇×∇× u − k2u = 0 in R3 \ ΩR ,(2.3)

x̂× 1
ik
∇× u = λ on ΓR(2.4)

lim
r→∞

[
(∇× u)× x− ikru

]
= 0 .(2.5)

The interior Calderon operator is defined in a similar way by

Giλ = x̂×w(λ)|ΓR

where w = w(λ) is the solution of

∇× µ−1
r ∇×w − k2εrw = 0 in ΩR ,(2.6)

x̂× 1
ik
∇×w = λ on ΓR .(2.7)

Using the two Calderon operators we see that if λ = x̂× 1
ik∇×E on ΓR, then using the boundary relations

(2.1)-(2.2) we have

Giλ − Ge

(
λ− x̂× 1

ik
∇×Ei

)
= x̂×Ei|ΓR

.

Shortly we shall analyze the mapping properties of Ge and Gi, but in order to state precisely the operator
equation resulting from the above equality we recall the space of tangential vector fields with well defined
divergences by

Hs(Div; ΓR) =
{
u ∈ (Hs(ΓR)

)3 | u · x̂ = 0 a.e., ∇ΓR
· u ∈ Hs(ΓR)

}
for s ∈ R and where∇ΓR

· is the surface divergence on ΓR. We shall be particularly interested inH−1/2(Div; ΓR).
For later use we also recall that

H(curl; ΩR) =
{
u ∈ (L2(ΩR))3 | ∇ × u ∈ (L2(ΩR))3

}
,

H0(curl; ΩR) = {u ∈ H(curl; ΩR) | x̂× u = 0 on ΓR} ,

with norm ‖ · ‖H(curl;ΩR).
Now we can state the problem we wish to solve precisely. Given f ∈ H−1/2(Div; ΓR) we wish to find

λ ∈ H−1/2(Div; ΓR) such that

(Gi −Ge)λ = f .(2.8)

As we have seen, in applications to the scattering problem

f = x̂×Ei − Ge

(
x̂× 1

ik
∇×Ei

)
.(2.9)

Once we have computed λ via (2.8), we can compute E on ΩR by solving (2.6)-(2.7). Similarly we can
compute Es in R3 \ ΩR by solving (2.3)-(2.5) with λ replaced by λ− x̂× (1/ik)∇×Ei.

The remainder of this section is devoted to showing that the boundary operator equation (2.8) is well
defined and has a unique solution.
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2.2. Analysis of the Domain Decomposed Problem. This part is devoted to establishing the fol-
lowing theorem concerning the continuous Calderon operators for the coupled problem. It is the cornerstone
of our later analysis of the numerical method.

Theorem 2.1. Suppose the coefficients εr and µr satisfy the conditions outlined at the beginning of this
section and that ΩR is chosen such that k is not an eigenvalue for the interior magnetic Maxwell eigenvalue
problem when εr = µr = 1. Then, for any s,

Gi −Ge = T +K

where T is a bounded invertible operator from Hs(Div; ΓR) onto Hs(Div; ΓR) and K is a compact perturba-
tion.

The outline of the proof (which is proved after some preliminary results later in this section) is as follows.
First we establish the theorem in the case when εr = µr = 1. We denote by G̃i the interior Calderon operator
in this case and use a suitable series solution to establish the result. Then we show how the result can be
extended to the general case.

In order to perform the series based analysis let us recall some standard facts about special function
solutions of Maxwell’s equations (see for example [5]). Following [5], let {Y m

n (x̂)}n
m=−n denote an orthonor-

mal sequence of spherical harmonics of order n on the unit sphere. Using these spherical harmonics, basis
functions for tangential fields on any sphere centered at the origin are

Um
n =

1√
n(n+ 1)

∇Γ1Y
m
n , and V m

n = x̂×Um
n ,(2.10)

for −n ≤ m ≤ n and n ∈ N. Here ∇Γ1 represents the surface gradient of scalar functions on the unit sphere.
For a smooth function φ we have that for any sphere of radius R

∇φ|ΓR
=

1
R
∇Γ1φ +

∂φ

∂r
x̂ ,

where x = rx̂.
Using the tangential basis functions, a tangential field λ ∈ Hs(Div; ΓR) can be written as

λ =
∞∑

n=1

n∑
m=−n

(
am

n U
m
n + bmn V

m
n

)
(2.11)

and the Hs(Div; ΓR) norm is given by

‖λ‖2
Hs(Div;ΓR) ≡

∞∑
n=1

n∑
m=−n

[
n2(1+s)|am

n |2 + n2s|bmn |2
]
.

For a more detailed discussion see [27].
Corresponding to the surface basis functions, there are standard radiating vector basis functions for the

scattered field

Mm
n (x) = ∇× {xh(1)

n (kr)Y m
n (x̂)} ,(2.12)

Nm
n (x) =

1
ik
∇×Mm

n (x) .(2.13)

For the interior field we need basis functions that are bounded at r = 0 and these are

M̂
m

n (x) = ∇× {xjn(kr)Y m
n (x̂)} ,(2.14)

N̂
m

n (x) =
1
ik
∇× M̂

m

n (x) .(2.15)

Here, h(1)
n and jn denote the spherical Hankel function and Bessel functions, respectively. These basis

functions are discussed in many books (again see for example [5]). The volume fields and boundary basis
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(see (2.10)) are related as follows (see (6.64) and (6.65) of [5]). On the sphere of radius R

x̂×Nm
n (x) =

1
ikR

h̃n(kR)
√
n(n+ 1)V m

n (x̂) ,(2.16)

x̂×Mm
n (x) = h(1)

n (kR)
√
n(n+ 1)Um

n (x̂),(2.17)

where h̃n(z) = h
(1)
n (z) + zh

(1)′

n (z) with similar expressions for x̂× N̂
m

n and x̂× M̂
m

n .
We have the following lemma summarizing the basic mapping properties of Ge:
Lemma 2.2. If λ ∈ Hs(Div; ΓR) is given by (2.11) then the solution u of (2.3)-(2.5) is given by

u =
∞∑

n=1

n∑
m=−n

ikR bmn

h
(1)
n (kR) + kR (h(1)

n )′(kR)

Mm
n√

n(n+ 1)

−
∞∑

n=1

n∑
m=−n

am
n

h
(1)
n (kR)

Nm
n√

n(n+ 1)
.(2.18)

and the exterior Calderon operator has the representation

Geλ =
∞∑

n=1

n∑
m=−n

[
bmn
δn
Um

n − δna
m
n V

m
n

]
.(2.19)

where

δn =
1
ikR

(
1 + kR

(
h

(1)′

n

)
(kR)

h
(1)
n (kR)

)
.

In particular, Ge : Hs(Div; ΓR) → Hs(Div; ΓR) and Ge is invertible.
Proof. The representation of u in (2.18) in terms of Mm

n and Nm
n is proved in [5]. The representation

of u and Geλ in terms of the coefficients of λ then follows using the relationship surface and volume
basis functions in (2.16)-(2.17). Finally the mapping properties follow from the definition of the norm on
Hs(Div; ΓR) and the fact (see [27]) that there are positive constants c1 and c2 such that

c1n ≤ |δn| ≤ c2n

for n = 1, 2, . . ..
Now let G̃i denote the interior Calderon operator in the case when εr = µr = 1. We have the following

lemma:
Lemma 2.3. Suppose R is chosen such that jn(kR) 6= 0 for all n and, with

δ̃n =
1
ikR

(
1 + kR

(jn)′(kR)
jn(kR)

)
,

then δ̃n 6= 0. When εr = µr = 1 we have

G̃iλ =
∞∑

n=1

n∑
m=−n

[
bmn

δ̃n
Um

n − δ̃na
m
n V

m
n

]
.

