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Progeny Clustering: A Method to 
Identify Biological Phenotypes
Chenyue W. Hu1, Steven M. Kornblau2, John H. Slater3 & Amina A. Qutub1

Estimating the optimal number of clusters is a major challenge in applying cluster analysis to any 
type of dataset, especially to biomedical datasets, which are high-dimensional and complex. Here, 
we introduce an improved method, Progeny Clustering, which is stability-based and exceptionally 
efficient in computing, to find the ideal number of clusters. The algorithm employs a novel Progeny 
Sampling method to reconstruct cluster identity, a co-occurrence probability matrix to assess the 
clustering stability, and a set of reference datasets to overcome inherent biases in the algorithm and 
data space. Our method was shown successful and robust when applied to two synthetic datasets 
(datasets of two-dimensions and ten-dimensions containing eight dimensions of pure noise), two 
standard biological datasets (the Iris dataset and Rat CNS dataset) and two biological datasets (a 
cell phenotype dataset and an acute myeloid leukemia (AML) reverse phase protein array (RPPA) 
dataset). Progeny Clustering outperformed some popular clustering evaluation methods in the ten-
dimensional synthetic dataset as well as in the cell phenotype dataset, and it was the only method 
that successfully discovered clinically meaningful patient groupings in the AML RPPA dataset.

Cluster analysis, one of the most useful unsupervised learning techniques in the era of big data, has been 
widely applied in biomedical research1,2. Biological datasets are often large, high-dimensional and noisy, 
and prior knowledge of the underlying distribution is usually lacking. Clustering in this case could pro-
vide key insights into the data by automatically organizing the data into groups of distinct patterns. With 
the field of genomics flourishing during the last two decades, cluster analysis has been extensively applied 
to the analysis of gene expression profiles across time, tissue samples and patients3–6. In particular, tumor 
classification is one of the hottest application fields, in which tumor classes based on different gene 
expression patterns and survival outcomes may help in the design of better targeted therapies7–10. With 
recent advances in systems biology and high-throughput technology, we envision an increasing need and 
broader application potential for cluster analysis in biomedical research. For example, the identification 
and categorization of cell phenotypes based on quantitative imaging metrics, as we will introduce later, 
is one of these emerging areas for applying cluster analysis.

A major challenge in cluster analysis is finding the optimal number of clusters11,12. Unfortunately, 
the inherent number of clusters is most often unknown to researchers. Though some clustering meth-
ods are able to automatically determine the number of clusters (e.g. Self-Organizing Maps13, Affinity 
Propogation14), most clustering algorithms (including the popular clustering methods k-means15 and hier-
archical clustering16) require input from users to specify the number of clusters. In k-means, the number 
of clusters needs to be given pre-clustering to initiate the algorithm, whereas in hierarchical clustering a 
cutoff for the dendrogram needs to be specified post-clustering.

An increasing effort has been made in the last two decades to design an objective measure of how well 
data are clustered into various numbers of groups, which transforms the cluster number determination 
into a model selection problem17,18. Most of the methods employ either distance-based or stability-based 
measures. Distance-based methods, such as Gap Statistics19 and Silhouette20, evaluate the quality of clus-
tering by measuring the within-cluster distance and the cross-cluster distance. The main assumption 
is that a good clustering should produce close proximity among observations within each cluster and 
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sufficient separation between observations in different clusters. Though distance-based approaches are 
easily implementable and computationally efficient, their model-dependent nature restricts their appli-
cation to distance-based clustering only, and their dependence on absolute distance can hinder their 
effectiveness when applied to high-dimensional data. Stability-based methods, such as Clest21, Consensus 
Clustering22 and Model Explorer23, approach clustering quality from a rather different angle. The philos-
ophy behind them resonates with the popular concept of Stability Selection24. Assuming that observa-
tions are sampled from a fixed but unknown population, when samples are repetitively drawn from the 
same population, the clustering solution should not vary drastically. Instead of directly measuring cluster 
compactness and separation, stability-based methods evaluate how robust the clustering is against the 
randomness in sampling. Methods under this category were found to perform robust in practice, but 
they are slow to compute25, considering the repetitive nature of the algorithm. The computation costs 
can dramatically escalate when we encounter big data, since the computational complexities of almost 
all clustering algorithms are dependent on the data size.

