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It is the man 
Not the method 
That solves the problem 

H. Maschke 
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PREFACE 

A 1,r.i~-f survey of the methods of solution of r;idiativr 
tr,ins Tcr cqu;itions* conducted rcccntly showcd thc c?.trchicly 
w idr v n r i r t y  of riicthods now ~vailablr to niodern researchers 
i n  this discipline. Ilowever, there are some methods which go 
to the very heart of the equation of transfer, notably the 
natural methodof solution (via scattering order decomposition), 
and whichstand foremost byvirtue oftheir power and elegance. 
Another such method is the spherical harmonic method, which 
attempts to extend the time-honored technique of separation 
of variables to the equation of transfer. Finally there is 
the method of diffusion equations of both approximate and 
exact type. I have selected these three major methods for 
exposition here. The remaining principal method of solution, 
namely the invariant imbedding method, is reserved for study 
in Vols. IV and V. 

As always, I have been concerned with the fundamental 
questions of the discipline, those that throw light on the 
conceptual structure of our subject. For this reason I have 
avoideddiscussingvarious extreme types of techniques of so- 
lution, chief among which are the abstract mathematical tech- 
niques concerned with uniqueness and existence questions, or 
with unrealizable algorithms which have no physical content 
and hence no role in the mathematical-physical foundations of 
the subject. Moreover, such techniques as the Monte Carlo 
method were avoided because of their zero conceptual content. 
Finally, I have not included purely numerical tabulations of 
solutions of the equation of transfer. Nothing is simpler in 
these days of powerful computers and exceedingly accomplished 
computer programs, torack up several volumes of specialized 
solution tabulations for various selected geometries. I do 
not deny the utility of such tabulations; I am simply adher- 
ing to my originally imposed constraints which try to keep 
this (already extensive) work on the track of fundamental con- 
ceptual constructions, rather thannumerical and experimental 
compilations. 

thermoreher editorial assistance is gratefully acknowledged. 
Ms. Louise F. Lembeck typed the final manuscript; fur- 

R.W.P. 
Honolulu, Hawaii 
September 1974 
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CHAPTER 4 

CANONICAL FORMS OF THE EQUATION OF TRANSFER 

4.0 Introduction 

In this chapter we begin a systematic construction of the 
main laws of radiative transfer theory by means of the prin- 
ciples of Chapter 3, with the particular goal in mind of 
deriving certain special types of transfer equations for the 
main radiometric concepts. These equations have been found 
most useful in the applications of the theory to the study 
of light in both the sea and the atmosphere. This task will 
occupy our attention during this and the following four 
chapters. In the present chapter our purpose is to obtain 
the canonical equations of transfer for radiance. 

fold. First of all, "canonical" is to denote a fundamental 
well-established form of the equation of transfer--a form 
which has evolved and eventually gained universal acceptance 
over a two hundred year period of development. This is not 
to say that the canonical form of the equation of transfer 
is given first priority in every mathematical investigation 
of the transfer of radiant energy in optical media; rather, 
it is simply intended to stgnify the fact that the canonical 
form of the equation of transfer has been applied and inde- 
pendently rediscovered with sufficient frequency in various 
fundamental investigations in different subfields of radia- 
tive transfer over the years, that it has eventually taken 
on the role of an enduring useful landmark in the general 
theory. The second sense of the word "canonical" as used 
here is of a more technical nature; it is to denote the fact 
that the equations are written in a form of great simplicity 
without decreasing generality, and in a way that is inde- 
pendent of any particular coordinate system. Of the two 
senses, the first by far is to be considered the dominant 
sense in what follows. 

of the equation of transfer was in the work of Bouguer, in 
whose classical treatise [28] appears a special but unmis- 
takable form of the equation. This equation was unearthed 
and dusted off by Middleton in his studies of Bouguer's work. 
Specifically, Middleton observes [28] that: "Bouguer inte- 
grated the contributions of many elementary layers (dx) by 
a geometrical construction, and showed that [in modern nota- 
tion] the apparent brightness of an object at distance x is 

The sense in which we use the word "canonical" is two- 

The earliest recorded appearance of the canonical form 



2 CANONICAL FORMS VOL. I 1 1  

The salient features of this equation, those that make it 
“canonical” in the technical sense, can be described in terms 
of the concepts developed in Chapter 3. First of all we 
observe that (1) has the Gestalt of (5) of Sec. 3.13, where 
the term ae-ax corresponds to N F  in equation (5) of Sec. 3.13, 
the term b(l-e-aX) corresponds to NF, and the term B(x) to 
N,. Thus B(x) is interpretable as the apparent radiance of 
an object (Sec. 3.13) as seen over a path of length x, where 
the path radiance of the path is b(l-ePax) and the inherent 
radiance of &he object is a. The particular manner in which 
a, b, and e- occur in the algebraic form of (1) character- 
ize (1) as canonicat. Equation (1) is substantially the 
algebraic form of B(x) deduced by Bouguer from empirical 
observations. According to Middleton, however, Bouguer 
ostensibly missed the full physical significance of the terms 
a and b. Hindsight and a fully developed theory now let us 
view a and b in quite simple terms. Thus a in (1) is the 
inherent radiance of the object which is transmitted over the 
path with beam transmittance e-axm Hence a must be the 
attenuation coefficient of the path (our a of Sec. 3.11). 
The term b is a simple instance of the general concept of 
equilibrium radiance which will be introduced and studied in 
detail in this chapter. Physically, b is the radiance of a 
very long uniformly lighte-d homogeneous path. Mathematically, 
b is simply the limit of B(x) as x-. The radiance b is inde- 
pendent of location along the uniformly lighted homogeneous 
path, and in real life is closely approximated by the horizon 
radiance under suitable atmospheric conditions. The horizon 
radiance remains ostensibly constant, for example, on a trans- 
continental jet flight at 10,000 m altitude over large seg- 
ments of the flight path. The observed horizon radiance seen 
by the jet pilot is the real counterpart to the equilibrium 
radiance b in (1). Of course similar interpretations of a,b 
and corresponding interpretations of (1) apply to horizontal 
lines of light in the sea, under suitable conditions. 

In the present chapter we shall develop a hierarchy of 
canonical equations of transfer for radiance starting with 
the simplest of applied situations and concluding with what 
appears to be the most comprehensive canonical equation of 
transfer for physically meaningful contexts. Equation (1) 
will fall somewhere in the lower middle of this hierarchy, 
that is, somewhere in the neighborhood of the Koschmieder 
equation of Sec. 4.3. Throughout this chapter, unless specif- 
ically noted otherwise, all optical media will be considered 
emission-free, in the steady state, and of constant index of 
refraction. This condition does not constitute any signifi- 
cant loss of generality in terrestrial settings while permit- 
ting a simple exposition of the main idea of the canonical 
equation. 

4.1 Radiance in Transparent Media 

ical equation of transfer can occur: transparent optical 
We take up first the simplest case in which the canon- 
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media. A traneporent optical medium X is one in which 
a(x,e) - 0 and u(x;C';<) = 0 for every x in X and E',[in E. 
An example of a transparent optical medium is a block of 
glass which does not appreciably absorb or scatter radiant 
energy. Under these conditions, the integral equation of 
transfer (2) of Sec. 3.15 associated with a path Qr(x,E) in 
a vacuum takes the form: 

1 N(z,f:' = N(x,S) I . (1) 

Where z = x + cr. This instance of the equation of transfer 
is clearly interpretable also as an instance of the radiance 
invariance law(2) of Sec. 2.6. 

In the case of a transparent optical medium in which 
the index of refraction varies with location along Qr(x,E), 
the n2-law for radiance (4) of Sec. 2.6 

N(z,6)/n2(z) = N(x,El/n2 (4 (21 

governs the magnitude of N(z ,c) along @(x,E). 

the appropriate integrodifferential form of the equation of 
transfer. This would be equation I1 of Sec. 21 in Ref. [251], 
which in turn is deducible from the interaction principle. 
Thus we would deduce from this equation that 

The preceding two laws also can be made to follow from 

I I 

1 I 

from which follows (2). Equation (3) of Sec. 3.15 yields in 
particular : 

for the case of a transparent medium with constant index of 
refraction. From this follows (1). Clearly (4) is a spe- 
cial case of (3), so that (3) may be considered the basic 
equation for radiative transfer in transparent media. 

4.2 Radiance in Absorbing Media 
The next simplest case of an optical medium containing 

a radiative transfer process is that of a purely absorbing 
medium. A purely absorbing optical medium X is one in which 
a(x;C',C) = 0 for every x in X and S',c in E. An everyday 
example of a purely absorbing medium is a uniformly exposed 
photographic negative. By holding such a negative to the eye 
and viewing one's surroundings through it, the principal 
radiative transfer feature of a purely absorbing medium is 
readily perceived: Such media characteristically decrease 
the radiance of a scene by a factor which depends only on the 
inherent optical and geometric makeup of the medium and which 
does not depend on the surrounding light field. If the ab- 
sorption properties of anoptical mediumX areuniform throughout 
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X, then the factor of the observed decrease is a simple 
exponential factor exp t-ar? depending only on the attenua- 
tion coefficient a and the length r of one's path of sight 
through the medium. In particular no light from the surrounds 
of the path will be added to that of the path. Indeed, if 
the universe were made up only of absorbing material, radia- 
tive transfer theory beyond the use of the exponential func- 
tion would not exist, so simple and straightforward is the 
form of (1) of Sec. 3.15 when reduced to pure absorption case: 

Nr(z,51 N,(x,SI Tr(x,S) (1) 

Equivalently (3) of Sec. 3.15 reduces to: 

However, in all real media, absorption mechanisms are 
accompanied by scattering mechanisms in the radiative pro- 
cesses within such media. Hence, the losses summarized by 
the volume attenuation function a include scattering losses 
in addition to the absorption losses. The losses due to 
scattering at a typical point of a path @(x,S) in general 
optical medium X are readily characterize3 using the volume 
scattering function of Sec. 3.14. Indeed the integral: 

represents the total radiance loss by a beam of given wave- 
length and unit radiance, under scattering without change in 
wavelength (elastic scatter) and per unit length at z, along 
the direction 5 of the path Pr(X,s) at that point. 
interpretation follows readily from the developments in Sec. 
3.14. 

This 

Let us write: 

"s (2, 1 " for (z ; 5 ; E  1 do (5 ' 1 13) 

We call s the -aoZume total scattering function on X. Further, 
let us write: 

'la(z,E)" for a(z,5) - s(z,&) (4) 

We call the function a which assigns to each point z 
on Qr(x,E) the value a(z,S), the votume absorption function 
on X. The interpretation of a(z,E] is straightforward: it 
represents the loss of radiance per unit length at point z 

! 

I 

! 



SEC. 4.2 ABSORBING MEDIA 5 

on or(x,c) of a beam of unit radiance, the loss being due to 
two physical mechanisms: (i) the scattering of some of the 
incident radiant flux into radiant flux of a different wave- 
length than that of the incident beam (ine2astic scatter or 
transpectral scatter); (ii) the conversion of some of the in- 
cident radiant flux into non- radiant energy (true absorption). 
Some forms of non-radiant energy pertinent here are: the 
potential energy of higher stationary states in atomic sys- 
tems, and the kinetic energy of motion of the molecules of 
the optical medium. Since cr(z,c) represents losses due to 
all the mechanisms namely elastic scatter, inelastic scatter, 
and true absorption, we expect on physical grounds that a(z,C;) 
is nonnegative for every z and 5 in its domain of definition, 
and we hypothesize the appropriate inequality to hold hence- 
forth between a and s so that this nonnegativity of a(z,c) 
is the case. 

attention the particular role played by the volume absorption 
function in radiative transfer theory. The function plays 
the role of a catchall of all radiant flux losses undergone 
by a beam of radiant flux other than by the mechanism of 
elastic scatter. The two fundamental (or primary) optical 
properties of a medium X are ci and u. The concept a as de- 
fined in (4) is a secondary property, that is, one that is 
derived from a and o as shown. The secondary nature of the 
concept a follows from the fact that in practice absorption 
cannot be observed directly, but only indirectly by means of 
monitoring the initial and final states of a beam in trans- 
mission and scattering arrangements in experimental settings. 

write (1) or (2) in the form: 

It is worthwhile to bring explicity to the reader's 

Using the definition (4) of the function a, we can 

Nr(z,E) = No(x,E) exp 

where the inte ration is along the path Qr(.,E) with 
z = x + r< (set Fig. 3.33). 
4.3 Koschmieder's Equation for Radiance 

A classical problem of radiative transfer theory in 
either the atmosphere or in the sea is to determine the 

(x,S) which lies in a homogeneous and uniformly lighted 
region of an optical medium. Specifically, the problem is 
to determine the apparent radiance NT(z,S) given a and u 
along q(x,C)! and No(x,c) at the initial end oint x of the 
path, a ong with the fact that each point of &(x,E) is 
irradiated by the same radiance distribution (which may, 
however, depend arbitrarily on E'). This situation (or some 
reasonable approximation of it) arises often in the atmos- 
phere and the sea, notably along horizontal paths of sight, 

parent radiance of an object as seen along a path of sight 

Y 



VOL. I11 6 CANON I CAE FORMS 

and the reader should be able to cite many personally observed 
instances of it. 
in detail, and in 1924 published in [141] his analytic ex- 
pression for Nr(z,S) which was derived after lengthy prelimi- 
naries and under the radiometric conditions stipulated above. 
We turn now to a modern derivation of the expression for 

Koschmieder studied this classical setting 

Nr(z 9 5 )  - 
leturning to (1) of Sec. 3.15 we assume a and u are 

independent of z along Qr(x,6). Then: 

T=(x,s) - e-" 
where "a" denotes the assumed fixed value of the volume 
attenuation function along 8 x,E). Furthermore, since the 
radiance distribution N(Z,.)~$S independent of z along the 
path then N,(z,S) is also independent of z along the path and 
we shall abbreviate this fixed value by "Ne". Equation (1) 
of Sec. 3.15 then reduces to: 

Nr(z,E) = No(x,S)e-ar + N, l r  e-u(r-r')dr* 

and with the abbreviations "N " for Nr(z,E) and "NOrt for 
No(x,(), this simplifies immehately to: 

where we have written: 

for N,/a (21 IIN 11 

q 

Equation (1) is Koschrnieder's equation which relates 
apparent radiance Nr to No on a path 0 in an optical medium 
along which Q and CJ are constant value2 and along which the 
value N, of the path function is constant. The radiance N 
is called the equitibrium radiance for Or. The significanze 
of Nq is seen by letting r- in (11, or alternately by con- 
templating the integrodifferential equation for Nr associated 
w i t h o r  as given in (3) of Sec. 3.15: 

dN r = - aNr + N, (3) 

Under our present assumptions, (3) is a relatively 
innocuous first order differential equation in which a and 
N, are constants and Nr is the unknown function. Using (2) 
we can rewrite (3) as: 

! 

i 
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from which we can immediately read the physical significance 
of Nq: 
i.e., Nr is ihcreasing at that point. In general, N always 
tends toward the fixed radiance N , and tiNr/dr = 0 i? and 
only if Nr = N . 
equilibrium v a h e  (in an every day sense) toward which the 
values Nr unceasingly tend. 
often observable over long horizontal uniformly lighted paths 
through a homogeneous natural aerosol or hydrosol. 
. It should be observed that the derivation of (1) places 

no conditions on the orientation or the location of the path 
<7r in an optical medium. 
the derivation is that (1) follows from (1) of Sec. 3.15 upon 

only that a, a and N, are constant long %. 
the case may be. An interesting example of (1) for inclined 
paths of sight in the atmosphere may be obtained from the 
results in [7l]. 

If NF < Nq at a point on the path, then dNr/dr > 0, 

Therefore N taaes on the aspect of an 

The equilibrium radiance Nq is 

The essential point to observe in 

This 
free to be vertical, inclined, or horizontal, as 

4.4 The Classical Canonical Equation 

generality and derive still further instances of canonical 
radiance equations. We still have not reached the most 
general physical setting in which the canonical equation can 
hold, but we have reached the point where the full canonical 
structure of the equation finally emerges, and we turn now 
to the derivation of that form. 

Let or(x,€,) be an arbitrary line of sight in a homoge- 
neous optical medium X. To fix ideas, let the medium X be a 
natural hydrosol, and let us adopt the standard coordinate 
frame for such a setting (Sec. 2.4 and Fig. 2.3). Let 
or(x,S) be positioned as shown in Fig. 4.1. 

a and o to be independent of location along the generally 
inclined path or(x,E), and that the light field does not vary 
over a given horizontal plane, i.e., the light field isstrat- 
ified. The new feature of the canonical equation appears by 
assuming that there exists a nonnegative real number K (which 
is less than a) such that: 

In this section we continue to ascend the ladder of 

With the geometry fixed as in Fig. 4.1, we now assume 

for every path er(x,5) in X. 
esizing an exponential decrease of N,(z,C) with depth z in X. 
The justification for this assumption rests on both experi- 
mental and theoretical grounds. For an experimental justifi- 
cation, see Sec. 1.2; for theoretical justifications see 
Secs. 1.3, 7.10, 8.5, 8.6 and Sec. 10.7. For the present,we 
are concerned primarily with the resultant form of (6) of 
Sec. 3.13 to which this assumption leads us. Thus starting 
with (6) of Sec. 3.13, we have: 

This means that we are hypoth- 

Nr(z,E) = Nolx,E)Tr(x,S) + N*(x' ,5)Tr-rl (x' ,51 dr' 
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FIG. 4.1 Setting for the derivation of the classical' 
canonical equation for radiance. 

Since N,,(x',S) depends only on the depth z' of the 
point x' along@r(x,S), we may drop references to x and y 
coordinates and need only relate the variable of integration 
r' with z' using the relation: 

z' = zo - r' cos e 

so that: 

The equation for Nr(z,S) with "z" denoting depth, then 
becomes : 
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Using (1) once again and the connection between z and 
r along @(X,e), we have: 

I I 

which is the desired form of the ctassical canonical equation 
for N,(z, 5). 

(2). First of all, (2) is a proper generalization of equa- 
tions (1) of Secs.4.1 and 4.2, and of Koschmieder's equation 
in Sec. 4.3, reducing to the latter either when K f 0 and 
0 = r/2, or when K = 0 and 0 arbitrary. In all real natural 
hydrosols, K + 0 so that Koschmieder's equation holds in 
natural hydrosols only when 6 = r/2. In the atmosphere on 
relatively clear days, K = 0 (very nearly) over relatively 
long horizontal or inclined paths, and so Koschmieder's equa- 
tion holds ovw relatively extensive regions in the atmos- 
phere (cf., Ref. [71]). 

As a second observation, we note that the main use of 
(2) is to predict the apparent radiance Nr of given objects 
in natural optical media when a, K and No are known or esti- 
mable. Furthermore, (2) yields a useful estimate of the path 
radiance N: generated over a path of sight in an optical 
medium, that is, 

We now make several observations on the structure of 

f which is a straightforward generalization of the equilibrium 
radiance defined in (2) of 4.3, (3) may then be rendered in 
the form: 
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This shows that the equilibrium radiance N (z,c) is 
observable only for infinitely long horisontat p%ths in 
natural hydrosols. For other paths, N contributes to the 
observable quantity NP in the manner sflown in (5) but itself 
is not directly observable. 

As a third observation imagine a descent into a deep 
hydrosol, such as a deep lake or part of the ocean. Let 
No(z ,E) be the inherent radiance of the air-water boundary 
for directions 5 in 3-, and No(2,,5) be the inherent radi- 
ance of the lower boundary of the medium for directions 5 
in 5,. Then when the optical distance ur to the boundaries 
becomes relatively large, e-ar becomes relatively small. 
Under such conditions Nr(z,€,) is expressed essentially in the 
form (S), with the exponential term in (5) also negligible. 
Hence, at relatively great depths in deep natural hydrosols 
we have essentially: 

where "r" has now been dropped from the notation as being 
inessential. Thus the radiance distribution N(z,S) at rela- 
tively great depths z is basically an ellipsoid of revolution 
with vertical axis and with eccentricity E = K/a, which is 
modified, as s.hown in (6), by the equilibrium radiance dis- 
tribution Nq(zs5) at the same depth. 

There is a special class of homogeneous optical media 
for which (6) reduces to precisely the ellipsoid of revolu- 
tion of eccentricity E, namely media for which u(z,S';() is 
independent of 5' and 5. ,For such media we have from the 
definition (3) of Sec. 4.2: 

where h(z) is the scalar irradiance induced by N(z,#) (Sec. 
2.7). 

If we write: 
"p't for s/a , 

which is the atbedo for singte scattering, or scattering- 
attenuation ratio, then (6) becomes : 

(9) Ph(Z) N(z 95)  = 
4n(i + cos e) 
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r 

It is quite clear from (8) that N,[z,E,) is independent of 5, 
and that: 

From this we see that there is in N(z,L) a multiplica- 
tive uncoupling of depth (z) and directional (0 or E) param- 
eters and that scalar irradiance and path function values 
both decrease exponentially with depth and at equal rates. 
This multiplicative uncoupling of z and 6 can be represented 
as a product of a function of z only and a function of 5 only, 
it is of far-reaching importance in the general theory of solu- 
tions of the equation of transfer. (See Sec. 6.6.) Further- 
more, we shall return to (6) and to (9) once again in Sec. 
10.5, when the problem of the asymptotic radiance distribu- 
tion at great depths is examined in a more rigorous fashion. 

The preceding observations point up the versatility of 
the classical canonical form of the equation of transfer and 
suggest that of all the various equations encountered in 
practice, (2) is perhaps the most handy and succinct rule of 
thumb on natural light field behavior to carry around in 
one's memory. To add to the evidence of the utility of (2) 
we now deduce from it two further features of natural light 
fields. 

Nt(z,C) for very short paths of sight? This question directs 
attention to a situation which complements that centered 
around (6). Now from elementary calculus it is at once clear 
that: 

First, we may ask: What is the behavior of path radi- 

where o(r) is a function such limr+oo(r)/r +I 0, so that for 
small r, o(r) is an infinitesimal of order higher than r. 
Therefore (3) reduces, within first order terms in r, to: 

Hence the answer to the question posed above is that 
for short paths of light N$(z,S) varies linearly with r, the 
proportionanity factor being N,(z ,E). 

apparent radiance distribution near the air-water boundary, 
i.e., for very shallow depths? This query rounds out the 
complementary situation to that in (6) which describes the 
light field at relatively great depths. We take a simple 
case to illustrate the manner in which such questions may be 
answered using the canonical equation for radiance. Suppose 
the sky above the natural hydrosol is a deep blue and the 
sun is the only bright source of light in the azure hemi- 
sphere. Let attention be directed at a relatively dark point 
of sky away from the sun's disc. Hence the radiance No(O,E) 
(with 5 in E-) from that portion of the sky as seen from just 
below thesurface is very small compared to the sun's radiance. 

Finally, we may ask: What is the structure of the 
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Now keepin 5 fixed, let depth z increase. If the term 
No(Q,c)e:aH is negligible, as we now wish it to be, then 
Nr(z,E) is given essentially by N$(z,5). For small depths z 
(and hence small path lengths r), N:(z,E) is essentially 0. 
As z increases through small depths, N$(z,E) builds up lin- 
early in magnitude according to (11). For still further 
increases in z, NP(z,E] eventually levels off, reaches a 
maximum, and then subsequently plunges toward zero exponen- 
tially with rate K as z-. All this information is read off 
during an inspection of (3). We can obtain an estimate of 
the depth z at which the maximum path radiance is reached, 
Thus, from elementary calculus we find the maximum of N;(a,S) 
with respect to z by holding 5 fixed, differentiating with 
respect for z, and setting the derivative equal to zero. 
First, recalling that: 

we then use (3) to differentiate N:(z,E): 

[l-e-(a + K cos e)r I 
-(a+KcosB)r . dr 

a T *  ( a +  K cos e)e 

Setting the derivative to zero, and solving for zm, the 
value of z which maximizes NP(z,E), we have: 

I I 

where "E" is again written for K/a. 
Still further, more realistic models can be constructed 

for the radiance patterns at shallow depths in natural waters 
using similar procedures but now based on the full form of 
the classical canonical equation (2) ; the explorations of 
such models and that of (12) are still in their early stages 
of development and are left to interested students of the 
subject. Figure 4.2, taken from [298], depicts a comparison 
plot between some computed values of Nr(z,c) (solid curve] 
using (2) with actual observed radiances and path function 
values at the surface obtained in a real situation, and 
thereby illustrates graphically the predictive power of the 
simple model of natural light fields summarized in (2). Ob- 
serve in particular the reasonably good agreement between the 
predicted and observed value of the depth zm at which maxi- 
mum radiance occurs. 

I 
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FIG. 4.2 Tyler's experimental verification (dots) of the 
curves predicted by the classical canonical equation for radi- 
ance. 

Further models beyond (2)may now beexplored by letting 
X vary in various known ways with depth, so that slightly 
more general forms than (1) are the starting points for the 
integration of the equation of transfer. In view of the fact 
that N, generally behaves very nearly in an exponential man- 
ner with depth, these departures of K from constancy need 
only be very slight to cover most real situations. The basis 
for these generalizations is given in (19) of Sec. 4.5. 
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4.5 The General Canonical Equation for Radiance 
The purpose of this section is to draw attention to a 

general pattern discernible in the various expressions, de- 
rived in the foregoing sections, for the apparent radiance #, 
which is the logical commondenominator of the large collection 
of analytic expressions for N which occur in the everyday 
studies of atmospheric and hyarologic optics. No s ecific 
or general problems of applied radiative transfer tgeory are 
intended to be solved for the moment, and no new numerical 
methods are expected to be immediately forthcoming. We seek 
instead to determine a general equdtion which will unify and 
hold within its form, as special cases, the various ways of 
correctly representing the apparent radiances of both near 
and distance parts of one's radiometric environment. In 
short, we extract from the examples discussed above and others 
in the literature, the general canonical representation of 
the apparent radiance function which will hold for all cases 
occurring in geophysical optics. 

The key concept leading to the formulation of the appro- 
priate canonical representation of apparent radiance turns 
out tobe that of a generalized form of radiance tranemittance 
associated with a path of sight 6?r(x,S) in an optical medium. 
This concept is suggested after a study of the integral rep- 
resentation of the beam transmittance Tr(x,C) associated with 
S(x,t;), as given in (3) of Sec. 3.11, while keeping in mind 
tffe basic property of Tr(x,E) as summarized in (4) of Sec. 
3.10, that is, the fact that T,(x,{) is the ratio of the beam- 
transmitted radiance No(z,S) to the initial inherent radiance 
M (x,C) over a path qfx,S). 
of N,(z,S) to No(x,S), i.e., of the apparent radiance to the 
inherent radiance over the path Gr(x,t;). Let us call this 
ratio the radiance transmittance of the path @(x,#). It is 
quite evident that the beam transmittance and hhe radiance 
transmittance of a given path are generally two distinct 
numbers. We now ask: Can the radiance transmittance just 
defined be given an integral representation analogous to that 
for beam transmittance? For, if so, then it is quite a sim- 
ple matter to construct the appropriate generalization of (2) 
of Sec. 4.4 without the encumbrance of special restrictive 
assumptions of the kind in (13 of Sec. 4.4 which, while jus- 
tifiable in many useful contexts, distract from the mathe- 
matical elegance and physical completeness of the resultant 
canonical representation of N,(z,E). 

The requisite integral representation of the radiance 
transmittance is readily obtained by building an analogy on 
the fact that a, the key function in theintegral representa- 
tion of Tr(z,S), is thelogarithmic derivative ofN:(z,S) along 
the path. This observation is based on (3) of Sec. 3.10 and 
(2) of Sec. 3.11. Some preliminary experimentation leads to 
the following definition of the appropriate analogue of a 
required in the present discussion. Thus let us write: 

Suppose now we take the ratio 

"X" for -VN/N (11 

Here V is the spatial gradient operator and N is a gen- 
eral radiance function defined and differentiable in a region 

i 

I 
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X such that N does not vanish in X. 
X, and No and Nr are the radiances along the path at points 
x and x +rc, respectively, then it is a simple exercise in 
calculus to show that, under the preceding conditions on N, 

I f  @(x,C) is a path in 

N,/N, = exp { - 5. X dr) 

where the integration is along the path $(x,5.). 
shallcall K the general K-function for radiance; it is a 
most useful concept not only in the present discussion, but 
in many practical investigations of light in natural media. 
By means of It we can cast the equation of transfer (3) of 
Sec. 3.15 into canonicaZ form as follows: Since d/dr is the 
direction derivative operation along the path, 

We 

and we have: 

by (1). From this we see that an immediate effect of the 
introduction of K is to replace the differential operation 
occurring in the equation of transfer by an ostensibly alge 
braic operation. The effect of this replacement on the equa- 
tion of transfer is striking, as may be seen by writing (3) 
of Sec. 3.15 in abbreviated form: 

E . V N = - a N + N ,  

and using (1) , the equation becomes: 

- 5 * KN = - aN + Ne 
which, upon solving for -N, becomes : 

or in more detailed notations: 

Equation (5) is the general canonicaZ form of the equation of 
transfer. It forms a key step in the derivations of the 
present section, and will also be used later in our studies 
of optical properties of natural hydrosols (Sec. 9.5). But 
for the present the reader should compare (5) above with (6) 
of 4.4 and note the close resemblance between that earlier 
approximate formula and the present exact formula (5). 



16 CANONICAL FORM3 ' VOE. 111 

Canonical Representation of Apparent Radiance 

We can turn now to the details of the derivation of the 
requisite canonical representation of apparent radiance. The 
derivation will be facilitated if we adopt the following nota- 
t ion. We write : 

for every admissible function f on @ (x,S], i.e., for every 
f defined and integrable, over a patiQr(x,5) of an optical 
medium X. In this notation, beam transmittance becomes: 

Tr(x,C;) - Tr[-u1 17) 

and radiance transmittance becomes T,[-S*K.]. Observe that if 
f and g are two admissible functions on Q,(x,E), then: 

Tr[f + gl - TrtflT,kl 
and that : [ 81 

(T,[f])-l t T,-l[f] = Tr[-f] . 
Henceforth we shall assume that a and 6-K are admissible on 
each path. 

We begin the general derivation with (5) of Sec. 3.13: 

N: - NOTr[-a] 
and that: 

Nr Q NO, + Nt (9) 

which is the general representation of apparent radiance in 
decomposed form, i.e., in terms of beam transmitted inherent 
radiance NO, and path radiance Nf on a path Qr(x,S). 

ing identity: 
We use (9) to suggest the construction of the follow- 

Nr = N: + [Nr - N:] 
which of CQUFSB has no physical content, and is logically 
equivalent to the statement: 

0 - 0  . (11) 

However, we next observe that: 

! 

I 
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Nr = NOTr [ - 5 .K] 

17 

and with these observations, (10) is transformed with the 
help of (8) into: 

I -1 Nr = NOTr[-"] + Nr[l-Tr[-a]Tr [-r;*X] 

Even though (14) is entirely devoid of physical meaning, 
and even though it is logically equivalent to (ll), it never- 
theless seems to be on the verge of saying something physi- 
catty significant by virtue of the fact that it has the gen- 
eral form of (2) of Sec. 4.4, At this point the canonical 
form (5) of the equation of transfer makes itsentrance. By 
using (5) to replace M, on the right side of (14), life is 
breathed, so to speak, into the cold symbolic clay of (14) 
and we obtain: 

This is the desired general form of the canonical 
representation of apparent radiance Nr over a path Qr(x,6). 
The radiance Nr in (15) is no longer arbitrary and free as 
in (14); now Nr in (15) is indissolubly locked to the optical 
properties of the medium via the equation of transfer. Equa- 
tion (15) is the most general form of (2) of Sec. 4.4 attain- 
able for unpolarized steady radiance functions in a general 
source-free optical medium. The quantity Tr[-E*K] in (13) 
is called the radiance transmittance associated with or(x,F). 
It will be studied further, along with related transmittance 
concepts, in Sec. 9.5. 

The Canonical Form for Stratified Media 

As an application of (15) we now derive the appropriate 
instance of the equation in an arbitrary stratified natural 
hydrosol. The result will be a canonical representation for 
N about midway in generality between (2) of Sec. 4.4 and 
( I S )  above. We shall use without further explanation the 
terrestrially based coordinate system for hydrologic optics 
described in Sec. 2.4. (See Fig. 4.1.) 

from (1) we have in general: 
The reduction of (15) begins with the observation that 

K = iI + jJ + kK (16) 

where we have written: 
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1 aN : for - a E . I I K I I  

and where i., j 9  and le are the unit vectors for a right-hand 
Cartesian coordinate System. For the phrticular coordinate 
system of hydrologic optics (Fig. 4.1) we must replace (16) 
by: 

t = 3.1 4 jJ ~ kK (17) 

For a stratified plane parallel medium all radiometric 
and optical functions are independent of x and y. Hence the 
x and y derivatives I and J above are zero, and so: 

5 * K = - <.kK = - K COS 8 (18) 

and (15) becomes 
I 

This equation is exact and completely general for plane 
parallel media; a and K have general depth and direction de- 
pendence. Other than the stratification condition summarized 
in (18) and the current choice of coordinates summarized in 
(17), the canonical equation (19) holds for completely arbi- 
trary lighting conditions and optical properties in a plane- 
parallel optical medium, 
that the function K in (19) may, according to (1) and (17), 
be defined within the plane-parallel context directly by 
writing: 

In particular it should be noted 

This is an operational definition of K(z,C) using directly 
observable radiances N(z,S); and so K, as it occurs in (19), 
is quite general in the plane-parallel setting. We shall 
study the depth behavior of K(z,C) in some detail in Secs. 
10.5 and 10.6. The reader should particularly note that (20) 
may serve as an operational definition of K in stratified 
plane parallel media. 
equation of transfer is: 

The associated canonical form of the 

I I 

Equation (19) reduces to (2) of Sec. 4.4 upon requiring 
a and K to be independent of depth z in the hydrosol. For 
then : 
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Tr[-a] = exp i-ar) 

Tr[-(a + K cos e)] - exp (-(a + K cos O)r) 

logarithmic derivative in (1) for the definition of K. In 
most natural hydrosols all radiometric quantities (radiance, 
path function, irradiance, etc.) have potentially constant 
logarithmic derivatives with respect to depth. Indeed, in 
Secs. 7.9, 7.10, and 7.11, it will be shown that this fact 
holds for quite wide geometrical and physical settings. This 
observation suggests further models of natural light fields 
that may be derived from (19). For by postulating a certain 
depth dependence of K suggested by experiment or theory (these 
are usually relatively mild dependences) and placing that 
depth dependence in (19), new models of Nr and N F  can be ob- 
tained which will fall somewhere between (2) of Sec. 4.4 and 
(19) as regards tractability in computation and fidelity of 
description of light fields. 

4.6 Canonical Representation of Polarized Radiance 

nonical representation of apparent radiance to the polarized 
context. One consequence will be a representation of polar- 
ized radiance distributions ,in stratified natural hydrosols 
comparable in simplicity and utility to the scalar equation 
(2) of Sec. 4.,4. The resultant polarized canonical form also 
suggests some interesting experimental programs that may be 
performed for polarized light fields in natural hydrosols. 
These will be briefly outlined at the conclusion of the sec- 
tion. 

In order to establish the polarized version of (15) of 
Sec. 4.5, it seems natural to try to repeat the constructions 
between (1) and (15) of Sec. 4.5, now for each of the four 
components iN of the polarized observable radiance vector N 
(Sec. 2.10). Thus let us write: 

This points up one of the primary reasons for using the 

In this section we shall extend the notion of the ca- 

ltKi" for -ViN/iN 

for each component iN of N, i = 1,2,3,4, and let us write 
(7) of Sec. 3.15 as: 

S-VM = -aN + N, (2) 

where we have written: 

tlNall for r N dn (31 

where p is the standard observable volume scattering matrix. 
All that we need know about the standard observable volume 
scattering matrix p in the present derivation is that it is 
a 4 by 4 matrix with entry pij in the ith row and jth column. 

P 
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In particular the problem of howthepij are obtained in 
principle or in practice is immaterial for the present deri- 
vation, since we are concerned only with the mathematical 
process of constructing the vector counterpart to (15) of 
Sec. 4.5. The matrix p is defined and discussed in detail 
in Sec. 112 of Ref. [251]. 

text now becomes four coupled scalar equations in the polar- 
ized context as follows. We first write: 

The canonical equation of transfer in the scalar con- 

"Pi" for (1Pli' Pzi, P3i' P4i) (41 

S*ViN - aiN + iN* I51 

Next we read off the ith component of (21, i = 1,2,3,4: 

where we have written: 

IliN*" for /I H-pidQ 
It follows from (3) and (63 that: 

Using (1) in (5) and solving the result for iN: 

This is the canonical equation of transfer for polarized 
radiance, which holds for each i = 1,2,3,4. Continuing as 
in Sec. 4.5, we deduce for i = 1,2,3,4: 

i r i o  N /.N = exp I - 1' S*Ki dr'l (9) 

which is the vector component counterpart to (2) of Sec. 4.5. 
Applying the notation "Tr[f]" of Sec. 4.5 to the present con- 
text, (9) may be written: 

i r  N i o r  N T [-E*Ki] , (101 

N o  = N T [-a] . (11) 

and we observe that: 

i r  i o r  

It now follows readily that for every i = 1,2,3,4: 

_ I  

! 

1 

~ 

i 
; i  

I 
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iN* 
iNr = i o r  N T [-a] + - a- Sexi (l-Tr[-b-S.xi) I )  

POEAKI ZED RADIANCE 

(12) 

21 

A Simple Model for Polarized Light Fields 

We now give some attention to the construction of a 
simple model for polarized light fields in stratified natu- 
ral hydrosols, the constructions being guided by the success- 
ful scalar prototype in Sec. 4.4. In the scalar case, the 
effective step was to assume that there was a nonnegative 
number K, less than a, such that: 

This suggests that we take each iN,, i = 1,2,3,4, which by 
(6) has the form: 

and agree to write: 

so that iN, will have the representation: 

Then, still being guided by the prototype (13) we agree to 
make the following assumption: the four nonnegative real 
numbers K. as defined in (I), are each less than a, and 
such that t ' 

1 I 
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for every i s  j = 1,2,3,4, where K -  now is the z-component of 
IC---the only nonzero component o? X -  by virtue of our CUP- 
d n t  assumption about the stratificaiion of the light field 
in natural waters. Under these assumptions, (12) reduces to: 

I 
for i = 1,2,3,4, and whkSe: 

or more compactly: 

1 I 

I I 

Experimental Questions 

The derivation of the canonical representation (18) 
for polarized radiance incorporated several assumptions which, 
even though suggested by the well-established scalar case of 
Sec. 4.4, require some critical examination before they are 
fully accepted. These assumptions in turn raise certain spe- 
cific questions concerning the nature of polarized light 
fields in natural hydrosols in general and the nature of the 
K-functions in particular. We shall conclude the present 
section with a brief statement and discussion of these ques- 
t ions. 

First of all, the definition of each Ki as given in (l), 
is a constructive definition and hence presents no difficulty 
in being translated into operational terms, so that actual 
experimental determinations of the Ki are possible in prin- 
ciple. These determinations should parallel very closely 
those already developed for the function K in (20) of Sec. 
4.5, because Ki, as K, is a logarithmic derivative of a radi- 
ance function. The main difference between Ki and K is 
simply that each Ki is associated with the component of a 
vector valued function while K is associated with a scalar 
valued function. Thus with the extra attachments of wave 
plates and polarizers on the radiance meter required to mea- 
sure the polarized radiance, one performs essentially those 

I 
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operations with the radiance meter that one performs 
K, but now four times over for each Ki, i - l,2,3p4. 

With the matter of the measurability of the Ki 
at lcast in Drincinle. we now ask the first auestion 

23 

to find 

settled, 
that 

comes to mind conckrning the Ki: 
regular pattern in the individual depth-behavior and in the 
relative magnitudes of the four functions K1, K2, K3, !4? 
This is actually two questions in one, and it may be simpler 
to phrase them separately. The first question may bephrased: 
Is there some observable regutarity in the depth behavior of 
each Ki? The second question may then be rendered as: Is 
there some observabte Pegularity in the relative magnitudes 
of the K;? As far as the first question is concerned, it is 
expected on simple physical grounds that the individual depth 
behavior of each Ki should follow very closely that of th8 
scalar K defined in (20) of Sec. 4.5. In particular the 
depth behavior of the Ki at relatively great depths in homo- 
geneous media should be quite regular and should follow the 
patterns discussed in Sec. 7.10 and Sec. 10.6 dealing with 
the asymptotic radiance theorem. Some attention to this ques- 
tion has been given by Lenoble [157]. The second question is 
more difficult to answer and, in view of the present state of 
development of the theory of polarized light fields in nat- 
ural optical media, it appears likely that a definitive an- 
swer will be forthcoming first from experimental investiga- 
tions. Nevertheless, it is interesting to speculate on the 
possible interrelations among the Ki. Thus, suppose that the 
Ki are all equal to a common value, then the set of equations 
in (18) assumes a particularly simple form. It follows that 
any differences between iNr and jNr will depend solely on the 
state of affairs between them at the surface of the medium. 
On the other hand, if there are two Kils which differ at all 
depths then the radiance component associated with the larger 
Ki will decay with depth more quickly than the other. As a 
result, those components of N with the smallest Kits will 
persist down to greater depths than the others with larger 
Kits. By contemplating these possibilities and by taking 
into account the known properties of the unpolarized light 
field, the general state of affairs for the functions Ki will 
most likely turn out as follows: 
will differ, and there will be some permanent characteristic 
pattern of relative sizes discernible among them which is 
related to the state of the sea surface, and to the polarized 
state of the sky; however, the transmitted sky-polarization 
and under-surface reflection-induced pattern will eventually 
disappear with increasing depth in such a manner that in the 
limit, all the values Ki tend to a common value independent 
of the state of the sky s polarization, with an attendant 
asymptotic value of the polarization of the light field. 
This common value of the Kits will be that of the depth decay 
rate of scalar irradiance h(z), which should be determined 
only by the inherent optical properties of the medium, just 
as in the scalar case. It remains to be seen how this con- 
jecture is borne out by experimental studies. Our review of 
the experimental work of Ivanoff and Waterman in 1.2 shows 
some encouraging agreement in this direction. 

ture of the functions Ki at great depths and while conjectures 

Is there sdme observable 

Near the surface the K i t s  

While attention is directed toward the possible struc- 
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about the Ki are being made, it might be in place to add some 
further conjectures about the light field itself in addition 
to its depth-rates of decay Ki. When one imagines the nat- 
ural light field at great depths one is led to picture a pre- 
dominantly downward feeble flow of light s the radiance pat- 
tern being graphically depicted by an ellipsoid-like surface 
with vertical axis. If this light field is conceptually 
analyzed for polarization features it seems- -on intuitive 
grounds--that the radiance vector for vertical downward or 
upward flux should have the form [l/Z)(N,N,N,N), i.e., verti- 
cal downward or upward-radiance should be unpolarized. Fur- 
thermore, it seems that the horizontal radiance should be 
horizontally linearly polarized, i.e. , have the form (1/2) x 
(0,2N,N,N). 
predominantly vertical and beamlike (and of course very feeble) 
at great depths. Since natural light fields change continu- 
ously rather than abruptly in most macroscopic settings , we 
would expect the radiance vector components to vary contin- 
uously between these two extremes as the angle of the radi- 
ance direction varies from e = 0 (vertical upward), or 'II 
(vertical downward) to 0 = ~ / 2  (horizontal). A simple model 
for this radiance N(B) which comes readily to mind and which 
satisfies these conditions is: 

This follows from the fact that the flow is 

1 N(e) = (N cosz e, NCn + sin' e), N, N) 

where 8 is measured from the zenith and N is the fixed refer- 
ences radiance for o = o at each depth. All these assertions 
are at this stage OB our knowledge of course conjectural, 
being based on a modicum of physical experience with polar- 
ized radiance fields in natural waters, and are intended pri- 
marily to perform a heuristic service. It will be left to 
interested researchers to carry this matter to a more satis- 
factory state of affairs , both theoretically and experiment- 
ally. A possible theoretical approach can be based on the 
polarized version of (21) of Sec. 10.7, or on (29) (31) of 
Sec. 7.10. These approaches may show that the preceding con- 
jecture must be modified to take into account the structure 
of the volume scattering matrix (cf. (24) of Sec. 13.6) of 
the medium. 

4.7 Abstract Versions of Canonical Equations 

the notion of canonical radiance forms over a great concep- 
tual distance, starting from the rudimentary canonical repre- 
sentation (1) of Sec. 4.0 discovered by Bouguer nearly two 
centuries ago and up to the representation in (12) of Sec. 
4.6. Such a task could not have been carried out in the 
indicated manner without the convenient milestones in the 
development of the theory provided by early workers such as 
Schuster, Koschmieder, and others. It seems that the repre- 
sentations finally reached in Secs. 4.5 and 4.6 constitute 
the most general forms for radiance concepts attainable 
which are physically meaningful. Their basic forms remain 
essentially intact by allowing more general physical fea- 
tures to appear such as the time-dependent radiance terms 

The discussions of the present chapter have carried 

*: 
a !  
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and emission terms in the basic equation of transfer. In 
view of the apparent ubiquity of the canonical representation 
throughout the domain of pure and applied radiative transfer 
theory (e.g., see the canonical equations in Chapter 11) and 
in view of the seeming ease with which the equation of trans- 
fer is molded into its canonical form, we are led to inquire 
whether the notion of a canonical representation is indipe- 
nous only to radiative transfer theory or whether in our 
labors in this special field we have touched upon merely the 
shadow or projection, so to speak, of a more general analytic 
phenomenon in modern operator theory. It appears that the 
latter possibility is the case and we pause briefly here to 
sketch in outline the general mathematical setting in which 
the notion of the canonical representation appears to take a 
natural place. 

