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ABSTRACT

We consider well-motivated particle physics corrections to the standard su-

persymmetric hybrid inflation scenario. By allowing certain higher order, Planck

scale suppressed, R-symmetry violating operators in the superpotential, we are able

to give masses to right-handed neutrinos without negatively affecting the down-type

quarks. We provide an example with minimal Kähler potential, with the R-symmetry

breaking term relevant during inflation being αS4, where S denotes the well-known

gauge singlet inflaton superfield. The inflationary potential takes into account the

radiative and supergravity corrections, as well as the soft supersymmetry breaking

terms. For successful inflation, with the scalar spectral index in the currently preferred

range, ns ≈ 0.9603 we find |α| . 10−7. The tensor to scalar ratio r . 10−4, while

|dns/d ln k| ∼ O(10−3)−O(10−4).

viii



Chapter 1

INTRODUCTION

Humans have been captivated by the cosmos for centuries. Once thought to be

a static utopia, we have since come to understand that the universe is anything but.

The discovery of the expansion of the universe by Edwin Hubble in 1929 marked the

birth of modern cosmology. Perhaps the most famous and most successful development

of this field is the Big Bang, or more precisely the hot Big Bang - the idea that the

universe was born from an incredibly hot and dense space-time singularity.

The Standard Big Bang (SBB) scenario arises naturally by combining Einstein’s

General Relativity with the assumption that the universe is homogeneous and isotropic.

The SBB is extremely successful, but, despite its numerous achievements, the theory

suffers from a handful of serious flaws (see section 1.3.3). These plagued the physics

community, drawing much criticism, until 1980 when a solution was proposed by Alan

Guth [1]. The idea was elegant: a brief period of accelerated expansion in the very

early universe, called primordial inflation, or simply inflation, could simultaneously

solve nearly all of the SBB’s problems.

The appeal of such a powerful idea proved enticing to the physics community and

the popularity of inflation exploded (see figure 1.1). As with all such theories, however,

a number of plausible inflationary models were developed. Practically indistinguishable

even ten years ago, today we live in an era of precision cosmology and ever-improving

cosmological data allows us to evaluate the past several decades of inflationary research

for the first time. While many models have been proven to be unphysical, it is the

general opinion of the majority of cosmologists that the inflationary paradigm is here

to stay. This view is supported by cosmic microwave background experiments such
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as the Cosmic Background Explorer (COBE), the Wilkinson Microwave Anisotropy

Probe (WMAP) [2], and most recently the Planck satellite [3].
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Figure 1.1: Number of articles containing the word “inflation” and its variations in
its title published each year since Guth’s original paper in 1980. In 2012,
there were 450 such articles. Source: inspirehep.net. Figure modified
from [4].

The goal of inflationary research today is to use cosmological data to guide the

development of realistic models. In this thesis, we present one such model. We proceed

as follows: The rest of this chapter is devoted to reviewing necessary background

material, chapter 2 introduces the concept of inflation through power-law and hybrid

inflationary models, and finally, chapter 3 is devoted to original work representing

2
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improvements and extensions to the existing theory of supersymmetric (SUSY) hybrid

inflation.

1.1 Units And Conventions

Standard high-energy physics units (~ = c = 1) and notational conventions are

employed throughout this work unless otherwise specified. Recall that Greek indices

refer to space-time and run over 0, 1, 2, 3, while Latin indices refer to space alone and

run over 1, 2, 3. Here, the Einstein summation convention is assumed for both Greek

and Latin indices, with metric signature (+,−,−,−).

1.2 General Relativity

The underlying framework of modern cosmology is General Relativity (GR).

The fundamental object in this theory is the metric tensor gαβ. This is used to define

the line element

ds2 = gαβ dxα dxβ, (1.1)

which represents the distance between two infinitesimally close points on the manifold

- a mathematical extension of the concept of a surface to higher dimensions. (Note

that gαβ is the inverse of gαβ.) Derived from the metric are the Christoffel symbols,

Γαγβ =
1

2
gαδ
(
∂gγδ
∂xβ

+
∂gδβ
∂xγ

− ∂gγβ
∂xδ

)
, (1.2)

which are coordinate-dependent expressions for the Levi-Civita connection. These

take into account the effects of parallel transport on the manifold. Derived from the

connection is the Ricci (curvature) tensor,

Rα
β = gαγ

(
∂Γδγβ
∂xδ

−
∂Γδγδ
∂xβ

+ ΓδγβΓσδσ − ΓσγδΓ
δ
βσ

)
, (1.3)

which describes the deviation of the manifold from Euclidean space. Finally, derived

from the Ricci tensor is the Ricci scalar, R = Rα
α. Also known as the scalar curvature,

it is the simplest curvature invariant of a Riemannian manifold.

3



These combine to form the geometric components (left hand side) of the Einstein-

Hilbert field equations,

Gα
β ≡ Rα

β −
1

2
δαβR =

Tαβ
mP

2
, (1.4)

which say that the presence of mass-energy curves space-time, and particles follow

geodesics in curved space-time. Here, mP = 1/
√

8πG ≈ 2.43×1018 GeV is the reduced

Planck mass and G is Newton’s gravitational constant. Here, the discrete Kronecker-

Delta is defined in the usual sense, δαβ = diag(1, 1, 1, 1). The matter components (right

hand side) of (1.4) are determined by the energy-momentum tensor Tαβ . Appropriate

choices of gαβ and Tαβ may be used to study the space-time evolution of the universe

and are our starting points for studying the SBB.

1.3 Standard Big Bang

The SBB is a collection of topics describing how the universe came to be in

its present state. At the heart of this is the elegant merger of two very different

fields: particle physics and cosmology. On one hand, there is the expanding universe

governed by GR, while on the other hand, there are diverse topics such as Big Bang

nuclearsynthesis, baryogensis, leptogenesis, preheating and reheating, and the cosmic

microwave background all mainly governed by particle physics. Here we provide a brief

review of a collection of SBB topics that play a role and serve to motivate the next

two chapters on inflation.

1.3.1 The Expanding Universe

The governing equations for an expanding universe follow from the Einstein

equations (1.4). The assumption of the cosmological principle - the observable universe

is homogenous and isotropic on large scales - provides a unique choice for gαβ called

the Robertson-Walker metric. In spherical coordinates, xα = (t, r, θ, φ), this produces

the line element

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (1.5)

4



where k is either −1, 0, or 1 depending on the curvature of space-time, and a(t) is

called the (dimensionless) scale factor. The known constituents of the universe have

no viscosity or heat flow, which allows them to be characterized as perfect fluids. This

leads to the relativity simple form of the energy-momentum tensor with respect to

the rest frame of the fluid: Tαβ = diag(ρ,−p,−p,−p), where ρ represents the total

energy density of the universe and p a pressure. Putting this all together produces the

Friedmann equation, (
ȧ

a

)2

=
1

3mP
2
ρ− k

a2
, (1.6)

the acceleration equation,
ä

a
= − 1

6mP
2
(ρ+ 3p), (1.7)

and the fluid equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0, (1.8)

where dots represent derivatives with respect to ordinary time t. The first two of these

are the 00-component and the trace of (1.4), respectively, while the third equation

may be derived by combining the Friedmann and acceleration equations. It is often

convenient to introduce the Hubble parameter H ≡ ȧ/a, which will come in handy

beginning in chapter 2.

The pressure is provided through an equation of state p ≡ p(ρ), which uniquely

depends on each possible constituent in the following way:

• Dust: Also known by “(non-relativistic) matter,” dust refers to any constituent

which exerts negligible pressure, and it is a good approximation for cool atoms.

In this case, p = 0.

• Radiation: Highly-relativistic particles, such as photons and neutrinos, may be

shown to exert a radiation pressure equal to p = ρ/3.

(Note that had we not taken Λ = 0 in equation (1.4), we would also have another

equation of state corresponding to a “cosmological constant”.) It is easy to show that

the cosmic dynamics of universes with more than one constituent are governed by

5



whichever constituent is most dominant at the time. For example, if radiation were

most important, we find

a(t) ∝ t1/2 , ρrad ∝ t−2 , ρdust ∝ a−3 ∝ t−3/2.

On the other hand, if dust were more important, we find

a(t) ∝ t2/3 , ρrad ∝ a−4 ∝ t−8/3 , ρdust ∝ t−2.

From these results, we may conclude that the universe is expanding.

1.3.2 Cosmic Microwave Background

One of the most successful features of the Standard Big Bang is the prediction

of the cosmic microwave background (CMB), predicted in 1948 by Ralph Alpher and

Robert Herman and discovered by Penzias and Wilson in 1964 [5]. The origin of the

CMB occurs when the universe was approximately 1/1000-th of its present size and

was an incredibly hot, dense sea of electrons and ions. At this time, atoms were

not able to form because the energy of a typical photon was much greater than the

ionization energy of hydrogen. However, as the photons redshifted to lower energies

due to the expansion of the universe, they could no longer continue to prevent electrons

from bonding. This process is called decoupling and occurred when the universe was

∼ 3000 K. Having lost their ability to interact with ordinary matter, these decoupled

photons have been traveling the universe ever since and are currently in the form of

microwaves at 2.7 K. First measured by COBE in 1992 [6–8], measurements of the CMB

continue today via experiments such as WMAP and Planck. The most famous of these

measurements is the CMB temperature anisotropy (see figure 1.2), which justifies the

assumption of homogeneity and isotropy in the Robertson-Walker metric of section

1.3.1.

The key feature of the CMB is that it allows us to look at the universe at a

young age. Consequently, measurements of the CMB may be used as a method of

experimental verification of cosmological models of the early universe. Two important

6



Figure 1.2: The CMB anisotropies at decoupling as observed by Planck [3].

measurements related to this work are the determination of the power spectrum and

polarization. We will put these in context in chapter 2, but for the moment it suffices

to say that the three observables derived from these two measurements are able to rule

out and distinguish between inflationary models.

1.3.3 Problems Of The SBB

Despite the incredible success of the SBB, there are three problems that the

theory cannot explain. Here we provide a brief explanation of each. The solution to

these problems is called inflation and is the topic of the following chapters.

The Flatness Problem

An important feature of the Friedmann equation (1.6) is its dependence on the space-

time curvature k. The values -1, 0, or 1 for k represent perfectly open, flat, or closed

universes, respectively. Solving the Friedmann equation with k = 0 shows that a

perfectly flat universe stays perfectly flat throughout the evolution of the universe.

However, solving the Friedmann equation with a small perturbation from zero shows

7



that even the slightest deviation from flat gets amplified into increasingly non-zero

curvature as the universe expands. Mathematically, k = −1 and k = 1 are said to

be stable, while k = 0 is said to be unstable. This instability creates a problem as

current measurements dictate that the universe is (incredibly close to) perfectly flat

[9]. The SBB scenario has no explanation for why out of all the possible values for k,

the universe seems to have chosen k exactly 0. This is called the flatness problem.

It is convenient while discussing the flatness problem mathematically to cast

the Friedmann equation (1.6) into the form

|Ω− 1| = k

a2H2
, (1.9)

where

Ω(t) =
ρ

ρc

is the density parameter defined with respect to the critical density

ρc(t) = 3H2mP
2

If k = 0, then Ω = 1 is constant for all time; hence Ω = 1 represents an extremely

fine-tuned solution. Current evidence suggests that Ω is extremely close to one.

