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Abstract. Statistical comparisons between numerical sea ice models and an 
observed large-scale strain array in the western Weddell Sea during 1992 are 
used to evaluate the performance of three of the more generally utilized sea ice 
rheology formulations. Results show that sea ice velocity is reproduced with 
relatively high accuracy (90% coherence, >80% normalized cross correlation) in 
models having high-quality atmospheric forcing fields (e.g., the European Centre 
for Medium-Range Weather Forecasts). On the other hand, temporal and spatial 
variability of the velocity field, as exemplified by progressive vector plots and ice 
deformation, respectively, are reproduced less accurately (coherence and normalized 
cross correlation <50%). In terms of model sensitivity, this means that deformation 
and temporal variability are more discriminating in terms of elucidating specifics 
about the constitutive relation and mechanical properties of sea ice on a large 
scale. For example, inclusion of both compressive and shear stresses is important in 
attaining a proper probability distribution of deformation relative to observations. 
Additional analysis shows that adjustments to specific model parameters improve 
the model results for either drift or select deformation components, but no best 
solution could be found, given the models examined here. Results suggest that 
inclusion of more physically based processes, such as subdaily tidal and inertial 
oscillations, reconsideration of the boundary layer formulation, and consideration of 
anisotropy, may be necessary to include in next-generation sea ice models, especially 
those that are intended for coupling with high-resolution (eddy resolving) ocean 
models. 

1. Introduction of sea ice that are both robust enough to be moni- 

Reproduction of observed large-scale physical fea- tored easily on a large scale and yet sensitive enough 
tures and processes in sea ice is a critical test of model to indicate a change in air-ice-sea circulation? In terms 
performance. This is particularly true of regional to of the large-scale physics of the problem, if we con- 
global scale models where forecasting is involved. Prog- sider the air-ice-sea system deterministically, sea ice 
nosis of future conditions without physically based bench- responds uniquely to atmospheric and oceanic forces 

through four measurable variables: sea ice thickness, 
marks is, at best, speculation. A fundamental question 
relevant to this issue is, what are the critical variables 
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areal extent/compactness, drift, and deformation. 
Basically, atmospheric and oceanic forcing serve as in- 

puts to initiate sea ice response through a set of coupled 
equations that include a sea ice mass balance, momen- 
tum balance, and constitutive relation (see, for exam- 
ple, Hibler [1979] for mathematical formulation). The 
four sea ice parameters of thickness h, compactness A, 
velocity v, and deformation components •ij can be re- 
garded as responses to the imposed forcing (i.e., outputs 
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resulting from the imposed forcing). While a number 
of feedback processes ensue between the air, ice, and 
ocean owing to the nonlinear response of all three, these 
four outputs provide large-scale, physically measurable 
field quantities resulting from air-ice-sea activity. Hence 
changes transmitted between air and ocean in the polar 
regions must pass through the sea ice/open water in- 
terface, with measurable changes reflected in the above 
four sea ice parameters. 

In terms of their relative contributions, ice thickness 
describes the vertical extent of the ice while compact- 
ness deals with the horizontal area and extent. Velocity 
describes the average flow of ice, while deformation ex- 
presses the structural integrity of the field and spatial 
variability of the ice motion. All four are needed to ac- 
curately describe and reproduce the physical conditions 
of sea ice on a large scale. 

Recent work by Geiger et al. [1997] has examined the 
thermodynamic response of ice edge extent and thick- 
ness distribution to various atmospheric and oceanic 
forcing terms. Complementing that study and building 
upon results from Hibler and Ackley [1983], we present 
here a numerical investigation of the large-scale me- 
chanical responses of the ice. Specifically, we focus on 
observed versus modeled drift and strain-rate responses 
to determine how well large-scale sea ice models repro- 
duce these variables. Dynamic-thermodynamic sea ice 
models using viscous-plastic (VP) and cavitating fluid 
(CAV) ice models will be examined, as these are widely 
used in both sea ice models and coupled air-ice and ice- 
ocean studies, particularly the cavitating fluid model 
which is used in conjunction with climate models. To- 
gether with the free drift solution, they also provide 
a logical hierarchy of sea ice theologies from free drift 
(no resistance) through cavitating fluid (pressure resis- 
tance) to viscous plastic (pressure and shear resistance). 

As seen in the work by Geiger et al. [1997] and Geiger 
[1996], ice edge location is not very sensitive in these 
models compared to ice thickness distribution and com- 
pactness. Additionally, ice thickness spatial distribu- 
tion is not a good parameter to examine sensitivity to 
internal ice variables [Geiger, 1996], primarily for two 
reasons. First, while variations in internal ice variables 
can be used to address the issue of how certain models 

affect ice thickness and compactness, it is very difficult 
to decipher why this is the case and what are the under- 
lying processes responsible. In other words, it is difficult 
to deduce what is happening physically to produce such 
a result. Second, there is currently a lack of regionally 
observed thickness distributions for comparison. This 
makes it extremely difficult to test which thickness dis- 
tribution field is correct and, furthermore, which set 
of internal ice parameters is correct for that observed 
thickness distribution. The same argument holds more 
or less for compactness. The end result is that we need 
a better method for examining responses of the internal 
ice interaction in order to understand the physics of the 
observed sea ice mechanics. 

Statistical evaluation of individual buoy tracks has 
provided a more realistic source for comparing results 
between different theology model types [e.g., Hibler and 
Ip, 1995], but this is only part of the information nec- 
essary to test these models. The distinguishing char- 
acteristic in sea ice models is the constitutive relation. 

Therefore a rigorous examination of internal ice inter- 
action must include direct examination of both drift 

(velocity) and deformation. Drift can be thought of as 
the mean motion of the ice, while deformation is its spa- 
tial variability. Obtaining the right mean in a model is 
a good first-order result, but variability is a more sensi- 
tive and defining factor in terms of isolating the correct 
physics. Deformation is also a more critical factor than 
drift in terms of the thermodynamic balance because 
the open water fraction created by deformation pro- 
cesses is the greatest contributor to heat and mass (salt 
expulsion) transfer in polar regions [Maykut, 1986]. Like 
the coupling between thickness, compactness, velocity, 
and deformation, the physical processes that make up 
deformation itself are also coupled. Hence, in order to 
understand how the open water fraction of ice is formed, 
one must also understand how processes such as shear 
and divergence work in conjunction with each other. 
For this reason, shear is considered as important as di- 
vergence for determining the underlying physics. 

The purpose of this study is to better understand the 
physics of sea ice as described by the numerical mod- 
els indicated above and to determine how these models 

compare with observations. A unique data set from Ice 
Station Weddell (ISW) in the austral fall of 1992 in the 
western Weddell Sea using six buoys in a large-scale ar- 
ray provides the opportunity to test models against ob- 
served drift and deformation. An overview of the field 

experiment is given in section 2, with particular em- 
phasis on drift and deformation characteristics of the 
region. This is followed by a scaling analysis of the 
momentum balance to illustrate the significance of de- 
formation as a means of understanding the variability 
of sea ice motion. Next, a description of the numer- 
ical schemes and details of the ice theologies are pre- 
sented. This is followed by results from comparison 
studies between models and observations using cross- 
spectral analyses, cross correlation, X 2 analyses, and 
probability density distribution of drift and deformation 
components. These methods compare modeled and ob- 
served buoy motion in the time domain, the frequency 
domain, and with respect to distribution categories in 
principal axis space and scatterplots. Since the primary 
goal is to compare sea ice drift and deformation between 
models and observations, the impact on thickness and 
compactness is left for future research. 

2. Field Experiment 

During ISW 1992 [Gordon et al., 1993], a large-scale 
drifting Argos buoy array spanning 150 km was set up 
in the western Weddell Sea. Five Argos buoys at re- 
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Figure 1. Western Weddell Sea region with Ice Sta- 
tion Weddell (ISW) buoy tracks and local bathymetry. 

mote sites located 25 to 100 km from the central camp 
recorded geographical position about every 3 hours via 
satellite, while a Global Positioning System (GPS) unit 
at the camp recorded geographical positions about 20 
times per day. Figure 1 shows the general track of the 
buoys, their relative configuration within the array, and 
the local bathymetry. Using a Butterworth low-pass 
filter and multiple linear regression, the array position 
data were processed [Geiger et al., 1998] to identify drift 
and strain-rate components. 

