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ABSTRACT 

In engineering applications, structures are commonly subjected to cyclic 

loadings. This may lead to fatigue and unexpected failures. To prevent the life-time 

limiting failures, understanding of the failure evolution in these structures during use 

is very important. For failure prediction due to cyclic loading, finite element analysis 

(FEA) can be used to simulate and establish the stress and strain distribution as a 

function of time. However, every single cycle of simulation consists of many 

computational increments and iterations. The whole process of structural evolution 

consists of a large number of cycles. Thus, for structures subjected to cyclic loadings, 

it is extremely time-consuming and inefficient to simulate the whole process of 

structural evolution. In fact, in most cases, the computational time required is typically 

prohibiting a complete analysis. 

The goal with this work is to improve upon an existing numerical scheme that 

aims to, in combination with simple testing, predict the life-time of structures 

subjected to cyclic loading. The numerical scheme is the “cycle-jump technique” 

developed previously. The fundamental idea of the cycle-jump technique is that there 

is no need to calculate each individual cycle in a cyclically loaded structure. Utilizing 

an extrapolation scheme for extrapolating the overall behavior to “jump” over some 

cycles, the cycle-jump technique may predict the overall structural behaviors with 

much higher time efficiency.  

In this work, the “cycle jump technique” will be modified and improved to 

eventually be used for simulating realistic designs. To overcome the limitation of the 



 xi 

existing extrapolation scheme, an alternative more general extrapolation scheme is 

proposed. The numerical code is also improved for applications in simulating time-

dependent material behaviors, such as time-dependent oxidation evolution and creep 

in thermal barrier coatings subjected to high temperature thermal cycles.  

To verify that the cycle jump technique can capture real-life experimental 

results and to demonstrate the power of the method, experimental results, the cycle-

by-cycle reference simulation, and the simulation with cycle jump must be compared. 

Preliminary experiments guided by our preliminary simulations were performed by 

our collaborators.  

Preliminary experimental results are used to compare with the simulation 

results. Even though the experimental data is limited, it appears as our numerical 

model can predict the evolution of the test samples, and incorporated the cycle-jump 

technique will improve the computational efficiency. 
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Chapter 1 

BACKGROUND 

1.1 Introduction 

It is very common to see failures of structures subjected to cyclic loadings. 

Investigations of the failure mechanism reveal that they are often influenced by a slow 

evolution of material and structural properties [1]. For prediction of failures due to 

cyclic loadings, establishing the state of stress and/or strain is very useful, and even 

necessary. However, many challenges are involved in the investigation of how the 

stress and strain in the structures respond as the material or structural properties evolve 

with time in combination with cyclic loading. Finite element analysis (FEA) [2-4] is a 

very useful tool that can be used to simulate and establish the stress and strain 

distribution as a function of time. However, the whole process of structural evolution 

involves a large number of cycles, and every single cycle of simulation may consist of 

numerous computational increments and iterations. Thus, for structures subjected to 

cyclic loadings, it may cost significant computation time and is extremely inefficient 

to simulate the whole process of structural evolution.  

The overall goal with this work is to develop a numerical scheme that can, in 

combination with simple testing, predict the life-time of structures subjected to cyclic 

loading. This work is focused on improving the numerical efficiency of simulations 

with the goal of effectively investigating the behavior of the structure under cyclic 

loadings. To achieve this goal, we will utilize a numerical scheme and verify the 

validity by simulating experimentally observed behavior of a material structure. The 
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numerical tool is the “cycle-jump technique” [1]. The fundamental idea behind the 

cycle jump technique is that it is too cumbersome and timely inefficient to calculate 

each individual cycle in cyclically loaded structures. Consequently, with an 

extrapolation scheme for extrapolating the overall behavior to “jump” over some 

cycles, the cycle-jump technique may predict the overall structural behavior while 

significantly saving computation. 

Both experimental and numerical efforts are needed in this project. This thesis 

is organized in the following manner. A review of pertinent literature considering 

accelerated numerical simulations is given in section 1.2. The extrapolation scheme 

serving as the basis of the cycle-jump technique is described in section 1.3. Since we 

are particularly interested in thermal barrier coatings (TBCs), which inspired this 

work, a short description of TBCs is given in section 1.4. The experimental work by 

our collaborators in section 1.5 provides realistic material data as input for our 

numerical model and will serve as reference for the verification of the cycle jump 

technique. The improvements of cycle-jump technique made to adopt the technique to 

high temperature materials are discussed in Chapter 2. The reference simulations, 

which capture the experimental observation are summarized, and the verification of 

the cycle jump simulating the preliminary experiments are given in Chapter 3.  

1.2 Literature Review of Accelerated Numerical Simulation  

Only a few investigators have considered accelerated numerical simulations for 

cyclically loaded structures. A short review will be given in this section. 

In the 1980’s, Ladeveze proposed a separated representation of the time and 

space coordinates [5-6] for efficient solutions of complex non-linear thermo-

mechanical problems. Based on this approximation, Ladeveze and co-workers [7-9] 
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introduced the “Large Time Increments Method”. In this method, the “general” 

equations for the visco-plastic problems are separated into two groups: (i) “local” 

equations dealing with the non-linear part of the “general” equations, and (ii) “global” 

equations dealing with the linear part of the “general” equations. The local equations 

are solved for every single cycle while the global equations are solved over the total 

historical loading time. The combined results from the two groups of equations give 

the final solutions. This idea is very interesting, however, it does not lend itself to be 

incorporated into commercial finite element software. 

In an alternative method for cycle jump developed by Fish et al. [10-11], the 

time is decomposed into two temporal scales. One is micro-chronological (fast time) 

scale which represents the cyclic response of the structure, while the other is macro-

chronological (slow time) scale which corresponds to the overall trend. The responses 

of the state variables can be obtained, from combination of the responses in the two 

time scales. Theoretically, this method works, however, it is based on damage theory. 

Even though Damage theories can be powerful tools to predict failures, they are built 

on an assumed pre-knowledge of the failure scenario. Moreover, the complicated 

formulas and cumbersome iterative calculations raise big challenges for its 

implementation into commercial finite element software.  

In a method by Kiewal and co-workers [12], the internal variables (including 

displacements, stresses and strains) are extrapolated over a certain number of cycles so 

as to save computations for a model subjected to cyclic loadings. For each material 

point in the model, a spline function is obtained based on the evolution equations of 

the internal variables. The variables are then extrapolated using the obtained spline 
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functions with an error control function which determines the extrapolation range. A 

limitation is that this method is customized for visco-plastic model. 

Based on the principal method of the extrapolation of internal variable by 

Kiewal [12], as described above, Wang et al. [13] utilized a linear shape function for 

extrapolation and made an improvement for the plausibility check of the extrapolation. 

For the check, the internal variables are extrapolated backwards based on two cycles 

of FEA after the last extrapolation. Comparing to the backward extrapolated state, 

whether the last extrapolation is successful or not is determined based on the specified 

criteria for the relative errors. If the extrapolation fails to fulfill the criteria, the 

previous extrapolation will be withdrawn. Although they implemented the 

extrapolation scheme on ABAQUS program, it is also customized for a damage 

model. 

To predict the fatigue damage in structures subjected to cyclic loadings, 

Bogard et al. [14] developed an accelerated scheme where a cycle jump algorithm is 

incorporated. This method is similar to the cycle-jump technique described in section 

1.3 (to be used in this work). The internal variables are described as functions of time, 

and expressed in Taylor series up to second order. The jump length are then 

determined from a number of cycles. At the fatigue damage stage, the damage theory 

is incorporated and the jump length is then determined by the damage parameter. Thus 

this method is also mainly based on the damage theory, and is customized for the 

specific application with specific material properties.  

As discussed, all the methods previously developed have some limitations: 

some of the ideas are hard to be incorporated into commercial finite element software, 

others could only be used by a small group of structures. A general method to improve 
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the computational efficiency and provide insight into failure evolution is needed. This 

is addressed by the method discussed in section 1.3. This method introduced by 

Cojocaru and Karlsson is a general routine and can be applied on any structure with 

slowly changing boundary conditions or evolving material properties [1]. For 

example, it has been customized for application in accelerated fatigue crack growth 

simulation by Moslemian, Karlsson and Berggreen [15]. 

1.3 Existing Modeling Scheme 

In this section, we will review the ‘cycle-jump technique’ [1], the numerical 

scheme which serves as the foundation for this thesis.  

As already discussed, for structures subjected to cyclic loadings, it can be time-

consuming to simulate the structure under a single load cycle; to model multiple 

cycles can become very lengthy and inefficient. Thus, the “cycle jump” technique is a 

very useful tool to save computational time. In this work, we will extend a technique 

previously developed by Cojucaru and Karlsson [1]. We will briefly review this 

existing algorithm here. In the cycle jump technique, not all individual cycles need to 

be simulated. By establishing a general evolution of the structure and extrapolating the 

general evolution, the simulation could skip, or “jump”, over some cycles. By making 

those jumps, computational efforts can be saved significantly so as to improve the 

simulation efficiency.  

