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ABSTRACT

Numerical computation has broad application to a variety of fields. Typically a

numerical method yields an approximation to an exact mathematical value, since pro-

grams cannot generally handle evaluation of continuous functions at all points. The

common way of creating such a method is to discretize continuous functions by restrict-

ing them to a mesh. Performing calculations on the mesh provides an approximation

to performing calculations on the original function. However, this introduces error.

While not the only source of error (round-off error in floating-point operations can be

a major consideration), the error in the method itself is in some sense more fundamen-

tal. In practice, programs utilizing these approximations often contain defects which

introduce additional error.

The order of accuracy of a numerical method relates the scheme’s error to the

discretization parameters. Scientists must know the accuracy of any numerical approx-

imation, and often prove that the method satisfies the claimed order of accuracy by

hand. However, the actual code to implement a method might be more complex and

veer from the abstract mathematics.

We show that the claimed order of accuracy of a numerical method imple-

mented in a C program can be (largely) automatically verified using formal methods.

The automation cannot be complete, because the problem is undecidable in general

and because the programmer must provide some annotations relating the code to the

underlying mathematics. These annotations can be kept to a minimum. We have

extended the Concurrency Intermediate Verification Language (CIVL) model checker

to verify the order of accuracy of a numerical computation. Our method requires an-

notating C code with information specifying the function and the order of accuracy

of the approximation. CIVL parses the annotations with the C code to form a model

xii



of the program. The model is symbolically executed, and techniques such as Taylor

expansion are then used to relate the program data to the mathematical function. The

verifier, with the assistance of a theorem prover, determines either that the assertions

hold at all states, or else that they may not hold. If the assertions may not hold, CIVL

provides diagnostic information.

xiii



Chapter 1

INTRODUCTION

There are a variety of research avenues dealing with the specification and veri-

fication of numerical programs.

One avenue is equivalence checking. That technique takes two programs and

attempts to establish their functional (input-output) equivalence. Typically, one pro-

gram is “trusted” and serves as the specification of an algorithm, while the other is

a complex, optimized, possibly parallel, implementation. This is the main technique

used by TASS [67]. Equivalence checking can be effective for both floating-point and

real number notions of equivalence.

Another approach uses rich specification languages to formulate assertions and

code contracts concerning the numerical computations in a program. This is the ap-

proach taken by Frama-C [3]. The formulas can specify precise relationships between

inputs and outputs to functions, and can refer to both the floating-point and real se-

mantics of numeric operations; they can be verified using deductive techniques which

rely on automated theorem provers and/or proof assistants. This approach has been

particularly effective at verifying precise bounds on round-off errors.

One important aspect of numerical programs that has received relatively little

attention in these research efforts is the notion of order of accuracy. This concept

is essential to the analysis of a broad range of numerical programs, especially partial

differential equation solvers. The order of accuracy of an algorithm is an integer which

measures how quickly the solution computed using a discrete approximation converges

to the continuous mathematical solution as grid resolution increases. In particular,

order of accuracy deals with “discretization error” and depends solely on the real (not

1



floating-point) semantics of the code. Since discretization error often dominates the

error in numerical computations, it is seen as essential to get the order of accuracy

“right” before focusing on floating-point error.

Many journals have strict requirements concerning the order of accuracy of

methods presented in their submissions. The American Institute of Aeronautics and

Astronautics requires that any article appearing in one of its journals that deals with

the numerical solution to PDEs “should state the formal accuracy of the numerical

method for interior points as well as the formal accuracy of the numerical boundary

conditions,” which should be “at least formally second-order accurate” and that “some

level of verification testing” be performed on implementations [1]. The Journal of Fluids

Engineering requires “[t]he numerical method used must be at least formally second-

order accurate in space (based on a Taylor series expansion) for nodes in the interior

of the computational grid” [42]. Authors are usually expected to carry out testing-

based strategies which vary parameters in order to ascertain that the code meets the

theoretical order of accuracy, but these are subject to well-known limitations of testing

and cannot provide a proof.

1.1 Thesis Statement

Using symbolic execution and theorem proving techniques, it is possible to pro-

vide automatic formal verification of the order of accuracy of a numerical program.

We present a new technique, based on symbolic execution, for verifying the

claimed order of accuracy of a numerical method. Our solution involves

1. a new differential accuracy specification language, described in Ch. 5, and

2. the technique of symbolic differential accuracy verification, introduced in Ch.
6, which provides a method for verifying or refuting assertions expressed in the
differential accuracy specification language.

This technique takes as input an annotated C program implementing the method,

but it treats all of the floating-point computations in the programs as full precision

(mathematical) operations. The annotations specify the input-output signature of the

2



program, as well as accuracy claims, such as “the output u is 3rd-order accurate in

input x and 2nd-order accurate in input t.”

The remainder of this thesis is organized as follows:

• Ch. 2 gives some background and definitions of numerical accuracy and symbolic
execution, which is the core technique used by the verification tool.

• Related work not covered in Ch. 2 is mentioned in Ch. 3.

• Ch. 4 describes the CIVL model checker, which has been extended to support
symbolic differential accuracy verification.

• Ch. 5 presents the differential accuracy specification language.

• Ch. 6 describes the technique of symbolic differential accuracy verification.

• Ch. 7 discusses evaluation of symbolic differential accuracy verification.

• Ch. 8 makes some concluding remarks.

3



Chapter 2

BACKGROUND

2.1 Numerical Accuracy

Numerical methods involve taking a problem from a continuous domain and

accurately approximating it using a discrete set of parameters. This discretization in-

troduces error. Analyzing this error is an essential component of any investigation using

a numerical scheme. In this chapter, we provide precise definitions for the numerical

concepts we wish to treat formally in programs.

2.1.1 Asymptotic behavior and order of accuracy

We begin by discussing the asymptotic behavior of functions. First we will look

at functions of one variable. The following are standard; see for example [44].

Definition 1 (Big-O). Let a > 0 and I = (0, a). Suppose we have two functions

φ : I → R and ψ : I → R. We write

φ(h) = O(ψ(h)) as h→ 0

if there exist positive real numbers C and ε such that |φ(h)| ≤ C|ψ(h)| whenever 0 <

h < ε.

In the following definitions, assume a > 0, I = (0, a), and D ⊆ R.

Definition 2 (Order of Accuracy). Let n be a positive integer. Given a function

f : D → R, consider a function g : D × I → R. Fix x ∈ D. We say g is an nth order

accurate approximation to f at x if

f(x)− g(x, h) = O(hn) as h→ 0.

4



The idea is that the left hand side is approaching 0 at least as fast as hn. The

order of accuracy quantifies the rate at which the numerical method will converge to

the exact solution as h decreases.

Notice that the constants in Def. 2 are dependent on the particular point x. A

stronger notion is of having a single ε and C for the entire domain. This is the concept

of uniformly nth order accurate.

Definition 3 (Uniform Order of Accuracy). Let n be a positive integer, f : D → R,

and g : D × I → R. Define φ : I → R by

φ(h) = sup
x∈D
|f(x)− g(x, h)|.

We say that g is a uniformly nth order accurate approximation of f on D if

φ(h) = O(hn) as h→ 0.

Clearly if g is uniformly nth order accurate on f , then it is nth order accurate

at each point. However, the converse is not necessarily true. The stronger condition is

usually the desired one.

2.1.2 Example: estimating sin′(x) with central differencing

Approximating the derivative of sin(x) is a simple example that illustrates the

meaning of order of accuracy. The technique we use for this is central differencing,

where the derivative at a point x is estimated as the slope of the line through the

values of the function at x− h and x+ h. In this case D = R and

f(x) = cos(x) (2.1)

g(x, h) =
sin(x+ h)− sin(x− h)

2h
. (2.2)

Fig. 2.1 depicts results of approximating the derivative of sin(x) using central

differencing. In Fig. 2.1(a), f(x) = cos(x) and g(x, h) are given for various values of h.

Fig. 2.1(b) gives the error

φ(x, h) = |f(x)− g(x, h)| (2.3)

5



for the same three values of h.

Per Definition 3 in order to see that g is a uniformly second order accurate

approximation of f on R, we need to show that there exist C > 0 and ε > 0 such that

∀x ∈ R

φ(x, h) =

∣∣∣∣cos(x)− sin(x+ h)− sin(x− h)

2h

∣∣∣∣ ≤ Ch2 (2.4)

whenever 0 < h < ε. We claim we can take C = 0.2 and ε = 1. In Appendix A we

show that

0.15h2 ≤ φ(x, h) ≤ 0.2h2. (2.5)

This proves that these values satisfy the condition required by Def. 3, and the lower

bound demonstrates that g is not a 3rd or higher order accurate approximation of f .

Fig. 2.1(c) shows that 0.2 is a constant demonstrating that the approximation

is O(h2). Fig. 2.1(c) also shows that the approximation is not higher order, since there

is a lower bound on the error that is a constant times h2.

2.1.3 Grid approximations

Definition 3 is often used in the analysis of finite difference methods where the

solution is approximated on a grid. A grid is a discrete subset of the domain where

an approximate solution is computed. For example, a domain of interest might be an

interval D = [b0, b1]. One possible discretization of this domain is choosing m uniformly

spaced points to form ∆(h) = {b0 + hk|0 ≤ k ≤ m} where h = b1/m. Note that the

grid resulting from a smaller h is not necessarily a refinement of that resulting from

a larger h (e.g., the grid from h = 1/4 does not refine the grid from h = 1/3). For a

convergent scheme, the approximation converges to the exact solution on this discrete

set, as we refine the grid. While the previous definitions are standard, Definition 4

applies these notions to the computation actually performed by a program.

6
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Figure 2.1: Approximations of sin′(x) = cos(x) and resulting error φ. Graph (a)
shows cos(x) and the approximations obtained using central differencing.
Graph (b) gives the values of φ for x ∈ [0, 2π] and h = 1, 0.8, 0.6. This
error is periodic with period 2π. Graph (c) shows that φ at x = π is
O(h2). It also gives a lower bound on the error that is a constant times
h2. This shows that the error is not, for example, O(h3) or some higher
order.
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Definition 4 (nth order ∆ convergence). Let n be a positive integer, D ⊆ R, f : D →

R, a > 0, and I = (0, a). Suppose ∆: I → ℘(D), where ℘(D) is the set of all subsets

of D. Let S =
⋃

h∈I (∆(h)× {h}) ⊆ D × I. Suppose g : S → R. Define φ : I → R by

φ(h) = sup
x∈∆(h)

|f(x)− g(x, h)|.

We say g is a ∆-uniformly nth order accurate approximation of f if

φ(h) = O(hn) as h→ 0.

Given the parameter h, ∆ returns a subset of D that is the grid. For problems

of interest in our analysis, the grid will typically consist of evenly spaced points. We

are interested in a numerical method’s error as h goes to 0.

2.1.4 Functions of several variables

Functions of multiple variables may have different orders of accuracy in each

variable. This may be represented by a separate big-O term for each variable.

Definition 5. Let I0 = (0, a), I1 = (0, b), with a, b > 0. Suppose we have functions

φ : I0 × I1 → R, ψ0 : I0 → R, and ψ1 : I1 → R. We write

φ(h0, h1) = O(ψ0(h0)) +O(ψ1(h1)) as h0 → 0 and h1 → 0

if there exist positive real numbers C0, C1, ε0, ε1 such that

|φ(h0, h1)| ≤ C0|ψ0(h0)|+ C1|ψ1(h1)|

whenever 0 < h0 < ε0 and 0 < h1 < ε1.

Definitions 2, 3, and 4 generalize to several variables in the obvious way. For

these definitions, we either give the accuracy for each variable separately or say the

approximation is accurate of order (n0, n1, . . . , nm).
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2.2 Symbolic Execution

The main technique used by our verifier is symbolic execution [19,45]. Symbolic

execution is an abstraction of a program in which symbolic expressions are used in place

of concrete values. Our approach borrows ideas from abstract interpretation [21, 22],

and is adapted from [67].

For symbolic execution, a program is first translated into a program graph,

which is an intermediate representation that captures the concrete semantics of the

program. Next, the program graph is extended to a symbolic transition system that

represents the symbolic semantics of the program. This chapter defines and provides

short examples of a program graph and a symbolic transition system, then discusses

the symbolic execution literature.

2.2.1 Program graphs and the concrete transition system

We describe a program graph. Our definition is based on [4, Def. 2.13].

Suppose V is a set of program variables. A program graph over V is a tuple

consisting of:

1. A set of locations

2. A set of actions

3. An effect function which takes an action and a boolean-valued expression of the
variables in V and produces a new evaluation of the variables

4. A conditional transition relation which describes the transition from one location
to another given a boolean-valued expression over V and an action

5. A set of initial locations

6. A boolean-valued initial condition.

A state s = 〈l, η〉 of a program graph comprises a location l and an evaluation

of variables η. The state is initial if l is in the set of initial locations and the initial

condition evaluates to true under the variable values η. The next-state function takes

a state s and a transition t with start location l. If the boolean-valued expression in
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input int x,y;

int z;

1 if (x > 0) {

2 if (x > y)

3 z = x-y;

else

4 z = x+y;

} else {

5 z = -x;

}

6 assert z >= 0;

Figure 2.2: Pseudocode for a simple program. The numbers on the left indicate
locations in the program.

t evaluates to true, the next-state function returns the state resulting from executing

the transition’s action. Otherwise, the next-state function returns the empty set.

Fig. 2.2 gives pseudocode for a simple program. The program has two input

variables, x and y, and one regular variable z. The set of locations is {1, 2, 3, 4, 5, 6}

and the set of initial locations is {1}. The actions are no-op, assignment, and checking

the assertion. A program graph for this example is given in Fig. 2.3. The edges are

labeled with a shorthand for the conditional transition relation. For edges (1,2), (2,3),

(2,4), and (1,5), the label gives the boolean-valued guard and the action is a no-op.

For all other edges, the guard is true and the action is given in the label. The assertion

at location 6 is labeled in red.

This notion of a program graph extends naturally to a parallel program by

having the location be a tuple whose components are the location in each thread or

process.

2.2.2 The symbolic transition system

The symbolic transition system is an interpretation of the program graph suit-

able for symbolic execution. It adds to the usual concrete values a set of symbolic

10



1

2

3

5

4

6 z ≥ 0?

x > 0 ¬(x > 0)

x > y ¬(x > y)

z ← x− y

z ← −x

z ← x+ y

Figure 2.3: A program graph for the program in Fig. 2.2.

constants. An initial value function assigns a unique symbolic constant to each vari-

able used as an “input” to the program in the initial state.

In the symbolic transition system, every expression is evaluated symbolically.

The evaluator works in a way that is consistent with the concrete evaluation. That is,

the same concrete value will be obtained by first symbolically evaluating the program

expression and then replacing each symbolic constant with a concrete value as would

be obtained by first replacing each symbolic constant with a concrete value and then

evaluating the concrete semantics of the program function.

A symbolic state is composed of a boolean-valued expression called the path

condition, a location, and a function mapping variables to the symbolic expressions

for their values. The path condition keeps track of branches and other assumptions

made during a particular path of symbolic execution of the program. The symbolic

next-state function is the natural analogue of the concrete next-state function in the

symbolic state space.

Fig. 2.4 shows all of the symbolic states encountered in the symbolic execution

of the program graph in Fig. 2.3. In the initial state, the path condition is true,
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〈true, 1, X1, X2, 〉

〈X1 > 0, 2, X1, X2, 〉

〈X1 > 0 ∧X1 > X2, 3, X1, X2, 〉

〈X1 > 0 ∧X1 > X2, 6, X1, X2, X1 −X2〉

〈X1 > 0 ∧ ¬(X1 > X2), 4, X1, X2, 〉

〈X1 > 0 ∧ ¬(X1 > X2), 6, X1, X2, X1 +X2〉
X1 > 0 ∧X1 > X2 ⇒ X1 −X2 ≥ 0?

〈¬(X1 > 0), 5, X1, X2, 〉

〈¬(X1 > 0), 6, X1, X2,−X1〉
¬(X1 > 0)⇒ −X1 ≥ 0?

