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TRANSFER OF GPI‑LINKED SPERM PROTEINS IN THE EPIDIDYMAL 
SECRETOME – EPIDIDYMOSOMES AND A LIPID CARRIER COMPRISE 
DUAL PATHWAYS
GPI‑linked proteins uniquely possess acyl chains (Figure 1), which when 
inserted into the outer leaflet of the lipid bilayer of a target membrane 
anchor the protein and permit its lateral diffusion. Documented 
uptake of these proteins from the extracellular environment has 
been reported in red blood cells19 and sperm cells13,20,21 and has been 
demonstrated to occur in the absence of vesicles.19,20 This suggests 
that there is a nonvesicular mechanism by which GPI‑linked proteins 
can be transferred to spermatozoa from the ELF. This nonvesicular 
mechanism was investigated by using SPAM1, known to be present 
in the ELF of at least five species, including mice and humans,22 as a 
model. SPAM1 is a multifunctional protein which is known to perform 
essential roles in fertilization: (1) cumulus penetration via its neutral 
hyaluronidase activity,  (2) secondary binding to the zona pellucida 
after the acrosome reaction,  (3) penetration of the zona pellucida, 
and (4) Ca2+ signaling‑ associated acrosomal exocytosis mediated by 
its hyaluronic acid receptor domain.22 In murine ELF, SPAM1 has been 
shown to be present in both nonvesicular (60%) and vesicular (40%) 
fractions.5 When cauda epididymidal spermatozoa were co‑incubated 
with each of these fractions, both were able to deliver SPAM1 to the 
sperm surface, with the nonvesicular fraction doing so more efficiently.23

INTRODUCTION
The epididymis, the major component of the posttesticular pathway, 
is the organ where spermatozoa mature and gain progressive motility 
and fertilizing ability. Its role in sperm maturation is known to be 
mediated via secretory proteins that are delivered to the sperm 
surface during their transit1,2 which may be for a protracted period of 
time such as 5–10 days in mice.3 These secretory proteins have been 
identified in the epididymal lumen in the absence of spermatozoa 
following efferent duct ligation,4 in the luminal fluid,5–7 as well as in 
conditioned media of cultured epididymal epithelial cells.6 Initially, the 
secreted epididymal proteins identified were predominantly glycosyl 
phosphatidylinositol‑(GPI)‑linked such as CD52, CD59, CD73, 
which are proteins that play a role in immunoprotection.8–10 Later, the 
GPI‑linked proteins identified were those that play a role in fertilization 
such as sperm‑egg interaction, e.g.,  P34H11,12 and Sperm Adhesion 
molecule 1 (SPAM1).13 In the epididymal luminal fluids (ELF) secreted, 
GPI‑linked proteins have been shown to exist partly in the soluble and 
insoluble fractions,5,14,15 which consists of extracellular membrane vesicles 
that are known to play a key role in intercellular cross‑talk.16 These 
vesicles, termed epididymosomes, have been well‑characterized and 
are known to transfer proteins to the sperm plasma membrane.16–18 This 
review will focus on epididymosomal proteins identified to play a role in 
fertility and the mechanism by which they are acquired by spermatozoa.
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SPAM1 from the nonvesicular fraction of the ELF was shown to 
reside in low‑molecular weight monomers as well as high‑molecular 
weight oligomeric complexes.24 The oligomeric complexes were 
incapable of delivering SPAM1 to the sperm surface, but likely served 
as a source of monomers (Figure 2), which effectively perform the 
transfer.24 Monomers are stabilized in an aqueous environment by 
hydrophobic interactions of the GPI anchors with Apolipoprotein 
J or clusterin  (CLU) that resides in ELF.24 CLU is a well‑known 
lipid carrier in a variety of biofluids and is abundantly expressed in 
ELF, where it is involved in facilitating sperm uptake of GPI‑linked 
proteins, as well as their removal during the modification of the 
membrane, depending on its concentration in the local environment 
in the epididymal tract.25 A lipid‑exchange model involving CLU or 
other lipid carriers  (Figure  3) has been proposed for the delivery 
of these proteins to the sperm surface.24 Other fertility‑modulating 
GPI‑linked epididymal proteins that are likely to be delivered by 
this pathway include: GLIPR1L1  (Glioma pathogenesis‑related 
protein 1), which is involved in sperm‑zona pellucida binding,26–27 
other hyaluronidase family members, such as HYAL3,28 HYAL523 and 
HYAL2,29 membrane‑anchored serine protease PRSS21 (testisin)30 and 
P34H/P26h/P25b.18,31