Details of these results are presented by Geiger et 
al. [1998] and Geiger [1996]. As a synopsis, the power 
spectra results from ISW wind, sea ice, and ocean cur- 
rent measurements together with deformation analysis 
of the sea ice reveal the following. First (Figure 2, 
left center), sea ice velocity in the western Weddell re- 
gion is a low-frequency (<1 cycle d -•) dynamic process 
driven primarily by low-frequency forcing in the form 
of moderate, steady ocean currents and intermittent 
strong winds from high-energy storm activity. Second, 
higher frequencies, specifically diurnal and semidiurnal 
tidal/inertial oscillation frequencies, form the main con- 
tribution to sea ice deformation (ice total strain rate; 
Figure 2, right center) in this region. Shear defor- 
mation has large high- and low-frequency components, 
with elongation (normal deformation) oriented paral- 
lel to the shelf break being the main form of deforma- 
tion at low frequencies. The observed higher-frequency 
processes correlate with 12 and 24 hour (2 and 1 cycle 
d -•) ocean oscillations (Figure 2, bottom), with a 12 

hour peak contributing the most to the total shear ac- 
tivity and the 24 hour peak contributing more to the 
solid body rotation (vorticity) of ice on scales as large 
or larger than the ISW array (150 km). East to west 
rising ocean bottom topography of the continental slope 
is also believed to play a major role in the directional 
preference of both observed ice drift and deformation in 
this region. Ice drift and deformation seem particularly 
sensitive to the forcing caused by topographic change, 
as enhanced by ocean currents. 

3. Drift and Differential Drift Scaling 

The momentum balance of sea ice may be written 

Dv 
m :-mfkxv+•-a+•-w-mg• H+Fice (1) 

Dt 

where m is ice mass; v is ice velocity vector; f is the 
Coriolis term; k is the unit vector in the vertical; ra 
and rw are the forces from air and water stresses, re- 
spectively; Fice is the ice interaction force; g is gravity; 
and H is sea surface height. If we consider sea ice mo- 
tion over a region where deformation is occurring, the 
spatial differential drift or deformation may be viewed 
as a perturbation on a more smoothly varying drift. 
As a consequence to lowest order, we may consider the 
nonlinear water drag and wind drag to be slowly vary- 
ing over a deformation region on the scale of about 100 
kin. With these approximations in mind and using a 
procedure similar to that of Hibler et al. [1974], we 
may take derivatives of the momentum equation, ob- 
taining relationships for the various kinematical quan- 
tities. In particular, if we consider an approximation 
to (1) whereby the inertial terms on the left-hand side 
vanish and no ocean current is assumed, we can differen- 
tiate the x and y component equations by O/Oy, O/Ox, 
respectively, and sum to form (2) and O/Ox,-O/Oy for 
(3). In this way, we form coupled equations for the local 
shear deformation (SD) and so-called normal deforma- 
tion (ND) (or local elongation). 

Cw,d SDi q- (•w,a q- m f) NDi (2) 
OFy 

= Ca,dgDa q-Ca,aNDa q- • q- 0--•- 

C•,a NDi - (•w,a q- m f) SDi (3) 

= C•,aND•-C•,•SD•+ 
Ox Oy 

where Ca,• - Ca* cos 0 is the air diagonal term, Ca,a • 
Ca* sin 0 is the air asymmetric term, Ca* is the air drag 
coefficient, and analogously, w is for ocean, 0 is turning 
angle, Fx and Fy are ice interaction terms in x and y 
directions, respectively and SDi, NDi, SDa, and NDa 
are shear and normal deformation for ice and air, re- 
spectively; defined as 
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Figure 2. Power density spectra from the observed ISW large-scale strain array for surface 
wind, ice, 25 and 200 m water velocities, and total ice strain rate resolved to 64 frequency bins. 
Power density of wind, ice, and ocean is in square meters per second, and strain rate is in units 
of x10 -•2 s -1 The wind power (velocity squared) is divided by 1000 to compare it with the 
kinetic energy in the ocean by compensating for the differences in density of the two media. The 
90% confidence interval of X 2 results are shown in shaded regions. 

SD = 

ND = 

oqv Ou 

Ox + •yy -- 2•xy (4) 
Ou Ov 

-- •xx -- •yy. (5) 
Ox Oy 

Similar coupled equations can be derived for divergence 
and vorticity. 

Using results from ISW, we obtain the observed ice 
kinematic quantities found in (1)-(3). Using the full 
nonlinear water and air drag terms, we compute these 
terms for the free drift case with no ocean. Table 1 

shows the variance and rms values of the velocity mag- 
nitude and the differential drift values for both of these 

cases. Table 1 demonstrates that while the magnitudes 

Table 1. Observed and Modeled Buoy Variables 

FD 

Observed No Ocean Current Ocean Current CAV VP TRU 

variance rms variance rms variance rms variance rms variance rms 

VM 48.32 11.92 55.03 13.94 59.25 14.07 61.79 14.06 62.97 12.62 
DV 0.10 0.31 0.21 0.49 0.30 0.62 0.13 0.40 0.01 0.12 
ND 0.17 0.42 0.48 0.69 0.55 0.74 0.39 0.62 0.08 0.30 
SD 0.17 0.42 0.27 0.52 0.23 0.52 0.20 0.46 0.08 0.30 
VT 0.15 0.41 0.44 0.66 0.37 0.64 0.39 0.66 0.17 0.43 

Variables were computed from the large-scale buoy array at Ice Station Weddell in 1992 with a 30 hour low-pass 
filter applied. Abbreviations are as follows' FD, free drift model; CAV, buoy results in cavitating fluid model; 
VP TRU, buoy results in the viscous-plastic model with truncated ellipse; VM, velocity magnitude in centimeters 
per second; DV, divergence; ND, normal deformation (elongation); SD, local shear; and VT, vorticity, all in units 
of x 10 -6 s- • 
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of the predicted and observed velocities are close (free 
drift with no ocean current variance is about 114570 of 

observed), predicted differential drift variances are sub- 
stantially larger than observations, by 150570 to 300570 
for free drift with no ocean current case. These results 

are similar to those found in the Beaufort Sea where 

the observed differential drift variances were found to 

be even smaller [Hibler et al., 1974]. 
Thus compared to the observed kinematic quantities 

in (1)-(3), we find that free drift considerations yield 
reasonable ice velocities but substantially overestimate 
differential drift motions. These results indicate that 

•he ice interaction tends to maintain a more coherent 
structure to the adjacent ice floes than would occur if 
they were moving in free drift in response to wind and 
water forcing. Consequently, in the differential drift 
equations, it is clear that in order to explain the vari- 
ance of the deformation, the internal ice stress term 
becomes more critical. We note that the ice stress does 

not need to be small in the drift equation case, only 
that the spatial derivatives of the ice stress may not 
always be large and that it is necessary to look at cer- 
tain other characteristics of the ice drift statistics (as 
done by Hibler and Ip [1995]) to elucidate the role of 
ice interaction. 

We will examine the response of both drift and differ- 
ential drift under the assumption of different theologies. 
Since we are numerically solving the nonlinear drift 
equations, we do not make the approximations used to 
obtain the above scaled differential drift equations but, 
instead, solve the full nonlinear drift equations and then 
compare statistics of the spatial derivatives of the pre- 
dicted and observed drift. 

4. Numerical Experiment 

A numerical experiment was conducted to determine 
how well large-scale sea ice simulations perform com- 
pared with the ISW large-scale array observations. The 
ISW large-sckle array is a unique data set to use for 
such a comparison, as both the drift and strain-rate 
components are statistically available from a collection 
of buoys. In addition, the six-point array spans 150 km 
by 100 km. This scale is large enough to encompass six 
grid cells in a 50 km sea ice model which is a scale size 
that can be run to a full plastic solution in a reason- 
able amount of computer time. The ISW positions are 
located within the model grid every 3 hours between 
Julian days 63 and 150 in 1992. At these locations, ve- 
locities are extracted from the model's Cartesian grid 
and transformed spatially and with respect to vector 
orientation to an ISW grid oriented perpendicular and 
parallel to the shelf break, in x and y directions, re- 
spectively. These velocities, together with observed po- 
sitions, are subjected to the deformation analysis de- 
scribed by Geiger et al. [1998]. An overview of the sta- 
tistical functions is provided, for example, by Bendat 
and Piersol [1971], Hines and Montgomery [1990], and 
Geiger [1996]. An overview of the numerical scheme 
and theologies is given in section 4.1. 

j=l 
i=l i-> 

Figure 3. Numerical grid for regional study at 50 
km resolution in Cartesian coordinates. Areas with no 
squares are land points, those with open squares are 
active ice points, and those with crossed squares are 
outflow points. 