Here, we introduce a biologically inspired approach, Progeny Clustering, to estimate the ideal number 
of clusters. Our method is based on fundamental notions in stability analysis26,27, especially on Levine 
and Domany’s approach28, which first assigns cluster membership to the full dataset and then validates 
clustering consistencies among resampled subsets. Their approach avoids selecting and applying classifi-
ers, but is criticized for reusing the same samples for validation, which could lead to overestimation of 
cluster stability. Our Progeny Clustering method employs a novel sampling technique, Progeny Sampling, 
which constructs new samples out of existing ones by sampling features independently. This approach 
not only avoids reusing the same samples but also reduces data size for re-clustering. Since feature inde-
pendence is assumed in Progeny Sampling, caution should be given when applying the method to data 
with dependent features, and dimensional reduction techniques are recommended to first transform 
the data into orthogonal feature space. The measure of stability used in Progeny Clustering is based on 
a co-occurrence probability matrix that captures true classification and false classification when new 
samples are repetitively drawn and clustered. Reference datasets, similar to those used in Gap Statistics, 
are employed to overcome potential biases inherent in the algorithm or data space.

We first validated the performance of Progeny Clustering using two synthetic datasets, which showed 
that the method is stable and robust against varied sampling sizes, additional noisy dimensions and noise 
present in important dimensions of the data. We then examined its performance on two commonly 
used biological datasets to showcase the strength of the method as well as to offer a glimpse into how 
to choose the optimal cluster number using different criteria. Finally, we applied Progeny Clustering to 
analyze two new biological datasets: a cell phenotype dataset and an Acute Myeloid Leukemia (AML) 
reverse phase protein array (RPPA) dataset. The method was successful in correctly identifying pheno-
type groups from cell images, and it was effective in discovering clinically meaningful patient groups 
based on their protein expression levels. Furthermore, we also illustrated the computational advantage 
of Progeny Clustering compared to other stability-based methods using the AML RPPA data.

Methods
In this section, we describe the Progeny Clustering algorithm step by step. The mathematical descriptions 
of other popular cluster evaluation methods implemented in this study are detailed in the Supplement.

Let {xij}, = , …,i N1 , = , …,j M1 , be a finite dataset on M features (e.g., protein expression levels, 
phenotyping metrics) for N independent observations (e.g., AML patients, cells). Suppose we have a 
clustering method (e.g., k-means) that partitioned the data into K clusters, C1, …,CK. As cluster analysis 
groups observations that share similar characteristics and distinguishes those that do not, ideally each 
cluster Ck,   = , …,k K1 , would have a distinct characteristic or be compact in space. Therefore, we 
assume that the whole population is heterogeneous and can be inherently divided into K more homoge-
neous subpopulations. Then, each observation in ( )xij

k  can be viewed as being randomly sampled from a 
subpopulation corresponding to the cluster it belongs to (Ck).

In contrast to traditional sampling methods that operate on the entire dataset for reclustering, Progeny 
Clustering employs a new sampling approach to exploit the inherent heterogeneity of the population as 
well as to reduce the computation costs of the entire analysis. In essence, it samples values from each 
feature individually to construct new imaginary samples within each cluster. We call these new imaginery 
samples Progenies and this process Progeny Sampling. Let ∼N  (e.g., 5, 10, 20) be the number of Progenies 
sampled for each cluster Ck. Our new validation dataset ( ){ }yij

k , = , …,
∼i N1 , = , …,j M1 ,  = , …,k K1 , 

then has a total size of × ∼K N  observations with M features. To construct each ( )yij
k  from Ck, a sample is 

randomly drawn from the jth feature in Ck. As the location, the span and the density of each feature space 
are characteristic of each cluster and somewhat different from that of other clusters, the Progeny Sampling 
allows us to assess the distinctness, homogeneity and compactness of each cluster without using the same 
samples and enables us to reduce the sample size for validation (as shown later in Results).