A state variable can be any meaningful measurable quantity in the finite 

element simulation, for instance, a stress, strain or displacement component at a point 

in the structure. A typical example of how a state variable evolves as a function of 

time is shown in Figure 1.1. We can see a global and local evolution where the local 

change is a cyclic variation during one cycle and the global change is the general trend 
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that can be extracted over many cycles. In order to reduce computational time by 

making jumps, the cycle jump technique work as follows [1]:  

1. Initial simulation of several cycles with finite element analysis (FEA) to establish 

the   global trend, i.e., global evolution function ( )y t for the structural variables; 

2. Extrapolation of the state variables by the global evolution functions for the cycle 

jump; 

3. Initialization of the extrapolated state for a new finite element analysis after the 

jump; 
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Figure 1.1 Evolution of a state variable at a selected point of a structure subjected to 

cyclic loading, simulation with the cycle jump technique compared to the 

cycle-by-cycle reference case. 
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Figure 1.2 A schematic of a state variable evolution for a structure subjected to 

cyclic loading (Adopted from Cojocaru and Karlsson [1]) 

The length of the jump (i.e. number of cycles to jump over) is calculated by the 

‘control function’ [1]. At least three data points of the state variable (e.g. components 

of stress, strain, displacement) are extracted after the simulation at the end of each 

individual cycle. The data points could be at any specific time as long as they 

correspond to the same relative time in each cycle. These data points are defined as

1 1 1 2 2 2 3 3 3( , ), ( , ), ( , )P t y P t y P t y , as shown in Figure1.2. From these points, we can easily 

obtain the variable change 1( )y t and 2( )y t , and then define the discrete slopes 

12 1 1( ) ( ) / cycles t y t t    and 23 2 2( ) ( ) / cycles t y t t   , where 12 1( )s t is the slope of the 

segment connecting point 1 1 1( , )P t y  and 2 2 2( , )P t y , 23 2( )s t  is the slope of the segment 

connecting point 2 2 2( , )P t y  and 3 3 3( , )P t y , and 1 2 2 3cyclet t t t t      is the cycle 

length (time).  
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The allowed jump length for each extrapolated variable is dictated by the 

following criterion [1]: 

1 , 12 1

12 1

( ) ( )

( )

M

p y jump

y

s t t s t
q

s t

 
                                                                                     (1.1) 

where yq  is a relative error ( 0yq  ), ,

M

y jumpt  is the time spanned by the jump for the 

material point M , 1 ,( )M

p y jumps t t  is the predicted slope at the moment after the jump, 

obtained by linear extrapolation as [1]: 

12 1 23 2
1 , 12 1 ,

( ) ( )
( ) ( )M M

p y jump y jump

cycle

s t s t
s t t s t t

t


   


                                                       (1.2) 

The value of allowed jump length is now easily obtained [1]: 

12 1

,

12 1 23 2

( )

( ) ( )

M

y jump y cycle

s t
t q t

s t s t
  


                                                                             (1.3) 

The value of  yq   is specified by the user and may vary as the simulation progresses. 

In general, ,

M

y jumpt  will be unique for each material point and variable. Thus, 

the jump length is set to be the minimum ,

M

y jumpt  as [1]: 

 ,min /M

jump cycle y jump cyclet t t t     
                                                                         (1.4) 

Finally, the extrapolated state variables could be calculated by [1]: 

1 1 12 1 1

1
( ) ( ) [ ( ) ( )]

2
jump p jump jumpy t t y t s t s t t t                                                    (1.5) 
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Figure 1.3 A schematic of the implementation of cycle jumps (Adopted from 

Cojocaru and Karlsson [1]) 

Figure 1.3 shows the implementation scheme of the cycle jump technique. The 

finite element model is created by ABAQUS/CAE and Python scripts for the 

ABAQUS Scripting Interface. A set of cycles is simulated and solved by ABAQUS 

Solver which interacts with the user subroutines. The solution results are extracted and 

the states of variables are analyzed by the Python scripts for jump attempts. The 

analysis establishes the global evolution function and determines the jump length 

based on the control criteria by Eq. (1.1). The states are then extrapolated based on the 

global evolution function and output to external data files. The extrapolated states are 

then initialized in the model by the Fortran user subroutines: the extrapolated 

displacements for every node are described through DISP, the extrapolated stresses 

and strains for every integration point are initialized by SDVINI, and UMAT. 
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This routine had been successfully utilized to conduct cycle jumps in a basic 

FEA model for a cyclically loaded cylinder [1] where it was implemented using the 

commercial program ABAQUS and PYTHON code. However, since that work 

focused on the proof of concept, simplified material behaviors and simple geometry 

was used. Furthermore, it has not been compared to experimental results. In this work, 

we will extend this numerical technique for are more realistic structures and material 

behaviors. Then we will compare to experimental results. 

1.4 Thermal Barrier Coatings 

            

Figure 1.4 Schematic of  thermal barrier coating 

Thermal barrier coatings are examples of application that have inspired this 

work. Here we will give a short overview of thermal barrier coatings (TBCs). TBCs 

are used for high temperatures protection in the hot sections of gas turbines [16]. 

Top Coat 

Bond Coat 
TGO 
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TBCs are multilayered material systems, typically a nickel based super alloy layered 

with a bond coat and a top coat as shown in Figure 1.4. The bond coat (BC), a metallic 

aluminum-rich layer, provides oxidation protection for superalloy structure. The 

ceramic top coat (TBC) allows a high temperature gradient which provides thermal 

protection. The gradient is sustained via internal cooling of the superalloy. The system 

is subjected to complicated cyclic loads, combining both thermal and mechanical 

loading. 

Repeated cyclic loading eventually leads to fatigue and unpredicted failures of 

the structures. Understanding the failure of these structures requires important 

information of materials under specific load conditions. Failures in TBCs are mostly 

driven by the cyclic loading and a slow evolution of material properties, e.g., the yield 

strength or elastic modulus may change as a function of time at high temperature. 

Thus, TBCs exhibit a strong interaction between time- and load-dependent 

degradation. 

When exposed to high temperature, between the bond coat and the top coat, a 

thermally grown oxide (TGO) layer develops due to the oxidation of the bond coat. 

The TGO mainly consists of aluminum oxide (alumina,      ). It is initially less than 

0.5 μm thick and grows up to 7-10 μm before failure. A schematic of the oxidation 

mechanism is showed in Figure 1.5: the aluminum from the substrate,    , react with 

the oxygen from air,    , to form alumina, the thermally grown oxide (TGO). Most of 

the new TGO resides between TGO and bond coat and results in thickening, while 

some forms between preformed TGO grains and causes lengthening [13]. The induced 

thickening strain is denoted as    , while the lengthening strain is denoted as   . 
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Figure 1.5 Schematic of oxidation mechanism at high temperature (Adopted from 

Ref. [6]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Morphological instability of FeCrAlY due to high temperature oxidation 

(courtesy Dzodzovic and Bartsch, the German Aerospace Center) 

Oxidation growth 
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Initial geometry 
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Cyclic morphological instabilities in the thermally grown oxide (TGO) are 

characterized by the local imperfections which grow on a cyclic basis [17]. They 

represent one source of failures in some thermal barrier systems. Figure 1.6 shows the 

mechanism of the cyclic morphological instabilities. Observations and simulations 

have indicated that several factors interact to cause these instabilities to propagate [17]: 

(i) thermal cycling; (ii) thermal expansion misfit; (iii) oxidation strains; (iv) yielding 

in the TGO and the bond coat; and (v) initial geometric imperfections. Due to the 

growth and the presence of the TGO, crack will initiate, grow and coalesce in its 

vicinity, which eventually results in final failure of the structure by spallation [17].  

FeCrAlY is one type of bond coat used in thermal barrier coatings. The material 

consists of iron (Fe), chromium (Cr), aluminum (Al) and yttrium (Y). Due to the 

material being prone to a high rate of oxidation, it exhibits a significant tendency for 

morphological instabilities. Thus, subjected to high temperature oxidation, FeCrAlY 

will experience significant morphological changes. Therefore, we utilize cyclic 

oxidation of FeCrAlY as an example for the verification of the cycle jump technique. 

Hence, for this work, we will investigate the oxidation evolution of FeCrAlY 

specimen when subjected to high temperature cycles. The morphological instability 

will be investigated and will serve as an application of cycle jump for the verification 

of its validity. 
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1.5 Experiments        

1.5.1 Experimental Goal 

To verify that the cycle jump technique can capture experimental results and to 

demonstrate the power of the method, experimental results, the cycle-by-cycle 

reference simulation, and the simulation with cycle jump must be compared. To 

provide experimental observation for the verification, we proposed experimental 

investigation of the morphological instability of FeCrAlY with grooved surface 

subjected to high temperature thermal cycles. We selected this material and load 

system mainly for three reasons: (i) it contains few and relatively well defined 

parameters; (ii) it shows a clear and easy to measure change that only comes with 

cyclic loading, (iii) these are relatively easy experiments. The experimental work was 

performed by our collaborators, Dzodzovic and Bartsch at German Aerospace Center 

(DLR) in Cologne, Germany. The experiments will provide realistic inputs for 

numerical model, and show the real instability evolution for comparisons, which will 

ultimately serve as application example to verify that the cycle jump technique works 

in capturing the experimental observation. 

1.5.2 Methodology 

Grooves are developed on the specimen surface (shown in section 1.5.3.1) to 

represent the initial imperfections. The specimens are then hung in the furnace for 

specified high temperature thermal cycling to develop the morphological instabilities.  

Each thermal cycle consists of three steps: cooling to low temperature, heating to high 

temperature, and holding at high temperature. After specified number of cycles, the 

specimens are investigated under the scanning electron microscope (SEM) to show the 

morphological shape change.  
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The experimental parameters must be carefully selected, so that the 

morphological instabilities can be developed. Based on previous experimental 

investigations [18] and numerical studies [19,20], we conducted preliminary numerical 

simulations to guide the parameter selections. If the holding temperature is too high, 

the oxidation will occur too fast and therefore we can not have sufficient cycles before 

failures to demonstrate the cycle jump technique. If the cooling rate is too high, there 

might be cracks in the structure due to ‘thermal shock’. In order to show instability 

evolution, we proposed interrupted tests where three specimens were subjected to the 

same operating conditions and then were pulled out of the furnace subsequently at 

selected time. The series of specimens, subjected to increasing numbers of cycles, 

were investigated under SEM to show the instability evolution. The time points for 

interrupted tests were also suggested based on the deforming evolution from our 

numerical results. The selected thermal cycles, the parameters of holding time, holding 

temperature, cooling rate, heating rate, and the interrupted tests are summarized in 

Tabel 1.1.  

TGO growth law, which describes how the oxidation rate evolves, is a very 

important input for the numerical simulations. It can be investigated using two 

methods. One method is to fit the data of TGO thickness measured on the SEM image 

from interrupted tests. This method is more straightforward, but many tests are needed 

to get reliable data. A second method is to establish the growth law from the 

measurement of mass change of the specimen. In this case, the specimens are 

weighted at selected time points during the tests. Thus, this is a non-destructive 

method. The mass change is primarily due to the gain of oxygen during the oxidation. 
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Knowing the mass change of the specimen, m , the mass change of the oxidation, 

TGOm , can be calculated from 

( ) 2
3 ( )

TGO

m
m M Al

M O


   


                                                                                    (1.6) 

where ( )M O  and ( )M Al  are the relative molecular mass of oxygen and aluminum 

respectively. Assuming the oxidation thickness is uniform around the specimen 

surface, and given the total oxidation surface area and the density of TGO which is 

34 /mg mm [21], the TGO thickness evolution function ( )h t can be established. 