4.1. Numerical Scheme 

Numerical simulations of sea ice were conducted for 

the Weddell Sea pack ice (80øS to 55øS latitude by 
60øW to 20øE longitude) at a 50 km spatial resolution 
(see Figure 3) using the dynamic-thermodynamic sea ice 
model described by Zhang and Hibler [1997] for solving 
the viscous-plastic theology and Flato and Hibler [1992] 
for the cavitating fluid theology. The European Cen- 
tre for Medium-Range Weather Forecasts (ECMWF) 
air temperature and pressure fields are used as input 
forcing at 6 hour intervals for the year 1992, while 1991 
fields are used to spin up the model. Temporally con- 
stant ocean currents were generated from a compos- 
ite for the Weddell Sea region based on geostrophic 
estimates of steric height anomaly contours by Olbers 
et al. [1992, Plate 56] from 1992 ISW current mea- 
surements and from subjective interpretation [Geiger, 
1996]. A temporally varying, spatially constant mixed 
layer depth was generated using sinusoidal interpolation 
between 20 m on February I and 100 m on August 1 
based on measurements from Gordon and Huber [1990]. 
For oceanic heat fluxes, estimates from ISW measure- 
ments [Lytle and Ackley, 1996] show about 7 W m -2 
in the western Weddell Sea (about 60øW to 40øW) in 
winter. From Gordon and Huber [1990], a winter heat 
flux value below the ice of about 37 W m -2 is estimated 

for the eastern Weddell (about 20øW to 10øE). In sum- 
mer, an average value of about 2 W m -2 for the en- 
tire region is typical [Parkinson and Washington, 1979]. 
Using these values, with linear interpolation between 
40øW and 20øW, we generated a longitudinal heat flux 
distribution. Local temporal variations between sum- 
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mer and winter values were then used with the same 

sinusoidal interpolation method as for the mixed layer 
depth. Relative humidity is based on climatological 30 
year monthly mean surface dew point and air tempera- 
ture from Taljaard et al. [1969]. 

To make a more precise comparison to observations, 
the numerical code was set up to approach the full plas- 
tic solution by means of a pseudo time stepping proce- 
dure performed at every 3 hour physical time step (see 
Appendix B). To do this, the momentum balance cal- 
culations described by Zhang and Hibler [1997] were it- 
eratively computed 10 times to produce 10 pseudo time 
steps. In this way, the velocity converges in the mo- 
mentum balance based on the computed pressure and 
viscosity terms (as accomplished with one pseudo time 
step), but then, with each successive pseudo time step, 
the pressure and viscosity terms are updated by the new 
velocities such that velocity, pressure stress, and bulk 
and shear viscosities all approach mutually convergent 
solutions (i.e., a plastic solution). This method adds to 
the computational time of the model; the compromise 
of 10 pseudo time steps is judiciously selected to provide 
reasonable plastic solutions within a reasonable amount 
of computer time. Comparisons, discussed in section 5 
(see Figure 9), illustrate how well 10 pseudo time steps 
work as seen by the straight clustering of data on the 
yield curve. With fewer pseudo time steps, there is a 
greater spread of data normal to the yield curve. 

The models are run with eight time steps a day (3 
hour intervals) and with 50 km resolution to match the 
Argos sampling rate in time and space, respectively. 
The times and positions of the buoys in the model are 
those of the observed ISW buoy sites, with velocity ex- 
tracted from the model. These velocities are then pro- 
cessed in the same manner as the observed buoy veloci- 
ties [Geiger et al., 1998] to obtain the centroid velocity 
and local deformation results from the model. Since 

deformation is essentially a measure of the spatial vari- 
ability of the velocity field, this method of extracting 
data from the model provides a reasonable estimate of 
the model deformation results compared with observa- 
tions. 

•r 2 -- •r I --•rii (for more details, see, for example, Geiger 
et al. [1998]). Using Figure 4 as a guide, we find that 
the fundamental difference between the viscous-plastic 
model and cavitating fluid is that the cavitating fluid 
is a material that resists against applied pressure (com- 
pressive stresses) but not against shear stress (Figure 
4b). The viscous plastic, on the other hand, is a rhe- 
ology type that reacts to both compressive and shear 
stresses with a response, prior to failure, of viscous creep 
(shaded region in Figure 4) and a plastic deformation 
behavior upon yielding (bold outline of ellipses in Fig- 
ure 4). 

A number of descriptions of the viscous behavior have 
been developed within the plastic elliptical yield curve 
framework. The original use of the viscous-plastic rhe- 
ology in sea ice was presented by Hibler [1979], with 
regions of similar viscous flow oriented as concentric el- 
lipses within the plastic yield ellipse (the so-called con- 
centric ellipse yield curve; Figure 4c). One drawback to 
this configuration is that the field will experience creep 
flow even in the absence of forcing. Further develop- 
ment of this rheology by Hibler and Ip [1995] was made 
to eliminate this problem by adjusting the maximum 
pressure at each point and time of the momentum bal- 
ance (see Appendix C). In this way, lines of constant 
viscosity pass through the origin of the stress field such 
that no creep exists when no external forces are present, 
a physically realistic result. This addition (Figure 4d) 
has been described as the replacement method [Hibler 
and Ip, 1995] because of the replacement of the con- 
stant maximum pressure with a pressure in creep state. 

An additional development to the rheology is the 
elimination of tensile stress to produce a truncated el- 
lipse (Figure 4e), with constant viscous states anchored 
at the origin and no stress states possible in the positive 
domains of the principal axes (see details in Appendix 
C). Not only is this addition physically realistic at the 
geophysical scale, but it is also analogous to the rheolog- 
ical configuration found from three-dimensional stress 
tests in laboratory experiments at the meter scale [Hi- 
bler and Schulson, 1997], making this a practical rheol- 
ogy candidate for multiscale studies of sea ice rheology. 

4.2. Ice Rheologies 

Three basic rheology types are used for this exper- 
iment: the viscous-plastic elliptical yield curve with 
energy-conserving modifications of Hibler and Ip [1995] 
and modifications to remove tensile stress [Hibler and 
Schulson, 1997], free drift (viscous-plastic code with 
maximum pressure equal to zero), and cavitating fluid 
[Flato and Hibler, 1992]. The viscous-plastic rheology 
is the most physically realistic of the three rheologies 
studied and so, in addition to the free drift and cav- 
itating fluid rheologies, the viscous-plastic rheology is 
examined with a number of modifications. These mod- 

ifications are best explained in an invariant principal 
axis space (ax, a•.) for two dimensions, where •r I is di- 
vergence, O'II is maximum shear, O' l -- O'I -]-O'II and 

5. Comparison Results 

Results from the numerical experiments described in 
section 4 indicate that overall, the viscous-plastic model 
performs the best out of the three rheologies of free 
drift, cavitating fluid, and viscous plastic with trun- 
cated ellipse. Because of this, we present our results in 
two parts. First, we present an interrheology compari- 
son to show how the three rheologies perform compared 
with the observed array. Second, we conduct an addi- 
tional set of comparisons based on modifications of the 
viscous-plastic rheology. 

5.1. Interrheology Comparison 

Using the viscous-plastic rheology with a truncated 
ellipse closure scheme as an example in Figure 5, we find 
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Figure 4. Description of the invariant principal stress components (0.•, 0'2, 0'I, and 0'II) and 
sea ice rheologies in two-dimensional principal axis space for (a) stress invariants, (b) cavitating 
fluid versus viscous-plastic rheologies, (c) concentric ellipse method, (d) replacement method, 
and truncated ellipse method. Pmax is a positive pressure term, and Pmax and all 0' values are 
in Pascals per meter. CAV represents the cavitating fluid rheology, and VP is the viscous-plastic 
rheology with its closure methods (see text for details). 

that the low-frequency signals are well reproduced by 
the models while higher frequencies, specifically those 
of I day or less, are not. Despite the presence of a 3 hour 
time step, an inertial term in the model momentum bal- 
ance and subdaily atmospheric wind forcing, the pow- 
ers of the daily and subdaily frequencies are modeled 
far below those observed. As seen in the comparison to 
observations (Figure 2), the models lack the daily and 
subdaily tidal and inertial oscillation processes. While 
inclusion of tidal forcing would have an impact, con- 
struction of the air-ice-sea boundary layer formulation 
in the current ice model assumes steady motion over 

several inertial periods, resulting in a large damping of 
subdaily frequencies in the model. Indeed, mechanis- 
tic model studies [Hibler et al., 1998] employing less 
damped boundary formulations demonstrate that the 
interaction of kinematic waves and inertial motion can 

lead to substantial inertial power in ice deformation. 
Because of such considerations, we expect comparisons 
between modeled and observed velocities to be realistic 

here only for timescales greater than I day. 
Frequency comparisons between modeled and observed 

results using a 30 hour low-pass filter retain most of the 
velocity signal from both the models and observations. 
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Figure 5. (Top) normalized cross-spectral coherence for (left) power of ice velocity and (right) 
power of total strain rate for spectra from (middle) ISW observations versus (bottom) a viscous 
plastic with truncated ellipse sea ice model. Power spectra are presented in power density form, 
with velocity in square meters per second and strain rate in units of x 10 -•2 s -•. 

