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PREFACE

A brief survey of the methods of solution of radiative
transfer cquations® conducted recently showed the extremely
wide variety of methods now available to modern researchérs
in this discipline. However, there are some methods which go
to the very heart of the equation of transfer, notably the
natural method of solution (via scattering order decomposition),
and which stand foremost by virtue of their power and elegance.

‘Another 'such method is the spherical harmonic method, which

attempts to extend the time-honored technique of separation
of variables to the equation of transfer. 'Finally there is
the method of diffusion equations of both approximate and
exact type. I have selected these three major methods for
exposition here. The remaining principal method of solution,
namely the invariant imbedding method, is reserved for study

_in Vols. IV and V.

As always, I have been concerned with the fundamental

" questions of the discipline, those that throw light on the

conceptual structure of our subject. For this reason I have
avoided discussing various extreme types of techniques of so-
lution, chief among which are the abstract mathematical tech-
niques concerned with uniqueness and existence questions, or
with unrealizable algorithms which have no physical content
and hence no role in the mathematical-physical founddations of
the subject. Moreover, such techniques as the Monte Carlo
method were avoided because of their zero conceptual content.
Finally, I have not included purely numerical tabulations of
solutions of the equation of transfer. Nothing is simpler in.
these days of powerful computers and exceedingly accomplished
computer programs, to rack up several volumes of specialized
solution tabulations for various selected geometries. I do
not deny the utility of such tabulations; I am simply adher-
ing to my originally imposed constraints which try to keep
this (already extensive) work on the track of fundamental con-

ceptual constructions, rather than numerical and experimental

compilations.

Ms. Louise F. Lembeck typed the final manuscript; fur-
thermore her editorial assistance is gratefully acknowledged.

~ R.W.P.
Honolulu, Hawaii
September 1974
*Preisendorfer, R. W. "A Survey of Theoretical Hydrologic

Optics," J. Quant. Spectrosc. Radiat. Transfer 8,325 (1968).

. A bibliography of solution procedures may be found in:
Lenoble, J. (editor) Standard Procedures to Compute Atmospheric
Radiative Transfer in a Scattering Atmosphere.- Report of the
Radiation Commission of the International Association of Mete-
orology and Atmospheric Optics (International Union of Geodesy
and Geophysics) Vols. I-IV (1974). Laboratoire d' Optique
Atmospherique, Universite des Sciences et Techniques de Lille,
France. .
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CHAPTER 4
CANONICAL FORMS OF THE EQUATION OF TRANSFER

4.0 Introduction

In this chapter we begin a systematic construction of the

main laws of radiative transfer theory by means of the prin-
ciples of Chapter 3, with the particular goal in mind of

deriving certain special types of transfer equations for the
main radiometric concepts. These equations have been found

-most useful in the applications of the theory to the study

of light in both the sea and the atmosphere. This task will
occupy our attention during this and the following four
chapters. In the present chapter our purpose is to obtain
the canonical equatione of transfer for radiance.

) The sense in which we use the word "canonical" is two-
fold. First of all, "canonical" is to denote a fundamental
well-established form of the equation of transfer--a form
which has evolved and eventually pgained universal acceptance

“over a two hundred year period of development. This-is not

to say that the canonical form of the equation of transfer
is given first priority in every mathematical investigation
of the transfer of radiant energy in optical media; rather,

"it is simply intended to signify the fact that the canonical

form of the equation of transfer has been applied and inde-
pendently rediscovered with sufficient frequency in various
fundamental investigations in different subfields of radia-
tive transfer over the years, that it has eventually taken
on the role of an enduring useful landmark in the general
theory. The second sense of the word "canonical' as used
here is of a more technical nature; it is to denote the fact
that the equations are written in a form of great simplicity

"without decreasing generality, and in a way that is inde-
-pendent of any particular coordinate system, -Of the two

senses, the first by far is to be considered the dominant
senise in what follows.

v The earliest recorded appearance of the canonical form'
of the equation of transfer was in the work of Bouguer, in

. whose classical treatise -[28] appears a special but unmis-

takable form of the equation. This equation was unearthed
and dusted off by Middleton in his studies of Bouguer's work.
Specifically, Middleton observes [28] that: 'Bouguer inte-
grated the contributions of many elementary layers (dx) by
a geometrical construction, and showed that [in modern nota-
tion] the apparent brightness of an object at distance x is

N
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B(x) = ae %X 4 b(l-e %%y ,» 1)

The salient features of this equation, those that make it
"canonical" in the technical sense, can be described in terms
of the concepts developed in Chapter 3. First of all we
observe that (1) has the Gestalt of (5} of Sec. 3.13, where
the term ae-9%X corresponds to N in equation (5} of Sec.3.13,
the term b(l-e ax) corresponds to N%, and the term B(x) to
Ny. Thus B(x) is interpretable as the apparent radiance of
an object (Sec. 3.13) as seen over a path of length x, where
the path radiance of the path is b(l-e %X) and the 1nherent
radiance of &ge object is a. The particular manner in which
a, b, and e~ occur in the algebraic form of (1) character-
ize (1) as canonical. Equation (1) is substantially the
algebraic form of B(x) deduced by Bouguer from empirical
observations. . According to Middleton, however, Bouguer
ostensibly missed the full physical s1gn1f1cance of the terms
a and b. Hlnd51ght and a fully developed theory now let us.
view a and b in quite simple terms. Thus a in (1) is the"
inherent radiance of the obJect which is transmitted over the
path with beam transmittance e %X, Hence a must be the :
attenuation coefficient of the path (our o of Sec. 3.11).

The term b is a simple instance of the general concept of
equilibrium radiance which will be introduced and studied in
detail in this chapter. Physically, b is the radiance of a
very long uniformly lighted homogeneous path. Mathematically,
b is simply the limit of B(x) as x+», The radiance b is inde-
pendent of location along the uniformly lighted homogeneous

path, and in real life is closely approximated by the horizon

radiance under suitable atmospheric conditions. The horizon
radiance remains . ostensibly constant, for example, on a trans-
‘continental jet flight at 10,000 m altitude over large seg-
ments of the flight path. The observed horizon radiance seen
by the jet pilot is the real counterpart to the equilibrium
radiance b in (1). Of course similar interpretations of a,b
and correspondlng interpretations of (1) apply to horizontal
lines of light in the sea, under suitable conditions.

In the present chapter we shall develop a h1erarchy of
canonical equations of transfer for radiance starting with
the simplest of applied situations and concluding with what
appears to be the most comprehensive canonical equation of
transfer for physically meaningful contexts. Equation (1)
will fall somewhere in the lower middle of this hierarchy,
that is, somewhere in the neighborhood of the Koschmieder .
equation of Sec. 4.3. Throughout this chapter, unless specif-
ically noted otherwise, all optical media will be considered
emission-free, in the steady state, and of constant index of
refraction.. This condition does not constitute any signifi-
cant loss of generality in terrestrial settings while permit-
ting a simple exposition of the main idea of the canonical’
equation.

4,1 Radiance in Transparent Media

We take up first the simplest case in which the canon-
ical equation of transfer can occur: transparent optical
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media. A tranaparent optical medium X is one in which

a(x,E) = 0 and o(x;E';E) = 0 for every x in X and &£',£in E.
An example of a transparent optical medium is a block of
glass which does not appreciably absorb or scatter radiant
energy. Under these conditions, the integral equation of
transfer (2) of Sec. 3.15 associated with a path &.(x, 6) in
a vacuum takes the form:

N(z,&) = N(x,8) | . ed

Where z = x + Er. This instance of the equation of transfer
is: clearly interpretable also as an instance of the radiance
1nvar1ance law(2) of Sec. .2.6.

In the case of a transparent optical medium in which
the 1ndex of refraction varies with location along G%(x,£),
the n?-law for radiance (4) of Sec. 2.6

N(z,£)/n%(2) = N(x,E)/n2(x) (2)

governs the magnitude of N(z,%) along 6§(x E)

: - The preceding two laws also can be made to follow from
the appropriate integrodifferential form of the equation of °
transfer. This would be equation II of Sec. 21 in Ref. [251],
which in turn is deducible from the interaction principle.
Thus we would deduce from this equation that

(3)

d N(x,£)/0%(x) _
@r

from which follows (2). Equation (3) of Sec. 3.15 yields‘in

particular:

dN(x,E)

W2E) < o )

for the case of a transparent medium with constant index of
refraction. From this follows (1). Clearly (4) is a spe-
cial case of (3), so that (3) may be considered the basic
equation for radiative transfer in transparent media.

4.2 Radiance in Absorbing Media

The next simplest case of an optical medium containing
a radiative transfer process is that of a purely absorbing

medium. A purely absorbing optical medium X' is one in which
o(x;8',E) = 0 for every x in X and &',£ in Z, “An everyday

example of a purely absorbing medium is a uniformly exposed
photograph1c negatlve By holding such a negative to the eye
and viewing one's surroundings through it, the principal
radiative transfer feature of a purely absorblng medium is
readily perceived: Such media characteristically decrease
the radiance of a scene by a factor which depends only on the
inherent optical and geometric makeup of the medium and which
does not depend on the surrounding light field. .If the ab-
sorption properties of anoptical mediumX areuniform throughout



4 o CANONICAL FORMS VOL. III

X, then the factor of the observed decrease is a simple
exponential factor exp {-ar} depending only on the attenua-
tion coefficient o and the length r of one's path of sight
through the medium. 1In particular no light from the surrounds
of the path will be added to that of the path. Indeed, if
the universe wexe made up only of absorbing material, radia-
tive transfer theory beyond the use of the exponential func-
tion would not exist, so simple and straightforward is the
form of (1) of Sec. 3.15 when reduced to pure absorption case:

Np(2,8) = N (x,8) T (x,8) S

Equivalently (3) of Sec. 3.15 reducés to:

W - . o, eiNG,e) O

However, in all real media, absorption mechanisms are
accompanied by scattering mechanisms in the radiative pro-
cesses within such media. Hence, the losses summarized by
the volume attenuation function a include scattering losses
in addition to ‘the absorption losses. The losses due to .
scattering at a typical point of a path ((x,£) in general
optical medium X are readily characterize§ using the volume
scattering function of Sec. 3.14. Indeed the integral:

fﬂ(Z;E;E') da(g')

represents the total radiance loss by a beam of given wave-
length and unit radiance, under scattering without change in-
wavelength (elastic scatter) and per unit length at z, along
the direction E of the path R (x,£) at that point. This

interpretation follows readily from the developments in Sec.
3.14, i : C '

Let us write:

"s(z,€8)"  for fﬁ(z;e;i') da(g') - (3)

=

We call s the volume total seattering funetion on X. Further,
let us write:

;"a(z,i)" for o(z,£) - s(z,£) - (4)
so that: ‘

a(z,£) = a(z,8) + s(z,8)

We call the function a which assigns to each point z
on C%(x,g) the value a(z,£), the volume absorption funection
on X. The interpretation of a(z,f) is straightforward: = it
represents the loss of radiance per unit length at point z
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on (% (x,£) of a beam of unit radiance, the loss being due to
two  physical mechanisms: (i) the scattering of some of the
incident radiant flux into radiant flux of a different wave-
length than that of the incident beam (inelastic scatter or
tranepectral seatter); (ii) the conversion of some of the in-
cident radiant flux into non-radiant energy (true absorption).
Some forms of non-radiant energy pertinent here are: the
potential energy of higher stationary states in atomic sys-
tems, and the kinetic energy of motion of the molecules of
the optical medium. Since a(z,£) represents losses due to
all the mechanisms namely elastic scatter, inelastic scatter,
and true absorption, we expect on physical grounds that a(z,%)
is nonnegative for every z and £ in its domain of definition,
and we hypothesize the appropriate inequality to hold hence-
forth between o and s so that this nonnegativity of a(z,f)
is the case.

It is worthwhile to bring explicity to the reader's
attention the particular role played by the volume absorption-
function in radiative transfer theory. The function plays
the role of a catchall of all radiant flux losses undergone
by a beam of radiant flux other than by the mechanism of
elastic scatter. The two fundamental (or primary) optical
properties of a medium X are a and o. The concept a as de-
fined in (4) is a secondary preoperty, that is, one that is
derived from a and o as shown. The secondary nature of the
concept a follows from the fact that in practice absorption
cannot be observed directly, but only indirectly by means of
monitoring the initial and final states of a beam in trans-
mission and scattering arrangements in experimental settings.

Using the definition (4) of the function a, we can
write (1) or (2) in the form: .

T
N.(z,8) = N (x,E) exp f a(x',g)dr’.
' (%)

dN(i,EJ = -a(x,E) N(x,E)

where the integration is along the path Gi(x,glfwith
z = x + vt (see Fig. 3.33). :

4.3 Koschmieder's Equation for Radiance

‘ A classical problem of radiative transfer theory in
either the atmosphere or in the sea is to determine the
apparent radiance of an object as seen along a path of sight

(x,£) which lies in a homogeneous and uniformly lighted
region of an optical medium. Specifically, the problem is
to determine the apparent radiance Nr(z,i] given o and ¢
along (x,£), and No(x,£) at the initial endpoint x of .the

“path, along with the fact that each point of Gp(x,E) is
irradiated by the same radiance distribution (which may,
however, depend arbitrarily on £'). This situation (or some
redsonable approximation of it) arises often in the atmos-
phere and the sea, notably along horizontal paths of sight,
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and thereader should beable tocite many personally observed
instances of it. Koschmieder studied this classical setting
in detail, and-in 1924 published in [141] his analytic ex-
pression for N.(z,£) which was derived after lengthy prelimi-
naries and under the radiometric conditions stipulated above.
We(tur? now to a modern derivation of the expression for
Nr z,E8). :

Returning to (1) of Sec. 3.15 we assume o and o are
independent of z along (R(x,£). Then:

-ar
T (x,8) = e

where "ao" denotes the assumed fixed value of the volume
attenuation function along C%(x,&). Furthermore, since the
radiance distribution N(z,-) is independent of z along the
path then N,{(z,£) is also independent of z along the path and
we shall abbreviate this fixed value by "N,". Equation (1)
of Sec. 3.15 then reduces to:

(o]

and with the abbreviations "N," for Nr(z,£) and "N," for
No(x,£), this simplifies immegiately to:

_ -or _-ar _ .
Nr = Noe + Nq(l e ) (1)

where we have written:

"Nq" for N,/a {2)

Equation (1) is Xoschmieder’s equation which relates
apparent radiance Ny to N, on a path (. in an optical medium
along which o ‘and ¢ are constant valueﬁ and along which the
value N, of the path function is constant. The radiance N

is called the equilibrium radiance for (F,. The significance -

of Ng is seen by letting r+~ in (1), or alternately by con- .
templating the integrodifferential equation for Ny associated
with (%, as given in (3) of Sec. 3.15: :

dNr

o5 = - oNp + N, 3

Under our present assumptions, (3) is a relatively: o
innocuous first order differential equation in which a and
N, are constants and N, is the unknown function. Using (2)
we can rewrite (3) as: ' .

dNr ) S
w.ra = U(Nq - Nr) o . (4)

b oot eemm

B
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“from which weican immediately read the physical significance

of Ng: 1If N¢'< Ngq at a point on the path, then dN,/dr > 0,
i.e., Ny is 1hcrea51ng at that point. In general, N always
tends toward the fixed radiance N and WN,/dr = 0 i¥ and
only if N, Therefore N taﬂes on thé aspect of an

'equ111br1um vague (in an everg day sense) toward which the

values Ny unceasingly tend. The equilibrium radiance Ny is
often observable over long horizental uniformly lighted paths
through a homogeneous natural aerosol or hydrosol.

It should be observed that the derivation of (1) places
no conditions on the orientation or the location of the path
Gy in an optical medium. The essential point to observe in
the derivation is that (1) follows from (1) of Sec. 3.15 upon’
assuming only .that o, o and N, are constant long 4%. This
leaves free to be vertical, inclined, or horizontal, as
the case may be. An interesting example of (1) for inclined
paths of sight in the atmosphere may be obtained from the
results in [71].

4.4  The Classical Canonical Equation

In this section we continue to ascend the ladder of

"generality and derive still further instances of canonical

radiance equations. We still have not reached the most
general physical setting in which  the canonical equation can
hold; but we have reached the point where the full canonical
structure of the equation finally emerges, and we turn now
to the derivation of that form.

Let (h(x,8) be an arbitrary line of sight in a homoge-
neous optical medium X. To fix ideas, let the medium X be a
natural hydrosol, and let us adopt the standard coordinate
frame for such a setting (Sec. 2.4 and Fig. 2.3). Let
G (x,E) be positioned as shown in Fig. 4.1.: -

With the geometry fixed as in Fig. 4.1, we now assume
a-and o to be 1ndependent of location along the generally
inclined path Up(x,£), and that the light field does not vary
over a given horizontal plane, i.e., the light field is strat-
ified. The new feature of the canonical equation appears by
assuming that there exists a nonnegative real number K {which-
-is less than a) such that:

Ne(z,8) = Ny(zy,8) e F(27%) ()

for every path (P.(x,£) in X. This means that we are hypoth-
_esizing an exponential decrease of N,(z,£) with depth z in X.
The justification for this assumption rests -on both experi-
mental and theoretical grounds. . For an experimental justifi-
cation, see Sec. 1.2; for theoretical justifications see
Secs. 1.3, 7.10, 8.5, 8.6 and Sec. 10.7. For the present, we
‘are concerned primarily with the resultant form of (6) of
Sec. 3.13 to which this.assumption leads us. Thus starting
with (6) of Sec. 3.13, we have:

.
N (z,8) = N (x,6)T_(x,6) + jr Ny (x',E)T_ [y (x',E) dr'
0 . .
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by

FIG. 4.1 Setting for the derivation of the c1a551ca1
canonical equation for radiance.

Since N,(x',£) depends only on the depth z' of the
point x' along (R(x,E), we may drop references to x and y
.coordlnates and need only relate the variable of 1ntegrat10n
r' with z' usxng the relation:

z' = z, - T' cos ©

so that:

dz'

- cos 6 dr’ .

The equation for Np(z,E) with "z" denoting depth, then
becomes:

. ' . -
Nr(Z,E) - Nd(zo,g)e-ar t}f N*(zo’gje-K(z'-zo)e-a(r-r-)ldr'

Ty
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That is:
N,(z,£)

Hence:

N.(z,8)

-ar
=N°(z°,£)e

CANONICAL EQUATION

vlo.

T

= No(zo,E)e-ar-+N*(zo,£) J(exp {Kr' cos 8 -a(r-r') }dr!'

0

N*_(zbbg) mar

5T X o5 [gxp{(a +K'cose)r}—1]

, U51ng (1) once again and the connection between z and
T along G- (x,8), we have:

Nr(z

,€) =No(z,5)e'ar . aNi(Z!Egs - [1_e-(a fK cosB)r] 2)

which is
for N,(z,

»We

the desired form of the cZaschaZ canonzcaz equation
£). v

now make several observations on the structure of

(2). First of all, (2) is a proper generalization of equa-
tions (1) of Secs.4.1 and 4.2, and of Koschmieder's equation
in Sec. 4.3, reducing to the latter either when K # 0 and

0= n/2,

or when K = 0 and 8 arbltrary In all real natural

hydrosols, K # 0 so that Koschmieder's equation holds in
natural hydrosols only when 6 = w/2., In the atmosphere on

relative
long hor
tion hol
phere (c

As

ly clear days, K = 0 (very nearly) over relatlvely
izontal or inclined paths, and so Koschmieder's equa-
ds over relatively extensive regions in the atmos-
f., Ref. [71]).

a second observation, we note that the main use of

(2) is to predict the apparent radiance Ny of given ObJeCtS

in natur
mable.
radiance
medium,

If we now write:

which is
radiance
the form:

al optical media when o, K and Ng are known or esti-
Furthermore, (2) yields a useful estimate of the path
Nf generated over a path of sight in an optical

that is, .

NA(z,8) = aNE(zaiés - {1_e-(a + K éos G)r] )

"Ng (z E)"  for Nu(z,E)/a(z,8) - (4)

a stralghtforward generalization of the equilibrium
defined in (2) of 4.3, (3) may then be rendered in

r . .
= Noczolg)e—ar.+Nt(zo’£)e-urf exp{(a+Kcos8)r'} dr' .
' 0 .
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N (z,£)

(l-e'(“ + K cos e)r) (5)
1+ 3 cos )

N;’.(Z ’E) =

This shows that the equilibrium radiance N (z,E) is
observable only for infinitely long horisontal pgths in _
natural hydrosols. For other paths, N_ contributes to the
observable quantity N} in the manner sflown in (5) but itself
is not directly observable. .

As a third observation imagine a descent into a deep
hydrosol, such as a deep lake or part of the ocean. Let
No(z,£) be the inherent radiance of the air-water boundary
for directions § in EZ_, and N,(z,,£) be the inherent radi-
ance of the lower boundary of the medium for directions
in 4. Then when the optical distance ar to the boundaries
becomes relatively large, o-ar becomes relatively small.
Under such conditions Np(z,£) is expressed essentially in the
form (5), with the exponential term in (5) also negligible.
Hence, at relatively great depths in deep natural hydrosols
we have essentially: _ .

N (z,£) L
N(z,£) = . (8)
1+ 3 cos 6

where "r'" has now been dropped from the notation as being
inessential. Thus the radiance distribution N(z,f) at rela-
tively great depths z is basically an ellipsoid of revolution
with vertical axis and with eccentricity € = K/a, which-is
modified, as shown in (6), by the equilibrium radiance dis-

tribution Nq(z,E) at the same depth.

There -is a special class of homogeneous optical media
for which (6) reduces to precisely the ellipsoid of revolu-
tion of eccéntricity ¢, namely media for which o(z,£';E) is
independent of £' and £. , For such media we have from the.
definition (3) of Sec. 4.2: ’

' o(z,E',E) = s/4n P (7)»
so that from (8) of Sec. 3.14:
Na(z,8) = s h(z)/4n , - (8

where h(z) is. the scalar irradiance induced by N(z,£) (Sec.
2.7). PREEI
If we write: »
"o for s/a ,
which is the albéedo for single scattering, or scattering-
attenuation. ratio, then (6) becomes: :

N(z,£) = —2h(Z) BN
4m(l + 3 cos 8)
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1t is quite clear from (8) that N,(z,g) is independent of &,

and that:
h(z) = h(zo)e’K(Z‘zo) : (10)

From this we see that there is in N(z,f) a multiplica-
tive uncoupling of depth (z) and directional (8 or f) param-
eters and that scalar irradiance and path function values
both decrease exponentially with depth and at equal rates.
This multiplicative uncoupling of z and £ «can be represented
as a product of a function of z only and a function of £ only,
i't is of far-reaching importance in the general theory of solu-
tions of the equation of transfer. (See Sec. 6.6.)  Further-
more, we shall return to (6) and to (9) once again in Sec.
10.5, when the problem of the asymptotic radiance distribu-
tion at great depths is examined in a more rigorous fashion.

The preceding observations point up the versatility of
the classical canonical form of the equation of transfer and
suggest that of all the various equations éncountered .in
practice, (2) is perhaps the most handy and succinct rule of

‘thumb on natural light field behavior to carry around in

one's memory. To add to the evidence of the utility of (2)
we now deduce from it two further features 'of natural light
fields.

First, we may ask: What is the behavior of path radi-
N%(z,£) for very short paths of sight? This question directs
attention to a situation which complements that centered
around (6). Now from elementary calculus it is at once clear
that:

j.e"(a + K cos @)r _ (e + XK cos 8)r + o(r)

where o(r) is a function such limysgo(r)/r.= 0, so that for
small r, o(r) is an infinitesimal of order higher than r.

“Therefore (3) reduces, within first order terms in r, to:

N3(z,E) = Nalz,E)r (1

Hence the answer to the question posed above is that
for short paths of light N¥(z,f) varies linearly with r, the
proportionality facter being N,(z,8). -

Finally, we may ask: What is the structure of the
apparent radiance distribution near the air-water boundary,
i,e., for very shallow depths? This query rounds out the
complementary situation to that in (6) which describes the
light field at relatively great depths. We take a simple
case to illustrate the manner in which such questions may be
answered using the canonical equation for radiance. Suppose
the sky above the natural hydrosol is a deep.blue and the
sun is the only bright source of light in the azure hemi-
sphere. Let attention be directed at a relatively dark point
of sky away from the sun's disc. Hence the radiance N,(0,£)"
(with £ in Z_) from that portion of the sky as seen from just
below thesurface is very small compared tothe sun's radiance.
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Now keeplng ¢ fixed, let depth z increase. 1If the term
No(0,E)e %% .is negligible, as we now wish it to be, then _
N £(2z,E) is given essentlally by N* (z £). For small depths z
(and hence small path lengths r), N (z £) is essentially 0.
As z increases through small depths, N#(z,£) builds up lin-
early in magnitude according to (11). For still further
increases in z, N§(z,f) eventually levels off, reaches a
maximum, and then subsequently plunges toward zero exponen-
tially with.rate K as z+», All this information is read off
during an inspection of (3). We can obtain an estimate of
the depth z-at which the maximum path radiance is reached.
Thus, from elementary calculus we find the maximum of Nr(z £)
with respect to z by holding £ fixed, differentiating with
respect for z, and setting the derlvatlve equal to zero.
First, recalling that:

%; = - sec 0 - ,

we then use (3) to differentiate N;(Z,E):

dN7(z,8)  dN4(z,E)/dz
dz * ¥ X cos @

Ng(z,£) d 1- -(a¢ + K cos 8)r
%@+ Xcos e dz |17° -

) "KN*CZ ’E)
" @+ K cos 8

Na(z,8) ( .
. -(a+Kcos8)r. dr
M K cos 6 (a+Kcost)e N

[l_e-(a + K cos e)r] ;

+

[l—e‘(u ; K cos e)r]

Setting the derivative to zero, and solving for Zm, the
value of z which maximizes N%(z,f), we have:

- AR o

where "e'" is again written for K/a.

Still further, more realistic models can be constructed’

for the radiance patterns at shallow depths in natural waters
using similar procedures but now based on the full form of
the classical canonical equation (2); the explorations of

such models and that of (12) are still in their early stages

of development and are left to interested students of the
subject. Figure 4.2, taken from [298], depicts a comparison
plot between some computed values of N,.(z,f) (solid curve)
using (2) with actual observed rad1ances and path function
values at the surface obtained in a real situation, and

thereby illustrates graphically the predictive power of the..

simple model of natural light fields summarized in (2). Ob-
serve in particular the reasonably good agreement between the
predicted and observed value of the depth z, at which maxi-
mum radiance occurs.

[ S S
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FIG. 4.2 Tyler's experimental verification (dots) of the
. curves predicted by the classical canonical equation for radi-
ance. oo #

Further models beyond (2) may now beexplored by letting
K vary in various known ways with depth, so that slightly
more general forms than (1) are the starting points for the
integration of the equation of transfer. In view of the fact
that N, generally behaves very nearly in an exponential man-
ner with depth, these departures of K from constancy need
only be very slight to cover most real situations. The basis
for these generalizations is given in (19) of Sec. 4.5.
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4.5 The General Canonical Equation for Radiance

The purpose of this section is to draw attention to a
general pattern discernible in the various expressions, de-
rived in the foregoing sections, for the apparent radiance N,
which is the logical c ommon denominator of the large collection
of analytic expressions for N, which occur in. the everyday
studies of atmospheric and hygrologlc optics. No specific
or general problems of applied radiative transfer theory are
intended to be solved for the moment, and no new numerical
methods are expected to be immediately forthcoming. We seek
instead to determine a general equation which will unify and
hold within its form, as special cases, the various ways of
correctly representing the apparent radiances of both near
and distance parts of one's radiometric environment. In .
short, weextract from theexamples discussed above and others
in the literature, the general canonical representation of
the apparent radiance function which will hold for all cases
occurring in geophysical optics.

The key concept leading to the formulation of the appro-
priate canonical representation of apparent radiance turns
out tobe that ofa generalized form of radignce tranemittance
associated with a path of sight GP(x £) in an optical medium.
This concept is suggested after a study of the integral rep-
resentat1on of the beam transmittance T (x,f) associated with

&.(x,£), as given in (3) of Sec. 3.11, while keeping in mind.
tﬁe basic property of Tr(x,E) as summarlzed in (4) of Sec.:
3.10, that is, the fact that Tye(x,E) is the ratio of the beanm-
transmltted radiance N9(z,£) to the initial inherent radiance

No(x,£) over a path G fx £). Suppose now we take the ratio
of N.(z,8) to N o(X, E), i.e., of the apparent radiance to the’
inherent radianle over the path G (x,5). Let us call this'
ratio the radiance tranemittance of the path’ G(x,8). It is
quite evident that the beam transmittance and {he radiance .
transmittance of a given path are generally two distinct
numbers.. We now ask: Can the radiance transmittance just
defined be given an integral representation-analogous to that
for beam transmittance? For, if so, then it is quite a sim-
ple matter to.construct the appropriate generalization of (2)
of Sec. 4.4 without the encumbrance of special restrictive
assumptions of the kind in (1) of Sec. 4.4 which, while jus-
tifiable in many useful contexts, distract from the mathe- _
matical elegance and physical completeness. of the resultant
canonical representation of Ny(z,£).

The requlslte integral representation of the radiance
transmittance is readily obtained by building an analogy on
the fact that o, the key function in theintegral gepresenta-
tion of Tr(z,g),ls thelogar1thm1c derivative ofNr(z £) along
the path. This observation is based on (3) of Sec. 3.10 and
(2) of Sec. 3.11. Some preliminary experlmentatlon leads to .
the following definition of the appropriate analogue of a.
required in the present dlscu551on. Thus let us write:

"K" for -WN/N | . (-

Here V is the spatial gradient operator and N is a gen-
eral radiance function defined and differentiable in aregion

o
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X such that N does not vanish in X. If (R.(x,§) is a path in
X, and N, and Ny are the radiances along the path at points
X and X +r£, respectively, then it is a simple exercise in
calculus to show that, under the preceding conditions on N,

. T C :
N /N, = exp -f £+ K dr' (2)
0 ,

where the integration is along the path (R(x,E). We

shall call K the general X- -function for radlance, it is a
most useful concept not only in the present discussion, but
in many practical investigations .of light in natural media.
By means of K we can cast the equation of transfer (3) of .
Sec. 3.15 into ecanonieal form as follows: Since d/dr is the
direction derivative operation along the path,

dN(z,8)

M2,8) - ¢ . Wz, , (3)

and we have:
& + WN(z,8) = - ¢ - K(Z)E)N(Z;E), - (4)

by (1). From this we see that an immediate effect of the
introduction of K is to replace the differential operation
occurring in the equation of transfer by an ostensibly alge-
braic operation. The effect of this replacement on the equa-
tion of transfer is striking, as may be seen by writing (3)
of Sec. 3.15 in abbreviated form:

» E » VN = - aN + N,
and using (1), the equation becomes:
- &£ » KN = - aN + Ny
which, upon solving for'N, becomes:
Ny
NTETTX

or in more detailed notations:

Nty ARtk | )

Equation (5) is the general canonical form of the equation of
transfer, It forms a key step in the derivations of the )
present section, and will also be used later in our studies
of optical properties of natural hydrosols (Sec. 9.5). But
for the present the reader should compare (5) above with (6)
of 4.4 and note the close resemblance between that earlier
approximate formula and the present exact formula (5).
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Canonical Repreéentation of Apparent Radiance
We can turn now to the details of the derivation of the
requisite canonical representation of apparent radiance. The

derivation will be facilitated if we adopt the following nota-
tion. We wr1te

r .
"Trr[f]" for exp { j fdr® - (6)
. 0 , T

for every admissible function £ on & (x,£), i.e., for every
f defined and 1ntegrable, over a patﬁC? (x,E) of an optical
medium X. In this notation, beam transmlttance becomes:

T (x,8) = T_[-a] - | (M

and radiance transmittance becomes Ty[-£+K]. Observe that if
f and g are two admissible functions on @p(x,£), then:

| TIf + g] = T_[£1T [g] |
and that: ' ' (8)
Nt e 1 ey = - |

Henceforth we shall assume that o and £*K are admissible. on
each path.

We begin the general derivation with (5) of Sec. 3.13:
v = [s] * :
N = N_+ NX (%)

which is the géneral representation of apparent radiance in
decomposed form, i.e., in terms of beam transmitted inherent
radiance N and path radiance N§ on a path @ (x,E). :

We use (9) to sugpest the construction of the follow-

ing identity: .
) : . ‘
L] I ¢ 0

which of course has no physical content, and is logically
equivalent to the statement:

0o=0 . (11)
However, we next observe that: ,
) ' .

N; = N T [-e] : (121

and that:
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N, = NT_[-£°K] : (13)
and with these oﬁservations, (10) 1is transformed with the
help of (8) into:

N = NT [-a] + Nr(l—Tr[-a]T;l[-€°R]l

='N0Tf[—a] + Nr(l—Tr[—(u-E-x)]] - (14)

' Even though (14) is entirely devoid of physical meaning,
and even though it is logically equivalent to (11), it never-
theless seems to be on the verge of saying something physi-
cally significant by virtue of the fact that it has the gen-
éral form of (2) of Sec. 4.4, At this point the canonical
form (5) of the equation of transfer makes its entrance. By
using (5) to replace Ny on the right side of (14), life is
breathed, so to speak, into the cold symbolic clay of (14)
and we obtain:

N . ,
Ny = NoT [0 + gy (1-Tr[-(a-a-x)1 (15)

This is the desired general form of the canonical
repregentation of apparent radiance Np over a path Pp(x,E).
The radiance Ny in (15) is no longer arbitrary and free as
in (14); now Ny in (15) is indissolubly locked to the optical
properties of the medium via the equation of - transfer. Equa-
tion (15) is the most general form of (2) of Sec. 4.4 attain-
able for unpolarized steady radiance functions in a general
source-free optical medium. The quantity Ty[-E-X] in (13)
is called the radiance transmittance associated with (Pp(x,&).
It will be studied further, along with related transmittance
‘concepts, in Sec. 9.5.

The Canonical Form for Stratified Media

As an application of (15) we now derive the appropriate
instance of the equation in an arbitrary stratified natural
hydrosol. The result will be a canonical representation for
N.. about midway in generality between (2) of Sec. 4.4 and
(IS) above. We shall use without further explanation the
terrestrially based coordinate system for Lydrologic optics
described in Sec. 2.4. (See Fig. 4.1.)

The reduction of (15) begins with the observation that
from (1) we have in general: .

K = i + §J + kK : (16)

where we have written:

2
MEA

""" for -
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(1] " - }- BN :
J for N 5

o for - L

and where 1, §, and k are the unit vectors for a right-hand
Cartesian coordinate system. For the particular coordinate
system of hydrologic optics (Fig. 4.1) we must replace (16)
by: : :
E =11 + 4J - kK (17)
For a stratified plane parallel medium all radiometric
and optical functions are independent of x and y. Hence the
x and y derivatives I and J above are zero, and so:
E+K=-§5kK=-Kcos 8 ’ (18)

and (15) becomes

, ” .
Np = NoTel-o] * 5y eors (1‘Tr[‘(“ + K cos e)l] 9

This equation is exact and completely general for plane
parallel media; o and K have general depth and direction de-

pendence. Other than the stratification condition summarized

in (18) and the current choice of coordinates summarized in
(17), the canonical equation (19) holds for completely arbi-
trary lighting conditions and optical properties in a plane-
parallel optical medium. In particular it should be noted
that the function K in (19) may, according to (1)} and (17),
be defined within the plane-parallel context directly by
writing: : o

"K(z,8)" for prripy SEEl . (20)

This is an operational definition of K(z,{) using directly

observable radiances N(z,£); and so K, as it occurs in-(19), - :

is quite general in the plane-parallel setting. We shall
study the depth behavior of K(z,E) in some detail in Secs.
10.5 and 10.6. The reader should particularly note that (20)
may serve as an operational definition of K in stratified
plane parallel media. The associated canonical form of the
equation of transfer is:

= Na(z,£ . ’ - ’
N(z,8) = a(xy + ﬁ(z,i%’cos 8 (21],

Equation (19) reduces to (2) of Sec, 4.4 upon requiring

¢ and K to be independent of depth z 'in the hydrosol. For
then: : o
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T [-a] = exp {-ar}
Tr[-(u + K cos 6)] = exp {-(a + K cos 0)r}

This points up one of the primary reasons for using the
logarithmic derivative in (1) for the definition of XK. 1In
most natural hydrosols all radiometric quantities (radiance,
path function, irradiance, etc.) have potentially constant
" logarithmic derivatives with respect to depth. Indeed, in
Sec¢s, 7.9, 7,10, and 7.11, it will be shown that this fact
holds for quite wide geometrical and physical settings. This
observation suggests further models of natural light fields
that may be derived from (19). For by postulating a certain
depth dependence of K suggested by experiment .or theory (these
aré usually relatively mild dependences) and placing that-
depth dependenceé in (19), new models of Ny and N¥ can be ob-
tained which will fall somewhere between (2) of Sec. 4.4 and
(19) as regards tractability in computation and fidelity of
description of light fiélds.

4.6 Canonical Representation of Polarized Radiance

In this section we shall extend the notion of the ca-
nonical representation of apparent radiance to the polarized
context. One consequence will be a representation of polar-
ized radiance distributions in stratified natural hydrosols
comparable in simplicity and utility to the scalar equation
(2) of Sec. 4.4. The resultant polarized canonical form also
suggests some interesting experimental programs that may be
performed for polarized light fields in natural hydrosols.
These will be briefly outlined at the conclusion of the sec-
tion.

In order to establish the polarized version of (15) of
Sec. 4.5, it seems natural to try to repeat the constructions
between (1) and (15) of Sec. 4.5, now for each of the four
components jN of the polarized observable radiance vector N
(Sec. 2.10). Thus let us write:

" >_

"Ki for viN/iN ' ] 1)
for each component ;N of N, i = 1,2,3,4, and let us write_i
(7) of Sec. 3.15 as: _

E-UN = -oN + N, _ - ()

where we have written:

HN*" for [ N P dq . o (3)

where p is the standard observable volume scattering matrix.
All that we need know about the standard observable volume
scattering matrix p in the present derivation is that it is
a 4 by 4 matrix with entry Pij in the ith row and jth column.
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In particular the problem of how thepjj are obtained in
principle or.in practice is immaterial” for the present deri-
vation, since we are concerned only with the mathematical
process of constructing the vector counterpart to (15) of
Sec. 4.5. The matrix p is defined and discussed in detail
in Sec. 112 of Ref. [251].

The cancnical equation of transfer in the scalar con-
text now becomes four coupled scalar equations in the polar-
ized context as follows., We first write:

"pi" for (Pli’ Pyys Py P4i) - (4)
Next we read off the ith component of (2), i = 1,2,3,4:
E<V.N = - a N + ;N, (5)

where we have written:

"Ny for [ﬁ-pidﬂ ‘ .(6’)

it follows from {3) .and (6) that:

N

He = (N ,Nas 5

*9 4Na) . o (73

Using (1) in (5) and solving the result for 3N:

iN# o '
iN e 0 PN ‘ -';(g)

This is the canonical equation of transfer for polarized
. radiance, which holds for each i = 1,2,3,4., Continuing as
in Sec. 4.5, we deduce for i = 1,2,3,4: ' o

T v
iNr/iNo = exp { - j[ E°K; dr'} (D)
. o ) .

which is the vector component counterpért to (2) of Sec. 4.5.
Applying the notation "T,.[f]" of Sec. 4.5 to the present ‘con-
text,. (9) may be wrltten

e = NI Cao

and we observe'that:
. o ‘ _
iNr = JNoTr[ al A (11?

It now follows readily that for every i = 1,2,3,4:

=
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Ny B
iNr = iNOTr[—Au] + ‘CTEEQTK—I— (l'Tr[—(a-{;-xl)]) (12)

which is the desired canonical representation of polarized
‘radiance.

The set of four equations (12) are coupled by means of
the terms jN,. For example, the representation for 1N, uses
1Ns where , g

N = ,I’[lell MPLLISTRAEL FTURIL PRY L

A Simple Model for Polarized Light‘Fiélds

We now give some attention to the construction of a
simple model for polarized light fields in stratified natu-
ral hydrosols, the constructions being guided by the success-
ful scalar prototype in Sec. 4.4. In the scalar case, the

"effective step was to assume that there was a nonnegative
number K, less than a, such that: i

Ne(z,8) = Ny(zg,8)e (27200 (13)

This suggests that we take each jN,, i = 1,2,3,4, which by
(6) has the form:

iNx = (1NP1i * oNppy 3NP3; * 4NP411d9 (14)

and agree to write:

"5iNa" for Npyy de L (15)

$““\

.so that jN, will have the representation:
iNe = 1iNa + 3Na * g3Ne + 45N (16)

Then, still being guided by the prototype (13) we agree to
make the following assumption: the four nonnegative real
numbers K;, as defined in (1), are each less than &, and
such that: :

51N (2,8) w(zg,8)e K5 (2720 - (17)

= ..N
ji
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for every i, j = 1,2,3,4, where K; now is the z-component of
K;j--the only nonzero component ot Xi by virtue of our cur-
rént assumption about the stratifica%ion of the light field
in natural waters. Under these assumptions, (12) reduces to:

- ;N (ZIE) - '
iNr(2,8) =N, (z,8)e ar+3%+_;iTps—e [1-e (a +X; cos B)r] (18)

for i = 1,2,3,4, and where:

Na(z,8) = [N, (z ,8)e K1(2720)

+

2iNa(z,,8)e ¥2(27%0)

-K3(z-2,)

+

:’;iN*(zo’E)e

+

4iN# (Zo,ﬁ)e'x“(z'%)‘

or more compactly:

Ny(zg,6)e ¥3 (2 %0) a9

4
iN*(?:E) = jZl jl

Experimental Questions

The derivation of the canonical representation (18)-
for polarized radiance incorporated several assumptions which,.
even though suggested by the well-established scalar case of
‘Sec. 4.4, require some critical examination before they are
fully accepted. These assumptions in turn raise certain spe-
-cific questions concerning the nature of polarized light-
fields in nhatural hydrosols in general and the nature of the
K-functions in particular. We shall conclude the present
section with a brief statement and discussion of these ques-
tions.

First of all, the definition of each Kj as given in (1),
is a constructive definition and hence presents no difficulty
in being translated into operational terms, so that actual '
experimental determinations of the Kj are possible in prih-
~ciple. These determinations should parallel very closely
those already developed for the function K in (20) of Sec.. .

4.5, because Kj, as K, is a logarithmic derivative of a radi-

ance function. The main difference between Ki and K is -
simply that each Kj is associated with the component of a
vector valued function while X is associated with a scalar.
valued function. Thus with the extra attachments of wave
plates and polarizers on the radiance meter required to mea-
.sure the poldrized radiance, one performs essentially those.
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operations with the radiance meter that one performs to find
K, but now four times over for each Kj, i = 1,2,3,4.

With the matter of the measurability of the K; settled,
at least in principle, we now ask the first que<t10n that
comes to mind concerning the Kj Is there some observable
regular pattern in the 1nd1v1dual depth-behavior and in the
relative magnitudes of the four functions Ky, K, K3, Kz?
This is actually two questions in one, and it may be simpler
to phrase them separately.  The first question may bephrased:
Is there some observable regularity in the depth behavior of
each K;? The second question may then be rendered as: Is
" there some observable regularity in the relative magnttudes
of the K;? As far as the first question is concetned, it is
"expected on simple physical grounds that the individual depth
behavior of each K; should follow very closely that of the
scalar K defined in (20) of Sec. 4.5. In particular the
depth behavior of the Ki at relatively great .depths in homo-
geneous media should be quite regular and should follow the
patterns discussed in Sec. 7.10 and Sec. 10.6 dealing with
the asymptotic radiance theorem. Some attention to this ques-.
tion has been given by Lenoble [157]. The second question is
more difficult to answer and, in view of the present state of
development of the theory of polarized light fields in nat-
ural optical media, it appears likely that a definitive an-
swer will be forthcoming first from experimental investiga-
tions. Nevertheless, it is interesting to speculate on the
possible interrelations among the Kij. Thus, suppose that the
Kj are all equal to a common value, then the set of equations
.in (18) assumes a particularly simple form. It follows that
any differences between jNy and jNy will depend solely on the
state of affairs between them at” the surface of the medium.
~On the other hand, if there are two Ky's which differ at all

depths then the rad1ance component assoc1ated with the larger
K; will decay with depth more quickly than the other. As a
result, those components of N with the smallest K;j's will
persist down to greater depths than the others with larger.
Ki's. By contemplating these possibilities and by taking
~into account the known properties of the unpolarized light
field, the general state of affairs for the functions Kj will
most likely turn out as follows: Near the surface the Kj's
will differ, and there will be some permanent characteristic
pattern of relative sizes discernible among them which is
related to the state of the sea surface, and. to the polarized
state of the sky; however, the transmitted sky-polarization
and under-surface reflection-induced pattern will eventually.
disappear with increasing depth in such a manner that in the
limit, all the values K} tend to a common value independent
of‘the state of the sky's polarization, with an-attendant
asymptotic value of the polarization of the light field.
"This common value of the Kj's will be that of the depth decay
rate of scalar irradiance h(z), which should be determined
only by the inherent optical properties of the medium, just
as in the scalar case. It remains to be seen how this con-
"jecture is borne out by experimental studies. Our review of
“the experimental work of Ivanoff and Waterman in 1.2 shows
some encouraging agreement in this direction.

While attention is directed toward the possible struc-
ture of the functions Kj at great depths and while conjectures
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about the Kj are being made, it might be in place to add some
further conjectures about the light field itself in addition
to its depth-rates of decay Kj. When one imagines the nat-
ural light field at great depths one is led to picture a pre-
dominantly downward feeble flow of light, the radiance pat-
tern being graphically depicted by an ellipsoid-like surface
with vertical axis. If this light field is conceptually -
analyzed for polarization features, it seems--on intuitive
grounds--that the radiance vector for vertical downward or
upward flux should have the form {1/2)(N,N,N,N}, i.e., verti-
cal downward or upward-radiance should be unpolarized. Fur-
thermore, it seems that the horizontal radiance should be
horizontally linearly polarized, i.e., have the form (1/2) x
(0,2N,N,N). This follows from the fact that the flow is
predominantly vertical and beamlike (and of course very feeble)
at great depths.. Since natural light fields change continu-
ously rather than abruptly in most macroscopic settings, we
would expect the radiance vector components to vary contin--
uously between these two extremes as the angle of the radi-
ance direction varies from 6 = 0 {(vertical upward), or m .
(vertical downward) to 6 = n/2 (horizontal). A simple model
for this radiance N(8) which comes readily to mind and which
satisfies these conditions is:

N(8) = % (N cos? 8, N(1 + sin? 6), N, N)

where 8 is measured from the zenith and N is the fixed refer-
ences radiance for ¢ = o at each depth. All these assertions
are at this-stage of our knowledge of. course conjectural,
being based on a modicum of physical experience with polar-
ized radiance fields in natural waters, and are intended pri-
marily to perform a heuristic service. It will be 1left to
interested researchers to.carry this matter to a more satis-
factory state of affairs, both theoretically and experiment-
ally. A possible theoretical approach can be based on the
polarized version of (21) of Sec. 10.7, or on (29), (31) of
Sec. 7.10. These approaches may show that the preceding con-
jecture must be modified to take into account the structure:
of the volume scattering matrix (cf. (24) of Sec. 13.6) of
the medium. :

4.7 Abstract Versions of ChndnicalrEquations

The discussions of the present chapter have. carried
the notion of.canonical radiance forms over a great concep-
tual distance, starting from the rudimentary canonical repre-
sentation (1) of Sec. 4.0 discovered by Bouguer nearly two
centuries ago and up to the representation in (12) of Sec.
4.6. Such a task could not have been carried out in the
indicated manner without the convenient milestones in the
development of the theory provided by early workers such as-
Schuster, Koschmieder, and others. It seems that the repre- .
sentations finally reached in Secs. 4.5 and 4.6 constiftiute
the most general forms for radiance concepts attainable
which are physically meaningful. Their basic forms remain
essentially intact by allowing more general physical fea-
tures to appear such as the time-dependent radiance terms
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and emission terms in the basic equation of transfer. In
view of the apparent ubiquity of the canonical representation
.throughout the domain of pure and applied radiative transfer
theory (e.g., see the canonical equations in Chapter 11) and
in view of the seeming ease with which the "equation of trans--
- fer is molded into its canonical form, we are led to inquire
whether the notion of a canonical representation is indige-
nous only to radiative transfer theory or whetler in our
- labors in this special field we have touched upon merely the
shadow or projection, so to speak, of a more general analytic
phenomenon in modern operator theory. It appears that the
latter possibility is the case and we pause briefly here to
sketch in outline the general mathematical setting in which
the notion of the canonical representation appears to take a
natural place.

Let L be a general (not necessarily linear) operator
defined on a domain ® of functions such that for each func-
tion. £ in ® there is a function g in 2 and a number X such
that:

Lf = Af + g . (1)

‘ This is the abstract counterpart to the equation of
transfer with L replacing the derivative operation £V, and
g replacing N4, and where f replaces N. The number A is non-
zero and may be real or complex and is evidently a replace-
ment of -a. Now let us write:

llf 141 f - A .
q or g/

Then (1) can be written:

Lf = xcf—fq) , , (2)

and this should be compared with (4) of Sec. 4.3. Hence
fq is the abstract vestige of equilibrium radiance, so
that Lf = 0 if and only if f = fq. Next write

"e"  for -Lf/f o (3)
sq'that k is the abstract vestige of K, and_(i) becomes:
-kf = Af + g v

Sdlving_this for f:

£ = I (@)

which is the requisite abstract canonical form of equation
(1) associated with the operator L. An alternate form of
(4) is obtained by using fq
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R . . (5)

This basic form is applicable to all manners of radiometric
concepts and optical properties. See, e.g., the various
specific forms of (5) appearing throughout Chapter 11.

