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ABSTRACT

The production of chemicals through bioconversion has received much
attention over the past decade. Focus is now shifting towards the utilization of cheap,
renewable and waste feedstocks for chemical production. With the availability of these
feedstocks, metabolic engineering efforts are targeted towards engineering organisms
to utilize one or more of these substrates and produce value-added chemicals.
Therefore, it is of critical importance to evaluate the economic feasibility of
bioprocesses, determine the capabilities of microbial systems, identify targets for
improvements, and select ideal candidates for industrial implementation.

A powerful method for characterizing in vivo metabolism is through the use of
13C-labeled substrates (or **C-tracers). Tracing techniques allow quantitative
evaluation of the flow of carbon from feedstocks to central metabolism and further
into the desired products. Additionally, advanced techniques, such as **C-metaboic
flux analysis (*3C-MFA), can be applied to gain a fine-grained picture of native
metabolism and metabolic changes that result from genetic manipulations. Isotopic
tracers are easy to implement and can be used to achieve a wealth of new information
about metabolism. However, there has been limited application of tracers and
therefore, their potential has not been realized. We aim to demonstrate how tracers can
be applied to various systems to gain a detailed understanding of pathway utilization.
The systems studied here include ones with multiple substrates, engineered pathways,
and one-carbon substrates. Additionally, we develop new methods of MFA that allow
for its application to a broader range of systems.

Sugars are the main product of lignocellulose hydrolysis and a common

feedstock for bioprocesses. While glucose and xylose are the two most abundant
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sugars derived from the breakdown of lignocellulosic biomass, there have been few
studies of their metabolism under various environmental conditions. In the absence
this experimental data, constraint-based approaches cannot be used to guide new
metabolic engineering designs. In this work, we have addressed this critical gap by
performing comprehensive characterizations of glucose and xylose metabolism under
aerobic and anaerobic conditions, including applying 3C-MFA, measuring biomass
composition and biomass turnover, and quantifying co-factor requirements.
Additionally, we examine more efficient E. coli strains that can co-utilize these two
sugars through application of **C-MFA and interrogation of their sugar uptake profile.
Through this analysis, we identified the ideal uptake profile to be linear and non-
biased towards a specific substrate, focusing future efforts towards the development of
novel transport systems.

Another interesting feedstock, methane, the main component of natural gas,
can be used to produce methanol which can be further converted to other valuable
products. There is increasing interest in using biological systems for the production of
fuels and chemicals from methanol, termed methylotrophy. Here, we first examine
methanol assimilation metabolism in a synthetic methylotrophic E. coli strain.
Through our investigations, we proposed specific metabolic pathways that, when
activated, correlated with increased methanol assimilation. These pathways are
normally repressed by the leucine-responsive regulatory protein (Irp), a global
regulator of metabolism associated with the feast-and-famine response in E. coli. By
deleting Irp, we were able to further enhance the methylotrophic ability of our
synthetic strain, as demonstrated through increased incorporation of 3C carbon from

13C-methanol into biomass.
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Additionally, we study the methanogen, Methanosarcina acetivorans, a model
organism for studying the conversion of various substrates into methane and a possible
host for the conversion of methane into value-added products. Here, we characterize
this organism during growth on the one-carbon substrate, methanol. Typically,
estimating fluxes during growth on one-carbon substrates requires more advanced
computational approaches and precise sampling of metabolic intermediates compared
to 33C-MFA. Here, we applied classical 3C-MFA to validate the network model and
generate the first flux map for M. acetivorans, demonstrating the successful
application of classical **C-MFA to a one-carbon system.

Lastly, we aim to extend the reach of metabolic flux analysis. To apply *C-
MFA, it is assumed that the system being interrogated is at metabolic and isotopic
steady state, where fluxes and isotopic labeling remain constant over time. This
assumption limits the application of 1*C-MFA to systems where these assumptions do
not hold. Here, we address the need for metabolic flux analysis methods that can be
used for atypical systems, ones that are not at isotopic or metabolic steady state. We
present an extension of DMFA to include isotopic labeling measurements (**C-
DMFA) and evaluate established MFA methods (**C-MFA, *C-NMFA, and *3C-
DMFA) and their ability to estimate fluxes for various conditions. It was concluded
that *C-MFA can be used for systems at isotopic steady state, 23C-NMFA can be used
for systems at metabolic steady state, and 3C-DMFA can be used for metabolic and
isotopic non-steady state. This work is the first demonstration of **C-DMFA and
clearly outlines how and when each established method should be applied,

substantially increasing the range of systems and organisms that can be studied.
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Chapter 1

INTRODUCTION

1.1 Studying Metabolism of Renewable and Waste Feedstocks

The production of chemicals through bioconversion has received much attention
over the past decade (Himmel and Bayer, 2009). Focus is now shifting towards the
utilization of cheap, renewable and waste feedstocks, ultimately leading to reduced
operating costs, reduced reliance on non-renewable feedstocks and feedstocks that
compete with food supply, and reduced environmental impact (Elkins et al., 2010;
Liao et al., 2016). Renewable and waste feedstocks include lignocellulosic biomass
and gaseous substrates such as syngas, methane, hydrogen gas, and carbon dioxide.
The primary renewable feedstock, lignocellulosic biomass, is composed of three main
components, two of which, cellulose and hemicellulose, can be hydrolyzed to C6 and
C5 sugar monomers and used as substrates in fermentations. Alternatively, biomass
can be gasified to produce syngas, a mixture of carbon dioxide, carbon monoxide and
hydrogen, for use in mixotrophic fermentations (Jones et al., 2016; Munasinghe and
Khanal, 2010). Moreover, biological processes such as anaerobic digesters produce
large quantities of methane, yet another potential source of carbon and energy. With
the availability of these feedstocks, metabolic engineering efforts are geared towards
engineering organisms to utilize one or more of these substrates and produce value-
added chemicals. These efforts have consisted of introducing new metabolic

capabilities into model organisms, such as E. coli and S. cerevisiae, and engineering



promising new organisms capable of metabolizing these feedstocks at higher rates and
yields (Cordova et al., 2015; Liao et al., 2016).

With this wide range of potential substrates and products, it is of critical
importance to evaluate the economic feasibility of bioprocesses, determine the
capabilities of microbial systems, identify targets for improvements, and select ideal
candidates for industrial implementation. Significant efforts have been directed at
understanding cellular metabolism of microbes and identifying key regulatory
mechanisms and potential kinetic limitations. A powerful method for characterizing in
vivo metabolism is through the use of $3C-labeled substrates (or **C-tracers). Tracing
techniques allow quantitative evaluation of the flow of carbon from feedstocks to
central metabolism and further into the desired products. Additionally, advanced
techniques, such as 3C-metaboic flux analysis (*3C-MFA), can be applied to gain a
fine-grained picture of native metabolism and metabolic changes that result from
genetic manipulations. In this introduction, there will be an overview of the wide
range of pathways that are being implemented to convert renewable and waste
substrates into value-added products as well as the methods for elucidating

metabolism through these pathways using advanced 3C-tracing techniques.

1.1.1 Metabolism of Lignocellulosic Biomass

The major costs in biological processes are substrate-related (Papoutsakis,
2015). Thus, organisms which can utilize a broad spectrum of renewable and waste
substrates offer a major competitive advantage in the development of technologies for
the production of next-generation fuels and chemicals. The primary renewable
feedstock, lignocellulosic biomass, is composed of cellulose, hemicellulose, and

lignin. Cellulose is a polymer of glucose, while hemicellulose is composed of both C6



(glucose, mannose, galactose) and C5 (xylose, arabinose) sugars. Metabolism of these
sugars starts with transport of the sugar into the cells followed by activation
(phosphorylation). The main mechanisms for sugar transport are active transport (via
the PTS transport system, or ATP-dependent ABC transporters), and passive transport
by permeases. For example, in E. coli, glucose is transported and phosphorylated
simultaneously via the PTS system at the expense of one ATP equivalent, while two
ATPs are expended when xylose serves as the carbon source, i.e. one for transport
(high-affinity ABC transporter) and the second for activation (phosphorylation). Other
sugars, e.g. lactose, are transported by permeases. The two classical pathways for
sugar catabolism are glycolysis and the pentose phosphate pathway (Figure 1.1).
Hexoses feed directly into glycolysis at glucose 6-phosphate (G6P) or fructose 6-
sphosphate (F6P), while pentoses feed into the pentose phosphate pathway at xylulose
5-phosphate (X5P). Many organisms are capable of catabolizing more than one sugar;
however, in most cases, carbon catabolite repression (CCR) results in preferential
utilization of certain sugars over others.

Various engineering strategies have been employed to eliminate CCR, often
resulting in more efficient bioprocesses. A successful strategy has been knocking out
components of the PTS system and applying adaptive evolution to improve sugar co-
utilization. For example, Balderas-Hernandez et al. adaptively evolved E. coli lacking
a functional PTS system under anaerobic conditions to achieve a glucose/xylose co-
utilizing E. coli strain (Balderas-Hernandez et al., 2011). Adaptive evolution was also
successfully applied to generate an improved strain of the thermophile Thermus
thermophilus that efficiently co-utilized glucose and xylose without CCR (Cordova et

al., 2016). In another study, the ptsG gene was removed in E. coli to relieve CCR and



allowed production of 3-hydroxypropionic acid from both glucose and xylose in fed-
batch fermentations (Jung et al., 2015). The model anaerobic organism Clostridium
acetobutylicum was also evaluated for sugar co-utilization (Aristilde et al., 2015).
Analysis of CCR genes in C. acetobutylicum identified targets for engineering
simultaneous utilization of glucose and xylose (Grimmler et al., 2010). When glucose
repression of xylose catabolism was removed, product titers from co-utilization of

both substrates were comparable to wild-type titers (Ren et al., 2010).
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There has also been interest in broadening the substrate range for organisms
that have the potential to produce high titers and yields of valuable products. Both S.
cerevisiae and Zymomonas mobilis, major ethanol producers, have been engineered to
use pentoses, such as arabinose and xylose, to achieve more efficient conversion of
lignocellulose to product (Becker and Boles, 2003; He et al., 2014). There also exist
organisms that express enzymes capable of hydrolyzing lignocellulose into sugars.
Clostridium thermocellum, and several other thermophilic organisms, produces
cellulases and hemicellulases; however, this organism cannot utilize the pentoses
produced by hemicellulose degradation (Liao et al., 2016). Therefore, there’s interest
in engineering these organisms to consume a wider range of sugars. Unfortunately,
due to the lack of genetic tools, little progress has been made towards this end.
Instead, co-cultures have been designed that allow for breakdown of lignocellulose
and consumption of all sugars by combining organisms that excel in each of these

strategies (Fu et al., 2009; Lin et al., 2011).

1.1.2 Native and Synthetic Pathways for Conversion of Renewable Feedstocks

Glycolysis and the pentose phosphate pathway are the main routes for sugar
catabolism in microbes; however, these pathways result in significant loss of carbon
(CO2 released), which reduces theoretical yields (Jones et al., 2016). Recent metabolic
engineering strategies have focused on integrating alternative catabolic pathways into
host organisms with the goal of producing more efficient bioconversions. Figure 1.2
provides an overview of the wide range of alternative metabolic pathways that are
being considered for conversion of various feedstocks.

Gaseous substrates are increasingly evaluated as potential co-substrates for the

production of chemicals (Fast et al., 2015; Hu et al., 2016). These gases include



carbon dioxide, carbon monoxide, and hydrogen gas derived from biomass
gasification, and methane derived from anaerobic digestion of organic wastes or
natural gas waste. Multiple avenues are considered to increase the ability of
microorganisms to utilize gaseous substrates. Two well studied carbon fixation
pathways are the Calvin cycle and the Wood-Ljungdahl pathway (Fast and
Papoutsakis, 2012). The Calvin cycle fixes CO> to the C5 sugar ribulose bisphosphate
(RuBP) forming two molecules of 3-phosphoglycerate (3PG), catalyzed by
ribulosel,5-bisphosphate carboxylase—oxygenase (RubisCO), an enzyme that is
essential in the process of photosynthesis. While the Calvin cycle is most prevalent in
photosynthetic organisms, it is also found in some bacteria such as the Sulfobacillus
and Oscillochloris species (Berg et al., 2010). Compared to other carbon fixation
pathways, however, the Calvin cycle is more energy demanding as it consumes seven
ATP and five reducing equivalents to form one molecule of pyruvate (Fast and
Papoutsakis, 2012). Regardless, there have been many reports of using autotrophic
organisms to produce chemicals such as isopropanol, isoprene, and sugars from CO-
(Ducat et al., 2011). There is also the potential to introduce this pathway into non-
carbon fixing organisms, which could effectively increase product yields and decrease
carbon loss (Antonovsky et al., 2016; Gong et al., 2015; Li et al., 2015). In a recent
study, it was demonstrated that expression of the Calvin cycle in S. cerevisiae resulted
in higher ethanol yields and eliminated glycerol by-product formation (Guadalupe-
Medina et al., 2013).

In addition to the Calvin cycle, the Wood-Ljungdahl (WL) pathway is a widely
studied carbon fixation route that can utilize both CO, and CO as substrates

(Abubackar et al., 2015; Munasinghe and Khanal, 2010). In the WL pathway, one



molecule of CO: is converted to CO by carbon monoxide dehydrogenase, and a
separate cascade of steps forms a methyl group from CO.. The enzyme acetyl-CoA
synthase then brings the CO and methyl group together to form AcCoA. Depending on
the carbon source, electrons can be obtained from Hz or CO. The WL pathway, which
is more energetically efficient than the Calvin cycle, is found exclusively in anaerobic
organisms(Jones et al., 2016; Kopke et al., 2010).

Methane is another potential substrate that can be converted into fuels and
chemicals (Fei et al., 2014; Haynes and Gonzalez, 2014). Methane is first converted to
methanol and then to formaldehyde, which gives the cell access to several carbon
assimilation pathways. Two of these pathways are depicted in Figure 1.2, the ribulose
monophosphate (RuMP) pathway and the xylulose monosphate (XuMP) pathway. The
RuMP pathway uses two enzymes to fix formaldehyde to ribulose 5-phosphate (Ru5P)
and enter central carbon metabolism as F6P. Similarly, the XuMP pathway attaches
formaldehyde to a C5 sugar, X5P, and forms GAP and dihydroxyacetone phosphate
(DHAP), which are intermediates of glycolysis. The RuMP pathway is found in
methylotrophic bacteria such as Mycobacterium gastri and Bacillus methanolicus,
while the XuMP pathway is found natively in methylotrophic yeasts. Additionally, the
serine cycle uses the conversion of glycine to serine as the entry point of
formaldehyde, and uses the cofactor, tetrahydrofolate, as the one carbon carrier.
Methanol is an attractive substrate because it contains more electrons per carbon than
sugars. Thus, theoretical yields of reduced products are higher with methanol as a
substrate. So far, it has been difficult to generate a non-native fully methylotrophic
microbe. Engineering co-utilization of methanol and sugars has been more successful

(Whitaker et al., 2017). For example, Corynebacterium glutamicum was engineered to



consume methanol and ribose and produce cadaverine (LeBmeier et al., 2015), and

Pichia pastoris was shown to produce recombinant proteins from methanol and

glucose (Jorda et al., 2012).
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Figure 1.2 Native and synthetic metabolic pathways for conversion of renewable

feedstocks into val

ue-added products

1.2 Tracing Metabolism with Isotopic Tracers

Tracing how substrates are utilized and converted into products is critical in

assessing the efficiency of engineered pathways and guiding further metabolic

engineering strategies. Stable-isotope labeling techniques (primarily with **C-tracers)

are widely used in metabolic engineering to quantify carbon flux for this purpose

(Antoniewicz, 2015; Gebreselassie and Antoniewicz, 2015). In tracer experiments, an

isotopically labeled substrate is added to the culture, e.g. [U-*C]glucose, resulting in



the incorporation of 3C atoms into intermediates of cellular metabolism and
eventually into products. By quantifying fractional $3C-labeling of various metabolites,
the contribution of a particular substrate can be determined. Tracer experiments are
especially useful when examining non-native substrate utilization. When an
engineered pathway is expressed in a host organism, the ability of the pathway to use
the non-native substrate can be quantified by feeding a 3C-labeled isotope of that
substrate and measuring labeling in metabolites. This labeling can also be used as a
method for detecting how further modifications to metabolism or the engineered
pathway itself affect uptake of that substrate. Additionally, tracer experiments are
particularly informative when multiple substrates are present, and when complex
additives such as yeast extract are used in fermentations. By measuring *C-labeling
over time, it is possible to elucidate relative rates of substrate utilization. For example,
a constant isotopic labeling indicates that substrates are consumed simultaneously
(Jones et al., 2016). On the other hand, if labeling changes in time, then the rate at
which the labeling changes can be translated into relative flux changes (lwatani et al.,

2007).

1.2.1 Measuring Metabolism with 13C- Metabolic Flux Analysis

In order for biological processes to be economically viable, substrates must be
converted to products at near-theoretical yields (Papoutsakis, 2015). This generally
requires significant rewiring of cellular metabolism. Compared to native metabolism,
which has evolved to optimize cell growth, product formation will require a different
balance of pathway activities to maximize the flow of carbon and electrons from
feedstocks to products. 3C-Metabolic flux analysis (**C-MFA) is the best approach to

gain quantitative insights into cellular metabolism (Antoniewicz, 2015). Knowledge of



metabolic fluxes is important to identify bottlenecks in metabolism and determine
specific changes in pathway utilization resulting from genetic manipulations (Long
and Antoniewicz, 2014). Experimentally validated fluxes are also used in constraint-
based modeling approaches, and fluxes are critical for parameterizing kinetic models
of metabolism (Khodayari et al., 2014), which are increasingly applied for analyzing
metabolic pathways and predicting the outcomes of metabolic engineering
interventions given the poor performance of traditional constraint-based approaches
(Long et al., 2016b).

Methods for 1*C-MFA have advanced significantly in the past few years
(Antoniewicz, 2015). With current state-of-the-art approaches, it is possible to
measure intracellular fluxes with a precision of about 1-3% (Crown et al., 2015). The
ability to generate high-resolution flux maps presents unprecedented opportunities to
gain a much more detailed understanding of the regulation of metabolic pathways and
in vivo enzyme kinetics. Current best approaches for flux estimation are based on the
concept of parallel labeling experiments and integrated 3C-MFA (Figure 1.3)
(Antoniewicz, 2015). A good example of the power of parallel labeling experiments is
the study by Crown et al. (Crown et al., 2015), where 14 parallel labeling experiments
were successfully integrated to generate a detailed flux map for E. coli. Parallel
labeling was also successfully applied for analysis of Clostridium acetobutylicum (Au
et al., 2014), Geobacillus spp. (Cordova and Antoniewicz, 2015), and various
mammalian systems (Ahn and Antoniewicz, 2013; Ahn et al., 2016; Crown et al.,
2016; Crown et al., 2015).

The design of optimal labeling experiments is a critical step in 3C-MFA. It is

now well recognized that traditional tracers such as [1-*C]glucose and [U-
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13C]glucose, although relatively cheap, are suboptimal for quantifying precise
metabolic fluxes (Crown and Antoniewicz, 2012). For example, it was demonstrated
that doubly labeled tracers such as [1,2-*C]glucose and [1,6-13C]glucose are more
optimal for 2C-MFA, i.e. these tracers produce fluxes with much smaller confidence
intervals (Crown et al., 2016b). For xylose, optimal tracers include [1,2-2*C]xylose
and [5-13C]xylose (Cordova and Antoniewicz, 2015).

The choice of tracers becomes even more critical when multiple substrates are
present. When studying glucose and xylose co-utilization, the combination of [1-
13C]glucose and unlabeled xylose has been commonly used (e.g. to elucidate pentose
phosphate pathway fluxes in a creA-mutant of Aspergillus nidulans (David et al.,
2005), and to study the effect of a modified redox pathway in S. cerevisiae (Grotkjaer
et al., 2005). A limitation of this tracer scheme is, however, that it only works well
when the labeled substrate (in this case glucose) is the main carbon source. If xylose
becomes the main carbon source, then *C-labeling becomes dramatically reduced and
flux estimation fails. It is therefore advantageous to design labeling experiments that
are less dependent on specific fluxes. Logically, it follows that both substrates should
be labeled. A number of optimized tracer schemes have been successfully applied,
including [1,2-13C]glucose + [1,2-3C]xylose to elucidate glucose and xylose co-
utilization in E. coli (Long et al., 2016a), and [1,6-*C]glucose + [5-*C]xylose for flux
analysis in T. thermophilus (Cordova et al., 2016).

Metabolic fluxes from other lignocellulosic sugars have also been studied. For
example, Fonseca et al. used [2-1*C]arabinose to study arabitol production in
arabinose-utilizing yeast strains (Fonseca et al., 2008), and Sund et al. used [1-

13Clglucose, [1-*C]xylose, and [1-1*C]arabinose to estimate phosphoketolase fluxes in
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Figure 1.3  Comparison of different designs of isotopic labeling experiments to
quantify co-utilization of multiple substrates using classical *C-MFA
(left) and integrated *3C-MFA based on parallel labeling experiments

(right).

Clostridium acetobutylicum (Sund et al., 2015). Similarly, Fendt and Sauer used **C-
glucose, 3 C-galactose, and **C-mannose tracers to elucidate sugar metabolism of S.

cerevisiae. Earlier studies with Fibrobacter also focused on elucidating catabolism of
more complex substrates, including cellulose and cellobiose (Fendt and Sauer, 2010).
By examining the dilution of [1-*3C]glucose and quantifying the labeling of products

during growth on cellulose or cellobiose, the authors were able to determine how

VS.

Parallel labeling experiments

(single tracers in parallel experiments)

[>cGluc JR%Y Glue

—+ —
|7 |7
—p

Integrated

13C-MFA

Flux Map

vk

]

\d

[

i)

L

LY 4

glucose was utilized in the presence of cellulose (Matheron et al., 1998).
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Investigation of the metabolism of gaseous and one carbon substrates has also
been performed using 3C-tracers. Several CO,-utilizing organisms have been studied.
Specifically, the model cyanobacteria, Synechocystis sp., has been the focus of many
works examining the dynamics of photosynthesis using 3CO; as a tracer and applying
13C-nonstationary metabolic flux analysis (Young et al., 2011). Additionally, $3CO;
incorporation has also been studied in organisms that have been engineered to use
CO. For example, 3CO, was used to evaluate the autotrophic ability of E. coli before
and after adaptive evolution, when expressing of RubisCO (Antonovsky et al., 2016;
Herz et al., 2017). Through this investigation, it was shown that all sugar-phosphate
intermediates were completely derived from CO.. The metabolism of 13CO and 3CO;
has been quantified in several organisms that can use the WL pathway in an attempt to
evaluate the potential of mixotrophic production of chemicals (Jones et al., 2016).

Metabolism of methane, and its subsequent derivatives (methanol,
formaldehyde, formate), has also been studied with the goal of creating new and
improving existing methanotrophic and methylotrophic organisms (Bennett et al.,
2018). Kalyuzhnaya et al assess the ability of Methylomicrobium alcaliphilum to
convert 3CHy into product under both anaerobic and microaerobic conditions
(Kalyuzhnaya et al., 2013). An engineered strain of the methanogen Methanosarcina
acetivorans, an organism that typically produces methane, was demonstrated to
instead use *CHy for the production of acetate (Nazem-Bokaee et al., 2016). *C-
methanol has also been used to quantify the ability of native methylotrophs, such as
Bacillus methanolicus and Pichia pastoris (Jorda et al., 2012; Pluschkell and
Flickinger, 2002), and engineered methylotrophs, such as E. coli and Corynebacterium

glutamicum (LeBmeier et al., 2015; Whitaker et al., 2017), to use methanol for growth
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and production of specialty chemicals. More recently, E. coli has been modified to use
formate as a carbon source for growth. **C-formate was used to demonstrate
successful design of this auxotrophic strain in which formate was required for the
synthesis of several amino acids, including methionine and glycine (Yishai et al.,

2017).

1.3 Aims and Outline of Thesis

Isotopic tracers are easy to implement and can be used to achieve a wealth of
new information about metabolism. However, there has been limited application of
tracers and therefore, their potential has not been realized. In this dissertation, we aim
to demonstrate how tracers can be applied to various systems to gain a detailed
understanding of pathway utilization, one that cannot be achieved without this
analytical technique. The systems studied here include ones with multiple substrates,
engineered pathways, and one-carbon substrates. Specifically, we first examine sugar
utilization in E. coli and demonstrate how to choose and apply tracers to E. coli strains
that can co-utilize sugars. We then use tracers to study and improve E. coli that has
been engineered to consume a non-native substrate, methanol. We next show that
classical **C-MFA can be used to study the metabolism of a one-carbon substrate in
the model methanogen, Methanosarcina acetivorans. Lastly, we present new and
evaluate existing metabolic flux analysis methods.

e Chapter 2 shows the analysis performed of glucose and xylose
metabolism under both aerobic and anaerobic conditions in E. coli. Here,
we aim to aid the design and validation of constraint-based approaches
by providing a wealth of new information of the metabolism of these two

widely studied substrates. We applied 3C-MFA using optimal tracers for
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glucose and xylose. It was found that under anaerobic conditions, there is
significant turnover of lipids. Specifically, under anaerobic growth on
xylose, this biomass turnover was critical for growth. Analysis of fluxes
and co-factor allocation revealed key differences in pathway utilization

for each condition.

e Chapter 3 demonstrates how we applied tracers to a multi-substrate
system. Here we examine knockouts of the phosphotransferase system in
E. coli and quantify their ability to co-utilize glucose and xylose.
Additionally, we characterize two successfully engineered co-utilizing
strains, GX50 and LMSE2. We apply 2*C-metabolic flux analysis to
elucidate the metabolism of glucose/xylose co-consumption and
interrogate the sugar uptake profile for each strain. It was found that the
PTS knockouts and GX50 are sensitive to the relative extracellular
concentrations of glucose and xylose. Specifically, as the fraction of one
sugar increases, so does its relative uptake rate. Unlike GX50, LMSE2 is
stoichiometrically limited, constraining the relative uptake rates to a
constant ratio. Through this analysis, we identified the ideal uptake
profile to be linear and non-biased towards a specific substrate, focusing

future efforts towards the development of novel transport systems.
e Chapter 4 describes how we examined and improved methanol

assimilation in a synthetic methylotrophic E. coli strain. Specifically, we

applied B*C-tracers and evaluated 25 different co-substrates for methanol
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assimilation. It was found that co-utilization of threonine significantly
enhanced methylotrophy and led to increased activity of specific
metabolic pathways. These pathways are normally repressed by the
leucine-responsive protein (Irp). By deleting Irp, we further enhanced the
methylotrophic ability of our strain, as demonstrated through increased
incorporation of *C carbon from 3C-methanol. Here, we demonstrate
the value of using tracers to study engineered pathways as well as the
importance of studying and interrogating regulation when attempting to

engineer substrate metabolism.

e Chapter 5 presents the characterization of the methanogen,
Methanosarcina acetivorans, a model organism for studying the
conversion of various substrates into methane and a possible host for the
conversion of methane into value-added products. Here, we characterize
this organism during growth on the one-carbon substrate, methanol. A
network model was created, consisting of reactions from central carbon
metabolism, amino acid biosynthetic pathways, and methanogenesis.
Typically, estimating fluxes during growth on one-carbon substrates
requires more advanced computational approaches and precise sampling
of metabolic intermediates compared to 13C-MFA. Here, we applied
classical 3C-MFA to validate the network model and generate the first
flux map for M. acetivorans, demonstrating the successful application of

classical 3C-MFA to a one-carbon system.

16



e Chapter 6 addresses the need for metabolic flux analysis methods that
can be used for atypical systems, ones that are not at isotopic or
metabolic steady state. Here, we present an extension of DMFA to
include isotopic labeling measurements (**C-DMFA). Additionally, we
evaluate all established MFA methods (3*C-MFA, **C-NMFA, and 3C-
DMFA) and their ability to estimate fluxes for various conditions. It was
concluded that 3C-MFA and 3C-MFAg can be used for isotopic steady
state, 33C-NMFA can be used for isotopic non-steady state, and **C-
DMFA can be used for metabolic and isotopic non-steady state. This
work is the first demonstration of 3C-DMFA and clearly outlines how

and when each established method should be applied.

e Chapter 7 reviews the major conclusions and implications of the

described work and addresses possible directions for future work.
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Chapter 2

COMPREHENSIVE ANALYSIS OF GLUCOSE AND XYLOSE
METABOLISM IN Escherichia coli UNDER AEROBIC AND ANAEROBIC
CONDITIONS BY BC-METABOLIC FLUX ANALYSIS

2.1 Introduction

Biological conversion of lignocellulosic biomass into fuels and other chemicals
has gained much attention in recent years (Choi et al., 2015). Lignocellulosic biomass
is composed mainly of cellulose and hemicellulose, both of which can be broken down
to carbohydrate monomers such as glucose, xylose, mannose, and galactose (Girio et
al., 2010). With glucose and xylose as the major products of lignocellulose
breakdown, conversion of these two sugars into value-added products has been the
focus of many metabolic engineering efforts (Hasona et al., 2004; R. Liu et al., 2012;
Tao et al., 2001). While progress in metabolic engineering has allowed the generation
of unique strains for improved glucose and xylose fermentations, detailed knowledge
regarding changes in cellular metabolism as a result of these modifications is lacking
and this limits further rational strain design (Long and Antoniewicz, 2014; Woolston
etal., 2013).

Constraint-based reconstruction and analysis (COBRA) methods have been
widely used in metabolic engineering for strain design (Becker et al., 2011; King et
al., 2015). These methods include flux balance analysis (FBA) (Edwards et al., 2002),
minimization of metabolic adjustment (MOMA\) (Segre et al., 2002), regulatory on/off
minimization of metabolic flux changes (ROOM) (Shlomi et al., 2005), and relative
optimality in metabolic networks (RELATCH) (Kim and Reed, 2012), which can be

implemented for strain design in algorithms such as OptKnock (Burgard et al., 2003).
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An important requirement for COBRA methods is the presence of experimentally
validated reference flux maps. 1*C-Metabolic flux analysis (3C-MFA) is the most
robust technique for determining precise intracellular metabolic fluxes (Antoniewicz,
2015; Antoniewicz et al., 2006; Crown and Antoniewicz, 2013a). In the past decade,
13C-MFA has been applied extensively to investigate aerobic metabolism of glucose in
E. coli (Chen et al., 2011; Perrenoud and Sauer, 2005; Toya et al., 2012); several *C-
MFA studies have also focused on elucidating anaerobic glucose metabolism in E. coli
(Chenetal., 2011; Choudhary et al., 2011), and other microbes (Au et al., 2014). In
contrast, relatively little is known about xylose metabolism. To our knowledge, there
have been no prior *C-MFA studies on xylose metabolism in E. coli, and only a
handful of 13C-MFA studies have been published on xylose metabolism is other
organisms (Cordova and Antoniewicz, 2015; Cordova et al., 2016; Feng and Zhao,
2013; L. Liu et al., 2012; Wasylenko and Stephanopoulos, 2015).

To address this gap in current knowledge, we have in this work applied
advanced methods for **C-flux analysis based on parallel labeling experiments and
integrated *C-MFA (Antoniewicz, 2015; Leighty and Antoniewicz, 2013)to
comprehensively quantify metabolism of glucose and xylose in E. coli under aerobic
and anaerobic growth conditions. Fully **C-labeled tracers were also applied to
measure changes in biomass composition and turnover of macromolecules under all
growth conditions. Results from this work provide valuable new insights into
metabolism of E. coli that can serve as the basis for future model building efforts and

new strain designs using COBRA approaches.
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2.2 Materials and Methods

2.2.1 Materials

Media and chemicals were purchased from Sigma-Aldrich (St. Louis, MO).
Tracers were purchased from Cambridge Isotope Laboratories: [1,2-1*C]glucose (99.9
atom% 3C), [1,6-1*C]glucose (99.6%), [U-3C]glucose (99.3%), [1,2-*C]xylose
(99.3%), [5-13C]xylose (99.6%), and [U-13C]xylose (99.3%). The isotopic purity of all
glucose tracers was determined by GC-MS (Long et al., 2016a). MOPS minimal

medium was used for all experiments.

2.2.2 Strains and Growth Conditions

For labeling experiments, a single colony of E. coli BW21135 (GE Healthcare
Dharmacon) was first suspended in MOPS medium containing either 40 mM glucose
or 40 mM xylose and grown overnight at 37°C in a shaker flask. The pre-culture was
then re-suspended in fresh MOPS medium containing a particular tracer (40 mM
initial concentration). For labeling experiments with [U-*3C]glucose and [U-
13C]xylose the cells were first washed with glucose-free and xylose-free medium. The
initial ODeoo Of inoculated cultures was 0.15 + 0.02 (an inoculation ratio of
approximately 1:10 was used). Cells were grown at 37°C in parallel mini-bioreactors
with a working volume of 10 mL, as described before for aerobic E. coli cultures
(Crown et al., 2015). Air was sparged into the liquid at a rate of 12 mL/min to provide
oxygen and to ensure sufficient mixing of the culture by the rising gas bubbles. For
anaerobic cultures, nitrogen was sparged into the headspace of the mini-bioreactors at
5 mL/min to maintain anaerobic conditions (Au et al., 2014), and mixing was achieved
by continuous stirring with a stirrer bar. The pH of the anaerobic cultures was

maintained at pH 7.0 £ 0.15 through automatic addition of 1IN NaOH. In all cases,
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glucose pre-cultures were used for glucose tracer experiments, and xylose pre-cultures
for xylose tracer experiments. The following tracers were used for 3C-MFA (40 mM
initial concentration): [1, 2-2C]glucose, [1, 6-13C]glucose, [1, 2-1*C]xylose, [5-
13C]xylose. Labeling experiments were also performed with 40 mM of [U-1C]glucose
and [U-1C]xylose to determine turnover of biomass macromolecules (including
proteins, lipids and RNA) during aerobic and anaerobic growth of E. coli. Growth
characterization of the knockout strains AfadD, AfadK, and AfadDAfadK was
performed as described above for wild-type E. coli. The strains AfadD and AfadK
were obtained from the Keio collection (GE Healthcare Dharmacon) and AfadDAfadK
strain RMK58 was obtained from Dr. John Cronan (University of Illinois at Urbana-

Champaign) (Campbell et al., 2003).

2.2.3 Analytical Methods

Samples were collected at multiple times during the exponential growth phase
to monitor cell growth, substrate uptake and product formation. Cell pellets and
supernatants for isotopic labeling analysis were collected at an ODgoo 0f 0.85 + 0.02.
Cell growth was monitored by measuring the optical density at 600nm (ODsgo) using a
spectrophotometer (Eppendorf BioPhotometer). The ODegoo values were converted to
cell dry weight concentrations using previously determined ODegoo-dry cell weight
relationship for E. coli (1.0 ODeoo = 0.32 gDW/L; molecular weight of dry biomass =
24.6 gDW/C-mol) (Long et al., 2016b). After centrifugation of the samples, the
supernatant was separated from the biomass pellet. Acetate, formate, succinate,
ethanol, and xylose concentrations in the supernatant were determined using an
Agilent 1200 Series HPLC (Au et al., 2014). Glucose and lactate concentrations were

determined using a YSI 2700 biochemistry analyzer (YSI, Yellow Springs, OH).
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2.2.4 Biomass composition analysis

The methods used for quantifying biomass composition were described in
(Long and Antoniewicz, 2014). Briefly, samples were prepared by three respective
methods: hydrolysis of protein and subsequent TBDMS derivatization of amino acids;
hydrolysis of RNA and glycogen and subsequent aldonitrile propionate derivatization
of sugars (ribose and glucose, respectively); and fatty acid methyl ester derivatization
for fatty acid. In total, 17 amino acids were quantified. The amino acids arginine,
cysteine and tryptophan are degraded during hydrolysis and were thus not detected.
For total protein quantification, we assumed the values previously reported for these
three amino acids (Neidhardt, 1987). Glutamine and asparagine were deaminated to
glutamate and aspartate, respectively, during hydrolysis; thus, we report the combined
pools of each. Quantification of all components was achieved by isotope ratio analysis
using an isotopically labeled standard and a naturally labeled sample. In this study, the
standard was generated by growing wild-type E. coli on [U-3C]glucose and aliquoting
identical (1 mL of an ODeoo = 1.0) samples of this “fully labeled” biomass. These
were centrifuged and washed twice with M9 medium. The composition of the fully
labeled biomass was characterized using unlabeled chemical standards, and
subsequently these were used as standards by co-dissolving with the unlabeled

samples at the beginning of each respective analytical method.

2.2.5 Gas chromatography-mass spectrometry

GC-MS analysis was performed on an Agilent 7890B GC system equipped
with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 pum-phase thickness;
Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating

under ionization by electron impact (El) at 70 eV. Helium flow was maintained at 1
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mL/min. The source temperature was maintained at 230°C, the MS quad temperature
at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. GC-
MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino
acids was performed as described in (Antoniewicz et al., 2007a). Labeling of glucose
and xylose were determined after aldonitrile propionate derivatization as described in
(Antoniewicz et al., 2011; Sandberg et al., 2016). Labeling of fatty acids was
determined after derivatization to fatty acid methyl esters (FAME) (Crown et al.,
2015). Labeling of glucose (derived from glycogen) and ribose (derived from RNA)
were determined as described in(Long et al., 2016a; McConnell and Antoniewicz,
2016). In all cases, mass isotopomer distributions were obtained by integration
(Antoniewicz et al., 2007a) and corrected for natural isotope abundances(Fernandez et

al., 1996).

2.2.6  Metabolic network model and *C-metabolic flux analysis

The metabolic network models used for 3C-MFA for all four growth
conditions, i.e. aerobic and anaerobic growth with glucose and xylose as carbon
source, are provided in Supplemental Materials. The models are based on the E. coli
model described in (Crown et al., 2015). The models include all major metabolic
pathways of central carbon metabolism, lumped amino acid biosynthesis reactions,
and a lumped biomass formation reaction. Because we cannot distinguish between the
NAD-dependent (meaA) and NADP-dependent (meaB) malic enzymes, we included
only one of the two malic enzymes in the models, the NADP-dependent malic
enzyme. Previous studies have demonstrated that neither enzyme is expressed during
growth on glucose, and that only the NADP-dependent (meaB) malic enzyme is

significantly expressed during growth on xylose (Schmidt et al., 2016). The
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stoichiometries for the biomass formation reactions were derived using the measured
biomass composition for each growth condition. The models also accounted for
dilution of intracellular labeling from unlabeled CO- (Leighty and Antoniewicz,
2012), and dilutions resulting from the turnover of lipids as described in the text.