X1 > 0 ∧ ¬(X1 > X2)⇒ X1 +X2 ≥ 0?

Figure 2.4: Symbolic execution over the program graph in Fig. 2.3. The components
of the symbolic state are the path condition, the location, the value of x,
the value of y and the value of z. represents an undefined value. The
assertions checked at location 6 are given in red.

the program is at location 1, and the initial value function has assigned the symbolic

constant X1 to x and the symbolic constant X2 to y. Initially, z has no assigned value.

It will obtain a value during later transitions in the program. For example, consider the

right branch from the initial state. This is the false branch of the outer if statement.

When taking this branch, the path condition gets set to ¬(X1 > 0) and the program

moves to location 5. The value of z is then set by the symbolic effect function during

the transition between location 5 and location 6. The lines given in red in the figure

indicate queries that must be verified by the theorem prover. These queries are all

from the assertion at location 6, and have the form φ⇒ z ≥ 0, where φ is the value of

the path condition and z is the symbolic expression for the value of z.

2.2.3 Concretization

There is a concretization map from the symbolic state space to the concrete

one. The concretization map takes a symbolic state and returns the set of all concrete

states which are represented by that symbolic state. We say that a symbolic state s is
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vacuous if the concretization map applied to s returns ∅. A symbolic state is vacuous

if and only if the path condition for that state is unsatisfiable. Two symbolic states

s and s′ are equivalent if their concretizations are identical. Since a symbolic state

can, in general, represent infinitely many concrete states, most tools return a single

representative concrete state when concretizing a symbolic state.

Consider the symbolic state 〈X1 > 0 ∧X1 > X2, 6, X1, X2, X1 −X2〉 from Fig.

2.4. The path condition (X1 > 0∧X1 > X2) is satisfiable, so the state is not vacuous.

It represents a number of concrete states where the program is at location 6. The

following list is just a few of the possible concrete states.

• x = 1, y = 0, z = 1

• x = 5, y = 3, z = 2

• x = 2, y = −10, z = 12

However, any concrete state where x < 0 or where x < y is not represented by this

symbolic state.

2.2.4 A brief history of symbolic execution

Symbolic execution was originally proposed in the context of program testing

[13, 19, 45]. Since then it has seen many extensions and generalizations, such as its

combination with model checking [27,43].

The ability of symbolic execution to reason about all possible inputs to a pro-

gram gives it the capability to detect defects that could be missed even with extensive

testing on concrete inputs. Unfortunately, this capability comes with a cost. In or-

der to completely cover the execution space, every path through the program must be

symbolically executed. The number of paths is exponential in the number of branches,

and in general may be infinite, which hampers efforts to exhaustively explore all paths

with symbolic execution. In practice, many symbolic execution tools sacrifice com-

pleteness in order to obtain a reasonable runtime for their analysis by using techniques

such as random testing guided by control-flow graph analysis [14] or dynamic analysis
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of program behavior [33]. These incomplete techniques are often effective at finding

bugs missed by standard testing, but of course cannot guarantee the code to be free of

defects.

Another approach to reduce the path explosion problem is to use compositional

symbolic execution [63, 72]. In this method, each path through a procedure is symbol-

ically executed only once. The results of symbolically executing individual procedures

are then combined along feasible paths through the program.

Several symbolic execution efforts in recent years have involved concolic testing

[49, 62] or execution-generated testing [15, 16, 24]. In concolic testing, programs are

executed on a random concrete input, but the symbolic path condition is accumulated

over the execution path. Once the execution has completed, some component of the

path condition is negated, and a new set of concrete inputs is generated satisfying the

modified path condition. This process continues until some path coverage criterion is

met.

In execution-generated testing, the concrete and symbolic state components

are maintained separately. When executing the code, any statement involving only

concrete state components is executed concretely. The symbolic reasoning only comes

into play when a statement involves a symbolic state component.

In [25], it is observed that for certain safety properties, most paths through a

program are irrelevant. Sound path pruning algorithms can eliminate the majority of

paths through the program. The pruning can provide an exponential speedup for the

verification of those safety properties.

Probabilistic symbolic execution combines symbolic execution with model count-

ing to determine the probability of a path being taken [32]. A path’s probability can

provide guidance for where to focus verification and test generation efforts.

Comparative symbolic execution, the method combining model checking with

symbolic execution to verify the functional equivalence of two programs, was introduced

in [64,65]. This technique is used in [67] and is also supported in CIVL.
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Chapter 3

OTHER RELATED WORK

This chapter discusses some related work not covered in the previous background

chapter. The work falls into three categories: analysis of error in numerical software,

general model checking tools, and tools aimed at verifying properties of numerical

programs.

3.1 Error in Numerical Software

Numerical analysis is a broad field with many applications. In practice, the field

must address both the real mathematical error and stability of an algorithm and also

the error resulting from the use of floating point arithmetic [8, 34,39].

Numerical approximation schemes are a crucial tool to provide solutions to hard

mathematical problems, and require careful analysis of their accuracy. Several methods

exist for analyzing accuracy and stability properties for various classes of problems.

These include the modified equation approach [75], backward error analysis [36, 55],

and grid convergence error analysis [59]. Often, an approximation scheme must handle

the boundary of a domain differently from the interior points. This requires additional

analysis of accuracy and stability [69]. For a parallel algorithm implemented using

domain decomposition, extra care must be taken to account for all boundaries of the

subdomains [56].

In addition to error resulting from approximation schemes, scientific program

results contain error introduced by the use of floating point operations. Early work

in this area by Wilkinson describes the error for some fundamental floating point

operations [76]. Scientists must not only be aware of floating point error, but often
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must adjust algorithms to mitigate it. Even simple operations such as summation can

be approached in different ways, with different resulting accuracy [38].

Combined, the mathematical and floating-point errors present significant chal-

lenges for scientists designing complex simulations [53]. Thus, a variety of approaches

for the validation and verification of numerical software have been employed. These

include the use of probabilistic information [35,73], error estimators [78], testing proto-

cols [68], method of nearby problems [61], and a range of other techniques [50,54,60].

One of the issues arising from rounding error is a possible effect on the conver-

gence of values. Work has been done on proving the correctness of algorithms in spite

of this problem. One approach is to specify requirements and use a computer algebra

system [29,30].

3.2 General Model Checking Tools

Spin [40] is one of the most widely-used model checking tools, and introduced

a large array of techniques to reduce the time and memory consumed by explicit state

model checking. For example, Spin’s “collapse” compression algorithm allows global

states to share common process states to reduce the memory footprint.

Bandera [20] and the related tool Bogor [57] innovated many methods in software

model checking and were among the first tools to apply these techniques to Java pro-

grams. Bogor’s “collapse” compression extended Spin’s technique by allowing states

to share sub-structures at various levels of the state hierarchy [58]. In Bogor, states are

encoded (typically as bit vectors) before being saved and/or checked for being seen,

to conserve memory. Also, instead of storing states on the DFS stack, Bogor stores

transitions, and a method to invert a transition to obtain the previous state is used

when popping the stack. (A similar technique is used by Spin.) Essentially, this allows

Bogor to maintain only one uncompressed, mutable state during the search. In con-

trast, CIVL avoids the computational expense associated with compressing states and

inverting transitions by maximizing opportunities for sharing among stored states—at

every node in the state hierarchy, flyweighting is used to obtain a unique representative
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of the equivalence class for that node—and limiting the number of states saved and

pushed onto the stack.

3.3 Numerical Program Verification Tools

Many tools exist for verifying properties of numerical programs. We mention

some relevant ones here.

ASTRÉE is an abstract interpretation-based static analyzer for a subset of

C [23]. It can reason precisely about floating-point and limited-precision integer arith-

metic and verify absence of many runtime errors, but does not deal with dynamic

memory allocation or recursion; its main applications have been to real-time embed-

ded software. Improvements to ASTRÉE have used linearization and symbolic con-

stant propagation to improve the precision of the numerical static analyses, resulting

in tighter bounds [51]. FLUCTUAT [26] is another AI-based static analyzer providing

information about rounding errors in C programs.

KLEE [24] is a symbolic execution tool for generating tests to improve test

coverage; it can also check functional equivalence in some cases. It differs from CIVL

in several ways. For example, it does not deal with parallel programs, and it uses “bit-

precise” reasoning instead of mathematical real arithmetic. The GKLEE [48] extension

to KLEE supports the analysis of C++ GPU programs.

Another tool using symbolic execution for test-case generation [43] is built on

top of the Java PathFinder model checker [74] and can handle dynamically allocated

structures and thread level parallelism. Java PathFinder also has a symbolic execution

extension called JPF–SE that generates tests and proves light-weight properties of Java

programs based on annotations of method specifications and loop invariants [2].

TVOC [6] is a tool for checking the correctness of compiler optimizations for

sequential programs; it takes a functional equivalence verification approach based on a

set of pre-defined transformation patterns. The Why/Krakatoa/Caduceus [11,31] and

Frama-C [3] frameworks provide a set of tools for checking Java and C programs. These
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use special comments or JML-style [47] annotations (specifications of pre- and post-

conditions for Java source code) to specify numerical accuracy requirements. None

of these tools applies to message-passing based parallel programs or the problem of

functional equivalence. Frama-C has also been used for verifying numerical C code to

function identically across multiple architectures and compilers [12]. ISP [71], on the

other hand, is geared specifically for MPI programs. It uses a modified runtime system

to explore all relevant interleavings, but like ordinary testing only operates on concrete

inputs, so cannot establish functional equivalence. MARMOT [46] is a tool to check

for race conditions, deadlocks, and other issues in MPI programs, but is not targeted

at general numerical properties.

F-Soft [41] is a model checking tool for C programs. It primarily checks for

various runtime safety properties, but can also check for satisfaction of user written

annotations. It does not currently support parallel codes. CBMC [18] is a bounded

model checker for C and C++ programs. It checks for runtime safety properties and

user specified assertions. BLAST [9,37] is a model checker for C programs that verifies

temporal safety properties and automatically generates test suites.

Model checking techniques have been used successfully in the verification of

safety properties and functional equivalence for mature scientific codes [66]. This

project connects the code to the original numerical scheme.
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Chapter 4

CIVL MODEL CHECKER

The original intention was to implement order of accuracy verification as an

extension to the Toolkit for Accurate Scientific Software (TASS) [67]. However, the

TASS specification language and C+MPI specific model proved limiting for this and

other projects. Other popular symbolic execution tools (e.g. [2,24]) lack, among other

features, the ability to reason about floating point values under the semantics of the

real numbers. As a result, we have developed a more general framework for software

modeling called the Concurrency Intermediate Verification Language (CIVL). CIVL is

targeted at a wide range of verification challenges, and as such has a number of features

(like support for multiple processes) that are outside of the scope of this thesis. The

CIVL framework consists of:

• A programming language called CIVL-C, which is an extension of C that adds a
variety of useful features for verification, along with the ability to declare proce-
dures in any scope.

• A model checker which uses symbolic execution to verify a number of safety
properties of CIVL-C programs. It can also be used to verify that two CIVL-C
programs are functionally equivalent.

• A number of translators from commonly used languages and APIs to CIVL-C.
This part is still in progress.

We next discuss the CIVL-C input language, then give a description of the CIVL

model and the semantics of that model, and conclude this chapter with a discussion of

the features of the CIVL model checking tool.

19



4.1 CIVL-C

The input language to CIVL is called CIVL-C. CIVL-C is an extension to C

which includes a number of features useful for describing programs in a variety of

languages and for annotating programs with verification information.

Keywords specific to CIVL-C begin with a $ to avoid namespace collisions with

programs converted from other languages.

4.1.1 CIVL-C types

CIVL-C includes the standard C types, plus a few additional primitives. Some-

times multiple C types map to a single CIVL type when the code is translated to a

model.

• Integer types : All of C’s integer types (int, long, unsigned short, etc.) are
supported in CIVL-C. They map to a single integer type in the CIVL model
representation. The CIVL integer type represents the mathematical integers.
As such, arithmetic in CIVL models is not checked for overflow or underflow
by default. Assertions could be added to ensure that given quantities don’t
exceed a particular value. However, due to the symbolic nature of inputs, default
checking of overflows and underflows would cause numerous spurious error reports
whenever unconstrained symbolic values are used in arithmetic.

• Real types : Similarly, all of the floating point types in C, as well as a new type
$real, map to a single real number type in the CIVL model which represents
the mathematical real numbers. When providing program specifications, it is
often desirable to write assertions equating various quantities. Under the se-
mantics of floating-point arithmetic, two quantities computed in different ways
(even with just different associativity) will almost never be equal. By treating all
floating-point values as mathematical reals, developers can more easily specify
the intended result of computations without worrying about bit-level details of
floating-point representations.

• Boolean type: The type Bool is supported. A variable of type Bool can have
values 1 and 0, which are also denoted by $true and $false, respectively.

• Character type: The char type is the same as C.

• Scope type: CIVL-C has a type $scope which is the type of a reference to a
dynamic scope. It may be thought of as a scope ID, but it is neither necessary
nor permissible to cast this type to an integer.
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• Proc type: CIVL-C also has a type $proc which is the type of a reference to a
process. Like the $scope type, it may not be cast to an integer.

• Bundle type: The CIVL-C $bundle type is used to hold an arbitrary contiguous
chunk of data.

• Pointer type: Pointer types in CIVL-C are the same as in C.

• Array type: Array types may be derived from any element type, and as in C any
array index operations are converted to pointer operations.

• Struct or union types : Struct and union types are as in C.

4.1.2 CIVL-C expressions

CIVL-C supports the standard C expressions (including pointer (de)referencing

and arithmetic) with the exception of bit-wise operations. In addition, there are a

number of new expressions that do not occur in C.

• Self : The expression $self is an expression of type $proc evaluating to a refer-
ence to the currently executed process.

• Here: The expression $here is an expression of type $scope evaluating to a
reference to the local most dynamic scope.

• Scope of : The expression $scopeof(expr) evaluates to the dynamic scope con-
taining the object specified by expr.

• Spawn: The expression $spawn f(expr1, ..., exprn) is an expression with
side effects. It creates a new process executing f with the given arguments, and
returns an object of type $proc that is a reference to the new process.

• Wait : The system function void $wait($proc p) will block until the process
referenced by the expression p returns.

• Exit : The function void $exit(void) causes the calling process to immediately
terminate.

• Quantified expressions : CIVL-C supports universal and existential quantifiers.
The syntax for a universally quantified expression is

$forall {type identifier | restriction} expr

21



where type is a type name, identifier is the name of the variable bound by
the quantified expression, restriction is a boolean expression expressing some
restriction on the values that the bound variable may take, and expr is a formula.
The quantified expression evaluates to true if and only if the formula is true
whenever the bound variable is within the range specified by the restriction.

In the case where the bound variable has integer type and ranges over a finite
interval of integers, it may be written as

$forall { identifier=lower .. upper } expr

where lower and upper are integer-valued expressions.

Existentially quantifiers use the same syntax but with $exists instead of $forall.

For the purposes of accuracy verification, we have added a third quantifier called
$uniform. Its syntax and semantics are described in Ch. 5.

4.1.3 CIVL-C statements

CIVL-C supports all standard C statements. Among the additional statements

are assumptions and assertions.

The syntax of an assume statement is

$assume expr;

where expr is a boolean-valued expression. When an assume statement is encountered

during verification, the expression is assumed to hold. If the assumption later causes a

contradiction on some execution, that execution is simply ignored. A violation is not

reported, the contradiction just restricts the set of possible executions.

Assume statements can be used wherever a statement is expected, but can also

be used in the file scope of a program to place restrictions on global variables. When

used in this way, the assumption applies for the remainder of the program, including

for any declarations or initializations that appear after the assumption in the file scope.

The assert statement is structured as a system function, and has the form

void $assert (_Bool expr);

When an assert statement is encountered, the verifier checks whether it can prove that

the expression must hold in the current context. If that proof obligation cannot be

discharged, a violation is reported.
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The CIVL-C assert statement may take additional arguments to print a message

if the assertion is violated. The additional arguments take a form similar to C’s printf

statement: a format string, followed by some number of arguments which are evaluated

and substituted for successive codes in the format string. For example,

$assert(x<=B, "x-coordinate %f exceeds bound %f", x, B);

Assumptions and assertions are critical tools for specifying the accuracy of nu-

merical programs.