The abstract version of the canonical representation of
f now follows readily from (4) or (5) by emulating (10) of
Sec. 4.5. Now that a decomposition of £ into "reduced" and -
"diffuse" may not be natural, we 51mp1y represent f by the.
1dent1ty .

f= fT + £(1-T) . (6)

where T is any suitable operator on @ and "1'" denotes the
identity transformation on ® . Then using (4), this becomes:

f o D | M

which is an abstract canonical representation of f with re-
spect to the operators T and L, via equation (1), and is to
be compared to (15) of Sec. 4.5.

A more direct generalization of (15) of Sec. 4, 5
(which retains the idea of "diffuse" and "reduced" compo-
nents) follows upon replacing (6) by: :

£=f ¢ (£-£) (8

and deflnlng two operators S and T such that there exists a
function ¢4 w1th the property that

= ¢, T (cf. (12) of 4.5) . _(é)
£=¢,8 (cf. (13) of 4.sj
With these Qefinitions (85 becomes -
£f=09, T+ ($,5-¢,T)

whence

Fh
L]

8T + £(1-8571 1) . 0)

Let us write
..1‘

" for S T‘

then we obtain,
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£= 9T + £(1-7) (11)

which with (4) becomes:

£ = 0,7 + ey (1°T) . (12)

This is the requisite abstract version of (15) of Sec. 4.5,
‘and the ultimate generalization of (1) of Sec. 4.0 to be
attémpted here. We say that (12) is the canonical represen-
tation of f with respect to the operators L, T, S, via the
equation (1). The operator t turns.out to be the abstract
counterpart tothe contrast transmittance function (Sec. 9.5).

) By performing thepreceding constructions of the abstract

version of thecanonical representation we gain adeep insight
into the essential mathematical structure of the canonical
representations in radiative transfer theory. Our construc-
tions show us, in particular, that the essential physical
kernel of (12) is bound up in the term -g/() +«), and that
the overall general structure of (12), as given by (8) or
{(11), is a mere mathematical tautology. It seems somewhat
noteworthy, therefore, that Bouguer, who discovered the first
definitive trace of the canonical equation in the form (1) of
Sec. 4.0, managed to light upon the essential form but yet
with only partial realization of the significance of the two
key physical terms a and b of the canonical form. The les-
sons of this chapter and hindsight now let us see that within
the apparently insignificant term b, as it occurs in (1) of
Sec., 4.0, resides not only the notion-of equilibrium radiance,
but actually the equation of transfer for radiance, the basic
law of all of radiative transfer theory.

4,8 Bibliggraphic Notes for Chapter 4

One of the ecarliest known instances of the canonical
form of the equation of transfer was written down by Bouguer
in his classical treatise on 1light, recently translated by
Middleton [28]. The equation appears in essentially the form
it is closest to the basic integral representation of the
equation of transfer as given in (5) of Sec. 3.13. Soon after
Schuster formulated his celebrated two-flow equations [279],
Schwarzschild [281] in 1906 formulated an expression for what
we now call "path radiance", and later, in 1914, Schwarzs-
child [282] incorporated it into an expression for radiance,
which is essentially (6) of Sec. 3.13. The latter equation
was our point of departure from which we deduced the classi-
cal form of the canonical equation, as given in (2} of Sec.
4.4.

It appears from a perusal of the literature that the
canonical form of the equation of transfer, as embodied, say
in (2) of Sec. 4.4, took its first definitive general form
in [212] and [250] which in turn grew out of the hydrologic
optics researches recorded in [82] and [5]. However, as
noted in the introductory remarks, the canonical form in one
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guise or other from (1) cf Sec. 4.0 to (11) of Sec. 4.4 (and
even (8) of Sec. 5.3) appears and reappears in the work of
independent researchers over the years in diverse applica-
tions of radiative transfer. One outstanding early use of
the canonical equation is in the work of Koschmieder [141].
The task of tracing the subsequent manifold reappearances of
the canonical form is best left to historians of the subject.
One source of references for such work is Middleton's trea-
tise [177]. For our purposes it suffices to anchor the ca-
nonical equation's first ground-form in Schwarzschild's work
[282], as noted above. It has been the intention of this
chapter to clarify the canonical equation's logical and con-
ceptual roles in the general theory of radiative transfer as
outlined in Secs. 4.4, 4.5, and 4.7, and to extend it to the
. polarized context as in Sec. 4.6. For further discussions
of underwater polarized light fields, see [117], [118}, [108]

]
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CHAPTER 5
NATURAL SOLUTIONS OF THE EQUATION OF TRANSFER

5.0 Introduction

The natural solution of the. equation of transfer plays a
fundamental and unique role in the theory of radiative trans-
fer. The role is fundamental in the sense that the natural
solution may be used in the systematic construction of the
principles of invariance, the invariant imbedding principle,
and all other instances of the interaction principle encoun-
tered in radiative transfer theory. This facet of the natu-

~ral solution was explored in an earlier study [251] and so
. need not be considered in detail in the present work. The

uniqueness of the role of the natural solution of the equa-

.tion of transfer lies in its remarkably wide-ranged inter-

pretation. On the one hand, the natural solution affords a
simple intuitive picture of multiply scattered light in nat-
ural media; on the other hand it forms a link with certain
general iterative solution procedures of funictional equations
in modern operator mathematics. No other extant mode of
solution of the equation of transfer possesses such a combi-
nation of intuitive and formal features. In the present
chapter we shall concentrate on these features of the natural
solution, with particular emphasis on the intuitive insight
into the concept of multiply scattered light in optlcal media
supplied by the natural solution.

We shall first consider the 1ntu1t1ve features of the

natural solution. These features will be of help to the

reader in the task of following all the formal develapments
of the present chapter and will also help build a working
intuition about natural light fields in general. We begin by
observing that the natural solution of the equation of trans-
fer is based on the idea of the scattering order decomposi-
tion of a light field. This idea in turn is based on the
premise that radiant flux pouring into a medium past its
boundaries generates wmultiply scattered radiant flux within
the medium and that this radiant flux is subject to a pre-
cise mathematical analysis. It is the task of the natural
mode of solution of the equation of transfer to first of all
unravel the apparently chaotic resultant jumble of radiant
flux of all scattering orders and arrange the flux in an
orderly, countably infinite sequence of indexed flows, i.e.,
of integer-numbered scattering orders, and then to relate
e¢ach of the indexed flows by means of well-defined formulas
to the other indexed flows representing the higher and lower

29
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scattering orders. These features of the natural solution
can be seen in detail with the help of a 51mp1e anslogy whlch
we shall now con51der

. Consider a lake on a clear sunny day. Sunltght and
skylight stream down and enter the lake surface, penetrate
into the body of the medium, are partially absorbed and par-
tially scattered throughout the body of the lake, and even-
tually the scattered light comes to a general steady state of
flow in the various directions about edch point of the medi-
um. Now we may liken the incident radiant flux on the lake
surface to a family of tiny colored particles (the geometric
vestige of photons of given frequency), and we may liken the
substance of the lake, in reality an aggregate of molecules
of water, minerals, and organic materials, to a set X of
stationary bodies distributed in space, and relatively mas-
sive with respect to the incident particles. The interaction

of the photons with the lake molecules may then be envisjoned,

for the purposes of the present discussion, in terms of the
interactions of tiny colored particles with the members of

an aggregate of relatively massive stationary bodies. Then
‘within this setting, the caroming of a tiny colored particle
off the side of a massive body without change in color of the
particle may be 1nterpreted as a scattering operation not un-
like the elastic scattering of a photon by a molecule; and
the permanent absorption of 'a particle of given color by a
body may be thought of as the analog of .an absorption by a
molecular field of a photonic field's energy.

Within the present simplified setting consisting of a
swarm of colored particles migrating through a maze of rela--
tively massive stationary bodies, the natural mode of solu-
tion of the equation of transfer takes the following form.
The natural mode of solution partitions the complex steady
state flow of an arbitrary given set P of monochromatic par-
ticles through the space X into sets of separate families P,
of particles. Each family P, of particles is a subfamlly o¥
P and is identified by its scatterlng order, n, that 'is by
an integer n representing the common number of scatterings
undergone by each particle in the family since the particle
entered the medium X. Thus at some arbitrary fixed instant
t in time let P,(t) be the family of partlcles throughout X

.which have not undergone any scattering. in X subsequent to
entering X. In general, let P,(t) be. the family of swarming
particles throughout X which have undergone precisely n
scatterings. in X, since the particles entered X, where n is
a nonnegative integer. Hence at each instant t we concep-
tually partition the collection P(t) of colored particles
within X into an ordered, pairwise disjoint collection Po(t),
Pr(t), ..., Pg(t), ..., of particles. This ordered collec-
tion is called the scattering order decomposition of the -
light field. Whenever a member of Pn(t) undergoes a scatter-
ing event at time t + At where At > 0, it enters . the family
Phey(t + At). In the steady state, the number of members of
Pn(t) is independent of t.

Now the members of Ph{t) are generally to be found
flowing in every direction within the neighborhood of any
point within X. ' This flow in the neighborhood of ‘the point
has assignable, at least on the conceptual level, a radiance

#j
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N1(t). The natural representation of the_radiance field in
this setting is then defined as the sum pig NP(t) of the
radiances associated with all the P,(t). A radiance func-
tion obtained in this manner in an optical medium will be shown
to be a solution--the natural solution--of the equation of
transfer for that optical medium.

5.1 The n-ary Radiometric Concepts

In this section we shall define those radiometric con-
cepts associated with the scattering order deécomposition of
a light field which will be needed in the developments of the
present chapter. Throughout this section we work with a gen-
-eral source-free optical medium X in the steady state irra-
diated by a steady incident radiance function Ny defined on
the boundary of X. The medium X is generally inhomogeneous,
_of arbitrary shape and extent, and with general volume atten-
uation and scattering functions defined throughout. The in-
cident radiance associated with Ny penetrates into X and gen-
erates radiant flux of arbitrarily great scattering orders,
which we now proceed to analyze.

n-ary Radiance

The systematic construction of the radiance functions
associated with the families Pn(t) of photons described in
the introductory section starts with the incident radiance N
on the boundary of X. In particular, the radiance Ng(xg,§)
defined for a boundary point xo and the direction £ at Xo
can be extended to each point x of X by writing:

"NO(x,E)"  for N_(Xg,E)T,.(X,,E) (1)

where x = x4, + €. The meanings of these terms are shown in
Fig. 5.1. ?n this way we can construct a radiance distribu-
tion NO(x,-) at each point x inside and on the boundary of X.
We call NO the initial (residual or unecattered or reduced)
radiance funetion within X. NO represents radiance which,
relative to the radiance Ng incident on the boundary of X,
has undergoine no scattering operations within X.

When some of the flux which comprises the initial radi-
ance distribution N9(x-) at x undergoes a scattering opera-
tion there is generated first order (or primary) scattered
~radiant flux. The amount generated per unit length in the
-direction § at x is represented by writing:

"Na(x,8)" for‘/rNo(x,E'DUCX;E’;E) dae(g") (2)

=

This may be written succinctly in operator form using the
path function operator R of Sec. 3.17:

NI=NR . (3)
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FIG. 5.1 Geometric details for computing n-ary radiance.

In other words, the operator R acts on NO to generate N};
alternately, we may say that R maps NO into Ng. The amount
of primary scattered radiance accumulated over a path &; (x £)
in X is then represented by writing:

r .
"Ni(x,E)"  for fN;(x',s)Tr'_r'.(x",a)dr' N5
0 B

“This may also be written succ1nct1y using the path radlance
operator T of Sec. 3.17:

N! = N;'r . (5)

The general pattern of construction of the radiance functions
comprising the scattering order decomposition of the light
field should now be clear. Thus, for every integer n= 0,1,2,.
..., W& agree to write: . :

&
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NIl for NR (6)
and
o tle gor NOHlg )

The function N} iscalled then-ary path funetion and N is the

n-ary padiance funetion in X relative to N°, By means o

(6) and (7) we can construct the (n+l)-ary radiance function
on X once we know the n-ary radiance function on X, for n > O
thus: ’ : -

n+l

n+l _ NI

N P = (NTR)T

= N"(rm) (8)
for every scattering order n > 0. The composition RF of the
two operators R and T occurs often in our studies of radia-
tive transfer theory. We shall then write, for brevity:

wslv for RE (9)

The reader should verify that:

st =[r[f[]U(x';i';E)dﬂ(i')]Tr_r.(X',E)dr' (10)
, 0 _

=

Now, using the notation for Sl, (8) may be written:

n+l _ .ngl

N N's s ‘ (11)

and if n is an arbitrary integer greater than 0, then it
follows that we can apply the statement (8), or statement
(11}, once again to obtain:

Nn+1 - (Nn-lsl)sl (12)

If n-1 > 1, then we_can apply (11) again, with the eventual
conclusIon that NU"*! is represented as the result of operat-
ing on N° with s! at total of n+l times in succession. That
‘is, if we write:

n+l,, 1

s for s's® - ' (13)
for every integer n, n > 0, then it is an easy application
of the principle of complete induction to show that:
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N = NOS™ : (14)

for every scattering order (nonnegative integer) n. The
sense in which (13) and (14) are to be understood is the
obvious one; Operate on NO and $§' to obtain N!; then once
N! is obtained, operate on N' with $! to obtain N?; and so
on until N is obtained. The total combined integration
operation of obtaining n-ary radiance N? from the initial
radiance NO is summarized by the operator S™ defined recur-
sively in (13). :

n-ary Scalar Irradiance
Now that the n-ary radiance functions have been defined

it is a relatively easy matter to define the n-ary counter-
parts to all the radiometric concepts. . For example, by re-

calling the integral representation of scalar irradiance h(x) -

at a point x in the optical medium X (cf. Sec. 2.7), i.e.,
the definition in which we have written::

Ceh(x)" for | N(x,£)dR(E)

W

we are then led to write analogously:

"R for [ N"(x,£)dR(E) as)

for every nonnegative integer n. We call hB(x) the n-ary
gcalar irradiance in X relative to NO, .

n-ary Radiant Energy

The connection between scalar irradiance h(x) and radi-

ant density u(x) at each point x of X was seen in Sec. 2.7 to.

- be: _ : o
h(k) = v(x)u(x)
where v(x) is the speed of light at x in_X; Furthermore tﬁe

definition of the radiant energy content U(x) of X was de-
fined by writing: . ‘

. -.‘.'-,|u()()" for . f u(x)dV(x) .
. X .
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_ This leads us to write analogously:

vt ()" for /un(x)dv(x) (16)
X

for every nonnegative integer n where, in turn, we have
written:

“un(x)" for  h" (%) /v(x) ) (17)

for everK nonnﬁgative integer n. Combining the definitions
of-h, u and U™, we have the following representation of UT;:

vt = J{.;Téy [|/rnncx,z)dn(a) ]dvch (18)
X =

for every nonnegative integer ﬁ, and where the n-ary radi-
ance N is represented in terms of the initial radiance N©
throughout X by means of (14).

General n-ary Radiometric Functions

The n-ary radiance and radiant energy functions con-
structed above will not be the anly n-ary radiometric con-
cepts used in the present work. For example the two-flow
equations of Sec. 8.4 are studied by means of n-ary irradi-
ance concepts. It is a simple matter to extend the type of
definition exhibited for h® and U® to an arbitrary function C
obtained from the radiance function by an appropriate linear
operator &£ associated with C; that is:

c=N&L . o (19)

For example, the operator &£ in the case where C is scalar
irradiance was:

“ L - _/P[']JQ(E) .

Then in general we write analogously:

"™ for NUL v (20)

for every nonnegative integer n. We call CR the n-ary radi-
ometrie funetion of C, in X, and relative to N°, It follows
from (14) and (2) that: . . N

= N(s"e (21)
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is the representation of the n-ary radiometric function CR
associated with the general radiometric concept C. In par-
ticular, we write:

"CY for N* L . (22)

where N* is the path radiance ‘(the scattered) component of N,
as it occurs in (5) of Sec. 3.13. C* is the diffuse radio~.
metric funetion of C in X and relative to N°. Together, C*
and CM are the decomposed radiometric functions. Radiometric
functions which have not been decomposed are call undecom-
posed. ’

5.2 Equation of Transfer for n-ary Radiance, Diffuse
Radiance, and Path Tunction

The eqqation of transfer for n-ary radiance will now
be derived. The equation is an elementary consequence of )
relation (11) of Sec. 5.1. To see this, suppose we fix at-

tention on an arbitrary path (P:(x,E). Then holding the ini-~

tial point x and the direction £ of the path fixed, and dif-

ferentiating NU along the path with respect to path length r;’

we have: : o

n
5 - & orish

T : )
a‘i‘[ fN"'lcx',a')o(x";s';;)dn(s') Tppr (x',E)dr"
0 g :

/Nn-le,é')c(x;s' SE)dR(E")

r ,
B aT_.__,(x',§)dr’
/ [[N“ 1(x',z')o(_x';s';s)dn(e')} N
0 z ’ .
At this point we.observe that, by (3) of Sec. 3.11:

dT__, (x',E)
r-Tr - 1
N dr - "Q(X,E_'.)Tr_xd(}s ,E) :

+

Then using (6) and (11) of Sec. 5.1 we arrive at:

n aN? : ‘ ' .
£-UNT = S = -oN" + Ny I (1)

which is the requisite equation of transfer for n-ary radi-
ance With n 2. 1. Observe that the equation of transfer for
N? is not an integrodifferential equation for N'; rather it

~1
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is a first order linear differential equation for NR with

.known n-ary path function NB, once N%-' is known. This
'suggests a conceptually powerful natural mode of solution of

the general equation of transfer for N, which we shall study
throughout this chapter. 1In the following section we shall
place (1) into its canonical form, thus rounding out the
studiés of the canonical equation given in Chapter 4. In

-Sec. 5.4, the complete natural solution will be obtained.

Before concluding this discussion on n-ary radiance
equations, we mention two more transfer equations for radio-
metric concepts which dre closely related to the family of
equations in (1). Note that (1) holds only for n > 1, the
case n = 0 being excluded. This singular case n = 0 is
readily stated using (4) of Sec. 3.10 and (2) of Sec. 3.11.

The result is:

o _ dn® _ o )
E-UN~ = a7 - -aN : ‘ (2)

for source-free media. A generalization of>(2) for media
with sources is given in (2) of Sec. 5.8. The remaining

transfer equation to be noted here is that for the diffuse
radiance N* (or path radiance when a specific path of length
r is given somewhere in the medium). Thus, using the concept
of n-ary radiance, let us write: :

"N"  for . I NJ ‘ (3
j=0 - .
VL1 ® j ’
N‘ for jél N . (4)
and V
"NE" for ¥ Ny . ' (5)
j=2
Then summing each side of (1) over all n from 1 to =, we
‘have:
o j [~ dNJ [~ NJ oo j
Eoegewnd = § =% o o+ TN (6)
i1 j=1 j=1 j=1

- which, on applying (4) and (5) becomes:

* .
geoont = B g ng e nD (7

This is the equation of transfer for diffuse radiance N¥.
By assuming that N¥ obeys (1) of Sec. 4.4, i.e., Ni decays
exponentially with depth at the rate K, then (7) supplies a
somewhat more powerful description of the light field than
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that given by (2) of Sec. 4.4, It is clear from the dlscus-
sions of Sec. 5.1 and (5) that:

NE = N*R ' (8)

We shall return to these ideas in Sec. 5.4, especially
to that of N, as defined in (3), wherein we will show that
so defined is a solution of the equation of transfer.

Flnally, by applying the operator R to each side af
the equation of transfer for radiance, we find:

E*UNy = - Ny # Ngg (3)

which is the equation of transfer for the path function, and.
where we have written:

"Nex"  for NaR (10)

S.S Canonical Equations for n-ary Radiance

We pause in the present development of the natural
solution of the equation of transfer to present the canonical
form of the transfer equation for n-ary radiance. We shall

be particularly interested in the case of n = 1, that is, in

the case of the canonical equation for primary radiance.-
From this case we can derive an expression which has often
formed an integral part of expressions which attempt to ap-
proximately represent radiance distribution with a modicum
of analytic complications. Thé derivations below are pat-
terned on those in Sec. 4.5. Hence we can proceed with a
minimum of motivation and explanatlon for the present dis-
cussion. Let us write:

N

nxnn . for -~ = ’ (1)
: N
Then (1) of Sec. 5.2 becomes:
C- EeR'N" = - oN" + NG,

whence, forlevery integer n with n > 1:

n A
N" = ___ﬁz__i ()
o - E*R
‘and consequeﬁtiy:
n _ 0 ND B ,
N =N T[a]+—-——2—(1T[(a£-x)1) ey
. o - -x )
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“which are respectively, the desired canonical form of the
equation of transafer for n-ary radiance and its canonieal
representation for a path_G}(x,E). )

) If the medium X is assumed to be a plane-parallel
stratified optical medium, then following the pattern estab-
lished in equations (16) - (19) of Sec. 4.5, (2) and (3) re-
duce to:

. " .
Nn = §3_~.___. . (4]
o +K° cos 8

and .the associated canonical representation of N¥ over a path
Gt (x,t), analogous to Ny of Sec. 4.5 is:

n ) .
N = NOT_[-«a +———§f—-—[-1-1“ -(a + K™ cos ® ] 5)
r = NoTpl-al « ——Ft—— Ll C 1|«

Equations (2) and (3), and their special cases (4) and
(5), are the alternate (canonical) ways of representing NB;
the usual way being summarized in (14) of Sec. 5.1 by:

Nn

= N%" (6)

To see how (2), (3), and (6) throw light on one another,
let us consider the case of a homogeneous source-free plane
parallel medium X irradiated by narrow beams of radiance Ng
incident at each point of its upper boundary through a small
solid angle E, of magnitude fig, as shown in Fig. 5.2. The
radiant flux from N, initiates a multiple scattering process
within X and eventually all scattering orders of radiant flux
are present within X. We direct attention now to N' and
first compute its value at depth z in the direction £ using
{6). - Thus, from (6) with n = 1:

1

N = (N°m)T .

For the present case NOR is readily evaluated:

Ni(z,£) = N°R = fND(Z‘,E')U(z;E';E)dﬂ(E'-) .

=}

Since for each £' in E,,

N®(z,6') = N (0,6')T (0,€")

z. c 0
- Noea‘ se o

where:

cos 6, = £ °k
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FIG. 5.2 Computihg the primary scattered radiance in a’
hydrosol, induced by a collimated source Ng.

we have:

Ni(Z_.E); = No’e‘"z sec 8o j: a(z;E';E)AR(E")

Q.
='Noeaz sec_eo G(EO;E)QO ’ (7 -

Here &g is the set of directions, of solid angle Q,, over
which the inc¢ident beam lias uniform radiance Ng. Note also.
that we have used the homogeneity of X in freeing o of depth

dependence. Next, we apply the path radiance operator T over .~

the path depicted in Fig. 5.2:
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.- T :
N(z,8) = Nl =[ Nu(z',E)T,_ o (2',E)dr
0 |

: ' z '
: . , -
a - »sece ND G(EO;E) no ] e(lz Seceo eu(z 2z )sece dz?

o 2
- —_seq@ N O(EO,E)Q azsece‘}F euz'(secﬁo-sece)dzn‘
. 0 . i

Therefore:

1 - N sece o(E;E) QoeaZseceq[l_e-az(seceo-sece)]
N (2,8 = - a(sech -sech)

This canonical representation of N!(z,£), in which cos § =
holds fer all paths such that 8 ¢ 64. For the case 8 = 8p,
we return to the penultimate equality and evaluate the inte-~

gral anew, or use_L‘Hospital's rule in (8). Clearly, the new

integral wvalue is simply z for the case €45 = 6. Comparing
(8) with the canonical form, with the latter now evaluated
for the casen = 1:

Nz,g) = DalZB) (9

a + K© cosé

we see that the following equality must hold:

1 ’ -u(seceo»sece)

sece[l_e-az(seceofsece)]

From this we can, if required solve for k1 (which genérally
is a function of z,0, and, also in the present case, the

parameter 8p5). Observe that for secfg > secd, i, e., for
8 < 6g. " - '

- 1 v
11mz+wK (z,8) = - useceo
(-

and for 6 > 6g,

. 1 .~
»11mz+mK (z,£) = - asec®

This shows directly that the K-function for primary radiance
eventually, i.e., for sufficiently great depths, becomes

X,

a + K° cose = a0y

(8)
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independent of £ over large sets of directions (i.e., when

® < 85). This phenomenon of the eventual partial indepen-
defice of K! with respect to direction, presages an analogous
behavior of the complete K-function for observable radiance;
we will study this depth behavior of K in more detail in
Chapter 10. SR :

We now summarize the main results of our illustrative
example: By evaluation of (6) for the case of n = 1 and com-
paring the resultant representation of N! with that given by
the canonical form (4), we deduce the necessary form of the
K- function K' for N!'. The usual-classical method of looking
at N' is by means of formulas of the structure of (8). Our
studies of the canonical equation of transfer in Chapter 4,
extended to the present setting, now show that (8) is but a
sqecial form of the canonical equation for primary radiance:
N!', as given in (9). Hence ' (8) may be given the compact and
intuitively useful canonical form (9) provided K! is as given
implicitly by (10). :

"Concluding Observations

In conclusion we note that the integrations leading to

(8) may be redone now over a path CQ(ZO,E) with initial point'

at depth zg > 0, The result will be a path radiance Nj ex-
pression, the spécial case of NI fer n = 1, 1eadiﬂg to an in-
-stance of (6). Observe that anz,g) in (4) and Ny(z,£) in
(5) are equal for every z and £, being but two ways of ex-
pressing the same radiance: Whereas (4) expresses the radi-
ance NN(z,E) as a value of the radiance distribution NR(z,-)
at depth z for the direction &, equation (5), on the other
hand, expresses the same radiance now by conceptually parti-
tioning it into two parts associated with an arbitrary path
G}(zo,g) in the medium. In other words, we can carry over
without change .from the discussions of Chapter 4 to the pres-
ent setting of n-ary concepts, all interpretations of path
radiance N}, transmitted residual radiance Ng, and apparent
radiance Ny, arrived at in those earlier discussions. It is
of interest to emphasize in particular a powerful but simple
model for radiance distributions that arises when we repre-
‘sent N* rather than N by means of the general equdtion (2)

of Sec. 4.4. For such a model "N," in (1) of Sec. 4.4 is
replaced by "N%". Thé correct basis for this model is (7)
of Sec. 5.2. :

5.4 The Natural Solution for Radiance

We return now to the main thread of the argument, begun"

in 5.2, leading to the development of the natural solution of
the equation of transfer. Our most basic intuitions about
light fields in the sea and the air and generally for any
optical medium, ‘lead us to think of the radiance perceived

by our eyes and our instruments as consisting of multiply-
scattered light, i.e., light which has undergone one, two,
three, and generally very large numbers of scattering opera-

tions after its entrance into the medium and before its inci-

dence on the retina or photocell located somewhere in the
medium. It is natural then (hence the name of the present

>

®
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mode of solution) to attempt to construct a solutlon of the
equation of transfer for radiance by constructing all the
n-ary radiance functions N within a given optical medium
X and to sum them to cobtain the requisite radiance field
throughout the medium. Thus we are led to write:

“N(z,E)" for E N (x,£) 1)
j=0

and hope that the function N so defined satisfies the equa-
tion of transfer. We call N defined by (1) the natural solu-
tion of the equation of tranafer. We now show that the word
"solution" in the name for N is indeed justified.

We begin by using (14) of Sec. 5.1 to write N(x,£) in
(1) as:

N(x,g) = Zo N%sJ (x,£)
or more compactly in functional form as:
N = Z N°s]
j=0
In this way we come to define the basic operator § for the

natural solution, i.e., we can now write:

llslI for
o

si ., (2)
0

fte~18

where "50" denotes the i{dentity operator I, with the property
fl1 = f for every radiance function. With thls definition the
natural solution representation takes the form: .

N = N% ‘ (3)

By means of this representation, the formal verification
that N in (3) is a solution of the equation of transfer is
readily forthcoming via the following eight main steps:

No(1 + 5 sh
j=1

N = N%

i

No(1 + ( § shsh
j=0

]

o, (Nos)sl
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nst

[}
=z
o
+

= N® + (NR)T

i
=
Q
+

N*
We have therefore shown that:

N = N° « N+, : (4)

which is the integral form of the equation of transfer (re:
(1) of Sec. 3.15). An alternative approach to the above
demonstration is to show that N as defined by (1) is a solu-
tion of the integrodifferential equation of transfer. The
basis for such a demonstration is given by (7) of Sec. 5.2.
It remains only to add (2) of Sec. 5.2 to each side of (7)
and reduce the results. '

To summarize our findings: We have shown that the
natural mode of constructing the radiance function N from
the n-ary radiance functions NP, n>0, leads to a solution--
the natural solution--of the equation of transfer. It alsoc -
may be seen that N so constructed is a unique solution in
the sense that whenever N'is also a solution of (4), then
N'= N. The mathematical basis for the existence and unique--
ness of the natural solution will be described in Sec. 5.12.:

We conclude by observing that the natural sclution of
the equation of transfer is not only fundamental from an
intuitive physical point of view, but that it in essence
exemplifies a mode of function construction which has been.
of increasing importance in the logical foundations of mathe-
matics in recent years. This mode of construction--the
enumerably recursive mode of construction--is very closely
related to the natural mode of construction defined above.
and is coming under intensive study principally because of
the current strides in developing ultrafast mechanical aids
to numerical and logical computations. These developments
will eventually make feasible the computation of relatively -
high scattering orders n for NP, so that finite sums of the
form ' : . '

1 Y3

NO « NL &+ NZ 4 ... & N0

will constitute. appropriately adequafe appfoximétions to the
ideal natural solution N. Thus we will eventually be able
to go far beyond the first order solutions

.|
N® + N1 = NO 4 Ni

a + Kl'cos <}

(6)

i e

e 2 e =
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(cf.j(8), (9) of Sec. 5.3) to which many classical studies
in atmospheric and hydrologic optics were hitherto limited
because of the relatively heavy demand on manipulative skill
(and time!) needed to evaluate N*, N' and higher order n-ary
radiance functions.

5.5 Truncated Natural Solutions for Radiance-

We now investigate the effect of truncating the natural

" solution of the equation of transfer after a finite number

of terms. While the natural solution is an ideal conceptual
tool in the study of radiative transfer theory, as has been
demonstrated at length in Chapter III of Ref. [251], the
solution can almost never be evaludted completely either nu-
merically or theoretically, because of the infinite number

of terms comprising the solution. We are then in practice
obliged to stop the accumulation of the terms after a finite
number of them have been evaluated. The question then arises
as to the closeness of the resultant truncated solution to
zhe natural solution. We shall now consider this question in
eta11. :

. - Throughout the remainder ofthis section we shall choose
as our setting a source-free homogeneous plane parallel opti-
cal medium X of arbitrary depth with a steady internal light
field induced by arbitrary incident radiance distributions

N, at each point of the upper boundary of the medium. The
volume scattering function ¢ and the volume attenuation func-
tion o are otherwise arbitrary.

Now, start1ng with the natural solution N of the equa-
tion of transfer as defined in (1) of Sec. 5.4, we write:

k. © . :
=AN e 1w _ €8]
j=0 j=ka |

The central question of the present discussion may now be
phrased as follows, Writing:

K .
nN(k)n for z NJ ,
: j=0

we' ask: by how much does the finite sum N(K) differ from the
infinite sum N; or in other words, what is the general order
of magnitude of C

NI e
j=k+1

To answer this quest1on we sha}l obtain an upﬁer bound on the

values of the difference N-N(k This upper bound shall
serve(a§ a measure of the d1fference between the functions N
and N(k

We begin by letting ""NO" denote the upper bound of the

‘initial radiance function N° within X (re: (1) of Sec. 5.1).

This upper bound is easily evaluated in general, and in par-

ticular in all natural hydrosols this upper bound is actually
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attained by NO at the air-water boundary of the medium. In-
deed, for sunny days, N° is almost invariably the apparent
raglance of the run as seen just below the surface of the
medium.

The upper bound of the prlmary rad1ance functlon N! is
obtained by first 'bounding' Ni. “Thus, starting with (6) of
Sec. 5.1 in which n = 0 we have for every x in X and direc-
tion & in E:

Ni(x,€)

=

[N"cx,t:') o(x;E';E)dn(E")

N° ‘}rctxzi’;i)dﬂ(a')

= N° s ' ’ (2)

1A

Here "s" denotes the value of the volume total scattering :
function defined in (3) of Sec. 4.2. The reader will discern
that it is sufficient at this stage to assume that:

o(x;E';8) = o(x;E38")

for every E' and £ at each point x of X, in.order that we
have

s(x) = focx;a';s)dnca'j :

This is not an unusual requirement on ¢ (it is called a

reeiproeal condition) and is readily met by all ¢ from natu- -

ral hydrosols. (For related conditions on o, see Sec. 7.12.)

: Next, use is made of (7) of Sec. 5.1 and the equality
(2) Just deduced to obtain: .

- T

]_ NR(x',€) T, L4 (x',E)dr’

T .
< W% Jr Tpuypr (1,804
0

T
e [

Nl(x,¢)
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< ﬁop ' . . : (3)

for every point x in X and directiom £ in E; and where we
have written:

p for. s/ . (4}

The ratio p is called the albedo for single scattering or
more accurately the scattering-attenuation ratio. By our
agreement in Sec. 4.2, namely that about the nonnegativity
of the volume absorption function a, it follows that p sat-
isfies the imequality 0 < p < 1. For the present discussion
we assume in particular that 0 < p < 1. When we repeat the
résults (2) and (3), but row applied to N? (x E) we obtain:

N?(x,8) < \° p?

for every x in X and £ in Z. From this we ¢an see a pattern
emerging and we readily prove that:

N(x,£) < WO o (5)

for every scattering order n, every p01nt x in X and direc-
tion & in EZ, .

The inequality (5) is the main result needed for EET
determination of the upper bound for the difference N-N
Indeed, by direct computation, we have:

N(x,£) -NK) (x )

=Z+1Nj(x,52.

1A

o1 8
Z)
(=]
©
i

_X° Dk+1

T T I-p >
Which holds for every x in X and £ in %.
Summarizing, we may say that:

o k+1 '
N{x,&) —N(_k)(X,E_) 5"1—1%‘)—— ' (6)
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holds for eévery nonnegative integer k, every point x in X and
direction § in E,

As an example of the use of (6), suppose a given lake.
has a scattering-gttenuation ratio of p = 0.4 for wavelength
550 mp, and that NO for that wavelength is 10° watts/(m? x
steradian) We require for a particular computation that
N(x,&) - N(k)(x,g) be not more than 10* watts (m® x steradian
for every x and £. What is the least scattering order k at
which the natural solution must be truncated so that this
condition is met? By (6) we require k such that:

] k+1
Lov < Lo (0.4%
1-(U.
or that:

0.6 x 1072 < (0.4)K*1

Forming an equality for the moment, we require:
1og10(6X10'3) = (k + 1) log10(0.4)

This implies that to the nearest integer, k+1=6, so -
that k=5. Hence the truncation solution is required to be
carried out to five scattering orders, at least. :

A 'useful alternative formula to (6) is obtained by .
first noting that for media in which p > 0, we certainly
have the maximum value N of N(x,f) greater than the maximum
value NO© of NO(x,£). Then (6) implies: '

v - e o
NCx,E) - NF(x,8)  p M

N 1-p

for every x in X and £ in Z. The comparative merit of
(7) over (6) consists in equation (7)'s ability to express -
the error of truncation in terms of a relative error, that
is the error relative to the prevailing magnitude N of the .~

light field. Hence for the medium at hand, carrying out the

natural solution to five terms results in a relative error
of less than 1 percent. .

Before closing we shall examine the inequalities (5)
and (6) for some insight they may yield about the relative
importance of the various components of the decomposition of
the natural lightfield. For example, (5) shows that n-ary
radiances are on the whole less by a factor of p than (n-1)-
ary radiances. Thus if p = 1/2, say; then Nl (x,£) is on the
whole, about half the magnitude of NO(x,£), and the magni-
tude of N2(x,£), in turn,; is about half that of N!'(x,£), and
so on. Thus the overall magnitude of n-ary radiances de- -
crease exponentially with scattering order n. Inequality

(6) also shows that for small p (near 0), a given n-ary radi-- .
ance varies directly as the nth power of p, whereas for large

p (near 1), the n-ary radiances vary essentially'hyperhﬂiaﬂly

¥
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with 1 ~p, i.e., as 1/(1-p). Similar observations can be
made using (6) or (7). We shall return to the matter of
truncated natural solutions in the following section and re-
consider them for transient light fields. The reader wishing
radiance bounds in a slightly more general steady state case
“than that considered in this section, may consult Sec. 22 of
Ref. [251].

5.6 Optical Ringing Problem, One-Dimensional Case

The object of this section is to formulate the optical
ringing problem in the context of radiative transfer theory
and to indicate how the natural mode of solution may be used
to solve the problem. In order to explain the ideas behind
the optical ringing problem and its natural mode of solution
without too many geometrical complications, we consider first
the one-dimensional case of the problem. The.three-dimensional
case will be discussed in the following section.

The term, "optical ringing" has an analogous meaning to
the term "reverberation" as used in the theory of sound. In
- fact the well-known term "reverberate” applies in principle
equally to optical and acoustical phenomena. . However, until
recently, the relative difficulty of producing and recording
optical reverberation because of the immeasurably short per-
iods of time involved has given the acoustical discipline
almost exclusive use of the term. We can usé the popular
acoustical meaning of the term "reverberation" to give the
following nontechnical definition of the phenomenon at hand:
Optical ringing in an optical medium is the optical reverber-
ation of the medium set up by a narrow short pulse of mono-
chromatic light. Hence the appropriate acoustical analogy to
optical ringing would be the reverberation set. up by a direc-
tional, short clap of one-note thunder. 1In more technical
‘parlance the optical ringing problem in a medium X is the
problem of determining attime t > 0, .the time-dependent radi-
ance function over X which is the solution of the equation of
transfer, given a directional, spatial, and temporal Dirac-
delta function input of radiance to the medium at time t=0.
This problem has applications to the description of time-
dependent radiance fields set up by laser beams with their
characteristic high power, narrow-beam, short-pulse shafts
_.of monochromatic radiant flux. While interest in the optical
. ringing problem has reawakened because of the advent of the
laser, it should be noted that the problem is a venerable one
in radiative transfex theory and neutron transport theory,
and was first studied purely for its intrinsic interest and
as a fundamental block on which to build solutions with
arbitrary initial time-varying, inputs (see, e.g., [211],
[235], [2361). )

Geometry of the TimgFDepéndent Lighvaield

The formulation of the time-dependent radiant flux
problem in an optical medium X will be faciltitated by find-
ing an efficient means of depicting the space-time disposi-
tion of the radiant flux throughout the optical medium. We
shall now construct such a means. In the present discussion
the medium Xis one-dimensional and is represented in Fig 5.3(a)
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as a line segment. We shall consider the medium to extend

indefinitely on either side of
medium, w1th distance measured

the origin point 0 of the
as p051t1ve toward the r1ght

@ X —

"vto’l pulse |
SRRV B | S,

0

'@Uto‘}
(€) - X~ }
0

FIG. 5.3 P051t10ns of ‘a finite light pulse along a one-
dimensional medium.

Now suppose that peint 0
flux starting at time t =0 and
in an arbitrary fashion. in both
t =tg, at which time the source
"No(0,t,#)" and "Ny(0,t,-)" den
time t in the p051t1ve and nega
Figure 5. S(b) shows the positio
just after time t, The pulse
into the medium on e1ther side
the position of the pulse some
5.3(a) through 5.3(c) are like

becomes a source of radiant
that 0 continues to emit flux
directions about 0 until time
at 0 is shut off. Let

ote these radiances of 0 at.

tive directions, respectlvely

n of the pulse emitted by 0

is speeding away from point 0 -

of 0. Figure 5.3(c) shows

time later -than t Figures -

 three snapshots oF the medlum
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X at three separate instants of time subsequent to the emis-
sion of the pulse. It would be quite instructive if instead
of still shots of X at discrete time instants, we could have
a moving picture of the pulse as it moves out into X from 0
and generates the field of scattered light within X. Such a
means of communication is obviously unfeasible for the pres-
ent work. However, an alternate and in some ways superior
means of visualizing the time-dependent light field in X con-
sists in a static space-time diagram of the pulse in X of
-the kind depicted in Fig. 5.4.

The description of the pulse .of radiant flux from point
0..becomes relatively simple when given in terms Fig. 5.4.
The space-time portrait of the pulse is given by the shaded
V-shaped region in the space-time diagram. To find the in-
stantaneous pos1t10n of the pulse in X at time t', first go
along the time axis erected perpendicular to X until time

T
t

g increasing time.

?l

FIG. 5.4 A space-time portrait of the pulse in Fig. 5.3,
The world reglon of the pulse is shaded.
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point t' is reached. Then draw a straight line through t'
parallel to X. This line will intersect the shaded region in
generally two segments A and B. The perpendlcular projection
.of these segments down onto X will then give the location of
the pulse in X at time-t’' >0. The slope of any straight line
segments parallel to the boundaries of the shaded region of
the pulse are such that, ds t' units of the time axis are
traversed, vt' units of the space axis are traversed, where

v is the speed. of light in X. We assume v to be constant
over X. The shaded region of Fig. 5.4 is called the world
region of the pulse.

It follows from the axioms of spec1a1 relat1v1ty that,
relative to the frame at 0, the space-time line traced out
by a material particle in X cannot have an arbitrary slope,
but rather one which is bounded as follows. If r(t) is the
distance of the particle from 0 at time t, then:

dr(t
t

for every t for which r(t) is defined in the frame anchored
at 0. 1In particular, the slopes of the world lines (i.e.,
space-time trajectorles) of the photons comprising the pulse
of light from 0 are exactly of magnitude v, with respect to
the time axis. Thus on the one hand, the world line of a
particle stationary in X is a. vertlcal line, and on the other
hand, that of a photon is parallel to one of the boundary

lines of the shaded region in Fig. 5.4. All naturally moving -

particles in X must therefore have the tangents to their
world lines always between (or coincident) with these two
extremes, with respect to the r,t frame of reference at 0.

The space-time diagram also aids in visualizing the
various possibilities of radiometric interactions between
points of X. Thus, points a, b, and ¢ in Fig. 5,4 depict the
three possible dispositions of points in space time with re-
. spect to the pulse from 0. Point b(=(r,t)) is in the world
region of the pulse, and so represents a point of X at dis-
tance r from 0 which at time t is being irradiated by radi-
ant flux comprising some of the pulse from 0. Points a and
c on the other hand are not in the world region of the pulse.
Point a in particular represents a point in X aqfter the pulse
has gone by it (to find the contemporaneous pulse to a, draw
a horizontal line through a, and the segment it determines
with the world region of the pulse is the requisite position
~ of the pulse). Point c represents a point in X before the

pulse has gone by it. Points a and c thus have the property
in common that they do not lie on the world region of the -

pulse from 0; however, points a and c differ from one another -
in a fundamental sense. Indeed, the point in X ¢orresponding .

to a may eventually feel the effects of the pulse . .through
scattering of. flux from the pulse; however, the point in X
corresponding to 'point c¢ in the space time plane is "forever™
immune to the direct or indirect effects of the pulse. Here
we are implicitly adopting another empiricdl fact of macro-
scopic physics: Effects of an event,may'propagate futureward
in space-time but not pastward. When this fact is combined
with that about the limits on the slopes of the world 11nes

PR S SV S
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of particles mentioned above, we can readily delimit those
parts of the space-time plane over (or through) which they
can effect or be effected by a .given event (represented as a
point) in the plane. These regions are shown in Fig. 5.5(a)
for an arbitrary point a. In general, for two points a and b
in the space-time diagram associated with X, the common re-
gion of possible interaction is the shaded intersection of
the futureward sector of b with the pastward sector of a, as
shown, in Fig. 5.5(b). If the intersection region is empty,
then the two points cannot interact. '

. With these preliminary observations in mind, we may now
use the the general space-time diagram to help in the study
of the time-dependent radiant flux problem on -X. Starting

eiseward
of a

elseward

(a)

(b)

/|

FIG. 5.5 Part (a) depicts those points of space-time
about point a which lie in a's future, past, and elsewhere
from a. Part (b) shows the common region (shaded) shared
by the future cone of b and the past cone of a. When this
shaded region exists, then b can send a light signal to a.
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with a fresh space-time diagram of the pulse emitted by point
0 in X,as in Fig. 5.6, we see that the pulse effects at timet
at some point ad1stance r from 0 in the medium arrive through
the pastward sector of the point (r,t}. In particular, the
region of X contributing scattered flux of all orders to (r, t)

is bounded by a(r,t), b(r,t), where we have written:
“a(r,t)" for (r-vt)/2 (1)
"b(r,t) for (revt)/2 2)

For example, if r = 0, then the interaction region of X at
each time t is an 1nterva1 on X of 1ength vt centered on 0.
The route of radiant flux from 0 to point (r,t) may be quite
devious. Two sample routes from 0 to (r,t) are shown by the

a fourth order path

a first order path

r ¥ \\1

b(r,t) =&)

) ? 1
l_ . ——— | —— gl — vt
: e UT ———
N -

FIG. 5.6 Computing the scattered 11ght reach1ng space-
time point (r t) after starting from the .origin (0.0). .
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‘dashed lines in Fig. 5.6. In one of the cases the flux reach-
ing (r,t) is intended to be fourth order radiant flux. The
spatial component of the path taken by this sample of radiant
flux is obtained by projecting the space-time path onto X.
Observe that in this particular example the only way radiant
flux can reach (r,t) from 0 is by undergoing at least one
back scattering operation.

The Equation of Transfer

The integral form of the equation of transfer for the
one-dimensional optical medium X defined above will now be
derived. Before going into the details, however, it may be
well to reemphasize that the 51gn1f1cance of a one-dimensional
optical medium lies not so much in its power to represent an
actual physical setting as it does in its ability to depict
with a minimum of geometric complication the essential alge-
braic structures of the associated three-dimensional problem.
Therefore, the resultant equation of transfer derived below
for the present one-dimensional setting will, in all its
algebraic essentials, be representative of the full threce-
dimensional case, but will not be encumbered with details
arising from the latter's relatively complex geometrical
structure. These details will be faced in the following
section.

Under suitably adapted definitions of the radiance
function and inherent optical properties for X, the equation
of transfer for the one-dimensional optical medium X follows
formally from the integral form of (4) of Sec. 3.15. In this
way we extend the logical chain from the interaction principle
of Chapter 3 to the present radiative transfer discussion.

In particular the present equation of transfer is obtained
by postulating the characteristic form of the volume scatter-
ing- function for one-dimensional media:

o(x;E';E,t) = p(x,t) S(E+E') + T(x,t) 8(&'-E)

where £ is one of the two directions (*E) alqng the medium,
and § is the well-known Dirac-delta function. The functions
p -and T are, respectively backward and forward scattering
funhctions for X. Furthermore, the values of the radiance
function are now of the form N(x,t,+) or N(x,t,-), where "+"
and."-" denote flux in the direction + or -, respectively.
That is, we have written:

CUNGRGET,T)Y for NOX,t,+) S(E'-5) + N(x,t,-) 6(£'+8)

Since the points x in X .are located by one number only, namely
the signed distance r from 0 to x, we will write "r" inplace
of “"x" throughout the one-dimensional setting. It now fol-
lows from (8) of Sec. 3.14 with the adopted form of o and N
{and assuming here only that & is idempotent, i.e.,§? = 6,
at least formally) that the path function values Ne(r,t,
associated with dlrectlons % are:

Na(r,t,+) = N(r,t,+) t(r,t) + N(r,t,-) p_‘(rv,t) (3)
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Na(r,t-) = N(r,t,-) t(r,t) +N(r,t,+) p(r,t) (@)

The time-dependent integral form of the equation of transfer
for the one-dimensional case therefore consists of the fol-
lowing two equations (one for each direction (+,-):

_ r :
N(r,t,+) =u(nN (0,t -{x/v], +) T, +f Na(r',£', )T, . dr!
a(r,t) '
A (5)
b(r,t)
N(r,t,-) =u(-r)N,(0,t-|r/v], -) T, +[ Na(r',t',-)T,,_dr'
_ I
(6)

where u(r) = 1.if r >0, and u(r) = 0 if r < 0. All terms

except the transmittance terms in these two equations have
been defined in the present section. The transmittances are

represented as in (3) of Sec. 3.11; thus for the present case.

we have:

s

1 1] - - 1]
_'Ts-r for exp j o dr

T
in which matters are arranged so that r < s.

Operator Form of the Equatlon of Transfer

We next cast the pair of transfer equations (5),’ (6)
into an operator form which at once suggests the appropriate
instance of the natural solution for the present case. Thus,
we agree to write: S

"N2(r,t)" for _G(r)N;)(o.,t4[r/v[,+) T,

VN?(r,f)" for u(—f)No(O;t;lr/VI;-) T,

and further, we write:

T . '
"T," for [ 0 e, dr
' a(r,t) ’
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"R_" for j v [ ]pTr-r' dl"
a(r,t)

b(r,t) .
"T_" for j [ ]TTr, -y dr'
. r .

b(r,t) i
"R," for f [ ]pTr,_r dr*
r

‘With these assignations, (5), (6) become:

N(r,t,+) = NO(r,t) + NT (r,t) + NR_(r,t)

N(r,t,-) = NO(r,t) + NT_(r,t) + NR_ (r,t)

r
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The notation "NT,(r,t)", e.g., denotes the value of the func-
tion NT, at (r,t), and NT, is the result of acting on N with
‘the. operator T,. These equations may be made more compact :
algebraic in appearance by writing:

and at the same time more

"N+"
wy o
1N O
| 'N+ '

nNon

for N(e,e,+

for N(-,-,-

)

)

for No(-,f).