The Horizon Problem

One of the most profound philosophical implications of the SBB is that the universe

has a finite age. Combining this with the fact that the speed of light is finite implies

that photons could have only traveled a finite distance since the Big Bang. Referring

to figure 1.2, this implies that points on the left hand side would not have had enough

time to reach points on the right hand side. Each point in figure 1.2 is contained in

a domain, or horizon, which represents the maximum distance light from that point

could have traveled since the Big Bang. Thermal equilibrium requires that each domain

“communicate” with each other, but this could not have happened. So then how is it

possible that the entire CMB is at approximately the same temperature? This is called

the horizon problem. It may be shown that the horizon problem is directly related to

the flatness problem.

8



The Monopole Problem

A key concept in high energy physics is that of symmetry breaking (see section 1.4).

Physically, symmetry breaking is associated with phase transitions, such as those that

occur naturally in the SBB as the universe cools due to expansion. However, as before

in the horizon problem, we can’t expect the entire universe to cool the same way, as not

all domains are causally connected. The natural question to ask in this case is: What

happens when two previously uncorrelated domains come into connect? In this case,

there is a domain A with one set of properties, a domain B with potentially a different

set of properties, and a boundary that separates them. Depending on how different the

two sets of properties are, rather abrupt things can happen on the boundary. This is

called a topological defect. Such features are not present in the Standard Model (SM),

but are common in most SM extensions, such as those discussed in sections 1.4 and

1.5. To this day, no conclusive evidence as to the existence of topological defects has

ever been found [10].

Mathematically, topological defects are solitonic solutions of the classical field

equations. More importantly, they interpolate between vacuum states of the field. As

such, they are directly related to the topology of the vacuum manifold. To see this,

consider a simplified model given by

L =
1

2
∂µφ ∂

µφ− λ

4

(
φ2 − σ2

)2
,

where φ = (φ1, φ2, . . . , φn) , n = 0, 1, 2, . . .. The minimum of the potential is described

by

φ2 =
(
φ1
)2

+
(
φ2
)2

+ . . .+ (φn)2 = σ2.

When n = 1, the minimum is at φ = ±σ, which may be identified with the

0-sphere S0. Now suppose we have a domain A that goes to φ = σ; domain B has

no information about A and goes to φ = −σ with probability 1/2. However, the field

is continuous on [−σ, σ] and therefore must vanish at some point in between. This

happens on the surface φ(xi) = 0, which is called a domain wall. When n = 2, the

9



minimum is at (φ1)
2

+ (φ2)
2

= σ2, which may be identified with a circle, or 1-sphere

S1. As before, suppose φ1
A, φ

2
A > 0 and φ1

B, φ
2
B < 0 with probability 1/4. Continuity

implies that φ1 and φ2 vanish on surfaces φ1(xi) = 0 and φ2(xj) = 0, respectively. The

intersection of these two-dimensional surfaces defines the curve φ1 = φ2 = 0, and is

called a cosmic string. This leads to a false vacuum in the potential. When n = 3, the

minimum is at (φ1)
2
+(φ2)

2
+(φ3)

2
= σ2, which may be identified with the 2-sphere S2.

A false vacuum is created at the intersection of the three surfaces φi(xj) = 0. These

are called monopoles. The procedure is a little more involved for n = 4, but these are

called textures. These concepts are demonstrated in figure 1.3.

(a) (b) (c)

Figure 1.3: (a) Domain wall; (b) Cosmic string; (c) Monopole. Figure adapted from
[11]

Let us make the above discussion more rigorous. Consider the three paths found

in figure 1.4. We say path A is homotopic to path B because path A can be continuously

deformed into path B through a collection of intermediate paths, each of which lies

in Ω, while keeping its endpoints fixed. Conversely, path A is not homotopic to path

C because such a continuous deformation is not possible due to the presence of the

hole. This classification partitions Ω into equivalence classes, from which we obtain

the first homotopy group, also called the fundamental group, π1(Ω). Intuitively, π1

contains information about the “defects” of Ω, such as the presence of the hole seen in

10



figure 1.4. This idea may be generalized to the n-th homotopy group, πn(M), formally

defined as the set of homotopy classes of maps from the n-sphere Sn to M, where M

is a topological space.1

Figure 1.4: Path A is homotopic to path B because path A can be continuously
deformed into path B through a collection of intermediate paths, each of
which lies in Ω, while keeping its endpoints fixed. Conversely, path A is
not homotopic to path C because such a continuous deformation is not
possible due to the presence of the hole.

Armed with this new machinery, one may show that topological defects are

formed when the n-th homotopy group of the vacuum manifold M is nontrivial, i.e.,

πn(M) 6= 0. The vacuum manifold M is defined as the quotient group H/G, which

denotes the breaking of the group H to the subgroup G. (More on this in section 1.4.)

In practice, determining the homotopy groups πn is not easy. Fortunately, the following

result holds for all the scenarios we need consider here: If πn(H) and πn−1(H) are both

trivial, then πn(H/G) = πn−1(G). Using this and the fact that πn(Sn) = Z 6= 0, we

may apply the techniques of homotopy theory to the examples of topological defects

above. The results are collected in table C.1. (See appendix C for a collection of useful

results used in making table 1.1.)

Each of the four types of topological defects found above: domain walls, cosmic

strings, monopoles, and textures carry certain physical properties. For example, the

properties of defects such as cosmic strings were once considered vital to the formation

of large scale structures in the early universe, but this idea is no longer supported by

1 In general, one may consider maps to topological spaces other than Sn, however,
these have little relevance to our discussion.
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n M Homotopy Group Topological Defect
1 S0 π0(S0) Domain wall
2 S1 π1(S1) Cosmic string
3 S2 π2(S2) Monopole
4 S3 π3(S3) Texture

Table 1.1: Topological defects as related to homotopy groups of the vacuum manifold.

the data [10]. Electroweak symmetry breaking is related to a doublet of complex scalar

fields (n = 4), however, the textures involved here prove uninteresting. On the other

hand, the monopoles generated by phase transitions in an expanding universe are of

great interest in high-energy physics. It may be shown that these topological defects

carry a magnetic charge that correspond to Dirac monopoles at field positions far from

the center of the monopole.

While this property of magnetic monopoles is of extreme importance in theoret-

ical physics, their existence creates a problem for the SBB. According to this, magnetic

monopoles should be immensely abundant in the universe today. But if this were true,

why haven’t we detected them? The situation gets even worse when we consider real-

istic particle physics scenarios, such as those in sections 1.4 and 1.5, where symmetry

breaking is common and leads to the formation of defects via the Kibble mechanism

[12] - the mechanism responsible for defect production in the early universe due to

phase transitions in the Higgs field. In addition to the four topological defects defined

above, realistic theories may produce hybrid defects such as strings with monopoles on

the ends (called necklaces). Clever mechanisms may be devised to reduce the number

of defects produced, but the fact is that, for the most part, magnetic monopoles are

unavoidable in theories containing U(1)EM. This is called the monopole problem.

1.4 Grand Unified Theories

While the success of the Standard Model (SM) is unparalleled by any other

theory of physics, it is clear today that it is not the last word. For starters, it does

12



not include gravity, a viable dark matter candidate, or neutrino masses, and is rather

complicated and somewhat arbitrary. Physicists have worked over the past several

decades to “replace” the SM with a more complete and theoretically pleasing theory.

Here we are interested in an idea that originated in the 1970’s called grand unification.

To demonstrate the idea of grand unification, consider the SM local-symmetry

group G, most often called the gauge group. This is a compact Lie group on a finite-

dimensional Hilbert space V . (This is in contrast to the global-symmetry group of

quantum field theory called the Poincaré group, which is a noncompact Lie group

on an infinite-dimensional Hilbert space.) Since V is finite-dimensional, we may de-

compose it into a direct sum of irreducible representations, or simply irreps for short.

Mathematically we may identify the fundamental fermions as basis vectors of irreps

and gauge bosons as group actions.

In this respect, the term unification represents the following. Let G be a sub-

group of some larger group H. The irreps of H on V may be larger than the irreps of

G when H is restricted to G. These larger irreps of H restricted to G allow particles

to be unified further than they would be in the smaller irreps of simply G. The term

grand unification is used when G is simple, i.e. not a product of other groups.

Examples of grand unified theories (GUTs) include Howard Georgi and Sheldon

Glashow’s SU(5) [13] and Georgi’s Spin(10) [14]. (This is sometimes called by the

name SO(10), but the true symmetry group here is Spin(10), the double cover of

SO(10).) Both theories extend the SM symmetry group SU(3)c × SU(2)L × U(1)Y .

The SU(5) theory extends to Spin(10) either directly or through the SU(4)×SU(2)×

SU(2) Pati-Salam model [15]. We’d want to do this for several reasons, but most

importantly because minimal SU(5) has been ruled out, while Spin(10) is still a viable

GUT candidate.

In general, predictions of GUTs improve with the addition of supersymmetry

(SUSY) (section 1.5). GUTs without SUSY fail to solve the doublet-triplet problem

or dynamically break the electroweak symmetry via radiative corrections. GUTs may

also have model specific problems, such as rapid proton decay in SU(5), which may be
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improved by incorporating SUSY. Unfortunately, in this specific case, minimal SUSY

SU(5) still has a proton decay problem with dimension five operators.

Here we are interested in Spin(10) and a modification of the SU(5) theory

called flipped SU(5) or anti SU(5) [16]. As previously mentioned, Spin(10) is still a

viable GUT candidate, but implementing successful cosmological models in this theory

is not straightforward. One problem is that Spin(10) leads to the formation of stable

topological defects via the Kibble mechanism (see section 1.3.3) in a manner that is

not solvable by inflation.

On the other hand, SUSY hybrid inflation (see chapter 3) scenarios result natu-

rally as a consequence of breaking the extra U(1)B−L symmetry embedded in Spin(10),

and have been shown to produce results consistent with current particle phenomenol-

ogy. This works as follows, instead of breaking to the SM symmetry group directly,

Spin(10) is first broken to an intermediate group, such as flipped SU(5). At this

point false vacuum hybrid inflation occurs, followed by the breaking of the intermedi-

ate group to the SM. This approach has the benefit of implementing hybrid inflation

without extra external fields, symmetries, or fine tuning. The choice of the intermedi-

ate group and the manner in which Spin(10) breaks to it may be used to avoid some

of the problems of topological defect creation mentioned above (see for example [17]).

The flipped SU(5) theory is given by SU(5)×U(1)X . By adding the extra copy

of U(1), we are able to write the particle charge operator Q as a linear combination of

generators in SU(5) and U(1)X . This has the effect of creating relationships between

matter and antimatter that provide different proton decay predictions than in standard

SU(5). Including supersymmetry suppresses the troublesome dimension five operators

via a U(1) R-symmetry.

From an inflationary perspective, we are interested in flipped SU(5) for two

main reasons. First, flipped SU(5) naturally lacks monopole defects [18], which makes

it natural to consider the breaking Spin(10) → flipped SU(5) → SM. Second, the

same U(1)R provides a unique renormalizable superpotential using only the minimal

Higgs sector, which has been shown to produce successful inflationary scenarios. As a
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result, we mainly adopt flipped SU(5) as our gauge group throughout this work, with

little regard as to whether or not it is playing the part of an intermediate group.