1.5.3 Experiments 

 

 

 

 

Figure 1.7 Geometry of the specimen 

 

 

Figure 1.8 Cross section of the grooves 

 

Flat area 

5 grooves with d= 100 µm 

A = 20 µm R2 = 30 µm R1=50 µm 
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1.5.3.1 Specimens 

A schematic top view of the specimen is shown in Figure 1.7. On the 

specimens, 5 grooves with width of 100 µm are developed to represent the initial 

imperfection. As shown in Figure 1.8, the initial imperfection is characterized by two 

radii and an initial amplitude, R1 is about 50 µm, R2 is about 30 µm, and A is about 20 

µm. 

1.5.3.2 Parameter settings and experimental results 

Table 1.1 Experimental parameter settings 

Experiments 
Holding 

temperature,    
Holding 

time 

Cooling  

rate 
Tests 

HL 1087 ℃ 45 mins 870 ℃/min 
176 cycles + 

19 hrs isothermal 

LS 1040 ℃ 18 mins 500 ℃/min 200/350/500 cycles 

New proposed 1100 ℃ 30 mins 500 ℃/min 60/120/200 cycles 

 

Tabel 1.1 summarizes the parameter settings for the experiments. For the 

experiment with high temperature and long holding (HL), the specimen was subjected 

to thermal cycles with 15 minutes for cooling and heating, and 45 minutes for holding 

at 1087 ℃. The cooling rate was about 870 ℃/min. The specimen was subjected to 

176 cycles of cyclic loading. Due to a technical error, the specimen was then held at 

high temperature for another 19 hours in isothermal condition. The morphological 

change is shown in Figure 1.9. The deformed amplitude A is about 26.7 µm compared 

to the initial amplitude of 20 µm, and the TGO thickness h is about 3 µm compared to 

zero initially. There is a potential issue that there is spallation of oxidation, which we 

believe is due to ‘thermal shock’ because of high cooling rate. 



 18 

 

Figure 1.9 Morphological change from the HL experiment 

For the experiment with low temperature and short holding time (LS), the 

specimen was subjected to thermal cycles with 15 minutes for cooling and heating, 

and 18 minutes for holding at 1040 ℃. The cooling rate was about 500 ℃/min. The 

SEM image of morphological change after 200 cycles is shown in Figure 1.10. The 

deformed amplitude A is about 22.4 µm, and the TGO thickness h is about 1.60 µm. 

This case gave a non-uniform TGO thickness and minor morphological change. We 

attribute this to the short holding time. 

 

Figure 1.10 Morphological change from the LS experiment after 200 cycles 
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1.5.3.3 Future experiments 

Based on the two initial sets of experiments, we propose a third set of 

experiment with parameter settings also given in Table 1.1. Based on our preliminary 

simulation with the new suggested parameters, we believe that this new proposed 

experiment will overcome the issues limiting the evaluation from previous tests. The 

specimens will be subjected to thermal cycles with 15 minutes for cooling and 

holding, and 30 minutes for holding at high temperature of 1100 ℃. The holding at 

1100 ℃ will give uniform TGO thickness, and 30 minutes holding per cycle will 

provide sufficient cycles for simulation with cycle jump. Moreover, we have not 

obtained reliable TGO growth law from the two initial experiments. In order to get 

more reliable data, the mass change will be measured more frequently at the beginning 

when the oxidation grows much faster. Thus, this new experiment is proposed to show 

the instability evolution and to get reliable the TGO growth law.  
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Chapter 2 

EXTENDING THE CYCLE JUMP TECHNIQUE 

Showing the power of the cycle jump technique in accelerated simulation, 

Cojocaru and Karlsson were looking at a basic model with simplified material 

properties [1]. The cycle jump was proposed to have wide applications in accelerating 

simulation of multilayered structures subjected to cyclic loading. The overall goal is to 

verify that the cycle jump technique is able to capture the experimental results and 

demonstrate the power of it in computational savings.  

Material structures subjected to thermal cycling typically exhibit non-linear 

time- and temperature-dependent material properties. Thus, we set out to expand the 

model and extend the cycle jump technique. A more sophisticated extrapolation 

scheme is developed and utilized. For simulating the experiments described in Section 

1.4, a more realistic TGO growth strain law needs to be incorporated. Hence, we will 

investigate the performance of cycle jump in modeling the structure with time-

dependent TGO growth strain rate and temperature-dependent yield strength. 

Moreover, we will later see that creep is important to be incorporated compared to the 

previously used time-independent plasticity. Thus, we will also include creep into the 

model with cycle jump for investigation.  

Two sets of simulations will be conducted: cycle-by-cycle reference 

simulations and simulations with cycle jump. These two sets of simulations are 

completed separately. Cycle-by-cycle reference simulations only serve as reference for 

comparison with the results from simulations with cycle jump, so as to evaluate the 
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performance of the cycle-jump technique. Results from the cycle-by-cycle reference 

simulations are never used as input in the simulations with cycle jump. 

2.1 Introduction of A Polynomial Extrapolation Scheme 

2.1.1 Theoretical Framework 

The extrapolation scheme that Cojocaru and Karlsson [1] used was described 

in Section 1.3.1. For convenience, this extrapolation method will be named ‘linear 

extrapolation’ in the discussion that follows. As described previously, the ‘linear 

extrapolation’ takes discrete slopes  based on cycle-by-cycle simulations1, extrapolates 

a slope for the jump control, and utilizes these slopes for extrapolating the state 

variables after the cycle jump. With the simple material properties in a basic model as 

shown in that work, the ‘linear extrapolation’ scheme works well. However, for a 

more complicated structure like the one used in our experiments, this extrapolation 

scheme turns out to have some limitations discussed below. 

The solid curve in Figure 2.1 shows the evolution of a state variable, y, where 

the data are sampled periodically at the end of each cycle from a cycle-by-cycle 

reference simulation. The dashed curve shows the evolution of the discrete slope, 

∆y/∆N. We can see that the discrete slopes fluctuate most likely due to numerical 

issues. Thus the ‘linear extrapolation’ is not suitable since this extrapolation scheme 

will not allow efficient jumps. For example, from cycle-to-cycle simulations before a 

jump attempt, we can extract data points, P6 – P1, as shown in Figure 2.2. If we take 

the last three data points, P3, P2, and P1, and attempt to make a jump by ‘linear 

                                                 

 
1 Note: When the cycle jump technique is used, initial cycle-by-cycle simulations are used followed by 

a jump. This is not to be confused by cycle-by-cycle reference simulations. 
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extrapolation’ from the data, then the jump control criteria will not allow it. Thus, a 

more sophisticated extrapolation scheme should be used so that the simulations are not 

governed by minor numerical fluctuations. Thus, here we developed an alternative 

more general extrapolation method, called ‘polynomial extrapolation’.  
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Figure 2.1 Evolution of a state variable and its discrete slope within a structure 

subjected to cyclic loading 
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Figure 2.2 Schematic of polynomial extrapolation for state variables within a 

structure subjected to cyclic loading 

Figure 2.2 shows the implementation scheme of the ‘polynomial 

extrapolation’. For this extrapolation, six data points of the state variable, P6 – P1, are 

extracted periodically from the simulation at the end of each cycle (note that the data 

could also be sampled at any specific time which is relatively the same in each cycle). 

From a 2
nd 

order polynomial fit with least squares, we can obtain the evolving function 

of the state variable as: 

2( )y t A B t C t                                                                                                 (2.1) 

where t is the time and y(t) stands for any evolving variable. A, B, and C are constants 

obtained from the polynomial fit.  
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Taking a derivative of Eq. 2.1 gives the evolving slope function dictated as: 

( ) 2
dy

s t B C t
dt

                                                                                                (2.2) 

For control of the cycle jump, the jump length allowed for each extrapolated variable 

follows bellow criterion: 

1 , 1

1

( ) ( )

( )

M

y jump

y

s t t s t
q

s t

 
                                                                                    (2.3) 

where yq is the relative error specified by user as the input control parameter, ,

M

y jumpt  

is the jump length for material point M, 1( )s t represents the slope at 1t  which is the 

time point before the cycle jump, 1 ,( )M

y jumps t t is the extrapolated slope at 1 ,

M

y jumpt t

after the jump. If the attempted jump length does not satisfy the above control 

criterion, it will be reduced by one cycle iteratively to ensure that the extrapolated 

slope is sufficiently close to the slope before the attempted jump. 

In general, ,

M

y jumpt  will be unique for each material point and variable. Thus, 

to ensure that the control criteria are fulfilled, we select the jump length to be the 

minimum ,

M

y jumpt  as: 

 ,min M

jump y jumpt t                                                                                                  (2.4) 

Hence, we can get the extrapolated state variable after the jump and express it as: 

2

1 1 1( ) ( ) ( )jump jump jumpy t t A B t t C t t                                                         (2.5) 

 

 

 

 



 25 

2.1.2 Numerical Verification 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.3 Basic finite element model of a sample structure 

Table  2.1 Simplified material properties 

 *The yield strength of the TGO varies linearly between the two temperatures. 

 

For verification of this newly proposed extrapolation scheme, we first 

investigate the application of the ‘polynomial extrapolation’ on the basic model used 

in the previous work by Cojocaru and Karlsson [1]. The commercial finite element 

software ABAQUS [2-4] will be used. The basic model, shown in Figure 2.3, is a two 

Material 
E (GPa) 

[18,20] 
v [18]    

* 
(MPa) 

Thermal Expansion Coefficient 

α ∙106 /℃ [18,20] 

Bond Coat 190 0.3 200 14
 

TGO 380 0.2 
10000, T ≤ 900 ℃ 
1000, T ≥ 1000℃ 

8 

R2 

h 

TGO 

Bond 
Coat 

R1 𝜺𝒕 𝜺𝒈 
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layer cylinder with dissimilar materials. The TGO thickness h is taken to be 1 µm 

initially, the inner radius of the structure R1 is 15 µm, and the thickness of the bond 

coat R2 is 50 µm. The model consists of 5752 nodes and 1800 of Quadrilateral 8-node 

generalized plane strain elements (CPEG8). The material properties are summarized in 

Table 2.1. Each thermal cycle consists of three steps: cooling to room temperature, 

heating to high temperature and holding at high temperature. At maximum 

temperature during holding, the TGO grows with a thickening rate of      
  , and 

a lengthening rate of       
   per cycle. For comparison, the result from application 

of the ‘linear extrapolation’ scheme [1] is duplicated. 

