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ABSTRACT

Collisions of sedimenting droplets in a turbulent flow is of great importance in

cloud physics. Collision efficiency and collision enhancement over gravitational collision

by air turbulence govern the growth of the cloud droplets leading to warm rain initiation

and precipitation dynamics. In this thesis we present direct numerical simulation

(DNS) results for collision statistics of droplets in turbulent flows of low dissipation

rates (in the range of 3 cm2/s3- 100 cm2/s3) relevant to strato-cumulus clouds.

First, we revisit the case of gravitational collision in still fluid to validate the

details of the collision detection algorithm used in our code. We compare the collision

statistics with either new analytical predictions regarding the percentages of different

collision types, or results from published papers. The effect of initial conditions on

the collision statistics and statistical uncertainties are analyzed both analytically and

through the simulation data.

Second, we consider the case of weak turbulence (as in strato-cumulus clouds).

In this case the particle motion is mainly driven by gravity. The standard deviation

(or the uncertainty) of the average collision statistics is examined analytically in terms

of time correlation function of the data. We then report new DNS results of collision

statistics in a turbulent flow, showing how air turbulence increases the geometric colli-

sion statistics and the collision efficiency. We find that the collision-rate enhancement

due to turbulence depends nonlinearly on the flow dissipation rate. This result calls

for a more careful parameterization of the collision statistics in strato-cumulus clouds.

Due to the low flow dissipation rate in stratocumulus clouds, a related challenge

is low droplet Stokes number. Here the Stokes number is the ratio of droplet inertial

response time to the flow Kolmogorov time. A very low Stokes number implies that

the numerical integration time step is now governed by the droplet inertial response

x



time, rather than the time step necessary for the flow simulation. This situation makes

the simulations very expensive to perform. With the motivation to speed up the

simulations, we implement the asymptotic expansion approach (as in Maxey, 1987) for

particle tracking as this method is suitable for low particle Stokes number and avoids

the numerical integration of the stiff equation of motion of droplets. We first validate

our implementation using the simpler 2-D cellular flow. Next, we compare the collision

statistics of the newly implemented asymptotic approach with our existing approach

of particle tracking as well as with published results from journal papers. Finally, we

provide the run time comparison for both methods.
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Chapter 1

INTRODUCTION

1.1 Background & Motivation

Particle laden turbulent flows are commonly found in both natural as well as

industrial flows; raindrop growth in the clouds, aerosol processing, and pneumatic

transport of solids are some examples. In these flows, the particle-particle collision

and coagulation processes affect the dynamics (such as flow drag) and evolution (e.g.,

the growth of particles) of the system. The rate of coagulation is determined by the

geometric collision rate, the collision efficiency, and the coagulation efficiency. The ge-

ometric collision is affected by the carrier turbulent flow due to the effects of turbulence

on the relative motion and the local distributions of the inertial particles (Sundaram

& Collins, 1997, Wang et al. 1998a, 2000). The collision efficiency is affected by the

local particle-particle hydrodynamic interactions due to disturbance flows induced by

the particles (Wang et al. 1998a, 2000). The coagulation efficiency is governed by

interfacial forces such as the surface tension and van der Waals force, etc. This thesis

focuses on raindrop growth in clouds by collision-coalescence, specifically for stratocu-

mulus clouds where the viscous dissipation rate is relatively low. Our main concern is

the geometric collision rates and collision efficiency of cloud droplets.

Rain develops when liquid droplets collide with each other to form a particle of

larger size, this process is called collision-coalescence. The coalescence process goes on

until the droplets reach the size of a rain-drop, and become too heavy to be suspended

in the air, resulting in rainfall. It is quite understandable that more collisions between

cloud droplets would result in higher rate of coalescence, and the rate of collision

would depend on the relative velocity between particles. If a particle has a larger
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settling velocity, the probability of that particle to collide with a smaller particle would

be higher, and thus coalescence would be faster due to differential sedimentation (or

gravitational collision-coalescence). It is evident that particles with larger size, and

hence larger inertia would have higher settling velocity. It is well known that this

gravitational coagulation is a dominant growth mechanism for larger particles (larger

than 40 µm radius) (Pruppacher and Klett, 1997, Grabowski and Wang, 2013). In

the case of particles smaller than that, the still fluid settling velocity is smaller. This

combined with low collision-efficiency (Wang et al. 2005, Wang et al. 2008) makes the

rate of particle-particle collision to be relatively slow.

In the early stage of cloud droplet formation and growth (say below 15µm in

radius), water vapor condensation (driven by local super-saturation) is the dominant

mechanism for droplet growth. However, the rate of growth due to condensation is

inversely proportional to the particle size as the vapor concentration gradient at the

droplet surface reduces with increase in radius. For example, it would take about 1

hr for a 15 µm droplet to grow up to 50 µm radius, by the diffusion mechanism alone

(Pruppacher and Keltt, 1997). Furthermore, the water vapor in the air is limited, as

such the local super-saturation decreases as more water is converted from vapor to

liquid.

On the contrary, the conclusions based on observations in real clouds is very

different. It was first observed by Squires (1958), that the rain formation period could

be less than half an hour. More recently, with the use of radar technology, it was

observed that warm rain initiation in cumulus clouds could be as short as 15-20 minutes

(Szumowski et al., 1997, Knight et al., 2002). It should be noted that there were some

debates about the difficulties in interpreting data from radar measurements (Rauber et

al., 2003; Knight et al., 2002), specifically distinguishing between cloud region and clear

region from radar images and satellite images. In 2007, Rauber et al. published results

which were gathered from air-crafts with measurement equipments, flying directly in

cumulus clouds, putting the radar and satellite images debate to rest. The results

conclude that the rain formation time in shallow cumulus clouds over the ocean is
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about 20-30 minutes. This led to a gap in the physical explanation and experimental

results.

The two mechanisms of growth of droplets: condensation and coalescence, both

are not very effective in the size range of 15 µm to 40µm in radius, and definitely not

effective enough to make the rain formation time to be in the range 20-30 minutes.

This problem is called as the “size-gap problem” in cloud physics. The example of 1

hr taken by 15 µm particles to grow to 50 µm (Pruppacher and Klett, 1997) is a good

example for this. So there must be some mechanism which either enhances the collision

rate and hence the coalescence process or which enhances the condensation process.

Although there has been a lot of work done on the effects of turbulence on the

condensation process, in this thesis we focus mainly on the work with the coalescence

process (specifically enhancement of collision rate, and other collision related parame-

ters which would be discussed later in the thesis). The studies conducted in relation to

the coalescence process mainly point towards the effect of air turbulence. Specifically,

the coagulation rate of finite sized particles in fluid turbulence, which is governed by

three consecutive processes (Wang et al., 2000):

(1) Geometric Collision due to particle-turbulence interactions: This

is the physical collision between two particles, where the motion of the particles is

driven by the turbulent flow and gravitational sedimentation.

(2) Collision efficiency due to particle-particle aerodynamic interac-

tion: It is the effect of the presence of one particle on the motion of the neighboring

particles. Presence of a particle distorts the flow. When two particles are close to each

other, the distortion in the flow created by one particle is “felt” by the other particle,

and vice-versa. Thus, the first particle is pushing the fluid, and the fluid is pushing

the second particle (and vice-versa). Due to this motion, the particles may avoid col-

lision by moving away from each other because of the pressure difference. This effect

is called the particle-particle aerodynamic interaction, which would prevent particle-

particle collision and thus reduce the total number of collisions as the particles move

3



away from each other. Collision efficiency is the ratio of the collision rate consider-

ing this aerodynamic interaction effect to the collision rate without considering this

aerodynamic interaction effect.

(3) Coagulation efficiency (when two particles join to form a third

one): This is a result of mainly two competing effects for water droplets: one is the

van der Waals attractive force (which pulls two particles together) and the other is the

surface tension (which maintains the interfaces and lubrication forces that tend to pull

particles apart).

1.2 Direct Numerical Simulation (DNS) Relevant To Cloud Physics

Since the air motion in clouds is of turbulent nature, there have been many

studies on the effect of turbulence in the enhancement of collision-coalescence which

relates the intensity of air turbulence and particle inertia to the increase of collision-

coalescence. Some of these studies were in qualitative agreement (Almeida, 1976, 1979,

Pinsky et al, 1999, 2000, Prupachher and Klett, 1997) and some were in disagreement

on the theory of turbulence enhancing the collision rate (Koziol and Leighton, 1996).

On the quantitative level, there had been no general consensus until relatively recently.

The recent advance is largely due to rigorous simulation studies by Sundaram and

Collins, 1997, Khain and Pinsky, 1997, Wang et al 2000, who provide evidence of

turbulence enhancing the collision rate. The above studies helped in providing a better

understanding of the effects of turbulence on collisions. However, as these studies

were based on engineering applications, the flow dissipation rates were very large and

particle sedimentation was often not considered. In clouds, the dissipation rates are

much smaller.

Numerical simulation results from Wang et al. (2008) and Ayala et al. (2008)

have helped in quantifying the effects of turbulence on the collision rate, for clouds

through a rigorous direct numerical simulation of dispersed turbulent flow which was

based on the classical work of Wang and Maxey 1993 and Wang et al. 2000. A lot of

progress has already been made by our group led by Prof. Lian-Ping Wang (Wang et al.
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2000, 2005a, 2005b, 2006, 2007, 2008, 2009, Ayala et al., 2008, Wang and Grabowski,

2009, and many more). My research work is to extend the work by determining the

collision statistics at low flow dissipation rates (relevant to strato-cumulus clouds).

