DEVELOPMENT AND VERIFICATION OF A KINETIC MODEL OF POLLUTANT DESORPTION FROM DREDGE SEDIMENT AND SEWAGE SLUDGE

FINAL REPORT

by

Dominic M. Di Toro
John D. Mahony

Environmental Engineering and Science Program
and
Chemistry Department
Manhattan College
Bronx, N.Y. 10471

Project Officer

David J. Hansen

EPA Environmental Research Laboratory, Narragansett, RI

Cooperative Agreement No. R812824010

July 1989

Table of Contents

OVERVIEW	1-
Acknowledgement	2-
TOXICITY OF CADMIUM IN SEDIMENTS	3-
Introduction	4-
Methods And Materials	4-
A. Exposure System Design	4-
B. Organism Collection and Holding	5-
C. Sediment Acid Volatile Sulfide	5-
D. Sediment Characterization and Spiking Procedure	6-
E. Toxicity Experiment	7-
F. Cadmium Determinations and Titrations	8-
Experimental Results And Interstitial Water Correlations	8-
A. Dry weight normalization	8-
B. Correlation to Interstitial Water concentration	9-
C. Sediment Cadmium vs. Interstitial Water	10-
Metal Sulfides And Cadmium Titrations	11-
A. Solubility Relationships and Displacement Reactions	11-
B. Experimental Results - FeS	12-
C. Titration results - Sediments	13-
D. Correlation to Sediment AVS	13-
Sediment Toxicity And Avs Normalization	14-
A. Experimental Results	14-
Implications For Metal Toxicity In Sediments	15-
A. Application to Other Metals and Mixtures	16-
B. AVS and Sediment Quality Criteria	17-
C. AVS in Freshwater Sediments	18-
D. Vertical and Temporal AVS Profiles	19-
E. Sediment sampling and interstitial water generation	-19-

Conclusions	-20-
Acknowledgements	-20-
Appendix I	-21-
References	-23-
TABLES	-27-
Figures	-32-
Appendix II - Data Tables	-33-
DEVELOPMENT OF EXPERIMENTAL METHODOLOGY	-34-
A. Measuring Cadmium Activity	-34-
B. Water Only Exposure - Bioassay Results	-34-
C. Interstitial Water Diffusion Sampler	-35-
D. Initial Toxicity Experiments	-36-
E. Development of Acid Volatile Sulfide Extraction Method	-36-
F. Figure Captions	-38-
DEVELOPMENT AND VERIFICATION OF A KINETIC MODEL OF POLLUTANT	
DESORPTION FROM DREDGE SEDIMENT AND SEWAGE SLUDGE	-39-

OVERVIEW

This final report encompasses a two phase research effort. The initial direction was toward the development and verification of a kinetic model of heavy metal desorption from dredge sediment and sewage sludge. The second phase used the insights and results gained from that effort to begin an investigation of the toxicity of cadmium in sediments. This change of direction was agreed upon by both the Manhattan College and EPA Narragansett Laboratory researchers and was reflected in the renewal application for the second year of funding. The report is divided into distinct parts, reflecting each topic.

The first part reports on the role of solid phase sulfide in determining the toxicity of cadmium in sediments. For marine sediments the importance of sulfide and the possibility of the formation of insoluble metal sulfides has often been pointed out. We have shown that acid volatile sulfide - solid phase amorphous FeS(s) and MnS(s) which are soluble in cold acid - is the dominant sediment property that controls the cadmium binding capacity of marine sediments and provides the proper normalization for establishing the toxicity of cadmium in a variety of marine sediments. This is a major finding of our research project. The results are presented as a paper which is being submitted for publication. An additional Appendix II is included which presents all the experimental data in tabular form.

The second part of this report presents the results of the development of the methodology that was needed for preforming the experiments and measurements to assess the toxicity of cadmium in sediments. The experimental calibration of the cadmium electrode and the design and testing of a diffusional sampler is presented. Also a validation experiment for the Acid Volatile Sulfide extraction method is presented.

The third part of this report presents the results of the sludge and sediment desorption experiments. These data confirm that the original model proposed for this reaction was correct. A three phase model is appropriate: A reversibly sorbed component; a metal sulfide component that is released via oxidation; and a refractory component that is not released within the time scale of the experiment.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the encouragement and support of this work initially by Victor J. Bierman (the first year) and subsequently by David J. Hansen (the remaining years) both from the EPA Research Laboratory, Narragansett, RI. In addition the support from Christopher Zarba, EPA Criteria and Standards Division and the advice from Herbert Allen, Drexel University, is appreciated. We wish to recognize the dedicated efforts of our research group at Manhattan College: Sue Blakeney, Christine Begley, Marilyn Chiriani, Elizabeth Comerford, Patrick Connelly, Patricia Gaughran, Paul Kirchgraber, Susan Lobosco, Suzanne Mayr, Luisa Milevoj, Paul Morgan, Ann O'Byrne, Clare Sydlik, John Sowa, Indra Sweeney, and Mark Tallman.

TOXICITY OF CADMIUM IN SEDIMENTS: THE ROLE OF ACID VOLATILE SULFIDE

by

John D Mahony³
David J. Hansen⁴
K. John Scott⁵
Michael B. Hicks³
Suzanne M. Mayr³
Michelle S. Redmond⁵

July 1989

Submitted to Environmental Toxicology and Chemistry

¹ Environmental Engineering and Science Program, Manhattan College., Bronx, NY.

² HydroQual, Inc. Mahwah, NJ.

³ Chemistry Department, Manhattan College., Bronx, N.Y.

⁴ EPA Environmental Research Laboratory, Narragansett, RI.

⁵ Science Applications International Corp. Narragansett, RI.

INTRODUCTION

The toxicity of chemicals in sediments is strongly influenced by the extent to which the chemical binds to the sediment. This modifies the chemical potential to which the organisms are subjected. As a consequence different sediment types will exhibit different degrees of toxicity for the same total quantity of chemical. These differences have been reconciled by relating organism response to the chemical concentration in the interstitial water of the sediments [see the review in EPA, 1989]. As a consequence the relevant sediment properties are those which influence the distribution of chemical between the solid and aqueous phases.

The varying toxicity of non-ionic organic chemicals in different sediments has been found to be primarily determined by the organic carbon content of the sediments [EPA, 1989]. The purpose of this paper is to establish the importance of another sediment phase: the acid volatile sulfide phase - the sediment sulfides that are soluble in cold acid - in determining the toxicity of cadmium in sediments. By implication, this phase is likely to be important for all metals which form insoluble sulfides. Most freshwater and marine sediments - completely aerobic sediments are the exception - contain sufficient acid volatile sulfide for this phase to be the predominant determinant of toxicity.

METHODS AND MATERIALS

A. Exposure System Design

Sediment dwelling amphipods were exposed for 10 days to control and cadmium-spiked sediments in a 900 mL flow-through chamber with 200 mL of sediment (3.5 cm depth) and 600 mL of overlying seawater. Lighting was continuous to inhibit the amphipods' swimming behavior. Filtered air and seawater flow (10 volume replacements/day) ensured acceptable dissolved oxygen concentrations and cadmium free overlying water.

A diffusion sampler ("peeper") [Hesslein, 1976; Carignan et al.,1984; 1985], designed to fit within the exposure chamber and sample the interstitial and overlying water concentrations, was constructed of Plexiglas G grade unshrunk cast acrylic sheet: $6 \times 3 \times 2$ in. deep with 6 rows of 3 3/4 in. diameter 1 1/2 in. deep holes, each of which has a volume of about 5 mL. The open side of the

peeper is covered by a sheet of 1 micron polycarbonate membrane (Nucleopore), followed by a 30 mil low density polyethylene gasket and a 1/2 inch Plexiglas cover plate, both of which have the same hole pattern as the body and secured with PVC-1 cap screws and nuts. Equilibration time was measured to be less than one day.

B. Organism Collection and Holding

Ampelisca abdita were collected from tidal flats in the Pettaquamscutt (Narrow) River, a small estuary flowing into Narragansett Bay, RI, transferred to the laboratory within one half hour, and sieved through a 0.5mm mesh screen. Ampelisca were collected with a dip net after flotation on the air/water interface. Rhepoxynius hudsoni were collected in shallow water at Ninigret Pond, RI. Adult animals were sieved from the sediment through a 1 mm mesh screen in the field, transported to the laboratory within an hour, sieved again and transferred to holding containers. The amphipods were maintained in presieved uncontaminated collection site sediment and flowing filtered seawater, and acclimated to the assay temperature at the rate of 1 to 3°C per day. During acclimation, the Ampelisca were fed, ad libitum, the laboratory cultured diatom Phaeodactylum tricornutum. Rhepoxynius were not fed.

C. Sediment Acid Volatile Sulfide

The principal property of concern of the sediments used in these experiments was the acid volatile sulfide (AVS) concentration. It is the solid phase sulfide in the sediment that is soluble in cold acid. The measurement technique is to convert the sulfides to H₂S(aq), purge it with a gas, and trap it [see Morse et al., 1987 for a review]. A 500 mL Erlenmeyer flask reaction vessel fitted with a three-hole stopper is followed by three sequentially connected 250 mL Erlenmeyer flask trapping vessels. The first is a chloride trap with 200 mL of pH 4 buffer (0.05M potassium hydrogen phthlate) to prevent chloride carry over. The second and third traps contain 200 mL of a 0.1M silver nitrate solution for trapping H₂S. The four flasks are connected with airtight appropriately shaped glass and Tygon tubing.

A nitrogen gas flow allows continuous purging of the system. In order to prevent oxidation the gas flows through an oxygen-scrubbing system consisting of a vanadous chloride solution in the first scrubbing tower and the matrix of the analyte (seawater) in the second tower. Vanadous chloride is prepared using four grams of ammonium metavanadate boiled with 50 mL of concentrated hydrochloric acid and diluted to 500 mL. Amalgamated zinc, prepared by taking about 15 grams of zinc, covering it with deionized water and adding 3 drops of concentrated hydrochloric acid before adding a small amount of mercury to complete the amalgamation, is then added to the vanadous chloride solution.

The sediment sample (10-15 grams of wet sediment) or standard to be analyzed is placed in the reaction vessel after the entire system has been purged with nitrogen for about an hour. The system is again purged for 5-10 minutes, and deaerated 6M hydrochloric acid is added from a thistle tube to achieve a final concentration in the vessel of 0.5M. The system is run at room temperature for one hour which has been found to be sufficient to complete the extraction. The nitrogen gas flows at a bubble rate of about four per second. The sample vessel is swirled every five or ten minutes. At completion all hydrogen sulfide produced has been converted to silver sulfide in the first silver nitrate trap and no precipitate is found the second trap. The suspension in the first silver nitrate trap is passed through a 1.2 micron GF fiber filter, dried at 102°C, and weighed.

Standards prepared from appropriate quantities of iron(II) sulfate and sodium sulfide (the latter being added from a solution standardized against lead perchlorate), typically gave yields of 95-103%. Silver sulfide precipitates were usually in the range 20-30 mg. When a blank was run (sample without acid), about 0.9 mg silver sulfide was obtained. When the acid was run without a sample, about 0.6 mg silver chloride was obtained. This corresponds to a detection limit of ~ 0.5 μ mol/g.

D. Sediment Characterization and Spiking Procedure

Sediments of three different acid-volatile sulfide concentrations were used in the toxicity tests. The LI Sound sediment, with a high AVS concentration, was collected from an uncontaminated site in central Long Island Sound (40°7.95'N and 72°52.7'W) with a Smith-MacIntyre grab sampler, returned to the laboratory, press sieved wet through a 2 mm mesh stainless steel screen, homogenized, and stored at 4°C. A. abdita has been tested many times in this sediment and both its survival and reproduction have been good (Scott and Redmond, in press). The Ninigret Pond

sediment was a low AVS sand collected from the *Rhepoxynius* collection site. The upper few inches of sediment were collected with a shovel, returned to the laboratory, sieved wet through a 2 mm stainless steel screen, rinsed several times to remove high-organic fine particles, homogenized, and stored at 4°C. The third sediment was a 50/50 (volume) mixture of LI Sound and Ninigret Pond sediments.

Sediments were spiked by adding 1000 mL of wet sediment to 1500 mL of 20°C filtered seawater into which a weighted amount of cadmium chloride had been dissolved. An additional 500 mL of filtered seawater was used to rinse the sediment container. The mixture was stirred with a nylon spatula, capped and placed on a paint shaker for 5 minutes to ensure complete mixing, and held at ambient temperature (~15°C) water bath for 7 days to ensure equilibrium of the cadmium and sediment. A thin layer of cadmium sulfide precipitate that had formed on the surface of the sediment was removed, the test sediments were then homogenized, and 200 mL were transferred to each of three replicate exposure containers. For the experiments with peepers, they were inserted at this time. Exposure containers were placed in the water bath with air and seawater delivery.

E. Toxicity Experiment

The amphipods were sieved from holding containers through a 0.5 mm stainless steel screen and distributed sequentially into 100 mL plastic beakers. After sorting and eliminating dead or outsized animals, the beakers were randomized, air delivery in the exposure system was halted, and one beaker of amphipods was added to the two replicate exposure containers in each treatment. *Rhepoxynius* were added to the Ninigret Pond treatments, and *Ampelisca* to the LI Sound and mixture treatments. The third replicate exposure container in each treatment received no amphipods and was used as a chemical control. Salinity and temperature of the overlying seawater remained relatively constant at 20.7 ± 0.3 °C (n=11) and 30.3 ± 0.5 % (n=11) during the 10 day exposure period.

After termination the contents of each exposure container were sieved through a 0.5 mm screen. For Ampelisca, material retained on the sieve was preserved in 5% buffered formalin with

Rose Bengal stain for later sorting. For *Rhepoxynius*, material retained on the sieve was examined immediately after sieving. In both cases, recovered animals were counted, and any missing individuals were counted as mortalities. The peeper interstitial and overlying water cadmium concentrations were determined as was the AVS and solid phase cadmium in the chemical control vessels.

F. Cadmium Determinations and Titrations

The cadmium ion concentration in both the peeper samples and the titrations described below was measured as Cd²⁺ activity using an Orion 94-48 cadmium ion selective electrode and a double junction reference electrode (Orion 90-02). The electrode was standardized with a serial dilution of a 1 g/L cadmium solution that was also used as the titrant. Sediment cadmium was determined using a cold concentrated nitric acid (16M, 5mL) digestion of 10mL wet sediment followed by a peroxide oxidation (10mL 30%) and evaporation to dryness. The residue is reconstitute to 20mL using 0.1M nitric acid and the cadmium measured using an AA.

Cadmium titrations of FeS suspensions (prepared in the same manner as the AVS standards) and sediments were performed using sample sizes of 5 to 10 gm dry wt. added to 50 mL seawater which was constantly stirred. Cadmium chloride was added and dissolved cadmium was monitored using the electrode. Anaerobic conditions were maintained using a nitrogen atmosphere provided by a glove box or by constantly bubbling nitrogen through the covered titration vessel. In the sediment titrations where electrode response was slow, a uniform differential response-time procedure was employed to obtain consistent voltage readings.

EXPERIMENTAL RESULTS AND INTERSTITIAL WATER CORRELATIONS

A. Dry weight normalization

The toxicity of cadmium to *Rhepoxynius hudsoni* in Ninigret Pond sediment; and to *Ampelisca* in Long Island Sound sediment and an equal parts mixture of the two sediments, is shown in Fig.1. The curves are log-logistic concentration response functions with the same slope parameter (Table 1). The LC50s range from 318 µmol/gm to 3200 µmol/gm on a sediment dry weight basis. As shown below these two organisms have virtually the same LC50s in water only exposures: 0.012

mg Cd²⁺/L (0.23 mg Cd/L) and 0.017 mg Cd²⁺/L (0.34 mg Cd/L) for *Rhepoxynius* and *Ampelisca* respectively. The concentrations are for free cadmium, Cd²⁺, and total dissolved cadmium, Cd, respectively. Hence the differences in the cadmium toxicity are likely to be attributable to varying sediment properties. In addition Swartz et al., (1985) reported the *Rhepoxynius abronius* cadmium LC50 for a Yaquina Bay sediment to be 25 μmol/gm. Thus a factor of ten separates each of the LC50s for these three marine sediments: Long Island Sound (3200 μmol/gm), Ninigret Pond (318 μmol/gm) and Yaquina Bay (25 μmol/gm). An explanation for the over two order of magnitude variation in LC50s would surely be useful.

B. Correlation to Interstitial Water concentration

The correlation between organism toxicity and interstitial water concentration for sediments with different dry weight sediment toxicity has been reported (Adams et al., 1985; Swartz et al., 1985; Kemp and Swartz, 1986). In addition the evidence suggests [Borgmann, 1983] that biological response correlates to chemical activity, in particular to the divalent metal activity, {Me²⁺} [Sunda and Guillard, 1976; Sunda et al., 1978; Zamuda and Sunda, 1982]. The claim is not that the only bioavailable form of the metal is Me²⁺ - for example MeOH⁺ may also bioavailable - but that the DOC or other ligand complexed fractions are not bioavailable.

These two hypotheses are examined in Fig. 2a, a comparison of the observed mortality to the observed interstitial water cadmium activity, measured with the specific ion electrode, for the three sediments in Fig. 1. The concentration response curves for *Ampelisca* and *Rhepoxynius* in water only exposures are nearly identical. The interstitial water concentration data from the sediment exposures are somewhat scattered. However the grouped data, presented in Fig. 2b as medians (50th percentile) and interquartile ranges (25th to 75th percentiles) parallel the water only exposure curve. These results conform to previous observations that the concentration response curves for sediment exposures, which are quite different on a sediment cadmium dry weight basis (Fig. 1), are quite comparable on an interstitial water basis. Table 1 presents the results.

C. Sediment Cadmium vs. Interstitial Water

The prediction of the toxicity of cadmium in sediments requires that the relationship between sediment cadmium concentration and interstitial water concentration be established. A plot of solid phase versus aqueous phase cadmium concentrations - which is regularly used for the analysis of sorption data - is shown in Fig. 3.

The data can be envisioned as a titration in which cadmium is added incrementally to the sediment and the resulting aqueous and solid phase cadmium distribution is measured. Initially the solid phase concentration increases but the aqueous phase concentration remains below the detection limit of the cadmium electrode. Then a critical sediment concentration is reached at which point the aqueous concentration increases sharply - in the region marked "transition" in Fig. 3. Note that the increase is over two orders of magnitude in aqueous concentration while the sediment concentration remains nearly constant. As more cadmium is added, the data then appear to follow a linear trend which is characteristic of a sorption reaction.

It is apparent that the critical part of the relationship between solid and aqueous phase cadmium is the onset of the transition region. There is a sudden increase in interstitial water cadmium activity (mg Cd²⁺/L) and total dissolved concentration (mg Cd/L) from nonlethal levels below 0.001 mg Cd²⁺/L (0.02 mg Cd/L), passing the water only LC50: 0.015 mg Cd²⁺/L (0.30 mg Cd/L) for *Rhepoxynius* and *Ampelisca*, to concentrations in excess of 0.1 mg Cd²⁺/L (2.0 mg Cd/L). This marks the transition between nontoxic and toxic sediments. The solid phase - aqueous phase relationship at the lower sediment cadmium concentrations is unclear since the aqueous concentrations are below detection. However the data do not appear to conform to a straight line sorption isotherm that would be inferred by extrapolation from the high concentration data since detectable dissolved concentrations would have been present. The more likely possibility is that a precipitation reaction is maintaining the aqueous phase concentration at below detectable values in the region of low sediment concentrations. Since these are marine sediments the possibility of the formation of a cadmium sulfide precipitate is suggested.

METAL SULFIDES AND CADMIUM TITRATIONS

The importance of sulfide in the control of interstitial water metal concentrations of marine sediments is well documented (Boulegue, 1983; Emerson et al., 1983; Davies-Cooley et al.,1985; Morse et al., 1987). Metal sulfides are very insoluble and the equilibrium interstitial water metal concentrations in their presence are small. It is possible that the interstitial water sulfide concentration in the sediment samples used for these toxicity tests was initially high enough that so that as cadmium was added to the sediment, cadmium sulfide was precipitating following the reaction:

$$Cd^{2+} + S^{2-} \to CdS(s) \tag{1}$$

However direct measurements of the interstitial water sulfide activity, {S²-}, with a sulfide electrode failed to detect any free sulfide in the unspiked sediments. This was a most puzzling result since it was visually clear that a bright yellow cadmium sulfide precipitate was forming as cadmium was added to the sediment.

The lack of significant quantity of dissolved sulfide in the interstitial water and the evident formation of solid phase cadmium sulfide suggested the following possibility. Most of the sulfide in sediments is in the form of solid phase iron sulfides. Perhaps the source of the sulfide is the *solid phase* sulfide initially present. Then as cadmium is added to the sediment it causes the solid phase iron sulfide to dissolve releasing sulfide which is available for the formation of cadmium sulfide. This possibility is examined below.