The new observations constructed from each cluster ( ){ }yij
k  will be combined into one new dataset {yij} 

and clustered using the same method as is used when clustering the original dataset {yij}. The clustering 
assignments will be represented in a ( × )

∼ ∼KN KN  co-occurrence matrix Q, with
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( )

Q
1 if i and j are in the same cluster
0 otherwise 1ij

The co-occurrence matrix is symmetric, i.e. Qij =  Qji. Furthermore, the co-occurrence matrix is 
arranged in such a way that observations reconstructed from the same original cluster are next to each 
other, i.e. 

(( − ) + )
∼y k N j1 1

 to 
( )
∼y kN j are sampled from Ck. The co-occurrence matrix thus can be divided into 

two regions: K blocks of true classification along the diagonal, and (K −  1) ×  K blocks of false classifica-
tion, in which each block is of size ×

∼ ∼N N . If there is absolute agreement between the new and the 
original clustering assignments, Q would be a perfect block-diagonal matrix of K non-overlapping blocks 
of 1 s along the diagonal, surrounded by blocks of 0 s.

If we repetitively construct new datasets and perform cluster analysis R times, we would obtain a 
series of co-occurrence matrices. Each co-occurrence matrix is denoted as Q(r), = , …,r R1 . To sum-
marize Q(r) from each repetition, we define a co-occurrence probability matrix P:

∑= / .
( )

( )P Q R
2ij

r
ij
r

The co-occurrence probability matrix P has the same property as Q(r), consisting of K blocks of true 
classification likelihood along the diagonal and (K −  1) ×  K blocks of false classification likelihood in the 
rest of the matrix. The more robust and stable the clustering is, the higher ratio of true classification vs. 
false classification there will be. We therefore define a score for clustering stability as

=
∑ ∑ /( − )

∑ ∑ ( − )
.

( )

∼

∼ ∼
, ∈ , ≠

∈ , ∉

S
P N

P KN N
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k k

The core algorithm of Progeny Clustering is described below. An example using a toy dataset is illus-
trated in Fig. 1. The parameter values used in this paper are shown in Table 1. For consistency, we used 
k-means as the clustering algorithm to couple with Progeny Clustering and other competing techniques 
in application to all datasets and experiments in this study. Hierarchical clustering using ward linkage 
was used in application to synthetic datasets as a proof-of-concept to show the capability of Progeny 
Clustering working with clustering algorithms besides k-means.

Figure 1.  An illustration of the core steps in Progeny Clustering. The dataset in the example consists of 
20 samples (denoted as X) in a two-dimensional space (denoted as F1 and F2). The scheme displays the 
workflow of generating a stability score for clustering this dataset into two clusters. Five progenies (denoted 
as Y) were generated for each cluster. The co-occurence matrix Q represents one of the clustering results of 
the mixed progenies, in which matrix entries are 1 if two progenies are in the same cluster and 0 otherwise. 
In both co-occurrence matrices Q and P, the true classification region containing progenies from the same 
initial cluster is colored pink and the false classification region containing progenies from different initial 
clusters is colored light blue. If the clustering quality is high, we would expect more 1 s (Q) or higher 
probabilities (P) in the true classification region and more 0 s (Q) or lower probabilities (P) in the false 
classification region.
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To minimize biases inherent in the dataset and algorithm, reference datasets that are randomly sam-
pled from the same data space will serve as the control. The reference dataset ( ){ }zij

k  can be generated 
either from a uniform distribution over the range of each feature or from a uniform distribution over a 
box aligned with the principle components of the data. The former is used here for its simplicity. T ref-
erence datasets will be generated by Monte Carlo simulation, and each of them will be treated with the 
same core algorithm performed on the original dataset with output denoted as ( )( )

{ }S K t , = , …,t T1 . 