All BC-MFA calculations were performed using the Metran software (Yoo et
al., 2004) which is based on the elementary metabolite units (EMU) framework
(Antoniewicz et al., 2007b). Fluxes were estimated by minimizing the variance-
weighted sum of squared residuals (SSR) between the experimentally measured and
model predicted external rates and mass isotopomer distributions of biomass amino
acids, glucose derived from glycogen, ribose derived from RNA, and external
succinate (anaerobic cultures only) using non-linear least-squares regression
(Antoniewicz et al., 2006). All measured mass isotopomers are provided in Table A.5
and A.6. For integrated analysis of parallel labeling experiments, the data sets were
fitted simultaneously to a single flux model as described previously (Leighty and
Antoniewicz, 2013). Flux estimation was repeated 10 times starting with random
initial values for all fluxes to find a global solution. At convergence, accurate 95%
confidence intervals were computed for all estimated fluxes by evaluating the
sensitivity of the minimized SSR to flux variations. Precision of estimated fluxes was

determined as follows (Antoniewicz et al., 2006)

FIUX preCiSion (StdeV) = [(ﬂUX upper bound 95%) - (ﬂUX lower bound 95%)] /4 (21)

To describe fractional labeling of metabolites, G-value parameters were

included in 3C-MFA. As described previously (Antoniewicz et al., 2007¢), the G-
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value represents the fraction of a metabolite pool that is produced during the labeling
experiment, while 1-G represents the fraction that is naturally labeled, i.e. from the
inoculum. By default, one G-value parameter was included for each measured
metabolite in each data set. Reversible reactions were modeled as separate forward
and backward fluxes. Net and exchange fluxes were determined as follows: Vnet = v¢-

Vb; Vexch = MiN(Vs, Vb).

2.2.7 Goodness-of-fit analysis

To determine the goodness-of-fit, 13C-MFA fitting results were subjected to a
y2-statistical test. In short, assuming that the model is correct and data are without
gross measurement errors, the minimized SSR is a stochastic variable with a -
distribution (Antoniewicz et al., 2006). The number of degrees of freedom is equal to
the number of fitted measurements n minus the number of estimated independent
parameters p. The acceptable range of SSR values is between y2q2(n-p) and y?1-a2(n-
p), where a is a certain chosen threshold value, for example 0.05 for 95% confidence

interval.
2.3 Results and Discussion

2.3.1 Growth characteristics

Growth characteristics of wild-type E. coli grown in MOPS minimal medium
at 37°C were determined at four growth conditions: aerobic and anaerobic growth with
glucose and xylose as the carbon source. For the anaerobic cultures, controlling the pH
at 7.0 was necessary to maintain exponential growth; no pH control was required for
the aerobic cultures (up to ODsoo of about 1.0). Table 2.1 shows the measured growth

rates, biomass and product yields, and the corresponding biomass specific product
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secretion rates for all conditions. The aerobic growth rates for both substrates (0.70 +
0.01 and 0.50 + 0.02 h'! for glucose and xylose, respectively) were more than 2-fold
higher than the corresponding anaerobic growth rates (0.33 + 0.02 and 0.13 + 0.02 h*?,
respectively). The aerobic biomass yields (0.44 + 0.02 and 0.35 + 0.03 gow/g for
glucose and xylose, respectively) were also several-fold higher compared to anaerobic
biomass yields (0.14 + 0.01 and 0.08 + 0.01 gow/g, respectively). Under aerobic
growth conditions, acetate was the only secreted product. Under anaerobic conditions
acetate, ethanol, formate and succinate were produced. Acetate, ethanol and formate
were secreted at a relatively constant ratio of about 1:1:2 for both substrates. No
lactate was detected in any of the cultures. The biomass specific glucose uptake rate
was 50% higher during anaerobic growth (13.1 £ 1.0 mmol/gow.h) compared to
aerobic growth (8.8 = 0.5 mmol/gpw.h), consistent with previous reports (Chen et al.,
2011). In contrast, the biomass specific xylose uptake rate was only 13% higher during
anaerobic growth (10.8 £ 1.1 mmol/gow.h) compared to aerobic growth (9.5 £ 0.5
mmol/gow.h). The carbon and electron recoveries (not accounting for CO2 and O,
which were not measured) for the aerobic cultures were 77% for glucose and 57% for
xylose (Table 1), which suggests that a relatively larger fraction of xylose was
catabolized to CO. compared to glucose. The carbon and electron recoveries for the
anaerobic cultures were 87% for glucose and 81% for xylose, suggesting that a non-
negligible fraction of both substrates must have been converted to e.g. CO2 and a
reduced product such as Ho. Indeed, in sealed flask cultures we detected net
accumulation of CO» and H in the head-space that could account for the missing 13-

19% of carbons and electrons.
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Table 2.1 Physiological characteristics of E. coli grown in batch culture on glucose
and xylose under aerobic and anaerobic conditions in MOPS minimal
medium at 37°C.

Aerobic Aerobic Anaerobic Anaerobic

Glucose Xylose Glucose Xylose
1 (1/h) 0.70 £ 0.01 0.50 £ 0.02 0.33+0.02 0.13+0.02
Y, (gpw/2) 0.44 +0.02 0.35+0.03 0.14 £0.01 0.08 £0.01
Y, (mol/mol) 0.65+0.01 033+0.01 0.56 +£0.02 0.51 £0.02
Y rorm(mol/mol) - - 1.25+0.05 1.00 £ 0.03
Ygion(mol/mol) - - 0.61 +£0.04 0.56 £ 0.01
Yy (mol/mol) - - 0.15+0.02 0.10£0.01
Qae(mol/gnyw h) 8.8+0.5 - 13.1+1.0 -
Qxyi(mol/gpy ) - 9.5+0.5 - 108+ 1.1
Qac(mol/gny h) 57+£02 32402 73+£0.7 55+08
Qeorm(Mol/gnyw h) - - 16.4+009 10.8+0.8
(grop(mol/gny h) - - 8.0+0.5 6.1£0.5
(gue(mol/gny h) - - 20=+0.1 1.1+0.1
Carbon Recovery (%) 75+ 7% 56 +£9% 87 + 5% 81 = 7%
Redox Recovery (%) 78 £ 8% 58 £ 9% 86 + 6% 81 + 8%

The data shown are biomass yield (Yx), yields of secreted products (Yi), specific
growth rate (u), specific uptake rate (qeiuc and gxyl), and specific production rate (q;)
for secreted metabolites acetate (Ac), formate (Form), ethanol (EtOH) and succinate

(Suc).

2.3.2 Biomass composition analysis

In nearly all flux studies performed to date, a constant E. coli biomass

composition has been assumed. However, it is well known that the composition of

biomass can change in response to environmental and genetic perturbations (Long et

al., 2016b). This in turn can have a non-negligible impact on the accuracy of flux
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predictions. To ensure that flux results generated in this study are as accurate as
possible, biomass composition was measured for all growth conditions using the
methods described in (Long and Antoniewicz, 2014). This information was then used
to generate condition-specific growth stoichiometries for *C-MFA.

The results of the biomass composition analyses are summarized in Figure 2.1
(complete results are provided in Table A.1). Proteins were the most abundant
component of biomass for all conditions. The protein content of dry biomass was
slightly higher for xylose as the substrate (57 wt% and 61 wt% for aerobic and
anaerobic cultures, respectively) compared to glucose as the substrate (51 wt% for
both aerobic and anaerobic cultures). RNA was the next most abundant component of
biomass. For both substrates, the RNA content was higher during aerobic growth (18
wt% for both substrates) compared to anaerobic growth (11 wt% for glucose and 9%
for xylose). It is well known that the RNA content of biomass positively correlates
with the growth rate of cells (Long et al., 2016b), which is consistent with the results
presented here. The lipid content was relatively constant at about 6 wt% for all growth
conditions. Glycogen content varied significantly, ranging from 2 wt% for aerobic
growth on glucose to 9 wt% for anaerobic growth on glucose. Figure 1B shows the
distribution of fatty acids in biomass, which varied notably depending on the specific
growth condition. For example, the relative abundance of C18:1 was reduced by more
than 2-fold when cells were grown anaerobically on xylose, compared to the other
three growth conditions. No significant changes were observed in the relative amino
acid profiles (Table A.3). The composition for the aerobic glucose condition is

consistent with previous reports (Long and Antoniewicz, 2014; Long et al., 2016b).
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Small differences in the fatty acid distribution, particularly higher C16:1 levels here,

may be the result of the media conditions (MOPS here, M9 previously).

A B 100
60 :5“.—:
B Aerobic Glucose a
e O Anaerobic Glucose D 75
% 40 B Aerobic Xylose g
= O Anaerobic Xylose 2 50
> x|
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° i 25 1
I I o =
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Protein RNA Lipid Glycogen C14:0 C16:1 C16:0 C18:1 C18:0

Figure 2.1  Biomass composition analysis of wild-type E. coli grown aerobically and
anaerobically on glucose and xylose.

2.3.3 Turnover of biomass macromolecules

A common assumption in **C-MFA is that turnover of biomass
macromolecules such as proteins, lipids and RNA can be neglected; however, this
assumption has not been validated rigorously under all relevant growth conditions. To
investigate the presence or absence of biomass turnover, cells were first pre-cultured
in medium containing unlabeled glucose or xylose (i.e. natural abundance of *3C),
washed with sugar-free medium, and then transferred to medium containing fully
labeled glucose [U-*3C]glucose, or fully labeled xylose [U-*3C]xylose. The initial
ODsoo of the cultures was 0.15 + 0.02 and cells were harvested for GC-MS analysis
when ODego reached 0.85 + 0.02. Assuming that no turnover of biomass occurs, the
expected labeling profile of biomass components at the time of harvesting would be:
18% (=0.15/0.85) fully unlabeled (M+0), and 82% fully labeled (M+N, where N is the

number of C-atoms in the measured compound). Since isotopic tracers are not 100%
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13C-labeled (for example, here, we determined that [U-*C]glucose and [U-*C]xylose
tracers both had an isotopic purity of about 99.3 atom% 3C), some incompletely
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Figure 2.2  Expected (black bars) and measured (red bars) mass isotopomer
distributions for five metabolites (valine, serine, phenylalanine, aspartate,
and palmitate) from tracer experiments with [U-*C]glucose and [U-
13C]xylose. Presence of incompletely labeled mass isotopomers,
especially under anaerobic conditions, indicates significant biomass
turnover.
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labeled mass isotopomers (M+N-1) are also expected. On the other hand, if biomass
turnover does occur, then we would expect unlabeled carbon from the initially
unlabeled biomass to enter central carbon metabolism, which would subsequently
result in increased abundances of incompletely labeled mass isotopomers. Figure 2
shows the expected and measured mass isotopomer distributions (after correction for
natural isotope abundances), for five representative metabolites: valine, serine,
phenylalanine, aspartate and palmitate. The complete set of GC-MS measurements are
provided in Table A.5 and A.6.

For aerobic glucose and xylose cultures, the measured mass isotopomers
matched well with the expected mass isotopomers assuming no biomass turnover (Fig.
2.2A and 2.2B). The notable exceptions were aspartate, glutamate and related amino
acids (see Tables A.5 and A.6), which displayed higher than expected abundances of
M-+N-1 mass isotopomers. In a previous study using [U-*3C]glucose (Leighty and
Antoniewicz, 2012), we noted similar dilutions of labeling which could be explained
by the incorporation of unlabeled (atmospheric) CO> via the anaplerotic reaction:
phosphoenolpyruvate + CO, — oxaloacetate (i.e. oxaloacetate is the precursor for
aspartate, glutamate and related amino acids). The inlet air in this study contained
~0.04% CO,. The partial labeling observed here for both aerobic cultures is thus not
related to biomass turnover, but results from the incorporation of unlabeled
atmospheric CO..

For anaerobic glucose and xylose cultures, the measured mass isotopomers
differed more significantly from the expected mass isotopomers (Fig 2.2C and 2.2D).
Most striking were the very high abundances of M+N-1 mass isotopomers of

aspartate, glutamate and related amino acids, suggesting significant incorporation of
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unlabeled CO,. For example, for the anaerobic [U-13C]glucose experiment, the M+N-1
mass isotopomer of aspartate (M+3) was the most abundant mass isotopomer in the
mass spectrum (>50% relative abundance). We validated that the nitrogen gas used in
the anaerobic cultures did not contain any CO3 (less than 0.001%). Thus, all of the
unlabeled CO2 must have originated from turnover of unlabeled biomass. These
results further suggest that under anaerobic conditions not enough CO: is generated in
central carbon metabolism and amino acid biosynthesis pathways to support
anaplerosis (phosphoenolpyruvate + CO, — oxaloacetate), but instead that a large
fraction of CO> originates from biomass turnover.

For the anaerobic cultures, we also noted that palmitate had significantly
higher than expected abundances of incompletely labeled mass isotopomers. This was
especially pronounced for the anaerobic xylose culture, where we detected significant
abundances for M+10, M+12, and M+14 mass isotopomers, in addition to the
expected M+16 mass isotopomer of palmitate. The presence of M+N-2, M+N-4, and
M+N-6 mass isotopomers suggests incorporation of unlabeled AcCoA (M+0) that
originated from biomass turnover, e.g. via f-oxidation of initially unlabeled fatty
acids.

Moreover, we found evidence that unlabeled phosphoenolpyruvate (PEP) was
present. For example, we observed significant M+6 (=M+N-3) and M+7 (=M+N-2)
mass isotopomers in the mass spectrum of phenylalanine for the anaerobic xylose
culture. Phenylalanine is produced from the condensation of erythrose 4-phosphate,
PEPci-c2 and PEPc1-cs. If unlabeled PEP (M+0) is present, then we would expect to
observe equal abundances of M+6 and M+7 mass isotopomers for phenylalanine,

consistent with our GC-MS measurements (Figure 2.2). To further validate that
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unlabeled PEP was present, we measured directly the labeling of three intracellular
metabolites in glycolysis, 3PG, PEP and pyruvate. For the anaerobic xylose culture,

7% of 3PG was fully unlabeled (M+0), and 5% of PEP and pyruvate were fully
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Figure 2.3  Mass isotopomer distributions for the glycolytic intermediates 3-
phosphoglycerate (3PG), phosphoenolpyruvate (PEP), and pyruvate (Pyr)
from tracer experiment with [U-3C]glucose and [U-*3C]xylose. Presence
of unlabeled mass isotopomers (M+0), especially during anaerobic
growth on [U-C]xylose, indicates that significant biomass turnover
occurs.

unlabeled (Figure 2.3). For the other three growth conditions, the M+0 abundances of

these metabolites were less than 1%. A possible explanation for the presence of
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unlabeled PEP is that it originated from the glycerol moiety of unlabeled lipids that
turned over. Taken together, the labeling data presented here provide strong evidence
that biomass turnover occurs under anaerobic growth conditions and that this cannot

be neglected when analyzing labeling data.

2.3.4 Growth of -oxidation knockouts

The results described above suggest that lipid turnover could be a characteristic
feature of anaerobic growth on xylose. To determine if B-oxidation is strictly
necessary for cell growth under this condition, the effect of gene knockouts of key
enzymes in the B-oxidation pathway were investigated. Specifically, we determined
growth characteristics for the strains AfadD, AfadK, and AfadDAfadK under aerobic
and anaerobic conditions for both substrates. The genes fadD and fadK encode for
acyl-CoA synthetase, the first step in the B-oxidation pathway (Fig. 2.4A). It is
believed that fadD is mainly involved in aerobic fatty acid oxidation, while fadK is
active during anaerobic fatty acid oxidation (Campbell et al., 2003). Figure 2.4B
compares the growth rates of wild-type E. coli and each of the knockout strains for the
four growth conditions. No significant differences in growth rates were observed for
the aerobic cultures, and for the anaerobic glucose culture. However, for the anaerobic
xylose culture, the growth rates of the single gene knockout strains were significantly
lower compared to wild-type (~40-70% reduction in growth rate). Moreover, the
double-knockout AfadDAfadK failed to grow on xylose. These results provide
additional support that B-oxidation is indeed necessary for anaerobic growth on

xylose.
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2.3.5 Validation of metabolic network models

To statistically validate the proposed metabolic network models for 3C-MFA
(Leighty and Antoniewicz, 2012), labeling data from [U-3C]glucose and [U-
13C]xylose experiments were fitted to three models accounting for various dilution
effects: i) a base model that did not account for any dilution; ii) an extended model
that accounted for the dilution of CO> from unlabeled sources (either external or
internal); and iii) an extended model that accounted for CO; dilution and dilutions
resulting from lipid turnover, modeled here as dilutions of intracellular glyceraldehyde
3-phosphate (GAP) and AcCoA. Figure 2.5 shows the determined sum of squares
residuals (SSR) values from fitting each model to each set of labeling data. For the
aerobic cultures, the only dilution effect that had to be accounted for to get a
statistically acceptable fit was CO- dilution. For the anaerobic cultures, both CO>
dilution and dilutions resulting from lipid turnover had to be included in the model to
obtain statistically acceptable fits. When carbohydrate and amino acid turnover was
included in the models, there was no significant effect on the SSR values (see Figure

A.1) which suggests that turnover of proteins, glycogen, and RNA was minimal.

2.3.6 3C-Metabolic Flux Analysis

Next, we quantified precise metabolic fluxes for all four growth conditions
using state-of-the-art techniques in **C-MFA. Specifically, we performed parallel
labeling experiments using the optimal isotopic tracers [1,2-13C]glucose, [1,6-
13C]glucose, [1,2-13C]xylose and [5-3C]xylose, which were identified using the
approaches described in (Antoniewicz, 2013; Crown and Antoniewicz, 2012; Crown
et al., 2016b, 2012), and measured isotopic labeling of biomass amino acids, biomass

glycogen and RNA, and external succinate (anaerobic cultures only). The measured
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mass isotopomer distributions together with the measured external rates (Table 2.1)

were then fitted to the validated metabolic network models that were updated with

Figure 2.4
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Figure 2.5 Validation of metabolic network models for *C-MFA. Sum of squared
residual (SSR) values are shown for models containing various dilution
reactions. For the aerobic cultures, inclusion of CO. dilution was
necessary to obtain an acceptable SSR value (below the dotted line). For
the anaerobic cultures, CO2 and lipid dilution were necessary to achieve
an acceptable SSR value.

condition-specific growth stoichiometries based on the measured biomass
compositions. Statistically acceptable fits were obtained in all cases. The minimized
SSR values were lower than the maximum statistically acceptable SSR values at 95%
confidence level, assuming a constant measurement error of 0.4 mol% for all GC-MS
measurements (Antoniewicz et al., 2007a). The estimated metabolic fluxes and 95%
confidence intervals are provided in Supplemental Materials.

Figure 2.6 shows the estimated flux maps for the four growth conditions.

During aerobic growth on glucose and xylose, the classical central metabolic pathways
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were active, including glycolysis, pentose phosphate pathway (PPP), and TCA cycle
(Fig 6A and 6B). The results for glucose matched well with previous studies (Chen et
al., 2011; Scott B Crown et al., 2015). About 24% of glucose was metabolized via the
oxidative PPP (0xPPP) and the remaining 76% was metabolized via glycolysis. The
Entner—Doudoroff pathway, glyoxylate shunt and malic enzyme were all inactive
during growth on glucose, consistent with previous reports. During growth on xylose,
about 24% of fructose 6-phosphate (F6P) that was produced from xylose via non-
oxidative PPP was metabolized via oxPPP and the remaining 76% via glycolysis. The
Entner—Doudoroff pathway and glyoxylate shunt were inactive; however, in contrast
to growth on glucose, malic enzyme was active during growth on xylose. For both
substrates, phosphoenolpyruvate carboxylase was the only active anaplerotic reaction.
The TCA cycle fluxes were notably higher during growth on xylose compared to
growth on glucose. For example, during growth on xylose the citrate synthase flux
corresponded to 35% of xylose uptake rate (or 3.3 £ 0.2 mmol/gDW.h), while during
growth on glucose the citrate synthase flux was 26% of glucose uptake rate (or 2.3 +
0.1 mmol/gDW.h)

The anaerobic flux maps were strikingly different from the aerobic flux maps
(Fig 2.6C and 2.6D). Most notably, the flux through oxPPP was significantly reduced
and the TCA cycle became bifurcated. Under the anaerobic conditions, only 8% of
glucose was metabolized via 0xPPP, and oxPPP was inactive during anaerobic growth
on xylose. For both substrates, the TCA cycle was disconnected between a-
ketoglutarate (AKG) and succinyl-CoA. The oxidative branch of the TCA cycle
served to supply AKG, a precursor for several amino acids, while the reductive branch

of the TCA cycle produced the by-product succinate. Similar to aerobic cultures, the
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Figure 2.6 Metabolic flux maps for E. coli grown in batch culture at four growth
conditions: aerobic and anaerobic growth on glucose and xylose,
respectively. Fluxes were determined using integrate *C-MFA by
simultaneously fitting labeling data from two tracers for each substrate.
For glucose, [1,2-1*C]glucose and [1,6-13C]glucose tracers were used. For
xylose, [1,2-*C]xylose and [5-*C]xylose tracers were used. Complete
flux results are provided in Tables A.7 and A.8.
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Entner—Doudoroff pathway and glyoxylate shunt were inactive for both substrates, and
malic enzyme was only active during growth on xylose. Similar results have been
previously reported regarding the low flux of the TCA cycle under anaerobic
conditions (Chen et al., 2011). However, fermentation product profiles vary from our
results. This difference is most likely due to experimental setup (i.e. pH control vs. no
pH control).

During aerobic growth on both substrates, sufficient CO2 was produced in
central carbon metabolism (via oxPPP, glycolysis, and TCA cycle) to support
anaplerosis via phosphoenolpyruvate carboxylase (PEP + CO, — oxaloacetate).
However, during anaerobic growth, the amount of CO> produced was dramatically
reduced due to lower oxPPP and TCA cycle fluxes. Moreover, pyruvate formate lyase
was mainly used to convert pyruvate to AcCoA under anaerobic conditions (which
does not generate CO), compared to pyruvate dehydrogenase during aerobic growth
(which does generate CO>). For example, for the anaerobic glucose culture, the net
COz production rate via oxPPP and TCA cycle was reduced to 0.13 mmol/gDW.h,
which was lower than 0.28 mmol/gDW.h of CO2 needed for anaplerosis. For xylose,
the net CO> production via oxPPP and TCA cycle was only 0.04 mmol/gDW.h, much
less than 0.18 mmol/gDW.h of CO2 needed for anaplerosis. Thus, for both substrates
additional CO2 must have been generated via other pathways. This result is in
agreement with our findings described in previous sections, where we concluded that a

large fraction of CO> during anaerobic growth must originate from biomass turnover.

2.3.7 Quantitative analysis of co-factor balances
To provide additional insights into the physiology of E. coli grown aerobically

and anaerobically on glucose and xylose, we calculated for each condition the
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production and consumption rates of key co-factors in metabolism NADH/FADH>,
NADPH, and ATP, using the 13C-MFA estimated fluxes. The results are summarized
in Fig. 2.7.

For the aerobic cultures, the production and consumption rates of
NADH/FADH: and NADPH were very similar during growth on glucose (32.0
mmol/gDW.h for NADH/FADHz, and 10.9 mmol/gDW.h for NADPH) and growth on
xylose (29.8 mmol/gDW.h for NADH/FADH>, and 10.9 mmol/gDW.h for NADPH).
The co-factors NADH/FADH: were produced about equally via glycolysis (~50%
contribution) and the TCA cycle (~50% contribution) for both substrates. The vast
majority of NADH/FADH: was oxidized to generate ATP via oxidative
phosphorylation. Based on our flux results, we estimated that the oxygen consumption
rates were 13.8 and 13.2 mmol/gDW.h for growth on glucose and xylose, respectively.
During growth on glucose, NADPH was produced mainly via oxPPP (39%) and
transhydrogenase (39%), and to a lesser extent in the TCA cycle (21%). During
growth on xylose, NADPH was produced about equally via transhydrogenase (31%),
the TCA cycle (30%), and oxPPP (27%), and to a lesser extent by malic enzyme
(12%).

For the anaerobic cultures, the total production and consumption rates of
NADH and NADPH were significantly reduced, especially during growth on xylose.
For the anaerobic glucose culture, the production rates of NADH and NADPH were
25.6 mmol/gDW.h and 9.5 mmol/gDW.h, respectively; and for the anaerobic xylose
culture, the production rates of NADH and NADPH were 18.0 mmol/gDW.h and 3.4
mmol/gDW.h, respectively. For both substrates, nearly all NADH was produced in

glycolysis (>95%), and the majority of the generated NADH was used for ethanol
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production. During growth on glucose, NADPH was mainly produced via
transhydrogenase (72%), and to a lesser extent via 0XPPP (21%). During growth on
xylose, NADPH was produced about equally by malic enzyme (50%) and
transhydrogenase (41%). The TCA cycle did not contribute significantly to NADPH
production.

Biological energy (in the form of ATP) is needed for three key cellular
processes: i) transport of substrates and nutrients into the cells, ii) cell growth
(anabolism), and iii) maintenance. During aerobic growth, ATP is mainly produced
via respiration and substrate-level phosphorylation, and to a lesser extent from acetate
production. For example, our flux analysis results suggest that the majority of ATP
was produced via oxidative phosphorylation (68% for glucose and 70% for
xylose);here, we assumed a value of 2.0 for the P/O ratio. Even if we assume a more
conservative value for the P/O ratio of 1.5 (Noguchi et al., 2004; Taymaz-Nikerel et
al., 2010), oxidative phosphorylation is still the major contributor to ATP production
during aerobic growth on glucose (61%) and xylose (63%). The total ATP production
rate was slightly higher during growth on glucose (79.7 mmol/gDW.h) compared to
growth on xylose (72.0 mmol/gDW.h). During growth on glucose, 11% of ATP was
used for glucose transport (8.8 mmol/gDW.h), 34% for cell growth (26.9
mmol/gDW.h), and 55% for maintenance (43.9 mmol/gDW.h). We define
maintenance cost to be the difference between the total rate of ATP production and
ATP consumption for substrate uptake and cell growth. If we assume P/O = 1.5, the
estimated ATP maintenance cost is reduced to 30.1 mmol/gDW.h. For glucose
transport, we equate the donated phosphate via PTS transport with one ATP

equivalent. During growth on xylose, a relatively larger fraction of ATP was used for

42



substrate transport and phosphorylation (26%, or 19.0 mmol/gDW.h), 38% for cell
growth (27.4 mmol/gDW.h), and 35% for maintenance (25.5 mmol/gDW.h).
Assuming P/O = 1.5, the estimated ATP maintenance cost is reduced to 12.3

mmol/gDW.h.
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Figure 2.7  Production and consumption of key co-factors in metabolism
NADH/FADH2, NADPH, and ATP, during aerobic and anaerobic growth
on glucose (Gluc) or xylose (Xyl). “Other” in NADPH panel represents
the contribution of malic enzyme to NADPH production. “Other” in ATP
panel represents the estimated ATP maintenance cost (here, assuming
P/O ratio = 2.0)

During anaerobic growth, the total ATP production rate was reduced for both
substrates. We estimated that ATP production rate was higher during anaerobic
growth on glucose (38.1 mmol/gDW.h) compared to anaerobic growth on xylose (30.5
mmol/gDW.h). For both substrates, ATP was mainly produced via substrate-level
phosphorylation in glycolysis (~80% for both substrates), with acetate production
contributing the remaining ~20%. During growth on glucose, 34% of ATP was used
for glucose transport (13.1 mmol/gDW.h), 59% for cell growth (22.5 mmol/gDW.h),
and 6% for maintenance (2.2 mmol/gDW.h). During growth on xylose, 71% of ATP
was used for xylose transport (21.6 mmol/gDW.h), 26% for cell growth (7.8

43



mmol/gDW.h), and 3% for maintenance (1.0 mmol/gDW.h). These results suggest that
the higher ATP cost for xylose transport and phosphorylation (2 ATP equivalents),
compared to glucose (1 ATP equivalent), significantly affects cell growth and biomass
yield on xylose. Taken together, these results illustrate that key differences exist
between glucose and xylose metabolism at the level of co-factor production and
utilization, and that these differences could play a role in determining cell physiology

of E. coli.

2.4 Conclusion

E. coli is the most widely used microorganism in industry and academia.
Previous studies on E. coli metabolism have been limited mainly to aerobic growth on
glucose. Only a few studies have focused on elucidating fermentative metabolism, and
no 3C-MFA studies exist on xylose metabolism in E. coli. To address this critical gap
in current understanding, here, we have applied state-of-the-art methods in 13C-MFA
to determine precise metabolic fluxes for wild-type E. coli grown aerobically and
anaerobically on glucose and xylose. We measured condition-specific changes in
biomass composition, quantified biomass turnover, and determined that B-oxidation
was strictly required for anaerobic growth on xylose. By analyzing co-factor balances,
we identified important differences in pathway utilization for the production and
consumption of energy and redox cofactors. These validated flux maps can now be
used as references for COBRA predictions. In particular, the elucidation of biomass
turnover under various conditions will further improve these predictive tools. If
biomass turnover is not included, it is likely that predictions will be incorrect. Taken

together, this study provides a wealth of new information on aerobic and anaerobic
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metabolism in E. coli that can be used in future metabolic engineering studies to

improve predictive strategies for new strain designs.
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Chapter 3

CHARACTERIZATION OF GLUCOSE AND XYLOSE CO-CONSUMING
STRAINS AIDS IN IDENTIFICIATION OF IDEAL DESIGN FOR SUGAR
CO-UTILIZATION

3.1 Introduction

Lignocellulosic biomass as a feedstock for bioprocesses is desirable as it is a
renewable source that can be hydrolyzed into sugars, an attractive substrate for
bioconversion. When hydrolyzed, this feedstock becomes a mixture of C5 and C6
sugars such as glucose, xylose, mannose, and galactose (Girio et al., 2010). Ideally,
this mixture could be fed to an organism that is capable of using all sugar monomers
simultaneously. However, regulatory mechanisms, such as carbon catabolite
repression, and the lack of transport mechanisms often prevent efficient utilization of
lignocellulosic hydrolysate (Jeffries, 2006; Liang et al., 2015). To address these issues,
regulatory bottlenecks have been alleviated through adaptive evolution and
elimination of key genes in the regulatory pathway (Gawand et al., 2013; Kim et al.,
2015). Transport machinery has also been expressed in organisms to widen their
substrate capabilities (Gongalves et al., 2014; Grotkjer et al., 2005).

The model organism, Escherichia coli, has been the subject of many of these
efforts. In particular, components of the phosphotransferase system (PTS) have been
removed to allow simultaneous consumption of sugars (Liang et al., 2015; Christopher
P Long et al., 2017a). This system also plays a major role in carbon catabolite
repression, in which glucose is preferentially used over other sugars. However, few
works have provided a detailed characterization of these PTS knockouts and how

efficiently they would utilize sugar mixtures.
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Apart from targeting the PTS system, several E. coli strains have been
specifically engineered for co-utilization of sugars. GX50, a strain designed by Kim et
al (Kim et al., 2015), was adaptively evolved to use glucose and xylose after
elimination of the arabinose transcriptional regulator which represses the xylose
transcriptional activator. LMSEZ2, a strain designed by Gawand et al (Gawand et al.,
2013), was designed to require glucose and xylose after deletion of the central carbon
metabolism genes, pgi, edd, and rpe. In doing so, this strain is limited
stoichiometrically and therefore, cannot grow unless both sugars are used. These two
strains are the most successfully engineered strains to date for co-utilization of glucose
and xylose.

In this work, we examine the co-utilization capability of all the PTS knockouts
with various feed compositions. We use *3C-tracers to evaluate how each sugar is
allocated towards biomass components. The two engineered strains described above
are also characterized using high resolution *3C-metabolic flux analysis. Their uptake
profile based on feed composition is also quantified which provides insights into the

“ideal” co-utilizing strain.
3.2 Materials and Methods

3.2.1 Materials

Media and chemicals were purchased from Sigma-Aldrich (St. Louis, MO).
Tracers were purchased from Cambridge Isotope Laboratories: [1,2-1*C]glucose (99.9
atom% 3C), [1,6-*C]glucose (99.6%), [U-3C]glucose (99.3%), [1,2-*C]xylose
(99.3%), [5-13C]xylose (99.6%), and [U-13C]xylose (99.3%). M9 minimal medium

was used for all experiments.
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3.2.2 Strains and growth conditions

The PTS knockouts and wild-type E. coli BW21135 were obtained from the
Keio collection. The engineered strains, GX50 and LMSE2, were given to us by (Kim
et al., 2015) and (Gawand et al., 2013), respectively. For experiments involving the
PTS knockouts, a culture was grown overnight at 37°C in M9 minimal medium
containing 6 g/L glucose and 6 g/L xylose in a shaker flask. The pre-culture was then
washed and re-suspended in fresh M9 medium containing different ratios of glucose to
xylose (0:4, 1:3, 2:2, 1:3, 4:0) where 2:2 is 6 g/L glucose and 6 g/L xylose. For
labeling experiments, [U-*C]glucose replaced unlabeled glucose at the same
concentration. For experiments involving WT, GX50, and LMSEZ2, a culture was
grown overnight at 37°C in M9 minimal medium containing 3 g/L glucose and 3 g/L
xylose in a shaker flask. The pre-culture was then washed and re-suspended in fresh
M9 medium containing different ratios of glucose to xylose (0:1, 0:2, 1:1, 1:2, 2:1,
2:2,0:2,0:1), where 2:2 is 6 g/L glucose and 6 g/L xylose. The following tracers were
used for 3C-MFA: [1, 2-*C]glucose and [1, 2-3C]xylose, [1, 6-**C]glucose and [5-
13C]xylose. The initial ODsoo Of inoculated cultures was approximately 0.05. Cells
were grown at 37°C in parallel mini-bioreactors with a working volume of 10 mL, as
described previously. Air was sparged into the liquid at a rate of 12 mL/min to provide

oxygen and to ensure sufficient mixing of the culture by the rising gas bubbles.

3.2.3 Analytical methods

Samples were collected at multiple times during the exponential growth phase
to monitor cell growth, substrate uptake, and production formation. Cell pellets and
supernatants for isotopic labeling analysis were collected at an ODeoo of approximately

0.5. Cell growth was monitored by measuring the optical density at 600nm (ODseoo)
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using a spectrophotometer (Eppendorf BioPhotometer). After centrifugation of the
samples, the supernatant was separated from the biomass pellet. Glucose, xylose and
acetate concentrations were determined using an Agilent 1200 Series HPLC (Whitaker

etal., 2017).

3.2.4 Gas chromatography-mass spectrometry

GC-MS analysis was performed on an Agilent 7890B GC system equipped
with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 pum-phase thickness;
Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating
under ionization by electron impact (El) at 70 eV. Helium flow was maintained at 1
mL/min. The source temperature was maintained at 230°C, the MS quad temperature
at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. GC-
MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino
acids was performed as described in (Antoniewicz et al., 2007a). Labeling of glucose
(derived from glycogen) and ribose (derived from RNA) were determined as described
in (Long et al., 2016a; McConnell and Antoniewicz, 2016). In all cases, mass
isotopomer distributions were obtained by integration (Antoniewicz et al., 2007a) and

corrected for natural isotope abundances (Fernandez et al., 1996).

3.2.5 Tracer simulations

Tracer simulations were performed as described in (Crown and Antoniewicz,
2012). Briefly, simulated data was generated using a random set of fluxes. *C-MFA
was then used to estimate these fluxes and confidence intervals for different tracer

schemes (using both single and parallel tracer experiments), defining the observability
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of each flux given the tracers used. This analysis was performed for models containing

different relative uptake rates of glucose and xylose.

3.2.6 Metabolic network model and ¥*C-metabolic flux analysis

The metabolic network model used for *C-MFA is provided in Supplemental
Materials. The model are based on the E. coli model described in (Gonzalez et al.,
2017) and include all major metabolic pathways of central carbon metabolism, lumped
amino acid biosynthesis reactions, and a lumped biomass formation reaction.

All BC-MFA calculations were performed using the Metran software which is
based on the elementary metabolite units (EMU) framework (Antoniewicz et al.,
2007b). Fluxes were estimated by minimizing the variance-weighted sum of squared
residuals (SSR) between the experimentally measured and model predicted external
rates and mass isotopomer distributions of biomass amino acids, glucose derived from
glycogen, and ribose derived from RNA using non-linear least-squares regression
(Antoniewicz et al., 2006). All measured mass isotopomers are provided in
Supplemental Materials. For integrated analysis of parallel labeling experiments, the
data sets were fitted simultaneously to a single flux model as described previously
(Leighty and Antoniewicz, 2012). Flux estimation was repeated 10 times starting with
random initial values for all fluxes to find a global solution. At convergence, accurate
95% confidence intervals were computed for all estimated fluxes by evaluating the
sensitivity of the minimized SSR to flux variations. Precision of estimated fluxes was

determined as follows (Antoniewicz et al., 2006)

Flux precision (stdev) = [(ﬂUX upper bound 95%) - (ﬂUX lower bound 95%)] /4 (7)
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To describe fractional labeling of metabolites, G-value parameters were
included in 3C-MFA. As described previously (Antoniewicz et al., 2007¢), the G-
value represents the fraction of a metabolite pool that is produced during the labeling
experiment, while 1-G represents the fraction that is naturally labeled, i.e. from the
inoculum. By default, one G-value parameter was included for each measured
metabolite in each data set. Reversible reactions were modeled as separate forward
and backward fluxes. Net and exchange fluxes were determined as follows: Vnet = v¢-

Vb; Vexch = Min(Vs, Vb).