Let L be a general (not necessarily linear) operator 
defined on a domainB of functions such that for each func- 
tion f in b there is a function g in Z, and a number X such 
that: 

-1 (1) 

This is the abstract counterpart to the equation of 
transfer with L replacing the derivative operation 5.0, and 
g replacing N,, and where f replaces N. The number X is non- 
zero and may be real or complex and is evidently a replace- 
ment of -a. Now let us write: 

Then (1) can be written: 

( 2 )  

and this should be compared with (4) of Sec. 4.3. Hence 
fq is the abstract vestige of equilibrium radiance, so 
that Lf = 0 if and only if f = fq. Next write 

for -Lf/f (3) ,tK" 

so that K is the abstract vestige of K, and (1) becomes: 

-Kf = Xf + g . 
Solving this for f: 

I I 

which is the requisite abstract canonical form of equation 
(1) associated with the operator L. An alternate form of 
(4) is obtained by using f . q' 
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This basic form is applicable to all manners of radiometric 
concepts and optical properties. See, e.g., the various 
specific forms of (5) appearing throughout Chapter 11. 

f now follows readily from (4) or (5) by emulating (10) of 
Sec. 4.5. Now that a decomposition of f into "reduced" and 
"diffuse" may not be natural, we simply represent f by the 
identity : 

The abstract version of the canonical representation of 

f fT + f(1-T) , (6) 

where T is any suitable operator on53 and "1" denotes the 
identity transformation on 8. Then using (4), this becomes: 

I I 

which is an abstract canonical representation of f with re- 
spect to the operators T and L, via equation (I), and is to 
be compared to (15) of Sec. 4.5. 

it more direct generalization of (15) of Sec. 4.5 
(which retains the idea of "diffuse" and "reduced" compo- 
nents) follows upon replacing (6) by: 

f = fo + (f - fo) 
and defining two operators S and T such that there exists a 
function $o with the property that 

fo = 6, T (cf. (12) of 4.5) (9) 

f = 9 0 S  (cf. (13) of 4.5) 

With these definitions (8) becomes 

f = 9o T + (tJos-@oT) 

whence 

Let us writs 

*tT*f for s-l T 

then we obtain, 

I 
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f a0T * f(1-T) 

which with (4) becomes: 

f = aoT -+ & (1-T) (12) 

This is the requisite abstract version of (15) of Sec. 4.5, 
and the ultimate generalization of (1) of Sec. 4.0 to be 
attempted h e m .  We say that (12) is the canonical represen- 
tation of f with respect to the opepators L, T, S, via the 
equation (11. The operator T turns out to be the abstract 
counterpart to the contrast transmittance function (Sec. 9.5). 

version of t hecanonical representation we gain a deep insight 
into the essential mathematical structure of the canonical 
representations in radiative transfer theory. Our construc- 
tions show us, in particular, that the essential physical 
kernel of (12) is bound up in the term -g/(X + IC), and that 
the overall general structure of (121, as given by (8) or 
(ll), is a mere mathematical tautology. It seems somewhat 
noteworthy, therefore, that Bouguer, who discovered the first 
definitive trace of the canonical equation in the form (1) of 
Sec. 4.0, managed to light upon the essential form but yet 
with only partial realization of the significance of the two 
key physical terms a and b of the canonical form. The les- 
sons of this chapter and hindsight now let us see that within 
the apparently insignificant term b, as it occurs in (1) of 
Sec. 4.0, resides not only the notion of equilibrium radiance, 
but actually the equation of transfer for radiance, the basic 
law of all of radiative transfer theory. 

4.8 Bibliographic Notes for Chapter 4 
One of the earliest known instances of the canonical 

form of the equation of transfer was written down by Bouguer 
in his classical treatise on light, recently translated by 
Middleton [28]. The equation appears in essentially the form 
it is closest to the basic integral representation of the 
equation of transfer as given in (5) of Sec. 3.13. Soon after 
Schuster formulated his celebrated two-flow equations [279] , 
Schwarzschild [281] in 1906 formulated an expression for what 
we now call "path radiance", and later, in 1914, Schwarzs- 
child [282] incorporated it into an expression for radiance, 
which is essentially (6) of Sec. 3.13. The latter equation 
was our point of departure from which we deduced the classi- 
cal form of the canonical equation, as given in (2) of Sec. 
4.4. 

It appears from a perusal of the literature that the 
canonical form of the equation of transfer, as embodied, say 
in (2) of Sec. 4.4, took its first definitive general form 
in [212] and [250] which in turn grew out of the hydrologic 
optics researches recorded in [SZ] and [SI. However, as 
noted in the introductory remarks, the canonical form in one 

By performing thepreceding constructions of the abstract 
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guise or other from (1) of Sec. 4.0 to (11) of Sec. 4.4 (and 
even (8) of Sec. 5.3) appears and reappears in the work of 
independent researchers over the years in diverse applica- 
tions of radiative transfer. One outstanding early use of 
the canonical equation is in the work of Koschmieder [141]. 
The task of tracing the subsequent manifold reappearances of 
the canonical form is best left to historians of the subject. 
One source of references for such work is Middleton's trea- 
tise [177]. For our purposes it suffices to anchor the ca- 
nonical equation's first ground-form in Schwarzschild's work 
[282], as noted above. It has been the intention of this 
chapter to clarify the canonical equation's logical and con- 
ceptual roles in the general theory of radiative transfer as 
outlined in Secs. 4.4, 4.5, and 4.7, and to extend it to the 
polarized context as in Sec. 4.6. For further discussions 
of underwater polarized light fields, see [117], [118], [108]. 

! 



CHAPTER 5 

NATURAL SOLUTIONS OF THE EQUATION OF TRANSFER 

5.0 Introduction 

The natural solution of the equation of transfer plays a 
fundamental and unique role in the theory of radiative trans- 
fer. The role is fundamental in the sense that the natural 
solution may be used in the systematic construction of the 
principles of invariance, the invariant imbedding principle, 
and all other instances of the interaction principle encoun- 
tered in radiative transfer theory. This facet of the natu- 
ral solution was explored in an earlier study [251] and so 
need not be considered in detail in the present work. The 
uniqueness of the role of the natural solution of the equa- 
tion of transfer lies in its remarkably wide-ranged inter- 
pretation. On the one hand, the natural solution affords a 
simple intuitive picture of multiply scattered light in nat- 
ural media; on the other hand it forms a link with certain 
general iterative solution procedures of functional equations 
in modern operator mathematics. No other extant mode of 
solution of the equation of transfer possesses such a combi- 
nation of intuitive and formal features. In the present 
chapter we shall concentrate on these features of the natural 
solution, with particular emphasis on the intuitive insight 
into the concept of multiply scattered light in optical media 
supplied by the natural solution. 

We shall first consider the intuitive features of the 
natural solution. These features will be of help to the 
reader in the task of following all the formal developments 
of the present chapter and will also help build a working 
intuition about natural light fields in general. We begin by 
observing that the natural solution of the equation of trans- 
fer is based on the idea of the scattering order decomposi- 
tion of a light field. This idea in turn is based on the 
premise that radiant flux pouring into a medium past its 
boundaries generates multiply scattered radiant flux within 
the medium and that this radiant flux is subject to a pre- 
cise mathematical analysis. It is the task of the natural 
mode of solution of the equation of transfer to first of all 
unravel the apparently chaotic resultant jumble of radiant 
flux of all scattering orders and arrange the flux in an 
orderly, countably infinite sequence of indexed flows, i.e., 
of integer-numbered scattering orders ~ and then to relate 
each of the indexed flows by means of well-defined formulas 
to the other indexed flows representing the higher and lower 

29 
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scattering orders 
can be seen in detail with the help of a simple ‘analogy which 
we shall now consider. 

Consider ra lake on a clear sunny day. Sunlight and 
skylight stream down and enter the lake Surface, penetrate 
into the body of the medium,are partially absorbed and par- 
tially scattered throughout the body oE the lake, and even- 
tually the scattered light comes to a general steady state of 
flow in the various directions about edch point of the medi- 
um. Now we may liken the incident radiant flux on the lake 
surface to a family of tiny colored particles (the geometric 
vestige of photons of given frequency), and we may liken the 
substance of the lake, in reality an aggregate of molecules 
of water, minerals, and organic materifals, to a see X of 
stationary bodies distributed in space, and relatively mas- 
sive with respect to the incident particles. The interaction 
of the photons with the lake molecules may then be envisioned, 
for the purposes of the present discussion, in terms of the 
interactions of tiny colored particles with the members of 
an aggregate of relatively massive stationary bodies. Then 
within this setting, the caroming of a tiny colored particle 
off the side of a massive body without change in color of the 
particle may be interpreted as a scattering operation not un- 
like the elastic scattering of a photon by a molecule; and 
the permanent absorption of a particle of given color by a 
body may be thought of as the analog of an absorption by a 
molecular field of a photonic field’s energy. 

Within the present simplified setting consisting of a 
swarm of colored particles migrating through a maze of rela- 
tively massive stationary bodies, the natural mode of solu- 
tion of the equation of transfer takes the following form. 
The natural mode of solution partitions the complex steady 
state flow of an arbitrary given set P of monochromatic par- 
ticles through the space X into sets of separate families P 
of particles. Each family Pn of particles is a subfamily of 
P and is identified by its scattering order, n, that is by 
an integer n representing the common number of scatterings 
undergone by each particle in the family since the particle 
entered the medium X. Thus at some arbitrary fixed instant 
t in time let Po(t) be the family of particles throughout X 
which have not undergone any scattering in X subsequent to 
entering X. In general, let Pn(t) be the family of swarming 
particles throughout X which have undergone precisely n 
scatterings in X, since the particles entered X, where n is 
a nonnegative integer. Hence at each instant t we concep- 
tually partition the collection P(t) of colored particles 
within X into an ordered, pairwise disjoint collection Po(t), 
Pl(t], . .. Pn(t), . o., of particles. This ordered collec- 
tion is called the scattering order decomposition of the 
light field. Wlhenever a member of Pn[t) undergoes a scatter- 
ing event at time t + At where At > 0, it enters the family 
Pn+ I (t + At). 
Pn(t) is independent of t. 

flowing in every direction within the neighborhood of any 
point within X. This flow in the neighborhood of the point 
has assignable, at least on the conceptual level, a radiance 

These features of the natural solution 

I ,  

In the steady state, the number of members of 

Now the members of Pn(t) are generally to be found 

! 
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Nn(t). The natural representation of the radiance field in 
this setting is then defined as the sum nlo Nn(t) of the 
radiances associated with all the Pn(t). A radiance func- 
tion obtained in this manner in an optical medium will be shown 
to be a solution--the natural solution--of the equation of 
transfer for that optical medium. 

5.1 The n-ary Radiometric Concepts 

cepts associated with the scattering order decomposition of 
a light field which will be needed in the developments of the 
present chapter. Throughout this section we work with a gen- 
eral source-free optical medium X in the steady state irra- 
diated by a steady incident radiance function No defined on 
the boundary of X. The medium X is generally inhomogeneous, 
of arbitrary shape and extent, and with general volume atten- 
uation and scattering functions defined throughout. The in- 
cident radiance associated with No penetrates into X and gen- 
erates radiant flux of arbitrarily great scattering orders, 
which we now proceed to analyze. 

In this section we shall define those radiometric con- 

n- ary Radiance 

The systematic construction of the radiance functions 
associated with the families Pn(t) of photons described in 
the introductory section starts with the incident radiance N o  
on the boundary of X. In particular, the radiance No(xo,S) 
defined for a boundary point xo and the direction 5 at xo 
can be extended to each point x of X by writing: 

where x = x + rc. The meanings of these terms are shown in 
Fig. 5.1. ?n this way we can construct a radiance distribu- 
tion NO(x,-) at each point x inside and on the boundary of X. 
We call NO the initiaZ (residuaZ or unscattered or reduced) 
radiance function within X. No represents radiance which, 
relative to the radiance No incident on the boundary of X, 
has undergoine no scattering operations within X. 

ance distribution No(x-) at x undergoes a scattering opera- 
tion there is generated first order (or primary) scattered 
radiant flux. The amount generated per unit length in the 
direction 5 at x is represented by writing: 

When some of the flux which comprises the initial radi- 

'IN: (x 5) for JNo Cx ,E 1 o ( x  ; 5 ; E )  dQ (5 1 (2) 

This may be written succinctly in operator form using the 
path function operator R of Sec. 3.17: 
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B 

FIG. 5.1 Geometric details for computing n-ary radiance. 

In other words, the operator R acts on NO to qenerate N:; 
alternately, we may say that R maps NO into N,. 
of primary scattered radiance accumulated over a path Qr (x,c) 
in X is then represented by writing: 

The amount 

r 
(4) "N*(x,E)" for I', N:(x' ,E)Tr-rl ( X I  ,S)dr' . 

This may also be written succinctly using the path radiance 
operator T of Sec. 3.17: 

(5) N' = N ~ T  . 
The general pattern of construction of the radiance functions 
comprising the scattering order decomposition of the light 
field should now be clear. Thus, for every integer n =  0,1,2, 
. . . , we agree to write: 

I 

I 
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and 

N - ARY CONCEPTS 

IINn+ltl for NnR 

The function NP is calledthen-ary pathfunctCon and Nn is the 
n-ary radiance function in X relative to No. 
(6) and (7) we can construct the (n+l)-ary radiance function 
on X once we know the n-ary radiance function on X, for n 2 0 
thus : 

By means of 

for every scattering order n 2 0. 
two operators B and T occurs often in our studies of radia- 
tive transfer theory. We shall then write, for brevity: 

The composition EPT of the 

l*s1~t for HIT (91 

The reader should verify that : 

1 Now, using the notation for S , (8) may be written: 

and if n is an arbitrary integer greater than 0, then it 
follows that we can apply the statement (8) , or statement 
(ll), once again to obtain: 

Nn+l = (Nn-l s 1 IS1 (12) 

I f  n-1 > 1, then we can apply (11) again, with the eventual 
conclusion that Nn+l is represented as the result of operat- 
ing on No with S1 at total of n+l times in succession. That 
is, if we write: 

rlgn+lrl for SISn (131 

for every integer n, n > 0, then it is an easy application 
of the principle of complete induction to show that: 
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for every scattering order [nonnegative integer) n. The 
sense in which (13) and (14) are to be understood is the 
obvious one: Operate on NO :nd S' to obtain N'; then once 
N' is obtained, operate on N with S' to obtain N2; and so 
on until Nn is obtained. The total combined integration 
operation of obtaining n-ary radiance Nn from the initial 
radiance NO is summarized by the operator §n defined recur- 
sively in (13). 

n- ary Scalar Irradiance 

Now that the n-ary radiance functions have been defined 
it is a relatively easy matter to define the n-ary counter- 
parts to all the radiometric concepts. For example, by re- 
calling the integral representation of scalar irradiance h(x) 
at a point x in the optical medium X (cf. Sec. 2.7), i.e., 
the definition in which we have written: 

we are then led to write analogously: 

for every nonnegative integer n. We call hn(x) the n-ary 
scalar irradiance in X relative to No. 

n- ary Radiant Energy 

The connection between scalar irradiance h(x) and radi- 
ant density u(x) at each point x of X was seen in Sec. 2.7 to 
be : 

h(x) = v(x)u(x) 
where v(x) is the speed of light at x in X. Furthermore the 
definition of the radiant energy content U[x) of X was de- 
fined by writing: 

"U (X) for u(x)dV(x) . 

i 
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This leads us to write analogously: 

35 

for every nonnegative integer n where, in turn, we have 
written: 

for ever nonne ative integer n. Combining the definitions 
of-hn, ux and d, we have the following representation of Un: 

for every nonnegative integer n, and where the n-ary radi- 
ance Nn is represented in terms of the initial radiance No 
throughout X by means of (14). 

General n-ary Radiometric Functions 

The n-ary radiance and radiant energy functions con- 
structed above will not be the only n-ary radiometric con- 
cepts used in the present work. For example the two-flow 
equations of Sec. 8.4 are studied by means of n-ary irradi- 
ance concepts. It is a simple matter to extend the type of 
definition exhibited for hn and Un to an arbitrary function C 
obtained from the radiance function by an appropriate linear 
operator 9 associated with C; that is : 

C = N S  . (191 

For example, the operator C;e in the case where C is scalar 
irradiance was : 

r 

Then in general we write analogously: 

for every nonnegative integer n. We call Cn the n-apy radi- 
ometric function of C, in x, and relative to No. It follows 
from (14) and (2) that: 

Cn = No(Sna 
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is the representation of the n-ary radiometric function Cn 
associated with the general radiometric concept C. In par- 
ticular, we write: 

"C*" for N*de (22) 

where N* is the path radiance (the scattered) component of N, 
as it occurs in (5) of Sec. 3.13. C* is the diffuse radio- 
metric function of C in X and relative to NO. Together, C" 
and Cn are the decomposed radiometric functions. Radiometric 
functions which have not been decomposed are call. undecom- 
posed. 

5.2 Equation of Transfer for n-ary Radiance, Diffuse 
Radiance, and Path Function 

The equation of transfer for n-ary radiance will now 
be derived. The equation is an eleaentary consequence of 
relation (11) of Sec. 5.1. 'To see this, suppose we fix at- 
tention on an arbitrary path Qr(x,S). Then holding the hi.- 
tial point x and the direction E of the path fixed, and dif- 
ferentiating Nn along the path with respect to path length r, 
we have : 

At this point we observe that, by (3) of Sec. 3.11: 

Then using (6) and (11) of Sec. 5.1 we arrive at: 
T 

1 I 
which is the requisite equation of transfer for n-ary radi- 
ance with n, 1. Observe that the equation of transfer €or 
Nn is not an integrodifferential equation for Nn; rather it 

I 

I !  
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is a first order linear differential equation f-or NII with 
known n-ary path function NQ, once Nn-' is known. This 
suggests a conceptually powerful natural mode of solution of 
the general equation of transfer for N, which we shall study 
throughout this chapter. In the following section we shall 
place (1) into its canonical form, thus rounding out the 
studies of the canonical equation given in Chapter 4. In 
Sec. 5.4, the complete natural solution will be obtained. 

Before concluding this discussion on n-ary radiance 
equations, we mention two more transfer equations for radio- 
metric concepts which are closely related to the family of 
equations in (1). Note that (1) holds only for n 1, the 
case n = 0 being excluded. This singular case n = 0 is 
readily stated using (4) of Sec. 3.10 and (2) of Sec. 3.11. 
The result is: 

r I 
dN c-VNo = = -aNo I I I 

for source-free media. A generalization of (2) for media 
with sources is given in (2) of Sec. 5.8. The remaining 
transfer equation to be! noted here is that for the diffuse 
radiance N* (or path radiance when a specific path of length 
F is given somewhere in the medium). Thus, using the concept 
of n-ary radiance, let us write: 

and 

Then summing each side of (1) over all n from 1 to m, we 
have : 

dN ad + ? NI E E-VN' = ? dr = - , C  m 

j=l j=1 J-1 j=l 

which, on applying (4) and (5) becomes: 
I 

This is the equation of transfer for diffuse radiance N". 
By assuming that Nt obeys (1) of Sec. 4.4, i.e., I\.'$ decays 
exponentially with depth at the rate K, then (7) supplies a 
somewhat more powerful description of the light field than 



38 

c*VM, p - c~N, + N,, 

NATURAL SOLUTIONS VOE. HI1 

(9) 

that given by (2) of Sec. 4.4. It is clear from the discus- 
sions of SOC. 5.1 end (5) that: 

5.3 Canonical Equations for n-ary Radiance 

We pause in the present development of the natural 
solution of the equation of transfer to present the canonical 
form of the transfer equation for n-ary radiance. We shall 
be particularly interested in the case of n = 1, that is, in 
the case of the canonical equation for primary radiance. 
From this case we can derive an expression which has often 
formed an integral part of expressions which attempt to ap- 
proxima t e k y rep res en t rad i an ce d i s t r i bu t i on with a modi cum 
of analytic complications. The derivations below are pat- 
terned on those in Sec. 4.5. Hence we can proceed with a 
minimum of motivation and explanation for the present dis- 
cussion. Let us write: 

Then (1) of Set. 5.2 becomes: 

- = - mn + ~ f ; f  , 

whence, for every integer n with m 2 1: 

and consequently : 

i 
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which are respectively, the desired canonical form of the 
equution of transfer for n-ary radiance and its canonical 
repreeentation for a path @,(x,E). 

If the medium X is assumed to be a plane-parallel 
stratified optical medium, Then following the pattern estab- 
lished in equations(16) - (f9) of Sec. 4.5, (2) and (3) re- 
duce to : 

(4) 
N" 

a +K" cos e 
N" P -f 

and the associated canonical representation of NT over a path 
@(x,S), analogous to Nr of Sec. 4.5 is: 

N: = NgTr[-u] + N; (1-Tr[-(a + E;" cos e)]) (5) 
CL + K" COS e 

Equations (2) and ( 5 ) ,  and their special cases (4) and 
(S), are the alternate (canonical) ways of representing Nn; 
the usual way being summarized in (14) of Sec. 5.1 by: 

Nn = NOSn (6) 

To see how (Z), (3), and (6) throw light on one another, 
let us consider the case of a homogeneous source-free plane 
parallel medium X irradiated by narrow beams of radiance No 
incident at each point of its upper boundary through a small 
solid angle E, of magnitude no, as shown in Fig. 5.2. The 
radiant flux from No initiates a multiple scattering process 
within X and eventually all scattering orders of radiant flux 
are present within X. 
first compute its value at depth z in the direction 5 using 
(6). Thus, from (6) with n = 1: 

We direct attention now to N' and 

N1 = (NoR)T . 
F6r the present case NOR is readily evaluated: 

1 N*(z,S) = NOR = No(z,~')o(z;~';E)dfk(~') . 

Since for each E,' in E o ,  

No(z,S') = No(O,C')Tr(O,C') 

- - e c t ~  sec 0, 
0 

where : 

cos Bo = So*k 
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FIG. 5.2 Computing the primary scattered radiance in a 
hydrosol, induced by a collimated source No. 

we have : 
P 

Here Eo is the set of directions, of solid angle no, over 
which the incident beam has uniform radiance N,. 
that we have used the homogeneity of X in freeing a of depth 
dependence. 
the path depicted in Fig. 5.2: 

Mote also 
, 

Next, we apply the path radiance operator B over 

. .  

i 
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= - sece No a(tO;E) no eaz'sect30 e a(z-z')secO dzl 

- - sece No a(s,;c)no e azsece uz ' (seceo-sece) dz 

Therefore : 
r 

I 1 

This Canonical representation of N' (2 ,E), in which cos 0 = 
holds for all paths such that e # Bo. For the case e = $i:7 
we return to the penultimate equality and evaluate the inte- 
gral anew, or use L'Hospital's rule in (8). Clearly, the new 
integral value is simply z for the case eo = e. Comparing 
(8) with the canonical form, with the latter now evaluated 
for the case n - 1: 

N1(z,E) = Ni(Z ,o 9 (9) 
a + K~ cose 

we see that the following equality must hold: 

From this we can, if required, solve for K1 (which generally 
is a function of z,B, and, also in the present case, the 
parameter eo). Observe that for seceo 1. sece, i.e., for 
e 5 eo. 

limZ+caK1(z ,E) = - aseceo 
1 

and for e > eo, 

asece . limz+,K 1 (z,F;) - 
This shows directly that the K-function for primary radiance 
eventually, i.e., for sufficiently great depths, becomes I 

I 
! 
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independent of 5 over large sets of directions (i.e., when 
0 eo). This phenomenon of the eventual partial indepen- 
dence of K' with respect to direction, presages an analogous 
behavior of the complete K-function for observable radiance; 
we will study this depth behavior of K in more detail in 
Chapter 10. 

example: By evaluation of (6) for the case of n = 1 and com- 
paring the resultant representation of N' with that given by 
the canonical form (41, we deduce the necessary form of the 
K-function K' for N*. The usual classical method of looking 
at NI is by means of formulas of the structure of (8). Our 
studies of the canonical equation of transfer in Chapter 4, 
extended to the present setting, now show that (8) is but a 
s ecial form of the canonical equation for primary radiance 
N', as given in (9). 
intuitively useful canonical form (9) provided K' is as given 
implicitly by (10). 

We now summarize the main results of our illustrative 

Hence'(8) may be given the compact and 

Concluding Observations 

(8) may be redone now over a path &b,(zo,F,) with initial point 
at depth zo > 0, 
pression, the special case of Nn for n = 1, leadigg to an in- 
stance of (6). Observe that Nn'fz,C) in (4) and Nr(z,C) in 
(5) are equal for every z and 5, being but two ways of ex- 
pressing the same radiance: Whereas (4) expresses the radi- 
ance Nn(zPC) as a value of the radiance distribution Nn(z,*) 
at depth z for the direction 5, equation (SI, on the other 
hand, expresses the same radiance now by conceptually parti- 
tioning it into two parts associated with an arbitrary path 
Or(zo,C) in the medium. In other words, we can carry over 
without change from the discussions of Chapter 4 to the pres- 
ent setting of n-ary concepts, all interpretations of path 
radiance N$, transmitted residual radiance Nf , and apparent 
radiance Nr, arrived at in those earlier discussions. It is 
of interest to emphasize in particular a powerful but simple 
model for radiance distributions that arises when we repre- 
sent N* rather than N by means of the general equation (2) 
of Sec. 4.4. For such a model 'IN*" in (1) of Sec. 4.4 is 
replaced by "Ngq'. The correct basis for this model is (7) 
of Sec. 5.2. 

In conclusion we note that the integrations leadinp to 

The result will be a path radiance Ni ex- 

5.4 The Natural Solution for Radiance 
We return now to the main thread of the argument, begun 

in 5.2, leading to the development of the natural solution of 
the equation of transfer. Our most basic intuitions about 
light fields in the sea and the air and generally for any 
optical medium, lead us to think of the radiance perceived 
by our eyes and our instruments as consisting of multiply- 
scattered light, i.e., light which has undergone one, two, 
three, and generally very large numbers of scattering opera- 
tions after its entrance into the medium and before its inci- 

medium. It is natural then (hence the name of the present 
. dence on the retina or photocell located somewhere in the 

i 
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mode of solution) to attempt to construct a solution of the 
equation ob transfer for radiance by constructing all the 
n-Pry radiance functions Nn within a given optical medium 
X and to sum them to obtain the requisite radiance field 
throughout the medium. Thus we are led to write: 

43 

I 1 

and hope that the function N so defined satisfies the equa- 
tion of transfer. We call N defined by (1) the natura2 8 0 1 ~ -  
tion of the equation of transfep.. We now show that the Word 
"solution" in the name for N is indeed justified. 

We begin by using (14) of Sec. 5.1 to write N(x,S) in 
(1) as: 

or more compactly in functional form as: 

In this way we come to define the basic operator 5 for ;he 
natural solution, i.e., we can now write: 

where rrSOst denotes the identity operator I, with the property 
fl - f for every radiance function. With this definition the 
natural solution representation takes the form: 

By means of this representation, the formal verification 
that N in (3) is a solution of the equation of transfer is 
readily forthcoming via the following eight main steps : 

= No + (NoS)S1 



I 
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We have therefore shown that: 

N = N o + N *  , 

which is the integral form of the equation of transfer (re: 
(1) of Sec. 3.151. An alternative approach to the above 
demonstration is to show that N as defined by (1) is a solu- 
tion of the integrodifferential equation of transfer. The 
basis for such a demonstration is given by (7) of Sec. 5.2, 
It remains only to add (2) of Sec. 5.2 to each side of (79 
and reduce the results. 

natural mode of constructing the radiance function N from 
the n-ary radiance functions Wn, nzO, leads to a solution-- 
the natural solution--of the equation of transfer. It also 
may be seen that N so constructed is a unique solution in 
the sense that whenever "is also a solution of (4), then 
N 1 =  N. The mathematical basis for the existence and unique- 
ness of the natural solution will be described in Sec. 5.12. 

the equation of transfer is not only fundamental from an 
intuitive physical point of view, but that it in essence 
exemplifies a mode of function construction which has been 
of increasing importance in the logical foundations of mathe- 
matics in recent years. This mode of construction--the 
enumerably recursive mode of construction--is very closely 
related to the natural mode of construction defined above 
and is coming under intensive study principally because of 
the current strides in developing ultrafast mechanical aids 
to numerical and logical computations. These developments 
will eventually make feasible the computation of relatively 
high scattering orders n for Nn, so that finite sums of the 
form 

To summarize our findings: We have shown that the 

We conclude by observing that the natural solution of 

will constitute appropriately adequate approximations to the 
ideal natural solution N. Thus we will eventually be able 
to go far beyond the first order solutions 

(6) No + N p  = No + N,1 
a + ~1 cos e 

, 

i 
! 
r 
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(cf. (8). (9) of Sec. 5.3) to which many classical studies 
in atmospheric and hydrologic optics were hitherto limited 
because of the relatively heavy demand on manipulative skill 
(and time!) needed to evaluate N', N' and higher order n-arv 
radiance functions. 

5.5 Truncated Natural Solutions for Radiance 

solution of the equation of transfer after a finite number 
of terms. While the natural solution is an ideal conceptual 
tool in the study of radiative transfer theory, as has been 
demonstrated at length in Chapter I11 of Ref. [251], the 
solution can almost never Be evaluated completely either nu- 
merically or theoretically, because of the infinite number 
of terms comprising the solution. We are then in practice 
obliged to stop the accumulation of the terms after a finite 
number of them have been evaluated. The question then arises 
as to the closeness of the resultant truncated solution to 
the natural solution. We shall now consider this question in 
detail. 

Throughout the remainder ofthis section we shall choose 
as our setting a source-free homogeneous plane parallel opti- 
cal medium X of arbitrary depth with a steady internal light 
field induced by arbitrary incident radiance distributions 
No at each point of the upper boundary of the medium. The 
volume scattering function u and the volume attenuation func- 
tion a are otherwise arbitrary. 

tion of transfer as defined in (1) of Sec. 5.4, we write: 

We now investigate the effect of truncating the natural 

Now, starting with the natural solution N of the equa- 

k .  m 

N = C N J +  N j 
j = O  j =E+1 

The central question of the present discussion may now be 
phrased as follows. Writing: 

we ask: 
infinite sum N; or in other words, what is the general order 
of magnitude of 

by how much does the finite sum N(k) differ from the 

To answer this question we sha 1 obtain an upper bound on the 

serve as a measure of the difference between the functions N 
and N(k). 

We begin by letting "mol' denote the upper bound of the 
initial radiance function NO within X (re: (1) of Sec. 5.1). 
This upper bound is easily evaluated in general, and in par- 
ticular in all natural hydrosols this upper bound is actually 

values of the difference N-N(k f . This upper bound shall 
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attained by NO at the air-water boundary of the medium. In- 
deed, for sunny days, No is almost invariably the apparent 
radiance of the run as seen just below the surface of the 
medium . 

The upper bound of the pfimary radiance function N' is 
obtained by first 'bounding' N,. -Thus, starting with (6) of 
Sec. 5.1 in which n = 0, we have for every x in X and direc- 
tion E in E: 

N:(x,E) = kob,C') a(x;S9 ;SldnTE') 

#- 

Here "s" demotes the value of the volume total scattering 
function defined in (3) of Sec. 4.2. The reader will discern 
that it is sufficient at this stage to assume that: 

for every 5' and 5 at each point x of X, in .order that we 
have : 

This is not an unusual requirement on u (it is called a 
reciprocal condition) and is readily met by all a from natu- 
ral hydrosols., (For related conditions on a, see Sec. 7.12.) 

(2) just deduced to obtain: 
Next, use is made of (7) of Sec. 5.1 and the equality 

.. 



SEC. 5.5 

for every point x in X and direction €, in 5; and where we 
have written: 

"p" for s/cr . (41 

The ratio P is called the albedo for singZe scattering or 
more accurately the scattering-attenuation ratio. By our 
agreement in Sec. 4.2, namely that about the nonnepativity 
of the volume absorption function a, it follows that p sat- 
isfies the inequality 0 < p < 1. For the present discussion 
we assume in particular fiat-0 < p < 1. When we repeat the 
r&sults (2) and (3), but now applied to N'(x,E) we obtain: 

N2(x,E) 5 -qo p 2  

for every x in X and E in 2. From this we can see a pattern 
emerging and we readily prove that: 

I 1 

for every scattering order n, every point x in X and direc- 
tion 5 in 5. 

t& The inequality (5) is the main result needed for 
determination of the upper bound for the difference N-N . 
Indeed, by direct computation, we have: 

m 

N(x,C] -N(k)(x,C) = "(x,E) 
j =E+1 

= i o  p k+l pj 
j = O  

which holds for every x in X and 6 in 5. 
Summarizing, we may say that: 

,- I 
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holds for every nonnegative integer k, every point x in X and 
direction 6 in E. 

has a scattering-attenuation ratio of p = 0.4 for waveltngth 
550 mp, and that NO for that wavelength is 10' watts/(m x 
steradian) We require for a particular computation that 
N(x.6) - Ntk)(x,C) be not more than 10' watts (m2 x steradiari) 
€or every x and 5. What is the least scattering order k at 
which the natural solution must be truncated so that this 
condition is met? By (6) we require k such that: 

As an example of the use of (6), suppose a given lake 

! 

or that: 

0.6 x < (0.4)k+1 

Forming an equality for the moment, we require: 

l 0 g ~ ~ ( 6 x l O - ~ )  = (k + 1) Bogpo(0.4) 
This implies that to the nearest integer, k+l=6, so 

that k=5. Hence the truncation solution is required to be 
carried out to five scattering orders, at least. 

A useful alternative formula to (6) is obtained by 
first noting that for mzdia in whish p > 0, we certainly 
have the maximum value N of N(x,E) greater than the maximum 
value NO of NO(x,c). Then (6) implies: 

(7) R I-? I 
I I 

for every x in X and 5 in E. The comparative merit of 
(7) over (69 consists in equation (7)'s ability to express 
the error of truncation in terms of a relative error, that 
is the error relative to the prevailing magnitude N of the 
light field. Hence for the medium at hand, carrying out the 
natural solution to five terms results in a relative error 
of less than 1 percent. 

Before closing we shall examine the inequalities (5) 
and (6) for some insight they may yield about the relative 
importance of the various components of the decomposition of 
the natural light field. For example, (5) shows that n-ary 
radiances are on the whole less by a factor of p than (n-1)- 
ary radiances. Thus if p - 1/2, say, then Nl(x,c) is on the 
whole, about half the magnitude of NO(x,() , and the magni- 
tude of N2(x,c), in turn, is about half that of N*(x,c), and 
so on. Thus the overall magnitude of n-ary radiances de- 
crease exponentially with scattering order n. Inequality 
(6) also shows that for small P (near 0), a given n-ary radi- 
ance varies directly as the nth power of p, whereas for large , 

p (near l), the n-ary radiances vary essentially hyperbolically 
- + i  . I  
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with 1 - p ,  i.e., as l/(l-p). Similar observations can be 
made using (61 or (7). We shall return to the matter of 
truncated natural solutions in the following section and re- 
consider them for transient light fields. The reader wishing 
radiance bounds in a slightly more general steady state case 
than that considered in this section, may consult Sec. 2 2  of 
Ref. [251]. 

5.6 Optical Ringing Problem, One-Dimensional Case 
The object of this section is to formulate the optical 

ringing problem in the context of radiative transfer theory 
and to indicate how the natural mode of solution may be used 
to solve the problem. In order to explain the ideas behind 
the optical ringing problem and its natural mode of solution 
without too many geometrical complications, we consider first 
the one-dimensional case of the problem. The three-dimensional 
case will be discussed in the following section. 

the term "reverberation" as used in the theory of sound. In 
fact the well-known term "reverberate" applies in principle 
equally to optical and acoustical phenomena. f~owever, until 
recently, the relative difficulty of producing and recording 
optical reverberation because of the immeasurably short per- 
iods of time involved has given the acoustical discipline 
almost exclusive use of the term. We can use the popular 
acoustical meaning of the term "reverberation" to give the 
following nontechnical definition of the phenomenon at hand: 
Optical ringing in an optical medium is the optical reverber- 
ation of the medium set up by a narrow short pulse of mono- 
chromatic light. Hence the appropriate acoustical analogy to 
optical ringing would be the reverberation set up by a direc- 
tional, short clap of one-note thunder. In more technical 
parlance the optical ringing problem in a medium X is the 
problem of determining at time t 0, the time-dependent radi- 
ance function over X which is the solution of the equationof 
transfer, given a directional, spatial, and temporal Dirac- 
delta function input of radiance to the medium at time t =  0. 
This problem has applications to the description of time- 
dependent radiance fields set up by laser beams with their 
characteristic high powBr, narrow-beam, short-pulse shafts 
of monochromatic radiant flux. While interest in the optical 
ringing problem has reawakened because of the advent of the 
laser, itshould be noted that the problem is a venerable one 
in radiative transfer theory and neutron transport theory, 
and was first studied Durelv for its intrinsic interest and 

The term, "optical ringing" has an analogous meaning to 

as a fundamental block-on which to build solutions with 
arbitrary initial time-varying, inputs (see, e.g., [211], 
[2351, [23611- 

Geometry of the Time-Dependent Light Field 
The formulation of the time-dependent radiant flux 

problem in an optical medium X will be facilitated by find- 
ing an efficient means of depicting the space-time disposi- 
tion of the radiant flux throughout the optical medium. We 
shall now construct such a means. In the present discussion 
the medium X is one-dimensional and is represented in Fig. 5.3(a) 
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as a line segment. We shall consider the medium to extend 
indefinitely on either side of the origin point 0 of the 
medium, with distance measured as positive toward the right. 

I 
I t =  0 x ... ... 

0 
(a) 

t = to ... 

0 

,- pulse 
t >to x ... ... (C) 

0 
I 

-T+ 
FIG. 5.3 Positions of a finite light pulse along a one- 

dimensional medium. 

Now suppose that point 0 hecomcs a source of radiant 
flux starting at time t = 0 and that 0 continues to emit flux 
in an arbitrary fashion in both directions about 0 until time 
t = t o r  at which time the source at 0 is shut off. Let 
"No(O,t?+)" and "No(O,t,-)" denote thesc radiances of 0 at 
time t in the positive and negative directions , respectively. 
Figure 5.3(b) shows the position of the pulse emitted by 0 
just after time to. The pulse is speeding away from point 0 
into the medium on either side of 0. Figure 5.3(cf shows 
the position of the pulse some time later than t . Figures 
5.3(a) through 5.3(c) are like three snapshots of the medium 

-! 
! 

-: 
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X at three separate instants of time subsequent to the emis- 
sion of the pulse. It would be quite instructive if instead 
of still shots of X at discrete time instants, we could have 
a moving picture of the pulse as it moves out into X from 0 
and generates the field of scattered light within X. Such a 
means of communication is obviously unfeasible for the pres- 
ent work. However, an alternate and in some ways superior 
means of visualizing the time-dependent light field in X con 
sists in a static space-time diagram of the pulse in X of 
the kind depicted in Fig. 5.4. 

The description of the pulse of radiant flux from point 
0.becomes relatively simple when given in terms Fig. 5.4. 
The space-time portrait of the pulse is given by the shaded 
V-shaped region in the space-time diagram. To find the in- 
stantaneous position of the pulse in X at time t', first go 
along the time axis erected perpendicular to X until time 

"1 

FIG. 5.4 A space-time portrait of the pulse in Fig. 5.3. 
The world region of the pulse is shaded. 
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point t' is reached. Then draw a straight line through t' 
parallel to X. This line will intersect the shaded region in 
generally two segments A and R. The perpendicular projection 
of these segments down onto X will then give the location of 
the pulse in X at time t' > O .  The slope of any straight line 
segments parallel to the b%undaries of the shaded region of 
the pulse are such that, as t' units of the time axis are 
traversed, vt units of the space axis are traversed, where 
v is the speed of light in X. We assume v to be constant 
over X. The shaded region of Fig. 5.4 is called the worZd 
region of the pulse. 

relative to the frame at 0, the space-time line traced out 
by a material particle in X cannot have an arbitrary slope, 
but rather one which is bounded as follows. If r(t) is the 
distance of the particle from 0 at time t, then: 

It follows from the axioms o f  special relativity that, 

for every t for which r(t) is defined 'in the frame anchored 
at 0. In particular, the slopes of the world lines (Le., 
space-time trajectories) of the photons comprising the pulse 
of light from 0 are exactly of magnitude v, with respect to 
the time axis. Thus on the one hand, the world line of a 
particle stationary in X is a vertical line, and on the other 
hand, that of a photon is parallel to one of the boundary 
lines of the shaded region in Fig. 5.4. All naturally moving 
particles in X must therefore have the tangents to their 
world lines always between (or coincident) with these two 
extremes, with respect to the r,t frame of reference at 0. 

The space-time diagram also aids in visualizing the 
various possibilities of radiometric interactions between 
points of X. Thus, points a, b, and c in Fig. 5.4 depict the 
three possible dispositions of points in space time with re- 
spect to the pulse from 0. Point b(=(r,t)) is in the world 
region of the pulse, and so represents a point of X at dis- 
tance r from 0 which at time t is being irradiated by radi- 
ant flux comprising some of the pulse from 0. Points a and 
c on the other hand are not in the world region of the pulse. 
Point a in particular represents a point in X after the pulse 
has gone by it (to find the contemporaneous pulse to a, draw 
a horizontal line through a, and the segment it determines 
with the world region of the pulse is the requisite position 
of the pulse). Point c represents a point in X before the 
pulse has gone by it. Points a and c thus have the property 
in common that they do not lie on the world region of the 
pulse from 0; however, points a and c differ from one another 
in a fundamental sense. Indeed, the point in X corresponding 
to a may eventually feel the effects of the pulse through 
scattering of flux from the pulse; however, the point in X 
corresponding to point c in the space time plane is "foreverqs 
immune to the direct OT indirect effects of the pulse. Here 
we are implicitly adopting another empirical fact of macro- 
scopic physics: Effects of an event may propagate futureward 
in space-time but not pastward. When this fact is combined 
with that about the limits on the slopes of the world lines 
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of particles mentioned above, we can readily delimit those ' 
parts of the space-time plane over (or through) which they 
can effect or be effected by a given event (represented as a 
point) in the plane. These regions are shown in Fig. S.S(a) 
for an arbitrary point a. In general, for two points a and b 
in the space-time diagram associated with X, the common re- 
gion of possible interaction is the shaded intersection of 
the futureward sector of b with the pastward sector of a, as 
shown, in Fig. 5.5(b). If the intersection region is empty, 
then the two points cannot interact. 

use the the general space-time diagram to help in the study 
of the time-dependent radiant flux problem on X. Starting 

With these preliminary observations in mind, we may now 

FIG. 5.5 Part (a) depicts those points of space-time 
about point a which lie in a's future, past, and elsewhere 
from a. Part (b) shows the common region (shaded) shared 
by the future cone of b and the past cone of a. When this 
shaded region exists, then b can send a light signal to a. 
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with a fresh space-time diagram of the pulse emitted by point 
0 in X, as in Fig. 5.6, we see that the pulse effects at time t 
at some point a distance r from 0 in the medium arrive through 
the pastward sector of the point (r,t) . In particular, the 
region of X contributing scattered flux of all orders to (r,t] 
is bounded by a(r,t) b(r,t), where we have written: 

"a(r,t)" for (r-vt)/Z (13 

"b(r,t) for (r*vt)/Z (2) 

FOP example, if P = 0, then the interaction region of X at 
each time t is an interval on X of length vt centered QII 0. 
The route of radiant flux from 0 to point (r,t) may be quite 
devious. Two sample routes from 0 to (r,t) are shown by the 

a fourth order pat 

FIG. 5.6 Computing the scattered light reaching space- 
time point (r,t) after starting from the origin (0.0). 

, 
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dashed lines in Fig. 5.6. In one of the cases the flux reach- 
ing (r,t) is intended bo be fourth order radiant flux. The 
spatial component ofthe path taken by this sample of radiant 
flux is obtained by projecting the space-time path onto X. 
Observe that in this particular example the only way radiant 
flux can reach (r,t) from 0 is by undergoing at least one 
hock scattering operation. 

The Equation of Transfer 

The integral form of the equation of transfer for the 
one-dimensional optical medium X defined above will now be 
derived. Before going into the details, however, it may be 
well to reemphasize that the significance of a one-dimensional 
optical medium lies not so much in its power to represent an 
actual physical setting as it does in its ability to depict 
with a minimum of geometric complication the essential alge- 
braic structures of the associated three-dimensional problem. 
Therefore, the resultant equation of transfer derived below 
for the present one-dimensional setting will, in all its 
algebraic essentials, be representative of the full thrce- 
dimensional case, but will not be encumbered with details 
arising from the latter's relatively complex geometrical 
structure. These details will be faced in the following 
section. 

