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ABSTRACT

Dictionary and deep learning algorithms facilitate efficient signal representa-

tions, thereby offering tremendous representational power along with achieving good

recognition rates in real-world machine learning problems. In this dissertation, we

present three dictionary learning approaches and a deep learning framework for classi-

fication tasks related to remote health monitoring systems.

This dissertation presents a more robust class specific centralized dictionary

learning method to solve the wearable sensor-based physical activity classification prob-

lem. Inspired by experiments that achieved high recognition rates using a few represen-

tative samples on high dimensional data, we explore the physical activity recognition

signals from wearable sensors and propose a dictionary pair learning-based framework

for human physical activity monitoring and recognition. The essential strategy involves

integrating the class specific centralized regularizer term into the dictionary pair learn-

ing objective function and efficiently optimizing the objective function by combining

the alternating direction method of multipliers and the l1 − ls minimization method.

Specifically, the class specific regularizer term ensures that the sparse codes belonging

to the same class will be concentrated thereby enhancing the classification performance.

Experimental results show that the classifiers built in this framework achieve higher

recognition rate over four activity recognition tasks and outperforms state-of-the-art

methods.

Physical activity recognition involves variations in different walking styles and

human body movements which result in the erroneous classification of similar activi-

ties. To address this issue, we present a correntropy induced dictionary pair learning

xvi



framework to achieve improved recognition. In particular, the dictionary pair learning

algorithm developed based on the maximum correntropy criterion is much more insen-

sitive to outliers. A combination of alternating direction method of multipliers and

an iteratively reweighted method is employed to approximately minimize the objective

function. Evaluations are conducted using four activity recognition tasks and results

show that the proposed classifier framework achieve enhanced performance compared

to the state-of-the-art recognition systems.

Although classification accuracy is enhanced using state-of-art classifiers, actual

recognition performance tends to fall off when distinguishing a large number of similar

activities. To this end, we propose and evaluate methods for analyzing hierarchical

and sequentially structured human activities, designed to scale activity recognition by

creating a hierarchical cluster of activity labels. Instead of using a single classifier to

distinguish between large numbers of activities, we propose a hierarchy of classifiers,

each of which distinguishes between child nodes at a particular location in the hierar-

chy. We hypothesize that building such a hierarchy of activity will improve recognition

performance over that of the flat classifier model. We validate the effectiveness of our

proposed model by employing it on two standard activity recognition datasets, which

include a large set of similar physical activities. The results of hierarchical structure

modeling furnish evidence that decomposing the problem leads to more accurate spe-

cialized classifiers.

This dissertation also applies deep learning methodology to the classification of

single-lead electrocardiogram (ECG) signals. State of-the-art automatic ECG recog-

nition systems often rely on a pattern-matching framework thereby requiring high

sampling rates and burdensome computational times to classify arrhythmias. Deep

learning networks represent a high level of abstraction showcasing its tremendous rep-

resentational power. Consequently, to enable implementation in real time, we develop
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a deep learning framework that includes Restricted Boltzmann Machine and Deep Be-

lief Networks for ECG classification with lower computational time, making it a highly

practical option in a clinical setting.
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Chapter 1

INTRODUCTION

Recent advances in ubiquitous computing technologies have contributed to the

broad scale adoption of pervasive sensor-based devices. Traditionally, unobtrusively

monitoring the physical activity of a patient once he/she is released from the hospital

is a critical but difficult task. Although patients fill out questionnaires and surveys

on their physical activity, this data collection tends to be imprecise. With recent

progress in pervasive healthcare and wearable sensing, providers have resorted to a

new approach of having patients wear sensors all day, thus acquiring a more precise

measurement of long-term activity. Wearable sensors (or inertial sensors) finds applica-

tions in healthcare, entertainment, sports, security, and commercial fields as they can

provide accurate and reliable information on a person’s activity and behavior, thereby

ensuring a safe and sound living environment.

Figure 1.1: Illustration of different wearable sensors: My Intelligent Communication Accessory (MICA), Myo (Mus-
cle Activity Tracker), Smart Wristband, Tracking Watch, Sensoria (Smart Socks) FootLogger (Shoe Sole for Fitness
Tracking) and FitBit [2].
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Activity recognition using sensor signals is an emerging area of research inter-

est in pervasive computing and has been investigated in health care [8], [9], smart

homes [10], [11], [12], situated support domains [13] and the monitoring of mental and

physical well-being [14], [15], [16]. Wearable sensor-based activity recognition enables

the fine-grained estimation of a person’s activities over extended periods of time. Hav-

ing good applications in the field of building a pervasive and smart environment for fall

detection of elderly people and providing personalized support in smart home environ-

ments, it has become a perfect platform to deliver long-term personalized healthcare

support anywhere and anytime.

1.1 Applications Addressed in this dissertation

Ubiquitous Sensing is an active research area with the main purpose of ex-

tracting knowledge from the data acquired by pervasive sensors [17]. Particularly, the

recognition of human activities has become a task of high interest within the assis-

tive living field, especially for home rehabilitation, assessment of treatment efficiency,

medical and security applications. Therefore, recognizing activities such as walking,

running, or cycling becomes quite useful to the caregiver to provide feedback about

the patients behavior and to detect abnormal activities and prevent undesirable conse-

quences [18]. A conceptual representation of a remote monitoring system is illustrated

in Figure 1.

In this dissertation, we address three recognition tasks using accelerometers and

heart rate data obtained from sensors:

• activity classification task

• intensity estimation task

• ECG recognition task
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Figure 1.2: Illustration of remote health monitoring system. Motion and heart rate data are gathered via wearable
sensors and information is transmitted to caregiver. Caregiver could use this information to implement interventions as
and when required [2].

Figure 1.3: Aerobic Activity Recognition Monitoring system. A large number of similar activities are considered for
the classification task (walking, running, nordic walking and cycling) [3]

1.1.1 Activity Recognition task

For activity recognition, the major goal of current research in context-aware

computing is to distinguish varied number of activities with a high recognition rate

along with lower computational testing time (Figure 1.2 and Figure 1.3). To this

end, we develop two robust dictionary learning activity recognition frameworks to

distinguish closely similar activities with reduced misclassification rate. The proposed

methodology is tested on three activity recognition datasets and extensive experimental

results on benchmark datasets demonstrate the superior performance of our proposed

approaches compared with conventional approaches.
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Figure 1.4: Aerobic Activity Recognition Monitoring system. A large number of high level (composite) activities are
also considered for the classification task [3].

Figure 1.5: Aerobic Intensity Estimation Monitoring system. The activities are distinguished based on MET values
into different intensity levels i.e high , moderate and light effort [3].

1.1.2 Intensity Estimation Task

Recent research on physical activity monitoring have also focused on estimating

the intensity of performed activities. Evaluating the intensity of activity (i.e., light,

moderate or vigorous) is addressed in [19] which illustrates the metabolic equivalent

(MET) - a parameter that refers to the energy expenditure of physical activity for

different physical activities [20] (Figure 1.4). Thus the ground truth for the intensity

estimation task is based on the metabolic equivalent (MET) of the different physical

activities, provided by [19]. Overall, the intensity estimation task is considered as a

3-class classification problem on PAMAP2 dataset and can be defined as follows:
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Figure 1.6: Illustration of ECG Recognition System

• lie, sit, stand, watch TV, computer work, drive a car, iron, fold laundry, and

clean house are regarded as activities of light effort (< 3.0 METs);

• walk, cycle, Nordic walk, descend stairs and vacuum clean as activities of mod-

erate effort (3.0-6.0 METs);

• run, ascend stairs, play soccer and rope jump as activities of vigorous effort (>

6.0 METs).

1.1.3 ECG Recognition Task

Wearable sensors can also gather physiological data and monitor vital signs

(heart rate and blood pressure) thereby, enabling overall health monitoring. Physio-

logical monitoring can help diagnose and treat individuals with cardiovascular, hyper-

tension and neurological diseases. Clinical studies are currently carried out to evaluate

the performance of wearable sensor platform to monitor physiological data over a long

period of time and improve clinical management of patients with congestive heart

failure. In this dissertation, we address the sensor based ECG classification task by

applying of Restricted Boltzmann Machine and Deep Belief Networks. Experimental

results demonstrate that proposed framework achieves a high classification accuracy at

a lower sampling rate using the proposed framework.
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1.2 Prior Work Reviewed

Classification of basic physical activities (such as walk, run, cycle) and basic

postures (i.e. lie, sit, stand) have been well researched [21], [22], [8], [23], and good

recognition performance can be achieved with a single 3D-accelerometer and simple

classifiers. Moreover, recent studies have focused on estimating the intensity of these

basic activities (e.g., in [24], [25]).

Over the years, many studies have analyzed both simple and complex human

activities reported by wearable sensors. A large number of these have focused on de-

termining which features in this activity data are the most informative, and how these

data can be most effectively employed to classify the activities [8], [23], [26], [27].

Other research endeavors have investigated which computational model would

be the most appropriate to represent human activity data [28], [29], [30]. Huang

and Schneider [31] proposed spectral learning algorithms for hidden Markov models

(HMMs) that incorporate static data to demonstrate the performance of their new

algorithms on real (not synthetic) data. Moreover, Clifton et al. [32] introduced an ex-

treme function theory for novelty detection, and illustrated their proposed method on

wearable sensors based activity recognition dataset. Despite such research efforts, the

scalability of handling large intra-class variations and the robustness of many existing

human activity recognition techniques to the model parameters remains limited.

To make physical activity monitoring feasible in everyday life scenarios, an ac-

tivity recognition framework must be robust, i.e., it must handle a broad range of

everyday, household, or sports activities and must manage a variety of potential users.

Two challenges facing these frameworks are dataset size and simultaneously occurring

background activities. First, using smaller activity datasets consisting of merely a

few basic recorded activities reduces the scope of the framework since these methods

would then only apply to specific scenarios. Although current research has focused on
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increasing the number of activities that are recognized, including examples of every-

day, household, or sports activities, each increase in the number of activities causes the

classification performance to fall off. Second, recording and using only a small set of

a few activities in basic activity recognition, without having simultaneous background

activities, limits the applicability and versatility of the developed algorithms. Real-

time scenarios might include some activity switching, thus requiring testing on a wider

range of activities than were used for training.

In recent years, sparse models have been widely used in a variety of applications

in computer vision and pattern recognition, e.g., image analysis [33], image denoising

[34], image restoration [35], [36], [37] image processing and recognition [38], [39], [33].

The underlying principle of sparse modeling is to represent objects using as few vari-

ables as possible [37], [40], and the success of sparse coding is ascribable to the fact that

high-dimensional data of particular types often lie on some low-dimensional manifolds.

A sparse signal can be summarily expressed as a linear combination of a few signal items

(called atoms or bases) from an over-complete dictionary. Recently, much attention

has been focused on applying dictionary learning techniques to problems of computer

vision and image processing, such as image denoising [34], image inpainting [41], and

compressive sensing [42], [43], [44]. Infilling of missing pixels and image and speech

classification problems have been successfully addressed by dictionary learning mainly

because of its robustness towards missing data and noise. Inspired by experiments that

achieved high recognition rates using a few representative samples on high-dimensional

data, we explored the physical activity recognition from wearable sensors and proposed

a dictionary pair learning-based framework for human physical activity monitoring and

recognition. To achieve this, we are motivated to seek efficient methods to generate

informative data representations along with obtaining robust classification rates.

Our work aims to develop dictionary learning frameworks for physical activ-

ity recognition and intensity estimation, thereby extending the applicability of such
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systems. To our best knowledge, dictionary learning and specifically dictionary pair

learning have never been used in wearable sensor-based applications. Consequently,

our novel dictionary learning-based framework algorithm will promote future research

on this method’s potential applicability for accurate sensor-based data classification

and other physiological-signal classification.

1.3 Motivation

One facet of our motivation thrives on machine learning studies which have

been extensively explored over the last three decades for its capability to learn to map

of functions from patterns. Classical machine learning frameworks typically require

domain knowledge and a large amount of training data to accurately establish the

relationship between the data input and class labels for classification. The design of

a machine learning framework consists of two major phases: training phase and test

phase. In the training phase, the algorithm adjusts the internal parameters to build

a mapping model that approximates the implicit relationship between the input and

output training samples. The developed model is evaluated to test the generalization

ability of the algorithm in the testing phase.

Recently, a significant research effort has been devoted to finding compact or

sparse representation of signals, and to enhance the processing ability for large-scale

data. Sparse coding provides a class of algorithms for finding succinct representa-

tions of data; by learning basis functions that capture higher-level features in the data.

Within the machine learning domain, we extend the dictionary and deep learning mod-

els as their primary strength lies in succinct representation, which essentially abstracts

the dominant information within the data. An added boon to the involvement of this

deep learning approach is that it can also help reveal unknown feature coherences of

input signals, an important capability for learning tasks that involve complicated mod-

els [45], [46], [47], [48]. In this work, we present four frameworks wherein we extend
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and modify the deep and dictionary learning models as needed to be more effective for

each classification task.

It is also worth noting that our classification task has its own challenges, such

as intra-class variability, inter-class similarity, asides from the diversity and complexity

of the physical activities themselves. Thus, a successful activity-recognition technique

requires classification algorithms that are sufficiently robust for classification even with

limited training data. Unlike other time series signals (like speech signals and financial

signals), human activity-based signals have few parts of a continuous signal stream

that are relevant to the concept of interest (i.e. human activities), and the dominant

irrelevant part mostly corresponds to the Null activity. Furthermore, considering hu-

man activity, in reality, we learn that every activity is a combination of several basic

continuous movements. Typically, a human activity could last a few seconds in prac-

tice, and within one second a few basic movements could be involved. We require

the feature extraction method to be effective enough to capture the nature of basic

continuous movements as well as the salience of the combination of basic movements.

All these challenges make it highly desirable to develop a systematic feature represen-

tation approach to effectively characterize the nature of signals related to the activity

recognition task.

Dictionary learning has been successfully applied to many problems namely in-

cluding image and speech classification problems particularly due to its robustness to

missing data and noise. The primary strength of this technique lies in the compact

representation, which essentially allows capturing the significant information within

the data. This led to the first motivation of this dissertation - exploiting dictionary

learning for activity recognition, as dictionary learning seeks a compact set of bases to

best represent each signal in training set under some sparsity constraints.

We first present a novel dictionary learning technique for a sensor platform that
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improvises physical activity recognition rate by leveraging a class specific regularizer

term into the dictionary pair learning objective function. Secondly, we present an

effective maximum correntropy criterion-based dictionary pair learning framework to

evaluate the robustness of activity recognition and intensity estimation of aerobic ac-

tivities using data from wearable sensors. Inorder to further reduce misclassification

rate, we introduce a hierarchical class specific dictionary learning algorithm which di-

vides the multi- class activity recognition problem into smaller sub- problems.

ECG signal classification, also being sensor based data constitute a prime fac-

tor in recognition of life-threatening cardiac arrhythmias. Computerized recognition

of ECGs has become a well-established practice, assisting cardiologists in the task

of classifying long-term ECG recordings. However, most of the previous work often

rely on a pattern-matching framework that represents an ECG signal as a sequence of

stochastic patterns, and hence they require high sampling rates and thus burdensome

computational times to classify arrhythmias. Consequently, to enable implementation

in real time, these systems must enlarge their classification criteria by using a set of

simple features and a lower sampling rate. This fact leads to the next motivation of

this dissertation: the need for developing a single lead ECG recognition framework

using a set of simple features and lower sampling rate.

Deep learning networks, implemented using stacked autoencoders, are capable

of representing highly expressive abstractions, thereby compactly yielding much larger

sets of functions than shallow networks can [49]. Through the tremendous representa-

tional power of hierarchical feature learning, these networks can help discover unknown

feature coherences of input signals, a characteristic that is crucial for learning tasks

involving complicated models [50]. Inspired by recent progress in the area of deep

learning (especially its application to speech recognition, natural language processing,

and object recognition), we developed a deep learning framework that yielded compet-

itive ECG classification performance at a lower computational time.
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1.4 Research Contributions

This thesis aims to address the activity recognition problem in wearable sensors

using novel dictionary and deep learning frameworks. Within the machine learning

techniques, we extend and modify the dictionary and the deep learning models as they

focus on concise signal representation, thereby resulting in better feature characteri-

zation. We demonstrate the proposed frameworks on applications related to human

health monitoring. Fundamental questions addressed include:

• How to obtain a robust classification framework such that it reduces dependency

on complicated hand-crafted features by being subject- and trained-activity in-

dependent? How to improve the underlying dictionary learning algorithm to ac-

curately classify the misclassified examples? How to optimize the learning model

to improve the classification performance?

The dissertation leverages dictionary pair learning in order to obtain a subject-

independent activity recognition with higher classification accuracy as well as

with reduced computational time. The classification accuracy of the underlying

algorithm is further improved by adding a discriminative regularizer term to the

objective function which ensures that sparse codes belonging to the same class

are concentrated. Also, a correntropy-based robust algorithm which is insensitive

to large outliers is introduced, thereby resulting in higher recognition rates.

• How to supplement and further remediate the classifier algorithms by analyzing

the errors made in the testing phase? How can the feature vectors be changed

to improve the classification? This problem is addressed by proposing a combi-

nation of hierarchical classifier recognition scheme along with feature selection

algorithm. The classes to be recognized (defined as macro-classes) are merged

at each node in the hierarchy, and this procedure is continued at subsequent

nodes and levels. The proposed modular learning system consists of a hierarchy
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of classifiers, each solving different multi-class activity recognition problem. This

proposed hierarchical classifier shows to give better classification results than

single complex classifiers.

• How to develop intrinsic patterns and learn complex functions from input data

automatically without using complex human-engineered features to perform clas-

sification?

This is done by developing a deep learning based approach which improves classi-

fication accuracy of single-lead ECG signal at lower sampling rate by using simple

features, thereby eliminating the need for complex feature extraction processes.

This was done by employing a Restricted Boltzmann Machines and Deep Belief

Networks framework. We also introduce an efficient feature learning to automat-

ically learn intrinsic high-level features using deep belief networks.

This dissertation presents frameworks for automatic human activity recognition

using wearable sensor-based data. It proposes two dictionary learning based framework

to evaluate the robustness of activity recognition and intensity estimation of aerobic

activities using data from wearable sensors. To achieve an even better feature learning

result by capturing intrinsic properties of the features, we also present a deep learning

framework for single-lead ECG sensor data classification, leading to robust classification

performance at lower sampling rates.The work presented in this dissertation is one of

the first attempts on the application of dictionary learning framework on wearable

sensor-based human activity recognition. This work has led to publications mentioned

in section 1.4 and our key contributions include:

• Proposing a novel dictionary pair learning framework to achieve physical activ-

ity recognition by leveraging a class specific regularizer term into the objective

function. The proposed algorithm jointly learning a synthesis dictionary and an

analysis dictionary wherein the class-specific regularizer term ensures that the
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sparse codes belonging to the same class will be concentrated thereby proving

beneficial for the classification stage. A combination of an alternating direction

method of multipliers and a l1 − ls minimization method is employed to approx-

imately minimize the objective function.

• Presenting a correntropy induced dictionary pair learning framework for an activ-

ity recognition and an intensity estimation problem. In particular, the dictionary

pair learning algorithm is developed based on the maximum correntropy criterion,

which is much more insensitive to outliers. In order to develop a more tractable

and practical approach, we employ a combination of alternating direction method

of multipliers and an iteratively reweighted method to approximately minimize

the objective function.

• Designing a conceptual clustering based hierarchy of classifiers, each of which

distinguishes between child nodes at a particular location in the hierarchy. By

injecting the automated incremental clustering methodology established on simi-

larity between class nodes, a semantic attribute representation, and a multi-layer

classifier is designed.

• Validating the effectiveness of the proposed models by employing it on activity

recognition problems and an intensity estimation problem, which includes a large

number of physical activities from four datasets.