A. Solubility Relationships and Displacement Reactions

The majority of sulfide in sediments is in the form of iron monosulfides (mackinawite and greigite) and iron bisulfide (pyrite) of which the former are most reactive [see the review by Morse et al., 1987]. Iron monosulfide, FeS(s), is in equilibrium with aqueous phase sulfide via the reaction:

$$FeS(s) \leftrightarrow Fe^{2+} + S^{2-} \tag{2}$$

If cadmium is added to the aqueous phase, then the result is:

$$Cd^{2+} + FeS(s) \leftrightarrow Cd^{2+} + Fe^{2+} + S^{2-}$$
 (3)

As the cadmium concentration increases, $[Cd^{2^+}][S^{2^-}]$ will exceed the solubility product of cadmium sulfide and CdS(s) will start to form. Since cadmium sulfide is more insoluble than iron monosulfide, FeS(s) should start to dissolve in response to the lowered sulfide concentration in the interstitial water. The overall reaction is:

$$Cd^{2+} + FeS(s) \rightarrow CdS(s) + Fe^{2+}$$
 (4)

where the iron in FeS(s) is displaced by cadmium to form soluble iron and solid cadmium sulfide, CdS(s). A theoretical analysis of the Cd(II)-Fe(II)-S(II) system, presented in Appendix I, supports this conclusion. The relevant parameter, which can be termed the metal sulfide solubility parameter for any metal, Me, is α_{Me^2} . It is the product of α_{Me^2} . = [Σ Me(aq) / [Me²⁺], the ratio of total dissolved Me to the divalent species concentration; and K_{Mes} = [Me²⁺][S²⁻], the metal sulfide solubility product. These are given in Table 2. The sulfide solubility parameters, shown in Fig. 4, determines the behavior of [FeS(s)] and and [MeS(s)] as the metal is added to the sediment. For example since the cadmium sulfide solubility parameter is less than the iron sulfide solubility parameter, cadmium will form a sulfide at the expense of the iron sulfide which will dissolve. Note that all the metals examined in Fig. 4 are predicted to dissolve FeS and MnS.

B. Experimental Results - FeS

The calculations presented above reflect the chemical composition expected at thermodynamic equilibrium. However many solid phase reactions are not at equilibrium with respect to either the aqueous phase of other solid phases because of the slow kinetics involved in the necessary transformations. Therefore a direct test of the extent to which this reaction takes place has been performed.

A quantity of freshly precipitated iron sulfide is titrated by adding dissolved cadmium. The resulting aqueous cadmium activity, measured with the cadmium electrode versus the ratio of cadmium added, [Cd]_A, to the amount of FeS initially present, [FeS(s)]_i, is shown in Fig. 5. The electrode potentials (left) correspond to a very low cadmium concentration during the initial portion of

the titration. Then a sharp upward inflection occurs near [Cd]_A ~ [FeS]_i indicating that all the iron sulfide has dissolved to form CdS and any additional cadmium added appears as free cadmium. The plot of dissolved cadmium versus cadmium added (right) illustrates the rapid increase in dissolved cadmium that occurs near [Cd]_A / [FeS]_i = 1. A similar experiment has been performed for amorphous MnS with comparable results. It is interesting to note that such a replacement reaction was postulated by Pankow (1979) to explain an experimental result using copper and FeS.

These experiments plainly demonstrate that solid phase amorphous iron and manganese sulfide can readily be dissolved by adding cadmium. As a consequence it is a source of available sulfide which must be taken into account in evaluating the relationship between solid phase and aqueous phase cadmium in sediments.

C. Titration results - Sediments

A similar titration procedure has been used to evaluate the behavior of sediment samples taken from four quite different marine environments: Black Rock Harbor; the Long Island Sound and Ninigret Pond sediments used in the toxicity tests; and the Hudson River. The results are shown in Fig. 6. The binding capacity for cadmium is estimated by extrapolating a straight line fit to the dissolved cadmium data. The equation is:

$$[\Sigma Cd(aq)] = \max\{0, m([Cd]_A - [Cd]_B)\}$$
 (5)

where [\(\times Cd(aq)\)] is the total dissolved cadmium, [Cd]_A is the cadmium added, [Cd]_B is the bound cadmium, and m is the slope of the straight line. The sediments exhibit quite different binding capacities for cadmium, listed in Table 3, ranging from approximately 1 \(\mu\text{mol/gm}\) to more than 100 \(\mu\text{mol/gm}\). The question is whether this binding capacity is explained by the solid phase acid volatile sulfide present in the samples.

D. Correlation to Sediment AVS

Sulfides in sediments can be partitioned into three broad classes which reflect the techniques used for quantification [Berner, 1971; Goldhaber and Kaplan, 1974; Morse et al., 1987]. The most labile fraction, acid volatile sulfide (AVS), is associated with the more soluble iron and manganese

monosulfides. The more resistant sulfide mineral phase, iron pyrite, is not soluble in the cold acid extraction used to measure AVS. Neither is the third compartment, organic sulfide associated with the organic matter in sediments [Landers et al., 1983].

The possibility that acid volatile sulfide is a direct measure of the solid phase sulfide that reacts with cadmium is examined in Fig. 7 (left): a plot of the sediment binding capacity for cadmium versus the measured initial AVS for each sediment. The line of perfect agreement is shown. The sediment cadmium binding capacity appears to be somewhat less than the initial AVS for the sediments tested. However a comparison between the initial AVS of the sediments and that remaining after the cadmium titration is completed, Fig. 7 (right), suggests that some AVS is lost during the titration procedure. It is possible that a portion is oxidized even though deoxygenated N2 gas is passed through the reactor. Or it is possible that some of the AVS is lost as H2S(g) via stripping into the gas stream. In any case the correlation of sediment binding capacity and final AVS is apparent in Fig. 7. This strongly suggests that AVS is the proper quantification of the solid phase sulfides that can be dissolved by cadmium.

SEDIMENT TOXICITY AND AVS NORMALIZATION

The toxicity experiment illustrated in Fig. 1 was designed to test the utility of AVS as a predictor of the cadmium binding capacity of sediments and therefore a predictor of the concentration of cadmium that would cause sediment toxicity.

A. Experimental Results

Fig. 8 presents the AVS and cadmium concentration data at the start and end of the experiment. The initial concentrations of AVS are averages of multiple measurements from the stock supply. The initial concentrations of cadmium are calculated from the weighted amounts added to the sediments. The final cadmium and AVS concentrations are measured in parallel chemical control vessels.

The AVS results are interesting. A constant amount of AVS, ~2 µmol/gm, is lost from each vessel. Since each sediment is exposed to aerobic overlying water for the same amount of time it is probable that the loss is via oxidation. The final cadmium concentrations are within 70% of the initial values reflecting the loss during initial preparation and via the flowing overlying water.

The toxicity experimental results are shown in Fig. 9. The sediment cadmium is normalized by the AVS for that sediment. The averages of the initial and final values are used for AVS. The relationship in Fig. 8 is used to estimate the final cadmium concentration from the initial concentration if it was not measured. Note that the increase in mortality occurs at the point where the sediment cadmium begins to exceed the sediment AVS on a molar basis. Total mortality occurs at [Cd]/[AVS] > 3. The LC50 that results from a combined fit of the data is $1.97 \,\mu\text{mol}$ Cd / μ mol AVS.

The critical point is that the sediment AVS can be used to normalize the sediment cadmium concentration in the same way that sediment organic carbon is used to normalize non-ionic organic chemicals. The reason that both methods work is that they properly account for the chemical activity of the chemical in both the aqueous and sediment phases. Below 1 µmol Cd /µmol AVS the cadmium is all precipitated as CdS(s) and the activity of Cd is very low. Above 1 µmol Cd /µmol AVS there exists free cadmium in the interstitial water, sorbed cadmium in the sediment phase, as well as CdS(s). The activity of cadmium in the system is now high enough to cause mortality. This is true for sediments with an appreciable amount of AVS, > 1 µmol/gm. The reason is that the additional cadmium added in excess of 1 µmol Cd/gm/ µmol AVS/gm is large enough to exceed the activity of cadmium in the system that causes mortality even in the presence of some sorption phases - see Fig.5.

IMPLICATIONS FOR METAL TOXICITY IN SEDIMENTS

1 E

SUF

The first order importance of AVS in determining the toxicity of cadmium in sediments has important implications. These are discussed below.

A. Application to Other Metals and Mixtures

The other potentially toxic metals all form metal sulfide precipitates that are more insoluble than iron sulfide. Fig. 4 presents the sulfide solubility parameters for divalent metals. The iron and manganese sulfides have $\log(\alpha K_{sp}) > -25$ whereas the remaining sulfides have $\log(\alpha K_{sp}) < -25$. The implication is that the results found for cadmium are applicable to these other metals as well since, at equilibrium, they can displace iron and manganese sulfide to form a more insoluble sulfide precipitate.

In particular it is likely that the LC50 for any metal is at least $1 \mu mol/\mu mol$ AVS. Given the high concentrations of AVS in most sediments, the LC50s of these metals are likely to be large concentrations. For a molecular weight range of Ni ~ 50 to Pb ~ 200 gm/mol, the LC50s for an AVS of 1 (10) μmol AVS/gm would range from 50 (500) to 200 (2000) $\mu g/gm$.

A additional conjecture is that the molar AVS normalized toxicity of metals is additive. Since all the divalent metals in Fig. 4 have lower sulfide solubility parameters than FeS, they would all exist as metal sulfides if their molar sum is less than the AVS. For this case no metal toxicity would be expected and:

$$\frac{\sum_{i}[Me_{T}]_{i}}{[AVS]} < 1 \tag{6}$$

where [MeT]i is the total cold acid extractable metal concentration in the sediment. On the other hand if their molar sum is greater than the AVS concentration then a portion of the metals with the lowest sulfide solubility parameters would exist as free metal and presumably exert a toxicity. For this case the following would be true:

$$\frac{\sum_{i}[Me_{T}]_{i}}{[AVS]} > 1 \tag{7}$$

But these two equations are precisely the formulas that one would employ to determine the extent of metal toxicity in sediments assuming additive behavior and neglecting the effect of partitioning. Whether the normalized sum is less than or greater than one discriminates between non toxic and

toxic sediments. The additivity does not come from the nature of the mechanism that causes toxicity. Rather it results from their equal ability of the metals to form metal sulfides with the same stoichiometric ratio of Me and S.

This discussion is predicated on the assumption that all the metal sulfides behave similarly to cadmium sulfide. Further it has been assumed that only acid soluble metals are reactive enough to affect the free metal activity. At present no experimental data to support either of these conjectures exists so that this discussion purely speculative.

B. AVS and Sediment Quality Criteria

Since AVS can bind cadmium and presumably metals and thereby reduce their toxicity AVS will obviously play a role in the determination of sediment quality criteria for metals. For sediments with very little or no AVS - fully oxidized sediments for example - an AVS normalization would not be appropriate. Rather the partitioning would be controlled by other sediment phases such as iron and manganese oxides and organic carbon (Jenne et al., 1986). An estimate of when partitioning to other phases can be important can be made using the proposed sediment quality criteria formula [EPA, 1989]:

$$r_{SOC} = K_P c_{WOC} \tag{8}$$

where r_{SQC} is the sediment quality criteria, K_p is the partition coefficient, and r_{CWQC} is the chronic water quality criteria. For the case where there is only one metal competing for the AVS, the molar equivalent of the AVS would not bioavailable. Therefore it should be added to the allowable concentration so that:

$$[r_{SOC}] = [AVS] + K_P[c_{WOC}]$$
(9)

where [r_{SQC}] is the molar sediment quality criteria (μ mol/gm), K_p is the partition coefficient (L/gm), and [cw_{QC}] is the molar chronic water quality criteria (μ mol/L). The range for freshwater acute (chronic) criteria for the metals in Fig. 4 (hardness = 100 mg/L) is 0.01 to 31. (.0001 to 1.6) μ mol/L. The marine criteria are 0.01 to 3.8 (.0001 to 0.88) μ mol/L [EPA, 1986]. The

importance of partitioning can be judged by comparing the product $K_P[c_{WQC}]$ to the AVS concentration. Consider an AVS concentration of $1 \mu \text{mol/gm}$. If the partition coefficient is $K_P = 1 \text{ L/gm}$ then a metal with a criteria concentration of $1 \mu \text{mol/L}$ would have its sediment quality criteria doubled due to the partitioning. For $K_P = 10 \text{ L/gm}$ the criteria concentration at which partitioning doubles the sediment quality criteria drops to $0.1 \mu \text{mol/L}$. Hence the effect of partitioning only becomes significant for relatively low AVS concentrations (~ $1 \mu \text{mol AVS/gm}$) and for the metals with larger partition coefficients and criteria concentrations. For all cases with only a single metal involved, the minimum molar sediment quality criterion is [AVS].

C. AVS in Freshwater Sediments

Acid volatile sulfide is commonly found in marine sediments. It is produced by the diagenesis of particulate organic carbon, represented as CH₂O, with sulfate as the electron acceptor [Goldhaber and Kaplan, 1974]:

$$2CH_2O + SO_4^{2-} \rightarrow 2CO_2 + S^{2-} + 2H_2O \tag{10}$$

and the precipitation of iron sulfide [Berner, 1971]:

$$Fe^{2+} + S^{2-} \rightarrow FeS(s) \tag{11}$$

It might be expected that AVS is significant only in marine sediments since the concentration of sulfate in seawater is 28 mM = 2700 mg SO₄/L. By contrast average river water sulfate concentration is 0.12 mM = 11.5 mg SO₄/L [Stumm and Morgan, 1981]. However sedimentary organic matter is present in either locale and the sulfate in freshwater may be sufficient to produce a significant quantity of AVS. This is confirmed by the observations reported in Table 4. Surprisingly large values are found for sediments from the Great Lakes, rivers and other freshwater lakes. The magnitudes are nearly 1 µmol/gm to more than 100 µmol/gm. This strongly suggests that the AVS concentration in freshwater sediments must be considered when addressing cadmium and other metal toxicity.

D. Vertical and Temporal AVS Profiles

The normal method for sediment preparation in sediment bioassays is to produce a uniform distribution of chemical and sediment by careful mixing. For these systems the AVS is uniformly distributed and the concentration to be used for normalization is unambiguous.

However the distribution of AVS in intact sediment cores exhibits both vertical and temporal variation over the annual cycle. Table 4 presents a summary of some observations [Aller 1980; Reaves, 1984]. There is a seasonal variation in the surface concentration of AVS at the Long Island Sound NWC station and all stations exhibit a strong vertical gradient between the surface 1 cm. and the average of the top 10 cm.

This variation in AVS concentration makes it more difficult to decide what AVS concentration should be used in evaluating the potential toxicity of metals in natural sediments. This is in contrast to the distribution of sediment organic carbon which is more spatially uniform and temporally stable. Hence it appears that intact cores should be used for sediment toxicity testing if metal toxicity is suspected. Indigenous predators such as *Nephtys incisa* should be elimated, however, pehaps by asphyxiation [Scott and Redmond, in press].

E. Sediment sampling and interstitial water generation

Ferrous sulfide oxidizes very rapidly in aerobic environments. For suspensions, oxidation is virtually complete within a few hours [Nelson, 1978]. We also have noted a decline in AVS for sediments that are held for a long period or are exposed to air. It is clear, therefore, that care should be taken to keep sediments anaerobic before AVS measurements or toxicity testing.

The use of elutrates as a surrogate for interstitial water is also suspect since oxidation of metal sulfides and release of soluble metals can occur. Procedures for producing large volumes of "pore" water by equilibrating suspensions of sediments must be checked for the extent of AVS oxidation that occurs.

CONCLUSIONS

It has been shown that AVS is the proper normalization parameter for cadmium toxicity in sediments. The observed amphipod mortality versus normalized cadmium concentration, [Cd]/[AVS], is the same for sediments with over an order of magnitude difference in dry weight normalized cadmium LC50s. The correlation between mortality and interstitial water metal activity has also been confirmed. Although the fact that metals can form insoluble sulfides is well known, it apparently has not been recognized that FeS and MnS, quantified as AVS, is a reactive pool of *solid phase* sulfide that is available to bind with metals which have sulfide solubility parameters smaller than FeS.

Titrations of FeS and MnS with cadmium demonstrate that the displacement reaction, Eq. 4. does occur. Further, titrations of sediments with cadmium indicates that an abrupt increase of dissolved cadmium occurs when the added cadmium exceeds the measured AVS. However, these data are not as certain since AVS appears to be lost during the titration and the relationship is only approximate (Fig. 7). Nevertheless, the AVS normalized toxicity data (Fig. 9) does demonstrate that the normalization is quantitative.

Surprisingly, the AVS of freshwater sediments is in the same range as marine sediments. Therefore, AVS should also be the proper normalization for these sediments. The other sorption phases are expected to be important for low AVS sediments and for metals with large partition coefficients and water effect concentrations.

ACKNOWLEDGEMENTS

This research was sponsored by an EPA Cooperative Agreement CR812824-01 between Manhattan College and EPA Environmental Research Laboratory, Narragansett RI. The assistance and encouragement of Christopher Zarba, EPA Criteria and Standards Division; Herbert Allen, Drexel University; and our research assistants: Indra Sweeney, Paul Morgan, Clare Sydlik, Luisa Milevoj, and Christine Begley is gratefully acknowledged.

APPENDIX I

Solubility Relationships for Metal Sulfides

The behavior of iron sulfide during a titration with cadmium can be analyzed using a simplified equilibrium model of the Cd(II)-Fe(II)-S(II) system. The mass action laws for the sulfide solubilities are:

$$\gamma_{cd^{2+}}[Cd^{2+}]\gamma_{S^{2-}}[S^{2-}] = K_{cdS}$$
 (12)

$$\gamma_{Fe^{2+}}[Fe^{2+}]\gamma_{S^{2-}}[S^{2-}] = K_{FeS}$$
 (13)

where $[Cd^{2+}]$, $[Fe^{2+}]$, and $[S^{2-}]$ are the molar concentrations; $\gamma_{cd^{2+}}, \gamma_{Fe^{2+}}$, and $\gamma_{S^{2-}}$ are the activity coefficients; and K_{FeS} and K_{cdS} are the sulfide solubility products. The mass balance equations for total cadmium, iron(II), and sulfide are:

$$\alpha_{Cd^{2+}}[Cd^{2+}] + [CdS(s)] = [Cd]_A$$
 (14)

$$\alpha_{Fe^{2+}}[Fe^{2+}] + [FeS(s)] = [FeS(s)]_i$$
 (15)

$$\alpha_{s^2}[S^2] + [CdS(s)] + [FeS(s)] = [FeS(s)]_i$$
 (16)

where
$$\alpha_{Cd^{2-}} = [\Sigma Cd(\alpha q)]/[Cd^{2+}], \ \alpha_{Fe^{2-}} = [\Sigma Fe(\alpha q)]/[Fe^{2+}], \ \text{and} \ \alpha_{S^{2-}} = [\Sigma S(\alpha q)]/[S^{2-}]$$

are the ratios of the total dissolved Cd, Fe(II), and S(II) to the divalent species concentrations, respectively. [CdS(s)] and [FeS(s)] are the concentration of solid phase cadmium and iron sulfide; $[FeS]_i$ is the initial iron sulfide in the sediment, and $[Cd]_A$ is the added cadmium.

The solution of these equations begins with substituting Eqs.(14) and (15) into Eq.(16). Noting that $\alpha_{S^2}[S^2] = [\Sigma S(\alpha q)] \ll [Cd]_A$, which states that the total dissolved sulfide in the interstitial water is much less than the cadmium added, it follows that:

$$\gamma_{S^{2-}}[S^{2-}] \approx \frac{\alpha_{Fe^{2+}} K_{FeS} / \gamma_{Fe^{2+}} + \alpha_{cd^{2+}} K_{cdS} / \gamma_{cd^{2+}}}{[Cd]_A}$$
 (17)

Then substituting Eqs. (12), (13) and (17) into Eqs.(14) and (15) yields the concentrations of solid phase sulfides:

$$[CdS(s)] \approx [Cd]_{\Lambda} \left(1 - \frac{\alpha_{cd^2} \cdot K_{cds}}{\alpha_{cd^2} \cdot K_{cds} + \alpha_{Fo^2} \cdot K_{FoS}}\right)$$
(18)

$$[FeS(s)] \approx [FeS]_i - \frac{\alpha_{Fe^2} \cdot K_{FeS}}{\alpha_{Cd^2} \cdot K_{CdS} + \alpha_{Fe^2} \cdot K_{FeS}} [Cd]_A$$
 (19)

where it has been assumed that the activity coefficients for Cd^{2+} and Fe^{2+} are equal, $\gamma_{cd^{2+}} \approx \gamma_{Fe^{2+}}$, since they are both divalent cations. The relative magnitudes of $\alpha_{Fe^{2+}}K_{FeS}$ and $\alpha_{cd^{2+}}K_{cdS}$ determines the behavior of [FeS(s)] and [CdS(s)] as cadmium is added to the sediment. For this reason they are termed sulfide solubility parameters. Table 2 presents reported values. Since the cadmium solubility parameter is much less than the iron sulfide solubility parameter, i.e., $\alpha_{cd^{2+}}K_{cdS} \ll \alpha_{Fe^{2+}}K_{FeS}$, Eqs. (18) and (19) become:

$$[CdS(s)] \approx Cd_A \tag{20}$$

and:

$$[FeS(s)] \approx [FeS]_i - Cd_A$$
 (21)

Hence as cadmium is added to this system cadmium sulfide forms at the expense of iron sulfide. The overall reaction is:

$$Cd^{2+} + FeS(s) \rightarrow CdS(s) + Fe^{2+}$$
 (22)

Note that if α_{cd^2} . $K_{cds} \gg \alpha_{Fe^2}$. K_{Fes} then $[FeS(s)] \approx [FeS]_i$; $[CdS(s)] \approx 0$ and no cadmium sulfide would form.