Running a 30 hour low-pass filter (LPF) over the model 
has little effect on the frequency domain results (or any 
of the statistical results examined) but is applied to the 
models for consistency. 

Time series plots of velocity magnitude and the two 
invariant deformation components of divergence and 
maximum shear for each of the three models are shown 

in Figure 6, together with the same information for the 
30 hour LPF case of the observations. Since the maxi- 

mum shear is usually chosen as a positive quantity (see 
Appendix A), its two components of local shear and 
normal deformation are also included in Figure 6. Qual- 
itatively, the modeled velocity corresponds well to ob- 
served velocity for all modeled cases, with specific high- 
velocity events (peaks on the plots) coinciding in time 
very closely. The deformation components, on the other 
hand, are not as compatible. While the model deforma- 
tion values scale comparably to those observed, they do 
a poor job at matching specific time episodes, although 
there are some exceptions, particularly for the maxi- 
mum shear component (shown in Figure 6 with plus and 
minus values, either of which is possible at any point in 

time; see (A3)). A mean close to zero in the observed 
divergence (DV), normal deformation/elongation (ND), 
and local shear (SD) are reproduced in the viscous- 
plastic case but not in the free drift (FD) or cavitating 
fluid (CAV) cases, which exhibit a number of strong 
low-frequency signals from 5 to 60 day periods, result- 
ing in strong convergence (defined as positive divergence 
here) of the order of 10 -6 •10% per day from about 
day 90 to 120. These strong convergence episodes are 
not seen in the observations and relate to physically 
unrealistic instances of piling up of ice locally. While 
the cavitating fluid case is not as extreme as the free 
drift case, the cavitating fluid, with its ability to resist 
compressive stress, is providing only part of the answer 
needed to compute deformation correctly. 

Inclusion of shear stress, as in the case of the viscous- 
plastic (VP) rheology, seems to be necessary in the 
model. Of all the deformation components observed, 
divergence is the most poorly reproduced while maxi- 
mum shear is the best. For the latter, 30 hour LPF 
deformation results using the viscous-plastic model are 
remarkably similar to those observed, including the re- 
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Figure 6. Time series of buoy array centroid for variables of velocity magnitude (VM), diver- 
gence (DV), normal deformation (ND), local shear deformation (SD), and maximum shear (MS) 
as computed from multiple linear regression analysis using 30 hour low-pass filter for (a) free 
drift, (b) cavitating fluid, and (c) viscous-plastic models versus (d) ISW observations. Velocities 
are in meters per second, and deformation terms are in units of x10 -6 s -• for the three model 
cases and the observed ISW array. Since maximum shear is computed from a square root (see 
(A3)), both positive and negative roots are plotted such that any value at any point in the time 
series could be either positive or negative. 

production of peaks and troughs at the same time as 
those observed, albeit with significantly smaller magni- 
tudes. 

While the velocities look similar in the time series 

plots, slight differences in velocity result in both ma- 
jor differences in space, as seen in deformation, and in 
time. To illustrate this, progressive vector plots of ve- 
locity for the observed, free drift, cavitating fluid, and 

viscous plastic with truncated ellipse are shown in Fig- 
ure 7. Comparing observations to FD in Figure 7, we 
see that FD predicts faster northward motion in the 
west than east, as also seen in the observations, but the 
drift pattern is distorted, especially at the four eastern 
sites. This distortion produces the poor deformation 
outcome seen in the time series plots. The cavitating 
fluid model compares somewhat better than FD to the 
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Figure 7. Progressive vector plots of buoys as derived from observations and three simulation 
results. Vectors are computed from 3 hour sampling of velocities subjected to a 30 hour low-pass 
filter. 

observations with the two western buoys drifting simi- 
lar to that seen in the observations. The four eastern 

sites, however, are still poorly reproduced. 

The viscous-plastic model with truncated ellipse in 
Figure 7 shows many of the short-term features in the 
observations and a trajectory that is, overall, the clos- 
est to observations. However, particulars of the drift 
are distorted, specifically the intermittent drift pertur- 
bations (wiggles in the observed 30 hour LPF drift) and 
the observed strong west to east shear in the net north- 
ward drift that is reversed in the TRU model. In an at- 

tempt to see if the drag coefficient might be responsible 
for the stronger northward flow in the west, the drag co- 
efficients were modified according to Fischer' and Lemke 
[1994] to include a reduced ocean drag (C• = 0.0030, 
down from C• - 0.0055 kg m-2s -•) and increased wind 
drag (C• - 0.0015, up from C; - 0.0012 kg m-2s -•). 
Unfortunately (not shown here), this leads to an over- 
all northward flow that greatly exceeds observations and 
proportionally increases the east to west shear, with the 
eastern buoys still moving too fast northward relative 
to the western buoys. 

Overall assessment using progressive vector plots shows 
that none of these models properly reproduces all the 

features observed, but the cavitating fluid best repro- 
duces the general western intensification flow seen in 
the observations while the viscous-plastic model (due 
to inclusion of shear) spatially drifts similar to obser- 
vations, except for the western intensification. This is 
occurring despite the fact that a western intensification 
ocean current is added in the models as prescribed by 
the observations [Geiger, 1996]. 

Quantitatively, with a 30 hour low-pass filter, a cross- 
spectral coherence close to 90% was found for FD, CAV, 
and VP models versus observed buoy velocities (see Ap- 
pendix A). From the example shown in Figure 5, we see 
that this is attributed to the high peak of coherence 
around the 5 to 8 day period (close to that of storm 
activity) and is believed to be a result of the ECMWF 
input atmospheric pressure fields. Conversely, coher- 
ence between the model and observed total strain rates 

are much lower (highest value is for the viscous-plastic 
theology at 40% coherence as seen in Figure 5). Normal- 
ized cross correlation results as shown in Figure 8 ad- 
ditionally exhibit nearly the same result, with modeled 
velocity comparing better than 80% to observed in all 
but direction, which correlates poorly (<50%). Defor- 
mation variables correlate less well (e.g., the best result 
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is for maximum shear at about 50% for the viscous- 

plastic case). However, for both invariant and nonin- 
variant strain-rate components (Figure 8), the different 
rheologies show a clear distinction in correlation versus 
those observed (20% for FD, 28% for CAV, 40% for VP 
total strain rates). Additionally, in all cases, maximum 
shear (see Appendix A) is modeled much better than 
divergence which poorly correlates in this study for all 
three rheology types tested. The similarity in velocity 
coherence, despite the different rheological types, is at- 
tributed to high quality in the ECMWF 6 hour interval 
atmospheric pressure fields used to drive the models. 
The low correlated velocity direction is apparently a 
typical problem associated with the input fields in this 
region (P. Lemke, personal communication, 1997) and 
is a likely contributor to the low divergence values in all 
the model results. 

Overall, from this interrheology comparison, we find 
that first, the velocity is reproduced well, no matter 
which rheology is chosen and is primarily dependent on 
the quality of the wind velocity field. Hence, to within 
about 80% to 90% confidence, the ice velocity responds 
primarily to wind and water forcing. Second, the de- 
formation of the field is more difficult to predict in the 

models, at most, only 50% of the coherence attainable in 
this study. A noticeable improvement is found in model 
deformation for the more realistic rheologies, which in- 
clude both compressire and shear stresses. Finally, the 
strain rate, and not the velocity, is found to be the more 
critical parameter to compare in model results in terms 
of testing a constitutive relation. 