• Exploring and designing a deep learning methodology to the classification of

single-lead electrocardiogram (ECG) signals. Specifically, the work demonstrates

the application of the Restricted Boltzmann Machine (RBM) and deep belief

networks (DBN) for ECG classification following the detection of ventricular and

supraventricular heartbeats using single-lead ECG.

• Evaluating the performance of the proposed methods and comparing them with

the state-of-the-art algorithms for ECG classification. .
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1.5 Publications

The research undertaken in this thesis has resulted in the following publications:

1.5.1 Conferences

• Mathews, Sherin M., Luisa F. Polania, and Kenneth E. Barner. ”Leverag-

ing a discriminative dictionary learning algorithm for single-lead ECG classifi-

cation.” 41st Annual Northeast Biomedical Engineering Conference (NEBEC)

IEEE, 2015.

• Mathews, Sherin M., Chandra Kambhamettu, and Kenneth E. Barner. ”Am I

your sibling? Inferring kinship cues from facial image pairs.” 49th Annual Con-

ference on Information Sciences and Systems (CISS), IEEE 2015.

• Sherin M., and Kenneth E. Barner ”A Deep Learning Framework for Single-lead

ECG classification ” Grace Hopper ACM Research Conference 2015

• Mathews, Sherin M., Chandra Kambhamettu, and Kenneth E. Barner. ”Max-

imum Correntropy based Dictionary Learning framework for physical activity

recognition using wearable sensors.” International Symposium on Visual Com-

puting (ISVC) Springer International Publishing, 2016.

• Mathews, Sherin M., Chandra Kambhamettu, and Kenneth E. Barner. ”Central-

ized Class Specific Dictionary Pair Learning for Wearable Sensors based Activity

Recognition.”(Accepted at Information Sciences and Systems (CISS), 2017)

• Mathews, Sherin M., Chandra Kambhamettu, and Kenneth E. Barner. ”A Hi-

erarchical Dictionary Learning framework for physical activity recognition using

wearable sensors.” (In Preparation to IEEE International Conference on Image

Processing (ICIP 2017))
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1.5.2 Journals

• Mathews, Sherin M., Chandra Kambhamettu, and Kenneth E. Barner. ”A Deep

Learning Framework for Single-lead ECG classification” ( Submitted for publi-

cation at Journal of Multimedia Tools and Applications (MTA))

• Mathews, Sherin M., Chandra Kambhamettu, and Kenneth E. Barner. ”Max-

imum Correntropy based Dictionary Learning framework for physical activity

recognition using wearable sensors” (Submitted for publication at Image Vision

Computing (IVC))

• Mathews, Sherin M., Chandra Kambhamettu, and Kenneth E. Barner. ”Hierar-

chical Class Specific Centralized Dictionary Pair Learning for Wearable Sensors

based Activity Recognition” (Submitted for publication at Pattern Recognition

(PR))

1.6 Thesis Organization

These contributions are organized into six chapters with the current chapter

presenting the introduction. Below are the general outline and structure of the re-

mainder of the dissertation.

Chapter 2- Gives a comprehensive review of sparse representation and dictio-

nary learning concepts. We review efficient dictionary learning algorithms that can

be used to learn sparse representations from the input data, which can also help the

supervised classification tasks.

Chapter 3 - Introduces the centralized class specific dictionary pair learning

algorithm for wearable sensors based activity recognition and demonstrates superior

classification performance by making sparse codes in the same class concentrated.
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Chapter 4 - Presents a maximum correntropy-based dictionary learning frame-

work for physical activity recognition using wearable sensors.

Chapter 5 - Proposes an ensemble based framework comprising of hierarchical

dictionary pair learning classifiers for the activity recognition tasks. To model the se-

quential structure of the hierarchy, an agglomerative clustering model is considered to

define the similarity of attributes of activities.

Chapter 6 - Explains a deep learning based model for automatic classification

of sensor based ECG signals. The approach holds promise as a scalable algorithm for

learning hierarchical representations from high-dimensional, complex data.

Chapter 7 - Summarizes the research contributions and provides suggestions for

future research directions.
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Chapter 2

SPARSE SIGNAL REPRESENTATION AND DICTIONARY
LEARNING

In this chapter, Section 2.1 and Section 2.2 focus on the theory of sparse signal

representation and compressive sensing. Thereafter, we introduce dictionary learning

for classification in Section 2.3 which is followed by a review of existing dictionary

learning algorithms for classification in Section 2.4. Section 2.5 presents the dictionary

pair learning for classification, followed by the summary of the chapter in Section 2.6.

2.1 Sparse Representation

Sparse representation has proven its credibility in machine learning, computer

vision and image processing. It has been widely studied and has paved the way for

state-of-the-art implementations with astounding results in numerous applications such

as in the field of computer vision, audio and image classification, image denoising [34],

texture synthesis and image restoration [36], [35]. A sparse signal can be comprehen-

sively expressed as a linear combination of a few signal atoms over an over-complete

dictionary. The learned atoms resemble the neurons in the visual cortex [51] [52], thus

making sparse coding a plausible model characterizing the visual cortex [52], [53]. Sig-

nals of interest are not necessarily sparse in the canonical basis; however, they can

have a concise representation when expressed in a convenient basis. The traditional

signal acquisition processing divides the sampling and compression into two separate

processes which samples a lot of unnecessary information and results in inefficiency for

sparse signals. Compressed sensing overcomes these inefficiencies by directly acquiring
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the compressed signal representation from fewer samples or measurements than tradi-

tional methods use.

2.2 Compressed Sensing

Traditional reconstruction approaches follow the Shannon sampling theorem

[54], which states that the sampling rate must be twice the highest frequency [55]. The

theory of compressive sensing (CS) also known as compressed sensing, compressive

sampling or sparse recovery provides a fundamentally new approach to data acquisi-

tion. CS relies on the empirical observation that many types of signals or images can

be well-approximated by a sparse expansion in terms of a suitable basis, that is, by

only a small number of non-zero coefficients. This forms the key to the efficiency of

many lossy compression techniques such as JPEG, MP3 [55]. It predicts that instead

of acquiring an entire Nyquist ensemble of signal samples, CS can reconstruct sparse

signals from a small number of (random or deterministic) linear measurements via lin-

ear regression, convex optimization or greedy recovery algorithms.

Compressed Sensing (CS) was first proposed for image compression based on

the assumption that most fields on images can be sparsely represented using wavelets.

CS theory can sample sparse high-bandwidth signals at a sub-Nyquist rate and ex-

ploit the sparsity of high dimensional signals to enable the reconstruction of signals

from non-uniform measurements. The number of required measurements depends on

the sparsity of the signals rather than the bandwidth. With the compressed measure-

ments, it is possible to reconstruct the original signal by solving a convex optimization

problem.

A discrete-time signal x can be represented in terms of an orthonormal basis of
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Figure 2.1: Compressive Sensing Measurement Process [4].

N × 1 vectors ΨN
i=1 as follows:

x =
N∑
i=1

siΨi (2.1)

where si is the coefficient sequence of x. This can be further simplified as x = Ψs

where s is N × 1 vector and Ψ is N ×N matrix with Ψi as columns. Signal x has a K-

sparse expansion if only K of the entries in are non-zero and (N-K) are zero. Assuming

that the signal x ∈ RN is K-sparse and the sensing system acquires M < N linear and

non-adaptive measurements, the process can be mathematically represented as

y = Φx = ΦΨs = Θs (2.2)

where Θ = ΦΨ is M ×N matrix, Ψ is M ×N measurement matrix with ΨT
j as rows,

Φ ∈ RM×N is fixed represents a dimensionality reduction and y ∈ RM represents the

measurement vector.

2.3 Dictionary Learning

The dictionary learning problem is closely related to the CS but arises in a

different context, where the main goal is to find compact and meaningful signal repre-

sentations and correspondingly use them in signal and image processing tasks, such as

denoising and classification. Dictionary learning aims to adapt the dictionary to better

fit the task-specific model [56]. It needs a succinct set of atoms to best represent each
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signal in training set with defined sparsity constraints and it can be defined as follows:

Let X = [x1,x2, . . . ,yN ] ∈ Rn×N be a set of n-dimensional N input signals.

The dictionary D which sparsely represents X and corresponding sparse codes A =

[a1, . . . , aN ] can be learned by solving the optimization problem

< D,A >= arg min
D,A
‖X−DA‖2

2 , s.t.∀i, ‖ai‖0 ≤ T (2.3)

where T is sparsity constraint factor. ||.||2 denotes the l2 norm of a vector. (The

l2 norm for for a vector y of n dimensions can be defined as
√∑n

i=1 y
2
i ) ||.||0 is the l0

norm of a vector which counts the non zero elements in a vector. Solving a l0 prob-

lem is a NP hard problem and algorithms for determining approximating solutions

have been extensively investigated and greedy algorithms such as Matching Pursuit

algorithms [57], FOCUSS [58] and l1 minimization were subsequently introduced as

practical alternatives.

The l0 norm can be relaxed to the l1 norm, which for a n dimensional vector x

can be defined as
∑n

i=1 |xi|. The optimization problem can be defined as:

< D,A >= arg min
D,A
‖X−DA‖2

2 , s.t.∀i, ‖ai‖1 ≤ T (2.4)

The constraint in equation 2.4 can be further relaxed using the Lagrangian

method and thus can be re-written as

< D,A >= arg min
D,A
‖X−DA‖2

2 ,+λ‖ai‖1 (2.5)

where λ is the Lagrangian multiplier and equation 2.5 is called LASSO (Least
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Angle Shrinkage and Selection Operator) [59]. The model parameters W and dictio-

nary D can be jointly learned by solving the following:

< D,W,A >= arg min
D,W,A

(‖X−DA‖2
2 +

∑
i

L{hi, f(xi,W )}

+λ1‖W‖2
F ), s.t.∀i, ‖xi‖0 ≤ T (2.6)

where hi is label of yi, L is a classification loss function and λ1 is a regularization

parameter.

There are two approaches to decide on the sparsifying basis, i.e., the D matrix.

One method is to exploit the mathematical model of the signal and accordingly choose

off the shelf dictionaries like wavelets, contour-lets and the like or the other way is

to learn a dictionary that does best on the training data for the given task at hand.

Considering the latter methodology using dictionary, a typical technique to minimize

the above objective is by iteratively solving for sparse representations based on the

dictionary and updating the dictionary given the sparse codes, until the constraint is

met. A dictionary learned from the training data when compared to a predetermined

fixed dictionary generally leads to a more compact representation, thereby achieving

enhanced results in many practical computer vision applications.

2.4 Review of Dictionary Learning algorithms

Several compact dictionary learning approaches have been developed in [39],

[56], [60], [61], [62], [63], [64], for the task of learning a dictionary from data samples.

In [39], the dictionary is constructed by manual selection of training samples and in [60],

k-means clustering is used to group features from training samples. A few of the most

prevalent dictionary learning classifiers are the SRC classifier (Sparse Reconstruction

21



Classifier), K-SVD, D-KSVD (Discriminative KSVD) and the label consistent version

(LC- KSVD) and Fisher Discrimination Dictionary Learning (FDDL).

In SRC [65] procedure, the training data is used to form a dictionary and the

classification of test data is achieved through finding its sparse coefficients with re-

spect to this dictionary. Thus, the dictionary is critical for the performance and the

manual selection of dictionary atoms would be impractical for large datasets. In [56],

K-SVD algorithm is introduced that aims to find a dictionary and a sparse matrix that

minimize the representation error. The KSVD algorithm is an iterative method that

alternates between sparse coding and dictionary update steps to better fit the data and

is solved by alternating between the following two steps

• Sparse Coding Step: Use any pursuit algorithm to compute the representation

vector for each input signal xi by approximating the solution of

arg min
ai

‖xi −Dai‖2
2 (2.7)

• Codebook Update Stage: For each column k = 1.....K in dictionary DJ−1, update

the dictionary column by computing the overall representation error Ek as

Ek = X −
∑
j 6=k

dja
j (2.8)

The method of optimal directions [61] is also another iterative training algo-

rithm inspired by the Generalized Lloyd Algorithm (GLA) [66] which follows the k-

means outline and updates the dictionary efficiently during the learning stage. In [67],

a tree-structured sparse regularization is employed to exploit the semantic relation-

ships between dictionary elements so as to learn structured dictionaries in a hierarchy.
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These methods have proven to provide state-of-the-art results in image processing ap-

plications, including infilling missing pixels, image compression and reconstruction.

The design of supervised discriminative dictionaries has also gained significant

attention in recent years. Construction of such discriminative dictionaries encompasses

modification of the function so as to enforce sparsity and maintain discrimination. This

is usually done by introducing a discriminative cost function [68], [69], [70], [62], linear

predictive classification error [63], [64], fisher discrimination criterion [71], [40], [72],

and logistic loss function [69], [73] which essentially enforces separability among dic-

tionary atoms belonging in different classes.

With the aim of promoting discrimination between classes, a classification error

is incorporated into the objective function in [63]. However, it does not guarantee

the discriminability of the resultant sparse codes while using a small-size dictionary.

In [74], [62], [68], [75], a dictionary is learned for each specific class and classification is

done based on the corresponding reconstruction error but not by leveraging the sparse

codes. However, the drawback here is that class-wise sparse coding during testing stage

becomes time-consuming for a large number of classes.

A popular discriminative dictionary learning procedure is the D-KSVD wherein

a classification regularization term is added to the reconstruction term. The resulting

optimization problem can be defined as :

min
D,A,W

‖X−DA‖2
F + ‖H−WA‖2

F + λ||W||F (2.9)

Here ||H −WA||2F represents the classification error term, W denotes the clas-

sifier parameter and H represents the class labels of input signal where each column of

H has a one at the ith position if the sample Xi belongs to class i.
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In LC-KSVD, a discriminative term is added to the classification error term. At

each iteration, the algorithm tries to find the discriminative sparse code with a small

classification error thereby reducing the reconstruction error at the same time. The

LC-KSVD formulation can be written as:

min
D,A,Z,W

‖X−DA‖2
F + ‖Q− ZA‖2

F + ‖H−WA‖2
F (2.10)

where Z is linear transformation matrix and Q represents the discriminative

sparse codes of input signal. Q = [q1.....qN ] will be considered as a discriminative

sparse code corresponding to an input signal Xi, if the nonzero values of qi occur at

same indices where the input signal and the dictionary item have the same label.

In another work [76], the dictionary learning process is wrapped inside a boost-

ing procedure for learning multiple dictionaries. In [77], Ramirez et al. demonstrate

learning of class-specific dictionaries using an incoherence promoting term, which en-

courages class-specific dictionaries to be independent. The inter-related dictionary

learning algorithm proposed in [71] learns multiple dictionaries for visually correlated

object categories. The common properties of the group are symbolized by a com-

mon shared dictionary, and category- specific properties are symbolized by multiple

category-specific dictionaries.

Non-Linear kernel-based dictionary learning algorithms have also been proposed

in the literature [78], [79]. By means of a predetermined kernel function, these algo-

rithms essentially map the input data onto a higher dimensional feature space. Sparse

codes and dictionaries are later trained on these feature space for better representation

and discrimination.

Traditional Dictionary learning algorithms aimed only to minimize the recon-

struction error, whereas the Dictionary Pair Learning (DPL) model here targets at
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classification by learning class-specific dictionaries for data representation for the ac-

tivity classes. A regularizer term is introduced in the DPL objective function which

enhances the discriminative capability of learned dictionaries by generating the min-

imum reconstruction error for the accurate class. The similarity-constrained term in

DPL model projects each descriptor into its local coordinate system which captures

the correlations between similar descriptors by sharing bases and the test sample is

classified into the class whose dictionary generates the minimum reconstruction error,

thereby making it remarkably more discriminative.

2.5 Dictionary Pair Learning

The dictionary pair learning objective is formulated such that it enhances the

class-discrimination capabilities of individual atoms rather than that of the subspaces

they generate. This renders the designed dictionaries especially suitable for fast classi-

fication of query images with very sparse approximations. The DPL-framework jointly

learns a synthesis dictionary and an analysis dictionary, i.e., this pair of dictionaries

works together to perform representation and discrimination simultaneously. The ra-

tionale behind this strategy is that using linear projection instead of nonlinear sparse

coding not only improves the recognition rate but also makes it computationally more

efficient when compared to using l1 and l0 norm for regularizing representation coeffi-

cients.

Prior dictionary learning algorithms have made use of a predefined analytical

dictionary (e.g., wavelet dictionary, Gabor dictionary) to represent a signal, thereby

producing the representation coefficients by simple inner product operations. Such

fast, explicit coding makes an analytical dictionary attractive in image representation

but less effective in modeling the complex local structures of natural images. Tra-

ditionally either l0-norm or l1-norm have been used to regularize the representation

coefficients since sparser coefficients are more likely to produce better classification
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results. However using these sparsity regularizations is still a computational burden,

making training and testing inefficient. In contrast, DPL classification algorithm ob-

tains the representation coefficients by linear projection instead of nonlinear sparse

coding. Thus, DPL framework is a promising approach for learning a synthesis dictio-

nary and an analysis dictionary jointly for pattern classification. The analysis dictio-

nary is trained to generate discriminative codes by efficient linear projection, while the

synthesis dictionary is trained to achieve class-specific discriminative reconstruction.

To define the discriminative dictionary learning, we denote a set of p-dimensional

training samples from K classes by X = [X1, ........, Xk, ...., XK ], where Xk ∈ Rp×n is

the training sample set of class k, and n is the number of samples of each class. Discrim-

inative dictionary learning (DL) methods aim to learn an effective data representation

model from X for classification tasks by exploiting the class label information of training

data, and can be formulated under the following framework:

min
D,A
‖X−DA‖2

F + λ||A||p + Ψ(D,A,Y) (2.11)

Here λ > 0 is a scalar constant; ||.||F denotes the Frobenius norm of a matrix.

The Frobenius norm of a matrix A can be defined as Tr
√
AAT , where Tr denotes the

trace of a matrix. Also, Y represents the class label matrix of samples in X; D is the

synthesis dictionary to be learned; and A is the coding coefficient matrix of X over

D. In the training model given in equation (11), the data fidelity term ‖X − DA‖2
F

ensures the representation ability of D; ||A||p is the lp-norm regularizer on A; and

Ψ(D,A,Y) stands for some discrimination promotion function that ensures the dis-

crimination power of D and A.

If when using an analysis dictionary denoted by P ∈ RmK×p, the code A can

be analytically obtained as A = PX, then the representation of X becomes efficient.

Based on this idea, the DPL model learns an analysis dictionary P together with the
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synthesis dictionary D, leading to the following DPL model:

P ∗, D∗ = arg min
P,D
‖X−DPX‖2

F + Ψ(D,P,X,Y) (2.12)

Here Ψ (D, P, X, Y) is the discrimination function; and D and P form a dic-

tionary pair where the analysis dictionary P is used to code X analytically, and the

synthesis dictionary D is used to reconstruct X.

The learned structured synthesis dictionary D = [D1, ..Dk, ., DK ] and the struc-

tured analysis dictionary P = [P1, ....., Pk......PK ] form a sub-dictionary pair corre-

sponding to class k. Recent studies on sparse subspace clustering [80] have shown that

a sample can be represented by its corresponding dictionary if the signals satisfy cer-

tain incoherence conditions. Thus, by using the structured analysis dictionary P , we

want the sub-dictionary Pk to project the samples from class i,i 6= k to a nearly null

space:

Pk,Xi = 0,∀ k 6= i (2.13)

Then by means of equation (1.5) the coefficient matrix PX will be nearly block

diagonal. Using the structured synthesis dictionary D, we expect the sub-dictionary

Dk can properly reconstruct the data matrix Xk from its projective code matrix PkXk;

that is, the dictionary pair should minimize the reconstruction error:

min
P,D

K∑
k=1

‖Xk −DkPkXk‖2
F (2.14)

Based on the above analysis, we readily have the following DPL model:

P ∗, D∗ = arg min
P,D

K∑
k=1

‖Xk −DkPkXk‖2
F + λ||Pk,Xi||2F (2.15)

Here Xk denotes the complementary data matrix of Xk in the whole training
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set X, λ > 0 is a scalar constant, and di denotes the ith atom of synthesis dictionary

D.