+

for N%(-,-)

With these abbreviations for the four radiance functions we

then can write (5) and (6) as:
N, = N + N,T, + N_R_
N_ = N® « N.T_+ N,R,

(7N

(8)

This'férm of the equation of transfer now suggests that we

write:



58 B NATURAL SOLUTIONS VOL. III

"S"  for {;+ :+] . : (é)
along with: .

"N for (N_,N) . » (10}
and

"NO"  for. (NS, N9) (11)

so that the system (7) and (8) written in vector notation
becomes: :

(N,N.) = (NS,N%) + (N,,N_)S o an

or, succinctly:

In this way we have reattained the basic structure of the
integral equation of transfer, now for the simple one- -
dimensional context (recall, e.g., the derivation of (4) of

Sec. 5.4). It follows that we may  -at once apply the natural

solution procedure to (13) and thereby compute directly the.
scattering order components of N to as great a degree of
accuracy as désired. . This will now be done. :

The Natura1 So1ution _
Starting with equation. (13), and treating N as if it

were an unknown in a simple linear algebraic equation we
obtain: S ) )

N = N°(i-s)t

where (I-5)"! may be showﬁ to be expandable into an infihite'

series:
(1-8)71 = 1ases?esdel.. (14)

We have encountered such a type of expansion several
times before in the present work. For instance it was used
in Example 15 of Sec. 2,11, and it occurred many times in
the examples of Chapter 3. Finally, closely related series

were encountered earlier in this chapter (see (2) of Sec. 5.4).

Hence the requisite solution of the time-dependent equation
of transfer for the one-dimensional optical medium takes ‘the
form: .

N = N° + NS ' T 13y
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(N,,N) = ] (N,N9s) (15)
j=0
An Example

. As an illustration of the natural solution for the
present one-dimensional optical ringing problem suppose the
medium X is homogeneous and in the steady state, so that p

"and 1 are constant valued functions over space and time,

Suppose further that NQ and NQ are each constant valued and
over a time period fromt = 0 to t = t5, > 0 (a slight simpli-
fication occurs if these are_of‘Dirac-gelta temporal struc-
ture; however, a temporally finite pulse, is at present a
more useful and realistic input for X, and accordingly is
adopted). Then, carrying out the expansion (15) to second
order scattering, we have: :

(N, ,N) = (NO,N% + (%O, N®)s + (NO,N%)s? (16)
‘Since
Frs -2
2. [T RD7 (W R] [T R
R_ T_ R_ T_ R_ T_
[T24R R~ T.R+R.T
- + . + 0 DT
2 »
[R.T,T R RR+T

we have from (16) for the first component N, of the vector

“(N4+N_):

N, = N2+ [NST+ +N‘_’R_'] + [Nf(T§+R+R_) +N?(R_T++T_R_)] (17)

and for the second component N_ of the vector (N, ,N_):~

o . 2
N =N%+ [NSR+ +N‘_’T_] + [NS(T+R+ +R,T.) +N?‘.(R_R+ +T_)] (18)

Equations (17) -and (18) show. how the natural solution (15)
can be constructed order by order for an evolution of (NaN-).
1f still another scattering order is needed, we include S*%:



60 C NATURAL SOLUTIONS VOL. I1I

2

ST

+R,R_ T,R,+RT| [ T, R
RT, +T_R.  R_R, +T° R. T

2

2

3 . .
T,+RRT +TRR +RTR TR +RRR +TRT +RT

2 2. » 3l
RT,+TRT, +RRR +TR RT,R +TRR +RRT +T

To show how the second order operators in (17) and (18)
are applied in practice, let us assume explicitly that
No(0,t,-) =0 for all t, and that N is the constant value of
the radiance pulse Ny(0,t,+) of duration t,, starting at
t = 0, in the direction £, i.e., of increasing r. The pres-
‘ent situation then constitutes an approximate model of the
light field generated by a 1laser-like beam pulse of duration
t, seconds in the immediate vicinity of the beam. The out-
going field N, evaluated at r = 0 for every t > 0.is then,
according to (17): : :

N(O,t,4) = N (0,t,+) + NOT,(0,t) + NO(T2 « R,R)(0,t)

a9

The incoming field N_ evaluated at r = 0 for every.t > 0 is,

according ‘to (18):
N(0,t;-) = NOR,_(0,t) + NO(T,R, + R,T ) (0,t) (20)

In each of these equations, we have Ng(0,t,+) = N for
0 <t <ty and Nog(0,t,+) = 0 for every other t. o

Let us consider (20) in more detail, The first order
scattering term, unraveled,; becomes: ST

b(r,t) . :
N2R+(r,t) =~/ﬂ , NS(r',t')_p(r',t')Trw_f dr' i:(ZI)‘
T : : e

in which we are to set r = 0, and t' = t-|r'/v]. "A study of
part (a) of Fig. 5.7, which depicts the present situation, .-
and a study of the definitions N§ and N2, shows that this
integral is best evaluated by establishing two cases: Case
(i) pertains whenever t < tg; Case (ii) pertains whenever
t > t,. The particular forms of (21) for these two cases
are as follows. - Case (i), ((0,t) in the pulse): .

s
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{a)

{o,)

po}—

alo,t)

space-time integration
path for N3T;

(b)

bo,1)

pulse world
region

a(r,'r)=£_':'2—m)

b(r,t)=‘“_’vt)

FIG, 5.7 Space-time path integration details.

o
N,R,(0,t)

Np
Za

Case (ii), ((0,t) after the pulse):

ev'OLVt )

vt/2
- t
Np[ e 2or’ gp
0

(-

(22)
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' vt/2 '
- ¥
N2R+(0.t) = Np‘/rv Cet2er’ gy
' (

vt /2)-(vtg/2)

-avt : S
. Np e [Ftho _1] REE)

Equations (22) and (23) describe the first order scattered
radiance flowing in the negative direction of X, at r = 0.

For the radiance at a general space-time (r,t), we
once again require two cases: Case (i) pertains when
(t-to)v<|r|<vt; and Case (ii) pertains when [r| < (t-to)v.
These cases reduce to the special instances considered above
when r = 0, In general, Case (i) holds when the space-time’
point (r,t) is in the world region of the pulse; Case (ii)
holds when (r,t) is futureward (above or after) the world
region of the pulse. Returning now to (21), we evaluate ‘it
for a general point (r,t), according to the two cases ((b) of
Fig. 5.7): Case (i}, ((r,t) in the pulse): ’

' (revt)/2 '
car'  ~afy'-
N°R+(r,t) = Np }f e 0T o a(r'=r) 4.
T

- Yo [eror gmove] (29
Case (ii), ({r,t) after the pulse):
(r+vt)/2

N2R+(1;’i) = Np f e»--a,r' e-d(r'-r) dr!
’ (r+vt) _ Vi, '
' -avt _
= Npe = [eavt.o '_1] ) . ) (25)

Equations (24) and (25) describe the primary scattered:
radiance in the direction -£ in X at a general space-time
point (r,t) such that r < vt. For r>vt, the primary radi-
ance is clearly zero, as may be seen by reviewing the geom-
etry of the space-time plane discussed earlier. Furthermore,
this value is approached by (24) as (r,t) approaches the - -

“lower boundary of the pulse's world region, i.e., the line
defined by r = vt. Hence NPR, is uniquely defined throughout
the whole space-time diagram. . . —

We turn next to illustrate the evaluation of the second
order scattering, terms in (20). We first consider N9T,R,.
This is interpreted to be the result of. the operation of R4
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on N2T+. Thé'latter, in turn, gives the primary scattered
radiance in the direction + for a general space-time point
{(r,t):

r .
N2T+(r;t) -‘jF Nf(r',t') (r',t") Tr-r‘ dr!
a(r,t)

in which we are to set t' = t-r'/v., A study of Fig. 5.7
shows that, for the present source condition, we have
Ng(r',t') = 0 for r' < 0 (no source radiant flux in the di-
rection + at any time for points r' < 0). Hence the inte-
gration may begin at rv" = 0, instead of a(r,t) (=(r-vt)/2}.
Furthermore, t(r',t') is constant of fixed value 1 for all
r' and t'. Hence, Case (i), ((r,t) in the pulse):

- r . .
NET...(r,t) = N'rfe'ur' e olr-T') g
o .
Hence:
NOT, (r,t) = Ntr e %F (26)
Case (ii), ((r,t) after the pulse):
NJT, (r,t) = 0 _ (27).

Equations (26) and (27) give the primary scattered radiance
in the direction +£ at a general space-time point {r,t)
futureward of the origin (0,0).

We are now ready to evaluate the second order terms.

Thus we have, Case (i), ((r,t) in the pulse):

' (r+vt)/2
NST,R, (1,1) [ CONQT,(x',t") p(r',t') T, . dr'
r

' (r+Vt)/2 - :
- 1 - LI
Nti/’ e o L eIy g

T

(r+vt) /2
- 1
Ntp euﬁ/, r' e Zor dr'

T

Nto ] e 0T [1420r] -6 %Vt 1+ a(r+ve)] (28)

402
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Case (ii), ((t,i) gfter_the pulse):
{r+vt)
==

NOT,R, (r,t) = NOT, (r',t') p(r',t') T, . dr'
Y(revt) _ Vio
=z T

(r+vt)
Ao

= Ntp é“rf V ! e 20T gp
: (r+vt) _ Vto
- I

= '%‘lg- e %Vt 11+ a(reve)] - VoL a(r+v -avtg]
T e _

v (29) -
~ The final term jn the second order expansion of N(0,t,-)
as given in (20) is N3R.T., that is, the result of operating

on NYR, with T-. Once again it is convenient to consider two
cases: Case (i), ({r,t) in the pulse):

b(r,t)
Jr NOR, (r',t') t(r',t') T, _, dr'
. .

o
N+R¥T_(r,t)

b(rnt) ’ .
Np‘r[ [e'-ar' _e-uvt'] e o(r'-1) 4.
T o

20
(r+vt) _
Npte®T i -2ar' -aft
= ——pﬁ—- [e -e '] dr"
T
- Not e T _e-avt . aeu(r-vt)[r_vt] (30)

E
Q

Case (ii), ((r,t) after the pulse):
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b(r,t)

NJR,T_(r,t) =/‘” NOR, (r',t") «(r',t') T, dr'
, _

vt . , _
b(r,t)" T

' =f ‘ NOR, (r',t'). T(x',t") Tovopdrt+
r i : '

b(r,t)

[ ve NOR (0,61 w(xtyen) Ty, dre
i Jb(r,t) = ‘ g .

(31)

The integration in Case (ii) is shown split into two parts:
that part of the integration over the segment of the space-
time path after the pulse, and that over 'the segment of the
space-time path in the pulse. The result of an integration
over the futureward region of the pulse is in general not
zero for secondary and higher order scattering.

The first integral in (31) uses Case (ii) for NZR.
craluated in (25), and the second integral uses Case (i)
above by replacing the lower limit in (30) by (r+vt/2) - (vty/2.
The requisite value N(0,t,-) is now obtained by setting r=0
in the appropriate cases in (24), (25), (28), (29), (30),
(31) and adding the appropriate terms, in accordance with
(20). ’ :

Concluding Observations

. We have carried the evaluation of N(0,t,-) far enough
to show the essentials of the natural solution procedure for
the one-dimensional time-dependent problem. It should be
particularly noted how each step builds on the preceding step
and--manipulative difficulties aside--how each step is in '~
principle directly constructable in a finite number of oper- .
ations using elementary calculus. With the advent of ever
more sophisticated symbolic manipulation programs for general
purpose electronic computers, it should eventually be possi-
ble to have a program which would permit the symbolic term-
by-term integration of the natural solution series (15). We
have carried the solution of the present problem far enough
to show that only integrals of the type )
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will be encountered in the natural solution for one-dimensional
time-dependent radiative transfer problems on homogeneous
spaces. With such general information a program should in
principle be possible which combines simple algebraic and
calculus manipulations, and which will give the two components
of the nth term of (15) mechanically and relatively quickly.
By having the machine run out several more terms than the
second order, obtained so laboriously above, a trained human
looking at the emerging terms could perhaps discern a pattern
in this (or subsequently more complex problems) and thereby
prepare for an inductive leap to the general term of the- se-
ries. The advantages of symbolic over numerical integration are
obvious. The former is exact at each stage whereas the latter is
plagued by cumulative round-off errors. Once a symbolic inte- -
gration has been performed, it may then be evaluated for the
particular numerical case of interest. ,

Or> final observation can be made about the natural
solution of one-dimensional time-dependent problems. This
concerns extension of the analogy between the class of acous-
tical and optical reverberations, or as they are more COMMON-
ly called, "electrical circuit transients.” By studying the
Laplace transform techniques of solving the problems of tran-
sients in electrical circuits (see, e.g., Chapter IX of Ref.
[39]), one sees the pessibility of interpreting certain terms
in the final solution as analogous to the nth order scatter-
ing terms developed above. This suggests the possibility of

‘a thoroughgoing theory, built along natural-solution lines,
‘which should underlie and unify the particular rlnglng prob-
lems in the fields of optics, acoustics, transmission-line
theory and electromagnetics. Mathematicians can view this as

extensions of the Neumann series to space-time linear settings.

‘An approach to such a unification.can be based on the formal-
ities developed in the present chapter since many of the op-
erator equations appearing here are clearly interpretable in
terms of the concepts of each of the preceding fields.

5.7 Optical Ringing #roblem. Three-Dimensional Case

] We examine next fhow the natural mode of solution of the
equatlon of transfer &4n be applied to the problem of deter-
mining the time-dependent radiance field in a natural optical
medium. The program to be followed here is. that which sys-
tematically generalizes the developments of Sec. 5.1 to the

time-dependent case; in particular the generalizations'éf the

R and T operators will be the key steps in the present dis-
cussion. We begin by introducing an important geometrlcal
concept connected w1th the time- dependent problem.

The Characterlstlc E111p501d

Let x and y be two po1nts in an e~tensive natural optl-
cal medium X. Suppose that at time t = 0, a spherical pulse
of light is emitted from x. This pulse expands about x as
center and at time r/v passes point y, where r is the dis-
tance from x to y. Here v is the speed of light in X, as-
.sumed independent of location and time throughout this dis-
cussion. Just after the wave front of the pulse passes. .y, a
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multiply-scattered radiant flux field is generally incident
on y from all directions about y. We now ask: What is the
region of points in X which can send radiant flux to y at an
arbitrary time t > r/v? It is easy to see that at exactly

.t = r/v, this region is the straight line segment between x

and y. Any points x of X off this line segment could not
send scattered flux to y because the detour, however, slight,
would delay the scattered flux's arrival time at y. For times
t of arrival at y such that t > r/v, such detours are possi-
ble to some extent. The region in which the scattering de-
tours are possible and which allow arrival at y at time t- is
generally an ellipsoid of revolution with x and y as foci.
This may be seen by studying Fig. 5.8, and recalling that
definition of an ellipsoid which characterizes it as the locus
of points z such that the sum of distances d(x,z) + d(z,y) is
a constant, :

CHARACTERISTIC ELLIPSOID AT TIME 1t

d(x,z)

FIG. 5.8 The characteristic ellipsoid relative to the
source at x and receiver at y at time t.
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For the case at hand these dJdistances are all initially con-
sidered in terms of times of travel t(x,z) and t(z,y) across
the respective distances and we are interested in all those
points z in X such that: _

d(x,z) + d{z,y) = vt (1)

This defines at each instant t > rv/v an ellipsoid of revolu-
tion in X, with foci x and y. From (1) we see that the major
axis of the ellipsoid is of length vt. We call the ellipsoid
so defined, the characteristic ellipeoid £(x,y;t) associated
with x and y at time t > r/v. A useful polar representatlon

_of £(x,y;t) with y as pole, is given by the equation:

. . D? - d? :
r(y,E,t) = 70~ cos 0} - @)

where 6 is the angle between the unit vectors £ and =n, as
in Fig. 5.8, and where we have written: :

'lD" fo-r Vt
"d* ' for d(x,y)

The eccentr1c1ty ¢ of the characteristic ellipsoid g(x y t)
turns out to be d/D. At time t such that t = d(x,y)/v = t/v,
we have € = 1. As time increases indefinitely, e decreases
to zero, so that--if the space is infinite in all directions
about y--the characteristic ellipsoid approaches a sphere
which takes on very nearly the polar form:

r(y,E, t) '2’ = th‘

The exact spherlcal form of €(x y;t) occurs at finite times.
if x = y, i.e., whenever d = 0. .In such a case, £(x,x;t)

becomes the characteristic spherotd S(x;t) with radius vt/2Z.

" Time-Dependent R and T Operators
and the Natural Solution

With the necessary geometrical preliminaries out of the

way we can how .adapt the R and T operdtors of Sec., 5.1 to the’

time-dependent case. We shall limit the present discussion

to a homogeneous steady medium X with point source at a fixed.

point 0 and such that the characteristic ellipsoid £(0,x;t) -
is contained in X for all t under discussion. We shall then
write: : '

"R"  for [_]c(x;g‘;E) de(e")

{1

and:
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- 1 (X,E,t) . '
vy fo;.jf [ ]Tr_r.(x‘,g)drf (4)
0 _
Comparing this pair of operators with their namesakes
in Sec. 5.1, we see that the essential difference between the
two pairs rests in the limit of integration for T. Now we
«can limit the integration to the characteristic ellipsoid _
&(0,s;t), whereas before (see Fig. 5.1) the limit of integra-

tion for T was generally the dlstance from x to the boundary
-—of—Xin—the direction =&.” B ) -

If we go on to write:

1

"s™"  for RT

and then: ’ . (5)

“Nn+1" " for N! S1

for every n >0, it follows that we can construct the time-
dependent nafural solution for the time-dependent equation
of transfer (4) of Sec. 3.15, just as in 5.4. . In particular
the solution verification may be repeated line for line and
‘culminating as in (4) of Sec. 5.4, with the form:

N(x,E,t) = NO(x,E,8) + N*(x,E,t) | . (5a)

but now each term has a time-dependent interpretation.

Truncated Natural Solution

 Just as in the steady case in Sec. 5.5 we may now ‘trun-
cate the time-dependent natural solution and obtain an esti-
mate of the accuracy of the truncated solution. It turns out
that the truncation estimates of the time-dependent solution
can be much sharper than their steady state counterparts, ow-
ing to the use of the characteristic ellipsoid in the time-
dependent computations. In. this discussion suppose the source
starts at t = 0 and emits in an arbitrary manner thereafter.
The light field sweeps out from 0 as center in the form of a
spherical field; building up radiant flux of all scattering
orders within the sphere as time goes on.

Let NC be the maximum (or supremum, if need be) of the
initial radiance function NO over the sphere of radius vt,
center 0. See Fig. 5.9. Then observe that:

NOsl(x,g,t) < WO prr-eTOT(maX)y" (g

for every £ in Z at x and time t, where p = s/o and where we
have written:
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&lo,x,1)

FIG. 5. g The spherical wave front of the pulse has radlus
vt. The characteristic ellipsoid relative to 0 and x at time
t defines those points of the medlum which can send flux to
x from 0 at t1me t. v

"r(max)" for max r(X;E,t)
£ € E

Hence:
r{max) = (D + d)/2 -, D= vt'

By letting x vary over the spherical region of radlus vt
center 0, (6) leads to:

N, = NS ,E,0) < BO p(1-e™VE T (D)
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for every x in X and £ in Z. This may be compared with (3)

. of Sec. 5.5. Using (7) we can estimate the upper bound of
primary scalar irradiance and radiant energy over X in terms
of that of residual scalar irradiance or radiant energy. Us-
ing the basic idea contained in (7), we can construct a chain
of inequalities for n-ary radiances. For (7) yields an upper
bound of primary radiance over the sphere of radius vt, cen-
ter 0, and this upper bound now can be turned around to play

. the role gf NO in the estimate of the next scattering order,
namely, N°(x,§,t). Thus in general, since:

n-_l 1

N = NPTl

it readily follows that:

N?(x,£,t) < NO[p(1-e vty " (8)

for every x in X, £ in Z, and integer n > 0.. This inequality
reduces to (5) of Sec. 5.5 in the steady state, i.e., when

t » =, The inequality (8) shows that for x sufficiently close
to 0 and for small times t,

NU(x,E,t) = (svt)N° ._ _ (9)

‘where s is the total volume scattering function.

Now, just as in the steady state case of Sec. 5.5, we
can estimate the error of truncation of the natural solution
series. Thus using (8), we have: .

o

Nex,e,t) - N (ke ) = ! [o(1-e @Yy
j= +]1 .

< R° z [p(1-e” V%) 1]
LN

Hence:

[p(l-e'“Vt)]k+l

: (10)
1- [p(1-e7%"5)]

Nex,E,t) - N (e 1) < |°

"for every x in X, and £ in 5 at time t. For large times,
{10) reduces to (6) of Sec. 5.5. The space and source condi-
tions giving rise to this estimate are stated at the outset
of this discussion. .

It should now be a relatively simple mattér to reduce
the preceding analysis to pulselike sources at 0, such as
that considered in Sec.. 5.6, The general method of analysis
and its results developed between (6) and (10), of course
remain the same for such sources, but sharper time-dependent
estimates of N® are now possible. These truncation estimates
are evidently capable of a large variety of treatments and
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with the general mode of analysis now clear, each special
case is best left to individual treatment by the interested
investigator.

5.8 Transport Equations for Residual, Directly Observable,
and n-ary Radiant Energy R

In this se€ction we shall prepare the way for the exten-
sion of the concept of the natural solution of the equation
of transfer to the radiant energy field in an optical medium.
We shall derive from the time-dependent equations of transfer
for the n-ary radiances the corresponding time-dependent
transport equations for n-ary radiant energy. We shall even-
tually find that the latter equations are completely solvable
in terms of simple closed algebraic forms in all homogeneous
optical media. This fact will allow an important insight-
into the structure of the associated time-dependent radiance
field in the same medium, and thereby. shed further light on
the difficult optical ringing problem in natural optical

media, introduced in Secs. 5.6 and 5.7. We begin with aAdis-.

cussion and solution of the transport equation for zero-order
radiant energy (or alternatively, the residual radiant energy)
in an optical medium with:an arbitrary source. - Then the

transport equations for nth order radiant energy will be de-. =

rived along with the transport equations for directly observ-
able radiant energy. Throughout this section the optical
medium will be homogeneous with arbitrary sources of radiant
flux distributed throughout. The volume scattering function
is to be arbitrary but of fixed directional dependence, and
unless otherwise specified the scattering-attenuation ratio
p-is also arbitrary but fixed, with 0 < p < 1,

Residual Radiant Energy

In order to help fix the main ideas in the present dis-~
cussion, let the optical medium X under consideration be de-
picted as in Fig. 5.10, that is, as an extensive region X
with a boundary Y on each point y of which is incident a
radiance distribution N o(y,*) which may be extended into X
to obtain initial radlance distributions NO(x,) at each
point x in X, after the manner of (1) of Séc. 5.1. In the )
terminology of Sec. 3.10 (see, e.g., (4) of Sec._3;10)1N°(x,£)
is the transmitted (or re51dual) radiance at x in the direc-
tion £. The alternative term "residual radiance" will be

particularly appropriate in the context of the present dls-‘”

cussion, and so is singled out for spec1al use.

Suppose now that sources of radiant flux are present.
within X. This is a relatively new condition since (except
for the brief discussion of example 3 of Sec. 3.9), no sys-
tematic explicit use of internal sources was required. We
have now arrived at a point in our developments where the
advent of the special radiometric concept needed for the
description of internal sources takes place naturally. We
therefore hypothesize the existence of an emission radiance
function Ny, defined for each time t in some time period and
at each point x in X, and direction £ in £, The dimensions -
of N, are precisely those of N, (radiance per unit length)-
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Y

"FIG. 5.10 Computing residual radiant energy in medium X.

and the use of N, may be best understood by keeping this
equality of dimensions in mind.. Physically, Np(x,E,t) is ,
intended to describe the radiance emitted at x and time t per
unit length in the direction £. We envision Np(x,£,t) to be
generated by some radiant emission mechanism in X. This mech-
anism generally takes two distinct forms, which may be in
operation singly or simultaneously. These forms are described
in Sec. 19 of Ref. [251] and therefore need not be repeated
at length here. It suffices for our present purposes to ob-
serve that the radiance Np(x,£,t) arises generally either '
through scattering by change in frequency from.an arbitrary
frequency to the one under consideration, or through the
emission processes of conversion of nonradiant energy to
radiant energy. : R

- When internal sources, characterized by means of an
emission radiance function Ny, are present throughout a medi-
um X, the initial radiance function NO is defined throughout
X as follows. We write:
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UNO(z,E,1)" for No(x,E,t-1/V)T_(X,E)

T
| N (B8 T, (x',E) dr )
. N

This definition takes place in the same general geo-
metrical setting of (2} of Sec. 3.10 and reduces to (2) of
Sec. 3.10 when X is source-free and the light field is in the
steady state. Here as usual z = x + £r , and t' = t-r'/v .
A slightly more general definition can be written if X itself
has changing inherent optical properties. -Also, if scatter-
ing with change of frequency is to be explicitly taken into
account, we may replace N; by the true emission function Ne.
The details of this more general definition of N° may be
found in Sec¢. 22 of Ref. [251]. Such generality will not be.
required .in any of our discussions, and so in the interests
of simplicity of exposition, the present definition will be
retained.  Immediately forthcoming from (1) is the equation
of transfer for initial radiance in the presence of internal
- sources: . L

o ' i o
%¥F'+ £« vN® = - aN@ + Nl €2)

<f—

“This is obtained by taking the lagrangian derivative of ‘the
definitional jdentity which (1) implies. That is, while
following in-imagination a photon packet along a natural path
through X, we differentiate the right side of (1), by adapt-
ing the general procedure used to obtain equation (3) of Sec.
3.15 from equation (1) of that section.  Now, we use D/Dt
instead of d/dr, where D/Dt is defined in. (5) of Sec. 3.15.
Equation (2) is a direct generalization of (2) of Sec. 5.2.

We are now ready to define the notion of residual . .
radiant energy and to establish its various analytical repre-
sentations. By setting n = 0 in the definitions (16) and
(17) of Sec. 5.1 we obtain the definitional identity:

Cono = 2| ] x0men @@ )

X|/E

U?(X,t) isithe residual (or reduced or unattenuatéd)_radiant
energy in X at time t. When X is understood and fixed - ‘

throughout a discussion (as in the present one) its name may

be dropped from the notation and we will write "U9(t)" for .
the residual radiant energy. The term "residual"™ is partic-
ularly well adapted to the photon interpretation of light.
For in that interpretation, U°(t) is simply the radiant
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energy content of X at time t associated with photons which
have not been scattered or absorbed relative to the incident
and emission sources of flux on X. Thus the photons making
up. U9(t) are those left over and in their original unscat-
tered state after t units of time have elapsed since the
external sources over X (represented by Njy) and the internal
sources over X (represented by Nn) have been turned on.

Transport Equation for Residual Radiant Energy

The transport equation for residual radiant energy can
be obtained directly from (2) by applying the integral oper-
ations occurring in (3) to each side of (2). Thus, inte-
grating (2) term by term, the time derivative term becomes:

' o
NO(x,E,t) da(g) | av(x) = 2 () (4)

=2
at 3t

< |

X g

Next, we observe that the spatial derivative termAmay be
written as:

v - (eN% o,

since £ is a variable independent of location on X. Then we
observe that the integral:

£ N°(x,£,t) da(g)

defines the residual radiance counterpart to the vector
Adrradiance function H, as developed in Sec. 2.8. If we
write "H®(x,t)" for the preceding integral, we can then go

on to perform the remaining integration, as required by (3),
to obtain: - B

v - BO(x,t) dv(x)

X

which by the divergence theorem may be written as a surface
integral of B over the boundary Y of X; thus:’

v - HO(x,t) dV(x) = - E%(x,t) ¢ n(x) dA(x) , (5)

X Y
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where n(x) is the unit inward normal ‘to X at each x on Y, and
A is the area measure of Y. Supposg we‘wrlte
"PO(t)" or - “PO(Y,t)" for B (x,t) -« n(x) dV(x) (6)

Y

Thus F°(Y t) is the net inward flux to X across the boundary
Y of X. Flnally we write:

"Pn(t)" or f?n(¥,t)" for _Nn(x;g,t) dﬁ(;) dV(x)_

X

[£3]

)

Thus Py(X,t) is the input radiant flux over X at time t.
Assembllng the results summarized in (4)-(7), equation (2}
becomes:

4110 Oy P
W) . L) v+ (1) (8)
o .

. where we have written:

1 .
" " —
T, fo}r o . . (9)
Equation (8} is the requisite transport equation for residual
radiant energy in medium X at time t.

The Attenuation Time Constant:

The quantity T defined in (9) and which has the dimen-
sion of time, is the attenuation time constant for X. The
significance of T, will become apparent as the discussions
of this section proceed However, a preliminary insight into
its significance can be obtained as follows, Imagine all of
E, to be an infinite homogeneous three-dimensional optical
medium about the origin 0. Let the initial radiant energy
content of E; be zero. Let the sources in E, be conflned to
a point source at 0 which is turned on at tlme t=0 and
which pours radiant flux out into X. at a constant rate Py
(i.e., P_(t) is independent of t, t > 0). At any f1n1te time
t > 0 the spherical wave front traveling outward from 0 is of
radius vt. For every t > 0, let Y' be any given sphere of.
radius. r(>vt}, and let X! be the medlum bounded by Y', as
in Fig. 5.10.

Under these conditions we have in particular_Fo(t) =0
for every t, 0 < t < r/v, and (8) reduces to:
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Cauly) U u%)
—dé_' .ﬂISOL_.wxpn (10)
: with initial condition:

v =0 . _ (11)
The solution of (10), subject to (11), is:’

Uo(t) = Uy (1-e /Ty | a2

over the time interval (0, r/v), and where we have written:
I"o "
U (w) for PnTu

The significance of T, now springs into view if we
recall a well-known result of elementary circuit analysis
concerning the charging of a simple capacitance-resistance
DC- circuit such as that depicted in Fig. 5.11. When switch
S is closed at time t = 0, battery B of voltage V pumps
electrons along the circuit A which has resistance R, until
. the capacitor of capacitance C (initially discharged) is
fully charged. The amount q(t) of charge on the capacitor

CIRCUIT A

L
|

FIG. 5.11 The analogy betﬁeen an electric circuit and
an optical medium,




78 . NATURAL SOLUTIONS | VOLJVIII
at time t > 0 is given by the equation:
a(t) = q(=) (1-¢ RO (14)
where we have written: »
"q(=)" for CV (15)
With the stfonglstructural resemblance between (12) and. (14)

in mind, we can make the following pairings between the radi-
ative transfer .concepts and the electrical circuit concepts:

In the Optical Medium In the Electrical Clrcult
The medium X The c1rcu1t A
The Source Point 0 The battery B
Pn : V/R
Uo () q(t)
1/v ' : C.
1/a . .R
(attenuatlon time RC (circuit time constant)
cmwtmn) ' g

Hence the buildup of residual radiant energy in an ex-.
tensive homogeneous medium X is analogous to the charging of .
a capacitor in a simple DC capacitor- resistance circuit. The .
internal source of radiant flux Pp, is analogous to the basic
current associated with the battery voltage V and circuit re-
sistance R. The capacitance of the circuit is, for given

geometry, dependent on the materials of the plates.. Thus the

smaller the speed of propagation in the material, the larger
the capacitance, and the larger the steady state charge q(=).
Analogously; the smaller the speed of propagation v in . the
optical medium, all other things being equal, the larger the
steady state stored energy U9(=). On this basis (which is

not, however, logically compelling) we pair 1/v with C. Fur-

: thermore, the less dense the conducting material of the cir-
cuit, the smaller is the conductance 1/R; similarly, the less
dense the material of the optical medium the smaller is a. -
On this basis we pair 1/a with ' R.  The standard circuit time
constant RC then pairs off with Ty. - This pairing of time

constants is relatively strongly suggested by direct compari-<

son of (12) and (14), whereas the suggested pairings of 1/v-
with C and 1/a with R are not as strong and, indeed, th&pair-
ings may be switched without affecting the important pairing
of Ty with RC, the pairing of principal interest at the mo-
ment. However, the indicated optical counterparts to R and
C are quite interesting to contemplate, particularly when it
appears that the analogy between the medium X and the circuit
A can be extended quite far by establishing a link with the
analogies summarized in the closing paragraph of Sec. 5.6.
Apparently, if these analogies can be extended far enough,

B9 SURANURUU S I
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then with sufficient care and ingenuity, some of the timc-
dependent radiative transfer proﬁlems can possibly be solved
by electrical (or even acoustical) analog methods in which
the time-dependent electrical (or reverberating acoustical)
field replaces the radiant field. _ ‘

Just as in the electrical case, the attenuation time
constant Ty is the time required for the residual radiant
energy to attain 63 percent of its steady state value. Below

“is given a table for the values of U®(t)/U°(~) for variou

values of t in terms of multiples of Ty
TABLE 1

Values of Uo(t)/Uo(w) for various'&alues of
t in terms of multiples of T,

t = nTa Uo(t)/UO(w)
Ta : : 0.63
ZTG -0.86
3T 0.95
o
4T ' 0.98
a .
CST, _ 0.99

General Representation of
. Residual Radiant Energy

The solution (12) of the differential equation for

" residual radiant energy is a special case of the more general

solution: :
t .
() = 1Ocoye T v | ot/ Tap (rry aerl  (16)
0 |
where we have written:
"P ()" for Po(t) + Pa(t) © (17

The solution (15) represents the residual radiant energy in
a. general homogeneous optical medium X with known combined
internal and external source flux function Py, as given by

(17).
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Transport Equation for n-ary
Radiant Energy
We derive next the transport equation for the'second
main radiometric concept of this section, the n-ary radiant
energy UM(t). The definition of UB(t) was given in steady

state form in Sec. 5.1. Thus we have for every nonregative
integer n,

v(x,t) = & N (x,E,t) da(g) | av(x) (18)

X g

We shall write "yR(t)" for UP(X,t) whenever X is understood.

Starting with the time-dependent radiance field in X
we apply to (5) of Sec. 5.7 the 1lagrangian derivative oper-
ator D/Dt in exactly the way d/dr was applied to (11) of Sec.

5.1 to yield (1) of Sec. 5.2. We have, as a consequence, for

every integer n, n > 1:

n .
Wovg o= en| (19)

<

which is the time-dependent equation of transfer for n-ary
radiance N, and which is to be compared to (2) above and
(1) of Sec. 5.2. Applying the integral operations in (18)
to each member of each side of (19), we find that: o

n o R
T 5 de@idv = L0 (20)
Axe
We write: » '
"BM(x,t)" for | EN"(x,£,t) da(E) (21) -
and
"P(t)" or "PU(Y,t)" for B"(x,t) "+ n(x)dA(x) (z'z)

Y

wnere n(x) is defined as in (6). Finally we observe that:

e e i e et & e+ e
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N3 (x,£,t) de(g) | av(x) = s 1" 1(p) (23)

X

¢4

With the results (20) through (23) in mind, (19) yields
up the following transport equation for n-ary radiant energy:

n n n-1 ’ v
LG R U_T%)_+U__T:(t_l+ Ph(e) | (24)

fd; every integer n 1.1. The main details of derivation of
(24) thus proceed as in the case of the residual radiant
energy (8). Here we have written: :

"TS" for 1/vs ' _ (2%)

In equation (24), PU(t) is the net inward radiant I%ux
across the boundary Y of X at time t. The radiant flux PP (t)
has scattering order n relative to that of P°(t). A term by
term interpretation of (24) is instructive: the time rate of
change of n-ary ridiant energy in X at time t is the sum of
a growth term U""-(t)/Ts (which is the rate of conversion of
(n-1)-ary scattered energy into n-ary scattered energy), a
decay term -UR(t)/Ty (which is the rate of conversion of
n-ary energy into (n+l)ary energy and nonradiant energy), and
finally a general net rate of growth term giving the net
balance of influx and efflux of n-ary radiant energy across
the boundary of X. The quantity Tg is the seattering time
conatant for the medium X. It is a concept which helps write
(24) in a uniform manner in terms of the fundamental timelike
quantities T, and Tg.

Transport. Equation for Directly
Observable Radiant Energy

~ The radiant energy U associated with directly observ-
able radiance N, using a standard radiance meter is called
the direetly observable radiant energy. This energy is to
be held both in conceptual and empirical contrast to the
n-ary radiant energy U"; n > 1, which is not directly observ-
able in practice, (The resTIdual radiant energy is indirectly
observable using techniques alluded to in Sec. 3.10 and Sec.
16 of Ref. [251].) We now derive the transport equation for
U(t). We begin with the definitional identity:

U0t = 3 || NG, aa e | ave (26)
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based on (2)'and (12) of Sec. 2.7. As usual we shall drop
reference to X, when X is understood..

Starting with the time-dependent radiance equation (4)
of Sec. 3.15, we now apply the integral operations in (26) to
each side of the transfer equation and obtain, in a manner
analogous to that culminating in (8) and (24) above, the re-

sult: o
égég; = - Eéil + B(2) + P (1) an

This is the transport equation for divectly observable radi-
ant energy. In the equation we have written:

’ 1
" 1t —
Ta for e
and where a in turn is the value of the constant volume ab-
sorption function in X. Furthermore, we have written:

"B(t)" or "P(Y,t)" for H(x,t) » n(x)dA(x) . (28)

Y

. The uﬂlt vector n(x) is defined as in Fig. 5.10,. and
so P(t) is the net inward radlant flux into X over: the bound-
ary Y of X.

The Natural Solution for Directly
Observable Radiant Energy

It is a relatively easy matter to verify (u51ng (5a)
of Sec. 5. 7) that:

ux, = 1w, | @9
j=0

holds for, every t > 0, where U(x t) is deflned as in. (26)

and the UJ(X,t) are deflned as in (18). Thus, once each
uJ(X,t), j >0, is known, U(X,t) is known and computable.
Equation (2§) represents the natural ‘'solution of the dlrectly
observable radiant energy.

In the case of radiant energy the natural solutlon pro-
cedure is not .as vitally essential in the solution of U(t) as
in the natural solution procedure for thé case of radiance in-
Secs. 5.6 and 5.7. Indeed, the solution of (27) is written
down quite read11y, assuming P(t) and Pn(t) given. Thus,
writing,

CUP(E)" for P(t) + P (%) (30)
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'we‘have, analogously to (16):

ur) = u)e ¥Ta v | (F8/Ta prery go (31)

‘The quantlty T, is the aobsorption time constani for X and is
related to T, &nd Ts ‘as follows°

S s
o T a -] . .

The natural solution procedure for radiant energy is, however,
quite useful in throwing light on the inner workings of time-
dependent light fields, for the solutions of the transport
“equations for UM are readily obtained in simple closed forms
which are quite amenable to all manners of explicit, rear-
rangements and manipulations. Some of the properties of time
dependent radiant energy fields will be explored in the next

- few sections.

We conclude this section with an important observation
which will facilitate the studies below. This concerns the
connection between the net fluxes PB(t), n > 0 occurring in
(8) and (24), and the net flux P(t) occurring in (27). This
connection is established By means of the natural solution
representation of the directly.observable radiant energy U(t)
as given in (29). Thus, by summing over all n > 1 in (24}:

adf Z ut(t) = - Tl- by U“(i) +.T1- z u” l(t) + 2 F“(t)

n=1 "s n=1

and addlng to these terms the corresponding terms of (8), v
obtain:

é%ﬁgl = -.Héil 2 PR(t) + P (t)

n=0

comparing this with (27) we conclude that:
P(t) =. § Pty . (33)
n=0 -

5.9 Solutions of the'n-afy Radiant Energy’Eﬁuations

We shall now solve the transport equation for n-ary
scattered radiant energy for every n > 1, and deduce from
the solutions several interesting propertles of the scatter-
ing order decomposition of natural light fields. These prop-
erties are both of intrinsic interest and of use in further-
ing the natural solution of the radiance field in optical
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media. They are also helpful in studying the light storage.
problems in such media. These latter two applications will
be considered in Secs. 5.12 and 5.13. For the present we
concentrate on the immediate mathematical and physical fea-
tures of the transport equations for U®, 'Throughout this
section, unless specifically noted otherwise, the optical
medium will be as in Sec. 5.8, that is homogeneous, with
arbitrary sources, arbitrary directional structure for o,
and arbitrary fixed p, 0 < p < 1.

Natural Integral Representations
of n-ary Radiant Energy

Startlng with (24) of Sec. 5.8, we treat the indicated
differential equation, for givem n > 1, as an ordinary dif-
ferential equation with unknown function U®, and known func-
tions UM% and PN, and with given parameters Ta» Tg. The
initial condition for um is:

w0y =0, " ()

for every n > 0., The general solution under this condition -

can therefore be patterned after (16) or (31) of Sec. 5.8
with the initial values set to zero., Specifically:

t

| . i -1, 'y - : -
ey = | et/ Ta ﬁ,‘.it_l+ Mty dt (@

s
0
Now, to simplify matters we shall assume that:
Ph(t) =0 , (3

for every n > 0 over a given interval (0, t,) of time whlch
is to include the time interval in which we shall be inter-

ested in the solutions of (24) of Sec. 5.8. Physically:this

means in effect that the collective expanding wave fronts of
all sources in X are completely within the boundary Y of X
over the time interval (0, t;). See Figure 5.10, With as-
sumption (3) in force, (2) becomes: -

t .
vhe) = | e Ta g ey ar
: S .
0
t
e-t/Ta t'/Ty -1 B
= S e a ghTi (') att (4) -

>
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which holds for n > 1 and 0 < t < t;. The form of (4) sug-

gests a recursive construction of Un(t) starting with n = 1

and using knowledge of U°(t) as given in (16) of Sec. 5.8.

By (3), Po(t) in (16) of Sec. 5.8 uses only the internal

source functlon P Hence U (t) should be expre551b1e in

terms of UC(t) (or Ph(t)) along with Tg and T,. Thus, start-
lied to Un' (t), n-1 > 1 ~we have:

t t!
' . (e"-t")/T _2 :
Un(t) = Tl— e(t -t)/TCL 15 ) e o Un Z(t") at" dt!

0 p

v . t .

e t/Tay t'/T, qn-2 |

=S| (t-t') e a g?To(tr) ate (5)
S
0

This process can be continued as long as the scatter-

-ing order in the integrand is greater than zero. The pattern

forming 1n2(4) and (5) is clear. Applying (4) once agaln,

now to UM the pattern is crystallized:
) t
-t/T a2 )
ut(e) = S 2| LT ot T g3y e L (6
T .
s
0

Thus, applying the representatlon (4) in all k times, 0 < k
< n-1, we have for UP(t):

t
-t/T ik e
ut(t) = £ 1<+1OI (x kt!') et /Moyt kligny a0 - (1)
S
0

If in (7) we let k = n-1, then the desired integral repre-
sentation of U(t), 0 <t < tj is obtained:

. t
-t/T RS ' , :
uP(e) = & . o (t(g_})! et /Ta 21y ger (8)
n A
0

or, in terms of P,
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t .
't/T ] ] o
‘Un(t) - e - o (t;ﬁ,)n ot /To Pp(t') dt (9)"
S
0

: Equaﬁions {8) or (9) are the desired integral representatiohs'

of U'(t). Observe that (8) holds for n > 1 and (9) holds for
n > 0,

Natural Closed Form Representations
of n-ary Radiant Energy

The formulas (8) or (9) are the requisite representa—
tions of UM(t) under the given initial conditions (1), and
the conditions on the medium hypothesized in (3) and at the
outset of this section. In order to evaluate the integrals’
we must specify the nature of U" or Py over the time inter-
val (0, t1). We now illustrate the use of (9) by choosing

two important. instances of P The first instance is where
is the Dirac-delta funct1on centered at t = 0 and with
rgdlant energy content U The second instance is where Pn
is constant valued over 0, t1) with its constant magnltude
denoted by "Ppt'. In the first 1nstance, we have:
n -t/T .
n t e o -
v () = Un(T:) e 2 (10)

.f9r

P (t) = U (t) &8(t)

over the interval (0, tl) and for n > 0. We shall refer to
this case as the optzcal reuerberatton case (cf. the intro-
duction to Sec.. 5.6). .

‘The secondl1nstance yields the representation:

BEERL n rt/T )3 o
vh(t) = | g | U0 '1-( I ) "t/ Tal (11)
ST ifo 15 .

for .
P (t) = P, S

over the interval (0, ty) and. for n > 0, Here U9(~) is as
defined in (13) of Sec. 5.8, These Two specific .instances
of (9) are verified by dlrect 1ntegrat10n of (9) in each
case. . : .

S N S
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General Integral Representations
of n-ary Radiant Lnergy

The integral representation (9) of U™ will now be gen-
eralized to the case for which the initial conditions on UJ,
j < n, are arbitrary. That is, we now relax the conditions
(1Y. However, we shall retain condition (3). The resultant
representation will permit the construction of relatively
general representations of the time-dependent n-ary radiant
ehergy in a homogeneous medium for which the wave fronts of
internal sources have not yet passed the boundaries. Thus,
by successive applications of the type of solution displayed
in (16) of Sec. 5.8, we eventually arrive at:

Ut (t) =EJ“(0) + (%)U“J(o) P HlT(TE‘) UO(O)]e_t/Tq .
, AT|T,

s
t .
+ e—tiTa (t;;;)“ et /Ta p_(p1y) gt
Tq : n
0

(12)

This is the desired generalization of (9), which holds for
n > 0. )

Standard Growth and Deéay Formulas
for n-ary Radiant Energy

Of the infinite variety of possible time-dependent
radiant energy fields attainable in principle.via (12), two
types stand out as particularly interesting. These are suf-
ficiently instructive to isoclate and set up here as standards.
The first of these light fields is that given by (11) above.
This equation we shall call the standard growth formula for
UR, Recall that in this case the initial values for the UJ.
j ¢ mn, are all zero and that P, is a positive constant over
some time -interval (0, tj). Suppose we write: ’

J-
e_t/Ta le (t/T(I)

"Fn (t/.Ta)n for i 5T

(13)

Then we summarize the standard growth formula as follows: If
(a) The optical medium is homogeneoué,

(b) u™(0) = 0 and P (t) = P for t in (0,t;) and n> 0.
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(c) P%t) = 0 for t in (0,t;) and n > 0.
Then:

Ut (t) = UR(=) [1-F_ (t/T )] (14)

for every t in (0,tq) and n> 0.

The second standard case is that which describes the
decay of the n-ary light field from a given steady state’
level. Thus if an opaque curtain were suddenly drawn over
the ocean in which previously all internal radiant sources
were turned off, the following standard decay formula for U
would describe’ very closely the decay of UR(t) for t > 0 for
every n >0 1n the ocean; thus: If

(a) vThe optical medium is homogeneous.
" (b) U?(O) = oM%(0) and P = 0 for t in (0,t;) and
.n > 0. ' ,

() Pi(1)

0 for t in (O,tl) and n > 0.

Then:

uh(t) = U"(0) F (t/T)) oas

for every t in’ (0 t1) and n > 0.

A few words about condition (b), the initial condltlon
for UM, are in order. An examination of the general repre-.
sentatlon (11) of UM(t) shows that at steady state (i.e., the
limit of UR(t) as t + =) the various magnitudes UP(=) are not
arbitrary. - Indeed, they generally depend on P, and the ini-
tial values UR(0), as explicitly shown in (12). - Hence when
a steady state light field begins to decay after sources have
been turned off, the initial values UR(0), n > 0 are general-
1y not expected to be independent of each other. For example,
if the standard growth conditions are in effect then (11)
shows that: )

n

S T !
UN() =y U%(=) = pMU%(=)

S

n

it

n
p PnTa

for every n > 0. Thus we see that the standard decay formula
is intended to describe the decay of a light field which has
been attained under standard growth conditions as given. by
(14) for t » =,

Lo
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. We ‘can combine the standard growth and decay formulas
(14) and (15) into a single standard formula as follows: If

(a)  The optical medium is homogeneous.

() U™(0), n > 6 is given as steady state value
attained Under a previous standard growth condi-
tion and P,(t) = Py for t in (0, ty1).

() PU(t) = 0 for t-in (0,t;) and n > 0.

Then:

Ut () = u(=) + [UT(0) - UM(=)] F (t/T) (16)

and where UM(«) is determined by (14) for the present source
condition, As an interesting consistency check,‘observe that
if the prev1ous steady state condition (b) above is induced
by P, as given in (b), then UP(t) in (16) is. independent of

: t1me, because UM(0) = UN(x),

As a final standard type of growth and decay formula,
we consider the case in which a standard growth begins at’
t = 0 and continues until time t,, at which time the source
is shut off and the existing light field decays from that

point on until some arbitrary time tj under standard decay

conditions. Equation (12) shows that the decay formula is:
t-t
n _ n ol mn-1 o
us(t) = U(t°)+—r——s UPTR(t) + aen +

4\‘T;2 ot )fe (tt) /T an

for t, <t <ty andn > 0. For t < to, un (t) is given by
(11).  Formila (17) may be used to describe the transient
radiant energy fields induced in large bodies of air or
water by radiant sources which are intermediate between the
Dirac-delta pulse and the steady source described in (10)
and (11). Since any source output P, over a time interval
(0,t,) can be approximated by a step function, we see that
by superimposing fields of the type given by (17), we can
represent n-ary radiant energy fields induced by finite non-

‘constant sources under the general conditions of this section

5,10 Properties of T1me D¥pendent n- arz Radiant Energy
" "Fields and Related Fields

We now turn to examine in detail some of the more in-
tuitively interesting properties of time-dependent radiant.
energy fields. In order to present the properties in their
simplest forms, we shall adopt for study throughout this sec-
tion a light field evolving under either standard growth or
decay conditions or optical reverberation conditions in an
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optical medium X over a time interval (0,t;)(Sec. 5.9). It
will be clear . from the results stated below how analogous or
complementary statements and properties can be formulated
under still more general conditions. We begin with a study
of some of the fine-structure properties of n-ary radiant
energy fields and then go on to a formulation of the various
representations of related radiant energy quantities.