REFERENCES

- Adams, W.J., Kimerle, R.A. and Mosher, R.G. (1985): Aquatic safety assessment of chemicals sorbed to sediments. In: Aquatic Toxicology and Hazard Assessment: Seventh Symposium, pp. 429-453. Editors: R.D. Cardwell, R. Purdy and R.C. Bahner. Am. Soc. for Testing and Materials, Philadelphia, PA.
- Aller, R.C. (1980): Diagenetic Processes Near the Sediment-Water Interface of Long Island Sound. I. Decomposition and Nutrient Element Geochemistry (S, N, P). In: Estuarine Physics and Chemistry: Studies in Long Island Sound, pp. 238-350. Editor: B. Saltzman. Academic Press, New York.
- Altschuler, Z.S., Schnepfe, M.M., Silber, C.C. and Simon, F.O. (1983): Sulfur Diagenesis in Everglades Peat and Origin of Pyrite in Coal. Science 221: pp. 221-227.
- Borgmann, U. (1983): Metal Speciation and Toxicity of Free Metal Ions to Aquatic Biota. In: Aquatic Toxicology, pp. 47-72. Editor: J.O. Nriagu. J. Wiley, New York.
- Boulegue, J., Lord III, C.J. and Church, T.M. (1982): Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim.. Cosmochim.. Acta. 46: pp. 453-464.
- Byrne, R.H., Kump, L.R. and Cantrell, K.J. (1988): The influence of temperature and pH on trace metal speciation in seawater. Marine Chemistry 25: pp. 163-181.
- Carignan, R. (1984): Interstitial water sampling by dialysis: Methodological notes. Limnol. Oceanogr. 29(3): pp. 667-670.
- Carignan, R., Rapin, F. and Tessier, A. (1985): Sediment porewater sampling for metal analysis: A comparison of techniques. Geochim. Cosmochim. Acta 49: pp. 2493-2497.
- Davies-Colley, R.J., Nelson, P.O. and Williamson, K.J. (1985): Sulfide Control of Cadmium and Copper Concentrations in Anaerobic Estuarine Sediments. Marine Chemistry 16: pp. 173-186.

- Emerson, S., Jacobs, L. and Tebo, B. (1983): The behavior of trace metals in marine anoxic waters: Solubilities at the oxygen-hydrogen sulfide interface. In: Trace Metals in Sea Water, pp. 579-608. Editors: C.S. Wong, E. Boyle, K.W. Bruland and J.D. Burton. Plenum Press, New York.
- EPA (1986): Quality Criteria for Water, 1986. EPA 440/5-86-001. EPA Office of Water, Wash. DC 20460.
- EPA (1989): Briefing Report to the EPA Science Advisory Board on the Equilibrium Partitioning Approach to Generating Sediment Quality Criteria. EPA 440/5-89-002. US EPA, Criteria and Standards Division, Washington, DC.
- Gardner, L.R. (1974): Organic versus inorganic trace metal complexes in sulfidic marine waters some speculative calculations based on available stability constants. Geochim. Cosmochim. Acta. 38: p. 1297.
- Goldhaber, M.B. and Kaplan, I.R. (1974): The Sulfur Cycle. In: The Sea. Volume 5. Marine Chemistry, pp. 569-655. Editor: E.D. Goldberg. J. Wiley & Sons, New York.
- Hesslein, R.H. (1976): An in situ sampler for close interval pore water studies. Limnol. Oceanogr. 21: pp. 912-914.
- Kemp, P.F. and Swartz, R.C. (1986): Acute Toxicity of Interstitial and Particle-Bound Cadmium to a Marine Infaunal Amphipod. Submitted to J. Exp. Marine Biol. Ecol. :.
- Matisoff, G., Fisher, J.B. and McCall, P.L. (1981): Kinetics of nutrient and metal release from decomposing lake sediments. Geochim. Cosmochim. Acta 45: pp. 2333-2347.
- Morse, J.W., Millero, F.J., Cornwell, J.C. and Rickard, D. (1987): The Chemistry of the Hydrogen Sulfide and Iron Sulfide Systems in Natural Waters. Earth Science Reviews 24: pp. 1-42.
- Nelson, M.B. (1978): Kinetics and Mechanisms of the Oxidation of Ferrous Sulfide. Ph.D. Thesis. Stanford University, Palo Alto, Calif. pp. 1-288.

- Nriagu, J.O. (1968): Sulfur Metabolism and Sedimentary Environment: Lake Mendota, Wisconsin. Limnol. Oceanogr. 13(2): pp. 430-439.
- Nriagu, J.O. and Coker, R.D. (1976): Emission of sulfur from Lake Ontario sediments. Limnol. Oceanogr. 21(4): pp. 485-489.
- Oakley, S.M., Delphey, C.E., Williamson, K.J. and Nelson, P.O. (1980): Kinetics of trace metal partitioning in model anoxic marine sediments. Water Research 14: pp. 1067-1072.
- Pankow, J.F. (1979): The dissolution rates and mechanisms of tetragonal ferrous sulfide (Mackinawite) in anoxic aqueous systems. Ph.D thesis. California Inst. of Technology, Pasadena, Calif. pp. 1-146.
- Presley, B.J., Kolodny, R., Nissenbaum, A. and Kaplan, I.R. (1972): Early diagenesis in a reducing fjord, Saanich Inlet, B.C. II. Trace element distribution in interstitial water and sediment. Geochim. Cosmochim. Acta. 36: p. 1073.
- Reaves, C. (1984): The Migration of Iron and Sulfur During the Early Diagenesis of Marine Sediments. Ph.D Thesis. Yale University, New Haven, Conn. pp. 1-413.
- Schoonen, M.A.A. and Barnes, H.L. (1988): An approximation of the second dissociation constant for H₂S. Geochim. Cosmochim. Acta 52: pp. 649-654.
- Scott, K.J. and Redmond, M.S. (In press): The effects of a contaminated dredged material on laboratory populations of the tubicolous amphipod, *Ampelisca abdita*. Aquatic Toxicology and Hazard Assessment: Twelfth Symposium. American Society for Testing and Materials, Philadelphia, PA.
- Sunda, W. and Guillard, R.R.L. (1976): The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res. 34: pp. 511-529.
- Sunda, W.G., Engel, D.W. and Thuotte, R.M. (1978): Effect of chemical speciation of toxicity of cadmium to Grass Shrimp, *Palaemonetes pugio*: Importance of free cadmium ion. Environ. Sci. Tech. 12: pp. 409-413.

- Sunda, W.G. and Lewis, J.M. (1978): Effect of complexation by natural organic ligands on the toxicity of copper to a unicellular alga, *Monochrysis lutheri*. Limnol. Oceanogr. 23(5): pp. 870-876.
- Swartz, R.C., Ditsworth, G.R., Schults, D.W. and Lamberson, J.O. (1985): Sediment toxicity to a marine infaunal amphipod: Cadmium and its interaction with sewage sludge. Marine Environ. Res. 18: pp. 133-153.
- Swartz, R.C., Schults, D.W., DeWitt, T.H., Ditsworth, G.R. and Lamberson, J.O. (1987): Toxicity of Fluoranthene in Sediment to Marine Amphipods: A Test of the Equilibrium Partitioning Approach to Sediment Quality Criteria. Presented at the 8th Annual Meeting, Society for Environmental Toxicology and Chemistry., Pensacola, Fl.

TABLE 1

Log-Logistic Parameters(a)

Experiment	R ₀ (%)	β	LC50	Units	Fig. No.
LI Sound(b)	3.32	4.50	3200.	μg Cd/gm	(1)
Mixture(b)	п	Ħ	1130.	•	**
Ninigret Pd(b)	n	n	318.		. "
Yaquina Bay	0.0	3.34	25.5		
Water Only ^(c) A. abdita R. hudsoni Joint ^(f)	0.0 0.0 0.0	2.34 2.33 2.12	0.34 0.24 0.29	mg Cd/L(d)	(2)
All Sediments VS Normalized	5.88	4.48	1.97	μmol Cd/ μmol AVS	(9)

(a) Concentration - response formula:

$$R = R_0 + \frac{100 - R_0}{1 + (LC50/c)^{\beta}}$$

R = mortality (%) at concentration c

 $R_0 = control mortality (\%)$

LC50 = concentration for 50% mortality

 β = population sensitivity parameter

- (b) The three sediments are fit assuming one value of R_0 and β .
- (c) Water only exposures no sediment present in the exposure vessels. Exposure for 96 hrs.
- (d) Divide by 20 to obtain mg Cd^{2+}/L .
- (e) Data from Swartz et al., (1985) is fit to the log-logistic function.
- (f) Joint fit of the Ampelisca abdita and Rhepoxynius hudsoni water only exposure data.

TABLE 2

Metal Sulfide Solubility and

Ratio of Total Dissolved to Free Cation Metal Concentration

Metal Sulfide	$\log K_{sp,2}$	$\log K_{sp}$	logα		$\log(\alpha K_{sp})$	
			pH = 7.6	pH=8.2	Average	
HgS	-38.50	-57.25	15.10	15.10	-42.15	
CuS	-22.19	-40.94	0.50	0.92	-40.23	
PbS	-14.67	-33.42	1.12	1.32	-32.20	
CdS	-14.10	-32.85	1.50	1.50	-31.35	
ZnS	-9.64	-28.39	0.12	0.14	-28.26	
NiS	-9.23	-27.98	0.11	0.17	-27.84	
FeS	-3.64	-22.39	0.10	0.12	-22.28	
FeS(am)	-3.05	-21.80	0.10	0.12	-21.69	
MnS	-0.40	-19.15	0.13	0.13	-19.02	

Solubility products, $K_{sp,2}$, for the reaction: Me^{2+} HS⁻ \leftrightarrow MeS(s) + H⁺ for CdS (Greenockite), FeS(amorphous) and Mackinawite, MnS (Alabandite), and NiS (Millerite), from Emerson et al., (1983). Solubility products for CuS (Covellite), HgS (Metacinnabar), PbS (Galena), and ZnS (Wurtzite), and pK₂ = 18.57 for the reaction HS⁻ \leftrightarrow H⁺ + S²⁻, from Schoonen and Barnes, (1988). K_{sp} is for the reaction: Me^{2+} S²⁻ \leftrightarrow MeS(s) is computed from log $K_{sp,2}$ and pK₂. Ratios of total to free metal concentrations: $\alpha = [\Sigma Me(\alpha q)]/[Me^{2+}]$, from Byrne et al., (1988) at T = 5 °C. $\log(\alpha K_{sp}) = \log \alpha + \log K_{sp}$. All logs are \log_{10} .

TABLE 3

Cadmium Binding Capacity and AVS of Sediments

Sediment	Initial AVS (µmol/g) ^(a)	Final AVS (µmol/g) ^(b)	Cd Binding Capacity ((
Black Rock Harbor	175.	-	114.
Hudson River	12.6	-	8.58
LI Sound	15.9	13.9	4.57
Mixture	5.45	3.23	-
Ninigret Pond	2.34	0.28	1.12

⁽a) Average AVS of repeated measurements of the stock

⁽b) AVS after the sediment toxicity experiment

TABLE 4

AVS in Freshwater and Marine Sediments

Reference	AVS (µmol/gm)		$T^{n}C(a)$	Location
	(0 - 10 cm)	(0 - 1 cm)	Depth Interval	
	S	Water Sediment	Fresh	•
Altschule et al., 198	0.31 - 1.3	•	. -	Everglades peat basin
Nriagu, 196	8.7 - 112.	. •	-	Lake Mendota
Nriagu et al., 197	27.1	11.6	-	Lake Ontario
Matisoff et al., 198	7.5	15.0	(W)	Lake Erie
		ine Sediments	Mar	- Control of the Cont
Aller, 198				Long Island Sound
	8.35	0.0	3.0	NWC
	10.5	0.60	13.2	NWC
	10.3	0.097	19.0	NWC
	17.4	0.62	18.5	DEEP-1
	13.3	7.50	20.0	FOAM-1
Reaves, 198				Sapelo Island
	14.6	1.88	(W)	Mud Flat
	43.2	3.44	(S)	Mud Flat
	28.4	9.69	(W)	Tidal Ck.
	31.9	5.94	(S)	Tidal Ck.

⁽a) (W) = Winter; (S) = Summer

FIGURE CAPTIONS

- Figure 1. Toxicity test results for sediments from Ninigret Pond (Ampelisca) Long Island Sound and the mixture (Rhepoxynius). Cadmium concentrations on a sediment dry weight basis.
- Figure 2. Mortality versus interstitial water cadmium activity. Water only exposure data for *Ampelisca* and *Rhepoxynius*. The line is a joint fit to both data sets (Table 1). Toxicity test results for the sediments in Fig. 1. Top panel individual data. Bottom panel statistical summary of all the sediment interstitial water data
- Figure 3. Sediment cadmium versus interstitial water cadmium activity for LI Sound sediment.
- Figure 4. Metal sulfide solubility parameters for seawater: α_{Me^2} . K_{MeS} for the metals as indicated. pH = 7.2 to 8.2; T = 20°C (Table 2).
- Figure 5. Cadmium titrations of amorphous FeS. Abscissa is cadmium added normalized by FeS initially present. Ordinate is cadmium electrode response (left panel) and total dissolved cadmium (right panel).
- Figure 6. Cadmium titration of sediments: Black Rock Harbor, Long Island Sound, Hudson River, Ninigret Pond. Cadmium added per unit dry weight of sediment versus total dissolved cadmium.
- Figure 7. Sediment binding capacity from the x axis intercepts of the data in Fig. 6. versus sediment AVS concentration at the start of the titration (left). Initial AVS versus final AVS at the end of the cadmium titration.
- Figure 8. AVS and cadmium concentrations for the sediments used in the toxicity test (Fig. 1). Initial and final AVS (left); initial and final cadmium (right).
- Figure 9. Mortality versus AVS normalized sediment cadmium for Lond Island Sound, Ninigret Pond, and a 50/50 volume mixture.

MORTALITY VS SEDIMENT CADMIUM DRY WEIGHT NORMALIZATION

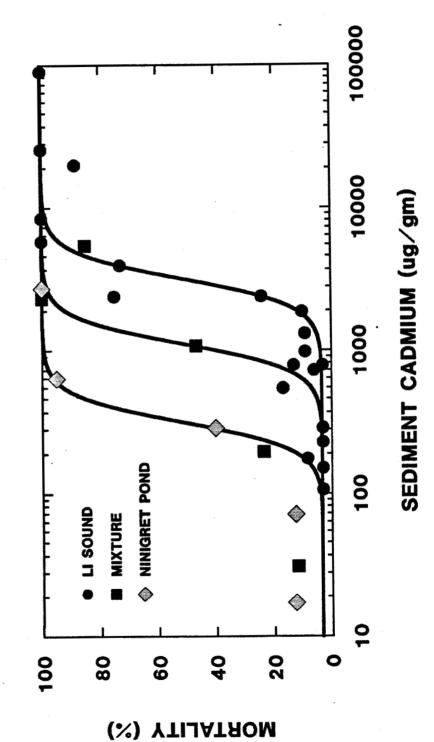


Figure 1. Toxicity test results for sediments from Ninigret Pond (Ampelisca) Long Island Sound and the mixture (Rhepoxynius). Cadmium concentrations on a sediment dry weight basis.

MORTALITY VS INTERSTITIAL WATER CADMIUM

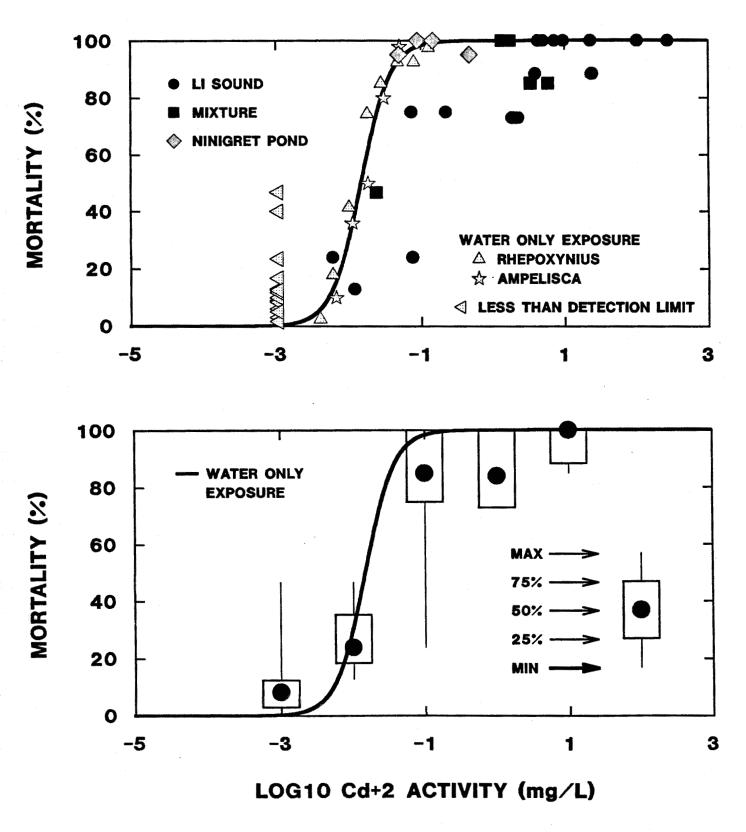


Figure 2. Mortality versus interstitial water cadmium activity. Water only exposure data for *Ampelisca* and *Rhepoxynius*. The line is a joint fit to both data sets (Table 1). Toxicity test results for the sediments in Fig. 1. Top panel - individual data. Bottom panel - statistical summary of all the sediment interstitial water data

SEDIMENT VS INTERSTITIAL WATER CADMIUM

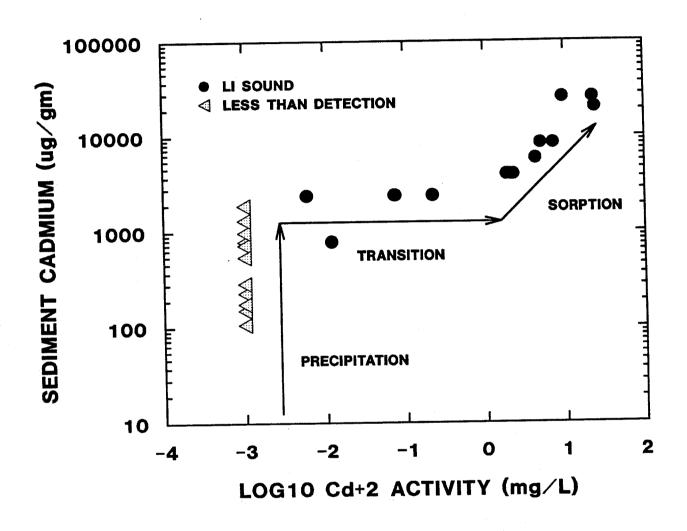


Figure 3. Sediment cadmium versus interstitial water cadmium activity for LI Sound sediment.

METAL SULFIDE SOLUBILITY PARAMETERS

SEAWATER

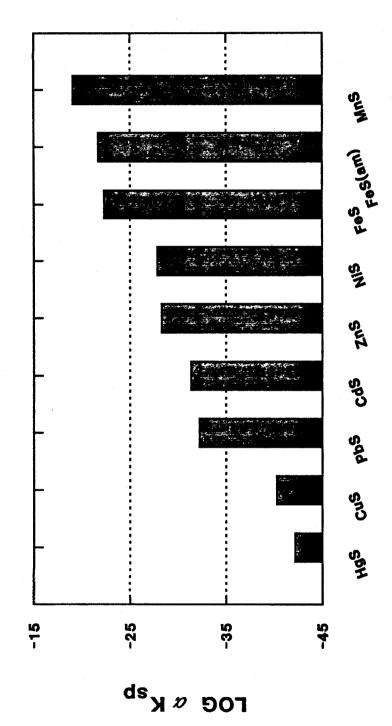
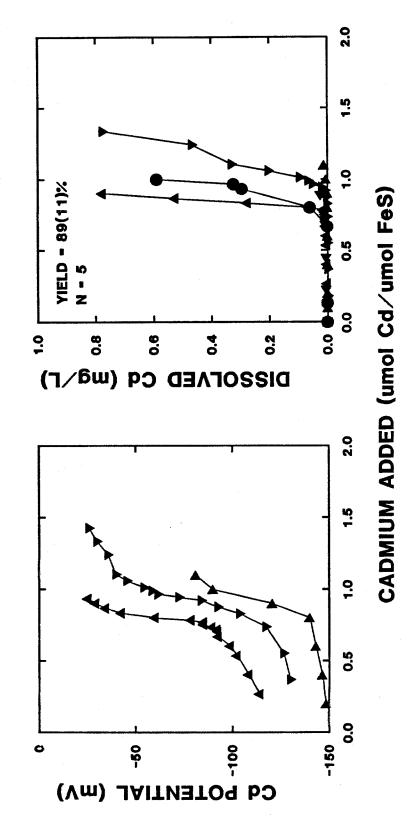



Figure 4. Metal sulfide solubility parameters for seawater: α_{μ_0} 2. K_{μ_0} for the metals as indicated.

pH = 7.2 to 8.2; T = 20° C (Table 2).