3.2.7 Goodness-of-fit analysis

To determine the goodness-of-fit, 13C-MFA fitting results were subjected to a
y2-statistical test. In short, assuming that the model is correct and data are without
gross measurement errors, the minimized SSR is a stochastic variable with a -
distribution (Antoniewicz et al., 2006). The number of degrees of freedom is equal to
the number of fitted measurements n minus the number of estimated independent
parameters p. The acceptable range of SSR values is between y2q2(n-p) and y%1-a2(n-
p), where a is a certain chosen threshold value, for example 0.05 for 95% confidence

interval.
3.3 Results and Discussion

3.3.1 Knockouts of PTS respond to feed composition

The PTS is composed of four components, encoded by the genes ptsG, ptsH,
ptsl, and crr (Long et al., 2017a). We characterized four E. coli strains, each lacking
one of these genes, during growth on different sugar mixtures (Figure 3.1). When

comparing growth rates, most knockouts (AptsG, AptsH, and Aptsl) have a slower
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growth rate on glucose than on xylose, contrary to what is observed for wild-type E.
coli (Figure 3.1A). This effect is most noticeable for Aptsl, in which the growth rate
on xylose (0.66 h't) is 4.3 times faster than the growth rate on glucose (0.15 h%).
AptsH and Aptsl appear to be the only knockouts that show a strong dependence of
growth rate on the feed composition, where increasing the glucose concentration
relative to the xylose concentration results in a slower growth rate.

To determine the contribution of each sugar to the synthesis of biomass
components as well as the effect of the feed composition on this contribution, [U-3C]
glucose was used in place of unlabeled glucose. The 3C-labeling of proteinogenic
amino acids and carbohydrates (glycogen, RNA) were measured (Figure 3.1B-D). The
labeling of alanine provides insight into the relative uptake of each sugar where 50%
13C-labeling of alanine would indicate that the sugars are consumed at the same rate.
Based on the C-labeling of alanine, AptsG, AptsH, and Aptsl all show a clear
preference for xylose over glucose (<50% labeling) while Acrr prefers glucose (>50%
labeling). Additionally, AptsG, AptsH, and Aptsl, have similar %*C-labeling of
alanine and therefore, have similar relative uptake rates of the two sugars. For all
strains, increasing the glucose concentration relative to xylose leads to a higher
relative glucose uptake rate, indicated by the higher labeling of each component as the
ratio of glucose to xylose increases.

The 13C-labeling of RNA and glycogen reveals the labeling of the
intermediates ribose 5-phosphate (R5P) and glucose 6-phosphate (G6P), respectively.
The source of glycogen, either glucose or xylose, appears to be most sensitive in Aptsl
where the difference in glycogen labeling between the 1:3 and 3:1 cases is 53%,

compared to the other strains, in which the difference ranges between 12% and 28%.
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Additionally, while glucose is phosphorylated directly to form G6P, the precursor to
glycogen, AptsG, AptsH, and Aptsl generally have <50% 3C-labeling of glycogen,
indicating that the majority of glycogen is derived from xylose. The opposite
conclusion can be made for RNA, in which the labeling in AptsG, AptsH, and Aptsl is
low, indicating that the main source of RNA is xylose. Acrr exhibits a clear preference

for glucose with high *C-labeling of both glycogen and RNA (> 50%).
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Figure 3.1 Characterization of growth and sugar allocation in PTS knockouts. The
growth rate and *C-labeling of glycogen, RNA, and alanine were
measured for each PTS knockout at different ratios of glucose to xylose,
as indicated by the color. For the 3C-labeling experiment, [U-
13C]glucose and unlabeled xylose were used as tracers. The growth rates
of both AptsH and Aptsl vary depending on the ratio of glucose to xylose.
As the ratio of glucose to xylose increases, the relative uptake of glucose
also increases. Based on the *C-labeling of alanine, AptsG, AptsH, and
Aptsl all prefer xylose over glucose (<50% labeling in alanine) while
Acrr prefers glucose (>50% labeling in alanine. Error bars indicate
standard error (n =3).
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3.3.2 Engineered strains for co-utilization exhibit various uptake profiles

We next characterized two engineered glucose and xylose co-utilizing strains,
GX50 and LMSEZ2, and compared them to wild-type E. coli. For each strain, the initial
sugar uptake rates were measured (Figure 3.2). The fraction of the initial total uptake
used for xylose was then plotted versus the initial fraction of xylose in the media to
obtain an uptake profile that is a function of the %xylose concentration. Using this
profile, we were able to simulate the glucose and xylose concentrations measured in
our experiments over the entire duration of the culture. For WT E. coli, providing both
glucose and xylose leads to diauxic growth (Figure 3.2A-C) where xylose starts to be
consumed only after all glucose has been exhausted. This translates to an uptake
profile in which the % Xxylose uptake is zero at any % xylose conentration value that is
less than 100% (only xylose). The initial uptake rate of glucose does not seem to be
affected by the presence of xylose.

For LMSEZ2, no growth was observed when only one sugar was provided, due
to the stoichiometric limitations of the strain (Figure 3.2D-F). When both sugars were
present, the absolute sugar uptake rate was constant at approximately 5.6
mmol/gow/hr, regardless of the feed composition. Therefore, the uptake profile is
constant at approximately 60% Xxylose uptake, or approximately 3.5 mmol/gpw/hr, at
all % xylose concentrations. When both sugars are present in approximately equal
amounts, they are both used completely. However, the design of the strain prevents
complete utilization of both sugars when they are present in unequal amounts. Once
one sugar is completely consumed, growth ceases preventing further uptake of the
residual sugar.

Unlike LMSEZ2, the uptake profile of GX50 responds to the extracellular sugar

concentration (Figure 3.2G-1); the uptake rate of glucose increases as the
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Comparison of two co-utilizing strains and WT E. coli. For each strain,
the initial uptake rates of glucose and xylose were measured. The ratio of
these rates (% Xylose Uptake) was plotted versus initial fraction of
xylose in the culture (% Xylose Concentration). Additionally, using these
uptake profiles, we were able to simulate the glucose and xylose
concentrations and compare this simulation to the measured
concentrations. In WT, diauxic growth was observed, as expected, with
the uptake rate of glucose being unaffected by the presence of xylose.
The ratio of uptake rates for LMSE2 remained constant at 60% Xxylose
uptake and no growth was observed when glucose or xylose were the sole
substrate. The uptake rates in GX50 varied, depending on the initial
concentrations of the two sugars, with a general preference for xylose.
Error bars indicate standard error (n=3).
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concentration of glucose increases relative to xylose. In general, this strain prefers
glucose over xylose as seen by the % xylose uptake being < 50% at all % xylose
concentrations tested. This strain grows approximately four times faster than LMSE?2

and will exhaust both sugars, regardless of the relative concentrations.

3.3.3 Comprehensive analysis of engineered strains for co-utilization

High resolution **C-metabolic flux analysis was now used to quantify
intracellular fluxes for both engineered strains. However, before performing the tracer
experiments, the optimal tracer scheme must be identified. This process is not trivial,
especially as you increase the number of substrates. Therefore, we used simulations to
determine the precision of using various tracer schemes in both single and parallel
labeling experiments (Figure 3.3). Low precision was observed when only one
labeling experiment was performed. Additionally, labeling only one substrate severely
impacts precision when the unlabeled substrate is the main carbon source. For
example, using any xylose tracer when 75% of the total uptake is allocated for glucose
results in low precision. Therefore, we were able to identify the optimal tracer scheme
as performing two parallel labeling experiments, one using [1,6-*3C]glucose and [5-
13C]xylose and the other using [1,2-3C]glucose and [1,2-*C]xylose as tracers. This
choice of tracer resulted in high precision regardless of the relative uptake of the
sugars.

Figure 3.4 shows the flux maps for LMSE2 and GX50 during growth on a 1:1
mixture of glucose and xylose. The fluxes shown are normalized to the total substrate
uptake rate. LMSE2 has a higher relative flux through the pentose phosphate pathway
since all flux from glucose is routed through the oxidative PP pathway. GX50 exhibits

a higher relative flux through the TCA cycle and secretes less acetate. Flux analysis
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Figure 3.3  Precision of estimated fluxes for various tracer schemes. Improved

precision is observed using parallel labeling experiments with each sugar
isotopically labeled. Poor precision is observed in single labeling
experiments or when only one substrate is isotopically labeled.

was also able to correctly identify that the fluxes through pgi, edd, and rpe, in LMSE2
were zero. Overall, the absolute fluxes of LMSE2 are lower than those of GX50 as the

sugar uptake rates in LMSE2 are significantly slower.
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13C-MFA can also be used to compare intracellular fluxes for each strain as the
sugar composition changes. Figure 3.5 shows the relative changes in fluxes compared
to the 1:1 mixture. For LMSEZ2, the sugar composition does not affect the fluxes in
upper central carbon metabolism. This is expected because the relative uptake of the
sugars is restricted by the gene knockouts. However, higher glucose concentrations
(2:1) lead to > 15% increase in TCA cycle fluxes. When the xylose concentration is
greater than the glucose concentration (1:2), there is a > 15% decrease in TCA cycle
fluxes. For GX50, a lower ratio of glucose to xylose (1:2) leads to an increase in PPP
flux while the opposite is seen for a higher ratio of glucose to xylose (2:1). Equal
amounts of glucose and xylose (1:1, 2:2) result in similar intracellular fluxes for both
strains. Since GX50 can grow on each sugar by itself, 3C-MFA was also performed
for growth on glucose only and xylose only. Doubling the concentration of either
sugar did not affect intracellular fluxes (Figure B.4).

Using the fluxes estimated by 3C-MFA, we can examine the
production and consumption of the key cofactors in metabolism NADH/FADH,,
NADPH, and ATP for each strain and condition (Figure 3.6). For LMSEZ2, the
transhydrogenase is not a major sink of NADH while in GX50, it accounts for, on
average, 0.6 mol NADH/ mol substrate consumed (~45% of the total NADH
consumed). More than 0.49 mol NADPH/mol substrate (~75% of the total NADPH
produced) is produced via the oxidative pentose phosphate pathway in LMSE2. While
this pathway is also a source of NADPH in GX50, it accounts for almost half of the
total NADPH while the remainder is produced by the transhydrogenase. For GX50,
the cofactor balances are similar when both substrates are present and when there is

only glucose. A difference is only seen when xylose is the only substrate in which
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Figure 3.4 Metabolic flux map for strains LMSE2 and GX50 grown in a 1:1 ratio of
glucose to xylose. Fluxes were estimated using **C-MFA, including
measurements from parallel labeling experiments using [1,2-**C]glucose
+ [1,2-3C]xylose and [1,6-3C]glucose and [5-3C]xylose as tracers.
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Figure 3.5 Comparison of estimate fluxes for various glucose/xylose mixtures.
Highlighted changes indicate at least a 15% relative increase (blue) or
decrease (red) compared to the fluxes estimate for a 1:1 glucose/xylose
mixture. Changes in the TCA cycle fluxes are observed for LMSE2 while
changes in the PPP fluxes are observed for GX50.

anaplerosis is more active in the production of NADPH, the transhydrogenase is less
active, and the PPP is no longer a main source of NADPH. While the consumption and
production of reducing equivalents is quite different between the two strains, the
breakdown of ATP usage is strikingly similar for all conditions. Additionally, the

sugar composition doesn’t appear to impact the cofactor distribution.
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Figure 3.6  Production and consumption of key co-factors in metabolism. Using
fluxes estimated by 3C-MFA, utilization of NADH/FADH, NADPH,
and ATP was quantified for each strain. GX50 and LMSE?2 differ in the
consumption of NADH and production of NADPH by the
transhydrogenase as well as the production of NADPH by the PP
pathway. ATP allocation remains relatively constant for both strains.

3.3.4 Ideal co-utilizing strain demands linear uptake profile

We have presented a detailed characterization of several strains that can co-
utilize glucose and xylose. Some were rationally engineered to have this ability while
others were constructed by removing the regulatory mechanism that prevents co-
utilization natively. Most strains tested were responsive to the extracellular sugar
concentration, although it is possible to limit this response as seen in the case of

LMSE2. Based on these results, we can make some conclusions regarding the ideal
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co-utilizing strain. The ideal strain should not experience CCR and it should be
sensitive to extracellular concentrations and use all available sugar.

Figure 3.7 shows hypothetical uptake profiles and how each of these strains
would use various sugar mixtures. One extreme that is undesirable is a strain that
experiences carbon catabolite repression (case A), such as WT E. coli, in which
diauxic growth is observed and there is never a period in which both sugars are
consumed. The other extreme is a strain that is not sensitive to the sugar composition,
and therefore, stops growth once one sugar is exhausted, leaving residual sugar (case
D). The two intermediate cases (B and C) have a parabolic uptake profile or a linear
uptake profile, respectively. In the parabolic case, the strain still shows a preference
for one sugar, such as here where the strain prefers glucose unless greater than 90% of
the available sugar is xylose. This hypothetical strain is similar to case A, in which
there is a point in the fermentation that glucose reaches a concentration of zero before
xylose is completely consumed. In the linear case, the relative uptake rate of each
sugar is directly correlated with the relative extracellular concentration and therefore,
the sugars are completely utilized at the same time.

While the simulated concentrations shown are representative of batch
fermentations, the implications are even more severe in the case of fed-batch
fermentations, which are most commonly used for industrial processes. For case A and
B, since one sugar is completely consumed before the other, there will be an
accumulation of one sugar over time. If the sugars are present in equal amounts, case
D will result in an efficient process. However, any deviation from that composition

will lead to wasted carbon. Therefore, the ideal uptake profile is clearly one that is
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linear in which, regardless of the feed composition, both sugars will be used up at the

same time, leading to the most efficient fermentation.
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Figure 3.7 Simulation of theoretical uptake profiles. The uptake profiles examined
were diauxic (A), parabolic (B), linear (C), and constant (D). Each profile
was used to simulate the consumption of glucose and xylose for different
starting concentrations in batch culture. It is clear that the only profile
resulting in an efficient process is the linear profile, with simultaneous
consumption and no residual sugar.

3.4 Conclusion

In this work, we examined various approaches to solving the issue of
inefficient utilization of sugar mixtures derived from lignocellulosic biomass. E. coli
has been the focus of many of these approaches. Here, we first studied several

knockouts of the PTS and found that all can co-utilize glucose and xylose.
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Additionally, the metabolism of each strain, as identified by *C-labeling of biomass
components, was altered depending on the relative extracellular concentrations of the
two sugars. This response was also examined in two engineered strains, GX50 and
LMSE2. While the uptake rates of the sugars varied depending on the ratio of the
sugars in GX50, this effect was not observed in LMSEZ2, in which the uptake rates are
limited by stoichiometry. For the engineered strains, a detailed analysis of intracellular
metabolism was performed using 3C-MFA. Various changes in metabolism were
observed as the ratio of glucose to xylose was altered. Specifically, the TCA cycle was
affected in LMSE2 while fluxes through the PPP changed in GX50. When comparing
the two strains to each other, there were clear differences in intracellular fluxes and
cofactor utilization. GX50 utilized the transhydrogenase while LMSE?2 used the
oxidative PPP as their main sources of NADPH. Flux through the TCA cycle was
relatively higher in GX50 compared to LMSEZ2 while the opposite was observed for
PPP fluxes. Interestingly, ATP allocation was similar for both strains.

After analysis of existing strains, we presented various hypothetical strains and
examined how these strains could co-utilize a glucose and xylose mixture. The uptake
profile that resulted in the most efficient utilization of sugars was one that is linear,
where the relative uptake rates of the sugars is directly correlated to the relative
concentrations of the sugars. Realizing this design would require identification of an
unbiased, universal transport system, one that demonstrates no preference for a
specific substrate, and therefore, must have the same affinity for each substrate. With
advances in protein engineering, it will be possible to design novel transport systems

or reprogram existing ones to achieve a linear uptake profile (Nijland et al., 2014;
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Young et al., 2014). These systems can then be expressed in various organisms to

generate efficient and sustainable biofactories for production of valuable chemicals.
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Chapter 4

METHANOL ASSIMILATION IN Escherichia coli IS IMPROVED BY CO-
UTILIZATION OF THREONINE AND DELETION OF LEUCINE-
RESPONSIVE REGULATORY PROTEIN

4.1 Introduction

The production of chemicals and fuels through biological conversion of
inexpensive and abundant feedstocks, such as natural gas, offers advantages over
traditional fermentation processes (Fei et al., 2014). The main component of natural
gas, methane, can be used as a substrate in fermentations either directly or after
conversion to methanol. Methanol is an attractive feedstock due to its high electron
and energy content (Fei et al., 2014; Olah, 2005). In the past few years, efforts to
engineer improved (or entirely new) methylotrophic organisms that efficiently
consume methanol and produce value-added chemicals have intensified (LeBmeier et
al., 2015; Liao et al., 2016; Whitaker et al., 2015)

Native methylotrophs, such as Methylobacterium extorquens AM1 and
Bacillus methanolicus, use one of several pathways for methanol fixation including
the serine cycle and the ribulose monophosphate pathway (RuMP) (Schrader et al.,
2009). In these pathways, methanol is first converted to formaldehyde by a methanol
dehydrogenase (MDH), which gives the cell access to several one-carbon assimilation
pathways. The prospect of using native methylotrophs for bioconversion processes,
however, is still problematic because, among other issues (Whitaker et al., 2015),
genetic tools are not well established for many of these organisms. Methylotrophic
yeasts have been studied extensively and are easily genetically modified, however,
their methanol assimilation mechanism requires oxygen, ultimately limiting product

yields. As an alternative, genetically tractable and industrially relevant organisms such
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as Escherichia coli and Corynebacterium glutamicum are being engineered to utilize
methanol and produce chemicals (LeBmeier et al., 2015; Miiller et al., 2015; Whitaker
et al., 2017; Witthoff et al., 2015). The RuMP pathway is the preferred pathway for
engineering methylotrophy in non-native organisms since it is the only known energy-
yielding one-carbon assimilation pathway and does not require oxygen (Whitaker et
al., 2015). The two main enzymes in the RuMP pathway are 3-hexulose-6-phosphate
synthase (hps) and 6-phospho-3-hexuloisomerase (phi). Together, these enzymes fix
formaldehyde to ribulose 5-phosphate (Ru5P) and convert the product, hexulose 6-
phosphate, to fructose 6-phosphate (F6P), an intermediate of central carbon
metabolism (Figure 1).

In previous work, we successfully engineered a methylotrophic E. coli strain
that contains an MDH from Bacillus stearothermophilus and the RuMP pathway from
Bacillus methanolicus (Whitaker et al., 2017). We demonstrated that the strain can
incorporate abundant amounts of methanol into biomass and secreted products. This
was an advancement over previous efforts (Miller et al., 2015); however, our strain
was still unable to utilize methanol as the sole carbon source. To maximize methanol
incorporation, yeast extract was required as a co-substrate.

To gain a better understanding of methylotrophy in the engineered E. coli and
elucidate the mechanism by which yeast extract improves methanol utilization, in this
study, we performed experiments using *3C-tracers to examine the metabolism of
methanol assimilation. We evaluated 25 potential co-substrates. Co-consumption of
specific amino acids correlated with improved methanol utilization, which led us to
hypothesize a new metabolic engineering target to improve methanol utilization that

was tested and successfully implemented in our strain, ultimately enhancing the
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Figure 4.1 Synthetic methylotrophy in E. coli and its relation to the global regulator
Lrp. To achieve a methylotrophic phenotype in E. coli, three
heterologous genes were expressed methanol dehydrogenase (mdh), 3-
hexulose-6-phosphate synthase (hps), and 6-phospho-3-hexuloisomerase
(phi). Methanol enters the pentose phosphate pathway and through
various rearrangement reactions, Ru5P is generated for another round of
formaldehyde fixation. In this work, we demonstrate that increased
methanol assimilation is associated with increased flux from threonine
(Thr) to glycine (Gly) and serine (Ser). To improve incorporation of
methanol, the leucine-responsive protein (Lrp), which negatively
regulates reactions denoted with (-) and positively regulates reactions
denoted (+), was deleted.
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methylotrophic ability of our strain. Overall, this study represents a rational
engineering approach for studying substrate utilization and improving synthetic
methylotrophy and provides an illustrative example of the design-build-test-learn

cycle in metabolic engineering (Nielsen and Keasling, 2016).
4.2 Materials and Methods

4.2.1 Materials
Media and chemicals were purchased from Sigma-Aldrich (St. Louis, MO).
13C-Methanol (99% *3C) was purchased from Isotec (St. Louis, MO). M9 minimal

medium was used for all experiments.

4.2.2 Strains and growth conditions

The base methylotrophic E. coli strain used here was described in detail in
Whitaker et al., 2016. Briefly, E. coli BW25113 AfrmA was obtained from the Keio
collection and used for further genetic manipulations (Baba et al., 2006). Deletion of
Irp was performed as described upon removal of the kanamycin cassette from the frmA
locus via pCP20 (Datsenko and Wanner, 2000). Methanol assimilation genes were
cloned into pETM®6 (Xu et al., 2012) for episomal expression. Briefly, an operon
composed of the mdh from B. stearothermophilus and hps and phi from B.
methanolicus was constructed. The heterologous genes were synthesized as gBlocks
(IDT, Coralville, 1A) with synthetic ribosomal binding sites designed using the RBS
Calculator v2.0 (Borujeni et al., 2014; Salis et al., 2009), and the operon consisted of a
synthetic promoter (Pic) and terminator. The respective fragments were then Gibson

assembled into pETM®6 digested with Avrll and Nhel.

69



For experiments involving glucose, yeast extract, casamino acids, or tryptone
as substrates, a culture was grown overnight from frozen stock in Luria Broth (LB)
medium at 37 °C in a shaker flask. The pre-culture was then re-suspended in fresh M9
medium containing 1.5 g/L of the substrate. For cultures containing methanol, **C-
labeled methanol was added at 60 mM initial concentration. The initial ODgoo Of the
inoculated cultures was approximately 0.05. Cells were grown at 37°C in shaker flasks
with a working volume of 25 mL. Samples were collected at 24 and 48 hours for GC-
MS analysis.

For experiments involving amino acids as substrates, a culture was grown
overnight from frozen stock in LB medium. The pre-culture was then re-suspended in
fresh medium containing 5 mM of a specific amino acid. For cultures containing
methanol, 1*C-labeled methanol was added at 60 mM. The initial ODeoo of inoculated
cultures was approximately 0.05. Cells were grown at 37°C in shaker flasks with a
working volume of 25 mL. Samples were collected at 72 hours for GC-MS analysis.

For studies comparing the base strain and the Alrp strain, a culture was grown
overnight from frozen stock in LB medium at 37 °C in a shaker flask. The pre-culture
was then re-suspended in fresh M9 medium containing 1.5 g/L yeast extract. For
cultures containing methanol, 3C-methanol was added at 60 mM. For cultures
containing threonine, threonine was added at 5 mM. The initial ODeo Of inoculated
cultures was approximately 0.05. Cells were grown at 37°C in shaker flasks with a
working volume of 25 mL. Samples were collected at 24, 48, and 72 hours for GC-MS

analysis.
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4.2.3 Analytical methods

Samples were collected at regular intervals to monitor cell growth and measure
isotopic labeling of biomass components, including RNA, glycogen and amino acids
(Long et al., 2016a). Optical density at 600 nm (ODsoo) was measured using a
spectrophotometer (Eppendorf BioPhotometer). The ODeoo values were converted to
cell dry weight concentrations using a pre-determined ODegoo-dry cell weight
relationship (1.0 ODeoo = 0.32 gow/L) (Long et al., 2016b). The percent increase in

biomass as a result of methanol being co-utilized was calculated as follows:

oD of culture with methanol—0D of culture without methanol
600 Of 600 Of % 100% (4.1)

ODggo of culture without methanol—initial ODggq of culture

4.2.4 Amino acid quantification

To quantify the amino acid content of yeast extract, casamino acids, and
tryptone, two 100 uL samples of a 1.5 g/L solution of these substrates were used for
isotope ratio analysis, using fully labeled [U-t3CJalgal amino acids as internal
standards. Two samples were prepared. One sample was immediately derivatized with
TBDMS to measure free amino acids. The second sample was hydrolyzed overnight at
110°C in 6N HCI, and then derivatized to measure peptides + free amino acids. The

analysis was performed four times for each substrate.

4.2.5 RNA and glycogen quantification

The amount of RNA and glycogen (% of cell dry weight), and isotopic labeling
of these macromolecules was determined as described in (Christopher P. Long and
Antoniewicz, 2014). Briefly, biomass samples were hydrolyzed with HCI resulting in
the release of ribose (from RNA) and glucose (from glycogen). The sugars were then

derivatized and analyzed by GC-MS (McConnell and Antoniewicz, 2016). For
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quantification of RNA and glycogen, isotope ratio analysis was performed using fully
13C-labeled E. coli as the internal standard. Fully labeled E. coli was generated by

growing E. coli on [U-'3C]glucose, washing the cells twice with glucose-free medium,
and aliquoting identical (1 mL of an ODeg00o=1.0, or 0.32 mg of dry weight) samples, to

be used as internal standards.

4.2.6 Gas chromatography-mass spectrometry

GC-MS analysis of isotopic labeling of sugars (i.e. ribose and glucose from
RNA and glycogen, respectively) was performed as described in (Long et al., 2016a).
The measured GC-MS fragments contained the first four carbons of ribose (m/z 284
fragment), and the first five carbons of glucose (m/z 370 fragment). GC-MS analysis
of fructose-6-phosphate was performed as described in (Ahn et al., 2016). GC-MS
analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino acids
was performed as described in (Gonzalez et al., 2017). All GC-MS analyses were
performed on an Agilent 7890B GC system equipped with a DB-5MS capillary
column (30 m, 0.25 mm i.d., 0.25 pum-phase thickness; Agilent J&W Scientific),
connected to an Agilent 5977A Mass Spectrometer operating under ionization by
electron impact (EI) at 70 eV. Mass isotopomer distributions were obtained by
integration (Antoniewicz et al., 2007a) and corrected for natural isotope abundances
(Fernandez et al., 1996). Average carbon labeling was calculated using the following
formula:

Average Carbon Labeling (%) = sum(M; xi)/n 4.2)
where n is the number of carbons, M is the corrected abundance of the i*" mass

isotopomer.
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4.3 Results

4.3.1 C-labeling demonstrates that yeast extract is a superior co-substrate
compared to glucose in enhancing methanol assimilation

Previously, we successfully engineered a synthetic methylotrophic E. coli that
is able to utilize methanol for cell growth when yeast extract is provided as a co-
substrate (Whitaker et al., 2017). Here, we compared methanol utilization of this strain
with yeast extract versus glucose as co-substrates. Experiments were performed either
with 60 mM of *3C-methanol or without methanol. Glucose and yeast extract were
each present at 1.5 g/L. Figure 4.2A shows the increase in biomass concentration
when methanol was co-utilized with either of the two substrates, i.e. relative to
experiments without methanol. Co-utilization of yeast extract and methanol resulted in
33% higher final biomass concentration compared to the experiment without methanol
(i.e. yeast extract alone), while a higher final ODsoo Was achieved with glucose (Figure
C1). However, when glucose and methanol were co-utilized, the final biomass
concentration was only ~1% higher compared to glucose alone. Improvement in
methanol assimilation when co-utilizing yeast extract was also reflected in the C-
labeling of major biomass components such as proteins, RNA, and glycogen (Figure
4.2B). When yeast extract and *3C-methanol were co-utilized, significant labeling was
detected in biomass components (e.g. 17% labeling in glycogen) and intracellular
metabolites (e.g. 30% labeling in F6P, Figure C2), whereas when glucose and **C-
methanol were co-utilized, low **C-labeling was observed (less than 3% labeling).
Thus, based on 3C-labeling and growth data, yeast extract appears to be a better co-
substrate compared to glucose for methanol assimilation. One possible explanation is
that carbon catabolite repression prevents efficient methanol co-utilization in the

presence of glucose. However, we also observed the same effect with other sugars and
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organics acids as co-substrates (Figure 4.3). While high labeling was detected in
biomass components, certain amino acids, notably leucine, valine, and phenylalanine
(Table C.3), were not labeled by **C-methanol. Given that amino acids are the main
components of yeast extracts (Figure C.3), these data suggest that a possible
regulatory mechanism activated in the presence of yeast extract leads to the observed
13C-labeling patterns. In addition to yeast extract, casamino acids and tryptone were
also tested as co-substrates (Figures C.4, C.5). The C-labeling patterns and growth
improvements were similar to those observed with yeast extract as the co-substrate,

thus further supporting the hypothesis that amino acids are responsible for improved

methylotrophy.
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Figure 4.2 Yeast extract is a better co-substrate for methanol assimilation than
glucose. (A) The increase in ODeoo in the presence of methanol compared
to the absence of methanol was determined for growth with the co-
substrates glucose (red bars) and yeast extract (blue bars). (B) **C-
labeling in biomass components (amino acids, RNA, and glycogen) from
13C-methanol was measured for both co-substrates after 48 hours.
Overall, yeast extract was the superior co-substrate for methanol
assimilation as indicated by higher labeling and improved growth in the
presence of methanol. Error bars indicate standard error (n=2).
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4.3.2 Threonine as a co-substrate leads to high 13C-labeling and enhanced
growth

In an effort to explain why yeast extract was a superior co-substrate for
methanol assimilation, we performed a series of experiments where we systematically
evaluated each amino acid individually as a potential co-substrate for methanol
utilization. We hypothesized that the presence of certain amino acids may trigger a
cellular response that results in the high methanol assimilation phenotype observed
with yeast extract. For comparative analysis, we also evaluated five non-amino acid
carbon sources: acetate, pyruvate, succinate, xylose, and glucose. Experiments were
performed as described in the previous section, where two cultures were performed in
parallel, one with 60 mM *3C-methanol and one without methanol. The initial
concentration of each co-substrate was 5 mM.

In total, twenty-five co-substrates were thus evaluated, which we classified
into three groups: 1) amino acids for which no degradation pathways are known in E.
coli (Link et al., 2015) and therefore, E. coli cannot use these substrates for growth
alone: Histidine (His), Tyrosine (Tyr), Valine (Val), Methionine (Met), Isoleucine
(lle), Leucine (Leu), Phenylalanine (Phe), Lysine (Lys); 2) amino acids for which
degradation pathways are known to exist in E. coli: Arginine (Arg), Cysteine (Cys),
Tryptophan (Trp), Proline (Pro), Glycine (Gly), Serine (Ser), Glutamate (Glu),
Asparagine (Asn), Threonine (Thr), Glutamine (GIn), Alanine (Ala), Aspartate (Asp);
and 3) other substrates (i.e. non-amino acids): Acetate (Ac), Pyruvate (Pyr), Succinate
(Suc), Xylose (Xyl), Glucose (Gluc). Cell growth was monitored for three days in all
experiments. Figure 4.3 shows representative growth profiles for leucine, threonine,

acetate, and glucose as co-substrates.
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Figure 4.3 Growth is improved in the presence of methanol for several co-substrates.
Growth profiles for E. coli on leucine (A), threonine (B), acetate (C), and
glucose (D) as co-substrates in the presence (dashed line) or absence
(solid line) of methanol. The number of cell doublings in both the
presence and absence of methanol was determined for each co-substrate
(E). In the presence of methanol, growth was improved for many co-
substrates, however, the extent of improvement varied, generally

decreasing with increased growth. Error bars indicate standard error (n =
2).

As expected, no growth was observed on the non-degradable amino acids as
sole carbon sources. Figure 4.3A shows the biomass concentration during growth on
leucine, which is representative of the group of non-degradable amino acids. In the
presence of 3C-methanol, the final biomass concentration was slightly higher
compared to leucine alone. Similar results were obtained for the other non-degradable
amino acids. Figure 4.3E also shows the number of cell doublings observed for each
condition. In a few cases, slight net growth was observed in the presence of *3C-

methanol (<0.4 doublings), but no net growth was observed without methanol.
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For the second group of amino acids (i.e. the degradable amino acids),
significant growth was observed in many cases, with the number of doublings ranging
between 0 and 3.6 (Fig 4.3E). For several amino acid co-substrates (proline, glycine,
glutamate, asparagine, and threonine), there was a pronounced improvement in the
number of doublings in the presence of *C-methanol compared to the control
experiments without methanol, e.g. 0.95 for threonine (Fig 4.3E). Overall, amino acids
that generated better growth as sole substrates resulted in smaller improvements in the
number of doublings in the presence of methanol. For example, in the case of alanine,
aspartate, and glutamate, there was <16% increase in the number of doublings
between the condition with methanol and the condition without methanol.

For the third set of co-substrates (i.e. sugars and organic acids), significant
growth was observed in all cases, with the number of doublings ranging from 2.3 to
4.8. However, the improvement in cell growth as a result of *C-methanol co-
utilization was small in all cases (<13%, Fig 4.3E), following the same trend as
observed for the degradable amino acids.

In addition to quantifying growth profiles, we also measured isotopic labeling
of biomass components (specifically, glycogen, RNA, and proteinogenic amino acids)
for all experiments where *C-methanol was used as a co-substrate (all data are
provided in Supplemental Materials). Figures 4.4A and 4.4B show the measured mass
isotopomer distributions (MID) of glycogen and RNA, after correction for natural
isotope abundances, where M+0, M+1, M+2, etc represent the mass isotopomers with
no carbons labeled, one carbon labeled, two carbons labeled, etc, respectively. We
observed high labeling of RNA (up to 29%, 1-M+0) and glycogen (up to 84%, 1-M+0)

for all amino acid co-substrates, and especially for non-degradable amino acids as co-
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Figure 4.4 Threonine as a co-substrate leads to high *3C-methanol incorporation in
biomass components. Isotopic labeling from 3C-methanol was measured
for 25 co-substrates. Here, mass isotopomer distributions (MID) of
glycogen (A), RNA (B), valine (C), alanine (D), glutamate (E), and
serine (F) are shown. Relative abundances are the measured mass
isotopomer distributions that have been corrected for natural isotope
abundances. High labeling in biomass components was observed when
threonine was the co-substrate. Error bars indicate standard error (n = 2).

substrates. Since little or no growth was observed in these cultures, the observed high
labeling must be the result of turnover of glycogen and RNA. In many cases, we
observed up to M+5 labeled glycogen and up to M+4 labeled RNA, indicating that
13C-methanol carbon efficiently cycled through the pentose phosphate pathway,
resulting in multiple carbons being labeled in biomass components. For the degradable
amino acids, labeling of glycogen and RNA was generally lower compared to the non-

degradable amino acids as co-substrates. A notable exception was threonine, for which
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we observed high $3C-labeling in both glycogen (77%, 1-M+0) and RNA (27%, 1-
M+0). For the other substrates, the labeling of glycogen and RNA was much lower,
especially for substrates that produced high growth rates such as glucose and xylose
(~5% labeling in RNA, and <20% labeling in glycogen). Thus, there was an inverse
correlation between cell growth rate and $3C-labeling of RNA and glycogen for these
Cco-substrates.

Figures 4.4C-4.4F show the mass isotopomer distributions of four
representative proteinogenic amino acids (valine, alanine, glutamate, and serine) from
the experiments with **C-methanol. For the non-degradable amino acids as co-
substrates, significant labeling was observed in alanine, serine and glutamate (up to
M+3), but no labeling was observed in valine and most other amino acids (Tables C.3,
C.4). Again, since little or no growth was observed for these co-substrates, it is likely
that the labeling was due to protein and amino acid turnover (i.e. similar to glycogen
and RNA turnover). For the degradable amino acids as co-substrates, significant
labeling was observed in alanine, serine and glutamate (up to M+3), and for a few co-
substrates, significant labeling was also observed in amino acids such as valine that
typically were not labeled in the presence of yeast extract (Fig 4.4C). Most notably,
threonine as a co-substrate produced high 3C-labeling of valine (up to M+4) and other
amino acids (Table C.4). For the third set of co-substrates (i.e. sugars and organic
acids), the amount of labeling in biomass amino acids was significantly lower and
mainly M+1 labeling was observed.

Based on these results, threonine was identified as the most promising co-
substrate for methanol assimilation, since it produced high labeling in RNA, glycogen

and biomass proteins and improved cell growth. Interestingly, no labeling from 3C-
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methanol was detected in glycine and serine when threonine was the co-substrate (Fig.
4.4, and Table C.4). This suggests that glycine and serine were produced directly from
threonine, likely via threonine dehydrogenase, which converts threonine to glycine
and acetyl-CoA (Thr — Gly + AcCoA), and serine hydroxymethyltransferase, which
combines glycine and methylenetetrahydrofolate to produce serine (Gly + MEETHF

— Ser).

4.3.3 A potential role for the leucine-responsive protein (Lrp) in methylotrophy
After observing high labeling and increased growth with threonine as the co-
substrate, we hypothesized that improved methanol utilization correlates with
threonine degradation, via its conversion to glycine and serine. During growth on
glucose and other carbon sources, such as xylose, threonine degradation does not
occur (Gonzalez et al., 2017; Long et al., 2017). As such, under these growth
conditions, threonine is not converted to glycine and the net flux is from serine to
glycine, instead of glycine to serine. Our results thus suggest that rewiring amino acid
metabolism at the threonine/glycine/serine node may be a potential metabolic
engineering target to improve methanol utilization. Metabolic fluxes at this node are
regulated by the leucine-responsive regulatory protein (Lrp) (Calvo and Matthews,
1994; Wang et al., 1994) (Figure 4.1), which is generally associated with the “feast
and famine” response in E. coli. During growth in rich media, i.e. ‘feast’, Lrp levels
are low while during nutrient limitation, i.e. ‘famine,” Lrp levels are high. As such,
Lrp regulates biosynthetic pathways depending upon the nutritional state of the cell.
Lrp levels also increase when cells enter the stationary phase (Traxler et al., 2011). As
illustrated in Figure 1, Lrp represses the conversion of threonine to glycine and the

conversion of glycine to serine. We thus hypothesized that by knocking out Lrp, we
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may be able to increase the flux through these pathways and, indirectly, improve

methanol assimilation.

4.3.4 Deletion of the Lrp gene enhances methanol assimilation

We generated the Alrp strain by deleting the Irp gene from our base
methylotrophic E. coli strain. Growth characteristics of the base strain and the Alrp
strain were then compared in medium containing 1.5 g/L yeast extract, with and
without 60 mM *3C-methanol (Figure 4.5). For both strains, stationary phase was
reached after ~10 hrs. Co-utilization of methanol and yeast extract resulted in
significantly higher biomass concentrations for both strains compared to cultures
without methanol. At 72 hr, the biomass concentration of the base strain was 37%
higher with methanol compared to no methanol, and the biomass concentration of the
Alrp strain was 34% higher with methanol compared to no methanol. Overall, the
biomass concentration of the Alrp strain was consistently higher compared to the base
strain. Mutations in Irp are known to result in improved cell performance during
stationary phase, a phenotype known as GASP, Growth Advantage in Stationary Phase
(Finkel, 2006). It has been hypothesized that this mutation may increase the ability of
the cells to combat the native starvation response in E. coli.