Under suitably adapted definitions of the radiance 
function and inherent optical properties for X, the equation 
of transfer for the one-dimensional optical medium X follows 
formally from the integral form of (4) of Sec. 3.15. In this 
way weextend the logical chain from the interaction principle 
of Chapter 3 to the present radiative transfer discussion. 
In particular the present equation of transfer is obtained 
by postulating the characteristic form of the volume scatter- 
ing function for one-dimensional media: 

where 5 is one of the two directions ('5) along the medium, 
and 6 is the well-known Dirac-delta function. The functions 
p and T are, respectively backward and forward scattering 
functions for X. Furthermore, the values of the radiance 
function are now of the form N(x,t,+) or N(x,t,-), where "+" 
and 1 * - 1 1  denote flux in the direction + or - ,  respectively. 
That is, we have written: 

'"t(x55',t)" for N(x,t,+) 6(5'-5) + N(x,t,-) S(S'+[J 

Since the points x in X are located by one number only, namely 
the signed distance r from 0 to x, we will write "r" in place 
of "x" throughout the one-dimensional setting. It now fol- 
lows from (8) of Sec. 3.14 with the adopted form of u and N 
(and assuming here only that 6 is idempotent, i.e. ,6' = 6, 
at least formally) that the path function values N,(r,t ,+) 
associated with directions -+ are : 
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N*(r,t-) = N(r,t,-) T(r,t) + N(r,t,+) p(r,t) (4) 

The time-dependent integral form of the equation of transfer 
for the one-dimensional case therefore consists of the fol- 
lowing two equations (one for each direction (+ ,-) : 

N*(r' ,e' ,+)TT-rs dr' 
a(r,t) 

(5) 

lr 
+I, 

N(r,t,+) =u(r)No(O,t - \r/v\, +) Tr + 

b(r,t) 
N*Cr' ,t' ,-ITr, _ r d ~ '  N(r,t,-l =u(-rlNo(O,t-Ir/vp, -IT,: 

where u(r) = 1 if r 2 0, and u(r) = 0 if r < 0. All terms 
except the transmittance terms in these two equations have 
been defined in the present section. The transmittances are 
represented as in (3) of Sec. 3.111; thus for the present case 
we have : 

in which matters are arranged so that T 5 s. 

Operator Form of the Equation of Transfer 

We next cast the pais of transfer equations (5), (6) 
into an operator form which at once suggests the appropriate 
instance of the natural solution for the present case. Thus, 
we agree to write: 

"N:(r,t)" for u(r)No(O,t- I r/v[ ,+) Tr 

dr' 

i 

I 

! 
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With these assignations, (5) (6) become: 

N(rpt,+) = NtCr,t) + NT,(r,t) + NR-.br,t) 

The notation "NT+(r,t)", e.g., denotes the value of the func- 
tion NT+ at [r,t), and NT+ is the result of acting on N with 
the operator T+. These equations may be made more compact 
and at the same time more algebraic in appearance by writing: 

"N," for N(*,*,+) 

F 

t8~:is for NO(-,=) . 
With these abbreviations for the four radiance functions we 
then can write (5) and (6) as: 

(7) 

(8) 

This form of the equation of transfer now suggests that we 
write: 
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along with: 

SO that the system (7) and (8) written in vector notation 
becomes : 

or, succinctly: 

(13) 

In this way we have reattained the basic structure of the 
integral equation of transfer, now for the simple one- 
dimensional context (recall, e.g., the derivation of (4) of 
Sec. 5.4). It follows that we may at once apply the natural 
solution procedure to (13) and thereby compute directly the 
scattering order components of N to as great a degree of 
accuracy as desired. This will now be done. 

The Natural Solution 

Starting with equation (13) I and treating N as if it 
were an unknown in a simple linear algebraic equation we 
obtain: 

N = NO(I-S)-~ 
where (I-S)-I may be shown to be expandable into an infinite 
series : 

(14) 2 3  (1-sl-I = I+S+S +s +*.. 
We have encountered such a type of expansion several 

times before in the present work. For instance it was used 
in Example 15 of Sec. 2.11, and it occurred many times in 
the examples of Chapter 3. Finally, closely related series 
were encountered earlier in this chapter (see (2) of Sec. 5.4). 
Hence the requisite solution of the time-dependent equation 
of transfer for the one-dimensional optical medium takes the 
form: 
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An Example 

. ' As an illustration of the natural solution for the 
present one-dimensional optical ringing problem suppose the 
medium X is homogeneous and in the steady state, so that p 
and t are constant valued functions over space and time. 
Suppose further that N$ and NO are each constant valued and 
over a time period from t - 0 to t = t > 0 (a slight simpli- 
fication occurs if these are of Dirac-8elta temporal struc- 
ture; however, a temporally finite pulse, is at present a 
more useful and realistic input for X, and accordingly is 
adopted). Then, carrying out the expansion (15) to second 
order scattering, we have: 

Since 

I-.. 

we have from (16) for the first component N+ of the vector 
(N+N - ) : 
N+ = N: + +N:R-] + [N~(T: + R+R-) +No(R-T+ + T-R-11 (17) 
and for the second component N- of the vector (H+,N-): 

Equations (17) and (18) show how the natural solution (15) 
can be constructed order by order for an evolution of(N+,N-). 
If still another Scattering order is needed, we include S3: 
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4 3 

+ R+R-T+ + T+R+R- + R+T-R- T+R+ 2 + R+R-R+ + T+R+T- + R+T_ 

+ T - R -  2 R_T,R++T-R_R,+R_R,T_*T_ 

To show how the second order operators in (17) and (18) 
are applied in practice, let us assume explicitly that 
N (O,t,-) = 0 for all t, and that N is the constant. value of 
tge radiance pulse NQ(O,t,+) of duration to, starting at 
t = 0, in the direction 6, i.e., of increasing re The pres- 
ent situation then constitutes an approximate model of the 
light field generated by a laser-like beam pulse of duration 

seconds in the immediate vicinity of the beam. The out- 
kging field N+ evaluated at r = 0 for every t 2 0 is then, 
according to (17) : 

N(O,t,+] = NO(O,t,+) + NyT+(O,t) + Ny(T+ 2 + R+R-)(O,t) 

(19) 

The incoming field N- evaluated at r = 0 for every t 2 0 is, 
according to (18) : 

N(O,t,-) = NyR+(O,t) + Ny(T+R+ + R+T-)(O,t) (20) 

In each of these equations, we have No(O,t,+) = N for 
0 5 t 5 to and No(O,t,+) = 0 for every other t. 

scattering term, unraveled, becomes: 
Let us consider (20) in more detail. The first order 

b(r,t) 
NyR+(r,t) = M:(r' ,t'> p(r' ,t')Trl -r dr' , (21) 

in which we are to set r = 0, and t' = t-lr'/vl. A study of 
part (a) of Fig. 5.7, which depicts the present situation, 
and a study of the definitions Nf and NO, shows that this 
integral is best evaluated by establishing two cases: Case 
(i) pertains whenever t < to; Case (ii] pertains whenever 
t > to. The particular Forms of (21) for these two cases 
are as follows. Case (i) , ((0 ,t) in the pulse) : 
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(a) 

space 
path 

(b) 

FIG. 5.7 Space-time path integration details. 

=y& (1 - e - uvt 
Case (ii), ((0,t) after the pulse) : 
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Equations (22) and (23) describe the first order scattered 
radiance flowing in the negative direction of X, at r * 0. 

once again require two cases: Case (i) pertains when 
(t-to)v(Irl(vt; and Case (ii) pertains when Irl < (t-to)v. 
These cases reduce to the special instances considered above 
when r = 0. In general, Case (i) holds when the space-time 
point (r,t) is in the world region of the pulse; Case (ii) 
holds when (r,t) is futurenard (above or after) the world 
region of the pulse. Returning now to (21), we evaluate it 
for a general point (r,t), according to the two cases ((b) of 
Fig. 5.7): Case (i), ((r,t) in the pulse): 

For the radiance at a general space-time (r,t), we 

-or' e-a(rl:r) dr, NoR+(r,t) = N p  

Case (ii), ((r,t) after the pulse): 

NyR+(r,t) = N p  e -arf e-a(r'-r) drl 

Equations (24) and (25) describe the primary scattered 
radiance in the direction -5 in X at a general space-time 
point (r,t) such that r < vt. For r > vt, the primary radi- 
ance is clearly zero, as-may be seen by reviewing the geom- 
etry of the space-time plane discussed earlier. Furthermore, 
this value is approached by (24) as (r,t) approaches the 
lower boundary of the pulse's world region, i.e., the line 
defined by r = vt. Hence NtR, is uniquely defined throughout 
the whole space-time diagram. 

We turn next to illustrate the evaluation of the second 
order scattering terms in (20). We first consider NqT+R+. 
This is interpreted to be the result of the operation of R+ 

i 

! 
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on NyT+. The latter, in turn, gives the primary scattered 
radiance in the direction + for a general space-time point 
(r,t) : 

in which we are to set t' = t-r'/v. A study of Fig. 5. 
shows that, for the present source condition, we have 
Ny(r',t') = 0 for r' < 0 (no source radiant flux in the 
rection + at any time for points r' < 0). Hence the in 
gration may begin at ,r* = 0, instead of a(r,t) (=(r-vt) 
Furthermore, ~(r',t') is constant of fixed value T for 
r' and t'. Ilence, Case (i), ((r,t) in the pulse): 

J O  

Hence : 

NzT+(r,t) = NTr e-ar 

Case (ii), ((.r,t) after the pulse): 

NyT+(r,t) = 0 

di - 
e- 
2) * 
11 

Equations (26) and (27) give the primary scattered radiance 
in the direction +E at a general space-time point (r,t) 
futureward of the origin (0,O). 

We are now ready to evaluate the second order terms. 
Thus we have, Case (i) ((r,t) in the pulse) : 

NyT+(r',t') p(r',t') T r I q r  dr' 

(r+vt) /2 
-a(r'-r) drl 

r+vt) /* 

f 

NyT+R+(r,t) = 

rl e-ar' s e 

(r+vt) /2 
r l  e-2ar' drl 

= 

= NTP ear 

~1+2ar] -e-crvt [I+ a(r+vt)] 
1 

4a2 I J 
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Case (ii) , ((r,t) after the pulse) : 
(T+Ve) 

f-2- 

The final term An the second order expansion of N(O,t,-) 

Once again it is convenient to consider two 
as given in (20) is N+R+T_, thplt is, the result of operating 
on NtR, with T-. 
cases: Case (i)# (Cr,t) in the pulse): 

b(r,t) 
N:R+T- (r,t) = N:R+(r' ,t') ?(r' ,tl) Trl-T dr' 

NpT [ e-ar _e-avt + ae 4uz 

Case (ii), ((r,t) after the pulse): 

1 
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The integration in Case (ii) is shown split into two parts: 
that part of the integration over the segment of the space- 
time path after the pulse, and that over the segment of the 
space-time path in the pulse. The result of an integration 
over the futureward region of the pulse is in general not 
zero for secondary and higher order scattering. 

The first integral in (31) uses Case (ii) for N:R+ 
cyialuated in (25), and the second integral uses Case (i) 
above by replacing the lower limit in (30) by (r+vt/z)-(vto/Z). 
The requisite value N(O,t,-) is now obtained by setting r = 0 
in the appropriate cases in (24), (25). (28), (29), (30), 
(31) and adding the appropriate terms, in accordance with 
(20) * 

Concluding Observations 

We have carried the evaluation of N(O,t,-) far enough 
to show the essentials of the natural solution procedure for 
the one-dimensional time-dependent problem. It should be 
particularly noted how each step builds on the precedingstep 
and--manipulative difficulties aside--how each step is in 
principle directly constructable in a finite number of oper- 
ations using elementary calculus. With the advent of ever 
more sophisticated symbolic manipulation programs for general 
purpose electronic computers, it should eventually be possi- 
ble to have a program which would permit the symboZic term- 
by-term integration of the natura2 solution series (15). We 
have carried the solution of the present problem far enough 
to show that only integrals of the type 

n -ar r e dr 
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will be encountered inthe natural solution for one-dimensional 
time - dependent radiative 1: rans f er problems on homopene ous 
spaces. With such general information a program should in 
principle be possible which combines simple algebraic and 
calculus manipulations ~ and which will give the two components 
of the nth term of (15) mechanically and relatively quickly. 
By having the machine run out several more terms than the 
second order, obtained so laboriously above, a trained human 
looking 2t the emerging terms could perhaps discern a pattern 
in this (or subsequently more complex problems) and thereby 
prepare for an inductive leap to the general term of the se- 
ries. The advantages ofsyrnboZic m e r  nurhericalintegration are 
obvious. The former is exact at each stagewhereas the latter is 
plaguedbycumulative round-off errors. Onceasymbolic inte- 
gration has been performed, it may then be evaluated for the 
particular numerical case of interest. 

solution of one-dimensional time-dependent problems. This 
concerns extension of the analogy between the class of acous- 
tical and optical reverberations, or as they are more common- 
ly called, "electrical circuit transients." By studying the 
Laplace transform techniques of solving the problems of tran- 
sients in electrical circuits (see, e.g., Chapter IX of Ref. 
[39]), one sees the possibility of interpreting certain terms 
in the final solution as analogous to the nth order scatter- 
ing terms developed above. This suggests the possibility of 
a thoroughgoing theory, built along natural-solution lines, 
which should underlie and unify the particular ringing prob- 
lems in the fields of optics, acoustics, transmission-line 
theory and electromagnetics. Mathematicians can view this as 
extensions of the Neumann series to space-time linear settings. 
An approach to such a unification can be based on the formal- 
ities developed in the present chapter since many of the op- 
erator equations appearing here are clearly interpretable in 
terms of the concepts of each of the preceding fields. 

0112 final observation can be made about the natural 

mining the time-dependent radiance field in a natural optical 
medium. The program to be followed here is that which sys- 
tematically generalizes the developments of Sec. 5.1 to the 
time-dependent case; in particular the generalizations of the 
R and T operators will be the key steps in the present dis- 
cussion. We begin by introducing an important geometrical 
concept conne ct e d with the time - dependent prob lem . 

The Characteristic Ellipsoid 

Let x and y be two points in an extensive natural opti- 
cal medium X. Suppose that at time t = 0, a spherical pulse 
of light is emitted from x. This pulse expands about x as 
center and at time r/v passes point y, where r is the dis- 
tance from x to y. Here v is the speed of light in X, as- 
sumed independent of location and time throughout this dis- 
cussion. Just after the wave front of the pulse passes y, a 

, 

I 
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multiply-scattered radiant flux field is generally incident 
on y fram all directions about y. We now ask: What is the 
region of points in X which can send radiant flux to y at an 
arbitrary time t > r/v? It is easy to see that at exactly 
t - r/v, this region is the straight line segment between x 
and y. Any points x of X off this line segment could not 
send scattered flux to y because the detour, however, slight, 
would delay the scattered flux’s arrival time at y. Fortimes 
t of arrival at y such that t > r/v, such detours are possi- 
ble to some extent. The region in which the scattering de- 
tours are possible and which allow arrival at y at time t is 
generally an ellipsoid of revolution with x and y as foci. 
This may be seen by studying Fig. 5.8, and recalling that 
definition of an ellipsoid which characterizes it as the locus 
of points z such that the sum of distances d(x,z) + d(z,y) is 
a constant. 

CHARACTERiSTlC ELLIPSOID AT TIME t 

d(x,zl) \ 

t 
I 

L X B\/ ’ 

CHARACTERiSTlC ELLIPSOID AT TIME t 

I D =  vt 

FIG. 5.8 The characteristic ellipsoid relative to the 
source at x and receiver at y at time t. 
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For the case at hand these distances arc all initially con- 
sidered in terms of times of travel t(x,z) and t(z,y) ncross 
the respective distances and we are interested in all those 
points z in X such that: 

This defines at each instant t 2 r/v an ellipsoid of revolu- 
tion in X, with foci x and y. From (1) we see that the major 
axis of the ellipsoid is of, length vt. We call the ellipsoid 
so defined, the characteristic ellipsoid E(x,y;t) associated 
with x and y at time t r/v. A useful polar representation 
of&Cx,y_;t) with y_asqo&e, is given ~~ _ by the equation: 

where e is the angle between the unit vectors 5 and n9 as 
in Fig. 5.8, and where we have written: 

"D" for vt 

for d(X,Y) lldll 

The eccentricity e of the characteristic ellipsoid f(x,y;t) 
turns out to be d/D. At time t such that t = d(x,y)/v = r/v, 
we have E = 1. As time increases indefinitely, E decreases 
to zero, so that--if the space is infinite in all directions 
about y--the characteristic ellipsoid approaches a sphere 
which takes on very nearly the polar form: 

The exact spherical form of e(x,y;t) occurs at finite times 
if x = y, i.e., whenever d = 0. In such a case, z(x,x;t) 
becomes the characteristic spheroid S(x;t) with radius vt/2. 

Time-Dependent R and T Operators 
and the Natural Solution 

With the necessary geometrical preliminaries out of the 
way we can now adapt the R and f operators of Sec. 5.1 to the 
time-dependent case. We shall limit the present discussion 
to a homogeneous steady medium X with point source at a fixed 
point 0 and such that the characteristic ellipsoid f(0,x;t) 
is contained in X for all t under discussion. We shall then 
write : 

[ ]a(x;E';E) dn(E') 
-. 

and : 
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r(x,s , t) 
"T" for 1 [ ]TT-T, ( X I  ,F,)dr' (41 

0 

Comparing this pair of operators with their namesakes 
in Sec. 5.1, we see that the essential difference between the 
two pairs rests in the limit of integration for T. Now we 
can limit the integration to the characteristic ellipsoid 
&O,s;t), whereas before (see Fig. 5.1) the limit of integra- 
tion for T was generally the distance from x to the ~ boundary 

~~ -of-X in the-direction- -5. - ~~ 

If we go on to write: 

~ ~ s l * ~  for RT 

and then : (5) 

for every n 3 0, it follows that we can construct the time- 
dependent naTural solution for the time-dependent equation 
of transfer (4) of Sec. 3.15, just as in 5.4. In particular 
the solution verification may be t-epeated line for line and 
culminating as in (4) of Sec. 5.4, with the form: 

1 1 1 N(x,E,t) = No[x,t;,t) + N*(x,S,t) 1 (Sa1 

but now each term has a time-dependent interpretation. 

Truncated Natural Solution 

Just as in the steady case in Sec. 5.5 we may now trun- 
cate the time-dependent natural solution and obtain an esti- 
mate of the accuracy of the truncated solution. It turns out 
that the truncation estimates of the time-dependent solution 
can be much sharper than their steady state counterparts, ow- 
ing to the use of the characteristic ellipsoid in the time- 
dependent computations. In this discussion suppose the source 
starts at t = 0 and emits in an arbitrary manner thereafter. 
The light field sweeps out from 0 as center in the form of a 
spherical field, huilding up radiant flux of all scattering 
orders within the sphere as time goes on. 

Let no be the maximum (or supremum, if need be) of the 
initial radiance function NO over the sphere of radius vt, 
center 0. See Fig. 5.9. Then observe that: 

for every 5 in 2 at x and time t, where p = s/a and where we 
have written: 
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. .  

FIG. 5.9 The spherical wave front of the pulse has radius 
vt. The characteristic ellipsoid relative to 0 and x at time 
t defines those points of the medium which can send flux to 
x from 0 at time t. 

"r(max)" for max r(x,e,t) 
S E E  

Hence : 

r(max) = (D + d)/2 , D = vt . 

By letting x vary over the spherical region of radius vt, 
center 0, (6) leads to: 

N'(x,S,e) = NOS1[x,E,t) 5 3' p(l-e-"vt) , (7) 

1 

-1 
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for every x in X and 5 in E. This may be compared with (3) 
of Sec. 5.5. Using (7) we can estimate the upper bound of 
primary scalar irradiance and radiant energy over X in terms 
of that of residual scalar irradiance or radiant energy. Us- 
ing the basic idea contained in (7), we can construct a chain 
of inequalities €or n-ary radiances. For (7) yields an upper 
bound of primary radiance over the sphere of radius vt, cen- 
ter 0, and this upper bound now can be turned around to play 
the role 2f NO in the estimate of the next scattering order, 
namely, N (x,C,t). Thus in general, since: 

it readily follows that: 

I Nn(x,S,t) 5 ~o[~(l-e-avt)ln 1 (8) 

for every x in X, 5 in E, and integer n > 0. This inequality 
reduces to (5) of Sec. 5.5 in the steady-state, i.e., when 
t -r -. The inequality (8) shows that for x sufficiently close 
to 0 and for small times t, 

Nn(x,c,t) s (svt)"g0 (9) 

where s is the total volume scattering function. 

can estimate the error of truncation of the natural solution 
series. Thus using (8), we have: 

Now, just as in the steady state case of Sec. 5.5, we 

Hence : 
t 1 

I 

for every x in X, and 5 in 4 at time t. For large times, 
(10) reduces to (6) of Sec. 5.5. The space and source condi- 
tions giving rise to this estimate are stated at the outset 
of this discussion. 

It should now be a relatively simple matter to reduce 
the preceding analysis to pulselike sources at 0, such as 
that considered in Sec. 5.6. The general method of analysis 
and its results developed between (6) and (lo), of course 
remain the saEe for such sources, but sharper time-dependent 
estimates of No are now possible. These truncation estimates 
are evidently capable of a large variety of treatments and 



NATURAL SOLUTIONS VOL. I11 7 2  

with the general mode of analysis now clear, each special 
case is best left to individual treatment by the interested 
investigator. 

I 

5.8 Transport Equations for Residual, Directly Observable, 
and n-ary Radiant Energy 

In this section we shall prepare the way for the exten- 
sion of the concept of the natural solution of the equation 
of transfer to the radiant energy field in an optical medium. 
hre shall derive from the time-dependent equations of transfer 
for the n-ary radiances the corresponding time-dependent 
transport equations for n-ary radiant energy. We shall even- 
tually find that the latter equations are completely solvable 
in terms of simple closed algebraic forms in all homogeneous 
optical media. This fact will allow an important insight 
into the structure of the associated time-dependent radiance 
field in the same medium, and thereby shed further light on 
the difficult optical ringing problem in natural optical 
media, introduced in Secs. 5.6 and 5.7. We begin with a dis- 
cussion and solution of the transport equation for zero-order 
radiant energy (or alternatively, the residual radiant energy) 
in an optical medium with an arbitrary source. Then the 
transport equations for nth order radiant energy will be de- 
rived along with the trangport equations for directly observ- 
able radiant energy. Thrbughout this section the optical 
medium will be homogeneous with arbitrary sources of radiant 
flux distributed throughout. The volume scattering function 
is to be arbitrary but of fixed directional dependence, and 
unless otherwise specified the scattering-attenuation ratio 
p is also arbitrary but fixed, with 0 < p < 1. 

Residual Radiant Energy 

cussion, let the optical medium X under consideration be de- 
picted as in Fig. 5.10, that is, as an extensive region X 
with a boundary 'P on each point y of which is incident a 
radiance distribution 
to obtain initial radiance distributions No(x,*) at each 
point x in X, after the manner of (1) of Sec. 5.1. In the 
terminology of Sec. 3.10 (see, e.g., (4) of Sec. 3.10) No(x,~) 
is the transmitted (or residual) radiance at x in the direc- 
tion 5. The alternative term "residual radiance" will be 
particularly appropriate in the context of the present dis- 
cussion, and so is singled out for special use. 

Suppose now that sources of radiant flux are present 
within X. This is a relatively new condition since (except 
for the brief discussion of example 3 of Sec. 3.9), no sys- 
tematic explicit use of internal sources was required. We 
have now arrived at a point in our developments where the 
advent of the special radiometric concept needed for the 
description of internal sources takes place naturally. We 
therefore hypothesize the existence of an emission radiance 
function Ng, defined for each time t in some time period and 
at each point x in X, and direction 5 in E. The dimensions 
of N, are precisely those of N, (radiance per unit length) 

In order to help fix the main ideas in the present dis- 

No(y,*) which may be extended into X 

j 

i 

J 
-, 

i 
I 
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I 

FIG. 5.10 Computing residual radiant energy in medium X. 

and the use of N, may be best understood by keeping this 
equality of dimensions in mind. Physically, Nn(x,S,)) is 
intended to describe the radiance emitted at x and time t per 
unit length in the direction 6. 
generated by some radiant emission mechanism in X. This mech- 
anism generally takes two distinct forms, which may be in 
operation singly or simultaneously. These forms are described 
in Sec. 19 of Ref. [251] and therefore need not be repeated 
at length here. It suffices for our present purposes to ob- 
serve that the radiance Nn(x,C,t) arises generally either 
through scattering by change in frequency from an arbitrary 
frequency to the one under consideration, or through the 
emission processes of conversion of nonradiant energy to 
radiant energy. 

emission radiance function N,, are present throughout a medi- 
um X, the inicial radiance function NO is defined throughout 
X as follows. We write: 

We envision N,(x,S,t) to be 

When internal sources , characterized by means of an 
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This definition takes place in the same general geo- 
metrical settiilg of (2) of Sec. 3.10 and reduces to (2.) of 
Sec. 3.10 when X is source-free and the light field is in the 
steady state. Here as usual z = x + cr , and t' = t-r'/v . 
A slightly more general definition can be written if X itself 
has changing inherent optical properties, Also, if scatter- 
ing with change of frequency is to be explicitly taken into 
account, we may replace Nn by the true emission function Ne. 
The details of this more general definition of No may be 
found in Sec. 22 of Ref. [251]. Such generality will not be 
required in any of our discussions, and so in the interests 
of simplicity of exposition, the present definition will be 
retained. Immediately forthcoming from (1) is the equation 
of transfer for initial radiance in the presence of internal 
sources : 
7 i 

I I 

This is obtained by taking the lagrangian derivative of the 
definitional jdentity which (1) implies. That is while 
following in imagination a photon packet along a natural path 
through X, we differentiate ,the right side of (l), by adapt- 
ing the general procedure used to obtain equation (3) of Sec. 
3.15 from equation (1) of that section. Now, we use D/Dt 
instead of d/dr, where D/Dt is defined in (5) of Sec. 3.15. 
Equation (2) is a direct generalization of (2) of Sec. 5.2. 

We are now ready to define the notion of residual 
radiant energy and to establish its various analytical repre- 
sentations. By setting n = 0 in the definitions (16) and 
(17) of Sec. 5.1 we obtain the definitional identity: 

uO(xyt) = ; Ix [J: NO(x,s,t) dV(x) (3) 

Uo(X,t) is the residual (or reduced or unattenuatedl radiant 
energy in X at time t. When X is understood and fixed 
throughout a discussion (as in the present one) its name may 
be dropped from the notation and we will write W0(t)" for 
the residual radiant energy. The term "residual" is partic- 
ularly well adapted to the photon interpretation of light. 
For in that interpretation, Uo(t) is simply the radiant 

, 
i' I 
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energy content of X at time t associated with photons which 
have not been scattered or absorbed relative to the incident 
and emission sources of flux on X. Thus the photons making 
up Uo(t) are those left over and in their original unscat- 
tered state after t units of time have elapsed since the 
external sources over X (represented by No) and the internal 
sources over X (represented by N ) have been turned on. n 

Transport Equation for Residual Radiant Energy 

The transport equation for residual radiant energy can 
be obtained directly from (2) by applying the integral oper- 
ations occurring in (3) to each side of (2). Thus, inte- 
grating (2) term by term, the time derivative term becomes: 

Next, we observe that the spatial derivative term may be 
written as : 

since 5 is a variable independent of location on X. Then we 
observe that the integral: 

5 No(x,S,t) dn(E) 1 
defines the residual radiance counterpart to the vector 
irradiance function H, as developed in Sec. 2.8. If we 
write "Ho(x,t)'' for the preceding integral, we can then go 
on to perform the remaining integration, as required by (3), 
to obtain: 

I 
I 
lxV * Ho(x,t) dV(x) 

which by the divergence theorem may be written as a surface 
integral of R over the boundary Y of X; thus: 

V Ho(x,t) dV(x) = - Ho(x,t) nlx) dA(x1 , (5) 

f 
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where n(x) is the unit inward normal to X at each x on Y, and 
A is the area measure of Y. Suppose we write: 

"HO(t)** or uP(Y,t)lf for ~ O ( x , t >  - n(x) ~V(X) (6) 

Thus Po(Y,t) is the net inward flux to X across the boundary 
Y of X. Finally we write: 

(7) 

*'P,, (t ) 'I or ')P,, (X , t) I' for 

Thus 
Assembling the results summarized in (4)-(7), equation (2) 
becomes : 

Pn(X,t) is the input radiant flux over X at time t. 

I = - +. U + P ( t )  + P p )  

where we have written: 

1 *IT for - 
U vu (9) 

Equation (8) is the requisite transport equation for residual 
radiant energy in medium X at time t. 

The Attenuation Time Constant 

The quantity T defined in (9) and which has the dimen- 
sion of time, is the attenuation Cime coprstant for X. The 
significance of Tu will become apparent as the discussions 
of this section proceed. However, a preliminary insight into 
its significance can be obtained as follows. Imagine all of 
E, to be an infinite homogeneous three-dimensional optical 
medium about the origin 0. Let the initial radiant energy 
content of E3 be zero. Let the sources in E, be confined to 
a point source at 0 which is turned on at time t = 0 and 
which pours radiant flux out into X at a constant rate P, 
(i.e * ,  P,(t) is independent of t, t > 0). 
t > 0 the sphericalwave front traveling outward from 0 is of 
radius vt. For every t > 0, let Y' be any given sphere of 
radius r(>vt) , and let X' be the medium bounded by Y' , as 
in Fig. 5.10. 

for every t, 0 5 t 5 r/v, and (8) reduces to: 

At any finite time 

Under these conditions we have in particular p(t) = O  

I 

a! 

i 

'I- 

t 

i 
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with initial condition: 

UO(0) = 0 . (11) 

The solution of (lo), subject to (ll), is: 

over the time interval (0, r/v), and where we have written: 

The significance of Tu now springs into view if we 
recall a well-known result of elementary circuit analysis 
concerning the charging of a simple capacitance-resistance 
DC circuit such as that depicted in Fig. 5.11. When switch 
S is closed at time t = 0, battery B of voltage V pumps 
electrons along the circuit A which has resistance R, until 
the capacitor of capacitance C (initially discharged) is 
fully charged. The amount q(t) of charge on the capacitor 

CIRCUIT A 

FIG. 5.11 The analogy between an electric circuit and 
an optical medium. 
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at time t 2 0 is given by the equation: 
- t/RC) q(t) - 9("1 (1-e 

where we have written: 

*'q(-)*' for CV 

With the strong structural resemblance between (12) amd (14) 
in mind, we can nake the following pairings between the radi- 
ative transfer concepts and the electrical circuit concepts: 

In the Optical Medium In the Electrical Circuit 

The medium X The circuit 

The Source Point 0 The battery 

prl V/R 

uo (t) q (t) 

1 /V C 

l/a R 

Tu (attenuation tine RC (circuit 
cons t ant ) 

A 

B 

time constant) 

Hence the buildup of residual radiant energy in an ex- 
tensive homogeneous medium X is analogous to the charging of 
a capacitor in ,a simple DC capacitor-resistance circuit. The 
internal source of radiant flux P,, is analogous to the basic 
current associated with the battery voltage Vandcircuit re- 
sistance R. The capacitance of the circuit is, for given 
geometry, dependent on the materials of the plates. Thus the 
smaller the speed of propagation in the material, the larger 
the capacitance, and the larger the steady state charge q(=). 
Analogously, the smaller the speed of propagation v in the 
optical medium, all other things being equal, the larger the 
steady state stored energy UO(-). On this basis (which is 
not, however, logically compelling) we pair l/v with C. Fur- 
thermore, the less dense the conducting material of the cir- 
cuit, the smaller is the conductance 1/8; similarly, the less 
dense the material of the optical medium the smaller is ci. 
On this basis we pair l/a with R. The standard circuit time 
constant RC then pairs off with Tu. 
constants is relatively strongly suggested ,by direct conpari- 
son of (12) and (14), whereas the suggested pairings of l/v 
with C and l/a with R are not as strong and, indeed, thepair- 
ings may be switched without affecting the important pairing 
of T, with RC, the pairing of principal interest at the mo- 
ment. However, the indicated optisal counterparts to R and 
C are quite interesting to contemplate, particularly when it 
appears that the analogy between the medium X and the circuit 
A can be extended quite far by establishing a link with the 
analogies summarized in the closing paragraph of Sec. 5.6. 
Apparently, if these analogies can be extended far enough, 

This pairing of time 

I 

i 

i 
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then with sufficient care nnd in enuity, some or tho timc- 

by electrical (or even acoustical) analog methods in which 
the time-dependent electrical (or reverberating acoustical) 
field replaces the radiant field. 

Just as in the electrical case, the attenuation time 
constant Tu is the time required for the residual radiant 
energy to attain 63 percent of its steady state value. Below 
is given a table for the values of Uo(t)/Uo(-) for various 
values of t in terms of multiples of T, 

dependent radiative transfer pro E lems can possibly be solved 

TABLE 1 

Values of uo(t)/uo(m) for various values of 
t in terms of multiples of T, 

t = nTa 

Ta 

Ta 

3Ta 

4Ta 
. ST, 

U0(t)/U0(=) 

0.63 

0.86 

0.95 

0.98 

0.99 

General Representation of 
Residual Radiant Energy 

The solution (12) of the differential equation for 
residual radiant energy is a special case of the more general 
solution : 

I I 

where we have written: 

The solution (15; represents the residual radiant energy in 
a general homogeneous optical medium X with known combined 
internal and external source flux function Po, as given by 
(17) * 



80 NATURAL SQLUTIONS VOL. 911 
! 

Transport Equation for n-ary 
Radiant Energy 

main radiometric concept of this section, the n-ary radiant 
energy Um(t). The definition of Un(t) was given in steady 
state form in Sec. 5.1. Thus we have for every nonnegative 
integer n, 

We derive next the transport equation for the second 

r 7 

We shall write TJn(t)" for Un(X,t) whenever X is understood. 

we apply to (5) of Sec. 5.7 the lagraiigian derivative Qper- 
ator D/Dt in exactly the way d/dr was applied to (la) of Sec. 
5.1 to yield (1) of Sec. 5.2. We have, as a consequence, for 
every integer n, n 1. 1: 

Starting with the time-dependent radiance field in X 

(19) 

which is the tirne-dependent equation of transfer for n-ary 
radiance N", and which is to be compared to (2) above and 
(1) of Sec. 5.2. Applying the integral operations in (18) 
to each member of each side of (l9), we find that: 

r 7 

We write: 

and 

BLn(x,t) - n(x)dA(x) (22) ' 

Y 

wnere n(x) is defined as in (6). Finally we observe that: 

i 
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(23) 

With the results (20) through (23) in mind, (19) yields 
up the following transport equation for n-ary radiant energy: 

t 

J I 
for every integer n > 1. The main details of derivation of 
(24) thus proceed as-in the case of the residual radiant 
energy (8). Here we have written: 

In equation (24), Fn(t) is the net inward radiant q u x  

a growth term Un- B (t)/TS (which is the rate of conversion of 

across the boundary Y of X at time t. The radiant flux P (t) 
has scattering order n relative to that of Fo(t). A term by 
term interpretation of (24) is instructive: the time rate of 
change of n-ary r diant energy in X at time t is the sum of 

En-1) -ary scattered energy into n-ary scattered energy), a 
decay term -Un(t)/Ta (which is the rate of conversion of 
n-ary energy into (n+l)ary energy and nonradiant energy), and 
finally a general net rats of growth term giving the net 
balance of influx and efflux of n-ary radiant energy across 
the boundary of X. 
constant for the medium X. It is a concept which helps write 
(24) in a uniform manner in terms of the fundamental timelike 
quantities Ta and Ts. 

The quantity Ts is the scattering time 

Transport Equation for Directly 
Observable Radiant Energy 

The radiant energy U associated with directly observ- 
able radiance N, using a standard radiance meter is called 
the directly observabte radiant energy. This energy is to 
be held both in conceptual and empirical contrast to the 
n-ary radiant energy Un, n > 1, which is not directly observ- 
able in practice. (The resrdual radiant efiergy is indirectly 
observable using techniques alluded to in Sec. 3.10 and Sec. 
16 of Ref. [251].) We now derive the transport equation for 
U(t). We begin with the definitional identity: 

r 7 

f 
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based on (2) and (12) of Sec. 2.7. As usual we shall drop 
reference to X, when X is understood. 

Starting with the time-dependent radiance equation (4) 
of See. 3.15, we now apply the integral operations in (26) to 
each side of the transfer equation and obtain, in a manner 
analogous to that culminating in (8) and (24) above, the re- 
sult: 

P 1 1 = - y + P(t) + P,(t) 
This is the transport equation for directty observabZe radi- 
ant energy. In the equation we have written: 

and where a in turn is the value of the constant volume ab- 
sorption function in X. Furthermore, we have written: 

tT(t)tt or "P(Y,t]" for H(x,t) * a(x)dA(x) (28) 

The unit vector n(x) is defined as in Fig. 5-10, and 
so P(t) is the net inward radiant flux into X over the bound- 
ary Y of X. 

The Natural Solution for Directly 
Observable Radiant Energy 

It is a relatively easy matter to verify (using (Sa) 
of: Sec. 5.7) that: 

holds for-every t > 0, where U(x,t) is defined as in (26) 
and the UJ(X,t) are defined as in (18). Thus, once each. 
UJ(X,t), j > 0, is known, U(X,t) is known and computable. 
Equation (2% represents the natural solution of the directly 
observable radiant energy. 

In the case of radiant energy the natural solution pro- 
cedure is not as vitally essential in the solution of U(t) as 
in the natural solution procedure €or the case of radiance in 
Secs. 5.6 and 5.7. Indeed, the solution of (27) is written 
down quite readily, assuming p(t) and Pn(t) given. Thus, 
writing, 

'T(t)t' for P(t) + P,(t) (30) 

j 
.* i 
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.we have, analogously to (16) : 

The quantity Ta is the absorption time constant for X and is 
related to T, and T, a5 follows: 

1 1 1  T = T + q  
The natural solution procedure for radiant energy is, however, 
quite useful in throwing light on the inner workings of time- 
dependent light fields, for the solutions of the transport 
equations for Un are readily obtained in simple closed forms 
which are quite amenable to all manners of explicit, rear- 
rangements and manipulations. Some of the properties of time 
dependent radiant energy fields will be explored in the next 
few sections. 

#e conclude this section with an important observation 
which will facilitate the studies below. This concerns the 
connection between the net fluxes P”(t), n > 0 occurring in 
(8) and (24), and the net flux P[t) occurring in (27). This 
connection is established My means of the natural solution 
representation of the directly observable radiant energy U (t) 
as given in (29). Thus, by summing over all n L 1 in (24): 

OD m 

.E, a n=l s n=l n- 1 

and adding to these terms the corresponding terms of (8), we 
obtain:: 

,v = - y + : F ( t )  + P,(t) 
n=O 

comparing this with (27) we conclude that: 

m 

P(t) = 1 P ( t )  . 
n= 0 

(33) 

5.9 

sca 
the 
ing 
ert 
ing 

Solutions of the n-ary Radiant Energy Equations 
le shall now solve the transport equation for n-ary 

tered radiant energy for every n > 1, and deduce from 
solutions several interesting properties of the scatter- 
order decomposition of natural light fields. These prop- 
es are both of intrinsic interest and of use in further- 
the natural solution of the radiance field in optical 
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media. They are also helpful in studying the light storage 
problems in such media. These latter two applications will 
be considered in Secs. 5.12 and 5.13. For the present we 
concentrate on the immediate mathematical and physical fea- 
tures of the transport equations for Un. Throughout this 
section, unless specifically noted otherwise, the optical 
medium will be as in Sec. 5.8, that is homogeneous, with 
arbitrary sources, arbitrary directional structure for 6, 
and arbitrary fixed p, 0 < p < 1. 

Natural Integral Representations 
of n-ary Radiant Energy 

Starting with (24) of Sec. 5.8, we treat the indicated 
differential equation, for given n > 1, as an ordinary dif- 
ferential equation with unknown funztion Un, and known func- 
tions Un-' and K", and with given parameters T,, T,. 
initial condition for Un is: 

The 

for every n 2 0. The general solution under this condition 
can therefore be patterned after (16) or (31) of Sec. 5.8 
with the initial values set to zero. Specifically: 

Now, to simplify matters we shall assume that: 

P(t) = 0 (3) 

for every n > 0 over a given interval (0, tl) of time which 
is to include the time interval in which we shall be inter- 
ested in the solutions of (24) of Sec. 5.8. Physically this 
means in effect that the collective expanding wave fronts of 
all sources in X are completely within the boundary Y of X 
over the time interval (0, tl). See Figure 5.10. With as- 
sumption (3) in force, (2) becomes: 

t 
e(t'-t)/T, Un-l(tt) dt1 7 

t 

lo un(t) = 

-t/Ta 
~i -T-s' e I Un-l(t') dt' (4) 

0 

I 
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which holds for n > 1 and 0 < t < tl. The form of (4) sug- 
gests a recursive construction OT Un(t) starting with n = 1 
and using knowledge of Uo(t) as given in (16) of Sec. 5.8. 
By (3), Po(t) in (16) of Sec. 5.8 uses only the internal 
source function P,,. Hence Un(t) should be expressible in 
terms of Uo(t) (or P (t)) along with Ts and T,. Thus, start- 
ing with (4) now applied to Un-l(t), n-1 

t' 

1, we have: 

(t") dt" dt' I (t"-t')/T, "n-2 

L J 

rt 
L .-t/Ta 

(t-t') et'jTa U"-'(t') dt' -7 
J O  

This process can be continued as long as the scatter- 
ing order in the integrand is greater than zero. The pattern 
forming in (4) and (5) is clear. Applying (4) once again, 
now to Un-' the pattern is crystallized: 

r t  

* (61 U"(t) = (t-t')2 ,t'/T, Un-3(t,) dt, 

J O  

Thus, applying the representation (4) in all k times, 0 2 k - < n-1, we have for Un(t): 
rt 1 -  (t-t')k k! ,t'/Ta p - k - 1  (t') dt' (7) 

.-t/T, 
U"(t) = ,k+l 

I f  in (7) we let k = n-1, then the desired integral repre- 
sentation of Un(t), 0 5 t 5 tl is obtained: 

rt I 

or, in terms of P,: 
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Equakions (8) or (9) are the desired integral representations 
of U (t). Observe that (8) holds for PI 1. t and (9) holds for 
n 2 0. 

Natural Closed Form Representations 
of n-ary Radiant Energy 

The formulas (8) or (9) are the requisite representa- 
tions of Un(t) under the given initial conditions (l)* and 
the conditions on the medium hypothesized in (3) and at the 
outset of this section. In order to evaluate the integrals 
we must specify the nature of Un or P,, over the time inter- 
val (0, ti). We now illustrate the use of (9) by choosing 
two important instances of Pn. The first instance is where 
P is the Dirac-delta function centered at t = 0 and with 
rgdiant energy content U . The second instance is where Prl 
is constant valued over P O ,  ti) with its constant magnitude 
denoted by "P,,'*. In the first instance, we have: 

U"(t) = unit)" e+ 

for 

over the interval (O,tl) and for n > 0. We shall refer to 
this case as the opticaZ reverberatron case (cf. the intro- 
duction to Sec, 5.6). 

The second instance yields the representation: 

€0 r 

0 '  Pn(t) = P 

case. 

over the interval (0, ti) and for n 1. 0. Here Uo(m) is as 
defined in (13) of Sec. 5.8. These two specific instances 
of (9) are verified by direct integration of (9) in each 

I 

i 
d 
i. 

I 
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General Integral Representations 
of n-ary Radiant Iincrgy 

 tie integral reprcscntation (9) of IJ" will now \be g c y -  
cralizcd to the case for which thc initial conditions on I I J ,  
j < n, are arbitrary. That is, we now relax the conditions 
(lr. llowever, we shall retain condition (3). The resultant 
representation will permit the construction of relatively 
general representations of the time-dependent n-ary radiant 
ehergy in a homogeneous medium for which the wave fronts of 
internal sources have not yet passed the boundaries. Thus, 
by successive applications of the type of solution displayed 
in (16) of Sec. 5.8, we eventually arrive at: 

r t  

112) 

This is the desired generalization of (9), which holds for 
n 1. 0. 

Standard Growth and Decay Formulas 
for n-ary Radiant Energy 

Of the infinite variety of possible time-dependent 
radiant energy fields attainable in principle via (12) , two 
types stand out as particularly interesting. These are suf- 
ficiently instructive to isolate and set UT here as standards. 
The first of these light fields is that given by (11) above. 
This equation we shall call the standard growth formuZa for 
Un. Recall that in this case the initial values for the UJ. 
j 5 n, are all zero and that P,, is a positive constant over 
some time interval (0, ti). Suppose we write: 

Then we summarize the standard growth formula as follows: If 

(a) The optical medium is homogeneous, 

(b] Un(0) = 0 and P,(t) = Pn for t in (O,tl) and n20. 
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U"(t) = Un(m) [l-Fn(t/T,) 1 

VOL. I11 

(c] Fn(t) = 0 for t in (O,tl) and n 2 0. 

Then : 

The second standard case is that which describes the 
decay of the n-ary light field from a given steady state 
level. Thus if an opaque curtain were suddenly drawn over 
the ocean in which previously all internal radiant sources 
were turned off, the following standard decay formuZa for Un 
would describe very closely the decay of Un(t) for t 2 0 for 
every n 0 in the ocean; thus: If 

(a) The optical medium is homogeneous. 