CADMIUM TITRATION OF IRON SULFIDE

initially present. Ordinate is cadmium electrode response (left panel) and total dissolved cadmium Figure 5. Cadmium titrations of amorphous FeS. Abscissa is cadmium added normalized by FeS (right panel).

CADMIUM TITRATION OF SEDIMENTS

DRY WEIGHT NORMALIZATION

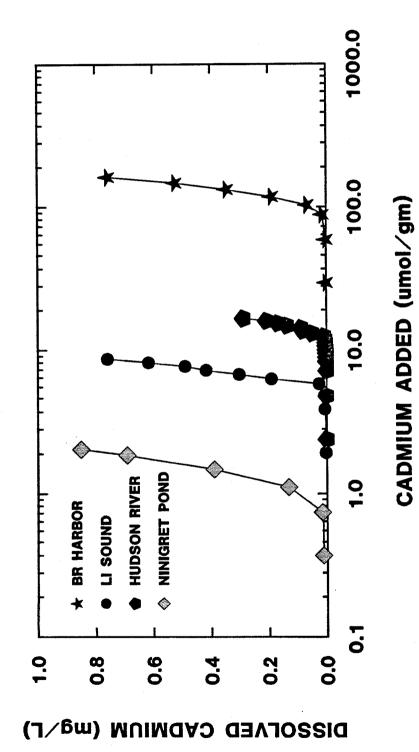
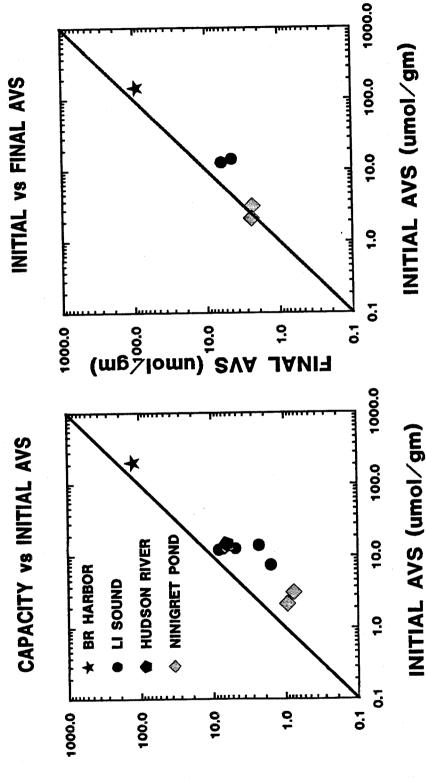



Figure 6. Cadmium titration of sediments: Black Rock Harbor, Long Island Sound, Hudson River, Ninigret Pond. Cadmium added per unit dry weight of sediment versus total dissolved cadmium.

INITIAL VS FINAL AVS SEDIMENT CADMIUM BINDING CAPACITY CAPACITY VS INITIAL AVS

CADMIUM

ment AVS concentration at the start of the titration (left). Initial AVS versus final AVS at the end Figure 7. Sediment binding capacity - from the x axis intercepts of the data in Fig. 6. versus sediof the cadmium titration.

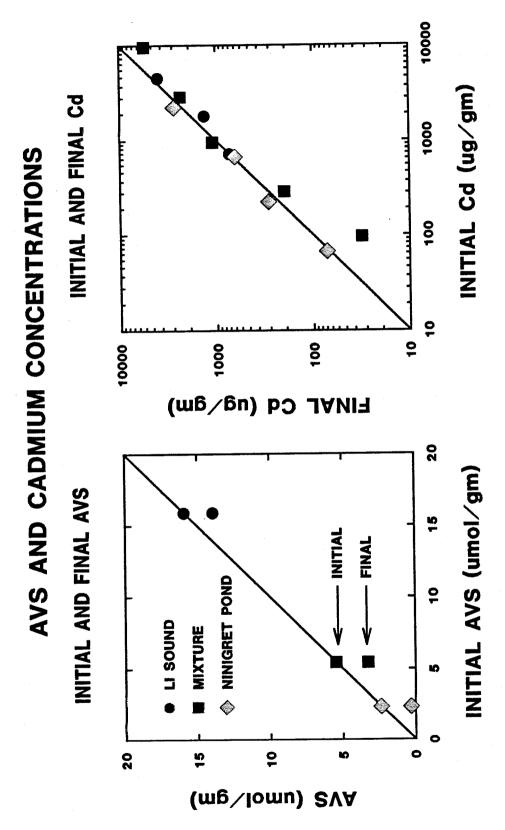


Figure 8. AVS and cadmium concentrations for the sediments used in the toxicity test (Fig. 1). Initial and final AVS (left); initial and final cadmium (right).

MORTALITY VS SEDIMENT CADMIUM ACID VOLATILE SULFIDE NORMALIZATION

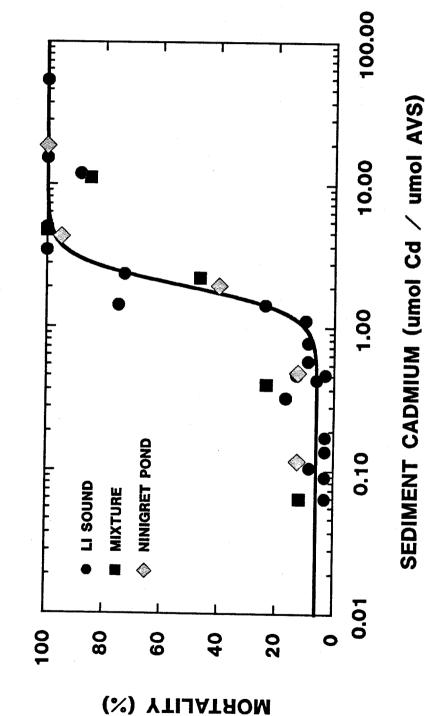


Figure 9. Mortality versus AVS normalized sediment cadmium for Lond Island Sound, Ninigret Pond, and a 50/50 volume mixture.

APPENDIX II

DATA TABLES

Table 1 **Final Data for Toxicity Experiments**

Expt.#	Sediment	r (ug/g)	<pre>[Cd]/[AVS] (mol/mol)</pre>		issolved mg Cd ²⁺ /L		Mortalit (%)
		. 0, 0,		1 cm	4 cm	centrf	(b)
1.000	LI Sound	0.0	0.0	0.001	0.001	•	3.000
1.000	11 .	106.748	0.064	0.001	0.001	•	3.000
1.000	17	150.995	0.090	0.001	0.001		3.000
1.000	n	229.153	0.137	0.001	0.001	•	3.000
1.000	Ħ	288.237	0.172	0.001	0.001		3.000
1.000	Ħ	789.775	0.472	0.001	0.001	•	3.000
2.000	**	0.0	0.0	0.001	0.001		3.000
2.000	Ħ	789.775	0.472	0.012	0.001		13.000
2.000	. 11	2396.442	1.431	0.222	0.074	•	75.000
2.000	· · ·	8423.713	5.030	7.210	5.030		100.000
2.000	11	25560.363	15.262	22.890	9.580		100.000
2.000	H .	89846.995	53.648	268.260	101.380		100.000
3.000	н .	0.0	0.0	0.001	0.001		6.000
3.000	. 11	726.606	0.434	0.001	0.001		6.000
3.000	#1	980.801	0.586	0.001	0.001	•	9.000
3.000	**	1315.596	0.786	0.001	0.001		9.000
3.000	n	2396.442	1.431	0.006	0.076		24.000
3.000	**	3961.468	2.365	1.880	2.280		73.000
4.000	n	0.0	0.0	0.001	•	0.001	1.65
4.000	H	175.533	0.105	0.001		0.001	8.350
4.000	**	544.771	0.325	0.001		0.001	16.700
4.000		1872.224	1.118	0.001		0.001	10.000
4.000	Ħ	5810.512	3.469	4.330		1.420	100.000
4.000	n	19969.073		24.200		3.940	88.400
4.000	Mixture	0.000		0.001		0.001	16.700
4.000	n	31.078		0.001	•	0.001	11.700
4.000	n _{in}	196.491		0.001	-	0.001	23.400
4.000	**	1082.707		0.001	-	0.024	46.700
4.000	Ħ	2325.815		1.740	•	1.350	100.000
4.000	11	5443.609		5.900	•	3.400	85.000
4.000	Ninigret	0.000		0.000	•	0.000	5.000
4.000	и 	17.195		0.001	•	0.001	12.500
4.000	- 11	71.788		0.001	•	0.001	12.500
4.000	11	287.150		0.001	•	0.001	40.000
4.000		638.191		0.475		0.050	95.000
4.000	n	2727.925		0.146	•	0.090	100.000

⁽a) Detection limit = $0.001 \text{ mg } \text{Cd}^{+2}/\text{L}$ (b) Centrifugate from the sediment of the chemical control sediment

Table 2
Toxicity Tests - Water Only Exposure

anism	Dissolved Cd (mg Cd ²⁺ /L)	Mortality (%)	
		0.000	
11			
11	0.011	36.000	
n	0.018	50.000	
n	0.031	80.000	
n	0.051	98.000	
oxynius	0.000	0.000	
H	0.010	2.500	
11	0.015	17.900	
IT	0.025	41.500	
11	0.045	74.400	
11	0.070	85.000	
n	0.120	92.500	
n	0.200		
11	0.320	97.500	
	anism lisca n n n n n n n n n n n n n n n n n n	(mg Cd ²⁺ /L) lisca 0.000 " 0.007 " 0.011 " 0.018 " 0.031 " 0.051 exynius 0.000 " 0.010 " 0.015 " 0.025 " 0.045 " 0.070 " 0.120 " 0.200	(mg Cd ²⁺ /L) (%) lisca 0.000 2.000 0.007 10.000 0.011 36.000 0.018 50.000 0.031 80.000 0.051 98.000 0.051 98.000 0.010 2.500 0.015 17.900 0.015 17.900 0.025 41.500 0.045 74.400 0.070 85.000 0.120 92.500

Table 2
Toxicity Tests - Water Only Exposure

Organism	Dissolved Cd (mg Cd ²⁺ /L)	Mortality (%)	
Ampelisca	0.000	2.000	
TH TH	0.007	10.000	
Ħ	0.011	36.000	
n	0.018	50.000	
Ħ	0.031	80.000	
n	0.051	98.000	
Rhepoxynius	0.000	0.000	
n	0.004	2.500	
11	0.006	17.900	
**	0.010	41.500	
Ħ	0.018	74.400	
n	0.028	85.000	
n	0.048	92.500	
11	0.080	92.500	
n	0.128	97.500	

TABLE 3 Chemistry and Toxicity Data for Sediment Toxicity Tests

Variable Identification and Units for Data Table

EXPT

Experiment number

SED\$

Sediment ID

DEPTH

Depth of peeper sampling. Depth = 0 corresponds to water only expo-

sures.

CDCL2

Concentration of CdCl2 in the sediment mixture (g CdCl2/L) based on

the initial weighed sample.

CDCL2H2O

Concentration of CdCl2 · 2.5H2O in the sediment mixture (g CdCl2 ·

2.5H₂O/L) based on the initial weighed sample.

CT

Concentration of Cd in the sediment mixture (g Cd/L) based on the

initial weighed sample.

CT OBS

Observed concentration of Cd in the sediment mixture (g Cd/L)

CT FNL

Final concentration of Cd in the sediment mixture (g Cd/L). CT FNL

= CT OBS if it was measured. If not then

 $CT_FNL = 10^{-0.1568 + 1.028 \log 10(CT)}$ which is the regression

of log CT OBS versus log CT.

M

Concentration of sediment solids in the sediment mixture (g/L).

R

Cd concentration on the solids based on CT (μ g/gm). R = CT/M

R OBS

Cd concentration on the solids based on CT OBS (µg/gm). R =

CT_OBS/M

R FNL

Cd concentration on the solids based on CT FNL (μ g/gm). R =

CT FNL/M

RM

Molar Cd concentration on the solids based on CT FNL (µmol/gm). R

= CT FNL/M/112.4

CD

Dissolved cadmium activity (mg Cd²⁺/L) for the water only experi-

ments (EXPT = 0).

CD PEEP

Dissolved cadmium activity (mg Cd²⁺/L) for the peeper cavities within

the sediment. All cavities in the overlying water were below detection.

CD_CENTR	Dissolved cadmium activity (mg Cd^{2+}/L) for the centrifugate separated

from the sediment in the chemical controls at the end of the experiment.

LCD_PEEP Log₁₀(CD_PEEP)

LCD_CENT Log₁₀(CD_CEMTR)

AVS1 Final AVS at the end of the experiment (µmol/gm)

AVS2 Initial AVS at the start of the experiment (µmol/gm)

CD AVS1 Sediment cadmium concentration normalized by AVS1. CD AVS1 =

R FNL/AVS1

LCD_AVS1 Log₁₀(CD_AVS1)

CD AVS2 Sediment cadmium concentration normalized by AVS2. CD_AVS2 =

R FNL/AVS2

LCD_AVS2 Log₁₀(CD_AVS2)

CD AVS Sediment cadmium concentration normalized by AVS. CD AVS =

R_FNL/AVS

LCD_AVS Log₁₀(CD_AVS)

MORT Organism mortality (%)

SURVIVOR Organism survival (%). SURVIVOR = 100 - MORT

:	CT_FNL	23.953.5 23.953	3800,0000
	CT_08S		3800,0000
	5	0.0000 0.13000 0.13000 0.13000 0.13000 0.13000 0.13000 0.13000 0.13000 0	3121.2002
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CDCL 2H20		
····· 4	כסכרק כס	00.00144100000-	5.0900
CDFNL4	DEPTH		1.000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SED\$		20 12 22
	EXPT	0.00000	4.0000
1			
			35
		TO COLOR OF THE CO	CASE

•
4
z
-
0
2
_

EE .	
LCD_PEEP	0000-m0000-m00000 000000000000000000000
CD_CENTR	
CD_PEEP	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
8	00000 000000 000000 000000 000000 000000
X.	25.5.5.5.4 25.5.5.5.4 26.5.5.5.4 26.5.5.5.4 26.5.5.5.4 26.5.4 26.5.5.4 26.5.5.4 26.5.5.4 26.5.5.4 26.5.5.4
NL4 R_FNL	106.74 83 1150 9946 9946 9946 995 1150 9946 9946 995 1150 9946 9946 995 1150 9946 9946 995 1150 9946 9946 995 1150 9946 9946 995 1150 9946 9946 995 1150 996
CDFNL4 R_OBS R_F	726.6055 726.6055 726.6055 726.6055 1315.5963 1315.5963 1316.7777 196.4912
: 02	135 7760 190 2489 190 2489 190 2489 190 2489 190 2489 190 2489 190 2489 190 2489 190 2489 190 247 1174 3762 1174 3762 1174 3762 1174 3762 1174 3762 1174 3762 1174 3762 1174 3762 1176 8316 4516 8316 8516 8316 8517 8316 8517 8318 8518 831
: : : : : : : : : : : : : :	23.23.23.23.23.23.23.23.23.23.23.23.23.2
1 1 1 1 1 1 1 1 1	
a 0 0 0 1 1 1	######################################

	LCD_AVS2			•		•					-0.8920			•	-0.3547	-0.3547 0.1274	0.1274	0.6733	1.1554	1.7013								0.3457		-1.0078 -0.5159					0.5794	٠,		0.0381 0.3850 1.0159
	AVS2	•			• •	•	٠.	Ö	90	~;	0.1613	ς,	<u>i 4</u>	•		0.4419		•••	4.	50.2736	ď,							2.2166	0012.7	0.0982	1.0476	11.1736	0.0507	1.7675	3.7968 8.8864	0.000	0.0654	1.0918 2.4264 10.3717
; ; ; ; ; ; ; ; ;	_AVS1 CD_	•			• •	•					-0.7340			•						7.73	1.7597	-	,,,	-0.2022		0.1858	0.4041	0,404		-0.9494					0.8066			1.3070 1.9379
1L4	CD_AVS1 LCD			•	· •	•					0.1845			• :	0.5055	0.5055	1.5339	5.3917	16.3601	57.5072	57.5072	0.4651	0.6278	0.6278	0.8421	1.5339	2.5356	2.5356		0.1124	1.1983	12.7814	0.0856	2.9822	6.4063	0.000	2.2810	9.1240 20.2781 86.6779
CDFNL4	AVS2 (2.3400 2.3400 2.3400
1	AVS1			•																																		0.2800
	LCD_CENT	•		•		•		•		•		•		• 1			•					•		• 1	•			• •	-3,0000	-3.0000 -3.0000	-3.0000 7571	0.5955	וניוני	-1.6198		-3.0000	3.000	-3.0000 -1.3010 -1.0458
5 5 6 1 1 4			1 1 0	4 L	~	~ ∘	00	6 :	-2-	£	ŧΈ	5 ‡	-∞	24	え	22	2	80	27	388	85	325	im:	88	37	ရှင်း	o 4 0 4	247	14	3 3	7	95	5 <u>7</u> 5	22	35 25 25 25 25 25 25 25 25 25 25 25 25 25	12	, 25 28 28 28	y82

i	
;	
i	
i	
ï	
i	
ï	
•	
•	
.+	
٦.	
_	
2	
覀	
=	
\Box	
u	

SURVIVOR	888310000000000000000000000000000000000	
MORT	75%28%mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	
LCD_AVS		-0.9326 -0.3120 0.2901 0.6369 1.2678
CD_AVS	5. 5.4.2.0	0.1168 0.4875 1.9502 4.3342 18.5266
		50584 1000 1000 1000 1000 1000 1000 1000 10
	BURGER BU	22222

TABLE 4

Chemistry Data for Cadmium Titrations of FeS and Sediments

Variable Identification and Units for Data Table

NUM

Expt number

NAME\$

Sediment name

CAL CD

Calibration - cadmium concentration (mg/L)

LCAL CD

log10 "

CAL_POT

Calibration - electrode potential mv

ADD_CD

Volume of cadmium stock solution added (mL)

UMCD_UMS

μmol Cd added / μmol AVS

POT

Dissolved total cadmium - electrode potential (mv)

LOGCD

Log10 Dissolved Cd - from electrode potential and calibration

PH

pH during the titration

CD

Dissolved total Cadmium - from electrode (mg/L)

M

Mass of sediment in the titration (gm)

v

Initial volume of seawater (mL)

CD_MOL

Cd concentration of the titrant (M)

UMCD G

µmol Cd added / g sediment

UMCDDS G

µmol dissolved Cd / sediment

CD TOT

Total Cd added (mg/L)

NUM	NAMES	CAL_CD	LCAL_CD	CAL_POT	ADD_CD	UMCD_UMS	POT	TOGOD 7-
0000	88 88 88 88 88 88 88 88 88	0.030	-2.9000 -1.5200 -1.0000	-53.0000 -53.8000 -49.0000	- 2 × 4	0.0160 0.0310 0.0460	-161.0000 -118.8000 -118.3000	-3.2900 -3.2900
000	88	3.000	0.0000	-27.8000	6.0000 7.0000	0.0930	-121.2000	-3.3900
.0000	BRH	30.000	1.0000	13.9000	10.000 12.0000	0.1550	-119.3000	-3.3300
1.0000 1.0000	# # #	100.0000	2.0000	28.5000	17.0000 22.0000	0.2650	-118.3000	-3.2900
0000	BRE		•	•	27.0000	0.4210	-102.2000	-2.7100
0000	2				37.000	0.5760	-30.3000	-0.1100
900	8 8 2 2 2 3 2 3 3 3				47.0000	0.7320	-10.9000	0.5900
0000	8	•	•	•	52.0000	0.8090	-4.2000	0.8300
	8 8 8 3 8 3 8 3 8 3			• •	62.000	0.9650	3.2000	1.0900
•	æ 6		0000	-52,4000	67.0000	1.0430	5.6000	1.1800
	8 8 E E E	0.0300	-1.5200	-51.4000	1.0000	0.2020	-104.4000	-2.8300
•	BR E	0.1000	₩.	-45.2000	2.0000	0.4040	-98.4000	-2.6100
	8 8 8 8 8 8	.000	0.0000	Š. N	3.5000	0.707	-58.9000	-1.1700
•	88 E 20	2,000	0.4700	-14.8000	4.0000	0.8080	-46.5000	-0.7200
	8 E E	30.000	1.4700	13.9000	2.0000	1.0110	-34.3000	-0.2800
2.0000	8 8 E E	100.000	• •	29.4000	5.5000 6.0000	1.2120	-29.9000 -26.1000	0.0200
	8				6.5000	1.3130	-25.4000	0.0200
900	SE SE	0.0300	-1.5200	-44.5000	.0000	0.5520	-238.2000	-9.3700
1.0000	FES	0.1000 2000	-1.0000	-32.4000	6.000	0.8280	-219.8000 -206.7000	-8.5700 -8.0100
0000	E S	1.0000	0000	-23.1000	7.0000	0.9660	-189.5000	-7.2600
0000	E E	10,0000	1.0000	-13.4000	8.0000	1, 1030	-74.8000	-2.3100
0000	FES	30.000	1.4800	13.0000	10.0000	1.3780	-48,4000	-1.1700
•	S U	00000	0000	27.3000	0000	0000	0007.262-	-11,1100
	SE.	0.0300	-1.5200	-39.7000	2.0000	0.1330	-254.7000	-9.3700
	S H		-1.0000	-37.4000	10.000	0.00	-127.5000	-1.2200
	ES	1.0000	0.000	-25.1000	14.0000	0.9330	-36.7000	-0.5300
	SE SE	10.000	1.0000	-0.1000	15.0000	1.0000	-29.3000	-0.2300
	ES	30.000	1.4700	13.2000	•	•	•	•
•	ES ES	100.000	2.0000	27.3000	0.000		-324,6000	
	FES	0.0300	-1.5200	-53.4000	7.0000		-114.3000	'n
•	ES.	0.1000	-1.0000	-49.2000	6. 0000		-108.6000	۸in
	SE SE	1.0000	0.000	-27.2000	0000		-99.1000	انمز
•	ន្ល	,	1.0000	-12.9000	10.000		-92.8000	~~
0000	1 1 1 1 1 1	30.000	1.4700	16.0000	10.738	0.77	-92.1000	-2.2900
	ES S		7.0000		1.2500		-85.4000	نمن
•	ES	•		•	11.5000		-85.2000	~
•	2			•) : :		-	