In the DPL model, the analysis sub-dictionary Pk is trained to produce small

coefficients for samples from classes other than k, and thus can only generate significant

coding coefficients for samples from class k. Meanwhile, the synthesis sub-dictionary

Dk is trained to reconstruct the samples of class k from their projective coefficients

PkXk, so the residual ai will be small. Conversely, since PkXi will be small and Dk is

not trained to reconstruct Xi, the residual ai will be much larger. Thus in the testing

phase, if the query sample y is from class k, its projective coding vector Pk will more

likely be large, while its projective coding vectors Pi will be small. Consequently, any

reconstruction residual with respect to Pk will be much smaller than the residuals with

respect to Pi. A class-specific reconstruction residual can be used to identify the class

label of y, and we can naturally have the resulting classifier associated with the DPL

model:

identity(y) = arg min
i
‖y −DiPiy‖2 (2.16)

2.6 Conclusion

In this chapter, we have briefly reviewed the theory of the sparse representation

, compressive sensing and dictionary learning. An overview of existing state-of-the-

art dictionary learning algorithms in literature has been discussed. In addition, the

dictionary pair learning algorithm which aims to minimize the reconstruction loss by

introducing a fidelity term involving both analysis and synthesis dictionary has been

discussed briefly. One promising property of the DPL model is that it is appropriate

for balancing the representation and discrimination to boost recognition performance.

The next chapter introduces a centralized class specific dictionary pair learning for

sensor-based activity recognition which makes the sparse codes belonging to the same

class concentrated thereby resulting in improved recognition.
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Chapter 3

CLASS SPECIFIC CENTRALIZED DICTIONARY PAIR LEARNING
FOR ACTIVITY RECOGNITION USING WEARABLE SENSORS

3.1 Introduction

In this chapter, we present a unified dictionary pair learning framework by incor-

porating a centralized class specific regularizer term to solve the wearable sensor-based

classification problem. In the dictionary pair learning framework, the training samples

of each class contribute identically to the dictionary, thus generating a dictionary hav-

ing training samples corresponding to each class. This can result in instability and high

residual error, which is detrimental to the recognition performance. Using traditional

class specific dictionary learning approaches [81] does allow learning a dictionary for

each class, but might result in interdependence in sparse codes and erroneous discrim-

ination. The main contribution is to explicitly incorporate centralized class specific

sparse codes to the dictionary pair learning objective function to obtain superior clas-

sification performance by making sparse codes in the same class concentrated [82]. A

new alternate minimization algorithm incorporated with a l1− ls minimization method

is developed to facilitate convergence of the non-convex objective function. Experi-

ments on the standard sensor-based activity recognition datasets demonstrate the ef-

fectiveness of the proposed method. To the best of our knowledge, dictionary learning

frameworks, and specifically centralized class dependent dictionary pair learning frame-

works, have not to date been used in wearable sensor-based applications. Consequently,

our novel dictionary learning-based framework algorithm will instigate future research

on this method’s potential applicability for accurate sensor-based data classifications

and other physiological-signal classifications.
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3.2 Proposed Methodology

Figure 3.1: Proposed Class Specific Centralized Dictionary Learning Framework

The proposed framework involves two steps: data processing and recognition.

Data processing incorporates preprocessing, segmentation and feature extraction stages.

In the preprocessing stage, raw sensory data is synchronized, timestamped, and la-

beled. During segmentation, this collected data is segmented with a sliding window,

using a defined window size and signal features extracted from the segmented data

in the feature extraction stage. A dictionary pair learning classification algorithm

jointly learns a synthesis dictionary and an analysis dictionary to attain the objective

of signal representation and discrimination [83]. To explain discriminative dictionary

learning, a set of p-dimensional training samples from K classes can be defined as

X = [X1, ........, Xk, ...., XK ], where Xk ∈ Rp×n is the training sample set of class k, and

n is the number of samples of each class. Discriminative dictionary learning (DL) meth-

ods learn an efficient data representation model from X for classification by employing

the class label information of training data, and can be formulated as:

min
D,A
‖X−DA‖2

F + λ||A||p + Ψ(D,A,Y) (3.1)

Here λ > 0 is a scalar constant; Y denotes the class label matrix of samples in X; D is

the synthesis dictionary to be learned; and A is the coding coefficient matrix of X over

D. The data fidelity term ‖X −DA‖2
F in the training model (equation (3.1)) ensures

the representation ability of D; ||A||p is the lp-norm regularizer on A; and Ψ(D,A,Y)
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represents discrimination promotion function that ensures discrimination power of D

and A [83].

An analysis dictionary generates discriminative codes by efficient linear projec-

tion and can be defined by P ∈ RmK×p. Using the analysis dictionary, the code A

can be analytically represented as A = PX, making the representation of X efficient.

Based on this concept, the DPL model learns an analysis dictionary P together with

the synthesis dictionary D, leading to the following DPL model [83]:

P ∗, D∗ = arg min
P,D
‖X−DPX‖2

F + Ψ(D,P,X,Y) (3.2)

Here Ψ (D, P, X, Y) represents the discrimination function; and D and P form a dictio-

nary pair where the analysis dictionary P is used to analytically code X, and the synthe-

sis dictionary D is used to reconstruct X. The learned structured synthesis dictionary

D = [D1, ..Dk, ., DK ] and the structured analysis dictionary P = [P1, ....., Pk......PK ]

form a sub-dictionary pair corresponding to class k. Thus incorporating the structured

analysis dictionary P , we ensure that the sub-dictionary Pk projects the samples from

class i,i 6= k to a nearly null space thereby making the coefficient matrix PX nearly

block diagonal. By adopting variable matrix A to relax the non-convex problem, the

following DPL model can be defined as:

P ∗, A∗, D∗ = arg min
P,A,D

K∑
k=1

‖Xk −DkAk‖2
F

+τ‖PkXk −Ak‖2
F + λ||Pk,Xi||2F

(3.3)

Here Xk represents the complementary data matrix of Xk in the training set X, λ > 0

denotes a scalar constant, and di is the ith atom of synthesis dictionary D.
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3.2.1 Proposed DPL model with class specific centralized regularizer term

The objective is to incorporate a centralized class specific regularizer term [84]

to obtain a unified dictionary pair learning framework. In DPL model, training sam-

ples of each class contribute equivalently to the dictionary, thus generating a dictionary

consisting of training samples in corresponding class, resulting in instability and higher

residual error. The main contribution here is to explicitly incorporate centralized class

specific sparse codes [84] to the dictionary pair learning objective function, thereby,

making sparse codes in the same class concentrated.

To attain this objective, we denote the mean of each row of sparse code A as

E(A). The regularizer term can be formulated as :

R(Ak) = η
N∑
n=1

‖(Ak)·n− E(Ak)‖2
2 (3.4)

where η is the tradeoff parameter between the reconstruction error and the degree of

deviation from the sparse code to their centers and A·n represent the nth column of a

sparse matrix A. Incorporating the class specific regularizer term to the DPL objective

function, equation (3.3) can be formulated as:

P ∗, A∗, D∗ = arg min
P,A,D

K∑
k=1

‖Xk −DkAk‖2
F + τ‖PkXk −Ak‖2

F

+λ||Pk,Xi||2F + η

N∑
n=1

‖(Ak)·n− E(Ak)‖2
2

(3.5)

In order to solve this equation, we integrate the alternating direction method of

multipliers with the l1− ls method to facilitate convergence. The alternating direction

method of multipliers (ADMM) solves convex optimization problems by fixing some

variables and solving for the other variable, thereby decomposing the problem into

smaller sub-problems making each of them easier to handle [83]. The minimization

can be alternated between the following steps:
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1:Fix A, update P and D

P ∗ = arg min
P

K∑
k=1

τ‖PkXk −Ak‖2
F + λ||Pk,Xi||2F (3.6)

D∗ = arg min
D

K∑
k=1

‖Xk −DkAk‖2
F (3.7)

The closed form solution for P can be obtained as:

P ∗ = τAkX
T
k (τXkX

T
k + λX̄kX̄T

k + Y I)−1 (3.8)

The closed form solution for D can be obtained by introducing a variable S as in

DPL [83]

Dr+1 = arg min
D

K∑
k=1

‖Xk −DkAk‖2
F + ρ‖Dk − Srk + Tr

k‖2
F (3.9)

The solution for D and P are the same as in the DPL framework using ADMM algo-

rithm.

2. Fix D and P, update A

A∗ = arg min
A

K∑
k=1

tr[(Xk −DkAk)
>(Xk −DkAk)]

+tr[τ(PkXk −Ak)
>(PkXk −Ak)]

+η
N∑
n=1

‖(Ak)·n − E(Ak)‖2
2

(3.10)

Here, tr represents the trace of a matrix and using trace properties tr(A) = tr(AT )

and tr(A′A) = ||A||2F . We use l1 − ls optimization method to solve for A. Ignoring the

constant terms, the function can be simplified using l1− ls optimization method.
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A∗ = arg min
A

K∑
k=1

tr[−2(Xk
>Dk + τXk

>Pk
>)Ak

+Ak
>(Dk

>Dk + τI)Ak] + η

N∑
n=1

‖(Ak)·n− E(Ak)‖2
2

(3.11)

Defining t = (Xk
>Dk + τXk

>Pk
>) and S = (Dk

>Dk + τI) and using property

tr(A>BA) =
∑N

n=1A
>
·nB(A·n), equation 3.11 can be rewritten as

A∗ = −2
N∑
n=1

tn·(Ak)·n +
N∑
n=1

(Ak)>·nS(Ak)·n+

η
N∑
n=1

[(
N − 1

N
)2(Ak)

>
·n(Ak)·n − 2

N − 1

N2
(Ak)

>
·n

N∑
m=1,m 6=n

(Ak)·m]

(3.12)

The objective function now reduces to equation (3.13)

f(Ak)ln = (Ak)
2
ln(Sll + η[

N − 1

N
]2) + 2(Ak)ln(

R∑
q=1q 6=l

Slq(Ak)qn)

−2η(Ak)ln[
N − 1

N2

N∑
m=1,m 6=n

(Ak)mn]− 2(Ak)lnt
T
ln

(3.13)

Here (Ak)ln denotes all elements in Ak except the element in the ‘l’ th row and the ‘n’

th column. Defining

dln = tTln + η[
N − 1

N2

N∑
m=1,m 6=n

(Ak)lm] (3.14)

f(Ak)ln becomes a piece-wise parabolic function as in [84]. Adopting the convexity and

monotonic property of the parabolic function and the problem transformation defined

in [84] , we have the closed-form solution as function reaches the minimum at the

unique point.

(Ak)ln =
dln − [S(Âk

ln
)]ln

Sll + η[N−1
N

]2
(3.15)

In the testing phase, the analysis sub-dictionary Pk is trained to produce small coef-
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ficients for samples from classes other than k, and thus can only generate significant

coding coefficients for samples from class k. Meanwhile, the synthesis sub-dictionary

Dk is trained to reconstruct the samples of class k from their projective coefficients

PkXk, i.e.,reconstruction residual will be small. Conversely, since PkXi will be small

and Dk is not trained to reconstruct Xi, the reconstruction residual ai will be much

larger. Thus, if the query sample y is from class k, its projective coding vector Pk will

more likely be large, while its projective coding vectors Pi will be small. Therefore, the

class-specific reconstruction residual is used to identify the class label of testing sample.

3.3 Experimental results and discussion

We evaluate our approach on four realistic activity recognition tasks from fol-

lowing databases: the PAMAP2 -Intensity Estimation Task, PAMAP2 Activity Recog-

nition Task, Smartphone-Based Human Activity Recognition (SBHAR) and Wireless

Sensor Data Mining (WISDM). We compare our approaches with Adaboost [3], C4.5

decision tree [3] and other state-of-the-art algorithms.

3.3.1 PAMAP2 Database

The proposed algorithm is evaluated over the activity recognition and intensity

estimation classification problems defined on the recently released PAMAP2 Physical

Activity Monitoring Data Set. Briefly, this dataset captures 18 physical activities per-

formed by 9 subjects wearing 3 IMUs (Inertial measurement unit) and a HR (heart

rate) monitor. The raw sensory data is first synchronized, timestamped, and labeled in

the preprocessing stage and 3D-acceleration and heart rate data are acquired. During

segmentation, this collected data is segmented with a sliding window, using a window

size of 512 samples. During the feature extraction stage, signal features extracted from

the segmented 3D-acceleration data are calculated for each of the three axis separately

and for the 3 axes together. The inclusion of Heart Rate (HR) monitor data with the
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commonly used inertial sensors proved specifically useful for physical activity intensity

estimation [3]. Mean and gradient are calculated on both the raw and normalized heart

rate signals from the HR data. Overall, a total of 137 basic features are computed:

133 features from Inertial Measurement Unit (IMU) acceleration data and 4 features

from HR data [3].

The activity classification task consists of 15 different activity classes represented

as lie, sit, stand, walk, run, cycle, Nordic walk, drive car, ascend, descend stairs, vac-

uum, iron, fold laundry, clean house, play soccer and jump rope. This classification

task is referred to as the PAMAP2 Activity Recognition (PAMAP2-AR) task. The

intensity-estimation classification task aims to distinguish activities of light, moderate,

and vigorous effort based on the MET of the various physical activities, as provided

by [19] and is referred to as the PAMAP2 Intensity Estimation (PAMAP2 - IE) task.

Therefore, intensity classes are defined as activities of light effort (< 3.0 METs) (lie,

sit, stand, drive a car, iron, fold laundry, clean house, watch TV, work at a computer),

moderate effort (3.0-6.0 METs) (walk, cycle, descend stairs, vacuum and Nordic walk),

or vigorous effort (> 6.0 METs) (run, ascend stairs, jump rope, play soccer).

Using these two defined classification tasks, the proposed method is compared

with C4.5 Decision Tree and Adaboost algorithms [3]. For the evaluation procedure,

we randomly selected 75% of the data for training and 25% for testing and averaged

recognition results over 10 repetitions. In addition to providing classification accuracy,

we also report on the average computation time for classifying one query activity of

competing algorithms in the experiments.

3.3.1.1 PAMAP2 -Results on Intensity Estimation Task

First presented are classification results over an intensity estimation task de-

fined on the PAMAP2 dataset. In [85], the C4.5 decision tree algorithm and Adaboost

classifier were tested on the PAMAP2 dataset and demonstrated an accuracy of 70.07%
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Reference/Algorithm Class 1 Class 2 Class 3

Class 1 11655 1338 331

Class 2 621 6539 402

Class 3 5 741 1368

Table 3.1: Overall confusion matrix using class specific centralized dictionary pair
learning framework on PAMAP2-IE dataset. The table shows how different annotated
activities are classified into different classes.

Reference/Algorithm Class 1 Class 2 Class 3

Class 1 87.47% 10.04% 2.48%

Class 2 8.21% 86.47% 5.31%

Class 3 0.33% 9.31% 90.35%

Table 3.2: Overall confusion matrix in % using class specific centralized dictionary pair
learning framework on PAMAP2-IE dataset. The table shows how different annotated
activities are classified into different classes.

Method Proposed Adaboost [3] C4.5 Decision Tree [3]

Accuracy 85.89% 73.93% 70.07%

Table 3.3: Recognition results on PAMAP2-IE Dataset.

Method Proposed Adaboost C4.5 Decision Tree

Computation time 0.24s 10.82s 2.39s

Table 3.4: Computation time for classifying one query activity on PAMAP2-IE Dataset.

and 73.93% respectively. The overall confusion matrix using the proposed framework

for the three intensity estimation tasks (i.e., light (Class 1), moderate (Class 2) and

vigorous (Class 3) tasks) is given in Table 3.1. An independent performance assess-

ment of the proposed framework results in an accuracy of 85.89% on the AR-IE task,

demonstrating that our framework outperforms the C4.5 decision tree and AdaBoost

classifiers (Table 3.3). As shown in Table 3.3, the proposed framework achieves the

highest recognition rate of 85.89%. As shown in Table 3.4, the proposed algorithm is

approximately more than 5 times faster than Adaboost. Clearly, the proposed approach

outperforms other methods.
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Reference/ Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class
Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Class 1 1660 2 3 19 12 0 0 0 1 0 0 0 30 0 1

Class 2 1 1257 134 73 18 4 0 4 0 3 1 0 130 25 5

Class 3 0 83 1262 126 33 1 4 0 6 2 2 0 156 20 8

Class 4 1 29 128 1379 103 0 0 0 0 0 3 0 506 40 0

Class 5 0 0 10 170 693 5 0 5 0 2 8 0 634 11 19

Class 6 0 0 0 0 0 409 49 199 101 0 0 0 15 0 6

Class 7 0 0 0 0 0 73 358 49 102 7 0 1 41 0 0

Class 8 0 0 0 0 0 77 35 1825 224 28 0 0 4 0 0

Class 9 0 0 0 0 0 4 21 111 1568 0 0 0 2 0 3

Class 10 0 4 1 3 10 8 7 25 78 1312 0 0 19 0 5

Class 11 0 0 0 0 14 0 0 0 6 0 791 0 18 0 6

Class 12 0 0 0 0 30 0 33 0 35 0 0 2668 2 0 0

Class 13 0 9 43 208 350 12 6 1 9 10 2 0 1056 34 8

Class 14 0 1 21 322 145 0 0 0 0 0 2 0 353 57 0

Class 15 0 0 0 0 18 43 2 16 46 0 8 3 17 0 242

Table 3.5: Confusion matrix using proposed framework on PAMAP2 -AR dataset.

Reference/ Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class
Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Class 1 96.06% 0.11% 0.17% 1.09% 0.69% 0% 0% 0% 0.05% 0% 0% 0% 1.73% 0% 0.05%

Class 2 0.06% 75.95% 8.09% 4.4% 1.08% 0.24% 0% 0.24% 0% 0.18% 0.06% 0% 7.85% 1.51% 0.3%

Class 3 0% 4.87% 74.10% 7.39 % 1.93% 0.058% 0.23% 0% 0.35% 0.11% 0.11% 0% 9.16% 1.17% 0.46%

Class 4 0.04% 1.32% 5.84% 62.99% 4.7% 0% 0% 0% 0% 0% 0.13% 0% 23.11% 1.82% 0%

Class 5 0% 0% 0.64% 10.91% 44.55% 0.32% 0% 0.32% 0% 0.12% 0.51% 0% 40.71% 0.70% 1.22%

Class 6 0% 0% 0% 0% 0% 52.5% 6.29% 25.54% 12.96% 0 % 0% 0% 1.92% 0% 0.77%

Class 7 0% 0% 0% 0% 0% 11.56% 56.73% 7.76% 16.16% 1.1% 0% 0.15% 6.49% 0% 0%

Class 8 0% 0% 0% 0% 0% 3.51% 1.59% 83.21% 10.21% 28% 0% 0% 0.18% 0% 0%

Class 9 0% 0% 0% 0% 0% 0.23% 1.22% 6.49% 91.74% 0% 0% 0% 0.11% 0% 0.17%

Class 10 0% 0.27% 0.06% 0.20% 0.67% 0.54% 0.47% 1.69% 5.29% 89.13% 0% 0% 1.29% 0% 0.33%

Class 11 0% 0% 0% 0% 1.67% 0% 0% 0% 0.71% 0% 94.73% 0% 2.15% 0% 0.72%

Class 12 0% 0% 0% 0% 1.08% 0% 1.19% 0% 1.26% 0% 0% 96.38% 0.07% 0% 0%

Class 13 0% 0.51% 2.45% 11.89% 20.02% 0.68% 0.34% 0.05% 0.51% 0.57% 0.11% 0% 60.41% 1.94% 0.45%

Class 14 0% 0.11% 2.33% 35.73% 16.09% 0% 0% 0% 0% 0% 0.22% 0% 39.17% 6.32% 0%

Class 15 0% 0% 0% 0% 4.55% 10.88% 0.5% 4.05% 11.6% 0% 2.02% 0.75% 4.30% 0% 61.26%

Table 3.6: Confusion matrix in % using proposed framework on PAMAP2 -AR dataset.