(b) 
n o  Un(0) = p U (0) and Pn = 0 for t in (0,tl) and 

n 2 0. 
Fn(t) = 0 for t in (Optl) and n 2 0. (c) 

Then : 

for every t in (0,tl) and n 2 0. 

for Un, are in order. An examination of the general repre- 
sentation (11) of Un(t) shows that at steady state (i.e., the 
limit of Un(t) as t -+ -) the various magnitudes U*(-) are not 
arbitrary. Indeed, they generally depend on P,, and the ini- 
tial values Un(0), as explicitly shown in (12). Hence when 
a steady state light field begins to decay after sources have 
been turned off, the initial values Un(0), n > 0 are general- 
ly not expected to be independent of each other. For example, 
if the standard growth conditions are in effect, then (11) 
shows that: 

A few words about condition (b), the initial condition 

= P"P,,Ta 

for every n 0. Thus we see that the standard decay formula 
is intended to describe the decay of a light field which has 
been attained under standard growth conditions as given by 
(14) for t * -. 

I 
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Un(t) = Un(m) + [Un(0) - Un(-)] Fn(t/T,) - 

SOLUTIONS OF EQUATIONS 

(16) 

89 

We can combine the standard growth and decay formulas 
(14) and (15) into a single standard formula as follows: If 

(a) The optical medium is homogeneous. 

(b) Un(0), n 2 0 is given as steady state value 
attained under a previous standard growth condi- 
tion and P,(t) = P, for t in (0,tl). 

for to < t < tl and n > 0. 
[ll). 
radiant enerzy fields induced in large bodies of air or 

For t < to, Un(t) is given by 
Formiila (17) mar be used to-describe the transient 

water by radiant sources which are intermediate between the 
Dirac-delta pulse and the steady source described in (10) 
and (11). Since any source output Pn over a time interval 
(O,t,) can be approximated by a step function, we see that 
by superimposing fields of the type given by (17), we can 
represent n-ary radiant energy fields induced by finite non- 
constant sources under the general conditions of this section 

5.10 Properties of Time-Dependent n-ary Radiant Energy : 
We now turn to examine in detail some of the more in- 

tui t ive ly interes ting prope rt ies of t ime - dependent radiant 
energy fields. In order to present the properties in their 
simplest forms, we shall adopt for study throughout this sec- 
tion a light field evolving under either standard growth or 
decay conditions or optical reverberation conditions in an 
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optical medium X over a time interval (Q,tl)(Sec. 5.9). It 
will be clear from the results stated below how analogous or 
complementary statements and properties can be formulated 
under still more general conditions. We begin with a study 

' of some of the fine-structure properties of n-ary radiant 
energy fields and then go on to a formulation of the various 
representations of related radiant energy quantities. 

Some Fine-Structure Properties 
of n-ary Radiant Energy 

Property 1. Let t be a fized time in (Oatl). Then the 
aequence uolt), UI(t), ..., Unftl, ... of n-ary radiant ener- 
gies at time t is 4 monotonic decreasing sequence with E m i t  
0. The proof of this property is based on (14) of Sec. 5.9. 
By (13) of Sec. 5.9 we see that: 

limn Fn(t/T,) = 1 c 1) 
Hence by noting that 0 < < 1, we see that: 

so that 

for t in (U,tl). As for the monotonicity of the sequence, it 
suffices to note that: 

and that F (t/T,) increases monotonically, with n, to unity. 
This may b? seen by verifying that: 

0 < 1 - Fn+l(t/T,) < 1 - Fn(t/T,) < 1 

for every n > 0 and every positive t. The limit part of 
property 1 fEllows also from (2) by using the ratio test for 
convergent infinite series. 

Property 2. Under standard growth conditions, 

for every t in f0,tll. The proof is immediate. For example, 
one may use (14) of Sec. 5.9 directly with the calculus, or 
one may use algebra with the fact that dUn(t)/dt is the 
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difference given in (24) of Sec. 5.8, with p(t) = 0. 
erty 2 shows in particular that each n-ary radiant energy 
corn onent increases monotonically with time. Property 2 is 
to ge compared with: 

Prop- 

Property 3. Under standard decay conditions 

for every t in (0,tll. The proof is immediately obtainable 
from (15) of Sec. 5.9. Hence the rates of growth and decay 
of n-ary radiant energy under standard conditions are, to 
within a constant multiplicative factoy-, identical in struc- 
ture within a given space. 

PropertT 4. Under standard growth conditions, 

for every t in (0,tl) and positive integers n, k. This fol- 
lows from property 2 and (24) of Sec. 5.8 with m(t) = 0. 
The inequality is reversed under standard decay conditions. 

p rocesa, 
Property 5. In the steady state of the standard growth . 

for every n 2 0. Hence: 

for every pair n, k of nonnegative integers. 

tion (10) of Sec. 5.91 w e  have the ratio: 
Property 6. In the opticat reverberation case (equa- 

t/nTs VtS un(t)/IJn-l(t) = - n = 

for n 2 I and t in (0,tIl. Thus, the ratio of successive 
n-ary radiant energy contents increases Zinearty with in- 
creasing time and decreases hyperbolicat Zy uith increasing 
n. 

point source (equation (10) of Sec. 5.9) Un(t), for a given 
scattering order, attains a maximum when the radius of the 
wave front is n times the attenuation length l/a. Further, 
for any given totat votume scattering vatue a and time t in 
(O,tl), that component Un(t) is maximat vhose order n makes 
the absotute vatue of 

Property 7. In the optical reverberation case with 

(%) - 1 = (t/nTs) - 1 
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a minimum. 
summarized in part (a) of Figure 5.12. 

directty observabte radiant energy U(t) 5s given by: 

The geometric content of properties 6 and 7 are 

Property 8. In the opticaZ reverberation case, the 

-t/Ta U(t) = Un e 

The proof rests on (10) of Sec. 5.9 and (29) of Sec. 5.8 and 
the simple calculation: 

O D .  

u(t) = 1 uJ(t) = un e 
j=O j=O 

= un ,-t/Ta . ,t/Ts = rl ,-t/Ta 
9 

in which (32) of Sec. 5.8 was used. 
from property 8 that, in optical media with no absorption, 
i.e.,for which a = 0, U(k) is independent of t in the rever- 
beration case. Part (b) of Figure 5.12 gives plots of Un(t) 
for the first four scattering orders in the optical rewerber- 
ation case in which a = 0 and U, = 1. In the figure we have 

It follows immediately 

0 

FIG. 5.12(a) The geometris version of property 7 of 
scattered radiant energy. 
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I 2  3 4 5 6 7 8 9 10 

FIG. 5.12(b) The geometric version of property 7 of 
scattered radiant energy. - -Concluded. 

written "T" for t/Ts. Thus the medium is a nonabsorbing me- 
dium (p = 0) with conserved directly Observable energy. Note 
how the scattering order components of U(t) well up one after 
another, reaching their maxima, as described by property 7. 
Finally, according to property 8, the sum of the ordinates of 
all the curves at each T should add up to unity. 

Scattered, Absorbed, and 
Attenuated Radiant Energies 

We now round out the roster of the types of radiant 
energy fields most commonly encountered in theoretical dis- 
cussions of time-dependent light fields. Until further 
notice, source conditions are arbitrary and with P(t) = 0. 

((3) of Sec. 5.8), the n-ary radiant energy ((19) of Sec. 
5.8), and the directly observable radiant energy ((26) of 

So far we have introduced the residual radiant energy 



94 NATURAL SOLUTIONS VOL. IPI 

See. 5.8) with its natural representation ((29) of Sec. 5.8). 
By writing: 

(3) 

we define the acattered (or diffuse) redCant energy (in X) 
at time t. We then have from (29) of Sec. 5.8 the following 
radiant energy counterpart to the time-dependent integral 
equation of transfer (cf. (4) of Ssc. 5.4): 

U(t) = P C t )  .+ U*(e) (4) 

Using the emission radiant flux function P,, and recalling 
that we have set F(t) = 0 for t in (0, tl), let us write: 

t 

P,, (t') dt' - Uo(t) (5) I, YJ( t ;a) 'I for 

for t in (0, tl). The meaning of this new radiant energy 
becomes clear when it is recalled that UO(t) is the residual 
(i. e. the unattenuated) radiant energy. Therefore since 
the integral gives the total radiant energy input to the me- 
dium, the difference in (5) must be all the energy present at 
time t that has undergone attenuation (absorption or at least 
one scattering operation). We call U(t ;a) the attenuated 
radiunt energy (in the medium X) at time t. Only part of 
U(t;a) is detectable. In fact, the detectable part of U(t;a) 
is precisely U*(t) . Thus let us write: 

"U(t;a)" for U(t;a) - U(t;s) (6) 

where, for uniformity of notation and heuristic purposes, we 
have aRreed momentarily to write 

"U(t;s)" for U*(t) . (7) 

Then from (6) we have: 

U(t;a] = U(t;a) + U(t;s) , (8) 

a formula remarkably similar in structure to the basic rela- 
tion : 

a = a + s  

derived from (4) of Sec. 4.2. We call U(t;a) the absorbed 
radiant energy (in X) at time t. The absorbed radiant energy 
is radiant energy that has disappeared from the present radi- 
ometric scene vla absorption processes. 

I 

i 
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Representations of IJ(t;a) , 
U(t;s), and U(t;a) 

The transport equations for the three auxiliarly radi- 
ant energies and their solutions are relatively easy to ob- 
tain, We shall illustrate the power of the natural solution 
procedure by basing the derivations of these equations and 
representations directly on the knowledge of the n-ary radi- 
ant energies developed so far. 

We 
tion for 
tion (5) 

From (8) 

begin with the derivation of the differential equa- 
attenuated radiant energy U(t;a). From the defini- 
we have 

of Sic. 5.8 we obtain: 

recalling that the condition p(t) = 0 is in force for every 
n > 0 (hence po(t) = 0, in particular, holds). This elegant 
formula for the growth rate of U(t;a) shows perhaps most 
clearly the reservoir source of U(t;a) (namely, Uo(t)) and 
the main line which taps the reservoir (namely, Tu, i.e., 
attenuation). At standard steady state (9) shows that: 

Thus in the steady state attained under standard growth con- 
ditions the rate of increase of U(t;u) is precisely the in- 
put rate P,,, so that attenuated radiant energy in the medium 
increases as fast as it is put into the medium by the source, 

Next we consider the scattered radiant energy U(t ;s) , 
or "U*(t)" as we would call it ordinarily. The representa- 
tion (3) of U(t;s) gives rise to the associated differential 
equation for IJ(t;s) hy computing (with the help of (24) of 
Sec. 5.8) the following derivative : 
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Hence : 

Here we begin to see some of the utility of the various 
time constants T,, T T,. They serve to remind one of the 
correct dimensions os each term in an equation or representa- 
tion, and they serve also to show the physical mechanism as- 
sociated with that term. Thus we see at a glance from (11) 
that the rate of growth of U(t;s)--the scattered radiant en- 
ergy- - is augmented by scattering of residual radiant energy 
Uo(t) and decreased by absorption of scattered radiant ener- 

There is no need to solve (11) since we need only sum 
gy U(t ;SI - 
the representations of the uJ(t) in (3) to obtain the desired 
representation of U(t;s) Thus, under standard growth condi- 
tions ((14) of Sec. 5.9): 

Hence : 

An alternate representation of U(t;s)is obtained by 
distributing 
The result is: 

Tauo(-) throughout the preceding representation 

U(t;s) = e uO(@q(l-e-t’Ta) - UO(t) r.3 
From this we obtain immediately the representation for the 
directly observable radiant energy. For, by (4) and (13), 
we have : 

I 1 

I I 
which is clearly a solution of (27) of Sec. 5.8 under stan- 
dard growth conditions. 

most simply as: 
Finally the absorbed radiant energy is represented 
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I I 

under standard- growth conditions. This representation fol- 
lows from (4) ,: (5), and (8). A representation under more 
general growth conditions is obtained by retaining the inte- 
gral in (51. The differential eauation for U(t;a) under 
gtandard'growth conditions is readily obtained: 

d U t a  = -w 

Hence : 

We have made a point of deriving the differential equation 
for U(t;a) so as to make possible the comparison between it 
and (9). The comparison lends valuable insight into the 
general roles of scattering and absorption in radiative 
transfer phenomena. Thus, in the case of (16) , the reservoir 
source for U(t;a) is the directly observable radiant energy 
and the energy is tapped via the process of absorption. 

5.11 Dimensionless Forms of n-ary Radiant Energy Fields and 
Related Fields 

We shall now develop the dimensionless forms of the 
various equations and solutions for n-ary radiant energy, 
residual radiant energy, directly observable radiant energy, 
and the related energy fields introduced in Sec. 5.10. We 
shall also explore the various possibilities for the defini- 
tion of time constants which are to characterize time-depend- 
ent light fields in optical media. Before going on to the 
details of the discussion, some preliminary observations on 
physical theories using dimensionless concepts are in order. 

When the analytical representation of a natural phenom- 
enon can he placed into such a form that the terms of the new 
representation are dimensionless, this usually indicates that 
the given phenomenon is a member of an inclusive class of 
phenomena whose members exhibit a common mathematical repre- 
sentation, but which ostensibly may have different external 
appearances. The mathematics used to represent the concepts 
of electrical network theory is a good example of this kind; 
for the mathematical procedures employed in that theory are 
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often equally applicable to problems in mechanical dynamics. 
As a result of this common understructure, researchers in 
each of these fields have enriched the mathematical methods 
of the other by noting the applicability of the same set of 
techniques in each field of study. (See Sec. 5.15.) 

indicated that the set of transient radiant energy phenomena 
may be treated as a member of the class of natural phenomena 
which includes electrical network behavior ((14) of Sec. 5.8; 
see also concluding comments of Sec. 5.6). We can alsopoint 
out that the natural mode of solution leads to radiant energy 
equations which have the same mathematical structure as the 
equations governing the growth and decay of families radio- 
active substances. In this case, the counterparts to n-ary 
radiant energy Un are the population counts Pn of the nth 
species Sn of radioactive atoms which are the decay products 
of species Sn- and where Sn itself decays into species S,+1. 
Still other ana ostensibly different natural phenomena share 
the same mathematical substructure as the time-dependent 
radiant energy equations. For example, interacting biologi- 
cal species Sn often are arranged in a predatory hierarchy 
so that members of species Sn prey upon those in species 
S and are in turn preyed upon hy those in species Sn+l. 
T%l t ime - dependent equations gove rn i ng the population counts 
of the nth interacting species--be they animal, vegetable, or 
mineral--often h a w  a common fundamental mathematical core 
which is obtainable by stripping away the accidental topop- 
raphy of the equations associated with the particular case. 
The advantages of attaining such dimensionless formulations 
lie in the resultant conceptual simplifications and economy 
of description of natural processes. 

The casting into dinensionless form of the basic dif- 
ferential equations of transient radiant energy and their 
associated solutions has practical as well as conceptual acl- 
vantages. For example, dimensionless iornulas allow the 
inclusion of a wide range of special cases in a sinclc ta?)u- 
lation or graph, the specific case being recoverable niter 
multiplication by a suitahle factor. The dintensionless forms 
thus compress a huge amunt of particalar numerical informa- 
tion into a relatively small space. 

simplicity we shall adopt throughout this section t!ie stan- 
dard growth conditions in a homogeneous optical medium (re: 
[la) of Sec. 5.9). T!ie developments of this section nay 
serve as a pattern for generalizations to the nonstandard 
cases. 

Some of the discussions in this chapter have already 

lee turn now to the details of the discussion. For 

Convcrsion Rules €or 
Uimensionless Quantities 

of Uo(t), U*(t), U(t), and related radiant energy concepts 
in Sec. 5.10, with an eye toward achieving dimcnsionless 
versions of these representations, brings to light the essen- 
tial observation that, without exception, each of the repre- 
sentations within the standard gro~th context obtains its 

An examination of the various analytic representations 

i 
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dimension of energy from the presence of the product PnT, in 
the form of Uo(-). For example, (12) of Sec. 5.8 states that 

uo(t> = uo(-)(l-e -t/Ta) 

and (11) of Sec. 5.9 states that: 

A perusal of U(t;a), U(t;s), (i.e., U*(t)) axid U(t;a) in the 
preceding section will corroborate the observation still fur- 
ther. This leads us to the following definition. 

Let "U#" 
denote any of the following radiant energy expressions: 
Un(t), U(t;a), U(t;s), U(t;a), U(t). Then we shall write: 

fli?*l for un/UO(-) 

Definition of the Dimensionless form of U. 

and we call 6' the dimensionlese form of U. 
The next observation concerns the presence of terms of 

the form t/Ta? t/Ts, t/Ta, Ta/Ta, 
various equations constructed so far. These expressions 
are already dimensionless. The observation to make at pres- 
ent is that these six terms, which involve four separate con- 
cepts, can be represented compactly by means of only two dis- 
tinct concepts, namely the ratio t/T, and the scattering- 
attenuation ratio p(=s/a). To see this, let us write: 

Ts/Ta, and Ta/Ts in the 

for t/Ta (1) ll T "  

We call T the relative time. Its connection with steady 
state concepts is very close and may be stated succinctly 
by first writing 

ffLa'l for l/a . 

We call La the atfenuation length associated with the opti- 
cal medium. Since T, is l/va, we see that: 

so that: 

La = vTa 

T = t/Ta = vt/La (3) 

From (3), T may be interpreted not only in a temporal sense 
(i.e., the number of attenuation times in a certain time t), 
but in a spatial sense, too, namely the number of attenuation 
lengths in a certain path (traversed by light in real tine t). 
The representation of the six dimensionless terms displayed 
above may be made in terms of p and T as follows: 
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TARLE 2 
Representation of six dimensionless terms. 

t/T, 

VOL. I11 

I I I 

We are now ready to state the conversion rules by which 
one is guided to the dimensionless differential equations and 
associated solutions for the various radiant energy fields. 
Towards this end, we note that the derivative: 

may be written as: 

where : 

so that: 
r I 

I I 

Conversion rule 1. To convert dU#ftl/dt to dimension- 

into their equivalent forms in terms of p and T, using 

Conversion rule 2. To convert U#ltl to dimensionlese 

less form under standard growth conditions, multiply by 
T,/lJo(m) and change all time ratios of the kind t/Tx and 
Tx/T 
Tablg 2. 

form under standard growth conditions, multiply b y  l/Uo (w) 
and change ali! time ratios of the kind t/Tz and T,/T into 
their equivalent forms in terms of p and T, using T J Z ~  2. 
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Dimensionless Forms for llO(t) 

Starting with (8) of Sec. 5.8 under the standard growth 
condition, we have 

dUo (t) U O  ( t) 
a t = - r + p n  

To apply conversion rules 1 and 2, we write this as: 

and then go on to obtain: 

I 1 

The solution of (5) is: 

I I ,  

The only dimensionless parameter in the representation 
of GO(?) is the relative time T. 
and (6) indicates that the growth of residual radiant energy 
is basically independent of the medium in which it takes 
place. At any rate UO(?) will be seen to differ from U~(T), 
e.g., the growth and decay of which depends critically on the 
parameter p. 

The absence of p from (5) 

Dimensionless Forms for Un(t) 

Starting with (24) of Sec. 5.8 under the standard 
growth condition, we have: 

which we may write as: 

Un (t ) /lJo (-) + 

which by conversion rules 1 and 2 become: 

, 
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which has the solution: 

where Fn is defined in (13) of Sec. 5.9. Prom (8) we have 
immediately that: 

for every n > 1, and a study of (7) shows that this relation 
holds also f'iir n = 0. 

It is interesting to note how (7), even though defined 
only for n 2 1, actually reduces to the correct relation when 
n = 0. A comparisog o (5) and (7), suggests that we can 
identify the term PU"-~[T) with 1 whg 3 n = 0, i.e., we are 
encouraged to extend the meaning of U (T) to the case where 
j = -1. Thus let us write: 

i In full dimensional form this means that ne have the defini- 
tional identity: 

(11) -1 U (t) = P,, Ts 

With this extension, we may use (7) as the basic n-ary 
differential equation which then includes (5) as a special 
case. 

DiFensionless Forms for U*(t) 

Applying the conversion rules to (11) of Sec. 5.10, we 
have, under the standard growth condition: 

0 

(12) '7 dfi* (t) - (1-p) fi*(T) + C0(T) 

with solution: 

It is interestinp to see how (13) predicts the growth 
of scattered radiant energy in extreme media, i.e., media for 
which p = 0 and for which p = 1, e.g., in purely absorbing 
and scattering media, respectively. To see this, observe 
that: .. 

! 
i 

. ,  
m :  - 1  
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Then we have from (1 3) : 

103 

Thus in purely scattering media, at 1 = 0, U*(O) = 0, and for 
very small relative times T: 

so that G*(T) commences growth parabolically from T = 0. 
somewhat larger T, U*(T) grows essentially linearly with T ,  
as might be expected. In the case of the other extreme type 
of space, the purely absorbing-space, i.e., one for which 
p = 0, equation (13) predicts U*(T) = 0 for every T, as ex- 
pected. In general for normal spaces, i.e., for spaces in 
which there is present both scattering and absorption, so 
that 0 < p < 1, (13) predicts the steady state value of 1:" 
to be 

For 

This agrees with the natural solution computation based 
on (9) : 

(16) 

-. 
The growth pattern of U*~T) is relatively intcresting 

because the rate of growth of U*(T) exhihits a maximum at a 
certain finite time which depends on on p. Thus, from (13) 
we have : 

For normal spaces, i.e., when 0 p < 1, this rate of growth 
is zero for T = 0 and T = and positive for all intermediate 
T. The T for maximum growth rate is obtained in the usual 
manner using calculus, and is of the form T ~ ~ ~ ,  where we have 
written: 

IVe shall have occasion to return to this 
the discussion below on time constants. 

relative time in 

Dimensionless Forms for IJ(t) 

Applying the conversion rules to (27) of Sec. 5.8, we 
have, under the standard growth condition: 
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whose solution is: 

Note that for purely scattering media (p = 1): 

which implies : 

I?(T) T 

for all T 
normal spaces the steady state value of U(T) is: 

0. For purely absorbing media,  IT) = fiO(~). In 

I 

(21) 1 U(-) = - 1-P 

Dimensionless Forms for U(t;a) , U(t;a) 

From (9) of Sec. 5.10 and the conversion rules we 
obtain : 

whence, under standard growth conditions : 

1 
I (23) fi(~;a) = ( ~ - 1 )  + e-T I 

This agrees with-the special case (14) of the representation 
of 3 * ( ~ )  (alias U(T;S)), i.e., undeT the special case where 
s = a. Finally, from (16) of See. 5.10: 

I I 

I I 

whence, under standard growth conditions : 
I 1 
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FIG. 5.13 A plot of  fin(^) versus T for n = 0, 1, 2, 3, 4 
in an optical medium which has p = 0.2 (see (8) of Sec. 5.11). 
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FIG. 5.14 A plot of  fin(^) versus ‘I for n = 0, 1, 2, 3, 4 
in an optical medium which has p = 0.4 (see (8) of Sec. 5.11). 
Note that the vertical spread of the-curves is decreasing, 
and that the steady state values of W(T) crowd closer to- 
gether for higher P values. 
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T 

FIG. 5.15 Continuation of Figures 5.13, 5.14. 
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I=o 
I= I 
I= 2 
I= 3 
e=$ 

FIG. 5.16 Continuation of Figs. 5.13 through 5.15. 

I 

, 
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T 
FIG. 5.17 Conclusion of Figs. 5.13 through 5.16. 

n 

c 

FIG. 5.18 A plot of time constants for o"(T), 
n = 0,1,2,3,4 in which c = 0.98. (See (27) of Sec. 5.11.) 
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c ?. 

T 

FIG. 5.19 Plots of ij(z;s) (=f~*(t)) versus relative time 
T. 
ratio p. 
this latter quantity is the total afiiount of scattered radiant 
energy in the optical medium at time t after the steadysource 
has been turned on. 
energy components Un(t), n = l,2,3, .... 
quantities are plotted in Figs. 5.13 through 5.17, in dimen- 
sionless form. Each curve in the present figure, except for 
P - 1, levels off to approach the asymptote p/(l-p). 
(15) of Sec. 5.11.) 

Each curve represents a different scattering attenuation 
U(T;S) is the dimensionless form of U(t;s), and 

U(t;s) is the sum of all n-ary radiant 
Some of the latter 

[See 
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10-4 
8 9 IO 

FIG. 5.20 Showing the evolution, in time, of the scat- 
tered radiant energy (see (17) of Sec. 5.11). 
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FIG. 5.21 A plot showing the relative magnitude of the 
sum of the first n scattering orders 

of radiant energy at time t as compared to the total amount 
U(T;S) of scattered radiant energy at the same time. The 
plot is for a space with scattering-attenuation ratio p 
0.8. Observe that for fixed n, the ratio is monotonlc ds- 
cre~eing with time t. For fixed time ‘I, the ratio increrrsee 
with increasing scattering ordey. As an example, let n = 3, 
and T = 5. Then the ratio of UJ(t) to *i(.r;S) is 0.8; for 
T = 10, the ratio is 0.6; and in the limit, as ‘I+-, the ra- 
tio is 0.48. Hence, at steady state the amount of radimt 
energy having been scattered, once, twice, or three times is 
48 percent (= 1 - pn) of all that has been scattered in gen- 
eral (see Flg. 5.22). 

I 
.c : 
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n 

in Fig, 5.21. 
FIG. 5.22 The limiting values, for T = w, of the ratios 
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P 

FIG. 5.23 The relative times for the occurrences of the 
maxima in Fig. 5.20,plotted as a function of p. 
the curve labeled "p = 0.08'' in Fig. 5.20 has its maximum at 
about T = 2. 

FOT example, 

6 
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A Discussion of Time Constants 

Time-dependent natural phenomena may be broadly classed 
into two main groups: those that are periodic and those that 
are not periodic over a given time interval. 
nomena can in turn be characterized in part by means of their 
periods, i.e., the smallest intervals of tine over which they 
exhibit a basic cycle of behavior. Nonperiodic phenomena on 
the other hand have very many ways of being nonperiodic, and 
there is no simple single number which suggests itself as a 
suitable measure of such general nonperiodicities. Of the 
great variety of nonperiodic phenomena, however, there are 
those which appear to eventually tend with increasing time 
toward a well-defined limit. These nonperiodic limiting 
phenomena can then be characterized in a Fanner analopous to 
the periodic phenomena, i.e., by means of single nusbers which 
suitably measure such simple nonperiodicities. 
means is the concept of the time constnnt of such phenomena. 
The time constant, broadly speaking, is that interval of time 
over which the nonperiodic limiting phenomenon evolves from 
some standard initial state until it arrives just within a 
prescribed "distance" of its limit state, 

Time-dependent light fields in natural optical media 
are generally phenomena of the nonpeptodic limiting type dis- 
cussed above. Therefore the notion of a time constant char- 
acterization of such phenomena seems worthwhile exploring. 
In the discussion that follows we shall examine some possible 
candidates for time constants of transient light fields in 
natural optical media. One major fact that will emerge from 

Periodic phe- 

One useful 

, 

I 

, 

, 
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the discussion is that there is a large number of possible 
candidates for time constants, each valuable in the context 
in which it is found and used. Thus it will turn out that, 
in the long run, no one single time constant will suffice 
for the description of evcry instance in the great variety of 
t i mc - dopcndon t rad i nn t enc rgy f i el LIS c~ncoiiii t crcd 1 11 t tic v .i i 
ous natural media (oceans, lakes, ntmosphrre) . Thc I’CJII L 
oheios of time coristant that can b e  made w i l l  var!j jointly 
with the type of mdiometric concept used (radiance, irradi- 
ance, or any o f  the variety of radiant energies discussed so 
far) and the space in which the tight field is evolving. 

again the residual radiant energy Uo(t) discussed in Sec. 5.8, 
now in comparison with the directly observable radiant energy 
U(t). We saw in Sec. 5.8 the exact analogy that held between 
a simple resistance-capacitance DC circuit and an infinite 
homogeneous optical medium in which UO(t) was evolving. This 
analogy suggested that the candidate for the time constant 
associated with Uo in the medium was T,. Comparing the form 
of V(t) with that of U(t) as given in (14) of Sec. 5.10, we 
see that in the same medium, hut now with reference to U(t), 
the most obvious candidate for the time constant is Ta. Thus 
by switching from Uo(t) to U(t) the appropriate choice for 
time constant correspondingly goes from T, to Ta. 

As another illustration of the thesis of this discus- 
sion, consider the scattered radiant energy U*(t) (=U(t;s)) 
as given in (12) of Sec. 5.10 and its dimensionless graphical 
representation in Fig. 5.19. The steady state value of U*(7) 
is p/(l-p) in normal spaces, i.e., spaces in which 0 < p < 1. 
Figure 5.19 shows how U*(m.) approaches this value asymptot- 
ically for selected values of p. For example, if p = 0.4 then 
U*(m) = 0.4/(1-0.4) = 0.67. This value has been attained [at 
least visually, according to the graph) at about eight rela- 
tive time units. More generally, in a given space with 
0 < p < 1, let c be any number such that 0 < c < 1. Then we 
require that value ’ I ~  of T such that: 

To illustrate the thesis just stated, consider once 

For every p, 0 < p < 1, the number 7c always exists since 
U*(T) is continuous and increases monotonically toward its 
limit, and so eventually takes on the value cp/(l-p) for 
0 < c <  1. A graph of T~ for c = 0.98 is given in Fig. 5.24 
as a function of p. For example, for p = 0.4, ‘I= = 8, and 
so we return to the visual estimate given above. The graph 
of Fig. 5.24 shows generally that the greater the scattering 
attenuation ratio, the greater  this much could be 
guessed on intuitive grounds--however, the exact quantitative 
manner of the increase in ‘10.98 is interesting to observe. 
The numbers T$, therefore, can serve as time constants for 
scattered radiant energy after a choice of c is made. 
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The time-dependent structure of the scattered radiant 
energy U*(T) has an additional feature to that of asymptot- 
icity which may serve to' be a workable basis for the defini- 
tion of a time constant. A study of the rate of growth of 
3*(~) in Sec. 5.11 shotqed that the derivative of the rate of 
growth starts out positive, becomes zero at relative time 
- h(l-p)/p, and then remains negative for all subsequent rela- 
tivc timcs in very Riven normal medium (cf. (18) of sec. 5.11). 
'l'liis suggests that the relative time of the maximum 
rate of growth, is a possible candidate for a time constant 
for a given medium, for it defines a distinguishable point 
of inflection on the growth curve of U*(r). Figure 5.23 de- 
picts Tniax as a function of p for a selected range of normal 
spaces. The point to observe here is that we need not always 
base time constant definitions on the feature of asymptoticity 
of a nonperiodic phenomenon. Well-defined maxima or minima 
or points of inflection of growth curves may also serve as 
adequate bases for time constants. 

It is interesting to observe how the notion of a time 
constant can be extended to each of the- n-ary radiant energy 
fields Un, n > 0. The best candidate for the time constant 
varies with tKe scatterinR order n. Thus, suppose c is any 
number such that 0 < c < 1. Let ~,(n) be that relative time 
for which : 

holds. That is we require ~ ~ ( n )  such that: 

1-c = Fn(-rc(n)) . 
As in the case of (26), rc(n) exists for every n > 1 and c 
such that 0 < c < 1. The basis for this conclusiEn is prpp- 
erty 2 of Un(t), stated in Sec. 5.10, which implies that Un(r) 
increases monotonically and continuously to its limit. Figure 
5.18 depicts a plot of ~ ~ ( n )  for c = 0.98 and n = 0, 1, 2,3,4. 

Still one more variation in the concent of time con- 
stant follows from the 
have inflection points 

implies 

observation 
at relative 

~ = n  

Hence. as in the case of fi*(T], we 

that the-curves of  fin[^) 
times T = n. Thus setting: 

can use the inflection 
point; as identifiable characteristics of the growth curves 
of Un. Observe how the time constants suggested by (28) are 
independent of p ,  and hence the medium, and depend onzy on 
n; yet the similar type of time constant for the sum U* of t 
the n-ary fields IJn indeed depends on p. 
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With these illustrations we rest our case concerning 
the nonexistence of a single universally applicahle time con- 
stant for characterizing transient light fields in extensive 
optical media. Perhaps, if a single time constant were de- 
manded which could be pressed into use more often than all 
the other time constants discussed in the present chapter, 
then we might tentatively suggest T, for consideration. For 
Ta appears quite often in the energy context and most criti- 
cally in the radiance context of (10) of Sec. 5.7. Further- 
more, T, is based on the one inherent optical property (namely 
a) of optical media which is the most thoroughly documented 
and which is the most readily measured member of the basic 
trio a, 0, a. 

Finally, we observe that all our preceding deliberations 
concerned unbounded media--or very extensive media in which 
their boundaries played a negligible role. For a discussion 
of the theory of time constants in bounded media in which the 
sensitivity of radiometer instruments also plays a role the 
reader may consult the papers in parts IV, V of [236]. These 
references are part of a set of five reports in which the 
main discussion centers on the study of the general metric 
properties of time dependent light fields. The theory of the 
time constant found in [236] is one of the several applica- 
tions of the general metric theory developed in the series. 

5.12 Global Approximations of General Radiance Fields 
In this and the following section some of the theory of 

time-dependent n-ary radiant energy fields will be applied to 
two general problems of radiative transfer theory. In the 
present section attention will he directed to the problem of 
finding relatively simple approximations of time dependent 
and steady state radiance fields in optical media. In p a r -  
ticular it will be shown how the n-ary radiant energy fields 
may be used to obtain approximations of the ohservahle radi- 
ance field such that the approximations are exact o~ a rlobal 
level ovcr the givcn rrediurn. 

during the course of the constructions of the approximations, 
to w!iich we now turn. Unless spccifically stated otherwise, 
all constructions will tahe place on a general optical medium 
X with arbitrary source conditions. 

\!'e bcgin with the observation that the operator formula 

The precise mcaning of this phrase will become clear 

based on the theory of Sec. 5.1, suggests the following simple 
approximation, where we write : 

I!ere ll", ?.I 1, is the n-ary radiant energy in X, and 51 is 
the primary radiance function in X. 
approximation of N" for n I. 

I$ is called the global 
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the following observations. 
ing order "dimensions" of n-ar radiance. Next, observe that 
the global approximation for NK yields the estimate: 

The reason for such a name and structure of Nt lies in 
Note first that Nn has scatter- 

€or the radiant density function u in X. 
for this function, then we see that: 

If we write 

for n 2 1. 'Finally: 

J X  

This shows that 

= U"(t) 
the approximation X i  to ?in has the property: 

r 7 

L J 

In other words, N i  yields the same radiant energy content 
of X at each time t as does Nn, the actual n-ary radiance 
function on X. Thus N; yields an exact prediction of approx- 
mation of Nn on an overall (or global) basis. The direction- 
al or local structure of Nn is approximated by that of Nl, 
a relatively easily computed function. 

The global approximation of Nn may be used to obtain a 
global approximation of the directly observahle radiance N 
by means of the natural solution representation of NZ, where 
we have written : 

(4) 

I 
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For, by the definition of the N& we have: 

uj 1 - u* 
j =1 j=l U U1 

O J .  

N t =  1 N i =  1 -r N - - N 1  . 

The requisite global approximation of N is obtained by writ- 
in g 

It follows that: 

(7) 

so that Ng indeed endows X with the same radiant energy con- 
tent as N, the actual observable radiance function on X. The 
function N may then be used to assign to each x in X, and 5 
in 2 at tike t the radiance: 

I 

1 
where, in case standard growth conditions are in force in X, 
U*(t) (alias U(t;s)) and Ul(t) are given by (14) of Sec. 5.9 
and (12) of Sec. 5.10. In the steady state attained under 
standard growth conditions, (8) yields : 

which is defined for 0 < p < 1. 

Global Approximations of Higher Order 

The global approximation N in (1) above is but the 
lowest rung on an infinitely hig ! ladder of global approxima- 
tions of the radiance function in the medium X. He now formu 
late the global approximation to N of arbitrarily high order. 
Thus let us for every n 2 1, write: 
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Ilere we choose to use the same name "Nn" for the approximat- 
ing function, and we have now written,g ad hoc: 

k 

j=l 
ttN(k11, for 1 Nj 

and 

Ni is the global approximation of the kth order of N". It is 
easy to verify that Nn again is globally exact in the general 
sense of (3). 
for the kth order context, by 
(6) at j = k, it follows that: 

Definiffg N g  as in (6) and N* as in (4), now 
stopping thg sums in (4) and 

we call Nbk),n(lO) the global approximation of the kth order 
of h'. 
using N P )  fn (7) will yield U(k)(t). Observe that this ap- 
proxima ion also has the virtue of converging to N as k + m. 
That is: 

N( 3 is globally exact in the sense of f7), i.e., 

This follows from (10) and the facts that: 

lim,+,u(k)[t) = U*(t) 

and that: 

lim N ( ~ )  = N* . 
k-- 

In this way we see that the global app'roximations to N 
have one additional property over the truncated solutions of 
Sec. 5.5, namely the global exactness property. The steady 
state limit version of (lo] attained under standard growth 
conditions is : 

I 

i 

and which is detined tor k > 1, and 0 C p 
dard growth or decay conditions, one may'use in (10) the 

1: Under stan- 

! 



expressions for U*(t) and Un(t), developed in Sec. 5.11, to 
generate useful approximat ions to time - dependent radiance 
fields. First or second order global approximations should 
suffice for many practical settings. 

We note in passing that preliminary and informal numer- 
ical studies seem to indicate that the shapes (the direction- 
al structure) of Nn appear to be spherical (or very nearlyso) 
when n is larger than some integer p which depends on the 
medium X and p. If this conjecture can be proved in general, 
(probably by means of the set up in 10.5) then an enormous 
advance in the practical utility of (13) can be made. This 
conjecture of the limiting shape of Nn as n * w, bears a 
striking analog to the asymptotic radiance theorem studied 
elsewhere in this work (cf., e.g., Chapter 10). An important 
application would be to diffusion theory (see (78) of Sec. 
6.6). 

5.13 Light Storage Phenomena in Natural Optical Media 
The applications of the natural mode of solution of 

radiative transfer problems in optical media discussed in 
this chapter will now be concluded with a definition and dis- 
cussion of the light-storage phenomena in such media. 

Everyday Examples of Light Storage 

Those who have looked out of a window of an airplane as 
it descended into a sunbathed cloud layer may recall the sud- 
den transition to a brilliant ambient field of light, and how 
the sensation of brightness in every direction increased to 
dazzling proportions as the airplane descended further into 
the upper regions of the cloud. This phenomenon is but one 
of many common examples of the storage of light by the mecha- 
nism of scattering. One can also see evidence of light stor- 
age on overcast nights on the outskirts of large cities: the 
cloud layer hovering low over the city is deeply and exten- 
sively illuminated from the street and building lights below. 
Flashes of lightning in storm clouds can light up an exten- 
sive cloud layer from horizon to horizon even though the ac- 
tual volume taken up by the network of electrical discharges 
is a minute fraction of the illuminated volume. Lighthouses 
on densely fogged nights pour a well-defined beam of light 
into a surrounding foy! with the result that the beam and the 
lighthouse are imbedded in a field of scattered light which, 
under suitable conditions, may he observed hy approachinp 
mariners far sooner than the light of the revolving beam. As 
one descends into a lake or the ocean on a sunny day, there 
is a shallow reRion near t!ie surface in wliicli the radiancc 
measurably increases with increasing depth for various hori- 
zontal and upward-looking lines of sight. 

These examples illustrate the phenomenon of the storage 
of light in scattering media. The sense of the work”storage” 
is used in its everyday sense: the accumulation or building 
up of radiant energy in the scattering material that surrounds 
the source of the energy. If one were to quickly extinguish 
the light source, the stored light would not immediately dis- 
appear with the extinction of the source; rather the scattered 
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light stored in the earth's atmosphere would take on the order 
of a score of microseconds to be lost into space, or converted 
into longer wavelengths of radiation and other forms of ener- 

fiiin 
in wlifch thc 
redjrectod by thc walls of the auditorium (cf. SCC. 5.6). In 
the case of light, the walls of the auditorium nre replaced 
by multitudes of tiny scattering centers comprising clouds, 
fogs, or parts of the entire atmosphere, and the hydrosphere 
of the earth: the light impinges on the scattering centers 
and is redirected again and again by scattering. 

Thus, the energy of a pencil of photons, which ordi- 
narily traverses a given volume of empty space in one micro- 
second, could, in principle, be cycled and recycled within 
the confines of the volume for a period of several dozens of 
microseconds before it escapes or is transformed. Therefore, 
if a continuous steady beam of light is poured into such a 
volume, the steady state density of scattered light stored 
within the volume could be tens of times greater than the 
average density of the light ordinarily within the beam. 

Is there a small set of properties of the medium and of the 
source that, when isolated, can serve as the salient parame- 
ters in an analytical description of the stored light field? 
The answer is 'yes'; the natural mode of analysis of light 
fields plays an essential role in formulating the details of 
the answer. 

describe the phenomenon of light storage in precisely defined 
terms. Once we have decided on an exact radiometric defini- 
tion of the term "stored light energy," we go on to formulate 
a simple mathematical model of the light field in a scattering- 
absorbing medium which can describe how the stored light 
energy depends on the inherent optical properties of the 
medium, the geometry of the medium, and the properties of the 
light source. 

It turns out that there are several ways in which we 
may formulate the description of "stored light energy." The 
form of the description depends on one's choice of the radi- 
ometric quantity used in the description. For example, we 
find that there is a description associated with the radiom- 
etric concept of radiance, another description with irradi- 
ance, another with radiant density, and still another with 
radiant energy. 

to the description of stored light energy exclusively by 
means of the concept of radiant energy. The resulting de- 
scription is by far the most natural of all the various 
possibilities; it is, hy a happy coincidence, also the most 
simple to deal with, and the easiest fron which to draw 
examples. 

In the event that more detailed descriptions of storage 
phenomena than those developed in the present study are ever 
required, such as n-ary radiance Nn or radiance N, recall that 

The decaying atmospheric light field is like the dimin- 
reverberation of organ notes in a spacious auditorium 

acoustical energy is momentarily cntrapped and 

Do all these phenomena have a common simple description? 

In this section we embark on a preliminary attempt to 

In the present discussion we will limit our attention 

I 
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we have formulated the requisite time-dependent transport 
equations of these radiometric quantities in Sec. 5.2. There- 
fore, the work of this section should readily be extended to 
the radiance case by interested researchers. The investiga- 
tion of the time-dependent radiant flux problem made in the 
preceding sections also supplements the results of the pres- 
ent study by providing detailed numerical and graphical il- 
lustrations (Figs. 5.13-5.24) of the solutions of the n-ary 
radiant energy equations, and related radiometric concepts, 
which play an important role in the storage capacity concept. 

Storage Capacity 

Let "U'' represent the directly observable steady state 
radiant energy attained in an arbitrary medium X under arbi- 
trary growth conditions; let "Uot' represent the amount of U 
consisting of residual radiant energy fron the source (asso- 
ciated with photons which have not yet been scattered or 
absorbed subsequent to entry into X); and finally, let "E"" 
represent the amount of U consisting of scattered radiant 
energy within the medium (associated with photons which have 
undergone at least one scattrring operation). The ratio U*/U 
is then a measure of the relative amount of scattered radiant 
energy in the medium X. It is a number which lies between 
Lero and one and will be referred to as the storage capacity 
of the medium X. 

In the case of an infinite homogeneous nedium whose 
steady state light field has been attained under standard 
growth conditions (Sec. 5.11) , th storage capacity has a 
part icul arly simp le represent at io in terms of the total 
volume scattering coefficient s, d the volume attenuation 
coefficient DL of the medium: 

(1) U" s storage capacity = = - - . - p  

where p is the scattering-attenuation ratio. In the case of 
nonhomogeneous or finite media, the storage capacity is a 
more complicated function of p and the geometry of themedium 
(Examples of more peneral storage capacity formulas will be 
given below in (5) and (6).) Gut even in the present simple 
context, we gain important insight into storage phenomena in 
general: the storage capacity depends basically on the reta- 
tive magnitudes of s and a. Thus if we consider two media, 
one in which s = 0.01/m, a = 0.02/m, and another in which 
s = D.lO/m, a = O.ZO/m, we see that the former medium has an 
attentuation length of l/a = 50 m while the latter while the 
latter medium is an order of magnitude more optically dense 
with an attenuation length of l/a = 5 m. However, the 
scattering-attenuation ratio for each medium is p = 0.5. 
Thus, despite the great disparity in optical density of these 
media, their storage capacities have a common value, namely 
U*/U = 0.5, indicating that in the steady state in each 
medium, the stored radiant energy (in scattered form) is 50% 
of the total observable energy within each medium. 
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Flrtliods or Detcrmining Storage Capacity 

'Ilic. ~ ~ ~ o h l c n i  of Jvtc~riiiini~i~: the storage cnpacity of an 
infini t i -  or vrry cxtrn5ivc optical mcdiuni (one in which the 
hounclnr piny a nci!liRililc rolc) is readily solved using 
thc results developed in the preceding sections on n-ary 
radiant energy. In particular, for homogeneous infinite 
media, the storage capacity reduces to a very simply obtained 
single number p, as shown above. The number p is readily 
determined in practice by a few local measurements. However, 
the infinite settings are occasionally inadequate models of 
real situations. In feal media in terrestrial settings we 
usually dispense with computation programs and go directly to 
the medium (clouds, lakes, oceans) to perform measurements in 
situ over the given region. By following the definition of 
storage capacity to the letter, we need only try to measure 
the radiant energy U* and IJ by measuring scalar irradiance 
at each point throughout the medium and find the quotient 
U*/U. €lowever, to probe the medium point by point is always 
laborious and occasionally impossible. A practicable scheme 
for measuring storage capacity of real media would be one in 
which all internal prohings are obviated. We thus set up 
the following problem for study: Is there some way of deter- 
mining U*(X)/U(X) for a medium X by limiting all radiometric 
measurements to the boundary of X? The answer is in the 
affirmative. We now present the details of a possible empir- 
ical procedure leading to th orage capacity of a natural 
optical medium. 