The operator G̃i : Hs(Div; ΓR) → Hs(Div; ΓR) is bounded linear operator for any s.
Remark: The conditions in δn imply a restriction on R which can be checked a-priori from a knowledge
of the spherical Bessel functions. In fact this restriction can be avoided entirely by using a more complex
interior problem having an absorbing ball at the center, but this complicates the analysis.

Proof. The proof is the same as for Lemma 2.2 provided the conditions on δ̃n are satisfied.
Theorem 2.4. Under the conditions on ΓR in Lemma 2.3, if εr = µr = 1, then

Ge − G̃i = T +K1

6



where T : Hs(Div; ΓR) → Hs(Div; ΓR) is bounded and invertible and K1 is compact for any s.
Proof. By Lemma 2.2 and Lemma 2.3, if λ is given by (2.11) then

(Ge − G̃i)λ =
∞∑

n=1

n∑
m=−n

[
bmn

(
1
δn

− 1
δ̃n

)
Um

n − am
n

(
δn − δ̃n

)
V m

n

]
.

Using the following recurrence asymptotic relations for spherical Hankel and Bessel functions (see [5]):

h(1)
n (z) =

(2n− 1)!!
izn+1

(
1 +O(

1
n

)
)
, n→∞(2.20)

(h(1)
n )′(z) = −n+ 1

z
h(1)

n (z) + h
(1)
n−1(z)(2.21)

(h(1)
n )′(z) = −(n+ 1)

(2n− 1)!!
izn+2

(
1 +O

(
1
n

))
(2.22)

jn(z) =
zn

(2n+ 1)!!

(
1 +O

(
1
n

))
,(2.23)

(jn)′(z) = n
zn−1

(2n+ 1)!!

(
1 +O

(
1
n

))
,(2.24)

and the Wronskian identity

h(1)′

n (z) jn(z) − h(1)
n (z) j′n(z) =

i

z2

we can derive the following estimates

1
δn

− 1
δ̃n

= −2ikR
n

(
1 +O

(
1
n

))
and

δn − δ̃n =
2i
kR

n

(
1 +O

(
1
n

))
.

Hence if we define the operator T by

Tλ = −
∞∑

n=1

n∑
m−n

[
2ikR
n

bmn U
m
n +

2i
kR

nam
n V

m
n

]
(2.25)

we have derived the desired decomposition.
The next step is to extend the above result to the case of a general medium. To do this we state the

following regularity result proved in the appendix. In this result we choose a < ρ < R so that the scatterer
is still contained in the interior of the ball of radius ρ. Let A denote the annulus {x : ρ < r < R} having
boundaries ΓR and Γρ.

Theorem 2.5. Assume that ρ is chosen so that k is not a Maxwell eigenvalue for the annulus A (i.e.
the following interior problem possesses a unique solution). Let the operator L : γ → x̂×E|ΓR

be defined by

∇×E − ikH = 0 in A ,

∇×H + ikE = 0 in A ,

x̂×E = γ on Γρ ,

x̂×H = 0 on ΓR .

Then L is bounded from H−1/2(Div; Γρ) into Hs(Div; ΓR) for any s.
7



Now we consider the interior problem with general coefficients. Let us define the following sesquilinear
forms (sometimes also denoting appropriate duality pairings):

(u,v) =
∫

ΩR

u · v dV, and 〈u,v〉 =
∫

ΓR

u · v dA,

where the overline denotes complex conjugation.
Given λ ∈ H−1/2(Div; ΓR) we recall that we can define the operator

Gi : H−1/2(Div; ΓR) → H−1/2(Div; ΓR)

by Giλ = x̂ × w|ΓR
where w ∈ H(curl; ΩR) satisfies (2.6) and (2.7). To obtain a variational formulation

of this problem suitable for later finite element discretization we can multiply (2.6) by a test function
φ ∈ H(curl; ΩR) and integrate by parts (using (2.7) for the boundary term) to obtain(

µ−1
r ∇× u,∇× φ

)
− k2

(
εru,φ

)
+ ik〈λ,φ〉 = 0(2.26)

for all φ ∈ H(curl; ΩR). In order to show thatGiλ is well defined and mapsH−1/2(Div; ΓR) intoH−1/2(Div; ΓR)
it suffices to show that a unique solution of (2.26) in H(curl; ΩR) exists. As usual for problems of this type
we do this in two steps. First we show uniqueness and then use the Fredholm alternative to obtain existence.

Lemma 2.6. Problem (2.26) has at most one solution.
Proof. By linearity it suffices to consider the case when λ = 0 and choose φ = u in (2.26). Then

(µ−1
r ∇× u,∇× u) − k2(εru,u) = 0

and hence (since µr is real symmetric) =(εru,u) = 0. This implies that u = 0 in every sub-domain in which
=(εr) 6= 0 (at least one such sub-domain exists). Now using the unique continuation result of [32] in the
same way as in the proof of uniqueness in [20] we conclude u = 0 in ΩR.

Next we prove that u exists using the Fredholm alternative and this proves the existence of Gi :
H−1/2(Div; ΓR) → H−1/2(Div; ΓR). To do this we first have to prove a compact embedding result as
follows. Let use define the space

X =
{
v ∈ H(curl; ΩR) |

(
εrv,∇q

)
= 0 for all q ∈ H1(ΩR)

}
.(2.27)

Theorem 2.7. The space X defined in (2.27) is compactly embedded in
(
L2(ΩR)

)3.
Remark: This result is well-known if εr is a real valued matrix function of position (under the conditions we
have given on the functions). For a presentation of the proof of this result and a discussion of the literature
see [30].

Proof. Our proof is a slight generalization of that given in [20] for the case of scalar εr. Let {uk} ⊂ X
be a bounded sequence. Note that

(εruk,∇q) = 0 for all q ∈ H1(ΩR) .

Now let φk ∈ H0(curl; ΩR) satisfy

∇× φk = εruk in ΩR ,

∇ · φk = 0 in ΩR .

Since ΩR is a sphere, this problem has a unique solution and because the boundary of the sphere is smooth

φk ∈
(
H1(ΩR)

)3 with ‖φk‖H1(ΩR) ≤ C‖εruk‖ ≤ C‖uk‖

where C > 0 is independent of k. Since the set {φk} is bounded in
(
H1(ΩR)

)3, the standard compact
embedding of H1(ΩR) into L2(ΩR) proves the existence of a subsequence (still denoted {φk}) converging
weakly to a function φ ∈

(
H1(ΩR)

)3 and strongly in
(
L2(ΩR)

)3. Now let ul,k = ul−uk and φl,k = φl−φk,
then (

εrul,k,ul,k

)
=
(
∇× φl,k,ul,k

)
=
(
φl,k,∇× ul,k

)
,
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where we have used the boundary condition on φl,k to simplify the above result. Since ∇× ul,k is bounded

in
(
L2(ΩR)

)3 and {φk} is a Cauchy sequence in
(
L2(ΩR)

)3, we conclude that {uk} is a Cauchy sequence in(
L2(ΩR)

)3 and hence convergent.
Now suppose that u ∈ X and ∇× u = 0 in ΩR. Since u is curl free, there is a function p ∈ H1(ΩR)/R

such that u = ∇p and since u ∈ X, we have (εr∇p,∇p) = 0. The positive definiteness of the real part
of εr now implies p = 0. Combining this uniqueness result with the above compactness result implies the
following corollary:

Corollary 2.8. There exists a constant C > 0 such that for all u ∈ X

‖u‖ ≤ C‖∇ × u‖ .