LOGCD	
POT	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
UMCD_UMS	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
ADD CD	######################################
РОТ	888888888888888888888888888888888888888
CAL_P	25.25000 27.2500 27.25000 27.25000 27.25000 27.25000 27.25000 27.25000 27.25000 27.25000 27.25000 27.25000 27.25000 27.25000 27.2500
CAL_CO	7-1-1-0-0-1-1-2 7-1-0-0-1-1-2 7-1-0-0-1-1-2 7-1-0-0-1-1-2 7-1-0-0-1-1-2 7-1-0-0-1-1-2 7-1-0-0-1-1-2 7-1-0-0-1-1-2 7-1-0-0-1-1-2 7-1-0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
2	, 4
CAL_CO	00000000000000000000000000000000000000
IAMES	ĸnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Z :	
MOM.	
	ままままなみなななななななななななななないできらいできょうできょうかん かんかん かんかん かんしょう しょうしょ しょうしょう しょう しょう しょう しょう しょう しょう
:	
	2384892885256446466888888888888888888888888888
	www.www.www.www.www.www.www.www.www.ww

TOGCD	
POT	44444444444444444444444444444444444444
UMCD_UMS	1.5050 0.0590 0.
ADD_CD	### ##################################
CAL_POT	25,25,25,25 25,25,25,25 25,25,25,25 25,25,25,25 25,25 25,25
LCAL_CD	. 21-1-0-0-1-12 . 21-1-0-0-12 . 2
CAL_CD	
NAMES	######################################
MOM	
	<u> </u>
	88888888888888888888888888888888888888

COBCD	0.010000000000000000000000000000000000
POT	22.23.2000 23.23.2000
UMCD_UMS	0.000000000000000000000000000000000000
ADD_CD	00-0-0-0-4-1-4-4-1-1-4-1-4-1-1-4-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
CAL_POT	24.6000 24.77.7000 25.6000 26.6000
רכער כם	2. 1.5.200 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
CAL_CD	0000 0000 0000 0000 0000 0000 0000 0000 0000
NAMES	
MUM	WWWW444444444444444WWWWWWWWWWWWWWAAAAAAA
	238878332323232822222222222222222222222

00907	######################################
POT	14.14.14.14.14.14.14.14.14.14.14.14.14.1
UMCD_UMS	0.000000000000000000000000000000000000
ADD_CD	00
CAL_POT	25.5500 25.
רכער כם	2.1-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
CAL_CD	00000000000000000000000000000000000000
NAMES	28888888888888888888888888888888888888
MOM	\$6000000000000000000000000000000000000
1	28232828282828282828282828222222222222
	COCOSSER COC

COBCD	0.000 0.14,000 0.14,000 0.14,000 0.14,000 0.14,000 0.16,000
POT	24.2000 1114.2000 1114.2000 1114.2000 1115.6000
UMCD_UMS	0.7070 0.7660 0.0410 0.0410 0.0410 0.0450 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550
ADD_CD	44777999999999999999999999999999999999
CAL_POT	23.300 24.1.300 25.500 27.5
LCAL_CD	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
CAL_CD	0000 0000 000 000 000 000 000 000 000
NAMES	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MOM	www.4444444444444444444444444444444444
!	0.08276.0427.008376.0427.008876.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427.008376.0427
	SER

CD_T01	100 126 126 126 126 126 126 126 126 126 126
UMCDDS G	00000000000000000000000000000000000000
D_GOMU	3.3890 5.5080 5.5080 5.5080 5.5080 5.5080 5.5080 5.5080 5.5080 5.5080 5.5080 5.5080 6.5080
CD_MOL	80808080808080808080808080808080808080
>	
Ξ.	77777777777777777777777777777777777777
8	0.000000000000000000000000000000000000
Ŧ	77777777777777777777777777777777777777
	S S S S S S S S S S S S S S S S S S S

9 SQCDMN	00000000000000000000000000000000000000
UMCD_G	00.2247.5 112.83.935.5 12.83.93.5 13.83.93.5 13.83.93.5 13.83.
CD_AOL	00000000000000000000000000000000000000
>	8888888888888888 8888888888888888 888888
Σ	2020202020202020 2020202020202020 2020202020202020 20
8	0.000000000000000000000000000000000000
₹	66600000000000000000000000000000000000
	238348362565444444445588388888888888888888888 <u>5568488888888888888</u>
	######################################

CD_TOT	128. 128. 128. 128. 128. 128. 128. 128.
UMCDDS_G	0.000000000000000000000000000000000000
UMCD_G	6.610 6.
CD_MOL	
>	######################################
E	WWWWWWWWWWWWWWWWWWWAAAAAAAAAAAAAAAAAAA
8	0.000000000000000000000000000000000000
Hd	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
	2222423288848484848848444444448484848484
;	**************************************

CD_TOT	10.0666 10.0666
UMCDDS_G	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
UMCD_G	6.5.883.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
CD_MOL	
>	**************************************
æ	99994444444444444444444444444444444444
8	11-1-10-00-00-00-00-00-00-00-00-00-00-00
Ŧ	88.2577777777777777777777777777777777777
1 1 1 1 1	
	2000 450 2000 2000 2000 2000 2000 2000 2
1	KKWKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

CD_TOT	65.7951 79.5412 79.5412 79.5412 79.5412 79.5412 79.5412 79.5412 79.59313 74.0500 74.05
UMCDDS_G	0.000000000000000000000000000000000000
UMCD_G	2.1252 2.1263 2.1263 2.1364 2.1364 2.1364 2.1366 2.
CD_MOL	0.000000000000000000000000000000000000
>	######################################
x	13.53.50 1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
8	1.2023 1.
¥	8
! !	266676676767676767676767676767676767676
	8888888888888888888888888888888888888

TABLE 5

AVS Determinations

Variable Identification and Units for Data Table

NAME\$

Sediment identifier

DATE\$

Date of the experiment

DRYWT

Dry weight of sediment extracted

AG2S

Weight of Ag₂S in sulfide trap

UMS G

µmol/gm AVS

UMS_G1

µmol/gm AVS - These were extractions after a cadmium titration was

completed.

RATIO

Ratio of UMS_G1 to UMS_G

		NAME\$	DATE\$	DRYWT	AG2S	UMS_G	UMS_G1	OITAR
CASE	1	BRH	8/5/88	3.9554	0.1998	203.8500	00.1100	0.4770
CASE	2	BRH	9/22/88	2.1800	0.0789	146.0600	92.4600	0.6330
CASE	3	HR	7/11/88	11.8200	0.0312	10.6500	•	•
CASE	4	HR	7/22/88	5.8500 10.5300	0.0211 0.0350	14.5600 27.9100	•	•
CASE	Š	HR1	10/11/88A	7.1300	0.0350	24,1100	•	•
CASE	ç	HR1 HR1	10/13/88A 9/27/88	13.0700	0.0340	23.9900	•	•
CASE CASE	, 6	HR1	9/27/88B	11.4800	0.0387	24.8800	•	•
CASE	8	LIB	7/11/88	8.9100	0.0339	15.3500	•	-
CASE	10	LIB	7/11/88	8.9200	0.0336	15.2100	-	-
CASE	11	LIB	7/13/88	6.7100	0.0237	14.2500	•	-
CASE	12	LIB	7/13/88	15.9300	0.0503	12.7500		
CASE	13	LĪB	7/13/88	15.8000	0.0467	11.9300	•	
CASE	14	LIB	7/14/88	17,9200	0.0545	12.2700		
CASE	15	LIB	7/15/88	7.9200	0.0279	14.2200		
CASE	16	LIB	7/15/88	6.0500	0.0243	16.2100	•	
CASE	17	LIB	7/18/88	13.0800	0.0431	12.6000		•
CASE	18	LIB	7/19/88	15.8000	0.0408	10.4200	•	•
CASE	19	LIB	7/7/88	11.5200	0.0400	13.9700	•	•
CASE	20	LIB	7/8/88	11.0100	0.0419	15.3500		^*=
CASE	21	LIB	8/1/88		••	14.4000	4.5000	0.3125
CASE	22 23	LIB1	7/24/88	16.2500	0.0581	14.4300	(*0400	0.1002
CASE	23	LIB1	8/2/88	7.1170	0.0228	12.9300	6.2100	0.4803
CASE	24	LIB1	9/20/88	12.6600	0.0238	7.5900	•	•
CASE	25	LIB1	9/23/88	10.7800	0.0305	11.4100	•	•
CASE	26	SS	7/18/88 7/19/88	40.0500	0.0313	3.1500	•	•
CASE	27	SS	7/19/00	41.1600 18.7000	0.0302	2.9600	•	•
CASE	28 29	22 28	7/8/88 8/3/88	11.5200	0.0101 0.0090	2.1800 3.1500	2.3700	0.7524
CASE	30		0/3/00	11.5200	0.0079	2.1100	2.4400	1.1564
CASE CASE	30 31	SS SS	8/4/88	15.1000 25.2100	0.0199	3.1900	£.4400	1.1304
CASE	31 32	\$\$ \$\$1	9/23/88 9/27/88	15.9400	0.0193	2.6100	•	•
CASE	32	331	7/61/00	13.7400	0.0103	2.0100	. •	•

TABLE 6

Comparison of Initial AVS and Cadmium Binding

Variable Identification and Units for Data Table

NAME\$

Sediment identifier

NUM

Expt number

DATE\$

Date of the experiment

AVS

Initial AVS at the start of the titration (µmol/gm)

CD_G

Binding capacity of the sediment (µmol Cd/g sediment

CASE 2 BRH 2.0000 9/22/88 . 105.808 CASE 3 HR 1.0000 7/12/88 . 12.496 CASE 4 HR 2.0000 7/22/88 14.5600 6.356 CASE 5 HR 3.0000 10/03/88 . 7.955 CASE 6 LIB 1.0000 7/5/88 . 6.157 CASE 7 LIB 2.0000 7/5/88 . 6.157 CASE 7 LIB 2.0000 7/8/88 . 5.562 CASE 8 LIB 3.0000 7/13/88 14.2500 2.262 CASE 9 LIB 4.0000 7/13/88 12.2700 7.121 CASE 10 LIB 5.0000 7/14/88 12.2700 8.108 CASE 11 LIB 6.0000 8/1/88 . 3.876			NAME\$	NUM	DATE\$	AVS	co_c
CASE 13 LIB 9.0000 8/3/88 . 6.490 CASE 14 LIB 10.0000 9/19/88 7.5900 1.554 CASE 15 SS 1.0000 7/8/88 2.1800 0.938	CASE CASE CASE CASE CASE CASE CASE CASE	6789101112131415	BRH BRH HR HR LIB LIB LIB LIB LIB LIB LIB	1.0000 2.0000 1.0000 2.0000 3.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 9.0000 10.0000 1.0000	8/5/88 9/22/88 7/12/88 7/22/88 10/03/88 10/03/88 7/5/88 7/13/88 7/13/88 7/13/88 7/13/88 8/1/88 8/1/88 8/2/88 8/3/88 9/19/88	203.8500 14.5600 14.2500 12.7500 12.2700 12.9000 7.5900 2.1800	122.9768 105.8089 12.4965 6.3564 7.9552 6.1573 5.5622 2.2627 7.1214 8.1084 3.8762 4.7734 6.4904 1.5547 0.9381 2.0620

TABLE 7 AVS in Long Island Sound Sediments#

Variable Identification and Units for Data Table

ID\$

Sediment identifier

TABLE\$

Table number in the reference from which the data were taken

 \mathbf{T}

Temperature ℃

DEPTH1

Starting depth of the core slice (cm)

DEPTH2

Ending depth of the core slice (cm)

DEPTH

Average depth of the core slice (cm)

FES

Measured AVS in the slice (µmol/g)

#[Aller, 1980]

FES	7.1.800000000000000000000000000000000000
DEPTH	0.1.9.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
DEPTH2	1.5.2.4.2.6.6.6.5.1.5.1.4.4.1.5.7.8.4.2.2.2.2.4.2.2.2.2.2.2.2.2.2.2.2.2.2
DEPTH1	0.1.212.4.2.3.4.2.3.4.2.3.4.2.3.4.2.3.4.2.3.2.3
-	25.505.505.505.505.505.505.505.505.505.5
TABLES	
\$01	OCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
•	
	BERRERERERERERERERERERERERERERERERERERE

TABLE 8

AVS in Sapelo Island Sediments#

Variable Identification and Units for Data Table

STA\$

Sediment identifier

SEASON\$

Table number in the reference from which the data were taken

DEPTH1

Starting depth of the core slice (cm)

DEPTH2

Ending depth of the core slice (cm)

FES W

Measured AVS in the slice (weight %)

FES

Measured AVS in the slice (µmol/g)

#[Reaves, 1984]

	STA\$	SEASON\$	DEPTH1	DEPTH2	FES_W	FES

CARE 1	MUD		0.000	1.000	0.006	1.875
CASE 1 CASE 2	MUD	Ü	1.000	2.000	0.005	1.563
CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 7	MUD	ü	2.000	2.000 3.000 4.000	0.012	1.563 3.750
CASE 3 CASE 4	MUD	Ÿ	3.000	4.000	0.066	
CASE 5	MUD	¥	4.000	5.000	0.079	24.688
CASE 6	MUD	×	5.000	7 000	0.038 120 0	10.123
CASE 7 CASE 8	MUD MUD	W	7 000	7.000 8.000	0.051	15.938
CASE 9	MUD	ū	8.000	9.000	0.047	14.688
CASE 10	MUD	ü	9.000	10.000	0.060	18.750
CASE 11	MLID		10.000	11.000	0.069	20.625 24.688 18.125 19.063 15.938 14.688 18.750 21.563 10.938
CASE 12	MUD	W	11.000	12.000	0.035	10.938
CASE 13	MUD MUD	W	12.000	14 000	0.039	14 375
CASE 14 CASE 15	MUD	Ü	14.000	15,000	0.036	11.250
CASE 16	MUD	ŝ	0.000	1.000	0.075	23.438
CASE 16 CASE 17	MUD	Š	1.000	2.000	0.058	18.125
CASE 18	MUD	Ş	2.000	3.000	0.090	28.125
CASE 19	MUD	S	3.000	4.000	0.097	12.188 14.375 11.250 23.438 18.125 28.125 30.313 37.500 71.563
CASE 20 CASE 21	MUD MUD	5	4.000 5.000	5.000 6.000	0.120	71 563
CASE 22	MUD	Š	6.000	7.000	0.165	31.303
CASE 23	MUD	š	7.000	8.000	0.153	47.813
CASE 24	MUD	Š	8.000	9.000	0.164	51.250
CASE 25	MUD	S	9.000	10.000	0.193	60.313
CASE 11 CASE 12 CASE 13 CASE 14 CASE 15 CASE 16 CASE 17 CASE 18 CASE 20 CASE 21 CASE 22 CASE 22 CASE 22 CASE 25 CASE 24 CASE 25 CASE 25 CASE 26 CASE 27 CASE 29 CASE 29 CASE 30 CASE 31 CASE 31 CASE 32 CASE 33 CASE 34 CASE 35 CASE 34 CASE 35 CASE 36 CASE 37 CASE 38 CASE 39 CASE 40	MUD Mud	EEEEEEE COOOOOOOOOOOOOOEEEE	10.000	11.000	0.176	47.813 51.250 60.313 55.000 69.375 62.813 69.375 9.688 27.500 24.063 22.813 32.188 35.313 27.188
CASE 27 CASE 28	MUD	5	12 000	12.000	0.222	62.813
CASE 29	MUD	Š	13.000	14.000	0.222	69.375
CASE 30	MUD	š	14.000	15.000	0.220	68.750
CASE 31	CK	Ŵ	0.000	1.000	0.031	9.688
CASE 32	CK CK	W	1.000	2.000	0.088	27.500
CASE 33	CK	W	2.000	3.000	0.077	24.003 22 817
CASE 34 CASE 35	CK CK	W	4 000	4.000 5.000	0.0/3	32 188
CASE 36	CK	ü	5.000	6.000	0.113	35.313
CASE 37	CK	Ÿ	6.000	7.000	0.087	27.188
CASE 38	CK	W	7.000	8.000	0.053	16.563
CASE 39	CK CK	W	8.000	9.000	0.116	36.250
CASE 40	CK	W	9.000	10.000	0.133	41.203 79.750
CASE 41 CASE 42	CK CK	W	11 000	12 000	0.124	38.750 38.750
CASE 43	ČK	Ü	12.000	13.000	0.070	21.875
CASE 44	CK	ü	13.000	4.000 5.000 6.000 7.000 8.000 11.000 12.000 13.000 14.000 15.000 4.000 5.000 6.000 7.000 8.000 11.000 12.000 13.000 14.000 15.000 10.000 11.000 12.000 12.000 13.000 14.000 15.000 16.000 17.000 17.000 18.000 19.000	0.090	27.188 16.563 36.250 41.563 38.750 38.750 21.875 28.125 30.938 5.938 5.625 12.188
CASE 45	CK	W	14.000	15.000	0.099	30.938
CASE 46	CK	S	0.000	1.000	0.019	5.938
CASE 47 CASE 48	CK CK	S	7.000	2.000	0.018	2.022 12 188
CASE 46	CK	3	2.000 3.000	4.000	0.039	23.438
CASE 50	CK	Š	4.000	5.000	0.115	35.938
CASE 51	CK	Š	5.000	6.000 7.000 8.000 9.000	0.005 0.012 0.066 0.079 0.058 0.061 0.061 0.047 0.069 0.035 0.039 0.058 0.097 0.120 0.120 0.122 0.153 0.164 0.1976 0.1222 0.221 0.2221 0.2221 0.033 0.1133 0.1133 0.1133 0.1133 0.1133 0.124 0.075 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099 0.015 0.099	23.438 35.938 61.250 48.438
CASE 52 CASE 53	CK	Š	6.000	7.000	0.155	48.438
CASE 53	CK	S S	7.000	8.000	0.144 0.135	45.000 42.188
CASE 54 CASE 55	CK CK	5	0. 000	9.000 10 000	0.133 0.135	39.063
CASE 56	CK	Š	10.000	10.000 11.000	0.125 0.103	32 188
CASE 57	CK	Š	11.000	12.000	0.102 0.088 0.102	31.875 27.500
CASE 58	CK	Š	12.000	13.000	0.088	27.500
CASE 59	CK	00000000000000000000000000000000000000	1.000 2.000 3.000 4.000 5.000 6.000 9.000 10.000 11.000 12.000 12.000 11.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 13.000 12.000 13.000 13.000 14.000 14.000 15.000 16.000 17.000	13.000 14.000 15.000	0.102	31.875
CASE 60	CK	S	14.000	15.000	0.103	32.188

DEVELOPMENT OF EXPERIMENTAL METHODOLOGY

A. Measuring Cadmium Activity

The most direct method to measure activity of a metal is to use an ion specific electrode (Orion Model 94-48). Ion selective electrodes measure the activity of the target species only - in this case Cd^{2+}). The determination of a reliable standard curve is the first step in the establishment of an analytical method. For the ion selective electrode this involves the measurement of relative potential in conjunction with a double function reference electrode as a function of activity, of the analyte (Cd^{2+}) .

Because Cd²⁺ forms several stable complexes with Cl⁻, the standardization cannot be done in seawater. A noncomplexing matrix of the same ionic strength as seawater, 0.7 M NaNO₃, was used. The results are shown in Fig. 1. The linear behavior of the potential versus cadmium activity to 0.1 mg/L with a slope of 28.2 is consistent with the Nernst equation. When a hydrogen carbonate buffer is added to mimic seawater conditions no significant change occurs in the standard curve (Fig. 2). If the 0.7 M NaNO₃ Cd²⁺ potentials are compared with those obtained for the same total cadmium in seawater, the Cd²⁺ fraction is about 5%, which is consistent with values calculated from simultaneous equilibrium models of cadmium speciation in seawater.

To further investigate the performance of the cadmium electrode, several titrations were performed using ions that are known to complex with Cd^{2+} and for which the formation constants are known. The results of a hydroxide titration are shown in Fig. 3. The value of pK₁ = 9.75 is consistent with literature values. The results of a chloride titration are shown in Fig. 4. The initial total cadmium concentrations are 10 and 1 mg/L. The value of 26.4 which is obtained for the formation constant of $CdCl^{+}$ is consistent with reported values.