Thc discussion begins the steady state version of 
(24) of Sec. 5.8 applied to a homogeneous, bounded region X 
of some real optical medium. The incident radiant flux on X 
is arbitrarily disposed over the boundary and X is assumed to 
have no internal emission sources. Thus we begin with: 

1 o = -  C m X )  + sun-l(x) + F(X) 
for n > 1. is the net inward radiant n-ary flux 
across-the boundary of X. The n-ary radiant flux is indexed 
relative to the incident radiant flux on the boundary of the 
optical medium in which X is located. Thus if the optical 
medium is the ocean and X is a cube 10 m on a side whose cen- 
ter is located 100 m below the, surface, then the n-ary radi- 
ant flux in the cube is relative to the incident radiant flux 
on the surface of the ocean. Summing each side of (2) over 
all n 2 1: 

ilere pn(X) 

Using the natural solution properties this becomes: 

, 
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where we have written: 

125 

In accordance with our preceding remarks, we are inter- 
ested in estimating the quantity U*(X) with the ultimate goal 
in mind of estimating the ratio U*(X)/U(X). 
estimation must be couched in terms of observable or simply 
caZcuZabZe quantities. U*(X) is not directly observable; and 
U(X), while observable, is not simply calculable. (It re- 
quires a determination of observable radiant density u(x) at 
each point x of X.) In casting about for easily observable 
and simply calculable quantities, the observable net flux 
FAX), the residual net flux W(X) and the residual energy 
U (X) immediately come to mind. If we can obtain an expres- 
sion for U*(X)/U(X) in terms of P(X), po(X) and UO(X), we 
will have obtained the best solution possible to the problem 
of empirically determining the storage capacity of a finite 
homogeneous medium. 

in terms of P(X), Fo(X) and Uo(X) is relatively easy to 
achieve. Starting with (3), and noting by (33) of Sec. 5.8 
that we have: 

Rut any such 

It turns out that the characterization of U*(X)/IJ(X) 

F(X) = HO(X) + P*(X), 
we can recast (3) into the form: 

1 - - V P(X) + $ P(X) = -'au*(x) + SUO(X) 

We can then represent the nonobservable IJ*(X) in terms of 
observable and calculable quantities : 

. 

1 lJ*(X) = Uo(X) + [P(X) - p(X)] 
llence 

I 1 

Equation (5) gives the desired general formulation of the 
storage capacity of a finite homogeneous mediun, X in terms 
of the directly observable net inward flux P(X) over the 
boundary of X, the calculable net inward residual flux P ( X )  
over the boundary of X, and the calculable residual energy 
content Uo(X) of X. The volume absorption coefficient a and 
t?ie volume attenuation coefficient ci are the inherent optical 
properties of X which enter into the calculation and which 
are assumed known. 
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It should be remarked that equation (5) is an exact and 
computable formula for the storage capacity U*(X)/U(X) when- 
ever X is any finite homogeneous medium with a > 0, irradiated 
by sources in an arbitrary manner and in which fie resultant 
light field is in steady state. If X is infinite in all di- 
rections or very extensive, then it may be that P(X) = PO(X), - and (5) reduces to (1). The condition Fo(X) = F(X) means that 
P(X) = 0, i.e.,that there is no net scattered flux across the 
boundaries of X. This could happen when the boundaries are 
infinitely far removed, or when a small volume is deep inside 
an extensive medium. 

Example 

To illustrate how (5) is used in particular contexts, 
consider for example a horizontally extensive cloud stratum, 
or ocean layer with upper boundary on the surface, which is 
of finite geometric depth under a clear sunlit sky or clear 
moonlit sky. To fix ideas, consider the ocean layer. We 
agree that the principal source of flux is to be the sun or 
moon, as the case may be, with negligible auxiliary sources 
associated with the sky and ground (or lower layers in the 
case of the ocean). Suppose the sun cannot be seen through 
the given layer as onc is looking u from below. It may be 
checked that the difference P(X) - b(X) in (5) then reduces 
essentially to -P*(X,+), where P*(X,+) is the total net out- 
ward rate of flow of stored energy across the two boundaries 
of X. (The inward flow P*(X,-) is set to zero.) Suppose 
also that the outward rate of low from X over its lower bound- 
ary is small compared to that of its upper boundary (which is 
compatible with the assumptions above). Then: 

where No is the radiance of $the sun or moon at the upper 
boundary of X, 6 its angle from thc zenith, il is its solid 
angle subtense, and A is the area of the upper boundary of 
the cloud. The second equality follows from the definition 
of inward residual flux PO(X,-) over the upper boundary of X. 
Hence (5) becomes 

, I 

where "R(X)" stands for P*(X,+)/Po(X,-), the reflectance of 
X at its upper boundary, a directly measurable quantity. 

As a simple numerical illustration of (6), suppose that 
we take the case of a part X of the ocean for which (6) holds 
and for which it is found that p = 0-4 and that R(X) = 0.02 
for a given wavelength of light around the middle of the vis- 
ible spectrum. Then the storage capacity U*/U is: 

! 

. '  

0.4 - 0.02 0.38 - 0.39 1 - 0.02 = 7K-m - 
d 



SEC. 5.13 

If some time later UO is 
the same layer, then, if 
clearly: 
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known to be a certain amount over 
"C" denotes the storage capcity, 

and hence the directly observable radiant energy in the layer 
is estimable from UO and knowledge of C. 

Equations (6) and (7) illustrate but two of the many 
practical formulas which may be deduced--under various 
hypotheses--from the exact formula (5). The preceding de- 
rivation will suffice to indicate the general outline of such 
procedures, and we leave the exploration of other possibili- 
ties to the interested reader. 

5.14 Operator-Theoretic Basis for the Natural Solution 
P ro cedar e -- 
We close the present chapter with an overview of the 

theoretical activities of the chapter. As in the earlier 
general discussions of the canonical equations (Sec. 4.7) 
the present discussion will perhaps not so much increase our 
ability to solve specific problems of applied radiative trans- 
fer as it will deepen insipht into the essential structure 
of the natural solution procedure I and therefore radiative 
transfer theory. In particular the general results below 
will show haw radiative transfer theory, via the intepral 
form of the equation of transfcr, is connected to those parts 
of the main stream of mathematical physics which share with 
the present field certain operator equations whose mode of 
solution coincides , on the abstract level, vi th thc natural 
mode of solution studied ir tbis cha7ter. The Ciscussion is 
intended to he intuitive, as far as the material \:ill alloii. 

Let L be a general (not riecessari1:- linear) operatcr 
defined or, a domaina of functions such t!iat L €  is in 29 vken- 
ever f is in . Thus L claps clexcnts of 0 into >l . :;txt 
s u p p o s e s  !ias a "distance function" d defined on it such that 
if f and 8 arc in si>, then d(f,g) is a nonnegative real number 
with the properties : 

(i) d(f,p.) = C if and only if f = g 

(iii) d(f,h) 2 L!(f,g) + d(g,ii) 

The function J is called a metric for g ,  ani as can bc 
seen, it has the three nain properties of ordinary distance 
relation of everyday life. I'e summarize all this by saying 
that the pair (a,d) is a metric space. 

transfer settinp of this chapter is quite easily made. Let X 
be an optical medium with initial radiance ?:O and let S1 be 
the operator in (5) of Sec. 5.7. Tlicn write: 

Xow the connection hctween (a ,d) and the radiative 
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"L" for NO + (-1 s1 (1) 

arid we have an example of the operator L above, where B is 
now tlic set of all radiance functions on X. Thus if N is a 
radiance function on X (i .c. N has the dimensions of radi- 
ancc) then certainly 

No + NS1 

is again radiance function on X. We are not asserting at the 
moment that N is a solution of the equation of transfer, but 
merely making an observation that the function displayed above 
has the dimensions of radiance, and that is all at the moment 
that is required for admission into SI. Hence L as defined 
in (1) maps elements of 0 back into ID. 

Next we show that there is a very natural counterpart 
in radiative transfer theory to the abstract metric d for 
each fixed time t and bounded optical medium X. Let us write 

lf(x,E,t) - g(x,E,t)l d.Q(E) dV(x) 

(2) 
i, A [i- 1 "d ( f, g) l l  f or 

It is easy to verify that if f = g, then d(f,g) = 0, 
and that if d(f,g) = 0, then f = g except on sets of direc- 
tions 5 and points x of zero measure. This exception can be 
smoothed over by advanced technical devices,* and we hence- 
forth can assume condition (i) for a metric to be satisfied. 
Next one can verify conditions (ii) and (iii) with ease and 
the verification is left to interested readers. We call the 
metric function d as defined in (21, the radiometric. By 
various standard techniques (e.g., averaging) (2) can readily 
be extended to unbounded media. An alternate choice-of met- 
ric can also be made by writing 

"d(f,g)" for SUP IfCx,S,tl - g(x,E,t)l (2a) 
x,s 

where 

"sup h (x , 6) 'I 
x,s 

*In particular, this can he done by means of equivalence 
classes of functions, an equivalence class being the set of 
all radiance functions on a domain Y which differ from one 
another at most on subsets of Y of zero measure. Then we go 
on to work with equivalence sets of functions rather than in- 
dividual functions. However, for the present we work directly 
with the radiance functions, with no essential loss of rigor. 

! 

i 
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means the supremum (the maxifium) of the values of h(x,E) as 
x,< vary over all permissible values in the domain of h. The 
function d in (Za) also satisfies all the properties (i) to 
(iii) of a metric. Ke shall call d in (Za) the supremum met- 
ric. 

We summarize what has heen done so far: The operator 
(1) associated with the integral equation of transfer of 
classical radiative transfer theory may be vieityed as a s e- 
cia1 case of an abstract operator L on a metric space (g,d), 
the particular classical form of the operator being given in 
(l), withabeing the class of all radiance functions on X, 
and with d the radiometric as defined in (2) or the supremum 
metric as given in (Za). In what follows we a11ow.B to con- 
tain negative valued radiance functions as well as nonnega- 
tive valued radiance fuhctions. Of course in physically 
meaningful applications we shall always work with the latter; 
however, for mathematical purposes it is convenient also to 
have the former. 

We now come to a key property of the radiative transfer 
operator S1 which can be abstracted from the setting of the 
present chapter and carried out far into the reaches of ab- 
stract operator theory, where its general utility-can be more 
easily discerned. In Sec. 5.7 we showed that if N is an up- 
per bound (or supremum) of a radiance function, then (cf. (7) 
of Sec. 5.7): 

for every x in X, 6 in 5 and t in (0, t) , where “Tat‘ stands 
for l/vci. From this we are led to deduce that for every pair 
f,g of radiance functions, and with the supremum metric (2a). 

where c is a number which depends only on t, p and T,, i.e., 
where we have written: 

In all normal optical media (i.e., for which 0 < p < l), 
we have 0 < c < 1 whenever t > 0. The proof of (3) is imme- 
diate, using the definitions (1) and (2a). Whenever an oper- 
ator L on a general metric space (3,d) has property (3), we 
say that L is a contraction mapping or that it has the con- 
traction property. Itence our particular classical radiative 
transfer operator L given in (1) is a contraction mapping, 
relative to (2a). The reader may show that (3) also holds 
under suitable conditions, relative to (2) 1 

ciated with the time-dependent integral equation of transfer 
may be viewed as a special case of a contraction mapping L 
on a metric space (B,d). 

We now have developed enough abstract machinery to il- 
lustrate the essential activity of the natural solution pro- 
cedure, on a very general level--a level which is in contact 

To summarize our findings so far: The operator L asso- 
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with the general representations of widely different natur 1 
phenomena in modern physics. Let us choose any function fifO) 
in 9 and write: 

f l f ~ ~ ~ l l  for Lf(01 

Thus we operate on f(O) in 9 with L to obtain f(l) in s. We 
repeat this operation a finite number of times to obtain f(n) 
where we have written: 

In this way we obtain a sequence 

\ 

of functions in a. 
fine iterates Ln of L so that (cf., e.g., (11) of Sec. 5.1): 

As in the case of Sec.' 5.1, we can de- 

,(n) = ,,nf(o) 

Bcfore poing on, the reader should verify that if we use L in 
(l), and NO for f 11, then f(n) is simply 

n 

j = O  
1 Nj , 

i.e., the sum of the n-ary rad.iances u p  to order n. 

Since c is less than 1, cn is arbitrarily snal? for suffi- 
ciently large 11. Thus the sequence 

coiistructcd above is a Cauchy sequence (in tbc sense of 
modern calculus). Ry establishing this fcature of the se- 
quence ire have reaclicd the pcnultimate step in our general 
discussion of the natural solution procedure. 

., 
.I,: 
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The significance of the Cauchy sequence feature of 

is this: In all physically meaningful settings for the met- 
ric space (a ,d) , it is possible to arrange matter.; 50 that, 
whenever a sequence 

J 
of elements in 59 is a Cauchy sequence in the sense of (43, 
then that sequence has a Limit in B. In general, whenever a 
metric space (9,d) has this property, we say that (w,d) is 
compZete. It is easy to show that all physically meaningful 
radiative transfer settings always can be representc2 by con- 
plete metric spaces ( D,d). Let us assume therefore for the 
remainder of the discussion that (E),d) is complete. 

Taking up the thread of the argument at (4) ire nm: can 
assert the existence of a limit function f to the sequence 
constructed above. Thus let us write: 

We now show that f has two very important properties: 

[i) f satisfies the operator equation f = Lf 
fii) f is the only function in B f o r  vhich (i) holds, 

P o erty Ai]) follows readily by noting that, by definition, ffny= Lf( . fIence applying the limit operation to each 
side of this identity, the result follows by observing that 
L is a continous mapping* (so that the lipit o era ion can 

crty (ii) follows from (i) and the contraction property of L: 

i.e., if g = Lg and f = Lf, then f = g. 

be pushed past L and made to act directly on f P f  n-1 ). Prop- 

From this (since c < 1) we must have d(f,g) = 0, so that 
f = g. 

Let us now make the final summary of whet has been done 
so far in this section: The natural mode of solution in 
radiative transfer theory has been found to take its place as 
a special case of a very general onerator technique in modern 
functional analysis. This technique is based on the iollow- 
ing theorem (cf., e.g., [140]): 

contraction mapping 6 on a comptete metric space fE),d) gen- 
erates one and onty one solution of the equation f = Lf. 

Theorem (Principle of Contraction Mappings). Every 

*A point which is readily established in functional 
analysis texts (cf. , e.g. , [140]). 
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paired off with the abstract setting entities of the preced- 
ing theorem as follows: 

The classical radiative transfer setting entities are 

In Radiative Transfer Theory In the Theorem 

on an optical medium X 
a) Set $9 of all radiance functions B 

b) The radiometric d, as in (2) or d 

c) The operator L, as in (1) L 
(2a) 

We will make one final remark on the existence of the 
solution f of the general operator equation f = Lf. This is 
the observation that the solution f defined in (5) is inde- 
pendent of the i itial function f(O) starting the chain of 
iterations Lnf('7. This fact becomes clear, at least logi- 
cally, by oting the uniqueness property (ii) above. For if 
f(0) and gTo) are two distinct initial functions, then con- 
struction of their iteration sequences yields f and g such 
that property (i) holds for each. 

5.15 Bibliographic Notes for Chapter 5 

fer studied in this chapter, as noted in the introduction, 
plays a unique, fundamental role in radiative transfer theory. 
The formal power of the method and its intuitive simplicity 
cannot be overemphasized. For some historical notes on the 
natural mode of solution, see Secs. 26 and 42 of Ref. (2511. 
For recent modifications of the iterative concept of solu- 
tions of functional equations, especially for numerical pur- 
poses, see [171]. 

The development of the natural solution, as presented 
in Secs. 5.1 and 5.4, follows in the main that given in Ref. 
[251]. The canonical representation of primary radiance in 
(8) or (9) of Sec. 5.3 is occasionally referred to as "See- 
liger's formula," and is to be conceptually distinguished 
from the more useful and accurate representation of NP given 
in (5) of Sec. 4.4. The only common feature of the two 
radiance representations is that they both fall within the 
purview of the basic canonical formula (4) of Sec. 4.7. 

The discussion of the "optical ringing problem" in 
Secs. 5.7 and 5.8 is based on the natural-solution approach 
to the time-dependent radiative transfer problem, and is 
designed to be more precise than simple time-dependent ctas- 
siea2 diffusion theory (Sec. 6.6). The approach outlined in 
these sections is drawn from the results in Ref. [211]. A 
related approach to the optical ringing problem from the 
point of view of temporal metric spaces was tentatively ex- 
plored in the series of reports 12361. Further approaches 
to time-dependent radiative transfer problem are possible 
via the higher-order diffusion equations. See Table 1 of 
Sec. 6.5. The truncated natural-solution inequalities in 
Sec. 5.7 are based on [239]. Further inequalities in this 
circle of ideas may be found in Ref. [67]. 

The natural mode of solution of the equation of trans- 
! 
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The material of Secs. 5.8 to 5.12 is drawn, with minor 
revisions, from Ref. [Zll]. The light storage discussions in 
Sec. 5.13 are based on Ref. [237]. The abstract overview of 
the natural mode of solution in Sec. 5.14 uses advanced con- 
cepts of functional analysis (in particular, the principle of 
contraction mappings) which may, e.g., be studied in Ref. 
[ 1401. 

In the opening remarks of Sec. 5.11, it was emphasized 
that the dimensionless forms of the equations describing 
n-ary radiant energy fields are shared by many natural proc- 
esses, some quite distinct conceptually from the time-depend- 
ent evolution of radiant energy in optical media. For a 
brief exploration of such alternate processes governed by the 
same equations; see Chapter 14 of Ref. 1391 and the footnotes 
in that chaptei. 

The analbgies between radiative transfer phenomena and 
other transport phenomena discussed in Sec. 5.11 also can be 
pursued further, e.g., in [259] and [312]. 



CHAPTER 6 

CLASSICAL SOLUTIONS OF THE EQUATION OF TRANSFER 

6.0 Introduction 

In this chapter we shall conduct an exposition of the two 
most important classical modes of solution of the equation of 
transfer used in practice besides the canonical and the natu- 
ral modes discussed in the preceding two chapters. These 
classical modes are the powerful spherical harmonic method, 
and the mathematically interesting diffusion method. The 
spherical harmonic method is classical in the sense that it 
dates back to Eddington and Jeans [120], two of the pioneers 
of radiative transfer theory. The spherical harmonic method 
represents radiance functions in terms of sums of products of 
two factors: one factor being purely spatial, the other 
purely directional, an intuitively natural representation for 
functions defined on the phase space X x E. On the other 
hand, there are two main theories of diffusion: the classi- 
cal and the exact theories. The classical diffusion method 
is based on Fick's law and views photons in optical media as 
swarms of particles diffusing with great speed, but generally 
in the manner of classical diffusion processes, such as heat 
conduction and Brownian motion. The exact diffusion method, 
which in its essential mldern form dates back to the work of 
Hopf [lll], transcends ih accuracy the classical diffusion 
method but is less general in applicability than the spheri- 
cal harmonic method, in that it applies strictly only to gen- 
eral transport media whose volume scattering function values 
o(x;E';E) are independent of the directions E' and E. How- 
ever, the relatively great tractability of the equation of 
transfer resulting from the introduction of this simplifica- 
tion has led to many interesting and fairly detailed exact 
solutions of the transfer equation, some of which are quite 
valuable in practice. For this reason we include in our 
present discussions a brief exposition of the two main diffu- 
sion methods. Together, the spherical harmonic method and 
the diffusion methods form useful adjuncts to the basic natu- 
ral mode of solution and the canonical mode of solution dis- 
cussed earlier in this work. 

The plan of the chapter is as follows: We begin with 
the spherical harmonic method. To show the extraordinarily 
wide scope and power of the method and also its inherent 
simplicity we derive it in much more general settings than is 
customary, and from an abstract algebraic point of view. This 
will be done in Sec. 6.2, after a preliminary section devoted 

I 
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to mstkvating the method. Then 4pllows a specialized develop- 
ment of the method using the functions which have given the 
method its name (Sec. 6.3) but which, in view of the exposi- 
tion of Sec. 6.2, need no longer exclusively be used. An il- 
lustrative example of the spherical harmonic method is given 
in Sec. 6.4 for plane-parallel media. The discussion of the 
algebraic idea underlying the spherical harmonic method will 
be taken up again as a matter of course in Chapter 7 wherein 
we shall view the method from a more fundamental point of view, 
namely from the viewpoint of the generalized invariant imbed- 
ding relation (Sec. 7.10). In Sec. 6.5, we turn to the dif- 
fusion methods, developing them directly from the equation of 
transfer by imposing the characteristic assumptions of each 
theory into the equation. The solutions of some of the more 
famous models in the classical diffusion method are discussed 
in Sec. 6.6. In Sec. 6.7 the Milne model for infinite media 
with point sources is discussed, followed by some relatively 
recent results on a related problem on point source problems 
in semi-infinite media. The chapter is concluded in Sec. 6.8 
by a brief bibliographic survey of other classical methods of 
solution comprising some of the stock in trade of current 
radiative transfer theory. 

6.1 The Bases of the Spherical Harmonic Method 

mathematical bases of the spherical harmonic method. We be- 
gin with a brief discussion of the motivation for factoring 
the radiance function values N(x,E) into a sum of products 
of the form: f(x)g(c). We then go on to show how this intui- 
tively and physically natural decomposition is sanctioned and 
given a direct representation in terms of vector space theory. 
To accomplish this program, the mathematical prerequisites 
will entail no more than standard advanced calculus techniques. 

In this section we shall describe the physical and 

P hy s i c a 1 Mo t iv a t ion s 

The steady state radiance function is essentially a 
function of two variables: the spatial variable x and the 
directional variable 5. When one examines the equation of 
transfer, in either its integrodifferential or integral forms, 
one is confronted with the complicating presence of the inte- 
gral term- -which represents an integration over the direc- 
tional variable. If it weren't for that integral term, the 
equation of transfer would be a simple differential equation 
and the theory would long ago have been worked out and for- 
gotten by mathematicians! When an investigator, new to the 
field of radiative transfer theory, encounters the equation 
of transfer, one of his more probable actions would be to see 
what would happen if the radiance function N is assumed to be 
the product of two functions f and g, such that: 

Could the radiance function in some optical media be repre- 
sented simply as such a product? It would be instructive to 
follow the consequences of this query, as it is at once one 
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of the most natural and fruitful of questions to investigate 
in the task of solving transfer problems. 

be the reduction of the path. function N& to the fora: 
The immediate effect of such an atsumption as (1) would 

It looks as if the assumption (1) is ineffective unless 
a similar assumption is made about the volume scattering Zunc- 
tion. Thus, in the spirit of (I), another assumption is made, 
now about u: We assume that two functions c and p exist and 
are such that: 

where f, and g, are defined in the obvious way. Therefore, 
under the additional assumption (3), the path function N, may, 
like N itself be represented as a product of two functions: 
one of x alone, the other of 6 alone. 

the equation of transfer becomes more tractable with (1) and 
(3) as starting points. Thus, starting with the equation of 
trans fer : 

The next step in the explorations would be to see if 

and using (1) and (3), the equation becomes: 

&!(E) .- = - a(x,S) f(x) g(S) + f,(x) g*(S) (6) 

Having split apart the spatial and directional components of 
u, as shown in (3), it is physically reasonable (but not 
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logically necessary) to do likewise with a. Sricrilnil~ing f o r  
the moment to physical reasonability, so tIIiit tlir (Ii\~ii*~~ioii 
can proceed, we assume a(x,.) to be constant vnlurtl on for 
every x in X, and write simply "a(x)" for this common value 
at x. Then (6) can be rearranged into the form: 

Two observations may now be made. First, the results 
of the accumulated assumptions, succinctly residing in (7), 
show that f(x) is in principle determinable by a simple inte- 
gration of the differential equation (7) along a path of sight 
provided the values of the parenthesized terms in (7) are 
known. The second observation is that the values of the pa- 
renthesized terms in (7) are known once the quotient g&)/g(S) 
is known. By an inspection of (7), it is clear that this 
quotient must be some number independent of 5. Hence we 
write : 

which then in turn requires the function g to satisfy the 
integral equation of the form: 

I 

The net result of the assumptions (1) and (3) are to 
reduce the problem of the solution of (5) into subproblems: 
the solution of an integral equation (9) for g, with an ap- 
propriate X; and a solution of the simple ordinary differ- 
ential equation (7) for f, using the A obtained in process 
of finding g. 

It appears therefore that up to this point a definite 
step has been made in the solution of (5) by adopting the 
assumptions (1) and (3). It seems worthwhile to follow this 
promising start and to attempt to carry the solution of (9) 
to completion. I f  this can be done for all physically rea- 
sonable assumptions on p(S';c) in (3), then a general solu- 
tion of the equation of transfer will have been found. To- 
ward this end we will adopt for p(S';S) the property of (weak) 
isotropy, i.e., the property that for every 5' and 5: 

p(S';S) dQtC.1 = p(S';S) dQ(S') . I 
Since either integral will be independent of 5, or E', we 
shall set its fixed value equal to 1. This puts the burden 
of the correct magnitude of u on c(x) in (3). In fact we now 
see that c(x) is none other than the volume total scattering 
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value at x in X because, by (3) of Sec. 4.2: 

u(x;S';S) dnCS) = ctx) pG';5) dnCS) 1: 
= c(x) . 

Hence s(x;E') is independent of E', and we write qps(x)'l for 
this common value at x. In this way we simultaneously nor- 
malize D and give c a physical interpretation. ...- - 

A similar normalization can be made of g in (1) with 
the corresponding effect of giving f a convenient physical 
interpretation. Thus, requiring g to have the property: 

it follows from (1) that: 

Hence f is in this case simply the scalar irradiance function 
h. 

we have from (7) and (8) that: 
Returning now to the two reduced equations (7) and (9) 

9 = h(x) 
Furthermore, from (9), by integrating each side over 9, we 
find: 

whence 

h = l  (111 

so that (10) reduces to: dw = - a(x)h(x) (12) 

I 
' I  

1 
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We now have reduced the problem of determining the radi- 
ance function N ,  under the assumptions (1) and (31, to the 
problem of a simple integration of (12) along a path with re- 
spect to path length P, and the solution of (13). The solu- 
tion of equation (12) presents no difficulty, the general 
solution being: 

J 
when the integration is taken along a straight path Qr(xO,S) 
of length r from point xo to x. 
x' is the form xo + r'c, 0 2 r' < r. 

Finally, we turn to (13) and immediately observe that 
any constant function on E, whose value for every 5 in E is 
some arbitrary fixed value go, is a solution. It follows 
that, if g is any nonconstant solution of (13) then so will 
g + go be a solution of (13). This nonuniqueness of solu- 
tions of (13) is a most undesirable state of affairs for a 
physical model of the light field. This means that, on phys- 
ical grounds, we must generally reject the model constituted 
by equations (12) and (13). It follows further that we must 
reject either or both assumptions (l), (3) which gave rise to 
(12) and (13). Since (3) is quite tenable on physical 
grounds, it follows that we must generally* reject (1). In 
this way we have shown that the initial attempt to factor N 
into a product of a scalar irradiance function h and a di- 
rectional function g is untenable on physical grounds. By 
repeating the essential steps of the arguments between (1) 
and (13) the same negative conclusion may be deduced for the 
case where N is represented as a finite sum of terms of the 
form higi. 

The intuitive concept of factoring N into spatial and 
directional components in general media has thus been shown 
to be unsupportable on practical physical grounds. However, 
the factoring may be possible in certain geometrically and 
physically ideal media. Indeed, as we saw in Sec. 4.4, plane- 
parallel media with uniform volume scattering functions per- 
mit such a factoring of N. According to (9) of Sec. 4.4, we 

The intermediate point - 

~ 

*In particular, if a g can be found which satisfies (13), 
then some approximate models may be found by adjusting go 
empirically in N(x,E) = h(x) (g(5) + go(S)). 
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where K is now determined by the requirement that the normal- 
ization pro erty of g holds. Thus by adding two more assump- 
tions to (lp and (3), namely that h(x) varied exponentially 
with a certain fixed exponential decay rate K, and that 
u(x;E';{) is independent of {I and 5, a very special factor- 
able radiance function is forthcoming. 

cial exponential characte4 of h and the uniform directional 
structure of u are quite severe restrictions to impose on 
general media in order to obtain a factoring of N. However, 
as we shall see later [(40) of Sec. 6.6 and (3) of Sec. 7.10 
and Sec. 10.51, it is a property of certain extensive homoge- 
neous media that the radiance function N at great distances 
from the boundaries of such media comes arbitrarily close 
(for correspondingly great distances) to functions of the form 
hg, i.e., to factored form, in which there is a spatial fac- 
tor h and a directional factor g. 

The conclusions of the various arguments presented above 
may now be summarized. 

(i) In general media X for which (3) holds, the assump- 
tion that there exists a function g on E such that NIX,() = 
h(x) g(5) for every x in X and 5 in 9 is generally untenable 
on physical grounds (the associated solutions are not unique). 
More generally, finite representations of the form 

The additional physical conditions of the required spe- 

are also untenable. 
(ii) In some extensive, homogeneous media X, there 

exists a function g on 5 such that N(x,E) + h(x)g(() for 
every 5 in 9 and x sufficiently far from the boundaries of X. 
By comparing the conclusions summarized in (i) and (ii), we 
see from (i) that on the one hand the original intuitive guess 
as to the factorability of N into the form gh was generally 
incorrect; by conclusion (ii), on the other hand, there is a 
small solid core of truth inherent in the intuitive guess. 
Furthermore, while finite representations of N in the form 

n 

i=O 
E higi 

are generally incorrect, these representations may possibly 
be so constructed that they increase in accuracy with an in- 
crease in the number of terms of the sum. In particular it 
would seem that by choosing sufficiently large numbers of 
terms for 

- .  
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these approximations to N may be improved at all points of a 
medium X. Then at large distances from the boundaries of X 
there will, by (ii), be a single term higi of 

which will dominate the otkers and which will essentially 
represent N in those regions. 

of the physical motivation for the abstract harmonic repre- 
sentation method. We thereby are led to consider infinite, 
series of the form: 

With these observations we have reached the last stage 

which, for given fixed x in X, represents the radiance dis- 
tribution values N(x,S) for eve"ry direction 5 in E. 

An Algebraic Setting for Radiance Distributions 

The preceding discussion has motivated the representa- 
tion of a radiance distribution N(x,*) at a fixed point x in 
an optical medium X by means of an infinite series of func- 
tions, in the form: 

m 

This constitutes the first step in constructing the 
abstract harmonic representation of N(x,-) . 

The next step calls for the construction of an infinite 
family {$o, $ , $,, ... 1 of functions, each with 5 as domain, 
and with the 'following properties. First, the $-'s are gen- 
erally allowed to be complex valued. This proviaes a great 
theoretical convenience and in no way forces N to be complex 
valued under specific physical conditions. Second, we re- 
quire that the family {$, , $,, . . .) be orthonormal, i.e., 

(1 71 

where 6.. is the Kronecker.delta, i.e., 6i- is zero whenever 
i # j, s d  one whenever i = j. This opera4ion of integration 
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and others similar to it will arise sufficiently oftsa in the 
following discussion that it will be convenient to abbreviate 
it in general by writing: 

"[~,YI]'~ for Is @(E) V(€)dQIt;) (18) 

where I$ and $I are any two functions on E so that the integral 
of their product, as in (18), is defined. The bar over 8 
function denotes complex conjugation. We call [+,$I the in- 
ner (or scalar) product of @ and $. 

The reason for the terminology "inner product'' stems 
from the deep similarity of this inner product with the clas- 
sical scalar product x * y  of two vectors x and y in euclidean 
three space. The most striking similarities are paired off 
in the list below. Their proofs are immediate: 

(i) (i) 
If ctlr u 2 ,  0 3  are If c 4 0 0  91, @2,...1 
pairwise orthogonal is an orthonormal 
unit vectors of EJ, family of functions 
then Uj 3 "ij on E, then [I$i,Oj] = 6ij 

(ii) (ii) 

If, for a vector 5 
in 5 these exist 
three numbers CI , 
c ~ ,  c3 such that 
5 = clal + C Z U ~  
+ c3ci3, then 
ci 5 ai 

If, for a function 
g on E ,  there exist 
n numbers CO, CI, czr 

c,, such that ..., 

The physical motivations discussed above have led us to 
consider infinite series, so that the vector-spacelfke prop- 
erty (ii) for inner product will be postulated to hold f0T 
infinite series. The specific form of the infinite version 
of (ii) we shall adopt is as follows (the mathematical regu- 
larity properties of integrability are omitted for simplicity 
of exposition) : 

function on 3, and if for every j 2 0 w e  write: 
CompZetenese property of {$e, 41, $2, ... 1. If F i8 u 

*'fj'' for [F,ej] 

I 

j 

i 
i 

! 

I 

I 
-:I 
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for every 5 in S. 

cussed in example 15 of Sec. 2.11, now may be used once again. 
In fact we can easily extend that setting for our present 
purposes. We therefore imagine all possible radiance distri- 
butions at a fixed point x in X and imagine further all their 
negatives and imaginaries (-N(x,*) is the negative of N(x,*), 
iN(x,.) where i = a, is the imaginary of N(x,-)) thrown in 
with them. The totalityq(x) of these and all possible sums 
of them form a vector space in the general sense: Sums of 
members of ?(x) are again in ux); and multiplication of mem- 
bers of y(x) by complex numbers are again in ?(x). The addi- 
tional details of verification are simple and need not detain 
us here. The main fact to observe is that the set of all 
integrable radiance distributions at a point x in X can be 
imbedded in a vector space of functions on 5 which includes 
an orthonormal set G2, ... 1 such that the complete- 
ness property holds for 140, +1, @2, ... }. This is the alge- 
braic setting for radiance distributions in which the ab- 
stract spherical harmonic method will be discussed. 

6.2 Abstract Spherical Harmonic Method 
The motivation and prerequisites of the abstract spher- 

ical harmonic method having been dispatched in Sec. 6.1, we 
turn directly to the method itself, now applied to the gener- 
al time-dependent equation of transfer with source term ((14) 
of Sec. 3.15) : 

The algebraic setting for radiance distributions dis- 

1 aN jx+ 5 Vi= - UN + N, + Nn . 

where N is defined on a general optical medium X which may be 
finite or infinite, generally inhomogeneous, but isotropic. 
We assume furthermore that there exists an orthonormal family 
140, 41, 42, ...I of functions on 5 which has the complete- 
ness property. 

to the radiance distribution N(x,*) at x in X yields: 
The completeness property of {$,I, $ 1 ,  $2, ...I applied 

m 

where we have written: 

"fj(x,t)" for [N*(x,*,t), d)j1 (3) 

Thus f -  (x,t) is the scalar obtained by performing the integra- 
tion: J 
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In a similar manner we obtain: 

as the representation of the emission funcion N,,, where we 
have written: 

The representation of the volume scattering function u 
is next. Since u uses two directional variables, we use the 
completeness property twice. First we obtain: 

m 

o(x;S';S;t) -- 1 aj(x;Sf;t) 4j(S) (61 
j=O 

where we have written: 

Next we obtain: 

m 

where we have written: 

Combining these representations, we have: 

The reason for introducing the conjugates of the ok into (10) 
will become clear shortly. 

Now the whole purpose of the spherical harmonic method, 
as we have seen in Sec. 6.1, is to effectively separate the 
spatial variables from the directional variables in the equa- 
tion of transfer so that the latter may be contained in a 
system of simple directly integrable differential equations 
involving spatial variables only. We now apply the abstract 
harmonic representations of N, N,,, and Q to the equation of 
transfer (12, and effect such a separation of variables. On 

I 
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the right side of (1) we have N, already represented. 
for the term N* (the summations all go from 0 to m): 

Then 

t 

Since the medium X is assumed isotropic, the volume 
attenuation function values a(x;E) are independent of E, and 
so a need not be represented by a series of the complete 
family {@or $ 1 ,  $2, ... 1. By means of (4), (lo), and (11) we 
can therefore represent the right side of (1) in the form: 

m r  OD . -  

j=O i=O 

(12) 

Attention is now directed to the left side of (1). The 
time derivative term is directly treated to yield: 
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The spatial derivative term becomes: 
i o 0  

(14) 
j=O 

Combining (12), (13), and (14) according to (l), we have: 
c 

J 
If it weren't for the spatial derivative term the contents of 
the square bracket would have been free of the variable 5, 
and a system of equations would have been obtained by setting 
each bracketed jth term to zero. 
nate the presence of & by an integration over E. The ortho- 
normality property of {+o, $1 42, . . .I is available for use 
in this task. Thus multiplying each side of (15) by $k(C,) 
and integrating over 3, the orthonormality property immediate- 
ly yields 

At any rate we can elimi- 

k - 0, 1, 2, ... 

This is the requisite abstract spherical harmonic system of 
partial differential equations for the family ifo, 4, f2, . . .I 
of functions, the abstract harmonic coefficient functions of 
the radiance distribution N(x,*). Knowledge of these fj 

I 
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allows construction of N(x,*) according 
the abstract harmonic method of solving 
fer thus resides in (18). 

147 

to (2). The heart of 
the equation of trans- 

Finite Forms of the Abstract 
Harmonic Equations 

An inspection of the system (18) of abstract harmonic 
equations governing the harmonic coefficient functions 
shows ~ W Q  infinite series involved in the system. 
ence' of these infinite series could occasionally negate the 
practical utility of the system, for example in numerical so- 
lution work. It is interesting to observe, however, that 
these infinite series may be rigorously removed and replaced 
by finite sums under the combined action of two very general 
conditions, one physical, the other mathematical. The mathe- 
mat ical condition simp l if ie s the different i a1 opera tor series; 
the physical condition simplifies the scattering term series. 
We shall now briefly indicate the nature of these conditions. 

We shall say that the family COO, $ 1 ,  $2, ... 1 of func- 
tions on E has the finite PecuFreIoce property of degree v if 
for every element 5' in E and every $ *  in the family, there 

$1 ,  42, ... 1 such that 

fk 
The pres- 

exist v constants A.k and u elements $,,, ..., $av of C O O ,  

U 

holds for every 6 in 2. The motivation for this property 
arises in an attempt to simplify the form of the operators 

DaTc v ving them in (18). 
dimensional coordinate frame in which x 5 (XI, XZ, x,) , we 
have : 

and to reduce to a finite series the infinite series in- 
For example, in an orthogonal, three- 

a a a 
V = i ' a j z T + j z + k x  

We use this form in (17) to obtain the representation 

a a a 
Djk = ajk + bjk + 'jk ax, 

L 
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"c " for 5 * k @'j(c) mk(c) dn(c) (23) jk 

By postulating a finite recurrence property of degree v for 
{$o, $I, $ z r  ... 1, if follows that a.k" 0 whenever the in- 
dices k and j differ by a sufficiently large amount: indeed 

Similarly with b - k  and E!:.= This means that for fixed k Djk = 0 whenever j i!! suf- 
ficiently large, and so the number of terms on the left of 
(18) become finite in the present case. It turns out that 
any orthonormal family obtained from suitable nth order 
ordinary differential equations (a rich source of OrthonormaP 
families by means of Sturm-Liouville theory) will possess a 
finite recurrence property of degree v. 

Finally, the physical condition which simplifies the 
abstract harmonic equations is that of isotropy of the medium 
In the present case the isotropy reduces the general func- 
tional dependence of u on the independent variables 6' and 5 
to the special dependence of u on the scalar product 5' 5 
of the directions. This simplified structure of u in turn 
manifests itself in a simplification of the representation 
(10) to the form: 

0 for a11 but at most v terms. 

m 

u(x;E';S;t) = 1 aj(x;t) Tj(s') $j(5> (24) 
j=O 

We shall not go into the derivation details of this re- 
lation in the present abstract case. It suffices to note 
that this form can be obtained when the members of the ortho- 
normal family 140, $1 ,  $2, ... ) obey a general type of addi- 
tion theorem often valid for functions arising in Sturm-Liou- 
ville theory. Exam les of addition theorems for such func- 
tions, are, e.g., in [318]. 

recalculate N*(x,E,t) after the manner of (11) : 

(See (12) and (15) of Set. 6.3.) 
The simplifying effect of (24) becomes evident when we 

i 

- ,  

= /  
I 

I 
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By combining the preceding two conditions, the total 
effect on (181 is a complete finitization of each equation in 
the system of equations thereby rendering them more effec- 
tive for numerical computations. We may summarize these con- 
structions as follows : 

Let X be an arbitrary isotropic, inhomogeneous optical 
medium with internal emission radiance function N n  and gener- 
al time-dependent radiance field fl as governed by the equa- 
tion of transfer (1). Let {$o, $ 1 ,  $2, ... l be an orthonor- 
mal family of functions defined on the unit sphere f such 
that: the family (a) possesses the completeness property (see 
(39) of See. 6.1); (b) possesses the finite recurrence prop- 
erty (29); IC) satisfies an addition theorem (24). Then each 
member of the general abstract harmonic system of partial 
differential equations 1181 reduces to the following finite 
form: For some positive integer v: 

V 
afk + 1 fjDjk = - Ufk + fkUk + fQ,k k = O,l,Z, ... 

6.3 Classical Spherical Harmonic Method: General Media 
The general theory of the abstract harmonic method de- 

veloped in the preceding section will now be illustrated for 
the classical case in which the orthonormal family is con- 
structed from familes of associated Legendre functions of the 
first kind and circular (trigonometric) functions. The opti- 
cal medium X will be generally inhomogeneous and isotropic, 
with time varying inherent optical properties, and given in- 
ternal sources. 

The Orthonormal Family 

We begin by observing that the classical spherical har- 
monic method customarily uses the ordered pair (p,$) of num- 
bers totspecify a point 5 in 6 ,  where we have written "1.1" for 
cos e r  and where (e,$) are the two angles customarily used to 
specify 5 in E (see Sec. 2.4 and also example 14 of Sec. 2.11 
for an earlier use of 1.1 in conjunction with Legendre polynomi- 
als). The range of the variable l.t is thus the interval [-1,1], 
and the range of $, [0,2a]. Every 5 in E determines a unique 
[e,$), that is a unique p in [-l,l] and a unique 6 in [0,2~]. 
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Conversely, any pair (u,@) in [-1,1] x [Q,2n] determines a 
unique 5 in 5. 

The val es of associated Legendre functions ere usually 
denoted by "Pn(u)"s The integer n is nonnegative, i.e., n > 0 
and the integer m satisfies the inequalities: -n 5 m n. me 
general relations in the theory of Legendre polynomiaTs we 
shall use below may be found fully developed, e.g., in [318], 
[289], and [119]. In particular we shall note that: 

Y 

and that: 

where "Pn'l denotes the Legendre function of the first kind 
and of degree n. For our present purposes, we note that the 
associated Legendre function Pz is a real valued function 
with domain [-1,1] and defined for all integers m,n such that 
n is nonnegative and Iml < n. The associated Legendre func- 
tions include, by (21, the Legendre polynomials as special 
cases. 
for which n < 0, are to be zero-valued functions. In view of 
(1) and (2) only PR with n+l nonnegative indices m need be 
t abul ate d . 
Legendre functions takes the form: 

Any functions Pg arising in the subsequent discussions 

The orthogonality property of the family of associated 

0, , whenever n # P 

A* , whenever n =  r [ (3) 

1 

l-::(vl P;(d du = 

The integral properties of the family of circular func- 
tions needed here are summarized by the equations: 1; sin m$ d$ = 0 

, 

'i 
! 

-i I 

I 
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where m is confined to integral values. These properties can 
be succinctly summarized by using complex variables. Thus, 
all three equations in (4) may be expressed by writing: 1:” eim4 do = 2nbom (5) 

where 
The. use of complex variables will considerably facilitate h r  
work in this section, and so they will be retained throughout 
One can always return to the real number setting by finding 
and considering separately the real and imaginary parts of a 
complex term. 