Labeling of glycogen and RNA was also measured for experiments with *3C-
methanol (Figure 4.6A-D). High labeling in these metabolites serves as an indicator of
efficient methanol assimilation and of efficient cycling of the pentose phosphate
pathway. Glycogen labeling in the Alrp strain was significantly higher than glycogen
labeling in the base strain in terms of both 1-M+0 and average carbon labeling. In the
Alrp strain, glycogen labeling reached 72% (1-M+0), while glycogen labeling in the

base strain only reached 45% (1-M+0). A similar trend was
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Figure 4.5 Deletion of Irp increases biomass concentration in both the absence and
presence of methanol. The base (A) and Alrp (B) strains were grown in
1.5 g/L yeast extract with (dashed line) and without (solid line) 60 mM
13C-methanol. Both strains reached a higher OD600 in the presence of
methanol. The ODsoo of the Alrp strain was consistently higher than that
of the base strain. Error bars indicate standard error (n = 3). An asterisk
indicates a statistically significant difference (p < 0.05) between the
conditions with and without methanol for each strain.

observed for RNA labeling, with the Alrp strain reaching higher RNA labeling (24%,
1-M+0) compared to the base strain (14%, 1-M+0). Additionally, labeling of RNA and
glycogen was measured with threonine supplementation to yeast
extract (Figure C6). When threonine was supplemented to the base strain, the labeling
was similar to the labeling observed in the Alrp strain without threonine
supplementation. This result suggests that deletion of Lrp captures the positive effects
of threonine supplementation. Interestingly, addition of threonine to the Alrp strain
further improved labeling incorporation from *C-methanol (Figure C6), suggesting
that there is still room for further improvement of methanol utilization in our strain.
The absolute amounts of **C-glycogen and *3C-RNA, as a fraction of dry

weight, were also measured for both strains grown in yeast extract and *3*C-methanol
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(Figure 4.6E-F). The amount of 3C-labeled RNA remained relatively constant for the

base strain during stationary phase, while it increased slightly for the Alrp strain. The

amount of 1*C-labeled glycogen remained low in the base strain (between 0.1% and

0.3% DW) during the stationary phase. In contrast, for the Alrp strain, the amount of

13C-glycogen was much higher (0.8% DW) at the early timepoints and then reached

similar levels as the base strain.

Figure 4.6
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13C-labeling in RNA and glycogen from 3C-methanol are significantly
enhances when Irp is deleted. Isotopic labeling of RNA (A, B) and
glycogen (C, D) from *3C-methanol was measured for both the base
strain and the Alrp strain. Relative abundances are the measured mass
isotopomer distributions that have been corrected for natural isotope
abundances. Absolute amounts of 3 C-RNA (E) and **C-glycogen (F)
were also measured and are represented here as % dry weight (DW). *C-
labeling of glycogen and RNA in the Alrp strain was significantly higher
than that of the base strain at each respective timepoint (p < 0.05). While
the total amount of 3C-RNA was similar for both strains, the amount of
13C-glycogen was significantly higher in the Alrp strain. Error bars
indicate standard error (n = 3). An asterisk indicates a statistically
significant difference (p < 0.05).
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4.4 Discussion and Conclusions

Methanol is an abundant and attractive substrate for bioprocesses given its high
electron and energy content. In this study, we have applied a rational engineering
approach based on **C-labeling studies to gain a better understanding of the
mechanisms leading to improved methylotrophy in E. coli. Through our
investigations, we identified a correlation between net flux through pathways normally
repressed by the leucine-responsive regulatory protein and increased methanol
assimilation. Based on this finding, we hypothesized that by knocking out Lrp we
could improve methanol utilization. We tested this hypothesis and demonstrated
significant improvements in methanol utilization in our synthetic methylotrophic E.
coli.

From the results in Figure 4.3, it is clear that regulation of metabolic pathways
plays an important role in how methanol is metabolized. The contrast observed in *C-
labeling and yield when comparing glucose and yeast extract as co-substrates suggests
that pathways upregulated/downregulated when sugars are present are not conducive
to methanol assimilation. However, when yeast extract is present, one or more of its
components appears to induce regulation that increases methanol incorporation.
Additionally, when examining the labeling of amino acids, it was observed that some
amino acids were highly labeled while others remained completely unlabeled with
yeast extract as the co-substrate, which further supports the hypothesis that a unique
regulatory mechanism is responsible for the observed phenotype.

Therefore, to probe this mechanism, a systematic analysis of various co-
substrates (amino acids, sugars, and organic acids) was performed. Each co-substrate
was evaluated in terms of growth enhancement and incorporation of **C-methanol into

biomass components. Several amino acids showed high labeling and growth in the
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presence of 3C-methanol and it is possible that synergistic interactions between
several co-substrates may further improve these phenotypes. However, based on our
results, threonine appeared to be the best single co-substrate for methanol assimilation
out of the 25 co-substrates examined. When threonine and methanol were co-utilized,
we observed a substantial increase in the number of cell doublings, and enhanced
labeling was observed in biomass components from 3C-methanol. Interestingly,
extensive labeling of amino acids that were typically not labeled was observed, e.g. up
to M+4 labeling was observed in valine, which no other co-substrate achieved. In E.
coli, threonine is first broken down to acetyl-CoA and glycine and then further
metabolized to serine. Compared to growth on other substrates, flux through this
pathway must be significantly higher during growth on threonine and it correlated
with increased methanol incorporation. Therefore, we hypothesized that increasing
flux through these reactions would increase methanol assimilation.

To improve flux through the threonine degradation pathway, the regulator Lrp,
which specifically represses this pathway, was therefore removed (Figure 4.1). After
deletion of this gene, methanol assimilation increased as was demonstrated by higher
13C-labeling in glycogen and RNA as well as higher total amount of *C-glycogen and
13C-RNA (Figure 4.6). Lrp is generally believed to respond to starvation, i.e. it is
downregulated in rich media and upregulated during nutrient limitation. Many
pathways are controlled by Lrp, and generally, anabolic genes are enhanced while
catabolic ones are repressed when Lrp expression is high. Given that Lrp is a global
regulator targeting hundreds of genes (Cho et al., 2011, 2008; Tani et al., 2002), the
exact mechanism that resulted in improved methanol utilization in our strain remains

unclear and may even be an indirect effect. A thorough investigation should be
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performed in the future to examine the expression levels of various genes in the two
strains under various conditions. This could better elucidate the mechanism by which
Lrp impacts methylotrophy. Additionally, further analysis into the starvation response
as well as other global regulators involved in this response could be a strategy for
improvement of our strain.

Based on the results in this study, it is clear that regulation plays an important
role in methylotrophy. Typically, strain engineering consists of studying metabolic
reactions and manipulating the overall stoichiometry to achieve the desired output.
However, when engineering strains to consume a new substrate, it may be necessary to
delve more into studying how microbes respond to the new substrate on a global level
rather than simply adding heterologous genes. Additionally, this analysis requires a
rational approach such as the one taken in this work where growth conditions were
analyzed and probed extensively. In the case of synthetic methylotrophy, while E. coli
has all the necessary machinery for methanol consumption, it still cannot use methanol
as the only substrate for growth. It is clear that when E. coli encounters methanol it
does not respond in the same way as other substrates, such as glucose or acetate,
where specific pathways are upregulated to optimize the consumption of these
substrate. Therefore, manipulating global responses to new substrates is key in
achieving improved organisms with novel substrate capabilities. Overall, our results
suggest that modulating global regulators of metabolism can be a successful strategy

to improve methanol utilization in E. coli.
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Chapter 5

METABOLIC MODEL VALIDATION AND BC-METABOLIC FLUX
ANALYSIS OF THE METHANOGENIC ARCHAEON Methanosarcina
acetivorans

5.1 Introduction

Methanogenesis is a unique pathway that produces methane from several
substrates, primarily one carbon (C1) compounds. It is an essential component of the
global carbon cycle in which biomass is oxidized to carbon dioxide (CO2) and then
converted to methane (CH4) by anaerobic microorganisms. CH4 can then be oxidized
back to CO2 by aerobic methanotrophic bacteria (Mcanulty, 2013). Methanogens are
the anaerobic archaea that carry out methanogenesis, which include microorganisms
from the Methanosarcina, Methanobacteriales, and Methanococcales genera (Ferry,
2010). The Methanosarcina species is the most versatile in its substrate capabilities. It
has been shown to utilize acetate and several C1 compounds, such as methanol, carbon
dioxide, and carbon monoxide, for methane production (Rother and Metcalf, 2004;
Welander and Metcalf, 2005). These organisms have gained much attention over
recent years, not only because they play a crucial role in the global carbon cycle, but
they could contribute to the development of alternative fuels. Natural gas, which is
primarily composed of methane, is a major energy source typically used for heating
and electricity. However, methane has the potential to be converted to liquid fuels (Fei
et al., 2014). Engineering efforts have already led to the generation of methane-
utilizing organisms that convert methane to products such as organic acids
(Kalyuzhnaya et al., 2013; Soo et al., 2016). However, these processes have low yields

and require further optimization before industrial implementation. Therefore, it is of
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interest to further explore these organisms for chemical production and better
understand their underlying metabolism.

Several pathways contribute to methane production in methanogens. In the
CO2 reduction pathway, CO- is reduced to CHa using electrons from hydrogen (Hz). In
the acetoclastic pathway, the carbonyl carbon from acetate is oxidized to CO> while
the methyl carbon is reduced to CHas. In the methylotrophic pathway, methanol is
converted to both carbon dioxide and methane, with the oxidative branch providing
electrons for methane production. Lastly, in the methyl reduction pathway, methanol
is reduced to CHa4 with electrons provided by H. (Ferry, 2010; Welander and Metcalf,
2005).

There have been several studies investigating the growth capabilities of the
Methanosarcina genus. When these pathways were first being elucidated, radioactive
tracers were used to determine how carbons were allocated when multiple substrates
were available for growth (Ferguson and Mah, 1983; Smith and Mah, 1978). More
recently, with the development of genetic tools for this species, studies using mutants
of the methanogenesis pathway have revealed new pathways and demonstrated the
ability of these mutants to grow on various substrates (Welander and Metcalf, 2008,
2005). One organism in particular, Methanosarcina acetivorans (M. acetivorans), has
been shown to grow on carbon monoxide (Rother and Metcalf, 2004) and perform
trace methane oxidation (Moran et al., 2005). It has also been genetically engineered
to utilize methyl esters to produce methane (Lessner et al., 2010).

While the growth of M. acetivorans and underlying biochemistry of the
methanogenesis pathway have been widely studied, the intracellular dynamics of this

organism have yet to be established. Two genome-scale models (Gonnerman et al.,
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2013; Kumar et al., 2011) have been constructed and used to predict growth on
substrates and the lethality of knockouts. However, these models were unable to
accurately simulate uptake rates and growth yields during growth on methanol,
acetate, and CO2. A more recent model was improved to correctly predict these
parameters (Nazem-Bokaee et al., 2016). While these models are useful for
preliminary analysis, for genetic engineering purposes, it is necessary to have a
reliable model that can provide information about the metabolic state of an organism,
as defined by intracellular fluxes. 1*C- metabolic flux analysis (**C-MFA) is a high-
resolution technique for measuring intracellular fluxes (Antoniewicz, 2013; Crown
and Antoniewicz, 2013b). With the use of 1*C-labeled substrates, or tracers, unique
labeling patterns in metabolites can be measured and used in a least squares regression
analysis to estimate fluxes. It has been applied to several non-model organisms such as
Geobacillus LC300, Clostridium acetobutylicum, and Vibrio natriegens (Au et al.,
2014; Cordova and Antoniewicz, 2015; Long et al., 2017Db).

In this work, detailed characterization of growth on methanol was performed
for M. acetivorans. Analysis of the gases in the headspace indicated that methane is
exclusively derived from methanol while carbon dioxide is also produced from
methanol, which is then incorporated into biomass. We established a network model
for M. acetivorans consisting of reactions from central carbon metabolism, amino acid
biosynthetic pathways, and methanogenesis. *C-MFA was used to validate the
proposed network model and generate the first flux map for M. acetivorans. It was
found that the majority of the methanol consumed was used for methane and carbon
dioxide production while the flux through gluconeogenesis was only the amount

necessary for biomass production. Additionally, an incomplete TCA cycle was
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confirmed for this organism. This is one of the few applications of *C-MFA to
organisms that grow on C1 substrates. The validated network model can now be used
as a base model for other methanogens as well as for future engineering of these

organisms.
5.2 Materials and Methods

5.2.1 Materials

Media and chemicals were purchased from Sigma-Aldrich (St. Louis, MO).
13C-methanol (99% 13C), [1,4-C]aspartate, and [U-3C]glutamate were purchased
from Cambridge Isotope Laboratories (Andover, MA). [U-3C]Acetic acid (99% 3C)
was purchased from Isotec (St. Louis, MO). The defined growth medium contained
per liter of medium: 3.0 g Na2COg, 0.6 g Na2HPO4, 0.5 g NH4CI, 10.17 g
MgCl,-6H20, 0.17 g CaCl>-2H.0, 0.76 g KCI, 23.38 g NaCl, 0.25 g Cysteine-
HCI‘H20, 0.25 g Na2S-9H20, 0.001 g resazurin, 10 mL of vitamins solution (100x), 10

mL of trace elements solution (100x), and 5 mL of methanol.

5.2.2 Strain and growth conditions

M. acetivorans C2A was grown anaerobically under a headspace containing
19% CO- and 81% N2 (25 psig) at 37°C in an anaerobic chamber (Forma, Thermo
Scientific). For small scale tracer experiments, cultures were grown in 12 mL glass
vials with 7 mL of headspace. For large scale tracer experiments, cultures were grown
in 160 mL glass bottles with 130 mL of headspace. All bottles were capped with
rubber stoppers and crimped. In addition to the tracer, methanol and CO; also served
as carbon sources. All tracers were added immediately before inoculation at the

following concentrations: 125 mM **C-methanol, 1mM [1,4-3C]aspartate, 1mM [U-
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13C]glutamate. Cells were inoculated at an ODsgoo Of approximately 0.1 and allowed to
grow for 46 hours, after which an ODeoo 0f approximately 0.80 — 1.00 was reached.

Samples were then collected for GC-MS and HPLC analysis.

5.2.3 Analytical methods

Medium samples were collected at multiple time points during the culture to
monitor cell growth, methanol consumption and product accumulation. Optical density
at 600 nm (ODs0no) was measured using a spectrophotometer (Eppendorf
BioPhotometer). The ODeoo values were converted to cell dry weight concentrations
using a pre-determined ODsoo-dry cell weight relationship (1.0 ODeoo = 0.25 gow/L;
molecular weight of dry biomass = 24.6 gow/C-mol). After centrifugation, the
supernatant was separated from the biomass pellet and acetate and formate
concentrations in the supernatant were determined using an Agilent 1200 Series HPLC

(Auetal., 2014).

5.2.4 Gas analysis by mass spectrometer

Molar percentages of nitrogen (m/z 28), carbon dioxide (CO2, m/z 44), 3C-
labeled carbon dioxide (*3CO, m/z 45), methane (m/z 16), 1*C-labeled methane (m/z
17), argon (m/z 40), hydrogen (m/z 2), and oxygen (m/z 32) in gas samples were

measured by a process mass spectrometer (Ametek Proline, Berwyn, PA).

5.2.,5 Gas chromatography-mass spectrometry

GC-MS analysis of 3C-labeling of tert-butyldimethylsilyl (TBDMS)
derivatized proteinogenic amino acids was performed as described by (Leighty and
Antoniewicz, 2012). GC-MS analysis was performed on an Agilent 7890B GC system
equipped with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 um-phase
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thickness; Agilent J&W Scientific), connected to an Agilent 5977A Mass
Spectrometer operating under ionization by electron impact (El) at 70 eV. Helium
flow was maintained at 1 mL/min. The source temperature was maintained at 230°C,
the MS quad temperature at 150°C, the interface temperature at 280°C, and the inlet
temperature at 250°C. 1 uL was injected at 1:40 split ratio. The column was started at
80°C for 2 min, increased to 280°C at 7°C/min, and held for 20 min. Mass isotopomer
distributions were obtained by integration (Antoniewicz et al., 2007a) and corrected

for natural isotope abundances (Fernandez et al., 1996).

5.2.6 Metabolic network model

A metabolic network model of M. acetivorans metabolism was constructed for
13C-MFA based on available genome scale models (Gonnerman et al., 2013; Kumar et
al., 2011) and KEGG and PathwayTools metabolic pathway databases (Caspi et al.,
2012; Kanehisa and Goto, 2000; Kanehisa et al., 2012). The model includes all major
metabolic pathways of central carbon metabolism, a set of lumped amino acid
biosynthesis reactions and a lumped biomass formation reaction. The model is

provided in Table D.1.

5.2.7 1C-Metabolic flux analysis

13C-MFA was performed using the Metran software (Crown and Antoniewicz,
2013a; Yoo et al., 2008), which is based on the elementary metabolite units (EMU)
framework (Antoniewicz et al., 2007b; Young et al., 2008). Fluxes were estimated by
minimizing the variance-weighted sum of squared residuals (SSR) between the
experimentally measured and model predicted mass isotopomer distributions of amino

acids using non-linear least-squares regression (Antoniewicz et al., 2006). Flux
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estimation was repeated 10 times starting with random initial values for all fluxes to
find a global solution. At convergence, accurate 95% confidence intervals were
computed for all estimated fluxes by evaluating the sensitivity of the minimized SSR
to flux variations (Antoniewicz et al., 2006). Precision of estimated fluxes was

determined as follows (Antoniewicz et al., 2006):

FIUX prECiSion (StdEV) = [(ﬂUX upper bound 95%) - (ﬂUX lower bound 95%)] /4 (7)

To describe the fractional labeling of biomass amino acids, G-value parameters
were included in *C-MFA. One G-value parameter was included for each measured
amino acid, as described previously (Antoniewicz et al., 2007c; Leighty and
Antoniewicz, 2012). Reversible reactions were modeled as separate forward and
backward fluxes. Net and exchange fluxes were determined as follows: Vnet = V¢-Vb;

Vexch = min(Vf, Vb).

5.2.8 Goodness-of-fit analysis

To determine the goodness-of-fit, 13C-MFA fitting results were subjected to a
y2-statistical test. In short, assuming that the model is correct and data are without
gross measurement errors, the minimized SSR is a stochastic variable with a y2-
distribution (Antoniewicz et al., 2006). The number of degrees of freedom is equal to
the number of fitted measurements n minus the number of estimated independent
parameters p. The acceptable range of SSR values is between y20/2(n-p) and y21-
a/2(n-p), where a is a certain chosen threshold value, for example 0.05 for 95%

confidence interval.
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5.3 Results and Discussion

5.3.1 Characterization of growth on 3C-methanol

Growth on 3C-methanol under a N2/CO; headspace was characterized. The
growth curve is shown in Figure 5.1A, where growth ceases after all methanol is
consumed. The measured growth rate was 0.06 + 0.01 hr'. During growth on
methanol, both methane and carbon dioxide are produced because carbon dioxide
evolution provides the reducing equivalents required for the formation of methane.
Therefore, if cells were cultured with 3C-methanol, it’s expected that **CH, and
13CO, would be detected in the headspace. Figure 5.1B shows the gas composition as
a function of time. As expected, **CH, and *CO, were observed. The majority of the
carbon dioxide produced is *3C-labeled. Additionally, all the methane produced is
labeled, confirming no additional production of methane from an alternative carbon
source, such as COz. The carbon and electron balances are shown in Figure 5.2. The
majority of the carbon (~60%) and electrons (~80%) from methanol are used for
methane production while only ~22% of the carbon and ~16% of the electrons are
used for biomass production, leaving ~11% of the carbon to be converted to COo.

Additionally, the biomass composition of M. acetivorans was measured and
compared to E. coli (Figure 5.3). Similar trends were observed in how the cell dry
weight is allocated for each biomass component for both organisms. Protein was the
most abundant fraction at 62 wt% while RNA and glycogen composed 13 wt% and 8
wit%, respectively, of the cell dry weight. During analysis of the biomass composition,
it was found that the cell membrane of M. acetivorans is composed of isoprene units,

rather than fatty acids, which are found in membranes of prokaryotes. Therefore, the
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Figure 5.1
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remaining fraction of the dry weight is likely allocated to isoprene. The amino acid
profile for M. acetivorans is similar to the profile found in E. coli with the exception

of glutamate; the amount of glutamate is higher in M. acetivorans than E. coli.

5.3.2 Network model validation

The network model for M. acetivorans is presented in Figure 5.4, with the
exception of amino acid biosynthesis pathways and one-carbon metabolism. The
ribulose 1,5 bisphosphate carboxylase/oxygenase reaction (Rubisco) was hypothesized
to be active in this organism (Finn et al, 2004) so it was included in the model. In
methanogenesis, the methyl carbon of acetyl-CoA is derived from methanol while the
carbonyl carbon originates from carbon dioxide. A CO; fixation step with acetyl-CoA
to form pyruvate initiates gluconeogenesis (Mukhopadhyay et al., 2001) while the
TCA cycle begins with an additional CO; fixation reaction with pyruvate to produce
oxaloacetate. Figure 5.5 shows the relative abundance of each labeled mass
isotopomer for several amino acids measured during growth on *3C-methanol. These
labeling patterns confirm the presence of an incomplete TCA cycle. If the cycle were
complete, labeling of aspartate, which is derived from oxaloacetate, should be similar
to that of glutamate, which originates from a-ketoglutarate. Examining the abundances
of the mass isotopomers (i.e. M+1 for one carbon labeled, M+2 for two carbons
labeled), it can be seen that there is a high abundance of the M+2 mass isotopomer of
glutamate but essentially no M+2 mass isotopomer of aspartate. A complete TCA
cycle would result in similar labeling in both of these amino acids. Addition of small
amounts of [1,4-13C]aspartate and [U-*3C]glutamate tracers, during growth on
methanol, were used to further verify the incomplete cycle. If there were an

incomplete cycle, labeling
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Figure 5.3  Biomass composition analysis of M. acetivorans compared to E. coli.

from aspartate should be present in glutamate but labeling in glutamate should not
appear in aspartate. Figure 5.6A shows the relative abundance of labeling measured in
glutamate and aspartate for both tracers. Both amino acids were labeled from their
respective tracers, as expected. However, there is no labeling of aspartate from the
glutamate tracer, but labeling is present in glutamate from the aspartate tracer,
confirming the presence of an incomplete TCA cycle.

The [1,4-'3CJaspartate tracer also revealed the presence of an additional set of
reactions, not included in our original model. Figure 5.6B shows the labeling (1 —
M+0) of glycine, serine, threonine, and aspartate when cells were grown with [1,4-
13CJaspartate. Labeling was detected in the Gly246 fragment, containing both carbons
in glycine, but not in the Gly218 fragment; therefore, the first carbon of glycine must
be labeled by aspartate. Threonine aldolase catalyzes the reaction that converts
threonine, derived from aspartate, to acetaldehyde and glycine, which must be the

mechanism that led to the observed labeling. Therefore, the threonine aldolase reaction
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was added to the existing model. No labeling was detected in serine suggesting the net
flux between serine and glycine is towards glycine.

The presence of an incomplete cycle is not surprising as this is the case found
in most anaerobic organisms. In aerobes, the TCA cycle is used for amino acid
precursor synthesis as well as a source of significant amounts of reducing power.
Under aerobic conditions, NAD™ can be regenerated by transferring electrons to
oxygen, the final electron acceptor. However, anaerobic environments do not have
access to an effective electron acceptor like oxygen. This results in a decreased flux
through the TCA cycle and removal of certain reducing power-producing reactions.
The effect of oxygen on the TCA cycle was studied in E. coli (Gray et al. 1966). It was
found that removal of oxygen results in decreased expression of TCA cycle enzymes,
which supports the idea that the energy-producing role of the cycle declines without an
effective electron acceptor. 3C-MFA has been applied in E. coli under anaerobic
conditions and has shown that indeed, flux through the TCA cycle decreases when
oxygen is absent. A similar analysis was also applied to an anaerobic bacterium,
Clostridium acetobutylicum (C.acetobutylicum) (Au et al., 2014). The results reveal
that the TCA cycle is characterized by small fluxes and is incomplete in multiple
locations. Unlike in C.acetobutylicum, where the TCA cycle operates in the oxidative
direction, our results suggest that, in M. acetivorans, the cycle bifurcates with citrate
synthase, aconitase, isocitrate dehydrogenase, and a-ketoglutarate dehydrogenase
operating in the oxidative direction while malate dehydrogenase and fumarase operate

in the reductive direction.
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Figure 5.7 Metabolic flux map for M. acetivorans during growth on **C-methanol.
Fluxes were determined using **C-MFA.
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5.3.3 13C-Metabolic flux analysis

13C-MFA has been applied to various organisms utilizing a wide range of
substrates. However, applying this technique to study an organism that uses one
carbon substrates generally requires more advanced computational approaches as the
assumptions made for *3C-MFA no longer apply. For these organisms, using a *3C-
tracer of the one carbon substrate will prevent metabolism from reaching an isotopic
steady state; all measured metabolites will become fully labeled and therefore, the
labeling patterns of these metabolites are no longer dependent on the fluxes. In this
case, to resolve fluxes, non-stationary *3C-flux analysis can be used; however, this
requires samples to be taken at multiple time points, precise quenching of metabolism,
and more advanced computational methods. Instead, a properly designed tracer

experiment can allow for the use of **C-MFA for estimating fluxes during metabolism
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of a one carbon substrate, greatly decreasing the complexity of the experimental
design and data analysis. For this method, one can take advantage of natural dilutions
occurring during growth, from turnover of macromolecules or external carbon sources,
or can make use of metabolite exchanges that do not impact metabolism. In the case of
M. acetivorans growing on *C-methanol, it was found that when unlabeled carbon
dioxide is present in the headspace, it will be used in the conversion of CO2 to CO,
resulting in an AcCoA pool that is ~100% M+1 labeled, where the labeled methyl
carbon comes from *C-methanol. In Figure 5.5, it can be seen that most amino acids
are essentially M+1 labeled as all of these are derived from AcCoA produced from
methanogenesis. Glutamate is M+2 labeled because it is formed after condensation of
OAC and AcCoA, both containing one labeled carbon. This experimental design
allows for isotopic steady state to be reached. All measured metabolites will now be
partially labeled and these labeling patterns can be used to resolve intracellular fluxes.
Additionally, one can take advantage of the acetate exchange occurring when
methanol is present, where there is no net consumption or accumulation of acetate.
Therefore, we performed parallel labeling experiments using methanol + [U-
13CJacetate and *C-methanol + acetate and applied 3C-MFA. The results are shown
in Tables D.2 and D.3 and Figure D.1.

13C-MFA was performed using the model described in Figure 4 using *C-
methanol as the tracer. Biomass amino acid measurements were fit to the network
model and an acceptable fit was achieved with a sum of squared residuals value of
88.7 at a 95% confidence level (acceptable range between 79.4 and 136.4). Figure 5.6
shows the resulting flux map. It can be seen that the flux through methanogenesis is

significantly higher than the flux through gluconeogenesis. The flux through the TCA
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cycle is even smaller, with certain reactions predicted to have no flux. It is likely that
the flux is too small for the model to predict a value, but labeling data shows that there
is a non-zero flux through those reactions. Additionally, it was hypothesized that
Rubisco was active in this organism. However, the flux through this pathway is
calculated to be zero. Therefore, under these conditions, this enzyme seems to be
inactive. The flux through the ribulose monophosphate pathway is solely used to
produce the necessary ribose moieties of RNA and DNA and to synthesize aromatic
amino acids, which is typically accomplished through the pentose phosphate pathway
in prokaryotes.

In an anaerobic environment, ATP and electrons are vital resources that are not
as easily managed as under aerobic conditions. Therefore, it’s imperative to develop
an understanding of how these are allocated, especially if the goal is to engineer an
organism to produce chemicals. This would most likely require re-allocation of
cellular resources and therefore, adjustment of intracellular fluxes. In addition to
fluxes, Figure 5.6 shows which reactions result in the production of electrons, shown
in green, and which result in the consumption of electrons, shown in red. It’s clear that
the main source of electrons is through the production of carbon dioxide, while a
major source of electron depletion is conversion of CO2to CO and methane
production. Figure 5.7 shows a more global allocation of electrons. There is net
production of electrons by methanogenesis which are then used for biomass
production and the TCA cycle, specifically, conversion of AcCCoA to pyruvate.
Essentially all ATP required for biomass production and gluconeogenesis comes from

ion transport and ATP synthase activity.
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5.4 Conclusion

This is the first study to present a complete characterization of extra- and
intracellular metabolism in a one-carbon substrate utilizing organism using high
resolution **C-MFA. Specifically, the network model for M. acetivorans was
constructed and validated using **C-methanol. Uptake of CO2 allowed for dilution of
labeling, enabling the use of conventional **C-MFA in place of more complex
approaches. This method can also be applied to other one-carbon substrate utilizing
organisms.

Future work will consist of calculating fluxes, using this model, during growth
on other substrates such as acetate. While most substrates are consumed in the
methanogenesis pathway, it will be interesting to see how fluxes differ and how
effectively this organism will utilize certain substrates over others. The resulting flux
profiles can be then used to create kinetic models to better understand the metabolism
of M. acetivorans. Additionally, with the validation of this model, it will be
straightforward to extend it to other organisms of the Methanosarcina species as well

as other methanogens.
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Chapter 6

APPLICATION AND EVALUATION OF METABOLIC FLUX ANALYSIS
METHODS FOR METABOLIC AND ISOTOPIC NON-STEADY STATE

6.1 Introduction

Metabolic flux analysis (MFA) has become an invaluable tool for studying
metabolism and guiding metabolic engineering (Antoniewicz, 2015; Iwatani et al.,
2008). Its ability to precisely quantify intracellular fluxes makes it the optimal method
for characterizing in vivo metabolism. Because of this, it has been applied to a wide
range of organisms (i.e. E. coli, S. cerevisiae, C. acetobutylicum, V. natrigens,
cyanobacteria) (Au et al., 2014; Gonzalez et al., 2017; Long et al., 2017b; Young et
al., 2011) for various purposes such as identifying targets for improvement of product
yields and studying how extracellular conditions affect metabolism.

MFA allows for the determination of fluxes by balancing fluxes in a
stoichiometric model, assuming no accumulation of intermediates. Extracellular rates
are included to further constrain the system. However, the limited amount of data
required for MFA prevents complete observability of all fluxes. Therefore, *C-MFA
has emerged as the superior method due to incorporation of **C-labeling data.
Including metabolite labeling patterns provides additional constraints on the fluxes,
resulting in more precise estimation of fluxes (Antoniewicz, 2015). While this method
is more computationally intensive, there have been several attempts at decreasing this
complexity, such as the introduction of elementary metabolite unit (EMU) balancing,
where the minimal amount of information is used to determine fluxes, significantly
decreasing the mathematical operations required (Antoniewicz et al., 2007b).

To apply 3C-MFA, it is assumed that the system being interrogated is at

metabolic steady state and isotopic steady state, where fluxes and isotopic labeling
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remain constant over time. This assumption limits the extension of 3C-MFA to
systems where these assumptions do not hold. For systems that are close to isotopic
steady state, a G parameter can be used to account for the dilution of metabolites
(Antoniewicz et al., 2007c). However, a more advanced technique must be used for
systems where isotopic steady state will never be reached. For example, any system in
which the substrate contains only one carbon will never reach isotopic steady state.
Therefore, a new method was developed, called **C-nonstationary MFA (13C-NMFA),
where time-dependent labeling data and pool sizes are measured at various time
points. This data can then be used to resolve fluxes (Young et al., 2008). For systems
with time-dependent fluxes (metabolic non-steady state), dynamic MFA (DMFA) can
be used to quantify these fluxes using concentration and rate data from multiple time
points (Leighty and Antoniewicz, 2011). This method will now be further extended to
include isotopic labeling measurements (**C-DMFA).

Here, we apply each of these methods (**C-MFA, *C-NMFA, 3C-DMFA) to a
simple model under various conditions, including metabolic non-steady state and
isotopic non-steady state. First, we present a framework for *C-DMFA, an extension
of previous methods to include isotopic labeling and time-dependent fluxes. We then

compare these MFA methods and present the appropriate method for specific systems.
6.2 Methods

6.2.1 Metabolic Network Model
For studying each method, we will use the simple network model shown in
Figure 6.1. This model was previously used to demonstrate the EMU decomposition

method (Antoniewicz et al., 2007b). Therefore all atom transitions and EMU balances
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Figure 6.1 Simple metabolic network model that will be used for evaluating
metabolic flux analysis methods.

are presented in that paper and will not be repeated here. In this network model, there
are three free fluxes: vy, vs, and va. For the remaining analysis, vi1 will be set to 100.
Additionally, the concentrations of B, C, and D will be estimated when using *3C-

NMFA and 3C-DMFA.

6.2.2 Simulation of labeling using EMU balances
For a general network model, we can set up a mass balance equation for each

EMU network:

L) = ax +BY (6.1)
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M is the concentration matrix, containing the metabolite concentrations on the
diagonal. X contains the mass isotopomer distributions (MIDs) of metabolites in that
EMU network. Y contains MIDs from previously calculated EMUs or MIDS from
extracellular metabolites. A and B contain fluxes from each mass balance equation.

For 13C-MFA, it is assumed that the system is at isotopic steady state.
Therefore, Equation 6.1 simplifies to
AX = —BY (6.2)
X =A"'BY (6.3)
X can be found for each EMU network, where each row of X gives the MID of the
selected metabolite.

For systems that are close to isotopic steady state, we can apply *C-MFA and
include G-values (3C-MFAQ), or dilution parameters, to account for transients in
labeling. Each simulated MID can be represented by the following equation:

XM = gyl 4 (1 — gg) x xmatural (6.4)
x#M is the simulated MID of metabolite i, g is the g-value for that metabolite, xi'** is
the MID of metabolite i at isotopic steady state (iss), and x"" s a vector
representing natural abundance. The MID at isotopic steady state can be calculated
using 3C-MFA.

For systems that are not at isotopic steady state, we must use 3C-NMFA. Here,
the MIDs, X, are now a function of time. We can expand equation 6.1, assuming that
the concentrations of metabolites remain constant. The resulting ordinary differential

equation (6.5) can be integrated to achieve the labeling of metabolites in X over time.
& = M71(AX + BY) (6.5)
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For systems that are not at metabolic steady state, we must use *C-DMFA. Again, the
MIDs are still a function of time (6.5) but now, so are the fluxes, vj. Here, we will
assume that fluxes are a linear function of time, where constants vj, and vje represent
the fluxes at time tp and te, respectively.

v = vjp + (Ve — vjp) * (t_ tb) (6.6)

te—tp

6.2.3 Calculation of parameter sensitivities

To calculate confidence intervals for parameter estimates, we also need to
derive equations for the sensitivities of the measurements with respect to the
parameters (i.e. fluxes, concentrations, g-values), in the form of first order derivatives
(Antoniewicz et al., 2006). As shown in (Antoniewicz et al., 2007b) for 1*C-MFA, the
first order derivatives with respect to each flux, vj can be calculated using the

following equation for each size EMU network:

IX _ gt (a—BY+Ba—Y— a—AX) 6.7)

av; v, ov; v
When using g-values, we are including additional parameters that must be
estimated. Similarly, we need to calculate first order derivatives with respect to each
g-value, in addition to the fluxes. For each metabolite i, we can calculate the following
derivatives for gi and v;. Here, the derivative of xi"*® with respect to the fluxes can be

determined using equation 6.7.

sim iss
0x; . 0x;

. 9i .
ov; ov;

(6.8)

6x§im ] 1
a;i — Iss __ xnatura (69)

For 13C-NMFA, we can also estimate pool sizes. Equations 6.10 and 6.11 can
be used to calculate the sensitivities with respect to the fluxes, vj, and the pool sizes,
ci, as a function of time. Again, these can be integrated over time to determine the

sensitivities as a function of time.
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iaX—M‘l(a—A_X+A X 4 a—BY+Ba—Y> (6.10)
J

dt 6_UJ - v av] avj av]-
d ox

ay oM dX
dt 6ci _) (6.11)

= M~ (A Z—fi+ Bir— oo
For *C-DMFA, we have included two more parameters and now have four
parameters to represent the transient fluxes. Again, we must calculate first order
derivatives, with respect to all parameters, which are now the pool sizes and the
beginning and end fluxes for each free flux. Here are the first order derivatives with

respect to the additional parameters.

d 0x _1 (04 0vj X 0B 0vj oYy 0v;
S oM E Ly 4A S =y L (6.12)
dt a‘U]’b 6v]- avjb avjb av]- avjb av]- a‘Ujb
d 0x _1 (04 0vj oX dB 0vj ay 9v;
S - (XA = Ly4+p——L (6.13)
dt 6vje an avje avje an avje 6vj 61;]-6

Each flux, vj, can be differentiated with respect to each parameter, vj, and vje. We can
then substitute these into equations 6.12 and 6.13 to obtain first order derivatives with

respect to the beginning and end fluxes (equations 6.17 and 6.18).

v _ (=t )

iy 1 (te— th (6.14)

v _ (=t )

9vje B (te— tp (6.15)

m= (=% (6.16)
te—tp

40X _ y-1(d4 _ ox , o8 _ Ea

vy M (ava *(1-m)+A 20,7 + o7, Y+«(1-m)+B o (1 m)) (6.17)

a9x _ a-1(04 9x |, 0B oy

T M (ava*m+Aane+ aij*‘m-l-Bavj*m) (6.18)

6.2.4 Extension of EMU balances to include metabolite C

The EMU balances presented in Antoniewicz et al (Antoniewicz et al., 2007b)
were extended to include labeling of metabolite C to simulate the effect of include the
labeling measurement of C on the precision and accuracy of estimated parameters. The

following matrices can be used as EMU balances and include the labeling of C12. Each
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equation is in the form AX = -BY, where each of these matrices is described above

and can be used in all previously defined differential equations.