4.1.4 Input/output specifications

CIVL-C has the additional type qualifiers $input and $output. These specifiers

can be used for any variables in the outermost scope of the program and indicate to the

verifier that the variable should be treated as an input or output to the program. Input

variables may be read from but never written to. Output variables may be written to

but never read.

The description here only provides a subset of the elements of CIVL-C. For

further information, see [17].

4.2 CIVL Model

The CIVL model is a “guarded command” style representation [28] that provides

simple primitives for dynamic process creation, function calls, nondeterminism, and

message-passing. It also adds to the usual model a notion of scopes, which have both

a static and a dynamic aspect, and is based in part on our previous model for Chapel

verification [79].

A CIVL model consists of the following components. First, there is a set Σ of

(static) scopes, which has the structure of a rooted tree with root σ0. These correspond

to the lexical scopes in the source code, plus scopes that may be added to translate

complex statements. The root scope represents the outermost scope encompassing the

entire program. If τ is a child of σ, the lexical scope represented by τ is immediately

contained in that represented by σ.
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The model associates to each σ ∈ Σ a set of typed variables and a set of function

symbols. We say these variables and function symbols are declared in σ. All of these

sets are pairwise disjoint; in particular, the variables declared in σ do not include those

declared in any child of σ. We say a variable or function symbol is visible in σ if it is

declared in σ or an ancestor of σ.

Types include boolean, real, int, char, arrays of any element type, a type scope

for scope IDs, and a type process for process IDs. In this thesis, the real and int types

represent the mathematical real numbers and integers, though no fundamental changes

are required in the model to incorporate finite-precision or other types.

For each function symbol f declared in the model, there is a function scope,

which is a child of the scope in which f is declared. A scope can be the function scope

of at most one function. The system function has σ0 as its function scope, and is the

only function that does not have a declaration scope.

Every scope σ “belongs to” a unique function: if σ is the function scope for

some f then σ belongs to f , else σ belongs to the function to which the parent of σ

belongs.

The model associates to each function symbol f a function signature, which

consists of a return type (possibly “void”) and a sequence of parameter types. Finally,

there is a program graph associated to f . The program graph includes a set of locations,

including a start location. Each location l has an associated scope lscope(l) which

must belong to f ; there is no other restriction on lscope(l). The location also has some

number (possibly 0) of outgoing transitions. Each transition comprises (1) a guard, a

boolean-valued expression specifying when the transition is enabled, (2) a destination

location, and (3) an atomic CIVL statement.

4.3 CIVL Composite Model

CIVL can compare two CIVL-C programs for functional (i.e. input-output)

equivalence. In order to accomplish this, a composite model must be created. CIVL
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$input int n;
$output double x;

double f() {
   ...
}

f();

$input int n;
$input int m;
$output double x;

double f() { 
  ...
}

f();

$input int n;
$input int m;
$output double x_spec;
$output double x_impl;

void system_spec() {
  double f() { ...
  }
  f();
}

void system_impl() {
  double f() { ...
  }
  f();
}
$proc p0 = $spawn system_spec();
$proc p1 = $spawn system_impl();
$wait(p0);
$wait(p1);
$assert x_spec == x_impl;

Figure 4.1: Conversion of two CIVL models to a composite model for comparison.
top left: a specification program; bottom left: an implementation using
a superset of the inputs of the specification; right: a composite model
constructed form the specification and implementation.

can then run the verification algorithm on the composite model. Currently, the com-

posite model must be constructed manually. However, the capability to automatically

construct the composite model is under development. This section describes the al-

gorithm that will be used in the automatic composite model construction, which will

be available in an upcoming CIVL release. The manual construction follows much the

same pattern. We refer to the first program provided for comparison as the specification

program, and the second as the implementation program.

The first step in creating a composite model is building models for the specifi-

cation and implementation programs. Next, the system functions for the specification

and implementation models are renamed. CIVL will then create a new system function

to wrap the renamed functions. The body of this new system function will spawn both

the specification and implementation system functions, then wait for each to finish.

What remains is to handle program inputs and outputs.

As discussed in Sec. 4.1, variables in the outermost scope of a CIVL-C program
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may be specified as $input or $output variables. CIVL requires that

1. corresponding input and output variables have the same name

2. the input variables to the specification are a subset of the input variables to the
implementation

3. the sets of output variables for the specification and implementation are the same

In constructing the composite model, CIVL will move the input variables from

the specification and implementation models to the new system function. Whenever

the same input variables exist in the specification and implementation, they are unified

into a single variable in the new model.

CIVL will rename each output variable in the specification and implementation

and move them to the new outermost scope. After the wait statements for the processes

executing the specification and implementation system functions, the composite model

system function has a series of assertions checking the equivalence of corresponding

output variables.

Fig. 4.1(right) gives an example of a composite model formed from the two

models on the left. The specification has an input variable n and an output x. The

implementation has two input variables, n and m, and an output x. These variables

meet the three requirements on input and output variables. The composite model

shows the renamed system functions and output variables, and the unified set of input

variables.

4.4 CIVL Model Semantics

A state of a CIVL model is a tuple composed of

1. a set of dynamic scopes

2. the root dynamic scope

3. a mapping from each dynamic scope to its parent in the dynamic scope tree

4. a mapping, called static from each dynamic scope to the corresponding static
scope

5. a function assigning a valuation to each variable in each dynamic scope
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$input int n; // scope 0
$output int m;
void f() { // scope 1
  int g(int i) { // scope 2
    if (i > 0) { // scope 3
      int k;
      …
   } else { // scope 4
     …
   }
   …
  }
  
  void h(double x) { // scope 5
    …
  }
} …

scope 0
variables: n,m

functions: f

scope 1
functions: g,h

scope 2
variables: i

scope 3
variables: k

scope 4

scope 5
variables: x

scope 0
n:2, m:5

scope 1

scope 2
i:-4

scope 4

scope 5
x:3.14

p0

p2

p3

scope 1 p1

Figure 4.2: CIVL scopes. left: partial code for a CIVL program with lexical scopes
numbered; center: the static scope tree; right: a state consisting of 4
processes and 6 dynamic scopes.

6. a set of process IDs

7. for each process, a stack of 0 or more frames, where each frame gives a location
and a corresponding dynamic scope.

The mapping from dynamic scopes to static scopes preserves the static scope

tree structure. That is, if δ is a dynamic scope with parent δ′ in the dynamic scope

tree and σ = static(δ), then σ′ = static(δ′) is the parent of σ in the static scope tree.

Figure 4.2(right) shows a state of the model to its left. This state has two

dynamic scopes which are instances of scope 1, no instance of scope 3, and 1 instance

of each of the remaining scopes. There are 4 processes, whose call stacks are illustrated

(the locations are not shown).

When control moves from one location to another within a function’s transition

system, the scope may change. When this happens, new dynamic scopes are created

and added to the state. This is carried out in such a way that the correspondence

between dynamic and static scopes is preserved. The protocol requires computing the

“join” in the static scope tree of the old and new scopes, considering the path from the

old scope to the join to the new scope, and then creating a corresponding structure in

the dynamic tree; see Fig. 4.3(a-c).
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1
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7
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(a) (b) (c) (d)

p0

p1

p0 p0

p1 p1

Figure 4.3: Jump protocol. (a) a static scope tree; (b) a dynamic scope tree; p1 is
about to move from a location in scope 3 to a location in scope 8; (c) new
dynamic scopes are added corresponding to the path from scope 1 (the
join of 3 and 8) to 8; (d) dynamic scopes 2 and 3 became unreachable
and so were removed.

28



A dynamic scope s is reachable from a process p if

1. s is referenced in some frame of p’s call stack, or

2. s is the parent of a dynamic scope s′ that is reachable from p.

When a dyscope is not reachable from any process, we say that it is unreachable. Such

a dyscope may be removed form the state; see Fig. 4.3(d).

If a call or spawn of a function f is executed in dynamic scope δ, then since

f is visible, it must be the case that f is declared in static(δ′), where δ′ is either

δ or an ancestor of δ. A new dynamic scope is created whose parent is δ′ and whose

(corresponding) lexical scope is the function scope of f . A new frame is created referring

to the new dynamic scope. For a function call, the frame is pushed onto the existing

stack; for a spawn, a new process is created whose stack consists of the single frame.

If a process has terminated and there are no references to that process in the

state, it can be removed from the state. When dynamic scopes or processes are removed

from the state, scope IDs and process IDs are renumbered to put the state into a

canonical form.

4.5 CIVL Tool

The CIVL model checker is a tool written in Java for the verification of CIVL-C

programs. It performs model checking with symbolic execution on CIVL models. It

utilizes the following components:

• ABC. ABC is a Java-based C front-end. It provides a preprocessor and parser
for C programs. ABC has been extended to also parse CIVL-C.

• GMC: The Generic Model Checker. GMC is a package that provides interfaces
and basic search capability for model checking.

• SARL: The Symbolic Algebra and Reasoning Library. SARL is a library for
creating, manipulating, and reasoning about symbolic expressions.

To verify a program, CIVL uses ABC to parse the CIVL-C source and create

an abstract syntax tree. This AST then undergoes some analysis and transformation,
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ABC

SARL

CIVL

GMC

CIVL-C source Properties hold or
Counterexample

Figure 4.4: Data flow through the CIVL model checker.

and is converted into a CIVL model. CIVL has a representation of the state of a

CIVL model and transitions between states. Values of state components are symbolic

expressions, which are manipulated using SARL. GMC provides the functionality of

searching the state space. After exhaustively exploring the state space, CIVL will

either report that all specified properties hold or else provide a counterexample. Fig.

4.4 depicts the organization of CIVL.

When the CIVL model checker runs or verifies a CIVL-C program, it checks

that the program is free of a variety of errors. These include:

• Deadlocks

• Assertion violations

• Division by 0

• Illegal pointer dereferences

• Out-of-bounds array indexes

• Invalid casts

• Use of uninitialized objects.
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The CIVL tool runs from the command line in OS X or Linux, and has several

commands:

• help: print usage information

• run: run the program using random simulation

• verify: verify the program

• compare: compare two programs for functional equivalence

• replay: replay a program trace

• parse: show the result of preprocessing and parsing the file

• preprocess: show the result of preprocessing the file only.

For full information on available CIVL commands, see App. B.
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Chapter 5

DIFFERENTIAL ACCURACY SPECIFICATION

We present a new differential accuracy specification language, which adds sev-

eral elements to the CIVL specification language. The new quantifier $uniform was

mentioned above. The other enhancements are abstract functions, derivatives, and

big-O expressions.

Great care was taken in crafting these annotations to provide programmers with

easy and readable ways to express the information necessary for verifying the order of

accuracy. This involved examining the structure of proofs that mathematicians write,

and abstracting the components of that information which would be useful to the

verifier. For most proofs, there are three key pieces of information.

1. The function being reasoned about, including its input-output signature and some
hints about how many terms to use in the truncated Taylor expansion.

2. The relationship between program variables and the values of the function eval-
uated at various grid points.

3. An assertion relating the values of output program variables to the actual math-
ematical computation.

The differential accuracy specification language was designed to facilitate concise

statement of those three types of information.

5.1 Abstract Functions and Derivatives

Abstract functions are functions that have no body, but are used to represent

the mathematical notion of a function (rather than the program notion). The syntax

for an abstract function is
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$abstract contin( int ) type name ( param list );

where int is an integer indicating the number of partial derivatives that exist and

are continuous, type is the return type of the abstract function, name is the name

of the abstract function, and param list is a (possibly empty) comma-separated list

of parameter declarations. The contin(int) can be omitted when the value of the

continuity is 0.

Abstract functions can be used in combination with assume statements to ex-

press the relationship between input variables to the program and the mathematical

function whose results those input variables are representing. They are also useful for

modeling functions performing mathematical computations (such as those described in

C’s math.h) without being dependent on a specific implementation.

Of course, when reasoning about numerical solutions to partial differential equa-

tions, a notion of abstract functions is insufficient. One also needs to refer to derivatives

of those functions. We use notation somewhat similar to Mathematica [77], and spec-

ify a derivative by its function and the number of partial derivatives in terms of each

parameter to the function. The syntax for a derivative expression is

$D[func,partial list](arg list)

where func is the name of the abstract function whose derivative is being taken, par-

tial list is a comma separated list of partials specified by the form {var,int}. For each

partial, var is the name of the parameter and int indicates how many partial deriva-

tives to take in terms of that parameter. Finally, arg list is a comma separated list of

expressions that are arguments to the function evaluation. The type of a derivative

expression is the return type of the abstract function.

5.2 Big-O Expressions

We have added a big-O expression. The big-O expression has the form $O(exp).

It represents the condition in Def. 1. Big-O expressions can be used in assumptions and

assertions. They are also added automatically as a component of Taylor expansions in
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our modifications to the CIVL verifier. The verifier is aware of various properties of big-

O expressions, which allows them to be used in polynomial arithmetic. In particular,

the verifier knows that

• for an expression x and integer n > 0, xO(xn) = O(xn+1), and

• for an expression x, integer n > 0, and non-zero constant c, cO(xn) = O(xn).

5.3 The Uniform Quantifier

The $uniform quantifier has the same syntax as the existential or universal

quantifiers. Its general form is

$uniform {decl=lower .. upper} expression = O-expression,

where decl declares the name of a variable v, lower and upper are expressions bounding

the values of v. $uniform indicates that the constant C (from Def. 1) in the big-O

term is independent of any local variables or any values inside of the big-O.
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Chapter 6

SYMBOLIC DIFFERENTIAL ACCURACY VERIFICATION

The technique of symbolic differential accuracy verification is based on sym-

bolic execution. It uses symbolic representations of elements of the new specification

language and heuristics to automatically add assumptions relating specified abstract

functions evaluated at certain points to their Taylor expansions.

Every abstract function is represented by a unique symbolic constant. The

symbolic constant has a type which is a symbolic representation of a function type. A

symbolic function type has a list of input types corresponding to the function param-

eters, and a return type. Although an abstract function has no body, it can still be

“called.” An abstract function call expression looks like a regular program function call,

but returns a symbolic expression representing the application of the abstract function

to the arguments. The type of the abstract function call is the same as the return type

of the function, and an abstract function call can occur anywhere an expression of that

type is permitted.

As described in Ch. 5, derivative expressions take an abstract function and a

list of partials, as well as an argument list. Each particular derivative (that is, each

combination of an abstract function and a given set of partials) is represented by a

unique symbolic constant. A derivative expression is then evaluated in the same way as

an abstract function call expression, with the type of the resulting symbolic expression

again being the return type of the abstract function. Note that the reasoner, upon

encountering an abstract function call expression and an expression for a derivative

of that abstract function, has no inherent way of knowing that the two are in any

way related. A derivative expression is just an application of a different function to
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some list of arguments. Any relationships between functions and their derivatives are

explicitly inserted into the model as assumptions.

During the symbolic execution, a big-O expression also gets translated to a type

of abstract function call. In order to capture the semantics of arithmetic with big-O

terms, abstract function calls to the symbolic constant representing big-O are handled

in special ways in some cases. The reasoner recognizes the patterns described in Sec.

5.2.

Having described the symbolic evaluation of abstract functions, derivatives, and

big-O terms, what remains is to modify the model with extra information to relate these

notions. One of the features of CIVL-C is the $assume statement, which allows the

programmer to provide information to the verifier. Our technique uses heuristics to

analyze existing $assume statements containing abstract function call expressions and

to add new information to the model. The general procedure is

1. find assume statements containing abstract function calls

2. generate appropriate Taylor expansions based on the form of the assumption and
the abstract function declaration

3. add new assumptions about the Taylor expansions to the model.

In step (2), the verifier applies some heuristics to generate the expansions. There

are two heuristics used in the analysis, a spatial argument heuristic and a time argu-

ment heuristic. Whenever an $assume statement is added to the model, the assumed

expression is examined to determine whether it contains an abstract function call. Only

limited types of expressions are checked. The verifier recursively examines all argu-

ments to binary and quantifier expressions and collects a list of the abstract function

calls encountered. The recursive check terminates on any other type of expression.