The details of the construction of the requisite ortho- 
normal family on E are clearly indicated by considering (3) 
and (5). Thus to an arbitrary 5 in E ,  (to which corresponds a 
unique air (p,+)) and to every pair of integers m, n, with 
n > O , P  ml < n we assign the complex number 4!(€,) where we 
haTe writteii: 

is an instance of the general Knonecker delta di.. 

where in turn we have written 
r 1 1 / 2  

L 
By observing that: 

we can limit tabulations of A# to nonnegative indices m. 
Furthermore, by recalling (l), the complex conjugate of t$(E) 
may be expressed as follows: 

The orthonormality property of the family of functions 
4$ over E may now be verified. For example: 

J - 1  
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The remaining case where the upper indices of @E may differ 
is straightforward using (5). Hence we have: 

(9) 
b q,mcc1 *,(SI an(c1 = &mb 6na I, 

for every n, a 2 0 and b, m such that lb[ 5 a, Im1 5 n. 
An exact one-to-one correspondence cam be established 

between the abstract family {$a, 41, 9 2 ,  ... 1 of Sec. 6.2 and 
the spherical harmonic family presently under consideration. 
Thus to $j of the earlier discussion we pair @E, where j = n2 
+ m + n. This correspondence arises when one contemplates 
Fig. 6.1 in which each dot in the figure is paired with the 
integer couple (m,n), n > 0, Iml < n, Corresponding to the 
indices of e:. 
from left to right and counting rows from bottom to top, each 
dot is given a single index j. For example the dot in the 
first row, corresponding to (0,O) is given the index 0. The 
dot corresponding to (-1,l) is given the index 1, (0,l) the 
index 2, (-3.4) the index 17, etc. In general: 

Then couzting eacK row of dots by reading 

n 

rn 

I 

FIG. 6.1 Scheme for establishing the correspondence be- 
tween the abstract and classical spherical harmonic method. 

-.! 
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(m,n) is paired with the index j * n2 + m + n (10) 

and 

(11) j 
4: is paired with 4 

Observe that the pairings are unique: given (m,n) these is 
precisely one j > 0 corresponding to this pair; given j > 0, 
there is preciseTy one pair (m,n) on the axray correspoding 
to j and is readily obtained under the conditions on m,n de- 
scribed above. 

Properties of the Orthonormal Family 

We shall now show that the family of spherical harmon- 
ics 42 on E possesses the three main properties sufficient to 
insure a reduction of the general abstract harmonic system 
(18) of Sec. 6.2 to its finite version (26) of Sec. 6.2. 
(The proof of the orthonormality of the family of spherical 
harmonics was outlined in the discussion leading to (9).) 

monics holds. However, the property depends on some rela- 
tively advanced arguments, and the interested reader is re- 
ferred to Chapter 7 of [47] for the general theory of com- 
vleteness of families of functions arising from nth order 

The completenees property of the set of spherical har- 

for Legendre functions holds and 
[119]) : 

differential equations. 
The addition theorem 

takes the form (see, e. g., 

where 5 and 5' are any two directions in E v d  (p,$)! (p',$') 
their corresponding angular representations. Using (1) , 

be compactly written as: 
, the evenness of cosine, and the oddness of sine, (12) 

The argument of P in (13) is the scalar product of 5' 
This scalar prohct is reminiscent of the isotropy and 5. 

condition for an optical medium. We now show how the isot- 
ropy condition leads in the present case to the representa- 
tion of u in the form of (24) of Sec. 6.2. When isotropy 
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holds, the value of u (for a fixed x and t) is known once 
5 - 6' is known, i.e., once a number p = E 5' in the inter- 
val [-1,1] is specified. This value of u under isotropy con- 
ditions will be denoted by "o(x;E=E' ;t)". Therefore, the 
family-of Legendre polynomials PA being complete (a fact also 
supplied by the general theory in [47] cited above), we may 
express u(x;E-E;t) as follows: 

where we have written: 

Using (13) to represent P.(E-s') in (14), we have: 1 

This is reducible to the form of (24) of Sec. 6.2 as may be 
seen by using the correspondence between $j and $ estab- 
lished above. (To show the correspondence in complete detail, 
let o.(x;t) be denoted ad hoc as "u"(x;t)" and require it to 
have aalue aj(x;t) for m in the ranfie - j 5 m 5 j.) 

In this way we see how the addition theorem for the PE 
and the isotropy condition on scattering combine to form the 
extremely useful representation (16). The reader may now 
extend this idea to still other complete orthonormal families 
of functions defined on [-1,1] provided an addition theorem 
of the kind (13) is available for the family. 

Next, we observe that the orthonormal family of func- 
tions ?$ satisfies the finite recurrence property of degree 2. 
This observation is based on the following three well-known 
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recurrence properties of associated Legendre functions (see, 
e.g., [2891, t1191) : 

11 2n+l 

(n-m +2) (m-n-1) p:;pl(u) + (n+m-l) (n+m) ~::i(u) 
sin e P;(D) = 

(2n+ 1) 

(19) 

rise to instances of the general recurrence property (19) of 
Sec. 6.2, cons,ider (17). Here we recall that "p" denotes 
5-k; k is theunit vectoralong thepositive z-axis. 
in (19) of Sgc; 6.2 is now k. 
(17) by elm4. Applying the general definition (6) and 
making some algebraic rearrangements, the net result is : 

As an example of how these recurrence relations give 

Hence 5' 
Next, multiply each side of 

6-k 4:(E) = C(n,m) @:-l(&) + C(n+l,m) O;+,(E) (20) 

where we have written: 
r 

Hence in (19) of Sec. 6.2, we have w - 2, and the Afk(;fi):ow 
in the form of C(j,k), Tith j = n2 + m + n, and a1 
+ m + (n-l), a2 = (n+l] + m + (n+l). The specific represen- 
tation of 5 k @!(6) in (20) is now used in (20) of Sec. 6.2 
to effect an evaluation of the number Cjk, and hence the sum: 

which farms part of the operation: 

.! fjDjk 
j=0 (231 
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in (26) of Sec. 6.2. To see how (22) is evaluated, let us 
represent N(x,&,t) by means of the functions *E: 

where we have written: 

Thus FW in the present context corresponds to f. in the 
abstract context of Sec. 6.2, just as corresponds $0 4.. 
Furthermore, the correspondence of j in f -  with the pair &f 
indices (m,n) of Fm is once again that esiablished above. 
(See Fig. 6.1 and ?lo), (ll).) 

Returning to (ZZ), we consider it in the context of (18) 
of Sec. 6.2, but now using the present family {@E? of ortho- 
normal functions. W? threfore are to con,sider: 

in which k = a' + b + a. 
Thus the infinite sum of z-derivatives in (18) of Sec. 

6.2 is reduced to a sum of two such derivatives. 
The general procedure should now be clear: by placing 

the recurrence relations (18) and (19) into their appropriate 
cpunterparts of (ZQ), the numbers a and b * k  in (21), (22) 
of Sec. 6.2 are readily evaluated. 'then thk sums: 

V af V 5 j = O  1 ajk , j=O 1 bjk ax2 

are evaluated analogously to the manner displayed in (26). 
These details may be left to the reader. -:. I 
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General Equations for Spherical 
Harmonic Method 

The net result of the reduction calculations on (26) 
outlined above may be written in the form: 

r I 

1 I 

(27) 

where we have written: 

"B(a,b)" for [ JM]1'2 
and where C(a,b) is defined generally in (21). 
we have written: 

Furthermore, 

analogously to (25), so that N, has the representation: 

The set of equations (27) forms a cou E led infinite sys- 
tern of equations in the u known functions Fa, a = 0,1,2, ..., 
lbl < a. The functions Fg are generally complex valued, 
accoFding to their define% construction (251, and such that 
N(x,S,t) is real valued, according to (24). The general ini- 
tiallconditions for the system (27) are: 
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for every x in X, and where NO is the given initial radiance 
function on X x E at t - 0. For steady state versions o 
(27), the time derivative term is zero. The functions Fa 
then have domain X and (31) is replaced by: 

d 
- .  

for xo over some appropriate subset of the boundary 
of X (cf., e.g., (26) of Sec. 6.4). 

The system (27) is of sufficient generality to solve 
such problems as point source, beam source, and general in- 
ternal source problems in the sea; natural light field prob- 
lems in lakes, harbors, and the sea. Observe that the in- 
herent optical properties in the f rm of a and ua may be 

sources of radiant flux, such as argificial light sources 
(lases beams, searchlights, submerged incandescent point 
sources, etc.) or natural light sources (phosphorescence, 
animal sources, stc.). The general methods of solution of 
(27) and its'manifold variants are well known and may be im- 
plemented by programmed machine procedures. If the model is 
sufficiently simple (as, e.g., in the illustration of Sec. 
6.4) the associated simplified forw of system (27) may be 
solved by hand and evaluated numerically or even used for 
general theoretical reasoning. 

quite general, and that the term F, g a provides for internal 

6.4 Classical Spherical Varmonic Method: Plane-Parallel 
Media 

The classical spherical harmonic method developed in 
the preceding section for general media will now be illus- 
trated in a setting of primary importance in hydrologic (and 
meteorologic) optics: the plane-parallel optical medium. 
Throughout this section, then, we shall assume that X is a 
plane-parallel medium of arbitrary (finite or infinite) depth. 
The incident light field and the optical properties of X are 
assumed to be in the steady state and independent of the x 
and y coordinates throughout X, thus establishing a stratified 
medium and stratified steady radiance field throughout X. 

Under the present conditions on the medium X, the gen- 
eral system of equations (Zip) of Sec. 6.3 reduces to: 

1 
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Here we have adopted the terrestrially based coordinate 
system for hydrologic optics (Sec. 2.4) wherein depth z is 
measured positive downwards from the air-water boundary. Thus 
“ - ~ ~ * i n ( l )  now replaces “xs” in the general formula (27) of 
Sec. 6.3, arid “x” and “y” replace “x1“ and “xz“, respectively. 
The functions a and Ua may vary with depth, 

groups for each value of a, are; 

(a = 0; b = 0: 

The first few equations of system (l),,written out in 

a = 1; b = 0: 
\ 

[ a  = 2 ;  b = - 2 :  

I a = 2 ;  b = -1: 

-1 + F - l  aF;1 aF ;1 

n,2 C(2,-1) =tJ=- + C(3,-1) - -a z = ( - ~ + u z )  F2 

I a = 2; b = 1: 

I a = 2 ;  b =2: 
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Thus the groupofequations for a = 0 consists of one equation; 
the group for a = 1 consists of three *equations; the group 
for a = 2 consists of five equations. In general the group 
for a = n consists of 2n + 1 equations. Some of the deriva- 
tive terms are missing in the displayed system above because 
of the conditions p aced on the indices at the outset of the 
discussion. Thus Fi * 0 if a <  0 or a < /bl. A convemient 
auxiliary rule to o%serve in this respect is that: whenever 
a-b = 0 or a+b = 0, %hen C(a,b) - 0. 

A Formal Solution Procedure 

The system (11, which re resents the system of equations 
c metaod in a plane-parallel setting, for the spherical harmo 

$ Observe how the upper index b is fixed in each equation 
oa'the system. We shall now show how this feature permits a 
simplification of the general solution procedure of %he sys- 
tem. The manner of simplification may be easily seen by means 
of the diagram in Fig. 6.2. 

of indices Corresponding to Fa. The effect of the rather 
weak coupling among she unknown functions Fi of system (I) is 
such that we can partition the set of unknown functions into 
subsets, corresponding to the vertical columns of dots, ;end 

splays an interesting Y ype of coupling among the functions 

Each dot in Fig. 6.2 re resents an or6red pair /b,a) 

-4 -3 -2 :I 0 I 2 3 4 1 
b FIG. 6.2 A way of grouping the functions Fa into autono- 

mous families, for solution purposes. 

i 
j 
I. 
i r  

I 
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solve €or the unknown functions gssociated 
column. That is, the unknowns F 
obtained independently of the unfnowns in the other columns of 
of the array. This observation can be put into a 
mathematical form as follows. Let us write: 

olely with each 
in the btg column can be 

conven i e n t 

(2) 

..) (3) 

F 1 . (F1, 1 1  F2, Pi, ...) . F-' . (Fil, Fil, F;', ...) . 
F2 = (F2, 2 2 2  F3, F4, ...) . F-' = (F;', F;', Fi2, ...) . 

and so on. 
tem (1)corresponding to an arbitrary fixed index b may be 
written succinctly in vector form as: 

With this notation, we see that the part of sys- 

... 

... 

... 
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and where we have written: 

0 0 0 

0 - a + 61 0 0 

0 0 ... - u + 0 2  

aq&tt for 
... ... ... ..e 

The system (4) may be rearranged into the form: 

I I 

I b = 0, f 1, 5 2, ... I 
where we have written: 

and where ft(cb)-ltt denotes the formal inverse of eb. 
The formal solution procedure for (1) is now seen to be 

reduced to that associated with (7) and thereby becomes rela- 
tively straightPoward on either the numerical or manual levels. 
Of course, in practice, when numerical solutions are desired, 
the sysEem (7) must be truncated to a finite system along 
with the number of components of Fb, and the formal inversion 
of eb must be reduced to a workable procedure. 
on to consider such truncations, we can place the system into 
a standard form occasionally useful for formal theoretical 
considerations and which also shows the general overall struc- 
ture of the system (1). Thus we first agree to write: 

Before going 

-2 -1 0 2 
v t l  for (..., F , F F , F ~ ,  F , ... I 

-2 -1 0 1 2 
(. . . , Bin , G,, , G,,, G,,, On, . . .) "G,," for 

and finally: 

i 

I 
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*@I' for diag (. .. , 6-2, B-', do, la', B2, .. .) 
wh re "diag" denotes a diagonal block matrix with Bi as the 
itg block matrix along the diagonal. 
takes the generic form: 1 

Then the system (7) 

This is the desired vectorial version of the system (l), show- 
ing the overall linear form of the system, a form reminissent 
of the equation of transfer without the path function term. 
Thus we see from still another vantage point that the net 

complex directional dependence of the radiance field gener- 
ated by the presence of the path function term N, in the gen- 
eral equation of transfer. 

effect of the spherical harmonic method is the removal of the I 

A Trunuted Solution Procedure 

As an illustration of the use of (7) in practice, we 
consider the case of an arbitrarily stratified source-free 
plane-parallel medium. Thus in (7) we set: 

(113 I 

for every integer b, lbl > 0. This is a commonly occurring 
radiometric situation in zest natural media in geophysical 
optics, so that the present illustration retains a wide range 
of applicability. The effect of condition (11) is rather far- 
reaching. To see this effect, observe that by the definition 
of C(a,b) we have: 

C(a,-b) = C(a,b) . 
From this it follows that, formally 

= f b  and so &-b = Ob . (12) 

Thus we need only consider: 

Now the truncation procedure which we intend to apply 
to (13) may best be described by returning to the original 
system (1) and keeping in mind the diagram of Fig. 6.2. This 
return to (1) is also desirable, so as to bypass the formal 
inversion procedure leading to (13). It is clear from the 
di gram in Fig. 6.2 that a truncation may take pl ce at the 
mtg row, in the sense that no unknown functions Fa E will be 

, 
I 

~ 

I 
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allowed in the system which have indices a > m. Then the 
truncated autonomous system of equatiorls associated with 
b = 0 is: 

,. . 
a = 0: 

... ... 
0 aF; 

... 
aFm- 2 a = m-1: C(m-1,O) -az + C(m,O) -= - (-a+am_l) Fm-l 

0 
1 0 c(m,o> -az = (-a+arn1 Fm a = m: J 

The effect of the truncation becomes clear on inspec- 
tion of the equation corresponding to the case a = m. The 
derivative of FA+1 is omitted from the equation for this 
case. Thus in the system displayed above there are (m+l) 
differential equations and m+l unknown functions: 
1, ..., m. FJ, j = 0, 

The truncated autonomous svstem of eauations associated 
with b = 1 is: 
a = 1: aF: 1 C(2,lI - -  - (-a+o1) F1 7 

... 

... 
1 aF; 

... 
aFm- 2 a = m-1: C(m-1,P) + C(m,l) -x - (-a+am,l) Fm-l 

a = m: J 
Here the system associated with b = 1 consists of m 

. = 1, differential equations in m unknown functions: F\ . .. , m. In general the system associated with b< 'wiere b e  m, 
consists of m+l-b differential equations in the m+l-b unkniwn 
functions Fj, j = b, b+l, ...* m. Thus for the case b = m-1, 

I 
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we have two equations : 

a = m: 

Finally, for the case b = m, there is only one equation, 
namely: a 

a r m  0 = (-u+am) F i  (17) 

whence F: = 0, provided (-cr+am) # 0. 

tained, where 0 < a < m, %']bI 5 a, the agsociated repre- 
sentation of N(xT&) is, according to the general pattern (24) 
of Sec. 6.3: 

Once the m2+2m+l = * functions Fb have been ob- 

Equation (18) is the requisite mth order spherical har- 
monic approximation to the radiance function N on a strati- 
fied plane-parallel source-free optical medium in the steady 
state. 

Vector Form of the Truncated Solution 

It is of interest to place the truncated system (14) 
to (17) into the compact form of (13). Thus let us write: 

F(b,m) is a function which assigns to each depth z in the 
plane-parallel medium the (m+l) -component vector F(b ,m;a) , 
i.e., 

By studying the general f o r y  of (14) to (17), we see that 
the truncated associate of C in (5) is the (m-b+l)x(m-b+l) 
matrix: 
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I*@( m) I* €01- 

0 C(b+l ,b) 

0 C(b+2 ,b) 
0 0 
0 0 

C(b+l,b) 0 

... ... 

... ... 

... ... 
0 0 
0 0 
0 0 

P - u+u 0 0 0 ... 0 
0 -u+u1 0 ... 0 
0 0 -u+02 ... 0 
... ... ...... ... 
... ... ...... ... 
... ... ...... ... ... 
0 0 0 ... -+am- 1 0 
0 0 0 ... 0 -a+am 

0 
C(b+2 ,b) 

0 
C (b+3, b) 

0 
... 
... 
... 
0 
0 
0 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

0 
0 
0 
0 
0 
... 
... 
... 

C(m-1 ,b) 

C(m,b) 
0 

0 
0 
0 
0 
0 
... 
... 
... 
0 

C(m,bl 
0 

then the general representative of the systems of equations 
(14) to (17) is of the form: 

Finally, if we write: 

"Q(b,m)" for LUI) C-l(b,m) (23) 

we have : 
d 

0 < b < m; m-b odd - -  
which is the desired vector form of the system (14) to (17) 
of mth order spherical harmonic equations. We have now 
reached the stage where the system (1) is in a form amenable 

. I  
- i  

i 
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to solution by any of several well-known theoretical or nu- 
merical techniques in the theory of ordinary differential 
equations (see, e.g., [23] or [47]). Of course (1) itself 
can always be programmed directly for solution. 

written down immediately in "closed form," namely the case 
where a and u are independent of depth; in other words, for 
the case of an homogeneous medium X. Then, if we write: 

There is one instance of (24) whose solution can be 

exp (IS(b,m)) for j =O 'w 
where Qj (b,m) is the jth power of the matrix d(b,m) , and de- 
note the value of F(b,m) at z by "?(b,m;z)" then: 

I 1 
F(b,m;z) = ?(b,m;O) exp(-e(b,m) z) 

0 5 b 5 m; m-b = 1, 3, 5, ... 

Usin the theories of [37], (26) may on the one hand b e  
put into cfosed algebraic terms using the Jordan canonical 
forms of matrices; and on the other, (26) may be programmed 
for direct evaluation ongeneral-purpose electronic computers 
using the techniques, for example, in [23]. 

To facilitate computations of p (b,m) using (26), we may 
arrange matters so that the inverse of e(b,m) can be written 
down by inspection whenever it exists. 
follows. First we verify the fact already noted, that P(b,m) 
has an inverse'whenever m-b is an odd integer. For example, 
when m-b = 1, knd b 2 0 

This may be done as 

1 r 

2 -1 det C(b,m) = - c (b+l,b) = Tzs.sy f 0 
where "det A" denotes the determinant of a matrix A. Hence 
e(b,m) has an inverse. Again, when m-b = 2, and b 0 

0 

0 C(b+l ,b) 

0 C (b+2 , b) 
0 

then 
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det e(b,m) = 0 
so that e(b,m) has no inverse in this case. 
m - b = 3, b,O, 

0 C(b+l,b) ; 0 
C(b+l,b) i C(b+Z,b) 

0 C(b+2,0) 0 
0 0 C(b+3,) 

I 
- l - - " - - " - - -  _ - - _ - - " - - - - _ - - - _ - - l  f(b,ml = I 

Once more, for 

and 

det C(b,m) = CZ(b+l,b) C2(b+3,b) 

- 
(2b+5) (2b+7) #= 

3 

The pattern forming'should now be clear. 
have, for integers b 

By induction we 
0, p 3. 0 such that m - b = 2p + 1. 

P 

j 10 
(273 p+' C2(b+(2j+l),b) ,+ 0 det e(b,m) = (-1) 

We next. introduce the permutation matrix P which per- 
-b * !p:i+ 1, p > 0: 

Simi- 

mutes the m-b+l rows of e(b,m), where 
in such a way as to near-diagonatiae 4b,m), in the folTowing 
sense. Return to e(b,m) above where m - b = 1 and note that 
we san.diagonalize it by interchanging its two rows. 
larly, by interchanging the tows of e(b,m) where m ~ b = 3 
in pairs, starting with the first,two rows, thep going on to 
interchange the second pair of rows (i.e., row three and 
four) we obtain: 

I 
I 

C (b+l , b) 0 C(b+Z,b) l o  
0 C(b+l,b) I 0 0 

0 0 I C(b+3,b) 0 

0 CCb+Z,O) I 

______-_____-____---I__________________ 

' 0  C(b+3,b) I Pe(b,m) = 

where 

P =  

i 

! 

I 

! =  
I 

, -  

I -  
I 

! 



169 PLANE-PARALLEL MEDIA SEC. 6.4 

The general structure of P for the case of an arbitrary m - b 
( z . 2 ~  +1) should now be evident: P is a 2(p+l) x 2(p+l) m.a- 
trix obtained from the identity matrix I of the same order by 
interchanging the TOWS of I in pairs, as illustrated by the 
special case just considered. The utility of the permutation 
P rests in the fact that the inverse of P e(b,m] where m - b - 2pm+l, is readily written down by inspection. To see how 
the inversion proceeds, consider once again the case of m - b - 3 = 2p + 1 (so that p - 1): To simplify the illustration, 
we shall write "C." for C(b+j,b), with "b" understood. In- 
spection of PC?(b,A), with m-8, = 3, shows that its inverse 
must have the same overall structure as Pqb,m) itself and 
whose main diagonal consists simply of elements of the form 
l/Cj. With this in mind, we may write: 

0 0 l 1  :5 
0 x z ; o  

= I  

As yet the entires XI, xz of the matrix are not known. 
ever, it is clear that XI, x2 satisfy the conditions: 

c2 
x1 c1 + 5- O 

C.l 

whence 

0 

1 - 
c3 

HOW - 

As another example, let m - b = S = 2p + 1 (solthat p = 2). 
Once again the overall structure of [P@(b,m)] is the same 
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as P$b,m); i.e., near diagonal, where P is now-the requisite 
6 x6 row permutation matrix. To find [PC(b,m)] ', we write: 

[W(b ,m) 1 [ p c o  ,m) 1 -  E 

I 

0 c l :  0 0 ; 
I I 

0 0 1 0  0 1  
I I 
I I 

I = I  

The remaining entries XI, ..., X U  are now readily determined 
as in the case of p = 1. By direct inspection: 

c2 
c1c3 x1 = x3 = - 

These two examples fyr the cases p = 1,2 clearly indicate the 
nature of [PC(b,m)] 
p > 0. 
diagonal of [PC(b,m)] 
l/C(b+(Zj+l), b) arranged successively in pairs for j =-!, 1, 
. . . , p: 
occur in exactly the same places as in PC(b,m), and each may 
be obtained by dividing the corresponding entry Cj of PC(b,m) 

with m-b - 2p + 1  for general integers 
The general rute may be phrased as follows: the main 

consists of elements of the form 

The nonzero off-diagonal elements in [PC(b,m)] 

- ,  
- j  
* I  

1 
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by (-1) times C CQ, where Ck and CQ are, respectively, the 
elements of PC(6,m) in the same row and column as Ci. The 
reader should now construct the [PC(b,m)] 1 for p 3 to test 
this rule. What is the rule's general form? 

include within the formalism the preceding simple inversion 
procedure. Returning to (22), we can write: 

Finally, we can rearrange (26) so as to specifically 

Writing 

"0 (b ; m) I' for F (b , m) P - (28) 

"fib,m)" for [Pa(m) ] [PC(b ,m) 3-l (29) 

we have 

0 5 b 5 m; m-b = 1, 3, 5, ... 

as the present counterpart to (24). The inverse [Pe(b,m)]-' 
is the one whose simple rule of formation we have generated 
in the preceding discussion. Then, corresponding to (261, we 
have : 

, (31) 

Because of the autonomy of these equations with respect to b, 
we can vary the truncation parameter m for each given b, so 
as always to have m-b odd, and therefore, to always have the 
algorithm 31) at hand. Suppose, for example, we wish to 

6.2, and so as to hZve the representation of N(x,S) in (18) 
for the case m = 4. Thus we are to find (4+1)' = 25 func- 
tions in all. In solving for theofamily EFgI we accordingly 
may truncate at FP (rather than F b )  and solve for Fo a = 0, 
1, 2, 3, 4, 5 using (31), taking advantage of the o%ness of 
m-b = 5-0 - 5. In solving for the family {FA), we use (31) 
directly since now m-b 5 4-1 = 3. A similar tactic is em- 
ployed for extending by one additional member the family {FiI, 
as in the case of 
tion procedure. 

order spherical harmonic equations we shall study in this 
work. Having deduced (26), (or its variant (31)) we reach 

find all Fa 4 with a < 4, as indicated by the diagram in Fig. 

Fg , and so on, to the end of the computa- 

Equations (26) and (31) are the final forms of the mth 
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the threshold of the invariant imbedding domain of radiative 
transfer theory. Thus the equation (26), say, may be viewed 
on the one hand, as the logical culmination of the train of 
deductions begun in Sec. 6.2 in the development of the clas- 
sical spherical harmonic method; and on the other hand (26) 
forms a bridge between the classical method of solution of 
the equation of transfer and the invariant imbedding tcch- 
niques for the solution of the equation of transfer. These 
latter techniques will be considered in Sec. 7.10. 

Summary 

In the preceding four Secs. 6.1 to 6.4 the spherical 

The main purpose of 
harmonic method is developed and applied after an appropriate 
motivation of the method in Sec. Sil. 
the discussions is to make clear tile fundamental ideas on 
which the method rests, in particular the general role of the 
orthonormal family of functions used to represent the radi- 
ance function as a sum of products of purely spatial and di- 
rectional terms. This was done in Secs. 6.2 and 6.3. To 
show the applicability of the method to the case of plane- 
parallel media, the setting of greatest utility in the study 
of hydrologic and meteorologic optics, the discussion of the 
present section is added to the generat remarks. In particu- 
lar, equation sets (14) to (17) above explicitly exhibit the 
truncated forms of the spherical harmonic equations, where 
the truncation arbitrarily sets to zero all functions Fb, with 
indices a > m. Theresultant system (24) can be used to solve 
for the unknown complex valued functions Fb 
- < a. To solve (24) directly we must know fi6 (in (317 or (32) 
of Sec. 6.3) from experiments. If NO is to be found theoreti- 
cally, we may use invariant imbedding methods which will give 
the aerosol's or hydrosol's reflectance to incident light 
(Volume IV, et seq.). 

6.5 Three Approaches to Diffusion Theory 
The term "diffusion theory" in the context of radiative 

transfer theory denotes a discipline based on not any single 
equation, but rather a collection of more or less loosely in- 
terconnected theories each springing from some analytic ex- 
pression which, in turn, is based on the fundamental equation 
of transfer. For our present purposes we may broadly classify 
this collection of diffusion theories into two main groups: 
the approximate and the exact theories. A diffusion theory is 
approximate to a greater or lesser degree depending on the 
amount of modification undergone by the analytic structure of 
the equation of transfer as the equation is subject to sim- 
plifying assumptions. In the present section our purpose is 
to approachthis complex of diffusion theories from three 
different directions so as to gain a useful overall perspec- 
tive of the sub-discipline of diffusion theory within general 
radiative transfer theory. In particular we shall approach 
one of the more useful approximate diffusion theories (called 
classical diffusion theory, for reasons which will eventually 
become clear) by starting from the equation of transfer and 

0 < a, < m, lbl 

, 

I 

i 

i 

i 
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proceeding to transform the equation by adopting the assump- 
tion of Fick's law for diffusing photons. Then we shall 
start again, this time proceeding via spherical harmonic 
theory which, depending on the order of terms retained in the 
basic system (27) of Sec. 6.3, opens up a multitude of paths 
into the domain of approximate diffusion theory. This ap- 
proach serves to show the extremely large number of diffusion- 
type theories generally possible, and to throw light on the 
classical diffusion theory by appropriately placing the lat- 
ter in the hierarchy of approximate diffusion theories spring- 
ing from the system of spherical harmonic equations of Sec. 
6.3. Finally, we start afresh once more Prom the equation of 
transfer and develop the basic equation for an important 
exact diffusion theory which applies rigorously to optical 
media whose volume scattering functions a are independent of 
the directions 5' and 5. 

The Approach via Fick's Law 

transfer (re (4) of Sec. 3.15) with source term in a general- 
ly inhomogeneous optical medium X: 

We begin with the general time-dependent equation of 

- aN(x$pt) + 5 *VN(x,E,t) = - a(x,t) Nfx,S,t) 
V 

+ N*(x,E,t) + N,,(x?€,,t) 

Diffusion theory is characteristically interested in 
the description of the scalar irradiance h(x,t) rather than 
the radiance N(x,E,t). That is, the density of the total 
flow at x in all directions is of interest rather than the 
density of the flow in each direction 5 at x. Thus we are 
led to integrate each term of (1) over direction space E. 
The reduction of the resulting integrated form of (1) is 
facilitated by recalling fPom (4) of Sec. 4.2 that: 

a(x,tl = a(x,t) + s(x,t) 

and from (2) of Sec. 2.8 that we write: 

"H (x , t) 'I for (3) 

where H(x,t) is the vector irradiance at x at time t. 
The reduced integrated form of (1) is: 

- ahO + 0 - E(x,t) = - a(x,t) h(x,t) + h,,(x,t) (4) v at 

where we have written: 
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Equation (4) lacks utility in our present efforts to 
describe the scalar irradiance throughout X. The presence of 
the divergence term for the vector irradiance blocks immedi- 
ate usage of (4) in this respect: If, somehow, V * E  could be 
replaced by a single function of h, then the resulting form 
of (4) would be a useful statement involving only scalar ir- 
radiance. It is at this point that the customary appeal to 
Hick's law of diffusion is made. This law states that, for 
some nonnegative valued function D, on X: 

1 1 

for every t in some time interval. In other words, at each 
point x and time t, the vector B(x,e) has the direction of 
the negative of the gradieht of the scalar irradiance field 
k. In still other terms, has the direction from the great- 
est to the smallest values of h in the neighborhood of a 
point. The spatial and temporal variation of D is required 
to be quite mild, and for essentially all practical applica- 
tions D is assumed constant. The types of media for which 
Fick's law is a reasonably good description of the state of 
affairs between 8( and h are those for which the scattering 
attenuation ratio p is large, say on the order of 0.6 and 
above. All other things beihg equal the closer p is to 1 
(i.e., the larger the proportion of scattering compared to 
absorption), the closer does Fick's law describe H in terms 
of h. Furthermore, Fick's law, all other things being equal, 
increases in accuracy with distance from the boundaries and 
highly directional or concentrated sources of the medium un- 
til the effects of these boundaries and sources have dis- 
appeared. 
ant theory is eventually traceable to a marked inapplicability 
of Fick's law. Using (5) in (4), we have: 

Any physical breakdown of a formula of the result- 

I 0% - V (D(x,t) Vh(x,t)) = - a(x,t) h(x,t) +h,,(x,t) 

Equation (6) is the desired scalar diffusion equation 
for scalar irradiance h. D is the diffusion function (or 
constant, as the case may be), a is the volume absorption 
function, and h the emiseion or source term for the equation. 
The diffusion tfieory based on (6) is the classical (ecalar) 
diffU8ion theory. When D is assumed constant over the space 
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X and a given time interval, an assumption which henceforth 
shall be in force, (6) may be written: 

Equation (9) has the Gestalt of the diffusion equation 
of classical heat conduction and other diffusion phenomena 
with source term (h ) and annihilation term (-ah), hence the 
mathematics of the aiffusion of photons as governed by (7) is 
identical to that of the diffusion of heat and other classi- 
cal diffusion phenomena, the theory of which is thoroughly 
understood. Therefore (7) may possibly be applied to such 
problems as describing the transient light field set up by 
pulsed sources. Equation (7) and related equations are 
studied further in Table 1 below, and in Sec. 6.6. 

The Approach via Spherical Harmonics 

The next approach to diffusion theory we shall describe 
is that via the spherical harmonic theory developed in Sec. 
6.4. It will be seen that the approach can take place on 
several levels of generality and in an infinite number of di- 
rections on each level. We shall begin our discussion with 
one of the simpler directions of approach on a very practical 
level, the goal being once again the classical scalar diffu- 
sion equation (7). However, now awaiting us at the goal is 
the added bonus of a theoretical representation for the diffu- 
sion constant D and a formula describing the radiance functirn 
in a general diffusing medium in terms of the vector and 
scalar irradiances. 

In our present approach to diffusion theory we shall be 
guided by thg following two special principles concerning the 
components Fa of the spherical harmonic representation of the 
radiance function: 

equai to zero in the system (27) of Sec. 6.3. 
of Fn,a other than FSlYo are zero. 

than F{ are set equal to zero in the system (27) of Sec. 6.3. 

The reason for these two special principles stems ulti- 
mately from our intuitive conception of a diffusive flow of 
material (or light) particles: (i) the amount of diffusive 
flow about a point varies mildly from direction to direction, 
and (ii) the overall directional structure of the flow itself 
varies mildly from moment to moment. With this intuitive 
conception in mind, the rules of action stated in (i) and (ii) 
above are arrived at by pairing F: with h and by identifying 
the components Fi’, FP, F: as the first three of an infinite 
set of components describing the overall directional flow of 
radiant energy at a point. 

(i) All components Fk other than Fi, Fi’, F: are set 
All components 

(ii) AI1 time derivatives of the components Fk other 

The basis of this pairing of FX 
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with h is as follows. By (6) and 425) of Sec. 6.3 we have 
the definitional identity : 

The fast that the three components Pi1, Ff , FI are associated 
with the overall directional structures of the radiant flux 
is established by first noting that: 

Furthermore, we have (sf. Fig. 2.4): 

5 = sin ecos  pi + sin 0 sin Q 3 + cos 0 k (10) 

If we could now express the quantities sin 0 C O ~  e r  
sin 0 sin 4 and cos 6 as linear cotnbinations of the On, then 
we could directly evaluate the integral in (9)' using the or- 
thonormality properties of the OR. 
that sin e = (1-cos' = (;-p2)"*. Furthermore, an ex- 
amination of any list of associated Legendre functions reveals 
that: 

Toward this end we recall 

1. 

! 
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f 

Similarly: 

sin e (cos Q - i sin $1 = - ~p;l(~) e-'@ 

C -  

From these expressions we deduce 

1 sin 9 cos Q = I 

sin 9 sin 4 = 
2% 

1 Zq 

that: 

Finally, we observe that: 

Using (11) to (13) in (lo), we have the requisite representa- 
tion of 5 as a linear combination involving on16 members @: 
of the orthonormal family. The conjugates of 4n are obtained 
using (8) of Sec. 6.3. As a result, (9) reduces immediately 
to : 

This is the desired representation of the vector irradi- 
H(x,t) in terms of the spherical harmonic components Fk of the 
radiance function N. The representation reveals the role 
played by the three components F;', Ff , F$ in the description 
of the overall directional structure of the light field (see 
also (29) below). 
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With the basis for the two special principles (i) and 
(ii) now reasonably well established, we next apply these 
special principles to the system (27) of Sec. 6.3. 
to principle (i), we need consider only the cases a - 0, 1. 
According to principle (ii) , all time derivatives, except 
that of FI, vanish. 

According 

The resultant set of four equations is: 

(16) 
b (a - 1, b = -1 in Fa) 

aF; 0 C(1,O) - = (-a + all F1 
3x3 

Our present goal is to obtain a single diffusion equa- 
tion for h(x,t) from the system (15) to (18). In view of the 
connection between F8 and h stated in (S), we see that the 
goal will be in sight if we use (16) to (18) to replace each 
occurrence of Fi , F1, F: in (15) in terms of F:. Thus the 
term: 

aF; 
C(1,O) - 

3x3 

in (IS), with the help of (17), becomes: 

Further the term: 

I 

! 
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in (15), with the help of (16), becomes: 

In a similar way the term: 

in (15) , with the help of (18), becomes: 

Combining these terms in (15), the result is: 

(20) 

We are now ready to pair off the terms in (20) with their 
corres ondents in (7). Multiplying each side of (20) by 
(4r)'" and using (8), we can replace each occurrence of 
IlF!'' in (20) by "h". Next, by (15) of Sec. 6.3, we have: 

alx;v;t) Po(u) du 

In other words, uo in (20) is the volume total scattering 
coefficient. Hence: 

-a+ao = - a 
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by virtue of (2). Finally, from (29) of Sec. 6.3 and the 
definition of h, in (43, we have: 

In view of these observations, we may say that the structure 
of equation (20) is identical with that of (7). Therefore 
the diffusion coefficient D in (7) is represented by the re- 
lation: 

where a is the volume attenuation coefficient and is de- 
fined as in (15) of Sec. 6.3 (setting j = l). This represen- 
tation 0f D rests on the basis of the spherical harmonic de- 
composition of the equation of transfer subject to the special 
principles li) and tiil stated above which fix the level of 
approximation of the spherical harmonic decomposition. 
sum, then, the left side of (21) arises when we approach dif- 
fusion theory via Fick's law; the right side arises when we 
approach diffusion theory via the spherical harmonic method. 
At the point where the twain shall meet, we generate (21). 

arising in practice. For example, if we write 

In 

There are several alternate but equivalent forms of (21) 

Then, by (15) of Sec. 6.3, we have: 

- 
o1(x;t) = u(x,t) s(x,t> (23) 

Thus we see that z(x,t) is a mean value of the cosine u =  cos e 
= 5 5' of the scattering angle e. Another way of writing 
(22) to see this more clearly is to note that, when isotropy 
holds : 

I 

! 
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- Lo(x;f';S;t) 6'- Cdfl(S1 
lJ(x,t) E 

-- 
/e~~x;5';C;t3 q.9 

and from this the mean value property of P(x,t) is quite 
clear; and by a mean value theorem of integral calculus, 

-1 (Ti(X,t) 5 1 

25) 

26) 

For optical media with large forward scattering values f-r u, 
the values of are near 1. For media with uniform scatter- 
ing, i.e., u independent of 5' and 5, the value of is-0. 
For media with predominant backward scattering values, P has 
negative values. Thus, in this sense, IJ is a measure of the 
relative amount of the forward or backward scattering occur- 
ring in a beam of flux within the medium. Returning now to 
(21) we use (23) to obtain: 

where p is the scattering-attenuation ratio and where ltLrrql 
denotes the attenuaeion tength for the medium; that is, we 
have written '14aq' for l/a. 
has the dimensions of length and in particular is equal to 
the attenuation length of the medium divided by the factor 
3(1-~~). 

Hence the diffusion coefficient 

Kaaiance uisrriourion in 

Diffusion Theory 

deriving the characteristic form of the radiance distribution 
N(x,-,t) at a point x about which exists a diffusion process 
with the properties (i) and (ii). Thus, the radiance N(x,E,t) 
at x at time t in the direction 5. is of the general form: 

We conclude the discussion of the present approach by 
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This form follows byusing thepresent diffusion properties 
and (ii) in (24) of Sec. 6.3. By evaluating each of the eight 
factors in the four terms of (28), and simplifying, we obtain: 

(i) 

Equation (29) displays the relatively mild structure of the 
radiance distribution associated with a classical diffusion 
process in an arbitrary optical medium. The greatest radi- 
ance occurs in the direction of IT(x,t). 
pendicular to H(x,t) the radiance is simply h(x,t)/4n. Ob- 
serve that the overall graphical structure of N(x,*,t) at a 
point is simply that of a cardioid of revolution with axis 
along the direction of H(x,t). Using (5) we may cast (29) 
into radiometric terms involving h(x) only: 

In directions 5 per- 

(30) 1 NlXYSYt) = [h(x,t) - 3 D 5  Vh(x,t)l 

As a representative indication of the details of the 
derivation of (29) from (28) observe that by .(8) : 

h(x,t) F:(x,t) = (4n) - 1/2 
and that: 

Hence : 

1/2 

= $ (&) D (G + i 

In a similar way it can be found that: 

1 1 3 1  F1(x,t) G1(5] = -z a f i  * D  -sin e (cos $+ isin$) a - i a  
(3x1 3x2 

I 

i 

i 
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Note that the two expressions in (32) are complex conjugates; 
so that, upon addition, the imaginary terms cancel. On add- 
ing together (31) to (33), equation (30) is obtained. Then 
using (S), equation (29) is obtained. 

ing empirically whether a given light field satisfies the 
conditions (i) and (ii) for a diffusion approximation. All 
three radiometric concepts, N, h, and B in (29) are readily 
measurable in practice. Hence if an empirical radiance dis- 
tribution comes to within an accepted interval of approxima- 
tion of a cardioid of revolution, then the classical diffu- 
sion equation may be used to describe such a light field. We 
note a rather interesting near-confirmation of the steady 
state form of (29) in the case of heavily overcast skies. 
Empirical measurements reported in [186] show that the radi- 
ance of the underside of a heavy cloud overcast has essen- 
tially the form of (29), i.e., the cardioidal form. 

Equation (29) constitutes an effective means of verify- 

Approaches via Higher Order 
Approximat ions 

to diffusion theory to place the discussion of the preceding 
paragraphs into perspective. We wish to show in particular 
how the classical diffusion equation (20) (or its equivalent 
form (7)) takes its place somewhere near the bottom of an in- 
finitely high ladder of successively more detailed diffusion- 
type equations, each obtainable by following well-defined 
principles of modification, such as (i) and (ii) above, of 
the basic system (27) of Ses. 6.3. 

In order to facilitate the classification of the vari- 
ous approaches possible via the system (27) of Sec. 6.3, let 
us write: 

We pause in our description of the three main approaches 

for (F;~, F~ -a+l , ..., ~ i l ,  F:, F ~ ,  1 ... , F,"> 

Thus, e.g., "Fo*~ denotes (FX), "FI" denotes (Fi', F!, Ff), 
and so on. In other words Fa is a (2a+l) component vector 
centered on the component Fg. 
mean that each of its 2a+l components is zero. Further, when 
we write "aFa/at" we shall mean (aFia/at, . . . , aFg/at). In 
a similar way we can define F 

Now the two prinsiples (1) and (ii) used above to ar- 
rive at the classical diffusion equation (20) (or its equiva- 
lent (7)) may be recast into the following equivalent forms: 

When we say Fa is zero, we 

n!a- 

(i) (if a > 1, then Fa = 0) and (if a > 0, then F = 0). n ,a 
(ii) if a > 0, then aF,/at - 0 . 
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This relatively succinct way of describing the modification 
of the system (22) of Sec. 6.3 may form the basis of classi- 
fying various diffusion processes. 
list, let the vectors Fa, &,,a and their derivatives appear- 
ing there be the only vectors not set equal to zero in the 
indicated approximation derived from (27) of Sec. 6.3. The 
symbol in the "process type" column to the left of the non- 
zero vectors is a succinct way of denoting the numerical 
classification of the approximation; some suggestive names 
for the approximations are given to the right of the vectors, 
Thus the approximation [1/0] is that giving rise to the clas- 
sical scalar diffusion equation derived earlier by setting to 
zero all terms in (27) of Sec. 6.3 except those of Po,%Fl/3t, 

Thus in the following 

F', Fq,o. 

TABLE P 

A short list of diffusion processes 

Wave-tenso 

The present classification of diffusitm processes places two 
theories below the scalar diffusion theory ("below" in the 
sense of "less complex"). The first of these, the equilib- 
rium diffusion theory, merely serves to describe the radio- 
metric state of affairs in an equilibrium situation by means 
of the equation: 

0 0 -aF0 + oOFO + Fo n,O = 0 

which may be written: 

Thus [J4) holds for a uniform, steady light field in equilib- 
rium with its emission sources distributed throughout a medi- 
um X. 
radiometry, or of the equilibrium radiance N 
Sec. 4.3). A slightly more detailed description is given by 
the monotonic diffusion equation: 

The term hq/a is reminiscent of Kirchhoffls law in 
(see (2) of 

I 

I 

I 

! 

I 
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Thus the diffusion process [O/t] described in (35) gives rise 
to a light field whose scalar irradiance h at a point gener- 
ally grows or decays monotonically with time. The scalar 
diffusion process [1/0] was discussed in detail above. 

We next encounter the processes [l/t] , which is one 
step more accurate and complex than the classical diffusion 
process [1/0]. This new process is called the wave diffusion 
process by virtue of the fact that its associated equation 
(derived from (27) of Sec. 6.3 in the general manner illus- 
trated for the case of [l/O]) is a wave equation of the form 

ah D Vz h =  -ah + h,, 

I I 
where we have written: 

llA1' for 3D/v2 , "B" for (1 + 3Da)/v (37),(38) 

Comparing (36) with (7) , we see that the process [l/tl adds 
the next higher derivative term to the equation for the pro- 
cess [1/0], plus slightly modifying the coefficients of the 
derivatives of the latter's equation. The physical processes 
corresponding to (36) and to (7) differ markedly: (36) de- 
scribes a general damped wave-like process which propagates 
outward from any epicenter at the finite speed v / a .  Indeed, 
(36) is the well-known tetegrapher's equation, which describes 
in another context the propagation of wave signals through a 
resistive wave-conducting medium. Equation (7) , on the other 
hand, is the classical diffusion equation which describes a 
general monotonic decaying (or growing) diffusion process 
(with absorption and emission of the diffusing entities) 
propagating with infinite speed from a given epicenter. Equa- 
tion (7) may be essentially obtained from (36) by letting v 
become so large that the second-derivative term in (36) be- 
comes negligible, i.e., so that A is small compared to B. 