5.2. Comparison of Viscous-Plastic 
Modifications 

One conclusion from the results described in section 

5.1 is that inclusion of both divergent and shear defor- 
mation produces the best rheological results when com- 
pared with observations. The next question is, which 
components of the best model could be modified to im- 
prove it even further? The aim of this section is to ad- 
dress this question by examining the response of some 
recently suggested modifications to the viscous-plastic 
model in order to see how well they compare with the 
observed results. As discussed in section 1, the viscous- 
plastic closure scheme has recently gone through a num- 
ber of modifications. First, the original concentric el- 
lipse method [Hibler, 1979] has been modified to a trun- 
cated ellipse [Hibler and $chulson, 1997], which is de- 
veloped from the replacement method of Hibler and Ip 
[1995]. Second, in terms of the mechanical behavior, a 
more brittle or ductile response can be achieved by in- 
creasing or decreasing, respectively, the bulk viscosity 
term •max- For purposes of simplicity, let us consider 
the case of increased ductility (•max > •max/100) ver- 
SUS the more brittle standard case. Third, in the litera- 
ture, Fischer and Lemke [1994] found good correlation 
in buoy drift statistics for the Weddell Sea by modify- 
ing the wind and water drag coefficients from those of 
Hibler [1979] from 0.0012, 0.0055 kg m -2 s -• to 0.0015, 
0.0030 kg m -2 s -•, respectively. Since the air drag is 
only slightly different while the water drag is signifi- 
cantly reduced, let us call this a reduced water drag 
case. Finally, an important issue in numerical model- 
ing is scale and how it impacts a model's results. In 
this case, let us consider a 25 km model (twice the 
standard resolution). With the above modifications, 
we cover some of the current viscous-plastic rheology 
sensitivity categories being examined today. Since the 
truncated ellipse is more realistic than the concentric 
ellipse, the former will be the standard case, with other 
case studies as a modification of that model. There- 

fore, in addition to free drift and cavitating fluid, we add 
the original viscous-plastic model with concentric ellipse 
(CON), our identified standard viscous-plastic model 
with truncated ellipse (TRU), a ductile case (DUCT = 
TRU with •max > •max/100), the reduced water drag 
case (DRAG) described above, and a 25 km version of 
TRU. 

Differences in time series, frequency domain, and 
probability distribution are notable between the vari- 
ous viscous-plastic cases, but their differences are best 
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ellipse closure, a ductile state of truncated with •max -• •max/100 (more ductile), and a reduced 
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exemplified in principal axis space. Three hour interval 
samples of the buoy array centtold are shown in Fig- 
ure 9 in principal axis space (a•, a2) for the different 
viscous-plastic cases chosen. The primary difference be- 
tween the concentric and truncated closure scheme oc- 

curs near the origin where the concentric ellipse extends 
into positive rr• and a2 quadrants and thus experiences 
tensile stress. On a large scale, this is physically unre- 
alistic. The truncated case, on the other hand, has no 
tensile stress and, furthermore, owing to the replace- 
ment method, has fewer points close to the center of 
the ellipse at -Pmax/2 and a slightly different distri- 
bution of points along the plastic yield limit. When 
a more ductile state is employed (Figure 9, bottom), 
a considerably greater number of points are located in 
the viscous region, with far fewer points extending into 
the bottom of the yield curve (i.e., fewer large negative 
values, less convergent). The reduced water drag case 
looks very similar to the standard (TRU) run, except 
for a few more points in the interior in the viscous re- 
gion, and is slightly more convergent, but this is fairly 
subtle. The 25 km case has similar subtle differences in 

principal axis space (not shown here) versus the 50 km 

standard case, with only slight differences in both drift 
and deformation (Figure 10). The biggest improvement 
in the increased resolution case is an increase in coher- 

ence from < 20% to nearly 40% at daily and •17 hour 
periods, neither of which relates to the inertial period 
(which is •12 hours in this region). This increased co- 
herence has only subtle effects in the divergence and 
strain-rate components, as exemplified in Figure 10. 

In all of the cases shown in Figure 9, the stresses are 
concentrated near O'Ilrnax, the maximum point of the 
maximum shear in principal axis space (see Figure 4a). 
There are only a few points approaching the maximum 
convergence point -O'Imax. Recalling the time series in 
Figure 6, this concurs with the smaller model divergence 
values versus those observed. From both the observed 

strain rate and the modeled stress information above, 
we hypothesize that the observed stress state is simi- 
lar to the ones shown in Figure 9 but with the main 
concentration of points located on the yield curve be- 
tween --O'Irnax and O'Ilmax rather than clustered about 
O'Ilmax. Hence none of these modifications produces the 
divergence desired. The ductile case works against in- 
creasing the convergence, while the modified water drag 
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Figure 10. Examples of results from a 25 km run of the viscous-plastic rheology with truncated 
ellipse versus the same model at 50 km. Power density of velocity is in square meters per second, 
and divergence time series is in units of x 10 -6 s -1. 

has a few more convergent points than the truncated 
and concentric ellipse cases and hence comes closer to 
the observed divergence, but only subtly so. Increasing 
the ductility only increases the number of points on the 
yield curve but does little to move them into the more 
convergent region of the curve. 

No observed stresses are available, but the observed 
strain rates are computed and can be compared directly 
with the modeled strain rates. The performance of the 
modeled strain rates versus observed is seen in the scat- 

terplots in Figure t t for the cavitating fluid, truncated 
ellipse at 50 and 25 km, and the reduced water drag 
cases. The cavitating fluid (Figure lta) and, similarly, 
the free drift case (not shown) reproduce velocity that is 
slightly more scattered than for the viscous-plastic case 
(Figure lib), while modeled deformation variability in 
the cavitating fluid is far greater than that observed 
(i.e., lots of scatter in the model direction versus lit- 
tle scatter in the observed direction). For the viscous- 
plastic model (Figure lib), a much closer one-to-one 
relationship is established between model and observa- 

tions for the shear terms while the model clearly un- 
derestimates the divergence versus that observed. The 
compressive and shear deformation terms, which are the 
components of the maximum shear (see (4), (5), and 
(A3)), are used in place of the maximum shear to elim- 
inate dealing with the sign discrepancy connected with 
the square root of the maximum shear (see Appendix 
A). Both the compressive and shear deformations are 
aligned along the diagonal but are still narrower in the 
vertical (model) direction than in the observations, indi- 
cating that the model is underpredicting both of these 
quantities. By increasing resolution to 25 km for the 
viscous-plastic model (Figure ttc), the results change 
only slightly, with the most improvement in increasing 
the model variability in the elongation and local shear. 
The modified drag case overpredicts velocity relative to 
observations (Figure lid) but increases the model vari- 
ability for divergence and shear terms to more closely 
resemble those observed. 

To get a more quantitative sense of this variability, 
Table t shows the temporal variance and rms of the 
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Figure 11. Scatterplots of correlation between 3 hour interval ISW centroid observations 
against (a) 50 km cavitating fluid, (b) 50 km viscous plastic with truncated ellipse, (c) 25 km 
version of the truncated ellipse, and (d) 50 km truncated case with modified drag. Velocity 
magnitude is in meters per second, and selected deformation terms are in units of x 10 -6 s -1 for 
divergence (DV), normal deformation/local elongation (ND), and local shear (SD). 

observed and simulated buoy array variables. The rms 
variability in the velocity magnitude decreases progres- 
sively for free drift, then cavitating fluid, and finally 
the viscous-plastic case with truncated ellipse (TRU), 
with TRU being the closest to that observed (11.92 for 
observations, 12.62 for TRU). The observed velocity re- 
sults differ only slightly from the model examples in 
Table 1 (23% for free drift with ocean current and 30% 

for TRU for variance relative error between models and 

observations). However, we note a clear distinction in 
results of the different rheologies for kinematic quan- 
tities. Free drift with ocean current has substantially 
greater variance than observations, e.g., relative errors 
for divergence, elongation, local shear, and vorticity are 
200%, 224%, 35%, and 59%, respectively. However, 
with the addition of ice interaction, the variance and 
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rms decrease in the deformation components to 90%, 
53%, 52%, and 13% for viscous plastic, respectively. In 
particular, the divergence and components of maximum 
shear (ND and SD) have an observed variance and rms 
which lies between that of the cavitiating fluid model 
and the viscous-plastic model. Hence the results from 
Table i and the time series from Figure 6 indicate the 
following. Shear is a needed component for moderat- 
ing the long low-frequency 5 to 60 day unobserved high 
variability in free drift and cavitating fluid. However, 
the current viscous-plastic simulation seems to dampen 
the strain rate field too much, particularly the diver- 
gence, producing a variance that is too low. This result 
suggests that a physical process designed to increase 
variability and divergence in the viscous-plastic model 
should improve model results for this region. One possi- 
ble consideration is the inclusion of subdaily processes 
where inertial oscillations, working either in conjunc- 
tion with or as a result of tidal motion, are allowed to 
evolve without being overdamped. 