The difference in score at each number of clusters when comparing S to S is

∑= − / ,
( )

( ) ( ) ( )( )
D S S T

4
K K

t

K t

where = , …,K K Kmin max.
To choose the optimal number of clusters Ko, we can use either one of the following criteria:

= , ( )( )K Darg max 5o
K

= ( − − ). ( )( ) ( − ) ( + )K D D Darg max 2 6o
K K K1 1

The “greatest score” criterion defined in Equation  (5) selects the cluster number that generates the 
greatest stability score among all examined numbers, whereas the “greatest gap” criterion defined in 
Equation  (6) looks for local gaps in stability scores. Specifically the “greatest gap” criterion selects the 
cluster number that renders the greatest difference in stability score compared to its neighboring num-
bers. We are proposing two criteria here, not only because they are equally intuitive and rational, but 
also because they can serve different application needs. Compared to the “greatest score” criterion, the 
drawback of the “greatest gap” is that it is unable to assess the clustering quality at Kmin and Kmax. On 
the other hand, since we observed a linear relationship between cluster numbers and stability scores in 
the reference datasets (Fig.  2D), Equation  (6) can be simplified to Equation  (7), which only involves 

Parameter Value

Lower limit for the number of clusters: Kmin 2

Upper limit for the number of clusters: Kmax 10

Sampling size for each subset: ∼N 10

Number of sampling iterations: R 100

Number of reference datasets: T 10

Clustering method k-means

Table 1.   Parameter values used for Progeny Clustering.
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computing stability scores of the original dataset. The unique property of the “greatest gap” criterion 
allows us to greatly cut down computational costs involved in generating reference stability scores. The 
performances of both criteria are shown and discussed later in Results.

= ( − − ) ( )( ) ( − ) ( + )K S S Sarg max 2 7o
K K K1 1

Results
Performance Testing Using Synthetic Datasets.  We first applied our algorithm to a toy dataset to 
illustrate how it works. The toy dataset contains three clusters centered around (− 1,2), (2,0) and (− 1,− 2) 
in a two-dimensional space (Fig. 2A). Each cluster consists of 50 samples that were drawn from bivar-
iate normal distributions with a common identity covariance matrix. An example of reference datasets 
generated from a uniform distribution over the range of each feature is shown in Fig.  2D, in which 
no inherent pattern or organization is visible. The stability score curves for the original and reference 
datasets are shown in Fig. 2B,E. The standard deviation of the score for the original dataset (computed 
by iterating the algorithm 25 times) was found to be small, indicating that the algorithm is fairly stable. 
Here, we computed the standard deviation to investigate the stability of the algorithm, and this exercise 
is not deemed necessary for real applications. The stability scores from the reference dataset displayed a 
linear relationship with the cluster numbers, fitting well our expectation of applying Progeny Clustering 
to a random dataset. In datasets without inherent organization like the reference datasets, higher cluster 
numbers are usually more preferable, since they build up stronger cluster identities by splitting the data-
set into smaller pieces. This linear property is computationally favorable when using the “greatest gap” 
criterion to determine the best cluster number, since the score gaps between each cluster number and its 
neighboring numbers get canceled out, resulting in values close to zero at all cluster numbers. To deter-
mine the number of clusters, we generated the “greatest score” curve by subtracting the mean stability 
scores of reference datasets from that of the original dataset (Fig.  2C) and the “greatest gap” curve by 
subtracting the stability score at each cluster number by its neighboring stability scores (Fig. 2F). Both 
criteria clearly suggested three as the optimal cluster number for this toy dataset. We repeated this exper-
iment ten times, and the algorithm identified the same cluster number in each toy dataset generated.

Figure 2.  An illustrative example of applying Progeny Clustering to a three-cluster two-dimensional toy 
dataset: (A) a scatterplot of the original dataset showing its three-cluster structure; (B) the stability score 
curve of the original dataset illustrating the clustering quality of the data from 2 clusters through 10 clusters; 
(C) the stability curve generated by Equation (4) based on the “greatest score” criterion suggesting three 
as the optimal cluster number; (D) a scatterplot of an example reference dataset showing lack of cluster 
structure; (E) the stability score curve of the reference datasets showing that the clustering stability linearly 
increases with an increase in cluster number; (E) the stability curve generated by Equation (4) based on the 
“greatest score” criterion suggesting three as the optimal cluster number; (F) the stability curve generated by 
Equation (7) based on the “greatest gap” criterion suggesting three as the optimal cluster number.
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We then explored how robust the algorithm is against varied sampling sizes and whether there is 
a lower limit for the size of Progenies. Answering this question can assist us in selecting a reasonably 
small size for Progeny Sampling and subsequent re-clustering, which directly relates to the computation 
costs of the algorithm. Figure  3A shows the Progeny Clustering curves for sampling sizes of 5, 10 and 
20 in the same two-dimensional toy dataset we used before, and all of them output a highest score for 
the three-cluster partition. Besides agreement on the optimal number of clusters, the three curves are 
almost identical to each other, which further increases our confidence in the reliability and robustness 
of the algorithm.