3.3.1.2 PAMAP2 - Results on Activity Recognition Task

To investigate the proposed framework’s performance on PAMAP2− AR task,

we computed its performance on 15 classes based activity-recognition tasks. We find

that our framework outperforms the C4.5 decision tree with an accuracy of 73.17% ver-

sus 71.59%, and it gives competitive results when compared to an AdaBoost classifier

on the PAMAP2 AR task (Table 3.7).

In addition to competitive accuracy, our framework provides the additional ad-

vantages of lower computation time for classifying a query activity. Further examina-

tion of our results indicate that averaged over 10 test runs, the confusion matrix of

the best-performing classifier on the PAMAP2-AR task yields an overall accuracy of
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73.17%, showing that some activities are recognized with high accuracies, such as lying,

walking, or even distinguishing between ascending and descending. Overall, misclassi-

fications, where activities belonging to one class are mistakenly classified as belonging

to its neighboring classes, are lower.

In [85] and [3], the evaluation technique was leave-one-activity-out (LOAO)

where an activity monitoring system is used on a previously unknown activity. Our

framework also takes in data randomly. Evaluation is based on a completely unknown

activity from an unknown user, while training is performed using a different activity

with a different user in our random 75%-25% validation approach. These types of

subject-independent and activity-independent validation techniques are preferred for

physical activity monitoring since they provide results with more practical meaning.

Using our framework, we can not only achieve good classifier performance but also

eliminate the need of pre-training a particular activity for classification. Thus, our

proposed method makes it possible to design a robust physical activity monitoring

system that has the desired generalization characteristics.

Method Proposed Adaboost [3] C4.5 Decision Tree [3]

Accuracy 73.17% 71.78% 71.59%

Table 3.7: Recognition results on PAMAP2-AR Dataset.

Method Proposed Adaboost C4.5 Decision Tree

Computation time 1.52s 11.25s 9.39s

Table 3.8: Computation time for classifying one query activity on PAMAP2-AR
Dataset.

Varying Training Data % 20 40 60 80 100

Accuracy in % 70.71% 72.56% 73.21% 73.48% 73.81%

Table 3.9: Performance of the proposed algorithm on the PAMAP2 - AR dataset with
varying training data
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3.3.2 SBHAR

This dataset is built from the recordings of 30 subjects performing activities of

daily living (ADL) while carrying a waist-mounted smartphone with embedded iner-

tial sensors [86], [87]. This dataset includes six activities (walking straight, walking

upstairs, walking downstairs, sitting, standing and laying) which are performed while

wearing a smartphone (Samsung Galaxy S II) on the waist. The 3-axial linear acceler-

ation and 3-axial angular velocity at a constant rate of 50Hz were captured using the

phone’s embedded accelerometer and gyroscope. The sensor signals are pre-processed

by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec

and 50% overlap (128 readings/window). From each window, a vector of features was

obtained by calculating variables from the time and frequency domain (e.g. mean,

standard deviation, signal magnitude area, entropy, signal-pair correlation, etc.)

Reference/Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 1877 29 0 0 0 0

Class 2 572 1190 15 0 0 0

Class 3 4 17 1918 0 0 5

Class 4 1 2 1 1588 51 79

Class 5 0 8 0 10 1320 68

Class 6 0 12 0 18 19 1495

Table 3.10: Overall confusion matrix using proposed framework on SBHAR dataset.
The table shows how different annotated activities are classified into different classes.

Reference/Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 98.47% 1.52% 0% 0% 0% 0%

Class 2 32.18% 66.96% 0.84% 0% 0% 0%

Class 3 0.20% 0.87% 98.66% 0% 0% 0.25%

Class 4 0.05% 0.11% 0.05% 92.21% 2.96% 4.58%

Class 5 0% 0.56% 0% 0.71% 93.88% 4.83%

Class 6 0% 0.77% 0% 1.16% 1.23% 96.82%

Table 3.11: Overall confusion matrix in % using proposed framework on SBHAR
dataset. The table shows how different annotated activities are classified into different
classes.
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Method Proposed Multi-Class Multi-Class Naives Decision
SVM [88] HF SVM [88] Bayes [89] Tree [89]

Accuracy 91.31% 89.0% 89.3% 82.5% 86.8%

Table 3.12: Recognition results on SBHAR Dataset.

Varying Training Data % 20 40 60 80 100

Accuracy in % 91.2% 92.16% 92.35% 92.38% 92.59%

Table 3.13: Performance of the proposed algorithm on the SBHAR dataset with varying
training data

We evaluate our proposed approach and compare with Naive’s Bayes Classi-

fier [88], Decision Tree [88], Multiclass HF SVM and other state-of-the-art approaches

[88]. Our approaches outperform the state-of-the-art approaches as illustrated in Table

3.12. The confusion matrices for the CSCDPL approach is shown in Table 3.10. Our

proposed methodology consistently outperform all the competing approaches and the

basic reason for the good recognition performance, even with only a few training ex-

amples (as illustrated in Table 3.13), is that the new regularizer constraint encourages

the input signals from the same class to have similar sparse codes and those from dif-

ferent classes to have dissimilar sparse codes thereby maintaining a high classification

accuracy even when using a smaller training set.

3.3.3 WISDM

The Wireless Sensor Data Mining (WISDM) dataset consists of time series data

belonging to 29 volunteers performing daily activities such as walking, jogging, climb-

ing stairs, sitting, and standing. This aggregated time series data summarized the

user activity over 10-second intervals. WISDM project [90] aims to explore the use

of accelerometer sensor from powerful mobile devices in order to identify the activity

that a user is performing. The time series data was divided into 10-second segments

and forty-three features were generated from the accelerometer values contained in

each 10-second interval. These forty-three features are variations of just the six basic
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features(i.e. average acceleration, standard deviation, average resultant acceleration,

binned distribution). The resulting training data aims to induce a predictive model for

activity recognition, thereby acquiring useful knowledge about the habits of millions

of users by having them carry cell phones in their pockets.

Reference/Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 1591 19 57 22 3 0

Class 2 19 1154 13 8 6 0

Class 3 287 28 137 78 0 2

Class 4 271 5 156 47 5 4

Class 5 3 5 4 9 253 2

Class 6 2 2 0 4 22 132

Table 3.14: Overall confusion matrix using proposed class specific centralized dictionary
pair learning framework on WISDM dataset. The table shows how different annotated
activities are classified into different classes.

Reference/Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 94.03% 1.12% 3.36% 1.3% 0.177% 0%

Class 2 1.58% 96.16% 1.08 0.66% 0.5% 0%

Class 3 53.94% 5.26% 25.75% 14.66% 0% 0.375%

Class 4 55.53% 1.02% 31.96% 9.63% 1.02% 0.81%

Class 5 1.08% 1.81% 1.44% 3.26 91.66% 0.72%

Class 6 1.23% 1.23% 0% 2.46% 13.5% 81.48%

Table 3.15: Overall confusion matrix in % using proposed class specific centralized
dictionary pair learning framework on WISDM dataset. The table shows how different
annotated activities are classified into different classes.

Method Proposed Neural Networks [91] SVM [91] J48 [90] RBFN [90]

Accuracy 77.1% 69.5% 70.17% 72.2% 73%

Table 3.16: Recognition results on WISDM Dataset.

Following the defined experimental settings, we evaluate our approach using

tenfold cross-validation as in [90], [91], where one fold is used for testing and the re-

maining nine folds are used for training. The result is averaged over ten runs. The
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Varying Training Data % 20 40 60 80 100

Accuracy in % 75.14% 75.25% 76.48% 77.07% 78.64%

Table 3.17: Performance of the proposed algorithm on the WISDM dataset with varying
training data

detailed comparison results are shown in Table 3.16. Table 3.14 shows the confusion

matrices using the proposed algorithm. We also compared our approach with varying

training data. For both evaluation schemes including varying ptrain and tenfold cross-

validation, our results are better than other state-of-the-art approaches and boosting

learning approaches. Table 3.14 and table 3.16 demonstrates that the proposed algo-

rithm maintain a high classification accuracy and outperform the other three competing

approaches significantly, even when using a smaller size training data.

3.4 Conclusion

In this chapter, we presented a novel dictionary learning framework to evalu-

ate the robustness of activity recognition and intensity estimation of aerobic activities

using data from wearable sensors. The main contribution is integrating class specific

centralized regularizer term into the objective function for dictionary pair learning.

It was shown that this results in a discriminative dictionary learning formulation for

recognition. The proposed objective function is efficiently optimized by a combination

of alternating direction method of multipliers and l1 − ls minimization method. Ex-

perimental results show that the classifiers built in this framework achieves impressive

classification performance over four activity recognition tasks and outperforms state-

of-the-art methods along with being trained activity and subject independent. Both of

these are important considerations for developing systems that must be robust, scalable

and must perform well in real world settings.
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Chapter 4

MAXIMUM CORRENTROPY BASED DICTIONARY LEARNING
FRAMEWORK FOR PHYSICAL ACTIVITY RECOGNITION USING

WEARABLE SENSORS

4.1 Introduction

In this chapter, we present a dictionary pair learning framework based on the

maximum correntropy criterion [92] to solve the wearable sensor-based classification

problem. Correntropy has demonstrated to obtain robust inferences in information

theory learning (ITL) [93] and effectively handle non-Gaussian noise and large out-

liers [92]. Inspired by dictionary learning experiments that achieved highly successful

recognition rates using a few representative samples on high-dimensional data, we

propose a unified dictionary pair learning-based framework based on maximum cor-

rentropy for human physical activity monitoring and recognition [1], [94]. To optimize

the non-convex correntropy objective function, a new alternate minimization algorithm

incorporated with an iteratively reweighted method is developed to facilitate conver-

gence. We validate the effectiveness of our proposed model by adopting it on three

recognition problem and an intensity estimation problem, each of which includes a large

number of physical activities from the recently released datasets [1]. Experimental re-

sults indicate that classifiers built using this correntropy induced dictionary learning

based framework provide state-of-the-art performance using simple features, and that

this approach gives results competitive with classical systems built upon features with

prior knowledge [1].
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4.2 Proposed Methodology: Correntropy based Dictionary Learning

4.2.1 Maximum Correntropy Criterion (MCC)

Recognition against outliers and noise is critically challenging, mainly due to

the unpredictable nature of the errors (bias) caused by noise and outliers. The concept

of correntropy was introduced in ITL [93] to process non-Gaussian noise. Correntropy

is directly relevant to Renyis quadratic entropy [92] wherein the Parzen windowing

method is employed to estimate the data distribution [1]. Maximization of correntropy

criterion cost function (MCC) is defined by maximizing

V (X, Y ) =
1

N

N∑
i=1

kσ(xi − yi) =
1

N

N∑
i=1

kσ(ei) (4.1)

where X = [x1, x2, ..xN ] is the desired signal, Y = [y1, y2, ..yN ] is the system output,

E = [e1, e2, ..eN ] is the error signal, each of them being N-dimensional vectors, where

N is the training data size and kσ(x) is the Gaussian kernel with bandwidth σ given

by :

kσ(x) =
1√
2πσ

exp−x
2/2σ2

(4.2)

M-estimators are a broad class of estimators, which are obtained as minima of sums of

functions of the data [1]. In a general framework of M-estimation, MCC can be defined

as

ρ(e) = (1− exp−e
2/2σ2

)/
√

2πσ (4.3)

MCC cost function has proved to satisfy the properties of non-negativity, translation

invariant, triangle inequality and symmetry and thus is a well-defined metric [92].

Adoption of MCC to train adaptive systems actually makes the output signal close to

the desired signal. By analyzing the contour maps [92], it can be inferred that when

the error vector is close to zero, it acts like l2 distance; when the error gets larger, it is

equivalent to l1 distance; and for cases when the error is large the cost metric levels off

and is very insensitive to the large-value of error vector, thereby intuitively explaining

the robustness of MCC [1].
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Figure 4.1: Contour Maps of Correntropy Induced Metric

4.2.2 Correntropy based Dictionary Pair Learning Framework

Figure 4.2: Proposed Correntropy based Dictionary Pair Learning Framework

The dictionary pair learning classification algorithm initially jointly learns an

analysis dictionary and a synthesis dictionary to achieve the goal of signal representa-

tion and discrimination [1]. To define discriminative dictionary learning, we define a

set of p-dimensional training samples from K classes by X = [X1, ........, Xk, ...., XK ],

where Xk ∈ Rp×n is the training sample set of class k, and n is the number of samples of

each class. Discriminative dictionary learning (DL) methods aim to learn an effective

data representation model from X for classification tasks by exploiting the class label
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information of training data, and can be formulated under the following framework:

min
D,A
‖X−DA‖2

F + λ||A||p + Ψ(D,A,Y) (4.4)

Here λ > 0 is a scalar constant; Y represents the class label matrix of samples

in X; D is the synthesis dictionary to be learned; and A is the coding coefficient matrix

of X over D. In the training model (equation 4.4), the data fidelity term ‖X−DA‖2
F

ensures the representation ability of D; ||A||p is the lp-norm regularizer on A; and

Ψ(D,A,Y) denotes the discrimination promotion function that ensures the discrimi-

nation power of D and A [83].

If when using an analysis dictionary denoted by P ∈ RmK×p, the code A can

be analytically obtained as A = PX, then the representation of X becomes efficient.

Based on this idea, the DPL model learns an analysis dictionary P together with the

synthesis dictionary D, leading to the following DPL model [83]:

P ∗, D∗ = arg min
P,D
‖X−DPX‖2

F + Ψ(D,P,X,Y) (4.5)

Here Ψ (D, P, X, Y) is the discrimination function; and D and P form a dictio-

nary pair where the analysis dictionary P is used to analytically code X, and the synthe-

sis dictionary D is used to reconstruct X. The learned structured synthesis dictionary

D = [D1, ..Dk, ., DK ] and the structured analysis dictionary P = [P1, ....., Pk......PK ]

form a sub-dictionary pair corresponding to class k [1]. Thus using the structured

analysis dictionary P , we want the sub-dictionary Pk to project the samples from class

i,i 6= k to a nearly null space thereby making the coefficient matrix PX nearly block

diagonal. Using variable matrix A to relax the non-convex problem, we readily have

the following DPL model [1]:

P ∗, A∗, D∗ = arg min
P,A,D

K∑
k=1

‖Xk −DkAk‖2
F + τ‖PkXk −Ak‖2

F + λ||Pk,Xi||2F (4.6)
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Here Xk denotes the complementary data matrix of Xk in the whole training set X,

λ > 0 is a scalar constant, and di denotes the ith atom of synthesis dictionary D.

Incorporating correntropy based criteria (equation 4.3), equation 4.6 can be rewritten

as:

P ∗, A∗, D∗ =arg min
P,A,D

K∑
k=1

1 + τ − λ exp‖Xk−DkAk‖2F /σ
2 −τ exp‖PkXk−Ak‖2F /σ

2−λ exp||Pk,Xi||2F /σ
2

(4.7)

In order to solve this equation, we adopt alternating direction method of mul-

tipliers with iteratively reweighted method to facilitate convergence. A general max-

imization problem solved by an iteratively reweighted method can be described as

follows: Consider a general equivalent maximization problem

max f(x) +
∑
i

hi(gi(x)) (4.8)

where f(x) and gi(x) are arbitrary functions, x denotes an arbitrary constant and hi(x)

is an arbitrary convex function in domain of gi(x). The details to solve general maxi-

mization problem (equation 4.8) using iteratively reweighted optimization is described

in Algorithm 1 [95], where hi(gi(x)) denotes any supergradient of the concave function

hi at point gi(x).

ProblemTransformation hi(gi(x))→ Tr(DT
i gi(x))

Algorithm 1 Optimization algorithm for a general maximization problem

0: Initialize Di = I
1: Update x by optimal solution to the problem
max f(x) +

∑
i Tr(D

T
i gi(x))

2: Calculate Di = h′i(gi(x)) for each i
3: Iteratively perform 1-2 until convergence

Now consider maximum correntropy criterion problem:

min f(x) +
∑
i

−exp−l2i (x)/2σ2

(4.9)
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where f(x) and li(x) are arbitrary functions and x indicates an arbitrary constant.

Comparing with equation (8), in hi(gi(x)), let hi(z) = exp−z/2σ
2
(z > 0) and gi(x) =

l2i (x)(z > 0), then hi(gi(x)) = exp−l
2
i (x)/2σ2

where hi(z) = 1 − exp−z/2σ
2

(z > 0) is

concave function. Applying the iteratively reweighted method (Algorithm 1) [95], the

problem transformation and steps to determine the maximum correntropy criterion

problem can be described as:

ProblemTransformation : 1 − exp−l
2
i (x)/2σ2→ dil

2
i (x)(di = 1

2σ2 exp
−l2i (xt)/2σ2

)

Algorithm 2 Optimization algorithm for maximum correntropy criterion

0: Initialize di = 1
1: Update x by optimal solution to the problem
min f(x) +

∑
i dil

2
i (x)

2: Calculate di = 1
2σ2 exp

−l2i (xt)/2σ2
for each i

3: Iteratively perform 1-2 until convergence

The original objective function (equation 4.7) can be easily solved by a combination

of ADMM and an iteratively re-weighted algorithm. The alternating direction method

of multipliers (ADMM) solves convex optimization problems by fixing some variables

and solving for the other variable, thereby breaking the problem into smaller pieces

making each of them easier to handle. The minimization can be alternated between

the two steps as enumerated:

1: Update A

A∗ = arg min
A

K∑
k=1

−λ exp‖Xk−DkAk‖2F /σ
2 −τ exp‖PkXk−Ak‖2F /σ

2

(4.10)

Applying the problem transformation defined in algorithm 2, we have the closed-form

solution:
A∗ = (d1D

T
kDk + d2τI)−1(d1D

T
kXk + τd2PkXk) (4.11)

where d1 =
1

2σ2
exp−‖Xk−DkAk‖2F /2σ

2

and d2 =
1

2σ2
exp−‖PkXk−Ak‖2F /2σ

2

(4.12)

2: For updating P
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P ∗ = arg min
P

K∑
k=1

−τ exp‖PkXk−Ak‖2F /σ
2 −λ exp||Pk,Xi||2F /σ

2

(4.13)

The closed-form solutions of P can be obtained as:

P ∗ = d2τAkX
T
k (d2τXkX

T
k + d3λX̄kX̄T

k + Y I)−1 (4.14)

where

d2 =
1

2σ2
exp−‖PkXk−Ak‖2F /2σ

2

d3 =
1

2σ2
exp−‖PkX̄k‖2F /2σ

2

(4.15)

Iterate between the steps until convergence.

In the testing phase, the analysis sub-dictionary Pk is trained to produce small

coefficients for samples from classes other than k, and thus can only generate significant

coding coefficients for samples belonging to class k. Meanwhile, the synthesis sub-

dictionary Dk is trained to reconstruct the samples of class k from their projective

coefficients PkXk, i.e., residual will be small. Conversely, since PkXi will be small

and Dk is not trained to reconstruct Xi, the residual ai will be much larger. Thus,

if the query sample y is from class k, its projective coding vector Pk will more likely

be large, while its projective coding vectors Pi will be small. Therefore, class-specific

reconstruction residual is used to identify the class label of testing samples [1].

4.3 Experimental results and discussion

In this section, we present experimental results to verify the effectiveness of our

proposed approach on four recognition tasks. The four recognition tasks: PAMAP2

Activity Recognition, PAMAP2 Intensity Estimation task, Smartphone-Based Human

Activities Recognition dataset and Wireless Sensor based Activity Recognition dataset

are available at the UCI machine learning repository [96]. For comparative analysis,

we implemented the same experimental setup along with the cross-validation scheme

as in the referred papers for each dataset [1]. Additionally, we have added classification

results for varying percentages (%) of training data and associated computation times.
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4.3.1 Results with PAMAP2 Intensity Estimation and Activity Recogni-

tion Tasks

Here we consider two classification task provided within the PAMAP2 Physical

Activity Monitoring Data Set available at the UCI machine learning repository [96].