Using these results we can prove the promised existence result.
Theorem 2.9. There exists a unique solution u to the interior boundary value problem (2.26) and hence

Gi : H−1/2(Div; ΓR) → H−1/2(Div; ΓR) is well defined and bounded.
Proof. For given λ ∈ H−1/2(Div; ΓR) we define p ∈ H1

0 (ΩR) by

k2
(
εr∇p,∇q

)
= ik〈λ,∇q〉 for all q ∈ H1(ΩR) .(2.28)

For this problem, existence and uniqueness follow from the Lax-Milgram Lemma since <(εr) is uniformly
positive definite. Now we make the ansatz

u = z + ∇p ,(2.29)

where z ∈ H(curl; ΩR) satisfies(
µ−1

r ∇× z,∇× φ
)
− k2

(
εrz,φ

)
= −ik〈λ,φ〉 + k2

(
εr∇p,φ

)
(2.30)

for all φ ∈ H(curl; ΩR). By choosing φ = ∇q for an arbitrary q ∈ H1
0 (ΩR) we see that

(
εrz,∇q

)
= 0 and

thus z ∈ X.
Since H(curl; ΩR) is the direct sum of X and ∇H1(ΩR) we can rewrite (2.30) as the problem of finding

z ∈ X such that (
µ−1

r ∇× z,∇× φ
)
− k2

(
εrz,φ

)
= −ik〈λ,φ〉 + k2

(
εr∇p,φ

)
(2.31)

for all φ ∈ X. By Corollary 2.8, the first term on the left hand side of (2.31) defines a bounded and coercive
sesquilinear form on X. Hence we can define the operator B :

(
L2(ΩR)

)3 → X by(
µ−1

r ∇×Bz,∇× φ
)

=
(
εrz,φ

)
(2.32)

for all φ ∈ X. The operator B restricted to X is compact since it is continuous from
(
L2(ΩR)

)3 into X, and
X is compactly embedded in

(
L2(ΩR)

)3 (see Theorem 2.7). Hence if we define F ∈ X by(
µ−1

r ∇× F ,∇× φ
)

= −ik〈λ,φ〉 + k2
(
εr∇p,φ

)
(2.33)

for all φ ∈ X, the original problem is equivalent to finding z ∈ X such that

(I − k2B)z = F

and existence of a solution to this problem (and hence to the original problem) follows from the Fredholm
alternative and the uniqueness result proved in Lemma 2.6.

Now that we have verified that the existence of the operator Gi we can prove Theorem 2.1.
Proof. Using Theorem 2.4 and the definition of G̃i and Gi we can write

Geλ−Giλ = (Ge − G̃i)λ + (G̃i −Gi)λ = Tλ + K1λ + x̂× (ũ− u)
9



where u and ũ solve (2.26) and (2.26) corresponding to εr = µr = 1, respectively. Now if we define w = ũ−u
then w ∈ H(curl; ΩR) satisfies(

µ−1
r ∇×w,∇× φ

)
− k2

(
εrw,φ

)
=
(
(1− µ−1

r )∇× ũ,∇× φ
)

+ k2
(
(εr − 1)ũ,φ

)
for all φ ∈ H(curl; ΩR). Using exactly the same argument as in the previous theorem (but with a different
right hand side F ) we can see that w is the unique solution of the above variational problem. Now let us
choose ρ < R such that Γρ contains the support of (1− µr) and (εr − 1). Then x̂×w|Γρ

∈ H−1/2(Div; Γρ)
is bounded in terms of the curl norm of ũ and hence in terms of the H−1/2(Div; ΓR) norm of λ. Then
using Theorem 2.5, we conclude x̂ × w ∈ H l(Div; ΓR) for any l. Hence G̃i − Gi is a compact map from
H−1/2(Div; ΓR) into H−1/2(Div; ΓR). We have thus proved the main theorem of this section (Theorem 2.1)
since

Ge −Gi = T + (K1 + G̃i −Gi) .

and K = K1 + G̃i −Gi is compact.
Theorem 2.1 can be used to prove the existence of a weak solution of the original scattering problem (of

course this is already known from our previous work [27]). We start by indicating a proof of uniqueness of
the solution of (2.8).

Lemma 2.10. Problem (2.8) has at most one solution.
Proof. By linearity it suffices to consider the case f = 0. For a given solution λ we define u1 to satisfy

(2.3)-(2.5) and define u2 to satisfy (2.6)-(2.7). Existence and uniqueness of u1 is classical (see for example
[5]) and we have proved existence and uniqueness of a weak solution of (2.6)-(2.7) in Theorem 2.9.

Then equation (2.8) ensures that

u =
{
u1 in R3 \ ΩR ,
u2 in ΩR ,

is a solution of the Maxwell system (1.1)-(1.4) with vanishing incident field. Classical uniqueness arguments
for the solution of the Maxwell system then show that u = 0 outside the scatterer, and Theorem 2.6 proves
uniqueness inside. Thus u = 0 and hence λ = 0.

Hence, using Theorem 2.1 and the above uniqueness lemma, by the application of the Fredholm alter-
native we can prove the following result:

Theorem 2.11. For every f ∈ H−1/2(Div; ΓR) there exists a unique solution λ ∈ H−1/2(Div; ΓR) to
(2.8).

3. The finite dimensional problem. In this section we describe the discrete problem related to (2.8).
The idea is to seek an approximation of λ on ΓR using the space SN defined as follows

SN =

u ∈ H−1/2(Div; ΓR) | u =
N∑

n=1

∑
|m|≤n

[
αn,mU

m
n + βn,m V

m
n

]
with αn,m, βn,m ∈ C

 .

In other words we seek to approximate λ by a finite Fourier series. For future reference we define PN :
H−1/2(Div; ΓR) → SN to be the orthogonal projection in the H−1/2(Div; ΓR) inner product. Due to the
orthogonality properties of the basis functions, this is nothing more than the truncation operator. Of course,
for any λ ∈ H−1/2(Div; ΓR)

PNλ −→ λ in H−1/2(Div; ΓR) as N →∞ .

We also have the following error estimate

‖(I − PN )λ‖H−1/2(Div;ΓR) ≤ N−σ‖λ‖Hσ(Div;ΓR)(3.1)

for any σ ≥ −1/2. This is seen by the estimate

‖(I − PN )λ‖2
H−1/2(Div;ΓR) =

∑
n>N

n∑
m=−n

[
n |am

n |2 +
1
n
|bmn |2

]
10



=
∑
n>N

n−1−2σ
n∑

m=−n

[
n2+2σ |am

n |2 + n2σ |bmn |2
]

≤ 1
N1+2σ

∑
n>N

n∑
m=−n

[
n2+2σ |am

n |2 + n2σ |bmn |2
]

≤ 1
N1+2σ

‖λ‖2
Hσ(Div;ΓR)

where λ =
∑∞

n=1

∑n
m=−n

(
am

n U
m
n + bmn V

m
n

)
.