It is known that conclusions drawn from statistical analyses can be unreliable and biased when a 
small sample size is coupled with high dimensions. We wondered if a small sampling size remains effec-
tive when applied to a dataset of higher dimensions. Hence, we created a ten-dimensional toy dataset 
consisting of four clusters (50 samples each) to test the algorithm’s robustness against additional noisy 
dimensions. The first two dimensions were sampled from bivariate normal distributions centered at (4, 
4), (4, − 4), (− 4, 4) and (− 4, − 4) with a common identity covariance matrix, while the rest of the eight 
dimensions are noises sampled from a standard normal distribution. The same test was performed on this 
ten-dimensional dataset with sampling sizes of 5, 10 and 20 (Fig. 3B). Similar to what we have observed 
in the two-dimensional dataset, all of the three Progeny Clustering curves consistently produced a highest 
score for partitioning the data into four groups, in agreement with the initial design of this dataset. It is 
worth noticing that sample sizes as small as 5, much smaller than the number of dimensions (10), were 
sufficient to make the algorithm work properly. When we compared the performance of our algorithm 
to other popular methods (Table 2), we were surprised to find that several stability-based methods (e.g., 
Clest, Consensus Clustering) failed to identify the optimal number of clusters in this ten-dimensional 
toy dataset, though nearly all of them worked well in the previous two-dimensional toy dataset. We saw 
consistent results when we repeated this experiment ten times.

In addition to using noisy dimensions, we also examined the sensitivity of Progeny Clustering to noise 
added on top of the real dimensions. Based on the three-cluster, two-dimensional dataset that we used 

Figure 3.  Robustness of Progeny Clustering against varied sampling sizes (5, 10 and 20 progenies 
generated per cluster) in the (A) two-dimensional and (B) ten-dimensional toy datasets. In both cases, the 
three curves derived using different sampling sizes were consistent in trends, which indicates the algorithm’s 
robustness. (C) Sensitivity of Progeny Clustering to noise present in the three-cluster, two-dimensional 
dataset. Noise was generated with σ ranging from 0.1 to 1.5, and the frequency of correct estimation was 
calculated based on ten repeated experiments.

Dataset Optimal K

Progeny 
Clustering 

(score)

Progeny 
Clustering 

(gap)
Gap 

Statistics Sihouette Clest
Consensus 
Clustering

Model 
Explorer

2-dimensional synthetic dataset 3 3 3 3 3 3 3 3

10-dimensional synthetic dataset 4 4 4 4 4 2 2 2

Iris dataset 3 (2) 2 5 8 2 3 2 2

Rat CNS dataset 6 10 6 7 5 5 2 2

cell phenotype dataset 4 4 4 5 4 4 3 6

AML adhesion pathway RPPA 
dataset 6 or 10 10 6 8 2 4 2 2

Table 2.   Performance comparison. Supporting information for each method is included in the 
Supplement.
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previously, we added noise generated from a Gaussian Distribution (μ =  0) and scaled σ from 0.1 to 1.5 
to investigate the break point of the algorithm. We repeated the experiments ten times and found that 
Progeny Clustering is robust against a decent amount of noise present in the real dimensions (Fig. 3C).

To showcase the performance of Progeny Clustering using clustering algorithms other than k-means, 
we applied Progeny Clustering coupled with hierarchical clustering using ward linkage to both the 
three-cluster, two-dimensional dataset and the four-cluster, ten-dimensional dataset. The results obtained 
using hierarchical clustering are consistent with what we observed using k-means (Figure S8). In both 
cases, Progeny Clustering was able to identify the correct number of clusters.