The next higher diffusion process beyond wave diffusion 
is the process [Z/O]. A new entity enters the picture here 
with r2. Whereas PI describes the vectorial properties of 
the radiant flux (see the description of the vector irradi- 
ance H in terms of the components of ?I, in (14)) , ?Z de- 
scribes the tensorial properties of the radiant flux , proper- 
ties very much like those described by the stress tensor in 
fluid dynamics. 

Our present goal has essentially been reached; we have 
shown the place of the classical diffusion theory in the hi- 
erarchy of diffusion theories possible in radiative transfer 
theory. It is seen that the classical diffusion equation (7) 
is neither the beginning nor the end of the possibilities of 
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describing diffusive transport of hotons in an optical medi- 
um. 
theories which, on the one hand, are too crude to admit use- 
ful descriptions, and those which, on the other hand, are 
more accurate in their descriptive powers, but which are rel- 
atively complex and intractable in the light of current math- 
ematical techniques. It is because of this convenient mid- 
dling ground straddled by ,the diffusion equation (7) that it 
has been so popular with fesearchers looking for easily han- 
dled, reasonably accurate quantitative accounts of natural 
light fields. 
will be considered in Sec. 6.6. 

However, equation (7) is on t K e borderline between those 

Some of thd simple models arising from (7) 

The Approach via Isotropic Scattering 

The third and final main approach to diffusion theory 
we shall consider in this section is that via the assumption 
of the isotropic scattering property for an optical medium. 
The nature of this assumption is quite different from those 
used in the preceding two approaches. 
via Fick's law and via the spherical harmonic method, were 
gotten under way by first tampering with the directional 
structure of the light field, i.e., by reducing its awesome 
directional complexity to some relatively innocuous, mildly 
varying form (see, e.g., (29)) so that, for example, either 
Fick's law or the [l/O] process defined in Table 1 above 
could cope with the resultant weakened field. The nature of 
the assumption we shall adopt the present discussion is 
such that it leaves inviolate the intricate geometric struc- 
ture of the radiance field; but in order to inculcate a sem- 
blance of manageability into the field, it is to be hypothe- 
sized that the volume scattering function u is independent 
of S'and 5 throughout the medium. The resultant light field 
belonging to such a a is a relatively tame analytic object by 
natural light field standards--so tame, in fact, that some 
quite elegant mathematical analyses of the classical mold can 
be employed to carry to completion the exact solution of the 
resulting equations for scalar irradiance. The associated 
theory is called exact d<ffusion theory. The "exactness" of 
the theory resides in its mathematical procedures, and not 
necessarily in its fidelity as a physical theory. 

The manner in which we shall approach exact diffusion 
theory will be such as to show the necessity of the isotropic 
scattering assumption in the construction of the theory. By 
holding back the invocation of the isotropic scattering as- 
sumption until the last stage of the main analysis, it shall 
become quite clear that this is the essential physical con- 
cession made by an otherwise elegant, powerful theory which 
in principle is applicable to arbitrary (finite or infinite) 
inhomogeneous media with both internal and external sources. 

To begin, let the optical medium X be of arbitrary spa- 
tial extent (in Fig. 6.3 it is shown as being finite), gener- 
ally inhomogeneous, with arbitrary volume scattering function 
a and volume scattering attenuation function a, and with ar- 
bitrary emission function Nn defined throughout X, and bound- 
ary radiance distribution NO. For simplicity of exposition, 

The earlier approaches, 

i 
di 

I 
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FIG. 6.3 Setting up the exact diffusion theory. 

we postulate a steady-state radiance field N through X x 2. 
The corresponding formulation for the time-dependent field 
is obtained by simple modifications of the steady-state case. 
(See, e.g., (12) of 7.14.) 
facilitated if at the outset we define certain integral oper- 
ators. 
3.17: 

The present discussion will be 

First, there is the path function operator R of Sec. 

The variables occurring in these operators are depicted in 
Fig. 6.3. Further, we shall write: 
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This operator maps radiance distributions N(x,-) at a point x 
into their associated scalar irradiances h(x), thus:* 

01- simply: 

h = N U = v u  

for short, In.Aere vu is an alternate form of h Get. 2.7) involv- 
ing radiant density u, and the speed of light, v. We shall 
also need the following two compositions of operators. First, 
the scattering operator 5' of Sec. 5.1: 

5l - RT 
and the composition V, where we have written: 

"V" for TU (41) 

The reader may verify directly from its definition that 91 has 
the representation: 

which is the iteration of the integral operators t and U, 
where for every x' and x in the medium we have written: 

and where 5 = (x-x'?/lr-r*l; Ir-r'! is the distance Ix-x'l 
from point x' to point x as measured along the path of direc- 
tion 5. (As usual, "x" denotes a point of Es, and as such is 
an ordered triple of real numbers.) The integration in V is 
with respect to the volume measure V. 
where x = xg + r 5. 

to obtain the requisite equations so as to keep easily in 
view at all times the essential physical and mathematical 
features of the derivation. 

Sec. 3.15) with emission function N is: 

Thus dV(x) = r2drdt2(S), 

With all this machinery securely in place, we can go on 

The integral form of the equation of transfer ((2) of 
rl 

*The notation "NU(x)" denotes the value at x of the 
function NU, and NU in turn is the result of operating on the 
function N with the operator U. 
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N(x,E) = (No + N,,) T(x,E) + NS1(x,E) (441 

where* No is the initial radiance function within the medium 
due to boundary radiances, i.e., where we have written: 

"NO (x, E )  " for No (xo, E) 6 (x- xo) 

and where No(xo, =) is the given incident radiance distribu- 
tion at an arbitrary point xo of X. By writing: 

~*N:(X,E)I~ for ( N ~  + NJ T(X,E) 

Applying U to each side, we have 

NU(x) - N:U(x) 
whence : 

h(x) = h:(x) + 

= h:(x) + 

Hence 

+ NSIU(x) 

h(x) - h:(x) + N*V(x) (45) 

where we have written: 

Equation (45) is but one step away from being an integral 
equation for scalar irradiance h. On first sight it might 
appear promising to use the operator u on N, to obtain the 
product of the volume total scattering function s(x) and 
scalar irradiance as follows: 

Toward this end, the N, term in (45) may have the identity 
operator I in the form of UU-' slipped between N, and V, thus: 

*The notation: "(N + N )T(x,F,)" denotes the value at 
(x,S) of the function (Bo + &,)T. 
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so that (45) could be written: 

h(x) - h:(x) + ~h(u'~V)(x) 

which is an opprator equation in the unknown hi 
the inverse 4.J- to the operator U does not generally exist, 
for the re'ason that there are many distinct radiance distri- 
butimrs at a point x giving rise to the same scalar irradi- 
ance h(x). This shows the necessity for assuming isotropic 
scattering for the medium if we are to obtain an integral 
equation for h. 

Unfortunately 

For then we have: 

where we have assumed that: 

s(x;S';S) = S(X)/4A (40) 

Using N,(x,&) in (45) as given by (47) we have: 

I 1 

exact 

it as 

where 

(49) 1 h(x) h:(xl + E (hs) V(X) 

This is the requisite general form of the basic equation of 
diffusion theory. 
The natural solution of (49) is obtained by rearranging 
follows : 

It is easily shown that the inverse [I - W*]-! of I - V, gen- 
erally exists, i.e., that W, has the contraction property 
(cf. Sec. 5.14). Hence (44) yields: 

i 
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where generally: 

(53) 
2 3  [I - v*1-1 = I + v, +v* + v* + ... 

Here V$ i2 V,V,, i.e., the operator V, followed by V*. 
general Vais the operator VA-1 followed in application by V,. 
This solution procedure is quite general. The operator V*, 
which depends on the space X and its optical properties a 
and s, requires only the contraction property to be verified 
before it can be used in theory or practice. 

An alternate form of (49), the form most often used in 
the classicial solution procedures, is obtained by rewriting 
(45) as: 

In 

so that: 

In order to obtain an equation in h only (all other 
terms being given functions) it follows, for the same reasons 
as those leading to (49), that the isotropic scattering as- 
sumption (48) must be adopted. In addition, if we are to re- 
tain the particular grouping of terms exhibited in (54), we 
may (though it is not strictly necessary to do so) also as- 
sume that N, is of uniform directional structure, i.e., we 
as s ume : 

where h, is defined in (4). Under these conditions, (54) 
reduces to : 

1 I 

I I 
If the space X is infinite in all directions about x, and a 
generally is not zero, then hO(x) = 0, and (56) becomes: 

I 1 

which is the somewhat special but customary form of the inte- 
gral equation on which the exact diffusion theory is based. 

c 
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We now sketch the customary method of solution of (57). 
The medium is assumed homogeneous, so that s(x) is indepen- 
dent of x and so that K,-,(x',x) depends only on the difference 
Ix-xll. This assumption of homogeneity is necessary if the 
Fourier transform method (the usual method used) is to be 
applied to (57). Thus, if "7" denotes the three-dimensional 
spatial Fourier transform operator for functions on X (which 
is now all of euclidean three space) we have, applying 7 to 
each side of (57): 

where k is the spatial frequency variable associated with the 
spatial variable x. The value of 7[h] at k is written as 
"flh;k]", "(qh) (k)", or ''fi(k)", similarly with the inverse 
transform. Using the convolution theorem for Fourier trans- 
forms, (see, e.g., (6) of Sec. 7.14) this becomes: 

where for brevi.ty we also write: 

The carat over the letter "h" denotes, e.g., that k is the 
Fourier transform of h e  The beauty and power of the Fourier 
transform method is now strikingly evident in (58): the inte- 
gral operatox equation (57) has been reduced to an algebraic 
equation in h(k) so that (58) may be directly solved for fi(k): 

fi, (k) 
fi(k) = (471 - sR,(k)) 

Taking the inverse Fourier transform of each side, we have: 

which rivals the natural solution (52) in simplicity and 
elegance (but evidently not in power and scope). The solu- 
tions of (57) will be discussed in more detail in Sec. 6.7. 

The present discussion is concluded with the observa- 
tion of how the radiance distribution N(x,-) is obtained from 
knowledge of scalar irradiance h(x) when using exact diffu- 
sion theory. Once the scalar irradiance field h has been ob- 
tained from either (52) or (59), we use the representation of 
N*, as given by (47), in the general relation (44): 

N(x,E;) e (No + Nn) V(x,S) + N*T(x,E;) 

Thus : 

I 
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I 1 

If the medium is source-free, so that N,, = 0, then 

193 

If the medium is in addition infinite, so that No = 0 at all 
interior points of X then 

If the medium is also homogeneous, then 

6.6 Solutions of the Classical Diffusion Equations 
In this and the following section we shall exhibit some 

of the more useful general solutions of the classical and 
exact diffusion equations introduced in the preceding section. 
We begin with the classical diffusion equation in its simplest 
context. 

Plane-Parallel Case 

Consider an homogeneous plane-parallel source-free op- 
tical medium with a steady, stratified light field generated 
by incident flux at its upper boundary. For example, natural 
light fields in the seas, lakes, and harbors can supply such 
instances. Further instances may be found in heavy fogbanks 
and thick cloud layers. Suppose that the conditions for the 
diffusion equations hold in such media. What are the result- 
ant forms of the light field--say the radiance distribution 
and associated scalar irradiance function- -that the classi- 
cal diffusion theory predicts for such media? We now seek 
the answers to these questions. 

Starting with equation (7) of Sec. 6.5, and imposing 
the source-free, steady light field condition, we have: 

D V Z h  - ah = 0 (1) 

Recall that in a three-dimensional Cartesian coordinate 
system : 
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Sinct. ,.he light field is stratified, the x 
in V i %  will be Zero. Thus (1) reduces to: 

D d2h - ah = 0 dzz 

VOL. '111 

and y derivatives 

Therefore, in its simplest guise, the classical diffu- 
si..n equation (7) of Sec. 6.5 takes the form of a linear, 
second-order differential equation whose general solution for 
a + 0 is of the form: 

(3) 
"KZ h(z) = c+ eKZ + c- e 

where we have written: 

We call K , ~ S  defined in (4), the [classical) diffusion ooef- 
ficiznt. Recalling (27) of Sec. 6.5, we can express K aiter- 
natively as: - 

K = J 3a(u - us> 
= &(a * {l-;;ES) 

The diffusion coefficient Y is the physical core of the 
solution (3) aid, indeed, of all of the solutions of the 
classical diffusion equation. Tbere may be variations in the 
geometry of a medium- -sphericilly symmetric cylindrically 
symmetric, plane parallel, as in *she present case--ane corre- 
sponding variations in the fosms af s~lutions, as we €.hall 
see, 5ut rcnning through these cases, zna common to taem all, 
is the ns'ion of the difFusioua cc.ffic;ent K. Observe how K 
depenks ;r,intly on the volume absorption coefficient a, the - total volrme scattering coefficieat s, and on the mean cosine 
v s  wkich 7s a measure 0 .  the anisotropic scattering pro?erty 
of the medium. 

diun be icfinitely deec, 30 tnat fi 7kysncal grounds c+ = 0 
in (3) {C_P:! :12]). Then i3) can b, -,horn t3 reduce to: 

9,s i special soh cion of ( X  Le - ':hs plane-parallel me- 

-7 r--- 

This is a- once tnc mast useftll rqxcseritativa exairple of. 
ckz snaly,.lc foi-rr; cf Light field il -I .:*LLYZ.~ optical media. 
The nede '.s for li g h . ~  iields in nR?t::i-il tical media c ~ m e  in 

exity and power a f  resentation, but in 
d l  exhibit, z;l q-r r ar lesser degree, 
y ehzx gerrerally i zses with incrzasing 

media--nnnely [a; --already exhibres 'i .3: x? on ent i a I s t r~cture 

e3.p uxml t iuz s tT1K t ;f natural light 
S E  of models sf q.i fields 171- natural 
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of the light fields. More sophisticated models will give 
correspondingly more detail on the structure of h(z) as a 
function of z; and still other models may sharpen the depen- 
dence of IC on a and s. Yet for all its simplicity, (2) has 
captured the salient analytic property of the light in nat- 
ural hydrosols: that of exponentiality. 

compare with that of the volume attenuation coefficient a? 
le note first of all that these quantities are indeed com- 
parable, both having dimensions of inverse length. From the 
representation (5) of K we can build up the following chain 
of inequalities leading to u: 

How does the magnitude of the diffusion coefficient 

A more instructive inequality can be deduced provided 
that some explicit relation between s and a is hypothesized. 
Such a relation has already been observed in connection with 
the validity of diffusion theory. In the remarks following 
Fick's law (5) of Sec. 6.5, it was noted that the law holds 
when, among other things, the scattering-attenuation ratio p 
is at least 0.6. This condition on p in turn requires that: 
s > (10/4) a > 2a. It therefore seems reasonable to be able 
to-use this inequality between s and a whenever diffusion 
theory itself is being etsed. Therefore, starting the chain 
of inequalities in (7) once again, we are now led to: 

K = ha(a + (1-ii)s) 5 < I(a+s)(a*s) = a . 
Hence we see that, whenever diffusion theory is applicable, 
we must have: 

The physical interpretation of (9) is clear: since K is gen- 
erally smaller than u, we have, depth-for-depth: 

e - uz -KZ < e  

This means that transmitted radiant flux undergoing diffusion 
along a path of length z is greater at the end of the path 
than that having undergone pure attenuation. This may be 
seen also by direct appeal to the intuitive meaning of diffu- 
sion and attenuation in their technical senses used in trans- 
port theory: a stream of photons undergoing attenuation, loses 
photons under the joint action of absorption and scatter- 
ing. Once a set of photons is scattered out of the beam, they 
are no longer considered part of the beam even though some of 
them may reenter the beam. A stream of photons undergoing 
diffusion, on the other hand, may scatter out of and back into 
the beam and be recounted upon rejoining the main stream.Thus 
the main loss mechanism for diffusion is absorption. There- 
fore, length for length, a packet of diffusing photons will 
have fewer loss casualties than a packet of attenuating (beam 
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transmitted) photons. This relation between K and a may be 
alternatively stated by means of the attenuation length L,, 
where we have written : 

Then an equivalent statement to (9) is: 

La < LK 

This inequality may be interpreted in a dual fashion to (9) 
as follows: The length of path in a medium over which a 
packet of photons undergoes a fixed fraction r of loss by 
means of diffusion is greater than the length of travel over 
which the packet undergoes the same fraction of loss by means 
of attenuation. In other words, a packet of diffusing photcns 
will travel farther before incurring a given loss than it 
would travel before it incurred the same loss by pure attenu- 
ation. 

If the plane-parallel medium is of finite depth d, then 
in general both c+ and c- in (3) are not zero. In fact c+ 
and c- are determined, for example, by specifying the scalar 
irradiances at any two depths in the medium. It is customary 
and convenient to specify h(z) for z = 0 and z = d. Thus, 
supposing h(0) and h(d) given, we have from (3): 

h(0) = c+ + c _  

Kd - Kd h(d) = c+ e + c_ e 

We treat these two equations as linear algebraic equations in 
the unknowns c, and c-, and find that: 

We 
for very 
limit of 

observe from these representations of c+ and c- that, 
deep media, c+ P 0 and c- z h(O), so that in the 
infinitely deep media, we return to the solution (6). 

We consider next the specific form of the radiance dis- 
tribution in the plane-parallel diffusion case. By (30) of 
Sec. 6.5 we know the general shape of the radiance distribu- 
tions. But with a specific depthdependence of h(z) now known, 
say in the case of (6) for an infinitely deep medium, the 
gradient of h(z) is readily estimable, and so a specific esti- 
mate of N(z,C) is possible. Since the light-field is strati- 
fied, we have 

where k is the unit outward normal to the medium at its upper 
boundary. The medium has the standard terrestrially based 
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I 

coordinate system for hydrologic optics (Sec. 2.4). Hence 
for infinitely deep media: 

where h(z) is given in (6). A similar formula for N(z,S) can 
be developed for finitely deep media using (3) with c+ and c- 
a5 given in (12). 

associated with the diffusion field in an infinitely deep op- 
tical medium. Using the ideas of Sec. 2.4 in which the prop- 
erties of irradiance were described at length, let "H(z ,:)" 
and W(z,-)" denote the upward and downward irradiances in 
the medium. That is, in the terminology of (9), (10) of Sec. 
2.4, we have written: 

Finally, we consider the upward and downward irradiances 

'lH(z,+)" for H(z,k) 

'rH(z,-)" for H(z,-k) . 
Then : 

and: 

HLz,-) = N(z,O 5 * (-k) dQ(61 

which are based on (8) of Sec. 2.5. H(z,+) can be explicitly 
evaluated using (14) for N(z ,E) . Thus : 

H(z,+) =* [ ( 1 - 3  ~ D 6 - k )  5 * k d n ( ~ )  - 
-+ 

(1 - ZKD) (15) 

In a similar manner: 

(16) H(z,-) = (1 + 2 ~ d )  . 
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From this we can estimate the ratio of downward to up- 
ward irradiance at each depth z in the medium. Writing: 

“R(Z,-)~~ for {w , (17) 

we have: 
I 1 

I I 

for the reflectance R(z,-) associated with an infinitely deep 
plane-parallel homogeneous medium as described by the concepts 
of classical diffusion theory. Observe that R(z,-) in the 
present case is independent of z. 

concepts of vector irradiance (Sec. 2.8) : 
It is interesting to note that from (15), (16) and the 

IH(z) I = H(z,-) -H(z,+) KDh(z) (19) 

so that: 

a(z) =-K Dh(z] k (20) 

Furthermore : 

H(z,+) + H(z,-) h(z)/2 (21) 

Relations (15) through (21) will be reconsidered in the light 
of the exact two-flow theory in plane-parallel media, as de- 
veloped in Chapter 8. 

Point Source Case 

Consider an infinite homogeneous optical medium with an 
isotropic point source at the origin generating a steady light 
field throughout the medium. For example, a bright flare of 
uniform directional output deep in the ocean far from surface 
and bottom effects would generate such a light field. Flares 
deep within foggy atmospheric media such as in fogbanks and 
clouds also offer real instances of the present case. 
the plane-parallel case, we are interested in the scalar ir- 
radiance field and the radiance field set up bythepoint as in 
source in the surrounding medium. In particular, we now study 
these fields as predicted by classical diffusion theory. 

of the point source, equation (7) of Sec. 6.5 governs the 
resultant scalar irradiance field: 

At a11 points of the medium other than at the position 

i” 
, 
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The appropriate coordinate frame at present would be a spher- 
ical polar coordinate frame with origin at the point source. 
ForthenV2h takes a particularly simple form because of the 
spherical symmetry of the field about the point source. Thus, 
in general for spherical coordinates in which x = (rs08@): 

2 a 1 a 
(sin e A) + 7 v2 = 7 E (r E) rZ sin e 

i a  2 3 .  1 
rz sin' 0 a$ 

By spherical Tymmetry we now have: 
t 

Hence ( 2 2 )  becomes in the present case: 

If we write, ad hoc: 

"F" ,for rh , (26) 

then (25) becomes : 

D dZF - aF = 0 drZ 
and we are back, mathematically, to the case described by 
(2). Hence the general solution of (27) is: 

I 
I 

F(r) = c+ eKr + c- e -I c r  , (28) 

or, in view of (26): 

129) 

In view of the spherical symmetry, the values of h(x) 
depend only on r, where x = (r,e,@), and we therefore have ~ 

written for brevity ''h(r)" instead of "h(x)". 
For the presently considered setting, namely an infinite 

medium, we can, for physical reasons, immediately set c, to 
zero. The exact mathematical procedure for this is completely 
analogous to that used to obtain (12). Therefore the scalar 
irradiance about a point source generally behaves in the man- , 
ner described by the following equation: 
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(30) 

That is to say, h(r) falls off jointly as the inverse first 
power of r and exponentially with r. The constant c, can be 
evaluated if we use the connection between vector irradiance 
H and scalar irradiance h given in Fick's law (5) of Sec. 6.5: 

Here we have used the fact that E(r) is directed radially out- 
ward from the source (again a consequence of spherical sym- 
metry). The magnitude of s(r) is the net outward irradiance 
at each point of a spherical surface of radius r. Hence: 

4nr 2 IH(r)l = 4aDc- e-rr [I + Kr] 

is the total net outward radiant flux, call it "Prtl, across 
the spherical surface of radius r. For general radii r we 
do not know a priori the magnitude of this net outward flow. 
Even if we knew the radiant flux output, say Po, of the point 
source at the origin, there is no a priori connection between 
Pp and P,. However, if one measures Pr for some r, then (27) 
yields up at once an empirical estimate of c,. On further 
examination of (27) it appears possible to devise a theoret- 
ical means of finding c- by considering Pr for very small 
values of r. In such cases the spherical volume enclosing 
the point source is so small that the net outward flow across 
the boundary due to the field flux is zero, or very nearly so, 
for the reason that there is very small chance for a packet 
of photons diffusing into and then out of the sphericalvolume 
to lose any members by absorption during the traversal of the 
volume (the main loss mechanism which affects diffusing par- 
ticles). At any rate, it is clear a priori that this chance 
goes to zero in magnitude with the radius of the sphere. 
Hence in the limit of zero radius the net outward flow across 
the spherical surface is due solely to the point source's out- 
put Po. Thus from (32) we find: 

P, = limr.co pr = limr+o 4 n ~ c -  e'Kr 11 + ~ r ]  

= 4nDc- , 

whence: 

(34) 
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Equation (34) describes the scalar irradiance at dis- 

The flux is evolving in a diffusing medium with diffu- 
tance r from a point source of isotropic radiant flux output 
Po. sion constant D, and diffusion coefficient K. Equation (34) 
may be phrased in terms of the radiant intensity .lo of the 
point source. Thus, using (17) of Sec. 2.9, 

(35) 

where we have writ ten : 

'rJOr' for biT 

The radiance distribution associated with the point 
source diffusionproblem is obtained at each distance r from the 
point source by means of (30) of Sec. 6.5, now using as gra- 
dient : 

where r is the unit radial vector directed toward the point 
source. The gradient (37) was evaluated in (31), so that 
with the aid of (34): 

p0 e-Kr (I+ Icr) 

4rDrZ 
Vh(x) = r (38) 

Hence 

1 t 
Therefore, by means of (30) of Sec. 6.5 we have: 

I c 

where h(r) is given in (34). Equation (40) represents the 
radiance function in an infinite medium with isotropic point 
source under the usual conditions for classical diffusion 
theory (see process [1/0], Table 1, Sec. 6.5). A similar 
formula can be developed for finite spherical media. However, 
in this case care must be taken to see that the basic diffu- 
sion conditions hold, in particular so that Fick's law (5) of 
Sec. 6.5 is applicable. Observe that at great distances r 
from the source, the expression for N(r,t) as given in (40) 
approaches (14) of the plane-parallel case. Thus the radi- 
ance distribution at great distances from the point source 
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settles down to become the product of a spatial factor and a 
directional factor. In o6her words, the spatial and direc- 
tional dependences of N(r,E) eventually multiplicatively un- 
couple at great distances from the point source. This fact 
was used as a motivation for the spherical harmonic method in 
Sec. 6.1, and will be discussed in Sac. 10.6 as a special 
case of the general asymptotic radiance theorem (Sec. 10.5). 

We conclude the discussion of the point source case by 
deriving the expressions for the outward and inward irradi- 
ances H(r,+), where we have written: 

"H (r , k) I' for H ( r , fr) 1411 

on the basis of the general irradiance (11) of Sec. 2.6. 
Thus, in a manner similar to that used to find (15) and (16), 
we have for the point source context: 

so that, analogously to (18) , we have: 

1 - [ZD(l + ~r)]/r 
R(r,-) = '1 + [ZD(1 + Kr) ]/r 143) 

for the reflectance R(r,-) of the medium at distance r from 
the point source, where we have written: 

- Unlike the reflectance R(z,-) obtained in the plane- 
parallel case, the present reflectance R(r,-) varies with the 
distance r. In the limit of increasing r, however, R(r,-) 
approaches the form of R(z,-). Observe also how the values 
of r cannot be arbitrarily small and still have formulas such 
as (40) and (43) physically meaningful. The reason for this 
breakdown of the diffusion theory formulas is traceable to 
the eventual inapplicability of the original Fick's law hy- 
pothesis. In the presence of the highly varying directional 
structure of radiance distributions that occur near point 
sources, the simple cardioidal structure of radiance distri- 
butions, characteristic of diffusion theory, simply does not 
hold. It is at this point that the spherical harmonic ap- 
proach to diffusion theory, on which the cardioidal radiance 
law is based, shows the inapplicability of Fick's law assump- 
tion. See, e.%., (14), (201, and (29) of Sec. 6.5. 

Discrete Source Case 

We take up once again the setting described in the 
point source case, just concluded. Now we imagine a set of 
point sources distributed throughout the infinite homogene- 
ous medium. This set may be finite or infinite. In either 
case we assume the "points" to be disjoint, small regular- 
shaped volumes of given minimum size,the centers at points Xj. 
The definition of point source adopted in the present case is 
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that given in Sec. 2.9. Our present purpose is to derive the 
equations for the scalar irradiance and vector irradiance 
fields associated with such sets of point sources. From these 
representations, the radiance field follows at once using (29) 
of Sec. 6.5. 

Suppose the set of point sources is located at the 
points X I ,  x2, ..., in the medium and that point x -  has 
isotropic radiant flux output Po(x-). 
(34) and the interaction principle (which now assures 
superimposability of effects) that the total irradiance 
h(x) generated at x by the point sources at each xj is 
given by: 

It follows from 3 

I I 

I I 
where, as usual, "Ix-x- I*' denotes the distance between point 
x and point Xj. 
sources are present, we set Po(x-) = 0 in (45) for every j 
such that j There is no qukstion about the convergence 
of the infinite series in (45) since we have assumed that 
each x -  is embedded in a small but finite volume of given 
minimuh size. Hence the points xi cannot all cluster in any 
finite region of space. The exponential factors in (45) then 
assure convergence of the infinite series, since the distances 
Ix-xjl increase regularly with j, in the limit. 

The relation (45) has a deceptive amount of generality. 
We could, if required, partition all of euclidean three space 
(except some arbitrarily small neighborhood of x) into cubes 
of varying sizes if need be. Then each cube with center xi 
is assigned an output Po(Xj). Equation (45) then gives the 
total scalar irradiance at IC generated by these discrete 
sources throughout space. 

As an example of the preceding observation, suppose 
that small, finite, contiguous volumes are used to similate 
a thin cylindrical region with a straight-line segment in 
space as axis and along which sources are distributed. Such 
cylinders may simulate narrow beams of radiant flux sent out 
by highly directional sources, for example laser sources. In 
this case P,(x-) is generated by the scattering, within the 
jth volume seglbent, of the residual flux of the beam reaching 
the jth volume. Thus, suppose a laser source is at point xo 
and directed along thepath P,(x,,S) with initial point x and 
direction 5, as in Fig. 6.4. 
initial radiance No, into n parts, each a cylinder of length 
r/n and initial point x- (= xo + (jr/n)). 
the volume scattering finction u is independent of C I ,  5, i.e., 
that isotropic scattering prevails throughout the medium. 
Then it is clear that: 

In cage only a finite number n of point 

n. 

Partition the beam, which gas 

Finally, suppose 
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I 
FIG. 6.4 Geometry for a narrow cylindrical beam source 

of radiant flux in diffusion theory. 

is the residual radiance reaching the initial point x -  of the 
jth cylindrical part of the beam. 
tion of path function it follows that: 

From this and the aefini- 

is the path function value at the initial point xj of the jth 
cylindrical part of the beam. Because scattering is isotropic, 
this value is assigned to each direction about x-. Since 
path function values have the dimension of inteniity per unit 
volume (e.g., see note (h) for Table 3 in Sec. 2.12), we can 
make the following assignation: To 

in (451, we assign: 

. .  - I  

, 
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where V(x.) is the volume of the jth part of the beam, so 
that (45) 'now becomes : 

-jra/n e - ~ l x - x .  I Nos n e 3 W X j )  
(46) I x-x. I 

3 

This shows how the discrete-source case can simulate 
important internal source problems in natural optical media, 
provided, of course, that the basic diffusion point source 
model is valid for the given medium. 

The radiance distribution associated with a discrete 
source scalar irradiance field given by (45) is obtained by 
appeal to the interaction principle, so that by simply adding 
together terms of the form shown in (40), the desired radi- 
ance distribution is obtained. An alternate representation 
of N(x,S) is obtainable as follows: From (39) and the inter- 
action principle it is clear that the vector irradiance gen- 
erated by the point sources at xl, x2, ... is: 

Q) D h.(x) (l+K(X-X.I) 
(47) j H(x> = - 1 J r  

Ix-x. I 
3 

j=l 

where we have written: 

-K(X-X. I 
PO(Xi> e 3 

"h (x)" for 
4 ~ D l x - X .  I 

3 

and where r- is the unit vector directed from the observation 
point x to 4he jth source point x -  (see Fig. 6.41. 
ing H(x) and h(x) as given, respekively, by (47) and (45), 
the radiance N(x,E) at x in the direction 5 is given once 
again by (29) of Sec. 6.5. 

Then us- 

Continuous Source Case 

We now make the transition from the discrete source 
case, just concluded, to the continuous source case. We be- 
gin with the finite version of (45) in which we have parti- 
tioned a subset X oftheinfinite medium into a set of n small 
volumes Xj (ffsmalP1l in the sense of less than one attenuation 
length in diameter) each of which has a radiant flux output 
of Po(x.), where x. is a point of X-. Hence the radiant flux 
output $er unit vojume about xj is Jery nearly Po(x-)/V(X.), 
where V(x.) is the volume of X-. We assume that thk radiant 
flux outpAt of Xj is uniform i4 all directions about x 
Then the radiant intensity per unit volume: j' 
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may be represented by an emission radiance distribution 
N (x-,E) which is independent of direction 5. 
M: has the same dimensions as path function N,, and that the 
latter's dimensions may be characterized as radiant intensity 
per unit volume). 
(4) of See. 6.5, we may write: 

(Recall that 

Therefore, using the definition of h, in 

so that: 

With this meaning of h,,(xj), the finite version of (45) 
may be rewritten as: 

By letting the partition of X, become finer, so that in 
the limit the associated Riemann integral over X, is obtained, 
(50) becomes : 

I 

This is the desired representation of the scalar irrad- 
iance h(x) generated by isotropic point sources of strength 
h,(x) watts per unit volume, at points x' throughout a region 
X, of the medium X. In analogy to (43) of Sec. 6.5 we write: 

and 
i 

1 1  I 

j 
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4RIx-Xt 1 X(x) = 

so that (51) may 
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be writteh: 
I I 

Finally, the vector irradiance H(x) in the continuous 
source case can be obtained by starting with (47) and going 
to the Riemann integral counterpart of that sum. Thus, sup- 
pose initia1l.y the sum is finite and that the sources are 
confined to a part X of the medium. Then, as before the set 
X, is partitioned ana P'hn(xj)t' introduced to denote the unit 
volume output of the medium at point xj in X,,, Thus (47) be- 
comes : 

n D h,,(x.) KK(x. ,x) (1+~lx-x. \)(-ra) V(x.1 
E(x) = 1 

j e1 4lllx-x. I 
3 

in which (52) is used. Observe that -re is (x-x.)/lx-x.l so 
that as the partition of X,, is made suiiably find, the 'sum 
has the limit: 

When h(x) and H(x), as given by (51) and (55), are used 
in (29) of Sec. 6.5, we obtain the appropriate radiance func- 
tion for the diffusing light field generated by a continuous 
distribution of sources in X The limitations of the point 
source case are as considered aabve. Indeed, since the point source 
case fails for points of observation too near the point 
source, it follows that points of observation x in (51) and 
(55) should not be in X,,, and preferably at some distances 
from X,. 
tegrals in practice. This problem of the proximity of the 
sources of the diffusing field will be examined in the follow- 
ing paragraphs. 

We must impose this limitation on all diffusion in- 

Primary Scattered Flux as Source Flux 

Time and again in the preceding illustrations of the 
diffusion method, precautionary observations were required on 
the use of the various derived equations because of possible 
inapplicability of Fick's law. For example, when an observa- 
tion point x is too near a point source point xo in an other- 
wise suitably diffusing medium, the radiance distribution 
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about x may depart too markedly from the cardioidal distribu- 
tion indigenous to classical diffusion theory. This depar- 
ture is due principally to the highly directional residual 
radiance originating at xo and arriving at x. It would there- 
fore seem desirable to improve the radiometric conditions 
prior to applying the classical diffusion theory by first 
computing the primary scattered radiance field generated by 
the given sources and using this radiance field as the source 
field in the continuous diffusion case considered above. We 
shall explore this possibility and its generalization in this 
and the subsequent paragraph. 

it seems best to return directly to the basic equation of 
transfer for scalar irradiance, (1) of Sec. 6.5. Our immedi- 
ate task is to decompose the steady-state scalar irradiance 
h(x) into its residual component ho and its diffuse component 
h*, where the basis for these concepts were defined in (15) 
and (22) of Sec. 5.1. Thus, using the operator U in (39) of 
Sec. 6.5, we write: 

In order to correctly implement the present discussion 

"h*(x)" for N*(x,=) U (56) 

so that: 

h(x) - ho(x) + h*(x) (57) 

and 

h*(x) = 1 hJ(x) . 
j=l 

In other words, the scalar irradiance h(x) consists of the 
sum of all scalar irradiances hn(x) associated with n-ary 
radiance distributions Nn(x,*) at x. Hence h*(x) consists of 
radiant flux having undergone one or more scattering opera- 
tions. Clearly, (57) may be obtained immediately from (4) of 
Sec. 5.4 by applying the operator U (cf. (39) of Sec. 6.5). 
That is, from 

N = No + N* (59) 

we obtain 

NU = (No + N*) U = NoU + N*U 
that is: 

h I ho + h* (60) 

We now use this mode of decomposition of h in the steady 
state version of (1) of Ses. 6.5. The details are as follows, 
starting with: 

5 *VN -aN + Nuda + N,, 

i 
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we first decompose N as in (59) to obtain: 

Hence : 

5 V N* = -aN* + N*udR + 1 Nocfdn (61) - - 
where we have used the relation: 

5. * V  No = -aNo + N,, 

whic? follows from (2) of Sec. 5.8. 
of N* ((2) of Sec. 5.1), (61) can be cast into the form: 

Recalling the definition 

This is the equation of transfer which governs the dif- 
fuse radiance field N* consisting of primary and higher order 
scattered flux. An alternate derivation of (62) was performd 
in (7) of Sec. 5.2. The source for the field N* is the first 
order path function N:. 
coming in from the boundaries of the medium, and emission ra- 
diance N,, are now absent from N*, the directional structure 
of N* is considerably milder than that of N1 so that Fick's 
law is more likely to hold for N* than N. 

Because the residual radiance NO 

It is to the scalar irradiance h* induced by N* that we 
now direct attention and derive from (62) the required diffu- 
sion equation for h*. Thus, applying the operator U to (62) 
we have : 

where : 

and where we write: 

"H*" for N* 5. d R 
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Assuming Fick's law to hold between H* and h* (cf. (5) 
of Sec. 6.5), i.e., assuming: 

(65) 

(63) becomes: 

I 1 
-D Vh* + ah* = hi (66) 

I I 
This is the requisite steady-statediffusion equation for h* 
in which the primary scattered scalar irradiance h: serves as 
an auxiliary source to the basic emission sources h, in the 
medium. The assumption of Fick's law for h* in (65) has a 
better chance of being valid than for h, since h has ho as a 
component which can be associated with highly directional 
flows from boundaries and internal sources. 

summarized in (51) and (55) may now be applied to the case 
where h in those equations is replaced by hi. The proof of 
this pracedure is based on the fact that the derivation of 
(51) and (55) ultimately rests on the steady-state version of 
(7) of Sec. 6.5; and this has just been shown to be identical 
with (66) in which h, in the earlier equation is now replaced 
by hi. 

example. We consider an isotropic point source in an infi- 
nite homogeneous medium which scatters isotropically (i.e., 
is independent of 5' and 6). The source is at the origin and 
in reality constitutes a very small, essentially transparent 
sphere of radius ro which has a uniform surface radiance No. 
Thus the radiant emittance of the spherical surface is rNo 
and therefore the total flux output is 4n2rZND. The average 
flux per unit volume of the spherical sour& is 4n2~No/(4nr:/3) 
= 3aNo/ro. It is this output which would customarily be used 
in the estimate of h, in the continuous case (cf. (49)), How- 
ever, now the source is allowed first to generate a primary 
scattered flux field hi in the space surrounding it. In prin- 
ciple this primary scattered flux is generated at every point 
of the medium and may be estimated as follows at a point X I  a 
distance r' > ro from the center of the spherical source. 
First note that r' = Ix'l. Then let Q(lx'l) (=Q(r')) be the 
magnitude of the solid angle subtended by the sphere at van- 
tage point x'. Then very nearly: 

The theory of the continuous source developed above and 

We now illustrate the use of (66) by means of a simple 

1 N * (X ' ,E) = Noa (x'; E ; 6) d Q (5 I) = N0n ( T")s /4 n = No e- ' n (r')s/4 n iE 
for every 5. Hence: 

.' 

j 
I 
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This representation is not exact because the integration 
over the set of directions from the emittipg sphere assumed 
the distances from the point x' to the various points on the 
spherical surface were all equal to the fixed distance r'. 
However (67) should give excellent estimates of h:(x') fbr 
points x' when the sphere is viewed as a point source. We 
shall adopt (67) as a working basis in the present example. 

We now use equation (51) with h,.,(x') in that equation 
replaced by hi(x') as given in (67 Here r' is the distance 
from x' to the origin; hence r' 5 1;' I .  With these observa- 
tions (51) now lets us write: 

Finally, the residual scalar irradiance ho(x) , was essentially 
evaluated in arriving at (67) ; that is, the scalar irradiance 
induced by the small sphere is: 

ho(x) = N 0 Q(lxl) . (69) 

The full scalar irradiance h(x) for the present problem 
is, according to (57), the sum of ho(x) and h*(x) as they are 
given in (68) and (69). A generalization of (68) is readily 
effected by letting NO vary in direction. All this means 
formally is that "NO" goes under the integral sign in (68). 
In this case, the approximation of hO(x) by Non(xg e-alxl 
must be examined. This will not be attempted here. 

Higher Order Scattered Flux 
as Source Flux 

The preceding example of the use of primary scattered 
radiant flux as source flux in the classical diffusion equa- 
tion seems sufficiently useful to encourage carrying out the 
underlying idea of the example to its logical conclusion. 
Toward this end, suppose that it is possible-to compute the 
first n+l scattering orders for radiance: NJ, j = 0, 1, ..., 
n. We then supplement this exact calculation by estimating 
the radiance function 



I 
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m 

1 Nj 
j=n+l 

using diffusion theory. Clearly this procedure includes that 
of the preceding discussion as a special case; in fact it is 
the case n = 0. 

As in the special investigation for the case n = 0, we 
begin with the steady-state equation of transfer: 

P 

5 * V N  -aN + Nadn + N,, 

and now write N as: 

m .  n m 

N =  1 N J =  1 N j +  1 Nj 
j = O  j=O j=n+l 

(70) = N(n) + N(n,*) 

where the definitions of the two terms (n) and N(n,*) 
implicit in (70). 

we have : 

Thus in particular N?o)= NO and N(o,'r=N*. 
Using this decomposition in the equation of transfer, 

5 . V(N(") + N(n,*)) = -a(N(") + N(nS*)) 

+ (N(") + N(n**)) a d o  

+ Nn (71) 

Now, from (1) of Sec. 5.2 we have for every j 1 

5 .v Nj = -,Nj + Nj-1 ,, d n  (72) I, 

IF 

and from (2) of Sec. 5.8: 

5 * V N o  = -aNo + (73) 

By adding equations (72) and (73) together from j = 1 up to 
j = n, we obtain: 

5 - V N(n) = -cIN(~) + N("-ll ,J d n  + N,, (74) 
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This equation is now used with (71) to reduce the lat- 
ter to: 

h(x) = h(")(x) + h("**)(x) 

5 V ,In,*) I _,-&(n,*) 

+ 1, N(n*") ci d n  + N;+l (75) 

This equation is the direct generalization of (62), the lat- 
ter being obtained by setting n = 0 in (75). 

each side of (75) ; the result is: 
Next the operator U ((39) of Sec. 6.5) is applied to 

(76) V = -a h(n,*) + ht+1 

(79) 

The fin 1 tep is o h pothesize that Fick's law holds be- 
tween Hfn*') and hfn,*y: 

so that (76) becomes: 

1 I 

I I 
This is the requisite diffusion equation for h(n,*). 

is (n+l)-ary scattered 

In 

It is a direct generalization 
The source term for the flux hTn# 
flux, which should have relatively mild direction structure, 
so that (77) has a good chance of holding in practice. 
general, the greater the n, the more likely--on intuitive 
grounds--(77) would seem to hold. (See the discussion follow- 
ing (13) of Sec. 5.12.) 

Once h(n**) is obtained by solving (78) with the contin- 
uous source hft+', using, e.g., (51) with h, replaced by h$+l, 
we then find the complete scalar irradiance h by noting that 

f 166) which is the case n = 0. 

I I 
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as a model. This diffusion-based estimate 
then added to the known radiance N(n)(x,E). 

Time-Dependent Diffusion Problems 

Time-dependent radiative transfer problems arise, for 
example, whenever extremely short pulses of radiant energy 
are released in scattering-absorbing media, and when the 
evolution of the subsequent scattered radiant energy of the 
pulse is to be described or predicted in detail. We study 
now a particularly simple and use€u'ul model of time-dependent 
light fields based on classical diffusion theory, in particu- 
lar, equation (7) of Sec. 6.5, 

Consider an infinite homogeneous optical medium with a 
single point source at x' which at time t' emits a single 
Dirac-delta pulse of unit radiant energy. That is, we assume 
h in (7) of Sec. 6.5 to have the form: hg(x,t) - UnB(x-x')* 
6Tt-t1), where at present U, = 1, and U, in general has the 
dimensions of radiant energy. 

It may be verified directly from (7) of Sec. 6.5 (by 
performing the indicated differentiations and simplifying) 
that the resultant scalar irradiance h(x,t), t > t', varies 
in space and time according as KK(x',x;t',t), where we have 
written: 

"KK(x',x;t', t)" for V 

[ 4 nvD ( t-t')]3/Z 

(82) 

That is, for fixed x' and t', the function KK(x',- ; t',. j 
defined by (82) satisfies (7) of Sec. 6.5 at every space-time 
point (x,t), such that x' # x and t > t'. The function 
KK(x', ; t', ) first arose in the theory of transient heat 
conduction. 

In general, with a continuous source distribution 
h,,(x',t') defined throughout a part X, of the medium for all 
times t > t', we have, by means of the interaction principle, 
the resultant scalar irradiance field given by: 

Of course, h may be set equal to zero for all times t' 
earlier than some Piducial time to', so that h (x',t') in 
(83) represents the general source condition (7) of Sec. 6.5. 
Therefore the resultant scalar irradiance field h defined by 

1 

-- j 
! 
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(83) is the general solution of (7) of Sec. 6.5, as may be 
established by a direct appeal to (7) of Sec. 6.5. 