Fortunately, in inflation we don’t directly care about the particle irreps them-

selves; we need only concern ourselves with the dimensionality of the representation of

the field. This is denoted by N , and often appears while considering radiative correc-

tions to the scalar potential. This number is model specific and may be different under

Spin(10) and flipped SU(5) depending on the scenario.

1.5 Supersymmetry

At the time of writing, there is no definite evidence of physics beyond the SM;

however, it is highly suggested (see section 1.4). Another SM extension we are in-

terested in here is SUSY, which also, as with GUTs, originated in the early 1970’s.

Today, SUSY is considered the leading contender to solve the hierarchy problem [19] -

the apparent difference between gravity and the other forces - and is able to accurately

predict the mass of the recently discovered Higgs boson [20]. As the name suggests,

in addition to the symmetries present in the SM, SUSY extends Lorentz invariance,

which creates a new symmetry that creates a relationship between fermions and bosons.

Mathematically, this forces supersymmetric operators to obey a specific algebra. The

resulting irreps create supermultiplets containing both fermonic and bosonic states

called superpartners. Working out the properties of the supermultiplets, we find the

familiar particles but also new supersymmetric particles as well. These have not yet

been discovered.

Supersymmetry comes in two forms: global and local. Global supersymmetry is

what is usually referred to by “SUSY”, while local supersymmetry is called supergrav-

ity, or SUGRA for short. For the purposes of this work, the most important difference

between the two is that SUSY is renormalizable, while SUGRA is not. Since the

universe is inherently non-renormalizable, SUGRA is the true form of supersymmetry

chosen by nature. However, renormalizable field theories may be thought of as approx-

imations of non-renormalizable theories, and in this regard, global SUSY is usually a
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good approximation to SUGRA. In general, this holds true whenever taking mP to

infinity is okay. In inflation this limit does not make sense [21], so we have to invoke

SUGRA corrections to SUSY to take into account physics near the Planck scale.

The main motivation to include SUSY in a theory of inflation is due to the neces-

sity of having elementary scalar fields - invoking SUSY avoids the quadratic divergences

in the masses of the elementary light scalar fields. A number of non-SUSY inflation-

ary theories are still consistent with current data [22], but they are more difficult to

motivate from a consistent particle physics standpoint. The most widely considered

versions of supersymmetry are the Minimal Supersymmetric Standard Model (MSSM)

and Next To Minimal Supersymmetric Standard Model (NMSSM). The first is the min-

imal extension to the Standard Model that includes supersymmetry, while the latter

includes an extra singlet “chiral” superfield (useful in solving the µ-problem [23]). The

MSSM and the NMSSM are considered “N = 1” (one group generator) supersymmetry

because they contain one supersymmetric transformation. The chiral supermultiplets

in N = 1 theories contain a spin-0 complex scalar fields and a spin-1/2 chiral fermion

field, while gauge supermultiplets contain a spin-1 gauge field and a spin-1/2 gaugino

field.

There are different ways to mathematically represent SUSY, but it is convenient

in the context of this work to use the superfield formulation. This allows us to write

down a Lagrangian with respect to the superfields in the same way we would in classical

field theory for regular fields. This Lagrangian is given by

L =

∫
d2θW (Zi) +

∫
d4θ K(Zi, Z

†
i ), (1.10)

where we have neglected terms not relevant to this work. Here, W is called the superpo-

tential of the superfields Zi, K is called the Kähler potential2, and θ is a Grassmannian

coordinate. Considering the dimensions of each term, it may be shown that the form

of W and K is limited. This will be important for us later.

2 The Kähler potential is related to the curvature of the Kähler manifold which de-
scribes field space.
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The fact that SUSY is not readily detected means that the underlying symmetry

must be broken in nature. Global SUSY may be broken “explicitly” or “softly”, whereas

SUGRA, being a local symmetry, must be spontaneously broken. The energy scale at

which this happens is related to the gravitino mass - the spin-3/2 superpartner of

the spin-2 gravitron - by 2
√

6πmP m3/2 [24]. This breaking is assumed to occur

in the so-called “hidden sector”. For our purposes, the hidden sector is assumed to

communicate via gravity only weakly with the “visible sector” - the fields with the SM

gauge interactions. Hence, we say that this theory is gravity-mediated. All of this refers

to the true vacuum. SUSY is required to be broken during inflation, but this breaking

may not necessarily be related to breaking in the true vacuum. In this work we use a

special type of SUSY-breaking called soft SUSY-breaking. This happens in the visible

sector at an energy scale m3/2. As it turns out, only certain soft SUSY-breaking terms

are allowed. This will be important in chapter 3.

As we will see in chapter 2, inflation requires a scalar potential, so we must

extract this information from equation (1.10). The formula to do this involves so-

called “F-terms” and “D-terms”:

Fi = −
(
∂W

∂Zi

)∗
, D =

g

2

∑
i

qi |Zi|2 .

Here, g is a coupling and qi is the field’s charge under the appropriate symmetry. From

these we get the scalar potential V = VF + VD,

VF =
∑
i

|Fi|2 , VD =
1

2
D2.

(Note that here the superfields are replaced by their scalar components zi.) It is easy

to show that supersymmetry is spontaneously broken if and only if an F or D term

is nonzero. Recall that this formula does not involve K because the Kähler potential

only appears in the kinetic terms. Including just the D-terms produces unsatisfactory

inflationary scenarios, while just the F-terms produce models that are easy to motivate

and naturally satisfy current experimental constraints. Including both terms can satisfy

experiments, but such models are often overly complicated.
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There are a lot of possible fields in SUSY, however, we only consider some

of them in inflation model building. As a result, the inflationary superpotential is

independent of some fields, while others are held fixed at the origin. These are called

“flat directions”. In this work, we choose what is called “D-flatness” and use an F-term

only model. This becomes important when we approach the Planck scale where we

must include SUGRA corrections. The F-term SUGRA potential is given by

VF = eK/m
2
P

[(
∂W

∂zi
+m−2

P

∂K

∂zi
W

)
K−1
ij

(
∂W

∂zi
+m−2

P

∂K

∂zi
W

)∗
− 3m−2

P |W |
2

]
, (1.11)

where

Kij ≡
∂2K

∂zi∂z∗j
.

As corrections, these terms are small and it suffices in our case to expand (1.11) in

powers of m−1
P and suppress terms much below double floating point precision.

To go any further, we must specify a form for W and K. Unfortunately, super-

symmetry does not provide much insight into this area. The Kähler potential is a real

function of the fields and their complex conjugates, however, it is easy to show that

W must be analytic (holomorphic). This restricts the forms of allowed terms but not

tremendously. One may also impose a number of different symmetries, both discrete

and continuous, to forbid unwanted terms such as those involved in proton decay. It

is standard to impose that W satisfy certain internal symmetries which may or may

not alter its phase. This is valid since the overall phase of W is unphysical. Internal

symmetries which alter the phase of the superpotential are called R-symmetries and

are of great importance in this work. (More on this in chapter 3.)

For more information on the above topics, the reader is referred to any text or

review on supersymmetry. Notable references include [25] and [26].
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Chapter 2

INFLATION

Technically, the flatness, horizon, and monopole problems are not fatal to the

Standard Big Bang scenario (SBB). If the initial conditions of the early universe are

fine-tuned enough, the SBB works perfectly. For example, the universe could have

happened to have been created perfectly flat. From a theoretical standpoint, however,

this kind of thinking is rather unappealing. Inflation is an elegant solution to these

problems which does not require fine-tuning. Roughly speaking, inflation is defined

as a period of accelerated expansion, (ä > 0). The universe is currently in a state of

accelerated expansion, but by inflation we mean primordial, or cosmological, inflation,

which is theorized to occur between ∼ 10−36 and ∼ 10−33−10−32 seconds after the Big

Bang and have expanded the universe by ∼ 1078 in volume.

Taking place so close to the Big Bang naturally puts inflation in the realm of

ultra high energy physics with an energy scale of ∼ 1016− 1018 GeV. (For comparison,

the Large Hadron Collider has an expected peak energy of a mere ∼ 104 GeV.) Thus,

any theory of inflation represents a substantial extrapolation of the laws of physics as we

understand them today. Fortunately for us, if it occurred, inflation is predicted to have

left behind numerous traces of its existence, allowing us to make testable predictions of

physics well beyond the grasp of future particle accelerators. So far, current generation

experiments such as the WMAP and Planck satellites have observed several cosmic

relics, all of which support modern inflationary theory.

Inflation model building has a special place in high energy theory because it is

a link between particle physics and cosmology. A successful theory of inflation must

explain where inflation comes from and how it ends. The particle associated with

inflation is called the inflaton and is described by a scalar field as a phase transition.
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This particle is required to decay into the Standard Model (SM) particles at the end

of inflation during preheating and reheating such that the SBB can begin. These

processes are not yet completely understood and are the topic of active research.

The first true model of inflation was proposed in 1980 by Guth [1], but is no

longer considered viable. This model has been dubbed old inflation to distinguish

it from viable models of inflation that were first proposed in 1982 by Linde [27] and

Albrecht and Steinhardt [28]. Here we give a brief review of these models.

2.1 Inflation As A Solution

As previously promised, a period of accelerated expansion solves the problems

of the SBB (section 1.3.3). Let’s start with the flatness problem. The condition for

inflation implies

ä > 0 =⇒ d

dt
(ȧ) > 0 =⇒ d

dt
(aH) > 0.

Looking back at (1.9), regardless of the initial value of the curvature k, an inflating

universe drives the right-hand side to zero:

|Ω− 1| = k

a2H2
=⇒ |Ω− 1| = 0 =⇒ Ω = 1.

Inflation also solves the horizon problem, as the expansion of the universe due to

inflation is enough to expand an initially small region in thermal equilibrium to sizes

much larger than the observable universe. Thus, the horizon problem is avoided because

the region in figure 1.2 was originally in thermal equilibrium to begin with. Likewise,

inflationary expansion is enough to dilute the density of any unwanted relics such as

topological defects; hence solving the monopole problem.

2.2 Inflationary Dynamics

The part of the action related to inflationary dynamics, called the inflationary

sector, is given by

Sinf =

∫
d4x
√
−g
[

1

2
gµν∂µφ ∂νφ− V (φ)

]
, (2.1)
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where g = det(gµν), and φ is the inflaton. This could include coupling to other fields

(see section 2.4) and contain non-canonical kinetic terms, but we will not discuss these

here. The energy-momentum tensor for φ is

Tµν = − 2√
−g

δSinf

δgµν
= ∂µφ ∂νφ− gµν

(
1

2
∂σφ ∂σφ+ V (φ)

)
.

For reasons we will not go into, we only care about the homogenous mode of the field,

i.e., φ(t, x) = φ(t). With this, assuming the Robertson-Walker metric (1.5) forces Tµν

into the form of a perfect fluid with

ρ =
1

2
φ̇2 + V (φ)

p =
1

2
φ̇2 − V (φ),

where dots represent derivatives with respect to ordinary time t. From here we see it is

possible for φ to have a negative pressure if the potential dominates the kinetic energy,

1
2
φ̇2 � V (φ). In this case, the Friedmann equation (1.6) becomes

H2 ≈ 1

3m2
P

V (φ), (2.2)

where H = ȧ/a is the Hubble parameter. (Note that the condition ä > 0 corresponds

to H > 0. Also, obtaining a negative pressure is key to inflationary theory because the

condition ä > 0 implies that ρ+ 3p < 0 in the acceleration equation (1.7), and density

is always taken to be positive.)