Briefly, this database incorporates wide range of everyday, household, and fitness activ-

ities involving 18 physical activities performed by 9 subjects wearing 3 IMUs (Inertial

measurement unit) and a HR (heart rate) monitor [1]. Each subject adopted the pre-

defined data collection protocol of 12 activities (lie, sit, stand, walk, run, cycle, nordic

walk, iron, vacuum, jump rope, ascend and descend stairs), and optionally completed 6

other activities (watch TV, work at a computer, drive a car, fold laundry, clean house,

play soccer) to enrich the dataset range [1].

To evaluate the proposed framework, we used both the activity recognition and

intensity estimation classification problems defined on the PAMAP2 dataset. In the

PAMAP2 dataset, the activity classification task has 15 activities including 3 additional

activities from the optional activity list (fold laundry, clean house, play soccer) [1]. The

complete activity recognition task consisting of these 15 different activity classes is re-

ferred to as the PAMAP2 Activity Recognition (PAMAP2-AR) task. The goal of the

intensity-estimation classification task is to distinguish activities of light, moderate,

and vigorous effort, and is referred to as the PAMAP2 Intensity Estimation (PAMAP2

- IE) task. These levels of effort are differentiated based on the MET of the various

physical activities, as provided by [19]. Therefore, intensity classes are defined as ac-

tivities of light effort (< 3.0 METs) (lie, sit, stand, drive a car, iron, fold laundry, clean

house, watch TV, work at a computer), moderate effort (3.0-6.0 METs) (walk, cycle,

descend stairs, vacuum and nordic walk), or vigorous effort (> 6.0 METs) (run, ascend

stairs, jump rope, play soccer).

Thus two classification tasks were defined: (1) activity recognition and (2) in-

tensity estimation. Considering these two defined classification tasks, we evaluated
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different boosting methods and compared them to our proposed correntropy-based

dictionary pair learning-based approach [1]. For the evaluation procedure, we ran-

domly selected 75% of the data for training and 25% for testing as in [3]. The final

result is the averaged value over all ten runs.

4.3.1.1 Results on PAMAP2 Intensity Estimation Task

In [3], base-level classifiers were used for activity monitoring classification tasks.

The C4.5 decision tree algorithm was tested on the PAMAP2 dataset and demon-

strated an accuracy of 70.07%. Also, the results obtained in [3] indicated that further

improvement in classification accuracy is attainable since even the best result employ-

ing Adaboost classifier was only 73.93% accuracy. The overall confusion matrix using

the proposed framework for the three intensity estimation tasks (i.e., light (Class 1),

moderate (Class 2) and vigorous (Class 3) tasks) is given in Table 4.1. An independent

performance assessment of the proposed framework results in an accuracy of 87.6% on

the AR-IE task, demonstrating that our framework [1] outperforms the C4.5 decision

tree and AdaBoost classifiers (Table 4.3).

Reference/Algorithm Class 1 Class 2 Class 3

Class 1 12893 422 9

Class 2 1258 6291 13

Class 3 218 1136 760

Table 4.1: Overall confusion matrix using maximum correntropy criterion based dictio-
nary pair learning framework on PAMAP2-IE dataset. The table shows how different
annotated activities are classified into different classes.

Reference/Algorithm Class 1 Class 2 Class 3

Class 1 96.77% 3.17% 0.06%

Class 2 16.64% 83.19% 0.17%

Class 3 10.31% 53.74% 35.95%

Table 4.2: Overall confusion matrix in % using maximum correntropy criterion based
dictionary pair learning framework on PAMAP2-IE dataset. The table shows how
different annotated activities are classified into different classes [1].
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Methodology Proposed C4.5 [3] Adaboost [3]

Accuracy 87.59% 70.07% 73.93%

Table 4.3: Comparison of proposed approach on PAMAP2-IE dataset to state-of-the-
art methods in terms of accuracy (calculated in %)

Reference/ Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class
Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Class 1 1660 2 2 19 14 0 0 0 1 0 0 0 28 2 0

Class 2 0 1387 34 126 24 4 0 5 0 2 0 0 68 4 1

Class 3 0 23 1364 144 102 1 2 1 6 0 0 0 57 1 2

Class 4 0 10 55 1779 90 0 0 0 0 0 0 0 236 19 0

Class 5 0 0 13 194 1086 5 0 6 0 2 0 0 243 0 8

Class 6 0 0 0 0 2 474 13 210 69 2 0 0 9 0 0

Class 7 0 0 0 0 0 159 295 56 81 1 0 1 38 0 0

Class 8 0 0 0 0 0 73 16 1824 275 2 0 0 3 0 0

Class 9 0 0 0 0 0 5 6 98 1600 0 0 0 0 0 0

Class 10 0 0 0 3 10 8 9 49 90 1271 0 0 27 0 5

Class 11 0 0 0 0 199 0 0 0 6 0 624 0 0 0 6

Class 12 0 0 0 0 25 0 49 0 38 0 0 253 3 0 0

Class 13 0 9 23 320 478 10 6 1 8 11 0 0 860 16 6

Class 14 0 4 16 439 209 0 0 0 0 0 0 0 145 88 0

Class 15 0 0 0 0 15 50 1 22 52 2 8 3 55 0 187

Table 4.4: Confusion matrix using proposed framework on PAMAP2 -AR dataset.

4.3.1.2 Results on PAMAP2 Activity Recognition Task

To investigate our proposed framework’s classification efficiency on PAMAP2−AR

task, we determined its performance on 15 classes-based activity-recognition tasks on

the PAMAP2 dataset. Table 4.4 enumerates the overall confusion matrix for these

tasks. We find that our framework [1] outperforms the C4.5 decision tree with an

accuracy of 74.12% versus 71.59%, and it gives competitive results when compared to

an AdaBoost classifier on the PAMAP2 AR task (Table 4.6). In addition to competi-

tive accuracy, our framework provides the additional advantages of lower training and

testing times [1].

Further examination of our results indicate that averaged over 10 test runs, the

confusion matrix of the best-performing classifier on the PAMAP2-AR task yields an

overall accuracy of 74.12%, showing that some activities are recognized with high accu-

racies, such as lying, walking, or even distinguishing between ascending and descending.
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Reference/ Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class
Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Class 1 96.06% 11.57% 11.57% 1.1% 0.81% 0% 0% 0% 0.06% 0% 0% 0% 1.62% 0.11% 0%

Class 2 0% 83.81% 2.05% 7.61% 1.45% 0.244% 0% 0.3% 0% 0.13% 0% 0% 4.11% 0.24% 0.06%

Class 3 0% 1.35% 80.09% 8.46% 5.99% 0.06% 0.12% 0.06% 0.35% 0% 0% 0% 3.34% 0.06% 0.12%

Class 4 0% 0.04% 2.51% 81.27% 4.11% 0% 0% 0% 0% 0% 0% 0% 10.78% 0.87% 0%

Class 5 0% 0% 0.83% 12.46% 69.75% 0.32% 0% 0.39% 0% 0.13% 0% 0% 15.61% 0% 0.51%

Class 6 0% 0% 0% 0% 0.25% 60.85% 1.67% 26.96% 8.86% 0.25% 0% 0% 1.16% 0% 0%

Class 7 0% 0% 0% 0% 0% 25.2% 46.75% 8.87% 12.84% 0.16% 0% 0.16% 6.02% 0% 0%

Class 8 0% 0% 0% 0% 0% 3.33% 0.73% 83.17% 12.54% 0.09% 0% 0% 0.14% 0% 0%

Class 9 0% 0% 0% 0% 0% 0.29% 0.35% 5.73% 93.63% 0% 0% 0% 0% 0% 0%

Class 10 0% 0% 0% 0.2% 0.68% 0.54% 0.61% 3.33% 6.11% 86.35% 0% 0% 1.83% 0% 0.35%

Class 11 0% 0% 0% 0% 23.83% 0% 0% 0% 0.72 % 0% 74.73% 0% 0% 0% 0.72%

Class 12 0% 0% 0% 0% 6.79% 0% 13.32% 0% 10.33% 0% 0% 68.75% 0.81% 0% 0%

Class 13 0% 0.51% 1.32% 18.31% 27.35% 0.57% 0.34% 0.06% 0.45% 0.63% 0% 0% 49.2% 0.92% 0.34%

Class 14 0% 0.44% 1.78% 48.72% 23.2% 0% 0% 0% 0% 0% 0% 0% 16.09% 9.77% 0%

Class 15 0% 0% 0% 0% 3.8% 12.66% 0.25% 5.57% 13.16% 0.51% 2.02% 0.76% 13.92% 0% 47.35 %

Table 4.5: Confusion matrix in % using proposed framework on PAMAP2 -AR dataset.

Methodology Proposed approach C4.5 [3] Adaboost [3]

Accuracy 74.12% 71.59% 71.78%

Table 4.6: Comparison of proposed approach on PAMAP2-AR dataset to state-of-the-
art methods in terms of accuracy (calculated in %)

Overall, misclassifications, where activities belonging to one class are mistakenly clas-

sified as belonging to its neighboring classes, are lower. One example of overlapping

activity characteristics is the over 5% confusion between nordic walk (class 7) and cycle

(class 6) and ascend (class 9) that is function of the positioning of the sensors; thus an

IMU on the thigh would reliably help differentiate these postures.

Another example comes from the playing soccer activity, because playing soccer

(class 14) is a composite activity. Thus it becomes problematic to distinguish running

with a ball from just running (class 4). Arguably, however, the main reason for these

misclassifications is the diversity inherent in the subject’s performance of physical ac-

tivities. Therefore, further increasing the accuracy of physical activity recognition will

require the introduction and investigation of personalized approaches.

In [3], the evaluation technique used was leave-one-activity-out (LOAO) where

an activity monitoring system is used on a previously unknown activity. Our framework

[1] takes in data randomly. Thus, our evaluation is tested on an entirely unknown
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activity from an unknown user, while training is performed on a different activity with

a different user in our random 75%-25% validation approach. Such kind of subject-

independent and activity-independent validation techniques are favorable for physical

activity monitoring since they yield results with more practical applications. Using our

framework [1], we can not only achieve good classifier performance but also exclude

the need of pre-training a particular activity for classification. Thus, our proposed

method [1] makes it possible to design a robust physical activity monitoring system

having desired generalization characteristics.

4.3.2 SBHAR

We also conduct experiments on SBHAR activity recognition dataset [86] to

verify the effectiveness of our proposed method. This dataset includes six activities

i.e., walking, walking upstairs, walking downstairs, sitting, standing and laying. The

activities in the SBHAR dataset are performed using a smartphone (Samsung Galaxy S

II) mounted on the waist. A 3-axial linear acceleration and 3-axial angular velocity are

captured using the phone’s embedded accelerometer and gyroscope at a constant rate of

50Hz. The pre-processing is done by application of noise filters, followed by sampling

in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window).

Time and frequency domain (e.g. mean, standard deviation, signal magnitude area,

entropy, signal-pair correlation, etc.) feature vectors were obtained from each window.

Reference/Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 1871 35 0 0 0 0

Class 2 372 1390 15 0 0 0

Class 3 0 0 1944 0 0 5

Class 4 0 0 0 1680 20 22

Class 5 0 0 0 0 1378 28

Class 6 0 0 0 0 6 1538

Table 4.7: Overall confusion matrix using correntropy based dictionary pair learning
framework on SBHAR dataset. The table shows how different annotated activities are
classified into different classes.
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Reference/Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 98.16% 1.84% 0% 0% 0% 0%

Class 2 20.93% 78.22% 0.85% 0% 0% 0%

Class 3 0% 0% 99.74% 0% 0% 0.26%

Class 4 0% 0% 0% 97.56% 1.16% 1.28%

Class 5 0% 0% 0% 0% 98.01% 1.99%

Class 6 0% 0% 0% 0% 0.39% 99.61%

Table 4.8: Overall confusion matrix in % using correntropy based dictionary pair learn-
ing framework on SBHAR dataset. The table shows how different annotated activities
are classified into different classes.

Method Proposed Multi-Class Multi-Class Naives Decision
SVM [88] HF SVM [88] Bayes [89] Tree [89]

Accuracy 91.51% 89.0% 89.3% 82.5% 86.8%

Table 4.9: Recognition results on SBHAR Dataset.

Varying Training Data % 20 40 60 80 100

Accuracy in % 91.42% 92.1% 92.49% 92.68% 93.11%

Table 4.10: Performance of the proposed algorithm on the SBHAR dataset with varying
training data

Following the defined experimental settings as in [88], [87], we evaluated our

proposed approach and compared with Naive’s Bayes Classifier, Decision Tree, Multi-

class HF SVM and other state-of-the-art approaches used in [88]. Table 4.7 and table

4.9 represent the confusion matrix and recognition rates using the proposed approach.

Table 4.9 demonstrates that our approaches outperforms all the competing state-of-

the-art approaches in [88] and [87].

4.3.3 WISDM

The Wireless Sensor Data Mining (WISDM) project [90] was designed to ana-

lyze the usefulness of accelerometer sensor for user activity recognition using mobile

devices platform. The WISDM dataset includes daily activities like walking, jogging,

climbing stairs, sitting, and standing performed by 29 volunteers. This aggregated time

series data summarizes the user activity over 10-second intervals and a set of forty-three
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features were calculated from the accelerometer data contained in each 10-second inter-

val. These forty-three features are an adaptation of the six basic features(e.g. average

acceleration, standard deviation, average resultant acceleration, binned distribution).

The goal is to leverage the resulting training data to develop a predictive model for

activity recognition, thereby acquiring useful knowledge about the habits of millions

of users without intruding their day-to-day activities.

Reference/Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 1580 12 54 29 3 0

Class 2 17 1297 17 10 0 0

Class 3 270 34 147 71 1 5

Class 4 262 8 141 61 7 0

Class 5 0 0 8 6 271 5

Class 6 2 0 4 6 21 159

Table 4.11: Overall confusion matrix using correntropy based dictionary pair learning
framework on WISDM dataset. The table shows how different annotated activities are
classified into different classes.

Reference/Algorithm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 94.16% 0.71% 3.22% 1.73% 0.18% 0%

Class 2 1.27% 96.72% 1.27% 0.74% 0% 0%

Class 3 51.14% 6.44% 27.84% 13.45% 0.19% 0.94%

Class 4 54.7% 1.67% 29.44% 12.73% 1.46% 0%

Class 5 0% 0% 2.76% 2.07% 93.45% 1.72%

Class 6 1.04% 0% 2.08% 3.12% 10.95% 82.81%

Table 4.12: Overall confusion matrix in % using correntropy based dictionary pair
learning framework on WISDM dataset. The table shows how different annotated
activities are classified into different classes.

Method Proposed Neural Networks [91] SVM [91] J48 [90] RBFN [90]

Accuracy 78.40% 69.5% 70.17% 72.2% 73%

Table 4.13: Recognition results on WISDM Dataset.

We assess our approach [1] using tenfold cross-validation similar to [90], [91],

wherein one fold is used for testing the data and the remaining nine folds are used
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Varying Training Data % 20 40 60 80 100

Accuracy in % 76.29% 76.81% 77.52% 78.83% 79.91%

Table 4.14: Performance of the proposed algorithm on the WISDM dataset with varying
training data

for training data. Recognition results are averaged over ten runs and are presented

in Table 4.13. Table 4.11 represents the confusion matrices using the proposed algo-

rithm on WISDM dataset. We also compared our approach [1] for varying training

data case. For both the evaluation schemes i.e. varying training data case and ten-

fold cross-validation case, our algorithm results prove superior when compared to other

state-of-the-art approaches. Table 4.13 and table 4.14 indicates that the proposed algo-

rithm provides a high classification accuracy and outperform the other three competing

approaches significantly, even using a smaller size training data.

4.4 Conclusion

In this chapter, we proposed an effective dictionary pair learning-based frame-

work based on the maximum correntropy criterion to evaluate the robustness of activity

recognition and intensity estimation of aerobic activities using data from wearable sen-

sors [1]. The proposed objective function is robust to outliers and can be efficiently

optimized by the combination of iteratively reweighted technique and alternating di-

rection method of multipliers [1]. Experimental results illustrate that classifiers built

in this framework not only provide competitive performance but also demonstrate

subject-independent activity classification using accelerometers. In pertinence to de-

veloping systems, both of these considerations are vital since they are a deciding factor

for robustness, scalability and promising real time performance. Having foundational

promising and reliable results, out goal is to further extend our work by incorporating

tree structure and smooth constraint to the classification framework [1].
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Chapter 5

A HIERARCHICAL DICTIONARY LEARNING FRAMEWORK FOR
PHYSICAL ACTIVITY RECOGNITION USING WEARABLE

SENSORS

Activity recognition based on wearable sensor technology is one of the most

active research areas in computer vision due to promising applications in fields such

as healthcare, smart homes, human sports performance analysis, and virtual reality

simulations. Although classification accuracy is enhanced using state-of-the-art classi-

fiers, actual recognition performance tends to fall off when classifying a large number

of complex activities. To address this problem, we propose the concept of a cluster-

based classifier hierarchy, each cluster serving to distinguish between child nodes at any

given location in the hierarchy [97], [98]. By injecting a tree-based clustering model

into a human activity recognition process, both a semantic- attribute representation

and a multi-layer classifier are achieved. To model the sequential structure, a CFu-

tree-based graphical model [5] is combined with feature and spectral mean similarity

metric to take into account any dependency or similarity of activity attributes. Finally,

a class-specific dictionary pair algorithm is employed at each macro-class level to both

strengthen and reinforce activity recognition accuracy using minimal user feedback.

The proposed model is validated using two real-world daily life activities datasets.

Evaluation results indicate that the CFu-tree-based incremental clustering algorithm [5]

when incorporated with a dictionary pair learning model can outperform other hier-

archical models as well as non-hierarchical baseline algorithms having limited labeled

data for new classes, while maintaining the high accuracy of a learned model. Exper-

imental results show that the proposed hierarchical framework can effectively classify
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activities with significant accuracy improvement, thereby advancing the state of the

art of human activity recognition.

5.1 Introduction

Recent years have witnessed a rapid proliferation of wearable sensor technolo-

gies, a result of the many potential application domains such as healthcare, sports, fit-

ness, entertainment, humancomputer interface (HCI), security, and commerce. Smart

wearable sensors technology has revolutionized our lives, social interaction, and ac-

tivities as they prove useful in providing accurate and reliable information about an

individuals activities and behaviors, thereby promoting a safe and sound living envi-

ronment.

In an application for elderly people in assisted living, any physical activity mon-

itoring must be able to estimate intensity as well as distinguish between complex and

similar activities like standing, walking, running, cycling, and other household activi-

ties. Wearable sensors in the form of panic buttons should send alerts for emergencies

in case any unusual activity is detected, such as a person falling. Few datasets are

specifically benchmarked for large complex tasks within physical activity monitoring.

The PAMAP2 dataset is one of few datasets that involve large numbers of users and

activities. Although many varied machine learning models have been defined for activ-

ity recognition, a robust classifier must be able to obtain high accuracy even in large,

complex, sensor-confusing classes while also performing well with limited training data.

This would allow pervasive lifestyle monitoring of more complex scenarios like exercise

patterns and cooking habits, all of which have been shown to be recognizable using

on-body IMUs in [99], [100], and [101], respectively.

Because the activity recognition dataset in the PAMAP2 dataset consists of

many overlapping and sensor-confusing activities, standard classifiers have not been
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able to achieve optimal recognition rates. This difficulty can be addressed by employ-

ing the proposed hierarchical dictionary learning framework wherein an incremental

conceptual clustering approach is leveraged to design the hierarchy of classifiers for

grouping nodes at particular levels in the hierarchy. A CFU-tree-based clustering

method [5] is presented for finding and characterizing each cluster. Our method, an

agglomerative hierarchical clustering method, uses a bottom-up strategy. That is, it

starts by letting each object be a cluster and then iteratively merges these clusters

into larger clusters. For the merging step, the two clusters closest to each other are

found (according to the similarity measure) and then combined to form a single cluster.