‘Some Fine-Structure Properties ) : : i
of n-ary Radiant Energy
Property 1. Let t be-a fized time in (0,%7). Then the
sequence vort), vi(t), ..., U"(t), ... of n-ary padiant. ener- CL
giee at time t is a monotonic decreaszng sequence with limit

0. The proof of this property is based on (14) of Sec. 5.9.
By (13) of Sec. 5.9 we see that:

lim, F (£/Ty) = 1 (1)

Hence by noting that 0 < p < 1, we see that: - : %

[}
[=]

. n
11mn U™ ()

so that : . . i

t
[=]

. n
llmn U ()
for t in (0,ty). As for the monotonicity of the sequence, it

suffices to note that:

n+1(t) ) I'Fn+1(t/Tu)

U™ (t) 1-F, (/T )

(2)

and that F_(t/Ty) increases monotonlcally, w1th n, to unlty.
This may b2 seen by verifying that:

o<1-'n+1(t/T)<1-F(t/T)<1

for every n > 0 and every positive t. The limit part of | ) o
property 1 follows also from (2) by u51ng the ratio test for
convergent infinite series.

Property 2. Under standard growth conditions,

n et -t/T : ’ ' ;
du () _ p |.E] o s 0 S B
o dt n TS nl _ .

for every t in (0, t1). The. proof is immediate. For example,
one may use (14) of Sec. 5.9 directly with the calculus, or
one may use algebra with the fact that duUm(t)/dt is the.

o
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d1fference glven in (24) of Sec. 5. 8 with Fn(t) = 0. - Prop-

erty 2 shows in particular that each n- ary radiant energy

comgonent increases monotonically with time. Property 2 is
e compared with: :

Property 3. Under standard decay conditions
awce) o uh) [t e T
Tt - - '*é;l T, —ar ¢

. for every t in (0,t7). The proof is immediately obtainable
from (15) of Sec. 5.9. Hence the rates of growth and decay
of n-ary radiant energy under standard conditions are, to
within a constant multiplicative factor, idehtical in struc-
ture within a given space.

Propertx 4. Under standard growth aonditzons,

n+k(t1 pk
vt (e)

ifor every t in (0,t1) and positive 1ntegera n, k. This fol-
lows from property‘z and (24) of Sec. 5.8 with Pn(t) =
The inequality is reversed under standard decay condltlons.

Property 5. In the steady state of the standard growth .
process, :

W (=) = pPUO (o)

_ for every n > 0. Hence:

n+k
U ) Lk
(=)
for every pair n, k of nonnegative integers.

Property 6. In the optical reuerberatton case (equa~
tion (10) of Sec. 5.9) we have the ratio:

)ty = Y5 = t/nT,

for n > 1 and t in (0,t7). Thus, the ratio of succegsive
"n-ary radiant emergy contents increases linearly with in-
ecreasing time and decreases hyperbolically with inereasing
n.

Property 7. In the optical reverberation case with
point source (equation (10) of Seec. 5.8) U™(t), for a given
gcattering arder, attaing a maximum when the radzus of the
wave -front is n times the attenuation length 1/o. Further,
for any given total volume scatterzng value 8 and time t in
(0,t71), that component Un(t) ie maximal whose order n makee
the absolute value of

(l’t—s) -1 = (t/nTg) - 1

n
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a mintimum. 'Thelgeometric content of properties 6 and 7 are
summarized in part (a) of Figure 5.12, '

Property 8. In the optical reverberation case, the
directly observable radiant energy U(t) is given by:
u(e) = U e t/Ta

The proof rests on (10) of Sec. 5.9 and (29) of Sec. 5.8 and
the simple calculation: ]

(t J
[ . © f')
uee) = § uvie) =u e HTa 3 LS
j=0 n j=0 J
_ “t/Ty , t/Ts _ -t/Ta
= Uh e a e S Un e

in which (32) of Sec. 5.8 was used. It follows immediately
from property 8 that, in optical media with no absorption,
i.e., for which a = 0, U(t) is independent of t in the rever-
beration case. Part (b) of Figure 5.12 gives plots of UN(t)

for the first four scattering orders in the optical reverber-

ation case .in which a = 0 and Uy = 1. In the figure we have

1100 (1)

FIG. 5.12(a) The geometric version of property 7.of
scattered radiant energy.. ’
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OPTICAL REVERBERATION CASE
(10) of sec. 5,9

0.6
0.5 s
0.4
) n=|
i
& )
On3 ! Y
5 o.
2 1/
0.1 C//

N

. FIG. 5.12(b) The geometric version of property 7 of
scattered radiant energy.--Concluded.

written 1" for t/Tg. Thus the medium is a nonabsorbing me-
dium (p = 0) with conserved directly observable energy. Note
how the scattering order components of U(t) well up one after
another, reaching their maxima, as described by property 7.
Finally, according to property 8, the sum of the ordinates of
all the curves at each 1 . should add up to unity.

Scattered; Absorbed, and
Attenuated Radiant Energies. -

We now round out the roster of the types of radiant
energy fields most commonly encountered in theoretical dis-
cussions of time-dependent light fields. Until further
notice, source conditions are arbitrary and with F(t) = 0.

So far we have introduced the residual radiant energy
((3) of Sec. 5.8),.the n-ary radiant energy ((19) of Sec.
5.8), and the directly observable radiant energy ((26) of
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Sec. 5.8) with its natural representation ((29) of Sec. 5.8).
By writing:
myx(e)”  for § U3 (e) (3)
=1 -
we define the scattered (or diffuse) radiant energy (in X)
at time t. We then have from (29) of Sec. 5.8 the following

radiant energy counterpart to the time-dependent integral
equation of transfer (cf. (4) of Sec. 5.4): .

U(t) = UO() + UH(t) | (4

Using the emission radiant flux function P, and recalling
that we have set P(t) = 0 for t in (D, t;), let us write:

t
"U(t;a)"  for P, (t") dt' - v°(e) (5
0

for t in (O, tl) The mean1ng of this new radiant energy -

becomes clear when it is recalled that U%(t) is the residual o

(i.e., the unattenuated) radiant energy. Therefore, since.
the integral gives the total radiant energy input to the me-.

.dium, the difference in (5) must be all the energy present at .

time t that has undergone attenuation (absorption or at least
one scattering operation). We call U(t;a) the attenuated
radiant energy (in the medium X) at time t. Only part of.
U(t;a) is detectable. In fact, the detectable part of U(t;a)
is precisely .U*(t). Thus let us write:

"U(t;a)" for U(t;a) - U(t's) _ V(6) 

where, for uniformity of notation and hﬂurlstlc purposes, we
have agreed momentarlly to write

"U(t,S)l,' for h*(’t) . ' . A7)

Then from [6).We have: .
©U(t;e) = UCt;a) ¢ UCt3s) O ®

a formula remarkably similar in structure to the basic rela-
tion:

a = 4a + s

derived from (4) of Sec. 4.Z. We call U(t;a) the absorbed
radiant energy (in X) at time t. The absorbed radiant energy
is radiant energy that has disappeared from the- present radi-
ometrlc scene via absorption processes.
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Representations of U(t;a),
U(t;s), and U(t;a)

The transport equations for the three auxiliarly radi-

‘ant energies and their solutions are relatively easy to ob-

tain. We shall illustrate the power of the natural solution
procedure by basing the derivations of these equations and
representations directly on the knowledge of the n-ary radi-
ant energies developed so far.

We begin with the derivation of the differential equa-
tion for attenuated radiant energy U(t;a). From the defini-
tion (5) we have -

dU(t;o) _ du°(t
ét 2 - Pp(t) - HE )

From (8) of Sec. 5.8 we obtain:

{

dU(t;a) _ U°(t) (9)
—ar T T

‘recalling that the condition Fn(t) = 0 is in force for every

n > 0 (hence PO(t) = 0, in particular, holds). This elegant
formula for the growth rate of U(t;a) shows perhaps most
clearly the reservoir source of U(t o) (namely, Uo(t)) and
the main line which taps the resérvoir (namely, T_, i.e.

‘attenuation). At standard steady state (9) showsathat:

dU(eo0) _ ;
i ' (10)

Thus in the steady state attained under standard growth con-

ditions the rate of increase of U(t;u) is precisely the in-

"put rate Py, so that attenuated radiant energy in the medium

increases as fast as it is put into the medium by the source.
Next we consider the scattered radiant energy U(t;s),

“or "U*(t)" as we would call it ordinarily. The representa-

tion (3) of U(t;s) gives rise to the associated differential
equation for U(t $) by computing (with the help of (24) of
Sec. 5.8) the follow1ng derivative:

du(e;s) . o aud(e
( tS) - Z (t)

i
HIM 8
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Hence:

. . - o g .
_. UCIE) RE !L,tﬁl + Lffsil e8))

Here we’ begln to see some of the utility of the various
time constants.T, Tyq. They serve to remind one of the
correct d1mens1ons o% each term in an equation or representa-
tion, and they serve also to show the physical mechanism as-
sociated with that term. Thus we see at a glance from (11)
that the rate of growth of U(t; s)--the scattered radiant emn-
ergy--is augmented by scattering of residual radiant energy
U°(t% an? decreased by absorption of scattered radlant ener-
gy U(t;s

. There is no need to solve (l1) since we need only‘sum
the representations of the UJ(t) in (3) to obtain the desired
representation of U(t;s). Thus, under standard growth condi-
tions ((14) of Sec. 5.9):

#

utss) = I UK(e) = § uR(e) [1-F(t/T)]
. k=1 k=1 ;

I ' k ‘ j
L T k (t/T) -
=--U°(°°) kzl T_q,_ 1- . 0. 3 o’ e t/_Ta
. k= s j= l

Hence:

a

UCt;s) =,,Tau°(m)[T1—

An alternate representatlon of U(t; s)1s obtained by

distributing TaU°(w) throughout the preced1ng representatlom'

The result is:

T
UCt;s) =|p>|U%(=) (1-e

o

“t/Tay - yct) - asy

From this we obtain 1mmed1ately the represenfation for the
directly observable radiant energy. For, by (4) and (13),
we have: ) E ht

a

uce) = [Té} W= (a-e” ) o an.

which is clearly a solution of (27) of Sec. 5.8 under stan-
dard growth conditions.

Finally the absorbed radiant energy is represented
most simply as: .

(1-e t/T) - (l_e-t/ra):l any
, a o




2y

SEC. 5.10 TIME-DEPENDENT FIELDS o 97

U(t;a) = Pt - U(D) ‘(15)

under standard growth conditions. This representation fol-
lows from (4), (5), and (8). A representation under more
general growth conditions is obtained by retaining the inte-
gral in (5). The differential equation for U(t;a) under
standard growth conditions is readily obtained:

du(t;a) _ dU(t;a) _ dU(t;s)
dt dt Tdt

%) [l uQess) L U%(e)
-T ' T T

o . a S.
_ U(t;s) + Uo(t)
Ta :

Hence:

dU(téa) = U(t) ' ' “(16)

a

We have made a point of deriving the differential equation
for U(t;a) so as to make possible the comparison between it
and (9). The comparison lends valuable insight into the
general roles of scattering and absorption in radiative

- transfer phenomena. Thus, in the case of (16), the reservoir

source for U(t;a) is the directly observable radiant energy
and the energy is tapped via the process of absorption.

5.11 Dimensionless Forms of n-ary Radiant Energy Fields and
Related Fields :

We shall now develop the dimensionless forms of the
various equations and solutions for n-ary radiant energy,
residual radiant energy, directly observable radiant energy,
and the related energy fields introduced in Sec..5.10. We
shall also explore the various possibilities for:the defini-
tion of time constants which are to characterize time-depend-
ent light fields in optical media. Before going on to the
details of the discussion, some preliminary observations on

. physical theories using dimensionless concepts are in order.

When the analytical representation of a natural phenom-

‘enon can be placed into such a form that thé terms of the new

representation are dimensionless, this usually indicates that
the given phenomenon is a member of an inclusive class of
phenomena whose members exhibit a common mathematical repre-
sentation, but which ostensibly may have different external
appearances. The mathematics used to represent the concepts
of electrical network theory is a good example of this kind;
for the mathematical procedures employed in that theory are
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often equally applicable to problems in mechanical dynamlcs.
As a result of this common understructure, researchers in
each of these fields have enriched the mathematical methods
of the other by noting the applicability of the same set of
techniques in each field of study. (See Sec. 5.15.) .

Some of the discussions in this chapter have already
indicated that the set of transient radiant energy phenomena
may be treated as a member of the class of natural phenomena
which includes electrical network behavior ((14) of Sec. 5.8;
see also concluding comments of Sec. 5.6). We can alsopoint
out that the natural mode of solution leads to radiant energy
equations which have the same mathematical structure as the
equations governing the growth and decay of families radio-
active substances. In this case, the counterparts to n-ary
radiant energy UM are the population counts Py of the nth
species Sy of radioactive atoms which are the decay products
of species S,.;1 and where Sp itself decays into species Sp.q.
Still other and ostensibly different natural phenomena share
the same mathematical substructure as the time-dependent
radiant energy equations.’ For example, interacting bioclogi-
cal species Sy, often are arranged in a predatory hierarchy
so that members of species S5, prey upon those in species

_+ and are -in turn preyed upon by those in species Spj,7+
Tﬁe time-dependent equations governing the population counts
of the nth interacting species--be they animal, vegetable, or
mineral--often have a common fundamental ‘mathematical core
which is obtainable by stripping away the accidental topog-
raphy of the -equations associated with the particular case.
The advantages of attaining such dimensionless formulations
lie in the resultant conceptual simplifications and economy
of description of natural processes.

The casting into dimensionless form of the basic dif-
ferential equations of transient radiant enerpy and their
associated solutions has practical as well as conceptual ad-
vantages. For example, dimensionless formulas allow the
inclusion of a wide range of special cases in a single tabu-
lation or graph, the speccific case being recoverable after
multiplication by a suitable factor., The dimensionless forms
thus compress a huge amount of particular numerical 1nforma-
tion into a relatively small space.

We turn now to the details of the discussion. For
simplicity we shall adopt throughout this section the stan-
dard growth conditions in a homogeneous optical medium (re:
(14) of Sec. 5.9). The developments of this section may.
serve as a pattern for generalizations to the’ nonstanuard

cases.

Conversion Rules for
Dimensionless Quantities

An examination of the various analytic representations
of U°(t), U*(t), U(t), and related radiant energy concepts’
in Sec, 5.10, with an ¢ye toward achieving dimensionless
versions of these representations, brings to light the essen-
tial observation that, without exception, each of the repre-
sentations within the standard growth context obtains its

g
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dimension of energy from the presence of the product PnT in
the form of U9(«). For example, (12) of Sec. 5.8 states that

U%(t) = U%(w) (1-e"t/Tay
an& (11) of Sec. 5.9 states that:

n

T
ut(e) = |2 U%(=) [1-F (t/TQ1
s . R

A perusal of U(t;a), U(t;s), (i.e., U*(t)) and U(t;d) in the
preceding section will corroborate the observation still fur-
ther. This leads us to the following definition.

Definition of the Dimensionless form of U. Let nykn
denote any of the following radiant energy expressions:
Un(t), U(t;a), U(t;s), U(t;a), U(t). Then we shall write:

wufn for U * 70° (=)

and we call % the dimensionless form of U.

The next observation concerns the presence of terms of
the form t/Ta, t/T t/T,, Tq/Ta, Tg/Ta, and T,/Tg in the
various equations constructed SO far. These express1ons
are already dimensionless. The observation to make at. pres-
ent is that these six terms, which involve four separate con-
cepts, can be represented compactly by means of only two dis-
tinct concepts, namely the ratio t/T, and the scattering-
attenuation ratio p(=s/a). 'To see this, let us write:

"t for t/T, ' (1)

We call 1 the relative time. Its connection with steady
state concepts is very close and may be stated succ1nctly
by f1r5t writing

”L " for 1l/a

We call Ly the atienuation length associated with the opti-

cal medium. Sincé Ty is 1/va, we see that:

L, = vT, : (2)

“SO'that:

T = t/T, = vt/L, o (3)

From (3), Tt may be interpreted not only in a temporal sense
(i.e., the number of attenuation times in a certain time t),
but in a spatial sense, too, namely the number of attenuation
lengths in a certain path (traversed by light in real time t).
The representation of the six dimensionless terms displayed
above may be made in terms of p and 1 as follows:
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TABLE 2
Representation of six dimensionless terms.

t/T, . B+
t/T, pT
t/T, (1-p)1
Tu/Ts p |
T /T, (1-p)
T /T, ' | (1-p)/p

We are now ready to state the conversion rules by which
‘one is guided to the dimensionless differential equations and
associated solutions for the various radiant energy flelds.
Towards this end, we note that the derivative: :

du# (t)
dt
may be written'as:
au# (1)
dt _ dt 4
wheré:
dt _
I = 1/T
so that:
au#(t) _ . du#(e) | R
dr B Tu‘ dt o : (4)

Conversion rule 1. To convert dU#(t)/dt to dimension-
less form undér standard growth conditions, multiply by-
T.,/U°(w) and. ¢hange all time ratios of the kind t/T, and
Ty/T, into their equivalent forms in termes of p and T, using
Tablé 2. .

Conversion rule 2. To convert U#(t) to dimensionlees
form under standard growth conditions, multiply by 1/U%(«)
and change all time ratios of the kind t/T, and Tx/T, into
their equivalent forme in terms of p and T, using Ta%le 2.
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Dimensionless Forms for Uo(t]

Starting with (8) of Sec. 5.8 under the standard growth
condltlon we have

aul(t) _ o)
t a

+ P
n

To apply conversion rules 1 and 2, we write this as:

) o, ' : '
r 4V (t%{u (=) - . yort)/u0(=) + P T /U° ()

and then go on to obtain:

~o ~ “
AT -y 1 N (5)

The solution of (5) is:

3%ty = 1-é‘T ' N (6)

'

- The only dimensionless parameter in the representation
of U®(1) is the relative time t. The absence of p from (5)

‘and (6) indicates that the growth of residual radiant energy

is basically independent of the medium in which it takes
place. At any rate UC(t) will be seen to differ from UR(7),
e.g., the growth and decay of which depends crltlcally on the
parameter p. .

Dimensionless Forms for Un(t)

Startlng with (24) of Sec. 5.8 under the standard
growth condition, we have:

aul (e u(r) . ut e
“‘H’t(_2'='.f'l'€:l+“"l’;—)

which we may write as:

y

n Or, . T ' -
1, LU A ] o )0 + 2 v ) /00 (@)
s
which by conversion rules 1 and: 2 become:

WAl -0 o0 ) (N
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which has fhe solution:

i) = 0" [1-Fy(D)] (8)

where Fp is defined in (13) of Sec. 5.9; From (8) we have
immediately that:

(o) = o™ (9)

for every n > 1, and a study of (7) shows that this relation
holds also for n = 0. '

It is interesting to note how (7), even though defined
only for n > 1, actually reduces to the correct relation when
n=20, A comparlson of (5) and (7), suggests that we can
jdentify the term pUM ™ 1(1) with 1 whgg =0, i.e., we are
encouraged to extend the meaning of UJ(1) to the case where
j = -1. Thus let us write: '

”ﬁ'l(r]" for 1/p . -(1bj

In full dimensional form this means that we have the def1n1-
tional identity: .

Loy = », 7, : (11)

'With this extension, we may use (7) as the basic n-ary
d1fferent1a1 equation whlch then includes (5) as a special
case.

: Dimensionless Forms for U#*(t)

Applylng the conversion Tules to (11) of Sec. 5. 10
have, under the standard growth condltlon

e I R A G B T N ¢ )
with soiution:
‘ * o1 o’ _-(1-p)7 -1 S
) U(T) = i—_—p- Ll :e“ ~|1-e (13)

It is interesting to see how (13) predicts the grbwth
of scattered radiant energy in extreme media, i.e., media for
which p = 0 and for which p = 1, e.g., in purely absorbing
and scattering media, respectlvely. To. .see .this, observe
that: o

1_e (1-p)7

p+1 e .
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Then we héve from (13):

U*(1) = (7-1) + e_Tl B (14)

Thus in purely stattering media, at t = 0, U*(0) = 0, and for
very small relative times t: :

.ﬁg(rj = %r ,

so that U*(t) commences growth parabolically from 1 = 0. For
somewhat larger T, U*(1) grows essentially linearly with T,
as might be expected. In the case of the other extreme. type
of space, the purely absorbing space, i.e., one for which

p = 0, equation (13) predicts U*{t) = 0 for every 1T, as ex-
pected. In general for normal spaces, i.e., for spaces in
which there is present both scattering and absorption, so
thaﬁ 0 < p < 1, (13) predlcts thé steady state value of U*

to be

U* (o) = O o 1
U* () T3 (15)
This agrees with the natural solution computatlon based
on (9):
Ub(=) = ] UM(=) = f o7 = 5= (16)
n=1 : n=1

The growth pattern of U*(t) is relatively intcresting
because the rate of growth of U*(t) exhibits a maximum at a
certain finite time which depends on on p. Thus, from (13)
we have: :

* -
QW) - ePTne T 17)
For normal spaces, i.e., when 0 < p < 1, this rate of growth
is zero for 1 = 0 and T = « and positive for all intermediate
T. The 1 for maximum growth rate is obtained in the usual
manner using calculus, and is of the form tpax, where we have
written:

max

" for (o) o (18)

We shall have occasion to return to this relatlve time in
the discussion below on time constants.
Dimensionless Forms for U(t)".

Applying the conversion rules to (27) of Sec. 5.8
have, under the standard prowth condition:

, We
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dﬁgf) = - (1-p) U(t) + 1 (19

whose solution is:

1-g@-PdtT

o (20)

L0 =

Note that for purely scattering media (p = 1}):

dﬁgr) =1

which implies:
ﬁ(r) = T
for all © > 0.. For purely absorbing media, ﬁ(r) = Jo(t). In
normal spaces the steady state value of U(1) is: .
1 .

0=) = =5 v . (21)

Dimensionless Forms for U(tia), U(t;a)

From (9) of Sec. 5.10 and the conversion rﬁles we
‘obtain:

dﬁ(r;a - ﬁo(r) (22)

whence, under standard growth conditions:

] :
U(tsa) = (1-1) + e F | S (23)

This agreces with_the special case (14) of the representation

=

of U*(t) (alias U{t;s), i.e., under the special case where
S = Q. Finally, from (16) of Sec. 5.10: '

whence, under standard growth conditions:

U(t;a) =71 - G(r) : . _ tZS)

B2 - a-p) .50 o as
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FIG. 5.13 A plot of (™ (1) versus t for n = 0, 2, 4

in an optical medium which has p = 0.2 (see (8) of Sec 5:11).
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FIG. 5.14 A plot of Un(I) versus T for n=20,1, 2, 3, 4
in an optical medium which has p-= 0.4 (see (8) of Sec 5. 11L
Note that the vertical spread of the curves is decreasing,
and that the steady state values of UH(T) crowd closer to-
gether for hlgher p values.
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FIG. 5.16 ., Continuation of Figs. 5.13 through 5.15.
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FIG., 5.17 Conclusion of Figs. 5.13 through 5.16.
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FIG. 5.18 A plot of time constants for U"(T),

- n=0,1,2,3,4 in which ¢ = 0.98. (See (27) of Sec. 5.11.)
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_ FIG. 5.19 Plots of ﬁ(r;s) (=ﬁ*(rj) versus relative time -
t. Each curve represents a different scattering attenuation
ratio p, U(yr;s) is the dimensionless form of U(t;s), and

this latter quantity is the total amiount of scattered radiant

energy in the optical medium at time t after the steady source
has been turned on., U(t;s) is the sum of alil n-ary radiant
energy components UR(t), n = 1,2,3,..... Some of the latter
quantities are plotted in Figs. 5.13 through 5.17, in dimen-
sionless form. Each curve in the present figure, except for
P =1, levels off to approach the asymptote o/(1-p). (See
(15) of Sec. 5.11.) -
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FIG. 5.20 Showing the evolution, in time, of the scat-
tered

radiant energy (see (17) of Sec. 5.11).
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FIG. 5.21 A plot showing'the relative magnitude of the
sum of the first n scattering orders _

n - ’
i
j=1

of radiant energy at time T as compared to the total amount.
U(t;s) of scattered radiant energy at the same time. The
plot is for a space with scattering-attenuation ratio p =
0.8. Observe that for fixed n, the ratio is monotcnic de-
ereasing with time 1.  For fixed time 1, the ratio increases
with increasing scattering order. .As an example, let n = 3,
and T = 5.  Then the ratio of UJ(t) to U(r;s) is 0.8; for

t = 10, the ratio is 0,6; and in the limit, as 1+w=, the ra-

tio is 0.48, Hence, at steady state the amount of radiant

energy having been scattered, once, twice, or three times 'is
' all that has been scattered in gen-

48 percent (= 1 - ph) of
eral (see Fig. 5.22).
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FIG. 5.22 The limiting values, for T = =, of the ratios
) in Fig. 5.21.
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FIG. 5.23 The relative times for the occurrences of the
maxima in Fig. 5.20, plotted as a function of p. For example,
the curve labeled '"p = 0,08" in Fig. 5.20 has its maximum at
about 1 = 2, :
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FIG. 5.24 The time constant tg, gg as a function of . -
scattering-attenuation ratio p. ee (26) of Sec. 5.11.)

A Discussion of Time Constants

Time- dependent natural phenomena may be broadly classed
“into two main groups: those that are periodic and those that
are not periodic over a given time interval. Periodic phe-
nomena can 'in turn be characterized in part by means of their
periods, i.e., the smallest intervals of time over which they’
exhibit. a basic cycle of behavior. Nonperiodic phenomena on
the other hand have very many ways of being nonperiodic, and
there is no simple single number which suggests itself as - a
suitable measure of such general nonperiodicities. Of the
great variety of nonperiodic phenomena, however, there are
those which appear to eventually tend with increasing time
toward a well-defined 1imit, These nonperiodic limiting
phenomena can then be characterized in a manner analogous to -
the periodic phenomena, i.e., by means of single numbers which
suitahly measure such simple nonperiodicities.  One useful
means is the concept of the time constuant of such phenomena,
The time constant, broadly speaking, is that interval of time
over which the nunperlodlc limiting phenomenon evolves -from
some standard initial state until it arrives just within a
prescr1bed "dlstance" of its limit state.

Time- -dependent light fields in natural optical medla
are generally phenomena of the nonperiodic limiting type dis-
cussed above., Therefore the notion of a time constant char-
acterization of such phenomena seems worthwhile exploring.

In the discussion that follows we shall examine some possible
candidates  for time constants of transient light fields in
natural optical media. One major fact that will emerge from

S
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- the discussion is that there is a large number of possible

candidates for time constants, each valuable in the context
in which it is found and used. Thus it will turn out that,
in the long run, no one single time constant will suffice

_ for the description of every instance in the great variety of

time-dependent radiant encrgy fields encountered in the vari-
ous natural media  (oceans, lakes, atmosphere). The best

‘oheice of time constant that can be made will vary jointly

with the type of radiometric concept used (radiance, irradi-
ance, or any of thke variety of radiant energies discussed so
far) and the space in which the light field ie evolving.

To illustrate the thesis just stated, consider once
again the residual radiant energy UC(t) discussed in Sec. 5.8,
now in comparison with the directly observable radiant energy
U(t). We saw in Sec. 5.8 the exact analogy that held between °
a simple resistance-capacitance DC circuit and an infinite
homogeneous optical medium in which U®(t) was evolving. This
analogy suggested that the candidate for the time constant
associated with U® in the medium was T,. Comparing the form

‘'of U9(t) with that of U(t) as given in (14) of Scc. 5.10, we

see that in the same medium, but now with reference to U{t),
the most obvious candidate for the time constant is T,. Thus
by switching from U®(t) to U(t) the appropriate choice for
time constant correspondingly goes from T, to T,.

As another illustration of the thesis of this discus-
sion, consider the scattered radiant energy U*(t) (=U(t;s))
as given in (12) of Sec. 5.10 and its dimensionless graphical
representation in Fig. 5.19. The steady state value of U*(r1)
is p/{1-p) in normal spaces, i.e., spaces in which 0 < p < 1.
Figure 5.19 shows how U*(«) approaches this value asymptot-
ically for selected values of p. For example, if p = 0.4 then
U*(») = 0,4/(1-0.4) = 0.67. This value has been attained (at
least visually, according to the graph) at about-eight rela-
tive time units. More generally, in a given space with
0 <p <1, let c be any number such that 0 < ¢ < 1. Then we
require that value 1¢ of 1 such that:

<5 = U*(1)

-5 eGP ety e

For every p, 0 < p < 1, the number 1. always exists since
U*(t) is continuous and increases monotonically toward its
limit, and so eventually takes on the value cp/(1-p) for

0 <c< 1. A graph of 1. for.c = 0.98 is given in Fig. 5.24
as a function of p. For example, for p = 0.4, 1. = 8, and
so we return to the visual estimate given above. The graph
of Fig. 5.24 shows generally that the greater the scattering
attenuation ratio, the greater 1y ggo--this much could be
guéssed on intuitive grounds--howéver, the exact quantitative
manner of the increase in 1y gg is interesting to observe.
The numbers 1., therefore, can serve as time constants for
scattered radiant energy after a choice of c¢ is made.
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The time-dependent structure of the scattered radiant
energy U%*(t) has an additional feature to that of asymptot-
icity. which may serve to’be a workable basis for the defini-
tion of a time constant. A study of the rate of growth of
U*(1) in Sec. 5.11 showed that the derivative of the rate of
growth starts out positive, becomes zero at relative time
-In(1-p)/p, and then remains negative for all subsequent rela-
.tive times in very given normal medium (cf. (18) of sec.5.11).
This suggests that Tmaxs the relative time of the maximum
rate of growth, is a possible candidate for a time constant
for a given medium, for it defines a distinguishable point
of inflection on the growth curve of U*(t). Figure 5.23 de-
picts tpax as a function of p for a selected range of normal
spaces. The point to observe here is that we need not always
base time constant definitions on the feature of'asymptotichy
of a nonperiodic phenomenon. Well- defined maxima or minima
or points of inflection of growth curves may also serve as.
adequate bases for time constants.

It is 1nterest1ng to observe how the notion of a time
constant can be extended to each of the n-ary radiant energy
fields U, n > 0. The best candidate for the time constant
varies with the scattering order n. Thus, suppose c is- any
number such that 0 < ¢ < 1, Let 7.(n) be that relative time
for which: ‘

(=) = T () = 0" [1-F (r (D]
holds. Thét is we require 1c(n) such thét:
l-¢c = Fn(T (n)) . (27)

As in the case of (26), t.(n) ‘exists for every n>1 and c
such that 0 < ¢ < 1. The basis for this conclusion is prop-

erty 2 of UR(t), stated in Sec. 5.10, which implies that UN(t) -
increases monotonically and continuously to its limit. Figure

5.18 depicts 'a plot of 1c(n) for ¢ = 0.98 and n = 0,1,2,3 4

. Still one more variation in the concept of time con-
stant follows from the observation: that the curves of Un(rt)
have inflection points at relative times 1 = n. Thus setting:

it |,
d
12
implies
T=n - To(28)

Hence, as in the case of U*(T), we can use the 1nflect10n
points as identifiable characteristics of the growth curves
of UM, Observe how the time constants suggested by (28) are
independent of p, and hence the medium, and depend only on
n; yet the similar type of time constant for the sum U* of t
“the n-ary flelds " indeed depends on p

)
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With these illustrations we rest our case concerning
the nonexistence of a single universally applicable time con-
stant for characterizing transient light fields in extensive
optical media. Perhaps, if a single time constant were de-
manded which could be pressed into use more often than all
the other time constants discussed in the present chapter,
then we might tentatively suggest T, for consideration. For
Tq appears quite often in the energy context and most criti-
cally in the radiance context of (10) of Sec. 5.7. Further-
more, Ty is based on ‘the one inherent optical property (namely
a) of optical media which is the most thoroughly documented
and which is the most readily measured member of the basic
trio a, o, a. :

Finally, we observe that all our preceding deliberations -
concerned unbounded media--or very extensive media in which

“their boundaries played a negligible role. - For a discussion

of the theory of time constants in bounded media in which the
sensitivity of radiometer instruments also plays a role the
reader may consult the papers in parts IV, V of [236]. These
references are part of a set of five reports in which the

main discussion centers on the study of the general metric

properties of time dependent light fields. The theory of the
time constant found in [236] is one of the several applica-
tions of the general metric theory developed in the series.

5.12 Global Approximations of General Radiance Fields

In this and the following section some of the theory of
time-dependent n-ary radiant energy fields will be applied to
two general problems of radiative transfer theory. In the
present section attention will be directed to the problem of
finding relatively simple approximations of time dependent

"and steady state radiance fields in optical media. In par-

ticular it will be shown how the n-ary radiant energy fields

may be used to obtain approximations of the ohservable radi-

ance field such that the approximations are exact on a g¢lobal
level over the given medium, ‘

‘The precise meaning of this phrase will become clear
during the course of the constructions of the approximations,
to which we now turn. Unless spcecifically stated otherwise,
all constructions will take place on a general optical medium

X with arbitrary source conditions.

We begin with the observation that the.operator formula

l.n-1

n s .

N~ =N

based on the theory of Sec. 5.1, suggests the following simple
approximation, where we write:

ytl :
"NO" for =1 N (1)
& U

Here un, N > 1, is the n-ary radiant energy in X, and Nl ois
the primary radiance function in X. Ng is called the glokal
approxzimation of N for n > 1. :
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The reason for such a name and structure of Ngviies in
scatter-

the following observations., Note first that N has
radiance, Nex%, observe that

ing order "dimensions" of n-arx
the global approximation for N? yields the estimate:

n
T Ty | M6 4

=

for the radiant demsity function u in X. If we write "ug"
for this function, then we see that: :

n . .
ug = %T ul - (2)

for n > 1. 'Finally:

u . .
hg(x,t)dV(x) = %;%%% u1(x,t?dv(x]
X
X .

U~ (t)

= Uty

This shows that the approximation Ng to N® has the property:

) = | vy ND(x,E,t) (g} | avio) (3)

X

~ In other words, Ng yields the same radiant energy content
of X at each time t as does NB, the actual n-ary radiance -
function on X. Thus NB yields an exact prediction of approx-
mation of N on an overall (or glebal) basis. The direction-
al or local structure of NB is approximated by that of N4,

a relatively easily computed functionm.

-
=

The global approximation of NP may be used to obtain a
global approximation of the directly observable radiance N
by means of the natural solution representation of Ng, where
we have written: :

TN @)

nN kM
Ng for ih 2
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For, by the definition of the N& we have:

Toud o1 _ur 1 _
{NJ=2 N* = ==~ N . (5)
11g j=1F ul :
-The requisite global approx1mat10n of N is obtalned by writ-
‘ing
"Ng" for .N° + Ng o ' : (6)
It follows that:
ue) = | oy | Mg e dacE)| avio )

X z

so- that N, indeed endows X with the same radiant energy con-
tent as N, the actual observable radiance function on X. The
function N may then be used to assign to each x in X, and £
in T at tife t the radiance:

NG (x,6,t) = NO(x,E,8) + g;%f%' Nl(g;z,tl (8)

where, in case standard growth conditions are in force in X,
U*(t) (alias U(t;s)) and Ul(t) are given by (14) of Sec. 5.9
and (12) of Sec. 5.10. 1In the steady state attained under

standard growth conditions, (8) yields:

N, (x,8) = NO(x,E). + % N*(x,£) | - (9)

which is defined for 0 < p < 1.

Global Approximations of Higher Order

The global approximation NB in (1) above is but the
lowest rung on an infinitely high ladder of global approxima-
tions of the radiance function in the medium X. We now formuw
late the global approximation to N of arbitrarily high order.
Thus let us for every n > 1, write:

ut (k)
lan|‘ f
g o7 gy M
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llere we choose to use the same name “ND" for the approximat-
ing function, and we have now written,” ad hoe:

X o
uN(k)u‘ for 2 NJ

j=1
and
’ k .
nUck)n fQT 2 UJ.
j=1
NS is the global approxtmatzon of the kth order of N*. 1t is

edsy to verify that NI agaln is- globally exact in the general
sense of (3). Deflnlﬁg as in (6) and N%* as in (4), now
for the kth order context by stopping thg sums in (4) and
(6) at j = k, it follows that .

(x) : - NO U* (t (x) :
N{DV(x,E,0) = NOx,E, ) ¢ grfrf%; Peen | an

of ¥. is globally exact in the sense of (7), i.e.,
using Nék) In (7) will yield U(K)(t). Observe that this ap-’
proximation also has the virtue of converging to N as k » =.
That is:
1im N =y an
k-}m g

This follows from (10) and the facts that:

lim‘k+°°

v gy = ureey (12)

and that:

1im  N{K) o ne

ko

In this way we see that the global approximations to N
have one additional property over the truncated solutions of
Sec.. 5.5, namely the globhal exactness property. The steady
state limit version of (10) attalned under standard growth
conditions is:

1-p

and which is defined for k > 1, and 0 < p <.1. Under stan-
dard growth or decay conditIons, one may use in (10) the-

‘we call Ng (X 5n(10) the global approximation of the kth order
N

Nék)(x,i) e+ L@ | an
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expressions for U*(t) and U™(t), developed in Sec. 5.11, to
- generate useful approximations to time-dependent radiance

" fields. First or second order global approximations should
suffice for many practical settings. :

We note in passing that preliminary and informal numer-
ical studies seem to indicate that the shapes (the direction-
al structure) of NB appear to be spherical (or very nearlyso)
when n is larger than some integer p which depends on the
medium X and p. If this con;ecture can be proved in general,
(probably by means of the set up in 10.5) then an enormous
~advance in. the practical utility of (13) can be made. This
conjecture of the limiting shape of NI as n +» =, bears a
striking analog to the asymptotic radiance theorem studied
elsewhere in this work (cf., e.g., Chapter 10). An important
apg%lcatlon would be to diffusion theory (see (78) of Sec.
6.6).

5,13 Light Storage Phenomena in Natural Optical Media

The applications of the natural mode of solution of
radiative transfer problems in optical media discussed in
this chapter will now be concluded with a definition and dis-
" cussion of the light-storage phenomena in such media.

Everyday Examples of Light Storage

. Those who have looked out of a window of an airplane as
it descended into a sunbathed cloud layer may recall the sud-
den transition to a brilliant ambient field of light, and how
the sensation of brightness in every direction increased to
dazzling proportions as the airplane descended further into
the upper regions of the cloud. This phenomenon is but one
of many common examples of the storage of light by the mecha-
nism of scattering. One can also see evidence of light stor-
age on overcast nights on the outskirts of large cities: the
cloud layer hovering low over the city is deeply and exten-.
sively illuminated from the street and building lights below.
Flashes of lightning in storm clouds can light up an exten-
sive cloud layer from horizon to horizon even though the ac-
tual volume taken up by the network of electrical discharges
is a minute fraction of the illuminated volume. Lighthouses
on densely fogged nights pour a well-defined beam of light
into a surrounding fog with. .the result that the beam and the
lighthouse are imbedded in a field of scattered light which,
under suitable conditions, may be observed by approaching
mariners far sooner than the light of the revolving beam. As
one descends into a lake or the ocean on a sunny day, there
is ‘a shallow region near the surface in which the radiancc
measurably increases with increasing depth for varlous hori-
zontal and upward-looking lines of sight. .

These examples illustrate the phenomenon of the storage
of light in scattering media. The sense of the work "storage"
is used in its everyday sense: the accumulation or building
up of radiant energy in the scattering material that surrounds
the source of the energy. If one were to quickly extinguish
the light source, the stored light would not immediately dis-
appear with the extinction of the source; rather thescattered
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light stored in the earth's atmosphere would take on the order
of a score of microseconds to be lost into space, or converted
into longer wavelengths of radiation and other forms of ener-
y. The decaying atmospheric light field is like the dimin-
shing reverberation of organ notes in a spacious auditorium
in whfch the  acoustical energy is momentarily entrapped and
redirected by the walls of the auditorium (cf. Sec. 5.6). In
the case of light, the walls of the auditorium are replaced
by multitudes of tiny scattering centers comprising clouds,
fogs, or parts of the entire atmosphere, and the hydrosphere
of the earth: the 11ght impinges on the scattering centers
and is redirected again and again by scattering.

_ Thus, the energy of a pencil of photons, which ordl—
narily traverses a given volume of empty space in one micro-
second, could, in principle, be cycled and recycled within
the conflnes of the volumé for a period of several dozens of
microseconds before it es¢apes or is transformed. Therefore,
if a continuous steady beam of light is poured into such a
volume, the steady state density of scattered light stored
within the volume could be tens of times greater than the
average density of the light ordindrily within the beam.

Do all these phenomena have a common simple description?
Is there a small set of properties of thé medium and of the-
source that, when isolated, can serve as the salient parame-
ters in an analyt1ca1 descr1ptlon of the stored light field?
The answer is 'yes'; the natural mode of analysis of light
fields plays an essential role in formulating the detalls of
the answer.

In this section we embark on a prellmlnary attempt to
describe the phenomenon of light storage in precisely defined
terms. Once we have decided on an exact radiometric¢ defini-
tion of the term "stored light energy,” we go on-to formulate
a simple mathematical model of the light field in a scattering-
absorbing medium which can describe how the stored light
energy depends on the inherent optical properties of the’
medium, the geometry of the medium, and the propert1es of the
light source.

It turns out that there are several ways in which we
may formulate -the description of "stored light energy." The
form of the description depends on one's choice of the radi-
‘ometric quantity used in the description. For example, we
find that there is a description associated with the radiom-
etric concept of radiance, another description with irradi-
ance, another with radiant density, and still another with
radiant energy.

In the present discussion we will limit our attent1on
to the description of stored light energy exclusively by
means of the concept of radiant energy. The resulting de-
scription is by far the most natural of all the various
possibilities; it is, hy a happy coincidence, also the most.
simple to deal with, and the ea51est from wh1ch to draw '
examples,

In the event that more detailed descrlptlons of storaue
phenomena than those developed in the present study are ever
required, such as n-ary radiance N or radlance N, recall.that

27
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we have formulated the requisite time-dependent transport
equations of these radiometric quantities in Sec. 5.2. There-
fore, the work of this section should readily be extended to
the radiance case by interested researchers. The investiga-
tion of the time-dependent radiant flux problem made in the
preceding sections also supplements the results of the pres-
ent study by providing detailed numerical and graphical il-
lustrations (Figs. 5.13-5.24) of the solutions of the n-ary
radiant energy equations, and related radiometric concepts,
which play an important role in the storage capacity concept.

Storage Capacity

Let "U" represent the directly observable steady state
radiant energy attained in an arbitrary medium X under arbi-
trary growth conditions; let "U®" represent the amount of U
consisting of residual radiant energy from the source (asso-
ciated with photons which have not yet been scattered or
absorbed subsequent to entry into X); and finally, let "U*"
represent the amount of U consisting of scattered radiant .
energy within the medium (associated with photons which have

undergone at least one scattrring operation). The ratio U*/U

is then a measure of the relative amount of scattered radiant
energy in the medium X. -Tt is a number which lies between
Zero and one and will be referred to as the storage capacity
of the medium X. '

In the case of an infinite homogeneous medium whose
steady state light field has been attained under standard -
growth conditions (Sec. 5.11), the storage capacity has a
particularly simple representation:in terms of the total

‘volume scattering coefficient s, and the volume attenuation

coefficient o of the medium:
. U* s _
storage capacity = - = =0 (1)

where p is the scattering-attenuation ratio.. In the case of
nonhomogeneous or finite media, the storage capacity is a
more complicated function of p and the geometry of the medium
(Examples of more peneral storage capacity formulas will be

.given below in (5) and (6).) But even in the present simple

context, we gain important insight into storage phenomena in
general: the storage capacity depends basically on the rela-
tive magnitudes of s and a. Thus if we consider two media,
oné in which s = 0.01/m, o = 0.02/m, and another in which

s = 0,10/m, o = 0.20/m, we see that the former medium has an
attentuation length of 1/a = 50 m while the latter while the
latter medium is an order of magnitude more optically dense
with an attenuation length of 1/a = 5 m. However, the
scattering-attenuation ratio for each medium is p = 0.5.
Thus, despite the great disparity in optical density of these
media, their storage capacities have a common value, namely
U*/U = 0.5, indicating that in the steady state in each
medium, the stored radiant energy (in scattered form) is. 50%
of the total observable energy within each medium.
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Methods of Detérmining,ﬂtorage Capacity

The problem of determining the atoragc an1c1ty of an
infinite or very extensive optical medium (one in which the
boundaries play a negligible role) is rcadily solved using
the results developed in the preceding sections on n-ary
radiant energy. 1In particular, for homogeneous infinite
media, the storage capacity reduces to a very simply obtained
single number p; .as shown above. The number p is readily

determined in practice by a few local measurements. However, .

the infinite settings are occasionally inadequate models of
redl situations.  In real media in terrestrial settings we
usually dispenseé with computation programs and go directly to

the medium (clouds, lakes, oceans) to perform measurements <in

gitu over the given region. By following the definition of
storage capacity to the letter, we need only try to measure
the radiant energy U* and U by measuring scalar irradiance
at each point throughout the medium and find the quotlent
U*/U. However, to probe the medium point by point is always
laborious and occasionally impossible. A practicable scheme
for measuring storage capacity of real media would be one in
which all internal probings are obviated. We thus set up
the following problem for study: Is there some way of deter-
mining U*(X)/U(X) for a medium X by 1imiting,a11 radiometric
measurements to the boundary of X? The answer is in the

affirmative. We now present the details of a possible emplrf

ical procedure leading to the

torage capacity of a natural
optical medium.

The dlscu551on begins wi the steady state version of
(24) of Sec. 5.8 applied to a homogeneous, bounded region X
of some real optical medium. The incident radiant flux on X

is arbitrarily disposed over the boundary and X is assumed to

have no internal emission sources. Thus we begin with:
0= Al ¢ sl ¢ Dy @)

for n >.1. llere Pn(X) is the net inward radiant n-ary flux
across the boundary of X. The n-ary radiant flux is indexed’
relative to the incident radiant flux on.the boundary of the
optical medium in which X is located.. Thus if the optical

medium is the ocean-and X is a cube 10 m on a side whose cen-

ter is located 100 m below the surface, then the n-ary radi-

ant flux in the cube is relative to the incident radiant flux -

on the surface of the ocean. Summing each side of (2) over
all n > 1: :

0= - a 2 U(\()+s'°}? u?‘,"l(x)w% Of P x)
1 ’ n=1 :

n= 1 n=

Using the natural solution propefties this becomes:

0 = - aUR(0) + sum + —T"*(X) . (3)

gl
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where we have written:

"PR(0)Y for ) PR(X) B (4)

n=1

. In accordance with our preceding remarks, wé are inter-
ested in estimating the quantity U*(X) with the ultimate goal
in mind of estimating the ratio U*(X)/U(X). But any such
estimation must be couched in terms of observable or simply
calculable quantities. U*(X) is not directly observable; and
U{X), while observable, is not simply calculable. (It re-
quires a determination of observable radiant density u(x) at
each point x of X.) In casting about for easily observable
and simply calculable quantities, the observable net flux

FéX), the residual net flux PO(X) and the residual energy

U9(X) immediately come to mind. If we can obtain an expres-
sion for U*(X)/U(X) in. terms of P(X), PO(X) and U°(X), we
will have obtained the best solution possible to the problem
of empirically determining the storage capacity of a finite
homogeneous medium.

It turns out that the characterization of U*(X)/U(X)
in terms of P(X), PO(X) and U°(X) is relatively easy to
- achieve. Starting with (3), and noting by (33) of Sec. 5.8
that we have:

P(X) = Po(X) + P*(X},

we can recast (3) into the form:

5,

- % P(X) + % PO(X) = - aU*(X) 4 su°(X)

We can then represent the nonobservable U*(X) in terms of
observable and calculable quantities: .

UR) = 2 U0 + o [P0 - PO(X))

llence
Rl e R I 2 ' (5)
o {ch - W(X)]
o v (x)

Equation (5) gives the desired general formulation of the
storage capacity of a finite homogeneous medium X in terms

of the directly observable net inward flux P(X) over the
boundary of X, the calculable net inward residual flux PO(X)
over the boundary of X, and the calculable residual energy
content U9(X) of X. The volume absorption coefficient a2 and
the volume attenuation coefficient a are the inherent optical
rroperties of X which enter into the calculdtion and which
are assumed known.
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It should be remarked that equation (5) is an exaet and -

computable formula for the storage capacity U*(X)/U(X) when-
ever X is any finite homogeneous medium with a > 0, irradiated
by sources in an arbitrary manner and in which the resultant
light field is in steady state. If X is infinite in all di-
rections or very extensive, then it may bé that F(X) = Po(X),
and (5) reduces to {1). The condition PO(X) = P(X) means that
P(X) = 0, i.e., that there is no net scattered flux across the
boundaries of X. This could happen when the boundaries are
infinitely far removed, or when a small volume is deep inside
an extensive medium.