Furthermore, since T from (2.25) is a diagonal operator when restricted to SN , it is easy to see that T
and PN commute:

PNT = TPN .

For any function λ ∈ SN , the function GeλN is easy to calculate using the truncation of (2.19).
We also note that SN satisfies the inverse estimate

‖λN‖H1/2(Div;ΓR) ≤ N‖λN‖H−1/2(Div;ΓR) .(3.2)

This is again seen by using the series representation of λN :

‖λ‖2
H1/2(Div;ΓR) =

N∑
n=1

n∑
m=−n

[
n3 |am

n |2 + n |bmn |2
]
≤ N2

N∑
n=1

n∑
m=−n

[
n |am

n |2 +
1
n
|bmn |2

]
= N2‖λN‖H−1/2(Div;ΓR) .

The interior operator Gi also need to be discretized. For this we propose to use the finite element method
using the edge elements of Nédélec [31]. We will provide details of these elements later. At this stage we
shall simply assume that we have a suitable finite element space Vh ⊂ H(curl; ΩR). Then for any function
λ ∈ H−1/2(Div; ΓR) we can define Gi,hλ = x̂× uh where uh ∈ Vh satisfies the discrete analogue of (2.26):(

µ−1
r ∇× uh,∇× φh

)
− k2

(
εruh,φh

)
+ ik〈λ,φh〉 = 0 for all φh ∈ Vh .(3.3)

In § 4 we shall show that this problem has a unique solution, and derive some error estimates.
Now that we have a discrete analogue of Gi, we define the discrete analogue of (2.8) to be the problem

of finding λN,h ∈ SN such that

(PNGi,h −Ge)λN,h = PNf .(3.4)

The remainder of the paper is devoted to showing that this problem has a unique solution that converges at
an optimal rate to the exact solution.

4. Analysis of the Interior Finite Element Problem. Here we shall detail the construction of
the finite element space Vh described previously and prove an error estimate for the interior finite element
problem. To construct Vh we shall use the lowest order edge elements of Nédélec [31] as modified by Dubois
[11] to allow for the curved outer boundary (and curved interfaces at discontinuities of the coefficients ε and
µ).

Let ΩR be covered by a tetrahedral mesh (allowing curvilinear tetrahedra near the outer boundary ΓR

and the boundaries of the sub-domains Ωn, n = 1, 2, · · · , N) of regular, quasi-uniform finite elements with a
maximum diameter h. We denote by τh such a mesh. For a precise description of the mesh and the notion
of regularity in this case see [11].

Following [11], we define the reference tetrahedron K̂:

K̂ =
{
(x1, x2, x3) ∈ R3 | 1− x1 − x2 − x3 ≥ 0 , x1 ≥ 0 , x2 ≥ 0 , x3 ≥ 0

}
.

Now if K ∈ τh is an element, there is an invertible map FK

FK : K̂ −→ K .
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This map can be chosen affine if K is a tetrahedron. For curvilinear elements the map can be constructed
as shown in [11]. The Jacobian matrix for FK is denoted DFK .

To describe Vh we next define the set

R1 =
{
û : K̂ → C3 | û(x̂) = a+ x̂× b for some a, b ∈ C3

}
,

and using this set, for each K ∈ τh we define

R1(K) =
{
u : K → C3 | u(FK(x̂)) = DF−T

K (x̂)û(x̂) for some û ∈ R1 and all x̂ ∈ K̂
}
.

Then the edge element space Vh is defined by

Vh = {uh ∈ H(curl; ΩR) | uh|K ∈ R1(K) for all K ∈ τh} .

The degrees of freedom for this space are the moments of the tangential components of the field along the
edges in the mesh. If e is a generic edge in the mesh and τ e is the unit tangent to this edge we define , for
any sufficiently smooth function u,

Σ(u) =
{∫

e

τ e · u ds for all e ∈ τh
}
.(4.1)

Now let

PH1(curl; ΩR) =
{
u ∈

(
L2(ΩR)

)3 | u|Ωn∩ΩR
∈
(
H1(Ωn ∩ ΩR)

)3 and

∇× u|Ωn∩ΩR
∈
(
H1(Ωn ∩ ΩR)

)3
, n = 0, 1, . . . , N

}
where the domains Ωn, n = 0, 1, . . . , N were introduced in § 2 and we have assumed that the interfaces
between the domains Ωn, n = 0, . . . , N lies along faces of the mesh. The norm on this space is

‖u‖2
PH1(curl;ΩR) = ‖u‖2 +

N∑
n=0

[
‖u‖2

H1(Ωn∩ΩR) + ‖∇ × u‖2
H1(Ωn∩ΩR)

]
.

Using Dubois arguments we can show that the interpolation operator πh : PH1(curl; ΩR) → Vh corresponding
to the above degrees of freedom (4.1) is well defined and the following estimate holds:

‖u− πhu‖ + ‖∇ × (u− πhu)‖ ≤ Ch ‖u‖PH1(curl;ΩR).(4.2)

Of course the interpolation operator is well defined for much less regular function (see [1]) but we wish to
prove optimal error estimates for which the above smoothness is sufficient.

Let P1 denote the standard space of polynomials of total degree at most one in three variables. Dubois
shows that the standard piecewise linear finite element space defined by

Sh =
{
ph ∈ H1(ΩR)/R | ph|K

(
FK(x̂)

)
= p̂(x̂) for some p̂ ∈ P1 and all x̂ ∈ K̂, K ∈ τh

}
is such that ∇Sh ⊂ Vh.

We can thus define the space of discrete divergence free fields to be

Xh = {uh ∈ Vh | (εruh,∇ph) = 0 for all ph ∈ Sh} .

Now suppose we have a sequence of refinements of the mesh indexed by mesh sizes h1 > h2 > . . .. We
assume hn → 0 as n→∞ and set

Λ = {hn | n = 1, 2, . . .}.

We want to show convergence of Gi,hn to Gi as n increases. In order to prove this, we proceed as in [10] using
a discrete compactness argument. First we give the discrete compactness result in for the Dubois space. It
is a generalization to variable ε of the original result of Kikuchi [25].
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Theorem 4.1 (Discrete Compactness). Suppose {un}∞n=1 ⊂ H(curl; ΩR) is a bounded sequence such
that for each n there is an m = m(n) such that un ∈ Xhm

and hm → 0 as n → 0. Then there is a
subsequence, also denoted by {un}∞n=1 which converges weakly in H(curl; ΩR) to a function u ∈ X, i.e.,(

εu,∇p
)

= 0 for all p ∈ H1(ΩR) ,

and un → u strongly in
(
L2(ΩR)

)3.
Proof. For a polyhedral Lipschitz domain with ε = µ = 1 and standard Nédélec elements this result is

proved by Kikuchi [25]. This is extended to allow for variable real ε in [3]. We outline these proofs here
checking that they can be modified to allow for our case.

First we prove discrete compactness when ε = 1 for the Dubois space. For each n we define u(n) ∈ X by

∇× u(n) = ∇× un in Ω,
∇ · u(n) = 0 in Ω,
u(n) · x̂ = 0 on ΓR.

Hence by Theorem 2.8 we know that there is a subsequence of {u(n)} (still denoted by {u(n)}) and a
function u ∈ X such that u(n) → u strongly in (L2(Ω))3 (and weakly in H(curl; ΩR)). But since ΩR is
smooth, u(n) ∈ (W 1,t(ΩR))3 for any t ≥ 2 [12] . In this case πhmu

(n) is defined (see [1]) and using the same
arguments as in [12] we have the error estimate

‖u(n) − πhm
u(n)‖ ≤ Chm‖∇ × un‖Lt(Ω).