Varying (2.1) with respect to φ produces

δSinf

δφ
= φ̈+ 3Hφ̇−∇2φ+

δV

δφ
= 0, (2.3)

Choosing φ homogenous as before, the Laplacian vanishes and the functional derivative

simplifies to an ordinary derivative,

φ̈+ 3Hφ̇+ V ′(φ) = 0, (2.4)

where primes represent derivatives with respect to the field φ. It is often practical to

assume that the friction term dominates the acceleration term, i.e., φ̈ � 3Hφ̇. This
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assumption together with (2.2) define the so-called slow-roll approximation [29]. Slow

roll is conveniently characterized by the conditions εV < 1, |ηV | < 1, where

εV =
m2
P

2

(
V ′(φ)

V (φ)

)2

(2.5)

and

ηV = m2
P

V ′′(φ)

V (φ)
(2.6)

are the so-called slow-roll parameters. The equivalence of these conditions to the pre-

vious conditions on (2.4) may be seen by direct substitution. Under slow roll, the scale

factor expands as

a(t) ∝ exp

(∫
H dt

)
≡ e−N

where we have defined N by the relation dN = −H dt. The parameter N is called

the number of e-folds and serves as a measure of the amount of expansion that occurs

during inflation. In terms of the potential,

N = −
∫
H dt ≈ −

∫ φend

φstart

V (φ)

V ′(φ)
dφ. (2.7)

The integral (2.7) is taken over the interval [φend, φstart]. A model of inflation

should not only provide a potential, but also a mechanism for inflation to end. In many

models, φend is taken to be the point at which the slow-roll approximation breaks down.

On the other hand, the start of inflation is given by physical considerations. Quantum

fluctuations in the inflaton field at the time of inflation were expanded enough to be

measurable today as macroscopic observables. (See figure 1.2.) These are currently

thought to be responsible for the development of large scale structure such as galaxies,

and is considered to be the greatest motivation for inflation. The experimental quantity

related to the power spectrum induced by the perturbations may be expressed in terms

of the potential, and is given by

∆2
R ≈

1

24π2

V

εV

∣∣∣∣
φstart

(2.8)

to first order in slow roll. (See [30] for a derivation of higher order expressions.)
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The power spectrum is often approximated by the power law form (with wavenum-

ber k)

Ps(k) = As(k0)

(
k

k0

)ns(k0)−1+(1/2)αs(k0) ln(k/k0)+...

,

where k0 is the pivot scale and As is an amplitude. If the perturbations are Gaussian,

then the power spectrum contains all the information we need. (If the perturbations

are non-Gaussian, we would require higher order expressions.) One may show that the

scalar spectral index, ns, and the running of ns, αs are given by

ns ≈ 1− 6εV + 2ηV (2.9)

and

αs =
dns
d ln k

≈ 16εV ηV − 24ε2
V − 2ξ2

V (2.10)

to first order in slow roll, respectively. (Note that αs is suppressed in slow-roll and a

detection would be indication of inflation beyond slow roll.) The function

ξ2
V ≈

V ′ V ′′

V 2
(2.11)

is considered a third slow-roll parameter1. (In general, the equation for the nth slow-roll

parameter is given by [31]

βn(n) = m2n
P

(V ′)n−1(dn+1V/dφn+1)

V n
,

and the slow-roll conditions are |βn(n)| � 1.) A flat, scale-invariant (Harrison-Zeldovich)

spectrum corresponds to ns = 1, ns < 1 is said to be red-titled, and ns > 1 blue-tilted.

The power spectrum Ps is generated by scalar curvature perturbations. Like-

wise, the power spectrum Pt is generated by tensor curvature perturbations. The ratio

of the amplitudes of the two power spectrums produces the tensor-to-scalar ratio,

which in slow roll is given by

r =
At
As

= −8nt ≈ 16εV , (2.12)

1 The function is defined as ξ2
V and not ξV for historical reasons [29]. The same is true

for equation (2.8).
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where nt is the tensor spectral index (defined in an analogous manner to ns). This is our

last, but most important inflationary observable. Section 2.5 is devoted to discussing

its implications.

Let us now turn our attention to the inflationary potential itself. Nothing we

have said so far has specified or given hints as to the form V (φ) should take. In fact,

inflationary theory itself is completely silent on the matter. The potential can have any

form as long as the model agrees with experimental measurements of the inflationary

observables. The first models of inflation were reasonably simple, but the form of V (φ)

quickly grew in complexity as physicists began to look to particle physics for natural

motivations. Suppose we have a supersymmetric inflationary potential V (φ) expanded

in a power series about the origin,

V (φ) = V0︸︷︷︸
dominant term

+

mass term︷ ︸︸ ︷
1

2
m2φ2 +λ3mpφ

3 +
1

4
λφ4︸ ︷︷ ︸

self-interaction term

+
∞∑
d=5

λdm
4−d
P φd + . . . (2.13)

At this point we have two options: we may either look towards another theory to

restrict the form of the potential or we may try to use observational data to reconstruct

V (φ) numerically [32–46]. As an example of the former, one usually applies internal

symmetries which prohibit the cubic term. Additionally, the higher order terms are

non-renormalizable and are therefore prohibited if not properly suppressed:

V (φ) = V0 +
1

2
m2φ2 + λ3mpφ

3︸ ︷︷ ︸
forbidden by symmetry

+
1

4
λφ4 +

non-renormalizable︷ ︸︸ ︷
∞∑
d=5

λdm
4−d
P φd + . . .

It follows from the definition of the slow-roll parameters (2.5) and (2.6) that

the slow-roll conditions εV < 1, |ηV | < 1 may be seen as flatness conditions on the

potential. The steeper the potential, the greater in magnitude V ′, which implies that

εV ∝ V ′/V will increase. It follows that slow-roll requires nearly flat potentials, which

may be achieved if the constant term V0 in (2.13) is dominate. The potential, of course,

cannot be perfectly flat or there would be no minimum for the inflaton to roll towards,

and, hence, nothing to drive inflation. One method of providing a slight slope to a
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flat potential is via quantum corrections using the Coleman-Weinberg formula [47] (see

appendix B for a discussion). Another method is to postulate that the inflaton has a

self-interaction strong enough to give V (φ) the proper shape.

Of the two, only the slow-roll condition |ηV | < 1 can be violated, for violating

ε < 1 would produce a significant tensor-to-scalar ratio via (2.12). So while not required

in theory, the slow-roll approximation is practically mandatory to match experimental

data. In particular, it is difficult, but not impossible, to obtain a nearly scale-invariant

power spectrum without slow roll. For potentials that do support slow roll, numerically

solving the appropriate inflationary equations [48, 49] directly can give higher order

results [30] and may be useful when comparing models to measurements of the tensor-

to-scalar ratio. Public codes such as ASPIC and FieldInf [4] are available to compute

reheating consistent predictions for inflationary models. This level of accuracy is not

taken into account in this work as supersymmetric reheating is currently not well

understood.

So far we have discussed inflation in general, but we are really only concerned

observable inflation. We will not go into the details here, but inflation causes the

observable universe to exit and then reenter the horizon. (The interested reader is

referred to any book on cosmology.) The result of this is that any information from

before reentry is lost to us and cannot be observed. Thus, we are only concerned with

inflation that occurred after this point. It is easy to show that the minimum number

of e-foldings (2.7) to solve the flatness and horizon problems is around 50-60. (This

calculation assumes GUT scale reheating [11].)Hence, we say that there must be a

minimum of 50-60 e-foldings, N0, of observable inflation. A more precise estimate of

N0 for a specific model may be derived by taking into account the statistical mechanics

associated with reheating [50].

2.3 Power Law Inflation

An inflationary model starts with a specification of the potential V , or something

from which V can be derived. Once the potential is determined, the general procedure
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is rather simple:

• Use the experimental bounds on equation (2.8) to solve for φstart.

• Use the slow-roll conditions to solve for φend.

• Use φstart and φend to evaluate the number of observable e-foldings. This should

be at least of order 50-60.

• Evaluate (2.9), (2.10), and (2.12) at φend and check against experimental bounds.

Of course one may go further and check other observables and phenomenology such

as the level of non-Gaussianity, the cosmic string contribution, reheating constraints,

particle physics constraints, etc., but it is not necessary to consider these details at

this time. (Note that reheating is (inflationary) model-dependent. Also, a detection of

non-Gaussianity would rule out all slow-roll models.)

Before we go any further, it is instructive to provide an example inflationary

model. The simplest model and one of the few for which the inflationary observables

can be computed analytically is called power law inflation. (We do not spend time

on physical motivations. For more information on power law inflation, the reader is

referred to any book or review concerning inflationary cosmology. Here, we follow the

discussion of [51].)

The potential of power law inflation can be expressed in the form

V (φ) = gφn , n > 0,

where the coupling g has dimensions of (mass)4−n. By requiring that quantum gravity

effects are small and imposing the slow-roll conditions above, it is straightforward to

derive upper and lower bounds on φ:

nmP

√
6

12
� φ�

((
mp

√
8π
)4

g

)1/n

. (2.14)
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This forces the coupling g to be small (in Planck units). The number of e-foldings (2.7)

is given by

N ≈
∫

V

V ′
dφ =

φ2

2nm2
P

, (2.15)

where we have absorbed the negative sign into the limits of integration. Denoting by

Nend the number of e-foldings at the end of observable inflation, equation (2.15) gives

φend =
√

2nm2
PNend. (2.16)

In these variables, the slow-roll parameters become

εV =
n

4Nend

, ηV =
n− 1

2Nend

.

From these we obtain the scalar spectral index,

ns ≈ 1− 3n

2Nend

+
n− 1

Nend

, (2.17)

and the tensor-to-scalar ratio,

r ≈ 4n

Nend

. (2.18)

We now consider the special case of the quadratic and quartic potentials,

V (φ) =
m2

2
φ2

and

V (φ) =
λ

4!
φ4,

respectively. The coupling m � m2
P has units of mass and λ � 1 is dimensionless.

To satisfy the experimental bounds on ∆2
R (see chapter 3), equation (2.8) dictates

m ∼ 10−5mP and λ ∼ 10−12mP . Hence, both couplings are small (in Planck units)

as required above. Table 2.1 summarizes the results of equations (2.16)-(2.18) for the

quadratic and quartic models with Ne = 50 and 60.

We will discuss experimental bounds on ns and r in the following chapter, but

for now it suffices to make a general comment about the results in table 2.1. Converting

from the reduced Planck mass to the Planck mass, MPL =
√

8πmP , shows that the
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φend ns r
n = 2, Nend = 50 14.1 mP 0.96 0.16
n = 2, Nend = 60 15.5 mP 0.97 0.13
n = 4, Nend = 50 20.0 mP 0.94 0.32
n = 4, Nend = 60 21.9 mP 0.95 0.27

Table 2.1: The scalar spectral index and the tensor-to-scalar ratio for power law
inflation with n = 2, 4 and N0 = 50, 60.

field in quadratic and quartic power law inflation takes on trans-Planckian values. As

such, these models are called large-field models. (They are also called chaotic inflation

as one may show that the initial conditions ensuring inflation in these models may

emerge accidentally [52].) This is problematic for inflation model building since our

current laws of physics are widely considered to be incomplete at these energy scales.

2.4 Hybrid Inflation

Models of inflation like those in the previous section are called single-field models

because one field provides the dominant contribution to the inflationary potential.