Figure 2.4 shows the application of cycle jump with the two different 

extrapolation schemes in capturing the radial displacement evolution of the inner TGO 

surface as a function of cycles when the structure is subjected to high temperature 

thermal cycles. The graphs show the results from the cycle jump simulations 

compared to the cycle-by-cycle reference simulations. Figure 2.4.A shows the results 

from the cycle jump using ‘linear extrapolation’, while Figure 2.4.B shows the results 

from the cycle jump utilizing ‘polynomial extrapolation’. In simulating 500 cycles, the 

cycle jump with the ‘linear extrapolation’ saves 307 cycles of simulation by making 

23 jumps. This is similar to the results by Cojocaru and Karlsson [1]. Utilizing the 

cycle jump with the ‘polynomial extrapolation’, we save 310 cycles of simulation by 

18 jumps. In this case, compared to the reference simulation, cycle jump with both 

extrapolation schemes captures the structural behavior very well while save about 60% 

of the computational efforts. Note that the time cost of data extraction and 

extrapolation during jump attempts or jumps are negligible compared with the 

significant savings by “jumping” over a large number of cycle-by-cycle simulations.  
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Figure 2.4 Radial displacement evolution of TGO inner surface, (A) simulation with 

cycle jump utilizing ‘linear extrapolation’ compared with the reference 

simulation; (B) simulation with cycle jump utilizing ‘polynomial 

extrapolation’ compared with the reference case. 
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2.2 Time- and Temperature-dependent Material Behaviors 

In the previous work by Cojocaru and Karlsson [1], only time-independent 

material properties were considered. Moreover, the oxidation growth strain rate was 

taken to be constant, and simplified, time-independent plasticity was considered.  

However the oxidation evolution actually is time-dependent [18], and the 

oxidation growth follows a power law as a function of time [18]. Thus, we will 

improve the numerical scheme so that it can capture this behavior, and will investigate 

the performance of cycle jump in modeling the structure with a time-dependent TGO 

growth strain rate. In addition, we will also impose temperature-dependent yield 

strength for the bond coat to better represent the behaviour of high temperature 

material.  

With the time-dependent oxidation rate and temperature-dependent yielding 

behaviour, we will look at a similar sample structure, as shown in Figure 2.3, but with 

modifications in the dimensions to better represent the experimental geometry. The 

TGO thickness, h, is taken to be 0.5 µm initially; the inner radius of the structure, R1, 

is 30 µm, and the thickness of the bond coat, R2, is 1 mm. The model consists of 4768 

nodes and 1504 Quadrilateral 8-node generalized plane strain elements (CPEG8). 

2.2.1 Time- and Temperature-dependent TGO Growth 

For FeCrAlY subjected to cyclic high temperature, the TGO thickness 

evolution has been shown to approximately follow [18]: 

( ) nh t k t                                                                                                                 (2.6) 

where the parameters, k and n, are temperature-dependent and are given in Table 2.2.a. 

Taking parameter n to be 0.38 constantly [18], parameter k from polynomial 

extrapolation for the temperatures of interest in this work is shown in Table 2.2.b.  
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Table 2.2 Parameters of oxidation thickness growth 

      Table 2.2.a Data from Ref. [18]                    Table 2.2.b Extrapolated data from Table 1.a  

 
 

Equation (2.6) and the parameters in Table 2.2.a assume that the initial thickness is 

vanishingly small. However, the initial thickness is assumed to be 0.5 μm for the TGO 

layer in the model. By giving a ‘time shift’ for the thickness growth function, the 

thickness evolution at the four high temperatures is shown in Figure 2.5. The TGO 

growth is simulated by imposing stress-free [20] growth strain in the lengthening and 

thickening directions through user subroutine UEXPAN (see Appendix). The 

incremental true strain for thickening evolution is given as: 

( )
( ) ln( )

( )
t

h t t
t

h t


 
                                                                                             (2.7) 

while the incremental lengthening true strain is taken to be proportional to thickening 

strain as: 

( ) ( )g tt t                                                                                                      (2.8) 

where β is the ratio of lengthening strain rate over thickening strain rate.  

Temp. 

(℃) 

k 

(μm ∙ h
–n

)
 n 

25 - - 

1000 0.255 0.38 

1100 0.656 0.40 

1200 1.412 0.38 

1300 2.630 0.38 

Temp. 

(℃) 

k 

(μm ∙ h
–n

) 
n 

1000 0.255 0.38 

1040 0.362 0.38 

1087 0.564 0.38 

1100 0.656 0.38 
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Figure 2.5 TGO thickness evolution at high temperature, adjusting for the initial 

thickness 

In the previous work by Cojocaru and Karlsson [1], the application example 

considered is not a real-time case. In order to be utilized for simulating real-time 

problem, corresponding modifications have been made in the cycle jump numerical 

code. Because the oxidation strain rate is time-dependent, the historic time will be 

recorded before making a jump. The subroutine UEXPAN will impose the correct 

time-dependent oxidation strain rate base on the recorded overall historic time.  

 

 

T=1100℃ 

T=1087℃ 

T=1040℃ 

T=1000℃ 
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2.2.2 Temperature-dependent Material Properties 

Temperature-dependent material properties are also included. The elastic 

modulus, poison ratio, and thermal expansion coefficient are summarized in Table 2.3. 

The elastic modulus and Poisson’s ratio for FeCrAlY, tested by Tolpygo and Clarke 

[18], are assumed to be constant. The elastic modulus for α-Al2O3 is temperature-

dependent [18], while Poisson’s ratio for α-Al2O3 is assumed to be constant. The 

thermal expansion coefficient for α-Al2O3 [18] and FeCrAlY [22] are assumed to be 

linear with increasing temperature.  

Table  2.3 Elastic modulus, Poison’s ratio, and thermal expansion coefficient 

 

The yield strengths for FeCrAlY and TGO are summarized in Table 2.4. The 

yield strength for TGO is approximately 1.2 GPa at high temperature [18], and is very 

high at lower temperature and is assumed to be 10 GPa at room temperature [20].  

Table 2.4 Temperature-dependent plasticity 

Material 
Elastic Modulus 

E (GPa) [18] 

Poisson’s Ratio 

[18] 

Thermal Expansion Coefficient 

α ∙10
6
 /℃ [18,22] 

FeCrAlY 190 0.3               

TGO 

25 ℃ 400 

0.25            1000 ℃ 350 

1100 ℃ 340 

FeCrAlY [22] 

Temp. (℃) Yield Strength (MPa) 

25 510 

600 185 

800 55 

1000 25 

TGO [18,20] 

Temp. (℃) Yield Strength (MPa) 

40 10000 

1080 10000 

1085 1200 

1087 1200 
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2.2.3 Simulation Results 

In this section, we will investigate the influence of the control parameter   , 

compare the performance of the two extrapolation scheme, and show the effect of 

adding a control of maximum jump length.  

With the time-dependent oxidation rate and temperature-dependent yielding 

behavior described in Section 2.2.1 and Section 2.2.2, we will look at a similar sample 

structure, as shown in Figure 2.3, but with modifications in the dimensions. The TGO 

thickness, h, is taken to be 0.5 µm initially; the inner radius of the structure, R1, is 30 

µm, and the thickness of the bond coat, R2, is 1 mm. The model consists of 4768 nodes 

and 1504 elements with the type of Quadrilateral 8-node generalized plane strain 

(CPEG8). 

2.2.3.1 Influence of the control parameter 

As discussed earlier in Section 1.3.1, the control parameter    defined a 

criterion for the simulation accuracy. In this section, we will investigate the influence 

of this parameter on the simulation results. The control parameter is used here to 

control the acceptable error on the state variable, displacements. Four selected values 

(  =0.25, 0.5, 1.0, 2.0) are specified in the jump control for the simulations with cycle 

jump.  

For selected values of the control parameter,    , computational savings for 

simulations with cycle jump utilizing both linear extrapolation and polynomial 

extrapolation are summarized in Table 2.5. Generally, increasing the value of control 

parameter   , e.g., increasing from 0.25 to 0.5 in this case, will enhance the 

computational efficiency. However, if the value specified is too high, e.g.,        in  
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Table 2.5 Savings of computation with cycle jump technique 

   
Linear extrapolation Polynomial extrapolation 

Jumps Saved cycles Jumps Saved cycles 

0.25 22 324 19 279 

0.5 22 342 14 337 

1.0 20 342 19 293 

2.0 diverged diverged 

 

Table 2.6 Relative errors of final radial displacement for selected for selected    

   
Relative error, rE  

Linear extrapolation Polynomial extrapolation 

0.25 0.31% 0.49% 

0.5 1.88% 1.88% 

1.0 4.66% 1.88% 

2.0 diverged diverged 

 

Table 2.5, the simulations may become slower or even diverge due to convergence 

difficulties after a jump that is “too large”.  

Comparing with reference case, Figure 2.6 shows the influence of control 

parameter    , on the simulation accuracy. The simulation accuracy is described by 

relative error which is defined as: 

100%
jump ref

r

ref

y y
E

y


                                                                                              (2.9) 

For selected    , the relative errors of final radial displacement after 500 thermal 

cycles are summarized in Table 2.6. We can see that the computational accuracy 

decreases as    increases.   
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Thus, there is a compromise between computational efficiency and accuracy. 

However with little loss of accuracy, we can significantly enhance the efficiency. 

Therefore, it is important to select    to optimize between accuracy and computational 

time. In this case, the computation is most efficient with high accuracy when    is 

specified to be around 0.5, where the cycle jump saves about 68% of computational 

efforts with cost of less than 2% in accuracy.  
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Figure 2.6 Radial displacement evolution of TGO inner surface, simulation results 

with selected control parameters compared with the reference simulation, 

(A) cycle jump utilizing ‘linear extrapolation’; (B) cycle jump utilizing 

‘polynomial extrapolation’. 
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2.2.3.2 Comparison between linear and polynomial extrapolation  

Next, we compare the cycle jump technique with the linear and polynomial 

extrapolation schemes letting        (Figure 2.7). Over 500 cycles of simulation, 

the cycle jump with linear extrapolation saves 342 cycles by 22 jumps, while 

polynomial extrapolation saves 337 cycles by 14 jumps, Tabel 2.5. Their 

performances are almost the same in computational savings.  