—V, Uy 0 0 0 [Cl] [ 0 0 1
0 —U1—V3 U3 0 0 Bz I—vl 0 IA
0 Uy —V,—Vsg Vs 0 D=1 o 0 AZ] (6.19)
O 0 O —171—173 v3 Bg 0 _7.71 3
175 0 O 1.72 —172—1]5_ ngJ 0 O
—VUs—V, 1% 0 D23 —Ug 0
B; X C
V3 —v;—v3 0 |[Bas —[ 0 - 3A 1] (6.20)
0 V4 _174, ClZ 0 0 ] 23
—176 176 O F123 O 0
X
0 —VUs—7V, (%] D123 = [—vs 0 BZZ Cl] (621)
0 V3 _vl_v3 3123 O —vU 123

6.2.5 Estimation of parameters

Parameters were estimated by first generating a random set of parameters, ux.
This set of parameters was used to simulate MIDs, X*™, for the measured metabolites.
These simulated patterns and the associated sensitivities (dX/du, where u is each
parameter, see section 6.2.3) were used to calculate the Jacobian (J) and Hessian (H)

matrices (Antoniewicz et al., 2006):

H = Z_i « D1« Z_i (6.22)
] — Z_ﬁ x D1 % (Xsim _ Xobs) (6.23)

D is a diagonal matrix containing the measurement error on the diagonal. Here, we
assume a labeling measurement error of 0.003. X°° contains the measured MIDs.
These matrices can be used to determine the set of parameters used in the next

iteration to simulate a new set of MIDs. The step size (Au) between the current (K) set
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of parameters and the next (k+1) set can be calculated using the Hessian and Jacobian

matrices.
Au= —H 1x] (6.24)
Upsq = U + Au (6.25)

This iteration process continues until Au reaches a specified value and represents the
optimal solution (Uopt).

For C-NMFA and *C-DMFA, we also examined the effect of including
measurements of pool sizes on the accuracy and precision of each method. To do this,
an additional term was added to the Hessian matrix equation that accounted for the
sensitivity of the pool sizes with respect to the parameters. We assume that the pool
sizes are not a function of the fluxes i.e. dB/dvj = 0 and that the pool sizes of each
metabolite are independent i.e. dB/dC = 0. Therefore, the new Hessian matrix can be

generated using the following equation:
aM

H= 2D 1«24 Sy prt s o8 (6.26)
dM/du contains the sensitivities of the pool sizes with respect to each parameter and
Dw is a diagonal matrix containing the pool size measurement error on the diagonal.
The new Jacobian matrix can be generated using the following equation:

J = S D7Ux (XM — xOPS) + S2s DUtk (Met*™ — Metobs) (6.27)
MetS™ contains the simulated pool sizes and Met® contains the measured (actual)

pool sizes.

6.2.6 Statistical Analysis
For each method, we calculate the sum of squared residuals as well as the
uncertainty and accuracy of the estimated parameters (Antoniewicz et al., 2006). The

sum of squared residuals can be calculated using the following equation:
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SSR = (X5 — X°PS) « D™t (XSim — x0bs) (6.28)
When including pool sizes, the equation for SSR must also be extended.
SSR = (XSim — X0bs) x D=1 (XSim — xobs) 4 (MetSim — Metobs) x Dyt
(Metsim — Met°Ps) (6.29)
With the sensitivities calculated above from first order derivatives, we can calculate
the uncertainty of the estimated parameters using the following equation:
SD ugpr = VH™T (6.30)
To calculate the accuracy, the absolute value of the difference between the
estimated parameters and actual parameters was used. For *C-MFA and *C-MFAg,
the largest accuracy and uncertainty observed out of all time points was used. For *C-
NMFA, since one value for the fluxes was determined to represent all data points, the
maximum difference between the estimated value and the actual flux value at each

time point was used.
6.3 Results and Discussion

6.3.1 Simulation of labeling patterns

Using the network model in Figure 6.1, we can calculate MIDs for various
pool sizes and fluxes. There are three free fluxes, vi, vz, and va. We set v1 to remain
constant at 100. At time =0, vs =50 and v4 = 20. To interrogate systems at metabolic
non-steady state, vs will decrease and v4 will increase by a certain percentage (0%,
5%, 10%, 15%, 20% and 25%) of the initial value over the course of the experiment.
Figure 6.2 shows example of how vs and v4 change over time. The pool sizes tested
are 0.5, 2, 4, 6, 8, and 10 for each metabolite. Changing the pool sizes varies the time

it takes to reach isotopic steady state. Smaller pool sizes reach isotopic steady state
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more quickly than large pool sizes. Thus, larger pool sizes will test the ability of these

MFA methods to capture non-isotopic steady state. Figure 6.3A shows labeling of

metabolite D for different pool sizes with constant fluxes. When the pool size is large,

the labeling of these metabolites require a longer time to reach isotopic steady state.

Figure 6.3B shows the labeling of metabolite D for various flux changes with a pool

size of 10. For flux changes less than 25%, the labeling of D does not change

significantly. As will be seen in the next section, even with these small flux changes,

some methods can no longer correctly estimate fluxes.

Figure 6.2
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Changes in fluxes vz and v4. Shown here are changes of 0%, 10%, and
20%. Additionally 5%, 15%, and 25% changes were also tested. Flux v3
decreases over time and flux vs increases over time.
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Figure 6.3 Simulated MIDs of metabolite D. (A) shows the MIDs when the fluxes
are constant over time for pool sizes 1, 5, and 20. (B) shows the MIDs
when the fluxes change by 0%, 10%, and 20% for a pool size of 10. The
grey dashed lines indicate the timepoints used to estimate parameters.

6.3.2 Application of metabolic flux analysis methods to a simple model

We can simulate an experiment in which six data points are taken at

equidistant intervals and the labeling patterns of metabolites B and D are measured

(Figure 6.3). Using these labeling patterns, we can apply the various MFA methods to

estimate a set of parameters. Table 6.1 shows the four methods that will be tested and

their associated parameters. For each method, the sum of squared residuals,

uncertainty in the flux estimates, and accuracy of the flux estimates are calculated and

compared in Figure 6.5.
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Method Estimated parameters
13C-MFA V3, V4
13C-MFAg V3, V4, U, OD
BC-NMFA v, V4, [B], [C], [D]
3C-DMFA Vab, Ve, Van, Vae, [B], [C], [D]

Table 6.1 *C-Metabolic flux analysis methods and the parameters estimated in each
method.

Figure 6.4 compares how each method performs in flux estimation for the case
with the largest pool size (10) and the largest flux change (25%) and demonstrates
how each method was used to estimate fluxes over time. *C-MFA and *C-MFAg are
applied at each time point to obtain an estimate of vs and v4 at the time at which each
sample was taken. 3C-MFA performs rather poorly, especially when estimating fluxes
at early timepoints, likely due to the changes in labeling early in the experiment. For
13C-NMFA and *C-DMFA, all labeling data from all time points are fit
simultaneously to achieve one set of estimates for the parameters. 3C-NMFA only
estimates one flux for the entire duration of the experiment, with the confidence
interval not overlapping with the correct values in some cases (va). 3 C-DMFA is the
only method that captures the entire flux change within the confidence interval.

Figure 6.5 summarizes how each method performs for all flux changes and
pool sizes tested. 23C-MFA appears to estimate parameters well for cases in which
there are small pool sizes (<2), even in the presence of transient fluxes. This method
can correctly estimate fluxes at each time point, if the labeling has reached isotopic

steady state. Once the pool sizes becomes larger than 2, the SSR value increases
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substantially, indicating that the simulated labeling patterns are not in agreement with
the measured labeling patterns. For these pool sizes, we also observe low accuracy and
precision. Even at metabolic steady state, this method cannot estimate fluxes for large
pool sizes because the assumption of isotopic steady state no longer holds in the time
frame considered here.

13C-MFAg seems to improve upon 3C-MFA. In all cases, this method can
simulate labeling patterns that are in agreement with the measured labeling patterns as
indicated by the low SSR values. However, the uncertainty and accuracy of the flux
estimates are similar to those calculated for 3C-MFA. This indicates that there are too

many parameters and the model is being overfitted. Therefore, this method should
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Figure 6.4 Comparison of flux estimation for each MFA method using a pool size
of 10 and a flux change of 25%. The estimated parameters as well as the
uncertainties of those estimates are shown for both vz (A) and v4 (B). The
shaded regions indicate the uncertainty. **C-MFA was used to estimate
fluxes at each of the six timepoints. >*C-NMFA estimated one flux value
for the entire duration of the experiment. 3C-DMFA estimated the initial
and final flux values.
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only be applied to cases in which isotopic steady state is reached. Fortunately, both
cases can capture transient fluxes accurately for systems at isotopic steady state.

As stated earlier, $3C-NMFA is typically used when there is a possibility of
non-isotopic steady state in a system that is at metabolic steady state. Figure 6.4
clearly shows why this is the case. Regardless of the pool size, this method can
accurately and precisely estimate fluxes at metabolic steady state. However, as the
system moves away from metabolite steady state, it becomes more difficult for this
method to estimate fluxes, even when the effect of the fluxes on the labeling is quite
minimal (Figure 6.3B). This is likely due to the fact that we are trying to estimate one
vs and v4 value for the entire duration of the experiment, although those values are
changing with time. Indeed, as the changes in fluxes become more drastic, the
accuracy of the flux estimates decreases and the SSR increases.

13C-DMFA can be used for transient systems, ones that are both at isotopic and
metabolic non-steady state. Indeed, we see that this method can precisely and
accurately determine fluxes when pool sizes are large and when fluxes are time-
dependent. Additionally, low SSR values are achieved using this method for all cases.
However, in some cases, there are higher uncertainties in the fluxes. Therefore, we
will examine the effect of including additional measurements on accuracy and

precision.
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Figure 6.5 Comparison of MFA methods using labeling measurements of
metabolites B and D. Each heat map corresponds to a different statistical
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6.3.3 Effect of including additional measurements

When applying 3C-MFA techniques, one must decide what measurements to
use and therefore, what data needs to be collected in the lab. This represents a tradeoff
where more measurements will lead to higher precision and accuracy but this may also
require more analysis or sampling during the experiment. Here, we examine the effect
of measuring the labeling of an additional metabolite, metabolite C, on the precision
and accuracy of each method. Additionally, for 3C-NMFA and *C-DMFA, we
examine the effect of measuring metabolite pools.

After including the labeling of C, we observe several changes (Figure 6.5). For
13C-MFA, including additional data results in worse fits and estimation compared to
Figure 6.4, where less data was used for estimation. This also holds true for *C-
NMFA. Including additional data further constrains these methods, resulting in worse
fits, but highlights the scenarios in which these methods should be used: **C-MFA
should only be used for small pool sizes and *3C-NMFA should only be used for
constant fluxes. For *C-DMFA, we actually observe an improvement in precision of
flux estimates with the additional measurements. This can be clearly observed for the
uncertainty in v4 for the largest pool size. In Figure 6.4, the uncertainty in v4 is around
2 for some cases but the uncertainty decreases closer to 0 when the labeling of C is
included.

Both 3C-NMFA and *C-DMFA estimate pool sizes in addition to fluxes.
Therefore, we can interrogate the effect of including pool size measurements on the
precision and accuracy of flux estimates. Figure 6.7 shows the results of including
measurements of pool sizes for metabolites B, C, and D with an uncertainty of 5%,
20%, and 100% in the measurement itself. For 3C-NMFA, including pool size

measurements has a similar effect as including an additional labeling measurement;

121



BC-MFA BC-MFAg SC-NMFA C-DMFA

mEITE
s )
HEEN
i

Pool Size
sooanA

v3 Precision
8

Pool Size
coornA

v4 Precision
8

Pool Size
aeosrnA

6
4
2
0

v3 Accuracy

Pool Size
aeornA

v4 Accuracy

[ < ’

N 2 6
n 4

3¢ :

o 8 2

10 0

°
=
o

0%

°
N
w

0%

-
b

0%

°
N
w

5%
10%
15%
20%
25%
10%
15%
20%
25%
10%
15%
20%
25%
10%
15%
20%

25%

Flux Chang

(%) Flux Chang

o

(%) Flux Change

—_—

%) Flux Change (%)

Figure 6.6  Comparison of MFA methods using labeling measurements of
metabolites B, C, and D. Each heat map corresponds to a different
statistical value for each method: SSR, precision, or accuracy. Precision
and accuracy are determined with respect to the estimated values of the
fluxes vz and va.

122



=5% SD__=20% SD__=100%

punl pool pool

<1 1000
82
w 4
8 6
o 38
10
v3 Precision
<1
82
w 4
8 6
o 8
10
v4 Precision
<1 8
.g 2 6
»w 4
g 6 :
o 8 2
10 0
v3 Accuracy
<1 8
82 6
w 4
-_ 4
8 6
o 8 2
10 0
v4 Accuracy
<1 8
.g 2 6
wn 4
8 )
o 8 2
10 0

0%

5%

10%
15%
20%
25%
10%
15%
20%
25%
0%

10%
15%
20%
25%

2 2 2
o w w
X

Flux Change (%) Flux Change (%) Flux Change (%)

[}
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the SSR increases compared to without the additional measurement. However, the
additional measurement seems to improve the overall accuracy. While *C-DMFA
performs well even without additional measurements, we still observe improvements
in precision when including pool size measurements. For both methods, as we increase
the uncertainty in the measurement itself, we see a decrease in accuracy and precision
but an increase in the overall fit (for *C-NMFA). If the uncertainty in the
measurement is high, that increases the parameter space for the pool size estimates,
giving the method more freedom to choose an estimate that results in a better fit,

whether or not that estimate is close to the actual value.

6.3.4 Testing the limits of *C-DMFA

From the previous analysis, it appears that **C-DMFA can be applied to almost
any system. Here we wanted to identify conditions in which **C-DMFA is no longer
effective. Therefore, we tested larger pool sizes (i.e. very long times needed to reach
isotopic steady state) and more significant changes in fluxes over time. Here we tested
pool sizes of 10, 50, 100, 150, and 200 and flux changes of 0%, 20%, 40%, 60%, 80%,
and 100%. Figure 6.9A shows the labeling of metabolite D for constant fluxes at pool
sizes of 10, 100, and 200. There are clear differences in the labeling at each time point
for these three cases. For a pool size of 10, we can observe some M+2 labeling but
there is no significant M+2 labeling for pool sizes of 100 and 200 in the time frame
examined. We can also examine the effect of the flux changes on the labeling of
metabolite D for different pool size. For a pool size of 100 (Figure 6.9B), the changes
in flux do not significantly impact the labeling of D. However for smaller pool sizes

(Figure 6.9C), the changes in fluxes have a more significant effect on the labeling of
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Figure 6.9  Simulated MIDs of metabolite D. (A) shows the MIDs when the fluxes
are constant over time for pool sizes 10, 100, and 200. (B) shows the
MIDs when the fluxes change by 0%, 40%, and 80% for a pool size of
100. (C) shows the MIDs when the fluxes change by 0%, 40%, and 80%
for a pool size of 10. The grey dashed lines indicate what timepoints were
used to estimate parameters.

D. Because the turnover over rate for the larger pools is much slower, and therefore
takes longer time, the flux changes that occur very quickly do not significantly impact
the labeling of these metabolites.

Again, we simulated labeling patterns for these extreme scenarios and used
13C-DMFA to estimate fluxes and pool sizes. We again compared the SSR, precision
and accuracy for each scenario (Figure 6.10). When only measuring the labeling of B
and D, 1*C-DMFA cannot estimate fluxes with high precision for pool sizes larger
than 10. We even observe decreased accuracy for larger pool sizes. If additional
measurements are included, such as the labeling of C or pool size measurements, there
is improved accuracy and precision. However, it’s clear that at large pool sizes (>100),
13C-DMFA should be applied with caution. For these systems, other methods are

needed to study intracellular fluxes and metabolism.
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Figure 6.10 Comparison of flux estimation using *3C-DMFA after including labeling
measurements of metabolites B and D, measurements of B, C, D, and
measurements of B, C, D and pool sizes (uncertainty in measurement is
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6.4 Conclusions

In summary, we have applied various MFA methods to a simple network
model and have shown in which cases each of these methods should be used. Figure
6.11 summarizes these results. For small pool sizes or in cases in which isotopic
steady state can be achieved, 3C-MFA (or 3C-MFAQ), the simplest methods
presented here, can be applied. For larger pool sizes (non-isotopic steady state) and
systems at metabolic steady state, 23C-NMFA must be used. However, this method can
also be applied for systems at isotopic steady state, although **C-MFA would be a
simpler approach. Lastly, systems that are not at metabolic steady state and cannot be
evaluated using *3C-MFA must be interrogated with *C-DMFA. While *C-DMFA
can be applied to most systems, this method does have its limits and therefore should
be applied with caution at systems that are from isotopic steady state. Additionally,
including measurements of pool sizes and additional metabolites will improve

parameter estimation.
Flux Changes

None Small Large

Small 13C-MFAg 13C-MFAg 13C-MFAg

Pool
Sizes 13C-NMFA 13C-DMFA 13C-DMFA

Large | "“C-NMFA | '*C-DMFA | *C-DMFA

Figure 6.8 Summary of MFA methods and when to apply them. When choosing a
method, one must consider if the system is at metabolic or isotopic steady
state. 3C-MFA and *C-MFAg can be used for isotopic steady state. **C-
NMPFA can be used for isotopic non-steady state. 3 C-DMFA can be used
for metabolic and isotopic non-steady state.
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This work represents the first extension of DMFA to include isotopic labeling
to achieve *C-DMFA. Now, there are sufficient methods for determining accurate
fluxes in almost any system. Future work will require further extension and evaluation
of this method to a larger network model, representative of the metabolism of an

organism.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary of Conclusions

In this work, we aimed to show the potential and wide-spread applications of
13C-tracers, from elucidating intracellular fluxes using **C-MFA to validating and
improving an engineered organism. Beyond demonstrating the various uses of **C-
tracers, we have further extended the methodology of flux analysis to include the
estimation of time-dependent fluxes using 3C-DMFA, allowing almost any system to
be studied using metabolic flux analysis.

Towards the goal of this dissertation, we first applied 3C-MFA to study the
metabolism of glucose and xylose in E. coli under both aerobic and anaerobic
conditions. There have been several studies of aerobic glucose metabolism, but apart
from this condition, there is limited data for other growth conditions for E. coli. To fill
this gap in knowledge, fluxes were determined for each condition using an optimal set
of tracers. From the flux data, we were able to examine co-factor allocation among the
various pathways. Biomass composition was found to vary depending on the
condition. Additionally, biomass turnover was confirmed using fully labeled tracers.
Lipid turnover was shown to be a significant process under during anaerobic growth
on xylose, where blocking lipid turnover prevented growth. This information can now
be used to improve predictive modeling approaches. For future studies, biomass
composition should be measured as it appears to be affected by environmental
conditions. Additionally, biomass turnover must be considered when modeling
metabolism as it can be a significant process. Without including these changes in

future models, the predictions are likely to be incorrect.
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The work in chapter 1 motivated the investigation of E. coli strains that can co-
utilize glucose and xylose, the two most abundant sugars produced from the hydrolysis
of lignocellulosic biomass. E. coli has been a major target of engineering for co-
utilization of sugars. Strategies include eliminating carbon catabolite repression by
targeting the PTS as well as manipulating pathway stoichiometry. Here, we used 3C-
tracers to study how the four PTS knockouts respond to various glucose and xylose
mixtures. The growth rates of AptsH and Aptsl are severely impacted by the
glucose:xylose ratio, where increasing the relative glucose concentration results in a
decrease in growth rate. Additionally, all knockouts responded to changes in the ratio
of the sugars, where increasing the relative glucose concentration led to an increase in
the relative glucose uptake rate. We also studied two E. coli strains, GX50 and
LMSEZ2, which had been previously engineered for co-utilization of glucose and
xylose. ®*C-MFA was used to quantify fluxes in these two strains at various
glucose:xylose ratios. Clear differences were observed in terms of pathway utilization
and cofactor allocation between the two strains. We also quantified their ability to
respond to various glucose and xylose mixtures by measuring the relative xylose
uptake rate as a function of the relative xylose concentration. LMSE2 exhibited a
constant profile where the relative xylose uptake rate remained the same, regardless of
the relative xylose concentration. Conversely, for GX50, the relative xylose uptake
rate increased as the relative xylose concentration increased. Based on these results,
we were able to make conclusions about the “ideal” co-utilizing strain. For this strain,
the relative xylose uptake rate would be linearly dependent on the relative xylose
concentration. This will allow for complete consumption of sugars and a more

efficient process.
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Beyond sugars, methane and its derivatives have been evaluated as attractive
feedstocks for chemical production. Previously, an E. coli strain was engineered to use
methanol for biomass and chemical production. Here, we aimed to improve this
synthetic methylotrophic strain. It was observed that methanol incorporation was
significantly higher when yeast extract was used as a co-substrate compared to
glucose. This led to the hypothesis that the amino acids present in yeast extract
triggered a regulatory response that led to increased methanol assimilation. To
investigate this further, 25 different co-substrates were tested for increased growth and
methanol assimilation. It was found that co-utilization of threonine led to significant
labeling from $3C-methanol and that the regulator Lrp, represses pathways that are
activated during growth on threonine. This regulator was removed, resulting in
improved *C-methanol incorporation. This study clearly showed the importance of
regulation in methylotrophy, and substrate metabolism in general. When engineering
organisms to use new substrates, manipulating global responses to substrates, rather
than simply adding heterologous genes and manipulating pathway stoichiometry, is
necessary to successfully achieve organisms with new substrate capabilities.

Using methane as a carbon source has received increased attention recently due
to its low cost and high electron content. It is also a major metabolite in the global
carbon cycle, in which it is produced by organisms called methanogens and
metabolized to CO2 by methanotrophs. Methanogens are organisms that perform
methanogenesis, producing methane primarily from one carbon compounds. These
organisms have started to receive more attention, not only because of their role in the
global carbon cycle, but also as a possible host for alternative fuel production from

methane. However, a detailed understanding of their metabolism is lacking. Here, we
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aimed to better elucidate the metabolism of the model methanogen M. acetivorans
during growth on methanol. A detailed characterization of growth on methanol was
performed. It was observed that all methane was derived from methanol while carbon
dioxide was first produced through methanogenesis and then incorporated into
biomass through CO- fixing reactions in central carbon metabolism. A network model
was constructed and then validated using *C-MFA, generating the first flux map for
M. acetivorans. Typically, for autotrophic organisms, *C-NMFA is required to obtain
estimates for fluxes. However, we were able to design the experiment in a specific
way that allowed for application of classical *C-MFA, significantly decreasing the
complexity of the experimental and computational framework. As far as we know, this
is the only application of classical **C-MFA to an autotrophic organism.

So far, we have seen various applications of **C-tracers and 3C-MFA to
different systems. As discussed in chapter 6, there are cases where traditional **C-
MFA cannot be applied, demonstrating the limitations of 3C-MFA. Here, we also
present different approaches for estimating fluxes for atypical systems, ones not at
metabolic or isotopic steady state. Specifically, we present the first application of $3C-
dynamic metabolic flux analysis, which can be used for systems in which fluxes are
changing with time. The inclusion of *C-labeling measurements allows for precise
and accurate estimation of concentrations and fluxes. Additionally, we evaluate the
four established methods of flux analysis for different experimental conditions and

discuss the strengths and limitations of each method.

7.2 Future work

Future work for studying sugar metabolism
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This work emphasized the need for more experimental data from studies of
sugar metabolism. We studied the metabolism of glucose and xylose, a PTS and a
non-PTS sugar. It would be interesting to examine if there are any differences between
the metabolisms of glucose vs galactose or between arabinose vs xylose. This would
better highlight the effect on metabolism of the substrate itself rather than the
pathways used for metabolism of that substrate. In this work, it was clear that the
metabolism of glucose and xylose would be different as they enter at different points
of metabolism. However, the differences in glucose and galactose metabolism are not
as apparent.

While E.coli has been the model organism for these studies, these experiments
should be extended to other organisms, including non-model ones that have been
identified as promising hosts for chemical production. Additionally, novel sugar
pathways (such as those shown in Figure 1.1) should be implemented and compared to
the traditional sugar catabolic pathways. This would provide a clear answer as to
whether these pathways do in fact improve metabolism of these sugars, in terms of
decreased CO- loss and increased product yield. To this end, it would also be
interesting to identify a “minimal” sugar catabolic pathway. A direct path from
glucose (or xylose) to product can be identified and implemented in such a way that all
other pathways are removed, preventing carbon from being used, and wasted, for other
biological resources.

Future work for improving synthetic methylotrophy

Regulation appears to play a major role in methylotrophy. An extension of this
work would be to perform a thorough transcriptomic analysis of our strain during

growth on yeast extract and methanol (a high methanol incorporation condition) and
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during growth on glucose and methanol (a low methanol incorporation condition).
Comparing these two conditions could provide insight into which genes/pathways are
favorable for methylotrophy. This could also provide more information on the specific
pathways in the Alrp strain that led to the observed phenotype. It would also be
interesting to test combinations of amino acids as co-substrates. It’s possible that
combining threonine with another amino acid would also result in an improved
methylotrophic phenotype.

This section would have greatly benefited from a metabolic analysis of native
methylotrophs. So far, there have been no studies applying *C-metabolic flux analysis
to RUMP-utilizing methylotrophs. It’s likely that the complexity of *C-NMFA has
limited its application to methylotrophic organisms. However, since methanol is
increasingly being used as a feedstock for bioconversion, these studies would be very
useful. Specifically, it would be valuable to compare the fluxome and transcriptome of
native methylotrophs to E. coli during “growth” on methanol. This will give insight
into how the two organisms respond to methanol and provide targets for manipulating
regulation.

While our engineered E. coli strain has the necessary genes to use methanol, it
cannot use methanol as the sole carbon source for growth. This is likely due to the
unbalanced pathway kinetics and fluxes in the pentose phosphate pathway, preventing
an effective autocatalytic cycle (Barenholz et al., 2017). Unlike E. coli, native
methylotrophs have evolved to achieve this pathway balancing. Hypothetically, each
enzyme in the pentose phosphate pathway can be expressed at different levels to
achieve that cycle. However, it would be easier to let our E. coli strain identify this

balance through adaptive evolution. This would require a strain that links methanol
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consumption to growth and allows evolution towards a fully methylotrophic
phenotype. A set of knockouts can be identified, using flux balance analysis, that
allow for growth on a particular substrate only in the presence of methanol
(Antonovsky et al., 2016; Gawand et al., 2013). Two designs that we have identified
seem promising. The first design is a strain containing the following knockouts:
AfrmAAgpmAMATbpAglpxAmgsA. This strain cannot grow on glucose or xylose alone
but will be able to use either sugar in the presence of methanol. The second design is a
strain containing the following knockouts: AfrmAAfbpAglpx. This strain cannot grow
on gluconeogenic substrates (i.e. acetate, succinate, pyruvate) alone but can use these
substrates in the presence of methanol. The important trait of these designs is that the
required knockouts do not prevent methanol-only growth which allows for adaptive
evolution towards a complete methylotrophic strain.

Future work on methanogen metabolism

Studies of methanogens have been increasing due to their important roles in
nature and their potential as biofactories. Therefore, obtaining a systems-wide
understanding of these organisms is imperative if these organisms are to be
engineered. Therefore, the validated network model can be used to study growth on
other substrates, such as acetate. Growth an acetate can also be used to simulate
interactions in the microbiome, in which sugars are converted to acids and then
converted to methane by methanogens in the gut.

M. acetivorans is a model methanogen and, therefore, is a good host for
studying the reversal of methanogenesis, a possible route to anaerobic methanotrophy.
The key to reverse methanogenesis is identification of a suitable electron acceptor.

13C-tracers would be invaluable for these studies, in which different electron acceptors
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can be tested and the extent of 1*C-methane conversion can be measured. Additionally,
the reversibility of each step in methanogenesis can be studied by feeding labeled
metabolic intermediates of the methanogenesis pathway.

Future work on metabolic flux analysis methods

13C-MFA is now the state-of-the-art method for estimating fluxes. However,
this method has its limitations, as described in chapter 6. We presented a framework
for a new method, *C-DMFA, and evaluated when the various flux analysis methods
(13C-MFA, BC-NMFA, BC-DMFA) should be applied. All of these methods were
applied to a simple model, containing a few reactions. Ideally, these methods would be
tested with a larger metabolic network model and used to estimate fluxes for any
system, even with more complex flux changes. This method can better elucidate
pathways that were, until now, thought to be unobservable. These include, cyclic and
parallel pathways, as well as reversible reactions. Only with incorporation of *C-

labeling measurements can these fluxes be estimated.
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Appendix A

SUPPLEMENTARY DATA FOR CHAPTER 2

Table A.1  Biomass composition (% Dry Weight) of E. coli grown on glucose or
xylose under aerobic and anaerobic conditions.

Aerobic Aerobic Anaerobic Anaerobic

Glucose Xylose Glucose Xylose
Protein (%DW) 50.5 61.4 51.6 56.5
RNA (%DW) 17.5 18.1 11.4 9.2
Lipid (%DW) 6.2 6.1 6.4 6.1
Glycogen (%DW) 2.1 5.0 8.7 5.4

Table A.2  Fatty acid composition (umol/gFA) of E. coli grown on glucose or xylose
under aerobic and anaerobic conditions.

umol/gFA  Aerobic Aerobic Anaerobic Anaerobic
Glucose Xylose Glucose Xylose
C14:0 341 346 409 588
Cle6:1 1225 1101 891 1337
C16:0 1096 1173 1386 1292
C18:1 850 916 754 357
C18:0 135 107 212 146
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Table A.3  Amino acid composition (umol/gProtein) of E. coli grown on glucose or
xylose under aerobic and anaerobic conditions.

umol/gProtein Aerobic Aerobic Anaerobic Anaerobic
Glucose Xylose Glucose Xylose
Ala 984 992 1040 028
Gly 872 860 839 824
Val 621 612 615 612
Leu 709 706 712 734
lle 430 423 429 435
Pro 332 326 331 332
Met 209 209 213 223
Ser 462 457 473 474
Thr 484 480 495 501
Phe 289 290 287 300
Asx 921 939 938 946
Glx 979 1009 969 993
Lys 575 569 580 567
His 166 164 160 157
Tyr 268 271 271 282
Arg 567 559 546 536
Cys 176 173 169 166
Tip 109 107 105 103

Table A.4  Metabolic network models for 1*C-metabolic flux analysis of E. coli
grown on glucose or xylose under aerobic and anaerobic conditions.

AG = Aerobic Glucose Model
AX = Aerobic Xylose Model
NG = Anaerobic Glucose Model
NX = Anaerobic Xylose Model

Glycolysis

(1) [AG NG] Gluc.ext (abcdef) + PEP (ghi) -> G6P (abcdef) +
Pyr(ghi)
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(2) [AG AX NG NX]
(3) [AG AX NG NX]
(4) [AG AX NG NX]
(5) [AG AX NG NX]
(6) [AG AX NG NX]
(7) [AG AX NG NX]
(8) [AG AX NG NX]

Pentose Phosphate Pathway

(9) [AG AX NG NX]

(10) [AG AX NG NX]
(11) [AG AX NG NX]
(12) [AG AX NG NX]
(13) [AG AX NG NX]
(14) [AG AX NG NX]
(15) [AG AX NG NX]
(16) [AG AX NG NX]
(17) [AG AX NG NX]

Entner-Doudoroff Pathway

(18) [AG AX NG NX]
(19) [AG AX NG NX]

Xylose Metabolism
(20) [AX NX]
(21) [AX NX]

TCA Cycle

(22) [AG AX NG NX]
(23) [AG AX NG NX]
(24) [AG AX NG NX]
(25) [AG AX NG NX]
(26) [AG AX NG NX]
(27) [AG AX NG NX]
(28) [AG AX NG NX]

(29) [AG AX NG NX]
(30) [AG AX NG NX]

Glyoxylate Shunt
(31) [AG AX NG NX]
(32) [AG AX NG NX]

G6P (abcdef) <=>F6P (abcdef)

F6P (abcdef) + ATP <=> FBP (abcdef)

FBP (abcdef) <=> DHAP (cbha) + GAP (def)
DHAP (abc) <=> GAP (abc)

GAP (abc) <=> 3PG (abc) + ATP + NADH
3PG (abc) <=> PEP (abc)

PEP (abc) <=> Pyr (abc) + ATP

G6P (abcdef) -> 6PG (abcdef) + NADPH

6PG (abcdef) -> Ru5P (bcdef) + CO» (a) + NADPH
Ru5P (abcde) <=> X5P (abcde)

RuU5P (abcde) <=> R5P (abcde)

X5P (abcde) <=> TK-C2 (ab) + GAP (cde)

F6P (abcdef) <=> TK-C2 (ab) + E4P (cdef)

S7P (abcdefg) <=> TK-C2 (ab) + R5P (cdefg)

F6P (abcdef) <=> TA-C3 (abc) + GAP (def)

S7P (abcdefg) <=> TA-C3 (abc) + E4P (defg)

6PG (abcdef) -> KDPG (abcdef)
KDPG (abcdef) -> Pyr (abc) + GAP (def)

Xyl (abcde) -> Xylu (abcde)
Xylu (abcde) + ATP -> X5P (abcde)

Pyr (abc) -> AcCoA (bc) + COz (a) + NADH

OAC (abcd) + AcCoA (ef) -> Cit (dcbfea)

Cit (abcdef) <=> ICit (abcdef)

ICit (abcdef) -> AKG (abcde) + CO; (f) + NADPH
AKG (abcde) -> SucCoA (bcde) + CO: (a) + NADH
SucCoA (abcd) <=> Suc (%2 abcd + %2 dcba) + ATP
Suc (%2 abcd + %2 dcba) <=> Fum (%2 abcd + %2 dcba) +
FADH:

Fum (%2 abcd + Y2 dcba) <=> Mal (abcd)

Mal (abcd) <=> OAC (abcd) + NADH

ICit (abcdef) <=> Glyox (ab) + Suc (2 edcf + Y2 fcde)
Glyox (ab) + AcCoA (cd) -> Mal (abdc)
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Amphibolic Reactions
(33) [AG AX NG NX]
(34) [AG AX NG NX]
(35) [AG AX]

Fermentation Reactions

(36) [AG AX NG NX]
(37) [NG NX]
(38) [NG NX]
(39) [NG NX]
(40) [NG NX]

Amino Acid Biosynthesis

(41) [AG AX NG NX]
(42) [AG AX NG NX]
(43) [AG AX NG NX]
(44) [AG AX NG NX]

(45) [AG AX NG NX]
(46) [AG AX NG NX]
(47) [AG AX NG NX]
(48) [AG AX NG NX]

(49) [AG AX NG NX]
(50) [AG AX NG NX]
(51) [AG AX NG NX]
(52) [AG AX NG NX]

(53) [AG AX NG NX]

(54) [AG AX NG NX]
(55) [AG AX NG NX]
(56) [AG AX NG NX]
(57) [AG AX NG NX]

(58) [AG AX NG NX]

Mal (abcd) -> Pyr (abc) + CO2 (d) + NADPH
PEP (abc) + CO2 (d) -> OAC (abcd)
OAC (abcd) + ATP -> PEP (abc) + CO2 (d)

AcCoA (ab) <=> Ac (ab) + ATP
AcCoA (ab) + NADH <=> Acetal (ab)
Acetal (ab) + NADH <=> EtOH (ab)
Form (a) -> CO2 (a) + H2

Pyr (abc) <=> AcCoA (bc) + Form (a)

AKG (abcde) + NADPH + NH3 -> Glu (abcde)

Glu (abcde) + ATP + NHz -> GIn (abcde)

Glu (abcde) + ATP + 2 NADPH -> Pro (abcde)

Glu (abcde) + CO2 (f) + GIn (ghijk) + Asp (Imno) +
AcCoA (pg) + 5 ATP + NADPH -> Arg (abcdef) +
AKG (ghijk) + Fum (Imno) + Ac (pq)

OAC (abcd) + Glu (efghi) -> Asp (abcd) + AKG (efghi)
Asp (abcd) + 2 ATP + NHz -> Asn (abcd)

Pyr (abc) + Glu (defgh) -> Ala (abc) + AKG (defgh)
3PG (abc) + Glu (defgh) -> Ser (abc) + AKG (defgh) +
NADH

Ser (abc) <=> Gly (ab) + MEETHF (c)

Gly (ab) <=> CO3 (a) + MEETHF (b) + NADH + NH3
Thr (abcd) -> Gly (ab) + AcCoA (cd) + NADH

Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4 ->
Cys (abc) + Ac (de)

Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop)
+ ATP + 2 NADPH -> LL-DAP (Y2 abcdgfe + %
efgdcba) + AKG (hijkl) + Suc (%2 mnop + %2 ponm)
LL-DAP (%2 abcdefg + % gfedcba) -> Lys (abcdef) +
CO:2 (9)

Asp (abcd) + 2 ATP + 2 NADPH -> Thr (abcd)

Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) +
ATP + 2 NADPH -> Met (abcde) + Pyr (fgh) + Suc (Y2
ijKl + %2 1kji) + NH3

Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH -> Val
(abcef) + COz (d) + AKG (ghijk)

AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) +
NADPH -> Leu (abdghe) + CO; (c) + CO2 (f) + AKG
(ijklm) + NADH
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(59) [AG AX NG NX]

(60) [AG AX NG NX]

(61) [AG AX NG NX]

(62) [AG AX NG NX]

(63) [AG AX NG NX]

One-carbon Metabolism

(64) [AG AX NG NX]
(65) [AG AX NG NX]
(66) [NG NX]

Oxidation Phosphorylation

(67) [AG AX]
(68) [AG AX]

Transhydrogenation
(69) [AG AX NG NX]
(70) [NG NX]

ATP Hydrolysis
(71) [AG AX NG NX]

Transport

(72) [AX NX]

(73) [AG AX NG NX]
(74) [NG NX]

(75) [NG NX]

(76) [NG NX]

(77) [AG AX NG NX]
(78) [NG NX]

(79) [AG AX]

(80) [AG AX NG NX]
(81) [AG AX NG NX]

Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH -> lle
(abfcdg) + CO2 (e) + AKG (hijkl) + NH3

PEP (abc) + PEP (def) + E4P (ghij) + Glu (kimno) +
ATP + NADPH -> Phe (abcefghij) + CO2 (d) + AKG
(klmno)

PEP (abc) + PEP (def) + E4P (ghij) + Glu (kimno) +
ATP + NADPH -> Tyr (abcefghij) + CO2 (d) + AKG
(klmno) + NADH

Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (Imno) +
PEP (pgr) + GlIn (stuvw) + 3 ATP + NADPH -> Trp
(abcedklmnoj) + CO2 (i) + GAP (fgh) + Pyr (pgr) + Glu
(stuvw)