In this work we study collision of cloud droplets by direct numerical simulations

where the background turbulent flow is generated by solving the incompressible Navier-

Stokes equation using a pseudo-spectral method. The particles are then added and

tracked by using the equation of motion. Multiple processors are used to perform the

simulations, hence the domain is divided in two directions (y and z in our code), also

called 2-D domain decomposition so that each processor contains a “pencil” portion

of the domain. Data communication between processors are done using MPI. Further

details about the equations involved and the implementation technique will be provided

in the subsequent chapters of this thesis. The presence of the particles are assumed to

not have any effect of the background turbulence as the volume fraction is of the order

of 10−6. The smallest scales of the turbulence are defined by the Kolmogorov scales,

namely:

Kolmogorov length scale:

η =
(
ν3/ε

)1/4
(1.1)

Kolmogorov velocity scale:

vk = (νε)1/4 (1.2)

Kolmogorov time scale:

τk = (ν/ε)1/2 (1.3)

where ε is the average viscous dissipation rate of the turbulence and ν is the air kine-

matic viscosity.

The air viscosity is taken to be ν = 0.17cm2/s, and air density, ρ = 0.001gm/cm3.

Another important parameter that characterizes the turbulence in cloud is the Taylor

microscale Reynolds number (Rλ). It is defined as:

Rλ = u′λ/ν (1.4)
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where λ is the transverse Taylor microscale, defined as:

λ = u′/〈(∂u1/∂x1)2〉1/2 =
(
15νu′2/ε

)1/2
(1.5)

and u′ is the r.m.s. fluctuation velocity in a given direction.

As for the particles, we typically use particle sizes in the range of 5-40 µm

in radius. The droplets are governed by the particle equation of motion, under the

application of Stokes drag:

dV (t)

dt
=
U(Y (t))− V (t)

τp
+ g (1.6)

where V (t) is the velocity of the particle, U(Y (t)) is the fluid velocity at the particle

location. It is calculated in the code by a six-point Lagrangian interpolation technique,

g is the acceleration due to gravity, τp is the particle inertial response time (the time

taken by the particle to react to a change in the flow) and, under Stokes drag it is

given by:

τp = 2ρwa
2/9ρν (1.7)

where ρw = 1gm/cm3 is the density of the particles (water), and a is the particle

radius.

The still fluid settling velocity of the particle is determined by the equation:

vp = τp|g| (1.8)

There are two important non-dimensional parameters in this problem, and this

would be a good place to define them. The first is the Stokes number, it is defined

as the ratio of the particle inertial response time to the smallest time scale of the

turbulence (Kolmogorov time-scale):

St = τp/τk (1.9)

The other one is the non-dimensional settling velocity, which is defined as the ratio of

the particle velocity to the Kolmogorov velocity scale:

Sv = vp/vk (1.10)
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Table 1.1 provides a list of particle radius with the respective Stokes number (St) and

non-dimensional settling velocity (Sv) at particular dissipation rates. We note that the

Stokes number decreases as particle size and flow dissipation rate are reduced.

Table 1.1: Particle Stokes number and non-dimensional settling velocities at different

dissipation rates

Particle radius(µm)

Dissipation rates (cm2/s3)

3 10 30 100

St Sv St Sv St Sv St Sv

5 0.0013 0.378 0.002 0.280 0.0043 0.2131 0.0079 0.1577

10 0.0054 1.515 0.010 1.121 0.0173 0.8524 0.0317 0.6308

20 0.0219 6.063 0.040 4.487 0.0694 3.4098 0.1268 2.5235

30 0.0494 13.64 0.090 10.097 0.1562 7.6721 0.2853 5.6779

40 0.0878 24.25 0.160 17.95 0.2778 13.639 0.5072 10.094

1.3 Specific Objectives

The main objective of this thesis is performing simulations relevant to cloud

droplets in strato-cumulus clouds where dissipation rates are very low (below 100

cm2/s3), and the particle St is relatively small. It should be noted that in case of a

combination of small dissipation rate and small particle size, the time-step size required

to numerically integrate equation 1.6 would be very small, and thus the simulations

would become computationally very expensive (details provided in Chapter 3). The

asymptotic expansion tracking of Maxey (1987) for particles with low Stokes number

would be valid in this range. With the asymptotic expansion approach we can use

larger time step sizes, and thus the code would become faster. In order to validate our
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implementation of the asymptotic expansion, we use it first on a simple 2-D cellular

flow (as in Maxey, 1987) and then in a turbulent flow.

The remainder of this thesis is divided into three chapters, the Chapter 2 con-

sists of a reconsideration of the collision statistics in still fluid, which also consists of a

description and theoretical prediction of the collision detection algorithm implemented

in the code, finally it deals with the collision statistics in turbulent flow at low dissi-

pation rates. Chapter 3 deals with the theory, implementation, results, and analysis

of the asymptotic expansion method of particle tracking for the 2D cellular flow (as

a validation) and then for turbulent flows. Finally, Chapter 4 summarizes the work

done, its implications, and future research directions.
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Chapter 2

COLLISION STATISTICS IN STILL FLUID AND TURBULENT
FLOWS

Collisions between two particles occur due to the movement of the particles.

There are three main aspects which govern the motion of a particle: effect of particle

settling velocity, effect of transport by the fluid velocity through the hydrodynamic drag

on the particle, and effect of particle-particle hydrodynamic interactions. In order to

quantify the effect of each of these aspects, we need to study them one by one.

2.1 Collision Statistics In Still Fluid

In this section we revisit the so-called ‘gravity only case’. The main motivation

to revisit the gravity only case is to figure out an accurate expression for the standard

deviation of the collision kernel, in order to better understand the collision statistics

in a turbulent flow. Under the influence of weak turbulence, the particle motion would

be mainly driven by the gravity, hence a revisitation of the gravity case is required

as a base reference case. In the gravity only case, the fluid is stationary, and the

particle-particle hydrodynamic interactions (denoted as HI from here on) are ignored,

so the particle motion is only due to gravity, which is quantified by the Stokes terminal

velocity of the particle. We also perform some simulations by considering the HI effect

for the gravity only case, in order to determine the collision efficiency in this case. We

re-scale the cloud problem in DNS in a periodic box of length of Lb = 2π = 6.283 (in

DNS units) (figure 2.1 shows the domain), and match the liquid water content (LWC)

with the cloud. LWC is the mass of liquid per unit volume, basically this quantity

determines the number of particles present in the system, a lower value of LWC means

less number of particles, and higher value signifies larger number of particles. Typically
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in strato-cumulus clouds, the LWC is about 1gm/m3, however, for our simulations (in

some cases), we use a LWC value of 4gm/m3, as with more particles, more collisions

can be realized, leading to lower standard deviation as the sample size becomes larger.

Figure 2.1: The DNS computational Domain

Typically we use a bidisperse system with particles of two different sizes. For

our simulation results, we use two particle radii of 30µm and 40µm. The particle

initial positions are set using a uniform random distribution, and the particle initial

velocity is set to the respective settling velocity. For the particle sedimentation driven

by gravity only case, the particles settle with their sedimentation velocity in still fluid.

The particle velocity is non-zero only in the gravity direction, as there is no horizontal

motion. This means that the particles will collide because of the relative motion

between them. Now, the relative motion between same size particles will be zero, as

they have same the settling velocity. This means there will be no collision between

same-size particles. For cross-size collisions, we can see that the entire scenario would

repeat itself after every Lb/∆W time due to the periodic boundary conditions, where

∆W = W1 − W2, where W1, and W2 are the settling velocities for the two sets of

particles. Figure 2.2 shows a schematic of the domain with particles, after a time of
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Lb/∆W . This means that the collision statistics will depend on the initial particle

position only. So, with a random initial position distribution of the particles, the

collision results would be biased. In order to get rid of the bias, we need to run

multiple realizations of the simulation with different random initial distributions and

average the data over all of them.

Figure 2.2: Repetition after Lb/∆W . This sketch is made by taking a frame of

reference fixed on the smaller particles and observe the relative motion

of larger particles.

2.1.1 Collision detection

The collision detection algorithm follows Wang et al. 1998a. A collision is

defined as an event when the distance between the centers of two particles dc is less

than or equal to the sum of their radii or the geometric collision radius, R. In order to

not miss any of the collisions, Wang et al. defined three types of collision.
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Collision Type 1: When dc is greater than R at the beginning of a time-step,

and dc is less than or equal to R, at the end of the time-step, then it is collision type

1.

Collision Type 2: When dc is greater than R at the beginning of a time-step,

and dc remains greater than R at the end of the time-step, then a collision event may

take place if in between the time-step, dc became less than R. If dc, indeed becomes less

than R, at some time between the time-step, then a collision event must be recorded

as collision type 2.

Collision Type 3: When dc is less than or equal to R at the beginning of a

time-step, and dc remains less than or equal to R at the end of the time-step, then a

collision event may take place in between the time step, if dc becomes larger than R in

that span of time. This is collision type 3.

The sum of these three types of collision would give the total number of colli-

sions.

Next, we take a look at the collision detection algorithm. A primary detection

grid (blue lines) of cell size W was introduced. Along with this, a second grid (red

lines) of the same cell size but shifted in each direction by W/2 was also included.
Collision'detec+on'algorithm'

A'primary'detec+on'grid'(blue'lines)'of'cell'size'W'was'introduced.'Along'with'this,'a'

second'grid'(red'lines)'of'the'same'cell'size'but'shi_ed'in'each'direc+on'by'W/2'was'

also'included.'