For each jump (or jump attempt), it also cost computation time for the data 

extraction, state extrapolation and initialization after the jump. Thus, in this case, the 

newly developed polynomial extrapolation is more efficient at making cycle jumps as 

fewer jumps are needed to finish the same number of cycles.  
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Figure 2.7  Radial displacement evolution of TGO inner surface,        , 

simulation with cycle jump utilizing different extrapolation scheme 

compared with the reference simulation, (A) cycle jump with linear 

extrapolation, (B) cycle jump with polynomial extrapolation. 
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2.2.3.3 Control of maximum jump length  

Next, we will investigate if higher accuracy can be obtained by limiting the 

maximum possible length allowed in the cycle jump technique. 

For example, we can see, in Figure 2.7, that after about 100 cycles, a relatively 

“linear” region results in a relatively long jump based on jump control with the 

specified control parameter. It appears that this relatively long jump initiates a small 

divergence compared to the cycle-by-cycle reference simulation.  

Figure 2.8 shows the simulation results of the radial displacement evolution 

utilizing cycle jump with polynomial extrapolation and a maximum jump control 

which only allow a jump up to 30 cycles. Comparing with Figure 2.7(B), we can 

conclude that adding a proper maximum jump control (maximum jump of 30 cycles 

for this case) can prevent the extrapolation from diverging, thus increase the accuracy. 

Table 2.7 summarizes the computational savings of the cycle jump technique with 

‘polynomial extrapolation’ comparing between cases without and with maximum 

jump control.  

Table 2.7 Comparison of cycle jump w/o and w/ maximum jump control 

   

Polynomial extrapolation 

Without maximum jump control With maximum jump = 30 cycles 

Jumps 
Saved 

cycles 

Relative 

errors 
Jumps 

Saved 

cycles 

Relative 

errors 

0.25 19 279 0.51% 18 289 0.44% 

0.5 14 337 1.93% 17 307 0.74% 

1.0 19 293 1.94% 17 310 1.80% 

2.0 diverge 19 283 3.12% 

 

Thus, our results suggest that the accuracy for simulation with cycle jump 

technique can be improved by adding a proper control over the maximum jump length. 
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Figure 2.8 Radial displacement evolution of TGO inner surface,        , cycle 

jump utilizing polynomial extrapolation and a control of maximum jump 

length = 30 cycles, compared with the cycle-by-cycle reference 

simulation. 
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2.3 Time-dependent Properties: Creep  

In the previous numerical simulations, simplified time-independent material 

properties were used. The materials used in our experiments are materials used in high 

temperature applications with particular focus on TBCs. TBCs exhibit time-dependent 

material response, thus incorporation of creep into the numerical model is important. 

Thus, we will now include creep into the model with the cycle jump technique.  

2.3.1 Creep  

Creep behavior will be incorporated in both the bond coat and the TGO. The 

creep behaviors are power creep laws based on Refs. [23-25]. Evans, et al [23] 

summarized the creep behavior for TGO as:  

10 2.3 51000
1.08 10 exp( )

T
  
      , s-1                                                                   (2.9) 

where  ̇ is the strain rate,   is the material stress value, and T is the temperature. The 

creep behavior for the bond coat with material of NiCrAlY is described by Evans, et al 

[23] as: 

15 3.0 35840
8.96 10 exp( )

T
  
      , s-1                                                                 (2.10) 

The creep behavior for the bond coat with material of FeCrAlY is described in Eq. 

2.11 by Saunders, et al [24], and Eq. 2.12 by Echsler, et al [25]:              

27 5.5 47136
5.96 10 exp( )

T
  
       , s-1                                                                (2.11) 

17 3.68 39088
1.92 10 exp( )

T
  
      , s-1                                                                (2.12) 

At a given temperature, the creep function can be given as: 

nA     , s-1                                                                                                       (2.13) 
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Table 2.8 Parameters, A and n, in Eq. 2.13 

 

where, for selected temperatures, the parameters A and n in Eq. 2.9-2.12 are given in 

Table 2.8.  

To capture the experimental results in the simulations, these creep laws were 

implemented in the finite element model. Simulations with creep laws for FeCrAlY, 

Eq. 2.11-2.12, failed to converge, while simulations with the creep law for NiCrAlY, 

Eq. 2.10, converged. 

A basic finite element model was created to illustrate the response of the 

various creep laws for the bond coat. To this end, a uniaxial test was simulated, Figure 

2.9, where the structure is subjected to tension and held at constant strain of    ∙

    . This strain is selected to result in the instantaneous stress level of about 10MPa, 

which is the approximate stress level for the material at around 1000 ℃ based on the 

our simulations of the experiments. The relaxation response, as shown in Figure 2.10, 

indicates that FeCrAlY (creep laws in Eq. 2.11 and Eq. 2.12) relaxes much faster than 

NiCrAlY (creep law in Eq. 2.10). We believe that this is the reason why the creep laws 

for FeCrAlY raise convergence problem.  

We could make significant changes to the models, including changing the 

mesh and time increments, to accomplish convergence using the FeCrAlY material. 

However, for simplicity, we will for now implement the NiCrAlY properties to 

Temp. 

(℃) 

TGO 
Bond coat 

NiCrAlY FeCrAlY 

A n A n A1 n1 A2 n2 

1000     ∙       2.3     ∙      3.0     ∙       3.0     ∙      3.68 

1040     ∙       2.3     ∙      3.0     ∙      3.0     ∙      3.68 

1087     ∙       2.3     ∙      3.0     ∙      3.0     ∙      3.68 
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investigate whether creep properties are possible for use in the cycle jump model. 

Thus, in this work, we will just utilize the creep law of NiCrAlY, Eq. 2.10, for the 

bond coat material.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9 Schematic of the model for a relaxation test 

550 600 650 700 750 800 850

0

2

4

6

8

10

17 3.68 39088
1.92 10 exp( )

T
  
   

27 5.5 47136
5.96 10 exp( )

T
  
   

15 3.0 35840
8.96 10 exp( )

T
  
   

M
is

e
s

 s
tr

e
s

s
 (

M
P

a
)

Time (s)  

Figure 2.10 Relaxation response in the bond coat for various creep laws, T=1000 ℃ 

𝜺  𝟓 ∙ 𝟏𝟎 𝟓 



 43 

2.3.2 Incorporation of Creep in the Cycle Jump Technique 

For the application of the cycle jump, the extrapolated stress and strain fields 

are initialized by the subroutine UMAT. Thus, constitutive relations for creep need to 

be built into UMAT and then incorporated into the scheme of the cycle jump 

technique. (The subroutine UMAT developed for this work is included in the 

appendix.) 

2.3.3 Simulation Results for Creep Behavior with the Cycle Jump Technique 

We utilize the two layer cylinder basic model, Figure 2.3, to investigate the 

performance of the cycle jump technique when creep behaviors are incorporated. The 

polynomial extrapolation is used here for the cycle jump technique.  

In Figure 2.11, the evolution of radial displacement based on the cycle jump 

with polynomial extrapolation is compared to that of the reference case. We can see 

that the results from the cycle jump technique match well with that from the reference 

case. In this case, with control parameter    = 0.25, the cycle jump technique is able 

to save 105 cycles out of 200 cycles by making 7 jumps, which is about 50% in 

computational efforts. The relative error for the radial displacement at the inner 

surface by cycle jump is about 0.75% compared to the reference simulation. Thus, in 

this case, the cycle jump technique saves about 50% of the computation with cost of 

less than 1% in accuracy. 
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Figure 2.11 Radial displacement evolution of TGO inner surface in creep model, see 

Figure 2.3, simulation with cycle jump utilizing ‘polynomial 

extrapolation’ compared with the cycle by cycle reference  simulation. 
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Chapter 3 

VERIFICATION OF THE CYCLE JUMP TECHNIQUE 

3.1 Simulation Objectives 

To verify that the cycle jump technique can capture the real-life experiments 

and to demonstrate the power of it in accelerating simulation, experimental results, the 

cycle-by-cycle reference simulation, and the simulation with cycle jump must be 

compared. Thus, we will investigate the performance of the cycle jump technique in 

simulating the experiments summarized in Sec. 1.4. The first step is to develop a 

cycle-by-cycle numerical model which captures the experimental results. During this 

procedure, the unknown material properties are also investigated through parametric 

studies. Since the material parameters are unknown in this case, a part of this work 

provides realistic material data as inputs for the model and will serve as the reference 

case for verification of the cycle jump technique. Then the cycle jump technique will 

be imposed for investigations.  

3.2 Finite Element Model 

3.2.1 Geometry and Boundary Conditions 

The geometric dimensions of the specimen are described in the Section 1.4. 

Figure 3.1 shows the cross section of one groove that is developed on the specimen 

surface to represent the initial imperfection on the material surface. By assuming 

symmetry, we can reduce the model size and only need to investigate the domain as  
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Figure 3.1   (A) Schematic of model domain; (B) SEM image of one groove with TGO 

 

 

Figure 3.2 Schematic of geometry and boundary conditions 

 

R2=30μm R1 =50μm TGO 

FeCrAlY 
FeCrAlY 

Grooves 

Model domain 

(A) 
(B) 
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showed in Figure 3.1(a). As described in the Section 1.3.2, when the specimen is 

subjected to high temperature, a second material layer, the thermally grown oxide 

(TGO) develops. Thus, the structure has two layers with dissimilar materials. The 

initial TGO thickness is assumed as 0.5  m in the model.  

The commercially available software ABAQUS [2-4] is used in our 

simulations. To this end we investigate a two-dimensional finite element model. We 

utilize the assumption of generalized plane strain providing that the strain in the out of 

plane direction is assumed to be uniform. Quadrilateral 8-node generalized plane 

strain elements with reduced integration (CPEG8R) are used for the entire model. The 

generated finite element model contains 21654 nodes and 6944 elements. The 

geometric dimensions and boundary conditions in the model are shown in Figure 3.2. 

A sequence of refined meshes was investigated until convergence of the simulation 

results was obtained. 