B. Water Only Exposure - Bioassay Results

The above experiments demonstrated that the cadmium electrode was indeed measuring the cadmium activity in the systems of interest. During this period water-only bioassays were being performed at the Narraganset EPA Environmental Research Lab (ERL) to determine the total

cadmium (Cd_T) LC₅₀ for the organism, <u>Ampelisca abdita</u>, that was to be used in the sediment exposure studies. The results are shown in Fig. 5 for both the definitive and range finding experiments.

Following this preliminary work, total cadmium samples bracketing the LC₅₀ values of 0.32 - 0.55 mg/L were prepared in seawater. The Cd^{2+} concentration was determined by the electrode, while total cadmium was measured by anodic stripping voltametry and graphite furnace atomic absorption spectrometry using an ammonium phosphate matrix modification procedure. The results are shown in Fig. 6. The data from the two methods are combined in Fig. 7 and the ratio of cadmium activity to total cadmium concentration is found to be $Cd^{2+}/Cd_T = 0.051$. This result is used to convert the total cadmium concentrations in the water only exposure experiment to the cadmium activity.

C. Interstitial Water Diffusion Sampler

The final task that had to be completed before sediment Bioassay studies could be undertaken was the design and construction of a suitable sampling device. The final design of the peeper is shown in Fig. 8. The device is constructed of acrylic material. The body is 1.5 in. thick with three 0.5 in. holes bored at six different levels 0.75 in. apart. A solid 0.25 in. base plate is fused to the back. The front contains a nucleopore membrane, on top of which is a 20 mil polyethylene gasket and a 0.5 in. cover plate. The entire assembly is held together with six 0.25 in. PVC nuts and bolts. The volume of each cell is 5.0 mL, which provides the necessary minimum sample volume of 15 mL required for the electrode measurement, at each sampling level. This sample volume size was determined by experiment to be adequate for reliable measurement.

The interstitial water sampling device depends upon diffusion across the membrane to measure the interstitial water concentrations. In order to establish the equilibration time for transfer across the membrane the cells of the assembled peeper were filled with distilled water. The device was then immersed in seawater. The cells were sampled periodically and the conductivity of the sample was measured. The results are shown in Fig. 9. As can be seen the 12 micron membrane

equilibrated quite rapidly. However even the 1 micron membrane reached equilibrium within 24 hours. Since this equilibration time is well within the time scale of the toxicity experiments, it was decided to use this porosity membrane in subsequent experiments.

D. Initial Toxicity Experiments

When sediment exposure experiments are performed it is necessary to be able to predict the interstitial cadmium concentration that will be obtained from initially combining a quantity of a cadmium salt with measured amount of reference sediment and seawater. To provide this information solutions were prepared with total cadmium concentrations of 200 to 6000 ppm. Each of these contained 1000 mL of control sediment (55% water). The peepers were then placed in the settled sediment-water systems. After two days the cadmium concentration was measured as a function of depth. The results are shown in Fig. 10. Initially it was believed that the interstitial cadmium concentration was being controlled by simple partitioning between a sediment bound component and the aqueous component. The amount of cadmium used in preparing the systems for the interstitial water Bioassay experiments was determined from these results. The attempt was made to bracket the cadmium LC50 obtained in the water only exposure. However, in all of the systems the final interstitial cadmium concentration was not sufficient to produce mortality.

The first bioassay results indicated that an additional process was operating in the cadmium-sediment water system. The observation of a yellow precipitate (probably CdS) when preparing the more concentrated systems suggested that sediment generated sulfide was depressing the aqueous cadmium concentration during the actual exposure.

E. Development of Acid Volatile Sulfide Extraction Method

The most labile sulfide component of sediments is the acid volatile sulfide (AVS). It is the solid phase sulfide in the sediment that is soluble in cold acid. The measurement technique is to convert the sulfides to H₂S(aq), purge it with a gas, and trap it [see Morse et al., 1987 for a review]. A 500 mL Erlenmeyer flask reaction vessel fitted with a three-hole stopper is followed by three sequentially connected 250 mL Erlenmeyer flask trapping vessels. The first is a chloride trap

with 200 mL of pH 4 buffer (0.05M potassium hydrogen phthlate) to prevent chloride carry over. The second and third traps contain 200 mL of a 0.1M silver nitrate solution for trapping H₂S. The four flasks are connected with airtight appropriately shaped glass and Tygon tubing.

A nitrogen gas flow allows continuous purging of the system. In order to prevent oxidation the gas flows through an oxygen-scrubbing system consisting of a vanadous chloride solution in the first scrubbing tower and the matrix of the analyte (seawater) in the second tower. Vanadous chloride is prepared using four grams of ammonium metavanadate boiled with 50 mL of concentrated hydrochloric acid and diluted to 500 mL. Amalgamated zinc, prepared by taking about 15 grams of zinc, covering it with deionized water and adding 3 drops of concentrated hydrochloric acid before adding a small amount of mercury to complete the amalgamation, is then added to the vanadous chloride solution.

The sediment sample (10-15 grams of wet sediment) or standard to be analyzed is placed in the reaction vessel after the entire system has been purged with nitrogen for about an hour. The system is again purged for 5-10 minutes, and deaerated 6M hydrochloric acid is added from a thistle tube to achieve a final concentration in the vessel of 0.5M. The system is run at room temperature for one hour which has been found to be sufficient to complete the extraction. Fig. 11 present the results of an experiment in which the time course of AVS extraction from a sediment (Long Island Sediment) is followed. It is clear that one hour is sufficiently long for the extraction to be completed.

F. Figure Captions

- Figure. 1 Cadmium electrode calibration curve in 0.7M NaNO₃, pH = 8 corresponding to the ionic strength of seawater. Slope = 28.2. Sensitivity of the electrode is 0.1 mg/L
- Figure. 2 Cadmium electrode calibration curve in 0.7M NaNO₃, 0.002M NaHCO₃, pH = 8, corresponding to the ionic strength and bicarbonate concentration of seawater. Slope = 28.2. Sensitivity of the electrode is 0.1 mg/L.
- Figure 3. Hydroxide titration to determine pK₁ for the reaction: $Cd^{2+} + OH^{-} < -> CdOH^{+}$.
- Figure 4. Chloride titrations to determine K_1 for the reaction: $Cd^{2+} + Cl^{-} < -> CdCl^{+}$.
- Figure 5. Ampelisca Toxicity Test: Water Only Exposure. LC50 = 0.32 mg Cd/L (top) and 0.55 mg Cd/L
- Figure 6. Cadmium concentrations in the toxicity test samples (mg Cd/L) determined using a polaragraphic method (top) and using an AA graphite furnace method (bottom) versus electrode concentration (mg Cd²⁺/L).
- Figure 7. Cadmium concentrations in the toxicity test samples (mg Cd/L) determined using both a polaragraphic and AA graphite furnace method versus electrode concentration (mg Cd²⁺/L). Regression line is Cd²⁺ = 0.051 Cd, which implies a K_1 of the chloride reaction of $K_1 = 26.4 M_{-1}$.
- Figure 8. Design of diffusion sampler "peeper"
- Figure 9. Time to equilibrium for membrane transfer.
- Figure 10. Initial interstitial water sampling results. Static exposure.
- Figure 11. Time course experiment for AVS extraction of Long Island Sound sediment.

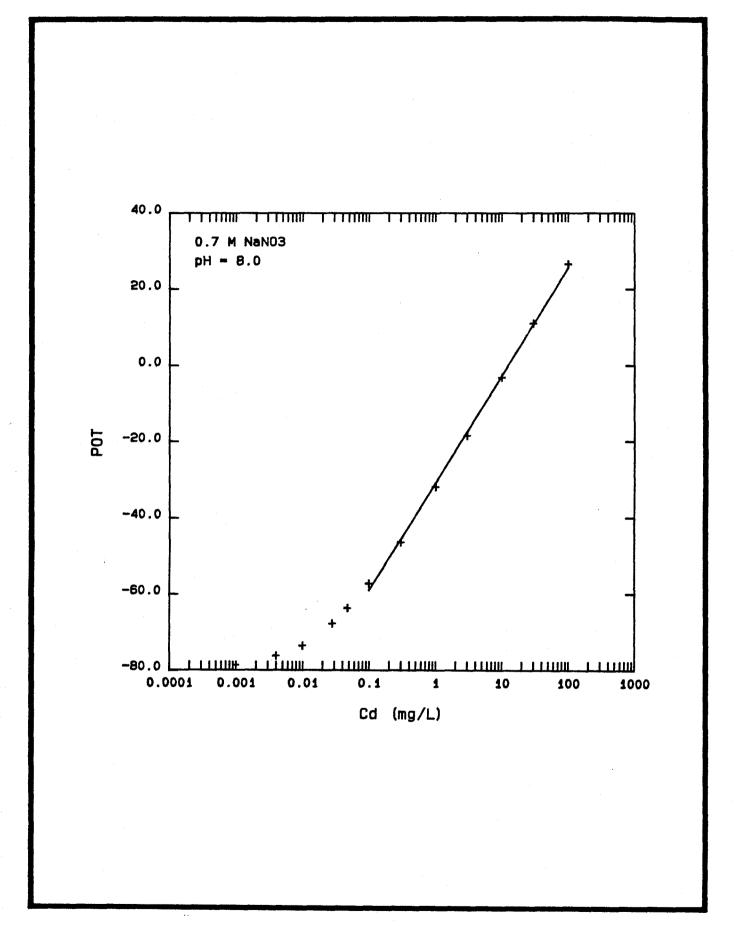


Figure. 1 Cadmium electrode calibration curve in 0.7M NaNO3, pH = 8 corresponding to the ionic strength of seawater. Slope = 28.2. Sensitivity of the electrode is 0.1 mg/L

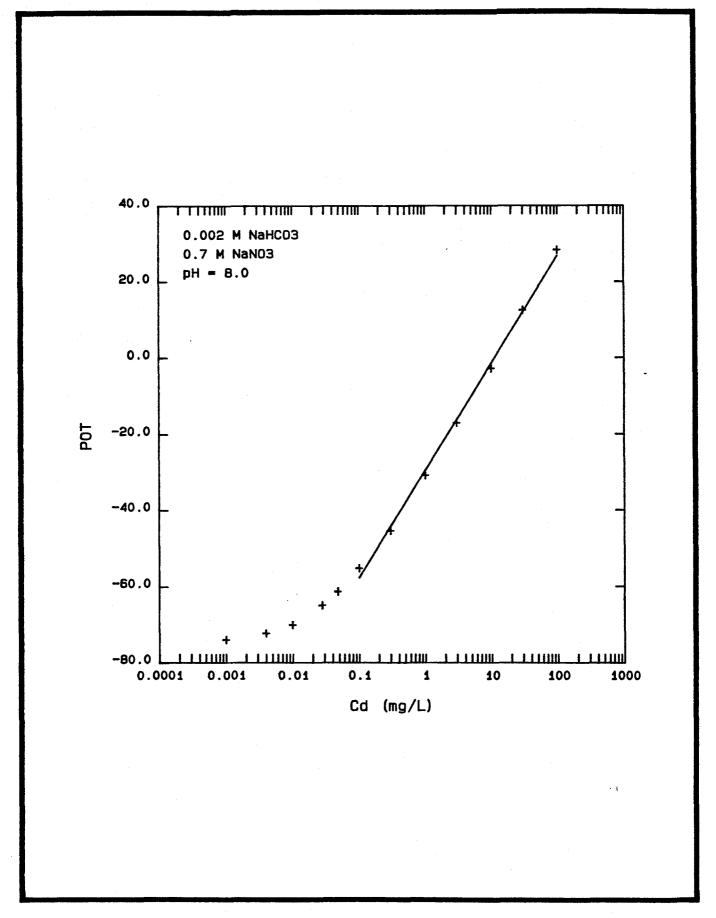


Figure. 2 Cadmium electrode calibration curve in 0.7M NaNO₃, 0.002M NaHCO₃, pH = 8, corresponding to the ionic strength and bicarbonate concentration of seawater. Slope = 28.2. Sensitivity of the electrode is 0.1 mg/L.

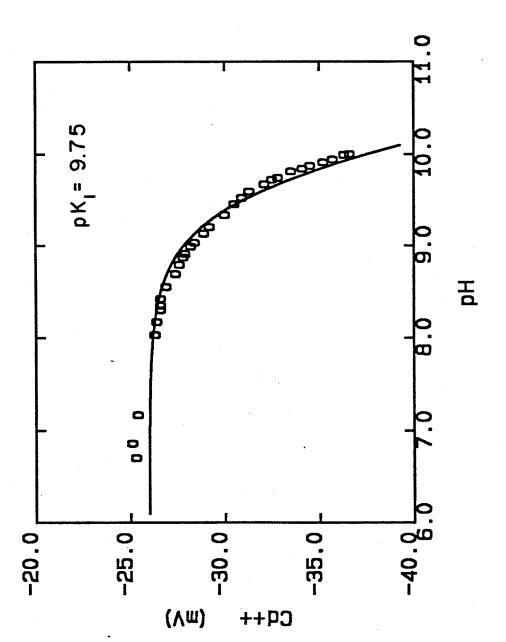


Figure 3. Hydroxide titration to determine pK₁ for the reaction: $Cd^{2+} + OH^{-} < > CdOH^{+}$.

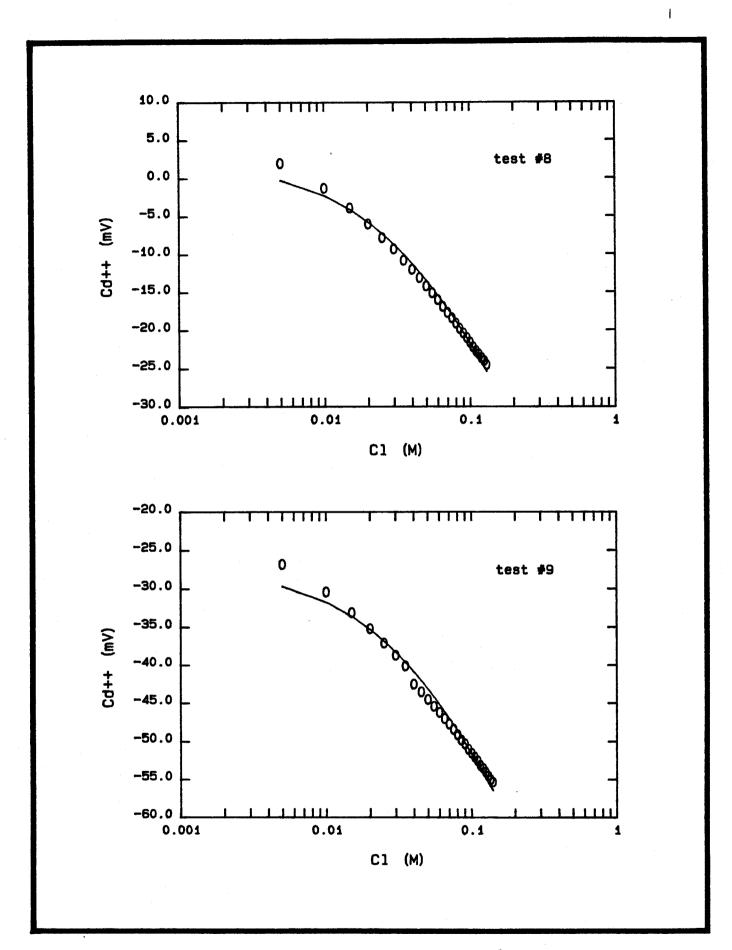


Figure 4. Chloride titrations to determine K_1 for the reaction: $Cd^{2+} + Cl^- <-> CdCl^+$.

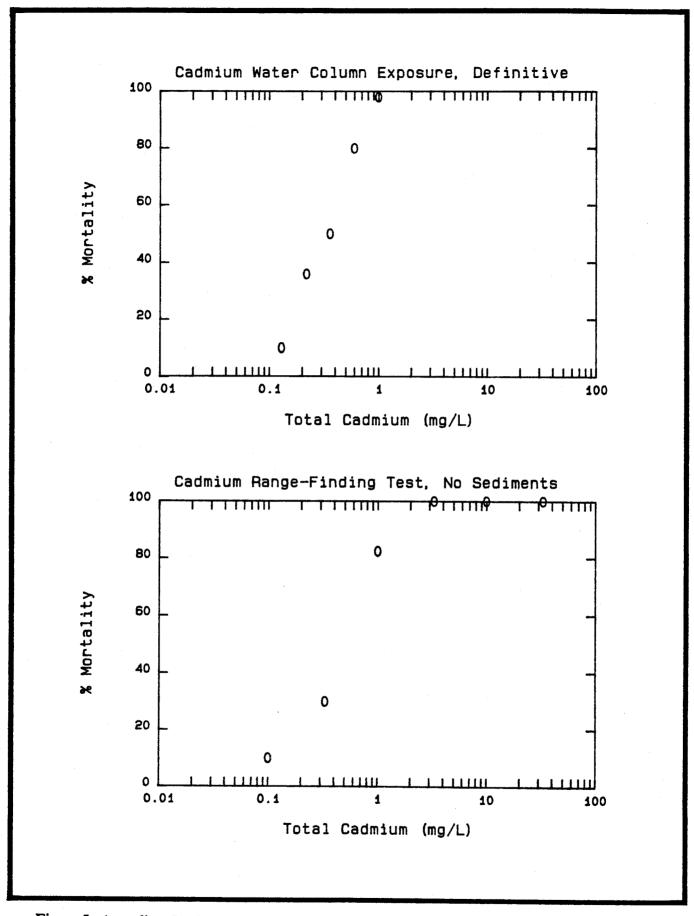


Figure 5. Ampelisca Toxicity Test: Water Only Exposure. LC50 = 0.32 mg Cd/L (top) and 0.55 mg Cd/L

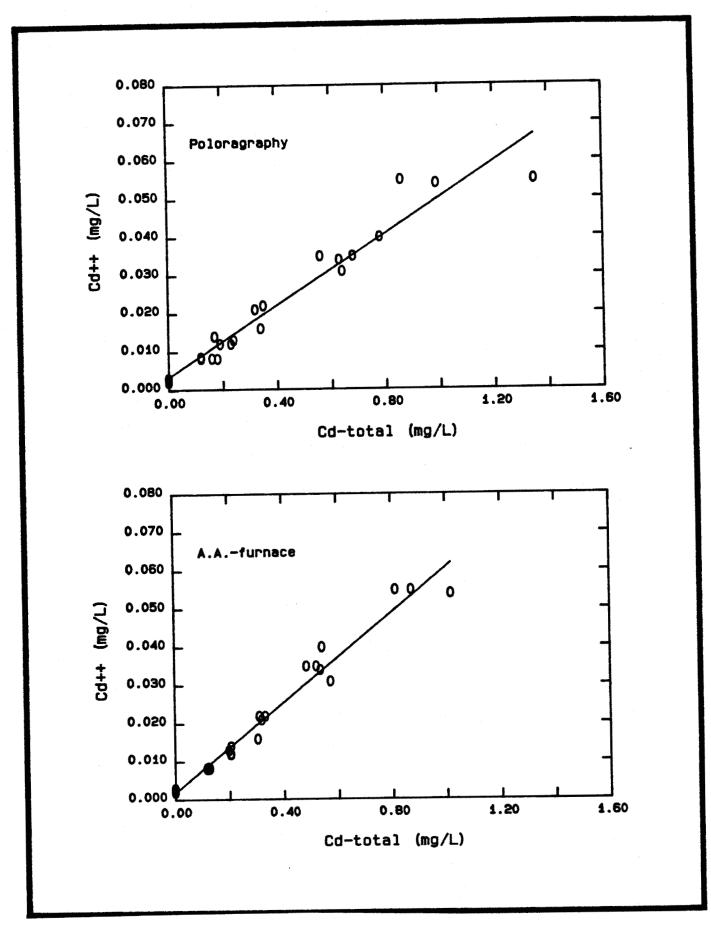


Figure 6. Cadmium concentrations in the toxicity test samples (mg Cd/L) determined using a polaragraphic method (top) and using an AA graphite furnace method (bottom) versus electrode concentration (mg Cd²⁺/L).