During the recursive check, quantifier expressions are also accumulated.

Each of the collected abstract function calls is then processed. For each function

call, all arguments are checked to see whether they match either the spatial argument

heuristic or the time argument heuristic. The spatial argument heuristic matches
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arguments of the form vq ∗ expr or expr ∗ vq, where vq is one of the variables bound by

a quantifier and expr is any other expression. The idea behind the spatial argument

heuristic is that a quantifier will often be used to relate an abstract function call at

successive grid points to the values in an array or other data structure.

The time argument heuristic matches arguments of the form vi ∗ vdt or vdt ∗ vi,

where vi is a variable of integer type and vdt is an input variable. The intuition behind

the time argument heuristic is that in an iterative numerical scheme, the time argument

to an abstract function call is usually an integer counter (vi) times the size of a time

step (vdt).

For each abstract function call argument that matches one of the heuristics,

new assumptions are created and added to the model describing a truncated Taylor

expansion around that argument. Whenever an expansion around an argument is

added, all other arguments are kept the same as the original call. Since other arguments

may contain variables bound by quantifiers, the new Taylor expansion expression is

nested inside duplicates of all of the previously accumulated quantifiers.

Suppose an abstract function call for a function f with continuity c has an

argument matching the spatial heuristic. Then the call is of the form f(..., vq∗expr, ...).

Two new assumptions will be added. They are

f(..., (vq + 1) ∗ expr, ...) =

(
i=c−1∑
i=0

f (i)(..., vq ∗ expr, ...)
i!

expri

)
+O(exprc) (6.1)

f(..., (vq − 1) ∗ expr, ...) =

(
i=c−1∑
i=0

(−1)i
f (i)(..., vq ∗ expr, ...)

i!
expri

)
+O(exprc) (6.2)

where f (i) indicates the ith derivative of f .

Suppose an abstract function call for a function f has an argument matching

the time heuristic. The the call is of the form f(..., vi ∗ vdt, ...). One new assumption

will be added. It is

f(..., (vi + 1) ∗ vdt, ...) =f(..., vi ∗ vdt, ...) +
f ′(..., vi ∗ vdt, ...)

2
vdt +O(v2

dt) (6.3)
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The heuristics currently in use are relatively simple, but are able to provide

sufficient information for the analysis of many finite difference schemes. Future work

may involve additional static analysis to support more complex heuristics.

In the next part, we present a number of case studies and describe their mathe-

matical analysis and the representation of accuracy claims in the specification language.
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Chapter 7

EVALUATION

This chapter evaluates the technique of symbolic differential accuracy verifica-

tion. We first compare symbolic differential accuracy verification to recent work on

order of accuracy verification, then present several case studies of applying our tech-

nique to sample programs, and conclude with a discussion of scaling.

7.1 Comparison to Existing Techniques

There have been very few efforts to formally verify the order of accuracy of

numerical programs. One notable exception is [10], which gives the results of a

comprehensive formal verification of a 1d wave equation code. Using the Frama-C

platform and various automated theorem provers and proof assistants, the authors

of that study produced a mechanized proof of all correctness properties of the pro-

gram, including convergence, order of accuracy, and bounds on floating-point error.

This work differs from ours in two significant ways. First, many of the proofs re-

quired extensive interaction with the proof assistant. For example, a 5000-line long

Coq [7] proof of method error was required (though around half of this may be

re-usable for similar problems), and 32 verification conditions required Coq inter-

action to discharge. Second, the annotational burden is much larger than in our

approach: for example, there are 174 lines of annotations (including axioms, lem-

mas, and definitions) added to a program which is 32 lines of uncommented C code

(see http://fost.saclay.inria.fr/coq_total/dirichlet.c.html). In contrast,

our method is fully automatic after adding the relatively small number of annota-

tions we have shown. On the other hand, the method of [10] provides an extremely
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high level of assurance (a proof based on first principles, with no bounds on input

parameters), and deals with floating-point issues in addition to order of accuracy.

While symbolic differential accuracy verification only checks order of accuracy,

the severely reduced annotational requirements (typically about three lines on a simi-

larly sized differential equation solver) and fully automated nature of the proof should

make it more accessible to prospective users of accuracy verification tools.

7.2 Case Studies

This section examines the application of symbolic differential accuracy verifica-

tion to a number of representative numerical codes. Each case study presents

1. the mathematical analysis that a mathematician or developer might do to prove
that the algorithm is nth order accurate

2. an excerpt of code implementing the algorithm, including differential accuracy
specification annotations

3. a description of the symbolic differential accuracy verification steps performed by
CIVL.

Note that (1) is independent of the code, but an understanding of the mathe-

matical analysis is a prerequisite to writing a numerical program and making a claim

about its accuracy (regardless of whether any formal verification of that accuracy will

be attempted). Symbolic differential accuracy verification does not release the pro-

grammer from the obligation of performing the manual analysis. What is does instead

is utilize the information from that mathematical analysis to provide a level of assur-

ance that the code does indeed faithfully implement the technique to the claimed order

of accuracy. The differential accuracy specification needed to enable the verification is

not difficult to extract from the mathematical analysis. Symbolic differential accuracy

verification takes the specification annotations and automatically applies techniques

similar to the manual mathematical analysis to prove that the assertions hold. CIVL

is able to verify that the assertions hold (with the exception of some erroneous versions

that are mentioned, where the assertions fail as expected).

40



xx-h

Figure 7.1: Backward differencing approximates the derivative of ρ(x) as the slope
through the points (x− h, ρ(x− h)) and (x, ρ(x)).

First we discuss case studies on differentiation in one and two dimensions. Then

we describe solving a a useful and frequently studied parabolic partial differential equa-

tion, the diffusion equation. Finally we present a number of techniques for solving

hyperbolic partial differential equations. In particular, we will focus on the advection

operator

L[u] =
∂u

∂t
+ a

∂u

∂x
(7.1)

in the case where L[u] = 0. The advection equation is useful for describing the transport

of a substance via currents in fluid.

7.2.1 First derivative, backward

Our first case study is a backward difference approximation to the first deriva-

tive. The backward finite difference method approximates a derivative at a point using

that point and the left neighbor.

7.2.1.1 Mathematical analysis

Let ρ : R→ R be two times differentiable and assume there exists M > 0 such

that |ρ′′(x)| < M for all x. A discrete approximation of the derivative is given by

g(x, h) ≡ ρ(x)− ρ(x− h)

h
. (7.2)
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In Definition 3, f(x) = ρ′(x). We claim that g is a uniformly 1st order approxi-

mation for f on R. To verify, we use Taylor polynomials with Lagrangian remainders.

Given x ∈ R and h > 0, there exists ξ ∈ [x− h, x+ h] such that

ρ(x− h) = ρ(x)− ρ′(x)h+
1

2
ρ′′(ξ)h2.

From this we conclude∣∣∣∣ρ(x)− ρ(x− h)

h
− ρ′(x)

∣∣∣∣ =
|ρ′′(ξ)|

2
h ≤ 1

2
Mh.

We see that the difference between the discrete approximation and the exact deriva-

tive is bounded by a constant times h, and thus g is a uniformly 1st order accurate

approximation of f on R.

7.2.1.2 Specification

Fig. 7.2 is an excerpt of CIVL-C code for the backward finite difference scheme

for differentiation. The code takes as input h and an array which holds values of the

function at the points ih, where i ∈ Z and 0 ≤ i ≤ n. These points form the grid ∆(h)

from Definition 4. The values stored in result at the end are the output of gh. Since

backward differencing cannot be performed on the left end of the array, we use forward

differencing at the first position.

Three annotations are needed to provide the differential accuracy specification.

Line 4 is a declaration of the abstract function ρ, which is declared to have 2 continuous,

bounded derivatives. The assumption at line 7 relates the values in the input array y

to the function ρ. Line 13 is the assertion about the relationship between result and

the actual derivative. Note the $uniform quantifier at line 13, which indicates that

the code is ∆-uniformly 1st order accurate.

By applying the symbolic differential accuracy verification technique to the given

annotations, the verifier can automatically add information about Taylor expansions of

ρ to the model, and then prove that the results computed by the code are ∆-uniformly

1st order accurate.
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1 $input double h;

2 $input int num_elements;

3 $assume h > 0;

4 $abstract $contin(2) $real rho($real x);

5

6 void differentiate(double h, int n, double y[], double result[]){

7 $assume $forall {m=0 .. n-1} y[m] == rho(m*h);

8 for(int i = 1; i < n; i++) {

9 result[i] = (y[i]-y[i-1])/h;

10 }

11 // forward at endpoint

12 result[0] = (y[1] - y[0])/h;

13 $assert($uniform {k=0 .. n-1} result[k]-$D[rho,{x,1}](k*h) == $O(h));

14 }

Figure 7.2: Annotated CIVL-C code for differentiation. The code does backward
differencing on the array except for index 0, where it does forward differ-
encing.

7.2.1.3 Verification

Consider lines 4 and 7 from Fig. 7.2:

$abstract $contin(2) $real rho($real x);

$assume $forall {m=0..n-1} y[m] == rho(m*h);

From the declaration of the abstract function the verifier knows that two deriva-

tives of ρ exist and are continuous. The assumption provides a clue about which points

to expand around. In this case, the verifier recognizes the argument to the abstract

function as matching the spatial argument heuristic. The new assumptions will quan-

tify over the same range, and expand around points (m + 1)h and (m − 1)h. The

automatically generated assumptions are:

$assume $forall {m=0..n-1} rho((m+1)*h)==rho(m*h)+$D[rho,{x,1}](m*h)*h

+$O(h*h);

$assume $forall {m=0..n-1} rho((m-1)*h)==rho(m*h)-$D[rho,{x,1}](m*h)*h

+$O(h*h);
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x x+hx-h

Figure 7.3: Central differencing approximates the derivative of ρ(x) as the slope
through the points (x− h, ρ(x− h)) and (x+ h, ρ(x+ h)).

These assumptions are added to the model immediately following the assump-

tion at line 8. Recall that a $assume statement adds the expression to the path

condition. Thus the Taylor expansions are carried in the path condition throughout

the remainder of the program. The information isn’t needed until the evaluation of the

assertion at line 13. At this point the theorem prover is able to use these assumptions

that are encoded in the path condition to prove the assertion. The actual query passed

to the prover for a CIVL verifier run on this program is given in App. C. In the query,

BIG O is the big-O function and rhox1 is the first derivative of rho with respect to x.

It should be stressed that the query is automatically generated during symbolic differ-

ential accuracy verification, and is the tool’s response to the few lines of annotation

provided.

7.2.2 First derivative, centered

Our next case study is a centered difference approximation to the first derivative.

7.2.2.1 Mathematical analysis

Let ρ : R→ R be three times differentiable and assume there exists M > 0 such

that |ρ′′′(x)| < M for all x. A discrete approximation of the derivative is given by

g(x, h) ≡ ρ(x+ h)− ρ(x− h)

2h
. (7.3)
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In Definition 3, f(x) = ρ′(x). We claim that g is a uniformly 2nd order approxi-

mation for f on R. To verify, we use Taylor polynomials with Lagrangian remainders.

Given x ∈ R and h > 0, there exist ξ1, ξ2 ∈ [x− h, x+ h] such that

ρ(x+ h) = ρ(x) + ρ′(x)h+
1

2
ρ′′(x)h2 +

1

6
ρ′′′(ξ1)h3

ρ(x− h) = ρ(x)− ρ′(x)h+
1

2
ρ′′(x)h2 − 1

6
ρ′′′(ξ2)h3.

From this we conclude∣∣∣∣ρ(x+ h)− ρ(x− h)

2h
− ρ′(x)

∣∣∣∣ =
|ρ′′′(ξ1) + ρ′′′(ξ2)|

12
h2 ≤ 1

6
Mh2.

We see that the difference between the discrete approximation and the exact deriva-

tive is bounded by a constant times h2, and thus g is a uniformly 2nd order accurate

approximation of f on R.

7.2.2.2 Specification

Fig. 7.4 is an excerpt of CIVL-C code. As in Sec. 7.2.1, the code takes as

input h and an array which holds values of the function at the points ih, where i ∈ Z

and 0 ≤ i ≤ n. These points form the grid ∆(h) from Definition 4. The values

stored in result at the end are the output of gh. Since central differencing cannot be

performed on the endpoints, we use forward and backward differencing at the first and

last positions, respectively. These are first order accurate methods. Hence the result

is not ∆-uniformly second order accurate. Instead we will only consider points in the

interior of the domain, which we will call ∆′. Define ∆′(h) = {ih|1 ≤ i < n− 1}. All

points in ∆′ are then computed using central differencing. Note that the bounds on i

are the same as the bounds on the quantified variable k in the assertion at line 13.

Line 4 is a declaration of the abstract function ρ, which is declared to have

3 continuous, bounded derivatives. The assumption at line 7 relates the values in

the input array y to the function ρ. Line 12 is the assertion about the relationship

between result and the actual derivative, namely that the code is ∆′-uniformly 2nd

order accurate.
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1 $input double h;

2 $input int num_elements;

3 $assume h > 0;

4 $abstract $contin(3) $real rho($real x);

5

6 void differentiate(int n, double y[], double result[]){

7 $assume $forall {m=0 .. n-1} y[m] == rho(m*h);

8 for(int i = 1; i < n-1; i++)

9 result[i] = (y[i+1]-y[i-1])/(2*h);

10 result[0] = (y[1]-y[0])/h;

11 result[n-1] = (y[n-1] - y[n-2])/h;

12 $assert($uniform{k=1..n-2} result[k]-$D[rho,{x,1}](k*h)==$O(h*h));

13 }

Figure 7.4: Annotated CIVL-C code for differentiation. The code does central dif-
ferencing on the interior of the array and forward/backward differencing
for the endpoints.

7.2.2.3 Verification

Lines 4 and 7 in Fig. 7.4 look verify similar to the corresponding lines in Fig.

7.2:

$abstract $contin(3) $real rho($real x);

$assume $forall {m=0..n-1} y[m] == rho(m*h);

In the backward differencing case, the function rho was specified to have two

continuous derivatives. In the centered example, three continuous derivatives are spec-

ified. It is, of course, possible to apply these programs to the same rho. By declaring

the minimum number of continuous derivatives that must exist for the analysis of

the numerical method, the programmer assists the tool in choosing the correct Taylor

expansions. The argument to rho in the assumption at line 7 matches the spatial

argument heuristic, so the automatically generated assumptions for this program are:

$assume $forall {m=0..n-1} rho((m+1)*h)==rho(m*h)+$D[rho,{x,1}](m*h)*h

+$D[rho,{x,2}](m*h)*h*h/2+$O(h*h*h);

$assume $forall {m=0..n-1} rho((m-1)*h)==rho(m*h)-$D[rho,{x,1}](m*h)*h

+$D[rho,{x,2}](m*h)*h*h/2+$O(h*h*h);
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When the verifier encounters the assertion at line 12, it is able to use the as-

sumptions to verify the assertion holds. Recall that this example is only second order

accurate on ∆′, not on the whole domain. If the assertion is modified to include the

endpoints, the tool correctly reports that the properties may not hold.

7.2.3 Second derivative

We next consider approximating a second derivative using central differencing.

The analysis is similar to Section 7.2.2 above, but requires an additional term in the

Taylor expansions of ρ.

7.2.3.1 Mathematical analysis

Let ρ : R → R be four times differentiable. Suppose there exists M > 0 such

that |ρ′′′′(x)| < M for all x. The approximation is given by

g(x, h) ≡ ρ(x+ h)− 2ρ(x) + ρ(x− h)

h2
. (7.4)

In Def. 3, f(x) = ρ′′(x). We claim that g is a uniformly 2nd order approximation

for f on R. To verify, we use Taylor polynomials with Lagrangian remainders. Given

x ∈ R and h > 0, there exist ξ1, ξ2 ∈ [x− h, x+ h] such that

ρ(x+ h) = ρ(x) + ρ′(x)h+
1

2
ρ′′(x)h2 +

1

6
ρ′′′(x)h3 +

1

24
ρ′′′′(ξ1)h4

ρ(x− h) = ρ(x)− ρ′(x)h+
1

2
ρ′′(x)h2 − 1

6
ρ′′′(x)h3 +

1

24
ρ′′′′(ξ2)h4.