3.2.2 Thermal Cycling 

The model is stress-free initially at maximum temperature which corresponds 

to the initial condition for the material. The structure is then brought to room 

temperature. The stresses at room temperature are the highest due to thermal 

mismatch. However, we note that the yield strength is significantly higher at room 

temperature than at high temperature. The structure is subjected to thermal cycling. In 

the model, each cycle consists of three steps: (1) cooling to room temperature   , (2) 

heating to maximum temperature   , and (3) holding at maximum temperature. The 

loading sequence is illustrated in Figure 3.3, where the dash curve is the thermal 

cycling in the experiments while the solid curve is the simplified thermal cycling in 

our numerical model. 
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Figure 3.3 Schematic of thermal cycles in the experiments and simulations 

3.2.3 Material Behaviors 

In previous studies of the morphological instability of TGO [19,20], simplified 

time-independent material properties were used. The materials used in our 

experiments are materials used in high temperature applications with particular focus 

on TBCs. TBCs exhibit time-dependent material response, which is incorporated into 

the model. Previous work has for simplicity used time-independent yielding to 

simulate the morphological instabilities. For comparison, we will conduct two groups 

of simulations, one group utilized time-independent material yield strengths while the 

other group used creep properties. This will guide future simulations regarding 

selection of properties. 

Inputs for time- and temperature-dependent material behaviors in this finite 

element model were described previously in Chapter 2. Time- and temperature-
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dependent TGO growth was described in Section 2.2.1. Temperature-dependent 

material properties were summarized in Section 2.2.2, while creep properties were 

described in Section 2.3.1. The Creep properties are taken from Ref. [6], with Eq. (3.1) 

for the TGO, and Eq. (3.2) for the bond coat. 

10 2.3 51000
1.08 10 exp( )

T
  
      , s-1                                                                    (3.1) 

15 3.0 35840
8.96 10 exp( )

T
  
      , s-1                                                                    (3.2) 

3.3 Parametric Study with Time-independent Plasticity  

Parameters such as maximum temperature during holding, ratio of lengthening 

strain over thickening strain, and yield strength for both bond coat and TGO have 

important effects on the evolution of the morphological instabilities [18,20]. 

The maximum temperature,   , governs the oxidation rate. The TGO growth 

laws depicted in Figure 2.6 show that increasing the holding temperature will 

accelerate the oxidation, which means higher the oxidation growth strain rate, thus 

resulting in faster deformation [18]. This has been verified by our numerical results as 

shown in Fig 3.4. The structure was subjected to 180 thermal cycles with 45 minutes 

of holding in each cycle, but with two selected holding temperature,          ℃ 

and         ℃, for comparison. The results suggest that holding at 1100 ℃ gives 

significantly larger deformation than holding at 1050 ℃.  

The lengthening strain (lateral growth strain) has been investigated in previous 

work [26]. As defined in Section 1.3.2, lengthening strain,   , is the oxidation induced 

strain in the lengthening direction, i.e. the direction along the structure interface. 

Thickening strain,   , is the oxidation induced strain in the TGO thickness direction. 

For simplicity in the numerical model, lengthening strain rate was taken to be 
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proportional to the thickening strain rate [20].   stands for the ratio of lengthening 

strain over thickening strain, thus  = t /g. Taking    to be constant, Ref. [20] showed 

that increasing the ratio, i.e. increasing lengthening strain, results in increased 

deformation. This is due to the fact that increasing lengthening strain gives higher 

tangential stress, thus provides higher driving force towards morphological 

instabilities. This effect is also verified in our numerical model as shown in Figure 3.5. 

The figure shows that, holding at 1087 ℃ for 180 cycles with the same thickening 

strain rate, the higher   (which means higher lengthening strain) gives increased 

deformation.  

 

           

 

 

 

 

Figure 3.4 Initial and Deformed shape after 180 cycles with two selected    

               

 

Figure 3.5 Deformation for two selected ratios,          , after 180 cycles with  

    1087 ℃ 

𝑇𝐻       ℃ 𝑇𝐻       ℃ 
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We also investigated the effect of yield strength of the FeCrAlY and the TGO. 

Figure 3.6 shows that increasing yield strength for the bond coat enhances the 

resistance and thus results in decreased deformation. In contrast, increasing yielding 

strength for TGO allows higher accumulative driving force and thus gives increased 

deformation, as shown in Figure 3.7 from our numerical results. 

As discussed previously (see Table 2.4), the yield strengths of FeCrAlY and 

TGO at high temperature are not available. Those unknown material parameters are 

investigated by a series of simulations. From our parametric study, a better match with 

experimental shape change occurs when the yield strength of FeCrAlY at temperature 

over 1000 ℃ is taken as 25 MPa constant, while the yield strength of TGO at holding 

temperature is taken as 1.2 GPa, which is consistent with previous study [18]. 

 

 

Figure 3.6 Deformation with two different yield strength for FeCrAlY with    
     ℃  

 

Figure 3.7 Deformation with two selected yield strength for TGO after 180 cycles 

with    1087 ℃ 

TGO 1000MPa
Y

 
TGO 1200MPa
Y

 
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Y
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3.4 Reference Simulation Results and Comparisons 

In this section, we will show our numerical work on capturing the two sets of 

experiments described in Section 1.4. Two groups of simulations are conducted for 

comparisons, one group with time-independent plastic properties, while the other 

group with time-dependent plasticity, i.e., creep.  

The initial imperfection amplitude on the specimen is 20  m  as shown in 

Figure 1.8. The experimental details are described in Section 1.4. For the experiment 

with high temperature and long holding (HL experiment), the specimen was subjected 

to thermal cycles with 15 minutes for cooling and heating, and 45 minutes for holding 

at 1087 ℃. The specimen was subjected to 176 cycles of cyclic loading. Due to a 

technical error, the specimen was then held at high temperature for another 19 hours in 

isothermal condition. The SEM image, Figure 3.8.a, shows the result for 

morphological change. The deformed amplitude, A, is about 26.7  m, and the TGO 

thickness, h, is about 3.0  m.  

For the experiment with low temperature and short holding (LS experiment), 

the specimen was subjected to thermal cycles with 15 minutes for cooling and heating, 

and 18 minutes for holding at 1040 ℃. Figure 3.9.a shows the SEM image of 

morphological change after 200 cycles of loading. The deformed amplitude is about 

22.4  m, and the TGO thickness is about 1.60  m.  

As previously discussed, the high temperature material properties are 

unknown. By conducting parametric studies, the unknown properties may be 

established. To this end, the material properties that give deformations closest to the 

experimentally obtained shape change are used. The plastic properties obtained are 

summarized in Tabel 3.1.  
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In the simulations with time-independent plastic behavior, in order to get a 

good match with the experimental results, the ratio of lengthening strain over 

thickening strain,         , was taken to be 5% for the HL experiment, but 8% for 

the LS experiment. The simulation result for the HL experiment is shown in Figure 

3.8.b. The deformed amplitude is 26.52  m and the TGO thickness is 3.09  m. The 

simulation result for the LS experiment is shown in Figure 3.8.c. The deformed 

amplitude is 22.18  m and the TGO thickness is 1.65  m. 

Table 3.1 Time-independent plasticity 

 

 

 

As an alternative to using time-independent yield strength, creep behavior were 

incorporated and investigated. Based on parametric studies, in order to get a good 

match with the experimental results, the lengthening oxidation strain was taken to be 

2% of the thickening growth strain in this case. Figure 3.8.c and Figure 3.9.c show the 

simulation results for the HL and LS experiments respectively. For the HL experiment 

after 180 cycles, the simulation gives a deformed amplitude of 26.56  m and a TGO 

thickness of 3.07  m . For LS experiment after 200 cycles, the model shows a 

deformed amplitude of 22.63  m and a TGO thickness of 1.64  m.  

FeCrAlY 

Temp. (℃) Yield Strength (MPa) 

25 510 

600 185 

800 55 

1000 25 

1100 25 

TGO [1] 

Temp. / ℃ Yield Strength (MPa) 

40 10000 

1080 (1030) 10000 

1085 (1035)  1200 

1087 (1040)  1200 
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Table 3.2 Deformed data for the HL and LS experiments 

 

HL experiment LS experiment 

Exp. 
results 

Model with 

plasticity 

Model with 

Creep 

Exp. 
results 

Model with 

plasticity 

Model with 

creep 

A /  m 26.70 26.52 26.56 22.42 22.18 22.63 

h /  m 3.0 3.09 3.07 1.6 1.65 1.64 

 

The TGO thickness, h, and deformed imperfection amplitudes, A, from both 

experiments and the respective simulations are also summarized in Table 3.2 for 

comparisons. We can see that the model with time-independent plasticity is able to 

capture the right amplitude change for the two experiments by adjusting the ratio  , 

i.e., the lengthening strain over the thickening strain. Using the creep properties, the 

model captures the right amplitude change well.  

An additional parameter is the surface curvature of the imperfection. The 

comparisons of the surface deformations are shown in Figure 3.8 and Figure 3.9. We 

can see that model with creep behaviors gives a smooth shape change, which matches 

the experimental results better. Figure 3.8.b and Figure 3.9.b shows the contours of 

plastic strain field, while Figure 3.8.c and Figure 3.9.c show the contours of creep 

strain field. Evaluating the strain fields, we conclude the following reasons as to why 

creep behaviors help predict the shape change better. Overall creep in the bond coat 

around the imperfection area allows more smooth deformation. While in contrast, 

time-independent plasticity gives significant higher yield strain around the curvature 

transition point. We believe that this is the reason why there is a kink in the shape 

change around the curvature transition point. Thus, in order to get the correct shape 

change, imposing creep is necessary.  
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(a) SEM image from the HL experiment 
 

 
(b) Simulation results using time-independent plasticity 

 

 
(c) Simulation results using creep properties 

Figure 3.8  Morphological change from simulations compared to the experimental 

results, and contours of plastic/creep strain, for the HL experiment: (a) 

SEM from the HL experiment; (b) Simulation results using time-

independent plasticity; (c) Simulation results using creep properties 
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(a) SEM image from the LS experiment 

 

 
(b) Simulation results using time-independent plasticity 

 

 
            (c) Simulation results using creep properties 

 

Figure 3.9  Morphological change from simulations compared to the experimental 

results, and contours of plastic/creep strain, for the LS experiment: (a) 

SEM from the LS experiment; (b) Simulation results using time-

independent plasticity; (c) Simulation results using creep properties 
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Based on the two initial sets of experiments, we have not obtained a reliable 

TGO growth law. Thus, to this end, the TGO growth laws used are based on data from 

Ref. [18]. The experimental results may vary due to differences in chemical 

composition of the specimen. Future work must include a set of experiments to study 

the TGO growth evolution. Then further parametric study of lateral growth strain will 

be performed to capture the new experiments.  