It is of interest to connect (83) with two results ob- 
tained earlier in the present work. First we will show that 
if a steady point source condition subsists for all time, 
i.e., h,,(x',t') is independent of time t' for all t' < t and 
is zero for all points x other than a given point x' on the 
medium, then: 

KK(x' ,x;t' ,t) dt' I KK(X"X) = 1-m 
(841 

so that (83) reduces to the steady state case (54). To see 
this we note that KK(x' ,x;t' ,t) has the general Gestalt of: 

where ne have written, ad hoe: 

V for 11 .I' 

[ 4svDI 3'2 

llbll for 

and : 

'Ic'' for av 

and have replaced occurrences of "(t-t')'' by "t". Then it 
is clear that on setting t = u2: 

l:mKK(x',x;t',t) dt' 2a du 

The secbnd connection we can make is that between (83) 
and the earlier result which describes the behavior of radi- 
ant energy under standard decay conditions , namely, property 
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8 of Sec. 5.10. To establish this connection we now assume 
that h,.,(x,t) = U,., 6(x) 6(t). This simulates the instantane- 
ous localized introduction of an amount U of radiant energy 
into the medium. However, the actual manaer of introduction 
is immaterial for the present discussion. With this condi- 
tion on h,, (83) yields: 

h(x,t) = u,, KK(O,x;O,tI s 

so that the radiant energy content of the medium at time t 
is : 

U(t) = $ [ h(x,t) dV(x) 

X 

Hence : 

which is precisely the an'alytic content of property 8 of Sec. 
5.10. This most interesting result shows that the classical 
diffusion theory is globally exact and thereby may be used to 
help fill, in a consistent manner, the general gap in our 
knowledge about the local radiance distributions within a 
time-dependent radiant field. That is, we may use (83) to 
supplement the exact theory of the time-dependent radiant 
energy field studied in Chapter 5, by giving approximate but 
useful estimates of the radiant density throughout the medium, 

To implement the program just outlined of supplementing 
the exact radiant energy theory of Chapter 5 by diffusion 
theory, we construct the basic diffusion equations for n-ary 
scalar irradiance from the time-dependent equation of trans- 
fer (19) of Sec. 5.8. Thus, by applying the operator U to 
the equation of transfer for n-ary radiance, we have for a 

n 2 1: 
I i 

1 I 
(853 

. i  

I 

I 

i 
. ,  
.: 

i 
i 
I 
I 

I 
i 
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where for every n 2 1 we have written: 

and: 

21 7 

Assuming Fick's law holds between En and hn, for every n, 
n 2 1, i.e.D assuming: 

8" 6 -D V hn , 
then (85) yields the time-dependent diffusion equation for 
n-ary scalar irradiance, n 2 1: 

One immediate application of (88) is the direct general- 
ization, to the time-dependent. setting, of the results (68) 
and (79) of the continuous source cases with all the analytic 
advantages of those results now transferred to the time- 
dependent context. In particular, we can replace hrl(x',t;) 
in (83) by h:(x',t') which is computed exactly as in (67). 
but with suitable time lag to account for the travel of the 
initial pulse of the source from the source to x'. Then we 
compute h*(x,t) as follows: 

1 h*(x,t) = I I h*(x',t') KK(x',x;t',t) dt' dV(x*) 

so that: 

where hO(x,t) is 
the given source 

(89) 

h(x,t) = ho(x,t) + h*(x,t) (90) 

the residual scalar irradiance computed from 
condition, which may be discrete or finite. 

The theoretical basis for (89) is the time-dependent 
counterpart to (66). This time-dependent counterpart is ob- 
tained, e.g., by adding up all equations in (ss)fbrn= I,& . . . . 
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The result is: 

r 1 
2 I $$$ - D V  h* - - ah* + he 

1 I 

Observe how the infinite number of Fick's laws in (87) imply 
(65). On the basis of (91), the representation (89) is 
established by simply repeating the arguments leading to (83). 
Finally, the generalization of (91) to the time-dependent 
wersion of (78), and the derivation of the corresponding 
representation of (79), is readily made following the patterns 
of derivation established in that steady-state case. 

6.7 Solutions of the Exact Diffusion Equations 
The exact diffusion equation on which we base the dis- 

cussion of the present section is (57) of Sec. 6.5. In full 
notation, this equation is of the form: 

The current settings in which this integral equation is 
to describe the scalar irradiance field h are infinite and 
semi-infinite homogeneous media with arbitrary sources de- 
scribed by h, within X. 
space X, the associated radiance distribution throughout X 
is obtained by means of (60) of Sec. 6.5. The first of our 
two main goals in this section is to solve (1) for a point 
source in an infinite medium and arrange the solution in such 
a manner as to be directly applicable to problems of finding 
radiance distributions associated with general source condi- 
tions in X. It will be seen that by judiciously tabulating 
the point source solution of (l), all solutions of (1) corre- 
sponding to the possible source conditions within X, are ob- 
tainable in principle by relatively straightforward numerical 
procedures based on the tabulated solution. The second main 
goal is to discuss the solutions of (1) for semi-infinite 
media (infinitely deep, plane-parallel media) with arbitrary 
internal sources. 

Once a solution h is found for a 

! 
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Infinite Medium with Point Source 

We begin with (1) for the case of an infinite homogene- 
ous medium X with a point source at the origin. The homoge- 
neity assumption frees a(x) and ~ ( x )  of dependence on x thmugh 
out X and lets us write: 

where, as usual "x" denotes a point in X, and where Ix-x'I is 
the distance between points x and x'. The point source con- 
dition is represented by: 

h,,(x') = P,, 6(x') 

where P is the quantity of radiant flux emitted steadily in 
time an2 uniformly in all directions by the point source at 
the origin. 
arbitrary throughout the discussion. As a result, we shall 
be able to adapt various solutions of (1) for the point source 
case, by means of integration, and in such a manner that the 
actual nature of the source may vary from true emission pro- 
cesses, through transpectral scattering processes, on through 
elastic scattering processes. This will be illustrated later 
in the discussion. For the present we go on to investigate 
the case of (1) with a single point source. The requisite 
form of (1) is: 

We may leave the nature of this source quite 

The theory of the solution of (4) is thoroughly under- 
stood; a representative detailed development of the solution 
of (4) may be found, e.g., in [SO]. Therefore, beyond the 
general observations leading from (39) to (59) of Sec. 6.5, 
we shall not need to discuss the details of the solution pro- 
cedure of (4) in the present work. However, we wish to dis- 
play the solution of (4) in such a manner that the results of 
[SO] may be readily adapted to the radiative transfer context. 
Such an adaptation requires the preliminary transition to a 
certain class of dimensionless geometric parameters, which we 
now define. 

Throughout this section we shall write: 

cr(xtq) dr" i' "T(x,x') for 



220 CLASSICAL SOLUTIONS VOL. I11 

where a is the volume attenuation function for the medium. 
The integral is a line integral along a path@ (x,S) with 
initial point x and terminal point x'. 
isotropic and homogeneous, paths are straight-line segments 
and 

Since {he medium X is 

T(x,x') = alx-x'l (6) 

When no confusion will result, we will simply write: 
11 T 11 for T(x,x') , 

with x, and x' thereby being understood. 

x and x' is dimensionless, and by virtue of (6) may be viewed 
as the number of attenuation lengths La between x and x'. 

The quantity T assigned to the distance Ix-x'l between 

Next, for every subset Y of X we write: 

The quantity V (Y) is dimensionless. Throughout this 
section, both T(x,x'~ and V (Y) may be thought of andreferred 
to as optical lengths and optical volurnee, respectively, with- 
out fear of confusion with the classical notions of the same 
names. 

written as: 
With definitions (5) and (7) in mind, (4) may be re- 

where p is the scattering-attenuation ratio s/a. Equation 
(8) is the required dimensionless version of (4); and for 
purposes of a solution tabulation, we now impose the unit 
source caridition in the context of (8): 

- =  p, 1 
a (9) 

provided that the Dirac-delta function 6 with dimensions L-3 
(to go with the volume measure V) is xetained. Otherwise, if 
a dimensionless Dirac-delta function 6 lto go with the opti- 
cal V,) is adopted, in (3) we write h, 6(x') and the unit 
source condition is 1 I 

r/ 
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KE(~) = A(P,T) KCr(~) .+ B(P,T) KK(T) 

221 

(10) 

and 

(11) 

to point up the fact that K F ( ~ )  is simply a linear combina- 
tion of the dimensionless diffusion kernel K,(T) (cf. (52) of 
Sec. 6.6) where now we write: 

and the dimensionless beam transmittance 
(43) of Sec. 6.5) where now we write: 

e-T 
7 "Ka ( T) for 

kernel K,(T) (cf. 

(14) 

It remains to specify the terms E(P,T), IC ak$/ap, and 
Do. The latter term is simply aD, where D is t% diffusion 
constant (cf. (27) of Sec. 6.5) for the classical diffusion 
theory. The remaining three terms form the heart of the 
exact solution and are tabulated in Tables 1 and 2 below for 
various values of p and T. 

Thus from (lo), we have 

I :  I 
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TABLE 1 

The function O(P,T) 

0.0 
0.1 
0.2 
0.2 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.5 
2.0 
2.5 
3.0 

3.5 
4.0 
4.5 
5.0 
6.0 

7.0 
8.0 
9.0 

10.0 
11.0 

12.0 
13.0 
14.0 
15.0 
16.0 

17.0 
18.0 
19.0 
20.0 

1.0000 
1.0000 
1,0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1 .oooo 
1.0000 
1.0000 
1.0000 
1.0000 

1. (3000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0210 
1.0382 
1.0532 
1.0667 

1.0790 
1.0904 
1.1010 
1.1109 
1.1202 

1.1291 
1.1674 
1.1990 
1.2258 
1.2494 

1.2704 
1.2895 
1.3070 
1.3231 
1.3521 

1.3779 
1.4010 
1.4222 
1.4417 
1.4599 

1.4770 
1.4931 
1.5084 
1,5230 
1.5370 

1.5503 
1.5632 
1.5757 
1.5877 

1.0000 
1.0418 
1.0773 
1.1088 
1.1375 

1.1640 
1.1888 
1.2121 
1.2342 
1.2552 

1.2753 
1.3644 
1.4402 
1.5068 
1.5667 

1.6213 
1.6718 
1.7188 
1.7630 
1.8443 

1.9182 
1.9863 
2.0497 
2.1094 
2.1659 

2.2196 
2.2710 
2.3204 
2.3682 
2.4141 

2.4586 
2.5019 
2.5439 
2.5849 

1.0000 
1.0542 
1.1000 
1.1409 
1.1781 

1.2126 
1.2448 
1.2752 
1.3038 
1.3311 

1.3571 
1.4724 
1.5699 
1.6551 
1.7311 

1.8000 
1.8630 
1.9214 
1.9757 
2.0745 

2.1630 
2.2432 
2.3169 
2.3851 
2.4499 

2.5086 
2.5652 
2.6188 
2.6700 
2.7190 

2.7658 
2.8109 
2.8543 
2.8963 

1.0000 
1.0526 
1.0962 
1.1346 
1.1692 

1.2008 
1.2300 
1.2571 
1.2826 
1.3066 

1.3293 
1.4273 
1.5068 
1.5738 
1.6314 

1.6818 
1.7265 
1.7665 
1.8026 
1.8654 

1 9182 
1.9634 
2.0024 
2.0366 
2.0667 

2.0933 
2.1172 
2.1385 
2.1578 
2.1752 

2.1910 
2.2055 
2.2186 
2.2307 

1.0000 
1.0420 
1.0756 
1.1046 
1.1301 

1.1529 
1.1736 
1.1926 
1.2100 
1.2262 

1.2412 
1.3034 
1.3504 
1,3874 
1.4171 

1.4415 
1.4617 
1.4786 
1.4928 
1.5147 

1.5304 
1.5412 
1.5486 
1.5531 
1.5554 

1.5559 
1.5550 
1.5529 
1.5498 
1.5459 

1.5413 
1.5361 
1.5304 
1.5243 

Now that it is clear how KE(~) depends on the diffusion 
kernel K, ((52) of Sec. 6.6) and the attenuation kernel K, 
((43) of Sec. 6.5) we write (10) in its explicit form: 
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' TABLE 1- -Concluded 

The function E(~,T). 

I I T p -0.6 p ~ 0 . 7  p-0.8 p -0.9 ~ 1 1 . 0  I 
0.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.5 
2.0 
2.5 
3.0 

3.5 
4.0 
4.5 
5.0 
6.0 

7.0 
8 .O 
9.0 

10.0 
11.0 

12.0 
13.0 
14.0 
15.0 
16.0 

17.0 
18.0 
19.0 
20.0 

1.0000 
1.0269 
1.0474 
1.0643 
1.0786 

1.0909 
1.1017 
1.1113 
1.1198 
1.1275 

1.1343 
1.1601 
1.1763 
1.1866 
1.1929 

1.1963 
1.1978 
I. 1976 
1.1963 
1.1912 

P .1838 
1.1749 
1.1651 
1.1547 
1.1438 

1.1327 
1.1215 
1.1102 
1.0989 
1.0876 

1.0764 
1.0653 
1.0542 
1.0433 

1.0000 
I. 0099 
1.0162 
1.0206 
1.0236 

1.0257 
1.0271 
1.0279 
1.0282 
1.0282 

1.0278 
1.0229 
1.0149 
0.0054 
0.9952 

0.9847 
0.9742 
0.9637 
0.9534 
0.9334 

0.9144 
0.8964 
1.8793 
0.8631 
0.8477 

0.8330 
0.8190 
0.8055 
0.7926 
0.7802 

0.7683 
0.7568 
0.7457 
0.7349 

1 .OD00 
0.9921 
0.9843 
0.9767 
0.9693 

0.9621 
0.9551 
1.9483 
0.9417 
0.9353 

1.0000 
0.9745 
0.9528 
0.9341 
0.9173 

0 .go19 
0.8878 
0.8747 
0.8625 
0.8510 

1.9290 
0.9002 
0.8748 
0.8519 
0.8313 

0.8124 
0.7951 
0.7791 
0.7643 
0.7374 

0.7137 
0.6926 
0.6734 
0.6560 
0.6400 

0.6252 
0.6114 
0.5985 
0.5864 
0.5750 

0.8402 
0.7936 
0.7562 
0.7250 
0.6982 

0.6749 
0.6543 
0.6358 
0.6191 
0.5901 

0.5654 
0.5440 
0.5253 
0.5086 
0.4936 

0.4800 
0.4676 
0.4562 
0.4456 
0.4357 

0.5643 0.4265 
0.5540 0.4178 
0.5443 0.4096 
0.5349 0.4019 

1.0000 
0.9564 
0.9222 
0.8934 
0.8683 

0.8460 
0.8260 
0.8077 
0.7910 
0.7755 

0.7612 
0.7019 
0.6568 
0.6207 
0.5908 

0.5655 
0.5437 
0.5246 
0.5076 
0.4788 

0.4550 , 
0.4349 , 
0.4175 , 
0.4024 ~ 

0.3890 

0.3769 
0.3661 
0.3562 
0.3471 
0.3387 

0.3310 
0.3238 
0.3170 
0.3107 
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TABLE 2 

The functions K~ and dk%/dp 

I P K O  dkildp 

0.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

0.92 
0.94 
0.96 
0.98 
0.99 

1.00 

1.000000 
1.000000 
0.999909 
0.997414 
0.985624 

0.957504 
0.907332 
0.828635 
0.710412 
0.525430 

0.474002 
0.4 13976 
0.340829 
0.242983 
0.172511 

0.000000 

0.000000 
0.164892(-5) * 
0.009094 
0.116201 
0.373272 

0.731896 
1.145954 
1.590033 
2 .OS1119 
2.522370 

2.617473 
2.712805 
2.80 834 8 
2.904085 
2.952020 

3.000000 

*Note: “(-5)” means “multiply by .I1 

In this way we can see that, for computation purposes, the 
scalar irradiance &(T) at optical distance T from the origin 
consists of two terms, one which may be attributed to resid- 
ual flux (the first term) and the other which may be attri- 
buted to scattered flux. This type of partitioning of the 
exact representation of h(x) into a residual part (ho) and a 
scattered part (hf) was already encountered in the classical 
diffusion theory, e.g., in (7) of Sec. 1.5, in (57) of Sec. 
6.6, and more generally in (79) O P  Sec. 6.6. Also, in the 
time-dependent case, this partition was encountered in (90) 
of Sec. 6.6. 

A tabulation of 4r T’K (T) is given in Table 3 for two 
cases of p and for a range of T from 0 to 10 units. 
choices of p are representative orders of magnitude for p in 
the case of the ocean (p = 0.3) and the atmosphere (p = 0.9) 
for wavelengths around 500 my, for the middle of the visible 
spectrum. For the determination of KE(~) for values of p 
other than p - 0.3, 0.9, Tables 1 and 2 may be used. It must 
be kept in mind that these tabulations are for the unit source 
condition (sa) . 

These 
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~~ 

P = 0.3 

TABLE 3 

The function 4n 7’ K E ( ~ )  

0.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.5 
2.0 
2.5 
3.0 

3.5 
4.0 
4.5 
5.0 
6.0 

7.0 
8.0 
9.0 
10.0 

1.0000 
0.9644 
0.9196 
0.8710 
0.8209 

0.7708 
0.7215 
0.6737 
0.6277 
0.5838 

0.5421 
0.3675 
0.2441 
0.1599 
0.1037 

0.0668 
0.0427 
0.0272 
0.0173 
0.0069 

0.0028 
0.0011 
0.0004 
0.0002 

1 

p = 0.9 
1.0000 
1.1211 
1.2343 
1.3384 
1.4326 

1.5168 
1.5914 
1.6567 
1.7130 
1.7607 

1.8006 
1.8974 
1.8660 
1.7547 
1.5992 

1.4239 
1.2454 
1.0742 
0.9158 
0.6483 

0.4467 
0.3018 
0.2007 
0.1318 

Infinite Medium with 
Arbitrary Sources 

We now develop a procedure whereby Table 3, and more 
generally (15), may be used to compute scalar irradiance 
fields generated by arbitrary sources. Suppose the source 
term h,,(x) is given throughout an infinite medium X; h,,(x) 
may be associated with plane sources, finite volume sources 
of flux, etc., and may be of quite arbitrary spatial depen- 
dence throughout X. It is clear either intuitively or for- 
mally (from the interaction principle using the theorems of 
Sec. 3.16) that the scalar irradiance h(x) associated with 
hn(x) is given by: 

F 
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where we have written: 

"KE(x' ,x)" for K€(T(X,%')) 117) 

The reason for the presence of "u" in (16) may be found by 
tracing back through the unit source condition (9a) and ulti- 
mately to (3) and (4). If h is given in watts per cubic 
meter, and a in per meter, tien h is given in units of watts 
per square meter. 

A practical computation scheme for h(x) may be based on 
the following procedure: given h,,(x) throughout a subset Xn 
of X, divide X,, into n small cubes C(xi) (or any other con- 
veniently shaped regions) over each of which both K(x,x') and 
hn(x) vary only slightly. Thus each cube C(xi) is represen- 
tative of the radiometric properties of X around xi, where 
x. is the cube's centerpoint. Then (16) may be replaced by 
tie approximating finite sum: 

I 
The evaluation of h(x) using (18) is facilitated by us- 

ing Table 3 for optical distances T(x,x') up to 10. More 
generally, (15) would be used with Tables 1 and 2. 

applied, consider the problem of determining the irradiance 
field generated in an infinite homogeneous medium by a beam- 
type source, such as that associated with powerful search 
lights or laser beams. The geometrical relations of the 
present example are summarized in Fig. 6.5. The source may 
be represented as a small sphere of radius r with surface 
radiance No and which is allowed to emit uniPormly over a 
conical set Eo of directions with central direction Eo. Thus 
Z0 may be all directions E such that 5 E9 
is the half angle opening of io. By varying eo, the cone can 
represent everything from narrow beams (small eo) to uniform 
point sources (eo = 71). 

With these geometrical preliminaries fixed, we now 
return to the discussion in Sec. 6.6 which developed the 
theory of primary scattered flux as source flux and which cul- 
minated in the formulas (67) through (69) of Sec.6.6. We can 

As a specific example of a setting in which (18) may be 

cos 00 where eo 
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FIG. 6.5 Geometry for a nonisotropic point source of 
radiant flux in diffusion theory. 

immediately adopt for our present purposes the formula (67) 
of Sec. 6.6 which describes the primary scalar irradiance 
h:(x') in terms of the inherent radiance No, the total scat- 
tering coefficient s, the beam transmittance e-ar , and the 
solid angle n(r') subtended by the point source at point x'. 
(See Fig. 6.5.) Now h:(x') replaces h,,(x') in (16) orh,,(xi) 
in (18). Thus (16) becomes: 

and (18) becomes : 



j 
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In (19) the integration may be limited to the subset Xo of X 
defined by the cone E of directions. Thus point x' 
if and only if x'/Ix'v is in to. In (20) the sum is over a1 
cells C(xi) which partition XQ. Because of the exponentials 
and the solid angles Q( !Xi I ] in (20) , the sums (for a given 
No) need not be extended over very many attenuation lengths 
within Xo before good estimates of h(x) can be made. 

is in P 

Semi-Infinite Medium with 
Boundary Point Source 

The exact diffusion solution (16) holds for media which 
extend indefinitely far in all directions about the point 
source. Such a situation will hold more or less in natural 
waters when the source and observer are at relatively great ' 

depths (several attenuation lengths, say). However, if the 
source is relatively near the surface, the reflectance prop- 
erties of the remaining thin 1ayer.sof medium above the source 
would differ noticeably from that of an infinitely deep layer 
above the source, so that the scalar irradiance h(T) at shal- 
low depths in a light field induced by a point source near 
the boundary would differ markedly froin that predicted by (16). 
Similar observations may be made for fogs and cloud banks in 
the atmosphere. In the present example, we summarize some 
results of exact diffusion theory which can predict h(.r) for 
relatively shallow depths in natural waters (or for points 
near flat cloud or fog boundaries) when the point source is 
on the boundary. The reflection effects of the air-water 
surface are not included in the present analysis and must be 
accounted for separately. In the second example below the 
results will be extended to the case of internal point sources. 
Both examples are based on the results by Elliott given in 
Ref. [883. A generalization of the equations developed below 
and their appropriate place in the general theory of radia- 
tive transfer in media with internal sources, will be given 
in Sec. 7.13. 

The starting point for the present discussion is equa- 
tion (8) in which the medium X is now an infinitely deep ho- 
mogeneous plane-parallel medium exhibiting isotropic scatter- 
ing and with a point source of small positive radius ro at 
depth x = c 2 0. We shall use the terrestrially based refer- 
ence system for natural hydrosols (cf. Sec. 2.4). Further- 
more we use the unit source condition (9a) in (8). 

Thus we start with (8), now in the form: 

J X& 
1 - I  



SEC. 6.7 EXACT DIFFUSION EQUATIONS 229 

where X, is the set of all x (=(xI,xz,x~)) in the terrestrial 
coordinate frame such that x3 = z 2 0. The Dirac-delta func- 
tion 5 in (21) is dimensionless, and is centered on the point 
xo (=(O,Otc)), c 1. 0. Furthermore, it is to he explicitly 
noted that for the remainder of this section all coordinates 
XI, xz, X I  (hence all distances, areas, and volumes) are to he 
measured in units of optical length (cf. (S), (7)). 

transform of (21) with respect to the variables X I  and s2 over 
an arbitrary horizontal plane at depth xj (=z). Thus let w I  
and UP be the spatial frequencies along the X I  and XP direc- 
tions and let us write;" 

Now the procedure in Ref. [SS] is to take the Fourier 

J 
xZ 

(22) 

where Xz is the horizontal plane at depth z, and A is the 
area measure over X,. Thus f is the Fourier transform of h 
over X,, and fo has the same 8imensions as h. Therefore, 
applying the operator : 

to each side of (21), we obtain: 

r- 

where we have written: 

*In the present exposition, we retain the Fourier trans- 
form conventions used in [88] in order to facilitate the study 
of the results therein. 

. 
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where Jo is a zero-order Bessel function, and where, for 
brevity, we have written: 

l'fo(z;w)" for fo(z,wl,u2) 

The next step in the solutiw procedure is the observa- 
tion that (23) can be solved using the Wiener-Hopf techni ue 
provided that c - 0, i.e., that the source is at the bounlary. 
This solution procedure is quite intricate and beyond the im- 
mediate interests of the present work; therefore the inter- 
ested reader is referred to Ref. [88] for details and further 
references. The main results of the present example may be 
understood without recourse to the solution details. We need 
only observe that the required scalar irrsdiance is obtained 
from the solution fo(-;w) of (23) by means of the following 
integration which is the inverse Fourier transformation to 
that in (22) : 

in which: 

and: 

(27) 

(28) 

2 2  w2 = w1 + o2 

r2 = x1 2 2  + x2 

Since h(x) depends only on depth z and the radial distance r, 
we agree to write: 

"h(z,r)" for h(x) (291 

Figure 6.6 depicts the geometrical details of the case 
where the point source is at the boundary. Observe that the 
medium is divided into region A (shaded) and conical region B 
(unshaded). It is found that h(z,r) for points x - (XI,XI,Z) 
in region A is approximated by the relation: 

1 

(Valid in region A, Fig. 6.6.) 

where in turn Jll(z) is evaluated in [172] and is tabulated in 
Table 4, and K~ is given in Table 2. Table 4 may be extended, 
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I 

FIG. 6.6 Domains of validity of approximate solutions 
(30) and (31). 

if necessary, using the eddingtonian approximation to 

The functions En(z) are the exponential integrals 

and are tabulated. The farther the point x (=(xI,xz,x!)) in 
region A is from the dashed dividing lines between regions A 
and B, the better the approximation (30). 
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TABLE 4 

Evaluation of $,(z) 

2 

~~ 

0 
0.01 
0.02 
0.03 
0.05 

0.1 
0.2 
0.3 
0.4 
0.5 

0.6 
0.7 
0.8 
0.9 
1.0 

1.2 
1.5 
2.0 
2.5 
3.0 

3.5 
4.0 

z + Zo 

0.7104 
0.7204 
0.7304 
0.7404 
0.7604 

0.8104 
0.9104 
1.0104 
1.1104 
1.2104 

1.3104 
1.4104 
1.5104 
1.6104 
1.7104 

1.9104 
2.2104 
2.7104 
3.2104 
3.7104 

4.2104 
4,7104 

0.5773 
0.5982 
0.6154 
0.6312 
0.6607 

0.7219 
0.8495 
0.9633 
1.0731 
1.1803 

1.2858 
1.3901 
1.4935 
1.5963 
1.6985 

1.9019 
2.2051 
2.7079 
3.2092 
3.7098 

4.2101 
4.7102 

The error of the approximation by 130) is of the order 
of magnitude of \ z 3 / r 5 \  and (30) is applicable when p is 0.6 
or more. 

(=(xI,x2,z)) in region B is approximated by the relation: 
Furthermore, it is found that h(z,r) for points x 

J5 h, cos e 
h(z,r) = e-Kod(l + Ked) 

2nad2 
(Valid in region B, Fig. 6.6.) J 

where we have written: 

"d" for 4r2 + (z+zo)2 (32) 
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wd where : 

fC(W 'fo(lZ-C1 ,w> + fo(t,w) fo(t+c-z,w) dt, , Z ~ C  

f,Cz,4 =f&-cl ,tu) + fo(t,w) fo(t-c+z,w) dt , Z ~ C  % 

r tan e = - z + zo 

(35) 

(36) 

ana : 
zo * 0.7104 

(33) 

(34) 

This approximation improves with the distance of x 
[=xI,xz,z)) in region B from the dashed dividing lines be- 
twqen regions A and B. The error of approximation by (31) 
is of the order of magnitude of ll/d51 and (31) is applicable 
when p is 0.6 or more. 

A study of (30) and (31) readily shows the effect on 
h(x) of the presence of the boundary at depth z = 0. Suppose 
for the moment that K,, = 0 (no absorption case). 
region A of Fig. 6.6, and for fixed z, the scalar irradiance 
falls off as the inverse cube of the distance r from the sym- 
metry axis of the field, whereas in region B, which is rela- 
tively farther removed from the boundary than region A, the 
scalar irradiance falls off only as the inverse square of the 
distance d. The fixed number to (known as the "extrapolation 
length") in (34) arises in the correct adjustment of boundary 
conditions of the present problem. 

Then in 

Semi-Infinite Medium with Internal 
Point Source 
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FIG. 6.7 Domains of validity of approximate solutions 
(38) through (40). 

Once fC(z,u) is obtained using (35) or (36), h(z,r) can be 
obtained by means of the inversion formula: 

I" 

which is simply (26) now with fc in place of fo. A few ob- 
servations on these functi,onal relations will be made below, 
but for the present we go on to their immediate consequences. 
Figure 6.7 depicts the semi-infinite medium with point source 
at (O,O,c) . The medium is divided into two regions with the 
shaded region A and the conical region B, exactly analogously 
to the partition depicted in Fig. 6.6. Corresponding to (30) 
we now have the approximate solution: 
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FIG. 6.8 Relative placement of source (c) and observation 
(2) levels in (35) and (36). 

for z : c (Valid in region A, Fig. 6.7.) 
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All the terms occurring in (38) and (39) were defined 
in (30). The ranges of integration may be visualized with 
the help of Fig. 6.8. Observe how (39) reduces to (30) when 

. c = 0. The errors of appfoximation are on the order of lc3/rsl 
’ for (38) and Iz3/r51 for (:39). The approximations (38), (39) 

are applicable for media with p = 0.6 or more. 
Corresponding to (31) we now have: 

I I 
Ah,, 

h(z,r) = (1 + c  A) cos e e-Kod (1 + Ked) 
2nad 

I (Valid in region B, Fig. 6.7.) I I 
Observe in this instance, also, how (40) reduces to its limit- 
ing case (31) for c = 0, where now in (40) we have written: 

and also where 

r tan e = z + z o  - c  

The approximation (40) holds for large [z-cl and has an error 
on the order of magnitude of Ic/d31, for media with p =0.6 or 
more. 

Observations on the Functional 
Relations for f, and fo 

The various solutions displayed above for h(z,r) in a 
semi- infinite medium are of great interest for two reasons. 
The first reason is clear enough: They supply additional 
information on the behavior of h(x) in deep plane-parallel 
media in which there are point sources near the boundaries. 
The second reason for interest in these solutions does not 
exist so much on a practical level as on a theoretical or 
conceptual level. This interest centers on the form of the 
functional relations (35) and (36) which seem to hold consid- 
erable importance for radiative transfer theory. These two 
remarkable relations show how to connect the point source 
solution for the case c = 0 with that for the case c > 0. The 
general form of the functional relations (35) and (36) are 
those of the relations usually found by the techniques of 
invariant imbedding, the techniques growing out of the clas- 
sical invariance principles of Chandrasekhar. It will be 
shown in Sec. 7.13 how the general counterparts of (35) and 
(36) for radiance fields may be deduced from the invariant 
imbedding relations (cf. also examples 2, 3, 5 of See. 3.9). 
As a result of the derivations in Sec. 7.13, there will be a 

‘i 
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. 

unified set of analytical techniques for solving internal- 
source prohlems in general optical media. 

6.8 Bibliographic Notes for Chapter 6 
The discussions of Sec. 6.1 leading to (36) of that 

section are based on some elementary properties of complete 
orthonormal families of functions, which in turn find their 
rightful place in Hilbert space theory, or general vector 
spase theory. For an exposition of these ideas, see, e.g., 
[104]. The isolation of the two properties, namely: the 
finite recurrence property of the orthonormal family and the 
isotropy property of the medium led to the finite forms (26) 
of the abstract harmonic equations in Sec. 6.2. This expli- 
cit delineation ofthe necessary properties tobe held jointly 
by orthonormal families and optical media, which lead to the 
abstract harmonic equations (26) of Sec. 6.2, appears to be 
new. 

pethod in Sec. 6.3 is based on that of Refs. [175] and [314]. 
The solution procedures of the classical spherical harmonic 
equations for plane-parallel media in Sec. 6.4 are based on 
hodern algebraic methods in differential equation theory, 
such as those in [47]. Some innovations in numerical pro- 
cedures in the spherical harmonic method may be found in [323] 
and [325]. The manner of approach to diffusion theory in 
Sec. 6.5 is dictated by the specific needs and outlook of 
geophysical radiative transfer theory. The classification 
of diffusion processes in Sec. 6.5 is of course only partial- 
ly complete; a systematic investigation of such classified 
processes appears to be of some interest to radiative trans- 
fer theory, and offers interesting physically based problems 
in partial differential equation theory. 

The general solutions of the classical diffusion equa- 
tions in the opening paragraphs of Sec. 6.6 are widely known, 
useful formulas for scalar irradiance. The various primary 
scattered flux source methods and those based on higher or- 
dered scattered flux sources in the latter part of Sec. 6.6 
offer some novelty in the otherwise quite thoroughly formed 
classical method of treatment of the diffusion of light 
through scattering media. Furthermore, the particular needs 
Qf hydrologic optics and meteorologic optics has caused some 
emphasis to be placed on the representation of the radiance 
distribution N(x,.) throughout diffusing media. This resulted 
in derivations of formulas for N(x,<) in general diffusion 
contexts, such as (29) of Sec. 6.5; and (14) and (40) of Sec. 
6.6, which do not appear to be too widely known. 

The solutions of the exact diffusion equations in Sec. 
6.7 for the case of infinite media are based on the work in 
[40]. This work also contains many useful tables and graphs 
of associated solutions. The theory of semi-infinite media 
with point sources is relatively unexplored. However, refer- 
ence [88] forms a definitive beginning of such a theory, and 
the latter half of the discussions in Sec. 6.7 are based on 
the results of [88]. 

The exposition of the classical spherical harmonic 
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Further References 

Further references beyond those mentioned above and 
which contain contributions to the classical theory of trans- 
port phenomena may be briefly mentioned here. 
there is the early definitive work by Hopf [lll] on mathemat- 
ical problems of radiative transfer in media which are in 
thermodynamic equilibrium. This work contains the germ of the 
modern operator theoretical approach to transfer problems 
which is continued in [37] and [143], and more recently in 
[251]. Another early definitive work on classical radiative 
transfer theory is that of Chandrasekhat 1431 which develops 
a minor variant of the spherical harmonic method of the kind 
formulated by Wick in [319]. Applications of the Chandra- 
sekhar theory are made by Lenoble in [l08], [155], [156]. 
By far the most signifisant contribution in [43] is that of 
the principles of invariance, which were discussed in general 
in Chapter 3 above and which will be considered further in 
Chapter 7 below. The reference [62] also contains much use- 
ful mathematical information which is applicable to practical 
radiative transfer contexts. A relatively recent survey of 
radiative transfer theory and classical and exact diffusion 
theory may be found in [288]. 

are given in [53], [91], and [ll]. Diffusion theory from the 
point of view of Monte Carlo techniques is explored in [Sl] 
and [176]. Some recent numerical solutions for light fields 
in homogeneous slabs (with isotropic scattering) which blend 
the spherical harmonic method and the technique of invariant 
imbedding are given in [15] and [16]. 

First of all 

Some tabulated solutions of the equation of transfer 
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Contraction mapping, 129; 

Contraction property, 129 
Cosine (mean value D), 180 

Decomposed radiometric 

Diffuse radiometric func- 

principle of, 131 

functions, 36 

tions, 36; stored energy, 
123 

Diffusion coefficient (~),194 
Diffusion equation, scalar, 

174; wave, 184; tensor, 
etc., 184 

Absorbed radiant energy, 94 
Absorption time constant, 83 
Abstract spherical harmonic 
method, 143 

Addition theorem for spheri- 
cal harmonics, 148, 153 

Albedo for single scatter- 
ing (see scattering- 
attenuation ratio) 

Algebraic spherical harmonics, 
141 

Apparent radiance, canonical 
representation, 16 

Attenuated radiant energy, 94 
Attenuation length, 99, 196 
Attenuation time constant, 76 

Bouguer's work, 1 
Bounds, on radiance, 47 

Canonical equations, sense of 
the term, 1; classical, 9; 
experimental verification, 
13; general media, 15; strat- 
ified media, 18; polarized 
radiance, 21; abstract ver- 
sions, 24 

Canonical representation of 
apparent radiance, 16; of 
abstract functions, 27 

Cauchy sequence, 130 
Characteristic ellipsoid, 66; 

Classical diffusion theory, 
134; basic diffusion equa- 
tion, 175; approaches via 
higher order approximations, 
183; hierarchy of processes, 
184; plane-parallel solu- 
tions, 193; spherical (point) 
solutions, 200; discrete 
(extended) solutions, 203; 
continuous (extended] solu- 
tions, 206; primary sources, 
207; for higher order scat- 
tered scalar irradiance, 213; 
time dependent, 214 

Classical spherical harmonic 
method, plane-parallel 
media, 158 

Complete metric space, 131 
Completeness property of 

spherical harmonics, 142, 153 
Cone (in space time), 53 
Continuous sources in diffu- 

sion theory, 206 

' spheroid, 68 

Diffusion function (D) , 174, 
180. 181 

Diffusion length, 196 
Diffusion processes, a short 

list, 184 
Diffusion theory, three ap- 
proaches, 172 

Dimensionless forms of radi- 
ant energy fields, 97 

Directly observable, radiant 
energy, equation of trans- 
fer, 81 

Discrete sources in diffusion 
theory, 202 

E (epsilon) function, 222 
Electric circuit analogy 

(with an optical medium), 
77, 123 

Elsewhere (in space-time), 
53 

Equation of transfer, n-ary 
radiance, 36; unscattered 
radiance, 37; diffuse radi- 
ance, 37; path function, 38; 
natural solution, 43, 127; 
for optical ringing, 56; 
solved symbolically, 65; 
residual radiant energy, 76; 
n-ary radiant energy, 80; 
directly observable radiant 
energy, 81; dimensionless 
(for radiant energy), 97; 
scalar irradiance (diffu- 
sion equation), 175; scat- 
tered radiance, 209; scat- 
tered scalar irradiance, 
210, 213 

Equilibrium radiance, 6 
Equivalence classes 0-f func- 

tions, 128 



244 I NlIliX VOI,. 1 I 1 

Exact diffusion theory, 134; n-ary radiometric concepts, 
basic equation, 190, 192, 218 31; radiance, 33; scalar 
infinite medium with point irradiance, 34; radiant 
source, 219; infinite medium energy, 34; general, 35; 
with arbitrary sources, 225; canonical equations for 
sc.ilar irradiance, 226; semi- natural closed forms for 
iril'iiiitc mcclium with boundary radiant energy, 86; time 
~)(iiiit \ourcc, with intcrnal 
p u i r i t  \ourcc, 228, 233; on 
thc III 1 iot functional rela- 
tions, 236 

Exponcntial property OF dif- 
fusion field (plane-parallel 
case), 194 

Fick's law, 174 
Finite recurrence property, 

147, 154 
First order scattered radi- 

ance, equation for, 41 
Fourier transform, of exact 
diffusion equation, 192 

Functional relations for 
fc,fo, in exact diffusion 
theory, 236 

Future (in space-time), 53 

Global approximations for 
radiance, higher order, 117, 
119 

Inelastic scatter, 5 
Inequality for IC,,, 195 
Integral equation for scalar 

irradiance, 189 
Irradiance, vector, via spher- 

spherical harmonics, 177; 
scalar, via higher order 
scattering, 213 (see also 
scalar irradiance, vector 
irradiance) 

K (kappa) for classical dif- 
fusion theory, 194; 

K~ dimensionless form, 221 
K-function, general, 15 
K,, 188; K,, 214; KF, 221 
Koschmieder's equation, 5 

Light field, time dependent, 

Light storage phenomena in 
49 

natural optical media, 121 

Metric, supremum, 129; 

Metric space, complete, 127, 
radio-, 128 

131 

depcndent properties, 89 ; 
dimensionless forms, 97 

Natural solution, for radi- 
ance, 42; truncated, 45; 
time-dependent, 58; sym- 
bolic integration, 65; 
for directly observable 
radiant energy, 82; time 
dependent properties, 90; 
dimensionless forms, 97; 
operator-theoretic basis, 
127; for scalar irradiance, 
191 

Normal space (0 < p < l), 103 

Operator-theoretic basis For 
natural solution, 127 

Operators, R (path function), 
32; T (path radiance) , 32; 
S (radiance), 33; time 
dependent, 68; contraction, 
129; U (scalar irradiance) , 
188; V (= TU) , 188 

Optical length, 220 
Optical medium, transparent, 

3; absorbing, 3; fundamental 
5; electric circuit analogy, 
77; as a metric space, 132 

Optical reverberation case, 86 
Optical ringing problem, one- 

dimensional, 49; three- 
dimensional, 66 

Optical volume, 220 

Past (in space-time), 53 
Path function, equation of 

Path radiance, first order 

Point source case, in clas- 

transfer, 38 

form, 11 

sical theory, 198; in exact 
diffusion theory, 219 

Polarized radiance, canonical 
rep r e s e nt a t ion, 1 9 

Primary radiance, equation 
for, 41 

Primary scattered flux as 
source flux, 207 

Purely absorbing medium, 31 

1 
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Radiance, in transparent media, 
2; in absorbing media, 3; 
equilibrium, 6; maximum 
natural waters), 12; trans- 
mittance, 14; polarized, 19; 
residual (reduced, unscat- 
tered),31; n-ary, 33; nat- 
ural solution for, 42;bounds, 
47; global approximations, 
117, 119; distribution in- 
diffusion theory, 181, 197, 
201 

Radiant energy, n-ary, 34; 
residual representation,79; 
equation of transfer for 
n-ary, 81; natural closed 
form representation, 86; 
optical reverberation case, 
86; standard growth and 
decay case, 87; time depen- 
dent properties, 89; scat- 
tered, absorbed, attenuated, 
93; stored, 123; time de- 
pendent (check), 216 

Radiant flux, net inward, 76; 
source, 76; net n-ary, 80 

Radiative transfer analogues, 
77, 133 

Radiative transfer theory, on 
a metric space, 132 

Radiometric (as a metric), 128 
Radiometric functions, general 
n-ary, 35; diffuse, decom- 
posed, 36 

Reflectance, in diffusion 
theory, 198, 202 

Relative error in radiance 
computations, 48 

Relative time; 99 
Residual, radiance, 31; trans- 

fer equation, 74; radiant 
energy, 79 

Reverberation, optical, 49 

Scalar diffusion equation, 174; 
higher order form, 213 

Scalar irradiance, exponential 
form, 11; n-ary, 34, 217; 
equation of transfer (diffu- 
sion equation), 175; inte- 
gral equation, 189; scat- 
tered (equation formula), 
210, 218; higher order (equa- 
tion formula), 213; integral 
form, 214; time dependent 
n-ary (diffusion equation), 
216; exact diffusion theory, 
226 

Scatter processes, inelastic 
or transpectral , 5 ; single, 
10 

Scatter time constant, 81 
Scattered flux, higher order, 

Scattered radiance, equation 

Scattered radiant energy, 94 
Scattered scalar irradiance, 

equation of transfer, 110 
Scattering-attenuation ratio, 
10, 47 

Scattering-order decomposition, 
30 

211 

of transfer, 209 

"Seeliger's formula", 132 
Simple model, for polarized 

light fields, 21 
Space-time diagrams, 5i, ~ t s e q .  
Spherical (point source) dif- 

fusion field, 200 
Spherical harmonic method, 134; 
bases, 135; motivating argu- 
ment, summarized, 140; alge- 
braic setting, 141; complete- 
ness property, 142, 153; ab- 
stract, 143; finite abstract 
forms, 147, 149; classical 
method, general media, 149; 
finite recurrence property, 
154; general differential 
equations, 157 ; classical 
method, plane-parallel media, 
158; truncated solution pro- 
cedure, 163 

Standard growth and decay case, 
(for n-ary radiant energy), 

Storage capacity (of an opti- 
cal medium), 123 

Stratified media, canonical 
equation for radiance, 18 

Supremum metric, 129 
Symbolic integration (term by 

term for natural solutiop), 
65 

a7 

Telegrapher's equation, 185 
Tensor diffusion equation, 

184 
Time constant, attenuaticn, 

76; scattering, 81; ab- 
sorption, 82; dimensionless 
forms, 100; for n-ary radi- 
ant energy, 109; general 
discusion, 114 

Time dependent light field, 
49 
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Time dependent n-ary radiant Unit source condition, 220 
energy field, properties, Unscattered radiance, 31 ; 
89 equation of transfer, 37 

Time dependent operators, 68 Vector irradiance, via 
Transmittance, radiance, 14, spherical harmonics, 177; 

17 in classical diffusion 
1 spectral scatter, 5 theory, 198, 201, 207; 
Ti lsport (transfer) equations, scattered form, 210; n-ary 

. ?sidual radiant energy, 76; 217 
n-ary radiant energy, 80; Volume absorption function, 

energy, 81 Volume total scattering 
True absorption, 5 function, 4 
Truncated natural solution, 45; Wave diffusion equation, 

Truncated spherical harmonic World region, 52 

directly observable radiant 4 

time dependent, 69 18 5 

method, 163 
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