To better understand the kinematic and deforma- 

tion components, a representative plot of the probabil- 
ity density distribution and resultant X 2 distribution is 
shown in Figure 12. The •v/•y component is shown for 
the observed buoy array and those simulated in the fol- 
lowing four cases: the free drift, cavitating fluid, viscous 
plastic with truncated ellipse (TRU), and TRU with a 
reduced water drag. From this example, one result that 
stands out is that the probability distribution is basi- 
cally Gaussian about a zero mean. This distribution is 
typical of all the observed deformation and kinematic 
components examined Geiger et al. [1996]. In the ab- 
sence of modeled shear stress, the free drift and cavitat- 
ing fluid models do not reproduce this distribution and, 
instead, tend to be more divergent than observed. The 

viscous-plastic cases, however, are more Gaussian in 
their deformation distributions, with the biggest differ- 
ence in probability density near the mean. Chi-square 
distribution further indicates specific regions within the 
probability distribution where the models overpredict or 
underpredict the observed. While none of the viscous- 
plastic modifications compe•red overall better than the 
observations, their close correspondance to the observed 
probability distribution in a number of the components 
indicates that the viscous-plastic solution is at least on 
the right track to a correct solution. 

The overall X 2 statistics from the probability distri- 
bution function are summarized in Table 2. Looking 
first at the categories for velocity, the best X • (lowest 
value) is for the reduced ductility case because of its 
ability to match observed smaller velocity magnitudes 
where ductile creep is most effective. This is followed 
by the 25 km model, with the worse two cases being the 
reduced water drag and concentric ellipse cases, which 
are even worse than for the free drift and cavitating fluid 
models. For velocity direction, free drift and cavitating 
fluid have the highest X •, with concentric and truncated 
ellipses producing the best result. In considering both 
magnitude and direction results, free drift, cavitating 
fluid, and reduced drag have the least favorable results 
while the remaining four appear indistinguishably close. 

In terms of individual deformation components (Ta- 
ble 2), things become a bit more distinct. First, the free 
drift and cavitating fluid results are clearly the worst. 
The case of reduced drag is rather perplexing because 
it matches quite well with some of the components; for 
example, •v/•y - 0.08 works quite well while others, 
in particular •v/•x - 3.8, do quite poorly. The •v/•x 
component is apparently the main trouble spot for all 
these models with the TRU, DUCT and 25 km versions 
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which are exceedingly large (i.e., off scale), are indicated numerically for FD and CAV without 
and with parentheses, respectively. 
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Table 2. X 2 Results 

FD CAV CON TRU DUCT DRAG 25 km 

VM 0.28 0.26 0.43 0.37 0.15 B 0.88 W 0.22 
VD 0.89 W 0.42 0.30 0.29 B 0.35 0.39 0.35 

Ou/Ox 0.39 W 0.35 0.08 0.08 0.08 0.21 0.07 B 
Ou/Oy 0.41 W 0.19 0.21 0.21 0.20 0.15 B 0.17 
Ov/Ox 1.53 1.30 1.01 0.76 0.67 3.84 W 0.45 B 
Ov/Oy 7.13 W 1.77 0.26 0.26 0.34 0.08 B 0.25 

DV 38.14 W 3.07 0.41 0.45 0.59 0.15 B 0.41 
ND 1.37 W 0.74 0.15 0.16 0.13 0.05 B 0.14 
SD 0.98 W 0.52 0.16 0.14 0.12 B 0.20 0.14 
VT 0.51 B 0.57 0.58 0.52 0.54 4.41 W 0.53 

Variables were computed from observed versus simulated results from 
the large-scale buoy array at Ice Station Weddell in 1992 with a 30 hour 
low-pass filter applied. Abbreviations are as follows: FD, free drift model; 
CAV, cavitating fluid model; CON, viscous-plastic model with concentric el- 
lipse; TRU, viscous-plastic model with truncated ellipse; DUCT, TRU with 
reduced ductility •max --> •max/100; DRAG, TRU with reduced water drag 
(see text); 25 kin, TRU run at 25 km resolution; VM, velocity magnitude, 
and VD, velocity direction, both in centimeters per second; and DV, di- 
vergence; ND, normal deformation (elongation); SD, local shear; and VT, 
vorticity, all in units of x10 -6 s-1; B and W, best and worst case from each 
category. 

improving increasingly. This component represents the 
shear of the v velocity (parallel to the shelf break) in the 
x direction (normal to the shelf break). This informa- 
tion suggests that topographically enhanced processes 
may be important to incorporate into the model in or- 
der to improve this situation. This is also the direction 
believed by Geiger et al. [1998] to be most heavily influ- 
enced by tidal amplification in the western Weddell Sea 
region due to a change in water depth by a factor of 2 
from the western buoy sites (about 1500 m) to the east- 
ern buoy sites (about 3000 m). Inclusion of subdaily 
processes, specifically tidal/inertial motion, is the sug- 
gested hypothesis for decreasing this largest X = result 
between the observed and modeled buoy deformation 
components. 

Sorting this out by the more physically based compo- 
nents (differential kinematic parameters) of divergence, 
vorticity, normal deformation (local elongation), and lo- 
cal shear, we see from Table 2 that free drift and cav- 
itating fluid have significantly greater X 2 values in all 
cases, except vorticity, which is part of the nondefor- 
mational rotational portion of the array. The reduced 
water drag case seems to do quite well for most of the 
deformation terms but not for velocity magnitude, di- 
rection, and vorticity. The remaining four (CON, TRU, 
DUCT, 25 km) do about equally well, but each is a little 
different for each process. 

6. Discussion and Conclusions 

Summarizing these statistics, we find that neither free 
drift nor the cavitating fluid models adequately repro- 
duces both drift and deformation features in the ice. 

The viscous-plastic theology with its various modifica- 
tions shows a considerable improvement over these, but 

none of the modifications clearly stands out as unique in 
terms of satisfying all the drift and deformation results. 
All results do show a distinct effect attributed to to- 

pography contributing to overall greater X 2 values and 
a low correlation in modeled versus observed divergence. 
Both of these may be improved if undamped subdaily 
tidal/inertial processes and possibly anisotropy are in- 
cluded in the models [Hibler and Schulson, 1997]. 

Key results seen in this comparison are as follows. 
First, while none of the models completely reproduces 
the buoy behavior observed in the field, the use of a the- 
ology with both pressure and shear resistance is the best 
solution of those studied here. Second, with regard to 
sensitivity to these models, ice deformation is far more 
difficult to predict than drift and is much more sensi- 
tive in terms of response to the tuning of internal ice 
parameters. Third, an adequate model improving both 
drift and deformation was not achieved. While use of 

increased ductility in the viscous-plastic model greatly 
improved velocity magnitude statistics, modifying the 
drag coefficients was far more successful at improving 
many of the deformation components; however, even a 
combination of these [Geiger, 1996] failed to produce a 
satisfactory result. Overall, shear is reproduced much 
better than divergence in the models and velocity mag- 
nitude is predicted much better than direction owing 
to the input field quality. Fourth, the sensitivity of the 
different deformation terms (both directional and in- 
variants) is such that some parameters improve while 
others do not, depending on the modifications made to 
the models. Fifth, a distinct directional dependence 
relative to topographic characteristics is evident in X = 
results, with the connection to topography being hy- 
pothesized through subdaily oceanic (tidal) processes 
linked to inertial oscillations in the ice. 
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A salient conclusion of this work is that deformation 

provides a more discriminating test between different 
sea ice theology models. This is apparent both in the 
time series of deformation from the buoy array and in 
the progressive vector plots of the buoys over the du- 
ration of the field experiment. The basic picture that 
emerges is one where low-frequency forcing is supplied 
by the wind, with the average ice drift following the 
wind forcing in a manner only weakly dependent upon 
internal ice stress. However, the ice interaction provides 
a coherence to the differential motion, so that different 
portions of the ice pack do not disperse and mix, which 
occurs if they were allowed to freely move with the wind. 
This ice interaction also causes a reduction in variance 

of the deformation in comparison to what would be ex- 
pected with only wind forcing, which is consistent with 
observations. This can be seen both in the long-term 
buoy drift over the period of the experiment and in the 
variance of the deformation. 