We examine the proposed hierarchical framework of the Class Specific Central-

ized Dictionary Pair Learning algorithm (i.e., CSCDPL ) [82] and compare it with

hierarchical models of other algorithm as well as on non-hierarchical models. Tradi-

tional flat models do not perform well when distinguishing between similar classes as

they tend to cluster together in the feature space. This can be overcome by breaking

the single CSCDPL classifier [82] into a hierarchical set of simpler CSCDPL classifiers,

in which the CFU- tree-based clustering mechanism is used to distinguish within the

mutually exclusive macro-classes defined by the hierarchy. For each dataset, we com-

pare the total classification accuracy of the hierarchical model to the non-hierarchical

model baseline, demonstrating significant improvements in both data representation

and model design by means of a hierarchical classifier.

The rest of the chapter is organized as follows. Section 5.2 describes the rele-

vant work on wearable sensor-based activity recognition and hierarchical classification.

Section 5.3 introduces the clustering process using CFu-tree and presents our proposed

framework of the classifier based on incremental clustering, feature-mean and spectral

mean based similarity metric and CSCDPL algorithm. In Section 5.4 several com-

prehensive experiments are performed and results provided in order to evaluate the

effectiveness of our method. Section 5.5 draws the conclusions from our work.
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5.2 Related Work

The goal of activity recognition is to identify activities as they occur based on

data collected by sensors. Approaches to activity recognition [102] vary according to

the underlying sensor technologies used to monitor activities, the machine learning

algorithms used to model those activitiesmodels.and the realism of the testing envi-

ronment. Advances in pervasive computing and sensor networks have resulted in the

development of a wide variety of sensor modalities useful for gathering information

about human activities. As may be observed in most current studies, sensor data col-

lected for activity recognition are usually analyzed using machine learning tools.

In activity recognition research, most studies have focused on flat classification

in which predefined categories treated in isolation lack structure or layers that define

the relationships among them [103], [104]. Such categories are also known as flat cat-

egories. Consequently, as the number of classes grows larger, the problem of defining

relationships is exacerbated. One way to solve this problem is to organize the cate-

gories into hierarchies similar to the way cases used in web classification are handled by

Yahoo. Hierarchical classification allows addressing a large classification problem using

a divide-and-conquer approach. A few hierarchical classification methods have been

recently proposed [104], [105], [106], [107], [108], [109]. Wang et al. [110] have proposed

a framework that maps low-level patterns to high-level activities using a hierarchical

framework. Van Kasteren et al. [111] employ a hierarchical hidden Markov model to

model motion sensor data. In most hierarchical classification methods, the classes are

organized in tree-like structures. A more relevant work in macro-class selection for

hierarchical classification is given in [110], in which an algorithm based on a weighted

support vector uses clustering to select macro-classes in forming a hierarchical classifier

for multi-class classification that provides a binary classifier at each node.
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The clustering of activities into a hierarchical activity taxonomy can facilitate

analysis of activity patterns from multiple sources. In addition, we find that such a

taxonomy can be used to scale activity recognition. Instead of using a single classifier

to distinguish between large numbers of activities, we plan to design a hierarchy of

classifiers, each of which distinguishes between child nodes at a particular location in

the hierarchy. CFu-tree-based conceptual clustering provides a set of macro-classes

that can be used to build a hierarchical classifier to improve the overall accuracy of

a model incorporating a large number of confusing classes. We describe our proposed

technique, evaluate classifiers based on clustering algorithms, and demonstrate in sub-

sequent sections how the method improves model accuracy.

In sum, a wearable sensor technology for an activity recognition system is pro-

posed in which an incremental CFu-tree-based conceptual clustering approach learns

the cluster for classifications. Further, we analyze how a multi-layer structure scales

activity recognition to a large number of complicated activity classes and training

datasets. Experimental results show that the proposed hierarchical CSCDPL model

can effectively recognize similar activities with higher accuracy. It also outperforms

single-layered (flat) supervised learning algorithms as well as other multi-layer classi-

fiers. The results advance state-of-the-art in human activity recognition, and represent

a promising step towards bridging the gap between computers and humans, thereby

illustrating the feasibility of the proposed method.

5.3 Proposed Methodology

Here we present the proposed CFu-tree-based hierarchical CSCDL classification

algorithm which aims to achieve higher scalability along with reduced misclassifications

as compared with a single-layer classification framework. The proposed hierarchical

framework is a bottom-up incremental conceptual clustering approach and it starts

with each input as a separate cluster, that is, an input item is defined a single cluster.

The clustering process proceeds by joining two or several existing clusters to form a
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new one, according to the similarity measure between two clusters. The clustering

framework is based on a CFu-tree that represents a cluster hierarchy, which makes it

effective for incremental and dynamic clustering of incoming objects.

We first introduce the concept of incremental clustering and CFu-tree-based

clustering in section 5.3.1, presenting details of the similarity measure and the cluster-

ing process using CFu-tree in section 5.3.2, and the CSCDPL classification approach

in subsection 5.3.3.

5.3.1 CFU Tree based Clustering

Clustering itself can be defined as the process of partitioning a set of data into

subclasses, in which each subclass is a cluster whose elements are similar in one or

more aspects, and dissimilar to elements in other clusters [112], [113]. Unlike classifi-

cation algorithms, clustering algorithms are based on unsupervised learning, meaning

that they do not require any training data. In this paper, we employ an agglomerative

multi-layer clustering method that uses a down-top strategy for finding and character-

izing each cluster. The procedure is based on the concept of an incremental conceptual

clustering system that seeks to maximize inference abilities. In particular, it starts

by letting each feature vector be a cluster, and iteratively merges clusters into larger

clusters based on a similarity metric. For the merging step, the system finds the two

clusters that are closest to each other, and combines these to form one cluster. We

describe the CFu-tree-based clustering mechanism [5] in detail in this section.

A CFu-tree structure, representing the process of hierarchical clustering, works

by grouping data objects into a tree of clusters [114]. A CFu-tree thus symbolizes a

cluster, even if only a single node. A leaf node symbolizes an activity which is a sub-

cluster. A non-leaf node which represents cluster Ci, in the CFu-tree, has descendants

that merge into Ci. By storing sums of the cluster features and documents of their

64



Figure 5.1: Example of clustering where Ci is the new input object [5].

child nodes, the non-leaf nodes thus summarize clustering information about their child

nodes. Initially, our method places each activity into a cluster of its own (i.e., each

input is treated as a separate cluster). Once a new cluster joins Ci, for each resulting

pair of clusters (Ci, Cj), a similarity value (Sim(Xi,Xj)), which determines whether

the pair of clusters has to been merged, will be computed [5]. After the computation,

the pairwise clusters are merged (Fig. 5.1) according to the similarity criterion. The

iterative cluster computing process repeats until the clusters no longer change.

The major steps of clustering by a CFu-tree include the following:

• Step 1. An activity is viewed as a single cluster Ci. After processing and feature

extraction, a CFu-tree is built comprising only one node, that is Ci.
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• Step 2. Add the CFu-tree to the CFu-tree list, and perform clustering for each

pair of clusters.

Step 3. Scan the CFu-tree list to calculate the similarity.

Step 4. Merge or split clusters according to similarity criteria.

Step 5. Repeat Step 3 until no cluster meets the conditions.

5.3.2 Creating the hierarchy using similarity metric

Learning an activity model can be time-consuming, even more so when the

number of activity classes is large. Insights can be gained about activities and models

can be learned effectively, by organizing activities into a cluster hierarchy. In the

CFu hierarchy, each leaf node represents a single activity, and internal nodes represent

unions of the activities that reside in the subtree rooted at the node. At each step of

the process, the two most similar nodes are merged. When nodes are merged a parent

node is created in the hierarchy, which represents a union of the two activities. The

original (merged) activities become the children of the new node. Because merging

occurs between two nodes at a time, the resulting hierarchy is represented as a binary

tree. Of central importance to the problem of clustering, however, is the notion of

finding similarity between two nodes. The similarity metric approach we adopted is

to estimate similarity as the inverse mean distance between elements of each cluster.

This method (also referred to as average linkage clustering) merges clusters with the

smallest average distance between all pairs of their feature elements, as denoted by the

following equation:

davg =
1

|X1||X2|
∑
x1∈X1

∑
x2∈X2

d(x1, x2) (5.1)

To define a distance measure between the data points, we employ a weighted

combination method, i.e., feature mean and spectral mean. The feature mean cal-

culates d(x1, x2) as the Euclidean distance [115] between the feature vectors for data
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points x1 and x2. The spectral mean [116] performs spectral decomposition on the fea-

ture distances. Spectral clustering makes use of the spectrum of the feature distance

matrix to reduce the dimensionality of the space and thus perform cluster merging in

fewer dimensions. Let c1, .., cL represent the set of nodes (activities). We first compute

the pairwise distance matrix Davg = davgmn, where davgmnis the distance between

activities cm and cn ( as computed by eq. 5.1). This distance matrix is then trans-

formed into an adjacency matrix, W, by applying the Gaussian / heat kernel, where

wm = exp(−d2/2σ2)and σ is the free parameter representing the kernel width. The

normalized Laplacian, L, for this adjacency matrix is computed, in which I is the

identity matrix and D is the degree matrix (Eq. 5.2).

L = 1−D−1/2WD−1/2 (5.2)

In equation 5.2 , D is a diagonal matrix in which the diagonal elements contain

the sum of all elements in the corresponding row of W. The eigenvectors of L up to K

dimensions (where K corresponds to the index with maximum eigengap) represent the

activity data points in the transformed space. Finally, cluster distances are computed

based on the Euclidean distance between data points in the transformed space . For

high-dimensionality data, spectral clustering should generate clusters that reflect the

distribution of the data without being sensitive to redundancies in the feature vector

description. At each level of the multi-level classifier, we adopt CSCDL for macro-class

classification, as explained in the following section.

5.3.3 Class Specific Centralized Dictionary Pair Learning Classifier

The aim of our project is to recognize the human activity from the features.

First, the features are clustered into macro classes using a CFu-tree and the similarity

metric process defined in sections 3.1 and 3.2. Once the clusters and macro-classes are

defined, each hierarchical framework level employs the CSCDPL algorithm for classi-

fying different classes within that level.
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The CSDPL algorithm jointly learns a synthesis dictionary and an analysis

dictionary in order to simultaneously perform signal representation and classification

once the time-domain features have been extracted. An additional term in CSCDPL,

i.e., a class-specific regularizer term, ensures that the sparse codes belonging to the

same class will be concentrated, thereby proving beneficial for the classification stage.

In original DPL model, training samples of each class contribute equivalently to the

dictionary, thus generating a dictionary consisting of training samples in corresponding

class, resulting in instability and higher residual error. To address this, our main

contribution here is to explicitly incorporate centralized class-specific sparse codes [84]

to the dictionary pair learning objective function, thereby concentrating sparse codes

in the same class. To attain this objective, we denote the mean of each row of sparse

code A as E(A). The regularizer term can be formulated as

R(Ak) = η
N∑
n=1

‖(Ak)·n− E(Ak)‖2
2 (5.3)

where η is the tradeoff parameter between the reconstruction error and the

degree of deviation from the sparse codes to their centers, and A·n represents the nth

column of a sparse matrix A. Incorporating the class specific regularizer term to the

DPL objective function, equation (3) can be formulated as follows:

P ∗, A∗, D∗ = arg min
P,A,D

K∑
k=1

‖Xk −DkAk‖2
F + τ‖PkXk −Ak‖2

F

+λ||Pk,Xi||2F + η
N∑
n=1

‖(Ak)·n− E(Ak)‖2
2

(5.4)

The combination of an alternating-direction method of multipliers and a l1 − ls
minimization method is employed to approximately minimize the objective function.

The optimization algorithm is presented in chapter 3 and the effectiveness of the

CSCDPL model was validated by employing it on an activity recognition problem
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and an intensity estimation problem, both of which include a large number of physi-

cal activities from the recently released PAMAP2 dataset. Single layer/flat classifiers

built in this centralized class specific dictionary learning based framework outperformed

state-of-the-art algorithms.

5.4 Evaluation Techniques for the Proposed Framework with experimen-

tal results and discussions

5.4.1 Database

We evaluate our approach by using two realistic sensor-based databases, the

PAMAP2 -AR dataset and the Wireless Sensor Data Mining Lab (WISDM) dataset,

both of which employ a high number of volunteers performing numerous physical tasks.

Activities performed in each dataset are similar. PAMAP2-AR active activities include

running, playing soccer, walking and walking up and down; static activities include ly-

ing and standing. The WISDM dataset includes activities such as walking and ascend-

ing and descending stairs. State-of-the-art flat classification techniques make it difficult

to distinguish and thus classify such closely similar activities. We, therefore, propose

applying our framework to these two complex activity datasets to assess performance.

5.5 Evaluation Metrics

By varying choice of distance measure and merging criteria, a variety of cluster

hierarchies can be generated. In order to compare these, a number of cluster qual-

ity measures introduced in the literature need to be employed here as well. Internal

measures only evaluate cluster quality based on the clustered data itself. (Examples of

internal evaluation including measuring compactness within a cluster vs. the separation

between clusters are found in [117], [118]; measuring pairwise similarity within a cluster

weighted by the cluster size is found in [119]). Further, while other methods of mea-

sure such as that of centrality and weakest link are useful when clustering graphs [120],

the Davies-Bouldin index [115] and cophenetic distance measure [121], both used here,
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can be applied specifically to evaluate hierarchical clusters, as external measures re-

late the quality of clusters to external factors such as classification accuracy [122], [123].

We employ the clustering validity index, which is based on cluster compactness

(in terms of intra-cluster variance), and density between clusters (in terms of inter-

cluster density). Initially, we compare alternative hierarchies using internal evaluation

methods. Subsequently, we perform external evaluation by determining effectiveness

of the hierarchy in performing activity classification.

The clustering validity index (CVI) [118] measures compactness of a data set by

means of cluster variance, and separation is measured by the density between clusters.

Consequently, smaller ratios illustrating compact clusters are better. The cophenetic

correlation coefficient (CCC) [121] measures how well cluster hierarchy maintains pair-

wise distances between original data points (i.e., individual activities). Specifically, the

coefficient c measures how closely the original distances between data points (activi-

ties) i and j correlate with their distance in the hierarchy t(i,j), or the height of the

node at which points i and j are merged (Eq. 5.5).

CCC =

∑
i<j(davg(i, j)− davg)(t(i, j)− t)√∑

i<j[(davg(i, j)− davg)2][(
∑

i<j t(i, j)− t)2]
(5.5)

The closer the value of c is to 1, the more accurately a cluster hierarchy reflects

the similarity of the actual data points (activities). To compare cluster hierarchy qual-

ity using internal evaluation, we compute the Davies-Bouldin index and the cophenetic

correlation coefficient for each hierarchy. The Davies-Bouldin index (DBI) is the ratio

of the sum of the within-cluster distance to between-cluster separations. As noted,

smaller ratios are better, because they indicate that the clusters are compact and far

apart. The index is calculated by an equation, in which n is the number of clusters, Sn

the average distance of cluster points to the cluster centroid, and S(Ci, Cj) the distance
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between cluster centroids (Eq.5.6).

DBI =
1

n

n∑
i=1

max
i 6=j

Sn(Ci) + Sn(Cj)

S(Ci, Cj)
(5.6)

5.6 Experimental Results and Discussion

5.6.1 Results from PAMAP2 dataset

To investigate the proposed frameworks performance on PAMAP2− AR task,

we computed its performance on 15 classes derived from activity-recognition events.

Here the classification task consists of distinguishing and hierarchically arranging 15

different activity classes represented as lie, sit, stand, walk, run, cycle, Nordic walk,

drive car, ascend, descend stairs, vacuum, iron, fold laundry, clean house, play soccer,

and jump rope. We also evaluate the performance of the flat classifier models that do

not use clusters (i.e., wherein the classifier discriminates between all activity classes

at once) and other classifiers using hierarchical models (based on a Cfu-tree hierar-

chy). In reporting recognition accuracy results for the classifiers, the non-hierarchical

models for these classifiers are denoted as NH-C4.5, NH-Adaboost, and NH- CSCDPL,

while the hierarchical models are denoted as H-C4.5, H-Adaboost, and H-CSCDPL for

the CFu-tree based hierarchical models. The human intuition and feature correlation

model are denoted as HI-H-CSCDPL and FC-H-CSCDPL model.

A question that naturally arises is how our automatically generated activity

hierarchy compares with other possible hierarchies for activity recognition purposes.

No single hierarchy is obviously intuitive or able to provide a ground-truth hierarchy

for comparison. Annotators for the various datasets do not provide definitions for

their interpretations of labeled activities, and yet there are striking interpretational

differences of the activities between datasets. These variances are consistent with the

work [124], in which humans showed divergent differences in their determination of

the similarities of activities. Some participants ranked activity similarities based on
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function, while others used spatial relationships, temporal relationships, or other cri-

teria in determining similarity. In addressing this disparity of intuition vs. function,

we compare the results of our activity hierarchy with two other hierarchies: one based

on human intuition of activity similarity and the other utilizing the correlation among

features to define activity classes within a hierarchy (Fig. 5.2 and Fig 5.4).

Figure 5.2: Structure of the human intuition based hierarchical classification framework

Figure 5.3: Dimensionality Reduction Results for determining feature Correlation.

The hierarchy using human intuition is represented in fig 5.2 wherein similar-

ity of human activities is used to separate classes. The problem of recognizing fifteen

activity classes was broken down into seven distinct classification problems. In the
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Figure 5.4: Structure of the feature correlation based hierarchical classification framework

Figure 5.5: Structure of CFu-tree based hierarchical classification framework on PAMAP2 dataset

first layer, the walking-related activities, static activities and composite activities were

differentiated. So in the first layer, classifier 2 corresponds to all walking-related activ-

ities, classifier 3 differentiates all composite activities and classifier 4 differentiates all

static activities. The hierarchy using correlation among the features is represented in

fig 5.4 and fig 5.3 helped to determine on how to separate classes based on their similar-

ity. Within the first layer of the feature-based hierarchy, all walking-related activities

(2D plane motion walking (walking, nordic walk) and 3D motion (ascend and descend

stairs)) were separated from the composite activities, and the static activities. Within
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the second layer, classifier 3 separated the 3d motion activities (ascend and descend

stairs). In the third layer, the static activity subset was differentiated as standing,

sitting, and lying and all detailed activities of composite and multiple activities were

also recognized by classifier 5 and classifier 6.

Methodology NH-C4.5 [3] NH-Adaboost [3] NH-CSCDPL

Accuracy 71.59% 71.78% 74.12%

Table 5.1: Comparison of recognition accuracy of all non-hierarchical (NH- prefix)
models (calculated in %)

Methodology H-C4.5 H-Adaboost HI-H-CSCDPL FC-H-CSCDPL H-CSCDPL

Accuracy 72.21% 75.45% 79.61% 80.93% 82.244%

Table 5.2: Comparison of recognition accuracy of all hierarchical(H- prefix) mod-
els(calculated in %)

The cluster hierarchy that generated by the weighted combination method ap-

proach on PAMAP2-AR dataset is shown in Figure 5.5. This hierarchy represents

a fairly balanced tree. The resulting activity recognition accuracy using a human-

generated hierarchy is 79.61%, while accuracy for the feature correlation-based hierar-

chy is 80.93%, and for our CFu-tree- generated hierarchy 82.244%, showing that the

hierarchical model of CSCDPL not only outperforms other non-hierarchical models

but other hierarchical models as well (Table 5.1 and Table 5.2). Such positive results

indicate that well-formed hierarchies do impact the performance of activity recognition

algorithms.

Regarding the internal evaluation scores for the hierarchical models, the hi-

erarchy generated by using CFu-tree yielded a lower Davies-Bouldin index, a lower

clustering validity index, and a higher cophenetic correlation coefficient than the other

hierarchical model (table 5.3). Furthermore, the cophenetic correlation coefficient for
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Methodology Proposed CFu-CSCDPL HI-H-CSCDPL FC-H-CSCDPL

DB 5.8 8.34 8.85

CCC 0.91 0.78 0.64

CVI 0.04 0.11 0.14

Table 5.3: Comparison of Internal evaluation scores of all hierarchical approaches

the CFu-tree hierarchy is close to 1, indicating that the generated hierarchy accurately

reflects the underlying data.