'' '' ''

'' '' ''

'' '' ''

'' '' ''

'' '' ''

'' '' ''

Each' par+cle’s' loca+on' was' iden+fied'

first'with' a' cell' in' the'primary' grid.' Let'

us' suppose' that' the' green' cell' at' the'

center' be' the' one' where' the' par+cle'

was' detected.' The' collision' detec+on'

for' this' par+cle' was' restricted' to' a'

neighborhood' defined' as' the' region'

formed' by' the' eight' cells' (shown' as' 4'

cells' as' this' image' is' in' 2GD' in' yellow'

color)' in' the' second' gr id' that'

overlapped'with'the'cell'in'primary'grid,'

where'the'par+cle'was'found.'

W'

To'count'the'collisions,'the'algorithm'selects'a'par+cle,'iden+fies'the'primary'cell,'checks'

for'other'par+cles'in'the'same'primary'cell'and'in'the'neighborhood'men+oned'above'in'

all'direc+ons.'Thus'the'minimum'distance'between'two'par+cles'that'are'not'considered'

for'collision'is'W/2.'So,'we'set'the'width'of'the'detec+on'grid'to'be'W>2((R/dx)+10u’dt/

dx)*dx.'

Where'10u’dt'is'maximum'rela+ve'velocity,'and'u’'is'the'rms'fluid'fluctua+ng'velocity.''

Figure 2.3: Grid for collision de-

tection

Each particle’s location was identified first with

a cell in the primary grid. Let us suppose that

the green cell at the center be the one where the

particle was detected. The collision detection for

this particle was restricted to a neighborhood

defined as the region formed by the eight cells

(shown as 4 cells as this image is in 2-D in yellow

color) in the second grid that overlapped with

the cell in primary grid, where the particle was

found. To count the collisions, the algorithm se-

lects a particle, identifies the primary cell, checks

for other particles in the same primary cell and

12



in the neighborhood mentioned above in all directions. Thus the minimum distance

between two particles that are not considered for collision is W/2. So, in case of a tur-

bulent flow, we set the width of the detection grid to beW > 2((R/dx)+10u′dt/dx)∗dx.

where 10u′dt is an upper bound for the relative velocity, and u′ is the rms fluid fluctu-

ating velocity. In case of sedimentation due to gravity only, we scale it with ∆W .

2.1.2 Prediction of relative percentages of collision of different Types

Since we are considering a relatively simple case of particle sedimentation under

the influence of gravity in still fluid, the collision types can be predicted. First we note

that collisions can occur only between different size particles, as same size particles will

have no relative motion. Next, we notice that type 3 collision mentioned above would

not occur in this problem as a particle pair cannot overlap each other twice. It turns

out with the help of some geometry we can predict the Type 1 and Type 2 collisions.
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Predicting “Type 2” collisions 

ΔWdt	

ΔWdt	

A	

B	

C	

R	

h	

Type 2 collision is possible if:

h > R 2 −
ΔWdt

2

⎛

⎝
⎜

⎞

⎠
⎟

2

= h1(say),

Fraction of type 2 collision, =
BC
AC

=
ΔWdt − 2 R 2 − h2

ΔWdt
∴Net fraction is:

=
1

πR 2

ΔWdt − 2 R 2 − h2

ΔWdth1

R

∫ 2πhdh

=

1
3
ΔWdt

2R

⎛

⎝
⎜

⎞

⎠
⎟
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..................if
ΔWdt

2R
≤ 1 
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2
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1
ΔWdt 2R( )

......if 
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> 1
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⎨

⎪
⎪

⎩

⎪
⎪

when 
ΔWdt

2R
= 1,both =

1
3D	

Figure 2.4: Prediction of collision type 1 and 2: geometry

In figure 2.4, we take a frame of reference fixed on the smaller particle and

observe the trajectory of the larger particle, we assume the center of the larger particle

is located on the line ABC. If the horizontal separation between two particles is h, then

Type 2 collision will occur only when the length CD is less than ∆Wdt, which implies

that

h >

√
R2 −

(
∆Wdt

2

)2

= h1 (2.1)

where dt is the time step size used for the simulation. Clearly, only when the center

of larger particle is located between A and C at the begin of the time step will collide

with the smaller particle within the time step. Fraction of Type 1 collisions will be
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AB/AC, and fraction of Type 2 collisions will be BC/AC. If we focus on Type 2

collision prediction, we can see that,

BC/AC =
∆Wdt− 2

√
R2 − h2

∆Wdt
(2.2)

Thus, the net-fraction of Type 2 collisions would be:

BC

AC
=

1

πR2

∫ R

h1

∆Wdt− 2
√
R2 − h2

∆Wdt
2πhdh (2.3)

BC

AC
=

1

3

(
∆Wdt

2R

)2

.......if

(
∆Wdt

2R

)
≤ 1

and,
BC

AC
= 1− 2

3

1

∆Wdt/2R
.......if

(
∆Wdt

2R

)
> 1

when (
∆Wdt

2R

)
= 1,

BC

AC
= 1/3

Figure 2.5 shows a comparison of the predicted percentage of Type 2 collisions

with actual simulation results. The agreement of our simulation results with the the-

oretical prediction shows a good validation for the collision detection scheme used in

the code.

2.1.3 Pair and collision statistics

Before we go into the statistics of the collisions, we define some important pair

statistics.

Radial relative velocity: It is defined in terms of the relative velocity w,

between two droplets with separation vector r, as wr = w · r/|r|, with r = |r|. The

average radial relative velocity at contact, represents the average relative flux on the

geometric collision sphere if particles are uniformly distributed.

Radial distribution function (RDF): The RDF is defined as the ratio of

the actual pair density realized in a region (spherical shell in this case, as shown in

figure 2.6) to the expected pair density in a uniform droplet distribution. Blue balls are

particles at contact. Red line is the sphere with diameter R, where R is the separation
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Figure 2.5: Comparison of theory and simulation for type 2 collisions

distance. Distance between red and pink lines, and distance between red and orange

lines are the shell thickness (usually 2% of R). It is denoted by g(r). For uniform

distribution g(r) = 1.

Collision'of'heavy'par+cles:'Sundaram'&'Collins'(SC)'
•  DNS simulations of particle laden turbulent flow are performed to study the 

particle collision rate as a function of: 
–  Stokes number 
–  Particle diameter 

•  Stokes number: 
 
•  SC formulated the collision frequency to be: 

•  Radial Distribution Function (RDF): It is the ratio of the actual pair density realized in 
a region (spherical shell) to the expected pair density in a uniform droplet distribution.  

St =
τ p

τ k

Nc =
1
2
πσ 2n2g σ( )

!w∫ P !w |σ( )dw

where Nc  is the collision frequency, σ  is the particle diameter, n is the average particle number density
!w is the relative velocity, P !w |σ( )  is the conditional probability of relative velocity, 

g σ( )  is the radial distrbution function.

Blue'balls'are'par+cles'at'contact.'Red'line'is'the'sphere'with'diameter'R,'where'R'is'
the'separa+on'distance.'Distance'between'red'and'pink'lines,'and'distance'between'
red'and'orange'lines'are'the'deltas'(shell'radius,'usually'2%'of'R).'

Figure 2.6: Spherical shell and RDF

Collision kernel: It is defined as the rate of collisions per unit volume, per

average particle pair concentration. Formulation below is for bi-disperse case. It can be

of two types, dynamic (collisions are counted as they occur), kinematic (collision kernel
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is calculated based on relative velocity in radial direction and the radial distribution

function). The dynamic collision kernel is given by:

Γ12 =
Ṅc

n1n2

(2.4)

and the kinematic collision kernel is given by:

Γ12 = 2πR2〈wr〉g(r) (2.5)

where Γ12 is the collision kernel, Ṅc is collision rate per unit volume, n1, n2, are the

average particle number concentration for the respective particle size, wr is the relative

velocity in the radial direction and the angular brackets denote ensemble average (de-

fined later), g(r) is the radial distribution function, R is the geometric collision radius

(Saffman and Turner, 1956, Sundaram and Collins, 1997, Wang et al. 1998a, Wang et

al., 2008).

Collision efficiency: It is the ratio of collision kernel calculated by considering

hydrodynamic interactions, to collision kernel calculated without considering hydrody-

namic interactions. Since hydrodynamic interactions would prevent some collisions to

occur, collision efficiency is usually less than 1.

Collision efficiency enhancement factor: It is the ratio of collision efficiency

in a turbulent flow to collision efficiency in a gravity only case (still fluid sedimentation).

This quantity depicts the effect of turbulence on the collision efficiency.

E =
ηT
ηG

=
ΓTHI/Γ

T
NHI

ΓGHI/Γ
G
NHI

(2.6)

where E is the collision efficiency enhancement factor, η is the collision efficiency, Γ

is the collision kernel, subscript HI and NHI refer to with and without considering

hydrodynamic interactions, respectively and superscript T , and G, refer to turbulent

flow, and gravity only (still fluid sedimentation), respectively.

2.1.4 Uncertainty analysis for collision kernel: gravity only case

For the uncertainty analysis of gravity only case, we consider the gravity only

case to be a special case of turbulent flow case, (i.e. with dissipation rate = 0). Below
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are some input parameters for our simulation of gravity only flow (for particle sizes

30 and 40 µm in cloud units), All units below have been converted to DNS units, for

example:

Lb = 2π in DNS units, and Lb/η should be constant in both cloud units as well

as DNS units, thus,
Lb,DNS
ηDNS

=
Lb,cloud
ηcloud

It should be noted that in gravity only case there is no flow, so for the DNS set-

ting of Kolmogorov parameters, we chose 100 cm2/s3 as the dissipation rate. Basically

the Stokes number (St), non-dimensional settling velocity (Sv), and ratio of radius to

Kolmogorov length scale (r/η) are constant in both units, and based on these relations,

the conversion of a quantity between DNS and cloud units are performed.