Since the mesh is regular and quasi-uniform, standard inverse estimates show that

‖∇ × un‖Lt(Ω) ≤ Ch3/t−3/2‖∇ × un‖.

Thus, for 2 < t < 3,

‖u(n) − πhm
u(n)‖ ≤ Ch3/t−1/2

m ‖∇ × un‖.

Now we may write, using the Helmholtz decomposition,

un = u(n) +∇p(n)

for some p(n) ∈ H1(ΩR)/R. For the Dubois space we also have the standard commuting property that,
provided the interpolant is well defined, πhm∇p(n) = ∇pn for some pn ∈ Shm . Hence

un = πhm
u(n) +∇pn

and using the fact that u ∈ X and un ∈ Xhm
we may write

(u− un,u− un) = (u− un,u− πhmu
n)

= (u− un,u− u(n)) + (u− un,u
(n) − πhmu

(n)).

Hence

‖u− un‖ ≤ ‖u− u(n)‖+ ‖u(n) − πhm
u(n)‖ → 0 as n→∞.

Hence the discrete compactness result is proved when ε = 1.
Now we follow [3] allowing for the fact that ε is a complex valued matrix function of position. From

Lemma 4.1 of [27] we can define a bounded operator P ε : H(curl; ΩR) → ∇H1(ΩR)/R by requiring, for given
u ∈ H(curl; ΩR) that P εu ∈ ∇H1(ΩR)/R satisfy

(εP εu,∇q) = (εu,∇q) ∀q ∈ H1(ΩR)/R.
13



Thus the corresponding projection operator when ε = 1 is P 1. In the discrete case we can also define
P ε

h : H(curl; ΩR) → ∇Sh by requiring P ε
hu ∈ ∇Sh satisfy

(εP ε
huh,∇qh) = (εu,∇qh) ∀qh ∈ Sh.

Consider the sequence {(I−P 1
hm

)un} where {un} is the sequence in the statement of the theorem for general
ε. Since P 1

hm
(I − P 1

hm
) = 0 this sequence is discrete divergence free with ε = 1 and bounded in H(curl; ΩR).

The discrete compactness property for ε = 1 proved above shows that there is a subsequence, still denoted
{(I − P 1

hm
)un}, and a function ũ ∈ H(curl; ΩR) such that

(I − P 1
hm

)un → ũ strongly in (L2(ΩR))3 as n→∞,

∇ · ũ = 0 in ΩR,

ũ · x̂ = 0 on ΓR.

Now let u = (I − P ε)ũ. We claim that un → u strongly in (L2(ΩR))3 as n→∞. Expanding terms

(ε(un − u), (un − u)) = (ε(un − u), (P 1
hm
un + (I − P 1

hm
)un − u)).

But since u ∈ X and un ∈ Xhm

(ε(un − u),∇ξhm) = 0 ∀ξhm ∈ Shm

so that, recalling that P 1
hm
un ∈ ∇Shm , we can see that

(ε(un − u), (un − u)) = (ε(un − u), ((I − P 1
hm

)un − u−∇ξhm))

= (ε(un − u), ((I − P 1
hm

)un − (I − P ε)ũ−∇ξhm)).

Hence

‖un − u‖ ≤ ‖(I − P 1
hm

)un − ũ‖+ inf
ξhm∈Shm

‖P εũ−∇ξhm
‖ → 0

as n→∞ since ∇Shm is dense in ∇H1(ΩR)/R. This verifies that the arguments of [3] carry over to complex
ε and completes the proof of the result.

Using this result as in [10] we have the following result which generalizes Lemma 2.8 to the finite element
context:

Corollary 4.2. Provided h1 is sufficiently small, there is a constant C such that

‖w‖ ≤ C ‖∇ ×w‖ for all w ∈W = X ∪

 ⋃
h≤h1

Xh

 ,

and W is a precompact set in (L2(ΩR))3.
Now we show that Gi,h is well defined by showing that (3.3) has a solution. We proceed along the same

lines as in the proof of Theorem 2.9 with H(curl; ΩR) and H1(ΩR) replaced by Vh and Sh, respectively.
Let ph ∈ Sh satisfy the discrete analogue of (2.28)

k2
(
εr∇ph,∇ξh

)
= ik 〈λ,∇ξh〉 for all ξh ∈ Sh .(4.3)

Since the real part of εr is positive definite, and the average value of ph is zero, this problem has a solution
by the Lax-Milgram lemma.

Now we make the ansatz

uh = zh + ∇ph(4.4)

where zh ∈ Xh satisfies(
µ−1

r ∇× zh,∇× φh

)
− k2

(
εrzh,φh

)
= −ik〈λ,φ〉 + k2

(
εr∇ph,φh

)
(4.5)
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for all φh ∈ Xh. To convert this to an operator equation we define Bh :
(
L2(ΩR)

)3 → Xh by defining
Bhf = wh ∈ Xh which satisfies(

µ−1
r ∇×wh,∇× φh

)
=
(
εrf ,φh

)
for all φh ∈ Xh .

Note that Bh is actually a bounded map from
(
L2(ΩR)

)3 into Xh. We also define F h ∈ Xh as the solution
of (

µ−1
r ∇× F h,∇× φh

)
= −ik〈λ,φ〉 + k2

(
εr∇ph,φh

)
for all φh ∈ Xh .(4.6)

By Corollary 4.2 and the Lax-Milgram lemma these problems have a unique solution. Thus we consider the
operator equation of finding v ∈

(
L2(ΩR)

)3 such that

(I − k2Bh)v = F h .(4.7)

Note that if we can uniquely solve this problem for a given h, then

v = k2Bhv + F h ∈ Xh

so that v ∈ Xh. In addition(
µ−1

r ∇× (v − k2Bhv),∇× φh

)
=
(
µ−1

r ∇× F h,∇× φh

)
for all φh ∈ Xh .

Now using the definition of Bh and F h we see that v satisfies (4.5) and so in fact zh = v. We have the
following result:

Theorem 4.3. The collection of operators {Bh}h∈Λ converges point-wise to the operator B from § 2.2.in(
L2(ΩR)

)3. In addition the set of operators {Bh}h∈Λ is collectively compact when considered as maps from(
L2(ΩR)

)3 to
(
L2(ΩR)

)3.
Proof. This proof parallels the proof of a similar result in [10]. We prove point-wise convergence first.

Rewriting the definition of Bf as a mixed problem we see that Bf ∈ H(curl; ΩR) and q ∈ H1(ΩR) satisfies(
µ−1

r ∇×Bf ,∇× φ
)

+
(
εrφ,∇q

)
=
(
εrf ,φ

)
for all φ ∈ H(curl; ΩR) ,(4.8) (

εrBf ,∇ξ
)

= 0 for all ξ ∈ H1(ΩR) .(4.9)

The second equation ensures Bf ∈ X ⊂W . Similarly we can see that Bhf ∈ Vh and qh ∈ Sh to satisfy(
µ−1

r ∇×Bhf ,∇× φh

)
+
(
εrφh,∇qh

)
=
(
εrf ,φh

)
for all φh ∈ Vh ,(4.10) (

εrBhf ,∇ξh
)

= 0 for all ξh ∈ Sh .(4.11)

Again the last equation ensures Bhf ∈ Xh ⊂W .
Now Corollary (4.2) shows that the bilinear form

(
µ−1

r ∇× ·,∇× ·
)

is coercive on Xh and the fact that
∇Sh ⊂ Vh can be used to verify the Babuska-Brezzi condition (see [10]). Thus we know that

‖Bf −Bhf‖H(curl;ΩR) ≤ C

{
inf

χh∈Vh

‖Bf − χh‖H(curl;ΩR) + inf
ξh∈Sh

‖∇(q − ξh)‖
}
.(4.12)

Then the density of Vh in H(curl; ΩR) and of Sh in H1(ΩR)/R completes the proof (actually we have proved
pointwise convergence in H(curl; ΩR) which is more than sufficient.