When the mechanism of delivery of GPI‑linked epididymal 
proteins via the vesicular pathway was studied following co‑incubation 
of murine caudal sperm with dye–labeled epididymosomes, the label 
was detected over the acrosome and on the midpiece of the flagellum,23 
which are regions where CD9 positive epididymosomes have been 
shown to bind.32 Further, these locations coincide with the localization 
of SPAM1 and other hyaluronidases,25 and are lipid rafts domain.23 
The data obtained from that study led to the conclusion that vesicular 
docking on the spermatozoa, followed by hydrophobic interactions 
between the GPI anchor and the outer leaflet of the lipid bilayer of 
the membrane, is the mechanism for vesicle‑mediated GPI‑linked 

protein transfer.23 Thus for both the nonvesicular and the vesicular 
fractions of the ELF, hydrophobic interactions were reported to 
mediate the delivery of GPI‑linked proteins (Figure 2). However, it 
is likely that vesicular docking may precede vesicle fusion since in the 
image displayed by Griffith’s et al.23 there was evidence for membrane 
fusion (Figure 4).

TRANSMEMBRANE AND MEMBRANE‑ASSOCIATED PROTEINS 
IDENTIFIED IN EPIDIDYMOSOMES FROM A PROTEOMIC APPROACH
When the proteome of human epididymosomes was studied, the 
146 proteins identified covered a large molecular weight spectrum and 
were of different functional categories, including enzymes, adhesion 
molecules, transporters, and signaling competent proteins.33 In the 
case of bovine epididymosomes, a comparison of those from the 
caput  (proximal) and cauda  (distal) epididymidis showed unique 
compositions for the lipid and proteome profiles: for the latter, 
324 of 555 and 207 of 438 proteins were respectively different in 
the two regions.34 The wide variety of protein categories in bovine 
EP include those involved in sperm‑egg interaction or motility, 
EP genesis/secretion or EP‑sperm interaction, remodeling of the 
epididymal sperm components, and those potentially involved in 
sperm protection or elimination.34 Importantly, among these proteins 
there are transmembrane proteins, which are unlikely to be delivered 
to the sperm surface via hydrophobic interactions. Sullivan and Saez 
have proposed, from the complexity of proteins that epididymosomes 
carry and deliver to spermatozoa, multiple mechanisms of transfer are 
likely to be involved.35

TRANSMEMBRANE AND MEMBRANE‑ASSOCIATED PROTEINS 
IDENTIFIED IN EPIDIDYMOSOMES FROM A HYPOTHESIS – DRIVEN 
APPROACH
The Plasma membrane calcium ATPase 4 (PMCA4), with variants 4a 
and 4b, is a 10-pass transmembrane protein.  It is the major calcium 
efflux pump in murine sperm36 in which deletion of its encoding gene  
leads to loss of motility and male infertility.37,38 This essential sperm 
protein was shown to be synthesized in the testis and epididymal 
epithelia of rat39 and bulls40 where spermatozoa show a progressive 
shift from splice variant 4b in the upper epididymal (caput) tract to 

Figure  1: Diagram of glycosyl phosphatidylinositol  (GPI)‑linked protein 
showing the acyl chain, which anchors it in the outer leaflet of the lipid 
bilayer of a target membrane. The arrow points to the position where the 
phosphatidylinositol link can be enzymatically cleaved with phospholipoase C.