Example

To illustrate how (5) is used in particular contexts,
consider for example a horizontally extensive cloud stratum,
or ocean layer with upper boundary on the surface, which is
of finite geometric depth under a clear sunlit sky or clear
moonlit sky. To fix ideas, consider the ocean layer. We
agree that the principal source of flux is to be the sun or
moon, as the case may be, with negligible auxiliary sources
associated with the sky and ground (or lower layers in the
case of the ocean). Suppose the sun cannot be seen through
the given layer as onc is looking up from below. It may be
checked that the difference P(X) - ngX) in (5) then reduces
essentially to -P*(X,+), where P*(X,+) is the total net out-
ward rate of flow of stored energy across the two boundaries
of X. (The inward flow P*(X,-) is set to zero.) Suppose
also that the outward rate of low from X over its lower bound-
ary is small compared to that of its upper boundary (which is
compatible with the assumptions above). Then:

N%a  _ P%x,-)
vosec 8 vo

vl =

where NO is the radiance of the sun or moon at the upper
boundary of X, 8 its angle from the zenith,  is its solid
angle subtense, and A is the area of the upper boundary of -
the cloud. The second equality follows from the definition
of inward residual flux PO(X,-) over the upper boundary of X.
Hence (5) becomes L

U*(X) _ p-R(X) | o
TOY T TROY | ()

where ”R[X)"lsténds for P*(X,+}/P°(X,*), the reflectance of»>
X at its upper boundary, a directly measurable quantity.

) As a simple numerical illustration of (6), suppose that
we take the case of a part X of the ocean for which (6) holds
and for which it is found that p = 0.4 and that R(X) = 0.02

for a given wavelength of light around the middle of the vis-

ible spectrum. Then the storage capacity U*/U is:

0.4 - 0.02 _ 0,38 _ o 4
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If some time later UC is known to be a certain amount over
the same layer, then, if "cv denotes the storage capcity,
clearly:

(7

and hence the directly observable radiant'energy in the layer
1s estimable from U® and knowledge of C.

Equations (6) and (7) illustrate but two of the many
practical formulas which may be deduced--under various
hypotheses--from the exact formula {5). The preceding de-
rivation will suffice to indicate the general outline of such

procedures, and we leave the exploration of other possibili-

ties to the interested reader.

5.14 Operator-Theoretic Basis for the Natural Solution
Procedure

We close the present chapter with an overview of the
theoretical aétivities of the chapter. 'As in the earlier
general discussions of the canonical equations (Sec. 4.7)
the present discussion will perhaps not so much increase our
ability to solve specific problems of applied radiative trans-
fer as it will deepen insight into the essential structure

-of the natural solution procedure, and therefore radiative

transfer theory. In particular the general results below
will show how radiative transfer theory via the intepral
form of the equation of transfer, is cnnnectcd to those parts

of the main stream of mathematical phys1cs which share with

the present field certain operator equations whose mode of

solution coincides, on the abstract level, with the natural
mode of solution studied ir this chapter. The discussion is
intended to bhe intuitive, as .-far as the material will allow:.

Let L be a general (not necessarily linear) OpLTdtOT
defined on a domain ® of functions such that Lf is in & when-

‘ever f is in £ ., Thus L maps clements of & into ® . Next

suppose £ has a "distance function" d defined on it such that
if f and g are in ©, then d(f,g) is a nonnegative real number
with the propertles:
(i) d(f,g) =0 if and only if f =g
(i1) d(f,g) = d(g,D)
(11i) d(f,h) < d(£,g) + d(g,h)
The function d is called a metriec for &, and as can be

seen, it has the three main properties of ordimary distance
relation of everyday life. Ve summarizZe all th1s by saying

in

“that the pair (8®,d) is a metric space.

Now the connection hetween (H,d) and the radiative
transfer setting of this chapter is quite easily made. _Let X
be an optical medium with initial radiance N° and let sl be
the operator in (5) of Sec. 5.7. - Then write:
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"Lt for NO+ (+) st (1)

and we have an example of the operator L above, where ® is
now the set of all radiance functions on X. Thus if N is a-
radiance function on X (i.e., N has the dimensions of radi-
ancc) then certainly

NO + Nsl

is again radiance function on X. We are not asserting at the
moment that N is a solution of the equation of transfer, but
merely making an observation that the function displayed above
has the dimensions of radiance, and that is all at the moment
that is required for admission into ®. Hence L as defined
in (1) maps elements of £ back into ®.

Next we show that there is a very natural counterpart
in .radiative transfer theory to the abstract metric d for
each fixed time t and bounded optical medium X. Let us write

"dCE,0)" for | oy [ 1E(x,E,0) - glx,E,0)] de(E)| dv(x)

2y

It is easy to verify that if f = g, then d(f,g) =.0,
and that if d(f,g) = 0, then f = g except on sets of direc--
tions £ and points x of zero measure. This exception can be’
smoothed over by advanced technical devices,* and we hence-
forth can assume condition (i) for a metric to be satisfied.
Next one can verify conditions (ii) and (iii) with ease and
the verification is left to interested readers. We call the
metric function d as defined in (2), the radiometrie. By
various standard techniques (e.g., averaging) (2) can readily
be extended to unbounded media. An alternate choice of met-
ric can also be made by writing : .

"d(£,g)" for sup : |£(x,€,t) - g(x,&,t)| (2a)
X, : .
where :
"sup h(x,g)"
X,§

*In particular, this can be done by means of equivalence

classes of functions, an e€quivalence class being the seét of
all radiance' functions on a domain Y which differ from one
another at most on subsets of Y of zero measure. Then we go
on to work with equivalence sets of functions rather than in-
dividual functions. Illowever, for the present wework directly
with the radiance functions, with no essential loss of rigor.
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:means the supremum (the maxirum) of the values of h(x,E) as

X,& vary over all permissible values in the domain of h. The
function d in (2Za) also satisfies all the properties (i) to
(iii) of a metric. We shall call d in (2Za) the supremum met-
rie.

We summarize what has hbeen done so far: The operator
(1) associated with the integral equation of transfer of
classical radiative transfer theory may be viewed as a spe-
cial case of an abstract operator L on a metric space ($,d),
the particular classical form of the operator being given in
(1), with & being the class of all radiance functions on X,
and with d the radiometric as defined in (2) or the supremum
metric as given in (2a). In what follows we allow.® to con-
tain negative valued radiance functions as well as nonnega-
tive valued radiance functions. Of course in physically .
meaningful applications we shall always work with the latter;
however, for mathematical purposes it is convenient also to
have the former.

We now come to a key property of the radiative transfer
operator §1 which can be abstracted from the setting of the
present chapter and carried out far into ‘the reaches of ab-
stract operator theory, where its general utility can be more
easily discerned. . In Sec. 5.7 we showed that if N is an up-
per bound (or supremum) of a radiance function, then (cf. (7)
of Sec. 5.7):

sty (x,£,1) < ‘Np(l-e—t/TOt)

for every x in X, £ in £ and t in (0,t), where "T," stands
for 1/va. From this we are led to deduce that for every pair
f,g of radiance functions, and with the supremum metric (2a).

d(Lf,Lg) < ¢ d(f,g) (3

where ¢ is a number which depends only on t, p and T,, i.e;,
where we have written:

"c"  for p(l-e't/Ta)

In all normal optical media (i.e., for.which 0 < p < 1),
we have 0 < ¢ < 1 whenever t > 0. The proof of (3) is imme-
diate, using the definitions (1) and (2a). Whenever an oper-
ator L on a general metric space (P ,d) has property (3), we
say that L is a contraction mapping or that it has the con-
traction property. Hence our particular classical radiative
transfer operator L given in (1) is a contraction mapping,
relative to (2a). The reader may show that (3) also holds
under suitable conditions, relative to (2).

To summarize our findings so far: The operator L asso-
ciated with the time-dependent ‘integral equation of transfer
may be viewed as a special case of a contraction mapping L -
on a metric space (B,d). .

We now have developed enough abstract machinery to il-
lustrate the essential activity of the natural solution pro-
cedure, on a very general level--a level which is in contact
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with the genefal representations of widely different natur

1
phenomena in modern physics. Let us choose any function f?o)
in © and write:

Thus we operate on £(°) in ® with L to obtain £(1) in B. wWe
repeat this operation a finite number of times to obtain f£(n)
where we have written: ' '

nf(n)n for Lf(n—ll
In this way we obtain a sequencé

_{f("), 1) )

of functions in . As in the case of Sec. 5.1, we can de-
fine iterates LM of L so that (cf., e.g., (11) of Sec. 5.1):

£ - ynglo)

Before going om, %he reader should verify that if we use L in
(1), and N° for £(1), then £(n) is simply

n- N
NI
j=0
j.e., the sum of the n-ary radiances up to order n.
Since. L is a contraction mapping, we have, for m i n:

a(e™ ¢y o gnele) | Lreledy

.c“ d(f,b(o), nn (o)) -
'él‘@(f(O), £y e acs@) £(2) + .‘, +;1(f(‘?'“‘1),f(m‘“)5}
< e e, ¢ (1) {1 cev e c‘““l}

Cn d(f(o);f(l))..
(1 - ¢

1A

.]/\

A

L)

Since ¢ is less than 1, B is arbitrarily small for suffi-
ciently large n. - Thus the sequence

B A A PP C P

constructed above is a Cauchy sequence (in the sense of

modern calculus). Py establishing this fcature of the se-
‘quence we have reached the penultimate step in our general
discussion of the natural solution procedure. -
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The significénce of the'Cauchy sequence feature of

(@, @ ) Y

is this: In all physically meaningful scttings {or the met-
ric space (P ,d), it is possible to arrange matters so that,

whenever a sequence
()

of elements in © is a Cauchy sequence in the sense of (4),

" then that sequence has a limit in D . In general, whenever a
metric space {$,d) has ‘this property, we say that (£,d) is
complete. It is easy to show that all physically meaningful
radiative transfer settings always can be represented by com-
plete metric spaces ($,d). Let us assume therefore for the
remainder of the discussion that (& ,d) is complete.

Taking up the thread of the argument at (4) we now can
assert the existence of a limit function f to the sequence
constructed above. Thus let us write: .

g1 for lim  £(%) - (5)
We now show that f has. two very important properties:

(i) f satisfies the operator equation f = Lf

(ii) f is the only function in ® for which (i) holds,
i.e., if g = Lg and f = Lf, then f = g.

Pfo?erty &il follows readily by noting that, by definition,
£(M)= Le(-1) | rence applying the limit operation to cach
side of this identity, the result follows by observing that
L is a continous mapping* (so that the limit'o?era ion can
be pushed past L and made to act directly on fin-1Jy, Prop-
erty (ii) follows from (i) and the contraction property of L:

d(frg) = d(Lerg) f_ c d(f:g) ’

From this (since c¢ < 1) we must have d(f,g) = 0, so that
f=g. .

Let us now make the final summary of what has been done
so far in this section: The natural mode of solution in
radiative transfer theory has been found to take its place as
‘a special case of a very general operator technique in modern
functional analysis. This technique is based on the follow-
ing theorem (cf., e.g., [140]): : :

Theorem (Prineiple c¢f Contraction Mappings); Every
contraction mapping L on a complete metric space (P ,d) gen-
erates one and only one solution of the equation f = Lf.

- . *A point which is readily established in. functional
analysis texts {(cf., e.g., [140]).
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The classical radiative transfer'éettlng entities are
palred off with the abstract setting entities of the preced-
ing theorem as follows: )

In Radlatlve Transfer Theory In the Theorem
a) Set ® of all radiance functions 23

on an optical medium X
b) The radiometric d, as in (2) or d

(2a) h o
c) Thg'operator L,:as in (1) . L

We will make one final remark on the existence of the
solution f of the general operator equation f = Lf. This is
the observation that the solution f_defined in (5) is inde-
pendent of the 1?1t1a1 function f£(0) starting the chain of
iterations LRf(© This fact becomes clear, at least logi-
cally, by ?Otlng the uniqueness property (ii) above. For if
£(0)" and g are two distinct initial functions, then con-
struction of their iteration sequences yields f and g such
that property (i) holds for each.

5.15 Bibliographic Notes for Chapter 5

The natural mode of solution of the equation of trans-
fer studied in this chapter, as noted in the introduction,

plays a unique, fundamental role in radiative transfer theofy.

The formal power of the méthod and its intuitive simplicity
cannot be. overemphasized. - For some historical notes on the’
natural mode. of solution, see Secs. 26 and 42 of Ref. {251].
For recent modifications of the iterative concept of solu-
tions of functional equations, especially for numerlcal pur-
poses, see [171],

The development of the natural solution, as presented

in Secs. 5.1 and 5.4, follows in the main that given in Ref.

[251]. The canonical representation of primary radiance in
(8) or (9) of Sec. 5.3 is occasionally referred to as "See-
liger's formula," and is to be conceptually d15t1ngu1shed
from the more useful and accurate representation of N§ given
in (5) of Sec. 4.4. The only common feature of the two
radiance representations is that they both fall within the
purview of the basic canonical formula (4) of Sec. 4.7.

The discussion of the "optical ringing problem" in :
Secs. 5.7 and 5.8 is based on the natural-solution approach
.to the time-dependent radiative transfer problem, and is
designed to be more precise than simple time-dependent eclas-

gical diffusion theory (Sec. 6.6). The approach outlined in

these sections is drawn from the results in Ref. [211]. A
related approach to the optical ringing problem from the
point of view of temporal metric spaces was tentatively ex-
plored in the series of reports [236]. Further approaches
to time-dependent radiative transfer problem are possible -
via the higher-order diffusion equations. See Table 1 of
Sec. 6.5. The truncated natural-solution inequalities in
Sec. 5.7 are based on [239]. Further inequalities in thls
circle of 1deas may be found in Pef [67].
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The material of Secs. 5.8 to 5.12 is drawn, with minor
revisions, from Ref. [211]. The light storage discussions in
Sec. 5.13 are based on Ref. [237]. The abstract overview of
the natural mode of solution in Sec. 5.14 uses advanced con-
cepts of functional analysis (in particular, the principie of
contraction mappings) which may, e.g., be studied in Ref.
© [140]. : ‘

In the opening remarks of Sec. 5.11, it was emphasized
that the dimensionless forms of the equations describing
n-ary radiant energy fields are shared by many natural proc-
esses, some quite distinct conceptually from the time-depend-
ent evolution of radiant energy in optical media. For a
. brief exploration of such alternate processes governed by the

same equations, see Chapter 14 of Ref. [39] and the footnotes
in that chapter. :

. The analégies between radiative transfer phenomena and
other transport phenomena discussed in Sec. ‘5.11 also can be
pursued further, e.g., in ([259] and [312].



CHAPTER 6
CLASSICAL SOLUTIONS OF THE EQUATION OF TRANSFER

6.0 Introduttion

In this chapter we shall conduct an exposition of the two
most important. classical modes of solution of the equation of
‘transfer used in practice besides the camonical and the natu-
ral modes discussed in the preceding two chapters. These
classical modes are the powerful spherical harmonic method,
and the mathematically interesting diffusion method. The
spherical harmonic method is classical in the sense that it
dates back to Eddington and Jeans [120], two of the pioneers
of radiative transfer theory. The spherical harmonic method

represents radiance functions in terms of sums -of products of

two factors:. one factor being purely spatial, the other’
purely directional, an intuitively natural representation for
functions defined on the phase space X x £, On the other
hand, there are two main theories of diffusion:. the classi-
cal and the exact theories. The classical d1ffus1on me thod
is based on Fick's law and views photons in optical media as

-swarms of particles diffusing with great speed, but generally .

in the manner of classical diffusion processes, such as heat
conduction and Brownian motion. The exact diffusion method,:
which in jts essential médern form dates back to the work of
Hopf [111], transcends in accuracy the classical diffusion

method but is less general in applicability than the spheri-

cal harmonic method, in that it applies strictly only to gen-

eral transport media whose volume scattering function values
o(x;E';E) are independent of the directions £' and £. How-
ever, the relatively great tractability of the equation of
transfer resulting from the introduction of this simplifica-
tion has led to many interesting and fairly detailed exact
solutions of the transfer equation, some of which are quite
valuable in practice. For this reason we include in our
present discussions a brief exposition of the two main diffu-
sion methods. Together, the spherical harmonic method and
the diffusion methods form useful adjuncts to the basic natu-
ral mode of solution and the canonical mode of solution-dis-
cussed earlier in this work.

The plan of the chapter is as follows: We begin with-
the spherical harmonic method. To show the extraordinarily
wide scope and power of the method and also its inherent
simplicity we derive it in much more general settings than is
customary, and from an abstract algebraic point of view. This

w111 be done.in Sec. 6.2, after a preliminary section devoted'

134
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t0 motivating the method. Then follows a Special1zed develop-
ment ¢f the method using the functions which have given the
method its name (Sec. 6.3) but which, in view of the exposi-~
tion of Sec. 6.2, need no longer exc1u51vely be ‘used. An il-
"lustrative example of the spherical harmonic method is given
in Sec. 6.4 for plane-parallel media. The discussion of the
algebraic idea underlying the spherical harmonic method will
be taken up again as a matter of course in Chapter 7 wherein
we shall view the method from sz more fimdamental point of view,
namely from the viewpoint of the generalized invariant imbed-
ding relation (Sec. 7.10). In Sec. 6.5, we turn to the dif-
fusion methods, developing them dlrectly from the equation of
transfer by imposing the characteristic assumptions of each
theory into the equation. The solutions of some of the more
famous models in the classical diffusion method are discussed
in Sec. 6.6. In Sec. 6.7 the Milne model for infinite media
with point sources is discussed, followed by some relatively
récent results on a related problem on point source problems
in semi-infinite media. The chapter is concluded in Sec. 6.8
by a brief bibliographic survey of other classical methods of
'solution comprising some of the stock in trade of current
radiative transfer theory.

6.1 The Bases of the Spherical Harmonic Method

In this section we shall describe the physical and
mathematical bases of the spherical harmonic method. We be-
"gin with a brief discussion of the motivation for factoring
the radiance function values N(x,£) into a sum of products
of the form: f(x)g(£). We then go on to show how this intui-
.tively and physically natural decomposition is sanctioned and
given a direct representation in terms of vector space theory.
To accomplish this program, the mathematical prerequisites
will entail no more than standard advanced calculus technigues.

Physical Motivations

: The steady state radiance function is essentlally a
function of two variables: the spatial variable x and .the
directional variable £. When one examines the equation of
‘transfer, in either its integrodifferential or integral forms,
one is confronted with the complicating presence of the inte-
gral term--which represents an integration over the direc-
tional variable. If it weren't for that integral term, the
equation of transfer would be a simple differential equation
and the theory would long ago have been worked out and for-
gotten by mathematicians! When an investigator, new to the
field of radiative transfer theory, encounters the equation
of transfer, one of his more probable actions would be to see
what would happen if the radiance function N is. assumed to be
the product of two functions f and g, such that:

NGGE) = £(0g(E) . - (1)

Could the radiance function in some optical media be repre-
sented simply ‘as such a product? It would be instructive to
follow the consequences of this query, as it is at once one
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of the most natural and fruitful of questions to 1nvest1gate
in the task of solving transfer problems.

The immediate effect of such an ad¢sumption as (1) would
be the reduction of the path function Ni to the form:

Na(x,8) = | N(x,E") G(X;E';E),dﬂ(é)

fu

]

£(0 | g(E") ol(x:E';E) dE) . (2)

-
=
-

It looks as if the assumption (1) is 1neffe¢t1ve unless

a similar assumption is made about the volume scattering func-

tion. Thus, in the spirit of (1), another assumption is made,
now about o: We assume that two functions c and p exist and
are such that: . ,

o(x;E';8) = c(x)p(&';¢&) (3)

Using (3) in (2), the representatibh of N,(x,E) becomes:

Na(x,E) = £(x) c(x) | 2(€') p(E';E) da(e')

= £,(X) ge(E) | @

where f, and g, are defined in the obvious way. Therefore,
under the additional assumption (3), the path function N, may,
like N itself be represented as a product of two functlons
one of x alone, the other of £ alone. .

The next step in the explorations would be to see 1f
the equation of transfer becomes more tractable with (1) and
(3) as starting points. Thus, starting with the equation. of
transfer: -

£-INGx,E) = BULE) - - o(x,8) N(x,8) + Nalx,8) ., (5)
and using (1)_and (3), the equatioh becomes:

2(E) | f(" = - alx,E) £(x) g(E) + £.0x) ge(E)  (6)

Having split apart the spatial and directidnal_components'of
¢, as shown in (3), it is physically reasonable (but not.
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logically necessary) to do likewise with a. - Succumbing. for

the moment to physical reasonability, so that the discussion
can proceed, we assume a{x,+) to be constant valued on = for
every x in X, and write simply "a(x)" for this common value

at x. Then (6) can be rearranged into the form:

dﬁf:).= £(x) [F(x) g+(8)/g(8) - a(x)] (N

Two observations may now be made. First, the results
of the accumulated assumptions, succinctly residing in (7),
show that f(x) is in principle determinable by a simple inte-
gration of the differential equation (7) along a path of sight
provided the values of the parenthesized terms in (7) are
known. The second observation is that the values of the pa-
renthesized terms in (7) are krnown once the quotient g,&)/g(£)
is known. By.an inspection of (7), it is clear that this
quotient must be some number independent of E." Hence we
.wrlte '

gx(E)/g(8) = » ) (8)

which then in turn requires the function g to satlsfy the
1ntegra1 equation of the form: .

Ag(E) = | g(£') p(£';E) da(e') 9

The net result of the assumptions (1) and (3) are to
reduce the problem of the solution of (5) into subproblems:
- the solution of an integral equation (9) for g, with an ap-
propriate X; and a solution of the simple ordinary differ-
ential equation. (7) for f, u51ng the A obtained in process
of finding g.

It appears therefore that up to this point a definite
step has been made in the solution of (5) by: adopting the
assumptlons (1) and (3). It seems worthwhile to follow this
promising start and to attempt to carry the solution of (9)
to . completion. If this can be done for all physically rea-
sonable assumpt1ons on p(§';€) in (3), then a general solu-
tion of the equation of transfer will have been .found. To-
ward this end we will adopt for p(E';£) the property of (weak)
msotropy, i.e., the property that for every 5‘ and §&:

p(E';E) da(E) = | p(£';£) da(e")

Since either integral will be independent of £, or £', we

-shall set its fixed value equal to 1. This puts the burden
of the correct magnitude of ¢ on ¢(x) in (3). - In fact we now
see ‘that c(x) is none other than the volume total scatter1ng
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value at x in X because, by (3) of Sec. 4.2:

s(x3€') =] o(x;€';€) da(E) = c(x) | p(E"E) dr(E)
= c(x) .
Hence s(x;£') is independent of £', and we write "s(x)" for

this common value at x. " In this way we simultaneously hor-
malize p and give ¢ a physical interpretation.

A similar normalization can be made of g in (1) with-
the corresponding effect of giving f a convenient physical
interpretation. Thus, requiring g to have the property:

g(g) da(g) = 1

it follows from (1) that:

h(x) = | N(x,&) d(g) = £(x) | g(&) da(g) = £(x)

- -
- -

Hence f is in this case simply the scalar irradiance function

Retufning now to the two reduced equations (7) and (9)
we have from (7) and (8) that: )

dh(x) |y v
8 - h

Furthermore, from (9), by integrating each side over Z, we
find:

As(x) - u(x)} . (10)

2| g(E) an(E) = | g(e") | [p(a';a) dan(e) | ance")

whence

=1 - an

so that (10) reduces to:

$x) - - a@hx) o an

b g B e
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“and (9) becomes:

8(5) = | 8(E9) p(5';8) an(E") (13

=

We now have reduced the problem of .determining the radi-
ance function N, under the assumptions (1) and (3), to the
.problem of a simple integration of (12) along a path with re-
spect to path length r, and the solution of (13), The solu-
tion of equation (12) presents no difficulty, the general
solution being: ‘ :

T
h(x) = h(x,) exp { - a(x') dr'y (14)
, . B

when the integration is taken along a straight path &.(xg,£)

of length r from point X, to x. The intermediate point

x' is the form xo + '€, 0 < r' < T. :

Finally, we turn to (13) and immediately observe that

. any constant function on E, whose value for every £ in E is

.some arbitrary fixed value g,, is a solution. It follows
that, if g is any nonconstant solution of (13) then so will
g +. g, be a solution of (13). This nonuniqueness of solu-
tions of (13) is a most undesirable state of affairs for a

" physical model of the light field. This means that, on phys-
ical grounds, we must generally reject the model constituted
by equations (12) and (13). It follows further that we must
reject either or both assumptions (1), (3) which gave rise to
(12) and (13). Since (3) is quite tenable on physical
grounds, it follows that we must generally* reject (1). In
this way we have shown that the initial attempt to factor N
into a product of a scalar irradiance function h and a di-
Tectional function g is untenable on physical grounds. . By
repeating the essential steps of the arguments between (1)
and (13) the same negative conclusion may be deduced for the
case where N is represented as a finite sum of terms of the
form higj. '

The intuitive concept of factoring N into spatial and
directional components in general media has thus been shown
to be unsupportable on practical physical grounds. However,
the factoring may be possible in certain geometrically and
physically ideal media. Indeed, as we saw in Sec. 4,4, plane-
parallel media with uniform volume scattering functions per-
mit such a factoring of N. According to (9) of Sec. 4.4, we

. *In particular, if a g can be found which satisfiés(13),
then some approximate models may be found by adjusting o
emplrically in N(x,&) = h(x) (g(&) + go(&)).
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have

1 . .
8(8) = £ (15)
o 1+ -)cos 0
(a

where K is now determined by the requirement that the normal-
ization property of g holds. Thus by adding two more assump-
tions to (1? and (3), namely that h(x) varied exponentially
with a certain fixed exponential decay rate K, and that

o(x;E';E) is ‘independent of £' and £, a very special fact6r=
able radiance function is forthcoming.

The additional physical conditions of the required spe-
. cial exponential character of h and the uniform directional

structure of o are quite severe restrictions to impose on
general media in order to obtain a factoring of N. However,
as we shall see later [(40) of Sec. 6.6 and (3) of Sec. 7.10
and Sec. 10.5], it is a property of certain extensive homoge-
neous media that the radiance function N at great distances
from the boundaries of such media comes arbitrarily close
(for correspondingly great dlstances) to -functions of the form
hg, i.e., to factored form, in which there is a spatial fac-
tor h and a directional factor g..

The conclusions of the variocus arguments presented abave
may now be summarized.

(i) In general media X for which  (3) holds, the assump-
tion that there exists a function g on Z such that N(x,£) =
h(x) g(g) for every x in X and § in E is generally untenable
on physical grounds (the associated solutions are not unlque)
More generally, finite representatlons of the form

N(x,E) = iZO hi(x)g_i‘(x), n <o

are also untenable.

: (ii) In some extensive, homogeneous media X, there
exists a function g on £ such that N(x,£) + h(x)g(&) for

- every E in E and x sufficiently far from the boundaries of X.
By comparing the conclusions summarized in (i) and (ii), we
see from (i) that on the one hand the original intuitive guess
as to the factorability of N into the form gh was generally
incorrect; by conclusion (ii), on the other hand, there is a
small solid core of truth inherent in the intuitive guess.
Furthermore, while finite representations of N in the form

are generally incorrect,. these representations may possibly
be so constructed that they increase in accuracy with an in-
crease in the number of terms of the sum. In particular-it
would seem that by choosing sufficiently large numbers of
terms for ’
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n
izohigi '

these approximations té N may be improved at all points of a
medium X. Then at large distances from the boundaries of X
there will, by (ii), be a single term hjg; of

wh1ch will dominate. the others and which w111 essentlally
represent N in those regions.

With these observations we have reached the last stage
of the physical motivation for the abstract harmonic repre-
sentation method. We thereby are led to consider infinite
series of the form: ‘

PRNCING

which, for given fixed x in X, represents the radlance dis-
trlbutlon values N(x,&) for every direction E 4in E.

- An Algebraic Setting for Radiance Distributions

The preceding discussion has motivated the representa-
tion of a radiance distribution N(x,*) at a fixed point x in
an optical medium X by means of an infinite series of func-
tions, in the form:

NG,8) = 3 £,00 (8 (16)
i=

This constitutes the first step in construct1ng the
abstract harmonic representation of N(x,-).

The next step calls for the construction of an infinite
family {40, ¢ ...} of functions, each with I as domain,
and with the ?ollow1ng properties. First, the ¢;'s are gen-
erally allowed to be complex valued. This proviées a great
theoretical convenience and in no way forces N to be complex
valued under specific physical conditions. Second, we re-
quire. that the family {9, ¢1, $,5 +..} be orthonormal, i.e.,

05 (8) 3;(8) da(e) = 85 an

=

where 8§35 is the Kronecker~deltd, i.e., . is ‘zero whenever
i Js aﬂd one whenever i = j. This operallon of integration
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and others similar to it will arise sufficiently oftem in the
following discussion that it will be convenient to abbreviate
it in general by writing:

"Ié,9]"  for $(&) V(£)da(g) (18)

where ¢ and ¢ are any two functions on Z so that the integral
of their product, as in (18), is defined. The bar over &
function denotes complex conjugation. We call [¢,¥] the in-
ner (or scalar) produet of ¢ and ¢.

The reason for the terminology "inner product" stems
from the deep similarity of this inner product with the clas-
sical scalar product x *y of two vectors x and y in euclidean
three space. The most striking similarities are paired off
in the list below. Their proofs are immediate:

(i)
If a1, 02, a3 are
pairwise orthogonal
unit vectors of E,,
then ay oj = 8ij

(ii)

I1f, for a vector E
in £ there exist
three numbers.c,,
cz, c3 such that

E = Ci10y + Ca202

+ C30Q3, then

cj =&+ oj

(iii)
x+(y+2) = Xoy + Xez
(x+y)~z =

- (iv)

(cx)e-y = c(xjy) = X°cy)

(1)
If {¢°o ¢, ¢29-.-°}
is an orthonormal
family of functioms
on E,” then [¢j,4;]
= 6ij

(ii)
If, for a function
g on 2, there exist
n numbers co, C3, C2,
«e+3s Cpn, such that

- n
g(&) = jzocj¢j(£),.

then cj = [g,¢il

(iii)
[£f,g+h}] = [f,g] + [fbh]
[£5g,h] = [£1h] + [g,h]
(iv)

[cf,g] = clf,g)
[f’Cg] = E[f’g]

The physical motivations discussed above have led us to
consider infinite series, so that the vector-spacelike prop- .
erty (ii) for inner product will be postulated to hold for
infinite series. .The specific form of the infinite version
of (ii) we shall adopt is as follows (the mathematical regu-
larity properties of integrability are omitted for simplicity
of exposition): : :

Completeness property of {de, ¢1, ¢2, ...}. If F ie a

funetion on E, and if for every j > 0 we write: -
' ' "fj" for [F,¢j]
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then:

F(E) = jzo £ ¢j(£) o (19)

for every £ in E.

The algebraic setting for radiance dlstrlbutlons dis-
cussed in example 15 of Sec. 2.11, now may be used once again.
In fact we can easily extend that setting for our present
purposes. We therefore imagine all possible radiance distri-
butions at a fixed point x in X and . imagine further qil ‘their
negatives and imaginaries (-N(x,°*) is the negative of N(x,+},
iN(x,) where i = V-I, is the imaginary of N(x,-))} thrown in
with them. The totality'n(x) of these and all possible sums
of them form a vector space in the general sense: Sums of
members of N{x) are again in N{x); and multlpllcat1on of mem- -
bers of N(x) by complex numbers are again in %(x). The addi-
tional details of verification are simple and neednot detain
us here. The main fact to observe is that the set of all
integrable radiance distributions at a point x in X can be
imbedded in a vector space of functions on E which includes
an orthonormal set {¢,, ¢, ¢2, ...} such that the complete-
ness property holds for {4¢s, ¢1, 92, ...}. This is the alge-
braic setting for radiance distributions in which the ab-
stract spherical harmonic method will be discussed.

6.2 Abstract Spherical Harmonic Method:

The motivation and prerequisites of the abstract spher-
ical harmonic method having been dispatched.in Sec. 6.1, we
turn directly to the method itself, now applied to the gener-
al time-dependent equation of transfer with source term ((14)
of Sec. 3.15):

—‘:l;-g%+£.-VN‘=-aN+N*+Nn~. (1)
where N is defined on a general opt1ca1 medium X whlch may be
finite or infinite, generally 1nhomogeneous, .but isotropic.
We assume furthermore that there exists an orthonormal family
{¢0, ¢1, ¢2, ...} of functions on = which has the complete-
ness property.

- The completeness property of {4, ¢1,'¢§; ...} applied
to the radiance distribution N(x,-) at x in‘X yields:

N(x,E,t) = z £50x,t) 45(8) (2)
j=0 )
where we have written:

"Ei(x,t)" for [N*(x,:,t), ¢5] (3

Thus f (x,t) is the scalar obtained by performlng the integra-
tion: : .
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N(x,£,t) 753- (£) da(g)

In a similar manner we obtain:

Nn(x,E,t) =

fe~18
(=]

_ FCRONN(S ()
j :

as the representatxon of the emission funcion N,, where we
have written:

"fn,j(x’t)" for [Nn(x,'st)’ ¢J] . (5)

The representation of the volume scattering function ¢

is next. Since o uses two directional variables, we use the
completeness property twice. First we obtain:

o(x;E'3E5t) = ) o.(x;s'it) 62 (E) 6)
. j=0 - J .

where we have written: _ ]
tos(x;ET ;)" for [o(x;E"55t), 651 | (7
Next we obtain: |
o50x5E"50) =k§0 o5 (5, 8) (81 (8)
where we have:written:
| "os(xst) for [os(x;5t), Bl o )

Combining these representations, we have:

o(x;E";E5t) = _£ : ZO ojkCX;t) 5@(5') ¢;(8) (10)v

The reason for introducing the con;ugates of the ¢k into (10).'

will become clear shortly.

Now the whole purpose of the spherical harmonic method
as we have seen:in Sec. 6.1, is to effectively separate the
spatial variables from the ‘directional variables in the equa-
tion of transfer so that the latter may be contained in a
system of simple, directly integrable differential equations

involving spatial variables only. We now apply the abstract

harmonic representations of N, Ny, and ¢ to the equation of

transfer (1), and effect such a separation of variables. On
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the right side of (1) we have Ny already represented. Then
for the term N* (the summatlons all go from 0 .to =);:

N;(x,i,t) (Zfi(x,t)¢i(i'ﬂ (Zéojk(x;t)$k(g')¢j(gq de(g")
_ 1 . J g

Py

gfi(x,t) ¢i(§'3(§£°jk(x;tj$k(5‘)¢j(5)) dn(g")

L

—

gfi(x.t) g%djk(x;t)¢5(53 05 (EF (") da(e")

]

Efi(x.t) %Ecjk(x‘;t)tbj (5) Gik}

I (x, t)[? 5106t 0y c;@

! {Zfi(x,t)mi(x;t):‘dz-(s) 1n
jli J J . .

Since the medium X is assumed 1sotrop1c,.the volume
attenuation function values a(x;{) are independent of £, and
so o need not be represented by a series of the complete -
family {¢o, 91, $2, ...}. By means of (4), (10), and (11) we
can therefore represent the right side of (1) in ‘the form:

!

j=0 i=0

[—u(X)f-(,X.t) + 2 £, (x, t)o () + f --'(x,t)] b (E)
] n?Jf J _
: . (12)
Attention is now directed to the left side of (1). The

time derivative term is directly treated to yield:

@ o f(x,t)
J ot . (13)

j=0 Vv
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The spatial derivative’term becomes:
£ UN(x,E,t) = & 'V( ] f.(x,t) ¢-(Eﬂ
Aj=0 J J
= . . s 4
jgo[a VfJ(x.t)]cchz) }(»1)
Comﬁining (12)! (13), and (14) accbrding to (1), we have:
af. (x,t) '
1 . . .
jzo 3 —le—— s VE; (x,8) + a(x) fj(x,t) izofi(x,t)cji(x,t)

.-fﬂ,j(x’t) ¢J(£) =0 . ‘('15.)‘ :

If it weren't for the spatial derivative term the contents of

the square bracket would have been free of the variable &,.
and a system of equations would have been obtained by setting
each bracketed jth term to zero. At any rate we can elimi-
nate the presence of £ by an integration over €. The ortho-
normality property of {¢o, ¢1, ¢2, ...} is available for use
in this task. Thus multiplying each side of (15) by k()
and integrating over Z, the orthonormality property immediate-
1y yields - S L

| Mplx,t) = .
v —s-t——‘*jzu £ VE;(x,t) $5(8) () da(e)
= - a(X)kaX,t) + '20 fi(x;t) ij(x;t) + fn k(x’t) (16)
- j= y h

If we now write:

"Dy for | £-7V() 4508) H(E) aace) , AN

then we obtain, at last, the spherical harmonic analysis of

(1): .

Bfk o

1 ] . ’ ‘ o
F oot L gDy Byt 520 £5 956 * fhx ‘
s

§£0

This is ‘the requisite abstract spherical harmonic system of
partial differential equations for the family {fo, fi, £, ...}
of functions, the abatract harmonic coefficient functione of
the radiance distribution N(x,+). Knowledge of these fj =
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allows construction of N(x,:) accbrding to (2). The heart of
the abstract harmonic method of solving the equation of trans-
fer thus resides in (18).

Finite Forms of the Abstract
Harmonic Equations ‘

An inspection of the system (18) of abstract harmonic
equations governing the harmonic coefficient functions fy
shows two infinite series involved in the system. .The pres-
ence of these infinite series could occasionally negate the
practical utility of the system, for example in numerical so-
lution work. It is interesting to observe, however, that
these infinite series may bé rigorously removed and replaced

by finite sums under the combined action of two very general

conditions, one physical, the other mathematical. - The mathe-
matical condition simplifies the differential operator series;
the physical condition simplifies the scattering term series.
We shall now briefly indicate the nature of these conditions.

We shall say that the family {¢o, ¢1, ¢2, ...} of func-

tions on £ has the finite recurrence property of degree v if

for every element &' in T and every ¢j in the family, there
exist v constants ‘Aj; and v elements %dx’ vees 0, of {60,
. hY]

V. '
£ £'95(8) =k§1_Ajk b, (8) (19)

~ holds for every £ in E. The motivation for this property

arises in an attempt to simplify the form of the operators

D;y and to reduce to a finite series the infinite series in-
v3§ving them in (18). ‘For example, in an orthogonal, three-

gimensional coordinate frame in which x = (xi, x2, X3), we
ave:

_ 9 9 ]
V—i'ax—l‘*jm"'km-

We use this form in (17) to obtain the representation

Dik = a5k 7y * Dyk 7y * ik By ‘ o)
where we have written: | '
"ag' for | £+ i 4;(8) H(E) de(e)  (21)

o ( o
"pjk" for 2 | ¢j(5) 3&(5) dﬂl;?- - (22)

75
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teptt for | E - K 45(8) Fy(e) () (23)

By postulating a finite recurrence property of degree v for
{¢0, ¢1, ¢2, ...}, if follows that ajy= 0 whenever the in-
dices k and j differ by a suff1c1ent1y large amount: 1ndeed
a;g = 0 for all but at most v terms. Similarly with b; kx an
ch. This means that for fixed k Djx = 0 whenever j 1% suf-
ficiently large, and so the number of terms on the left of
(18) become finite in the present case. It turns out that. .
any orthonormal family obtained from:suitable nth order
ordinary differential equations (a rich source of orthonormal
families by means of Sturm-Liouville theory) will possess a
finite recurrence property of degree v.

Finally, the physical condition which simplifies the '

abstract harmonic equations is that of isotropy of the medium

In the present case the isotropy reduces the general func-
tional dependence of o on the independent variables £' and &
to the special dependence of ¢ on the scalar product £' * &
of the directions. This simplified structure of ¢ in turn
manifests itself in a simplification of the representation’

(10) to the form

a(x3E'3E5t) = Z o;(x5t) F;(6") ¢;(8) . (24)
J = .

We shall not go into the derivation details of this re-
lation in the present abstract case. It suffices to note
that this form can be obtained when the members of the ortho-
-normal family {4¢o, 1, ¢2, ...} obey a general type of addi-
tion theorem often valid for functions -arising in Sturm-Liou-
ville theory. Examples of addition theorems for such func-
tions, are, e.g., in [318]. (See (12) and (15) of Sec. 6.3.}

The simplifying effect of (24) becomes evident when we
recalculate N,(x,E,t) after the manner of (11):

No(x,E,t) = (Zfi(x,t) ¢i(£'))(205(x;t)$j(s') ¢j(£)):dn(5')
. 1 A3

=

- 150 ¢i(£')(§¢j(x;t)$j(s')¢j(£)) an(s")

-

= gfi(x,t) gcjcx;t)¢j(s) 65 (E18;(") 4n(£')
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]

[ £5060) ; o5 (xit) 0;(E) 6,

)

g £5,06,t) 0 (x5t) 95 (8) (25)

By comblnlng the preceding two conditions, the total
effect on (18) is a complete finitization of . each equation in
the system of equations, thereby rendering them more effec-
tive for numerical computations. We may summarize these con-
structions as follows: ; .

Let X be an arbztrary igotropic, inhomogeneous optical
medium with internal emission radiance function Npn and gener-
al time-dependent radiance field N as governed by the equa-
tion of transfer (1). Let {¢o, ¢i, ¢2, ...} be an orthonor-
mal family of functions defined on the unit sphere E such
that: the family (a) possesses the completeness property (see
{19) of See. 6.1); (b) possesses the finite recurrence prop-
erty (19); (e) satisfies an addition theorem (24). Then each
member of the general abstract harmonic system of partial
differential equations (18) reduces to the foZZowzng finite
form: For some positive 1nteger v

k ) Vv
st * .1

<f+

£.D = = (!fk + fkck + fn;k k = 0’1525"'

(26)

6.3 Classical Spherical Harmonic Method General Media

The general theory of the abstract harmonic method de-
veloped in the precedlng section will now .be illustrated for
the classical case in which the orthonormal family is con-
structed from familes of associated Legendre functions of the-
£irst kind ‘and circular {trigonometric) functions. The opti--
cal medium X will be generally inhomogeneous and isotropic,
with time varying inherent optical properties, and glven in-
ternal sources.

The Orthonormal Family

‘We begin by observing that the classical spherical har-
monic method customarily uses the ordered pair (n,¢) of num-
bers to'specify a point £ in %, where we have written "y" for
cos 6, and where (8,¢) are the two angles customarily used to
specify £ in Z (see Sec. 2.4 and also example 14 of Sec. 2.11
for an earlier use of p in conjunction with Legendre polynomi-
als). The range of the variable u is thus the interval [-1,1],
and the range of ¢, [0,27]. Every £ in Z determines a unique
{8,¢), that is a unique p in [-1,1] and 'a unique ¢ in [0,27].
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Conversely, any pair (u,4¢) in [-1,1] x [0,2n] determines a
unique £ in E. :

The valyes of associated Legendre functions are usually
denoted by "Pn{u)". The integer n is nonnegative, i.e., n >0
and the 1nteger m satisfies the inequalities: -n < m < n. The
general relations in the theory of Legendre polynomials we
shall use below may be found fully developed, e.g., in {318],
{289], and [119]. In particular we shall note that:

- (1" (2+$ ! Pm ()

and that:

. (2)

Pz = 0 for ‘m > n

where "P," denotes the Legendre function of the first kind
and of degree n. For our present purposes, we note that the
associated Legendre function Pﬁ is- a real valued function
with domain {-1,1] and defined for all integers. m,n such that
n is nonnegat1ve and |m| < n. The associated Legendre func-
tions include, by (2), the Legendre polynomials as special
cases. Any functions PE arising.in the subsequent discussions
for which n < 0, are to be zero-valued functions. In view of
(1) and (2) only PR with n+l nonnegative 1nd1ces m need be
tabulated.

The orthogonality property of the fam11y of associated .
Legendre functions takes the form:

1 0, , whenever a T

PUCw) PR(W) du = '
a(W) Po(k) du Y

-1 | 75 T Toem » whenever n=r

(3)

The 1ntegra1 properties of the family of circular func-
tions needed here are summarized by the" equat1ons.

YA
sin m¢ dp = 0
. JFO
o . 0 ifm+ 0
; cos mo d¢ = ' (4)
o S lemifm=0 '
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where m is confined to integral values. These properties can
be succinctly summarized by using complex variables. Thus,
all three equations in (4) may be expressed by writing:

2Zn
im¢ -
e de Znéqm ‘ (5)
0

where 8, is an instance of the general Knonecker delta §y5.
The. use of complex variables will considerably facilitate dur
work in this section, and se they will be retained throughout
One can always return to the real number setting by finding
and considering separately the real and imaginary parts of a
complex term. . .

‘The details of the construction of the requisite ortho-
normal family on E are clearly indicated by considering .(3)
and (5). Thus to an arbityary £ in &, (to which corresponds a
unique pair (u,¢)) and to every pair of integers m, n, with
n >0, Im| <n we assign the complex number ¢F(£) where we
have written:

eyt " Y m ,m im¢ '
e, (8)" for A P (u) e S (6)
where in turn we have written
( : . 1/2
m, 2n+1) (n-m) ! -
"An ‘for m{n+m) ! . (7
By observing that:
AT . (n+m 1'Am
‘n n-m n

we can limit tabulations of All. to nonnegative. indices m.
Furthermore, by recalling {1), the complex cornjugate of ¢H(E)
may be expressed as follows: - :

@) = ANPNE eIl LTy (8)

The orthonormality property of the family of functions

#N .over £ may now be verified. For example:

+1
m . _ amo,m m, \ ol
e (&) @ (&) de(&) = A AL 2m | P (w) P (w) du
E . -1 '
L o am m 2, (n+m) !
= Ay A Sar TR _an-m}!

= Snr
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The remaining case where the upper indices of ¢I may differ
is straightforward using (5). Hence we have:

A m b . . :
RE) @0(E) AR(E) = by 8. (9)

for every n, a >.0 and b, m such that |b{ < a, |m| < n.-

An exact one-to-one correspondence can be established
between the abstract family {¢o, ¢1, ¢2, ...} of Sec..6.2 and
the spherical harmonic family presently under consideration.
Thus to ¢; of the earlier discussion we pair %@, where j = n?
+ m.+ n. "This correspondence arises when one contemplates
Fig. 6.1 in which each dot in the figure is paired with the
integer couple {(m,n), n > 0, |[m| < n, corresponding to the
indices of ¢}\. Then couiting each row of dots by reading
from left to right and counting rows from bottom to top, each
dot is given a single index j. For example the dot in the
first row, corresponding to (0,0) is given the index 0. The
dot corresponding to (-1,1) is given the index 1, (0,1) the
index 2, (-3,4) the index 17, etc. In general: :

(m,n) = (1,3)
e o o o ¢ o/0 o o
[ ] [ ] [ L -] °
[ ] [ ] L ® [ ]
e 4 o

-4 -3-2 -1 o1 2 3 4 -

FIG. 6.1 Scheme for establishing the correspondence be-

tween the .abstract and classical spherical harmonic method.

S S S S

[ SN,
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{(m,n) is paired with the index j = n® + m + n (10)
and '

¢;‘ is paired with o (11)

Observe that the pairings are unique: given (m,n) there is
precisely one j > 0 corresponding to this pair; given j > 0,
there is prec1ser one pair (m,n) on the array corresponding
to j and is treadily obtained under the conditions on m,n de—
scribed above.

Properties of the Orthonormal Fam11y

. We shall now show that the fam11y of spher1ca1 harmon-
ics ! on E possesses the three main properties sufficient to
1nsure a reduction of the general abstract harmonic system
{18) of Sec. 6.2 to its finite version (26) of Sec. 6.2.

‘(The proof of the orthonormality of the family of spherical
‘harmonics was outlined in the discussion leading to (9).)

The completeness property of the set of spherical har-
-monics holds. However, the property depends on some rela-
tively advanced arguments, and the interested reader is re-
ferred to Chapter 7 of [47] for the general theory of com-
pleteness of families of functions arising from nth order
differential equations.

The addition theorem for lLegendre funct1ons holds and
takes the form (see, e.g., [119]):

Pa(67E") = Po(w) Pp(u') +2 2 @Ml (W py(u') cos mE-)

(12)

where £ and £' are any two directions in Z and (u,9), (u',
are their corresponding angular representations. Using (1
" (2), the evenness of cosine, and the oddness of s1ne, (12)
may be compactly written as:

¢')
)

n o N
Pa(eegn) = 1 (B PRGy PRwy oMt
m=-n :

(13)

_ The argument of P, in (13) is theé scalar product of &'
and £. This scalar proauct is reminiscent of the isotropy
condition for an optical medium.. We now show how the isot-
ropy condition jeads in the present case to the representa-
tion of ¢ in the form of (24) of Sec. 6.2. - When isotropy



154 o CLASSICAL SOLUTIONS = VOL.. III

holds, the value of o (for a fixed x'and t) is known once

+ E' is known, i.e., once a number.-u = £ + E' in the inter-
val [-1,1] is specified. This vdlue of ¢ under isotropy con-
ditions will be denoted by "o(x;E<£';t)". Therefore, the

family of Legendre polynomials P, being complete (a fact also

supplied by the general theory in [47] cited above), we may
express o(x;£+£;t) as follows: _

epriny = LT (2T o o0 - |
U(X:E_g 1t) TT? jZOF _J}—_I Uj(x’t) pJ(E g ) (14)

where we have written:
"ojfkjt)" for 2= o(xiu;t) Pj(u) du (15)
-1

Using (13) to répresent Pj(E-E') in (14), we have:

o(x;8-&" I [E%;llc (x; t) Z I%;i%j.p ) Py (u)elm(Q $*)

"] j et
= ¥ ooi(x;t) 7 eT(En) oT(E)
1j=0 J m=-j J 1

as)

This is reducible to the form of (24) of Sec. 6.2 as may be
seen by using the correspondence between g¢; and ¢g estab-
lished above, (To show the correspondence” in complete detail,
let o.(x;t) be denoted ad hoe. as "o®(x; t)" and require it to
have }alue o5 (x3t) for m in the range - j < m < j.)