Domain size: Lb = 2π = 6.283

Differential sedimentation velocity: ∆W = 19.102

Particle number in each group: N1 = N2 = 145075

∆t = Lb/∆W=0.328911

Discretization time step size: dt = 0.0001

Total number of time-steps: ∆t/dt = 3289.11 ∼ 3290

Resolution: 1283

First we determine the uncertainty for collision kernel. If we use the total

number of time-steps to be less than∆t/dt = 3289.11, then we will miss out on some

collisions. After every ∆t/dt = 3289.11, the entire phenomenon repeats itself. Also,

we are performing two averages, one is over the time-steps for each realization, and

another is over multiple realization. For the standard deviation of a single realization,

we use

SD =

√√√√ 1

N

N∑
i=1

(Γi − Γmean)2 (2.7)
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where SD is the standard deviation for a single realization, N is the number of time-

steps, Γi collision kernel in each time-step, and Γmean is the mean collision kernel over

all the time-steps.

For multiple realizations, we need to calculate the standard deviation of the

mean, in order to do that we use time correlation analysis, as we know that the collision

events in gravity only case has complete correlation after every ∆t = Lb/∆W . We use

the following equation (Bendat J., Piersol A., Wiley. 2010)

σ2
mean =

σ2

N
+ 2

σ2

N2

N−1∑
m=1

(N −m)R (m) (2.8)

where σmean is the standard deviation of the mean, σ is the standard deviation of each

realization, N is the total number of time-steps in all realizations, m is the time-lag,

and R is the auto-correlation function. For complete correlation, R(m) = 1, for no

correlation, R(m) = 0.

Let us consider S = ∆t/dt, in our simulations S is not an exact integer, however,

for simplicity of the derivation below we consider S to be exact integer. So, according

to the above definition of the autocorrelation function R, R(0) = 1, R(S) = 1, R(2S) =

1..., and so on. All others should be zero, as the collisions are not correlated with in

the time ∆t = Lb/∆W . We can say, that we run the simulation for N = kS time

steps, where k is an integer, which means, equation 2.8 reduces to:

σ2
mean =

σ2

N
+ 2

σ2

N2
[(N − S) + (N − 2S) + ...+ (N − (k − 1)S)]

or,

σ2
mean =

σ2

N
+ 2

σ2

N2

[
k − 1

2
(N − S +N − (k − 1)S)

]
or,

σ2
mean =

σ2

N
+
σ2

N2
(k − 1) (2N − kS)

or,

σ2
mean =

σ2

kS
+
σ2

kS
(k − 1)
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or,

σ2
mean =

σ2

S
(2.9)

A validation of this equation is given in figure 2.7, where we plot the auto-

correlation function as a function of the time-lag, m = 5 ∗ dt. The spikes in the plot

are after every ∆t, the reason for all the spikes not being exactly 1, is that the ratio of

∆t/dt is not an exact integer. This validates our formulation for standard deviation in

the gravity only case.
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Figure 2.7: Auto-Correlation for gravity only
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2.1.5 Results for collision kernel: gravity only case

For gravity only case without considering hydrodynamic interactions (i.e. NOHI),

we compare our collision kernel results with the theoretical value. Table 2.1 shows the

results for 30-40µm radius particles, with 1283 resolution, and for 22 different realiza-

tions of particle initial position configuration:

Table 2.1: Collision kernel with standard deviation for 30-40µm radius particles for
gravity only and NoHI case

No. of Realization Collision kernel Standard Deviation
1 1.37242E-03 1.87613E-05
2 1.35948E-03 1.85021E-05
3 1.36484E-03 1.84053E-05
4 1.42359E-03 1.84545E-05
5 1.39064E-03 1.86959E-05
6 1.36203E-03 1.81304E-05
7 1.37019E-03 1.82984E-05
8 1.37209E-03 1.85016E-05
9 1.39014E-03 1.86940E-05
10 1.34992E-03 1.77185E-05
11 1.40381E-03 1.89677E-05
12 1.35363E-03 1.80519E-05
13 1.38750E-03 1.86468E-05
14 1.38198E-03 1.89628E-05
15 1.36722E-03 1.84918E-05
16 1.39583E-03 1.87434E-05
17 1.36203E-03 1.81843E-05
18 1.40258E-03 1.84982E-05
19 1.34472E-03 1.83299E-05
20 1.38329E-03 1.82541E-05
21 1.40357E-03 1.84125E-05
22 1.40827E-03 1.83248E-05

Mean (Simulations) 1.37954E-03 3.93530E-06
Theoretical 1.38089E-03 -

Different realizations show different collision kernels, which is expected as the

initial position configuration is different for the particle. The difference between the
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theoretical result and the mean value over 22 realizations for our simulation is less

than 1% (which is within the standard deviation of the mean), which shows that our

results are correct. An example schematic of two different position configurations is

shown in figure 2.8, which explains why collision kernel should differ for two different

configurations. The first case shows an initial position in which the particles will

definitely collide, but in the second case, the particles will fail to collide as we allow

particles to overlap in the gravity only case. However, if we consider hydrodynamic

interactions among the particles (hence do not allow particles to overlap) or include

a turbulent flow instead of still fluid, then this initial position bias would be removed

over time, as there would be a horizontal component of velocity acting.

Reason for erroneous value of  collision 
efficiency for gravity only case 

•  We ran the simulation for the gravity only case and calculated the 
collision efficiency. However, in a gravity only case, when the 
particles do overlap, the initial position of  the particles will have 
a strong bias on the collision statistics. 

•  Example: 

 

Case 1 Case 2 

The two scenarios on the left show that 
the collision statistics would heavily 
depend on the initial location for the 
gravity only case where there is particle 
overlap. However, if  particle overlap is 
not present (i.e. if  we consider HI) or 
turbulence is present, then this initial 
position bias would be removed over 
time, as there would a horizontal 
velocity as well. 

Figure 2.8: Initial position bias

2.1.6 Collision statistics for gravity only with hydrodynamic interactions

When considering hydrodynamic interactions, in stagnant fluid the the distur-

bance flow due to the particle may extend up to 50 times the droplet radius (Lin and

Lee 1975, 1976). The droplet disturbance flow does not affect the mean fluid flow, but
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it affects the motion of other particles, for particles close to the concerned droplet,

the effect of background flow would be higher, and the effect decreases with increasing

distance between two particles.The largest distance which can have some effect is on

the order of the Kolmogorov length scale of the turbulence (or smaller), for distances

larger than this, the effect is negligible. We initially assume the disturbance flow due

to the presence of a particle to be a Stokes flow. For particles in stagnant fluid, the

equation for the disturbance flow becomes:

ur =

[
3

2

1

r
− 1

2

(a
r

)3
]
vp cos θ (2.10)

uθ =

[
3

4

1

r
+

1

4

(a
r

)3
]

(−vp sin θ) (2.11)

uφ = 0 (2.12)

Wang et al. 2005b, presented a formulation for a system of arbitrary particles.

The disturbance velocity felt by a given particle is given by:

~u(k) =

Np∑
m=1

~us(~Y
(k)(t)−~Y (m)(t); a(m), ~V (m)−~U(~Y (m), t)−~u(m))...k = 1, 2...Np, and m 6= k

(2.13)

where Stokes disturbance flow induced by kth droplet is:

us(~r
(k); a(k), ~Vp

(k)
) =

[
3

4

a(k)

r(k)
− 3

4

(
a(k)

r(k)

)3
]

~r(k)

(r(k))2

(
~Vp

(k)
· ~r(k)

)
+

[
3

4

a(k)

r(k)
+

1

4

(
a(k)

r(k)

)3
]
~Vp

(k)

(2.14)

Once the disturbance flow velocities are computed at all droplet locations, the

droplets are advanced by solving the equation of motion. The equation of motion for

kth droplet is:

d~V (k)(t)

dt
= −

~V (k)(t)− (~U(~Y (k)(t), t+ ~u(k))

τ
(k)
p

+ ~g (2.15)
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and
d~Y (k)(t)

dt
= ~V (k)(t) (2.16)

When we consider hydrodynamic interaction effect, we do not allow the particles

to overlap, as soon as the particles collide, we withdraw the colliding particles from

the system, and re-introduce them at two random positions. A brief explanation of the

hydrodynamic interactions is presented here. Ayala et al., 2007 provides the description

in detail.