There is, however, no physical reason that this must be the case. Models of inflation

that are not single-field are called multi-field, and have inflationary dynamics governed

by

H2 =
1

3m2
p

[
1

2

n∑
i=1

φ̇2
i + V (φi=1,...,n)

]
and

φ̈i + 3Hφ̇i +
∂V

∂φi
= 0.

One popular multi-field model that is particularly successful and well-motivated from

a particle physics standpoint is called hybrid inflation. (The original hybrid inflation

model proposed by Andrei Linde in 1991 and 1994 [53, 54] is no longer viable, but the

general concept is still used today.) The standard hybrid model contains two fields

which work together to provide successful inflation, but the hybrid concept may be

extended to include more fields (see for example [55]). In (standard) hybrid inflation,
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the inflaton is a slow-rolling field which is coupled to a second field, called the waterfall

field, that is fixed during inflation2. When the inflaton obtains a critical value the

waterfall field undergoes a phase transition (called waterfall) which causes the end

of inflation. This critical value is often reached immediately after the ηV slow-roll

condition is violated, but this is not detrimental to the model. The waterfall transition

is usually assumed to be instantaneous, but this is not mandatory. We will not consider

it here, but it is worth noting that non-instantaneous waterfall may nudge inflationary

observables outside of current experimental bounds [57]. (Non-Gaussianity is predicted

to be small in single-field slow-roll inflation, however, this is not the case for multi-field

models or when the slow-roll conditions are violated.)

One significant benefit to hybrid models is that they reduce the number of

restrictions on the inflationary potential. To see why, consider the fact that in single

field models the potential must both satisfy the slow-roll conditions to drive inflation

and then later violate the same conditions to end inflation. Mathematically, there are

only a few simple functions which can do this. In hybrid inflation on the other hand,

the job of ending inflation is left to the waterfall field, so the only requirement on

the potential is that it satisfies slow-roll. Mathematically, this opens a huge range of

possibilities for new potentials.

2.5 The Tensor-To-Scalar Ratio

Right now we are lucky enough to live in an era of precision cosmology. A num-

ber of CMB experiments, ranging from ground, balloon, to space-based, are expected

to release important results within the next few years. One of the most important of

these results is a measurement of the tensor-to-scalar ratio (2.12).

The CMB is polarized into two orthogonal components: E-modes and B-modes.

E-modes have zero curl and give polarization vectors that are radial around cold spots

2 Some authors define single-field models to be those with only one field involved in the
inflationary dynamics. In this case, hybrid inflation may be thought of as a single-field
model since the waterfall field is fixed during inflation. (See for example [56].)
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and tangential around hot spots in figure 1.2. B-modes have zero divergence and give

polarization vectors that rotate with nonzero vorticity. E-modes can be sourced by

scalar and tensor perturbations, while B-modes can be sourced by vector and tensor

perturbations. Vector perturbations may be produced by topological defects, whereas

tensor B-mode perturbations are identified with a background of primordial gravity

waves. Experiments such as Planck can distinguish between gravity waves and topo-

logic defects [58].

The Planck satellite is not sensitive to B-modes and will say the least about r

out of all the current and proposed CMB experiments. Limits on r from satellites such

as WMAP and Planck are inferred from temperature and temperature-polarization

cross-correlation data. Temperature related data can only measure r to an accuracy of

10−1 [59]. The best measurements of r will come from B-mode dedicated ground and

ballon-based experiments using B-mode autocorrelation data such as BICEP, EBEX,

POLARBEAR, SPIDER, and SPUD.

Determining the tensor-to-scalar ratio is of crucial importance in cosmology.

An observable r would imply that the field was trans-Planckian at some point during

inflation. Most models try to avoid this and, hence, produce small r. All current

alternatives to inflation predict an undetectably small value for r. Thus, any detection

of r would instantly rule out all of these theories. It is easy for inflation models to

satisfy the experimental bounds on ns, but it is not so easy to satisfy the experimental

bounds on r. Therefore, r is an important parameter in distinguishing between models.

Any detection of r would instantly rule out a large number of models. The tensor-to-

scalar ratio is also related to the energy scale of inflation by V (φstart)
1/4 ≈ 3.35 ×

1016 GeV r1/4. This is one of the biggest unknowns in inflationary model building

today.
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Chapter 3

SUSY HYBRID INFLATION

3.1 Supersymmetric Models of Inflation

In the preceding chapter we discussed models of inflation. We did not discuss

motivations for specific models, but everything was based solely only the Standard

Model (SM). However, the energy scale of inflation is significantly great enough that

it would not be surprising if the SM was no longer valid in this regime. If this were

true, inflation would require additional physics beyond the SM such as Grand Unified

Theories (GUTs) or supersymmetry (SUSY) (see sections 1.4 and 1.5, respectively).

More hints towards the inclusion of physics beyond the SM in inflation come from

considering the tensor-to-scalar ratio r (see section 2.5). As previously discussed, if r

is great enough to be observable, then the energy scale of inflation is ∼ 1016 GeV and

the inflaton field might be trans-Planckian at some point during inflation [60]. This

energy scale is greater than what one would expect coming from SM particle physics

phenomenology, but is approximately GUT scale instead. Trans-Planckian fields are

also problematic in the sense above where the SM may not be valid. SUSY GUT models

of inflation are efficient at ameliorating these issues in a well-motivated manner. All-in-

all, by taking particle physics into account one may argue that SUSY models are some

of the best inflation models from a phenological perspective. Unfortunately, SUSY

inflation models generally predict an unobservable value of the tensor-to-scalar ratio.

We will return to this important aspect soon.

3.2 SUSY Hybrid Inflation

The most popular supersymmetric model of inflation is a hybrid model first

developed in 1994 [61, 62]. Here, the inflationary sector of the superpotential is an
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extension of the Higgs mechanism and generates inflation via spontaneous symmetry

breaking. It is natural to identify this breaking with already existing phase transitions

such as those in GUTs. This puts the energy scale of inflation around ∼ 1016 GeV,

which is compatible with our discussion in the previous chapter. In addition to GUTs,

this model may also successfully invoke SUGRA, string theory, and extra dimensions

as desired. Fortunately, SUSY hybrid inflation can take place entirely below the Planck

scale, which eliminates the need for a complete theory of quantum gravity. Although,

as we will see, we will need to invoke SUGRA corrections to match recent experimental

data.

The most general non-trivial renormalizable superpotential one can write in-

volving a singlet superfield S and two conjugate supermultiplets Φ (the fundamental

representation) and Φ̄ (the anti-fundamental representation) that preserves a gauge

group G and U(1)R R-symmetry is [61, 62]

W = κS(ΦΦ−M2), (3.1)

where M is the energy scale at which G breaks and κ is a dimensionless coupling which

we take to be positive without loss of generality since we can absorb the phase of κ

into that of S. (Fields not affected by a given symmetry group are said to be a singlet.

The inflaton is assumed to be a gauge singlet since gauge coupling are not supposed

to be suppressed under SUSY.) We assume a minimal Kähler potential of the form

K = |S|2 + |Φ|2 + |Φ|2. (3.2)

The global SUSY F-terms are given by

VF ≡
∑
i

∣∣∣∣∂Vglobal

∂zi

∣∣∣∣2. (3.3)

Here, zi ∈ {s, φ, φ}, where s, φ, and φ are the scalar components of the superfields

S,Φ, and Φ̄, respectively. We choose to set the D-terms to zero by imposing |Φ| = |Φ|,

for convenience.
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Figure 3.1: The tree-level, global scalar potential V in standard hybrid inflation. The
variables s and φ are the scalar components of the superfields S and Φ,
respectively.

Using equation (3.3), the tree-level global SUSY potential in the D-flat direction

is

VF = κ2 (M2 − |φ|2)2 + 2κ2|s|2|φ|2. (3.4)

A plot of this potential in field space is shown in figure 3.1. Inflation proceeds along

the local minimum |φ| = 0 (the inflationary track), beginning at large |s| (top of figure

3.1). An instability occurs at the waterfall point |s̃c|2 = M2, which is the value of |s|

such that 0 = ∂2V
∂|φ|2

∣∣∣∣
|φ|=0

(the subscript “c” denotes “critical”, and the symbol |s̃c| will

be used later to denote the dimensionful inflaton field at the critical point; we maintain

the same notation here for consistency.) At this point the field falls naturally into one

of two global minima at |φ|2 = M2. This coincides with the breaking of the gauge

group G. At large |s|, the scalar potential is approximately quadratic in |φ|, whereas

at |s| = 0 equation (3.4) becomes a Higgs potential.

Along the inflationary track the potential is flat (V = κ2M4), and thus one

cannot drive inflation. One-loop radiative corrections (RC), which should be added

for consistency in any case (since SUSY is broken during inflation), can be used to
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drive inflation. SUSY is restored after inflation, when the field evolves to one of its

global minima (where V = 0). The radiative corrections [47] involve the function (see

appendix ?? for a derivation)

F (x) =
1

4

[
(x4 + 1) ln

(x4 − 1)

x4
+ 2x2 ln

x2 + 1

x2 − 1
+ 2 ln

(
κ2m2x2

Q2

)
− 3

]
, (3.5)

where x = |s|/|s̃c| is a convenient reparametrization of the inflaton field, N is the

dimensionality of the representation of the fields Φ and Φ, and Q is the renormalization

scale. (The tree level approximation is only valid if the couplings of the inflaton to

other fields are strongly suppressed.) Altogether, this model is called minimal (F-term)

SUSY hybrid inflation and was ruled out in 2006 by the WMAP three-year observations

of the scalar spectral index ns.

The choice to use minimal Kähler in this model is purely for aesthetics as, unlike

W , there is no symmetry dictating the form of this potential. It was subsequently shown

by Bastero-Gil et al. [63] that relaxing this assumption to its non-minimal form,

K = |S|2 + |Φ|2 + |Φ|2 + κs
|S|4

4m2
P

+ κSΦ
|S|2|Φ|2

m2
P

+ κSΦ

|S|2|Φ|2

m2
P

+ κSS
|S|6

6m4
P

+ . . . , (3.6)

could bring the model back into agreement with data for κS > 0. Alternatively, [64]

was able to achieve the same result while maintaining minimal Kähler by including

gravity-mediated soft SUSY breaking terms from minimal supergravity (SUGRA):

∆Vsoft =
∑
i

M2
S|zi|+MS

[
zi
∂W

∂zi
+ (A− 3)W + . . .

]
. (3.7)

Here, MS is the mass breaking scale, A is the coefficient of the trilinear term in the

effective low-energy Lagrangian, and the dots represent higher order terms. These had

previously been shown to be important for particle physics considerations such as the

MSSM µ-problem [65]. See [66] for a discussion in relation to SUSY hybrid inflation

or [25] for a thorough review.

From (3.1) and (3.7) we retain a linear soft term and a mass-squared soft term,

aMSS and M2
SS

2, respectively, where a = 2|2 − A| cos [argS + arg(2− A)]. Note the

field S may be complex. The linear term generally dominates the mass term for most
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of parameter space, and it is common to choose MS to be equal to the gravitino mass

m3/2. With this choice of MS, adding these terms to the minimal SUSY hybrid inflation

model agrees with experiment for a negative. Soon after, the same group demonstrated

[67] that similar results could be obtained with a positive by allowing MS to vary as

in split-SUSY models [68].