R5P (abcde) + FTHF (f) + GIn (ghijk) + Asp (Imno) + 5
ATP -> His (edcbaf) + AKG (ghijk) + Fum (Imno) + 2
NADH

MEETHF (a) + NADH -> METHF (a)
MEETHF (a) -> FTHF (a) + NADPH
Form (a) + ATP -> FTHF (a)

NADH +% Oz -> 2 ATP
FADH2 + % Oz -> 1 ATP

NADH <=> NADPH
FADH. <=>NADH

ATP -> ATP.ext

Xyl.ext (abcde) + ATP -> Xyl (abcde)
Ac (ab) -> Ac.ext (ab)

Form (a) -> Form.ext (a)

EtOH (ab) -> EtOH.ext (ab)

Suc (abcd) -> Suc.ext (abcd)

CO2 (a) -> CO2.ext (a)

Hz -> Ha.ext

Oz.ext -> O3

NHs.ext -> NH3

SQOa4.ext -> SO4
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Biomass Formation
(82) [AG]

(82) [AX]

(82) [NG]

(82) [NX]

0.49731 Ala + 0.28651 Arg + 0.2326 Asn + 0.2326 Asp
+0.088707 Cys + 0.24738 Glu + 0.24738 GIn +
0.44054 Gly + 0.08398 His + 0.21739 lle + 0.35853 Leu
+0.29077 Lys + 0.10557 Met + 0.14618 Phe + 0.16797
Pro + 0.23355 Ser + 0.24446 Thr + 0.13526 Tyr +
0.31392 Val + 0.18148 G6P + 0.0709 F6P + 0.10233
GAP + 0.53768 3PG + 0.0828 Pyr + 2.0826 AcCoA +
0.0869 AKG + 0.30055 OAC + 0.05506 Trp + 0.65979
R5P + 0.0511 PEP + 30.7648 ATP + 4.5162 NADPH +
0.38804 MEETHF + 1.2644 NAD -> 1.2644 NADH +
30.7648 ADP + 30.7648 Pi + 4.5162 NADP + 0.38804
THF + 35.476 Biomass

0.60876 Ala + 0.34319 Arg + 0.28805 Asn + 0.28805
Asp +0.10625 Cys + 0.30972 Glu + 0.30972 GIn +
0.52767 Gly + 0.10059 His + 0.25947 lle + 0.43365 Leu
+0.34911 Lys + 0.12817 Met + 0.17808 Phe + 0.2003
Pro + 0.28028 Ser + 0.29473 Thr + 0.16619 Tyr +
0.37585 Val + 0.35965 G6P + 0.0709 F6P + 0.099809
GAP +0.54618 3PG + 0.0828 Pyr + 2.0431 AcCoA +
0.0869 AKG + 0.30839 OAC + 0.06595 Trp + 0.67866
R5P + 0.0511 PEP + 35.5766 ATP + 4.4615 NADPH +
0.39907 MEETHF + 1.2949 NAD -> 1.2949 NADH +
35.5766 ADP + 35.5766 Pi + 4.4615 NADP + 0.39907
THF + 41.3527 Biomass

0.53667 Ala + 0.28153 Arg + 0.24198 Asn + 0.24198
Asp + 0.087164 Cys + 0.25003 Glu + 0.25003 GIn +
0.43287 Gly + 0.082519 His + 0.22129 lle + 0.36735
Leu + 0.29899 Lys + 0.10968 Met + 0.14783 Phe +
0.17097 Pro + 0.24423 Ser + 0.25532 Thr + 0.14 Tyr +
0.31718 Val + 0.58985 G6P + 0.0709 F6P + 0.10388
GAP + 0.4299 3PG + 0.0828 Pyr + 2.1082 AcCoA +
0.0869 AKG +0.22277 OAC + 0.054102 Trp + 0.47269
R5P + 0.0511 PEP + 29.6686 ATP + 4.4607 NADPH +
0.27872 MEETHF + 0.93793 NAD -> 0.93793 NADH
+ 29.6686 ADP + 29.6686 Pi + 4.4607 NADP +
0.27872 THF + 36.7639 Biomass

0.52453 Ala + 0.30305 Arg + 0.26737 Asn + 0.26737
Asp +0.093827 Cys + 0.28068 Glu + 0.28068 GIn +
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0.46596 Gly + 0.088826 His + 0.24595 lle + 0.4146 Leu
+0.32059 Lys + 0.12617 Met + 0.16943 Phe + 0.18784
Pro + 0.26816 Ser + 0.28294 Thr + 0.15956 Tyr + 0.346
Val + 0.38483 G6P + 0.0709 F6P + 0.095676 GAP +
0.3828 3PG + 0.0828 Pyr + 1.9457 AcCoA + 0.0869
AKG +0.1951 OAC + 0.058237 Trp + 0.40613 R5P +
0.0511 PEP + 30.0681 ATP + 4.1089 NADPH +
0.23982 MEETHF + 0.81305 NAD ->0.81305 NADH
+30.0681 ADP + 30.0681 Pi + 4.1089 NADP +
0.23982 THF + 36.7571 Biomass

Labeling dilution from lipid turnover and external acetate
(83) [AG AX NG NX]

(84) [NG NX]

AcCoA.unlabeled (ab) + AcCoA (cd) -> AcCoA (ab) +
AcCoA.out (cd)

GAP.unlabeled (abc) + GAP (def) -> GAP (abc) +
GAP.out (def)

Table A.5 Mass isotopomer distributions from parallel labeling experiments with E.
coli grown on glucose under aerobic and anaerobic conditions.
Condition Aerobic Glucose Anaerobic Glucose
Tracer [U-33C] [1,2-3C] [1,6-BC] [U-C] [1,2-3C] [1,6-C]
Ala232 (M0) 11.8 47.0 19.1 11.4 45.4 16.7
Ala232 (M1) 3.7 14.5 61.0 3.7 11.6 63.4
Ala232 (M2) 65.8 30.3 13.9 66.1 34.0 13.8
Ala232 (M3) 13.1 59 5.3 13.2 6.4 5.4
Ala232 (M4) 5.6 2.3 0.7 5.6 2.6 0.7
Ala260 (MO0) 11.6 46.3 18.6 10.9 44.6 16.4
Ala260 (M1) 3.0 13.1 60.3 3.1 11.7 62.6
Ala260 (M2) 2.8 30.8 14.5 3.1 33.4 14.4
Ala260 (M3) 64.2 6.8 5.6 64.3 7.1 5.6
Ala260 (M4) 12.8 2.6 0.9 12.9 2.8 0.8
Ala260 (M5) 5.6 0.4 0.2 5.7 0.4 0.1
Gly218 (M0) 12.7 51.4 75.6 18.3 48.9 76.3
Gly218 (M1) 67.7 36.3 16.7 63.1 38.4 16.0
Gly218 (M2) 13.9 9.5 6.8 13.3 9.8 6.8
Gly218 (M3) 5.7 2.8 1.0 5.3 3.0 0.9
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Gly246 (MO0) 119 490 73.8 175  47.8 74.8
Gly246 (M1) 4.2 36.6 175 5.9 38.1 16.8
Gly246 (M2) 654  10.7 7.3 596 104 7.1
Gly246 (M3) 129 32 1.2 118 3.2 1.1
Gly246 (M4) 5.7 05 0.2 5.2 0.5 0.2
Val260 (MO0) 119 321 15.1 117  30.1 15.1
Val260 (M1) 3.0 12.1 13.2 2.9 8.8 9.6
Val260 (M2) 15 30.2 53.3 2.0 32.6 56.7
Val260 (M3) 2.2 9.7 12.8 2.4 8.3 12.7
Val260 (M4) 63.0 125 48 626  16.0 5.0
Val260 (M5) 130 24 0.7 129 30 0.7
Val260 (M6) 55 0.9 0.1 5.4 1.2 0.1
Val288 (MO0) 119 318 15.0 117 29.7 15.0
Val288 (M1) 3.1 11.3 12.9 3.0 8.8 9.5
Val288 (M2) 1.3 30.3 52.9 1.3 32.1 56.2
Val288 (M3) 0.4 9.6 13.1 1.0 8.5 13.0
Val288 (M4) 25 13.0 5.1 3.0 15.9 5.2
Val288 (M5) 628 2.9 0.8 623 3.3 0.8
Val288 (M6) 125 1.1 0.2 124 15 0.3
Val288 (M7) 55 0.2 0.0 5.4 0.2 0.0
Leu274 (MO) 121 246 15.0 118 227 15.2
Leu274 (M1) 3.1 16.2 5.6 3.1 14.1 4.7
Leu274 (M2) 1.2 21.4 16.3 1.2 20.6 115
Leu274 (M3) 0.5 17.9 46.7 1.0 18.9 51.7
Leu274 (M4) 2.9 11.1 11.3 4.3 12.2 11.5
Leu274 (M5) 624 6.7 4.2 610 89 4.6
Leu274 (M6) 125 15 0.6 123 20 0.6
Leu274 (M7) 5.3 0.4 0.1 5.2 0.6 0.1
Pro258 (MO0) 120 355 21.9 123 46.8 38.8
Pro258 (M1) 3.0 175 16.9 3.2 12.3 14.0
Pro258 (M2) 2.1 24.6 38.1 3.3 22.9 36.0
Pro258 (M3) 2.7 11.3 16.8 2.8 5.6 7.8
Pro258 (M4) 624 8.7 4.9 610 9.8 2.9
Pro258 (M5) 124 19 1.2 121 20 0.5
Pro258 (M6) 5.3 0.6 0.2 5.2 0.7 0.1
Ser390 (MO0) 109 363 17.5 105  32.8 14.6
Ser390 (M1) 41 22.2 53.3 55 23.7 55.4
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Ser390 (M2)
Ser390 (M3)
Ser390 (M4)
Ser390 (Mb)

Thr376 (MO0)
Thr376 (M1)
Thr376 (M2)
Thr376 (M3)
Thr376 (M4)
Thr376 (M5)

Phe302 (MO)
Phe302 (M1)
Phe302 (M2)
Phe302 (M3)

Phe308 (MO)
Phe308 (M1)
Phe308 (M2)
Phe308 (M3)
Phe308 (M4)
Phe308 (M5)
Phe308 (M6)
Phe308 (M?7)
Phe308 (M8)

Phe336 (MO)
Phe336 (M1)
Phe336 (M2)
Phe336 (M3)
Phe336 (M4)
Phe336 (M5)
Phe336 (M6)
Phe336 (M?7)
Phe336 (M8)
Phe336 (M9)

Asp390 (MO0)
Asp390 (M1)
Asp390 (M2)
Asp390 (M3)
Asp390 (M4)

3.3
95,8
17.4
8.3

10.7
4.2
6.9
53.3
16.9
7.9

12.9
4.6

66.6
16.0

143
4.1
1.5
0.3
0.1
0.1
0.3
4.4
75.0

13.9
4.1
1.5
0.3
0.1
0.0
0.1
0.5
5.0
745

11.1
4.2
6.9
53.1
16.8

27.9
9.2
3.6
0.8

36.9
22.1
23.9
11.7
4.2
1.3

48.1
37.0
11.6
3.4

25.7
11.2
24.6
11.6
15.2
6.2
3.7
1.3
0.4

25.2
10.6
24.7
11.6
154
6.5
3.9
1.5
0.4
0.1

36.6
22.0
24.1
11.8
4.2

18.8
8.2
1.8
0.4

21.1
37.0
26.1
11.1
3.6
1.0

71.7
194
7.6
13

143
5.2
12.0
49.3
13.4
4.8
0.8
0.1
0.0

141
5.2
11.8
48.9
13.8
5.1
0.9
0.2
0.0
0.0

20.5
37.2
26.3
11.3
3.7

4.1
54.7
17.1
8.1

10.1
4.4
33.9
345
12.4
4.7

12.8
4.6

66.7
16.0

14.3
4.0
1.5
0.3
0.1
0.1
0.4
4.6
74.8

13.8
4.1
1.5
0.3
0.1
0.0
0.1
0.6
5.2
74.3

10.7
4.3

33.2
34.6
12.4

29.2
9.7
3.8
0.8

35.1
17.6
28.0
13.0
4.9
1.5

45.4
s
11.7
3.6

24.2
9.2
25.9
10.3
17.2
6.7
4.3
1.7
0.4

24.1
8.8
25.8
10.5
17.2
7.0
4.3
1.8
0.5
0.1

35.0
17.5
28.1
13.0
5.0

19.2
8.5
1.9
0.4

16.2
50.2
21.7
8.9
2.3
0.7

72.2
191
7.4
13

14.8
5.1
7.6
52.7
13.7
5.1
0.9
0.1
0.0

14.4
4.8
7.6
52.6
141
5.3
0.9
0.2
0.0
0.0

15.9
50.5
21.7
9.0
2.4
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Asp390 (M5)

Asp418 (MO0)
Asp418 (M1)
Asp418 (M2)
Asp418 (M3)
Asp418 (M4)
Asp418 (M5)
Asp418 (M6)

Glu330 (M0)
Glu330 (M1)
Glu330 (M2)
Glu330 (M3)
Glu330 (M4)
Glu330 (M5)
Glu330 (M6)

Glu432 (M0)
Glu432 (M1)
Glu432 (M2)
Glu432 (M3)
Glu432 (M4)
Glu432 (M5)
Glu432 (M6)
Glu432 (M7)

Tyr302 (MO0)
Tyr302 (M1)
Tyr302 (M2)
Tyr302 (M3)

RNA_Rib173
(M0)
RNA_Rib173
(M1)
RNA_Rib173
(M2)
RNA_Rib173
(M3)

RNA_Rib284
(MO)

7.9

10.9
3.9
2.6
1.7
50.9
16.3
7.7

111
3.2
2.1
2.6
60.5
14.6
5.9

10.1
3.7
1.9
1.1
6.1
52.5
16.7
7.9

13.5
4.8

66.0
15.7
17.9
3.4

73.5

5.1

15.7

1.2

34.7
19.1
245
12.3
6.7
2.1
0.6

32.2
17.9
25.0
12.4
9.3
2.4
0.8

27.3
16.3
235
14.4
11.0
5.2
1.8
0.5

47.8
37.1
11.7
3.4

66.9
8.9

22.6

1.6

16.0

1.0

19.9
32.3
28.0
13.5
4.7
1.3
0.3

19.1
16.5
38.1
18.5
5.8
1.5
0.3

16.9
14.8
31.3
22.3
10.1
3.4
0.9
0.2

71.6
19.4
7.6
14
19.6
73.1
6.4

0.9

73.6

4.7

10.2
4.0
3.0
35.2
31.4
11.8
4.3

11.2
3.3
3.3
2.9
59.2
14.3
5.8

10.1
3.7
2.7
2.5
315
32.9
12.0
4.6

13.1
4.7

66.3
15.9
21.7
3.8

69.5

5.0

19.4

1.4

34.3
17.7
27.6
13.4
5.2
1.5
0.3

43.1
13.4
23.6
6.6
10.2
2.4
0.9

36.5
15.9
21.0
10.2
10.0
4.4
1.6
0.4

44.9
39.2
121
3.7

60.4
6.9

30.6

2.1

17.8

0.5

15.8
49.5
22.3
9.3
2.5
0.6
0.1

35.3
14.6
36.4
9.4
3.5
0.7
0.1

31.2
15.3
325
13.5
5.6
1.5
0.3
0.1

n/a
n/a
n/a
n/a
21.9
71.3
6.0

0.9

65.4
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RNA_Rib284
(M1)
RNA_Rib284
(M2)
RNA_Rib284
(M3)
RNA_Rib284
(M4)
RNA_Rib284
(M5)

Glycogen_Glucl
73 (MO)
Glycogen_Glucl
73 (M1)
Glycogen_Glucl
73 (M2)
Glycogen_Glucl
73 (M3)

Glycogen_Gluc3
70 (MO)
Glycogen_Gluc3
70 (M1)
Glycogen_Gluc3
70 (M2)
Glycogen_Gluc3
70 (M3)
Glycogen_Gluc3
70 (M4)
Glycogen_Gluc3
70 (M5)
Glycogen_Gluc3
70 (M6)
Glycogen_Gluc3
70 (M7)

Suc289.ext (MO0)
Suc289.ext (M1)
Suc289.ext (M2)
Suc289.ext (M3)
Suc289.ext (M4)
Suc289.ext (M5)

24

0.6

2.2

71.6

7.5

235

4.1

67.6

4.8

20.6

4.1

0.9

0.4

2.3

61.6

8.5

1.6

46.8

27.3

8.3

1.2

0.3

86.8

8.5

4.4

0.4

26.6

6.5

52.6

115

2.3

0.4

0.1

0.0

21.1 3.0
3.8 0.9
1.0 2.3
0.3 67.2
0.1 7.1
52.7 6.2
43.0 3.0
3.8 84.8
0.5 6.0
48.8 4.7
41.0 1.0
8.2 0.2
1.5 0.2
0.3 2.9
0.1 78.3
0.0 10.7
0.0 2.0

33.2

32.3

14.2

2.0

0.4

87.9

8.2

3.6

0.3

28.8
6.4
51.4
10.7
2.1
0.4
0.1
0.0
34.8
155
31.3
13.1

4.1
1.0

28.7
4.5
1.0
0.3

0.1

31.3
62.8
5.2

0.7

28.9
57.8
10.8
1.9
0.3
0.1
0.0
0.0
10.1
60.1
20.7
7.3

15
0.3

163




Suc289.ext (M6) 0.2 0.0
C16:0 (MO0) 16.0 13.9
C16:0 (M1) 3.0 2.6
C16:0 (M2) 0.4 0.3
C16:0 (M3) 0.0 0.0
C16:0 (M4) 0.0 0.0
C16:0 (M5) 0.0 0.0
C16:0 (M6) 0.0 0.0
C16:0 (M7) 0.0 0.0
C16:0 (M8) 0.0 0.0
C16:0 (M9) 0.0 0.0
C16:0 (M10) 0.0 0.1
C16:0 (M11) 0.1 0.1
C16:0 (M12) 0.2 1.1
C16:0 (M13) 0.4 1.4
C16:0 (M14) 35 12.0
C16:0 (M15) 8.1 8.0
C16:0 (M16) 66.9 59.1
C16:0 (M17) 1.1 1.0
C16:0 (M18) 0.3 0.3
Pyr174 (M0) 0.1 0.4
Pyrl74 (M1) 0.1 0.3
Pyrl74 (M2) 2.4 2.5
Pyrl74 (M3) 84.9 85.3
Pyrl74 (M4) 8.5 7.8
Pyrl74 (M5) 4.0 3.6
PEP453 (MO0) 0.2 0.3
PEP453 (M1) 0.5 0.5
PEP453 (M2) 1.7 2.0
PEP453 (M3) 66.5 66.1
PEP453 (M4) 20.7 20.6
PEP453 (M5) 10.4 10.5
3PG585 (MO0) 0.3 0.6
3PG585 (M1) 0.2 0.4
3PG585 (M2) 15 1.7
3PG585 (M3) 59.3 58.8
3PG585 (M4) 25.1 25.0
3PG585 (M5) 13.6 13.5
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Table A.6  Mass isotopomer distributions from parallel labeling experiments with E.
coli grown on xylose under aerobic and anaerobic conditions.

Condition Aerobic Xylose Anaerobic Xylose
Tracer [U-3C] [1,2-BC] [5-BC] [u-BC] [1,2-BC] [5-BC]
Ala232 (MO0) 11.3 51.8 36.2 11.9 50.0 38.4
Ala232 (M1) 4.1 135 47.2 4.2 11.5 46.2
Ala232 (M2) 65.9 27.5 11.9 65.4 30.4 11.1
Ala232 (M3) 13.1 5.2 4.0 12.9 5.8 3.8
Ala232 (M4) 5.6 2.0 0.6 5.6 2.3 0.5
Ala260 (MO0) 11.1 50.5 35.5 9.8 41.4 37.8
Ala260 (M1) 2.9 134 46.6 4.6 17.9 45.9
Ala260 (M2) 3.6 7.2 12.6 4.6 14.3 115
Ala260 (M3) 64.1 22.5 4.4 63.0 20.5 4.0
Ala260 (M4) 12.7 4.4 0.7 12.5 4.4 0.6
Ala260 (M5) 5.6 1.9 0.1 5.5 1.6 0.1
Gly218 (M0) 12.8 54.1 75.3 15.7 52.2 76.3
Gly218 (M1) 67.7 34.2 16.7 65.3 35.5 15.9
Gly218 (M2) 13.8 9.2 7.0 13.4 9.5 6.9
Gly218 (M3) 5.7 2.6 1.0 55 2.8 0.9
Gly246 (MO) 11.7 52.7 73.7 14.6 50.4 75.2
Gly246 (M1) 4.6 13.0 17.4 5.3 13.0 16.4
Gly246 (M2) 65.2 27.2 7.4 62.5 28.8 7.1
Gly246 (M3) 12.8 51 1.2 12.2 5.4 1.0
Gly246 (M4) 5.7 2.1 0.3 5.5 2.4 0.3
Val260 (MO0) 1.6 36.9 215 9.9 34.2 22.0
Val260 (M1) 2.9 115 33.1 2.6 8.9 37.1
Val260 (M2) 1.5 30.6 33.0 6.8 33.5 30.3
Val260 (M3) 3.1 8.1 9.1 4.1 7.6 7.9
Val260 (M4) 62.6 10.3 2.8 59.3 12.5 2.4
Val260 (M5) 12.9 2.0 0.5 12.2 2.4 0.4
Val260 (M6) 54 0.7 0.1 51 0.9 0.1
Val288 (M0) 11.6 36.4 21.1 9.8 29.0 21.7
Val288 (M1) 3.0 11.3 324 2.7 12.4 36.5
Val288 (M2) 1.2 18.2 32.6 2.2 20.9 30.0
Val288 (M3) 0.5 17.3 9.5 53 18.0 8.0
Val288 (M4) 3.7 5.6 3.2 5.3 8.2 2.7
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Val288 (M5)
Val288 (M6)
Val288 (M7)

Leu274 (MO0)
Leu274 (M1)
Leu274 (M2)
Leu274 (M3)
Leu274 (M4)
Leu274 (M5)
Leu274 (M6)
Leu274 (M7)

Pro258 (MO0)
Pro258 (M1)
Pro258 (M2)
Pro258 (M3)
Pro258 (M4)
Pro258 (M5)
Pro258 (M6)

Ser390 (MO0)
Ser390 (M1)
Ser390 (M2)
Ser390 (M3)
Ser390 (M4)
Ser390 (M5)

Thr376 (MO0)
Thr376 (M1)
Thr376 (M2)
Thr376 (M3)
Thr376 (M4)
Thr376 (M5)

Phe302 (MO)
Phe302 (M1)
Phe302 (M2)
Phe302 (M3)

Phe308 (M0)
Phe308 (M1)
Phe308 (M2)

62.2
12.3
5.4

11.7
3.0
1.2
0.5
3.9
61.9
124
5.3

11.7
2.9
2.1
3.6
62.1
12.3
5.3

10.5
4.0
3.8
55.8
17.5
8.3

10.3
4.1
6.9
53.8
17.0
7.9

12.4
5.0

66.6
16.0
13.8

3.9
14

8.8
1.8
0.7

28.4
17.1
22.9
15.8
9.4
5.0
1.2
0.3

33.9
17.1
26.9
10.9
8.7
1.8
0.6

42.1
17.9
114
19.7
6.2
2.7

34.9
23.4
19.7
15.1
5.0
1.8

52.3
14.6
26.9
6.1

135
22.9
8.0

0.6
0.5
0.1

16.9
20.0
31.6
22.7
6.4
2.1
0.3
0.1

21.1
30.5
32.3
11.8
3.4
0.8
0.1

31.7
43.8
16.3
6.4
1.5
0.3

26.9
39.3
21.8
8.7
2.6
0.7

71.0
20.0
7.7
14

14.6
15.9
30.7

58.2
11.6
5.0

9.9
2.9
1.9
5.9
10.2
53.7
11.0
4.5

111
3.0
9.5
4.7
55.9
11.0
4.7

9.3
5.2
5.0
55.1
17.3
8.2

8.8
4.9
17.5
46.8
15.4
6.7

12.2
5.3

66.5
16.0
12.0

3.3
1.3

8.6
2.1
0.7

255
155
23.2
17.1
10.5
6.4
1.4
0.4

35.3
9.4
32.6
7.4
12.1
2.3
0.9

37.1
18.9
14.0
20.7
6.5
2.7

36.4
19.1
25.2
131
4.7
1.5

48.7
15.3
29.2
6.7

111
22.6
7.0

0.4
0.6
0.1

15.8
24.8
32.7
195
5.1
1.7
0.2
0.1

23.4
37.0
29.3
7.6
2.3
0.4
0.1

33.1
43.0
15.9
6.2
1.4
0.3

32.3
43.7
16.0
6.2
1.4
0.3

72.4
18.9
7.4
1.3

11.9
18.9
335
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Phe308 (M3)
Phe308 (M4)
Phe308 (M5)
Phe308 (M6)
Phe308 (M?7)
Phe308 (M8)

Phe336 (MO)
Phe336 (M1)
Phe336 (M2)
Phe336 (M3)
Phe336 (M4)
Phe336 (MS5)
Phe336 (M6)
Phe336 (M?7)
Phe336 (M8)
Phe336 (M9)

Asp390 (MO0)
Asp390 (M1)
Asp390 (M2)
Asp390 (M3)
Asp390 (M4)
Asp390 (M5)

Asp418 (MO0)
Asp418 (M1)
Asp418 (M2)
Asp418 (M3)
Asp418 (M4)
Asp418 (M5)
Asp418 (M6)

Glu330 (M0)
Glu330 (M1)
Glu330 (M2)
Glu330 (M3)
Glu330 (M4)
Glu330 (M5)
Glu330 (M6)

Glu432 (MO0)
Glu432 (M1)

0.3
0.1
0.1
0.4
6.3
73.8

134
4.0
1.5
0.3
0.1
0.0
0.1
0.6
7.1
72.9

10.6
4.0
6.8
53.6
16.9
8.0

10.5
3.8
2.6
7.7
51.2
16.4
7.8

10.6
3.1
2.0
3.4
60.4
14.6
5.9

9.7
3.6

24.2
10.8
9.9
6.9
1.9
1.9

13.2
22.6
7.8
13.8
18.4
5.9
10.4
4.7
1.6
1.7

34.9
23.3
19.8
151
5.0
1.8

31.5
21.4
17.1
14.7
10.5
3.6

13

31.4
17.6
27.0
11.9
9.1
2.2
0.7
24.7
16.8

27.9
8.0
2.5
0.4
0.1
0.0

144
15.3
30.7
27.9
8.4
2.6
0.5
0.1
0.0
0.0

26.8
39.2
21.9
8.8
2.7
0.7

24.7
36.9
23.7
10.3
3.4
0.9
0.2

195
30.0
32.6
12.9
4.0
0.9
0.2

16.5
26.0

0.3
0.2
1.2
5.1
7.0
69.5

111
3.3
1.2
0.3
0.2
0.3
3.0
3.9
7.6
69.1

9.0
4.9
17.3
46.7
15.3
6.7

8.7
4.4
3.3
17.5
44.7
14.9
6.6

9.4
3.0
9.4
5.0
54.8
13.1
5.3

8.3
3.2

26.5
10.3
11.3
7.1
2.0
2.0

10.9
21.3
7.2
15.0
19.3
6.1
11.8
4.9
1.6
1.8

36.6
19.2
24.9
131
4.7
1.5

34.9
19.7
9.7
20.0
10.4
4.1
1.2

2kl
10.1
32.2
8.6
121
2.7
1.0
25.7
13.7

25.8
7.3
2.2
0.4
0.1
0.0

11.8
18.1
33.6
26.1
7.6
2.3
0.4
0.1
0.0
0.0

32.2
43.6
16.1
6.3
1.4
0.3

32.0
43.3
16.3
6.5
1.5
0.3
0.1

215
36.5
30.0
8.7
2.7
0.5
0.1

19.1
34.1
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Glud32 (M2)
Glu432 (M3)
Glu432 (M4)
Glu432 (M5)
Glu432 (M6)
Glu432 (M7)

Tyr302 (MO0)
Tyr302 (M1)
Tyr302 (M2)
Tyr302 (M3)

RNA_Rib173
(MO)
RNA_Rib173
(M1)
RNA_Rib173
(M2)
RNA_Rib173
(M3)

RNA_Rib284
(MO)
RNA_Rib284
(M1)
RNA_Rib284
(M2)
RNA_Rib284
(M3)
RNA_Rib284
(M4)
RNA_Rib284
(M5)

Glycogen_Glucl

73 (M0)

Glycogen_Glucl

73 (M1)

Glycogen_Glucl

73 (M2)

Glycogen_Glucl

73 (M3)

1.8
1.1
6.4
52.6
16.8
8.0
12.8
5.1
66.2
15.9
17.2
3.7
74.1

5.0

14.7
2.3
0.6
3.1
71.9

74

12.4
3.9

78.2

21.9
17.1
10.1
6.5
2.0
0.7
52.1
14.7
27.1
6.2
77.1
7.8
13.9

1.2

13.2

3.2

60.2

8.3

13.6

14

69.0

7.2

22.2

1.6

314
16.7
6.8
2.0
0.5
0.1
70.8
19.9
7.8
14
26.6
67.1
Dud

0.8

84.0

12.9

2.3

0.7

0.1

0.1

42.3

52.7

4.4

0.6

3.7
7.0
16.7
41.4
13.6
6.1
12.3
5.4
66.4
15.9
19.5
3.9
71.7

5.0

16.3
2.6
1.6
3.2
69.1

7.2

13.0
4.1
77.4

5.5

26.1
14.4
11.9
5.7
2.0
0.6
48.4
15.2
29.5
6.8
77.6
8.5
12.9

1.0

15.2

3.8

58.7

8.3

12.6

14

67.5

7.7

23.1

1.7

30.3
11.3
4.1
0.9
0.2
0.0
72.3
18.9
7.5
1.3
27.2
66.6
5.4

0.8

83.7

131

2.1

0.8

0.3

0.1

36.9

57.6

4.7

0.8
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Glycogen_Gluc3

70 (MO0) 10.5 19.1 79.0 9.3 11.0 79.2
Glycogen_Gluc3

70 (M1) 2.0 4.2 17.2 1.9 3.1 16.6
Glycogen_Gluc3

70 (M2) 0.4 2.8 3.1 0.6 2.4 3.1
Glycogen_Gluc3

70 (M3) 0.3 43.3 0.5 2.0 50.3 0.6
Glycogen_Gluc3

70 (M4) 3.9 8.0 0.1 4.5 9.0 0.1
Glycogen_Gluc3

70 (M5) 71.3 19.5 0.0 70.2 20.8 0.3
Glycogen_Gluc3

70 (M6) 9.8 2.7 0.0 9.7 2.9 0.1
Glycogen_Gluc3

70 (M7) 1.8 0.5 0.0 1.8 0.5 0.1
Suc289.ext (MO0) 34.8 31.6
Suc289.ext (M1) 17.8 49.6
Suc289.ext (M2) 7.8 13.1
Suc289.ext (M3) 24.8 4.8
Suc289.ext (M4) 10.7 0.8
Suc289.ext (M5) 3.3 0.1
Suc289.ext (M6) 0.8 0.0
C16:0 (M0) 14.2 10.3

C16:0 (M1) 2.7 2.0

C16:0 (M2) 0.3 0.2

C16:0 (M3) 0.0 0.0

C16:0 (M4) 0.0 0.0

C16:0 (M5) 0.0 0.0

C16:0 (M6) 0.0 0.0

C16:0 (M7) 0.0 0.0

C16:0 (M8) 0.0 0.4

C16:0 (M9) 0.0 0.3

C16:0 (M10) 0.0 2.6

C16:0 (M11) 0.1 1.7

C16:0 (M12) 0.2 11.2

C16:0 (M13) 0.5 5.0

C16:0 (M14) 3.4 27.9

C16:0 (M15) 11.6 6.6

C16:0 (M16) 65.5 31.0

C16:0 (M17) 1.2 0.6
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C16:0 (M18) 0.3 0.1
Pyr174 (MO0) 0.2 3.8
Pyrl74 (M1) 0.1 2.0
Pyrl74 (M2) 3.2 4.0
Pyrl74 (M3) 84.9 79.8
Pyrl74 (M4) 7.9 7.1
Pyrl74 (M5) 3.7 3.3
PEP453 (MO0) 0.2 3.1
PEP453 (M1) 0.1 2.2
PEP453 (M2) 2.3 3.6
PEP453 (M3) 66.3 61.9
PEP453 (M4) 20.7 19.3
PEP453 (M5) 10.4 9.8
3PG585 (MO0) 0.2 4.2
3PG585 (M1) 0.2 2.9
3PG585 (M2) 2.1 3.7
3PG585 (M3) 58.8 54.2
3PG585 (M4) 25.1 22.7
3PG585 (M5) 13.6 12.2
Table A.7  Results of 3C-MFA for E. coli grown on glucose under aerobic and

anaerobic conditions. The reaction numbers correspond to the reactions

listed in Table A.4. The fluxes are normalized to a substrate uptake rate
of 100. 95% confidence intervals of fluxes (LB95 = lower bound, UB95

= upper bound) were determined by evaluating the sensitivity of the
minimized SSR to flux variations.

Condition Aerobic Glucose Anaerobic Glucose
SSR 173 33
Net Fluxes
Reaction No. Best Fit LB95 UB95 Best Fit LB95 UB95
(1) 100.0 99.9 100.1 100.0 99.9 100.1
(2) 74.2 73.3 75.1 89.3 88.4 90.2
(3) 84.2 83.5 84.8 91.4 90.5 92.6
4) 84.2 83.5 84.8 91.4 90.5 92.6
(5) 84.2 83.5 84.8 91.4 90.5 92.6
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(6) 172.1 171.0 173.1 183.3 181.8 185.6
(7) 159.2 157.7 160.7 176.7 174.5 180.0
(8) 29.1 25.3 31.8 455 40.4 51.1
9) 24.3 234 25.1 7.9 7.1 8.5
(10) 24.0 23.1 24.9 7.6 6.7 8.3
(11) 10.6 10.0 11.2 2.5 1.9 3.0
(12) 13.4 13.0 13.8 5.1 4.5 55
(13) 10.6 10.0 11.2 2.5 1.9 3.0
(14) -3.9 -4.2 -35 -0.4 -0.7 -0.1
(15) -6.7 -7.0 -6.4 -2.1 -2.3 -1.8
(16) -6.7 -7.0 -6.4 -2.1 -2.3 -1.8
(17) 6.7 6.4 7.0 2.1 1.8 2.3
(18) 0.3 0.0 0.9 0.3 0.0 0.9
(19) 0.3 0.0 0.9 0.3 0.0 0.9
(20) Not in the model Not in the model
(21) Not in the model Not in the model
(22) 111.9 108.8 115.0 5.6 0.0 15.1
(23) 26.6 24.1 28.9 5.4 4.6 6.0
(24) 26.6 24.1 28.9 54 4.6 6.0
(25) 6.5 22.6 28.9 5.2 4.4 5.8
(26) 17.8 13.7 20.2 0.1 0.0 0.4
(27) 14.4 10.3 17.0 -1.9 -2.2 -1.5
(28) 17.9 15.2 20.2 147 -17.4 -12.0
(29) 21.0 18.4 23.3 -12.9 -15.7 -10.1
(30) 194 16.3 21.7 -12.7 -16.5 -9.9
(31) 0.1 0.0 1.8 0.2 0.0 0.5
(32) 0.1 0.0 1.8 0.2 0.0 0.5
(33) 1.7 0.0 4.6 0.0 0.0 4.3
(34) 25.7 23.7 27.4 27.6 24.7 31.4
(35) 1.6 0.0 3.2 Not in the model
(36) 60.6 56.3 64.8 53.5 47.7 60.6
(37) Not in the model Not in the model
(38) Not in the model Not in the model
(39) Not in the model Not in the model
(40) Not in the model Not in the model
(41) 50.3 48.4 524 29.3 24.9 32.0
(42) 5.7 55 5.9 3.3 2.8 35
(43) 1.4 1.4 1.5 0.8 0.7 0.9
(44) 2.4 2.3 2.5 1.4 1.2 15
(45) 14.4 13.7 15.0 8.5 7.2 9.4
(46) 2.0 1.9 2.0 1.2 1.0 1.3
(47) 4.2 4.0 4.4 2.6 2.2 2.8
(48) 8.3 8.0 8.7 4.5 3.8 5.0
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(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)
(84)
Exchange Fluxes
(2)
3)
(4)
(5)
(6)
(1)

4.2
0.6
0.1
1.6
2.5
2.5
4.0
0.9
2.6
3.0
1.8
1.2
1.1
0.5
0.7
0.9
0.7

297.6
17.9
47.9

497.8

64.6

171.8

157.8
54.6
1.6
8.4
11.8

87.7
73.1
73.4
18.3
Inf
>1000

4.1 45
0.6 0.6
0.0 0.2
1.6 1.7
2.4 2.6
2.4 2.6
3.7 4.2
0.9 0.9
2.5 2.8
2.9 3.1
1.8 1.9
1.2 1.3
1.1 1.2
0.4 0.5
0.7 0.7
0.9 0.9
0.7 0.7
Not in the model
284.3 308.9
15.2 20.2
40.8 55.8
Not in the model
450.8 538.4
Not in the model
60.5 68.8

Not in the model
Not in the model
Not in the model

163.4 178.4
Not in the model
149.9 164.4
52.5 56.8
1.6 1.7
8.1 8.8
10.2 13.5
Not in the model
54.5 145.3
14.6 Inf
14.6 Inf
0.0 66.4
0.0 Inf
0.0 Inf

2.1
0.0
0.0
1.0
1.5
1.5
2.3
0.5
1.5
1.8
1.1
0.7
0.7
0.3
0.4
0.5
0.3

51.8

17.0

55.8

2.4

32.1
1.0
4.9
6.5

64.3
345
335
247.3
17.2
9.6

1.7 2.4
0.0 0.3
0.0 0.5
0.8 1.0
1.2 1.6
1.2 1.6
2.0 2.7
0.5 0.6
1.3 1.7
1.5 1.9
0.9 1.2
0.6 0.8
0.6 0.7
0.2 0.3
0.3 0.4
0.5 0.6
0.0 0.4

Not in the model
Not in the model
Not in the model

42.0

58.1

Not in the model
0.0 55.4
Not in the model
50.2 62.7
Not in the model
Not in the model
Not in the model
0.0 17.2
Not in the model
Not in the model

27.2 34.9
0.8 1.0
4.1 5.3
5.2 1.7
Not in the model
43.0 109.4
0.3 Inf
0.3 Inf
10.1 Inf
0.0 Inf
0.0 Inf
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(8) 0.0 0.0 287.5 0.0 0.0 97.0
(11) 97.8 38.8 Inf 83.7 35.9 Inf
(12) 0.0 0.0 Inf 0.0 0.0 Inf
(13) 93.9 38.8 Inf 83.7 35.9 Inf
(14) 6.4 5.8 7.1 3.8 3.3 4.2
(15) 2.3 0.0 Inf 0.3 0.0 Inf
(16) 0.0 0.0 28.5 18.7 0.1 31.2
(17) 78.3 0.0 Inf 3.7 0.0 Inf
(24) 28.2 0.0 Inf 4.2 0.0 Inf
(27) 19.0 0.0 Inf 10.9 0.0 Inf
(28) >1000 17.1 Inf 0.0 0.0 Inf
(29) 854.7 160.5 Inf 200.1 3.3 Inf
(30) 448.8 154.5 Inf 4.7 0.4 Inf
(31) 2.7 1.1 4.2 0.1 0.0 0.2
(36) 56.9 0.0 Inf 0.5 0.0 Inf
(37) Not in the model 2.8 0.0 Inf
(38) Not in the model 6.1 0.0 Inf
(40) Not in the model 32.2 14.8 57.5
(49) 3.8 35 4.2 3.5 2.9 4.1
(50) 0.0 0.0 0.2 0.0 0.0 0.0
(69) 30.7 0.0 Inf 2.9 0.0 Inf
(70) Not in the model 14.5 0.0 Inf

Table A.8  Results of 3C-MFA for E. coli grown on xylose under aerobic and
anaerobic conditions. The reaction numbers correspond to the reactions
listed in Table A.4. The fluxes are normalized to a substrate uptake rate
of 100. 95% confidence intervals of fluxes (LB95 = lower bound, UB95
= upper bound) were determined by evaluating the sensitivity of the
minimized SSR to flux variations.