5.6.2 Results from the WISDM dataset

The WISDM dataset was collected by 36 subjects while performing six different

activities [90]. The data was recorded using a smartphone having a sampling rate of

20 Hz. The dataset already contained 46 features extracted from fixed-length windows

of 10 s each. The activities included 1) walking downstairs, 2) jogging, 3) sitting, 4)

standing, 5) walking upstairs, and 6) walking, for a total number of 5,418 instances.

Figure 5.6: Structure of the CFu-tree based hierarchical classification framework on WISDM Dataset

The cluster hierarchy obtained using the proposed CFu-tree framework is shown

in fig 5.6. As with the PAMAP2-dataset, we compare the proposed model to flat clas-

sifier models and other hierarchical classifiers (table 5.4 and table 5.5). The results

of comparing our activity hierarchy with feature correlation-based hierarchy(Fig. 5.7)
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Figure 5.7: Structure of the feature correlation based hierarchical classification framework on WISDM Dataset

reveal recognition accuracy for these models . We report the results in terms of recog-

nition accuracy for the classifiers (Table 5.5). The non-hierarchical models for these

classifiers are denoted as NH-Neural Networks, NH-SVM, NH-J48, NH-RBFN, NH-

CSCDPL and the hierarchical models are denoted as H-Neural Networks, H-SVM,

H-J48, H-RBFN, H-CSCDPL.

Additionally, we examine the relationships existing at different cluster evalua-

tion cores. The hierarchy generated using CFu-tree yielded the lowest Davies-Bouldin

index as well as a lower clustering validity index as compared with that of other hi-

erarchical models. For the WISDM dataset, the CFu-tree based hierarchy yielded a

higher cophenetic correlation coefficient of 0.89. The resulting activity recognition ac-

curacy using the feature correlation-based hierarchy is 78.95%, and the accuracy for

our CFu-tree generated hierarchy is 79.44%, demonstrating that the hierarchical model

of CSCDPL performs better than other non-hierarchical and hierarchical models (Ta-

ble 5.4 and Table 5.5).

Method NH-CSCDPL NH-Neural NH-SVM [91] NH-J48 [90] NH-RBFN [90]
Networks [91]

Accuracy 77.1% 69.5% 70.17% 72.2% 73%

Table 5.4: Comparison of recognition accuracy of all non-hierarchical (NH- prefix)
models (calculated in %) on WISDM Dataset.
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Method FC-H-CSCDPL H-CSCDPL H-Neural Network H-SVM H-RBFN

Accuracy 78.95% 79.44% 71.6% 74.12% 74.31%

Table 5.5: Comparison of recognition accuracy of all hierarchical (H- prefix) models
(calculated in %) on WISDM Dataset.

Our experiments thus verify that compared with other state-of-the-art methods,

the use of a hierarchical model for classification of wearable sensor activity allows for ef-

ficiencies in both learning and representation by achieving higher accuracy on complex

activity datasets. Our research thus adds to a growing body of work exploring how

hierarchical structures can be used to improve activity classification. Working with

a large, heterogeneous collection of activity data, we successfully extended classifier

models to an application that takes advantage of hierarchical structure, for both cat-

egory learning and run-time efficiencies. In addition, hierarchical structure modeling

furnishes evidence that decomposing the problem can lead to more accurate special-

ized classifiers. Through the creation of hierarchy clusters, each sub-problem becomes

smaller than the original problem, and it is sometimes possible to use a much smaller

set of features for each classification task. In the future, hierarchical structuring can

also be used to determine the negative set for discriminative training, and thus at clas-

sification time to combine information from different levels.

5.7 Conclusion

In this paper, we present and evaluate methods for analyzing hierarchical and

sequentially structured human activities, aiming to scale activity recognition by cre-

ating a hierarchical cluster of activity labels. Instead of using a single flat classifier

to distinguish between large numbers of activities, we design a hierarchy of classifiers,

each of which distinguishes between child nodes at a particular location in the hierar-

chy. We hypothesize that building such a hierarchy of activity will improve recognition

performance over that of the flat classifier model without affecting the training time.
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We validate our method for 15 different activities based on data collected from

a PAMAP2 activity recognition dataset and also on WISDM dataset. The hierarchi-

cal structure was generated using our proposed CFU-tree clustering approach using

the combination of feature mean and spectral mean similarity metric method. Our

experiments also demonstrate that the advantage of employing hierarchical activity or-

ganization for modeling activities results in important improvement in the recognition

rate and reduction of class imbalance inherent in the datasets. Experimental results

show that the proposed approach achieves superior accuracy in recognizing activities,

far outperforming single-layered supervised learning algorithms.

These results, advancing state of the art in human activity recognition, repre-

sent an important step towards reducing the mis-classsification rate that can occur

in the analysis of similar activities. Future work is to design an unsupervised fea-

ture extraction approach for automatic activity recognition. An unsupervised learning

framework of human activity recognition will automatically cluster a large amount of

unlabeled similar features into discrete groups of activity, automatically discovering in-

trinsic patterns from data. Meaningful features learned from input data via a sequence

of nonlinear processing can then be combined to build feature hierarchies that provide

an effective model for learning visual features and achieving robust recognition rates.
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Chapter 6

A DEEP LEARNING FRAMEWORK FOR SENSOR-BASED ECG
CLASSIFICATION

6.1 Introduction

Cardiac arrhythmias (abnormal heart rhythms) pose a serious threat to pa-

tients recovering from acute myocardial infarction [125]. Some types of arrhythmias

are life-threatening, capable of triggering cardiac arrest and sudden death. A non-

invasive and inexpensive technique for detecting these disorders is analyzing electro-

cardiograms (ECGs) that furnish valuable information on the electrophysiology and

functional aspects of the cardiovascular system. Therefore, early automatic detection

and classification of ECG patterns is critical to diagnosing and treating patients with

life-threatening cardiac arrhythmias [126], [127]. Current technologies in wearable sen-

sors allow remote monitoring of physiological data, thus enabling patient’s status mon-

itoring. Embedded sensors provide a capability of recording electrocardiographic data

(ECG) and electromyographic (EMG) data using different electrode configurations.

Thus, physiological monitoring using wearable sensors will help in both diagnosis and

ongoing treatment of a vast number of individuals with cardiovascular and pulmonary

diseases such as seizures, hypertension and arrythymias.

Previously, several algorithms have focused on automatically classifying heart-

beats in ECGs. Feature extraction methods to discriminate heartbeats have included

wave shape functions [7], [128], [129], [130], [131], Hermite functions [132], wavelet-

based features [133], [134], frequency-based features [135], ECG morphology [136],

hermite polynomials [137], higher order cumulant features [138], statistical features
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[139], [140] and Karhunen-Loeve expansion of ECG morphology [128]. Methodolo-

gies to classify these extracted features have included support vector machines [131],

[141], [139], self-organizing maps with learning vector quantization [137], k-th nearest-

neighbor rules [142], decision trees [141], artificial neural networks [143], linear discrim-

inants [7], [128], [130], active learning framework [144] and back propagation neural

networks [138]. Although some of these are statistically motivated approaches, to the

best of our knowledge a deep learning framework has not yet been used to perform

ECG classification tasks.

Figure 6.1: Applications of Deep Learning in object recognition and tracking

Deep learning [45], [46], [47], [48], [145], [146], [147], [148], [149] (also known

as unsupervised feature learning or representation learning) is a new technique that

is becoming mainstream in machine learning and pattern recognition. It has been

successfully used in object recognition [150], [151], image verification [152], classifi-

cation [153], and speech recognition [154], [155], [156], [157]. In recent years, deep
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learning approaches have dramatically improved the accuracy of recognition tools, cre-

ating a deep, multi-stage architecture for unsupervised learning and recognition sys-

tems. Deep learning networks are implemented using stacked autoencoders and can

represent a highly expressive abstraction. Deep learning networks gain this power by

hierarchically composing shallower feature representations into deeper representations

and such abstractions can compactly represent a much larger set of functions than

shallow networks can. Thus they offer tremendous representational power that can

help reveal unknown feature coherences of input signals, an important capability for

learning tasks that involve complicated models.

In past decades, computerized recognition of ECGs has become a well-established

practice, assisting cardiologists in the task of classifying long-term ECG recordings.

However, state-of-the-art automatic ECG recognition systems often rely on a pattern-

matching framework that represents an ECG signal as a sequence of stochastic pat-

terns, so they require high sampling rates and thus burdensome computational times

to classify arrhythmias. Consequently, to enable implementation in real time and

at a reasonable cost, these systems must enlarge their classification criteria by us-

ing a set of simple features and a lower sampling rate, and thus must sacrifice accu-

racy. Here we developed a more accurate and robust approach for single-lead ECG

classification that generated fewer false alarms. Inspired by recent progress in the

area of deep learning [158], [159], [160], especially its application to speech recogni-

tion [154], [155], [157], [161], we developed a deep learning framework that includes

Restricted Boltzmann Machine (RBM) and deep belief networks (DBN) [162]. This

framework of simple features and a low sampling rate yielded competitive ECG classi-

fication performance at lower computational cost, making it a highly practical option

in a clinical setting.

The remainder of this chapter is organized as follows. Section 6.2 covers the

proposed methodology. Here we present the data processing chain (which includes
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preprocessing, segmentation, and feature extraction). Section 6.3 briefly describes the

proposed deep learning framework. Section 6.4 details the experiments, and provides,

evaluates and discusses their results. Section 6.5 concludes the paper.

6.2 Proposed Methodology

A pattern recognition system provides a framework that automatically maps

an input signal to a class label by analyzing the features extracted from the signal.

The two symbolic stages of this recognition system are feature extraction and classi-

fication. Before feature extraction, the data is pre-processed (i.e., filtered), detected

and segmented. Then, feature extraction uses mathematical techniques on the input

signal to build an association with known models and to obtain the best discriminative

representation of the data by exploiting the underlying signal characteristics. Each

stage is described below.

Figure 6.2: Block diagram of the proposed methodology

6.2.1 Preprocesing

Each ECG signal is first bandpass filtered at 0.110 Hz and sampled at 360 Hz.

It is preprocessed to remove artifacts, such as baseline wander, power-line interference,
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high-frequency noise, and motion artifacts [7]. Baseline wander is a low-frequency arti-

fact that may be caused by chest-lead ECG signals suffering from coughing or breathing

with large chest movements, by the poor electrode to skin contact, or by limb-lead ECG

signals suffering from arm or leg movements [7]. To remove baseline wander, we pass

the signal through median filters with window sizes of 200ms and 600ms, thus remov-

ing P-waves, QRS complexes, and T-waves. Power line interference is an interfering

voltage with frequencies at integral multiples of 50 Hz that can completely obscure

an ECG waveform. This strong interference can stem from improper grounding, loose

contact of a patient’s cable, or disconnected electrodes. Power-line interference and

high-frequency noise are removed from a baseline-corrected ECG using a 12-tap low-

pass filter, a finite impulse response filter that has 3 dB at 35 Hz and equal ripple

in both pass and stop bands [136]. Motion artifacts represent transient baseline in-

terference that is introduced by electrode-skin impedance caused by electrode motion.

Because the peak amplitude of a motion artifact is 500 percent of the peak-to-peak

ECG amplitude, and its duration is about 100-500 ms, these artifacts can obscure ECG

waveforms, making their interpretation quite difficult. Motion artifacts are removed

using an adaptive filter.

6.2.2 Processing

The processing stage employs modules for heartbeat detection and segmenta-

tion. For detection, we use the manually verified heartbeat fiducial point times provided

with the MIT-BIH arrhythmia database as in [163]. For segmentation, we utilize the

heartbeat segmentation program of Laguna [7] since the accuracy of this system in de-

termining heartbeat segmentation points has been validated on the MIT-BIH database

and has proven to be commensurate with the inter-expert variation. The heartbeat

segmentation stage provides QRS onset and T-wave offset times; a Boolean value in-

dicates the presence/absence of a P-wave and, if present, gives the P-wave onset and

offset time for each heartbeat fiducial point.
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6.2.3 Feature Extraction

After down-sampling the ECG signal recordings to 114 Hz, we employ two fea-

ture extraction methods. Feature Set 1 (FS1) yielded 26 features comprising RR inter-

vals, heartbeat intervals, and segmented morphology. Feature Set 2 (FS2) produced 22

features consisting of RR intervals and fixed interval morphologies [7]. We settled on

the single-lead feature extraction method as its lower sampling rate and smaller feature

vector both translate to lessened power consumption and lower hardware complexity.

6.2.3.1 Feature Set 1

FS1 consisted of 26 features comprising of RR intervals, heartbeat intervals, and

segmented morphologies.

RR Intervals Features

RR intervals also known as Heartbeat fiducial point intervals correspond to the

interval between successive heartbeat fiducial points. The following four features were

extracted from RR intervals:

Figure 6.3: ECG Cardiac Trace [6]
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• Pre-RR interval: the RR interval between a given heartbeat and the preceding

heartbeat.

• Post-RR interval: the RR interval between a given heartbeat and the following

heartbeat.

• Average RR interval: the mean of RR intervals for a recording. This value

remains the same for all heartbeats in a recording.

• Local average RR interval: estimated by averaging ten RR-intervals surrounding

a heartbeat.

Heartbeat Interval Features

Three features were extracted from post-heartbeat interval segmentation.

• QRS duration: time interval between QRS onset and offset.

• T-wave duration: time interval between QRS offset and T-wave offset.

• Boolean variable: a third variable which indicates the presence or absence of a

P-wave.

Segmented Morphology Interval Features

Segmented morphology encompasses amplitude values of the ECG signal cal-

culated by a sampling window between QRS onset and offset and a sampling window

between QRS offset and T-wave offset points. Two sampling windows were used follow-

ing the determination of the fiducial point (FP), the first of these bounded by the QRS

onset and offset and the second bounded by the QRS offset and the T-wave offset. Ten

evenly spaced sample features were derived by uniformly sampling the ECG amplitude

in the first window (Fig. 1) and nine more by uniformly sampling the second window,

resulting in a total of 19 features.

85



Figure 6.4: Segmented Morphology Intervals Features [7]

6.2.3.2 Feature Set 2

FS2’s 22 features consisted of RR intervals and fixed interval morphologies [7].

RR Intervals Features

RR intervals (also known as Heartbeat fiducial point intervals) correspond to

the interval between successive heartbeat fiducial points, and match the same four

features extracted in Feature Set 1.

Fixed-interval morphology features

To determine fixed interval morphologies, sampling windows were first posi-

tioned at the heartbeat FP. Two sampling windows were formed based on FP. The

first window approximately encompassed the QRS-complex and covered the portion of

the ECG between FP-50 ms and 100 ms. Nine samples of the ECG between FP-50ms

and FP+100ms were extracted from this window. The second window approximately

covered the T-wave and started at 150 ms and finished at 500 ms. The next nine

samples between FP+150ms and FP+500ms were extracted from the second window,

for a total of 18 features used in FS2.

The entire feature extraction can be summarized as follows:

• FS1 (26): RR intervals (4), heartbeat intervals (3), segmented morphology (19)

• FS2 (22): RR intervals (4), fixed interval morphology (18)
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6.3 Deep Learning Framework

Deep Learning, inspired by the human brain’s deep hierarchical architecture, is a

technique focused on learning deep hierarchical models of data [164], [165]. This system

learns an empirical set of features at multiple levels of abstraction thereby allowing it

to acquire complex functions from input data without using human-engineered features.

Deep learning networks, implemented using stacked autoencoders, are capable

of representing highly expressive abstractions, thereby compactly yielding much larger

sets of functions than shallow networks can [166]. Through the tremendous representa-

tional power of hierarchical feature learning, these networks can help discover unknown

feature coherences of input signals, a characteristic that is crucial for learning tasks

involving complicated models.

As suggested in [167], the central concept of a DBN training algorithm is to first

initialize greedily the weights of each layer in an unsupervised manner by treating each

pair of layers as a Restricted Boltzmann Machine (RBM), and to later jointly refine

these weights to further improve the likelihood. The resulting DBN can be considered

a hierarchy of nonlinear feature detectors that can capture complex statistical patterns

in the data.

6.3.1 Restricted Boltzmann Machine

Derived from a Boltzmann Machine, the RBM is a bi-directionally connected

network of stochastic processing units that learns significant features of an unknown

probability distribution based on samples from that distribution. An RBM can be

described as a bipartite graph having a visible layer and a hidden layer (Fig. 4 ). Units

in the visible layer are typically characterized by Bernoulli or Gaussian distributions

and those in the hidden layer are typically characterized by Bernoulli distributions.

Stochastic units in the visible layer associate with stochastic units in the hidden layer
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by means of a weight matrix. No connections exist between units in the same layer.

In schematic representation, each edge in the bipartite graph is attached to a weight,

denoted as a symmetric matrix W , that is associated with the visible layer (v) and the

hidden layer (h).

Figure 6.5: Schematic of a restricted Boltzmann machine

A given RBM defines an energy function for every configuration of visible and

hidden state vectors. If both v and h are binary states (i.e., the Bernoulli-Bernoulli

RBM) the energy function is given by

E(v, h) = −vTWh− bTv v − bThh (6.1)

Thus, an RBM represents the joint distribution p(v;h) between visible unit v

and hidden random unit h. The joint probability is defined as

p(v, h) =
exp(−E(v, h))

Z
, (6.2)

where Z =
∑

v

∑
h exp(−E(v, h)) is the partition function

The probability assigned by the network model to a visible unit v is

p(v) =
1

Z

∑
h

exp(−E(v, h)), (6.3)

The lack of connections within a given layer of an RBM results in the visible

layer variables being conditionally independent, given the hidden layer variables, and
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vice versa. Thus the conditional probabilities can be rewritten as:

p(vj = 1/h) = σ(ai +
∑

hjwi, j) (6.4)

p(hj = 1/v) = σ(bj +
∑

viwi, j) (6.5)

where σ is the sigmoid fnuction defined by σ = 1
1+exp−x

Signal propagation manifests in two ways: recognition, where visible activations

propagate to the hidden units; and reconstruction, where hidden activations propagate

to the visible units. Both recognition and reconstruction use the same weight matrix

(simply transposed). The Contrastive Divergence (CD) algorithm finds the parameters

W , a, and b and performs Gibbs sampling [50]. We use CD to minimize the reconstruc-

tion error so the weights can be trained to generate input patterns that are presented

to the RBM with high probability. (A guide to training an RBM is given in [168]).

6.3.2 Deep Belief Networks

DBNs are a type of multi-layer generative neural network that is recognized

for its capability to model and visualize high-level learned features [164], [169]. It is

composed of stacked, logistic RBMs wherein the lowest-level RBM learns a shallow

model of the data and the next-level RBM learns to model first-layer hidden units,

thereby representing high-level abstraction through hierarchical architecture (Fig. 5).

When a DBN is used for classification purposes, the RBM pre-training proce-

dure can be used to initialize the weights of the deep neural network, and then these

weights can be discriminatively fine-tuned by back-propagating error derivatives. The

recognition weights of the DBN become the weights of a standard neural network.

This unsupervised pre-training establishes the platform for a final training phase: a

fine-tuning process with respect to a supervised training criterion based on gradient
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Figure 6.6: Schematic of a deep belief network of three layers.

descent optimization. (A detailed description of DBN varieties and their training is

available in [150], [170]).

6.4 Evaluation of Proposed Methodology with results and discussion

6.4.1 The MIT-BIH Database

For our evaluation experiments, we used the acclaimed MIT/Beth Israel Hospital

(BIH) Arrhythmia Database available at MIT medical data storage Physionet [163].