Next we show that the set of operators is collectively compact. Let U ⊂
(
L2(ΩR)

)3 be a bounded set.
Then, if u ∈ U , we know that Bhu ∈ Xh satisfies(

µ−1
r ∇×Bhu,∇× φh

)
=
(
εru,φh

)
for all φh ∈ Xh .

It follows that ‖∇ ×Bhu‖ ≤ C‖u‖. But using the discrete Friedrichs inequality in Corollary 4.2 we have

‖Bhu‖ + ‖∇ ×Bhu‖ ≤ C ‖u‖ .
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Thus Bh(U) ⊂W . Since W is compactly contained in
(
L2(ΩR)

)3 we can extract a convergent subsequence
from Bh(U). Thus Bh(U) is pre-compact in

(
L2(ΩR)

)3 as required.
Now that we have written the finite element problem as an operator equation, we can prove the basic

existence and convergence theorem for Gi,h:
Theorem 4.4. For sufficiently small h the operator Gi,h is well defined and

‖(Gi −Gi,h)λ‖H−1/2(Div;ΓR) → 0

as h→ 0.
Proof. First we show that zh (see (4.4)) is well defined. Using the collective compactness and point-

wise convergence of Bh, we know that provided h is small enough (I − k2Bh) is invertible with uniformly
bounded inverse as a map from

(
L2(ΩR)

)3 into itself (see [29]). Hence zh and ph in (4.4) are well defined.
Furthermore, the following error estimate holds:

‖z − zh‖ ≤ C
(
‖(Bh −B)Bz‖ + ‖F − F h‖ + ‖(Bh −B)F ‖

)
We estimate the first term on the right hand side. Taking φ = ∇q in (4.8) we see that since Bz ∈ X we can
conclude that q = 0. Hence using (4.12) with ξh = 0 we have

‖(B −Bh)Bz‖ ≤ C inf
χh∈Vh

‖B2z − χh‖H(curl;ΩR) .

Now we estimate ‖F −F h‖. The function F is defined by (2.33) and using the decomposition that any
function φ ∈ H(curl; ΩR) can be written φ = φ̃ + ∇q for some φ̃ ∈ X and q ∈ H1(ΩR) we conclude that
(2.33) actually holds for any φ ∈ H(curl; ΩR). Similarly (4.6) actually holds for any φh ∈ Vh. We can now
use (2.33) and (4.6) to write

‖F − F h‖2
H(curl;ΩR) ≤ C

(
µ−1

r ∇× (F − F h),∇× (F − ηh)
)

+
(
µ−1

r ∇× (F − F h),∇× (ηh − F h

)
= C

[(
µ−1

r ∇× (F − F h),∇× (F − ηh)
)

+ k2
(
εr∇(p− ph),ηh − F h

)]
= C

[(
µ−1

r ∇× (F − F h),∇× (F − ηh)
)

+ k2
(
εr∇(p− ph),F − F h

)
+ k2

(
εr∇(p− ph),ηh − F

)]
for any ηh ∈ Vh. Now using the Cauchy-Schwarz inequality and (4.2)

‖F − F h‖2
H(curl;ΩR) ≤ C

[
‖F − F h‖H(curl;ΩR) ‖F − ηh‖H(curl;ΩR) + ‖∇(p− ph)‖ ‖F − F h‖

+ ‖∇(p− ph)‖‖F − ηh‖
]
.

But since p satisfies (2.28) and ph satisfies (4.3) we know that standard estimates for coercive elliptic problems
give

‖∇(p− ph)‖ ≤ C‖p− φh‖H1(ΩR)(4.13)

for any φh ∈ Sh. Thus the arithmetic geometric mean inequality gives

‖F − F h‖ ≤ ‖F − F h‖H(curl;ΩR) ≤ C
(
‖F − ηh‖H(curl;ΩR) + ‖p− φh‖H1(ΩR)

)
.

Finally, using the fact that F is divergence free we can again use (4.12) to show that

‖(Bh −B)F ‖ ≤ C‖BF −ψh‖H(curl;ΩR)

for all ψh ∈ Vh.
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We have thus proved that

‖z − zh‖ ≤ C
{
‖B2z − χh‖H(curl;ΩR) + ‖p− ψh‖H1(ΩR) + ‖F − ηh‖H(curl;ΩR)

+‖BF −ψh|H(curl;ΩR)

}
.(4.14)

It remains to derive an error estimate in the H(curl; ΩR) norm. For this we define e = z − zh and

a(u,v) =
(
µ−1

r ∇× u,∇× v
)
− k2(εru,v) .

Using (2.29) and (4.4) we can see that

a(e,φh) = k2
(
εr∇(p− ph),φh

)
for all φh ∈ Vh .

Using this “orthogonality” relation we have that

a(e, e) = a(e,z − τh) + a(e, τh − zh) = a(e,z − τh) + k2
(
εr∇(p− ph), τh − zh

)
for any τh ∈ Vh. Thus adding (k2 + 1)(εre, e) to both sides of this equation we have that

‖e‖H(curl;ΩR) ≤ C
[∣∣(εr∇(p− ph), τh − zh

)∣∣ + |a(e,z − τh)| + |(εre, e)|
]
.(4.15)

We have already proved above an estimate for ‖e‖ (see (4.14)) and for ‖∇(p − ph)‖. Hence using the
arithmetic geometric mean inequality and collecting terms in (4.15) we have shown that

‖e‖H(curl;ΩR) ≤ C
{
‖∇(p− ph)‖

[
‖z − τh‖+ ‖e‖

]
+ ‖e‖2 + ‖z − τh‖2

H(curl;ΩR)

}
.

But using (4.14)

‖e‖H(curl;ΩR) ≤ C
{
‖z − τh‖H(curl;ΩR) + ‖B2z − χh‖H(curl;ΩR) + ‖p− φh‖H1(ΩR)

+‖F − ηh‖H(curl;ΩR) + ‖BF −ψh‖H(curl;ΩR),
}
.(4.16)

for any τh, χh, ηh, ψh ∈ Vh and φh ∈ Sh. This proves convergence of zh to z by using the density of the
relevant finite element spaces in H(curl; ΩR) and H1(ΩR)/R.