Comparisons of different models have shown that 
the main feature of a successful model is the inclusion 

of some level of shear strength that reduces the net 
shear in the system and provides a greater coherence 
to the differential motion. Basically the deformation 
variability produced by predicted drift, excluding shear 
strength, tends to be much larger than observed. This 
feature is also apparent in the probability distribution of 
deformation which tends to have a much more Gaussian 

character with the inclusion of ice interaction, therefore 
comparing well with observations. 

While there is coherence between modeled and ob- 

served drift at lower frequencies, there is a great deal 
of higher-frequency motion and deformation in the ob- 
servations that is not reproduced in these largely wind 
driven, ice dynamics models. This is, in large part, 
due to tidal forcing for this region that is not included 
in the model forcing here. However, this defect also 
points to the inadequacies of the present boundary layer 
formulation which assumes averaging over long periods 
compared to the inertial period, which is almost indis- 
tinguishable from the semidiurnal tidal period at this 
latitude. Improvements in the formulation of this cou- 
pling are currently underway. 

A combination of improved input fields and bound- 
ary layer formulation may provide the means to cor- 
rect some of the differences found in this comparison 
study. Additionally, consideration of an anistropic the- 
ology [e.g., Hibler and Schulson, 1997] may be a vi- 
able inclusion to consider, given the improved speed of 
computers and the need to include more realistic sub- 
daily processes in the models. In the meantime, the 
methods presented here serve as useful processing tools 
for analyzing and testing model modifications in a way 
that directly compares observed drift and deformation 
behavior with numerically constructed, constitutive as- 
sumptions. 

While these results are only from one regional case 
study, they reveal that deformation is clearly a defining 

parameter in terms of testing ice theologies in models. 
The spatial variability of the drift (i.e., the deforma- 
tion) is also the variable used in the constitutive rela- 
tion from which the theology is defined. By including 
deformation in the validation procedure, the variability 
in the field drift is also taken into account. Deforma- 

tion also has a more direct impact on the compactness 
than the drift, as it is a dominant process in determining 
open water fraction. In terms of heat balance, deforma- 
tion is a critical parameter in terms of evolution of the 
field compactness and hence the growth rates and mass 
balance of the system. Since the shear is intrinsically 
connected to the physical dynamics of the divergence 
process, a realistic divergent-shear theology is needed 
to correctly define the open water fraction in the ice. 
As high-resolution and eddy-resolving ocean models be- 
come more prevalent, these smaller-scale processes be- 
come increasingly important to coupled ice-ocean mod- 
els. 

Appendix A' Correlation and Coherence 
of Maximum Shear 

The following describes the mathematical details used 
to compute the cross correlation for maximum shear 
and cross-spectral coherence. 

A.1. Correlation Coefficient 

Since maximum shear is a positive definite quantity, 
the usual formulation for correlation only works for the 
magnitude of maximum shear but not the correlation 
in absolute terms. The following method allows us to 
compute the correlation of maximum shear in absolute 
terms. (Repeated indices of i and j sum.) The quantity 

ß )2 .... 2 -2 -2 (A1) (•ij •ij•ij -- %x q- q- 2%y •yy 

is the power of the total strain rate and is invariant, as 
are the divergence (DV) and maximum shear (MS) 

DV - • - •xx q- •yy -- •1 q- •2 (A2) 
MS - q- • = 

q- •xx -- •yy 
2 

•i - •2 
2 

2 

+ 

(A3) 

Using (A2) and (A3) we find that the total strain-rate 
power equals 

DV 2 
(•ij) 2 ---- q- 2(MS) 2 (A4) 2 

Solving for maximum shear using this and the strain- 
rate tensor in coordinate specific terms, we get 

ß . . 

(MS) 2---- (•5iJ) 2 •ii•jj (AS) 
2 4 
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Both quantities on the right-hand side are invariant (to- 
tal strain rate and divergence). Furthermore, terms like 
•i•' •j are also invariant, provided that the tensors rep- 
resented by matrix superscript o and superscript m are 
both in the same coordinate system. Designating o for 
observed and m for model, we can form the following 
invariant correlation of maximum shear 

8k[f]- 2At (A18) 

+ (-1)kA,•) 
Ok[f] - (A19) 

l•om[r] - • eij[t]e•J[t + •] -- eii[t]ey•[t + •] (A6) 2 4 

where repeated subscript indices are summed over, r is 
the lag time, and N is the total number of data minus 
the number of data that tag at time •-. In principal 
coordinate space, this reduces to 

kom -- (• -- •)(•? -- •) (A7) __ 

4 

Consequently, the normalized correlations are given by 

A.2. Cross-Spectral Coherence 

The cross-spectral density function is the Fourier 
transform of the cross-correlation function and is de- 

fined as the complex function 

Gij[f] -- Cij[f] - jQij[f] (A10) 

Gij[f] - IGij e -jø" (All) 

IGijl - ½Ci2j -•' (•i5 (A12) 

Oij -- tan-1 ((•iJ •--•/j ) (A13) 
where Cij is the real or coincident spectral function, (•ij 
is the imaginary or quadrature spectral density func- 
tion, and j is the imaginary value x/-Z-1 in Cartesian 
space. In polar coordinates, IGijl is the magnitude of 
the function and Oij is the phase. When normalized, 
the magnitude, 

IGijl2 (A14) ")'i2j If] -- Gi•'G-j• ' 
is known as the coherence. 

One way to obtain the coherence is to compute the 
real and imaginary components, following Bendat and 
Fiefsol [1971], such that Cij • 8k and (•ij • Ok and 
applying Hanning smoothing such that 

00 -- 0.500 + 0.501 (A15) 
•k - 0.25•k_1 + 0.5•k +0.25•k+1 (A16) 

k- 1,...,m- 1 

0m ---- 0.58m--1 -]- 0.58m. (A17) 

for both •k and 0k where 

such that f = kfc/m is the given frequency for k = 
0, 1,...,m and fc = 1/2At is the cutoff/Nyquist fre- 
quency. In this way, we separate the cross-correlation 
into even and odd parts defined by 

1 

Ar -- Aij[T] - • (kij 'n t- kji) (A20) 
I (•ij •ji) (A21) J•r -- J•ij[T] -- • -- ß 

Appendix B' Numerical Method for 
Plastic Solution 

The momentum balance for sea ice is used to solve 

ice velocity, given known air and ocean inputs. For 
a nonlinear viscous-plastic theology [Hibler, 1979] and 
energy-conserving variations as constructed by Ip [1993] 
and Hibler and Ip [1995], the ice theological parameters 
of pressure P, bulk (, and shear r/ viscosities are all 
interlinked functions of the strain-rate invariants. Con- 

sequently, for a true plastic solution of the nonlinear 
equations of motion, we need to solve for these linked 
nonlinear parameters by some iterative process. 

The efficient numerical method by Zhang and Hibler 
[1997] (hereinafter referred to as ZH) solves the lin- 
earized equations of motion (i.e., Dv/dt --> Ov/Ot) in a 
decoupled form through a matrix solution (Thomas al- 
gorithm), together with line successive over relaxation 
(SOR). Building on their method, we describe here a 
method to efficiently solve the ice velocities by a pseudo 
time stepping procedure where we subcycle the equa- 
tions of motion at each time step to approach plastic 
flow. 

For simplicity, we reorganize (2a) and (2b) of ZH to 

(St + 5•,x + Aw)U - (Svx + Bw) V + rx (B1) 

(St +Svy + Aw) v - (5 w - Bw)u + ry (B2) 

where the 5 terms are the operators 

0 

5t - p•h ot 
5•x = o o Ox + v) Ox 

o 5vy = - 0-• Oy 
vx 

(•uy 

(B3) 

0 0 

Oy q Oy (B4) 
0 0 

OxqO x (B5) 
0 0 0 0 

Ox - + 
0 0 0 0 

(½ + as' 

(B6) 

(B7) 
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All the external and internal nonice velocity terms are 
described by 

OP 

'r'x - AaUa - B•,Va Ox (B8) 
OP 

ry - A•V• + BaU• Oy (B9) 
with the nonlinear air and water drag coeificients de- 
scribed by 

A• - C•p•lV•,l cosO• (B10) 
B= - C;p=lVlsin0a (Bll) 
Aw = C•pwlv - Vwl cosOw (B12) 
Bw = C•pwlV - Vwl sin Ow + pif . (B13) 

The C* terms are the constants referred to in the text 

as drag coefficients; subscripted variables i, a, and w are 
for ice, air, and water, respectively; f is the Coriolis pa- 
rameter; and P, (, and r• are the internal ice parameters 
computed as described in Appendix C. All these terms 
are further described by Hibler [1979]. The coefficients 
Aw and Bw are the diagonal and cross-diagonal terms 
Cd and Cs, respectively, defined by ZH. Of paramount 
importance to the method described here is the inclu- 
sion of v in the water drag terms Aw and Bw. 