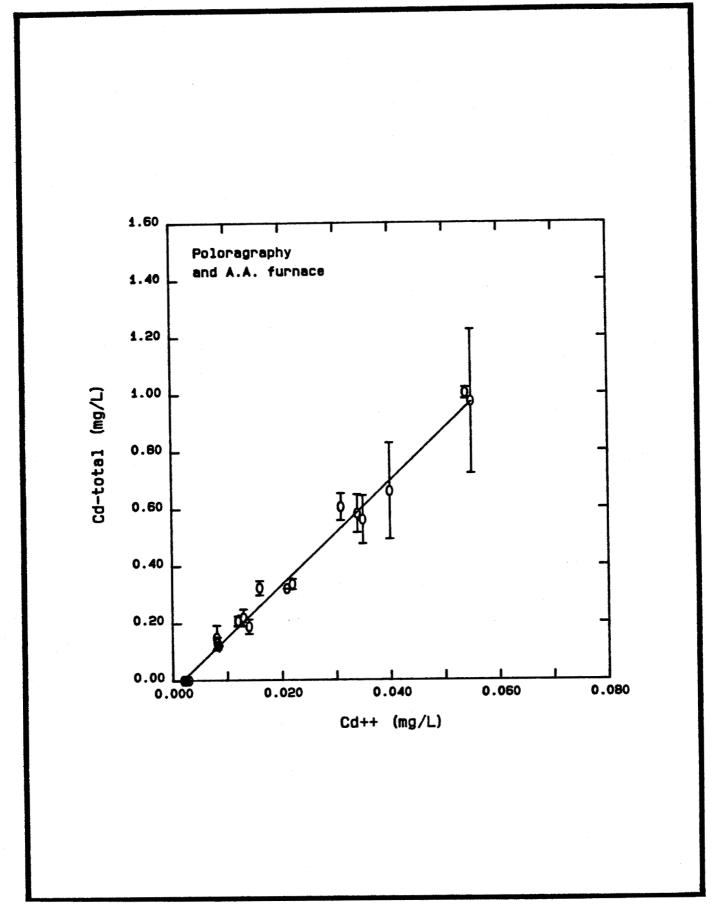


Figure 7. Cadmium concentrations in the toxicity test samples (mg Cd/L) determined using both a polaragraphic and AA graphite furnace method versus electrode concentration (mg Cd²⁺/L). Regression line is Cd²⁺ = 0.051 Cd, which implies a K_1 of the chloride reaction of $K_1 = 26.4 M_{-1}$.

PEEPER DESIGN DIMENSIONS (CM)

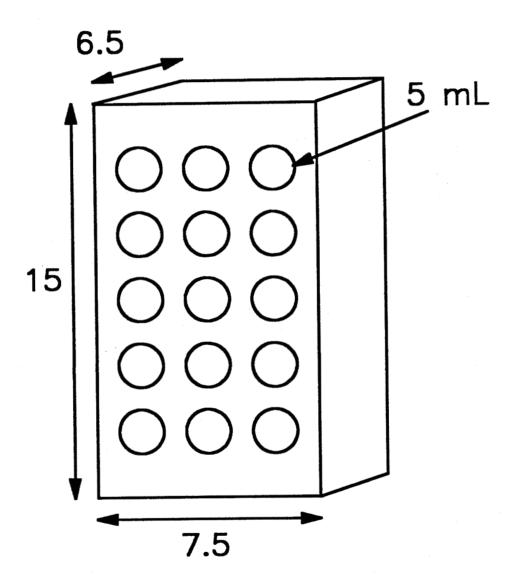


Figure 8. Design of diffusion sampler "peeper"

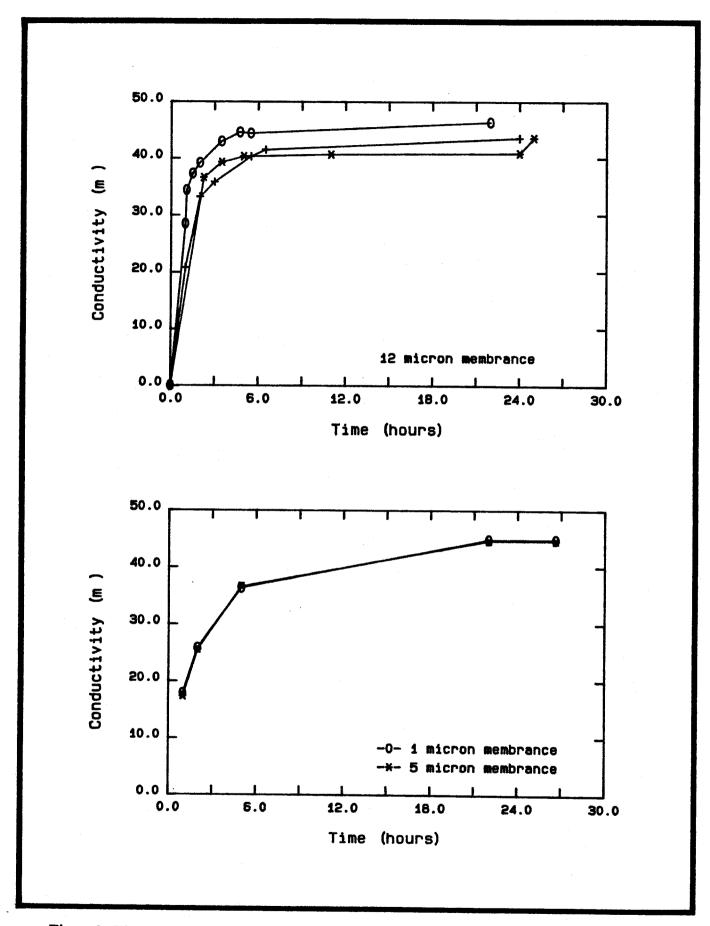


Figure 9. Time to equilibrium for membrane transfer.

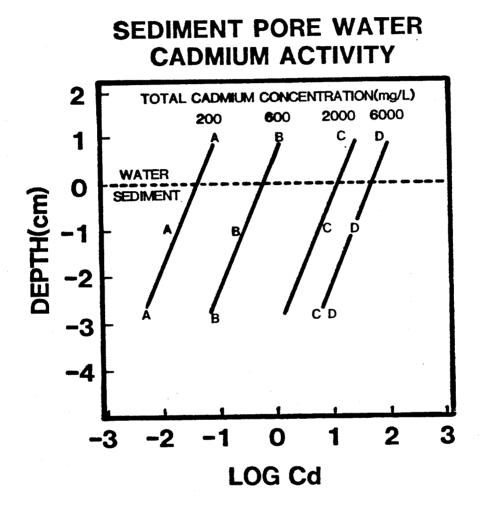
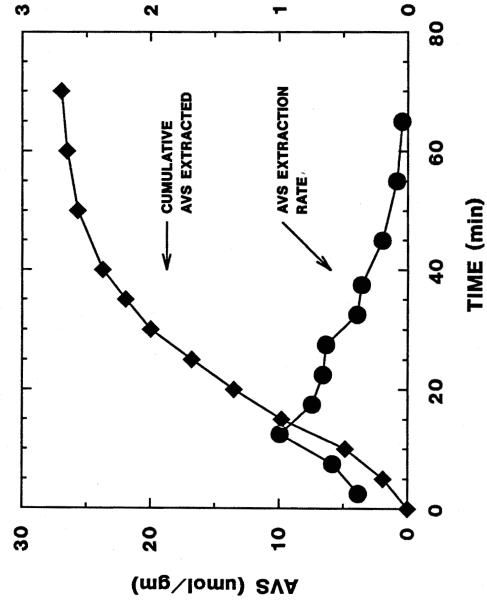



Figure 10. Initial interstitial water sampling results. Static exposure.

EXTRACTION RATE (umol/gm-min)

Figure 11. Time course experiment for AVS extraction of Long Island Sound sediment.

DEVELOPMENT AND VERIFICATION OF A KINETIC MODEL OF POLLUTANT DESORPTION FROM DREDGE SEDIMENT AND SEWAGE SLUDGE

I. Introduction

The purpose of this project is to develop a kinetic model of heavy metal desorption from sludges and sediments. This reaction significantly influences the fate of these chemicals during the ocean disposal of sludge and dredged sediments since the rapidity with which metals desorb determines, to a large extent, their ultimate fate. If desorption is rapid then the chemical is primarily in the aqueous phase and water column transport determines its fate. However if the metal remains in particulate form then settling and sedimentation will occur. Thus the rate and degree of desorption greatly influence the fate of these chemicals.

Significant progress has been made in the development of the models for this reaction. An equilibrium desorption model for reversibly bound heavy metals and organic chemicals was developed in a previous project (Di Toro and Mahony, 1986). The model describes the initial desorption of heavy metals from sewage sludge and Black Rock Harbor sediment upon mixing with seawater at various particle concentrations. Only a small fraction of the total particulate metal initially desorbes. Consecutive desorptions confirmed that only a small fraction was available during short term (1 hour) desorptions. However, it was noted that although desorption of the reversibly bound (or labile) metal fraction was rapid there was a distinct and slower reaction which also released particle bound metal into the aqueous phase. The time scales of this reaction is days rather than hours. This slow release phenomena, which had been observed experimentally by Rohatgi and Chen (1975) for digested sewage sludge, was confirmed by us for Black Rock Harbor sediment. Rohatgi and Chen speculated that the release might be due to an oxidation reaction which liberated heavy metals that either were bound to organic carbon or which were present as metal sulfides.

These observations, and our own experimental experience, lead us to propose a three component model of heavy metal desorption. Particulate metal was assumed to exist as either reversibly sorbed metal, for which the reversible partition coefficient follows the particle interaction model which we had developed in the previous project, and two other com-

ponents. A resistant component which initially is not desorbed but is gradually released over a period of five to ten days; and a refractory fraction which resists release for the duration of the experiment. This model was fit to Rohatgi and Chen's data and it provides a reasonable fit to the observations. An example is shown in fig. 1.

However, Rohatgi and Chen's experiments could not be used to distinguish between a number of other possible models that could easily fit the data as well. For example it is possible that the increase in dissolved concentration of metals during the experiment is due to slow, reversible, desorption kinetics. That is, it is possible that the desorption reaction for these particles takes a number of days before it reaches equilibrium so that the slow release is just due to the slowness of the desorption reaction. Desorption kinetics which are initially rapid but are followed by a slow phase have been observed for hydrophobic organic chemicals (Karickhoff, 1980).

Alternately it may be that the partition coefficient is decreasing during the experiment due to a change in particle properties. If the particle surface properties are being altered by exposure to oxygenated seawater during the experiment then the desorption reaction might still be rapid but it is adjusting to the slowly changing surface properties of the particles. The oxidation of particlulate reactive organic carbon would influence the partitioning in this way.

The purpose of this research project is to experimentally distinguish between these possibilities and to determine, to the extent possible, the mechanism responsible for the slow release of metals and to incorporate any necessary changes into the desorption model. The experiments conducted to date, using Black Rock Harbor sediment and two digested sewage sludges from the Bergen County and Ridgewood sewage treatment plants, appear to confirm the three component model as originally formulated. It appears that the slow release of metals are from the fraction of the metal which is initially present as particulate metal sulfides. These are released as the particulate sulfides is oxidized to sulfate in the reactor. An initial experiment in sulfate free seawater exhibited an increase in sulfate over time confirming the oxidation of sulfide to sulfate. Additionally, an anaerobic reactor, for

which nitrogen gas bubbling was substituted for oxygen containing air bubbling, exhibited no increase in dissolved metal over time. Parallel experiments with radiotagged metal appear to confirm this interpretation although some short term (less than one day) effects are still to be explained.

Hence the data appears to confirm the three component desorption kinetic model. It remains to actually fit these data to the model equations in order to obtain the model parameters. The final version would then be applicable to the evaluation of the fate of heavy metals during the ocean disposal of sludges and dredged sediments.

II. Experimental Design and Results to Date

The experiments are all conducted in small (350 mL) reaction vessels. Metal free seawater and sludge or sediment particles are initially added. The reactors are kept aerobic by bubbling filtered air and are mixed using magnetic stirring. Duplicate reactors at two particle concentrations, 300 and 3000 mg/L, are used. A particle free control reactor which receives the same air, stirring, and sampling, is monitored to detect possible contamination. At various times during the experiment samples are taken and analyzed for total and dissolved metal (the separation is by centrifugation). The duration of the experiment is twenty to thirty days.

Fig. 2 presents the results obtained for copper from Black Rock Harbor sediment and Bergen County sewage sludge for two particle concentrations (300 and 3000 mg/l). The log scales for the concentration are increased by a factor of ten for the 3000 mg/L reactor so that the results for both reactors can be directly compared. The increase in dissolved copper concentration is approximately one order of magnitude for both particle types with the larger dissolved concentrations associated with the smaller particle concentration. This is a result of the decreased fraction of the metal that reversibly partitions to the particles at lower particle concentrations. Fig. 3 presents the results for zinc and cadmium for Black Rock Harbor sediment. Again the release increases by approximately an order of magnitude. However, the chromium

results in fig. 4 show no significant increase for either Black Rock Harbor sediment or Bergen County sludge. The significance of this fact is discussed below.

Changes in pH and total organic carbon (TOC) are shown in fig. 5. For Black Rock Harbor sediment the pH and TOC are essentially constant. For Bergen County sludge the pH increases slightly during the first day and stayed approximately constant thereafter. Although this may have affected the reversible partition coefficient during this time (it would increase with increasing pH) the release continues during the period of constant pH. The TOC decreased from 400 (40) mgC/L to 200 (20) mgC/L in the 3000 (300) mg/L reactor during the experiment. However the release patterns of metals is similar for Black Rock Harbor sediment and Bergen County sludge. Since no change in TOC or pH was observed for Black Rock Harbor sediment, it is unlikely that the pH and TOC changes were responsible for the metal release.

The results of an anaerobic reactor experiment are shown in fig. 6. The arrangement is the same as the aerobic reactor, the only difference is that nitrogen gas is substituted for the air that is bubbled through the reactors. As can be seen the dissolved copper concentration stayed constant for Black Rock Harbor sediment and the two sludges. The TOC also remained constant as expected since the experiment did not last long enough to initiate significant anaerobic breakdown of the sludges. Thus the presence of oxygen is clearly necessary for the slow metal release to occur.

The fact that copper, cadmium, and zinc are slowly released while chromium concentrations are constant is consistent with the hypothesis that the slow release of metals is due to the oxidation of particulate metal sulfides. The solubility of these metal-sulfides is very low as indicated below (Lindsay, 1979):

Solubility of MeS	Log Ksp		
CuS (covellite)	-36.10		
CdS (greennokite)	-27.07		
ZnS (wurtzite)	-22.5		

However no Cr(III) sulfide solid phase is reported in tabulations of sulfide mineral solubilities (Naumov et al., 1974).

A possible approach to a direct verification that particulate sulfide is being oxidized is to monitor the oxidation end product, sulfate, and observe its concentration in time. An increase in sulfate would indicate that reduced sulfur, presumably sulfide, was being oxidized in The experiment is conducted in sulfate-free artificial seawater so that the large naturally occurring sulfate background does not obscure the increase. The results are shown in fig. 7. The upper panel presents the actual observations. The initial sulfate concentration is due to the sulfate in the supernatant of the Black Rock Harbor sediment stock which was added at the start of the experiment. Future experiments will separate the particles from the supernatant. bottom panel presents the excess sulfate, defined as the difference between that initially present and that observed at the indicated time. It is interesting to note that the pattern of sulfate release is similar to that observed for the metal release.

In addition to measurements of the total and dissolved metal concentrations over time additional parallel experiments were conducted with radiotagged metals. The purpose of these experiments was to examine the question of the time scale of adsorption and the possible variation of the partition coefficient over time. The kinetic experiment used the same reactor setup. After the particles were added the reactor was tagged with radioactive metal. The total and dissolved radiotagged metal was monitored in time. Changes in the distribution between total and dissolved metal could be due to either slow adsorption kinetics or changes in the adsorption partition coefficient. But the absence of change would eliminate both mechanisms as significantly contributing to the release phenomena.

The results from these kinetic experiments are shown in fig. 8 for zinc. The Bergen County sludge results indicate that very little change occurred in the dissolved concentration suggesting that the variation of TOC did not significantly change the partitioning. However the Black Rock Harbor sediment results indicated a substantial increase in dissolved concentration and a decrease in total concentration that is

attributed to the accumulation of sediment particles on the walls of the reactor. However the changing total concentration casts some doubt on the validity of the experiment so we plan to repeat it.

The results for cadmium are shown in fig. 9. With the exception of the data for less than one day, the dissolved cadmium concentration remained constant for the duration of the experiment for both Black Rock Harbor sediment and Bergen County sludge.

These experiments do not yield a completely consistent interpretation. However they do eliminate one possible model - that the adsorption and desorption kinetics are slow and reversible. If sorption is slow but ultimately reversible then for an adsorption experiment the dissolved concentration should initially be large, since adsorption has not yet had an opportunity to occur, and it should decrease with time. For the experiments where changes were observed the reverse pattern was observed so that slow reversible sorption kinetics appear to be ruled out.

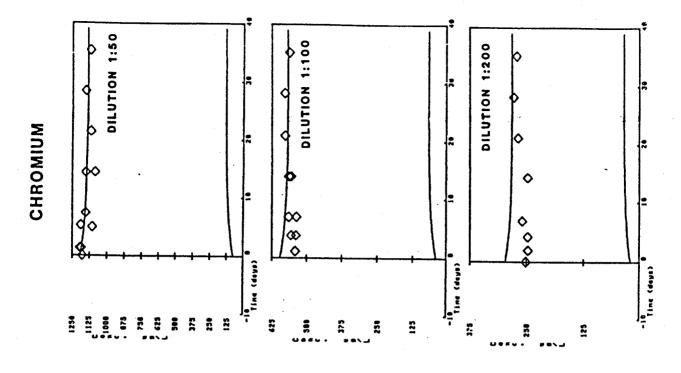
In order to discriminate between adsorption kinetics and partition coefficient changes, an additional set of parallel experiments were performed in order to examine if the partition coefficient is varying in time. A parallel reactor was used which was not initially tagged with radioactive metal. Rather, at various times during the experiment a small sample was taken. This sample was then spiked with a small amount of radioactive metal. The sample was agitated for one hour after which the total and dissolved radioactive metal concentration was determined. Following the adsorption step, a desorption step was performed in order to examine the behavior of the reversibly sorbed metal. If the distribution of total and dissolved metal was changing with time, that would indicate that the partition coefficients were changing with time.

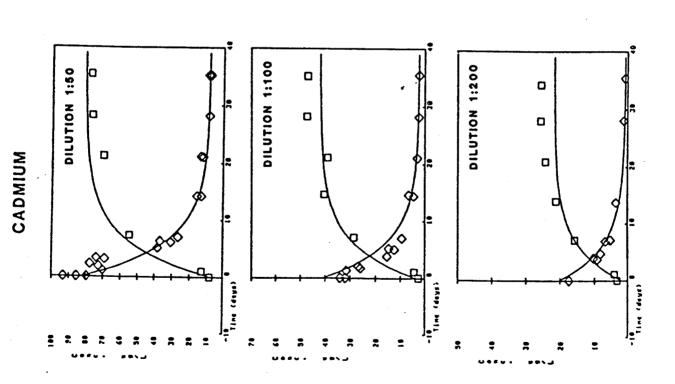
The results from these spiking experiments are shown in fig. 10 for zinc. With the exception of the changing adsorption partition coefficient for Black Rock Harbor sediment, the other partition coefficients are constant. It is interesting that the desorption partition coefficient is constant for both Black Rock Harbor sediment and Bergen County sludge.

The results of the spiking experiments for cadmium are shown in fig. 11. Once again the partition coefficients appear to be quite constant for times greater than one day. But both the adsorption and desorption partition coefficients are changing initially.

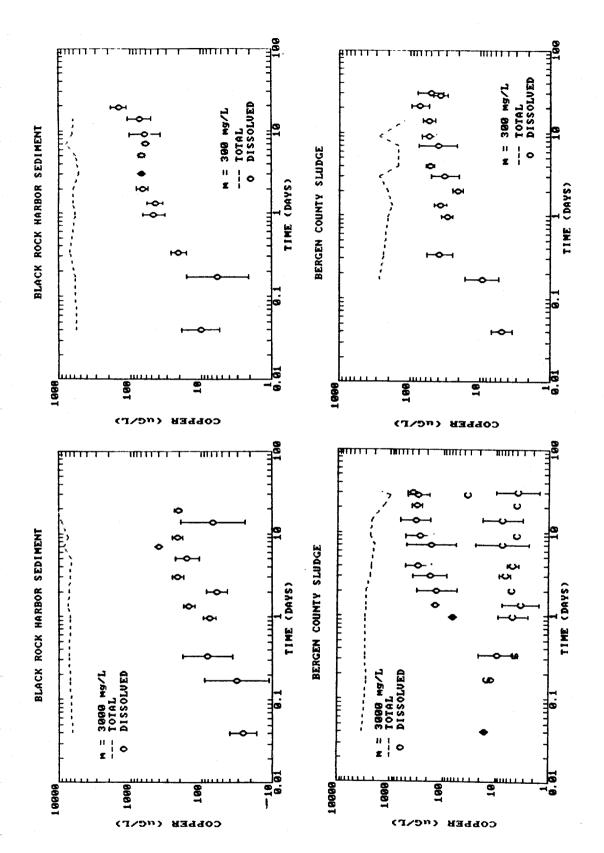
The results of the kinetic and spiking experiments are not consistent with a single explanation. On the one hand, the Bergen County sludge zinc kinetic and the spike adsorption-desorption data, the Black Rock Harbor sediment spike desorption data, and both the kinetic and spike adsorption-desorption Black Rock Harbor sediment and Bergen County sludge cadmium data for time greater than one day suggest that no partition coefficient changes are occurring since the dissolved concentrations are essentially constant. However, the Black Rock Harbor sediment zinc kinetic and spike adsorption data, and all the less than one day cadmium data, suggest that something was changing during these time periods. Additional experiments are planned to investigate the cause of these unexpected and as yet unexplained results.