Briefly, this database incorporates 48 half-hour ECG recordings, each containing two

ECG lead signals digitized at 360 samples per second with 11-bit resolution over a

10 mV range [163]. Twenty-three of the recordings were randomly selected from a

set of 4,000 ambulatory 24-hour ECGs that were collected from a mixed population

of inpatients and outpatients at the medical center. The remaining 25 recordings

were selected from the same set but included less common but clinically symbolic

arrhythmias. All recordings have been annotated by two or more cardiologists and

contain modified limb lead II. In our experiments, we focused on using lead A only.

In 45 recordings, lead A is modified lead II, and in the other three recordings, lead

A is lead V5 [129]. According to the Association for the Advancement of Medical

Instrumentation (AAMI) recommended practice, the four paced beats are excluded
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from this experimental evaluation process because these beats possess insufficient signal

quality for reliable processing [7], [128].

6.4.2 AAMI Standard

MIT-BIH heartbeat types are combined according to AAMI recommendations

[171]. Since the AAMI standard emphasizes the problem of distinguishing ventricular

ectopic beats (VEBs) from non-ventricular ectopic beats [7], normal and arrhythmic

beats are remapped to the five AAMI heartbeat classes [172], [171] using the mapping

in [7] with each class including heartbeats of one or more types. Thus we used AAMI

recommended practice to combine the MIT-BIH heartbeat types into the following five

heartbeat classes that we used in all subsequent processing:

1. Class N corresponding to beats originating in the sinus node (normal and bundle

branch block beat types)

2. Class S corresponding to supraventricular ectopic beats (SVEBs)

3. Class V corresponding to ventricular ectopic beats (VEBs)

4. Class F corresponding to beats that result from fusing normal and VEBs

5. Class Q corresponding to unknown beats including paced beats

6.4.3 Evaluation Metrics

The MIT-BIH database contained a series of manually verified QRS detection

points that we utilized in this study. After the four recordings containing paced beats

were removed as in [172], the remaining 44 recordings were divided into two equal-sized

datasets, each containing ECG data from 22 recordings. The first dataset (DS1) was

used to train the classifier and to set parameter values that optimized the performance

of the classifier. The second dataset (DS2) was employed to carry out an independent

and unbiased performance evaluation of the heartbeat classification system. To validate

the algorithms on the MIT-BIH database, we used the following performance metrics:
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accuracy (Acc), sensitivity (Se), positive predictive value (PPV), and false positive rate

(FPR).

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(6.6)

Sensitivity(Se) =
TP

TP + FN
(6.7)

PositivePredictiveV alue(PPV ) =
TP

TP + FP
(6.8)

FalsePositiveRate(FPR) =
FP

TN + FP
(6.9)

where TP is a true positive that reflects the number of heartbeats belonging to

a particular class A that are accurately classified to that class A; FN is a false negative

that reflects the number of heartbeats belonging to class A that are inaccurately clas-

sified to a different class B; FP is a false positive that reflects the number of heartbeats

belonging to class B that are inaccurately classified to class A; and TN is a true neg-

ative that reflects the number of heartbeats belonging to class B that are accurately

classified to that class B.

6.4.4 Experimental Results and Discussion

We performed our classification on the MIT-BIH arrhythmia database [163] to

detect two types of heartbeat arrhythmias: VEBs and SVEBs. In agreement with

AAMI recommended practice, four recordings containing paced beats were removed

from the 48 recordings. The data from the remaining 44 recordings were divided into

two sets: training (DS1) and test (DS2). We trained the classifier using DS1 and as-

sessed classifier performance using DS2.

For the RBM and DBN algorithms, we used the toolbox developed by Drausin

Wulsin [175]. To determine the best configurations and parameters for the RBM, we
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Method
Rate
(Hz)

SVEB VEB
Acc Se PPV FPR Acc Se PPV FPR

FS1+Deep Learning 360 93.13 88.39 33.63 6.68 96.63 77.74 69.20 2.17
FS2+Deep Learning 360 93.47 70.99 32.44 5.66 95.24 85.22 56.63 4.11

Chazel et al [7] 360 94.6 75.9 38.5 4.7 97.4 77.7 81.9 1.2
Chazel et al [129] 360 93.6 61.2 31.2 5.2 95.4 72.4 62.3 3.0
Chazel et al [129] 360 94.4 73.5 37.0 4.8 97.8 87.6 80.3 1.5

Table 6.1: Comparison of classification results at sampling rate of 360 Hz

Method
Rate
(Hz)

SVEB VEB
Acc Se PPV FPR Acc Se PPV FPR

FS1+Deep Learning 114 93.63 88.62 35.49 6.17 95.57 78.49 59.65 3.34
FS2+Deep Learning 114 93.42 59.16 30.10 5.26 95.87 85.54 60.83 3.47
FS1+LCKSVD [173] 114 93.4 75.12 32.84 5.89 93.51 76 49.97 5.27
FS2+LCKSVD [173] 114 94.61 68.86 37.52 4.39 97.18 80.44 70.13 1.65

LDA Basil [174] 114 - - - - 93.4 75.8 61.9 4.8
QDA Basil [174] 114 - - - - 83.1 97 35.2 18.4
ANN Basil [174] 114 - - - - 96.9 79.7 74.6 1.9

Table 6.2: Comparsion of classification results at sampling rate of 114 Hz

performed a large number of experiments where we used varying combinations of batch

sizes (i.e., number of training vectors used in each pass of each epoch for the contrastive

divergence algorithm), numbers of hidden units, learning rates, and numbers of stacked

RBMs. The final classification layer had five output units, one for each class, and the

unit with the highest activation level was considered the most probable class.

We have reported our ECG classification results at sampling rates of 360 Hz and

114 Hz in Table 6.1 and Table 6.2, respectively. Column 1 indicates the methodology

and column 2 indicates the sampling rate; columns 3-10 indicate the gross classifier

performance in terms of Acc (Accuracy), Se (Sensitivity), PPV (Positive Predictive

value) and FPR (False positive rate) for the two heartbeat types. Rows 1 and 2 in

both tables report the overall performance of our classification using Feature Set 1 and

93



Deep Learning and using Feature Set 2 and DBN, respectively. The independent per-

formance assessment of the configuration of FS1 and Deep learning framework resulted

in an accuracy of 93.13%, a sensitivity of 88.39%, a positive predictivity of 33.63%,

and an FPR of 6.68% for the SVEB class. For the VEB class, accuracy was 93.63%,

sensitivity 77.74%, positive predictivity 69.20%, and FPR 2.17%.

Method N S V F Q

N 31228 2758 841 7011 422

S 38 1539 126 36 2

V 54 275 2173 293 0

F 16 3 5 360 0

Q 0 1 1 2 2

Table 6.3: Comparison of FS1 + Deep Learning Framework at Sampling Rate of 360
Hz

Method N S V F Q

N 73.89% 6.5% 1.9% 16.59% 0.99%

S 2.18% 88.39% 7.23% 2.06% 0.11%

V 1.93% 9.83% 77.74% 10.48% 0%

F 4.16% 0.78% 1.30% 93.75% 0%

Q 0% 16.66% 16.66% 33.33% 33.33%

Table 6.4: Classification results in % for FS1 + Deep Learning Framework at Sampling
Rate of 360 Hz

Method N S V F Q

N 36386 2347 1470 2045 12

S 148 1236 354 3 0

V 96 225 2382 91 1

F 22 1 103 258 0

Q 1 1 1 0 1

Table 6.5: Comparison of FS2 + Deep Learning Framework at Sampling Rate of 360
Hz

Our classification at a sampling rate of 360Hz provided an accuracy of 93.13%

for the SVEB class and 96.63% for the VEB class. Our classification at a sampling
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Method N S V F Q

N 86.1% 5.55% 3.47% 4.83% 0.02%

S 8.5% 70.99% 20.33% 0.17% 0%

V 3.43% 8.05% 85.22% 3.25% 0.04%

F 5.72% 0.26% 26.82% 67.18% 0

Q 25% 25% 25% 0% 25%

Table 6.6: Classification results in % for FS2 + Deep Learning Framework at Sampling
Rate of 360 Hz

Method N S V F Q

N 31238 2565 1366 6451 640

S 41 1543 118 39 0

V 60 238 2194 303 0

F 17 1 22 344 0

Q 1 0 2 0 1

Table 6.7: Comparison of FS1 + Deep Learning Framework at Sampling Rate of 114
Hz

Method N S V F Q

N 73.91% 6.06% 3.23% 15.26% 1.51%

S 2.35% 88.62% 6.77% 2.24% 0%

V 2.14% 8.51% 78.49% 10.8% 0%

F 4.42% 0.26% 5.72% 89.58% 0%

Q 25% 0% 50% 0% 25%

Table 6.8: Classification results in % for FS1 + Deep Learning Framework at Sampling
Rate of 114 Hz

Method N S V F Q

N 36213 2189 1181 2648 29

S 347 1030 358 6 0

V 100 201 2391 100 3

F 19 1 113 251 0

Q 1 1 1 0 1

Table 6.9: Comparison of FS2 + Deep Learning Framework at Sampling Rate of 114
Hz

rate of 114Hz provided similar levels of accuracy, 93.63% and 95.57% for SVEB and
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Method N S V F Q

N 85.69% 5.17% 2.79% 6.26% 0.07%

S 19.93% 59.16% 20.56% 0.34% 0%

V 3.57% 7.19% 85.54% 3.57% 0.1%

F 4.94% 0.26% 29.42% 65.36% 0%

Q 25% 25% 25% 0% 25%

Table 6.10: Classification results in % for FS2 + Deep Learning Framework at Sampling
Rate of 114 Hz

VEB classes, respectively. Thus at both sampling rates, our algorithm provides com-

petitive accuracy performance when compared to previously reported results (rows 3-5

in Table 6.1 and rows 3-7 in Table 6.2) for automated heartbeat classification systems

in [7] and [129].

Comparing Table 6.1 against Table 6.2, our results demonstrate that a deep

learning algorithm framework is better suited to detect VEB and SVEB types of ar-

rhythmia at the lower sampling rate of 114 Hz. Since increasing the sampling rate

to 360 Hz did not provide any significant gain in performance, it follows that an 114

Hz sampling rate can provide sufficient discriminatory power for this classification task.

In addition to evaluating the performance of VEB and SVEB classification, we

also assessed the per-class classification across all five classes at sampling rates of 360

Hz and 114 Hz (Tables 6.3-6.10). Our per-class classification results are competitive

when compared to results from methods in [7], [129], [174]. Since varying the sampling

rate had minimal impact on performance, we conclude that our approach emulates

the performance of state-of-the-art models at a lower sampling rate and with a set of

simple features.

Notably, the combination of parameters that yielded the best result was 112

hidden units, a batch size of 42, and a learning rate of 0.00001. With this combination,

the DBN achieved a very low error rate of 4.7 %. We used this DBN configuration
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while varying the number of stacked RBMs and found that outputs of three layered

trained RBMs achieved the best performance results. Moreover, this performance level

was comparable to that of state-of-the-art ECG classification algorithms.

In summary, we demonstrate that our approach can emulate state-of-the-art

classification results while using a significantly lower sampling rate. In the case of an

average sampling rate of 114 samples versus 360, we are achieving a gain factor of

three. In fact, the smaller feature-set representation and the deep learning framework

together contain sufficient discriminative information for accurate ECG classification.

Thus, with a suitable choice of parameters, the classifiers built using this deep learning

framework provide competitive performance. Also, our proposed framework opens a

new window for future research, highlighting the enormous potential of deep learning

based methods for accurate classification of other physiological signals, such as arterial

blood pressure (ABP), electromyograms (EMG), and heart rate variability (HRV).

6.5 Conclusion

In this work, we considered the application of Restricted Boltzmann Machines

and Deep Belief Networks to the automatic classification of single-lead ECG signals.

Experimental results indicate that our deep learning framework demonstrates a classi-

fication accuracy of 93.47% for SVEB class signals and 95.24% for VEB class signals

on the MIT-BIH database at a sampling rate of 360 Hz. Thus our framework provides

performance competitive with that of state-of-the-art methods. Experimental results

also demonstrate that this framework provides similar classification accuracy (93.63%

for SVEB and 95.57% for VEB) when sampling at only 114 Hz. Thus a lower sampling

rate of 114 Hz is sufficient to provide good discriminatory power for the ECG classifi-

cation task.
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In conclusion, our approach emulated the performance of state-of-the-art mod-

els using a lower sampling rate and a set of simple features. In future work, we will

investigate other types of embedding that represent ECG recordings as a feature vector

and then use hierarchical deep learning algorithms for robust performance. We will also

extend our framework to the classification of sensor-based cognitive assessment data

and the recognition of daily life activities, areas critical in healthcare for ubiquitous

health computing and medical informatics.
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Chapter 7

CONCLUSION AND FUTURE WORK

In this dissertation, a variety of algorithms are proposed based on dictionary

learning and deep learning to solve different machine learning problems, such as clas-

sification, supervised learning and feature selection. The motivation is that many

natural signals have a sparse structure, where only a few non-zero elements are capa-

ble of representing the majority of information conveyed by the target signal. Inspired

by the sparse signal representation paradigm, we developed several robust dictionary

learning algorithms for wearable sensor-based activity recognition, supervised learning,

hierarchical classification and feature selection. We have empirically shown the effec-

tiveness of proposed frameworks for recognition and obtained significant improvement

over commonly used classification algorithms on different kinds of data sets. The re-

mainder of the chapter presents a summary of major contributions of this thesis and

proposes directions for future research.

7.1 Summary of research outcomes

The main contributions of the thesis can be summarized as follows:

• A comprehensive review of conventional sparse representation techniques and

state- of-the-art dictionary learning algorithms is conducted in Chapter 2. The

chapter also presents the dictionary pair learning concept wherein an analysis

and a synthesis dictionary are jointly employed for learning and classification.
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• A novel class specific dictionary pair learning algorithm method for classification

is introduced in Chapter 3 [82]. The main contribution here involves the class

specific regularizer term that ensures sparse codes belonging to the same class

will be concentrated, thereby proving beneficial for the classification stage. A

combination of an alternating direction method of multipliers and a l1 − ls min-

imization method is adopted to approximately minimize the objective function.

The proposed algorithm was tested on four recognition tasks and this proposed

algorithm led to higher recognition rate when compared with other state-of-the-

art methods.

• In Chapter 4, a novel maximum correntropy criterion based dictionary pair learn-

ing algorithm is introduced [1], [94]. Maximum correntropy criterion has demon-

strated to efficiently handle non-Gaussian noise and is more insensitive to outliers.

To develop a more tractable approach, we employ a combination of alternating

direction method of multipliers and an iteratively reweighted method to approxi-

mately minimize the objective function. In general, the proposed training method

requires lower training time compared to existing methods with much higher clas-

sification rates for activity recognition problems defined on four datasets.

• To reduce the problem of mis-classifications between similar activity classes, we

designed a conceptual clustering based hierarchy of classifiers, each of which dis-

tinguishes between child nodes at a particular location in the hierarchy in Chapter

5 [97], [98]. A CFu-tree-based graphical model was employed along with feature

mean and spectral mean similarity metric to design the multi-layer classifier.

Through the creation of hierarchy clusters, each sub-problem become smaller

than the original problem and building such a hierarchy of classifiers improved

recognition performance compared to the flat classifiers.
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• Chapter 6 presents the novel concept of applying deep learning methodology to

the classification of single-lead electrocardiogram (ECG) signals [162]. The effec-

tiveness of this proposed algorithm is illustrated using real ECG signals from the

widely-used MIT-BIH database and simulation results demonstrate that RBM

and DBN can achieve high average recognition accuracies on ventricular ectopic

beats (93.63%) and on supraventricular ectopic beats (95.57%) at a low sam-

pling rate of 114 Hz. Experimental results indicate that classifiers built into this

deep-learning-based framework achieve state-of-the-art performance using lower

sampling rates and simple features than traditional methods. Further, employ-

ing features extracted at a sampling rate of 114 Hz when combined with deep

learning was found to provide enough discriminatory power for the classification

task.

In summary, the new paradigm of dictionary and deep learning is exploited to

develop robust machine learning classifier algorithms. The proposed algorithms are

capable of representing the salient information by only using fewer parameters. This

enables the design of high performance algorithms for supervised training, model op-

timization, classification and feature selection. Experimental results show that the

proposed dictionary and deep learning algorithms are superior to existing methods.

7.2 Future Work

Wearable electronics devices such as heart rate monitors, smart watches con-

tinue to expand in health-care sectors and consumer sectors. Fitness devices are by far

the most mature market, and products with embedded sensors that track and analyze

physical or other movements will soon change the future of medical technology. Wear-

able technologies will thus affect our future, impacting our health and fitness decisions,

redefining the doctor-patient relationship and thereby reducing healthcare cost and
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time [176].

In this dissertation, we had introduced novel dictionary and deep learning frame-

works aimed at development of a personalized physical activity monitoring system

and sensor based ECG signal recognition system applicable for everyday life scenarios.

There are possible future research directions to continue and extend the work presented

in this thesis. We outline them in the following paragraphs:

Online sparse learning and ensemble learning

Our models, i.e supervised learning algorithms, are offline learning algorithms in

which the performance depends on the available data. However, it would be interesting

to extend the proposed methods to online learning. Also, another interesting area of

investigation is to apply the dictionary pair learning algorithms as classifier ensembles.

Implementing dictionary learning based ensemble methods can further improve the

generalization ability of the machine learning algorithm.

Extended Dataset

The existing datasets for wearable sensors have limited activities involving few

volunteers. High accuracy has been obtained while distinguishing basic tasks like sit-

ting, standing and walking. However, erroneous classifications were observed while

dealing with composite activities like playing soccer, running and walking. A promis-

ing way to overcome this was by designing hierarchical classifier. The proposed hier-

archical classifier can be extended to adopt a more robust clustering algorithm with

similarity metric. Such cases of mis-classifications occurring in similar activities ne-

cessitates developing of a large database which involves many similar activities ( for

instance: preparing food, eating food or standing , talking while standing) belonging to

larger set of subjects from the different age groups. Distinguishing such closely similar

activities will be an interesting task and approaches which can distinguish such high

level or composite activities needs to be developed.
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Use of Semi-supervised learning

While considering extending the datasets to include more activities, obtaining

corresponding annotated ground truth for recorded sensory data will not be an easy

task and would require greater human efforts. Semi-supervised learning algorithms

are known to achieve good recognition rate while requiring small amount of labeled

data with large amounts of unlabeled data. With the underlying aim of adding new

extended activities in the datasets , semi-supervised learning methods will deserve

further attention.

Multi-modal Learning

This thesis has opened an area of research for dictionary and deep learning

and its possible wide range of applications in wearable sensor technology. Our present

system has been implemented on accelerometer, gyroscope, HR rate and an ECG recog-

nition system. This system can be extended with additional sensors to increase the

accuracy of the already provided functions or can be extended as systems with new

functionality. Potential real world applications with new functionality can be about

detecting stress, tiredness or assessing cognitive load by the multi- modular system.

A multi-modal learning framework can be envisioned as the one that uses multi-

ple input domains for learning and inference. (For example, when it is hard to identify

an activity with just the accelerometer data,it can be useful to examine the gyroscope,

heart rate and additional sensors aside from also examining the accelerometer). A

multi-modal learning framework will make it easier to use unlabeled data as the learn-

ing algorithm can more robustly infer about the underlying labels by the use of an

unified learning framework rather than depending on manually engineering features

for each sensor.

103



High Level feature learning from Unlabeled data

In chapter 6, we demonstrated that incorporating invariance in DBNs allowed

learning useful high-level features and achieving good performance in recognition tasks.

It is highly desirable for a good feature representation to be invariant as invariance for

a feature mapping results in feature values to be close to the maximal value when the

input data is slightly transformed from the optimal input and yet the feature mapping

will be selective to the optimal input. A solution is exploiting topographic representa-

tions [177], [178], however, this is challenging as real-world data is very complex and

highly-variable. Therefore, achieving more invariant feature representations, discover-

ing hierarchical representations and learning high-level features from unlabeled data

will be one of many fundamental questions that we need to continuously address.
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