To obtain an estimate for u− uh we use (4.4), (2.29) and (4.13) to write

‖u− uh‖H(curl;ΩR) ≤ C
[
‖e‖H(curl;ΩR) + ‖∇(p− ph)‖

]
.(4.17)

Again ph converges to p in H1(ΩR) and using the trace theorem for H(curl; ΩR) we have

‖(Gi −Gi,h)λ‖H−1/2(Div;ΓR) ≤ C ‖u− uh‖H(curl;ΩR)(4.18)

where u satisfies (2.7) and uh satisfies (3.3) so that we have proved the desired result.
The above estimate shows that the Gi,h converges to Gi with very general assumptions on the smoothness

of the data to the problem but with no rate of convergence. To obtain error estimates for the coupled problem
we actually need an order estimate for the convergence rate. Hence for the remainder of the paper, we shall
assume that the coefficients εr and µr are sufficiently smooth that the following a priori estimates hold.

1. For every p ∈ H1(ΩR)/R satisfying ∇ · εr∇p = 0 in ΩR we have

‖∇p‖PH1(curl;ΩR) ≤ C

∥∥∥∥ ∂p∂x̂
∥∥∥∥

H1/2(ΓR)

.(4.19)

This is a typical elliptic regularity estimate for p for smooth data.
2. Suppose f ∈

(
L2(ΩR)

)3 is such that ∇ · (µrf) = 0 in ΩR. Let u ∈ H(curl; ΩR) satisfy

∇× u = µrf in ΩR ,

∇ · (εru) = 0 in ΩR ,

x̂ · u = 0 on ΓR ,

then u ∈ PH1(curl; ΩR) and

‖u‖PH1(curl;ΩR) ≤ C‖f‖ .(4.20)
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3. Let f ∈
(
L2(ΩR)

)3 and g ∈ H1/2(Div; ΓR) satisfy the compatibility condition that(
εrf ,∇ξ

)
+ 〈g,∇ξ〉 = 0 for all ξ ∈ H1(ΩR) .(4.21)

Let v ∈ H(curl; ΩR) satisfy

∇× v = εrf in ΩR ,

∇ · (µrv) = 0 in ΩR ,

x̂× v = g on ΓR ,

then v ∈ PH1(curl; ΩR) and

‖v‖PH1(curl;ΩR) ≤ C
[
‖f‖ + ‖g‖H1/2(Div;ΓR)

]
.(4.22)

Obviously these assumptions rule out rough boundaries between the domains Ωn where ε and µ are smooth.
For a discussion of regularity of Maxwell’s equations in the presence of piece-wise smooth functions with
smooth interfaces see Weber [33] and for the case of piece-wise constant coefficients with non-smooth inter-
faces see Costabel et al. [6].

Using (4.20) and (4.22), if f and g satisfy the compatibility condition (4.21) and if u ∈ X satisfies

∇× µ−1
r ∇× u = εrf in ΩR ,

x̂×∇× u = g on ΓR ,

then

‖u‖PH1(curl;ΩR) ≤ C
[
‖f‖ + ‖g‖H1/2(Div;ΓR)

]
.

The goal of the remainder of this section is to prove the following error estimate:
Theorem 4.5. Assume that (4.19)–(4.22) hold. Then if λ ∈ H1/2(Div; ΓR) there exists a constant C

such that

‖(Gi −Gi,h)λ‖H−1/2(Div;ΓR) ≤ C h ‖λ‖H1/2(Div;ΓR) , h ∈ Λ .

Before starting the proof of this theorem, note that if the functions p and Bf are smooth we also have an
error estimate for Bh as the next theorem shows (this is proved from (4.12) and the approximation properties
of Vh and Sh).

Theorem 4.6. If Bf ∈ PH1(curl; ΩR) and p ∈ PH2(ΩR) then

‖Bf −Bhf‖H(curl;ΩR) ≤ Ch
(
‖Bf‖PH1(curl;ΩR) + ‖p‖PH2(ΩR)

)
.

Proof. [of Theorem 4.5.] We can simply use estimate (4.16) followed by (4.17) and (4.18). Choosing
χh = πhB

2z and using (4.2) we have that

‖B2z − χh‖ ≤ Ch ‖B2z‖PH1(curl;ΩR) .

Now using a priori estimate (4.22) with f = Bz and g = 0 we have

‖B2z − χh‖ ≤ Ch ‖Bz‖ .

Again using (4.22) and the well-posedness of the equation for z in H(curl; ΩR) we have

‖B2z − χh‖ ≤ Ch ‖z‖H(curl;ΩR) ≤ Ch ‖F ‖H(curl;ΩR) .

Using the definition of F we have

‖F ‖H(curl;ΩR) ≤ C
(
‖λ‖H−1/2(Div;ΓR) + ‖∇p‖

)
.
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Next we estimate p− φh. Note that p ∈ H1(ΩR)/R is defined by (2.28) and so satisfies

∇ · (εr∇p) = 0 in ΩR ,

∂p

∂x̂
= − i

k
∇ΓR

· λ on ΓR .

Using (4.19) and choosing φh to be the H1(ΩR)/R projection of p we have

‖p− φh‖H1(ΩR) ≤ Ch‖p‖PH2(ΩR) ≤ Ch‖λ‖Hpdiv.

Now we estimate ‖F − ηh‖ by choosing ηh = πhF . Then

‖F − ηh‖H(curl;ΩR) ≤ Ch‖F ‖PH1(curl;ΩR).

Using (4.22) we have that

‖F ‖PH1(curl;ΩR) ≤ c
(
‖∇p‖ + ‖λ‖H1/2(Div;ΓR)

)
and thus

‖F − ηh‖ ≤ Ch
(
‖∇p‖ + ‖λ‖H1/2(Div;ΓR)

)
≤ Ch‖λ‖H1/2(Div;ΓR) .

It remains only to estimate z − τh and BF − ψh. We choose τh = πhz and ψh = πhBF and proceed
as for the other estimates to show that

‖z − πhz‖H(curl;ΩR) ≤ Ch‖z‖PH1(curl;ΩR) ≤ Ch‖λ‖H1/2(Div;ΓR),

‖BF − πhBF ‖H(curl;ΩR) ≤ Ch‖BF ‖PH1(curl;ΩR) ≤ Ch‖λ‖H1/2(Div;ΓR).

Combining all the estimates in (4.16), (4.17) and (4.18) proves the theorem.

5. Error Estimates for the Fully Discrete Problem. Here we shall analyze the fully discrete
problem. We shall prove the following basic theorem:

Theorem 5.1. Assume that (4.19)-(4.22) hold. Then there is a δ > 0 such that for N sufficiently large
and hN < δ there is unique solution λN,h ∈ SN of (3.4), furthermore

‖λN,h − λ‖H−1/2(Div;ΓR) ≤ c
(
h‖f‖H1/2(Div;ΓR) + (h+ 1/N)‖λ‖H1/2(Div;ΓR)

)
.

Remark: We can obtain a higher power of N in this estimate (at the expense of a higher norm of λ).
Proof. Note first that by operating on (2.8) by PN and using the fact that Ge and PN commute we have

PNGiλ−GePNλ = PNf(5.1)

Let us define eN,h = λN,h − PNλ. Then using (5.1) and (3.4) we have

(PNGi,h − PNGe)eN,h = PN (Gi −Ge)eN,h + PN (Gi,h −Gi)eN,h

= PN (Gi −Gi,h)PNλ− PNGi(PNλ− λ),

where we have used the fact that

PNGe(PNλ− λ) = GePN (PNλ− λ) = 0.