Never the less, our simulation results suggest that simulations with creep 

properties may be able to capture the amplitude change obtained experimentally and 

also provide the correct shape change.  

3.5 Verification of the Cycle Jump Technique 

In this section, we will investigate the performance of the cycle jump technique 

aiming to capture the preliminary experimental results. We will impose the cycle jump 

on simulation of the HL experiment (see Table 1.1) with time-independent inelasticity 

for performance evaluation. Cycle jump simulations with four selected    values (1.0, 

2.0, 3.0, 5.0), the jump control parameter, will be compared. The results from cycle 

jump simulation results with        will be compared to that from the cycle-by-

cycle reference simulation. 

The idea of the cycle jump is that not all individual cycles need to be 

simulated. By establishing and extrapolating a general evolution of state variables, the 

simulation could skip, or “jump”, over some cycles. By making those jumps, 

computational efforts can be saved significantly so as to improve the simulation 

efficiency.  

The model is as shown Figure 3.2, which consists of 21654 nodes and 6944 

elements with the type of quadrilateral 8-node generalized plane strain elements with 
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reduced integration (CPEG8R). Imposing the jump control on displacement 

components at every node in the whole model is not practical. In fact, central to the 

idea of the cycle jump technique is to follow as few state variables as possible. Since 

there is significant morphological change occurring in the area around the 

imperfection, jump control will be applied only on the displacement components at the 

nodes on the TGO surface around the imperfection. The nodes where we applied the 

jump control are shown as dots in Figure 3.10. 

 

 

 

Figure 3.10 Nodes for jump control in simulation with the cycle jump technique,                             

the largest vertical displacement occurs at Node 256 as shown  

We will utilize the polynomial extrapolation scheme as discussed in Section 

2.1. The savings of computation utilizing cycle jump with selected    is summarized 

in Table 3.3. The computational efficiency increases as    increases. This is consistent 

with the results obtained for the “basic model” simulating a cylinder, discussed in 

Section 2.2.3.  

Node 256 Control nodes 
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Table 3.3 Savings of computation with the cycle jump technique 

   Jumps Saved cycles Relative errors 

1.0 11 6 2.9% 

2.0 13 31 3.3% 

3.0 12 41 3.3% 

5.0 diverged 

 

The largest savings obtained for this case is with        . For simulations of 200 

cycles, by making 12 jumps, the cycle jump technique saves 41 cycles of computation 

in this case. Thus, the cycle jump technique with polynomial extrapolation saves 

20.5% of computations with       . 

Figure 3.11 shows the comparison of state fields after 200 cycles between cycle 

jump simulations and the cycle-by-cycle reference simulation. From visual inspection, 

the state fields of tangential stress, creep strain, vertical displacement from simulation 

with cycle jump are very similar and close to the results from the cycle-by-cycle 

reference simulation. More insight is obtained by the evolution of the vertical 

displacement at one particular node, Node 256 (see Fig 3.9). This node is of particular 

interest because its vertical displacement is the largest and so it governs the 

deformation amplitude change in the model. As shown in Figure 3.12, comparing to 

the results from cycle jump to the cycle-by-cycle reference simulation, the relative 

error,    , is about 3.3% after 200 cycles. Thus, we can conclude that the simulation 

with the cycle jump technique is able to capture the overall behaviors.  
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In conclusion, the cycle jump technique saves about 20.5% in computational effort 

with a cost of about 3.3% in accuracy. Thus, the cycle jump works for this case even 

though it is modest in computational savings. 

The reason why the cycle jump could not save computation significantly is that it 

is a complicated structure. Some relatively “linear regions” in the structure allow the 

cycle jumps while some other highly “non-linear regions” are prohibiting the jump 

attempts. 
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(a) Contour of vertical displacement 

 

 

(b) Contour of tangential stress 

 

 

(c) Contour of equivalent plastic strain 

Figure 3.11 Contours of vertical displacement, tangential stress and equivalent plastic 

strain after 200 cycles, cycle jump with        compared to the cycle-

by-cycle reference simulation 

 

Reference case Cycle jump 
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Figure 3.12 Evolution of vertical displacement at Node 256 (see Fig 3.10) in the 

model for 200 thermal cycles, cycle jump with        compared with 

the cycle-by-cycle reference simulation. 
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Chapter 4 

SUMMARY AND FUTURE CONSIDERATIONS 

4.1 Summary 

Structures in engineering applications are commonly subjected to cyclic 

loadings, which may result in fatigue and unexpected failures. Understanding of the 

failure evolution is important to obtain reliable engineering designs. Finite element 

analysis (FEA) is commonly used to simulate and establish the stress and strain 

distribution for failure predictions. However, it is time-consuming to simulate the 

whole process of structural evolution. This work aims to verify and enhance a 

previously developed numerical technique, the “cycle jump technique” [1], which 

enables accelerated numerical simulations for structures subjected to cyclic loadings. 

Although some studies have been conducted on accelerating numerical 

simulations, the existing methods [5-15] found in literature have some limitations. The 

“cycle-jump technique”, previously developed by Cojocaru and Karlsson [1], is a 

general method to improve the computational efficiency. The idea is that not all 

individual cycles need to be simulated. By establishing and extrapolating a general 

evolution of state variables, the simulation can skip, or “jump”, over some cycles. By 

making those jumps, computational efforts can be saved significantly so as to improve 

the simulation efficiency. This is a promising technique, and it is relatively easy to be 

incorporated into commercial finite element software, such as ABAQUS [2-4] (which 
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is used in this work) and ANSYS. However, to become a reliable tool, the “cycle jump 

technique” still needs to be improved and its validity needs to be verified. 

The thermal barrier coatings (TBCs) system was introduced, since TBCs 

inspired this work. The TBC systems with corresponding loading conditions served as 

application examples for the cycle jump technique.  

To overcome the limitation of the existing extrapolation scheme ‘linear 

extrapolation’, a more general extrapolation scheme ‘polynomial extrapolation’ was 

proposed. Using the basic cylinder model [1], the ‘polynomial extrapolation’ method 

was first verified and demonstrations showed that it can significantly save 

computations with little cost in accuracy.   

To be used for simulating real-life experiments, both time- and temperature-

dependent behaviors (including high temperature time-independent plasticity, time- 

and temperature-dependent oxidation growth, and time-dependent plasticity i.e. creep) 

were incorporated into the numerical scheme for the cycle jump technique. Based on a 

basic cylinder model, the improved code is verified numerically by comparing the 

results from the cycle jump technique to the cycle-by-cycle reference simulation and 

excellent agreement is obtained.  

To verify the validity of the cycle jump technique that it can capture the 

experimental observation and to demonstrate the power of the method in computation 

savings, experimental results, the cycle-by-cycle reference simulation, and the 

simulation with cycle jump must be compared. Thus, we proposed investigations of 

morphological instability on FeCrAlY with a grooved surface subjected to cyclic 

loadings. With a numerical model we developed based on geometry and material 

properties of the experimental specimen, numerical simulations were conducted and 
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several groups of parameter settings were suggested to be used in the experiments 

aimed to be used as an example for verifying the “cycle jump technique”. Initially, 2 

sets of experiments were conducted and preliminary experimental results were 

obtained by our collaborators, Dzodzovic and Bartsch at German Aerospace Center 

(DLR) in Cologne, Germany.  

To capture the experimentally obtained morphological change as a part of our 

numerical work, two groups of numerical simulations were conducted and compared. 

For the high-temperature materials, one group used time-independent yielding, while 

the other group used time-dependent plasticity, i.e. creep. In order to obtain the 

experimental results, the unknown material properties were established from 

parametric studies. After obtaining the results of the experiment, the numerical results 

are compared with the experimental results. Our results suggested that simulations 

using creep behavior capture the morphological instabilities better than simulations 

using time-independent plasticity.  

Finally, the validity of the cycle jump technique was verified. In conclusion, 

the simulations utilizing “cycle jump technique” captured the experimental results 

while improving the computational efficiency over the cycle-by-cycle simulations, 

even though the savings were not so significant.  

 

4.2 Future Considerations 

Based on the two initial experiments, we have not obtained a reliable TGO 

growth law. Thus the growth laws used are based on data from literature. The 

experimental results may vary due to the differences in chemical composition of the 

specimens. Future work must include a set of experiments to study the TGO growth 
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evolution. Once reliable TGO growth evolution is obtained, the cycle jump technique 

will be utilized in simulating the new experiments for further performance evaluation. 

To this end, the cycle jump technique works well in capturing the real life 

experiments. However the savings in computation is not significant. Subroutines that 

are more advanced in making efficient jumps thus saving computations could be used. 