Performance Testing Using Standard Biological Datasets.  We then tested the performance of 
Progeny Clustering using two standard biological datasets, the Iris dataset29 which can be downloaded 
from the UCI machine learning repository30 and the Rat Central Nervous System (CNS) dataset31. Both 
of these datasets have been frequently used to test and evaluate clustering techniques. The Iris dataset 
contains 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor) with 
four features measured from each sample (the length and width of the sepals and petals). Though the Iris 
dataset contains three species, the number of two clusters is commonly accepted as the golden standard 
due to the limited capability of the four features to distinguish Iris virginica from Iris versicolor. The Rat 
CNS dataset consists of expression profiles of 112 genes over 17 conditions during rat central nervous 
system development. Though no prior knowledge of true cluster number is available for this dataset, we 
took six clusters suggested in the initial study to be the gold standard, which has also been used in other 
clustering studies25.

The clustering evaluation results from Progeny Clustering for the Iris dataset and the rat CNS dataset 
are shown in Fig. 4A,B respectively. We observed that in both of these cases, there is discrepancy of the 
optimal cluster number picked by the two criteria (“greatest score” and “greatest gap”). This is actually a 
good example to showcase in real application the pros and cons of each criterion. In application to the 
Iris dataset, the “greatest score” criterion accurately estimated two as the optimal cluster number, whereas 
the “greatest gap” criterion failed because it was unable to evaluate clustering quality at the minimum 
cluster number tested. On the other hand, the “greatest gap” criterion correctly identified six as the opti-
mal cluster number for the Rat CNS dataset, while the “greatest score” criterion incorrectly suggested ten. 
Since the stability score curve based on the “greatest score” criterion resembles the typical linear score 
curve generated from reference datasets, we advise not to directly pick the maximum cluster number 
when it is associated with the greatest stability score. In this case, either cluster numbers greater than the 
maximum cluster number should be tested or the “greatest gap” curve should be consulted.

Application to Identifying Cell Phenotypes.  To demonstrate how Progeny Clustering can be 
applied to identify biological phenotypes, we used it to estimate the number of cell phenotypes cap-
tured in a cell imaging dataset. A description of the dataset and the experiment design is detailed in 
the Supplement. Briefly, 440 cells were cultured on arrays of pattern configurations derived from 4 cells 
of interest (COIs) that were created via Image Guided Laser Scanning Lithography32, a variant of Laser 
Scanning Lithography33 that uses images to define pattern configurations, resulting in 4 major groups 
of cells with distinct cytoskeletal and morphological phenotypes (Fig. 5A,B,D,E). The phenotype of each 
cell was then captured and quantified in 41 morphology metrics, resulting in a dataset consisting of 444 
samples in 41 dimensions with 4 centers.

Figure 4.  The Progeny Clustering results for the (A) Iris dataset and (B) Rat CNS dataset. Curves from 
both criteria were shown, indicating two or five clusters in (A) and six or ten clusters in (B).
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Since many features (imaging metrics) in this dataset overlap in characterization and are highly cor-
related, we performed Principle Component Analysis (PCA) to capture metrics with most variance and 
to render an independent feature space. Figure 5C illustrates the distribution of the data within the first 
two principal components, in which four major clusters are recognizable. We then performed Progeny 
Clustering on the first three principle components of the data to estimate the inherent number of clusters 
(Fig. 5F). The Progeny Clustering curve indicates four inherent clusters of cells, since both criteria output 
curves peak at K =  4. This is in agreement with the inherent structure of the dataset (Fig. 5E) as well as 
the experiment design. In contrast, we saw some clustering evaluation methods failed to recognize the 
four-cluster structure using the same dataset (Table 2).