Collision kernel results with HI case is given in table 2.2. The collision kernel

with HI case is lower than that of the NoHI case, which makes sense as the pressure

difference due to the presence of fluid between two particles will try to push the particles

away, and hence prevents some of the collisions, resulting in a lower collision kernel.
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Table 2.2: Collision kernel with standard deviation for 30-40µm radius particles for

gravity only and with HI case

No. of Realization Collision kernel Standard Deviation

1 9.79755E-04 1.58991E-05

2 9.97359E-04 1.56019E-05

3 1.03075E-03 1.57956E-05

4 1.01188E-03 1.60247249E-05

5 1.01664E-03 1.59905413E-05

6 1.01120E-03 1.60151078E-05

7 1.02622E-03 1.61512291E-05

8 9.91480E-04 1.56939892E-05

9 9.97303E-04 1.54912429E-05

10 9.78766E-04 1.54463340E-05

11 1.00521E-03 1.59252505E-05

12 9.86286E-04 1.52072212E-05

13 9.83462E-04 1.59160647E-05

14 1.03260E-03 1.57080097E-05

15 9.89394E-04 1.51688214E-05

16 9.83709E-04 1.54339352E-05

17 9.85544E-04 1.54827973E-05

18 1.01905E-03 1.58494924E-05

19 9.95134E-04 1.53910660E-05

20 9.92167E-04 1.59935327E-05

21 1.01682E-03 1.58408810E-05

22 1.01553E-03 1.55686701E-05

Mean 1.0021E-03 3.3496E-06
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Collision efficiency results are presented in the table 2.3

Table 2.3: Collision efficiency with standard deviation for 30-40µm radius particles

for gravity only

Case Collision Efficiency Standard Deviation

Simulations 0.72640 3.19209E-03

Code for published results* 0.71875 -

where the standard deviation is calculated by the equation:

sdE =
ΓHI

ΓNHI

√
(sdΓHI

)2

Γ2
HI

+
(sdΓNHI

)2

Γ2
NHI

(2.17)

where sdE is the standard deviation for collision efficiency, Γ is the collision kernel, sdΓ

is the standard deviation for collision kernel, subscripts HI and NHI correspond to

cases with hydrodynamic interactions and without hydrodynamic interactions, respec-

tively.

*Published results for collision efficiency of 30-40 µm radii particle-pair were not

available in the literature, however we used the exact same code to generate the results

for 30-40 µm radii particle-pair as were used by Wang et al. 2005. The published

results in Wang et al. 2005 are for different particle sizes, however they used this same

code to generate those results. The percentage difference between our results and Wang

et al. is about 1%.

2.2 Collision Statistics In Turbulent Flow

For the turbulent flow, we generate the fluid turbulence using a pseudo-spectral

method in a periodic domain, using the Navier-Stokes equation:

∂~U

∂t
= ~U × ω −∇

(
P

ρ
+

1

2
~U2

)
+ ν∇2~U + ~f(~x, t) (2.18)
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and the continuity equation:

∇ · ~U(~x, t) = 0 (2.19)

where ~U is the flow-field ω = ∇ × ~U is the vorticity, P is the pressure, ρ is the fluid

density, and ν is the air kinematic viscosity.

We perform simulations at specific flow dissipation rates. For this thesis we

typically use dissipation rates of ε = 100, 30, 10, 3 cm2/sec3, as this range is specific

to stratocumulus clouds. Details of the method for the flow simulation have been

presented in Wang and Maxey, 1993 and Wang et al. 2000.

For low dissipation rates, like 3 cm2/sec3, we need multiple realizations as the

turbulence is weak, which means that the particle motion is heavily driven by gravity.

2.2.1 Uncertainty for collision kernel in turbulent flow case

We use the same equation, as in the gravity only case for the uncertainty given

by equation 2.8, namely:

σ2
mean =

σ2

N
+ 2

σ2

N2

N−1∑
m=1

(N −m)R (m)

For the gravity only case, we know that the collision events where completely

correlated after every Lb/∆W , however, in a turbulent flow there is no such correlation.

But, in a turbulent flow we do know that the flow has a correlation time scale known

as the integral time scale, we need to check if the collision events are correlated in that

time. In order to do that we need to calculate the auto-correlation function between

the collision events. We expect the correlation between the collision events to be very

small (∼ 0), as the collision events are taking place in a different place in that small

amount of time.

The auto-correlation function is given as:

R(m) =
1

(N −m)σ2

N−m∑
i=1

(
Xj
i − µ

) (
Xj
i+m − µ

)
(2.20)

27



where µ is the mean, σ is the standard deviation and X is the variable for which we

are calculating the auto-correlation function, i.e. the correlation with itself at a later

time. The integral time scale is given as:

Tint =

∫ ∞
0

R(m)dm (2.21)

The auto-correlation function for dissipation rate of 10cm2/sec3 is shown in

figure 2.9. The Deltat mentioned in the figure is ∆t = Lb/∆W .

0 2 4 6 8 10 12 14 16 18 20
Time Lag / Delta t = m/(Lb/∆ W)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
ut

oc
or

re
la

tio
n 

fo
r C

ol
lis

io
n 

K
er

ne
l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10−3

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time Lag / Delta t = m/(Lb/Delta W)

Au
to

co
rr

el
at

io
n 

fo
r 

Co
ll

is
io

n 
Ke

rn
el

Autocorrelation for Dissipation Rate 10cm
2
/sec

3
, m = (5*dt) = (0.000697*(Lb/Delta W)

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 2.9: Auto-Correlation for dissipation rate of 10cm2/sec3; Here m = (5 ∗ dt),

so m/Deltat = (0.00152/(Lb/∆W ))
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A zoomed in box, shows that at m = 0, the auto-correlation is 1, which is correct

because at any given time, the variable will be same. But, at the very next step, we

see that the auto-correlation function drops to 0, which backs our hypothesis. We see

similar results for dissipation rates 30 and 100 cm2/sec3 as well. This shows that the

collision events are un-correlated temporally.

To check our hypothesis for the spatial correlation, that the collision events in

a turbulent flow are un-correlated, we remove the particles from the system as soon

as they collide even for the NoHI case. By doing this, we should not see a drop in

the collision kernel as per our hypothesis. If the collisions were indeed correlated, then

removal of those particles would result in the collision kernel, as the correlated collisions

are not occurring.

Table 2.4 shows the comparison of the two collision kernels for NoHI but with

and without removal of particles after collision for 30 − 40µm particle radius, and

100cm2/sec3 dissipation rate , each of the results were obtained after averaging over

12 realizations.

Table 2.4: Collision kernel with standard deviation comparison for dissipation rate

100 cm2/sec3

Case Collision Kernel Standard Deviation

No-removal 1.5413E-03 5.92E-07

With-removal 1.5414E-03 5.96E-07

This shows that the collision events are not correlated either temporally or

spatially in a turbulent flow. For,

σ2
mean = 2σ2Tint

T

to be true, we need dt << 2∗Tint If we consider a very small dt, then we will have either

0 or 1 collision in each time-step. The smaller it is, more zeros we will get, so the mean
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value of the number of collisions will be close to 0 (µ ∼ 0). Thus the auto-correlation

function for any value of m will become:

For Xi = 0 : Xi+m = 0→ (0− 0)(0− 0) = 0

For Xi = 0 : Xi+m = 1→ (0− 0)(1− 0) = 0

For Xi = 1 : Xi+m = 0→ (1− 0)(0− 0) = 0

For Xi = 1 : Xi+m = 1→ (1− 0)(1− 0) = 1

Due to the very small dt, we will get a lot more zeros, so we can conclude that

R(i) ∼ 0, and Tint would be very small.

Since the auto-correlation function becomes 0, the equation for calculating the

variance of the mean collision kernel for multiple realizations in the turbulent flow case

becomes:

σ2
mean =

σ2

N
(2.22)

where N is the total number of time-steps combined in all realizations.

2.2.2 Collision kernel results in a turbulent flow

Collision kernel results for dissipation rate of 3cm2/sec3 are given in the table

2.5, it should be noted that this case is run for a time of Lb/∆W :

30



Table 2.5: Collision kernel with standard deviation for 30-40µm radius particles for

dissipation rate 3cm2/sec3

NoHI With HI

Realization Collision Kernel SD Collision Kernel SD

1 1.38535E-03 2.09085E-06 1.02158E-03 1.78274E-06

2 1.38685E-03 2.05023E-06 1.02139E-03 1.75096E-06

3 1.38913E-03 2.08296E-06 1.02111E-03 1.77678E-06

4 1.38409E-03 2.09084E-06 1.02461E-03 1.75038E-06

5 1.38726E-03 2.06759E-06 1.02459E-03 1.77905E-06

6 1.38679E-03 2.07339E-06 1.02293E-03 1.77975E-06

7 1.38406E-03 2.06425E-06 1.02183E-03 1.78024E-06

8 1.38833E-03 2.06557E-06 1.02421E-03 1.77172E-06

9 1.38585E-03 2.06939E-06 1.01933E-03 1.78161E-06

10 1.38588E-03 2.06344E-06 1.02328E-03 1.78280E-06

Mean 1.38636E-03 6.55189E-07 1.02249E-03 5.60876E-07

Collision kernel results with standard deviation for dissipation rate of 10cm2/sec3

are given in the table 2.6, it should be noted that this case is run for a time of Lb/∆W :
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Table 2.6: Collision kernel with standard deviation for 30-40µm radius particles for

dissipation rate 10cm2/sec3

NoHI With HI

Realization Collision Kernel SD Collision Kernel SD

1 1.39855E-03 4.31851E-06 1.03703E-03 3.84425E-06

2 1.39935E-03 4.41484E-06 1.03639E-03 3.83789E-06

3 1.39993E-03 4.35920E-06 1.03509E-03 3.83103E-06

4 1.39924E-03 4.40412E-06 1.03651E-03 3.84587E-06

5 1.39842E-03 4.42582E-06 1.03645E-03 3.74997E-06

Mean 1.39910E-03 1.96089E-06 1.03629E-03 1.70924E-06

Collision kernel results with standard deviation for dissipation rate of 30cm2/sec3

are given in the table 2.7, it should be noted that this case is run for about 45×Lb/∆W :

Table 2.7: Collision kernel with standard deviation for 30-40µm radius particles for

dissipation rate 30cm2/sec3

NoHI With HI

Realization Collision Kernel SD Collision Kernel SD

1 1.43719E-03 1.48594E-06 1.07132E-03 1.25094E-06

2 1.43501E-03 1.47288E-06 1.07623E-03 1.27743E-06

3 1.43444E-03 1.46163E-06 1.07599E-03 1.28067E-06

4 1.43594E-03 1.47561E-06 1.07521E-03 1.27950E-06

5 1.43348E-03 1.45475E-06 1.07521E-03 1.27384E-06

Mean 1.43521E-03 6.57495E-07 1.07479E-03 5.69090E-07
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Collision kernel results with standard deviation for dissipation rate of 100cm2/sec3

are given in the table 2.8, it should be noted that this case is run for about than

45× Lb/∆W :

Table 2.8: Collision kernel with standard deviation for 30-40µm radius particles for

dissipation rate 100cm2/sec3

NoHI With HI

Realization Collision Kernel SD Collision Kernel SD

1 1.53791E-03 3.20733E-06 1.18187E-03 2.82686E-06

2 1.54298E-03 3.23359E-06 1.18511E-03 2.83801E-06

3 1.54648E-03 3.25160E-06 1.18872E-03 2.84624E-06

4 1.54485E-03 3.23715E-06 1.18164E-03 2.82472E-06

Mean 1.54305E-03 1.61623E-06 1.18429E-03 1.26769E-06

From the above results, it is clear that the collision kernel increases with dis-

sipation rate, which agrees with the known fact that turbulence increases collision

kernel.