For example, the concept of substructures can be utilized to separate the whole model 

domain. When cycle jump on the overall structure is not allowed by the jump control 

criteria, we can still do cycle jump on the relatively “linear region” of the structure 

while cycle-by-cycle simulation is executed on the relatively “non-linear region”, so 

as to further enhance the simulation efficiency.  
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 Appendix A

UEXPAN 

c user subroutine uexpan 

 

      subroutine uexpan(expan,dexpandt,temp,time,dtime,predef,dpred, 

     $     statev,cmname,nstatv,noel) 

c 

      include 'aba_param.inc' 

c 

      character*80 cmname 

 real(8)::MT       !step time for initialization after jump 

 real(8)::GTIME    !cycle length (time) 

 real(8)::GPERIOD  !holding time each cycle for TGO growth 

 real(8)::TTAJ     !historic time (total time after jump) 

 COMMON /GROWTH/ MT,GTIME,GPERIOD,TTAJ 

 

 double precision t0,k,n,t1,t2,Et,Eg 

 integer CycleNb   ! number of cycles completed 

c 

 dimension expan(*),dexpandt(*),temp(2),time(2),predef(*), 

     $     dpred(*),statev(nstatv) 

c 

C Define expansion for FeCrAlY 

C DO be careful, USE Capital Letter for material 

c  

      IF (CMNAME(1:8).EQ.'BONDCOAT') THEN 

C      thermal expansion coefficient 

           expCoef=3.2E-9*(TEMP(1)-TEMP(2)/2.0) + 11.73E-6 

  thestr=expCoef*temp(2)    ! thermal strain 

  expan(1) = thestr 

  expan(2) = thestr 

  expan(3) = thestr 

 ENDIF 

c 

C Define expansion for TGO 

C     Calculate the thickening rate 

c 

      t0=0.72863  ! time shift for initial TGO thickness 

      k=0.564     ! parameter k in TGO growth law 

 n=0.38      ! n in TGO growth law 

c 

      IF (CMNAME(1:6).EQ.'NEWTGO') THEN 

C      thermal expansion coefficient 

          expCoef=1.0E-9*(TEMP(1)-TEMP(2)/2.0) + 7.5E-6 
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      thestr=expCoef*temp(2)  

  expan(1) = thestr 

  expan(2) = thestr 

  expan(3) = thestr 

c 

c  Define the TGO growth rate 

c 

c  compute the periodic time before this increment      

  CRGTIME=MOD(T-TOLERANCE,GTIME) 

 c 

c  Impose TGO growth 

  IF (((GTIME-GPERIOD) < CRGTIME) 

     $   .AND. (CRGTIME < GTIME)) THEN 

! time(1): step time after this increment 

! time(2): total time after this increment 

! CycleNb: cycles completed 

C 

C calculate how many cycle completed 

   CycleNb=int((T+TTAJ-TOLERANCE)/GTIME) 

C t2= how many hrs at hight Temp. after this increment 

   t2=t0+CycleNb*GrowthTime/3600.0+time(1)/3600.0 

   h2=k*t2**n    C thickness after this increment 

c 

C t1= how many hrs at hight Temp. before this increment  

   t1=t2-DTIME/3600.0 

   h1=k*t1**n     ! thickness at before this increment 

   Et=log(h2/h1)  ! incremental thickening strain 

   Eg=belta*Et    ! incremental lengthening strain    

          expan(1)=Eg    ! lengthening dir 

       expan(2)=Et    ! thickening dir 

          expan(3)=Eg    ! out of plane dir 

  ENDIF 

c 

 ENDIF 

c 

      RETURN 

END 
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 Appendix B

UMAT 

Note: A UMAT subroutine for creep behavior. The UMAT for TGO and Bond Coat is 

similar. Thus only UMAT for TGO is shown here.  
 

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)  

C 

      INCLUDE 'ABA_PARAM.INC'  

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS,NTENS), 

     1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), 

     2 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3), 

     3 DFGRD0(3,3),DFGRD1(3,3) 

C 

 IF (CMNAME(1:6).EQ.'NEWTGO') THEN 

C 

 CALL UMAT_NEWTGO(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

 ELSE IF (CMNAME(1:8).EQ.'BONDCOAT') THEN 

C 

 CALL UMAT_BONDCOAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

 END IF 

C 

      RETURN 

      END SUBROUTINE 

C 

C HERE STARTS THE SUBROUTINES 

 

 SUBROUTINE UMAT_NEWTGO(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
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     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC'  

C 

C UMAT FOR NEWTGO 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS,NTENS), 

     1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), 

     2 PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3), 

     3 DFGRD0(3,3),DFGRD1(3,3),TIME(2),DCRSTRAN(NTENS)  

C HERE COMES THE CODE FOR UMAT_NEWTGO 

c 

 REAL(8)::MT 

 REAL(8)::GTIME 

 REAL(8)::GPERIOD 

c REAL(8)::TTAJ 

 REAL(8)::TOLERANCE=0.00005D0 

 COMMON /GROWTH/ MT,GTIME,GPERIOD   !,TTAJ 

 

 

 REAL(8) CEEQ,DCEEQ 

      DIMENSION EELAS(6),EELASR(6),ECREEPR(6),ECREEP(6),FLOW(6) 

      PARAMETER(ZERO=0.D0,ONE=1.D0,TWO=2.D0,THREE=3.D0,SIX=6.D0,  

     1 ENUMAX=.4999D0,NEWTON=10,TOLER=1.0D-6) 

C 

C ----------------------------------------------------------- 

C     UMAT FOR ISOTROPIC ELASTICITY AND CREEP 

C     CAN NOT BE USED FOR PLANE STRESS 

C ----------------------------------------------------------- 

C     PROPS(1) - E 

C     PROPS(2) - NU 

C     PROPS(3) - SYIELD 

C     CALLS AHARD FOR CURVE OF SYIELD VS. PEEQ 

C ----------------------------------------------------------- 

C 

      IF (NDI.NE.3) THEN 

         WRITE(6,1) 

1       FORMAT(//,30X,'***ERROR - THIS UMAT MAY ONLY BE USED FOR ', 

     1          'ELEMENTS WITH THREE DIRECT STRESS COMPONENTS') 

      ENDIF 

C 

C     ELASTIC PROPERTIES 

C 

      EMOD=PROPS(1) 

      ENU=PROPS(2) 

 TTA=1.08*exp(-51000.0/((TEMP-DTEMP/2.0)+273.15))*10**3.8 

 TTN=2.3 

 TTM=0.0 

C 
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      IF(ENU.GT.0.4999.AND.ENU.LT.0.5001) ENU=0.499 

      EBULK3=EMOD/(ONE-TWO*ENU)  

      EG2=EMOD/(ONE+ENU) 

      EG=EG2/TWO 

      EG3=THREE*EG2/TWO 

      ELAM=(EBULK3-EG2)/THREE 

c 

c update current time to be considered for growth  

 T=time(2)+DTIME-MT 

 CRGTIME=MOD(T-TOLERANCE,GTIME) 

C  

C   CREEP steps  

 DO K1=1,NTENS 

  DO K2=1,NTENS  

   DDSDDE(K1,K2)=ZERO  

  END DO  

 END DO  

 DO K1=1,NDI  

  DO K2=1,NDI  

   DDSDDE(K2,K1)=ELAM 

  END DO 

  DDSDDE(K1,K1)=EG2+ELAM 

 END DO  

 DO K1=NDI+1,NTENS 

  DDSDDE(K1,K1)=EG 

 END DO 

C     RECOVER ELASTIC AND creep STRAINS 

 DO K1=1,NTENS 

  EELAS(K1)=STATEV(K1) 

  ECREEP(K1)=STATEV(K1+NTENS) 

 END DO 

 

C ROTATE THE RECOVERED STRAINS BECAUSE THE USE OF NLGEOM 

 CALL ROTSIG(EELAS,DROT,EELASR,2,NDI,NSHR) 

 CALL ROTSIG(ECREEP,DROT,ECREEPR,2,NDI,NSHR) 

C 

 DO K1=1,NTENS 

  EELAS(K1)=EELASR(K1)+DSTRAN(K1) 

  ECREEP(K1)=ECREEPR(K1) 

 END DO 

C RECOVER THE EQUIVALENT CREEP STRAIN 

 CEEQ=STATEV(1+2*NTENS) 

  

c WRITE(6,*),"EELAS->",EELAS 

c WRITE(6,*),"ECREEP->",ECREEP 

c WRITE(6,*),"EELASR->",EELASR 

c WRITE(6,*),"ECREEPR->",ECREEPR 

c WRITE(6,*),"DROT->",DROT 

 

C       MISES STRESS 

C 

      SMISES=(STRESS(1)-STRESS(2))*(STRESS(1)-STRESS(2)) + 
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     1       (STRESS(2)-STRESS(3))*(STRESS(2)-STRESS(3)) + 

     1       (STRESS(3)-STRESS(1))*(STRESS(3)-STRESS(1)) 

      DO K1=NDI+1,NTENS 

            SMISES=SMISES+SIX*STRESS(K1)*STRESS(K1) 

      END DO 

      SMISES=SQRT(SMISES/TWO) 

C 

      SHYDRO=(STRESS(1)+STRESS(2)+STRESS(3))/THREE 

 RSTRAN1=THREE/TWO*TTA*SMISES**(TTN-1.0)*(STRESS(1)-SHYDRO) 

 RSTRAN2=THREE/TWO*TTA*SMISES**(TTN-1.0)*(STRESS(2)-SHYDRO) 

 RSTRAN3=THREE/TWO*TTA*SMISES**(TTN-1.0)*(STRESS(3)-SHYDRO) 

 RSTRAN4=THREE*TTA*SMISES**(TTN-1.0)*STRESS(4) 

 RSTRAN5=THREE*TTA*SMISES**(TTN-1.0)*STRESS(5) 

 RSTRAN6=THREE*TTA*SMISES**(TTN-1.0)*STRESS(6) 

c 

 DCRSTRAN(1)=RSTRAN1*DTIME 

 DCRSTRAN(2)=RSTRAN2*DTIME 

 DCRSTRAN(3)=RSTRAN3*DTIME  

 DCRSTRAN(4)=RSTRAN4*DTIME  

 DCRSTRAN(5)=RSTRAN5*DTIME  

 DCRSTRAN(6)=RSTRAN6*DTIME 

c 

C UPDATE STRAINS 

C     

      DO K1=1,4 

           ECREEP(K1)=ECREEP(K1)+DCRSTRAN(K1) 

           EELAS(K1)=EELAS(K1)-DCRSTRAN(K1) 

      END DO 

c 

 DO K1=1,4 

  STATEV(K1)=EELAS(K1) 

  STATEV(K1+4)=ECREEP(K1) 

 END DO 

         

 DCEEQ=SQRT(2.0/3.0*(DCRSTRAN(1)*DCRSTRAN(1) 

     $      +DCRSTRAN(2)*DCRSTRAN(2)+DCRSTRAN(3)*DCRSTRAN(3) 

     $ +0.5*DCRSTRAN(4)*DCRSTRAN(4))) 

      CEEQ=CEEQ+DCEEQ 

      STATEV(1+2*NTENS)=CEEQ 

         

C CALCUALTE UPDATED STRESS  

      DO K1=1,NTENS 

       DO K2=1,NTENS 

               STRESS(K2)=STRESS(K2) 

     $              +DDSDDE(K2,K1)*(DSTRAN(K1)-DCRSTRAN(K1)) 

           END DO    

      END DO 

c     

C 

 RETURN 

END SUBROUTINE 