In thls ‘way we see how the addition theorem for the Pg'
and the isotropy condition on scattering combine to form the
extremely useful representation (16). The reader may now
extend this idea to still other complete orthonormal families
of functions defined on [-1,1] provided an addition theorem.

- of the kind (13) is avallable for the family. :

Next we observe that the orthonormal family of func-
tions ¢ satlsfles the finite recurrence property of degree 2.
This observatlon is based on the following three well -known
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récurrence»properties of associated Legendré functions (see,
e.g., [2891, [1191): "

(n+m) PT__(p) + (n+l-m) P™ . (y) -
WPl () = ™) Pn-y (v i 5 W (7
2n+l '

m+1 _ pmtl
sin 6 PP(y) = Fne1 (W) Pn-1 (W , ©(18) -
n (2n+1)

R0 ¢ (nems1) (nem) PPT1n)
(2n+1)

n {n-m +2) (m-n-1) P
sin © Pn(u) = :

(19)

As an éxample of how these recurrence relations give
rise to instances of the general recurrence property (19) of
Sec. 6.2, consider (17). Here we recall that "u" denotes
£-k; k is theunit vector along the positive z-axis. Hence &'
in (19) of S¢q¢ 6.2 is now k. Next, multiply each side of
(17) by A} eim® — Applying the general definition (6) and
making some algebraic rearrangements, the net result is:

£k ¢(E) = Cn,m) 7 ,(£) + C(n+1,m) o (&)  (20)

where we have written:

: . 172 »
"C(n,m)" for T%%E%}%%%%}y . (21)

.Hence in (19) of Sec. 6.2, we have v = 2, and the Ajx are now

in the form of C(j,k), with j = n®> +m + n, and a; = (n-1)2

+m+ (n-1), az = (n+1)® + m + (n+1). The specific represen-
tation of £ » k #[1(£) in (20) is now used in (20) of Sec. 6.2
to effect an evaluation of the number Cjk» and hence the sum:

v. af .

j=0 ~ ©jk 3%, (22)
which forms part of the operation:
v : ' '
J £.D, _ C(23)

0 3 ik
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in (26) of Sec. 6 2. To see how (22) is evaluated let us
represent N(x,£,t) by means of the functlons °n'

n o
Nx,E,t) = I 1 Fﬁ(x.t) o7 (€) (24)

n=0 m=-n

where we have written:

"ER(x, )" for | NGx,E,t) $R(E) dR(E) (25)

u

Thus FJ in the present context corresponds to f5 in the
abstract context of Sec. 6. 2, just as ¢f corresponds %o
Furthermore, . the correspondence of j in f£; with the pair Bf
indices (m,n) of FM is once again that es%ab11shed above.
(See Fig. 6.1 and 110), (11).)

Return1ng to (22), we consider it in the context of (18
of Sec. 6.2, but now using the present family {¢f}} of ortho-
normal functlons. We threfore are to consider: )

® 3y ° ol aF ]
P UK E EEEAGE DIGLIG R
-1 ] feana Gl o7 ®) o"cs)dn.m a
ko mdn mme, 1€)+ ClnHl,m) & .4 a O axs
b b '
| aF> . aF .
= C(a*1,b) -2 + c(a,b) 2L | (26)

in which k' =a%? + b + a,

Thus the infinite sum of z-derivatives 'in (18) of Séc,
6.2 is reduced to a sum of two such derivatives,

~ The general procedure should now be clear: by plac1ng
the recurrence relations (18) ‘and (19) into their appropriate
counterparts of (20), the numbers aj and by k in (21), .(22)
of Sec. 6.2 are readily evaluated. ¥hen th sums :

v of. v -8f. -
Z ajk 3X1 4 JZO bjk 9x2

are evaluated analogously to the manner dlsplayed in (26)
These details may be left to the reader.
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General Equations for Spherical
‘ Harmonic Method

The net result of the reduction calculations on (26)
outlined above may be written in the form:

b b
1 if__(_lf.i).,s C(a,b) Fa- 1.C(a+1,b) Far1 |
v ot aX ’ X3

1{ 9 . 9
+E( 9X3 -1 9X2

B(a,b)x:g:}(x,t) - B(a*l b+1) Fa,,lcx,t)

+

x1 + 1,5-3-) [ B(a,-b)pb*l(:c,t)+n(a+1b+1) F‘;ﬁ(x,t)]

1
7
[a(xt)+a(xt)]?(xt)+F (at)

a=0,1,2, ...; |b] < a.

(z7)

uhere we have written:
' . 172 ' '
"B(a,b)" for [ arh)(ash-l ] : (28)

and where C(a,b) is defined gemerally in (21) Furthermore,
we have written:

'Fg'é(x»t)" for : -Nn(x,E,t) 0a(£):dn(g) (29)

ahalogously.to (25), so that Nn has the representation:

n ’ . - .
N, (x,6,t) = z I FpoaGot) oo . (30)

n=0 m=-n

The set of equatlons (27) forms a cougled infinite sys-
tem of equations in the ugknown functions F3, a-= 0,1,2, ...,
|[b] < a. The functions F3 are generally complex valued
according to their deflneg construction (25), and such that
N(x,E,t) is real valued, according to (24). . The general ini-
tlalwcondltlons for the system (27) are: ‘
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Fo(x,0) = | N°(x,£,0) #0(¢) an(e) (31).

-

for every x in X, and where N° is the given initial radiance
function on X x E at t = 0, For steady state versions o
(27), the time derivative term is zero. The functions FJ-
then have domain X and (31) is replaced by: : :

Falxg) = | N® (x,,8) 90(8) da(E) (32)

-
=

for x, over some appropriate subset of the boundary
of X (cf., e.g., (26) of Sec. 6.4).

The system (27) is of sufficient generality to solve
such problems as point source, beam source, and general in-
ternal source problems in the sea; natural light field prob-
lems in lakes, harbors, and the sea. Observe that the in-
herent optical properties in the fprm of a and o, may be
quite general, and that the term Fj provides for internal
sources of radiant flux, such as arfificial light sources
(laser beams, searchlights, submerged incandescent point
sources, etc.) or natural light sources (phosphorescence,
animal sources, etc.). The general methods of solution of
(27) and its manifold variants are well known and may be im-
plemented by programmed machine procedures. If the model is
sufficiently simple (as, e.g., in the illustration of Sec.
6.4) the associated simplified form of system (27) may be’
solved by hand and evaluated numerically or even used for
general theoretical reasoning.

6.4 Classical Spherical Harmonic Method: Plane-Parallel
Media i

The classical spherical harmonic method developed. in
the preceding section for general media will now be illus-
trated in a setting of primary importance in hydrolegic (and
meteorologic) optics: the plane-parallel optical medium,
Throughout this section, then, we shall assume that X is a

plane-parallel medium of arbitrary (finite or infinite) depth.

The incident light field and the optical properties of X are
assumed to be in the steady state and independent of the x

and y coordinates throughout X, thus establishing a stratified

medium and stratified steady radiance field throughout X.

Under the present conditions on the medium X, the gen-

eral system of equations (27) of Sec. 6.3 reduces to:

b b
aED SF
Cla,b) —=t + clat1,b) =21 = (-a+o,) FO + FD

=3z . n2 (1)
A a=0,1,2, ...; |[b|] <caj .
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Here we have adopted the terrestrially based coordinate

.sysfém for hydrologic optics (Sec. 2.4) wherein depth z is.
. .measured positive downwards from the air-water boundary. Thus
"-z"in (1) now replaces '"x,;" in the general formula (27) of

Sec. 6.3, and "x" and "y" replace "x;" and "x2'", respectively.
The fun¢tions o and o, may vary with depth.

The first few equations of system (1),.written out in
groups for each value of a, are: - )

a=20; b= 0:

0 -
Fy 0, .0
» +C(1,0) o7 - (-a+o°) F0 + Fn,O
- a=1; b= -1:
T 1
oy MR -1, -1
G D) o= Caron) Byl e By
a=1; b = 0: )
' aF° aF?

L0 2+ C(2,0) 5 = (avon) F + F) |

a=1;b=1:

1 .
\ ' ¢(2,1) 2 . (-a+0,) Fl + p1
. ) 3§z A | n,lL.
’—av= 2; b= -2:
| 9F;2
3 -2 -2
C(S,Z) .—az— = ('0."‘02) FZ + Fn,z
a=2;b=-1: '
Ft oyt S
C2,-1) =33~ * C3,-1) 5 = (-or0a) Fyo + Fooy
Ya=2;b=20
. aFg apg oo
C(2,0) g + C(3,0) 77 = (-asoa) Fy + FD
a=2; b=1 _
9F] 9FL TR
C2,1) gt + C3,1) 2 = (-oson) B} ¥},
|a=2;0b =2:
VC(S 2) Efi - (-atas) FZ 4 Fé
R P 2 2 n,2
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Thus the group of equations for a = 0 consists of one equation;
the group for a = 1 consists of three equations; the group
for a = 2 consists of five equations. In general the group
for a = n consists of 2n + 1 equations. Some.of the deriva-
tive terms are missing in the displayed system above because
of the conditions placed on the indices at the outset of the
discussion. Thus F2 = 0 if a<0 or a < |b]. A convenient
auxiliary rule to ogserve in this respect is that: whenever
a-b = 0 or a+b = 0, then C(a,b) = 0.

" A Formal Solution. Procedure

The system (1), which reﬁresents the system of equations
for the spherical harmon%c method in a plane-parallel setting,
dgsplays an interesting type of coupling among the functions

. Observe how the upper index b is fixed in each equation
o? the system. . We shall now show how this feature permits a
simplification of the general solution procedure of the sys-
tem. The manner of simplification may be easily seen by means
of the diagram in Fig. 6.2. ' . :

Each dot in Fig. 6.2 represents an ordered pair (b,a)
of indices corresponding to Fj. The effect of the rather
weak coupling among the unknown functions FJ of system (1) is
such that we can partition the set of unknown functions into
subsets, corresponding to the vertical columns of dots, and

autonomous columns

e o o e 49 101 01101 |0}
RERIN
lo!
© [ ] & 36 |6| |°|'\./'
o l
!
e o 29 :Og 8/
o)
o (o ¢ )

]

-4 -3 -2 - {01 2 3 4

FIG. 6.2 A way of grouping the functions Fg into autono-
mous families, for solution purposes. '

-
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solve for the unknown functions gssociated ﬁblely with each
column, That is, the unknowns F2 in the bt? column can be
obtained independently of the unﬁnowns in the other columns of
of the array.. This observation can be put into a convenient
mathematical form as follows. Let us write:

g b b b
r ". for (Flbl F|b|+1’ Flbl"'z’ sed) (2)
snd
wgbn  fo. (b S .
e for (B opr P pofer P, fblezr ) )
‘ Thus, e.g., ‘ '
LA R S I
B NG R B LT LGN LN LTS B

> 2 ' . P . -2 -
LA N IS B L7 Sr 7T LS T

‘and so on. With this notation, we see that the part of sys-
tem (1)corresponding to an arbitrary fixed index.b may be

‘written succinctly in vector form as:
@ Mg W

where we have written:

—

0 C(lbl+1,b) o 0 0 ...

edivy+1,b 0 c(|b|+2,b) o . 0 ...
] 0 c(|b|+2,b) 0 C(|b|+3,b) - 0 ...
oo 0 0 C(Ib]+3, B) 0  C(|b|+3,b) ...
L 0. 0 0 C(|b|+4,b) 0 ...
* for| 0 '

0 -0 0 C(|b|+5,b) ...

* v v ! v e .

(5)
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and where we have written:

po-

-a + o I 0
0 - a+ 0y 0 0 ‘e
0 0 . - o+ 02 cee oo
ngn for . . . 6)

The system (4) may be rearranged into_the>fdrm:

dr” _ b b b

i A I
(7)

b =0, +1, + 2, ...
where we havevwritten:

@b for ae® ! | (8
" n b b,-1 - .
G‘; for roE ! (9)

and where "@fb)*l",denotes the formal inverse of &b,

The formal solution procedure for (1) is now seen to be
reduced to that associated with (7) and thereby becomes rela-
tively straightfoward on either the numerical or manual levéls.
Of course, in practice, when numerical solutions are desired,
the system (7) must be truncated to a finite system along -
with the number of components of PD, and the formal inversion
of @b must be reduced to a workable procedure. Before going
on to consider such truncations, we can place the system into
a standard form occasionally useful for formal theoretical
considerations and which also shows the general overall struc-’
ture of the system {(1). Thus we first agree to write:

"er for (..., ¥ 2, Y, B0, pl, FE, L0

" " ) -2 -1 0 1 Z
Gn foriA(..., Gn , Gn v G

and finally:
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0 -
Logt,
wh rev"dlag" denotes a diagonal block matrix with Bl as the
ith

block matrix along the d1agonal Then the system (7)
takes the generic form

wBu gor diag (...,ﬂ—z sl , B

-E=rBrs, | QO

This is the desired vectorial version of the system (1)}, show-
ing the overall linear form of the system, a form reminiscent
of the equation of transfer without the path function term,
Thus we see from still another vantage point that the net
effect of the spherical harmonic method is the removal of the
complex directional dependence of the radiance field gener-.
ated by the presence of the path function term N, in the gen-
eral equatlon of transfer. .

A Truncated Solution Procedure

~ As an illustration of the use of (7) in practice, we
consider the case of an arbitrarily stratified source-free
plane-parallel medium. Thus in (7) we set: .

G = o (11)

for every integer b, |b| > 0. This is a commonly occurring
radiometric 51tuat1on in most natural media in geophysical
optics, so that the present illustration retains a wide range
of applicability. The effect of condition (11) is rather far-
reaching. To see this effect, observe that by the definition
of C(a b) we have:

C(a,-b) = C(a,b) .

From this it follows that, formally

é-b C’b and so (B'b = @b _‘ (12)
Thus. we need only consider:
b :
dr b -b : . <
~dz = F B , b > 0 T (13)

: Now the truncation procedure which we intend to apply
to (13) may best be described by returning to the original-
system (1) and keeping in mind the diagram of Fig. 6.2. This
return to (1) is also desirable, so as to bypass the formal
inversion procedure leading to (13). ‘It is clear from the
diﬁgram in Fig. 6.2 that a truncation may take plgce‘at the

row, in the sense that no unknown functions FJ:will be

|
|
|
I
:

i
!
i
!
i
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allowed in the system which have indices a > m. Then the 3

truncated autonomous system of equations associated with

b =0 is: ;
°F) 0 ) |
a=0: C(0,0) 37 (-a+0e) FO_ :
S oF) . |
a=1: C(l,O) 55 + C(Z,O) 57 = ('U-+0'1) Fl ‘
aF, aF ) 0 '
a=.2: c(2,0) =t C(3,0) 7 = (-a+o0z) F2 . -
| - ?(14)- ;_
ves ;
v oE0 aF) o :
a=ml: C(m-1,0) -5z * C(m,0) e Tl (-c+om_1) Fm_1 j
IFY ) ) 0
a = m: C(m,0) -3 = (-u+cm) Fo

Y

The . effect of the truncation becomes clear on inspec-
tion of the.equation corresponding to the case a = m. The
derivative of Fp,; is omitted from the equation for this
case. Thus in the system displayed above there are (m+l) . i

differential equations and m+1 unknown functions: Fg, j=0,.

1, ..., m

The truncated autonomous system of equations associated

with b = 1 is:

1

oF; 3 gl B é
a=1: c(2,1) b Tl (-a+01) F1 :
9F] - 9F} ) |
a= 2: c(2,1) 3z + C(3,1) - = (-a+02) Fz ;
' |
aF} aF} _ 1 :
a= 3: C(S,l) 3% + C(4,1) 3z = (-(14'03) F3 »
| ) (15) ':
N | Fpy Fy 1 3
a=ml: C(m-1,1) —gp—="+ COm,1) = = (-a*oy 4) Fp 4 ;
- 3F$-1’“ : 1 A :
a = m: - . C(m,l) :TE_ = ('a+0m) Fm J -‘i
Here the system associated with b = 1 consists of m J
differential equations in m unknown functions: F}, ﬂ =1, .
..., m. In general the system associated with b, W ere b<m,

consists of m+l-b differential equations in the m+1-b unkrnown
functions Fj, j.= b, bfl, «ev, M. Thus for the case b - m-1,
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wé'have two equations:

‘ o aEm-1
a = ml: C(m,m-1) L = (-a+o ) Fm_l

. - ’ -3z m-1 m-1

m-1 (16)
Fm 1

a = m: C(m, m-l) :375—'= (-a+o ) Fm 1

Finally, for the case b = m, there is only one equation,
namely: a .

Ca=m 0 = (-avoy) FT B (17)

whence Fm = 0, provided (-a+g ) + 0.

i Once the m2+2m+l1 = (m+112 functions Fb have been ob-
tained, where 0 < a < m, and .|b| < a, the afsociated repre-
sentatlon of N(x,E) Ts, according to the general pattern (24)
of Sec. 6.3:

N I R T : (18
’ = : 4 ’
* a=0 b f-a a * a(E)

Equation (18) is the requisite mt? order spherical har-
monic approximation to the radiance function N on a strati-
fied plane-parallel source-free optical medium in the. steady
state.

Vector Form of the Truncated Solution

It is of interest to place the truncated system (14)
to (17) into the compact form of (13). Thus 1et us writer

"p(b,m)" for (Fp, Fb,i, .:i, FO)  (19)

F(b, m) is a function which assigns to each depth z in the
plane parallel medium the (m+1)-component vector P(b,m;a),
i.e., -

FO(2), Foa1(2), «vey FO(2) B
By studying the general forgg of (14) to (17), we see that

the truncated assoc1ate of in (5) is the (m-b+1)x(m-b+1)
matrlx : :
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[ o C(b+1,b) 0 0 0

C(b+1,b) 0 C(b+2,b) ... 0 0
0 . C(b+2,b) 0 0 0
0 0 C(b+3,b) .. 0 0
o 0 0 0 0 ,
) : ' ae s v .o LR Y s e aaw (20)
0 0 0 ... C(m-1,b) 0.
0 0 0 0 C(m,b)

| o 0 0 ... C(m,b) 0

which we shall denote by "(C(b,m)". This matrix is invertible
whenever (m-b) is odd as we shall see below. Furthermore, if
we write: S

[ -aro, o 0 ... .0 0]
0 -ator 0 ... 0 0
-0 0 -a+0z ... 0 0
"qm)" for | ... .oo | (21)
' 0 0 A 0
L 0 0 ‘o 0 -a+qm_

then the general representative of the systems of equétions
(14) to (17) is of the form: o

£ romCm = rOm aM . (22)
Finally, if we write: » _
n@(b,m)" for Ah) C i(b,m) . . S 23)

we have:

-4y 2 ,m) = E(b,m) B(b,m) .

0 <b <m; m-b odd

which. is the-desired vector form of the system (14) to (17)
of m*P order spherical harmonic equations. We have now
* reached the stage where the system (1) is in a form amenable’
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to solution by any of several well-known theoretical or nu-
merical techniques in the theory of ordinary differential
equations (see, e.g., [23] or [47]). Of course (1) itself
can always be programmed directly for solution.

There is one instance of (24) whose solution can be
written down immediately in "closed form," namely. the case
where o« and o are independent of depth; in other words, for
the case of an homogeneous medium X. Then, if we write:

exp {@(b,m)} for b_EO & sz:n) ZJV (25)
J= .

'whefenéj(b,m) is the jth power of the matrix &(b,m), and de-
note the value of P(b,m) at z by "P(b,m;z)" then: :

F(b,m;z) = f(B,m;O) exp ¢&(b,m) i)
0<b<mymb-=1, 3,5, ...

(26)

L Usin% the theories of [37], (26) may on the one hand be
put into closed algebraic terms using the Jordan canonical
 forms of matrices; and on the other, (26) may be programmed
for direct evaluation on general-purpose €lectronic computers
. using the techniques, for example, in [23].

To facilitate computations of F(b,m) using (26),-we may
arrange matters so that the inverse of C(b,m) can be written
down by inspection whenever it exists. This .may be done as
follows. First we verify the fact already noted, that &(b,m)
has an inverse'whenever m-b is an odd integer. For example,
when m-b = 1, and b- > 0 : s
' ' ‘ 0 C(b+1,b)
C(b,m) = _ A -

C(b+1,b) 0

then
det C(b,m) = - C2(b+1,b) = rgpigy * O

where "det A" denotes the determinant of a matrix A. Hence
é(b,m) has an inverse. Again, when m-b = 2, and b >0

0 cip) 0
C(b,m) = | C(b+1,b) 0 - C(b+2,0)

0 . C(b*2,b) 0o

then
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det &(b,m) = 0

so that C(b,m) has no inverse in this.case. Once more, for
m-b=23,b>0, o

0 : 0

C(b+2,b) i}
C(b,m) = | =cmemmmmemmm e geceeeemcaoaaans :
0 C(b+3,b)
C(b+3,) 0 ‘

and.

“det ((b,m) = C¥(b+1,b) CZ(b+3,b)

3 .
" Ry 70

The patfern_formihg'should now be clear. By inductioﬁ ve .
have, for integers b > 0, p > 0 such thatm - b = Zp + 1.

p - , .
det C(b,m) = (-1)P*! 71; (b4 (25+41),B) 4 0 (27)

. We next introduce the permutation matrix P which per-
mutes the m-b+1 rows of C(b,m), whereép b = 2pj+ 1, p >0,
in such a way as to near-diagonalize £(b,m), in the folTowing
sense, Return to &(b,m) above where m - b = 1 and note that
we can-diagonalize it by interchanging its two rows. Simi-
larly, by interchanging the rows of {(b,m) where m - b = 3
in pairs, starting with the first two rows, thep going on to
interchange the second pair of rows (i.e., row three and
four) we obtain: '

C(b+1,b) O | C(b*2,b) I o
: 0 C(b+1,b) 0 0
PE(b,m) = | =e--memmmmemmmmmmeeooeiieeeooooe
0 0 1 C{b+3,b) 0
0 C(b+2,0) , O C(b+3,b) |
where -
0 1 0 0
P 10 Lo 0

—————
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The general structure of P for the case of an arbitrary m-b

(= 2p +1) should now be evident: P is a 2(p+l) x 2(p+l) ma-
trix obtained from the identity matrix I of the same order by
interchanging the rows of I in pairs, as illustrated by the
special case just considered. The utility of the permutation
P rests in the fact that the inverse of P Cﬁb,m)»where m-b
= 2p +1, is readily written down by inspection. To see how
the inversion proceeds, consider once again ‘the case of m - b
=3 =2p+ 1 (so that p = 1). To simplify the illustration,

- we shall write "C;" for C(b+j,b), with "b" understood. In-
. spection of P&b,m), with m-b = 3, shows that its inverse

must have the same overall structure as P&(b,m) itself and
whose main diagonal consists simply of elements of the  form
1/CJ With this in mlnd we may wrlte'

i 1 !
GG 0'c o0 T O Xy 0
t .
L [0 G0 oo L
[PC(b,m) ] [PC(b,m)] ™t =] ------=- el | RSt
0 0 . ¢ oflo. 0 & 0
1 - | 3 1
0 C,' 0  Cllo x,r0 A
L 2y L 2 €3
~ 1
1 o o o]
o 1 'o0 o
= U U LY [ = T
o 0 1 0
o o ,0 1

As yet the entires x3, Xz of the matrix are not known. How-

ever, it is clear that x,, xz satisfy the conditions:

)
xl C]. "'C;‘O

C2
xz C3 *'Ei-‘()
whence
X = - ©2
1 Tils
.x . c,
2 0%
As another example, let m - b = 5 = 2p + 1 (so that p = 2).

Once again the overall structure of [P@(b m)] is the same
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as PC(b,m); i.e., near diagonal, where P is now_the requisite
6 x6 row permutation matrix. To find [P((b,m)] ', we write:

[PC(b,m)] [PCCb,m)]" ! =

I i
‘ 8 7
¢, o'c o'o ollA o 'x 0o 'to o
R ot
! ! 1 1
0 €, 0 0,0 0fl0 g0 0 [0 0
...... L SR NSRRI I [SNUDIUY RPN SIS
1 | v 1 1 .
00 Cp 0, 010 0 g 0 jx 0
1 . 1 . P i
1 | ' 1 1 .
0 €y 0 Cg, 0 01} 0 x50 o, 00
________ (RECORRSOUDI U URIRUPRORpEpT [ [NDEEDIPERUES RIS RN
1 1 i tog
0 010 0 C Ofj0 0 L0 D, g 0
. ! 1 1 5
) ] f f - 1
0 0 10 Cut 0 Cflo o 0 x,.0
L ! h i L ' 4 _'E;
. -
B a
1 o ,0 00 0
o 1,0 0,0 0
6 0,1 0,0 0
- = I
o o0, 0 1,0 0
o 0,0 0,1 0
i ' 1
o o, 0 o 0 1

The remaining entries x;, ..., Xus are now readily determined
as in the case of p = 1. By direct inspection: :

C2
1%3 -
= C4

x -
4 C3C5

g

Xl X;

X2

These two examples for the cases p = 1,2 clearly indicate the
nature of [P{(b,m)] ! with m-b = 2p +1 for general integers
p > 0. The. general rule may be phrased as follows: the main
diagonal of [PC(b,m)] ! consists of elements of the form B
1/C(b+(2j+1), b) arranged successively in pairs for j =_0, I,
.««y p. The nonzero off-diagonal elements in [PC(b,m)] !

" occur in exactly the same places as in P¢C(b,m), and each may
be obtained by dividing the corresponding entry Cj of PC(b,m)
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by (-1) times CpC,, where Cyx and Cy are, respectively, the
elements of PC(b,m) in the same row and column as Cj. The
reader should now construct the [PC(b,m)) ! for p = 3 to test
this rule. What is the rule's general form? :

Finally, we can rearrange (26) so as to specifically
include within the formalism the preceding simple inversion
procedure. Returning to (22), we can write:

- 'dgz' [("(bsmlf’d) PC(b.m)] - tr(b,m)r‘_l) (pa(m))
‘Writing B

"G(b,m)" for ¥(b,mP % (28)

"O(b,m)" for .[PA(M] [PC(b,m)} Y (29)

we have

~ £ 6(b,m) = G(b,m) H(b,m)

(30)
"0 <b<m mb=1, 3,5, ... .

_as the present counterpart to (24). The inverse [PC(b,m)] "
is the one whose simple rule of formation we have generated
in the preceding discussion. Then, corresponding to (26), we
have: ' '

6(b,m;z) = G(b,m;0) exp {-O(b,m)z}
(31

0<b<m;mb=1, 3,35, ...

Because of the autonomy of these equations with respect to b,
we can vary the truncation parameter m for each given b, so
.as always to have m-b odd, and therefore, to always have the
algorithm gSI) at hand, Suppose, for example, we wish to
find all F3 with a < 4, as indicated by the diagram in Fig.
6.2, and so as to have the representation of N(x,£) in (18)
for the case m = 4, Thus we are to find (4+1)2? = 25 func-
tions in all. In solving for the_family {FR} we accordingly
may truncate at F§ (rather than F3) and solve for FQ, a = 0,
1, 2, 3, 4, 5 using (31), taking advantage of the ogdneSS of
-m-b = 5-0 = 5, 1In solving for the family (FlY, we use (31)
.directly since now m-b = 4-1 = 3, A similar tactic is em-
ployed for extending by one additional member the family {Fg},
as in the case of F3 -, and so on, to the end of the computa-
tion procedure. : -

Equations (26) and (31) are the final forms of the mth
order spherical harmonic equations we shall study in this
work. Having deduced (26), (or its variant (31)) we reach



7z CLASSICAL SOLUTIONS VOL. III

the threshold of the invariant imbedding domain of radiative
transfer théory. Thus the equation (26), say, may be viewed
on the one hand; as the logical culmination of the train of
deductions begun in Sec. 6.2 in the development of thé clas-
sical spherical -harmonic method; and on the other hand (26)
forms a bridge between the classical method of solution of
the equation of transfer and the invariant imbedding tech-
niques for the solution of the equation of transfer. These
latter techniques will be considered in Sec. 7.10. :

Summary

In the preceding four Secs. 6.1 to 6.4 the spherical
harmonic method is developed and applied after an appropriate
motivation of the method in Sec. 6:;1. The main purpose of
the discussions is to make clear the fundamental ideas on

~which the method rests, in particular the general role of the
orthonormal family of functions used to represent the radi-
ance function as a sum of products of purely spatial and di-
rectional terms. This was done in Secs. 6.2 and 6.3. To
show the applicability of the method to the case of plane-
parallel media, the setting of greatest utility in the study
of hydrologic and méteorologic optics, .the discussion of the
present section is added to the general remarks. In pdrticu-
lar, equation sets (14) to (17) above explicitly exhibit the
truncated forms of the spherical harmonic equations$, where
the truncation arbitrarily sets to zero all functions Fg with
indices a > m. The resultant system (24} can be used to solve
for the unknown complex valued functions. Fb, 0 < a, < m, |b|
< a. To solve (24) directly we must know’ fé (in (31) or (32)
of Sec. 6.3) from experiments. If NO is to be found theoreti-
cally, we may use invariant imbedding methods which will.give
the aerosol's or hydrosol's reflectance to incident 1light
(Volume 1V, et seq.).

6.5 Three Approaches to Diffusion Theogz

The term "diffusion theory" in the context of radiative
transfer theory denotes a discipline based on not any single
equation, but -rather a collection of more or less loosely in-
terconnected theories each springing from some analytic ‘ex-
pression which, in turn, is based on the fundamental equation
of transfer.. For our present purposes we may broadly classify
this collection of diffusion theories into two main groups:
the approximate. and the exact theories. A diffusion theory is
approximate to a greater or lesser degree depending on the
amount of modification undergone by the analyt1c structure of
the equation of transfer as the equation is subject to sim-
plifying assumptions. In the present section our purpese is
to approach this complex of diffusion theories from three
different directions so as to gain a useful overall perspec-
tive of the sub-discipline of diffusion theory within general
radiative transfer theory. In particular we shall approach:
one of the more useful approximate diffusion theories (called
classical diffusion theory, for reasons which will eventually
become clear) by starting from the equation of transfer. and

rr b
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. proceeding to transform the equation by adopting the assump-

tion of Fick's law for diffusing photons. Then we shall
start again, this time proceeding via spherical harmonic.
theory which, depending on the order of terms retained in the
basic system (27) of Sec. 6.3, opens up a multitude of paths

" into the domain of approximate diffusion theory. This ap-

proach serves to show the extremely large number of diffusion-
type theories generally possible, and to throw light on the

- classical diffusion theory by appropriately placing the lat-
‘ter ‘in the hierarchy of approximate diffusion theories spring-

ing from the system of spherical harmonic equations of Sec.

- 6.3. Finally, we start afresh once more from the equation of

transfer and develop the basic equation for an important

.exact diffusion theory which applies rigorously to optical

media whose volume scattering functions o are independent of

~the directions &' and £.

The App;oach via Fick's Law

v We begin with the general time-dependent equation of
transfer (re (4) of Sec. 3.15) with source term in a general-
ly inhomogeneous optical medium X:

%M%ﬁl + ECTN(XGE ) = - alx,t) N(XE,t)
+ No(x,E,t) + N (x,¢,1)

(1)

Diffusion theory is characteristically interested in
the description of the scalar irradiance h(x,t) rather than
the radiance N(x,£,t). That is, the density of the total
flow at x in all directions is of interest rather than the
density of the flow in each direction £ at x. Thus we are
led to integrate each term of (1) over direction space =.
The reduction of the resulting integrated form of (1) is

facilitated by recalling from (4) of Sec. 4.2 that:

a(x,t) = a(x,t) + s(x,t} - (2)

 and from (2) of Sec. 2.8 that we write:

"m(x,t)" for | N(x,£,t) £daE) , - (3)

=

where H(X,t) is the vector irradiance at X at time t.
The reduced integrated form of (1) is:

P B L vt = - alt) h(x,t) +h (1) ()

-where we have written:
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-"hn'(x,t)" for | N (x,E,t) da(g) .

Equation (4) lacks utility in our present efforts to
describe the scalar irradiance throughout X. The presence. of
the divergence term for the vector irradiance blocks immedi-
ate usage of (4) in this respect: If, somehow, V «H could be
replaced by a single function of h, then the resu1t1ng form
of (4) would be a useful statement involving only scalar ir-
radiance, It is at this point that the customary appeal to
- Fick’s law of diffusion is made. This law states that, for
some nonnegative valued function D, on X:

H(x,t) = - D(x,t) Vh(x,t) (8)

for every t in some time interval. In other words, at each
point x and time t, the vector H(x,t) has the direction of
the negative of the gradient of the scalar irradiance field
h. In still other terms, B has the direction from the great-
est to the smallest values of h in the neighborhood of a
point., The spdtial and temporal variation of D is required
to be quxte mild, and for essentially all practical applica-
tions D is assumed constant. The types of media for which -
Fick's law is a reasonably good description of the state of
affairs between H and h are those for which the scattering
attenuation ratio p is large, say on the order of 0.6 and
above. All other things belhg equal the closer p is to 1
(i.e., the larger the proportion of scattering compared to
absorption), the closer does Fick's law describe H in terms
of h. Furthermore, Fick's law, all other things being equal,
increases in accuracy with distance from the boundaries and
highly directional or concentrated sources of the medium un-
til the effects of these boundaries and sources have dis-
appeared. Any physical breakdown.of a formula of the result-
ant theory is eventually traceable to a marked 1napp11cab111ty
of Fick's law. U51ng (5) in (4), we have:

‘1_;.__._;_13*1(;‘1;’5 -V +(D(x,t) Vh(x,t) = - a(x,t) h{x,t) +h (x,t)

6)

Equation (6) is the desired scalar diffusion equation
for scalar irradiance h. D is the diffusion funetion (or
conetant, as the case may be), a is the volume absorption
function, and h, the emisaion or source term for the equation.
The diffusion tReory based on (6) is the classical (scalar)
diffusion theéory. When D is assumed constant over the space
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"X and a given time interval, an assumption Wthh henceforth
shall be in force, (6) may be written:

1 3h 2

5% "DV h=-ah-+ hn B (7}

Equation (7) has the Gestalt of the diffusion equation
. of classical heat conduction and other diffusion phenomena
- with source term (h,) and annihilation term (-ah), hence the
mathematics of the 31ffu51on of photons as governed by (7) is
identical to that of the diffusion of heat and other classi-
cal diffusion phenomena, the theory of which is thoroughly
understood. Therefore (7) may possibly be applied to such
problems as describing the transient light field set up by
pulsed sources. ZEquation (7) and related equations are
studied further in Table 1 below, and in Sec. 6.6,

The Approach via Spherical Harmonics

The next approach to diffusion theory we shall describe
is that via the spherical harmonic theory developed in Sec.
6.4. It will be seen that the approach can take place on
several levels of generality and in an infinite number of 4di-
" rections on each level. Wé shall begin our discussion with
~one of the simpler directions of approach on a very practical
level, the goal being once again the classical scalar diffu-
sion equat1on (7). However, now awaiting us at .the goal is
the added bonus of a theoret1ca1 representation for the diffu-
sion constant D and a formula describing the radiance functim
in a general diffusing medium in terms of the vector and

. scalar irradiances.

In our present approach: to diffusion theory we shall be
guided by thg following two special principles concerning the
components F3 of the spherical harmonic representation of the
radiance function:

(i) All components Fb other than F!, F;', F} are set
qua% to zero in the system {27) of Sec. 6.3. All components
of Fo,a other than Fb ,, are zero. . : '

(11) All time derivatives of the components FQ other
than F} are set equal to zero in the system (27) of Sec. 6.3.

The reason for these two special principles stems ultl-
mately from our intuitive conception of a diffusive flow of
material (or light) particles: (i) the amount of diffusive
flow about a point varies mildly from direction to direction,
and (ii) the overall directional structure of the flow itself
varies mlldly from moment to moment. .With ‘this intuitive
conception in mind, the rules of actlon stated in (i) and (ii)
. above are arrived at by pairing F§ with h and by identifying
the components Fi', F{, Fl] as the first three of an infinite
set .of components describing the overall directional flow of
radiant energy -at a point., The basis of th1s palrlng of F}§
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with h is as follows. By (6) and (25) of Sec. 6.3 we have
the definitional identity:

—

Fo(x,t) = | N(x,&,t) 0J(E) dacg)

= Ay | Mx,E,t) PO(E) dacE)

= A0 b5t = 40 V2 nen L (8

The fact that the three components F,!, F!, Fl are associated
with the overall directional structures of the radiant flux
is established by first noting that:

a(x,t)v=v N(x,£,t) gda(g)
= f ‘ ? Fl(x,t) ¢”(sﬁ’zdnc£) | (9)
n=0-m=-n N - o

Furthermore,vﬁe.have (cf. Fig. 2.4): ‘
£ = sin 0cos ¢4 + sin 6 sin ¢ § + cos 0 k (10)
If we codld now express the quantities sin ¢ cog 8, -
sin 8 sin ¢ and cos ¢ as linear combinations of the &, then
we could directly evaluate the 1ntegra1 in (9) using the or-
thonormality propertles of the @n. Toward this end we recall
that sin 6 = (l-cos? 0)1/2 = (1-u2)!/%, Furthermore, an ex-

amination of any list of: assoc1ated Legendre functions reveals
that

L = - 207w = LSV
Then: |
' sin 6'(cos ¢-+ i sin ¢) = Pi(u) ei¢
= (A} Pr(w) e*fy/al

1 1
= °1(E)/Al
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Similarly:

i.sin 6 (cos ¢ - i sin ¢) - ZPil(u) e 10
S CUIV SRR S ISV
= -z o7teyadt

' -1 1

From these expressions we deduce that:

sin 8 cos ¢ = —JT— (@i(g) - ¢iI(E)Y (1)
ZAl . )
'«-.-1(1 D o7 ler]
sin 0 sin = ®I(E) + @ 3 12
in g = —y |o(6) + o7'(8)] (12)

1

Finally, we observe that:

cos 6 = u=P;(n) = Pob(u)

A PLG) e1°¢A =ej)/Al - am

Using (11) to (13) in (10), we have the requisite representa-
tion of £ as a linear combination involving onlx members ¢

of the orthonormal family. The conjugates of %] are obta1ned
using (8) of Sec. 6.3. As a result, (9) reduces immediately
to:

B(x,t) = if [Fi(x,t) - Fil(x,t)J 1
1 :
1 1 1o oy] &
- F »t F. (x,t ] 14
E;X¥ [ 1(x,t) + Fio(x ? .j (14)

+ ;%. Fg-(x,t) 'k
1

This is the desired representation of the vector irradi-
B(x,t) in terms of the spherical harmonic components F2 of the
radlance function N. The representat1on reveals the role
played by the three components Fi}, F}, F! in the description
of-the overall directional structure of the 11ght field (see
also (29) below).
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- With the basis for the two special principles (i) and
(ii) now reasonably well established, we next apply these
special principles to the system (27) of Sec. 6.3. Aécording
to principle (i), we need consider only the cases a = 0, 1.
According to principle (ii), all time derivatives, except

that of F§, vanish.

1 3FQ apg 1l 3 . 3 1o i) g
v 3% OOy - iy - ssc‘z')B(WFl *7 (Tx'l”sag BLD Fy
. y o0 0
(-a + aq) Fg + F g (a=0,b=0inF)
- (15)
1/ 3 . 3\ 0, -1
-3 (3§I v 335) B(1,1) Fy = (-o +0y) Fy
\ .
(a=1,b=-11in F) 16
0 -
- 3F
€(1,0) EE% = (-a + o)) FY
(a=1,b=0inF) an
1/ a2 . \ 0. .. 1
5 &'a—i-l- 1 Ti;l B(l,l) FQ ( [+ S 0’1) Fl
Ry
(a=1,b=1inF) - 8)

The resultant set of four equations is:

Our present goal is to obtain a single diffusion equa-
tion for h(x,t) from the system (15)to (18). In view of the
connection between F§ and h stated in (8), we see that the-
goal will be in sight if we use (16) to (18) to replace each
occurrence of Fi', F{, F} in (15) in terms of F}. Thus the

term:

in (15), with the help of (17), becomes:

0
apl

C(1,0) 5;;

2,0

2.0 . ’
c2(1,o§ 3°Fy _ 1 3°Fy (19)
ICACHT “axg 3C-a%oq) axg . .

Further the term:



SEC. 6.5 DIFFUSION THEORY SR 179

] ’}‘_‘ail -4 -—aiz} B(1,1) Bl

in (15), with the help of (16), becomes:

2

» .5 0 \BED 01 az*a2 1 0
ot ng | Ty R dl L lemey o

Qxl axz

1('-3 g2
. 13, X,
In a similar way the term:

1 3 ;s 9 |- 1
AR i 13—5} 3(1.1) Fy

ih'(15), with the help of (18), becomes:

1[92, 32\) 1 0
3 'axlz axzz/.t“’*"ﬂ 0

Combining these terms in (15), the result is:

or? 22F0 52§00 o
1 0,270, ol ey B0 . R
Bxl : sz Bxi : n,0

1_0,
v o 3(-u+01)
(20)
We are now ready to pair off the terms in (20) w1th their
corresgondents in (7). Multiplying each side of (20) by
and using (8), we can replace each occurrence of
"F°" in (20) by "h". Next, by (15) of Sec. 6.3, we have:

1

og(x;t) =27 o(x;uit) Py(u) du

-1

= o(x;El';E;t) da(g)

[¢3]

bs(x t)

In other words, o4 in (20) is the volume total scatterlng
coefficient., Hence:

-t = . -
L P a
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by virtue of (2). Finally, from (29) of Sec. 6.3 and the
definition of h in (4), we have:

0 -
n,0 hn :

F
~In view of these observations, we may say that the structure
of equation (20) is identical with that of (7). Therefore
the diffusion coefficient D in (7) is represented by the re-

lation: .

(z1)
U‘UI

where o is the volume attenuation coefficient and o, is de-
fined as in (15) of Sec. 6.3 (setting j = 1). This represen-
“tation of D rests on the basis of the spherical harmonic de-
composition of the equation of transfer subjeet to the special
prineiples (i) and (ii) stated above which fix the level of
approximation of the spherical harmonie deecomposition. In
sum, -then, the left side of (21) arises when we approach dif-
fusion theory via Fick's law; the right side arises when wve
approach diffusion theory via the spherical harmonic method.
At the point where the twain shall meet, we generate (21).

There are seveéral alternate but equivalent forms of (21)
arising in practice. For example, if we write

1 .
W(x,t)" for griley | olxuit) wdw o (22)
-1

Then, by (15) of Sec. 6.3, we ha§e:

oy (x3t) = H(x,t) s(x,t) (23)

Thus we see that P(x,t) is a mean value of the cosine u= cos 9

= £ « E' of the scattering angle 6. Another way of wr1t1ng

(22) to see this more clearly is to note that, when isotropy
holds: .

.
Zw o(x;ust) pdp = c(x;i';étt) g £ dQ(E) (24)

-1

Hence (22) becomes:
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_ _};O(X;E‘;E;t) E'- g an(e)”
u(x,t) = : (25)
' J/QO(X;E';E;t),dQLE)

and -from this the mean value propertf of U(x,t) is quite
clear; and by a mean value theorem of integral calculus,

WY <1 2e)

For optical media with large forward scattering values for o,
the values of u are near 1. For media with uniform_scatter-
ing, i.e., o independent of &' and &, the value of U is_O.

For media with predominant backward scattering values, U has
negative values. Thus, in this sense, U is a measure of the-
relative amount of the forward or backward scattering occur-
ring in a beam of flux within the medium. Returning now to
(21) we use (23) to obtain: :

- 1
D = a-Js
1 -
a(l-up _ - (27)
3(T-1p)

where p is the scattering-attenuation ratio and where "L
denotes the attenuation length for the medium; that is, we

. have written "L, " for 1/c. Hence the d1ffu51on coefficient

has the dimensions of length and in particular is equal to
the at;enuatxon length of the medium divided by the factor
3(1 Hp

Radiance Distribution in
Diffusion Theory

We conclude the discussion of the present dpproach by
deriving the characteristic form of the radiance distribution

N(x,-,t) at a point x about which exists a diffusion process

with the propertxes (i) and (ii). Thus, the radiance N(x,{,t)
at x at time t in the direction £ is of the general form:

N(x,E,t) = Fg(x,t) %cs) + Bl o1t ()

« Fl(x,t) od(8) + Fiix,t) ol(e) (28)
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This form follows by using the present diffusion propertieé (i)
and (ii) in (24) of Sec. 6.3. By evaluating each of the eight
factors in the four terms of (28), and simplifying, we obtain:

N(x,E,8) = = [h(x,t) + 36-H(x,t)] (29)

Equation (29) displays the relatively mild structure of the
radiance distribution associated with a classical diffusion
process in an arbitrary optical medium. The greatest radi-
ance occurs in the direction of H(x,t). In directions & per-
pendicular to H(x,t) the radiance is simply h{(x,t)}/4n. O0Ob-
serve that the overall graphical structure of N(x,+,t) at a
point is simply. that of a cardioid of revolution with axis
along the direction of H(x,t). Using (5) we may cast (29)
into radiometric térms’ involving h(x) only:

N(x,E,t) = & [h(x,t) - 3DE-Vh(x,1)] | (30)

As a representative indication of the details of the -
derivation of (29) from (28), observe that by .(8):

Fo(x,t) = (4m) M2 h(x,t)
and that:
@3(}5) = Ang(u) o100 - (amy~1/2
Hence: )
FO(x,t) 9)(8) = h(x,t)/4n . (31)
Furfhermore, by (16):

1/2 ‘
-1 = 1 9 . 9 2 0 1
Fo(x,t) = - 5 <—ax1 + 1 ———axz> . (3-) + Fplx) - =]

< \1/2
_ 1 [ 3 3
-7 <4n) D (axl *1oax ) h(x,t)
Also: — cbil(a) = Ail Pil(u) e 10

Hence: ) ‘

-1 “legy=-3.01 .p.si 'S & -1 si 3 4.0
F1 (xt) <I>1 &)= T T D - sin 6 (cos ¢ -1i sin ¢ (3"1 +i axz) h(x,tj
In a similar way it can be found that:

F1(x,t) ®1(E) =-3 7= D" sin ® (cos $+isin ¢)(§-fq-i-—)' h(x,9

- T

PO
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Fo(x,t) #0(E) = - 3+7= D= cos : 3h(x,e) (33)

Note that the two expressions in (32) are complex conjugates;
so that, upon addition, the imaginary terms cancel. On add-
ing together (31) to (33), equation (30) is obtained. Then
using (5), equation (29) is. obtained. '

Equation (29) constitutes an effective means of verify-
ing empirically whether a given light field satisfies the
conditions (i) and (ii) for a diffusion approximation. All
three radiometric concepts, N, h, and. B in (29) are readily
measurable in practice. Hence if an empirical radiance dis-
tribution comes to within an accepted interval-of approxima-
tion of a cardioid of revolution, then the classical diffu-
sion equation may be used to describe such a light field. We
note a rather interesting near-confirmation of the steady
state form of (29) in the case of heavily overcast skies,
Empirical measurements reported in [186] show that the radi-
ance of the underside of a heavy cloud overcast has essen-
tially the form of (29), i.e., the cardioidal form.

Approaches via Higher Order.
Approximations

- We pause in our description of the three main approaches
to diffusion theory to place the discussion of the preceding
paragraphs into perspective. We wish to show in particular
how the classical diffusion equation (20) (or its equivalent
form (7)) takes its place somewhere near the bottom of an in-
finitely high ladder of successively more detailed diffusion-
type equations, each obtainable by following-well-defined
principles of modification, such as (i) and (ii) above, of
the basic system (27) of Sec. 6.3. . o

_ In order to facilitate the classification of the vari-
ous approaches possible via the system (27) of Sec. 6.3, let
us write: - .
- 0 1 ’

1 g0 gl .., F2)

"p," for (F 3, 2%l Fa's Fa» Fauo

a’® "a

Thus, e.g., "Fo" denotes (F§), "F," denotes (Fi!, F{, F}),
and so on. In other words F; is a (2a+1) component vector
centered on the component F}. When we say Fy is zero, we
mean that each of its 2a+l components is zero. Further, when
we write "3P,/3t" we shall mean (3Fz3/st, ..., 3F2/3t). In
a'similar way we can define Pn a* S '

Now the two principles (i)-and (ii) used above to ar-
rive at the classical diffusion equation (20) (or its equiva-
lent (7)) may be recast into the following equivalent forms:

(i) (if a > 1, then P_ = 0) and (if a > 0, then ¥, =0

(ii) if a > 0, then B!a/Bt-= 0 .
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This relatively succinct way of describing the modification
of the system (22) of Sec. 6.3 may form the basis of classi-
fying various diffusion processes. Thus in the following
list, let the vectors F,, Fn a and their derivatives appear-
ing there bé the only vectors not set equal to zero in the
indicated approximation derived from (27) of Sec. 6.3. The
symbol in the "process type’ column to the left of the non-
zero vectors is a succinct way of denoting the numerical
classification of the approximation; some suggestive names
for the approximations are given to the right of the vectors.
Thus the approximation [1/0] is that giving rise to the clas-
sical scalar diffusion equation derived earlier by setting to
zero all terms in (27) of Sec. 6.3 except those of F,,3F:/3t,

rn’rn,o' . -
TABLE 1
A short list of diffusion processes
: Name_of
Process| yonsero terms in (27) of Sec. 6.3 associated
type diffusion
process
[0/1] rn;_!n’o . . Equll}br}uw
{o/t} Po, 9F¢/3t; Fn . : Monotonic
. 3 : .
[1/0] [®o, OPs/B3t; P1i ’n,o LT Scalar
[1/t] |Fo, 3Fo/3t; P13 3F1/3t; B Wave
[2/0] |Po, 3Fa/3t; F1, OF1/3T; Pa3 B, Tensor
: . ‘
(2/t] |Po, 3Fo/3t; Py, 3F1/0t; Fa2, 3F2/0t; P . Wave-tensor
: . o ’ .