Application to Identifying Leukemia Subclasses.  Since one of the hottest application areas of 
clustering techniques is classifying cancerous tissues, we used a proteomic dataset to investigate the 
capability of Progeny Clusteirng to identify clinically meaningful subclasses in leukemia. The detailed 
description of the data preparation procedure can be found in the Supplement and the related refer-
ence34. Breifly, it is a dataset on expression levels of 10 adhesion-related proteins from 560 Acute Myeloid 
Leukemia (AML) patient samples collected by the University of Texas MD Anderson Cancer Center. 
Since AML is notorious for its heterogeneity35,36, the ability to classify patients based on their protein 
expression profiles can greatly benefit personalized medicine and tackle this heterogeneity. The result of 
applying Progeny Clustering to this dataset is shown in Fig. 6. In this case, the two criteria for selecting 
the optimal cluster number differ: the “greatest score” criterion suggests ten as the optimal number of 
clusters, whereas the “greatest gap” criterion suggests six as the optimal number of clusters.

To interpret and evaluate the performance of Progeny Clustering on this dataset, we plotted a series 
of cluster heat-maps to visualize the clustering quality (Fig. 7). A compact and homogeneous group fea-
turing high levels of CAV1 first appeared in the 6-group partition (Fig. 7E) and persistently showed up 
afterwards (Fig. 7F–I). Similarly, a compact cluster featuring high levels of ITGA2 and PTK2 came into 
view in the 9-group partition (Fig. 7H), and another cluster featuring high levels of IGFBP2 and SPP1 
emerged in the 10-group partition (Fig.  7I). As Progeny Clustering favors more compact and homoge-
neous clusters, the patterns observed in the heat-maps are well reflected in the score curve (Fig. 6). The 

Figure 5.  Images of four main categories of cell phenotypes: (A) star-shaped (B) crescent-shaped; (D) 
Texas-shaped; (E) square-shaped. In each of these images, cells were fluorescently immunolabeled for 
the cytoskeletal proteins vinculin and actin, and stained by DAPI for nuclei. Image analysis results: (C) 
a scatterplot of the four cell categories in the space of the first two principle components, in which each 
dot represents a cell and the dot’s color indicates its cell type. This shows that the features we used to 
characterize the cell phenotypes are able to distinguish the four categories. (F) Progeny Clustering curves 
indicating four as the optimal number for clustering.
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score difference first leaps up when the number of clusters goes from 5 to 6. It then remains relatively the 
same from 6 to 8, and climbs up again at 9 and 10 due to the emergence of two new compact clusters.

To investigate the clinical significance of different clustering numbers, we looked at the survival out-
comes of each classification (Fig.  7). The survival curves under 6 (Fig.  7E) and 10 (Fig.  7I) clusters, 
suggested by our Progeny Clustering algorithm, are particularly interesting when compared with other 
partitions, as a new major favorable group showed up in each of them. In comparison with other popular 
evaluation methods (Table  2), Progeny Clustering is the only one that successfully identified the num-
ber of six or ten as the ideal number of clusters, which is consistent with the patterns observed in the 
heat-maps and is of particular significance to clinical outcome.

The relatively large size of this dataset allows us to examine the computation costs of Progeny 
Clustering and compare its performance metrics to that of other algorithms. The performances of all 
algorithms except Silhouette are shown in Fig.  8. Silhouette was left out of this evaluation because the 
method does not perform any type of repetitive validation, thus is not reasonable to compare against. 
We used the same parameters (e.g., number of repetitions and parameters used in k-means) when testing 
each algorithm and kept the running environment the same to our best knowledge. The running time of 
Consensus Clustering and Clest is at a completely different scale from that of the other three algorithms, 
similar to what was seen previously in other comparative studies25. Progeny Clustering using the “greatest 
gap” criterion requires the least computation time, and is much faster than using the “greatest score” 
criterion due to the omission of generating reference stability scores.

Discussion
We have developed an improved stability-based method, Progeny Clustering, to evaluate the quality of 
clustering and estimate the ideal number of clusters. Our method was shown successful when applied 
to two simulated datasets and robust with small sampling sizes and moderate level of noise. We then 
demonstrated its application potential to biomedical research by applying it to two standard biological 
datasets and two new biological datasets. In particular, our method outperformed some of the most pop-
ular evaluation methods in the high-dimensional toy dataset and in the biological datasets. Furthermore, 
our method is the only method that successfully identified the clinically meaningful partitions of patient 
groups in the AML RPPA dataset.