Despite matching experimental data on the scalar spectral index, SUSY inflation

generally predicts a tensor-to-scalar ratio far too small to ever be observed. In general,

this result is expected due to the Lyth bound, which says that r is observable if and

only if the change in the inflaton field is comparable to the reduced Planck mass, i.e.

∆S ∼ mP [60, 69]. However, this analysis requires certain assumptions about the

slow-roll parameters which are not necessarily valid for SUSY hybrid inflation models.

Consequently, one may obtain observable gravity waves in this model without trans-

Planckian excursions [70]. For example, utilizing non-minimal Kähler and a large soft

mass with κS, κSS,M
2
S > 0 produces r ∼ 0.01. (See [70] for a discussion of particle

physics implications of large r.) Immediately following this work, it was shown that one

may achieve the same results by keeping MS ∼ m3/2 ∼ 1 TeV by allowing κS negative

[71]. This choice of mass scales is more natural from a particle physics perspective in

gravity-mediated soft SUSY-breaking models.

With the recent advances in particle physics driven by the Large Hadron Col-

lider, it is important to keep our models firmly grounded in reality. Besides the particle

physics considerations discussed above, the superpotential (3.1) is determined by the

R-charges assigned in the rest of the superpotential. For example, under flipped SU(5),

if [72]

W = κS
(
10H10H −M2

)
+ λ110H10H5h + λ210H10H5h

+ y
(d)
ij 10i10j5h + y

(u,ν)
ij 10i5j5h + y

(e)
ij 1i5j5h,

then we may assign the R-charges as

(S,10H ,10H ,5h,5h,10i,5i,1i) = (1, 0, 0, 1, 1, 0, 0, 0).
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This R-symmetry ensures that proton decay occurs only via the six-dimensional op-

erator (the 5h5h term is disallowed). The importance of this is that we preclude

rapid proton decay. However, one also prohibits terms such as the quartic couplings

10i10j10H10H , which give rise to right-handed neutrino masses. (Note that the decay

of Majorana right-handed neutrinos can explain the observed baryon asymmetry via

leptogenesis [73, 74].)

If we reassign R-charges such that 10i10j10H10H is allowed, we end up pro-

hibiting the Yukawa term which gives rise to down-type quark masses (yij
(d)10i10j5h).

This outcome is not necessarily catastrophic, since the relevant quark masses may be

generated radiatively. On the other hand, one may invoke a “double seesaw” mech-

anism [72] to account for the lack of large right-handed neutrino masses. A simpler

solution to this problem is to allow higher-order (Planck scale suppressed) R-symmetry

violating terms in the superpotential, while enforcing R-symmetry for renormalizable

terms. With this motivation in mind, we wish to explore the effects of these additional

terms on the inflationary dynamics. Introducing these terms raises the question of

whether such a modified model can support successful inflation in the context of global

SUSY alone: we find that this is not the case, leading us to incorporate SUGRA when

constructing our model.

3.3 Planck Scale Suppressed R-Symmetry Violation

We now wish to determine the effects of allowing R-symmetry violation beyond

the renormalizable level. First, let us list which additional terms one can consider in

this type of model. The three lowest-order nonrenormalizable R-violating terms one

can write with the aforementioned superfields (respecting gauge symmetry) are

α

mP

S4 ,
β

mP

S2(Φ̄Φ) ,
γ

mP

(Φ̄Φ)2,

where α, β, and γ are dimensionless, and are sufficiently small such that each term is

a perturbation about the standard case. Along the inflationary track, only the first
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term will lift the potential. Therefore, in this letter we consider solely the inflationary

ramifications of the S4 term, so that our superpotential is

W = κS(ΦΦ−M2) +
α

mP

S4. (3.8)

Other inflationary tracks may be available via the inclusion the β and γ terms. Inclusion

of these terms may lead to a form of shifted inflation; however, we do not discuss this

here.

It is important to ask the following question: Can we drive inflation with this

S4 term, without radiative corrections nor any additional terms? Let us compute the

global, tree-level scalar potential along the inflationary track. We do this via equation

(3.3), which yields the dimensionless potential (V ≡ V/mP
4)

VF
∣∣∣∣
|φ|=0

= κ2m4 − 8 cos(θα + 3θs)|α|x3κsc
3m2 + 16x6 |α|2 sc6, (3.9)

where θα and θs are the phases of α and s, respectively, and where we have defined the

following dimensionless parameters:

x ≡ |s|
|s̃c|

, sc ≡
|s̃c|
mP

, m ≡ M

mP

.

The symbol |s̃c|, as before, denotes the inflaton field at the waterfall point and its

dimensionless value sc is given by

−κm2 + sc
2(κ+ 4|α|sc) = 0. (3.10)

It can be shown that, using just equation (3.9), one cannot obtain a red-tilted spectrum

while simultaneously satisfying the slow-roll conditions (to be defined somewhat later).

An analytical calculation reveals that, by imposing the condition ns < 1 in the slow-roll

approximation, the inflaton field at the start of inflation is necessarily trans-Planckian

(see appendix B of [75]). We therefore cannot, in this scenario, achieve a suitable

spectral tilt without additional terms. In other words, one cannot have successful

inflation using only the global SUSY terms.

In order that our model yield more experimentally favorable results, we include

soft and SUGRA corrections to the global plus RC potential. The soft terms are derived
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in a gravity-mediated SUSY-breaking scenario [25] using (3.7); including the soft mass

squared terms, they are

am3/2 κm
2 scx , m3/2

2 sc
2x2 , bm3/2 |α| sc4x4,

where the last term is a direct consequence of our S4 term in W , and m3/2 is the

gravitino mass (∼ TeV) divided by mP . We write the effective coefficients of the soft

terms as

a = 2 [2 cos(θs)− |A| cos(θA + θs)] ,

b = 2 [|A| cos(θA + θα + 4θs) + cos(θα + 4θs)] ,
(3.11)

where each θi, i ∈ {A,α, s}, is the phase of a complex parameter, and A is the trilinear

coupling. Note that we cannot take α real without loss of generality, since we have

already absorbed the phase of κ into that of s; therefore, we consider the most general

case where α, s, and A are complex.

While θA and θα are components of couplings, θs is a dynamical field. For

the sake of simplicity, we minimize the potential with respect to θs so as to define the

inflaton field purely as |s|. As a result (see appendix A of [75]), we choose the following

values of the phases

θs = lπ , θA = nπ , θα = pπ,

such that l, n, and p are all odd integers. With these choices, the effective coefficients

are

a = −2(2 + |A|) , b = 2(|A| − 1),

and in conjunction with these phase choices we additionally impose the condition that

|A| < 1, or equivalently b < 0 (see appendix B of [75]). Henceforth, we drop the bars on

A and α with the understanding that they represent the moduli of the corresponding

complex quantities.

We include SUGRA correction terms up to sixth order in the inflaton field |s|,

consistent with our inclusion of the α2|s|6 global SUSY term; they are:

1

2
κ2m4sc

4x4 ,
2

3
m4κ2sc

6x6 , −12κm2 α sc
5x5.
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Hence, with the addition of the soft SUSY-breaking, SUGRA, and 1-loop radiative

correction terms to equation (3.9), the full scalar potential, scaled by 1/mP
4, becomes

V = κ2m4 − 8ακ sc
3m2x3 + 16α2 sc

6x6 +
m4κ4N

8π2
F (x)

+ am3/2m
2 κ sc x+ bm3/2 α sc

4x4 +m3/2
2 sc

2x2

+
1

2
m4κ2sc

4x4 +
2

3
m4κ2sc

6x6 − 12κm2 α sc
5x5,

(3.12)

where F (x) is given by (3.5).

In solving the essential cosmological equations, we employ the slow-roll approx-

imation throughout, in which inflation occurs while the slow-roll parameters are less

than unity. In our notation these are written as

ε =
1

4sc2

(
V ′

V

)2

, η =
1

2sc2
V ′′

V
, ξ2 =

1

4sc2
V ′′′V ′

V2
.

Here, the prime ( ′ ) denotes a derivative with respect to x. Inflation ends either

when the slow-roll parameters become unity, or when the inflaton field reaches the

waterfall point at x = 1. Observable inflation starts at x0, defined at the pivot scale

k0 = 0.002 Mpc−1, and ends at xe. With this, the number of e-foldings becomes, to

leading order,

N0 ≈ 2sc
2

∫ x0

xe

V
V ′
dx, (3.13)

while the usual definitions hold for

r ≈ 16ε , ns ≈ 1− 6ε+ 2η ,
dns

d ln k
≈ 16ε η − 24ε2 − 2ξ2. (3.14)

The amplitude of the curvature perturbation is given, to leading order, by

∆2
R ≈

sc
2

6π2

V3

V ′2
. (3.15)

Note that equations (3.14) and (3.15) are evaluated at the pivot scale.

In our numerical calculations we take m3/2 = 1 TeV/mP , Q = 1015 GeV/mP ,

and since we are implicitly embedding our model in flipped SU(5), we take N = 10

[67]. In addition, we impose the ranges in table 3.1.
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Fundamental Range Scale Derived Constraining range
parameter type quantity

κ [10−6, 1] log ns [0.9311, 0.9895]
m [10−4, 10−1] log = 0.9603± 4σ
α [10−14, 10−8] log ∆2

R [2.271, 2.583]× 10−9

A [10−10, 1] log = 2.427× 10−9 ± 2σ
x (1, 1

m
] linear r < 0.11

sc (0, 1) linear N0 [50, 60]

Table 3.1: These are the ranges specified for the fundamental parameters in equation
(3.12), and constraints placed on derived quantities, that we have used in
our numerical calculations. Note that x can take on any value between
the waterfall point and the Planck scale. The experimental bounds on r,
∆2
R, and ns are from the Planck satellite [3]. The numerical constraints

on the quantities r and ∆2
R are the experimental bounds; however, the

numerical constraints on ns differ slightly from the experimental bounds.
This has been done for ease of plotting.

3.4 Results

3.4.1 Overview

Previous studies have shown that small gravity waves are generated using min-

imal Kähler and a TeV-scale positive soft SUSY-breaking mass squared term (i.e.,

m3/2
2 x2, with m3/2 ∼ 10−16) [64, 67, 76]. Specifically, when the lowest-order SUGRA

correction term and a negative linear soft term (a = −1) are added to the global SUSY

plus TeV-scale positive soft mass squared plus RC potential, one finds that r ∼ 10−12.5

around the Planck central value ns = 0.9603 [64]. Alternatively, using non-minimal

Kähler in shifted inflation with positive TeV-scale soft mass squared and a = 1, 0, or

−1 [71, 76–78], or non-minimal Kähler with with same a values, and large, positive

soft mass squared terms (∼ 10−5) [70], one can generate r ∼ 10−2 with red spectral

tilt. In this paper we find that the solutions follow curves of a similar shape to those

presented in [64], as can be seen in figure 3.2. By employing minimal Kähler, positive

TeV-scale soft mass squared terms, and a negative linear and a negative α-dependent

quartic soft term, we obtain in this paper r ∼ 10−8.5 around ns ' 0.9603 for α = 10−9;

in [64], one obtains r values four orders of magnitude lower than this, at ns ' 0.9603.
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Figure 3.2: The tensor-to-scalar ratio, r, versus the scalar spectral index, ns, is de-
picted. Three curves for large values of α are shown in 3.2(a), and a
larger range of α is taken in 3.2(b). Here, the number of e-foldings and
A have been fixed at 50 and 10−4, respectively. With α = 0, we produce
solutions closely matching the a = −1 case in [64]. Note that this curve
(in 3.2(b)) does not produce false vacua.