From this we compute the accuracy:∣∣∣∣ρ(x+ h)− 2ρ(x) + ρ(x− h)

h2
− ρ′′(x)

∣∣∣∣ =
|ρ′′′(ξ1) + ρ′′′(ξ2)|

24
h2 ≤ 1

12
Mh2.

We see that the difference between the discrete approximation and second derivative

is bounded by a constant times h2, and thus g is a uniformly 2nd order accurate ap-

proximation of f on R.
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1 $input double h;

2 $input int num_elements;

3 $input double initial[num_elements];

4 $abstract $contin(4) $real rho($real x);

5 $assume h > 0;

6

7 void secondDerivative(double h, int n, double y[], double result[]){

8 $assume $forall {m=0 .. n-1} y[m] == rho(m*h);

9 for(int i = 1; i < n-1; i++)

10 result[i] = (y[i+1]-2*y[i]+y[i-1])/(h*h);

11 result[0] = (y[2]-2*y[1]+y[0])/h;

12 result[n-1] = (y[n-3] - 2*y[n-2]-y[n-1])/h;

13 $assert($uniform{k=1 .. n-2} result[k]-$D[rho,{x,2}](k*h)==$O(h*h));

14 }

Figure 7.5: Annotated CIVL-C code for second derivative. The code does central dif-
ferencing on the interior of the array and forward/backward differencing
for the endpoints.

7.2.3.2 Specification

Fig. 7.5 is an excerpt of the CIVL-C code for computing the second derivative.

As in Sections 7.2.1 and 7.2.2, the code takes the grid separation h and an array of

inputs holding the values of ρ(ih).

Line 4 is the declaration of the abstract function ρ. Unlike the previous example,

ρ is specified here to have four continuous derivatives. In practice this ρ might be the

same ρ as the differentiation examples, but specifying four continuous derivatives gives

the verifier a useful hint on how many terms to create in the Taylor expansions. The

assumption at line 8 tells the verifier the relationship between the array values and the

function ρ. Line 13 asserts that the approximation is uniformly 2nd order accurate in

h.

7.2.3.3 Verification

The second derivative code is a natural extension of the centered first derivative.

An additional term is needed in the truncated Taylor expansion in order to prove the
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result, and thus Line 4 in Fig. 7.5 indicates four continuous derivatives. The argument

to the abstract function call in the assumption at line 13 matches the spatial argument

heuristic. The automatically generated assumptions are:

$assume $forall {m=0..n-1} rho((m+1)*h)==rho(m*h)+$D[rho,{x,1}](m*h)*h

+$D[rho,{x,2}](m*h)*h*h/2+$D[rho,{x,3}](m*h)*h*h*h/6+$O(h*h*h*h);

$assume $forall {m=0..n-1} rho((m-1)*h)==rho(m*h)-$D[rho,{x,1}](m*h)*h

+$D[rho,{x,2}](m*h)*h*h/2-$D[rho,{x,3}](m*h)*h*h*h/6+$O(h*h*h*h);

7.2.4 Laplace Operator

The Laplace operator ∇2 is a differential operator that is useful for describing

a wide range of problems in mathematics, science and engineering.

7.2.4.1 Mathematical Analysis

The two-dimensional Cartesian form of the Laplace operator is

∇2u =
∂2u

∂x2
+
∂2u

∂y2
.

Using a grid size of h in both dimensions, the Laplace operator can be approxi-

mated using a finite difference scheme on the five point stencil shown in Fig. 7.6. The

approximation is given by

g(x, y, h) ≡ u(x− h, y) + u(x, y − h)− 4u(x, y) + u(x+ h, y) + u(x, y + h)

h2
.

The truncated Taylor polynomials used here are analogous to those in Section

7.2.3, but expansions must happen about u(x, y) in both the x and y directions. Sub-

stituting the appropriate expansions into the finite difference scheme and simplifying

shows that the approximation is O(h2) accurate.

7.2.4.2 Specification

Code for computing the Laplace operator is given in Fig. 7.7. The abstract func-

tion φ(x, y) is declared at line 6. It indicates that four bounded, continuous derivatives
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(hm,hn)

(hm,(h+1)n)

(hm,(h-1)n)

((h-1)m,hn) ((h+1)m,hn)

Figure 7.6: Five point stencil for the 2D Laplace operator.

may be taken. The assumption at line 7 equates elements in the two-dimensional

array u to values of the abstract function. Note that variables from the quantifiers

are involved in both arguments to φ. That information assists the verifier in making

choices about which Taylor polynomials to create. Lines 14–15 assert that the result

is uniformly 2nd order accurate in h.

7.2.4.3 Verification

The code at lines 6 and 7 in Fig. 7.7 leads the verifier to create more and higher

order Taylor polynomials.

$abstract $contin(4) $real phi($real x, $real y);

$assume $forall{m=0..rows-1} $forall{n=0..cols-1} u[m][n]==phi(m*h,n*h);

The specification of four continuous derivatives in the definition of φ tells the

verifier to expand the Taylor polynomial until the O(h4) term. In this case, both

arguments to the abstract function call match the spatial argument heuristic, so the

verifier adds four Taylor expansions. The automatically generated assumptions are:
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1 $input double h;

2 $input int rows, cols;

3 $input double u[rows][cols];

4 double result[rows][cols];

5 $assume h > 0;

6 $abstract $contin(4) $real phi($real x, $real y);

7 $assume $forall{m=0..rows-1} $forall{n=0..cols-1} u[m][n]==phi(m*h,n*h);

8

9 void laplace() {

10 for (int i=1; i < rows-1; i++)

11 for (int j=1; j < cols-1; j++)

12 result[i][j]=(u[i-1][j]+u[i][j-1]-4*u[i][j]+u[i+1][j]+u[i][j+1])\

13 /(h*h);

14 $assert($uniform{i=1..rows-2} $uniform{j=1..cols-2} result[i][j]-\

15 ($D[phi,{x,2}](i*h,j*h)+$D[phi,{y,2}](i*h,j*h))==$O(h*h));

16 }

Figure 7.7: Annotated CIVL-C code for the Laplace operator in two dimensions. The
code does central differencing on the interior of the array. The boundary
is held constant.

$assume $forall{m=0..rows-1} $forall{n=0..cols-1} phi((m+1)*h,n*h)==

phi(m*h,n*h)+$D[phi,{x,1}](m*h,n*h)*h

+$D[phi,{x,2}](m*h,n*h)*h*h/2+$D[phi,{x,3}](m*h,n*h)*h*h*h/6

+$O(h*h*h*h);

$assume $forall{m=0..rows-1} $forall{n=0..cols-1} phi((m-1)*h,n*h)==

phi(m*h,n*h)-$D[phi,{x,1}](m*h,n*h)*h

+$D[phi,{x,2}](m*h,n*h)*h*h/2-$D[phi,{x,3}](m*h,n*h)*h*h*h/6

+$O(h*h*h*h);

$assume $forall{m=0..rows-1} $forall{n=0..cols-1} phi(m*h,(n+1)*h)==

phi(m*h,n*h)+$D[phi,{y,1}](m*h,n*h)*h

+$D[phi,{y,2}](m*h,n*h)*h*h/2+$D[phi,{y,3}](m*h,n*h)*h*h*h/6

+$O(h*h*h*h);

$assume $forall{m=0..rows-1} $forall{n=0..cols-1} phi(m*h,(n-1)*h)==

phi(m*h,n*h)+$D[phi,{y,1}](m*h,n*h)*h

+$D[phi,{y,2}](m*h,n*h)*h*h/2+$D[phi,{y,3}](m*h,n*h)*h*h*h/6

+$O(h*h*h*h);
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7.2.5 Diffusion

Next we consider solving the 1-dimensional diffusion equation.

7.2.5.1 Mathematical analysis

We again begin by describing the math to give insight into what the tool must

do automatically during symbolic differential accuracy verification. This example is

a differential equation presented in terms of a differential operator. Solutions to dif-

ferential equations may be numerically computed using approximation schemes for

the differential operator. We present the notion of order of accuracy for a numerical

approximation scheme.

In the discussion below, Func(X, Y ) denotes the set of functions from X to Y .

If X and Y are continuous domains, we assume the functions are sufficiently smooth

to take the necessary number of derivatives.

Definition 6 (Accuracy of a Scheme). Let n be a positive integer, D ⊆ R, and L :

Func(D,R) → Func(D,R). Let I = (0, a), where a is a positive real number and

suppose ∆ : I → ℘(D). Let r∆h
: Func(D,R) → Func(∆(h),R) be the operator

which restricts a function to ∆(h). Suppose for each h there is an operator L̂h :

Func(∆(h),R) → Func(∆(h),R). For any smooth function u : D → R, define ψu :

I → R by

ψu(h) = sup
x∈∆(h)

∣∣∣r∆h
[L[u]](x)− L̂h[r∆h

[u]](x)
∣∣∣ .

We say L̂ is a ∆-uniformly nth order accurate scheme for L if for all u

ψu(h) = O(hn) as h→ 0.

See [70] Def. 3.1.1. This is the special case when the forcing function f = 0.

This definition can be generalized to multiple variables by defining an appropri-

ate ∆ and modifying ψ accordingly.
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We now apply the notion of accuracy of a scheme to the diffusion example. Let

D ⊆ R × R. Define an operator L which takes a function v : D → R that is twice

differentiable in x and once in t and returns a function L[v] : D → R as follows:

L[v] =
∂v

∂t
− κ∂

2v

∂x2
(7.5)

where κ is a positive constant. The 1-dimensional diffusion equation is the equation

L[u] = 0. A typical problem specifies boundary conditions in addition to the basic

equation L[u] = 0. The goal is to find a function u which satisfies all of these con-

straints. We will also suppose that the solution u must be four times differentiable in

x and twice differentiable in t.

Given positive real numbers h0, h1, we define a uniform mesh

∆ = ∆(h0, h1) = {(ih0, nh1) ∈ D|i, n ∈ Z}. (7.6)

Given a function f from ∆ to R, we will write fn
i for the value of f at the point

(ih0, nh1). We define a restriction operator r∆ which takes a function v : D → R and

returns the restriction r∆[v] of v to ∆. To summarize:

r∆[v]ni = v(ih0, nh1) (7.7)

where i and n are integers.

Using finite differences, we obtain the discretized operator L̂ = L̂h0,h1 (we will

typically omit the subscript for brevity) as follows. L̂ takes a function v̂ : ∆→ R and

returns a function L̂[v̂] : ∆→ R and is defined by

L̂[v̂]ni =
v̂n+1
i − v̂ni
h1

− κ
v̂ni+1 − 2v̂ni + v̂ni−1

h2
0

. (7.8)

We claim that L̂ is a scheme for L that is ∆-uniformly accurate of order (2,1). That

is, it is second order accurate in h0 and first order accurate in h1. In order to show
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this, we must do several Taylor expansions. Given i, n ∈ Z and h0, h1 > 0, there exist

ξ0, ξ1 ∈ [(i−1)h0, (i+ 1)h0] and ξ2 ∈ [(n−1)h1, (n+ 1)h1] such that the following hold:

r∆[u]ni+1 = u(ih0, nh1) + h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ih0, nh1)

+
1

6
h3

0

∂3u

∂x3
(ih0, nh1) +

1

24
h4

0

∂4u

∂x4
(ξ0, nh1) (7.9)

r∆[u]ni−1 = u(ih0, nh1)− h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ih0, nh1)

− 1

6
h3

0

∂3u

∂x3
(ih0, nh1) +

1

24
h4

0

∂4u

∂x4
(ξ1, nh1) (7.10)

r∆[u]n+1
i = u(ih0, nh1) + h1

∂u

∂t
(ih0, nh1) +

1

2
h2

1

∂2u

∂t2
(ih0, ξ2). (7.11)

Assume that on the domain of interest, the absolute value of the fourth derivative

of u with respect to x is bounded by M0 > 0 and the absolute value of the second

derivative of u with respect to t is bounded by M1 > 0. Substituting the expansions

into (7.8),

L̂[r∆[u]]ni =
r∆[u]n+1

i − u(ih0, nh1)

h1

− κ
r∆[u]ni+1 − 2u(ih0, nh1) + r∆[u]ni−1

h2
0

(7.12)

=
h1

∂u
∂t

(ih0, nh1) + 1
2
h2

1
∂2u
∂t2

(ih0, ξ2)

h1

− κ
h2

0
∂2u
∂x2 (ih0, nh1) + 1

24
h4

0(∂
4u

∂x4 (ξ0, nh1) + ∂4u
∂x4 (ξ1, nh1))

h2
0

(7.13)

=
∂u

∂t
(ih0, nh1)− κ∂

2u

∂x2
(ih0, nh1) +

1

2
h1
∂2u

∂t2
(ih0, ξ2)

+
1

24
h2

0(
∂4u

∂x4
(ξ0, nh1) +

∂4u

∂x4
(ξ1, nh1)). (7.14)

As in Def. 6, we subtract L[u] from (7.14) to get the desired result:
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∣∣∣L̂[r∆[u]]ni − r∆[L[u]]ni

∣∣∣ =

∣∣∣∣12h1
∂2u

∂t2
(ih0, ξ2)

+
1

24
h2

0

(
∂4u

∂x4
(ξ0, nh1) +

∂4u

∂x4
(ξ1, nh1)

)∣∣∣∣ (7.15)

≤ 1

2
h1

∣∣∣∣∂2u

∂t2
(ih0, ξ2)

∣∣∣∣
+

1

24
h2

0

∣∣∣∣∂4u

∂x4
(ξ0, nh1) +

∂4u

∂x4
(ξ1, nh1)

∣∣∣∣ (7.16)

≤ M1

2
h1 +

M0

12
h2

0. (7.17)

By Def. 5, we conclude that

L̂[r∆[u]]ni − r∆[L[u]]ni = O(h1) +O(h2
0). (7.18)

7.2.5.2 Specification

Fig. 7.8 gives an example snippet of a diffusion CIVL-C code annotated for

accuracy. The view of the computation in the program is slightly different than the

presentation of the math above. In the code, time steps are computed iteratively. This

involves rearranging (7.8). Recall that L̂[û] = 0. That is,

0 =
ûn+1
i − ûni
h1

− κ
ûni+1 − 2ûni + ûni−1

h2
0

(7.19)

0 = ûn+1
i − ûni − h1κ

ûni+1 − 2ûni + ûni−1

h2
0

(7.20)

ûn+1
i = ûni + h1κ

ûni+1 − 2ûni + ûni−1

h2
0

. (7.21)

Define Φ : Func(∆,R)→ Func(∆,R) by

Φ[v̂] = v̂ni + h1κ
v̂ni+1 − 2v̂ni + v̂ni−1

h2
0

This is what is actually computed in Fig. 7.8 at lines 16–17. CIVL can extract Φ by

symbolically executing the update function.

We define a shift operator S : Func(∆,R)→ Func(∆,R) by S[v̂]ni = v̂n+1
i . Eq.

(7.21) then becomes S[û] = Φ[û]. We rewrite L̂ in terms of S and Φ to get

L̂[v̂] =
S[v̂]− Φ[v̂]

h1

. (7.22)
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1 $input int n; /* Number of points */

2 $input double h; /* Distance between points */

3 $input double dt; /* Size of a time step */

4 $input double k; /* Constant for rate of diffusion */

5 $abstract $contin(4) $real u($real x, $real t);

6 $assume h > 0 && dt > 0 && k > 0;

7 double v[n], v_new[n];

8 int iter;

9

10 void update() {

11 $assume $forall {j=0 .. n-1} v[j] == u(j*h, iter*dt);

12 for (int i = 1; i < n-1; i++)

13 v_new[i] = v[i]+dt*k*(v[i+1]-2*v[i]+v[i-1])/(h*h);

14 for (int i = 1; i < n-1; i++)

15 v[i] = v_new[i];

16 $assert($uniform{m=1 .. n-2} (u(m*h, (iter+1)*dt)-v[m])/dt \

17 -$D[u,{t,1}](m*h,iter*dt)+k*$D[u,{x,2}](m*h,iter*dt)==$O(dt)+$O(h*h));

18 }

Figure 7.8: Annotated CIVL-C code for iterative diffusion in one dimension.
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Note that L̂[û] = 0 (since û satisfies S[û] = Φ[û]), but L̂[v̂] is not necessarily 0 for

arbitrary v̂.