Figure 2: Dual pathways exist for GPI‑linked protein delivery to the sperm 
plasma membrane, via the vesicular and membrane‑free soluble fractions 
of ELF. These fractions are separated by ultracentrifugation at 120 000 × g 
and the supernatant can be fractionated into oligomers and monomers at 
230 000 × g. The latter are inserted into the sperm plasma membrane in 
the presence of CLU or Apolipoprotein J via hydrophobic interactions which 
may also facilitate delivery from vesicles that dock in lipid rafts on the sperm 
membrane.23
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mainly 4a in the lower region (caudal).40 This shift was considered to 
reflect the acquisition of PMCA4a from the ELF.40 As the PMCA4a 
variant is more efficient than 4b in clearing calcium from the cytosol, 
the presence of increasing amounts of 4a in maturing sperm cells would 
ensure that they would meet the high demand for calcium efflux after 
hyperactivated motility, capacitation, and the acrosome reaction, which 
all require elevated levels of calcium.41,42 Thus, it was hypothesized that 
in murine spermatozoa the PMCA4a variant is expressed in the ELF 
and carried on epididymosomes where it can be delivered to sperm 
cells during their maturation and transit.43 Experimental evidence 
revealed the presence of PMCA4a exclusively in the epididymosomal 
fraction of the ELF.43 The findings also demonstrated that the bovine 
and murine systems differ, since in the latter both PMCA4a and 4b 
variants are expressed in the testis, the apical surface of the epithelia 
of all three epididymal regions, as well as in their secreted ELF.43 
It should be noted that while PMCA4a is more efficient than 4b in 
returning Ca2+ to resting levels,40,44 4b plays an important role in signal 
transduction via its C‑terminal PDZ ligand.45,46

Importantly, murine epididymosomes were able to deliver PMCA4a 
to caudal spermatozoa following co‑incubation in vitro, consistent with 
its transfer in vivo which was reflected in a five‑fold increase on caudal, 
compared with caput, sperm cells.43 This finding, along with the higher 
Ca2+‑ATPase activity in bovine caudal spermatozoa than those in the 
caput,47 supports a role of PMCA4a in epididymal sperm maturation. 
Acquisition of additional PMCA4a in caudal sperm cells parallels their 
gain in motility and their cytosolic Ca2+ concentration, which is 2‑ to 
6‑times lower than that in caput spermatozoa.48 As motility is lost in 
mature caudal Pmca4‑null murine spermatozoa where the intracellular 
Ca2+  concentration  [Ca2+]i is significantly elevated,37,38 physiological 
immotility of wild‑type caput spermatozoa in the presence of 

increased [Ca2+]I compared with caudal ones underscores the role of 
epididymosomal PMCA4 in sperm maturation. It should be noted that 
both PMCA4a and 4b variants are present on epididymosomes and 
are co‑immunoprecipitated with an interacting partner of PMCA4b, 
Ca2+/CaM‑dependent serine kinase (CASK).43 This interaction is PDZ 
domain‑mediated, and in murine sperm cells involves the PDZ motif 
of CASK and PMCA4b’s PDZ ligand49 which is absent from PMCA4a.50

Thus, the ability to co‑immunoprecipitate both Ca2+  pump 
variants with CASK in the epididymosomal cargo revealed for the 
first time that the variants work together in a multiprotein complex, 
to heighten their combined impact in meeting the demands following 
functional sperm activities that precede fertilization.43 The inclusion 
of PMCA4a in a complex with CASK in the absence a PDZ ligand 
was thought to be facilitated by the formation of a heterodimer 
between 4a and 4b, with the latter directly interacting with CASK.43 
The co‑immunoprecipitation data indicated that CASK, a scaffolding 
membrane‑associated protein that also exists in a soluble form,51 is a 
component of the epididymosomal cargo and is likely to be delivered 
to the sperm surface during epididymal maturation along with 
PMCA4b when PMCA4a is also transferred. The finding that CASK 
is an epididymosomal protein is supported by an early study showing 
its presence in epididymal tissues.52