As we will describe, this model yields even larger gravity waves (∼ 10−4, see figure

3.5(b)) with red spectral tilt, and we expect that with non-minimal Kähler this model

can yield solutions similar to [70]. While the full set of results is outside the reach of

current experiments such as Planck, a model in which solutions are tending toward

larger r solutions is nonetheless preferred.

3.4.2 The Effect of the Parameters on the Model

Our potential is dependent upon the inflaton field x and the parameters A, α, κ,

and m. Our new parameter α, which parametrizes the amount of R-symmetry violation

beyond the renormalizable level, yields qualitatively and quantitatively distinct results

from the standard case.

The negative α-dependent terms in (3.12) create false vacua in some regions of

parameter space, i.e. the general behavior of the potential changes from that of figure

3.3(a) to that of 3.3(b). (Note that the inflaton field rolls from right to left in these

figures.) We cannot produce a successful inflationary scenario from figure 3.3(b) as the

system will become trapped in the false vacuum. Rejecting solutions for which this
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Figure 3.3: The qualitative change in behavior caused by the negative α terms. fig-
ure (a) depicts a potential that is well-behaved, i.e., the field will roll
toward the global minimum, while figure (b) depicts a potential with a
false vacuum. Mathematical solutions which produce false vacua are not
acceptable inflationary scenarios.

occurs produces gaps in the parameter space such as those seen in figures 3.2 and 3.7.

Note that these vacua did not appear in [64].

Figure 3.2 depicts the effects of α on r. (See figure 3.7 for further results. Note

the similarity of these curves to those in [64].) The potential in equation (3.12) differs

from that in [64] by two higher-order SUGRA correction terms, an α-dependent quartic

soft term, and two global α-dependent terms (a is also different). The effect of α is to

raise r, particularly in red-tilted regions. This is primarily a result of the global term

proportional to α. The α = 10−9 curve is raised by three to six orders of magnitude

for 0.92 < ns < 0.98, as compared to the α = 0 case in [64].

Our model greatly benefits from the fact that we can, as noted, generate larger

gravity waves than the standard (α = 0) case. However, α cannot be raised arbitrarily,

since we require R-symmetry violation to be small. We find no need to impose an

upper bound, though, because our parameter study yields a numerical upper bound

α ∼ 10−7. This can be understood mathematically by noting that |V ′| increases faster

than |V| as α → 10−7 (from smaller α). The e-foldings constraint (3.13) becomes

impossible to satisfy at large α, because its integrand is suppressed by a large V ′, and
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Figure 3.4: The number of solutions to ∆2
R = 2.427 × 10−9 (a), and both ∆2

R =
2.427× 10−9 and N0 ∈ [50, 60] (b).

the limits of the integral can only be marginally altered.

We find that x0 can vary over at least two orders of magnitude until α ∼

10−8; then, x0 is compressed to ∼ 10. Likewise, the end of inflation is pushed toward

waterfall, xe = 1, as α → 10−7. Thus the distance in x over which inflation occurs

approaches an approximately constant value. If we take solutions to ∆2
R = 2.427 ×

10−9 (figure 3.4(a)) and then impose the constraint that the number of e-foldings be

between 50 and 60 (figure 3.4(b)), we observe that, for many orders of magnitude in α,

requiring sufficient inflation decreases by at least an order of magnitude the number of

solutions relative to those obtained merely from the curvature perturbation constraint.

Achieving a sufficient amount of inflation severely limits the number of viable solutions

generally, but is most limiting at large α. The curvature perturbation constraint also

has a limiting effect as α increases, although notice that without ensuring a sufficient

amount of observable inflation, one can obtain “solutions” up to α = 10−5 (figure

3.4(a)).

Numerically, we obtained our results using two independent methods: a contin-

uation method and a parameter study. The results of the former are seen in figures 3.2
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Figure 3.5: (a) The tensor-to-scalar ratio, r, versus the scalar spectral index, ns,
for α = 10−9, A = 10−4, and N0 ∈ [50, 60]. One can see the “hori-
zontal solutions”, which yield r values somewhat above 10−8. (b) The
tensor-to-scalar ratio, r, versus the scalar spectral index, ns for solu-
tions corresponding to the ranges in table 3.1. Solutions are color-coded
as follows: blue - (10−14 < α ≤ 10−12), green - (10−12 < α ≤ 10−11),
yellow - (10−11 < α ≤ 10−10), red - (10−10 < α ≤ 10−9), cyan -
(10−9 < α ≤ 10−8), magenta - (10−8 < α ≤ 10−7).

and 3.7. The latter results are presented in figures 3.5 and 3.6. Figure 3.5(a) shows the

presence of qualitatively new “horizontal solutions” in the r− ns plane. If we drop all

the α-dependent terms in the scalar potential (3.12) except the global term linear in α

(which is −8ακ sc
3m2x3), the number of horizontal solutions in this region increases.

On the other hand, dropping this term and keeping the others does not produce a vi-

able inflationary scenario. Since the global α term is the most dominant α-dependent

term, it is primarily responsible for producing these horizontal solutions.

We find that limits on r naturally arise in our model (see figure 3.6(a)). Solutions

producing r ∼ 10−4 can be produced throughout the range of α that we have taken,

although all of these except the solutions near the upper limit of α correspond to a

blue-tilted spectrum. Figure 3.5(b) depicts this behavior; note that the only large-r

solutions corresponding to red spectral tilt are colored magenta and cyan (meaning
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Figure 3.6: (a) The tensor-to-scalar ratio, r, versus α using the constraints in table
3.1. (b) The scalar spectral index, ns, versus α using the constraints in
table 3.1. Note that in the red-tilted region where α → 0, solutions are
sparse.

that 10−9 < r ≤ 10−7). Figure 3.6(a) also indicates that the smallest-r solutions

that can be produced are increasingly larger as α increases, so that at the upper limit

of α only r ∼ 10−4 can be produced. This effect can be understood by using the

following approximation of the energy scale of inflation: V0
1/4 ∼ κ3/2m2/

√
λ2x0

2α,

where λ ≡ [(3456 ∆2
R
∣∣
x0
π2)]1/4. As mentioned, the integrand in equation (3.13) is

suppressed by the fact that |V ′| increases faster than |V| as α increases. To compensate

for this effect the κ2m4 term in V increases, raising the numerator in V0
1/4. This

prohibits small-r solutions in large-α regions (recall that r ∝ V0
1/4).

The upper limit on r of ∼ 10−4, approximately constant over many orders of

magnitude of α, is a consequence of the Lyth bound [60] r . O(10−2)×m2(x0 − xe)2.

The largest m values obtainable (m ∼ 10−1) correspond to very small values of x0−xe,

and therefore limit r below 10−4. Solutions with m ∼ 10−2 correspond to x0 ≈ 10 and

xe ≈ 1; thus, m2(x0 − xe)2 ∼ 10−2 for the largest r values obtainable in our model.

The parameter A, arising from the gravity-mediated soft-SUSY breaking terms,

45



-3.5 -3.0 -2.5 -2.0 -1.5

15.4

15.6

15.8

16.0

16.2

Log10 Κ

L
o
g

1
0

M
�G

eV

Α = 10-9.5
Α = 10-9.2
Α = 10-9

(a)

0.92 0.94 0.96 0.98 1.00 1.02

-3.0

-2.8

-2.6

-2.4

-2.2

nS

L
o

g
1
0

m

Α = 10-9.5
Α = 10-9.2
Α = 10-9

(b)

-3.5 -3.0 -2.5 -2.0 -1.5
0.92

0.94

0.96

0.98

1.00

1.02

Log10 Κ

n
S

Α = 10-9.5
Α = 10-9.2
Α = 10-9

(c)

0.92 0.94 0.96 0.98 1.00 1.02
-4.2

-4.0

-3.8

-3.6

-3.4

-3.2

-3.0

-2.8

nS

L
o

g
1
0
Èd

n
S
�d

ln
k
È

Α = 10-9.5
Α = 10-9.2
Α = 10-9

(d)

Figure 3.7: Here we plot our numerical results in which the number of e-foldings and
A have been kept fixed at 50 and 10−4, respectively. The absolute value
of the running of ns, log10 | dns

d ln k
|, is plotted in 3.7(d).

does not have any discernible effect on our results in the red-tilted region. This is

expected from the fact that the soft terms are suppressed by the gravitino mass (∼

TeV).

The plots in figure 3.7 depict the effects of increasing α. Figures 3.7(a), 3.7(c),

and 3.7(d) are in direct reference to [64]. We can see from figure 3.7(c) that large α

boosts κ, especially in the red-tilted region. Similarly, figure 3.7(a) shows that, for

the same breaking scale M , κ is boosted as α increases. Note that m is also boosted

by α (figure 3.7(b)). We have discussed that larger gravity waves are produced via

increasing α. This effect is evident from figures 3.7(b) and 3.7(c), which show that
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m and κ values are raised as α increases, particularly in red-tilted regions. Figure

3.7(d) depicts the absolute value of the running of ns, log10 | dns

d ln k
|. In our model, dns

d ln k

is negative, and | dns

d ln k
| ∼ O(10−3)−O(10−4).

3.5 BICEP2

The scalar spectral index has been determined by Planck to within 1% and the

curvature perturbations to within 4%. These extremely tight experimental bounds have

invalidated a large number of inflationary models. Next, physicists hope to determine

the running of ns and the tensor-to-scalar ratio. As far as we can tell, the running is

approximately zero and may be slightly negative. On the other hand, recent claims by

the BICEP2 experiment suggest that the tensor-to-scalar ratio may be as large as∼ 0.2.

This announcement has been received with caution by the physics community, and is

awaiting independent verification by Planck in the next year or so. Should, however,

it be found that r is indeed in-fact observable, this could be a serious problems for

supersymmetric hybrid inflation and other SUSY inflation models, which generally

predict small r. Also, it is noteworthy to mention that once r is measured, it has been

suggested that it will no longer be adequate to specify an inflationary scenario without

a description of reheating [79]. This subject is currently not well understood for SUSY

inflation models.

Recent work has focused on raising the tensor-to-scalar ratio for these models.

It has been shown, most notably in [80, 81], that it is possible with a clever choice of

potential. One difficulty that arises here is that certain parameters are either directly

or indirectly constrained by experimental observations of non-inflationary data. For

example, it would be convenient to arbitrarily choose κ and M as large as needed,

but κ is indirectly constrained through M , which is directly constrained by current

bounds on cosmic strings [10]. Employing non-minimal Kähler and postulating the

inclusion of more correctional terms coming from particle physics or currently unknown

Planck-scale physics often introduces unconstrained parameters into the model. This

is harmful to the predictive power of the model and can often lead to problems with
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fine-tuning and naturalness. Nevertheless, SUSY hybrid inflation has been shown to

have the ability to match the BICEP2 results if necessary. This measurement is in

tension with Planck data [82], so inflation model builders will revisit this issue more

sincerely if it is confirmed.
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Appendix A

THE COLEMAN-WEINBERG FORMULA

Here, we review the basic idea behind the Coleman-Weinberg formula by repro-

ducing the first example of [47].

Consider a massless, quartically, self-interacting (real) meson field φ:

L =
1

2
(∂µφ)2 − λ

4!
φ4.