Since Φ is what the code actually computes, we want to rewrite (7.18) in terms

of Φ. We use (7.22) to get

L̂[r∆[u]]ni − r∆[L[u]]ni =
S[r∆[u]]ni − Φ[r∆[u]]ni

h1

− r∆[L[u]]ni . (7.23)

The assertion in the code is

S[r∆[u]]ni − Φ[r∆[u]]ni
h1

− r∆[L[u]]ni = O(h1) +O(h2
0). (7.24)

By phrasing the assertion in this way, the information about L̂ is determined implicitly.

7.2.5.3 Verification

This diffusion solver is an iterative scheme. The abstract function u has two

parameters: one for space and one for time. In the assumption at line 11, the arguments

to the abstract function call have slightly different forms. The argument j*h matches

the spatial argument heuristic. During symbolic differential accuracy verification, the

verifier will recognize the form of the argument and combined with the continuity

specification to create the following assumptions:

$assume $forall {j=0..n-1} u((j+1)*h,iter*dt)==u(j*h,iter*dt)

+$D[u,{x,1}](j*h,iter*dt)*h+$D[u,{x,2}](j*h,iter*dt)*h*h/2

+$D[u,{x,3}](j*h,iter*dt)*h*h*h/6+$O(h*h*h*h);

$assume $forall {j=0..n-1} u((j-1)*h,iter*dt)==u(j*h,iter*dt)

-$D[u,{x,1}](j*h,iter*dt)*h+$D[u,{x,2}](j*h,iter*dt)*h*h/2

-$D[u,{x,3}](j*h,iter*dt)*h*h*h/6+$O(h*h*h*h);
The other argument, iter*dt does not match the spatial argument heuristic

(because no component of the expression is a variable bound by a quantifier). Instead,

it matches the time argument heuristic, resulting in the addition of the following as-

sumption:

$assume $forall {j=0..n-1} u(j*h,(iter+1)*dt)==u(j*h,iter*dt)

+$D[u,{t,1}](j*h,iter*dt)*dt+$O(dt*dt);
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When the assertion at lines 16-17 is passed to the prover, these three expansions

in the path condition provide enough information for the prover to determine that the

query is valid.

In this chapter we present a number of techniques for solving hyperbolic partial

differential equations. In particular, we will focus on the advection operator

L[u] =
∂u

∂t
+ a

∂u

∂x
(7.25)

in the case where L[u] = 0. The advection equation is useful for describing the transport

of a substance via currents in fluid.

7.2.6 Upwind scheme, first order

The upwind scheme for one dimensional advection uses forward differencing in

time and makes a choice of forward or backward differencing in space based on the

direction of the fluid flow. The stencil in Fig. 7.9 represents the points involved in the

upwind scheme computation.

7.2.6.1 Mathematical analysis

The discretized operator L̂ for the first order upwind method takes a function

v̂ : ∆→ R and returns a function L̂[v̂] : ∆→ R. It is defined by

L̂[v̂] =
v̂n+1
i − v̂ni
h1

+ a
v̂ni − v̂ni−1

h0

for a > 0 (7.26)

L̂[v̂] =
v̂n+1
i − v̂ni
h1

+ a
v̂ni+1 − v̂ni

h0

for a < 0. (7.27)

We claim that L̂ is a scheme for L that is ∆-uniformly accurate of order (1, 1).

Given i, n ∈ Z and h0, h1 > 0, there exist ξ0, ξ1 ∈ [(i−1)h0] and ξ2 ∈ [(n−1)h1, (n+1)h1]

such that the following hold:

r∆[u]ni+1 = u(ih0, nh1) + h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ξ0, nh1) (7.28)

r∆[u]ni−1 = u(ih0, nh1)− h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ξ1, nh1) (7.29)

r∆[u]n+1
i = u(ih0, nh1) + h1

∂u

∂t
(ih0, nh1) +

1

2
h2

1

∂2u

∂t2
(ih0, ξ2). (7.30)
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Figure 7.9: Stencils for the first order upwind scheme for linear advection when a is
positive (left) or negative (right).

Assume that on the domain of interest, the absolute values of the second deriva-

tives of u with respect to both x and t are bounded by M > 0. Substituting the

expansions into Eq. 7.26,

L̂[r∆[u]]ni =
u(ih0, nh1) + h1

∂u
∂t

(ih0, nh1) + 1
2
h2

1
∂2u
∂t2

(ih0, ξ2)− u(ih0, nh1)

h1

+ a
u(ih0, nh1)− (u(ih0, nh1)− h0

∂u
∂x

(ih0, nh1) + 1
2
h2

0
∂2u
∂x2 (ξ1, nh1))

h0

(7.31)

=
∂u

∂t
(ih0, nh1) +

1

2
h1
∂2u

∂t2
(ih0, ξ2)

+ a
∂u

∂x
(ih0, nh1)− a

2
h0
∂2u

∂x2
(ξ1, nh1) (7.32)

Similarly, substituting the expansions into Eq. 7.27,

L̂[r∆[u]]ni =
u(ih0, nh1) + h1

∂u
∂t

(ih0, nh1) + 1
2
h2

1
∂2u
∂t2

(ih0, ξ2)− u(ih0, nh1)

h1

+ a
u(ih0, nh1) + h0

∂u
∂x

(ih0, nh1) + 1
2
h2

0
∂2u
∂x2 (ξ0, nh1)− u(ih0, nh1)

h0

(7.33)

=
∂u

∂t
(ih0, nh1) +

1

2
h1
∂2u

∂t2
(ih0, ξ2)

+ a
∂u

∂x
(ih0, nh1) +

a

2
h0
∂2u

∂x2
(ξ1, nh1) (7.34)
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Subtracting L[u] from Eq. 7.32 and 7.34 yields∣∣∣L̂[r∆[u]]ni − r∆[L[u]]ni

∣∣∣ =

∣∣∣∣12h1
∂2u

∂t2
(ih0, ξ2)− a

2
h0
∂2u

∂x2
(ξ1, nh1)

∣∣∣∣ (7.35)

≤
∣∣∣∣12h1

∂2u

∂t2
(ih0, ξ2)

∣∣∣∣+

∣∣∣∣a2h0
∂2u

∂x2
(ξ1, nh1)

∣∣∣∣ (7.36)

≤ M

2
h1 +

aM

2
h0 for a > 0 (7.37)∣∣∣L̂[r∆[u]]ni − r∆[L[u]]ni

∣∣∣ =

∣∣∣∣12h1
∂2u

∂t2
(ih0, ξ2) +

a

2
h0
∂2u

∂x2
(ξ1, nh1)

∣∣∣∣ (7.38)

≤
∣∣∣∣12h1

∂2u

∂t2
(ih0, ξ2)

∣∣∣∣+

∣∣∣∣a2h0
∂2u

∂x2
(ξ1, nh1)

∣∣∣∣ (7.39)

≤ M

2
h1 +

aM

2
h0 for a < 0 (7.40)

By Def. 5, we conclude that

L̂[r∆[u]]ni − r∆[L[u]]ni = O(h1) +O(h0). (7.41)

7.2.6.2 Specification

Figure 7.10 gives an excerpt of CIVL-C code for solving the one dimensional

advection equation using the first order upwind scheme. Note the branching on the

value of a at line 27. The branch indicates the direction of the flow, and the code

chooses to do forward or backward differencing based on its sign. The assumption

added to the path condition at line 8 precludes the trivial condition of a = 0 (i.e. the

case when there is no flow).

7.2.6.3 Verification

The abstract function u is declared to have two continuous derivatives, and the

first argument to the call of u at line 26 matches the spatial argument heuristic. Thus,

the verifier adds the following assumptions:

$assume $forall {j=0..n-1} u((j+1)*h,iter*dt)==u(j*h,iter*dt)

+$D[u,{x,1}](j*h,iter*dt)*h+$O(h*h);

$assume $forall {j=0..n-1} u((j-1)*h,iter*dt)==u(j*h,iter*dt)

-$D[u,{x,1}](j*h,iter*dt)*h+$O(h*h);

60



1 $input int n; /* Number of points */

2 $input double h; /* Distance between points */

3 $input double dt; /* Size of a time step */

4 $input double a; /* Constant for wave velocity */

5 $abstract $contin(2) $real u($real x, $real t);

6 $assume h > 0;

7 $assume dt > 0;

8 $assume a != 0;

9 double v[n];

10 double v_new[n];

11 int iter;

12

13 void upwindForward() {

14 for (int i = 1; i < n-1; i++) {

15 v_new[i] = v[i]-dt*a*(v[i+1]-v[i])/h;

16 }

17 }

18

19 void upwindBackward() {

20 for (int i = 1; i < n-1; i++) {

21 v_new[i] = v[i]-dt*a*(v[i]-v[i-1])/h;

22 }

23 }

24

25 void upwind() {

26 $assume $forall {j=0 .. n-1} v[j] == u(j*h, iter*dt);

27 if (a > 0)

28 upwindBackward();

29 else

30 upwindForward();

31 for (int i = 1; i < n-1; i++) {

32 v[i] = v_new[i];

33 }

34 $assert($uniform{m=1..n-2} (u(m*h,(iter+1)*dt)-v[m])/dt- \

35 ($D[u, {t, 1}](m*h, iter*dt)+a*$D[u,{x,1}](m*h, iter*dt)) \

36 ==$O(dt)+$O(h));

37 }

Figure 7.10: Excerpt of annotated CIVL-C code for the first order upwind scheme.
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The second argument to the call of u at line 26 match the time argument heuris-

tic. This prompts the verifier to add the assumption:

$assume $forall {j=0..n-1} u(j*h,(iter+1)*dt)==u(j*h,iter*dt)

+$D[u,{t,1}](j*h,iter*dt)*dt+$O(dt*dt);
For each iteration of the upwind scheme, the assertion will be checked twice;

once for each result of the branch at line 27. The values in v will differ depending on

whether they were computed using upwindForward() or upwindBackward(). However,

just like in the manual mathematical analysis, the same set of assumptions provides

enough information to the prover to check the assertion regardless of whether the

forward or backward computation is used.

7.2.7 Upwind scheme, second order

The second order upwind scheme functions similarly to the first order scheme

given in Sec. 7.2.6. In order to gain the additional accuracy, the second order upwind

scheme uses an extra point in the opposite direction from the flow. The stencil in Fig.

7.11 describes the points used in the scheme.

7.2.7.1 Mathematical analysis

The discretized operator L̂ for the second order upwind method takes a function

v̂ : ∆→ R and returns a function L̂[v̂] : ∆→ R. It is defined by

L̂[v̂] =
v̂n+1
i − v̂ni
h1

+ a
3v̂ni − 4v̂ni−1 + v̂ni−2

2h0

for a > 0 (7.42)

L̂[v̂] =
v̂n+1
i − v̂ni
h1

+ a
−v̂ni+2 + 4v̂ni+1 − 3v̂ni

2h0

for a < 0. (7.43)

We claim that L̂ is a scheme for L that is ∆-uniformly accurate of order (2, 1).

Given i, n ∈ Z and h0, h1 > 0, there exist ξ0, ξ1, ξ2, ξ3 ∈ [(i − 1)h0] and ξ4 ∈ [(n −
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Figure 7.11: Stencils for the second order upwind scheme for linear advection when
a is positive (left) or negative (right).

1)h1, (n+ 1)h1] such that the following hold:

r∆[u]ni+1 = u(ih0, nh1) + h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ih0, nh1)

+
1

6
h3

0

∂3u

∂x3
(ξ0, nh1) (7.44)

r∆[u]ni−1 = u(ih0, nh1)− h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ih0, nh1)

+
1

6
h3

0

∂3u

∂x3
(ξ1, nh1) (7.45)

r∆[u]ni+2 = u(ih0, nh1) + 2h0
∂u

∂x
(ih0, nh1) + 2h2

0

∂2u

∂x2
(ih0, nh1)

+
4

3
h3

0

∂3u

∂x3
(ξ2, nh1) (7.46)

r∆[u]ni−2 = u(ih0, nh1)− 2h0
∂u

∂x
(ih0, nh1) + 2h2

0

∂2u

∂x2
(ih0, nh1)

+
4

3
h3

0

∂3u

∂x3
(ξ3, nh1) (7.47)

r∆[u]n+1
i = u(ih0, nh1) + h1

∂u

∂t
(ih0, nh1) +

1

2
h2

1

∂2u

∂t2
(ih0, ξ4). (7.48)

Assume that on the domain of interest, the absolute value of the third derivative

of u with respect to x is bounded by M0 > 0, and that the absolute value of the second

derivative of u with respect to t is bounded by M1 > 0. Substituting the expansions
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into Eq. 7.42,

L̂[r∆[u]]ni =
u(ih0, nh1) + h1

∂u
∂t

(ih0, nh1) + 1
2
h2

1
∂2u
∂t2

(ih0, ξ4)− u(ih0, nh1)

h1

+
a

2h0

(3u(ih0, nh1)− 4(u(ih0, nh1)− h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ih0, nh1)

+
1

6
h3

0

∂3u

∂x3
(ξ1, nh1)) + (u(ih0, nh1)− 2h0

∂u

∂x
(ih0, nh1) + 2h2

0

∂2u

∂x2
(ih0, nh1)

+
4

3
h3

0

∂3u

∂x3
(ξ3, nh1))) (7.49)

=
∂u

∂t
(ih0, nh1) +

1

2
h1
∂2u

∂t2
(ih0, ξ4)

+
a

2h0

(2h0
∂u

∂x
(ih0, nh1)− 2

3
h3

0

∂3u

∂x3
(ξ1, nh1) +

4

3
h3

0

∂3u

∂x3
(ξ3, nh1)) (7.50)

=
∂u

∂t
(ih0, nh1) +

1

2
h1
∂2u

∂t2
(ih0, ξ4)

+ a
∂u

∂x
(ih0, nh1)− a

3
h2

0

∂3u

∂x3
(ξ1, nh1) +

2a

3
h2

0

∂3u

∂x3
(ξ3, nh1) (7.51)

Similarly, substituting the expansions into Eq. 7.43,

L̂[r∆[u]]ni =
u(ih0, nh1) + h1

∂u
∂t

(ih0, nh1) + 1
2
h2

1
∂2u
∂t2

(ih0, ξ4)− u(ih0, nh1)

h1

+
a

2h0

(−(u(ih0, nh1) + 2h0
∂u

∂x
(ih0, nh1) + 2h2

0

∂2u

∂x2
(ih0, nh1)

+
4

3
h3

0

∂3u

∂x3
(ξ2, nh1)) + 4(u(ih0, nh1) + h0

∂u

∂x
(ih0, nh1)

+
1

2
h2

0

∂2u

∂x2
(ih0, nh1) +

1

6
h3

0

∂3u

∂x3
(ξ0, nh1))− 3u(ih0, nh1)) (7.52)

=
∂u

∂t
(ih0, nh1) +

1

2
h1
∂2u

∂t2
(ih0, ξ4)

+
a

2h0

(2h0
∂u

∂x
(ih0, nh1)− 4

3
h3

0

∂3u

∂x3
(ξ2, nh1) +

2

3
h3

0

∂3u

∂x3
(ξ0, nh1)) (7.53)

=
∂u

∂t
(ih0, nh1) +

1

2
h1
∂2u

∂t2
(ih0, ξ4)

+ a
∂u

∂x
(ih0, nh1)− 2a

3
h2

0

∂3u

∂x3
(ξ2, nh1) +

a

3
h2

0

∂3u

∂x3
(ξ0, nh1) (7.54)
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Subtracting L[u] from Eq. 7.51 and 7.54 yields∣∣∣L̂[r∆[u]]ni − r∆[L[u]]ni

∣∣∣ =

∣∣∣∣12h1
∂2u

∂t2
(ih0, ξ4)− a

3
h2

0

∂3u

∂x3
(ξ1, nh1) +

2a

3
h2

0

∂3u

∂x3
(ξ3, nh1)

∣∣∣∣
≤
∣∣∣∣12h1

∂2u

∂t2
(ih0, ξ4)

∣∣∣∣+

∣∣∣∣a3h2
0

∂3u

∂x3
(ξ1, nh1)

∣∣∣∣
+

∣∣∣∣2a3 h2
0

∂3u

∂x3
(ξ3, nh1)

∣∣∣∣ (7.55)

≤ M1

2
h1 + aM0h

2
0 for a > 0 (7.56)∣∣∣L̂[r∆[u]]ni − r∆[L[u]]ni

∣∣∣ =

∣∣∣∣12h1
∂2u

∂t2
(ih0, ξ4)− 2a

3
h2

0

∂3u

∂x3
(ξ2, nh1) +

a

3
h2

0

∂3u

∂x3
(ξ0, nh1)

∣∣∣∣
≤
∣∣∣∣12h1

∂2u

∂t2
(ih0, ξ4)

∣∣∣∣+

∣∣∣∣2a3 h2
0

∂3u

∂x3
(ξ2, nh1)

∣∣∣∣
+

∣∣∣∣a3h2
0

∂3u

∂x3
(ξ0, nh1)

∣∣∣∣ (7.57)

≤ M1

2
h1 + aM0h

2
0 for a < 0. (7.58)

By Def. 5, we conclude that

L̂[r∆[u]]ni − r∆[L[u]]ni = O(h1) +O(h2
0). (7.59)

7.2.7.2 Specification

The abstract function is declared in at line 5 to have three continuous derivatives.