The above demonstrates how knowledge of an interacting partner 
of a sperm protein that is present in epididymosomes can lead to 
the identification of other proteins in the epididymosomal cargo. 
Aravindan et al. showed that in murine sperm PMCA4b and junctional 
adhesion molecule A  (JAM‑A), which also has a PDZ ligand, are 
common interacting partners of CASK.49 Since CASK has a single 
PDZ domain, PMCA4b and JAM‑A must bind sequentially and not 
simultaneously. As the PMCA4b‑CASK interaction was shown to 
occur preferentially in uncapacitated spermatozoa when the [Ca2+]i is 
relatively low,49 it is likely that [Ca2+]i also dictates preferential binding 
of the JAM‑A‑CASK complex. However, regardless of the condition for 
binding, the existence of a JAM‑A‑CASK complex in spermatozoa and 
the presence of CASK in epididymosomes lead to the prediction that 
JAM‑A is present in murine epididymosomes. Studies to investigate 
the latter are in progress.

Figure 3: A lipid exchange model for the delivery of GPI‑linked proteins from 
the soluble fraction of ELF is shown. GPI‑linked proteins are stabilized by 
lipid carriers such as CLU or Apolipoprotein J, which transports monomers 
to the sperm membrane and then acts as an acceptor for cholesterol which 
it transports to the epididymal epithelial lining for receptor‑mediated 
endocytosis. Taken from Biol Reprod 2009; 81: 562–70.24

Figure 4: Transmission electron microscopy reveals docking of epididymosomes 
on the sperm plasma membrane to allow delivery of GPI‑linked proteins 
to the sperm surface via hydrophobic interactions.23 On the smaller 
epididymosome SPAM1 which is immunogold‑ labeled is seen in the process 
of being transferred to the sperm membrane, while the contact of the larger 
epididymosomes appears to involve membrane fusion. Taken from Mol Reprod 
Dev 2008; 75: 1627–36.23



Asian Journal of Andrology 

Delivery of epididymal protein to sperm 
PA Martin‑DeLeon

723

Since PMCA4b binds to CASK preferentially at low [Ca2+]I,
49 it 

is useful to ask what is/are PMCA4’s interacting partner/s at high 
[Ca2+]i in spermatozoa. From what is known of PMCA4’s interaction 
in endothelial and neuronal cells, where PMCA4 has been reported 
to regulate negatively both endothelial nitric oxide synthase (eNOS)53 
and neuronal nitric oxide synthase  (nNOS),54,55 it can be predicted 
that these interactions are also present in sperm proteins. Importantly 
both NOSs, which are rapidly activated by [Ca2+]I,

54,56 are present in 
spermatozoa where they are responsible for the production of nitric 
oxide  (NO), which is required for a variety of sperm functions.57 
Since excess NO has deleterious effects on spermatozoa,58 PMCA4’s 
interaction with the NOSs to regulate them negatively would prevent 
oxidative stress, which is known to affect sperm motility58,59 as well as 
the integrity of the sperm genome.59 In light of this and the finding 
that in humans eNOS is expressed in the testis, spermatozoa and 
epididymis,60 it can be expected that these membrane‑associated 
NOSs, as well as Caveolin‑1 (CAV‑1), a scaffold protein with which 
eNOS interacts,61 are potential epididymosomal proteins that will be 
transferred to sperm cells along with PMCA4.