2.2.3 Collision efficiency and collision efficiency enhancement

Table 2.9 provides the results of collision efficiency in a turbulent flow for dif-

ferent dissipation rates. We also include the collision efficiency for the gravity only

case in the table to compare the results. The standard deviations of the mean value of

collision efficiency is provided with in brackets.
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Table 2.9: Collision efficiency with standard deviation for 30-40µm radius particles

in turbulent flow

No. of Realizations Dissipation Rate(cm2/sec3) Collision Efficiency (SD)

22 0(Gravity only) 0.726(3.19E-03)

10 3 0.737(3.60E-04)

5 10 0.740(1.6E-03)

5 30 0.748(5.24E-04)

4 100 0.767(1.14E-03)

The results agree with the fact that collision efficiency increases with turbulence,

as we see that the collision efficiency becomes higher with an increase in turbulence

dissipation rate.

Next we take a look at the collision efficiency enhancement factor. Previously

it was assumed that the collision efficiency enhancement factor increases linearly with

increasing dissipation rate, due to lack of DNS data. As the cases of low dissipation

rates are expensive to simulate, a linear interpolation model is generally followed to

determine the collision efficiency at low dissipation rates. However, we find a non-linear

behavior in our results. Figure 2.10 shows the comparison of enhancement factor at

different dissipation rates.
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Figure 2.10: Comparison of collision efficiency enhancement with linear interpolation

This non-linearity could be arising due to the coupling of the turbulence and hy-

drodynamic interactions. Further studies are required to determine the reason behind

it, this could be a possible direction for future work.
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Chapter 3

ASYMPTOTIC EXPANSION APPROACH FOR PARTICLE
TRACKING

3.1 Motivation & Background

Asymptotic expansion approach provides an approximation for the local instan-

taneous velocity of small inertia particles. It was briefly mentioned in Chapters 1 &

2, that for cases with low flow dissipation rates (1 ∼ 30cm2/s3) the particle Stokes

number tends to be low and the simulations become very expensive. This is the pri-

mary motivation for the implementation of the asymptotic expansion approach (details

about the motivation are described in subsequent sections in this chapter) which was

first used by Maxey 1987 in a 2-D cellular flow. In this chapter, we first discuss the

details of the motivation, for implementing this approach, next we provide a derivation

of the equation, then we validate our implementation using a 2-D cellular flow, as in

Maxey 1987, finally we compare results of the asymptotic approach with the direct

integration approach which we have been using so far.

For strato-cumulus clouds, as mentioned earlier, the dissipation rates are rel-

atively lower than that of cumulus clouds (typically less than 100cm2/s3), also the

droplet size range in strato-cumulus clouds is relatively smaller (typically 5 − 40µm).

Since the CFL condition determines the numerical stability of the spectral simulation of

the turbulent flow, we start from that to determine why the simulations are expensive,

when we have a combination of low particle Stokes number and low flow dissipation

rate. The CFL number is defined as:

CFL =
Umaxdtflow

dx
(3.1)

where Umax is the maximum flow velocity, dt is the discretization time-step size, and

dx is the distance between two adjacent grid locations in a given spatial direction.
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As an estimate we set Umax ∼ 5u′, where u′ is the r.m.s. fluctuation velocity, and in

the spectral method for air turbulence simulation, generally, dx = 2η, where η is the

Kolmogorov length scale. In Direct Numerical Simulations (DNS), the CFL number is

typically less than 0.25. So, dt becomes:

dtflow ∼ 0.25
2η

5u′
(3.2)

or,

dtflow ∼
1

10

η

u′

or,
dtflow
τk

∼ 1

10

η

u′τk

or,
dtflow
τk

∼ 1

10

vk
u′

(3.3)

where τk and vk are the Kolmogorov time scale and Kolmogorov velocity scale, respec-

tively. Equation 3.3 can be alternatively written as:

dtflow = CFL× 2

5
150.25Re−0.5

λ

√
ν

ε
(3.4)

where Reλ is the Taylor micro-scale Reynolds number, ν is the flow viscosity (air in

this case), and ε is the average flow dissipation rate. Since we have particle motion

involved in this problem, the particle inertial response time, τp is an important dynamic

time-scale of the problem. The particle response time is given by the equation:

τp =
2

9

ρw
ρ

(
a

η

)2

τk (3.5)

Combining equations 3.4 and 3.5, we obtain:

dtflow
τp

=
0.8× CFL× ν1.5

√
Reλ ×

2

9
× 1000× a2 ×

√
ε

(3.6)

Equation 3.6, shows that as the average flow dissipation rate ε, and the particle radius,

a are reduced, the particle inertial response time τp may become smaller than the time
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step dtflow needed for the flow simulation. Since the time step for integrating the

particle velocity must be less than τp, then in this case, the time step size is governed

by τp. So for low dissipation rates and small particle radius, as in the case of strato-

cumulus clouds the dt required is very small. Hence we need to run the simulations

for comparatively more time steps to obtain reasonable average statistics with small

uncertainty, making the simulations computationally very expensive.

3.2 The Asymptotic Expansion

Here we provide a general procedure to obtain asymptotic expressions for local

velocity of small-inertia particles. The method starts with the formal integral formu-

lation of the equation of motion for a small heavy particle:

τp
dVi (t,Y0,V0)

dt
=
[
ui(Y, t)− Vi +W S

i

]
(3.7)

dYi (t,Y0,V0)

dt
= Vi (t,Y0,V0) (3.8)

where, τp is the particle inertial response time, Vi (t) is the particle velocity, ui(x, t) is

the flow field, and W S
i is the constant particle settling velocity in still fluid. Y0 and V0

are particle initial position and initial velocity at t = 0. Equation 3.7 can be re-written

as:

τp
dVi
dt

+ Vi = ui (Yi (t,Y0,V0) , t) +W S
i (3.9)

The solution of the differential Eq. (3.9) can be written as:

Vi (t,Y0,V0) = Si (t,Y0,V0) e
−
t

τp (3.10)

where, Si is an arbitrary function of t. So, for initial condition at t = 0, we have:

Si (t = 0,Y0,V0) = V0i (3.11)

Thus, we have:

dSi
dt

=
1

τp

[
ui (Y (t,Y0,V0) , t) +W S

i

]
e

t

τp (3.12)
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Integrating, we obtain

Si (t,Y0,V0) = V0i +

∫ t

0

1

τp

[
ui (Y (θ,Y0,V0) , θ) +W S

i

]
e

θ

τp dθ (3.13)

which yields that,

Vi (t,Y0,V0) = e
−
t

τp

V0i +

∫ t

0

1

τp

[
ui (Y (θ,Y0,V0) , θ) +W S

i

]
e

θ

τp dθ

 (3.14)

or,

Vi (t,Y0,V0) = V0ie
−t/τp +W S

i

(
1− e−t/τp

)
+

∫ t

0

ui (Y (θ,Y0,V0) , θ) e

−t− θ
τp


dθ

τp
(3.15)

Now, at finite t, if we let τp → 0

Vi (t,Y0,V0) = W S
i −

∫ t

0

ui (Y (θ,Y0,V0) , θ) e

−t− θ
τp


d

(
t− θ
τp

)
(3.16)

Let φ = (t− θ)/τp, then θ = t− τpφ = t.

Vi (t,Y0,V0) = W S
i − ui (Y (t,Y0,V0) , t)

∫ 0

∞
e−φdφ = W S

i + ui (Y (t,Y0,V0) , t)

(3.17)

Therefore, in this limit of τp → 0, we can uniquely define a particle velocity field, with

x = Y (t,Y0,V0), as

Vi (x, t) = W S
i + ui (x, t) (3.18)

Next, we consider a small but finite τp. Starting from the general expression

Vi (t,Y0,V0) = V0ie
−t/τp +W S

i

(
1− e−t/τp

)
+

∫ t

0

ui (Y (θ,Y0,V0) , θ) e

−t− θ
τp


dθ

τp
(3.19)

Now at finite t, small inertia limit,
τp
t
<< 1, or

t

τp
>> 1. Thus,

Vi (t,Y0,V0) = W S
i +

∫ t

0

ui (Y (θ,Y0,V0) , θ) e

−t− θ
τp


dθ

τp
(3.20)
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The integral is contributed mainly by the small period t − δ ≤ θ ≤ t, and δ ∼ τp.