The assumption relating the array v to u is at line 28. The assertion at lines 36-38

checks that the code is ∆-uniformly first order accurate in time and second order

accurate in space.

7.2.7.3 Verification

The abstract function u is declared to have three continuous derivatives, and

the first argument to the call of u at line 28 matches the spatial argument heuristic.

Thus, the verifier adds the following assumptions:
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1 $input int n; /* Number of points */

2 $input double h; /* Distance between points */

3 $input double dt; /* Size of a time step */

4 $input double a; /* Constant for wave velocity */

5 $abstract $contin(3) $real u($real x, $real t);

6 $assume h > 0;

7 $assume dt > 0;

8 $assume a != 0;

9 double v[n];

10 double v_new[n];

11 int iter;

12

13 void upwindForward() {

14 for (int i = 1; i < n-2; i++) {

15 v_new[i] = v[i]-dt*a*(-v[i+2]+4*v[i+1]-3*v[i])/(2*h);

16 }

17 v_new[n-2] = v[n-2]-dt*a*(v[n-1]-v[n-2])/h;

18 }

19

20 void upwindBackward() {

21 for (int i = 2; i < n-1; i++) {

22 v_new[i] = v[i]-dt*a*(3*v[i]-4*v[i-1] + v[i-2])/(2*h);

23 }

24 v_new[1] = v[1]-dt*a*(v[1]-v[0])/h;

25 }

26

27 void upwind() {

28 $assume $forall {j=0 .. n-1} v[j] == u(j*h, iter*dt);

29 if (a > 0)

30 upwindBackward();

31 else

32 upwindForward();

33 for (int i = 1; i < n-1; i++) {

34 v[i] = v_new[i];

35 }

36 $assert($uniform{m=2..n-3} (u(m*h,(iter+1)*dt)-v[m])/dt- \

37 ($D[u,{t,1}](m*h,iter*dt)+a*$D[u,{x,1}](m*h,iter*dt)) \

38 ==$O(dt)+$O(h*h));

39 }

Figure 7.12: Excerpt of annotated CIVL-C code for the second order upwind scheme.
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$assume $forall {j=0..n-1} u((j+1)*h,iter*dt)==u(j*h,iter*dt)

+$D[u,{x,1}](j*h,iter*dt)*h+$D[u,{x,2}](j*h,iter*dt)*h*h/2

+$O(h*h*h);

$assume $forall {j=0..n-1} u((j-1)*h,iter*dt)==u(j*h,iter*dt)

-$D[u,{x,1}](j*h,iter*dt)*h+$D[u,{x,2}](j*h,iter*dt)*h*h/2

+$O(h*h*h);

The second argument to the call of u at line 28 match the time argument heuris-

tic. This prompts the verifier to add the assumption:

$assume $forall {j=0..n-1} u(j*h,(iter+1)*dt)==u(j*h,iter*dt)

+$D[u,{t,1}](j*h,iter*dt)*dt+$O(dt*dt);
As in the first order scheme, the assertion will be checked at each iteration for

both branches of the code. CIVL is able to verify the second order upwind scheme for

small configurations, but the queries rapidly become untenable for the current prover.

7.2.8 Upwind scheme, third order

The third order upwind scheme uses an additional point compared to the second

order scheme, but this time the extra point is in the direction of the flow, as in the

stencil in Fig. 7.13.

7.2.8.1 Mathematical analysis

The discretized operator L̂ for the third order upwind method takes a function

v̂ : ∆→ R and returns a function L̂[v̂] : ∆→ R. It is defined by

L̂[v̂] =
v̂n+1
i − v̂ni
h1

+ a
2v̂ni+1 + 3v̂ni − 6v̂ni−1 + v̂ni−2

6h0

for a > 0 (7.60)

L̂[v̂] =
v̂n+1
i − v̂ni
h1

+ a
−v̂ni+2 + 6v̂ni+1 − 3v̂ni − 2v̂ni−1

6h0

for a < 0. (7.61)

Proving the accuracy of the scheme requires Taylor expansions around the same
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Figure 7.13: Stencils for the third order upwind scheme for linear advection when a
is positive (left) or negative (right).

points as Sec. 7.2.7, but with an extra term in the expansion.

r∆[u]ni+1 = u(ih0, nh1) + h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ih0, nh1)

+
1

6
h3

0

∂3u

∂x3
(ih0, nh1) +

1

24
h4

0

∂4u

∂x4
(ξ0, nh1) (7.62)

r∆[u]ni−1 = u(ih0, nh1)− h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ih0, nh1)

+
1

6
h3

0

∂3u

∂x3
(ih0, nh1) +

1

24
h4

0

∂4u

∂x4
(ξ1, nh1) (7.63)

r∆[u]ni+2 = u(ih0, nh1) + 2h0
∂u

∂x
(ih0, nh1) + 2h2

0

∂2u

∂x2
(ih0, nh1)

+
4

3
h3

0

∂3u

∂x3
(ih0, nh1) +

2

3
h4

0

∂4u

∂x4
(ξ2, nh1) (7.64)

r∆[u]ni−2 = u(ih0, nh1)− 2h0
∂u

∂x
(ih0, nh1) + 2h2

0

∂2u

∂x2
(ih0, nh1)

+
4

3
h3

0

∂3u

∂x3
(ih0, nh1) +

2

3
h4

0

∂4u

∂x4
(ξ3, nh1) (7.65)

r∆[u]n+1
i = u(ih0, nh1) + h1

∂u

∂t
(ih0, nh1) +

1

2
h2

1

∂2u

∂t2
(ih0, ξ4). (7.66)

Assume that on the domain of interest, the absolute value of the fourth derivative

of u with respect to x is bounded by M0 > 0, and that the absolute value of the second

derivative of u with respect to t is bounded by M1 > 0. Substituting the expansions
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into Eq. 7.60,

L̂[r∆[u]]ni =
u(ih0, nh1) + h1

∂u
∂t

(ih0, nh1) + 1
2
h2

1
∂2u
∂t2

(ih0, ξ4)− u(ih0, nh1)

h1

+
a

6h0

(2(u(ih0, nh1) + h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ih0, nh1)

+
1

6
h3

0

∂3u

∂x3
(ih0, nh1) +

1

24
h4

0

∂4u

∂x4
(ξ0, nh1))

+ 3u(ih0, nh1)− 6(u(ih0, nh1)− h0
∂u

∂x
(ih0, nh1) +

1

2
h2

0

∂2u

∂x2
(ih0, nh1)

+
1

6
h3

0

∂3u

∂x3
(ih0, nh1) +

1

24
h4

0

∂4u

∂x4
(ξ1, nh1))

+ u(ih0, nh1)− 2h0
∂u

∂x
(ih0, nh1) + 2h2

0

∂2u

∂x2
(ih0, nh1)

+
4

3
h3

0

∂3u

∂x3
(ih0, nh1) +

2

3
h4

0

∂4u

∂x4
(ξ3, nh1)) (7.67)

=
∂u

∂t
(ih0, nh1) +

1

2
h1
∂2u

∂t2
(ih0, ξ4) +

a

6h0

(6h0
∂u

∂x
(ih0, nh1)

+
1

12
h4

0

∂4u

∂x4
(ξ0, nh1)− 1

4
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0

∂4u
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2

3
h4

0

∂4u

∂x4
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=
∂u

∂t
(ih0, nh1) +

1

2
h1
∂2u

∂t2
(ih0, ξ4) + a

∂u

∂x
(ih0, nh1)

+
a

72
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0

∂4u

∂x4
(ξ0, nh1)− a

24
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0

∂4u

∂x4
(ξ1, nh1) +

a

9
h3

0

∂4u

∂x4
(ξ3, nh1) (7.69)
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Similarly, substituting the expansions into Eq. 7.61,

L̂[r∆[u]]ni =
u(ih0, nh1) + h1

∂u
∂t

(ih0, nh1) + 1
2
h2

1
∂2u
∂t2

(ih0, ξ4)− u(ih0, nh1)

h1

+
a

6h0
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∂u
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3
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∂x3
(ih0, nh1) +

2

3
h4

0

∂4u

∂x4
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∂u
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0
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1
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1

24
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0
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1

2
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0
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+
1

6
h3

0

∂3u
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1

24
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0

∂4u

∂x4
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=
∂u

∂t
(ih0, nh1) +

1

2
h1
∂2u
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(ih0, ξ4) +

a

6h0
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− 2

3
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0
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1

4
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0

∂4u
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12
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0

∂4u

∂x4
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=
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1

2
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∂2u

∂t2
(ih0, ξ4) + a
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− a
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0
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a

24
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0

∂4u

∂x4
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72
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0
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∂x4
(ξ1, nh1) (7.72)
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Subtracting L[u] from Eq. 7.69 and 7.72 yields∣∣∣L̂[r∆[u]]ni − r∆[L[u]]ni

∣∣∣ =

∣∣∣∣12h1
∂2u

∂t2
(ih0, ξ4) +

a

72
h3

0

∂4u

∂x4
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24
h3

0

∂4u

∂x4
(ξ1, nh1)

+
a

9
h3

0

∂4u

∂x4
(ξ3, nh1)

∣∣∣∣ (7.73)
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0
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+
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0
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∂x4
(ξ3, nh1)

∣∣∣∣ (7.74)

≤ M1

2
h1 +

aM0

6
h2

0 for a > 0 (7.75)∣∣∣L̂[r∆[u]]ni − r∆[L[u]]ni

∣∣∣ =
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0
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∂4u

∂x4
(ξ1, nh1)

∣∣∣∣ (7.77)

≤ M1

2
h1 +

aM0

6
h2

0 for a < 0. (7.78)

By Def. 5, we conclude that

L̂[r∆[u]]ni − r∆[L[u]]ni = O(h1) +O(h3
0). (7.79)

7.2.8.2 Specification

The code is structured the same way as the first and second order upwind

schemes. In this case, the abstract function is declared at line 5 to have four continuous

derivatives. The assumption relating the array v to u is at line 28. The assertion at

lines 36-38 checks that the code is ∆-uniformly first order accurate in time and third

order accurate in space.

7.2.8.3 Verification

The abstract function u is declared to have four continuous derivatives, and the

first argument to the call of u at line 28 matches the spatial argument heuristic. Thus,
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1 $input int n; /* Number of points */

2 $input double h; /* Distance between points */

3 $input double dt; /* Size of a time step */

4 $input double a; /* Constant for wave velocity */

5 $abstract $contin(4) $real u($real x, $real t);

6 $assume h > 0;

7 $assume dt > 0;

8 $assume a != 0;

9 double v[n];

10 double v_new[n];

11 int iter;

12

13 void upwindForward() {

14 for (int i = 1; i < n-2; i++) {

15 v_new[i] = v[i]-dt*a*(-v[i+2]+6*v[i+1]-3*v[i]-2*v[i-1])/(6*h);

16 }

17 v_new[n-2] = v[n-2]-dt*a*(v[n-1]-v[n-2])/h;

18 }

19

20 void upwindBackward() {

21 for (int i = 2; i < n-1; i++) {

22 v_new[i] = v[i]-dt*a*(2*v[i+1]+3*v[i]-6*v[i-1] + v[i-2])/(6*h);

23 }

24 v_new[1] = v[1]-dt*a*(v[1]-v[0])/h;

25 }

26

27 void upwind() {

28 $assume $forall {j=0 .. n-1} v[j] == u(j*h, iter*dt);

29 if (a > 0)

30 upwindBackward();

31 else

32 upwindForward();

33 for (int i = 1; i < n-1; i++) {

34 v[i] = v_new[i];

35 }

36 $assert($uniform{m=2..n-3} (u(m*h,(iter+1)*dt)-v[m])/dt- \

37 ($D[u,{t,1}](m*h,iter*dt)+a*$D[u,{x,1}](m*h,iter*dt) \

38 ==$O(dt)+$O(h*h*h));

39 }

Figure 7.14: Excerpt of annotated CIVL-C code for the third order upwind scheme.
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the verifier adds the following assumptions:

$assume $forall {j=0..n-1} u((j+1)*h,iter*dt)==u(j*h,iter*dt)

+$D[u,{x,1}](j*h,iter*dt)*h+$D[u,{x,2}](j*h,iter*dt)*h*h/2

+$D[u,{x,3}](j*h,iter*dt)*h*h*h/6+$O(h*h*h*h);

$assume $forall {j=0..n-1} u((j-1)*h,iter*dt)==u(j*h,iter*dt)

-$D[u,{x,1}](j*h,iter*dt)*h+$D[u,{x,2}](j*h,iter*dt)*h*h/2

-$D[u,{x,3}](j*h,iter*dt)*h*h*h/6+$O(h*h*h*h);
The second argument to the call of u at line 28 match the time argument heuris-

tic. This prompts the verifier to add the assumption:

$assume $forall {j=0..n-1} u(j*h,(iter+1)*dt)==u(j*h,iter*dt)

+$D[u,{t,1}](j*h,iter*dt)*dt+$O(dt*dt);
Like the second order upwind scheme, CIVL can verify the third order scheme

for very small configurations, but the complexity quickly surpasses the prover’s ability

to handle. Future work will research new techniques or other provers to mitigate this

issue and improve scaling.

7.3 Scaling

Fig. 7.15 gives the results of some scaling experiments for verifying correct pro-

grams. For the Laplace example, the number of rows is held constant and the column

dimension is scaled. In addition, CIVL was correctly unable to verify modified asser-

tions that claimed too high of an order of accuracy.

While the scaling seems reasonable, the underlying theorem prover eventually

becomes unable to verify the assertion. More research is needed to determine how to

mitigate the theorem prover issues. Possibilities include reformulating the queries or

applying some sort of invariant techniques to reduce the size of queries.
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Chapter 8

CONCLUSION

We have shown a method, based on symbolic execution, by which code imple-

menting a finite difference numerical approximation scheme can be specified and verified

to meet order of accuracy requirements. Contrary to other approaches for accuracy

verification, our approach requires only a few lines of code annotation. The lines of

annotation use information that should be readily available to anybody implementing

a numerical scheme.

The examples successfully verified with this approach are some commonly used

finite difference approximations. They are applied to a variety of scientific and en-

gineering problems. Our method can assist practitioners of these numerical methods

with increasing their degree of confidence in their software.