Using Theorem 2.1 we have the decomposition

Gi −Ge = T +K

where T,K : H−1/2(Div; ΓR) → H−1/2(Div; ΓR), T is an isomorphism and K is compact. Using the fact
that PN and T commute we obtain our fundamental error equation:

TeN,h + PNKeN,h + PN (Gi,h −Gi)eN,h = PN (Gi −Gi,h)PNλ− PNGi(PNλ− λ).
19



First we need to show that this equation has a solution. Since PN is the orthogonal projection forH−1/2(Div; ΓR)
into SN and K is compact in this space we know that PNK → K in the operator norm of H−1/2(Div; ΓR).
For the other term on the left hand side above we can use the error estimate for the finite element solution
in Theorem 4.5, together with the inverse estimate (3.2) to show that

‖PN (Gi,h −Gi)eN,h‖H−1/2(Div;ΓR)) ≤ ‖(Gi,h −Gi)eN,h‖H−1/2(Div;ΓR)

≤ Ch‖eN,h‖H1/2(Div;ΓR)

≤ CNh‖eN,h‖H−1/2(Div;ΓR).

Thus for sufficiently large N and small Nh the operator T+PNK+PN (Gi,h−Gi) is invertible with uniformly
bounded inverse. This implies that eN,h and hence λN,h is well defined and we can obtain an error estimate
simply by estimating the right hand side using Theorem (4.5) and the estimate (3.1):

‖PN (Gi −Gi,h)PNλ‖H−1/2(Div;ΓR) ≤ Ch‖PNλ‖H1/2(Div;ΓR),

‖PNGi(PNλ− λ)‖H−1/2(Div;ΓR) ≤ C‖PNλ− λ‖H−1/2(Div;ΓR) ≤
C

N
‖λ‖H−1/2(Div;ΓR).

Putting these estimates together we obtain the estimate

‖eN,h‖H−1/2(Div;ΓR) ≤ C
(
h‖f‖H1/2(Div;ΓR) + (h+ 1/N)‖λ‖H1/2(Div;ΓR)

)
.

The use of the triangle equality then proves the estimate of the theorem.
Our final result gives an error estimate for the field near and in the scatterer. It follows from the previous

result.
Corollary 5.2. Assume that (4.19)–(4.22) hold. Let E satisfy (1.1)–(1.3). Define Eh ∈ Vh to satisfy

(µ−1
r ∇×Eh,∇× φh)− k2(εrEh,φ) + ik〈λh,N ,φh〉 = 0 ∀φh ∈ Vh

where λN,h ∈ SN satisfies (3.4). Then Eh is well defined and

‖E −Eh‖H(curl;ΩR) ≤ C
(
h‖f‖H1/2(Div;ΓR) + (h+ 1/N)‖λ‖H1/2(Div;ΓR)

)
.

6. Conclusion. We have proved convergence of the combined spectral – finite element scheme, under
the stability condition that hN is sufficiently small. It would be interesting to determine if this condition is
necessary. Of more practical importance is to generalize the class of exterior boundaries allowed (here only
a sphere) to cope with scatterers of a more general geometry. A numerical test of the algorithm is clearly
desirable.

7. Appendix. Theorem 2.6. Assume that ρ is chosen so that k is not a Maxwell eigenvalue for the
annulus A (i.e. the following interior problem possesses a unique solution). Let the operator L : γ → x̂×E|ΓR

be defined by

∇×E − ikH = 0 in A ,

∇×H + ikE = 0 in A ,

x̂×E = γ on Γρ ,

x̂×H = 0 on ΓR .

Then L is bounded from H−1/2(Div; Γρ) into Hs(Div; ΓR) for any s.
Proof. The tangential fields Um

n and V m
n are defined in (2.10). Using the vector basis functions defined

in (2.13) and (2.15) we know that

E =
∞∑

n=1

n∑
m=−n

[(
αm

n M
n
m + βm

n N
m
n

)
+
(
α̂m

n M̂
m

n + β̂m
n N̂

m

n

)]
.
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for suitable constants {αm
m, α̂

m
n , β

m
n , β̂

m
n }. Then using the relationships between the boundary and volume

basis in (2.16)-(2.17) with similar relationships for the interior fields we obtain that

x̂×E =
∞∑

n=1

n∑
m=−n

[
αm

n h
(1)
n (kr)Um

n +
h̃n(kr)
ikr

βm
n V

m
n

]
+
[
α̂m

n jn(kr)Û
m

n +
j̃n(kr)
ikr

β̂m
n V̂

m

n

]
,

where r = ρ or r = R depending on which boundary is under consideration. Furthermore, since H =
(1/ik)∇×E, we have

H =
∞∑

n=1

n∑
m=−n

[(
αm

n N
n
m − βm

n M
m
n

)
+
(
α̂m

n N̂
m

n − β̂m
n M̂

m

n

)]
and hence

x̂×H =
∞∑

n=1

n∑
m=−n

[
αm

n h
(1)
n (kr)Um

n +
h̃n(kr)
ikr

βm
n V

m
n

]
+
[
α̂m

n jn(kr)Û
m

n

j̃n(kr)
ikr

β̂m
n V̂

m

n

]
where r = R or r = ρ depending on if we are at the inner or outer boundary of the annular region.

We determine the coefficients αm
n , βm

n , α̂m
n and β̂m

n , m = −n, . . . , n and n = 1, 2, . . . from the boundary
conditions. Suppose

λ =
∞∑

n=1

n∑
m=−n

[am
n U

m
n + bmn V

m
n ] .

Then using the boundary condition on r = ρ we have

αm
n h

(1)
n (kρ) + α̂m

n jn(kρ) = am
n /
√
n(n+ 1) ,

βm
n h̃n(kρ) + β̂m

n j̃n(kρ) = ik ρbmn /
√
n(n+ 1) .

On the boundary r = R we have the vanishing tangential component of the magnetic field. Hence

αm
n h̃n(kR) + α̂m

n j̃n(kR) = 0 ,

βm
n h

(1)
n (kR) + β̂m

n jn(kρ) = 0 .

These two systems can be solved for the unknown coefficients to yield

αm
n =

1
D1

am
n j̃n(kR)√
n(n+ 1)

,

α̂m
n = − 1

D1

am
n h̃n(kR)√
n(n+ 1)

,

βm
n =

1
D2

ikρ bmn jn(kR)√
n(n+ 1)

,

β̂m
n = − 1

D2

ikρ bmn h
(1)
n (kR)√

n(n+ 1)
,

where

D1 = h(1)
n (kρ) j̃n(kR) − h̃n(kR) jn(kρ) ,

D2 = h̃n(kρ) jn(kR) − j̃n(kρ)h(1)
n (kR) .

Now using the asymptotic estimates (2.20)-(2.24) we can easily show that

Lλ =
∞∑

n=1

n∑
m=n

[
am

n hn(kR) + âm
n jn(kR)

]
Um

n +
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+
∞∑

n=1

n∑
m=n

[
bmn h̃n(kR) + b̂mn j̃n(kR)

]
V m

n

=
∞∑

n=1

n∑
m=−n

[( ρ
R

)n

(1 + λn) am
n U

m
n +

( ρ
R

)n+2

(1 + µn) bmn V
m
n

]
,

where λn, µn = O(1/n).
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[31] J.C. Nédélec. Mixed finite elements in R3. Numer. Math., 35:315–341, 1980.
[32] V. Vogelsang. On the strong unique continuation principle for inequalities of Maxwell type. Math. Ann., 289:285–295,

1991.
[33] C. Weber. Regularity theorems for Maxwell’s equations. Math. Meth. in the Appl. Sci., 3:523–536, 1981.

23