Using a finite difference scheme with Arakawa B grid, 
nonlinear viscosity ((, r•), internal ice pressure P, and 
other scalar properties are defined in the center of each 
grid cell. All vector components, including the ice ve- 
locities (u, v) and all derived vector quantities, such 
as the internal ice pressure gradient and scalar quanti- 
ties multiplied by velocity, such as the mean ice thick- 
ness • and Coriolis parameter f, are located in the cor- 
ners of the grid cells. Tensor quantities are centered at 
scalar locations, with gradient operations computed us- 
ing a five-point differencing scheme for 5ux and 5vy and 
a nine-point differencing scheme for 5w and 5uy after 
Hibler [1979]. 

Our main concern here is the time-stepping proce- 
dure consisting of a physical time step with subcycles of 
pseudo time steps nested around a predictor-corrector 
cycle. Within each predictor and each corrector is a 
matrix solver, which itself contains the SOR relaxation 
iterations. Hence there are four nested steps needed to 
achieve the full viscous-plastic solution, with the outer- 
most loop being the physical time step. Here 5t is the 
only term containing velocity from the previous phys- 
ical time step k because it contains no other velocity 
dependent terms. 

In the absence of a predictor-corrector scheme, time 
stepping for (B1) (and analogously for (B2)) would be 

ph (v(n) (v(n) IX; + ) + )1 
----[(Svx(V ©) d- Bw(v(n))] v © 

_ 

ph u(k) (B14) + - 

Here superscript k represents physical time steps while 
n represents the pseudo time step such that u © = 
u © at the end of each physical time step and u © = 
u © at the beginning of the first pseudo time step. 
The full plastic solution is reached when u (n+x) -u © < 
e. For each pseudo time step, the SOR matrix solver 
in ZH steps through i iterations until u (i+•) -u © • e 
such that u (n+•) -u (i+•). In this form, the (n q-1) 
superscript represents the velocity updated to the most 
recent matrix solution. All the variables dependent on 
the ice velocity, such as (, r/, P, Aw, and Bw, are com- 
puted from the previous pseudo time step solution u ©. 

The solution above would be stable, were it not for 
the nonlinear dependence of the water drag on the ice 
velocity (i.e., the v term noted in Aw and Bw). Because 
of this ice velocity dependence, the solution requires a 
predictor-corrector scheme (also called a modified Euler 
scheme) embedded within each pseudo time step in or- 
der to stably adjust to these nonlinearities. To do this, 
the input velocity in the predictor scheme is the most 
recently updated one while in the corrector mode, the 
velocity in Aw, Bw and the velocity multiplied by 57x ), 
are averages from the previous pseudo time step and 
most recent predictor results. 

In this way, (B 14) is modified into a two-part predictor- 
corrector procedure, with the predictor part computed 
by 

(B15) 

with a similar formulation computed to obtain V (n+l)*. 
Note that this predictor part has the same form as 
(B14). 

Following this, we include the corrector step 

q- (Sux(V (n+l)*) q- Aw(v(C))] tt( n+l)** 

= *) + v 
ph u(•) + _ (B16) 

and analogously solve for v (n+l)**, where 

V ¸ ---- v(n) q- v(n+l)* (B17) 
2 

Note that (, r/, and P are updated before each matrix 
solution, while the nonlinear water drag advances more 
slowly to prevent instabilities. 

To remain consistent with ZH, a Coriolis correction is 
carried out to solve for v ̧  utilizing both component 
equations such that 

.•w(V ¸) t t(n+l) -- Bw(V(c)) v(n+l) ---- '•x (B18) 
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2•w(V (c)) V (n+l) -Jr- Bw(v (c)) tt (n+l) : '•y (B19) 

where •x and •y are the terms from the corrector equa- 
tion expressed as 

- ©) _ ,) ** 
_ 

ph + (v(C)) _ 27 (B20) 

and for brevity, 

(B21) 

Aw- (v ̧ - At + Aw ) (B22) 
In this form, the Coriolis adjustment can be com- 

puted by simultaneously solving (B18) and (B19) to 
form the simple algebraic result 

u(•+•) Aw2• + Bw2y 
= fi.2• + B2w (B23) 

v(n+l) 2•w•Y -- Bw• x 
= fi.2• + B2• (B24) 

Experience has shown that the most consistent ap- 
proach is to apply this Coriolis adjustment at the ends 
of both the predictor and corrector steps. 

This procedure can be contrasted to the normal mod- 
ified Euler pseudo time stepping procedure where the 
viscous operators 5ux(v(n+•)*)and 5vx (v(n+•)*)in (B16), 
(B20), and (B21) are replaced by 5ux(V (c)) and 5vz (v(C)). 

The following summarizes our approach to the full 
plastic solution. One predictor-corrector loop within 
each time step solves for the ice velocity for given inter- 
nal ice parameters of P, •, and r/. Since the internal ice 
pressure and viscosities are functions of the ice velocity, 
the pressure and viscosity terms in both the predictor 
and corrector steps use the most currently known ice 
velocity. The values of these terms are changing each 
time they are computed, in response to both the new 
velocities computed and the force balance. Creating a 
loop of pseudo time steps inside each physical time step 
but around each predictor-corrector pair allows the ve- 
locities, internal ice pressure, and viscosities to be up- 
dated each time the force balance routine and relaxation 

combination is called. Additionally, the nonlinear water 
drag is updated for each pseudo time step. 

The end result is an iterative convergence toward a 
force balance based on one velocity field. The impact 
of pseudo time stepping on the precision of deformation 
components is most clearly seen in Figure 10 of ZH. 
Unlike ZH, we update the viscosities and ice pressure 
at each of the predictor and corrector steps. In this 
way, we reach a plastic solution close to that of 100 
pseudotimes in the ZH method, but in about 10 pseudo 
time steps (see Figure 9). 

Appendix C' Constitutive Law 
Equations 

The theologies examined here are basically variations 
on an elliptical yield curve with modifications, for ex- 
ample, to ensure energy conservation lip, 1993; Hibler 
and Ip, 1995] and to remove tensile stress [Hibler and 
$chulson, 1997]. For an elliptical yield curve following 
Hibler [1979], the stress is given by 

O'ij -- 2r/•ij + (•- r/)•kk -- P/2 (c•) 

where repeated subscripts are summed over and ( and 
r/ are the bulk and shear viscosities, respectively, ex- 
pressed as functions of the strain rate according to 

- Pmx/(2/X) (C2) 
r/- (/e 2 (C3) 
A - (C4) 

7(&•l q-&.•2)( 1 q- 1/½ 2) q- 4•2/e 2 + 2&ll&22(1- 1/½ 2) 
Here Pmax is the maximum ice strength (equal to the 
ice pressure P for high strain rates) and e is a constant 
equal to 2 for the elliptical yield curve chosen for sea 
ice. The maximum ice pressure Pmax is related to the 
mean ice thickness per unit area h and the ice compact- 
ness A by Pmax = P* h exp{-C(1- A)}, where P* and 
C are empirical constants with values of 27.5 x l03 N 
m -2 and 20, respectively. The mean ice thickness h and 
compactness A evolve according to conservation equa- 
tions described by Hibler [1979]. To approximate rigid 
stress states inside the yield curve, • and r/are capped 
at some large maximum value (•max = Pmax/A* and 
r/max = •max/e 2 for A* = 2 x 104/5 x 10 •2) for small 
strain rates. 

To obtain a yield curve as pictured in Figure 4e, we 
take r/to be given by the minimum value of two quan- 
tities: 

r/ = min[•/(22, r/l] (C5) 
where 

r/• = (P/2 - •dkk)/ds (C6) 
&kk ---- &11 q- &22 (C7) 

•s -- 7(•11 -- •22) 2 q- 4•2 (C8) 
where •kk and •s are the divergence rate and maximum 
shear rate, respectively. Restricting r/to be less than 
insures that there is no tensile stress. In addition, to in- 
sure that there is no stress at zero strain rates, we insist 
that P = 2A(•, where (• = min[Pm•x/2A, (m•x]. When 
plastic flow is occurring, P will be a constant (Pmax), 
but for ( = (m•x, the stress state will lie on a smaller 
but geometrically similar yield curve (see dashed lines 
in Figure 4e) going through the origin. 
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