Condition Aerobic Xylose Anaerobic Xylose
SSR 33 175
Net Fluxes
Reaction No. Best Fit LB95 UB95 Best Fit LB95 UB95
(@D Not in the model Not in the model
(2) -19.0 -21.6 -15.7 -0.8 -1.1 -0.5
(3) 52.1 50.5 54.0 64.7 64.3 65.4
4) 52.1 50.5 54.0 64.7 64.3 65.4
(5) 52.1 50.5 54.0 64.7 64.3 65.4
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(6) 140.3 138.4 142.5 161.9 160.7 163.4
(7) 128.7 126.1 131.3 159.1 157.3 161.4
(8) 87.5 83.0 97.6 124.6 88.6 142.5
9) 16.6 13.1 19.2 0.0 0.0 0.3
(10) 14.6 11.9 17.1 0.0 0.0 0.3
(11) -28.4 -30.4 -26.6 -34.3 -34.6 -34.0
(12) 43.0 42.2 43.7 34.3 34.0 34.6
(13) 71.6 69.6 73.4 65.7 65.4 66.0
(14) -34.4 -35.4 -33.3 -32.4 -32.7 -32.2
(15) -37.2 -38.1 -36.3 -33.2 -33.3 -33.2
(16) -37.2 -38.1 -36.3 -33.2 -33.3 -33.2
(17) 37.2 36.3 38.1 33.2 33.2 33.3
(18) 2.0 0.2 3.6 0.0 0.0 0.2
(19) 2.0 0.2 3.6 0.0 0.0 0.2
(20) 100.0 99.9

(21) 100.0 99.9

(22) 85.0 81.8 88.3 17.0 7.0 26.4
(23) 34.5 28.7 374 2.4 1.7 3.0
(24) 345 28.7 37.4 2.4 1.7 3.0
(25) 33.9 24.4 374 2.4 1.7 3.0
(26) 25.3 15.3 29.0 0.1 0.0 0.3
(27) 22.1 11.9 25.8 -0.8 -1.1 -0.4
(28) 26.0 19.6 29.0 -11.6 -14.3 -8.9
(29) 29.0 22.8 32.0 -10.8 -13.6 -8.0
(30) 15.5 10.7 24.3 -26.2 -66.8 -9.6
(31) 0.6 0.0 4.5 0.0 0.0 0.3
(32) 0.6 0.0 4.5 0.0 0.0 0.3
(33) 14.2 6.1 17.8 15.4 0.0 55.3
(34) 35.2 316 39.3 32.8 16.0 71.6
(35) 0.0 0.0 8.9 Not in the model
(36) 29.1 24.8 334 60.4 54.1 67.0
(37) Not in the model Not in the model
(38) Not in the model Not in the model
(39) Not in the model Not in the model
(40) Not in the model Not in the model
(41) 49.2 46.5 52.9 13.1 9.0 16.1
(42) 5.6 5.3 6.0 1.5 1.0 1.8
(43) 1.4 1.3 1.5 0.4 0.3 0.5
(44) 2.3 2.2 2.5 0.6 0.4 0.7
(45) 14.1 13.3 15.4 3.8 2.6 5.1
(46) 2.0 1.9 2.1 0.5 0.4 0.7
(47) 4.2 3.9 4.5 1.1 0.7 1.3
(48) 7.9 7.4 8.5 2.0 1.3 2.5
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(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)
(84)
Exchange Fluxes
(2)
3)
(4)
(5)
(6)
(1)

3.9
0.4
0.0
1.6
2.4
24
3.8
0.9
2.6
3.0
1.8
1.2
1.1
0.5
0.7
0.9
0.7

252.4
26.0
355

268.9

33.0

151.3

139.2
53.7
1.6
6.8
0.7

8.7
40.3
31.1
22.5
>1000
137.8

3.6 4.3
0.3 0.4
0.0 0.6
1.5 1.7
2.3 2.6
2.3 2.6
3.6 45
0.8 0.9
2.4 2.8
2.8 3.2
1.7 1.9
1.2 1.3
1.1 1.2
0.4 0.5
0.7 0.7
0.8 0.9
0.7 0.7
Not in the model
219.6 269.2
19.6 29.0
22.9 62.7
Not in the model
164.4 327.1
100.0
28.9 37.1

Not in the model
Not in the model
Not in the model

130.3 162.4
Not in the model
119.8 148.7
50.9 57.8
15 1.7
6.5 7.4
0.0 1.9
Not in the model
0.0 Inf
1.9 Inf
2.2 Inf
2.6 Inf
16.2 Inf
0.0 Inf

0.9
0.0
0.0
0.4
0.6
0.6
1.1
0.3
0.7
0.8
0.5
0.3
0.3
0.1
0.2
0.3
0.2

13.2
9.0

61.5

23.8

14.4
0.4
2.0
7.0

1.8
16.5
19.6
218.5
0.0
348.6

0.5 1.1
0.0 0.4
0.0 0.8
0.3 0.5
0.4 0.8
0.4 0.8
0.7 2.0
0.2 0.3
0.5 0.9
0.6 1.0
0.3 0.6
0.2 0.4
0.2 0.4
0.1 0.1
0.1 0.2
0.2 0.3
0.0 0.2

Not in the model
Not in the model
Not in the model

-35.2 32.6
Not in the model
0.0 51.9
99.9
55.3 67.9

Not in the model
Not in the model
Not in the model
-0.4 70.1
Not in the model
Not in the model

9.7 17.7
0.3 0.5
14 2.5
49 9.3
Not in the model
0.0 Inf
2.1 Inf
2.1 Inf
4.7 Inf
0.0 97.9
0.0 Inf
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(8) 74.0 0.0 118.3 21.0 16.6 25.8
(11) >1000 0.0 Inf 81.8 0.0 Inf
(12) >1000 0.0 Inf 79.0 0.0 Inf
(13) 79.7 58.7 86.7 49.9 21.7 69.6
(14) 7.4 1.6 37.6 21.7 9.4 48.3
(15) 65.1 0.0 Inf 561.0 77.4 Inf
(16) 42.0 0.0 77.9 234 0.0 52.5
(17) 64.7 0.0 Inf 559.9 78.4 Inf
(24) 22.0 0.0 Inf 8.1 0.0 Inf
(27) 10.2 0.0 Inf 19.9 0.0 Inf
(28) 0.0 0.0 Inf 0.0 0.0 Inf
(29) 357.4 106.7 Inf 21.5 3.5 Inf
(30) 2404  108.4 Inf 12.3 2.0 Inf
(31) 0.5 0.0 2.1 0.0 0.0 0.1
(36) 23.8 0.0 Inf 24.9 0.0 Inf
(37) Not in the model Not in the model
(38) Not in the model Not in the model
(40) Not in the model Not in the model
(49) 2.3 1.9 2.7 1.2 0.8 1.6
(50) 0.1 0.0 0.2 0.0 0.0 0.0
(69) 12.7 0.0 Inf 20.1 0.0 Inf
(70) Not in the model Not in the model
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Figure A.1 Analysis of 3C-MFA goodness-of-fit for various metabolic network
models. Sum of squared residual values are shown here for models
containing different dilution reactions in the model. Overall, including
dilution reactions that account for RNA turnover, glycogen turnover, and
amino acid turnover (here, glutamate turnover) did not improve the
goodness-of-fit.
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Figure A.2 Representative growth curves for each condition: Aerobic Glucose (A),

Aerobic Xylose (B), Anaerobic Glucose (C), Anaerobic Xylose (D).
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SUPPLEMENTARY DATA FOR CHAPTER 3

Appendix B

Table B.1  13C-labeling (in %) of proteinogenic amino acids and carbohydrates for
Acrr, AptsG, AptsH, and Aptsl knockouts during growth on [U-
13C]glucose and unlabeled xylose. The condition indicates the ratio of
glucose to xylose. “Avg” indicates the average carbon labeling.

Strain Acrr AptsG AptsH Aptsl
Condition 1:3 222 31 1.3 22 31 1.3 222 31 13 22 31
Avg 68 76 85 17 20 23 11 14 17 12 14 17
Ala232 (M0) 31 22 14 8 79 76 88 85 82 87 85 82
Ala232 (M1) 3 3 2 2 2 2 2 2 3 2 2 3
Ala232 (M2) 66 75 84 16 19 22 10 13 15 11 13 16
Ala232 (M3) 0 0 0 0 0 0 0 0 0 0 0 0
Ala232 (M4) o o0 o O O o o o o o o0 o
Avg 68 76 8 17 20 23 11 14 16 12 14 17
Ala260 (MO0) 28 19 13 80 77 73 87 84 80 8 83 79
Ala260 (M1) 5 4 2 3 3 4 2 3 3 3 3 4
Ala260 (M2) 6 5 4 3 3 3 2 2 3 2 2 3
Ala260 (M3) 62 72 81 14 17 19 9 11 13 9 12 14
Ala260 (M4) 0 0 0 0 0 0 0 0 0 0 0 0
Ala260 (M5) o o o 0O O o o o0O o o o0 o
Avg 68 77 8 17 19 22 10 13 15 11 14 17
Gly218 (M0) 33 24 15 83 81 78 90 87 85 89 86 83
Gly218 (M1) 68 77 8 17 19 22 10 13 15 11 14 17
Gly218(M2) 0 O O O O O O O O O 0 O
Gly218 (M3) o o o 0O O o o o0O o o o0 o
Avg 68 76 8 17 19 22 10 13 16 12 14 17
Gly246 (MO0) 28 20 13 81 78 75 88 86 83 87 84 81
Gly2a6(M1) 9 7 4 4 4 5 2 3 4 3 4 5
Gly246 (M2) 63 73 82 15 17 19 9 12 14 10 12 14
Gly246 (M3) o o o O O o o O o o o0 o
Gly246(M4) O O O O O O O O O O 0 O
Avg 67 76 84 16 19 22 10 13 15 12 14 16
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Val260 (MO0)
Val260 (M1)
Val260 (M2)
Val260 (M3)
Val260 (M4)
Val260 (M5)
Val260 (M6)

Avg

Val288 (MO0)
Val288 (M1)
Val288 (M2)
Val288 (M3)
Val288 (M4)
Val288 (M5)
Val288 (M6)
Val288 (M7)

Avg

Leu274 (MO0)
Leu274 (M1)
Leu274 (M2)
Leu274 (M3)
Leu274 (M4)
Leu274 (M5)
Leu274 (M6)
Leu274 (M7)

Avg

11e200 (MO)
11e200 (M1)
11e200 (M2)
11e200 (M3)
11e200 (M4)
11e200 (M5)
11e200 (M6)
11e200 (M7)

Avg

lle274 (MO)
Ile274 (M1)
lle274 (M2)
11e274 (M3)

16

29

49

67
15

14
17

47

67
12

23
14
38

65
13

13
19
18
34

66
13

13
19

12

20

63

76

12

13

61

76
10

18
12
54

74
11

15
18
48

74
11

14
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1e274 (M4) 18 18 15 2 3 3 1 1 2 1 1 2
116274 (M5) 3 48 65 1 1 2 0 1 1 0 1 1
1274 (M6) o 0 0 0 0 0 0O O O O O O
11e274 (M7) o 0 0 0 0O 0 0O 0O 0O 0O 0 O
Avg 67 76 84 17 19 22 11 13 16 12 14 17
Pro258 (M0) 15 11 10 64 61 56 75 70 64 72 68 63
Pro2s§(M1) 4 2 1 11 10 11 10 12 14 12 13 15
Pro2s8 (M2) 24 17 8 20 23 25 12 15 17 13 16 18
Pro2s§(M3) 12 10 7 3 2 3 1 2 3 2 2 3
Pro2s8(M4) 45 59 75 2 3 4 1 2 2 1 1 2
Pro2s§(M5) 0 0 O 0 O 0O O 0 0 0 0 O
Pro2s§(M6) O 0 O 0O O O O 0 0 0 0 O
Avg 67 76 8 16 19 21 10 13 15 11 14 16
Ser362(M0) 25 18 13 80 76 72 87 83 80 84 80 76
Ser362(M1) 17 13 8 8 10 14 7 8 10 10 12 15
Ser362(M2) 59 70 81 12 14 14 7 8 10 6 8 9
Ser362(M3) O O O O O O O O O 0 0 O
Avg 68 77 8 17 19 22 10 13 16 12 14 17
Ser390(M0) 22 16 12 78 75 72 86 82 78 82 78 74
Sers®0(M1) 9 6 3 6 6 7 4 6 7 7 9 10
Ser390(M2) 12 10 6 5 5 6 4 4 5 5 6 7
Ser390(M3) 57 69 81 12 14 16 6 8 10 6 7 8
Ser390(M4) 0 0O -1 0 O O O 0O O 0 0 O
Ser30(M5 0 O O O O O O 0O O 0 0 O
Avg 65 74 8 15 18 21 10 13 15 11 13 16
Thr376(M0) 20 15 11 74 70 66 82 77 72 80 75 71
Thr37zé (M1) 12 8 4 11 12 14 9 12 14 11 12 14
Thr376(M2) 22 20 15 10 12 13 7 8 10 7 9 10
Thr376(M3) 46 58 70 5 6 7 2 3 4 3 3 4
Thr376(M4) 0 O O O O O O O 0 0O 0 O
Thr376(M5) 0 O 0 O O O O O 0 0 0 O
Avg 64 73 81 15 18 21 10 12 15 11 13 16
Thrao4(M0) 17 13 11 71 66 61 79 74 69 77 72 67
Thrao4(M1) 8 5 2 11 12 13 9 10 12 10 11 13
Thr404(M2) 13 9 4 8 9 10 7 9 10 8 10 11
Thr404(M3) 25 24 21 9 10 11 4 6 7 5 6 7
Thrao4(M4) 37 49 63 2 3 4 1 1 2 1 1 2
Thr404(M5) 0 0 0 O 0 O 0 0O 0 0 0 O
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Thr404 (M6)

Avg

Phe302 (MO0)
Phe302 (M1)
Phe302 (M2)
Phe302 (M3)

Avg

Phe308 (MO0)
Phe308 (M1)
Phe308 (M2)
Phe308 (M3)
Phe308 (M4)
Phe308 (M5)
Phe308 (M6)
Phe308 (M7)
Phe308 (M8)

Avg

Phe336 (MO0)
Phe336 (M1)
Phe336 (M2)
Phe336 (M3)
Phe336 (M4)
Phe336 (M5)
Phe336 (M6)
Phe336 (M7)
Phe336 (M8)
Phe336 (M9)

Avg

Asp302 (MO0)
Asp302 (M1)
Asp302 (M2)
Asp302 (M3)

Avg

Asp390 (MO0)
Asp390 (M1)
Asp390 (M2)
Asp390 (M3)
Asp390 (M4)

67
29

63

63
13

13
11
15
12
25

65
20
12
22
46
0

73
15

20
57
0

gLOOOOO(JJOOO

O - 0
= W

DE OO Wk OO

82
11

15
70
0

15
74
11
10
5
0

18
70
12
11
6
0

21
66
14
13

10
89

(6]

OOOI—‘I\J#GW\ICO

OOOI—‘I—‘I\)IS@(JO\IOO

13
77
11

3
0

15
72
13
10
4
0

11
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11
79
11
7
3
0

13
76
12
9
3
0

16
71
14
10
4
0
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Asp3%0(M5) 0 0 0 0 O

Avg 64 72 80 15 18
Asp418 (MO0) 17 13 11 70 66
Aspd18(M1) 9 6 2 11 12
Asp418 (M2) 13 10 5 8 9
Asp418 (M3) 25 24 21 9
Asp418 (M4) 36 48 62 2
Asp418 (Mb5) o 0 O o0 O
Asp418 (M6) O 0 0 O

Avg 67 76
Glu330 (MO0) 14 11
Glu330 (M1) 5 2
Glu330 (M2) 25 18
Glu330 (M3) 12 11
Glu330 (M4) 44 58
Glu330 (M5) 0 O
Glu330 (M6) 0 O

a1 S
[N
(op}
-
©

OO NN PEF © O
N
N

(0]
w
'_\
[ep]
|
©

Avg 66 74
Glu432 (M0) 12 10
Glu432 (M1) 4 2
Glu432 (M2) 13 8
Glu432 (M3) 20 15
Glu432 (M4) 18 18
Glu432 (M5) 34 47
Glu432(M6) 0 0O
Glu4z2(M7) 0 O

(op}

QO MME 00WwoO o
(S}
(o]
oo

Avg 67 76 84 16 19
Tyr302(M0) 28 21 14 82 79
Tyr302(M1) 8 7 4 3 4
Tyr302(M2) 63 73 83 14 17
Tyr302(M3) 0 0 0O 0 0

Avg 57 68 79 12 16
RNA_Rib173

(MO) 42 31 20 88 84
RNA_Rib173

(M1) 2 2 2 0 1
RNA_Rib173

(M2) 56 67 78 12 15

2

13
73
11

OOk O

10

23

11
76
10

O O O

11

25
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Avg 51 63 78 9 12 19 5 8 20 7 10 23
RNA_Rib284

(MO0) 33 24 16 8 79 70 91 86 68 88 82 62
RNA_Rib284

(M1) 3 2 1 3 3 4 2 3 5 3 4 7
RNA_Rib284

(M2) 23 19 9 9 11 16 6 8 15 6 9 17
RNA_Rib284

(M3) 7 7 6 1 1 2 0 1 2 1 1 4
RNA_Rib284

(M4) 33 48 69 4 5 8 2 3 9 2 4 10
Avg 77 81 87 34 46 51 16 30 44 20 34 71
Glycogen_Gluc

173 (MO0) 22 18 11 65 54 48 83 69 55 79 65 27
Glycogen_Gluc

173 (M1) 3 3 31 1 2 1 1 2 1 2 3
Glycogen_Gluc

173 (M2) 7% 79 86 34 45 50 16 30 43 20 33 70
Avg 76 81 88 32 43 48 15 28 42 19 32 171
Glycogen_Gluc

370 (MO0) 13 12 8 60 47 39 78 63 43 70 54 14
Glycogen_Gluc

370 (M1) 2 1 0 3 4 4 2 3 6 5 6 6
Glycogen_Gluc

370 (M2) 7 4 1 8 9 11 6 8 11 9 10 9
Glycogen_Gluc

370 (M3) 10 7 4 3 4 6 3 4 8 4 6 9
Glycogen_Gluc

370 (M4) 7 7 5 1 2 3 1 1 3 1 2 5
Glycogen_Gluc

370 (M5) 62 69 81 25 35 38 10 21 30 11 22 57

Table B.2  Metabolic network models for 13C-metabolic flux analysis of GX50 and
LMSE2 strains grown on mixtures of glucose and xylose or on
glucose/xylose alone.

L = LMSE2 with glucose + xylose
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G = GX50 with glucose + xylose
GG = GX50 with glucose
GX = GX50 with xylose

Glycolysis

(1) [L G GG]

(2) [L G GG GX]
(3) [L G GG GX]
(4) [L GGG GX]
(5) [L G GG GX]
(6) [L G GG GX]
(7) [L G GG GX]
(8) [L G GG GX]

Gluc.ext (abcdef) + PEP (ghi) -> G6P (abcdef) + Pyr(ghi)
G6P (abcdef) <=>F6P (abcdef)

F6P (abcdef) + ATP <=> FBP (abcdef)

FBP (abcdef) <=> DHAP (cba) + GAP (def)

DHAP (abc) <=> GAP (abc)

GAP (abc) <=> 3PG (abc) + ATP + NADH

3PG (abc) <=> PEP (abc)

PEP (abc) <=> Pyr (abc) + ATP

Pentose Phosphate Pathway

(9) [L G GG GX]
(10) [L G GG GX]
(11) [L G GG GX]
(12) [L G GG GX]
(13) [L G GG GX]
(14) [L G GG GX]
(15) [L G GG GX]
(16) [L G GG GX]
(17) [L G GG GX]

G6P (abcdef) -> 6PG (abcdef) + NADPH

6PG (abcdef) -> Ru5P (bcdef) + CO2 (a) + NADPH
RU5P (abcde) <=> X5P (abcde)

Ru5P (abcde) <=> R5P (abcde)

X5P (abcde) <=> TK-C2 (ab) + GAP (cde)

F6P (abcdef) <=> TK-C2 (ab) + E4P (cdef)

S7P (abcdefg) <=> TK-C2 (ab) + R5P (cdefg)

F6P (abcdef) <=> TA-C3 (abc) + GAP (def)

S7P (abcdefg) <=> TA-C3 (abc) + E4P (defg)

Entner-Doudoroff Pathway

(18) [L G GG GX]
(19) [L G GG GX]

Xylose Metabolism

(20) [L G GX]
(21) [L G GX]

TCA Cycle

(22) [L G GG GX]
(23) [L G GG GX]
(24) [L G GG GX]
(25) [L G GG GX]
(26) [L G GG GX]
(27) [L G GG GX]
(28) [L G GG GX]
(29) [L G GG GX]
(30) [L G GG GX]

6PG (abcdef) -> KDPG (abcdef)
KDPG (abcdef) -> Pyr (abc) + GAP (def)

Xyl (abcde) -> Xylu (abcde)
Xylu (abcde) + ATP -> X5P (abcde)

Pyr (abc) -> AcCoA (bc) + COz (a) + NADH

OAC (abcd) + AcCoA (ef) -> Cit (dcbfea)

Cit (abcdef) <=> ICit (abcdef)

ICit (abcdef) -> AKG (abcde) + CO; (f) + NADPH

AKG (abcde) -> SucCoA (bcde) + CO; (a) + NADH

SucCoA (abcd) <=> Suc (%2 abcd + %2 dcbha) + ATP

Suc (%2 abcd + % dcba) <=> Fum (Y2 abcd + %2 dcba) + FADH>
Fum (2 abcd + Y2 dcba) <=> Mal (abcd)

Mal (abcd) <=> OAC (abcd) + NADH
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Glyoxylate Shunt
(31) [L G GG GX]
(32) [L G GG GX]

ICit (abcdef) <=> Glyox (ab) + Suc (%2 edcf + Y2 fcde)
Glyox (ab) + AcCoA (cd) -> Mal (abdc)

Amphibolic Reactions

(33) [L G GG GX]
(34) [L G GG GX]
(35) [L G GG GX]

Mal (abcd) -> Pyr (abc) + CO- (d) + NADPH
PEP (abc) + CO2 (d) -> OAC (abcd)
OAC (abcd) + ATP -> PEP (abc) + CO2 (d)

Fermentation Reactions

(36) [L G GG GX]

AcCoA (ab) <=> Ac (ab) + ATP

Amino Acid Biosynthesis

(37) [L G GG GX]
(38) [L G GG GX]
(39) [L G GG GX]
(40) [L G GG GX]

(41) [L G GG GX]
(42) [L G GG GX]
(43) [L G GG GX]
(44) [L G GG GX]
(45) [L G GG GX]
(46) [L G GG GX]
(47) [L G GG GX]
(48) [L G GG GX]
(49) [L G GG GX]

(50) [L G GG GX]
(51) [L G GG GX]
(52) [L G GG GX]
(53) [L G GG GX]
(54) [L G GG GX]

(55) [L G GG GX]

AKG (abcde) + NADPH + NHs -> Glu (abcde)

Glu (abcde) + ATP + NH3s -> GlIn (abcde)

Glu (abcde) + ATP + 2 NADPH -> Pro (abcde)

Glu (abcde) + CO2 (f) + GIn (ghijk) + Asp (Imno) + AcCoA
(pq) + 5 ATP + NADPH -> Arg (abcdef) + AKG (ghijk) + Fum
(Imno) + Ac (pq)

OAC (abcd) + Glu (efghi) -> Asp (abcd) + AKG (efghi)
Asp (abcd) + 2 ATP + NHz -> Asn (abcd)

Pyr (abc) + Glu (defgh) -> Ala (abc) + AKG (defgh)

3PG (abc) + Glu (defgh) -> Ser (abc) + AKG (defgh) + NADH
Ser (abc) <=> Gly (ab) + MEETHF (c)

Gly (ab) -> CO2 (a) + MEETHF (b) + NADH + NH3

CO2 (a) + MEETHF (b) + NADH + NH3 -> Gly(ab)
Thr (abcd) -> Gly (ab) + AcCoA (cd) + NADH

Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4 -> Cys
(abc) + Ac (de)

Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP
+ 2 NADPH -> LL-DAP (2 abcdgfe + %2 efgdcba) + AKG
(hijkl) + Suc (¥2 mnop + % ponm)

LL-DAP (Y2 abcdefg + %2 gfedcba) -> Lys (abcdef) + CO2 (g)
Asp (abcd) + 2 ATP + 2 NADPH -> Thr (abcd)

Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP +
2 NADPH -> Met (abcde) + Pyr (fgh) + Suc (Y2 ijkl + %2 Ikji) +
NHs

Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH -> Val (abcef) +
CO2 (d) + AKG (ghijk)
AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijkim) + NADPH ->
Leu (abdghe) + CO2 (c) + COz2 (f) + AKG (ijklm) + NADH
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(56) [L G GG GX]
(57) [L G GG GX]
(58) [L G GG GX]

(59) [L G GG GX]

(60) [L G GG GX]

Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH -> lle (abfcdg) +
CO2 (e) + AKG (hijkl) + NH3

PEP (abc) + PEP (def) + E4P (ghij) + Glu (kimno) + ATP +
NADPH -> Phe (abcefghij) + COz (d) + AKG (klmno)

PEP (abc) + PEP (def) + E4P (ghij) + Glu (kimno) + ATP +
NADPH -> Tyr (abcefghij) + CO2 (d) + AKG (klmno) + NADH
Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (Imno) + PEP (pqr)
+ GIn (stuvw) + 3 ATP + NADPH -> Trp (abcedklmnoj) + CO>
(i) + GAP (fgh) + Pyr (pgr) + Glu (stuvw)

R5P (abcde) + FTHF (f) + GIn (ghijk) + Asp (Imno) +5 ATP ->
His (edcbaf) + AKG (ghijk) + Fum (Imno) + 2 NADH

One-carbon Metabolism

(61) [L G GG GX]
(62) [L G GG GX]

MEETHF (a) + NADH -> METHF (a)
MEETHF (a) -> FTHF (a) + NADPH

Oxidation Phosphorylation

(62) [L G GG GX]
(63) [L G GG GX]

Transhydrogenation

(64) [L G GG GX]

ATP Hydrolysis
(65) [L G GG GX]

Transport

(66) [L G GX]
(67) [L G GG GX]
(68) [L G GG GX]
(69) [L G GG GX]
(70) [L G GG GX]
(71) [L G GG GX]
(72) [L G GG GX]

Biomass Formation

(73) [L G GG GX]

NADH + %2 O, -> 2 ATP
FADH; + % O, -> 1 ATP

NADH <=> NADPH

ATP -> ATP.ext

Xyl.ext (abcde) + ATP -> Xyl (abcde)
Ac (ab) -> Ac.ext (ab)

CO2 (a) -> CO2.ext (a)

H2 -> H.ext

Oz.ext -> O3

NHs.ext -> NH3

SOs.ext -> S04

0.49731 Ala + 0.28651 Arg + 0.2326 Asn + 0.2326 Asp +
0.088707 Cys + 0.24738 Glu + 0.24738 GIn + 0.44054 Gly +
0.08398 His + 0.21739 Ile + 0.35853 Leu + 0.29077 Lys +
0.10557 Met + 0.14618 Phe + 0.16797 Pro + 0.23355 Ser +
0.24446 Thr + 0.13526 Tyr + 0.31392 Val + 0.18148 G6P +
0.0709 F6P + 0.10233 GAP + 0.53768 3PG + 0.0828 Pyr +
2.0826 AcCoA + 0.0869 AKG + 0.30055 OAC + 0.05506 Trp
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+0.65979 R5P + 0.0511 PEP + 30.7648 ATP + 4.5162

NADPH + 0.38804 MEETHF + 1.2644 NAD -> 1.2644
NADH + 30.7648 ADP + 30.7648 Pi + 4.5162 NADP +
0.38804 THF + 35.476 Biomass

Labeling dilution from external acetate
(74) [LG GG GX]  AcCoA.unlabeled (ab) + AcCoA (cd) -> AcCoA (ab) +
AcCoA.out (cd)

Table B.3  Results of $3C-MFA of LMSE2 grown on glucose and xylose at the
specified ratios. The reaction numbers correspond to the reactions listed
in Table B.2. The fluxes are normalized to a total substrate uptake rate of
100. 95% confidence intervals of fluxes (LB95 = lower bound, UB95 =
upper bound) were determined by evaluating the sensitivity of the
minimized SSR to flux variations.

Glucose: Xylose 1:1 2:2

SSR 158.6 132.8

Net Fluxes

Reaction No. Best Fit LB95 UB95 Best Fit LB95 UB95
(1) 40.2 39.6 40.7 40.4 38.3 425
(2) 0.9 0.3 1.6 0.8 0.1 1.4
(3) 61.4 59.8 62.9 61.2 58.7 63.5
4) 61.4 59.8 62.9 61.2 58.7 63.5
(5) 61.4 59.8 62.9 61.2 58.7 63.5
(6) 151.8 147.8 155.6 151.2 145.1 157.0
(7) 141.5 137.3 145.6 140.4 134.4 145.8
(8) 83.2 75.5 87.9 77.9 69.8 83.5
9) 38.1 37.2 38.8 38.3 36.4 40.3
(10) 38.1 37.0 38.8 38.3 36.4 40.3
(11) 1.1 0.2 1.7 1.2 0.4 1.9
(12) 36.9 36.0 37.8 37.1 35.6 38.7
(13) 61.0 59.1 62.7 60.8 58.4 63.2
(14) -29.4 -30.3 -28.5 -29.3 -30.4 -28.1
(15) -31.6 -32.4 -30.6 -31.5 -32.8 -30.3
(16) -31.6 -32.4 -30.6 -31.5 -32.8 -30.3
(17) 31.6 30.6 32.4 315 30.3 32.8
(18) 0.0 0.0 0.7 0.0 0.0 0.5
(19) 0.0 0.0 0.7 0.0 0.0 0.5
(20) 59.8 57.7 61.9 59.6 57.4 61.9
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(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)

59.8
108.1
16.5
16.5

2.2

5.8
2.9
10.1
12.3
16.1
4.3
4.3
0.4
17.5
4.0
66.9
39.2
4.0
1.3
1.7
11.1
14
2.9
6.6
3.6
0.4
0.0
0.3
1.4
1.9
1.9
3.4
0.9
24
2.6
1.6
1.1
0.8
0.3
0.5
0.9
0.5
288.5

57.7
102.6
13.3
13.3
6.5
0.0

6.6
8.9
10.6
2.4
24
0.0
15.2
0.0
59.9
36.6
3.8
1.2
1.6
10.5
13
2.7
6.1
3.4
0.3
0.0
0.1
1.3
1.8
1.8
3.1
0.8
2.2
24
1.5
1.0
0.7
0.3
0.5
0.8
0.5
269.6

61.9
113.2
19.8
19.8
17.2
10.9
8.1
134
15.6
18.4
6.4
6.4
6.2
19.8
6.5
73.7
41.8
4.3
1.3
1.8
11.9
1.5
3.1
7.0
3.9
0.5
0.1
0.4
1.5
2.1
2.1
3.6
0.9
2.6
2.7
1.8
1.1
0.8
0.3
0.6
0.9
0.6
305.9

59.6
103.2
22.9
22.9
21.0
14.3
11.3
16.2
18.5
19.3
2.0
2.0
1.2
20.0
2.8
57.1
40.7
4.2
1.3
1.7
11.5
1.4
3.0
6.9
3.8
0.4
0.0
0.2
1.4
2.0
2.0
3.4
0.9
2.5
2.7
1.7
1.1
0.8
0.3
0.6
0.9
0.6
301.5

57.4
96.2
19.1
19.1
15.3
8.6
5.6
125
14.8
14.2
0.0
0.0
0.0
17.6

0.0
46.4

36.6

3.8

1.2

1.6
10.3
1.3
2.7
6.2
3.5
0.3
0.0
0.0
1.3
1.8
1.8
3.0
0.8
2.2
2.4
1.5
1.0
0.7
0.3
0.5
0.8
0.5
280.0

61.9
109.5
27.2
27.2
26.8
20.0
17.0
20.2
22.6
22.7
4.2
4.2
5.5
22.8

6.0
66.2

45.4

4.7

1.5

2.0
12.7
1.6
3.4
7.7
4.3
0.5
0.1
0.3
1.6
2.3
2.3
3.7
1.0
2.8
3.0
1.9
1.2
0.9
0.4
0.6
1.0
0.6
320.5
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(64) 10.1 6.6 134 16.2 125 20.2
(65) 12.8 2.7 22.7 6.6 -5.2 18.0
(66) 472.6 409.8 529.4 490.1 414.8 551.6
(67) 59.8 57.7 61.9 59.6 57.4 61.9
(68) 70.0 63.2 76.6 60.2 49.8 69.1
(69) 182.3 170.9 193.1 195.0 182.3 207.4
(70) 149.3 138.5 159.3 158.9 146.8 169.7
(71) 41.6 38.9 445 43.3 38.9 48.4
(72) 1.4 1.3 1.5 1.4 1.3 1.6
(73) 6.0 5.6 6.4 6.2 5.6 6.9
(74) 1.4 0.1 2.8 1.2 0.0 2.5
Exchange Fluxes

(2) 0 0 1 0 0 1
(3) 170 0 Inf 0 0 Inf
4) 777 0 Inf 435 0 Inf
(5) 0 0 5 534 0 Inf
(6) 613 0 Inf 108 0 Inf
(7) 2 0 Inf 0 0 Inf
8) 0 0 Inf 0 0 Inf
(11) 0 0 0 0 0 1
(12) Inf Inf Inf Inf Inf Inf
(13) 230 0 Inf Inf Inf Inf
(14) 0 0 0 0 0 1
(15) 8 5 Inf 8 5 Inf
(16) Inf Inf Inf Inf Inf Inf
(17) 514 5 Inf 400 5 Inf
(24) 302 0 Inf 245 0 Inf
(27) 10 0 Inf 186 0 Inf
(28) 299 0 Inf 277 0 Inf
(29) Inf Inf Inf Inf Inf Inf
(30) 174 105 372 248 146 677
(31) 0 0 0 0 0 0
(36) 696 0 Inf 46 0 Inf
(45) 2 2 2 2 2 3
(65) 342 0 Inf 230 0 Inf
Glucose: Xylose 1:2 2:1

SSR 196.6 92.3

Net Fluxes

Reaction No. Best Fit LB95 UB95 Best Fit LB95 UB95
(1) 39.6 34.3 44.6 40.1 35.8 44.3
(2) 1.2 0.5 1.9 0.3 -0.4 0.9
(3) 62.2 53.2 70.2 60.8 54.3 67.0
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(4) 622  53.2 70.2 608  54.3 67.0
(5) 622 532 70.2 608  54.3 67.0
(6) 1539 1315 1739 1504 1345  166.0
(7) 1450 1230 1643 1392 1243 1538
(8) 89.2 724 1038 756 637 85.6
(9) 373 323 42.0 385 344 42.6
(10) 372 322 41.9 385 344 42.6
(11) 1.0 0.1 1.8 1.0 0.3 1.8
(12) 362 314 40.8 374 335 41.3
(13) 613 524 69.3 610 545 67.4
(14) 297  -336  -253  -293  -324 262
(15) 316 -356  -27.1  -317  -349  -28.3
(16) 316  -356 271 -31.7  -349  -283
(17) 316 271 35.6 317 283 34.9
(18) 0.1 0.0 0.8 0.0 0.0 0.4
(19) 0.1 0.0 0.8 0.0 0.0 0.4
(20) 60.4 51.5 68.3 59.9 53.6 66.3
(21) 60.4 51.5 68.3 59.9 53.6 66.3
(22) 1160  95.1 1341 1010 89.0 113.2
(23) 123 9.8 15.3 256  20.3 30.8
(24) 123 98 15.3 256  20.3 30.8
(25) 8.7 5.9 12.1 231  16.3 29.9
(26) 3.1 05 6.1 161 96 22.7
(27) 0.7 -2.0 35 131 6.6 19.5
(28) 6.7 4.8 9.1 186  13.8 23.4
(29) 8.6 6.6 11.2 210  16.1 26.0
(30) 116 7.9 14.7 211 143 25.5
(31) 3.6 2.4 5.0 2.5 0.4 4.7
(32) 3.6 2.4 5.0 2.5 0.4 4.7
(33) 0.7 0.0 4.6 2.4 0.0 7.9
(34) 142 113 175 222 184 25.8
(35) 2.1 0.0 5.2 3.6 0.0 7.2
(36) 825 619 1004 509  39.9 62.2
(37) 33.9 28.3 40.2 42.2 36.4 48.0
(38) 35 2.9 4.1 4.4 3.8 5.0
(39) 1.1 0.9 1.3 1.4 1.2 15
(40) 15 1.2 1.7 1.8 1.6 2.1
(41) 9.7 8.1 11.5 119  10.3 135
(42) 1.2 1.0 14 15 1.3 1.7
(43) 2.5 2.1 3.0 3.2 2.7 3.6
(44) 5.7 4.7 6.7 7.2 6.2 8.2
(45) 3.1 2.6 3.7 4.0 35 45
(46) 0.4 0.3 05 0.4 0.3 0.5
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(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
Exchange Fluxes
(2)
3)
(4)
(5)
(6)
(7)
(8)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

0.0
0.2
1.2
1.7
1.7
2.9
0.8
2.1
2.2
14
0.9
0.7
0.3
0.5
0.8
0.5
297.4
6.7
4.1
539.7
60.4
85.1
179.6
152.0
36.0
1.2
5.2
14

17
808
456

Inf
Inf

Inf
295

0.0
0.1
1.0
14
1.4
24
0.6
1.7
1.8
1.2
0.8
0.6
0.2
0.4
0.6
0.4
246.8
4.8
-7.1
409.7
515
64.7
151.6
126.4
30.1
1.0
4.3
0.0

_OOOOOOOO
>
=

-hg-hoo
—h

0.1
0.3
1.4
2.0
2.0
3.5
0.9
2.5
2.6
1.7
1.1
0.8
0.3
0.6
0.9
0.6
342.0
9.1
17.1
656.2
68.3
103.0
204.4
174.7
42.8
1.4
6.1
2.9

Inf
Inf
Inf
Inf
Inf
Inf

Inf
Inf

Inf
Inf
Inf

0.0
0.2
1.5
2.1
2.1
3.5
0.9
2.6
2.8
1.8
1.1
0.8
0.3
0.6
0.9
0.6
302.6
18.6
7.0
476.6
59.9
54.2
199.5
160.6
45.0
1.5
6.5
0.8

558
686
113

16

Inf
Inf

16
Inf
40

0.0
0.0
1.3
1.8
1.8
3.0
0.8
2.2
2.4
1.5
1.0
0.7
0.3
0.5
0.8
0.5
263.5
13.8
-7.1
383.6
53.6
43.3
174.2
139.3
38.7
1.3
5.6
0.0

— OO oo

nf

(JOE(JOOO

0.1
0.4
1.7
2.4
2.4
4.0
1.1
3.0
3.1
2.0
1.3
1.0
0.4
0.7
1.1
0.7
341.0
23.4
19.0
566.2
66.3
65.4
224.5
181.6
51.2
1.7
7.3
2.1

Inf
Inf
Inf

Inf

Inf

>1000

Inf
Inf

Inf
Inf
Inf
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(24) 564 0 Inf 203 0 Inf
(27) 223 0 Inf 682 0 Inf
(28) 539 0 Inf 0 0 250
(29) Inf Inf Inf Inf Inf Inf
(30) 146 82 301 191 117 378
(31) 0 0 0 0 0 2
(36) 554 0 Inf 84 0 Inf
(45) 2 1 2 3 3 4
(65) 246 0 Inf 370 0 Inf
Table B.4  Results of *C-MFA for GX50 grown on glucose and xylose at the

specified ratios. The reaction numbers correspond to the reactions listed
in Table B.2. The fluxes are normalized to a total substrate uptake rate of
100. 95% confidence intervals of fluxes (LB95 = lower bound, UB95 =
upper bound) were determined by evaluating the sensitivity of the
minimized SSR to flux variations.