Introducing

−t− θ
τp

= q → θ = t+ qτp (3.21)

Note that q is negative. We view that q is large in magnitude, but −qτp << t, so we

can then re-write the above expression as

Vi (t,Y0,V0) = W S
i +

∫ 0

−∞
ui (Y (t+ τpq,Y0,V0) , t+ τpq) e

qdq (3.22)

As, −qτp << t, we can perform double Taylor expansion. We expand

ui (Y (t+ τpq,Y0,V0) , t+ τpq), with respect to q = 0 and we set x ≡ Y (t,Y0,V0).

ui (Y (t+ τpq,Y0,V0) , t+ τpq) = ui (x, t)

+

(
qτp

∂

∂t
+ [Yj (t+ qτp,Y0,V0)− Yj (t,Y0,V0)]

∂

∂xj

)
ui

+
1

2

(
qτp

∂

∂t
+ [Yj (t+ qτp,Y0,V0)− Yj (t,Y0,V0)]

∂

∂xj

)2

ui

+ · · · (3.23)

We know that

dYi (t+ qτp; Y(t) = x,V(t))

d(qτp)
= Vj (t+ qτp; Y(t) = x,V(t)) (3.24)

here t is a reference time, and we assume the particle will be located at x with a velocity

V at time t.

Integrating from (t+ qτp) to t, we have

Yj(t; Y(t) = x,V(t))− Yj(t+ qτp; Y(t) = x,V(t)) = τp

∫ 0

q

V (t+ ζτp; Y(t),V(t))dζ

(3.25)

and expand the integrand as

V (t+ ζτp) = V (t) + ζτp
dV

dt
+

1

2
(ζτp)

2d
2V

dt2
+O(τ 3

p ), (3.26)
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where d/dt denotes the rate of change following the particle path at time t. Therefore

Yj(t, Y0, V0)− Yj(t+ qτp, Y0, V0) = τp

∫ 0

q

[
V (t) + ζτp

dV

dt
+

1

2
(ζτp)

2d
2V

dt2
+ · · ·

]
dζ

= −V (t)τpq −
τ 2
p q

2

2

dV

dt
− 1

6
τ 3
p q

3d
2V

dt2
+O(τ 4

p )

(3.27)

Substituting Eq. 3.27 into Eq. 3.23, we can now write

ui(Y(t+ qτp), t+ qτp;given Y(t) = x)

= ui(x, t)

+

(
qτp

∂

∂t
+

[
τpqVj(t) +

1

2
τ 2
p q

2dVj
dt

+
1

6
τ 3
p q

3d
2Vj
dt2

+ · · ·
]
∂

∂xj

)
ui

+
1

2

(
qτp

∂

∂t
+

[
τpqVj(t) +

1

2
τ 2
p q

2dVj
dt

+
1

6
τ 3
p q

3d
2Vj
dt2

+ · · ·
]
∂

∂xj

)2

ui + · · ·

(3.28)

By ordering the terms in terms of τp, we have

ui(Y(t+ qτp), t+ qτp; Y(t) = x) = ui(x, t) + τp

(
∂ui
∂t

+ Vj(t)
∂ui
∂xj

)
q

+ τ 2
p

[
1

2

dVj
dt

∂ui
∂xj

+
1

2

(
∂

∂t
+ Vj(t)

∂

∂xj

)2

ui

]
q2 +O(τ 3

p ) (3.29)

Inserting this into equation 3.22 we have

Vi(t; Y(t) = x) = W S
i

+ ui(Y (t), t)

∫ 0

−∞
eqdq

+ τp

(
∂ui
∂t

+ Vj(t)
∂ui
∂xj

)∫ 0

−∞
qeqdq

+ τ 2
p

[
1

2

dVj
dt

∂ui
∂xj

+
1

2

(
∂

∂t
+ Vj(t)

∂

∂xj

)2

ui

]∫ 0

−∞
q2eqdq +O(τ 3

p )

(3.30)
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Carrying out the integrals yields the following expression:

Vi(t; Y(t) = x) = W S
i + ui(x, t)

− τp
(
∂ui
∂t

+ Vj(t)
∂ui
∂xj

)
+ τ 2

p

[
dVj
dt

∂ui
∂xj

+

(
∂

∂t
+ Vj(t)

∂

∂xj

)2

ui

]
+O(τ 3

p ) (3.31)

This result can be further extended to higher orders in τp. It represents an approxima-

tion of the particle velocity in terms of local fluid velocity and its gradients, as well as

itself. The latter point implies that this is still not a closed form solution. The main

assumptions we made so far are: (1) τp << t; (2) the Taylor expansions for Yi and ui

are valid. Since the field ui(x, t) is smooth on the Kolmogorov scales, we anticipate

that the above expression may even apply when τp ∼ τK . But this last point is only

true if the particle velocity is a single-valued function of its current location and time,

which can be viewed as another condition for the validity of the above result. To pro-

ceed further, we strictly order the solution in terms of τp, assuming τp is small. We

thus express the solution as

Vi(t; Y(t) = x) = V
(0)
i (t; Y(t) = x) + τpV

(1)
i (t; Y(t) = x) + τ 2

pV
(2)
i (t; Y(t) = x) +O(τ 3

p )

(3.32)

Substituting this into equation 3.31, then order by order, we obtain

V
(0)
i (t; Y(t) = x) = W S

i + ui(x, t) (3.33)

and

V
(1)
i (t; Y(t) = x) = −∂ui

∂t
− V (0)

j

∂ui
∂xj

= −∂ui
∂t
−
[
W S
j + uj(x, t)

] ∂ui
∂xj

. (3.34)

Therefore, to the leading order O(τp), we have

Vi(t; Y(t) = x) = W S
i + ui(x, t)− τp

[
∂ui
∂t

+
(
W S
j + uj(x, t)

) ∂ui
∂xj

]
+O(τ 2

p ) (3.35)

or,

Vi(t; Y(t) = x) = W S
i + ui(x, t)− τp

[
Dui
Dt

+W S
j

∂ui
∂xj

]
+O(τ 2

p ) (3.36)
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where
Dui
Dt
≡ ∂ui

∂t
+ uj

∂ui
∂xj

. (3.37)

Equation 3.36 is the well-known result first obtained by Maxey (1987, Eq. (5.7)),

and Eq. (1) in Balachandar and Eaton (2010). This is the equation we use for the

asymptotic expansion method in our simulations.

3.3 Validation Of The Asymptotic Expansion For 2-D Cellular Flow

We use the asymptotic expansion technique for particle tracking first for a sim-

pler 2-D cellular flow (as in Maxey, 87). We use the results for this simpler flow to

validate our implementation. The cellular flow is described as:

u1 = U0 sin
(x1

2π

)
cos
(x2

2π

)
(3.38)

u2 = −U0 cos
(x1

2π

)
sin
(x2

2π

)
(3.39)

where u is the flow velocity, x is the position, and L is the length of a cell, subscripts

1, and 2 denote the x and y directions, respectively. 2π is the domain length in each

direction. We consider the gravity to be in the x-direction. It should be noted that

the fluid velocity in the particle location for this 2-D cellular flow is being directly

calculated by using the position coordinates as opposed to the approximation by using

the six point lagrangian interpolation method for the turbulent flow.

Figure 3.1 shows the particle trajectories for four particles, trajectories for two

of the particles are calculated using the existing approach, and the other two of are

calculated using the newly implemented asymptotic approach. Two sets of initial

positions are used for each method, the reason for using 2 sets is to double check the

results. The particle Stokes number in all the cases is 0.03, which is with in the valid

range for the asymptotic expansion to work.
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Figure 3.1: Particle trajectory comparison for asymptotic and existing approach in

2D cellular flow

In this case we are using 4-cells in the domain, 2 in each direction x and y. The

particle trajectories in both methods are similar, which validates our implementation

of the asymptotic approach. We plot the x-direction along the y-axis because in our

code the gravity is in the x-direction. For further validation, we plot the relative error

of r =
√
x2 + y2 for the two methods as a function of time in figure 3.2, where x and

y are particle position at a given time. The error (y-axis) is normalized by the length

of the domain (2π), and time (x-axis) is normalized by the particle response time τp.

Although the error looks large on the plot, since this is a zoomed-in figure (axis values

provides the details), the error can be concluded to be indeed very small. The reason
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for the semi-sinusoidal shape of the plot is that, when the particles are turning they

are not in the exact same position according to both methods, so the changes in the x

and y values are high at that time, which makes the error value shoot up.

Figure 3.2: Relative error of position between the two methods as a function of time

3.4 Asymptotic Expansion In Turbulent Flow

With the validation of our implementation for the 2D cellular flow, we now

use the same approach for a turbulent flow. Before we take a look at the results, we

provide some information about the discretization time step size dt. As mentioned

earlier in this chapter, that there are two time-scales, hence two different dt values, one

is for the flow which is calculated based on the CFL condition for the flow simulation,

and the other is for the particle which is typically taken as dtparticle = 10%τp, for the

existing approach where τp is the particle inertial response time. So, the dtsimulation is

the minimum of dtflow and dtparticle. By using the asymptotic expansion, we can relax

dtparticle dependence to some extent, and use larger values, however the dtflow criteria

remains same. In case of particles with low Stokes number, the dtparticle is generally a
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lot smaller than dtflow. First we look at the comparison of the particle trajectories for a

turbulent flow using the two approaches. Both simulations are for the same dissipation

rate ε = 10cm2/s3, both particles are of same Stokes number, St = 0.01, and they have

the same initial position. We set dtparticle = 10%τp, for the existing approach, the τp

chosen here is the smaller of the two particle sizes. For the asymptotic case, we plot

trajectories by using larger dt sizes as well, typically we use dt = 10%, 20%, 30%τp, we

also provide a comparison of a large time-step size (dt = 10%τk). It should be noted

that we plot the trajectories up to the point in time when both of the particles are in

the domain. As soon as the particle moves of out the domain, they are put back in the

domain in a new position according to periodic boundary condition, so to avoid the

complexity of the plot, we plot up to the point where in both particles are present in

the domain from all three directions. Figure 3.3 shows the x vs y plot, and figure 3.4

shows the x vs z plot.