The present classification of diffusion processes places two
theories below the scalar diffusion theory ("below'" in the
sense of "less complex"). The first of these, the equilib-
rium diffusion theory, merely serves to describe the radio-
metric state of affairs in an equilibrium situation by means
of the equation:
0 0 0 _
-aFo + UOFO + Fn,O =0

which may be written:

. h (x,t) .
h(x,t) = S—— (34)
Thus {34) holds for a uniform, steady light field .in equilib-
rium with its emission sources distributed throughout a medi-
um X. The term hy/a is reminiscent of Kirchhoff's law in
radiometry, or of the equilibrium radiance N, (see (2) of
Sec. 4.3), A slightly more detailed description is given by
the monotonic diffusion equation: o

Oy U
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R T W _ (35)

‘Thus the diffusion process [0/t] described in (35) gives rise
to a light field whose scalar irradiance h at a point gener-

-ally grows or decays monotonically with time. The scalar

diffusion process [1/0] was discussed in detail above.

We next encounter the processes [1/t], which is one
‘step more accurate and complex than the classical diffusion
process [1/0]. This new process is called the wave diffusion
process by virtue of the fact that its associated equation
{derived from (27) of Sec. 6.3 in the general manner illus-
trated for the case of [1/0]) is a wave equation of the form

Z » . B
3°h 3h 2 ' '
AZ7+Bgg-DVhe-ahen (36)

where we have written:

"A"  for 3D/vZ , "B for (1 + 3Da)/v  (37),(38)

Comparing (36) with (7), we see that the process [1/t] adds
the next higher derivative term to the equation for the pro-
cess [1/0]}, plus slightly modifying the coefficients of the
derivatives of the latter's equation. The physical processes
corresponding to (36) and to (7) differ markedly: (36) de-
scribes a general damped wave-like process which propagates
outward from any epicenter at the finite speed v/v3. Indeed,
‘(36) is the well-known telegrapher's equation, which describes
in another context the propagation of wave signals through a
resistive wave-conducting medium. Equation (7), on the other
hand, is the classical diffusion equation which describes-a
general monotonic decaying (or growing) diffusion process-
(with absorption and emission of the diffusing entities)
propagatlng with infinite speed from a givenepicenter. Equa-
tion (7) may be essentially obtained from (36) by letting v
become so large that the second-derivative term in (36) be-
comes negligible, i.e., so that A is small compared to B.

The next higher diffusion process beyond wave'diffusion
is the process [2/0]). A new entity enters the picture here
with F,. Whereas F; describes the vectorial properties of
the radiant flux (see the description of the vector irradi-
ance H in terms of the components of P, in (14)), F. de-
scribes the tensorial properties of the radiant flux, proper-
ties very much like those described by the stress tensor in
f1u1d dynamics.

Our present goal has essentially been reached we have
shown the place of the classical diffusion theory in the hi-
erarchy of diffusion theories possible in radiative transfer
theory. It is seen that the classical diffusion equation (7)
is'neither the beginning nor the end of the possibilities of
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describing diffusive transport of Ehotons in an optical medi-
um. However, equation (7) is omn the borderline between those
theories which, on the one hand, are too crude to admit use-
ful descriptions, and those which, on the other hand, are
more accurate in their descriptive powers, but which are rel-
atively complex and intractable in the light of current math-
ematical techniques, It is because of this convenient mid-
dling ground straddled by the diffusion equation (7) that it
has been so popular with researchers looking for easily han-
dled, reasonably accurate quantitative accounts of natural
light fields. Some of thé simple models arising from (7)
will be considered in Sec. 6.6. :

The Approach via Isotropic Scattering

The third and final main approach to diffusion theory
we shall consider in this section is that via the assumption
of the isotropic scattering property for an optical medium.
The nature of this assumption is quite different from those
used in the preceding two approaches. The earlier approaches,
via Fick's law and via the spherical harmonic method, were
gotten under way by first tampering with the directional

. structure of the light field, i.e., by reducing its awesome
directional complexity to some relatively inmocuous, mildly
varying form (see, e.g., (29)) so that, for example, either

_Fick's law or the [1/0] process defined in Table 1 above :
could cope with the resultant weakened field. The nature of
the assumption we shall adopt the present discussion is - _
such that it leaves inviolate the intricate geometric struc-
ture of the radiance field; but in order to inculcate a sem-
blance of manageability into the field, it is to be hypothe-
sized that the volume scattering function ¢ is independent
of £'and £ throughout the medium., The resultant light field
belonging to such a o is a relatively tame analytic object by
natural light field standards--so tame, in fact, that some
quite elegant mathematical analyses of the classical mold can.
be employed to carry to completion the exact solution of the
resulting equations for scalar irradiance. The associated
theory is called exact diffusion theory. The "exactness" of
the theory resides in its mathematical procedures, and not
necessarily in its fidelity as a physical theory.

The manner in which we shall approach exact diffusion
theory will be such as to show the necessity of the isotropic
scattering assumption in the construction of the theory. By
holding back the invocation of the isotropic scattering as-
sumption until the last stage of the main analysis, it shall
become quite clear that this is the essential physical con-
cession made by an otherwise elegant, powerful theory which
in principle ‘is' applicable to arbitrary {finite or infinite)

~ inhomogeneous media with both internal and external sources.

To begin, let the optical medium X be of arbitrary spa-

tial extent (in Fig. 6.3 it is shown as being finite), gener-
ally inhomogeneous, with arbitrary volume 'scattering function
¢ and volume scattering attenuation function a, and with ar-
bitrary emission function Ny defined throughout X, and bound-
ary radiance distribution N¢. For simplicity of exposition,

NI

5

R
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FIG. 6.3 Setting up the exact diffusion theory.

we postulate a steady-state radiance field N through X x Z.
The corresponding formulation for the time-dependent field
is. obtained by simple modifications of the steady-state case.
(See, e.g., (12) of 7.14.) The present discussion will be

facilitated if at the outset we define certain integral oper-

ato;s. First, there is the path function operator R of Sec.
3.17: , ‘

R = | []o(x;8';8) da(g")

-
=
=

fhe path radiance oﬁerator T of Sec. 3.17 will also be needed:
T(xX,8) .

D] T e(x'.E) dr' o
0

The variables occurring in these operators are depicted in
Fig. 6.3. Further, we shall write: .

" for ﬁ]dacs) o (39)
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This operator maps radiance distributions N(x,.) at a point x
into their associated scalar irradiances h(x), thus:*

h(x) = NU(x) = N(x,£) da(g) (40)

84

or simply:

h =NV = vu
for short, where vu is an alternate form of h (Sec. 2.7 involv-
ing radiant density u, and the speed of light, v. We shall
also need the following two compositions of operators. First,
the scatterlng operator $! of Sec..5.1: :

sl = Rrr

and the composition ¥, where we have written:
' "y for U : (41)

The reader may verify directly from its def1n1t10n that ¥ has
the representation:

Cv= | L) K(xt, ) av(x") ()
X

which is the iteration of the integral operators T and U,
where for every x' and x in the medium we have written:

Topr (x",8)
'"Ka(x',x)“ for —_— '(43)
fr-r'| ,
and where £ = (x-x')/|r-r'|; [r-r'| is the d1stance | x- x'[

from point x' to point x as measured along the path of dlrec-
tion £. (As usual, "x" denotes a point of Es, and as such is
an ordered triple of real numbers.) The integration in'V is
with respect to the volume measure V. Thus dV(x) = r’drdﬂ(&),
where x = xp + T E.

With all this machinery securely in place, we can go on
to obtain the requisite equations so as to keep easily in
view at all times the essential phy51ca1 and mathematical
features of the derivation.

The 1ntegra1 form of the equat1on of transfer ((2) of
Sec. 3.15) w1th emission function N is:

*The notation "Nu(x)" denotes the value at x of the-
function NU, and NU in turn is the result of operatlng on the
function N with the operator V.
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N(x,E) = (Ng + N) T(x,8) + Ns'(x,£) (44)

where* Ny, is the initial radiance function within the medium
due to boundary radiances, i.e., where we have written: :

"Ng(x,8)"  for N (x,,£) 5(x-xo)

and where No(xo,-) is the given incident radiance distribu-
tion at an arbitrary point x; of X. By writing:

" o "
| Np(x,8)" for (Nj + N.) T(x,£)
(44) becomes:
N(x,£) = N2(x,£) + Ns'(x,E)
Applying U to each side, we have

" NU(x) ='N:u(x) . Nslugn)

whence:
h(x) = h2(x) + (NR)TU(X)
= hO(x) + N,TU(x)
Hence
h(x) = hO(x) + NaV(x) | (45)

‘where we have written: .
"hg(x)" for Ngu(x) : ': (46)

Equation (45) is but one step away from being an integral
equation for scalar irradiance h. On first sight it might
‘appear promising to use the operator y on N, to obtain the
product of the volume total scattering functlon s(x) and
scalar irradiance as follows:

NaU(x) = s(x) h(x)

Toward this end, the N, term 1n (45) may have the 1dent1ty
operator I in the form of WU~ sl1pped between. N* and V, thus:

*The notation: "(N_ + N )T(x g} denotes the value at
(x, E) of the function (ﬁo + H )
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N lvex) = shulv)(x)

so that (45) ¢ou1d be written:
° -1
h(x) = hn(x) + sh(V "V)(x)

which is an operator equation in the unknown h. Unfortunately
the inverse U~ ! to the operator U does not generally exist,
for the reason that there are many distinct radiance distri-
butious at a point x giving rise to the same scalar irradi-
ance h(x). This shows the necessity for assuming isotropic
scattering for the medium if we are to obtain an integral
equation for h. For then we have:

Na(x,E) = NR(x,E) = £{X) n(x) )
where we have assumed that:

S(REE) = s(x)/4n (48)
Using N,(x,E) in (45) as given by (47) we have:

h(x) = hg(x)' - zl“_ (hs) V(x) | (49) |

This is the requisite general form of the basic equation of.
exact diffusion theory.

The natural solution of (49) 1s obtalned by rearrang1ng
it as follows

hgcx) = h(x) - ;%-chs) v(x)

=Rl - V,](x) (s0)

where we have written:

nvtn‘b for 1%1'- [ Is(x") Ka(x"') dv(x") (51)
‘ . X : v . :

It is easily shown that the inverse [I - V,]7! of I - V, gen-
erally exists, i,e., that ¥, has the contraction property
(cf. Sec. 5 14) Hence (44) y1e1ds

h(x) = ROIT - Va17l) | (52)
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where generally:

1-vl =1 ev,+vievie. .. . (53)

Here V§ is V,V,, i.e., the gperator V, followed by V*. In
general V]is the operator V'l followed in application by V,.
This. solution procedure is quite general. The operator V,,
which depends on the space X and its optical properties «
and s, requires only the contraction property to be verified
before it can be used in theory or practice.

An alternate form of (49), the form most often used in
the classicial solution procedures, is obtained by rewriting
(45) as: '

h(x) = (N, + NOTU(x) + NV(x)
= NG+ (N + NAV(x)

'so that:

h(x) = hO(x) + (N + Na) V() | | (54

In order to obtain an equation in h only (all other
terms being given functions) it follows, for the same reasons
as those leading to (49), that the isotropic scattering as-
sumption (48) must be adopted. 1In addition, if we are to re-
tain the particular grouping of terms exhibited in (54), we
may (though it is not strictly necessary to do so) also as-
sume that Ny is of uniform directional structure, i.e., we
assume:

N, (x,8) = h (x)/4~ | ' (55)

where h is defined in (4). Under these conditions, (54)
reduces to: . )

h(x) = hO(x) + 7~ (hy + Bs) V(x) (56)

If tle space X is infinite in all directions about x, and a
generally is not zero, them h%(x) = 0, and (56) becomes :

h(x) = 7= (b, + hs) V(x) 6N

which is the somewhat special but customary form of the inte-
gral equation on which the exact diffusion theory is based.
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We now sketch the customary method of solution of (57).
© The medium is assumed homogeneous, so that s(x) is indepén-

dent of x and so that Ku(x ,X) depends nnly on the difference
x-x'|. This assumption of homogeneity is necessary if the
Fourier transform method (the usual method used) is to be
applied to (57). Thus, if "¥" denotes the -three-dimensional
spatial Fourier transform operator for functions on X (which
is now all of euclidean three space) we have, app1y1ng 7 to
each side of (57)

 (#h) (k) = r F{(h, + hs) V] (k)

where k is the spatial frequency variable associated with the
spatial variable x. The value of 7[h] at k is written as
wgthi k], "(Fh) (kK)'", or "A(k)", similarly with the inverse
transform. Using the convolution theorem for Fourier trans-
forms, (see, e.g., (6) of Sec. 7.14) this becomes:

B = g B 00+ sh) Ry (58)
where for brevity we also write:
"R LU for FK k)
The carat over the letter "h" denotes, e.g., that h is ‘the -
Fourier transform of h., The beauty and power of the Fourier
transform method is now strikingly evident in (58): the inte-

gral operatoy "equation (57) has been reduced to an algebraic
equatlon in h(k) so that (58) may be directly solved for h(k):

ﬁ (x)

) - (4n - sﬁa(k))

Taking the inverse Fourier transform of each side, we havér

~

o
Ch(x) =F | — 2 | (59)
(47 - SKa)

whlch rivals the natural solutlon (52) in simplicity and
elegance (but. evidently not in power and scope). The solu-
tions of (57) will be discussed in more detail in Sec. 6.7.

The present discussion is concluded with the observa-
tion of how the radiance distribution N(x,- ) is obtained from
knowledge of scalar irradiance h(x} when using exact diffu-
sion theory. Once the scalar irradiance field h has been ob-
tained from either (52) or (59), we use the representat1on of
Na, as given by'(47), in the general relatlon (44):

N(x,8) = (N, + N ) T(x,8) + N*T(X £)
‘Thus: '
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Thus:

N(x,E) = [No SN+ PR T0x,E) (60)

If the medium is source-free, so that Nn = 0, then

N(x,E) = [ﬁ + hs T(x,8) (61)

If the medium is in addition infinite, so that Ny = 0 at all
interior points of X then

N(x,©) =[%§ T(x,8) (62)

If the medium is also homogeneous, then

N(x E) = (s/4m) [hT(x,E)] - (63)

6.6 ' Solutions of the C13551cal Diffusion Equations

In this and the following section we shall exhibit some
of the more useful general solutions of the classical and
exact diffusion equations introduced in the preceding section.
We begin with the classical diffusion equation 1n its simplest
context.

Plane-Pafallel Case

Consider an homogeneous plane-parallel Source-free op-
tical medium with a steady, stratified light field generated
by incident flux at its upper boundary. For example, natural
11ght fields in the seas, lakes, and harbors can supply such
instances. Further instances may be found in heavy fogbanks
and thick cloud layers. Suppose that the conditions for, the
diffusion equations hold in such media. What are the result-
ant forms of the light field--say the radiance distribution
and associated scalar irradiance function--that the classi--
cal diffusion theory predicts for such media? We now seek
the answers to these questions. :

Starting with equation (7) of Sec. 6.5, and imposing
the source-free, steady light field condition, we have:

DV2h - ah = 0 P ¢ O

Recall that in a three- dlmen51ona1 Carte51an coordinate
system .

2 2 2

9 ]
V2 = + o+ .
;;7 ;;7 ;;7
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Since thne light field is stratified, the x and y derivatiwes
in V'L will be zero. Thus (1) reduces to:
2
DB - an=-p . (2)
dz

Therefore, in its simplest guise, the classical diffu-
siun equation (7) of Sec. 6.5 takes the form of a linear,
second-order differential equation whose general solution for
a+ 0 is of the form:

h(z) = ¢, A ‘ (3)
where we have written:

"e”  for /rg : (4)

We call k,as defined in (4), the {classical) diffusion coef-
ficient. Recalling (27) of Sec. 6.5, we can express Kk alter-

natively as:
Y 3a(a - us)

Y 3a(a + {1-u)s)

The diffusion coefficient ¥ is the physical core of the
solution {3) and, indeed, of all of the soiutions of the
classical diffusion equation. There may be variations in the
geometry of a medium--spherically symmetric, cylindricaily
symmetric, plane parallel, as in the present case--an¢ corre-
spondlng vagriations in th# forms of solutlcns, as we thall
see, but running through these cases, and common to tiaem all,
is the nc~ion of the diffusion ccsfficisnt x. Observe how «
depends jcintly on the volume absorption coefficient a, the
total volume scattering coefficieat s, znd on the mean cosine
4, which s a measure of the anlsutfonsc scattering property
of the medium.

Fal
fi

As z special SOl\LlGn of (23 iev <he plane-parallel me-
dium be infinitely deep, so ti =n nhysicsi grounds cy, = 0
in {3} {=ses {12)). Then {3} can bs shown ts reduce to:

5 ] :
‘; h(z) = h(0ye % | (6)

= once tne most useiul znd re &
v.ic form of iight fields ia - ral
re

optical media.
al media come in

i
for light fields in nz+vuval nptic
sentation, but in
2
€

3 of complexity and power of
I analysis a1l exhibit, za o
and with zn accursvy that gererallv
depth, tae oversll saponenticl s.rurf' natural light
fields. The si est of models =% 1 fields ia natural
media--namely {(Z)--aiveady exhibigs this axponentlal structure

T lesser qegree
s wita 1ncr=a51ng

ntative example of.
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" of the light fields. More sophisticated models will give
correspondingly more detail on the structure of h(z) as a
function of z; and still other models may sharpen the depen-
dence of «x on a and s. Yet for all its simplicity, (2) has
captured the salient analytic property of the light in nat-
ural hydrosols: that of exponentiality.

. How does the magnitude of the diffusion coefficient
compare with that of the volume attenuation coefficient a?
We note first of all that these quantltles are indeed com-
parable, both having dimensions of inverse length. From the
representatlon (5) of x we can build up the following chain
of inequalities leadlng to a: :

ok = J/3a(a + (l-ﬁ)s) < /3a(a*+s) < /3(a+s)ta;s) = /3 a (7)

A more instructive inequality can be deduced provided
that some explicit relation between s and a is hypothesized.
- Such a relation has already beén observed in connection with
the validity of diffusion theory. In the remarks following
Fick's law (5) of Sec. 6.5, it was noted that the law holds
when, among other things, the scattering-attenuation ratio p
is at least 0.6. This condition on p in turn requires that:
s > (10/4) a > 2a. It therefore seems reasonable to be able
to use this inequality between s and a whenever diffusion
theory itself is being used. Therefore, starting the chain
of ‘inequalities in (7) once again, we are now led to:

"k = f3a(a + (1-Ws) < f3a(ars) ¢ /(a+s) (a*s) =

Hence we see that whenever d1ffu51on theory is appllcable,
we must have:

VK < a : | (9)

The physical interprefation.of (9) is clear: since x is gen-
erally smaller than a, we have, depth-for-depth:

b+ ¥/ -KZ
e < e o

This means that transmitted radiant flux undergoing diffusion
along a path of length z is greater at the end of the path
than that having undergone pure attenuation.: This may be
seen also by direct appeal to the intuitive meaning of diffu-
sion and attenuation in their technical senses used in trans-
port theory: a stream of photons undergoing attenuation, 1loses
photons under the joint action of absorption . and scatter~
ing. Once a set of photons is scattered out-of the beam, they
are no longer considered part of the beam even though some of
them may reenter the beam. A stream of photons undergoing
diffusion, on the other hand, may scatter out of and back into
the beam and be recounted upon rejoining the main stream. Thus
the main loss mechanism for diffusion is absorption. There-
fore, length for length, a packet of diffusing photons will
have fewer loss casualties than a packet of attenuating (beam
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transmitted). photons. This relation between ¥ and o may be
alternatively stated by means of the attenuation length L.,
where we have written: -

"LK" for 1/k (10)
Then an equivalent statement to (9) is:

L, < L, : an
This inequality may be interpreted in a dual fashion to (9)

as follows: The length of path in a medium over which a
packet of photons undergoes a fixed fraction r of loss by
means of diffusion is greater than the length of travel over
which the packet undergoes the same fraction of loss by means
of attenuation. In other words, a packet of diffusing photons
will travel farther before incurring a given loss than it
would travel before it incurred the same loss by pure attenu-
ation.

If the plane-parallel medium is of finite depth d, then
in general both c4 and c- in (3) are not zero. 1In fact c,
and c_ are determined, for example, by specifying the scalar
irradiances at any two depths in the medium. It is customary
and convenient to specify h(z) for z = 0 and z = d. Thus,
supposing h(0) and h{(d) given, we have from (3):

h(0) = c_ + ¢

+ -

n(d) = c, ed + ¢_ v

We treat these two equations as linear algebraic equations'in
the unknowns c_ and c_, and find that:

A Ted
c, = + h(d) - h(0) e7¥ v (12)

+ ekd _ e Kd

We observe from these representations of ¢, and c_ that,
for very deep media, ¢, = 0 and c. = h(0), so that in the
limit of infinitely deep media, we return to the solution (6).

We consider next the specific form of the radiance dis-
tribution in the plane-parallel diffusion case. By (30) of
Sec. 6.5 we know the general shape of the radiance distribu-
tions. But with a specific depthdependence of h(z) now known,
say in the case of (6) for an infinitely deep medium, the
gradient of h(z) is readily estimable, and so a specific esti-
mate of N(z,E) is possible. Since the light-field is strati-
fied, we have : ’

dh(z

me xS

(13)

where k is the unit outward normal to the medium at its upper
boundary. The medium has the standard terrestrially based
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. coordinate system for hydrologic optics (Sec. 2.4). Hence
for infinitely deep media: :

N(z,£) = BE 1 - s epgek] (14)

where h(z) is given in (6). A similar formula for N(z,f£) can
be developed for finitely deep media using (3) with c4 and c.
as given in (12).

Finally, we consider the upward and downward 1rrad1ances
associated with the diffusion field in an infinitely deep op-
tical medium. Using the ideas of Sec: 2.4 in which the prop-
erties of irradiance weré described at length, let "H(z, +)”
and "H(z,-)" denote the upward and downward. 1rradlances in
the medlum. That is, in the terminology of (9), (10) of Sec.
2.4, we have written: ‘

"H(z,+)" for H(z,k).
"H(z,-)" for H(z,-k)
Then:

H(z,%) = | N(z,8) £ -k du(g)

[$3]

end:

H(z,-) = N(z,£) £+ (-k) da(&)

-

which are based on (8) of Sec. 2.5. H(z, +) can be exp11c1t1y
eyaluated using (14) for N(z,E)f Thus: :

ki

H(z,+) = B{Z [ (1-3 kDE k) E -k an(E)

+

B (1 g - (1s)
In a similar manner: o

Hiz,-) = B2 1+ 2c) . L ae)
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From this we can estimate the ratio of downward to up-
~ ward irradiance at each depth z in the medium. Writing:

"R(Z,')" for g{%'_t%_ ', (17)

we have:

R(z,7) = 15757 as)

for the refleetance R(z,-) associated with an infinitely deep
‘plane-parallel homogeneous medium as described by the concepts
of classical diffusion theory. Observe that R(z,-) in the
present case is independent of z.

It is interesting to note that from (15), (16) and the
concepts of vector irradiance (Sec. 2.8):

[H(z)| = H(z,-) -H(z,*) = xDh(z) _(1_9)'
so that: '
B(z) =-xDh(z) k | ' (20)

Furthermore: _ .
H(z,#) + H(z,-) = h(2)/2 . (21)

Relations (15) through (21) will be reconsidered in the 11ght
of the exact two-flow theory in plane-parallel media, as de-
veloped in Chapter 8.

Point Source Case

Consider an infinite homogeneous optical medium with an
isotropic point source at the origin generating a steady light
field throughout the medium. For example, a bright flare of
uniform directional output deep in the ocean far from surface
and bottom effects would generate such a light field. Flares
deep within foggy atmospheric media such as in fogbanks and
clouds also offer real instances of the present case.
the plane-parallel case, we are interested in the scalar ir-
radiance field and the radiance field set up by the point as in
source in the surrounding medium. In particular, we now study
these fields as predicted by classical diffusion theory.

At all points of the medium other than at the p051t16n
of the point source, equation (7) of Sec. 6.5 governs the
resultant scalar irradiance field:

DV2h - ah = 0 (22)

(=




RECRUITMENT AND PARENT STOCK IN FISHES

David H. Cushing

ERRATA SHEET

Page 82, line 1. Change first equation to read: W = PQ/Pl

Page 86, third equation. Change equation to read:

R t
dN L B

I vrm T { ae = -l - o)

No o

Page 133, paragraph 2, line 13. Change "Figures 55a and b" to read:
"Figures 55¢ and 4"
Page 134, line 2. Change equation to read:

~-[Ft + e(mo T Mlt)— eMo]



SEC. 6.6  CLASSICAL DIFFUSION EQUATIONS o 199

The npproprlate coordinate frame at present would be a spher-
ical. polar coordinate frame with origin at the point source.
For then V*h takes a particularly simple form because of the
-spher1ca1 symmetry of the field abbut the point source. Thus,
in general for spherical coord1nates in which x = (r,0,¢):

42
V2 = ;7 5% (rz 31) ~7—;;;—; 86 (s1n 0 EF) -7—~—~7-g ;;7
| (23)
ﬁyvspheriCal §ymmetry we now have:
lvzh_lvd(Zdh>
: L2 dr dr
2 20 4
O L T

Hence (22) becomes in the present_case:

1 d%(rh) L L o
D ‘_"fZ;L ah = 0 (25)

dr
If we'yrite, ad hocé. _
o » “"F* for th -, ' (26)
théﬁ.(zs} becomes; . '
’Dg—z-’l;--aF=O' e
dr S

and we are back, mathemat1cally, to the case descrlbed by
(2). Hence the general solution of (27) is:

F(r) = c, e‘? +c_ e T T.(28)
of, in view of (26):

h(r) %

=

(e, €T + c_e™*N (29)

In view of the spherical symmetry, the values of h(x)
depend only on r, where x = (r,9,¢), and we therefore have
written for brev1ty Thr)" 1nstead of "h(x)",

For the presently considered setting, namely an infinite
medium, we can, for physical reasons, immediately set c, to
zero. The exact mathematical procedure for this is completely
analogous to that used to obtain (12). Therefore the scalar
irradiance about a point source generally behaves in the man-
ner descrlbed by the following equatlon




200 oo CLASSICAL SOLUTIONS ~ VOL. III

: -KT
h(r) = =2 - (30)
v T

That is to say, h(r) falls off jointly as the inverse first
power of r and exponentially with r. The constant c. can be
evaluated if we use the connhection between vector irradiance
H and scalar irradiance h given in Fick's law (5) of Sec. 6.5:

: (€3]] {DVh(7) |

0 S
Dc. KT

~Eg— 1+ k1) (31)
by

Here we have used the fact that HB(r) is directed radially out-
ward from the -source (again a consequence of spherical sym-
metry). The magnitude of H(r) is the net outward irradiance
at each point of a spherical surface of radius r. Hence:

anr? |H(r)| = 47Dc_ e ¥T [1 + kr] O (32)

is the total net outward radiant flux, call. it "P,", across
the spherical surface of radius r. For general radii r we
do not know ¢ priori the magnitude of this net outward flow.
Even if we knew the radiant flux output, say P,, of the point
source at the origin, there is no g priori connection between
Py, and Py. However, if one measures P, for some r, then (27)
yields up at once an empirical estimate of c¢.. On further
examination of (27) it appears possible to devise a theoret-
ical means of finding c_ by considering P, for very small
values of r. In such cases the spherical volume enclosing
the point source is so small that the net outward flow across
the boundary due to the field flux is zero, or very nearly so,
for the reason that there is very small chance for a packet
of photons diffusing into and then out of the spherical volume
to lose any members by absorption during the traversal of the
volume (the main loss mechanism which affects diffusing par-
ticles). At any rate, it is clear g priori that this chance
goes to zero in magnitude with the radius of the sphere.
Hence in the limit of zero radius the net outward flow across
the spherical surface is due solely to the point source's out-
put Py. Thus from (32) we find:

oas . . , -KT
Pd_' 11mr+o Pr 11mr+o 47Dc_ e [1 + k7]

4nDc _ ’

whence:

e .
h(r) = gy (34)
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Equation (34) describes the scalar irradiance at dis-
tance r from a point source of isotropic radiant flux output
Po. The flux is evolving in a diffusing medium with diffu-
sion constant D, and diffusion coefficient k. "Equation (34)
-may be phrased in terms of the radiant intensity Jj of the
point source. Thus, using (17) of Sec. 2.9,

J e KT :
h(r) = 2 . (35)
Dr :
where we have written:
P, g
" " o
‘.JO . fOT z—_’-r— ) . (36)

The radiance distribution associated with the point
source diffusion problem is obtained at each distance r from the
-point source by means of (30) of Sec. 6.5, now using as gra-
dient:

Vhix) = - ¢ D) 3N
where r is the unit radial vector directed toward the point
source. The gradient (37) was evaluated in’ (31), so that

w1th the aid of (34):

P e T (1+ k1)

Yh(x) = -2 r (38)
4wDr277
Hence
n(r) = - DVh = - EELIlLl?I_EIl r (39)
Therefore, by means 6f'(30) of Sec. 6.5.we have:
N(r,g) = 2L [1 -3 D0 er) ::l (40)

where h(r) is given in (34). Equation (40) represents the
radiance function in an infinite medium with iscotropic peint
source under the usual conditions for classical diffusion
theory (see process [1/0], Table 1, Sec. 6.5). A similar
formula can be developed for f1n1te spherical media. However,
in this case care must be taken to see that the basic diffu-
sion conditions hold, in particular so that Fick's law (5) of
Sec, 6.5 is appllcable. Observe that at great distances r
from the source, the expression for N(r,f) as given in (40)
approaches (14) of the plane-parallel case. Thus the radi-
ance distribution at great distances from the point source
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settles down. to become the product of a spatial factor and a
directional factor. In other words, the spatial and direc-
tional dependences of N(r,E) eventually multiplicatively un-
couple at great distances from the point source. This fact
was used as a motivation for the spherical harmonic method in
Sec. 6.1, and will be discussed in Sec. 10.6 as a special
case of the general asymptotic radiance theorem (Sec. 10.5).

‘ We conclude the discussion of the point source case by
~ deriving the expressions for the outward and inward irradi-
ances H(r,z), where we have written:

H(r,s)" for H(r,:r) ' (4;)

on the basis of the general irradiance {11) of Sec. 2.6.
Thus, in a manner similar to that used to find (15) and (16),
we have for the point source context:

CH(r,t) = T“h(p [1 7 200 *+ k1) b3 ] (42)

so that, analogously to (18), we have:

R(r,-) = o Ppeeis N CE))

for the reflectance R(r,-) of the medium at distance r from
the point source, where we have written:

"R(r,-)" for g%’-;x—”%- ' (44)

- - . Unlike the reflectance R(z,-) obtained in the plane-
parallel case, the present reflectance R(r,-) varies with the
distance r. ‘In the limit of increasing r, however, R(r,-)
approaches the form of R(z,-). Observe also how the values
of r cannot be arbitrarily small and still have formulas such
as (40) and (43) physically meaningful. ' The reason for this
breakdown of the diffusion theory formulas is traceable to
the eventual inapplicability of the original Fick's law hy-
pothesis. " In the presence of the highly varying directional
structure of radiance distributions that occur near point :
sources, the simple cardioidal structure of radiance distri-
butions, characteristic of diffusion theory, simply does not
hold. It is at this point that the spherical harmonic ap-
proach to diffusion theory, on which the cardioidal radiance
law is based, shows the inapplicability of Fick's law assump-
tion. See, e.g., (14), (20), and (29) of Sec. 6.5.

Discrete Source Case

We take up once again the setting described in the
point source case, just concluded. Now we imagine a set of
point sources distributed throughout the infinite homogene-
ous medium. This set may be finite or infinite. In either
case we assume the "points' to be disjoint, small regular-
shaped volumes of given minimum size,the centers at points xj.
The definition of point source adopted in the present case is

o E
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that given in Sec. 2.9. Our present purpose is to derive the
equations for the scalar irradiance and vector' irradiance
fields associated with such sets of point sources. Fromthese
representations, the radiance field follows at once using (29)
of Sec. 6.5. . '

Suppose the set of :point sources is located at the
points x;, x2, ..., in the medium and that point x; has
isotropic radiant flux output Po(xj). It follows from
(34) and the interaction principle” (which now assures
- syperimposability of effects) that the total irradiance
h(x) generated at x by the.point sources at each x; is

given by: _J
= P(x;) e"lx'le
h(x) = ] - | - (45)
. . Dix~-x.
SRR EST
where, as usual, "|x-x;|" denotes the distance between point

x and point Xxj. In caSe only a finite number n of point
sources are present, we set Po(xj) = 0 in (45) for every j
such that j > n.  There is no qugstion about the convergence
of the infinite series in (45) since we have assumed that
each x; is embedded in a small but finite volume of given
minimum size. Hence the points xj cannot all cluster in any
.finite region of space.’ The exponential factors in (45) then
assure convergence of the infinite series, since the distances
Ix-xj]increase regularly with j, in the limit.

. The relation (45) has a deceptive amount of generality.
We could, if required, partition all of euclidean three space
(except some arbitrarily small neighborhood of x) into cubes
"of varying sizes. if need be. . Then each cube with center x;
is assigned an output Py(xj). Equation (45) then gives the
‘total scalar irradiance at”x generated by these discrete
sources throughout space.

] As an example of the preceding observation, suppose
that small, finite, contiguous volumes are used to similate

a thin cylindrical region with a straight-line ‘segment in
space as axis and along which sources -are distributed. Such
cylinders may simulate narrow beams of radiant flux sent out
by highly directional sources, for example laser sources. In
this case Po(x3) is generated by the scattering, within the
jth volume seg&ent, of the residual flux of the beam reaching
the jth volume. Thus, suppose a laser source is at point Xxq
and directed along the path P.(x,,E) with initial point x, and
‘direction £, as in Fig. 6.4." Partition the beam, which ﬁas

initial radiance Ny, into n parts, each a cylinder of length
" r/n and initial point x; (= xo + (jr/n)). Finally, suppose
the volume scattering f&nction ¢ is independent of &', £, i.e,
that isotropic scattering prevails throughout  the medium,
Then it is clear that:

'-jra/n
No e ,
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FIG. 6.4 Geometry for a narrow cylindrical beam source
of radiant flux in dlffu51on theory.

is the re51dual radiance reaching the initial point x; of the
jth cylindrical part of the beam. From this and the Aeflnl-
tion of path function it follows that: .

Ng e-jra/n (s/4m)

is the path function value at the initijal point x;
cylindrical part of the beam., Because scattering”is isotropig
this value is assigned to each direction about x; Since
path function values have the dimension of 1nteng1ty per unit
volume (e.g., see note (h) for Table 3 in Sec. 2.12), we can
make the follow1ng assignation: To

P(x;) /47 (= J(x;))

j. of the jth

in (45), we assign:

i

i
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N e—jra/n‘(sV(x.)/An) ,

where V(x:) is the volume of the jth part of the beam, so
that (45) now becomes:
. T o-ira/n e-le-xj[ V(x;)

h(x) = J (46)
* I_E JZl lx'le )

This shows how the discrete-source case can simulate
important internal source problems in natural opt1ca1 media,
prOV1ded, of course, that the basic dlffu51on point source
model is valid for the given medlum

The radiance distribution associated thh a discrete
source scalar irradiance field given by (45) is obtained by
appeal to the interaction principle, so that by simply adding
together terms of the form shown in (40), the desired radi-
ance distribution is obtained. An alternate representation
of N(x £) is obtainable as follows: From (39) and the inter-
action principle it is clear that the vector 1rrad1ance gen-
erated by the point sources at X;, Xz, ... 1s :

o D h,(x) (1+K|x-x.{) o
H(x) = - ] 4 o] —1— r, (47)
3

where we have written:

-k |x-x, |
Po(xi) e J

"hi(x)" for
J 4wD|x-xj|

and where x: is the unit vector directed from the observation
point x to the jth source point x; (see Fig. 6.4). Then us-
ing H(x) and h(x) as given, respe%tlvely, by (47) and (45),
the radiance N(x,£) at x in the direction £ 15 given once -
“again by (29) of Sec. 6.5.

Continuous Source Case

. We now make the transition from the discrete source
case, just concluded, to the continuous source case. We be-
gin with the finite version of (45) in which we have parti-

. tioned a subset X, of the infinite medium into ' a set of n small
volumes X; ("small" in the sense of less than one attenuation
length in”diameter) each of which has a radiant flux output
of Pg(x3), where x; is a point of X; Hence the radiant flux
output per unit volume about x; is 6ery nearly P,(x3)/V(X;)
where V(x:) is the volume of X3 We assume that thé radl&
flux outpat of X; is uniform 13 all directions about x;

Then the radiant”intensity per unit volume: I
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P_(x:)

J

may be represented by an emission radiance distribution

N (x;,&) which is independent of direction £. (Recall that
;s the same dimensions as path function N,, and that the
latter s dimensions may be characterized 'as radiant 1nten51ty
per unit volume). Therefore, using the definition of hy in
(4) of Sec. 6.5, we may write:

LR (x) =

z;—VT%;T = Nn(xjpﬁ) = hn(xj)/Qﬂ - (48)‘

so that: '
P _(x.)

hn(xj)- WX'JJT ' (49)

With this meaning of hn(xj),,the finite version of (45)
‘may be Tewritten as:

, h (x. -k {x-x,| Vix. .
hex) = % n(%j) e 3 (xJ) (50)
j=1 41rD|x-x.|

By letting the partition of Xn become finer, so that in
the limit the associated Riemann 1ntegra1 over X, is obta1ned,
(50) becomes:

| h(x') e <Ix-x'l |
h(x) = n ' av(x") (51)
: 4%D|x-x"]| :

This is the desired representation of the scalar irrad-
iance h{(x) generated by isotropic p01nt sources of strength
hp(x) watts per unit volume, at points x' throughout a region
Xp of the medlum X. In analogy to (43) of Sec. 6.5 we write:

ok lx-x']
I‘K (x' ,x)" fOr m]._x_x'_l . (Sz)
and
W for [ K (x',x) dV(x") (s3)
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_ so that (51) may be written:

h(x) = hn(x') KK(x',x) dv(x') = hnw(x) (54)

Finally, the vector irradiance H(x) in the continuous
source case can be obtained By starting with (47) and going
to the Riemann integral counterpart of that sum. Thus, . sup-
pose initially the sum is finite and that the sources are
confined to a part X, of -the medium. Then, as before the set
Xp is partitioned anH 'h (xJ)" introduced to denote the unit
volume output of the medlum at point X; in Xy,  Thus (47) be-
comes:

R A K, (x,%) (1) x-x;, 1) (-2 ) Vixy)

j=] 4 -X.
j m|x xJ|

in which (52) is used. Observe that -r; is (x-x; )/Ix x;| so
that as the partition of X, is made su1{ab1y find| the Jsum

has the limit:

D h (x") K (x',x)(1+K|x x']) .
H{x) = (x x*) dV(x )
4w|x-x'l

(55)

: When h(x) and H(x), as given by (51) and (55), are used’
in (29) of Sec. 6.5, we obtain the appropriate radiance func-
tion for the diffusing light field generated by a continuous
distribution of sources in X,. The limitations of the point

‘source case are as considered above. Indeed, since the point source

case fails for points of observation too near the point’
source, it follows that points of observation x in (51) and
(55) should not be in X,, and preferably at some distances
from X,,. We must impose this limitation on all diffusion in-
tegrals in practice. This problem of the prox1m1ty of the
sources of the diffusing field will be examlned in the follow-
1ng paragraphs.

Primary Scattered Flui as SourcéiFlux

Time and again in the preceding illustrations of the
diffusion method, precautionary observations were required on
the use of the various derived equations because of possible
inapplicability of Fick's law. For example, when an observa-
tion point x is too near a point source point Xg in an other-
w1se suitably diffusing medium, the radiance distribution
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about x may depart too markedly from the cardioidal distribu-
tion indigenous to classical diffusion theory. This depar-
ture is due principally to the highly directional residual
radiance originating at X, and arriving at x. It would there-
fore seem desirable to improve the radiometric conditions
prior to applying the classical diffusion theory by first
computing the primary scattered radiance field generated by
the given sources and using this radiance field as the source
field in the continuous diffusion case considered above. We
shall explore this possibility and its generalization in this
and the subsequent paragraph.

In order to correctly implement the present discussion
it seems best to return directly to the basic equation of
transfer for scalar irradiance, (1) of Sec. 6.5. Our immedi-
ate task is to decompose the steady-state scalar irradiance
h{x) into its residual component h® and its diffuse component
h*, where the basis for these concepts were defined in (15)
and (22) of Sec. 5.1. Thus, using the operator U in (39) of
Sec. 6.5, we write: » o

"h*(x)" for N*(x,-) V¥ - (56)
so that: | » ’ _
h(x) = h°(x) + h*(x) (57)
and
ht(x) = ] hig) . (58)
j=1

In other words, the scalar irradiance h(x) consists of thé-
sum of all scalar irradiances hN(x) associated with n-ary

radiance distributions NB(x,-) at x. Hence h*(x) consists of

radiant flux having undergone one or more scattering opera-
tions. Clearly, (57) may be obtained immediately from (4) of
Sec. 5.4 by applying the operator U (cf. (39) of Sec. 6.5).
That is, from.

N =N° + N* (59)
we obtain
NU = (N + N*) U = NOU + N*U
that is: v
h = h° + h* ‘ (60)

We now use this mode of decomposition of h in the steady
state version of (1) of Sec. 6.5. The details are as follows,

starting with:
E *VN = -aN + -/A NodQ + Nn
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<

we - first decompose N as in (59) to obtain:

E-7 (N° + N*) = -a(N® + N#) + | (N® + N%) oda + N,

[£9]

Hence:

E+V N* = -gN* + N*gda + | N%do .(61)

=

in

where we have used the relation:

E+7N% = -oN® + N,

which follows from (2) of Sec. 5.8. Recalling the definition
of N} ((2) of Sec. 5.1), (61) can be cast into the form:

E -V N* =-aN* + | N*odp + N} (62)

[£3]

. This is the equation of transfer which governs the dif-
fuse radiance field N* consisting of primary and higher order
scattered flux. An alternate derivation of (62) was performed
in (7) of Sec. 5.2. The.source for the field N* is the first
order path function Nl. Because the residual radiance N¢

‘coming in from the boundaries of the medium, and emission ra-

diance Nn are now absent from N*, the directional structure
of N* is considerably milder than that of N so that Fick's

law is more likely to hold for N* than N.

It is to the scalar 1rrad1ance h* induced by N* that we
now direct attention and derive from (62) the required diffu-
sion equation for h*, Thus, applying the operator U to (62)
we have: o : ; i

VeEt = -ah* + hy ,. (63)
where:
hi = 1%
and where we write: '

wgAY  £or f N*£dQ o (64) -
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Assuming Fick's law to hold between H* and h* (cf. (5)
of Sec. 6.5), i.e., assuming: .

‘H* = -D Vh* (65)

(63) becomes:

-D Yh* + ah* = h} (66)

This is the requisite steady-state diffusion equat1on for h*
in which the primary scattered scalar irradiance h} serves as
an auxiliary source to the basic emission sources hp in the
medium. The assumption of Fick's law for h* in (65) has a
better chance of being valid than for h, since h has h® as a
component which can be associated with highly directional
flows from boundaries and internal sources.

The theory of the continuous source developed above and
summarized in (51) and (55) may now be appl1ed to the case
where h_ in those equations is replaced by h). The proof of
this pracedure is based on the fact that the derivation of
(51) and (55) ultimately rests on the steady-state version of
{(7) of Sec. 6.5; and this has just been shown to be identical’
thg (66) in which h, in the earlier equation is now replaced
by‘ *. :

We now illustrate the use of (66) by means of a simple
example. We consider an isotropic point source ‘in an infi-
nite homogeneous medium which scatters 1sotrop1ca11y (1 e.,
is independent of £' and £). The source is at the origin and
in reality constitutes a very small, essentially transparent
sphere of radius r, which has-a uniform surface radiance N,.
Thus the radiant eMittance of the spherical surface is wN,
and therefore the total flux output is 4w%r2N The average
flux per unit volume of the spherical sourcg 1s4wﬁ*N°/@rrO/3)
= 3mNg/ro. It is this output which would customar1ly be used
in the estimate of h, in the continuous case (cf. (49)).- How-
ever, now the source 1s allowed first to generate a primary
scattered flux field h}l in the space surrounding it. In prin-
ciple this primary scattered flux is generated at every point
of the medium and may be estimated as follows at a point x' a
distance r' > r, from the center of the spherical source.

First note that r' Ix']. Then let @(|x']) (=R(r')) be the
magnitude of the 5011d angle subtended by the sphere at van-
tage point x' Then very nearly:

NRGx',8) = | NOoGxhE'sE) an(En) = NoR(rMs /dw =N e T a(r)s/an

i

for every £. - Hence:

»
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niex) = | Niex',£) dace)

=

1
=N, e ar)s L (67)
This representation is not exact because the integration
over the set of directions from the emitting sphere assumed
the distances from the point x' to the various points on the
spherical surface were all equal to the fixed distance r'.
However (67) should give excellent estimates of h}(x') for
points x' when the sphere is viewed as a point source. We
shall adopt (67) as a working basis in the présent example.

We now use equation (51) with hn(x') in that equation
replaced by h}(x') as given in (671. Here r' is ‘the distance
from x' to the origin; hence r' = |x'|. With these observa-
tions (51) now lets us write: . :

e+ als 1] ) avgen
47D} x-x*|

h*(x) = N s (68)

X

Finally, the residual scalar irradiance h®(x), was essentially
evaluated in arriving at (67); that is, the scalar irradiance
induced by the small sphere is: .

OG0 = Ny e X aqxy L (69)

The full scalar irradiance h(x) for the. present problem
is, according to (57), the sum of hO(x) and h*(x) as they are
given in (68) and (69). A generalization of (68) is readily
effected by letting NO vary in direction. All this means
formally is that "N9" goes under the integral sign in (68).
In this case, the approximation of ho(x) by No2(x) e %|x]
must be examined. This will not be attempted here.

Higher Order Scattered Flux
' as Source Flux

v The preceding example of the use of primary scattered
radiant flux as source flux in the classical diffusion equa-

-tion seems sufficiently useful to encourage carrying out the
underlying idea of the example to its logical conclusion. -

Toward this end, suppose that it is possible to compute the
first n+l scattering orders for radiance: NJ, j =0, 1, ...,

n. . We then supplement this exact calculation by estimating

the radiance function
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j=n+1

.using diffusion theory. Clearly this procedure includestthat

of the preceding discussion as a special case; in fact it is
the case n =" 0. :

: As in the special investigation for the case n = 0, we
begin with the steady-state equation of transfer:

E+VN'=-oN + [Nodn £ N,

and now write N as:
NI . ) NI
0 j=n+1

4
it
18
z
[
[]
T )]

0 j
- N o, N(@®) (76)
where the definitions of the two terms ?(n) and N(n, ) ;f
“implicit in (70). Thus in particular N{(0)= NO and N(o =N*,
Using thls decomposition in the equation of transfer,
we have:

£ .VtN(#) + N(n,*)) - -u(N(q) . N(n’*))

. / 4 yMy 5 gg

+ Nn (71)
Now, from (ljvof Sec. 5.2 we have for every j > 1
g-vnd = tand 4 | Nl g an “(12)
and from (2) of Sec. 5.8:
£ +VN® = -aN® + N - (13)

n

By adding equations (72) and (73) together from j=1 up to
j = n, we obtain:

£-v N o -uN(n) + | N1 G40, N, BTN

[£4]
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. . This equation is now used with (71) to reduce the lat-
ter to: .

E v N(“'*) = -aN(n)*)

‘ *

| N 5 gg .+ 0L (75)
This equation is the direct generalization of (62), the lat-
ter being obtained by setting n = 0 in (75). :

Next the operator U ((39) of Sec. 6.5) is applied to
each side of (75); the result is:

3 V -B(nv*) = _é‘h(ns*) +h1*1+1 . (76)
The fin?i-itep is to gypdthesize that Fick's law holds be-
tween H(N,%) and h(n,*); . ' : :
g% @ (77)
-so that (76) becomes: ‘
SR R IR I R (78)

o This is the requisite diffusion equation'for h(n,*);

It is a direct generalization ?f ;66) which is theé case n = 0.
The source term for the flux h(R,%) jg (n+1)-ary scattered
flux, which should have relatively mild direction structure,
so.that (77) has a good chance of holding in practice. 1In
general, the greater the n, the more likely--on intuitive
grounds--(77) would seem to hold. (See the discussion follow-
ing (13) of Sec. 5.12.) ) S

once h(n,*) is obtained by solving (78) with the contin-
uous source hR*', using, e.g., (51) with h,, replaced by hjt?,
we then find the complete scalar irradiance h by noting that

R = b ) « k™M [0 )

whéfe we write:
(B gor Ny S (80)
and: v
() g Ny (81)

From h(n’*J(f) ¥§ can then find n(n.*)(x) using (77)
-and so, in turn, N\»"J(x,E) using the diffusion equation
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(29) of Sec. 6.5 as a model. This diffusion-based estimate
of N(m,*)(x £) is then added to the known radiance N(n)(x,e).