Fig. 8.1 summarizes the results of applying symbolic differential accuracy veri-

fication to small configurations of each of the case studies. The “Valid calls” column

gives the number of times that the symbolic algebra library was asked to check the

validity of a query. The “Prover calls” column give the number of times that the sym-

bolic algebra library’s internal validity checker was unable to discharge the query, and

it had to be passed to the underlying theorem prover. The “States” column shows the

number of states instantiated during the verification process.

Symbolic differential accuracy verification in its current form is not a complete

solution to the problem of verifying the order of accuracy of numerical codes. While we

have demonstrated effectiveness for a variety of finite difference case studies on a regular

mesh, we have not addressed irregular meshes or other types of numerical schemes.

Nor have we considered issues such as stability. In addition, some finite difference
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Name Time (s) Valid calls Prover calls Mem (MB) States
Backward difference
num elements = 3 1.6 22 2 257 89
num elements = 5 1.9 32 2 325 109
num elements = 7 2.1 42 2 325 129
num elements = 9 2.5 52 2 460 149
Central difference
num elements = 3 1.8 23 1 325 86
num elements = 5 2.3 33 2 325 106
num elements = 7 3.7 43 2 460 126
num elements = 9 4.2 53 2 465 146

Second derivative
num elements = 3 1.5 27 1 325 82
num elements = 5 2.2 39 2 325 102
num elements = 7 2.9 51 2 460 122
num elements = 9 3.7 63 2 460 142

Laplace 2d
rows = 3, cols = 3 3.2 33 1 460 113
rows = 3, cols = 4 4.3 45 1 735 123
rows = 3, cols = 5 7.6 57 1 1277 133
rows = 3, cols = 6 11.1 69 1 1277 143
rows = 3, cols = 7 9.9 81 1 1594 153
rows = 3, cols = 8 8.7 93 1 1594 163
rows = 3, cols = 9 24.7 105 1 1594 173

Diffusion 1d
n = 3 1.7 29 1 325 152
n = 4 2.8 39 2 460 182
n = 5 2.7 49 2 460 212
n = 6 3.3 59 2 460 242
n = 7 8.6 69 2 735 272

Upwind 1st order
n = 3 1.7 42 7 325 215
n = 4 3.1 58 9 325 265
n = 5 3.6 74 9 460 315
n = 6 3.7 90 9 460 365
n = 7 4.2 106 9 460 415

Upwind 2nd order
n = 5 4.3 70 7 460 298

Upwind 3rd order
n = 5 4.7 76 7 460 301

Figure 8.1: Summary of results of running CIVL on small configurations of the case
studies.
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problems are not amenable to our approach in its current form. For example, the

Lax-Friedrichs scheme is an explicit numerical method for solving hyperbolic partial

differential equations. It uses a simple stencil, and is first order accurate in time

and second order accurate in space. On the surface, it appears similar in complexity

to several of the examples presented here. However, the order of accuracy analysis

requires additional information about the relationship between the size of the time

step and space step.

Theorem proving is a challenge for this type of reasoning. The current imple-

mentation of SARL uses CVC3 as the underlying SMT solver. Some examples, such

as the second and third order upwind schemes, become unmanageable by CVC3 at

modest configurations. Future work will involve experimenting with different theorem

provers, including CVC4 [5] and Z3 [52]. It might also be beneficial to use multiple

theorem provers simultaneously since different provers might handle certain queries

more efficiently.
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editor, Proc. European Symposium on Programming (ESOP’05), volume 3444 of
Lecture Notes in Computer Science, pages 21–30, Edinburgh, April 2–10 2005.
Springer Berlin Heidelberg.

[24] Dawson Engler Cristian Cadar, Daniel Dunbar. Klee: Unassisted and automatic
generation of high-coverage tests for complex system programs. In Proceedings of
the 8th USENIX Symposium on Operating Systems Design and Implementation,
2008.

[25] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. Verifying systems rules
using rule-directed symbolic execution. In Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’13, pages 329–342, New York, NY, USA, 2013. ACM.

[26] David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, and
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Appendix A

PROOF OF BOUNDS FOR sin′(X)

Proof of upper bound. We take the Taylor expansion of sin(x± h).

sin(x+ h) = sin(x) + h cos(x)− h2

2!
sin(x) +

∞∑
i=3

hi

i!

∂i

∂xi
sin(x) (A.1)

sin(x− h) = sin(x)− h cos(x)− h2

2!
sin(x) +
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i=3

(−h)i

i!

∂i

∂xi
sin(x) (A.2)

Substituting equations A.1 and A.2 into the left hand side of equation 2.4 and simpli-

fying yields

φ(x, h) =

∣∣∣∣∣cos(x)−
∑∞

i=0
2h2i+1

(2i+1)!
∂2i+1

∂x2i+1 sin(x)

2h

∣∣∣∣∣ (A.3)

=

∣∣∣∣∣
∞∑
i=1

h2i

(2i+ 1)!

∂2i+1

∂x2i+1
sin(x)

∣∣∣∣∣ (A.4)

=

∣∣∣∣∣
∞∑
i=1

(−1)i+1 h2i

(2i+ 1)!
cos(x)

∣∣∣∣∣ . (A.5)

All sin(x) terms in the expansions are cancelled due to the subtraction, so a cos(x) can

be factored out. Take ε = 1. Since h < 1, the remaining numerators are less than h2.

Factoring out an h2 results in all numerators in the remaining sum being less than or

equal to one. The resulting sum is bounded by

∞∑
k=0

1

k!
−
(

1

0!
+

1

1!
+

1

2!
+

1

4!

)
= e−

(
1

0!
+

1

1!
+

1

2!
+

1

4!

)
< 0.2

and therefore we get
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φ(x, h) =

∣∣∣∣∣
∞∑
i=2

(−1)i
h2i

(2i− 1)!
cos(x)

∣∣∣∣∣ (A.6)
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)∣∣∣∣∣ (A.7)

<
∣∣0.2 cos(x)h2

∣∣ (A.8)

≤ 0.2h2. (A.9)

This shows that C = 0.2 and ε = 1 satisfy the condition required by Definition 3. Thus

we see that g is a uniformly second order accurate approximation of f on R.
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Proof of lower bound at x = π. Start with equation A.5 and consider the point x = π:
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Thus the error is bounded from below by 0.15h2.
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Appendix B

CIVL TOOL OPTIONS

CIVL v0.9 of 2014-03-14 -- http://vsl.cis.udel.edu/civl

Usage: civl <command> <options> filename ...

Commands:

verify : verify program filename

run : run program filename

help : print this message

replay : replay trace for program filename

parse : show result of preprocessing and parsing filename

preprocess : show result of preprocessing filename

Options:

-debug or -debug=BOOLEAN (default: false)

debug mode: print very detailed information

-echo or -echo=BOOLEAN (default: false)

print the command line

-enablePrintf or -enablePrintf=BOOLEAN (default: true)

enable printf function

-errorBound=INTEGER (default: 1)

stop after finding this many errors

-guided or -guided=BOOLEAN

user guided simulation; applies only to run, ignored

for all other commands

-id=INTEGER (default: 0)

ID number of trace to replay

-inputKEY=VALUE

initialize input variable KEY to VALUE

-maxdepth=INTEGER (default: 2147483647)

bound on search depth

-min or -min=BOOLEAN (default: false)

search for minimal counterexample

-mpi or -mpi=BOOLEAN (default: false)

MPI mode

-por=STRING (default: std)

partial order reduction (por) choices:

std (standard por) or scp1 (scoped por 1) or scp1 (scoped por 2)
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-random or -random=BOOLEAN

select enabled transitions randomly; default for run,

ignored for all other commands

-saveStates or -saveStates=BOOLEAN (default: true)

save states during depth-first search

-seed=STRING

set the random seed; applies only to run

-showAmpleSet or -showAmpleSet=BOOLEAN (default: false)

print the ample set of each state

-showModel or -showModel=BOOLEAN (default: false)

print the model

-showProverQueries or -showProverQueries=BOOLEAN (default: false)

print theorem prover queries only

-showQueries or -showQueries=BOOLEAN (default: false)

print all queries

-showSavedStates or -showSavedStates=BOOLEAN (default: false)

print saved states only

-showStates or -showStates=BOOLEAN (default: false)

print all states

-showTransitions or -showTransitions=BOOLEAN (default: false)

print transitions

-simplify or -simplify=BOOLEAN (default: true)

simplify states?

-solve or -solve=BOOLEAN (default: false)

try to solve for concrete counterexample

-sysIncludePath=STRING

set the system include path

-trace=STRING

filename of trace to replay

-userIncludePath=STRING

set the user include path

-verbose or -verbose=BOOLEAN (default: false)

verbose mode

90



Appendix C

PROVER QUERY FOR BACKWARD FINITE DIFFERENCE
ASSERTION

CVC3 assumptions 1: TRUE

(LET v_0 = rho(X_s0v2),

v_36 = X_s0v4[1],

v_23 = (-1 * v_36),

v_35 = (v_0 + v_23),

v_3 = (2 * X_s0v2),

v_2 = rho(v_3),

v_38 = X_s0v4[2],

v_20 = (-1 * v_38),

v_37 = (v_2 + v_20),

v_12 = ((1 * rhox1(0)) * X_s0v2),

v_1 = BIG_O((X_s0v2 ^ 2)),

v_11 = (-1 * v_0),

v_6 = rho(0),

v_39 = (v_12 + v_1 + v_11 + v_6),

v_14 = ((1 * rhox1(X_s0v2)) * X_s0v2),

v_9 = (-1 * v_2),

v_40 = (v_14 + v_1 + v_0 + v_9),

v_10 = ((1 * rhox1(v_3)) * X_s0v2),

v_4 = (3 * X_s0v2),

v_5 = rho(v_4),

v_7 = (-1 * v_5),

v_41 = (v_10 + v_1 + v_2 + v_7),

v_8 = ((1 * rhox1(v_4)) * X_s0v2),

v_17 = rho((4 * X_s0v2)),

v_29 = (-1 * v_17),

v_42 = (v_8 + v_1 + v_5 + v_29),

v_13 = (-1 * v_6),

v_22 = X_s0v4[0],

v_21 = X_s0v4[3],

v_16 = (-1 * v_8),

v_34 = (v_16 + v_1 + v_9 + v_5),

v_15 = (-1 * v_10),

v_33 = (v_15 + v_1 + v_11 + v_2),

v_18 = (-1 * v_12),
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v_19 = (-1 * v_14),

v_43 = rho((-1 * X_s0v2)),

v_30 = (-1 * v_43),

v_31 = (v_18 + v_1 + v_30 + v_6),

v_32 = (v_19 + v_1 + v_0 + v_13),

v_24 = (2/3 * v_21),

v_25 = (1/3 * v_22),

v_26 = (1/3 * v_21),

v_27 = (2/3 * v_22),

v_28 = (-1/3 * v_22)

IN ((0 = v_35) AND (0 = v_37) AND (0 = v_39) AND (0 = v_40) AND (0 = v_41) AND (

0 = v_42) AND (0 = ((-1 * ((1 * BIG_O(X_s0v2)) * X_s0v2)) + v_1)) AND (0 = (v_13

+ v_22)) AND (0 = (v_7 + v_21)) AND (0 <= v_34) AND (0 <= v_33) AND (0 <= (v_18

+ v_1 + v_0 + v_13)) AND (0 <= (v_19 + v_1 + v_11 + v_2)) AND (0 <= (v_15 + v_1

+ v_9 + v_5)) AND (0 <= (v_16 + v_1 + v_7 + v_17)) AND (0 <= v_31) AND (0 <= v_

32) AND (0 < X_s0v2) AND (0 = (v_20 + v_24 + v_25)) AND (0 = (v_23 + v_26 + v_27

)) AND (0 = (v_9 + v_24 + v_25)) AND (0 = (v_11 + v_26 + v_27)) AND (0 = (v_18 +

v_1 + v_26 + v_28)) AND (0 = (v_16 + v_1 + v_26 + v_28)) AND (0 = (v_15 + v_1 +

v_26 + v_28)) AND (0 = (v_19 + v_1 + v_26 + v_28)) AND (0 = (v_29 + (4/3 * v_21

) + v_28)) AND (0 = (v_30 + (-1/3 * v_21) + (4/3 * v_22))) AND (0 = v_31) AND (0

= v_32) AND (0 = v_33) AND (0 = v_34) AND (0 <= (v_8 + v_1 + v_2 + v_7)) AND (0

<= (v_10 + v_1 + v_0 + v_9)) AND (0 <= v_35) AND (0 <= (v_11 + v_36)) AND (0 <=

v_37) AND (0 <= (v_9 + v_38)) AND (0 <= v_39) AND (0 <= v_40) AND (0 <= v_41) A

ND (0 <= v_42) AND (0 <= (v_12 + v_1 + v_43 + v_13)) AND (0 <= (v_14 + v_1 + v_1

1 + v_6))))

CVC3 predicate 1: (LET v_3 = X_s0v4[1],

v_1 = (-1 * v_3),

v_4 = X_s0v4[2],

v_0 = ((1 * BIG_O(X_s0v2)) * X_s0v2),

v_2 = X_s0v4[0]

IN ((0 = (v_0 + ((1 * rhox1(0)) * X_s0v2) + v_1 + v_2)) AND (0 = (v_0 + ((1 * rh

ox1(X_s0v2)) * X_s0v2) + v_1 + v_2)) AND (0 = (v_0 + ((1 * rhox1((2 * X_s0v2)))

* X_s0v2) + v_3 + (-1 * v_4))) AND (0 = (v_0 + ((1 * rhox1((3 * X_s0v2))) * X_s0

v2) + v_4 + (-1 * X_s0v4[3])))))

CVC3 result 1: VALID

92


	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	1.1 Thesis Statement

	2 Background
	2.1 Numerical Accuracy
	2.1.1 Asymptotic behavior and order of accuracy
	2.1.2 Example: estimating sin'(x) with central differencing
	2.1.3 Grid approximations
	2.1.4 Functions of several variables

	2.2 Symbolic Execution
	2.2.1 Program graphs and the concrete transition system
	2.2.2 The symbolic transition system
	2.2.3 Concretization
	2.2.4 A brief history of symbolic execution


	3 Other Related Work
	3.1 Error in Numerical Software
	3.2 General Model Checking Tools
	3.3 Numerical Program Verification Tools

	4 CIVL Model Checker
	4.1 CIVL-C
	4.1.1 CIVL-C types
	4.1.2 CIVL-C expressions
	4.1.3 CIVL-C statements
	4.1.4 Input/output specifications

	4.2 CIVL Model
	4.3 CIVL Composite Model
	4.4 CIVL Model Semantics
	4.5 CIVL Tool

	5 Differential Accuracy Specification
	5.1 Abstract Functions and Derivatives
	5.2 Big-O Expressions
	5.3 The Uniform Quantifier

	6 Symbolic differential accuracy verification
	7 Evaluation
	7.1 Comparison to Existing Techniques
	7.2 Case Studies
	7.2.1 First derivative, backward
	7.2.1.1 Mathematical analysis
	7.2.1.2 Specification
	7.2.1.3 Verification

	7.2.2 First derivative, centered
	7.2.2.1 Mathematical analysis
	7.2.2.2 Specification
	7.2.2.3 Verification

	7.2.3 Second derivative
	7.2.3.1 Mathematical analysis
	7.2.3.2 Specification
	7.2.3.3 Verification

	7.2.4 Laplace Operator
	7.2.4.1 Mathematical Analysis
	7.2.4.2 Specification
	7.2.4.3 Verification

	7.2.5 Diffusion
	7.2.5.1 Mathematical analysis
	7.2.5.2 Specification
	7.2.5.3 Verification

	7.2.6 Upwind scheme, first order
	7.2.6.1 Mathematical analysis
	7.2.6.2 Specification
	7.2.6.3 Verification

	7.2.7 Upwind scheme, second order
	7.2.7.1 Mathematical analysis
	7.2.7.2 Specification
	7.2.7.3 Verification

	7.2.8 Upwind scheme, third order
	7.2.8.1 Mathematical analysis
	7.2.8.2 Specification
	7.2.8.3 Verification


	7.3 Scaling

	8 Conclusion
	Bibliography
	A Proof of bounds for sin'(x)
	B CIVL tool options
	C Prover query for backward finite difference assertion