We wish to find the potential V (φ0) for some position independent field φ0(x) = φ0.

(One might näıvely assume that this would be V (φ0) =
λ

4!
φ4

0, but this would be treating

φ as a coordinate, ignoring its self-interaction.) To do this, we treat φ0 as a perturbation

of the field φ. This implies we find V (φ + φ0) and then integrate out φ. From the

Lagrangian,

V (φ+ φ0) =
λ

4!
(φ+ φ0)4

=
λ

4!
φ4

0 +
λ

6
φ3

0φ+
λ

4
φ2

0φ
2 +

λ

6
φ0φ

3 +
λ

4!
φ4.

To zeroth order we have V (φ0) =
λ

4!
φ4

0. The first-order term
λ

6
φφ3

0 implies the Feymann

diagram figure A.1 with vertex rule
λ

3
φ3

0. Computing the diagram gives no contribution

to the potential.

Figure A.1: Tree-level diagram.
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At second order,
1

2

(
λ

2
φ2

0

)
φ2, we obtain the following 1-loop diagrams with

vertex rule
λ

2
φ2

0 (figure A.2):

Figure A.2: 1-loop diagrams.

= i

∫
d4k

(2π)4

[
1

2

(
λ

2
φ2

0

1

k2 + iε

)
+

1

2 · 2

(
λ

2
φ2

0

1

k2 + iε

)2

+
1

2 · 3

(
λ

2
φ2

0

1

k2 + iε

)2

+ . . .

]

= i

∫
d4k

(2π)4

∞∑
n=1

1

2n

(
λ

2
φ2

0

1

k2 + iε

)n
.

Rotating into Euclidean space, we recognize this as the series expansion for the natural

logarithm,

=
1

2

∫
d4k

(2π)4
ln

(
1 +

λφ0

2k2

)
.

This is divergent so we introduce the cutoff Λ,

1

2

∫ Λ

0

d2k

(2π)4
k2 ln

(
1 +

λφ0

2k2

)
.

This is easily computed by letting x = k2, expanding the logarithm into two terms,

and integrating by parts. Therefore, to 1-loop we have

V (φ0) =
λ

4!
φ4

0 +
λΛ2

64π2
φ2

0 +
λ2

256π2
φ4

0

[
ln

(
λφ2

0

2Λ2

)
− 1

2

]
. (A.1)

The terms proportional to φ3 and φ4 represent higher order corrections and are ignored.

At this point we need to specify our cutoff scale Λ. Equation (A.1) is divergent

as Λ→∞, so we renormalize:

V (φ0) =
λ

4!
φ4

0 +
1

2
Bφ2

0 +
1

4!
Cφ4

0 +
λΛ2

64π2
φ2

0 +
λ2

256π2
φ4

0

[
ln

(
λφ2

0

2Λ2

)
− 1

2

]
.

(Note that a mass renormalizable term is present, even though we are studying a

massless field theory. This is because “the theory processes no symmetry that would
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generate vanishing bare mass in the limit of vanishing renormalized mass.” [47]) We

need to determine the unknowns B and C. Since B is a mass term, is natural to

require that
∂2V

∂φ2
0

∣∣∣∣
φ0=0

= 0. This gives B = − λΛ

32π2
. On the other hand,

∂4V

∂φ4
0

∣∣∣∣
φ0=0

does not exist. Thus, to determine C we evaluate
∂2V

∂φ2
0

at another point Q. This point

is arbitrary, but it will be convenient to take the point to be a natural scale for the

problem. For convenience, we choose the requirement that
∂2V

∂φ2
0

∣∣∣∣
φ0=0

= λ. This gives

C = − 3λ2

32π2

[
ln

(
λQ2

2Λ2

)
+

11

3

]
. From (A.1) we have

V (φ0) =
λ

4!
φ4

0 +
λ2

256π2
φ4

0

[
ln

(
φ2

0

Q2

)
− 25

6

]
.

Notice that Λ has dropped out as required, but the price we pay for this is the Q has

dimensions of mass - the original dimensionless theory has obtained a characteristic

scale!

In their paper, Coleman and Weinberg point out that, in this example, the

minima lie outside the validity of the 1-loop approximation, but this is certainly not

the case in general. This example may be generalized to include more complicated field

theories. Keeping everything as general as possible produces the Coleman-Weinberg

formulas, which are simply the results of computing the 1-loop integrals as above.
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Appendix B

DERIVATION OF RADIATIVE CORRECTIONS IN
SUPERSYMMETRIC HYBRID INFLATION

Here, we present a derivation of equation (3.5). We begin with the Coleman-

Weinberg formula

∆V1-loop =
1

64π2

∑
i,j

(−1)2j(1 + 2j)M4
i

[
ln

(
Mi

Q

)2

− 3

2

]
,

where Q is some renormalization mass, Mi is the i-th eigenvalue of the mass matrix,

and the sum runs over all helicity states of the fields. Each superfield of (??) contains

a complex scalar (2 states) and a spin-1/2 Dirac fermion (4 states). Thus, in our

case, the sum breaks up into two parts, one for the scalars and one for the fermions:

∆V1-loop = ∆VS + ∆VF.

For the scalars we find

∆VS =
1

64π2

∑
i

M4
i

[
ln

(
Mi

Q

)2

− 3

2

]
=

1

128π2

∑
i

M4
i

[
ln

(
Mi

Q

)4

− 3

]
.

The scalar mass matrix is given by

M2
ij =

∂2V

∂zi∂zj
,

where zi ∈
{
s, s, φ, φ

}
. Taking the D-flat direction and assuming our scaling, the

eigenvalues are

M2
i ∈

{
κ2m2

(
x2 − 1

)
, κ2m2

(
x2 + 1

)
,−κ2m2

(
x2 − 1

)
,−κ2m2

(
x2 + 1

)}
.
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Plugging in we get

∆VS =
1

128π2

{
2κ4m4

(
x2 − 1

)2

[
ln

(
κ2m2 (x2 − 1)

Q2

)2

− 3

]

+ 2κ4m4
(
x2 + 1

)2

[
ln

(
κ2m2 (x2 + 1)

Q2

)2

− 3

]}

=
κ4m4

64π2

{(
x4 − 2x2

) [
ln

(
κ2m2 (x2 − 1)

Q2

)2

− 3

]
+ ln

[
κ4m4

Q4
x4 +

κ4m4

Q4

(
1− 2x2

)]

+
(
x4 + 2x2

) [
ln

(
κ2m2 (x2 + 1)

Q2

)2

− 3

]
+ ln

[
κ4m4

Q4
x4 +

κ4m4

Q4

(
1 + 2x2

)]
− 3

}
.

Let us simplify this expression. To do this, note that

(
x4 − 2x2

) [
ln

(
κ2m2 (x2 − 1)

Q2

)2

− 3

]
+
(
x4 + 2x2

) [
ln

(
κ2m2 (x2 + 1)

Q2

)2

− 3

]

= 2x4 ln

[
κ2m2

Q2

(
x4 − 1

)]
+ 4x2 ln

(
x2 + 1

x2 − 1

)
− 6x4,

and

ln

[
κ4m4

Q4
x4 +

κ4m4

Q4

(
1− 2x2

)]
= ln

[
κ4m4

Q4
x4

(
1 +

1− 2x2

x4

)]
= ln

(
κ4m4

Q4
x4

)
+ ln

(
1 +

1− 2x2

x4

)
ln

[
κ4m4

Q4
x4 +

κ4m4

Q4

(
1 + 2x2

)]
= ln

(
κ4m4

Q4
x4

)
+ ln

(
1 +

1 + 2x2

x4

)
.

This produces

∆VS =
κ4m4

64π2

[
2x4 ln

(
x4 − 1

)
+ 4x2 ln

(
x2 + 1

x2 − 1

)
− 6− 6x4

+ 4 ln

(
κ2m2

Q2
x2

)
+ ln

(
1 +

1 + 2x2

x4

)
+ ln

(
1 +

1− 2x2

x4

)]
.

The fermion mass matrix is defined as

Mij =
∂2W

∂Zi∂Zj

∣∣
Zi→zi

,

giving

Mi ∈ {±κmx}.
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As before, we find

∆VF =
1

64π2
(−1)(2)

(
κ2m2x2

)2
(2)

[
ln

(
κ2m2x2

Q2

)
− 3

2

]
=
κ4m4

32π2

[
3x4 − x4 ln

(
κ4m4x4

Q4

)]
Therefore,

∆V1-loop =∆VS + ∆VF

=
κ4m4

32π2

[
2x2 ln

(
x2 + 1

x2 − 1

)
− x4 lnx4 + x4 ln

(
x4 − 1

)
+ 2 ln

(
κ2m2x2

Q2

)
+

1

2
ln

[(
1 +

1 + 2x2

x4

)(
1 +

1− 2x2

x4

)]
− 3

]
.

Simplifying and noting that(
1 +

1 + 2x2

x4

)(
1 +

1− 2x2

x4

)
=

(x4 − 1)
2

x8

produces the desired result.

The factor of N in equation (3.5) takes into account that gauge symmetry is

intact during inflation, i.e., there are N copies of each field, where N is the dimension-

ality of the gauge supermultiplets Φ,Φ.
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Appendix C

USEFUL RESULTS FROM HOMOTOPY THEORY

The following is a collection of common results useful in the study of topological defects.

The interested reader is referred to any text on homotopy theory.

Theorems And Definitions:

π0(X) is the set of connected components of X

π1(X) is the set of homotopically inequivalent loops in X

π2(X) is the set of homotopically inequivalent closed surfaces in X

Zn is a set of n points. It does not contain loops or surfaces. Therefore, the only

non-trivial homotopy group is π0(Zn) = Zn.

The (reductive) rank of a compact Lie Group G is the dimension of a maximal torus

in G.

Properties:

SN = O(N + 1)/O(N) = SO(N + 1)/SO(N)

S2k+1 = U(k + 1)/U(k) for k odd, k ≥ 3

rank(SO(2n)) = rank(SO(2n+ 1)) = n

rank(U(n)) = n

rank(SU(n)) = n− 1

IfM is a simply-connected topological space, then π0(M) = π1(M) = 0 and π1(M/H) =

π0(H). If πk(H) = πk−1(H) = 0, then πk(M/H) = πk(M).

πq(X1 +X2) = πq(X1)× πq(X2)

πq(S
N) =

0 if q < N

Z if q = N

, 0 = {e} is the trivial group

The product of maximal tori is a maximal tori of the product. This implies

rank(H1 ×H2 × . . .×Hn) = rank(H1) + rank(H2) + . . .+ rank(Hn)
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S1 S2 S3 S4 SO(2) SO(3) SO(4) SO(n ≥ 5)
π0 0 0 0 0 0 0 0 0
π1 Z 0 0 0 Z Z2 Z2 Z2

π2 0 Z 0 0 0 0 0 0
π3 0 Z Z 0 0 Z Z × Z Z

U(1) SU(2) SU(3) SU(4) SU(5) E6 E8

π0 0 0 0 0 0
π1 Z 0 0 0 0 0 0
π2 0 0 0 0 0 0 0
π3 0 Z Z Z Z Z Z

Table C.1: Homotopy groups of Lie groups commonly utilized in high energy theory.

Results:

The determination of non-trivial homotopy groups may be done using exact sequences.

(See table C.1 above.)
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