Figure 3.3: Particle trajectory comparison for asymptotic and existing approach in
turbulent flow (x vs y)

The trajectories for both methods look similar qualitatively, we do not expect
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Figure 3.4: Particle trajectory comparison for asymptotic and existing approach in
turbulent flow (x vs z)

an exact same trajectory in this case, as turbulent flow has a degree of randomness,

and no two simulations would be exactly same. For the case of dt = 10%τk, we do

expect a different trajectory, as the time-step size is very large in this compared to the

others.

We also plot the relative error in the r-direction in x-y plane (calculated by

r =
√
x2 + z2) in figure 3.5, and in x-z plane (calculated by r =

√
x2 + z2) in figure

3.6. The errors shown in the figures are relative to the direct integration method with

a dt = 10%τp. The asymptotic methods were simulated at three different dt values,

namely, dt = 10%, 20%, 30%τp, and dt = 10%τk. We expect larger error with increasing

size of dt, and that is confirmed by the results.

Next we compare the collision statistics obtained for the two methods. For

the collision statistics, we run the simulations at a dissipation rate of ε = 10cm2/s3.

The particle sizes are 10µm and 20µm in radius. The Stokes number are 0.01 and

0.04 respectively. We provide a comparison of the collision statistics for the existing
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Figure 3.5: Relative error of r position (calculated by r =
√
x2 + y2) as a function of

time for asymptotic method compared to the direct integration method

approach of our simulations (with dt = 10%τp) to the asymptotic approach (for dt =

10%, 20%, 30% of τp, and we provide a case of relatively large value of dt, where we

set, dt = 10%τk, it should be noted that τk ∼ 11.75× τp). We also provide the results

for the same particle sizes, in the same flow dissipation rate as presented in Ayala

et al 2008). Table 3.1 provides the results for the cross-size mean relative velocity of

particles at contact in the radial direction along with the standard deviation.

48



Figure 3.6: Relative error of r position (calculated by r =
√
x2 + z2) as a function of

time for asymptotic method compared to the direct integration method

Table 3.1: Comparison of wr for existing approach and asymptotic approach

Case wr Standard Deviation

Ayala et al, 2008 1.8927 0.0843

Existing dt = 10%τp 1.9228 0.0016

Asymptotic dt = 10%τp 1.9239 0.0016

Asymptotic dt = 20%τp 1.9234 0.0023

Asymptotic dt = 30%τp 1.9131 0.0029

Asymptotic dt = 10%τk 1.9022 0.0181

The results for both approaches of our simulations is well with in the uncertainty

limit of the published results in Ayala et al. In table 3.2 we provide a comparison for

the cross-size radial distribution function (RDF), and its standard deviation for the

same simulations.
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Table 3.2: Comparison of RDF, (g(r)) for existing approach and asymptotic approach

Case g(r) Standard Deviation

Ayala et al, 2008 0.945 0.076

Existing dt = 10%τp 1.0034 0.0015

Asymptotic dt = 10%τp 0.9996 0.0015

Asymptotic dt = 20%τp 0.9980 0.0021

Asymptotic dt = 30%τp 1.0016 0.0026

Asymptotic dt = 10%τk 1.0092 0.0065

The results show very little difference with the published results in Ayala et al,

2008. There is a little difference between our existing approach and the asymptotic

approach, however, that difference is very small.

Finally, we present the results for the collision-kernel. Table 3.3 shows the

comparison for the cross-size collision kernel and its standard deviation for the same

simulations.
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Table 3.3: Comparison of collision kernel, (Γ) for existing approach and asymptotic

approach

Case Γ Standard Deviation

Ayala et al, 2008 1.151E-04 4.01E-06

Existing dt = 10%τp 1.0911E-04 2.61E-07

Asymptotic dt = 10%τp 1.0875E-04 2.61E-007

Asymptotic dt = 20%τp 1.0855E-04 3.69E-07

Asymptotic dt = 30%τp 1.0835E-04 4.51E-07

Asymptotic dt = 10%τk 1.0856E-04 2.83E-06

There is a slight difference in the mean collision kernel from our results to that

of Ayala et al. However, the percentage difference of the mean from our case is less

than 5% to that of Ayala et al’s results. It should be noted that the standard deviation

of Ayala et al is higher, which when brought into consideration will bring down the

percentage difference to an even lower value. Thus, we can conclude that our results

are almost similar to that of Ayala et al.

3.4.1 Run time comparison

Table 3.4 shows a comparison of the run time of the existing approach with

asymptotic approach for the different dt values for larger particle (30µm and 440µm

radius, in a flow of same dissipation rate ε = 10cm2/s3. The total physical time for

simulation is same for all the cases, so the number of time-steps varies.
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Table 3.4: Comparison of run time for existing approach and asymptotic approach

Case Run Time (in minutes)

Existing dt = 10%τp 972.67

Asymptotic dt = 10%τp 1278.43

Asymptotic dt = 20%τp 637.38

Asymptotic dt = 30%τp 429.01

Asymptotic dt = 10%τk 17.83

The results show that our implementation of asymptotic expansion is correct,

and this could be used as an alternative to the existing approach for particles with low

Stokes numbers. The run time comparison shows that with relaxing dt, we can speed up

the code considerably, although it takes more time for the asymptotic expansion for the

same number of time-steps as in the existing method due to some extra interpolations of

the fluid velocity derivatives at the particle position, the relaxation of the dt enables us

to gain more time eventually, which is the main advantage of the asymptotic expansion

approach. Although we can relax the dtparticle (here we have used up to dt = 10% of τk,

it needs to be seen up to what percentage of τp will the results be still correct. This

could be a direction for future work.
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Chapter 4

SUMMARY AND CONCLUSION

This thesis focuses on collision statistics of cloud droplets in strato-cumulus

clouds. We perform direct numerical simulations of the collision process of droplets in

clouds. Typically we match the average dissipation rate, ε and the liquid water content,

LWC to the clouds. So far very little work has been done specific to strato-cumulus

clouds where the dissipation rate is relatively low. We provide results for collision

statistics at low dissipation rates (as low as ∼ 3cm2/s3) which are relevant to strato-

cumulus clouds. Due to the expensive nature of the simulations, hence lack of DNS

data, a linear interpolation model has been used to generate the collision statistics at a

given low dissipation rate. The results for the low dissipation rates where interpolated

linearly between dissipation rates of 0 and 100cm2/s3, where the zero case corresponds

to the gravity only case.

In our work, we first re-visit the gravity only case, and provide a rigorous for-

mulation of the standard deviation of the collision kernel. We provide a validation

of the collision detection scheme used in our simulations. The motivation to revisit

the gravity only case was due to the fact that in case of weak turbulence, we expect

the particle motion to be mostly driven by gravity. Hence the initial particle position

configuration could affect the collision statistics. For low dissipation rates, we ran sim-

ulations at several dissipation rates in the range of 1-100 cm2/s3, which is relevant to

strato-cumulus clouds. We compare our results of the collision efficiency enhancement

factor with the linear interpolation model. We find a non-linear dependence of the col-

lision statistics on the dissipation rate, and we expect this to be due to the combination

of the coupling of turbulence and hydrodynamic interactions.
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In order to determine the exact reason for the non-linearity, we need to run

more simulations, at low dissipation rates. However, as the low dissipation rate sim-

ulations are very expensive computationally, we implement the asymptotic expansion

approach for particle tracking. In strato-cumulus clouds the particle Stokes number is

relatively small, which makes the use of asymptotic expansion valid. We provide an

alternative derivation of the asymptotic expansion implementation as used by Maxey,

87. We validate our implementation by first using the approach for a simpler flow: 2D

cellular flow, and present the results for the particle trajectories for both methods of

particle tracking. Next we compare particle trajectories for a turbulent flow using both

methods. Then we compare the simulated collision statistics between the two methods,

as well as against using published results (Ayala et al, 2008). The results show that

the asymptotic expansion indeed produces reasonable results for the collision statistics.

Finally we compare the CPU times of the two methods, and show the speed up using

the asymptotic expansion as we can relax the dt size.

This work can be taken forward further, first by determining the percentage

value of dt with respect to τp up to which the asymptotic expansion would still produce

valid results. This would depend up on the particle Stokes number and the Reynolds

number simulated for. So far we ran simulations for dt = 10%τk, for Reλ = 72.4.

It would also be interesting to determine the accuracy of the asymptotic expansion in

case of higher Reynolds number, which would require better resolutions for the domain.

The collision statistics using the existing approach could also be generated for higher

Reynolds number, and a comparison of the two methods for collision statistics and

the CPU time comparison would be something important. The asymptotic expansion

method if found to be accurate for higher Reynolds number would be a step forward

in the analysis of cloud physics relevant to strato-cumulus clouds, as the bottleneck

due to the expensive nature of the simulations would be reduced to a considerable

extent. Finally, the determination of the reason of the non-linearity in the collision ef-

ficiency enhancement factor results could be performed, and this could be an important

contribution in the field of cloud physics.
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