From the regulatory relationship between PMCA4 and the NOSs, 
it would seem advantageous that these proteins be transferred together. 
This would be similar to the detected PMCA4a‑PMCA4b‑CASK 
complex that was co‑immunoprecipitated from epididymosomes,43 
indicating that the proteins are likely to be transferred as a complex. 
A  list of transmembrane and membrane‑associated proteins 
identified in EP or potentially present in their cargo, on the 
basis of a hypothesis‑driven approach is seen in Table  1. The list 
includes PMCA1a, and b, which are murine sperm proteins37 and 
which have identical partners as PMCA4a, and 4b, and which the 
Martin‑DeLeon Lab has detected in ELF and shown to be delivered to 
spermatozoa (unpublished data). Interestingly, none of these proteins 
appears in the list identified from the proteomic approach for human 
and bovine epididymosomes. This is not surprising for PMCA4, 
which is very low in abundance, accounting for only 0.01%–0.1% 
of all membrane proteins.46 Thus the hypothesis‑driven approach, 
which is based on knowledge of the functional role and the interacting 
partners of the proteins, might be useful to detect the presence of 
low‑in‑abundance membrane or membrane‑associated proteins when 
they exist in the epididymosomal cargo.

How are these transmembrane and membrane‑associated 
epididymosomal protein complexes transferred to the sperm 
surface? Schwarz et al.62 analyzed the fusogenic properties of bovine 
epididymosomes and their involvement in the transfer of PMCA4, 
among other molecules, to bovine spermatozoa. Using labeled 
epididymosomes in co‑incubation experiments, they provided 
evidence for a fusogenic mechanism for the delivery PMCA4. More 
recently, studies on oviductal microvesicles/exosomes also provided 
support for a fusogenic pathway in the delivery PMCA4 and other 
transmembrane proteins to murine spermatozoa.63 From the use of a 
lipophilic dye for the exosomes/microvesicles and three‑dimensional 
super‑resolution structured illumination microscopy, sperm‑EP fusion 
was detectable and co‑localized with immunolabeled PMCA4a.63

Membrane fusion is not only an effective mechanism for the 
delivery of transmembrane and membrane‑associated proteins and 
their complexes, but should also mediate the delivery of GPI‑linked 
proteins from epididymosomes. Thus the docking of epididymosomes 
that was detected by the delivery of SPAM123 is a step that precedes 
fusion. As CD9 tetraspanin has been implicated in membrane fusion, 
EP‑sperm fusion appears likely to be mediated via CD9, which is 
a biochemical marker of exosomes and an adhesion molecule that 

generates fusion‑competent sites.64–66 Consistent with this is the finding 
that CD9 has been detected on the murine sperm membrane over the 
acrosome and on the midpiece,67 and that CD9‑positive microvesicles 
that fuse to the sperm membrane at these regions have been shown 
to transfer molecules to maturing live bovine spermatozoa in a 
tissue‑specific manner.32 Further, with the use of function‑blocking 
antibodies for CD9 there was a significant decrease in protein delivery 
to sperm cells,32 providing evidence for CD9‑mediated fusion in cargo 
delivery of epididymosomes.

CONCLUSION
A variety of sperm proteins that are expressed in the testis are 
also expressed in the epithelia of the epididymis, where they are 
secreted into the luminal fluid and delivered to the sperm surface. 
Fertility‑modulating proteins in the secretome may be GPI‑linked, 
transmembrane or membrane‑associated. Epididymosomes, 
membrane vesicles which may be exosomes or microvesicles, serve as 
the vehicle for the transfer of all three classes of proteins to the sperm 
surface, while GPI‑linked proteins can also be transferred from the 
soluble membrane‑free fraction of the ELF. This fraction exists in both 
oligomeric and monomeric forms, with protein transfer occurring 
primarily from the latter while the former serves as a source for 
monomers. Transfer from monomers is dependent on clusterin (CLU), 
a lipid carrier which stabilizes GPI monomers and delivers them to the 
sperm membrane via hydrophobic interactions. Epididymosomes fuse 
with the sperm membrane in delivering their cargo in a CD9‑dependent 
manner, and transmembrane and membrane‑associated proteins in an 
interactome are likely to be delivered in a complex. Further work is 
needed to determine the presence of the proteins predicted to reside in 
the epididymosomal cargo and their transfer to spermatozoa.
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