Time-Dependent Diffusion Problems

Time-dependent radiative transfer problems arise, for
example, whenever extremely short pulses of radiant energy
are released in scattering-absorbing media, and when the
_ evolution of the subsequent scattered radiant energy of the
pulse is to be described or predicted in detail. We. study
now a particularly simple and useful model of time- dependent
light fields based on classical diffusion theory, in part1cu-
lar, equation (7) of Sec. 6.5,

Consider an 1nf1n1te homogeneous optical medium with a
single point source at x' which at time t' emits a single
D1rac—de1ta pulse of unit radiant energy. That is, we assume

in (7) of Sec. 6.5 to have the form: h (x,t) = UpS(x-x')-~
GQt t'), where at present U, = 1, and Uy 1n general has the
dimensions of radiant energy.

It may be verified directly from (7) of Sec. 6.5 (by
performing the indicated differentiations and simplifying)
“‘that the resultant scalar irradiance h(x,t), t > t', varies

in space and time according as K.(x',x;t',t), where we have
written: .

x-#' 2

'K (xﬂx;fktT'fOr ———————x——377~exp - — - av(t-t')
K [47vD(t-t")] 4vb(t-t )

(82)

That is, for fixed x' and t', the function Ke(x', = ; t', )
defined by (82) satxsf1es (7) of Sec. 6.5 at every space-time
point (x,t), such that x' # x and t > t'. The function
Ke(x', =3 t', ) first arose in the theory of transient heat
conduct1on..

In general, with a continuous source distribution
-hn(x’ t') defined throughout a part X, of the medium for all
times t > t', we have, by means of the interaction principle,
the resultant scalar irradiance field given by'

t
h(x,t) = hn(x',t'] KK(x',x;tF,t) dt 4dv(x'}
X -

(83)

Of course, h may be set equal to zero for all times t'
earlier than. some ?1duc1al time tg,', so that hy(x',t') in
(83) represents the general source condition (?) of Sec. 6,5.
Therefore the resultant scalar irradiance field h deflned by

Y. S N S A
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,(83) is the general solution of (7) of Sec. 6.5, as may be
established by a direct appeal to (7) of Sec. 6.5,

It is of interest to connect (83) with two results ob-
tained earlier in the present work. First we will show that
if a steady p01nt source condition subsists for all time,
i.e., hy(x',t') is independent of time t' for all t' < t and
is zero for all points x other than a glven point x' on the
medlum, then:

KK(x',x) = Kk(x',x;t',t) dt’ ‘ (34)

so ‘that (83) reduces to the steady state caSe'(Sﬁ). To see
this we note that K.(x',x;t',t) has the general Gestalt of:

Re)
a‘e
t
where we have written, ad hoe:

' v
2t for [4va]3;z
wpr gor  1x:x1”
Y
and:
"c" for *av‘
and have replaced occurrences of r(t-tt)" by "t" Then it
is clear that on setting t = u? T
L O PR B
KK(x',x;t',t) dt' = 24 ——-—Ez-————f— du
—w . g
. B/F 2/6C
vb
ek Ix-x"|

. = ¥!
InDh[x-x"] ~ KK(¥ »X)
- The second connection we can make is that between (83) -

and the earlier result which describes the behavior of radi-
" ant energy under standard decay conditions, namely, property
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8 of Sec. 5.10. To establish this connection we now assume

that hp(x,t) = Uy §(x) 6(t). This simulates the instantane-
ous localized 1ntroduct10n of an amount U, of radiant energy
into the medium. However, the actual manner of introduction
is immaterial for the present discussion. With this condi-

tion on hn’ (83) yields:

h(x,t) = U, K (0,¥;0,t) s

so that the radiant energy content of the medium at time t
is:

ue) = 3 nex,t) ave

u . .
73 K (0,x;0,t) dV(x)

u ~avt

n %, {_ !xlz} &V
[4nvDt] >/ 2 P vit ()
x .

Hence:

u(r) = U, eTHE

which is precisely the analytic content of property 8 of Sec.
5.10. This most interesting result shows that the ‘classical
diffusion theory is globally exact and thereby may be used to
help fill, in a consistent manner, the general gap in our
knowledge about the local radlance distributions within a
time-dependent radiant field. That is, we may use (83) to
supplement the exact theory of the time-dependent radiant
energy field studied in Chapter 5, by giving approximate but
useful estimates of the radiant den51ty throughout the medium

To 1mplement the program just outlined of supplementing
the exact radiant energy theory of Chapter 5 by diffusion.
theory, we construct the basic diffusion equations for n-ary
scalar irradiance from the time-dependent equation of trans-
fer (19) of Sec. 5.8. Thus, by applying the operator U to
the equation of transfer for n-ary radiance, we have for -

n >1: :

1 ah" n o, Shn'l

VT—+V H = -ahr (85)
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where for every n > 1 we have written:

LU

v for | NP Ed R (E)

and: - (86) .

vhl  for ND da()

Aésuming Fick's law holds between HR and hB,. for every n,
n>1, i.e., assuming: . :

g =-pvn® , (87)

then (85) yields the time-dependent diffusibn‘equation for
n-ary scalar irradiance, n > 1:

n ’ R .
%'ng.- DVZH" = - on® & sh®° 1 (88)

One immediate application of (88) is the direct general-
ization, to the time-dependent: setting, of the results (68)
and (79) of the continuous source cases with all the analytic
advantages of those results now transferred to the time-
dependent context. In particular, we can replace hp(x',t;)
in (83) by hl(x',t') which is computed exactly as in (67),
but with suitable time lag to account for the travel of the
initial pulse of the source from the source to x'. Then we
compute h*{(x,t) as follows: :

t
h*(x,t) = CRRGx', ) K (x',x;t0,1) dtt dv(x')

Xn -=

(89)
sovphgt:
h(x,t) = h%(x,t) + h'(x,0) ‘(90)'

where hO(x,t) is the residual scalar'irradiance-computed from
"the given source condition, which may be discrete or finite.
The theoretical basis for (89) is the time-dependent

counterpart to (66). This time-dependent counterpart is ob-
tained, e.g., by adding up all equations in (88)forn=12 ....
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The result is:

® .
12h - pvPne - - an* + 1} (91)

Observe how the infinite number of Fick's laws in (87) imply
(65). On the basis of (91), the represantation (89) is
established by simply repeating the'arguments leading to (83).
Finally, the generalization of (91) to the time-dependent
version of (78), and the derivation of the corresponding
representation of (79), is readily made following the patterns
of derivation established in that steady-state case.

6.7 Solutions of the Exact Diffusion Equations

The exact diffusion equation on which we base the dis-
cussion of the present section is (57) of Sec. 6.5. In full
notation, this equation is of the form:

‘h(x) = 7% (h, + sh) V(x)
1 . .
= i%. (hn(x-) + s(x') h(x')) Ku(x',x) av(x")
‘x»
' T - l(x' ’E) o
=‘i% (hn(x') + s(x") h(x')) —ITij;:TI—— av(x") - (1)
Ix . .

The current settings in which this integral. equation is
to describe the scalar irradiance field h are infinite and
semi-infinite homogeneous media with arbitrary sources de-
scribed by hy 'within X. Once a solution h is found for a
space X, the associated radiance distribution throughout X
is obtalned by means of (60) of Sec. 6.5. The first of our
two main goals. in this section is to solve (1) for a point
source in an infinite medium and arrange the solution in such
a manner as to be directly applicable to problems of finding
radiance distributions associated with general source condi-
tions in X. It will be seen that by judiciously tabulating
the point source solution of (1), all solutions of (1) corre-
sponding to the possible source conditions within X, are ob-
tainable in principle by relatively straightforward numerical
procedures based on the tabulated solution. The second main-
goal is to discuss the solutions of (1) for semi-infinite
media (infinitely deep, plane-parallel med1a) with arbitrary
internal sources.
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Infinite Medium with Point Source

We begin with (1) for the case of an infinite homogene-
ous medium X with a point source at the origin. The homoge-
neity assumption frees a(x) and s(x) of dependence on Xthnn%h
.out X and lets us write:

T,. Tt (x',E)

- e-alx-x'I‘ o _
- R (2)
|r-r* Ix-x'l :
where, as usual "x" denotes a point in X, and where Ix x'| is
the distance between points x and x'. The point source con-
dition is represented by: _
h (x*) = P 8(x") ' (3)

where P, is the quant1ty of radiant flux emitted stead11y in
time anﬁ uniformly in. all directions by the point source at
the origin. We may leave the nature of this source quite
arbitrary throughout the discussion. As a result, we shall
be able to adapt various solutions of (1) for the point source
case, by means of integration, and in such a2 manner that the
actual nature of the source may vary from true emission pro-
cesses, through transpectral scattering processes, on through
elastic scattering processes. This will be illustrated later
in the discussion. For the present we go on to. investigate
the case of (1) with a single point source. The requisite
form of (1) is: '

o o elewl]
X

The theory of the solution of (4) is thoroughly under-
stood; a representative detailed development of the solution
of (4) may be found, e.g., in [40}. Therefore, beyond the
general observat1ons leading from (39) to (59) of Sec. 6.5,
we s5hall not need to discuss the details of the solution pro-
cedure of (4) in the present work. However, we wish to dis-
play the solution of (4) in such a manner that the results of
[40] may be readily adapted.to the radiative transfer coatext.
Such an adaptation requires the preliminary transition to a
certain class of dimensionless geometric parameters, which we
now define.

Throughout this section we shall write:
T

"r(x,x') for | a(x") dr'" . (5)
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where a is the volume attenustlon function for the medium.
The integral is a line integral along a path G (x,£) with -
initial point x and terminal point x'. Since {he medium X is
isgtropiC'and homogeneous, paths are straight-line segments
an . -

T(x,x") = a|x-x'] , (6)
When no confusion will result, we will simply write:
" Tfor t(x,x') ,

with x, and x' thereby being understood.

The quantlty T assigned to the distance |x-x'| between
x and x' is dlmen51on1ess, and by virtue of (6) may be viewed
as the number of attenuation lengths L, between x and x'.

Next, for every subset Y of X we write:

ﬁva(Y)" . for a;(x') dv(x") ' n

The quant1ty V (Y) is dimensionless. Throughout this
section, both T(x,x f and V (Y) may be thought of and referred
to as aptzcal Zengths and optical volumes, respectively, with-
out fear of confusion with the classical notions of the same
names.

With definitions (5) and (7) in mind, (4) may be re-
written as:

e T(x,x")

h(x) = 7= T+ 0BG S| ) (8

‘X

where p is the scattering-attenuétion_ratio s/a. Equation
(8) is the required dimensionless version of (4); and for
purposes of a solution tabulation, we now impose the unit
source candttzon in the context of (8):

P . o
- =1 RN )

prov1ded that the Dirac-delta function & with dimensions L"3
.{to go with the volume measure V) is gpetained. Otherwise, if
a dimensionless Dirac-delta function & (to go with the opti-
cal Vy) is adopted, in (3) we write hn §(x') and the unit-
source condition is

n . :
}—(;- 1 . . : (93)
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" The scalar irradiance field h governed,by (8) is clear-

‘ly spherically symmetric about the point source so that h de-
"pends only on radial distance r or (now that the transition
to dimensionless parameters has been made) on t. Let us de-
note the solution of (8), under the unit souree cecondition
(%8a)l, by "Ke"™. Then it can be shown (cf. [40]) that the
scalar irra 1ance at optical distance t from the origin is
Ke (1), where: i :

Ke (1) = A, ™) K (1) + B(p,0) K (1) (10)

and where, in turn we have written:

"A(p,T)}" for %; E(D,T)z o : (i
and |
, sk

"B(p,T)" for D, -5—° ' (12)

to point up the fact that K (1) is simply a linear comblna-
tion of the dimensionless diffusion kernel K, (1) (cf. (52) of
“Sec.  6.6) where now we write: . o

_KT

"K (t)" for T-F— (13)

and the dimensionless beam transmittance kernel K (T) (cf
(43) of Sec. 6.5) where now we write:

"K (D" for 31r . ©(14)

It remains to specify the terms e(p, r), K 9k%/3p, and
‘Dg. The latter term is simply oD, where D is tRe diffusion
constant (cf. (27) of Sec. 6.5) for the classical diffusion
theory. The remaining three terms form the heart of the
exact solution and are tabulated in Tables 1 and 2 below for
varlous values of p and rt.

Thus from (10), we have

0 -1 g -keT :
ap 4wt € (15)
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TABLE 1
The function e(p,T)

T p.=0 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5
0.0 1.0000 1,0000 1,0000 1.0000 1.0000 1.0000 -
0.1 1.0000 1,0210 1.0418 1.0542 1.0526 1.0420
0.2 1.0000 1.0382 1.,0773 1.1000 1.0962 1.0756
0.2 1.0000 1.0532 1.1088 1.1409 1.1346 1,1046
0.4 1.0000 1.0667 1.1375 1.1781 1.1692 1.1301
0.5 1.0000 1.0790  1.1640 1.2126 1.2008 1.1529
0.6 1.0000. 1.0904 1.,1888 1.2448 1.2300 1.1736
0.7 1.0000 1.1010 1.2121 1.2752 - 1,2571 1,1926

0.8 1.0000 1.1109 1.2342 1.3038 1,2826 1.,2100
0.9 1.0000 1.1202 1.2552 1.3311 1.3066 1.2262
1.0 1.0000 1.1291 1.2753 _.1.3571 -1.3293 1.2412
1.5 1.0000 1.1674 1.3644 1,4724 1.4273 1.3034
2.0 1.0000 1.1990 1.4402 1.5699 1.5068 1.3504
2.5 1.0000 1,2258 1.5068 1.6551 1.5738 1.3874
3.0 1.6000 1.2494 1.5667 1.7311 1.6314 1.4171
3.5 1.0000 1.2704 1.6213 1.8000 1.6818 1.4415
4,0 1.0000- 1.2895 1.6718 1.8630 1.7265 1.4617

4,5 1,0000 1.3070 1.7188 1.9214 1.7665 1.4786
5.0 1.0000 - 1.3231 1.7630 1.9757 1.8026 1,4928
6.0 1.0000. 1.3521 1.8443 2,0745 1.8654 1.5147
7.0 1.0000 1.3779 1.9182 2.1630 1.9182 1.5304
8.0 1.0000° 1.4010 1.9863 2,2432 1.9634 1,5412
9.0 1.0000 = 1.4222 2.0497 2.3169 2.0024 1.5486

10.0 1.0000 1.4417 2.1094 2.3851 2.0366 1.5531

11.0 1.0000 1.4599 2,1659 2.4499 2.0667 -1.5554

12.0 1.0000 1.4770 2.2196 -2.5086  2.0933  1.5559

13.0 1.0000 1.4931 2.2710 2.5652 2.1172 1,5550

14.0 1.0000 1.5084 2.3204 2.6188 2.1385 1.5529

15.0 1.0000 1.5230 2.3682 2.6700 2.1578 1.5498

16.0 1.0000 1.5370 2.4141 2.7190 2,1752 . 1.5459

17.0 1.0000 1.5503 2.4586 2.7658 2,1910 . 1.5413

18.0  1,0000 1.5632 2.5019 2,8109 2.2055 1.5361

19.0 1.0000 1.5757 2.5439  2.8543 2,2186 1.5304

20.0 1.5877  2.5849 2,8963  2.2307 1.5243

1.0000

Now that it is clear how K.(71) depends-oﬁ the diffusion

kernel K, ((52) of Sec. 6.6) and the attenuation kernel Kq
((43) of Sec. 6.5) we write (10) in 'its explicit form:
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TABLE 1--Concluded

. The function e(p,t).

L}

p=0.6 p=0.7 p=0.8 p=0.9 p=1.0

1.0000 - 1.0000 - 1.0000 1.0000 ~ 1.0000
1.0269 1.0099 0.9921 0.9745 0.9564
1.0474° 1.0162 0.9843 0.9528 0,9222
1.0643 1.0206 0.9767 0.9341 0.8934
1.0786 1.0236- 0.5693 0.9173 0.8683

1.0909 .1.0257 . 0.9621 0.9019 . 0.8460
1.1017 1.0271 .0.9551  0.8878: 0.8260
1.1113 1.0279 1.9483 0.8747 0.8077
1.1198 1.0282 0.9417 -  0.8625- 0.7910 '
1.1275 1.0282 0.9353 ~ 0.8510 0.7755 ’

1.1343 ° 1.0278  1.9290 - 0.8402°  0.7612 |
1.1601  1.0229  0.9002  0.7936  0.7019 |
1.1763  1.0149 = 0.8748  0.7562  0.6568 i
1.1866  0.0054  0.8519  0.7250  0.6207
1.1929-  0.9952  0.8313  0.6982  0.5908 |

oo no Woe~ovun RO

1.1963 0.9847 © . 0,8124 0.6749 0.5655
1.1978 0.9742 . 0.7951 0.6543 0.5437
1.1976 0.9637 0.7791 0.6358 0.5246 ‘
1.1963 0.9534 0.7643 0.6191 0.5076

1.1912 0.9334 0.7374 0.5901 0.4788

“ s o &
Qowunowun

0  1.1838  0.9144  0.7137  0.5654 0.4550 |
0  1.1749  0.8964  0.6926  0.5440  0.4349 |
0  1.1651  1.8793 . 0.6734  0,5253 . 0.4175 |
'10.0  1.1547  0.8631  0.6560  0.5086  0.4024 . |
0 1.1438  0.8477  0.6400 0.4936  0.3890

HOWVEN QAUiAdAL HUNNHMH CO0OO0OCD OO

12.0 1.1327 0.8330 . 0.6252 0.4800 - 0.3769
. 13.0 1.1215 0.8190 - 0.6114 0.4676 - 0,3661
14,0 1.1102 - 0.8055 0.5985 0.4562 0.3562
15.0 1.0989 0.7926 0.5864 0.4456 0.3471
16.0 1.0876° 0.7802 0.5750 0.4357 0.3387

17.0 . 1.0764° 0.7683" '0.5643 0.4265 . 0.3310
18.0 1.0653 0.7568 0.5540 0.4178 0.3238
19.0 1.0542° 0.7457 0,5443 . 0.4096 0.3170
20,0 1.0433 "0.7349 0.5349 0.4019 ° 0.3107
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TABLE 2

" The functions Koland dk%/dp

2 .
P Ko ‘dkoldp

0.0 1.000000 0.000000 .
0.1 1.000000 0.164892(-5)*
0.2 0.999909 0.009094
0.3 0.997414 0.116201
0.4 0.985624 0.373272
S0.5 0.957504 0.731896
0.6 0.907332 1.145954
0.7 0.828635 1.590033
0.8 0.710412 2.051119
0.9 0.525430 .2.522370
0.92 0.474002 2.617473
0.94 0.413976 2.712805
0.96 0.340829 2,808348
0.98 0.242983 2.904085
0.99 0.172511 ©2.952020
1.00 0.000000 3.000000

*Note: "(-5)" means "multiply by 10°%."

In this way we can see that, for computation purposes, the
scalar irradiance Kg(t) at optical distance t from the origin
consists of two terms, one which may be attributed to resid-
ual flux (the first term) and the other which may be attri-
buted to scattered flux., This type of partitioning of the.
exact representation of h(x) into a residual part (hO) and a
scattered part (h*) was already encountered in the classical
diffusion theory, e.g., in (7) of Sec. 1.5, in (57) of Sec.
6.6, and more generally in (79) of Sec. 6.6. Also, in the
time-dependent case, this partition was encountered in (90)
of Sec. 6.6. :

A tabulation of 47 t2K_.(7) 'is given in Table 3 for two
cases of p and for a range o? T from 0 to 10 units. These
choices of p are representative orders of magnitude for p in
the case of the ocean (p = 0.3) and the atmosphere (p = 0.9)
for wavelengths around 500 mpy, for the middle of the visible
spectrum. For the determination of K (t) for values of p
other than o = 0.3, 0.9, Tables 1 and 2 may be used. It must
be kept in mind that these tabulations are for the unit source
condition (9a). g :
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TABLE 3

The function 4w T’KE(T)

1 p=0.3 p=0.9
0.0 1.0000 - 1.0000
0.1 0.9644 1.1211
0.2 0.9196 1.2343
0.3 0.8710 1.3384
0.4 0.8209 1.4326
0.5 0.7708 | 1.5168
0.6 0.7215 1.5914
0.7 0.6737 1.6567
0.8 0.6277 1.7130
0.9 0.5838 1.7607
1.0 0.5421 1,.8006
1.5 0.3675 1.8974
2.0 0.2441 1.8660
2.5 0.159¢% 1.7547 .
3.0 0.1037 1.5992
3.5 '0.0668 1.4239
4.0 0.0427 1.2454
4.5 0.0272 1.0742
5.0 0.0173 0.9158
6.0 " 0.0069 0.6483
7.0 0.0028 0.4467
8.0 0.0011 0.3018
9.0 0.0004 0.2007

10.0 0.0002 0.1318

Infinite Medium with
Arbitrary Sources

_ We now develop a procedure whereby Table 3, and more
generally (15), may be used to compute scalar irradiance
fields generated by arbitrary sources. Suppose the source
term hy(x) is given throughout an infinite medium X; hp (x)
may be associated with plane sources, finite volume sources
of flux, etc,, and may be of quite arbitrary spatial depen-

dence throughout X. It is clear either intuitively or for- -
mally (from the interaction principle using the theorems of

Sec. 3.16) that the scalar irradiance h(x) associated with
hy(x) is given by: :

225
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h(x) = : B, (x') K (x',x) 4V (x") (16)

where we have written:
"K (x',x)" for K_(t(x,x')) an

‘The reason for the presence of "o'" in. (16) may be found by
tracing back through the unit source condition (9a) and ulti-
mately to (3) and (4). If hy is given in watts per cubic
meter, and o in per meter, tﬂen h is given in units of watts
per square meter.

A practical computatlon scheme for h(x) may be based on

the following procedure: given h,(x) throughout a subset X,
of X, divide X, into n small cubes C(xj) (or any other con-
venlently shaped regions) over each of which both t(x,x') and
hp(x) vary only slightly. Thus each cube C(xj) is represen-
tat1ve of the radiometric properties of X around xj, where

3 is the cube's centerpoint. Then (16) may be replaced by
tﬁe approximating finite sum:

n
h(x) = DIENCHENCEORACIC)) B D
i= _

The evaluation of h(x) using (18)-is facilitated by us- .
ing Table 3 for optical distances t(x,x') up to 10. More
generally, (15) would be used w1th Tables 1 and 2.

As a specific example of a sett1ng in which (18) may be
applied, consider the problem of determining the irradiance
field generated in an infinite homogeneous medium by a beam-
type source, such as that associated with powerful search
lights or laser beams. The geometrical relations of the
present example are summarized in Fig. 6.5. The source may
be represented as a small sphere of radius r with-surface
radiance No and which is allowed to emit unlgormly over ‘a
conlcal set EZo of directions with central direction £y. . Thus
Eo may be all directions £ such that & - Eg 2 cos Bp where ©
is the half angle opening of Z,. By varying 85, the cone can
represent everything from narrow beams (small °) to ‘uniform
point sources (8, = w).

With these geometrical preliminaries f1xed we now
return to the discussion in Sec. 6.6 which developed the
theory of primary scattered flux as source flux and which cul-
minated in the formulas (67) through (69) of Sec.6.6. We can
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"FIG. 6.5 Geometry for a nonisotropic point source of
radiant flux in diffusion theory.

- immediately adopt for our present purposes the formula (67)
of Sec, 6.6 which describes the primary scalar irradiance
hi(x') in terms of the inherent radiance Ny, the total scat-
tering coefficient s, the beam transmittance e-or' 6 and the
solid angle Q(r') subtended by the point source at point x'.
(See Fig. 6.5.) Now hi(x') replaces hp(x') in (16) or hy(x;)
in (18). Thus (16) becomes: ) o

" h(x) = N, | e X' a(ixry K (x*,%) &v;(x"v) (19)
Xo

“and (18) becomes:




-
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n(x) = oN, ,21 e Ixil i) K (xi,%) V (C(x3))  (20)
_ ;L _

In (19) the integration may be limited to the subset X; of X
defined by the cone E, of directions. Thus point x' is in
if and only if x'/|x'] is in Z5. In (20) the sum is over :al
cells C(xj) which partition X,. Because of the exponentials
and the solid angles ©{|xji]) in (20), the sums (for a given
N,) need not be extended over very many attenuation lengths
within Xy before good estimates of h(x) can be made.

Semi-Infinite Medium with
Boundary Point Source

The exact diffusion solution (16) holds for media which
extend indefinitely far in all diréctions about the point
source. Such.a situation will hold more or less in natural
waters when the source and observer are at relatively greadt
depths (several attenuation lengths, say). However, if the
source is relatively near the surface, the reflectance prop-
erties of the remaining thin layer-of medium above. the source
would -differ noticeably from that of an infinitely deep- layer
above the source, so that the scalar irradiance h(t) at shal-
low depths in a light field induced by a point source near
the boundary would differ markedly from that predicted by (16).
Similar observations may be made for fogs and cloud banks in
the atmosphere. In the present example, we summarize some
results of exact diffusion theory which can predict h(t) for
relatively shallow depths in natural waters (or for points
near flat cloud or fog boundaries) when the point source is
on the boundary. The reflection effects of the air-water
surface are not included in the present analysis and must be
accounted for. separately. In the second example below the
tesults will be extended to the case of internal point sources.
Both examples are based on the results by Elliott given in
Ref, [88]. A generalization of the equations developed below
and their appropriate place in the general theory of radia-.
tive transfer in media with internal sources, will be given
in Sec. 7.13. : .

The starting point for the present discussion is equa-
tion (8) in which the medium X is now an infinitely deep ho-
mogeneous planeé-parallel medium exhibiting isotropic scatter-
ing and with a point source of small positive radius rg, . at -
depth x = c 2 0. We shall use the terrestrially based refer-
ence system for natural hydrosols (cf. Sec. 2.4). Further-
more we use the unit source condition (%9a) in (8).

Thus we start with (8), now in the form:

1 . , e41(x,x') L
hO = g5 | (8(x7xg) ¢ Ph(x")) St AV, (') (2D)
X.




| SEC. 6.7 EXACT DIFFUSION EQUATIONS : 229

where X, is the . set of all x (=(xi,X2,xs)) in the terrestrial
coordinate frame such that x; = z > 0. The Dirac-delta func-
tion £ in (21) is dimensionless, and is centered on the point
Xp (=(0,0,c)), ¢ > 0. Furthermore, it is to be explicitly
noted that for the remainder of this section all coordinates
X1, X2, X3 (hence all distances, areas, and volumes) are to he
measured in units of optical length (cf. (5), (7}).

Now the procedure in Ref. [88] is to take the Fourier
transform of (21) with respect to the variables x; and x, over
an arbitrary horizontal plane at depth x3 (=z). Thus let u,
and w, be the spatial frequencies along the xi and X, direc-
tions and let us write:*

N .A.n‘fo(z;w.l"mz)"' for h(x) ei(x1m1 + xzwz) dA(x)

(22)
where X, is the horizontal plane at depth z, and A is the
area measure over X,. Thus f3 is the Fourier transform of h

i

over X,, and f, has the same mensions. as h.. Therefore,
applying the operator: ’ . i

N ei(xiwl + xzuw2) dAtx)

X,

to each side of (21),‘we obtain: .

f.o(z;@) = % [% 8(z'-a) + fo(?';w):’l(|2~2_’|.w) dz'

0
(23)
Whére_we have written:
. _ ‘ e'lz'zllt { . : .
“rI(lz-z'],w)"  for — Jb\¢w§4-m§ lz-z2"| /tz-l)dt

t

(24)

*In the present exposition, we retain the Fourier trans-
form conventions used in [88] in order to facilitate the study
of the results therein.



230 . CLASSICAL SOLUTIONS | VOL. III

where Jy is a zero-order Bessel function, and where, for
brevity, we have written:

nfO(z;m)n for :fotz;wl,mz? | ‘(%S)

The next step in the soluticn procedure is the observa-
tion that (23) can be solved using the Wiener-Hopf technique
provided that c = 0, i. e., that the source is at the boun ary.
This solution procedure is quite intricate and beyond the im-
mediate interests of the present work; therefore the inter-

"~ ested reader is referred to Ref. [88] for details and further.

references.. The main results of the present example may be
understocd without recourse to the solution details. We need
only observe that the required scalar irrddiance is obtained
from the solution f,(<;w) of (23) by means of the following

- integration which 15 the inverse Fourier transformation to
that in (22):

h(x) = o= | £,(z2,0) w J_(ur) do - (26)
0
in which:
X = (XI’XZ;Z)
and: ‘
2 2 2
w o= m1>+ w, ‘(?7)
2 2. 2 _
R (28)

Since h(x) depends only on depth z and the rad1al dlstance T,
we agree to write:

"h(z,r)" for h(x) - ' T (29)

Figure 6.6 depicts the geometrical details of the case
where the point source is at the boundary. Observe that the
medium is divided into region A (shaded) and conical region B
(unshaded) It is found that h(z,r) for points x = (x,,x;,z)
in reglon A is approximated by the relation:.

h(z,r) = n e <0T(1 +kor) (30)

(Valid in region A, Fig. 6.6.)

where in turn y,(z) is evaluated in [172] and is tabulated in .
Table 4, and kg5 is given in Table 2. Table 4 may be extended,
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"EIGE 6.6 Domains of validity of approximaté solutions
' (30) and (31). E

if_necessary, using the eddingtonian approximation to ¥,:

2+32 - (E,(2) -5 E.(2))
b2 = (“%%) z+3z3(E2(zj 353‘
- -3 (By(2) -7 Eg(2))

-The-functiohs En(z) are the exponential integrals

/ T e gy
1 » i

and are tabulated. The farther the point x (=(x;,xz,Xxs)) in
region A is from the dashed dividing lines between regions A
and B, the better the approximation (30),
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TABLE 4

Evaluation ofiwl(z)

z z+ oz wl(z)
0 0.7104 - 0.5773
0.01 0.7204 | 0.5982
0.02 0.7304 0.6154
0.03 0.7404 0.6312
0.05 0.7604 0.6607
0.1 0.8104 0.7279
0.2 0.9104 0.8495
0.3 1.0104 - 0.9633
0.4 1.1104 1.0731
0.5 1.2104 1.1803
0.6 1.3104 1.2858
0.7 1.4104 1.3901
0.8 1.5104 1.4935
0.9 1.6104 1.5963
1.0 1.7104 4 1.6985
1.2 1.9104 ©1.9019
1.5 2.2104 2.2051
2.0 2.7104 2.7079
2.5 3.2104 3.2092
3.0 3.7104 3.7098
3.5 4.2104 4.2101
4.0 4,7104 4.7102

The error of the approximation by (30) is of the order
of magnitude of {z?/r®| and (30) is applicable when p is 0.6
or more. . . :

Furthermore, it is found that h(z,r) for points x
(=(x1,%2,2)) in region B is approximated by the relation:

_ /¥ h cos 8 _ :
h(z,r) = n e %041 + k ) (31)

2mad B
(Valid in region B, Fig. 6.6.)

where we have written:

T T ‘ ) .
@ for /et 4 (zezg : (32)




'SEC. 6.7 EXACT DIFFUSION EQUATIONS . 233
‘éndAwhére:

‘tan 6 = (33)

zZ + z
‘and:

z, ,=.o.‘7104 S (34)
This approximation improves with the,éistance of x
{=X31,%X2,2)) in region B from the dashed dividing lines be-
tween regions A and B. The error of approximation by (31)
.is of the order of magnitude of |1/d°| and (31) is applicable

when p is 0.6 or more.

.- A study of (30) and (31) readily shows the effect on
‘h(x) of the presence of the boundary at depth z = 0, Suppose
for the moment that ko = 0 (no absorption case). Then in
region A of Fig. 6.6, and for fixed z, the scalar irradiance

falls off as the inverse cube of the distance r from the sym-
metry axis of the field, whereas in region B, which is rela-
tively farther removed -from the boundary than ‘region A, the

scalar irradiance falls off only as the inverse square of the

distance d. The fixed number zy, (known as the "extrapolation
length") in (34) arises in the correct adjustment of boundary
conditions of the present problem,

Semi-Infinite Medium with Internal
Point . Source )

" The results of the preceding example will now be ex-

tended to the case of a semi-infinite homogeneous medium with

.2 point source at x, = (0,0,c), ¢ 2 0, i.e., with a point
soyrce in the interior of the medium rather than on the bound-
ary, Let us denote the solution of (21) for this case by _
"felz;w)".  Hence, when ¢ = 0 we are to have f,(z;w) of (23)
back once again, and f. is to be a proper generalization of
fo. Now assume a general point source condition hy/a (cf.
‘(333). Then the functional relations connecting f. and for

as derived by Elliott [88) are of the form: :

E 2. S
» fcﬁﬁ;b) =fo(IZ'C|,N) +ﬁ% fo(tw) £ (t+c-2,0) dt, , z<c
.

£.(z,0) =£,(Jz-c|,u) .+§; £o(t,0) £ (t-cez,w) dt , z>c

(35)

(36)
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[t

FIG. - 6.7 Domains of validity of approximate solutions
(38) through (40). )

Once fc(i,w) is obtained using (35) or (36), h(z,r) can be

obtained by means of the inversion formula:

0

h(i,jr) = -21; £.(2,0) wi (wr) du (37)

0

which is simply (26) now with f. in place of f,. A few ob-
servations on these functional relations will be made below,
but for the present we go on to their immediate consequences.
Figure 6.7 depicts the semi-infinite medium with point source
at (0,0,c). - The medium is divided into two regions with the
shaded region A and the conical region B, exactly analogously
to the partition depicted in Fig. 6.6. Corresponding to (30)
. we now have the approximate solution:
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1
i""" Il (
: >
I Yc z2c¢
- Y2
B
S
C { YZ Z<C
Yo
" “FIG. 6.8 Relative placement of source (c) and observatlon
(z) levels in (35) and (36). .
: 5 z .
h(z:;) ‘=———gﬂh“ ¥y (c-z) + /3 (w )+ (t+c-z)>‘dt ST Qe ) |
_ , 2mar 1 ﬁ 1 1 o e '

o v3h
h(z;r) = -Z——-“,

war

for z.< ¢’
c

[wICzét) + vy
o' -

for z > ¢

(‘p 1 (t) + U)lft"'z'c)> d t:l ve'I-KO r(l + Kor) |

(Valid in region A, Fig. 6.7.)

(38)

(39)
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All the terms occurring in (38) and (39) were defined
in (30). The ranges of integration may be visualized with -
the help of Fig. 6.8. Observe how (39) reduces to (30) when

¢ = 0. The errors of approximation are on the order of |c?/r|

for (38) and |23/r®| for (39). The approximations (38), (39)
are applicable for media with p = 0.6 or more. '

Corresponding to (31) we now have:

h(z,r) =4————% (L+c/3)cos 6 e Ko (1+x d)
2mad . °

_ . - (40)

(Valid in region B, Fig. 6.7) S

Observe in this instance, also, how (40) reduces to its limit-
ing case (31) for ¢ = 0, where now in (40) we have written:

"d"  for /42 +(z+zg -¢)? (41)
and also where
_ T
tan 8= gvE e B

The approximation (40) holds for large .|z-c| and has an error
on the order of magnitude of |c/d®|, for media with p =0.6 or
more . , - .

"Observations on the Functional
Relations for fc and fo

The various solutions displayed above for h(z,r) in a
semi-infinite medium aré of great interest for two reasons.
The first reason is clear enough: They supply additional
information on the behavior of h(x) in deep plane-parallel
media in which there are point sources near the boundaries.
The second reason for interest in these solutions does not -
exist so much on a practical level as on a theoretical or
conceptual level. This interest centers on the form of the
functional relations (35) and (36) which seem to hold consid-
erable importance for radiative transfer theory. These two
remarkable relations show how to connect the point source
solution for the case ¢ = 0 with that for the case ¢ > 0. The
general form of the functional relations (35) and (36) are
those of the relations usually found by the techniques of .
invariant imbedding, the techniques growing out of the clas-
sical invariance principles of Chandrasekhar. It will be
shown in Sec. 7.13 how the general counterparts of (35) and
(36) for radiance fields may be deduced from the invariant
imbedding relations (cf. also examples 2, 3, 5 of Sec. 3.9).
As a result of the derivations in Sec. 7.13, there will be a

IR Y
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unified set of analytical techniques for solving internal-
sourcc problems in general optical media.

6.8 . Bibliographic Notes for Chapter 6

The discussions of Sec. 6.1 leading to (36) of that
section are based on some elementary properties of complete
orthonormal families of functions, which in turn find their
rightful place in Hilbert space theory, or general vector
space theory. For an exposition of these ideas, see, e.g.,
[104]. The isolation of the two properties, namely: the
finite recurrence property of the orthonormal family and the
isotropy -property of the medium led to the finite forms {26)
of the abstract harmonic equations in Sec. 6.2. This expli-
cit delineation of the necessary properties tobe held jointly
by orthonormal families and optical media, which lead to the
abstract harmonlc equations (26} of Sec. 6.2, appears to be
new. ’

The exposition of the classical spherical harmonic

-. method in: Sec. 6.3 is based on that of Refs. [175] and [314].
The solution procedures of the classical spherical harmonic
equations for plane-parallel media in Sec. 6.4 are based on
modern algebraic methods in differential equation theory,

- such as those in [47]. Some innovations in numerical pro-
cedures in the spherical harmonic method may be found in [323]
“and [325]. The manner of approach to diffusion theory in

. Bec. 6.5 is dictated by the specific needs.and outlook of

. geophysical radiative transfer theory. The classification
‘of diffusion processes in Sec. 6.5 is of course only partial-
ly complete; a systematic investigation of -such classified
processes appears to be of some interest to radiative trans-
fer theory, and offers interesting physically based problems
in partial differential equation theory.

: The general solutions of the classical diffusion equa-
tions in the opening paragraphs of Sec. 6.6 are widely known,
~~useful formulas for scalar irradiance. The various primary
~scattered flux source methods and those based on higher or-
dered scattered flux sources in the latter part of Sec. 6.6
offer some novelty in the otherwise quite thoroughly formed
classical method of treatment of the diffusion of light
through scattering media. Furthermore, the particular needs .
of hydrologic optics and meteorologic optics has caused some
emphasis to be placed on the representation of the radiance
distribution N(x,-) throughout diffusing media. This resulted
in derivations of formulas for N(x,£) in general diffusion
contexts, such as (29) of Sec. 6.5; and (14) and (40) of Sec.
6.6, wh1ch do not appear to be too widely known.

The solutions of the exact diffusion equations in Sec.
6.7 for the case of infinite media are based on the work in
. [40]. This work also contains many useful tables and graphs
of associated solutions. The theory of semi-infinite media
with point sources is relatively unexplored. However, refer-
ence [88] forms a definitive beginning of such a theory, and
‘the latter half of the discussions in Sec. 6.7 are based on
_the results of [88]. ’
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Further References

Further references beyond those mentioned above and
which contain contributions to the classical theory of trans-
port phenomena may be briefly mentioned here. First of all
there is the early definitive work by Hopf [111] on mathemat-
ical problems of radiative transfer in media which are in
thermodynamic equilibrium. This work contains the germ of the
modern operator theoretical approach to transfer problems
which is continued in [37] and (143], and more recently in -
[251]. Another early definitive work on classical radiative
transfer theory is that of Chandrasekhar [43] which develops
a minor variant of the sphericazl harmonic method of the kind.
formulated by Wick in [319). Applications of the Chandra-
sekhar theory are made by Lenoble in ([108], [155], [156].

By far the most significant contribution in [43] is that of
the principles of invariance, which were discussed in. general
in Chapter 3 above and which will be considered further in
Chapter 7 below. The reference [62] also contains much use-
ful mathematical information which is applicable to practical
radiative transfer contexts. A relatively recent survey of
radiative transfer theory and classical and exact diffusion
theory may be found in [288].

Some tabulated solutions of the equation of transfer
are given in {53}, [91], and [11). Diffusion theory from the
point of view of Monte Carlo techniques is explored in [41]
and [176). Some recent numerical solutions for light fields
in homogeneous slabs (with isotropic scattering) which blend
the spherical harmonic method and the technique of invariant
1mbedd1ng are given in [15] and [16]
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A;tenuation time constant, 76

Bouguer's work, 1
Bounds, on radiance, 47
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radiance, 21; abstract ver-’
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Canonical representation of

. apparent radiance, 16; ‘of

“-abstract functions, 27

Cauchy sequence, 130

Characteristic ellipsoid, 663

" spheroid, 68

Classical diffusion theory,
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- tion, 175; approaches via

. higher order approximations,

183; hierarchy of processes,

184; plane-parallel solu-
tions, 193; spherical (point)
" solutions, 200; discrete
{extended) solutions, 203;
“ continuous (extended) solu-
tions, 206; primary sources,
© 207; for higher order scat-
-tered scalar irradiance, 213;
time dependent, 214 '
C13551ca1 spherical harmonic
-method, plane-parallel
media, 158
Complete metric space, 131
Completeness property of
:spherical harmonics, 142, 153 .
Cone (in space tlme), 53
Continuous sources in diffu-
~'sion theory, 206

© 243

Contraction mapping,

principle of, 131
Contraction property, 129
Cosine (mean value 7), 180

129;

Decomposed radiometric

- functions, 36

Diffuse radiometric func-
tions, 36; stored energy,
123 :

Diffusion coefficient (x), 194

Diffusion equation, scalar,
174; wave, 184; tensor,
etc., 184 o

Diffusion function (D),
180, 181

lefu51on 1ength 196

Diffusion processes, a short
list, 184

lefu51on theory,; three ap-
proaches, 172

Dimensionless forms of radi-
ant energy fields, 97

Directly observable, radiant
energy, equatlon of trans-
fer, 81

Discrete sources in diffusion
theory, 202 :

174,

€ (epsilon) function, 222

Electric circuit analogy
(with an optical medium),
77, 123

Elsewhere (1n space time),
53

Equation of transfer,
radiance,

n-ary

36; unscattered
radiance, 37; diffuse radi-
ance, 37; path function, 38;
natural solution, 43, 127;
for optical ringing, 56;
solved symbolically, 65;
residual radiant energy, 76;
n-ary radiant energy, 80;
directly observable radiant
energy, 81; dimensionless
(for radiant energy), 97;
scalar irradiance (diffu-
sion equation), 175; scat-
tered radiance, 209; scat-
tered scalar irradiance,
210, 213 -

Equ111br1um radiance, 6

Equivalence classes of func-

“tions,; 128
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Exact diffusion theory, 134;
basic equation, 190, 192,
infinite medium with point
source, 219; infinite medium
with arbitrary sources, 225;
scalar "irradiance, 226; semi-
infinite medium with boundary
point source, with internal
point source., 228, 233; on
the Lilliot functional rela-
tions, 236 .

Exponential property of dif-
fusion field (plane-parallel
case), 194

218

Fick's law, 174 ‘

Finite recurrence property,
147, 154

First order scattered radi-
ance, equation for, 41

Fourier transform, of exact
diffusion equation, 192

Functional relations for
fc,fo, in exact diffusion
theory, 236

Future (in space-time), 53

Global approximations for
radiance, higher order, 117,
119

Inelastic scatter, 5
Inequality for «,a, 195
Integral equation for scalar
irradiance, 189
Irradiance, vector, via spher-
spherical harmonics, 177;
scalar, via higher order
scattering, 213 (see also
scalar irradiance, vector
irradiance)
« (kappa) for classical dif-
fusion theory, 194;
Ko dimensionless form,
K- function, general, 15
Ky, 1885 K., 214; K¢, 221
Koschmieder's equation, 5

221

Light field, time dependent,
49 j .

Light storage phenomena in
natural optical media, 121

Metric, supremum, 129;
radio-, 128 ’

Metric space, complete,
131

127,

INDEX
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n-ary radiometric concepts,
31; radiance, 33; scalar
~irradiance, 34; radiant
energy, 34; general, 35;
canonical equations for .
natural closed forms for
radiant energy, 86; time
dependent properties, 89;
dimensionless forms, 97
Natural solution, for radi--
) ance, 42; truncated, 45;
time-dependent, 58; sym-
bolic integration, 65;
for directly observable
radiant energy, 82; time
dependent properties, 90;
dimensionless forms, 97;
operator-theoretic basis,
127; for scalar irradiance,
191 :
Normal space (0 <p<1), 103
Operator-theoretic basis for
natural solution, 127
Operators, R (path functionj),
32; T {(path radiance), 32;
S (radiance), 33; time-
dependent, 68; contraction,
129; U (scalar irradiance),
188; v (= Tu), 188
Optical length, 220 :
Optical medium, transparent,
3; absorbing, 3; fundamental
5; electric circuit analogy,
77; as a metric space, 132
Optical reverberation case, 86
Optical ringing problem, one-
dimensional, 49; three-
dimensional, 66
Optical volume, 220

Past (in space-time), 53
Path function, equation of
transfer, 38

Path radiance, first order .

form, 11 .
Point source case, in clas-
" sical theory, 198; in exact

219

diffusion theory, v
canonical

Polarized radiance,
representation, 19

Primary radiance, equation
for, 41 : .

Primary scattered flux a
source flux, 207

Purely absorbing medium, 31
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Radiance, in transparentmedla,
2; in absorbing media, 3;
equilibrium, 6; maximum
natural waters), 12; trans-
mittance, 14; polarized, 19;
residual (reduced, unscat-
tered), 315 n-ary, 33; nat-
ural solution for, 42; bounds,
47 ; global approximations,
117, 119; distribution in-
diffusion theory, 181, 197,

. 201
Radiant energy, n-ary, 34;
“"residual representation, 79;

- équation of transfer for
n-ary, 81; matural closed
form representatlon, 86;
optical reverberation case,
86; standard growth and
decay case, 87; time depen-
dent properties, 89; scat-

- tered, absorbed, attenuated,
93; stored, 123; time de-
pendent (check), 216 .

Radiant flux, net inward, 76;
‘source, 76; net n-ary, 80

Radiative transfer analogues,
77, 133

,Radlatlve transfer theory, on
‘a metric space, 132

Radiometric (as a metric), 128

Radiometric functions, general
;. n-ary, 35; diffuse, decom-
" posed, 36 '

Reflectance, in diffusion

© theory, 198, 202

Relative error in radlance

- computations, 48 :

Relative time,: 99

Residual, radiance, 31; trans-
- fer equation, 74; radiant
energy, 79

Reverberation, optical, 49

Scalar diffusion equation, 174
-higher order form, 213 .

Scalar irradiance, exponential

. form, 11; n-ary, 34, 217;
~equation of transfer (dlffu-
sion equation), 175; inte-
gral equation, 189; scat-
tered (equation formula),
210, 218; higher order (equa-
tion formula), 213; integral

. form, 214; time dependent

. n-ary (dlffu51on equation), -

" 216; exact diffusion theory,
226 '

145

Scatter processes, inelastic

or transpectral, 5; single,
10
Scatter time constant, 81

Scattered flux, hlghcr order,
211

Scattered radiance, equation

-.of transfer, 209

Scattered radiant energy, 94

Scattered scalar irradiance,
equation of -transfer, 210

Scattering-attenuation ratio,
10, 47

Scatterlng order decompo<1tlom
30

"Seeliger's formula", 132

Simple model, for polarized
light fields, 21 :

Space-time diagrams, 51, ¢t seq.

Spherical (point source) dif-
fusion field, 200

Spherical harmonic method, 134;
bases, 135; motivating argu-

ment, summarized, 140; alge-
braic setting, 141; complete-
ness property, 142, 153; ab-

stract, 143; finite abstract
forms, 147, 149; classical
method, general media, 149;
finite recurrence property,
154; general differential
equations, 157; classical
method, plane-parallel media,
158; truncated solutlon pro-
cedure, 163

Standard growth and decay case,
(for n-ary radiant energy),
87

Storage capacity (of an optl—
cal medium), 123

Stratified meédia, canonical
equation for radiance, 18

Supremum metric,.129

Symbolic integration (term by
term for natural solution),
65 .

Telegrapher's equation, 185

Tensor diffusion equatlon,
184

Time constant, attenuatlon
76; scattering, 81; ab-
sorption, 82; -dimensionless
forms, 100; for n-ary radi-
ant energy, 109; general
discusion, 114

Time dependent. light field,
49 A



246 B INDEX -

‘Time dependent n-ary radiant
energy field, properties,
89 _

Time dependent operators, 68

Transmittance, radlance, 14,
17

1 spectral. scatter, 5

Ti sport (transfer) equatlons,

. :sidual radiant energy, 76;
n-ary .radiant energy, 80;
directly observable radiant
energy, 81

True absorption, 5

Truncated natural solut1on 45;°

time dependent, 69 -
Truncated spherical hafmonic
method, 163 -

VOL. III

Unit source condition, 220

Unscattered radiance, 31;
equatlon of transfer, 37

Vector irradiance, via
spher1ca1 harmonics, 177;
in classical diffusion
theory, 198, 201, 207;

scattered form, 210 n-ary

217
Volume absorptlon funct1on,
4

Volume total scattering
function, 4 ;

Wave diffusion equation,
185 :

" World region, 52
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