One of the novelties in the Progeny Clustering algorithm is the Progeny Sampling. In contrast to the 
traditional sampling scheme that preserves the exact identity of each sample, our approach draws features 
independently to construct imaginary samples that are representative of each cluster but are non-existent 
in the original dataset. This enables us to avoid reusing the same samples for validation, which theoreti-
cally undermines the effectiveness of the whole algorithm. The impetus behind it stems from the interest 
in finding trustworthy progenies in biomedical datasets, e.g., in the engineered cell population. As differ-
ent numbers of clusters establish different progenies in the population, a good clustering in a biologist’s 
eye would generate robust progenies that well represent key characteristics of particular subpopulations. 
The Progeny Sampling method assumes that variation in one feature is independent from that in another, 
thus it decouples the relationship between features and easily exploits the fuzzy space around the progeny 
for cluster reconstruction. While this approach fits perfectly with centroid-based clustering algorithms 
(e.g., k-means), the coupling of Progeny Clustering with other clustering techniques or datasets that rely 

Figure 6.  Progeny Clustering results for the AML RPPA dataset, suggesting 6 (“greatest gap”) or 10 
(“greatest score”) as the optimal number of clusters. 
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on inter-feature associations should proceed with caution. One potential solution to applying Progeny 
Clustering to datasets with dependent features is to first transform the raw data into reduced independent 
or orthogonal feature space using techniques such as PCA prior to the analysis. Since Progeny Clustering 
in this study was mainly tested using k-means and hierarchical clustering, further testing is merited to 
assess how well Progeny Clustering performs with clustering methods not considered in this study, as well 
as how Progeny Clustering fits in a clustering ensemble approach37.

Another advantage of using Progeny Clustering, besides its excellent performance, is its computational 
efficiency. Clustering is usually the most time consuming step in almost all classical clustering evaluation 

Figure 7.  Heat-maps and overall survival curves for partitioning the AML patient adhesion pathway 
RPPA data into (A) 2; (B) 3; (C) 4; (D) 5; (E) 6; (F) 7; (G) 8; (H) 9 and (I) 10 clusters. Each cluster is 
represented by a unique color shown in the top bar of each heat-map. The same color for each cluster is 
used in both the heat-map and the survival curves.
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methods, the computation time of which increases with an increase in the sample size. For example, the 
complexity of k-means is O(tkN), and hierarchical clustering has complexity O(N2logN) for average and 
complete linkage1, where k is the number of clusters, t is the number of iterations, and N is the sample 
size of the dataset. The iteration of sampling and clustering, which is the essence of stability analysis, can 
magnify the effects of sample size and escalate the computation costs. In most stability-based methods, 
sampling is done at the scale of the entire dataset (e.g., Consensus Clustering) or at least at half of the 
dataset (e.g., Clest, Model Explorer). Thus, the evaluation task can be daunting, especially when it comes 
to biological datasets of huge sizes. Progeny Clustering can easily overcome this barrier, because the 
sampling size was designed to be independent of the original data size and the algorithm was demon-
strated to tolerate small sampling sizes for validation. In addition, the unique linear property of the 
stability scores in reference datasets has enabled us to greatly accelerate the algorithm using the “greatest 
gap” criterion, since the time-consuming step of computing stability scores for reference datasets can 
be skipped. The algorithm was shown to perform at a completely different and faster scale compared to 
other stability-based methods.

The choice of parameter values for the Progeny Clustering algorithm is quite flexible. For instance, 
smaller sampling sizes (e.g., 5) and fewer iterations (e.g., 30, 50) can be implemented to boost the run-
ning speed, whereas greater values for these parameters can be used to achieve better precision. There is 
also room to improve the score difference calculation to adjust the algorithm to users’ preferences. For 
instance, the scores can be compared in logarithm, so that the ratio of the two scores is taken instead of 
the difference. In addition, the reference datasets can be sampled from a uniform distribution over a box 
aligned to the principle components of the dataset, as an alternative option suggested in Gap Statistics19. 
Finally, it is highly advisable to always output the whole score curve and refer to it when choosing the 
optimal number of clusters. The trend in the curve can be helpful for understanding the overall clustering 
quality, and can provide insights into the inherent data structure.
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