III. Future Directions

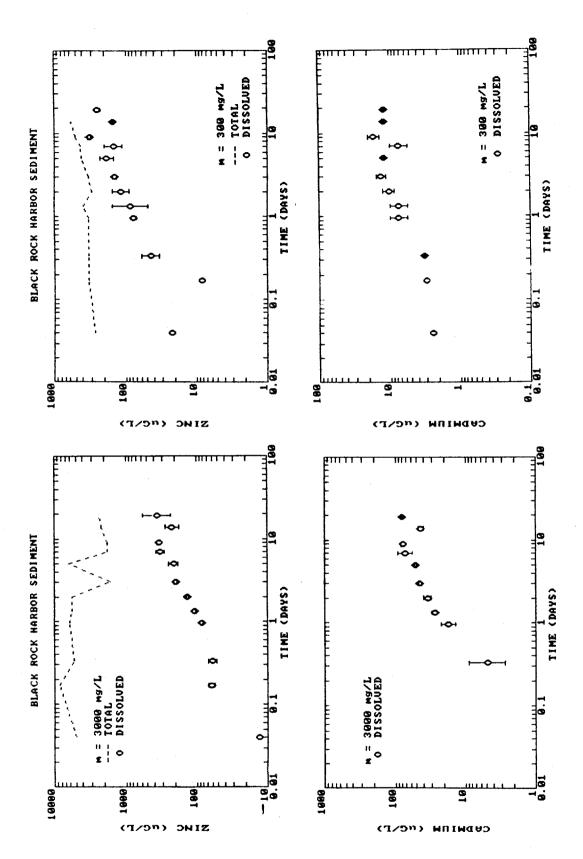

The major focus of this portion of the research will be to complete the development of the kinetic model for metal desorption from sediments and sludges. The reactor data will be fit to the model equations to estimate the parameters. Additional radiotag experiments will be performed in an attempt to understand the somewhat anomalous results described above. However the focus of the work will be to complete the development with a minimum of experimental effort so that the Sediment Criteria work can begin. A project report will be written that includes all the experimental data as well as the modeling results. A journal article will also be prepared.

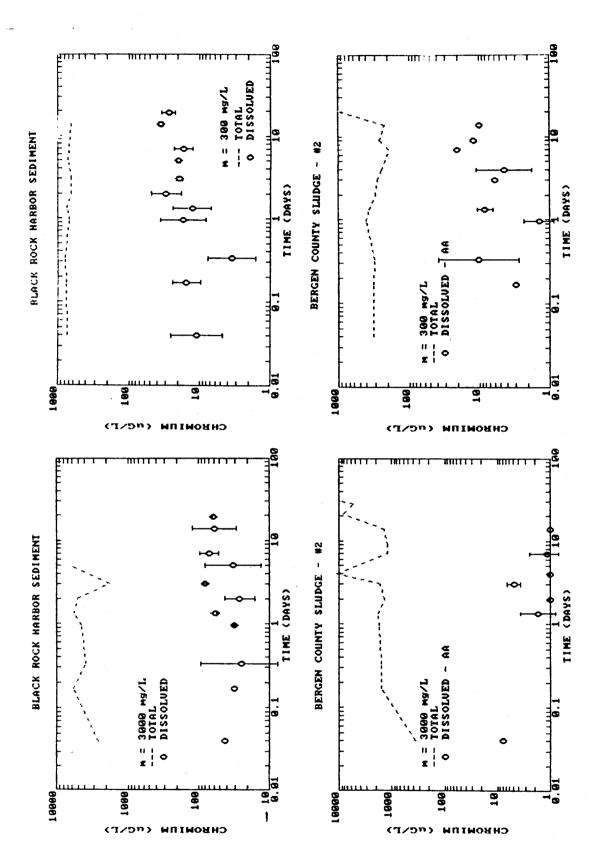

References

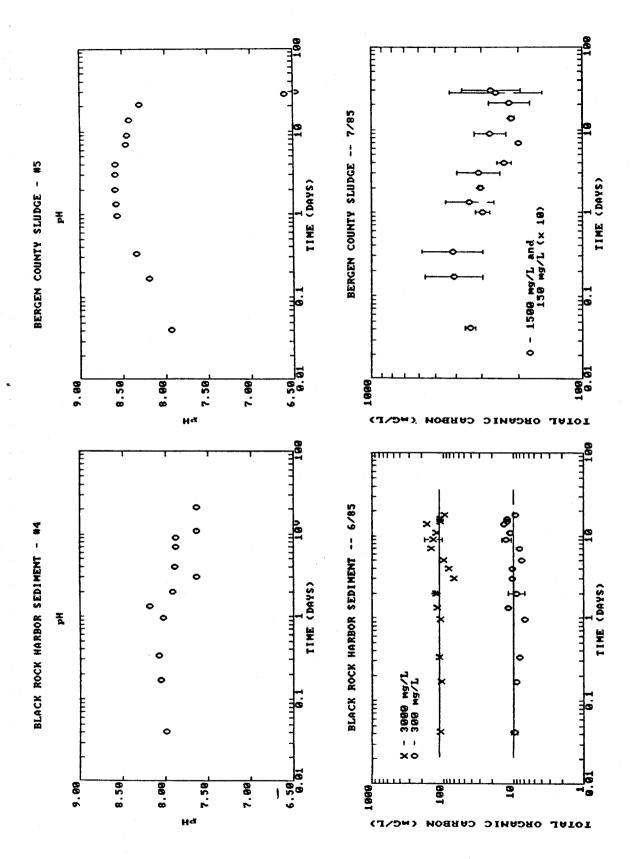
- [1] Di Toro, D.M. and Mahony, J.D. (1986): An Experimental and Modeling Study of the Adsorption and Desorption of Heavy Metals and Organic Chemicals with Applications to Sewage Sludge and Dredged Sediments in the Marine Environment. Final Report. Environmental Engineering and Chemistry Dept. Manhattan College, Bronx, NY.
- [2] Karickhoff, S.W. (1980): Sorption Kinetics of Hydrophobic Pollutants in Natural Sediments. In: Contaminants and Sediments, pp. 193-205. Editor: R.A. Baker. Ann Arbor Sci., Ann Arbor, Mich.
- [3] Lindsay, W.L. (1979): Chemical Equilibria in Soils. J. Wiley & Sons, New York, N.Y.
- [4] Naumov, G.B., Ryzhenko, B.N. and Khodakovsky, I.L. (1974): Handbook of Thermodynamic Data PB-226-722. US Geological Survey, Water Res., Menlo Park, CA 94025.
- [5] Rohatgi, N. and Chen, K.Y. (1975): Transport of trace metals by suspended particulates on mixing with seawater. J. Water Pollut. Control Fed. 47: pp. 2298-2316.

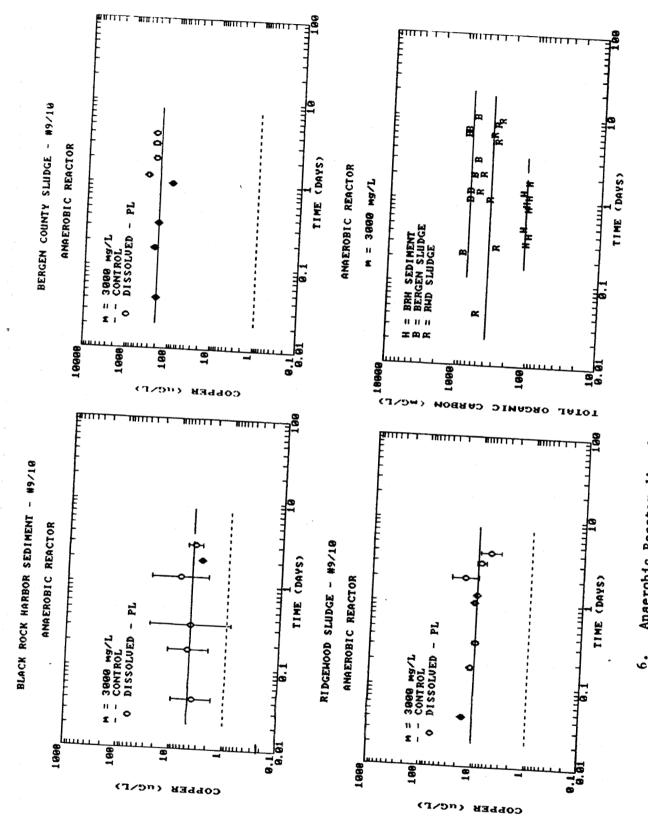

FIGURE CAPTIONS

- 1. Experimental data (Rohatgi and Chen, 1975) and the three component model fit for cadmium and chromium.
- 2. Total and dissolved copper concentrations versus time for Black Rock Harbor sediment and Bergen County sludge at 3000 mg/L (left side) and 300 mg/L (right side). Control reactor concentrations (C) are also shown.
- 3. Total and dissolved zinc (top) and cadmium (bottom) concentrations versus time for Black Rock Harbor sediment and Bergen County sludge at 3000 mg/L (left side) and 300 mg/L (right side).
- 4. Total and dissolved chromium concentrations versus time for Black Rock Harbor sediment and Bergen County sludge at 3000 mg/L (left side) and 300 mg/L (right side).
- 5. pH (top) and Total Organic Carbon (bottom) versus time for Black Rock Harbor sediment (left) and Bergen County sludge (right) reactors.
- 6. Anaerobic Reactor dissolved copper concentrations versus time for Black Rock Harbor (top left), Ridgewood (bottom left) and Bergen County (top right). Total organic carbon concentrations versus time for the three reactors are also shown (bottom right).
- 7. Sulfate (top) and excess sulfate (bottom) concentration versus time for Black Rock Harbor sediment.
- Concentration of total and dissolved radioactive zinc versus time.
 Radioactive zinc is added at the start (t=0) of the experiment.
- Concentration of total and dissolved radioactive cadmium versus time. Radioactive cadmium is added at the start (t=0) of the experiment.
- 10. Concentration of total and dissolved radioactive zinc at various times. Radioactive zinc is added to a subsample taken at the indicated time and a one hour one hour adsorption-desorption measurement is made. The total and dissolved zinc at adsorption (top) and desorption (bottom) is shown for Black Rock Harbor (left) and Bergen County (right).
- 11. Concentration of total and dissolved radioactive cadmium at various times. Radioactive cadmium is added to a subsample taken at the indicated time and a one hour one hour adsorption—desorption measurement is made. The total and dissolved cadmium at adsorption (top) and desorption (bottom) is shown for Black Rock Harbor (left) and Bergen County (right).

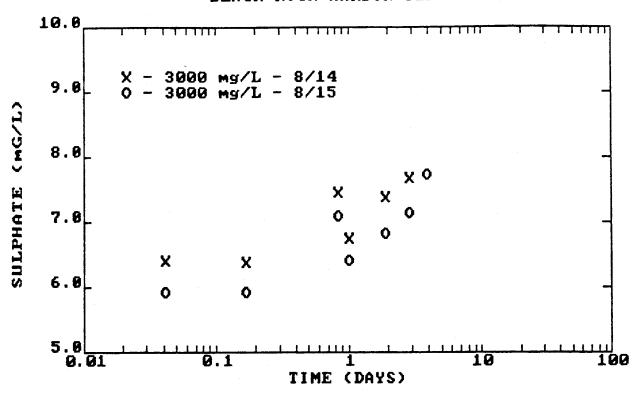


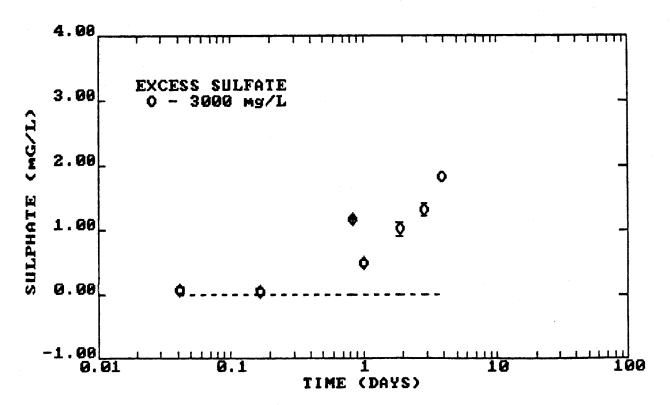

Experimental data (Rohatgi and Chen, 1975) and the three component model fit for cadmium and chromium.


Rock Harbor sediment and Bergen County sludge at 3000 mg/L (left side) and 300 mg/L (right side). Control reactor concentrations Total and dissolved copper concentrations versus time for Black (C) are also shown.

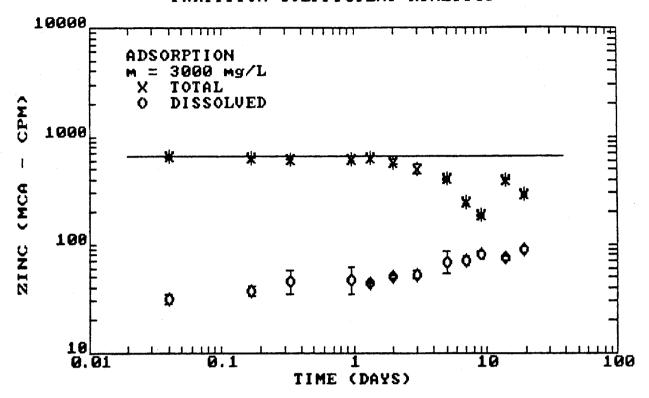

versus time for Black Rock Harbor sediment and Bergen County sludge at $3000~{\rm mg/L}$ (left side) and $300~{\rm mg/L}$ (right side). Total and dissolved zinc (top) and cadmium (bottom) concentrations .

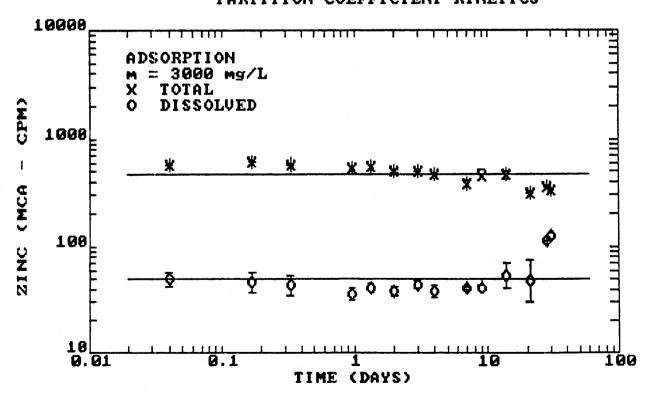
. Total and dissolved chromium concentrations versus time for Black Rock Harbor sediment and Bergen County sludge at 3000 mg/L (left side) and 300 mg/L (right side).




5. pH (top) and Total Organic Carbon (bottom) versus time for Black Rock Harbor sediment (left) and Bergen County sludge (right) reactors.

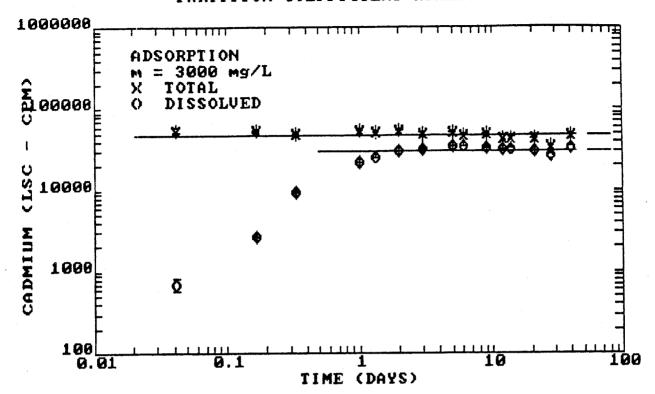
6. Anaerobic Reactor dissolved copper concentrations versus time for Black Rock Harbor (top left), Ridgewood (bottom left) and Bergen County (top right). Total organic carbon concentrations versus time for the three reactors are also shown (bottom right).


BLACK ROCK HARBOR SEDIMENT

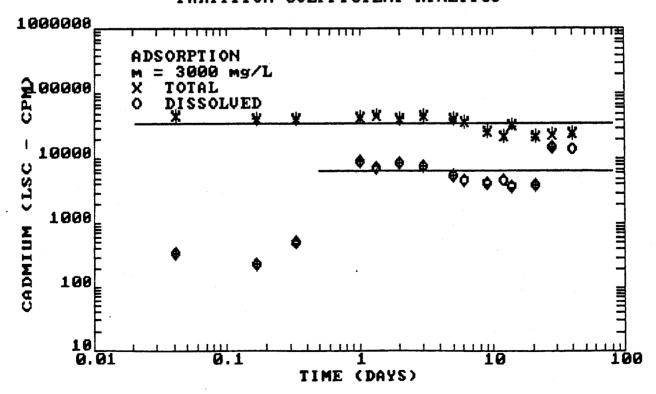


7. Sulfate (top) and excess sulfate (bottom) concentration versus time for Black Rock Harbor sediment.

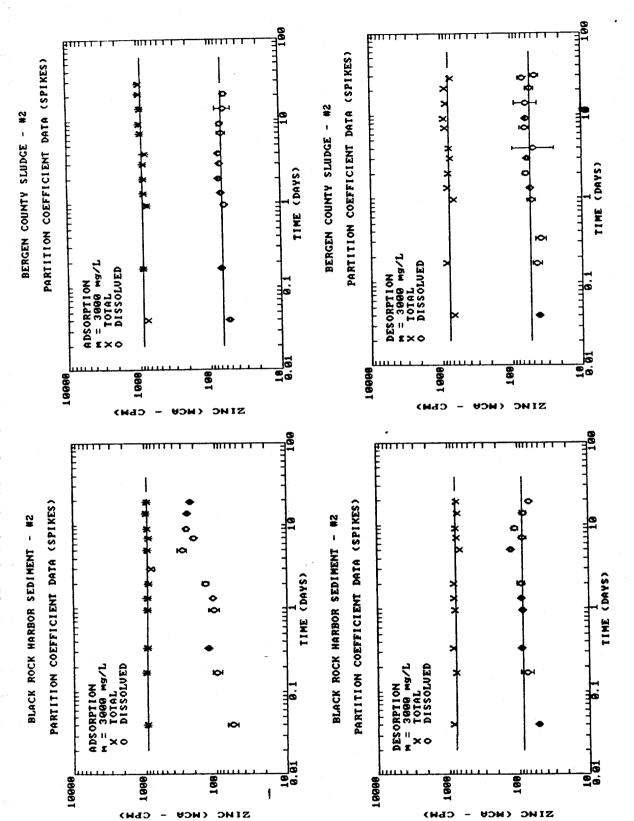
BLACK ROCK HARBOR SEDIMENT - #2 PARTITION COEFFICIENT KINETICS

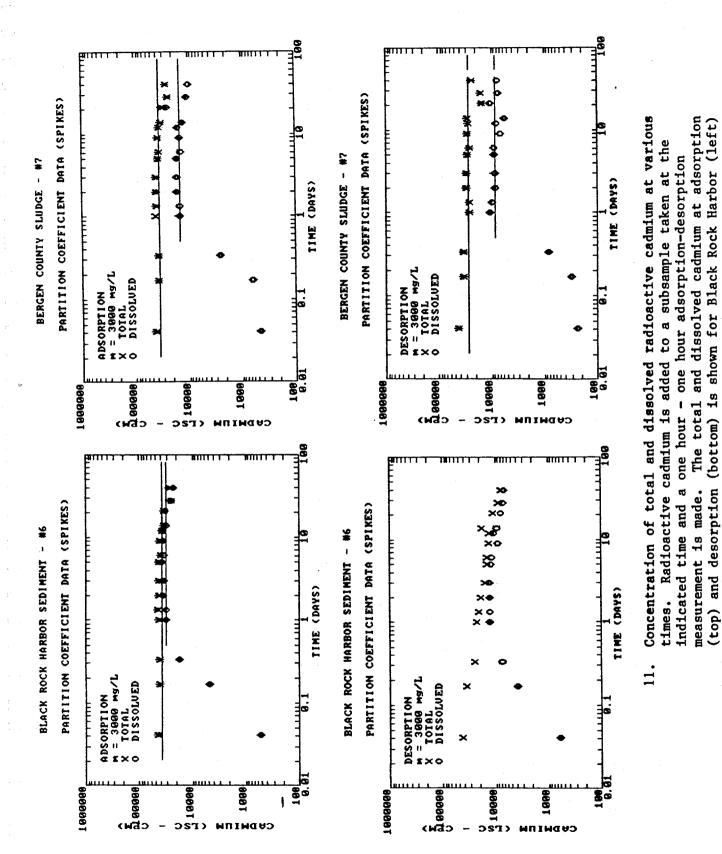


BERGEN COUNTY SLUDGE - #2
PARTITION COEFFICIENT KINETICS



8. Concentration of total and dissolved radioactive zinc versus time. Radioactive zinc is added at the start (t=0) of the experiment.


BLACK ROCK HARBOR SEDIMENT - #6 PARTITION COEFFICIENT KINETICS


BERGEN COUNTY SLUDGE - #7
PARTITION COEFFICIENT KINETICS

9. Concentration of total and dissolved radioactive cadmium versus time. Radioactive cadmium is added at the start (t=0) of the experiment.

Radioactive zinc is added to a subsample taken at the indiment is made. The total and dissolved zinc at adsorption (top) and cated time and a one hour - one hour adsorption-desorption measure-Concentration of total and dissolved radioactive zinc at various desorption (bottom) is shown for Black Rock Harbor (left) and Bergen County (right). times. 10.

and Bergen County (right).

20