Glucose: Xylose 1:1 2:2
SSR 176.8 154.9

Net Fluxes

Reaction No. Best Fit LB95 UB95 Best Fit LB95 UB95
(1) 74.8 71.0 78.5 73.0 65.0 81.2
(2) 48.3 45.6 51.0 48.5 42.9 54.2
(3) 75.5 715 79.5 75.3 66.7 84.0
4) 75.5 715 79.5 75.3 66.7 84.0
(5) 75.5 715 79.5 75.3 66.7 84.0
(6) 163.5 154.8 172.2 163.2 144.5 182.1
(7) 150.5 141.8 159.2 150.3 132.2 168.7
(8) 46.7 40.3 52.2 48.0 38.4 57.9
9) 24.9 23.6 26.3 23.0 20.5 25.6
(10) 24.3 22.9 25.8 22.1 19.6 24.6
(11) 25 1.6 3.3 0.3 -0.6 1.3
(12) 21.9 21.1 22.7 21.7 19.7 23.8
(13) 27.7 26.2 29.2 27.3 24.2 30.4
(14) -12.5 -13.3 -11.7 -12.3 -13.8 -10.8
(15) -15.2 -16.0 -14.4 -15.0 -16.6 -13.4
(16) -15.2 -16.0 -14.4 -15.0 -16.6 -13.4
(17) 15.2 14.4 16.0 15.0 13.4 16.6
(18) 0.6 0.1 1.2 0.9 0.4 1.5
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(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)

0.6
25.2
25.2
104.9
24.2
24.2
23.5
154
11.9
16.2
18.9
17.1
0.7
0.7
2.6
25.7
2.4
54.4
48.8
5.0
1.6
2.1
13.7
1.7
3.6
8.3
4.6
0.7
0.3
0.1
1.7
24
24
4.0
1.1
3.0
3.2
2.1
1.3
1.0
0.4
0.7
1.1

0.1
24.0
24.0

96.2

22.6

22.6

21.3

13.3

9.8

14.6

17.3

134

0.0

0.0

0.1

23.9

0.0

45.7
47.7
4.9
1.5
2.0

13.3

1.7

3.6

8.1

4.4

0.6

0.0

0.0

1.7

24

24

3.8

1.1

2.9

3.1

2.0

1.3

1.0

0.4

0.7

1.1

1.2
26.5
26.5
113.7
26.0
26.0
25.8
17.8
14.2
17.9
20.7
195
1.5
1.5
6.6
28.0
5.5
63.1
49.9
5.1
1.6
2.1
14.2
1.7
3.7
8.6
4.8
0.8
0.4
0.5
1.8
2.5
2.5
4.4
1.1
3.1
3.3
2.1
1.3
1.0
0.4
0.7
1.1

0.9
27.0
27.0
104.9
21.0
21.0
20.0
11.9
8.4
12.9
15.7
13.9
0.9
0.9
2.7
24.8
1.4
57.4
49.0
5.1
1.6
2.1
13.9
1.7
3.7
8.3
4.6
0.6
0.2
0.2
1.7
24
2.4
4.1
1.1
3.0
3.2
2.1
1.3
1.0
0.4
0.7
1.1

0.4
24.2
24.2

88.1

18.7

18.7

17.4

9.8

6.4

111

13.7

111

0.1

0.1

0.0

21.9
0.0

41.3
445
4.6
1.4
1.9

12.5

1.6

3.3

7.5

4.1

0.5

0.0

0.0

1.6

2.2

2.2

3.6

1.0

2.7

2.9

1.9

1.2

0.9

0.4

0.6

1.0

1.5
29.7
29.7

122.0

234

23.4

22.9

145

10.8

14.9

17.8

17.1

1.7

1.7

5.6

27.9
4.7

73.8
535
5.5
1.7
2.3

15.2

1.9

4.0

9.1

5.1

0.8

0.4

0.6

1.9

2.7

2.7

4.7

1.2

3.3

3.5

2.3

1.4

11

0.4

0.7

1.2
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(62) 0.7 0.7 0.7 0.7 0.6 0.7
(63) 274.1 253.3 295.1 259.1 220.0 298.7
(64) 16.2 14.6 17.9 12.9 11.1 14.9
(65) 50.9 45.0 55.9 59.3 50.1 68.3
(66) 420.5 361.9 479.3 384.1 278.9 490.9
(67) 25.2 24.0 26.5 27.0 24.2 29.7
(68) 58.2 495 66.9 61.3 45.1 77.7
(69) 190.4 178.8 202.1 180.3 158.4 202.9
(70) 145.2 134.3 156.0 136.0 116.2 156.2
(71) 51.9 50.8 53.1 52.2 47.4 56.9
(72) 1.7 1.7 1.8 1.7 1.6 1.9
(73) 7.5 7.3 7.6 7.5 6.8 8.2
(74) 2.2 1.3 3.0 1.0 0.0 2.1
Exchange Fluxes
(2) 316 256 403 158 130 192
(3) 0 0 Inf 0 0 Inf
4) 9 0 Inf 202 0 Inf
(5) 9 0 Inf 247 0 Inf
(6) 12 0 Inf 54 0 Inf
(7) 0 0 424 0 0 Inf
(8) 0 0 216 0 0 123
(11) 308 190 >1000 355 211 >1000
(12) 46 0 Inf 204 0 Inf
(13) 39 35 43 39 34 44
(14) 4 4 5 4 3 4
(15) 2 1 Inf 103 1 Inf
(16) 26 0 31 22 0 28
(17) 166 1 Inf 2 1 Inf
(24) 12 0 Inf 185 0 Inf
(27) 178 0 Inf 262 0 Inf
(28) 326 0 Inf 18 0 Inf
(29) >1000 82 Inf 189 97 Inf
(30) 122 81 Inf 716 100 Inf
(31) 0 0 1 0 0 1
(36) 140 0 Inf 244 0 Inf
(45) 2 1 2 2 1 2
(65) 164 0 Inf 195 0 Inf
Glucose: Xylose 1:2 2:1
SSR 184.8 194.1
Net Fluxes
Reaction No. Best Fit LB95 UB95 Best Fit LB95 UB95
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)

65.6
39.5
72.8
72.8
72.8
161.4
149.2
57.0
24.7
23.9
-0.6
24.5
33.8
-15.6
-18.2
-18.2
18.2
0.8
0.8
34.4
344
106.4
21.1
21.1
20.3
12.7
9.4
135
16.1
153
0.7
0.7
1.6
24.0
2.8
60.3
46.1
4.8
1.5
2.0
12.9
1.6
3.4

62.2
37.2
68.8
68.8
68.8
152.7
140.8
51.4
23.2
22.4
-1.4
23.3
31.9
-16.6
-19.2
-19.2
17.2
0.2
0.2
32.6
32.6
98.7
19.2
19.2
18.1
10.6
7.3
11.8
14.4
11.7
0.0
0.0
0.0
21.6
0.0
52.7
43.4
4.5
1.4
1.9
12.1
1.5
3.2

69.1
41.8
76.7
76.7
76.7
170.2
157.6
62.5
26.2
25.6
0.3
25.7
35.7
-14.7
-17.2
-17.2
19.2
14
1.4
36.2
36.2
114.1
23.1
23.1
22.9
151
11.7
153
18.0
17.9
1.5
1.5
5.4
26.6
6.2
68.0
48.8
5.0
1.6
2.1
13.8
1.7
3.6

81.4
54.9
77.2
77.2
77.2
165.1
152.2
41.6
25.0
23.8
4.3
19.5
22.9
-10.1
-12.8
-12.8
12.8
1.1
1.1
18.6
18.6
106.6
22.0
22.0
21.3
13.2
9.6
13.9
16.7
15.1
0.7
0.7
2.3
24.7
1.3
58.2
49.2
5.1
1.6
2.1
14.0
1.7
3.7

80.6
54.0
76.1
76.1
76.1
162.8
1495
36.9
24.2
22.9
3.5
18.9
22.1
-10.4
-13.1
-13.1
12.4
0.6
0.6

17.8

17.8
101.7
20.2
20.2
19.2
11.3
7.8
12.4
15.1
12.6
0.0
0.0
0.0
22.6

0.0
50.8

46.3

4.8

1.5

2.0
13.1
1.6
3.5

82.3
55.9
78.4
78.4
78.4
167.5
154.9
46.0
25.7
24.7
5.0
20.1
235
-9.7
-12.4
-12.4
13.1
1.8
1.8
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19.4
111.5
23.8
23.8
235
15.2
11.6
155
18.4
18.0
1.4
1.4
4.8
26.8

4.2
65.7

52.2

5.4

1.7

2.2
14.9
1.8
3.9
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(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
Exchange Fluxes
(2)
3
(4)
(5)
(6)
(7)
(8)
(11)
(12)
(13)
(14)

7.9
4.4
0.7
0.3
0.1
1.6
2.3
2.3
3.8
1.0
2.8
3.0
1.9
1.2
0.9
0.4
0.6
1.0
0.6
269.8
135
48.8
420.7
34.4
63.9
184.1
141.6
49.1
1.6
7.1
3.1

283
37

347

330

39

7.4
4.1
0.6
0.1
0.0
1.5
2.2
2.2
3.4
1.0
2.7
2.8
1.8
1.2
0.9
0.4
0.6
1.0
0.6
250.7
11.8
42.1
368.6
32.6
56.3
172.6
131.7
46.3
1.5
6.6
2.2

w
oo

oo
(=

bgol—‘OOOOOON

8.4
4.7
0.8
0.4
0.5
1.7
2.4
2.4
4.2
1.1
3.0
3.2
2.1
1.3
1.0
0.4
0.7
1.1
0.7
289.1
15.3
55.2
473.2
36.2
71.6
196.0
151.8
52.0
1.7
7.5
4.0
343
Inf
Inf
Inf
Inf
269
98
852
Inf
42

5

8.3
4.6
0.6
0.1
0.3
1.8
2.5
2.5
4.2
1.1
3.0
3.2
2.1
1.3
1.0
0.4
0.7
1.1
0.7
269.2
13.9
55.3
416.4
18.6
62.1
185.7
1415
52.4
1.8
7.5
0.2

7.8
4.3
0.5
0.0
0.0
1.6
2.3
2.3
3.8
1.0
2.8
3.0
2.0
1.2
0.9
0.4
0.6
1.0
0.6
258.9
12.4
48.1
370.2
17.8
54.8
180.9
136.4
49.3
1.6

0.0

155

o

N O O O

29
>1000

36

3

8.8
4.9
0.7
0.3
0.6
1.9
2.6
2.6
4.6
1.2
3.2
3.4
2.2
1.4
1.0
0.4
0.7
1.2
0.7
279.4
155
62.5
462.6
194
69.3
190.8
146.7
55.5
1.9
8.0
1.2

234
Inf
Inf
Inf
Inf
Inf
113
1424
Inf
43
4
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(15) 5 0 Inf 113 0 Inf
(16) 19 9 23 26 0 33
17) 16 0 Inf 1 0 Inf
(24) 279 0 Inf 224 0 Inf
(27) 131 0 Inf 209 0 Inf
(28) 0 0 Inf >1000 >1000 Inf
(29) 524 76 Inf 118 77 Inf
(30) 141 77 Inf >1000 82 Inf
(31) 0 0 1 1 0 2
(36) 194 0 Inf 222 0 Inf
(45) 1 1 2 2 1 2
(65) 341 0 Inf 183 0 Inf
Glucose: Xylose 1:0 2:0
SSR 157.1 175.9
Net Fluxes
Reaction No. Best Fit LB95 UB95 Best Fit LB95 UB95
1) 100.0 88.0 1121 100.0 87.9 112.1
(2) 70.9 62.3 79.5 70.5 61.8 79.2
(3) 825 725 925 82.5 72.3 92.7
4) 825 725 925 825 72.3 92.7
(5) 825 725 925 82.5 72.3 92.7
(6) 170.1 149.5 190.7 170.5 149.4 1915
(7) 156.6 137.3 175.9 157.5 137.6 177.4
(8) 27.5 20.7 34.3 30.1 225 37.9
9) 27.5 24.2 30.9 28.0 24.6 314
(10) 26.6 23.3 30.0 26.8 235 30.2
(11) 12.2 10.7 13.8 12.5 10.9 14.2
(12) 14.5 12.6 16.3 14.3 125 16.1
(13) 12.2 10.7 13.8 12.5 10.9 14.2
(14) 4.7 5.4 4.1 -4.9 5.6 4.2
(15) -7.5 -8.4 -6.6 -7.6 -8.6 -6.7
(16) -7.5 -8.4 -6.6 -7.6 -8.6 -6.7
(17) 7.5 6.6 8.4 7.6 6.7 8.6
(18) 0.9 0.4 1.3 1.1 0.7 1.6
(19) 0.9 0.4 1.3 1.1 0.7 1.6
(20) Not in model Not in model
(21) Not in model Not in model
(22) 109.4 939 124.7 112.9 95.9 129.9
(23) 22.9 19.5 26.6 21.3 18.1 24.7
(24) 22.9 19.5 26.6 21.3 18.1 24.7
(25) 22.5 18.9 26.3 20.3 17.1 23.7
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(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)

141
10.5
14.6
17.5
16.6
0.5
0.5
1.4
24.2
1.1
59.2
50.6
5.2
1.6
2.2
14.1
1.8
3.8
8.7
4.9
0.6
0.2
0.0
1.8
2.5
2.5
4.0
1.1
3.1
3.3
2.1
1.4
1.0
0.4
0.7
1.1
0.7
282.3
14.6
52.7
459.6

63.2

11.6 16.9
8.4 12.8
12.2 17.1
14.7 20.4
13.7 19.6
0.0 1.1
0.0 1.1
0.0 3.7
20.6 28.1
0.0 3.3
45.3 73.2
43.2 58.1
4.5 6.0
14 1.9
1.9 2.5
12.0 16.2
15 2.0
3.2 4.3
7.4 10.0
4.2 5.6
0.5 0.7
0.0 0.3
0.0 0.3
1.5 2.1
2.2 2.9
2.2 2.9
3.4 4.6
1.0 1.3
2.7 3.6
2.8 3.8
1.8 2.5
1.2 1.6
0.9 1.2
0.4 0.5
0.6 0.8
1.0 1.3
0.6 0.8
244.9 319.8
12.2 17.1
42.0 63.8
368.7 551.4
Not in model
49.3 77.1

12.2
8.7
13.3
16.1
15.8
1.1
1.1
1.3
22.9
1.2
64.7
48.7
5.0
1.6
2.1
13.6
1.7
3.6
8.4
4.7
0.6
0.3
0.0
1.7
24
2.4
3.9
1.1
3.0
3.2
2.1
1.3
1.0
0.4
0.7
1.1
0.7
285.8
13.3
49.6
483.1

68.5

10.0
6.9
11.2
13.6
13.2
0.5
0.5
0.0
194
0.0
48.7
41.7
4.3
1.3
1.8
11.6
15
3.1
7.2
4.0
0.5
0.1
0.0
1.5
2.1
2.1
3.3
0.9
2.6
2.7
1.8
11
0.8
0.3
0.6
0.9
0.6
245.8
11.2
38.8
379.6

14.7
10.8
15.6
18.7
18.9
1.6
1.6
3.4
26.4
3.6
80.8
56.0
5.8
1.8
2.4
15.6
2.0
4.2
9.6
5.4
0.8
0.4
0.2
2.0
2.8
2.8
4.4
1.3
3.4
3.7
2.4
1.5
1.1
0.5
0.8
1.3
0.8
325.7
15.6
60.7
587.8

Not in model

525

84.6
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(69) 192.8 169.1 216.9 192.0 167.9 216.3
(70) 148.4 129.1 167.9 149.6 129.1 170.0
(71) 53.9 46.1 62.0 52.0 44.4 59.7
(72) 1.8 1.5 2.1 1.7 1.5 2.0
(73) 7.7 6.6 8.9 7.5 6.4 8.6
(74) 0.0 0.0 0.8 0.5 0.0 1.4
Exchange Fluxes

(2) 173 131 234 160 122 214
3 0 0 Inf 79 0 Inf
4) 83 0 Inf 0 0 Inf
(5) 85 0 Inf 71 0 Inf
(6) 214 0 Inf 272 0 Inf
(7) 0 0 Inf 0 0 Inf
(8) 0 0 89 0 0 54
(11) 68 27 Inf 70 25 Inf
(12) 115 0 Inf 102 0 Inf
(13) 65 27 Inf 58 25 Inf
(14) 5 5 6 5 5 6
(15) 0 0 Inf 0 0 Inf
(16) 42 34 53 42 0 53
(17) 113 0 Inf 112 0 Inf
(24) 20 0 Inf 34 0 Inf
(27) 83 0 Inf 186 0 Inf
(28) 962 0 Inf 861 0 Inf
(29) 930 66 Inf >1000 59 Inf
(30) 106 65 Inf 89 57 Inf
(31) 1 0 1 0 0 1
(36) 37 0 Inf 73 0 Inf
(45) 184 0 Inf 78 0 Inf
(65) 2 2 3 2 2 2
Glucose: Xylose 0:1 0:2

SSR 102.2 108.3

Net Fluxes

Reaction No. Best Fit LB95 uB95 Best Fit LB95 UB95
(1) Not in model Not in model

(2) 146  -17.3 -12.0 -141  -16.9 -11.9
(3) 55.6 48.7 62.7 56.3 49.4 63.2
4) 55.6 48.7 62.7 56.3 49.4 63.2
(5) 55.6 48.7 62.7 56.3 49.4 63.2
(6) 146.0 128.3 164.4 147.4 129.5 165.7
(7) 135.8 119.4 152.8 137.9 121.1 155.0
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(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)

103.2
13.3
12.3
-29.4
41.7
70.6
-34.2
-36.4
-36.4
36.4
1.0
1.0
100.0
100.0
100.1
29.8
29.8
28.7
22.2
19.4
23.3
25.5
15.0
1.1
1.1
11.6
29.9
2.0
49.0
39.1
4.0
1.3
1.7
11.2
14
2.9
6.5
3.6
0.4
0.0
0.3
1.4
1.9

88.1
10.9
9.8
-33.6
36.5
61.7
-38.5
-40.9
-40.9
31.8
0.0
0.0
87.6
87.6
87.7
24.2
24.2
21.6
15.6
12.9
18.4
20.4
8.4
0.0
0.0
8.7
24.6
0.0
38.9
32.3
3.3
1.0
14
9.2
11
2.4
5.4
3.0
0.3
0.0
0.0
1.1
1.6

116.8
16.0
14.9
-25.4
47.0
79.4
-29.9
-31.8
-31.8
40.9
2.2
2.2
1125
112.5
113.0
36.2
36.2
36.2
28.9
25.8
28.9
31.4
19.7
3.3
3.3
17.7
36.8
4.9
59.3
45.9
4.7
1.5
2.0
13.1
1.6
3.4
7.7
4.3
0.6
0.1
0.5
1.6
2.3

107.3
13.0
12.2
-29.2
41.4
70.8
-34.4
-36.4
-36.4
36.4
0.8
0.8
100.0
100.0
104.8
29.4
29.4
28.4
225
19.9
234
25.5
15.2
1.0
1.0
11.2
29.0
2.6
55.7
36.2
3.7
1.2
1.6
10.3
1.3
2.7
6.1
3.3
0.4
0.0
0.3
1.3
1.8

91.3
10.8
9.8
-33.2
36.2
62.1
-38.8
-41.0
-41.0
31.9
0.0
0.0
87.8
87.8
915
23.9
23.9
21.6
16.1
13.6
18.6
20.5
8.2
0.0
0.0
8.9
23.9
0.0
44.6
29.8
3.1
1.0
1.3
8.5
1.0
2.2
5.0
2.7
0.3
0.0
0.0
1.1
1.5

120.4
15.7
14.8
-25.2
46.6
79.8
-30.2
-31.9
-31.9
41.0
2.1
2.1
1125
112.5
118.3
35.5
355
35.5
28.8
25.8
28.8
31.1
19.1
3.1
3.1
17.7
35.3
4.6
66.9
42.6
4.4
1.4
1.8
12.2
15
3.2
7.1
3.9
0.5
0.1
0.5
1.5
2.1
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(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
Exchange Fluxes
(2)
3)
(4)
(5)
(6)
(7)
(8)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(24)
(27)
(28)
(29)

1.9
3.4
0.9
24
2.6
1.6
1.1
0.8
0.3
0.5
0.9
0.5
267.3
23.3
35.6
383.9
100.0
52.1
190.7
145.3
41.5
14
6.0
14

35

173
130
Inf
47

Inf
622
51

17
21
197
37
37

553

1.6
2.8
0.7
2.0
2.1
14
0.9
0.6
0.3
0.4
0.7
0.4
228.5
18.4
16.7
293.0
87.6
42.0
163.7
123.7
34.3
11
4.9
0.4

oS 9ceNLro

}—‘OOOOOOOI:)I

=
=

2.3
4.0
1.0
2.8
3.0
1.9
1.2
0.9
0.4
0.6
1.0
0.6
308.8
28.9
52.9
477.2
112.5
62.2
221.6
168.5
48.8
1.6
7.0
2.6
Inf
Inf
Inf
Inf
Inf
Inf
49
Inf
Inf
58

21
Inf
35
Inf
Inf
Inf
Inf
Inf

1.8
3.1
0.8
2.2
2.4
1.5
1.0
0.7
0.3
0.5
0.8
0.5
278.8
23.4
29.2
435.6
100.0
58.5
194.3
151.1
38.5
1.3
5.5
1.5

52
33
127
10
89

>1000
21
47

10
83
78
21

971

1.5
2.6
0.7
1.8
1.9
1.3
0.8
0.6
0.2
0.4
0.7
0.4
239.4
18.6
10.5
344.5
87.8
47.5
166.9
129.4
31.6
11

0.4

I—‘OOOOOOOB

o
(S}

2.1
3.7
0.9
2.6
2.8
1.8
1.1
0.9
0.4
0.6
0.9
0.6
322.1
28.8
44.5
534.2
112.5
69.6
224.7
175.0
45.2
1.5
6.5
2.7

Inf
Inf
Inf
Inf
Inf
Inf
44
Inf
Inf
54
12
Inf
25
Inf
Inf
Inf
Inf
Inf
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(30) 207 111 Inf 188 105 Inf

(31) 1 0 2 1 0 2
(36) 161 0 Inf 89 0 Inf
(45) 19 0 Inf 31 0 Inf
(65) 2 1 2 2 1 2

Table B.5 Mass isotopomer distributions from parallel labeling experiments with
LMSE2 grown on glucose and xylose at the specified ratio.

Tracer: A) [1,2-*C]glucose + [1,2-*C]xylose
B) [1,6-1*C]glucose + [5-13C]xylose

Ratio 1:1 2:2 1:2 2:1

Tracer A B A B A B A B
Ala232 (MO0) 48.4 331 481 329 483 331 476 329
Ala232 (M1) 121 50.0 121 501 120 501 123 50.1
Ala232 (M2) 31.3 121 314 122 315 120 317 122
Ala232 (M3) 5.9 4.2 5.9 4.2 5.9 4.2 6.0 4.2
Ala232 (M4) 2.4 0.6 2.4 0.6 2.4 0.6 2.4 0.6

Ala260 (MO0) 475 325 473 323 475 326 467 323
Ala260 (M1) 120 496 120 497 119 497 120 495

Ala260 (M2) 178 126 179 127 179 125 181 128
Ala260 (M3) 174 44 175 45 174 44 178 45
Ala260 (M4) 40 07 40 07 40 07 40 07

Ala260 (M5) 1.4 0.1 1.4 0.1 1.4 0.1 1.4 0.1

Gly218 (M0) 499 750 498 755 497 750 492 756
Gly218 (M1) 376 172 377 168 378 172 382 16.6
Gly218 (M2) 96 68 96 68 96 68 97 67
Gly218 (M3) 290 10 29 10 29 10 29 10

Gly246 (MO) 48.7 734 487 739 485 734 481 741
Gly246 (M1) 238 179 237 175 239 180 239 174
Gly246 (M2) 214 73 215 72 215 73 218 72
Gly246 (M3) 46 12 46 11 46 12 47 11
Gly246 (M4) 15 02 15 02 15 02 15 02

Val260 (MO0) 1 1.3 164 309 160 311 165 302 159
Val260 (M1) 9.2 36.2 9.3 364 91 36.1 94 36.5
Val260 (M2) 346 347 347 347 350 347 349 347

203



Val260 (M3)
Val260 (M4)
Val260 (M5)
Val260 (M6)

Val288 (MO0)
Val288 (M1)
Val288 (M2)
Val288 (M3)
Val288 (M4)
Val288 (M5)
Val288 (M6)
Val288 (M7)

Leu274 (MO)
Leu274 (M1)
Leu274 (M2)
Leu274 (M3)
Leu274 (M4)
Leu274 (M5)
Leu274 (M6)
Leu274 (M7)

116200 (MO)
116200 (M1)
116200 (M2)
116200 (M3)
116200 (M4)
116200 (M5)
116200 (M6)
116200 (M7)

116274 (MO)
1e274 (M1)
116274 (M2)
1274 (M3)
11e274 (M4)
11e274 (M5)
116274 (M6)
le274 (M7)

Pro258 (M0)
Pro258 (M1)

8.5
13.0
2.5
0.9

31.2
9.1
26.4
14.6
9.2
7.3
1.6
0.5

22.0
15.8
245
18.2
11.2
6.4
1.5
0.4

27.5
13.6
27.1
15.6
10.0
5.2
0.8
0.2

24.7
14.0
26.2
16.3
11.0
6.0
14
0.4

27.2
16.6

9.3
2.9
0.5
0.1

16.3
36.0
34.5
9.6
3.0
0.5
0.1
0.0

10.2
21.7
351
24.1
6.6
1.9
0.3
0.0

15.4
31.6
35.0
14.0
3.3
0.6
0.1
0.0

13.7
29.5
34.2
16.0
5.1
1.2
0.2
0.0

14.8
32.3

8.6
13.0
2.5
0.9

30.8
9.1
26.6
14.7
9.3
7.3
1.6
0.5

215
15.8
245
18.4
11.3
6.5
1.5
0.4

26.8
13.9
26.9
16.0
10.1
5.3
0.8
0.2

24.0
14.3
26.0
16.6
111
6.0
14
0.4

26.6
16.8

9.4
2.9
0.5
0.1

15.9
36.1
34.6
9.7
3.1
0.5
0.1
0.0

9.9
21.9
35.2
24.2
6.6
1.9
0.3
0.0

14.8
31.4
35.1
14.5
3.5
0.6
0.1
0.0

13.2
29.2
34.3
16.5
5.3
1.3
0.2
0.0

14.2
32.0

8.5
13.0
24
0.9

31.0
8.9
26.8
14.7
9.2
7.3
1.6
0.5

21.6
15.8
24.8
18.3
11.2
6.4
1.5
0.4

27.8
13.0
27.9
15.2
10.1
5.1
0.8
0.2

24.9
13.5
26.8
16.0
111
5.9
1.4
0.4

27.0
16.1

9.3
2.9
0.4
0.1

16.5
35.9
34.6
9.4
3.0
0.5
0.1
0.0

10.5
21.6
35.0
24.2
6.5
1.9
0.3
0.0

15.9
321
35.0
13.3
3.1
0.5
0.1
0.0

141
30.1
34.3
154
4.8
11
0.2
0.0

15.0
32.3

8.9
13.3
2.5
0.9

30.0
9.1
26.7
15.0
9.5
7.5
1.7
0.5

20.6
15.8
24.6
18.8
11.5
6.7
1.5
0.4

25.5
14.2
26.9
16.5
10.3
9.5
0.8
0.2

22.8
14.5
26.0
17.2
114
6.2
1.5
0.4

25.0
17.2

9.5
2.9
0.5
0.1

15.8
36.1
34.6
9.8
3.1
0.5
0.1
0.0

9.7
22.1
35.3
24.1
6.7
1.9
0.3
0.0

14.4
31.3
35.2
14.9
3.6
0.7
0.1
0.0

12.8
29.1
34.4
16.8
5.3
1.3
0.2
0.0

14.0
32.2

204




Pro258 (M2)
Pro258 (M3)
Pro258 (M4)
Pro258 (M5)
Pro258 (M6)

Met218 (MO)
Met218 (M1)
Met218 (M2)
Met218 (M3)
Met218 (M4)

Met320 (MO)
Met320 (M1)
Met320 (M2)
Met320 (M3)
Met320 (M4)
Met320 (M5)

Ser390 (MO0)
Ser390 (M1)
Ser390 (M2)
Ser390 (M3)
Ser390 (M4)
Ser390 (M5)

Thr376 (MO0)
Thr376 (M1)
Thr376 (M2)
Thr376 (M3)
Thr376 (M4)
Thr376 (M5)

Thr404 (MO0)
Thr404 (M1)
Thr404 (M2)
Thr404 (M3)
Thr404 (M4)
Thr404 (M5)
Thr404 (M6)

Phe308 (M0)
Phe308 (M1)

29.5
12.8
10.9
2.4
0.8

27.5
25.7
22.4
17.3
7.1

22.3
21.7
20.8
18.2
11.8
5.3

38.3
18.5
19.3
16.4
515
2.0

31.8
22.1
23.7
154
5.3
1.8

28.6
19.2
21.7
16.1
9.9
3.4
11

30.1
9.9

34.7
134
3.9
0.8
0.1

16.0
31.6
33.1
145
4.7

12.7
26.4
32.3
18.7
7.5
2.3

28.9
45.8
16.7
6.8
1.6
0.4

22.2
39.8
24.2
10.0
3.1
0.7

194
36.9
26.6
11.9
4.0
1.1
0.2

6.0
12.1

29.5
13.0
11.0
2.4
0.8

26.7
25.8
22.5
17.7
7.3

21.7
21.4
20.9
185
12.0
515

37.8
19.0
195
16.3
5.4
2.0

31.3
22.0
23.8
15.6
5.5
1.8

27.8
19.3
21.9
16.4
10.1
3.4

11

29.5
9.9

34.7
13.9
4.0
0.9
0.1

15.5
31.5
335
14.8
4.7

12.2
26.2
325
19.0
7.7
24

28.8
45.8
16.7
6.8
1.5
0.3

21.7
39.7
24.6
10.1
3.2
0.8

18.9
36.5
27.0
12.1
4.1
1.1
0.2

5.6
12.2

30.1
12.6
111
24
0.8

27.7
25.6
22.4
17.3
7.0

22.5
21.7
20.8
18.2
11.7
5.2

38.0
18.6
19.5
16.4
5.5
2.0

324
21.5
23.9
15.3
5.2
1.7

29.4
18.8
21.7
16.3
9.6
3.2
1.0

29.6
9.7

345
13.3
3.9
0.9
0.1

16.4
32.1
33.0
141
4.4

13.4
27.1
32.0
18.1
7.2
2.2

28.9
45.8
16.7
6.8
1.5
0.3

22.8
40.4
23.6
9.6
3.0
0.7

20.3
37.6
25.9
11.3
3.7
1.0
0.2

6.3
12.1

29.4
13.8
11.2
2.6
0.8

25.7
25.9
23.0
18.0
7.5

20.6
21.5
21.2
18.7
12.3
5.6

36.6
19.5
19.9
16.5
5.5
2.0

30.2
22.5
24.1
15.9
5.5
1.8

26.9
19.4
22.2
16.6
10.3
3.4

1.1

28.6
9.8

34.7
14.0
4.1
0.9
0.1

15.2
31.7
335
14.9
4.7

11.9
26.3
325
19.1
7.7
2.4

28.9
45.8
16.7
6.8
1.5
0.3

215
39.6
24.8
10.2
3.2
0.8

18.7
36.6
217.2
12.1
4.1
1.1
0.2

5.3
12.4
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Phe308 (M2)
Phe308 (M3)
Phe308 (M4)
Phe308 (M5)
Phe308 (M6)
Phe308 (M7)
Phe308 (M8)

Phe336 (M0)
Phe336 (M1)
Phe336 (M2)
Phe336 (M3)
Phe336 (M4)
Phe336 (M5)
Phe336 (M6)
Phe336 (M?7)
Phe336 (M8)
Phe336 (M9)

Asp390 (MO0)
Asp390 (M1)
Asp390 (M2)
Asp390 (M3)
Asp390 (M4)
Asp390 (M5)

Asp418 (MO0)
Asp418 (M1)
Asp418 (M2)
Asp418 (M3)
Asp418 (M4)
Asp418 (M5)
Asp418 (M6)

Glu330 (M0)
Glu330 (M1)
Glu330 (M2)
Glu330 (M3)
Glu330 (M4)
Glu330 (M5)
Glu330 (M6)

Glu432 (MO0)

oell
9.6
12.8
3.1
1.1
0.2
0.1

29.8
9.8
255
151
9.4
7.5
2.1
0.7
0.1
0.1

32.0
22.1
23.6
15.2
5.3
1.8

28.7
195
21.8
16.0
9.7
3.2
1.0

26.4
16.9
29.1
13.2
10.9
2.7

0.8

21.1

34.8
33.8
9.7
3.0
0.5
0.1
0.0

6.0
12.1
344
33.5
9.9
3.2
0.6
0.1
0.0
0.0

22.0
39.7
24.3
10.0
3.1
0.8

19.6
36.8
26.4
11.8
4.0
1.1
0.2

141
31.9
345
14.0
4.3
1.0
0.2

114

oell
9.8
12.9
3.2
1.2
0.3
0.1

29.3
9.9
25.3
15.3
9.6
7.6
2.1
0.7
0.2
0.1

31.4
22.3
23.8
154
5.3
1.8

28.2
19.6
21.9
16.1
9.9
3.3
1.1

25.9
171
29.1
13.4
10.9
2.7

0.8

20.6

35.0
33.9
9.7
3.0
0.5
0.1
0.0

5.7
12.2
34.7
33.7
9.9
3.1
0.5
0.1
0.0
0.0

21.5
39.5
24.7
10.2
3.2
0.8

19.1
36.5
26.8
12.1
4.1
1.1
0.2

13.8
31.8
345
14.3
4.4
1.0
0.2

11.0

33.6
9.6
12.8
3.1
1.2
0.2
0.1

29.5
9.7
25.7
15.2
9.5
7.5
2.1
0.7
0.2
0.1

32.5
21.6
23.8
151
5.2
1.7

29.4
19.0
21.8
16.0
9.6
3.2
1.0

26.4
16.2
29.8
13.0
111
2.7

0.9

211

34.7
33.7
9.6
2.9
0.5
0.1
0.0

6.4
12.2
34.3
33.4
9.8
3.1
0.6
0.1
0.0
0.0

22.5
40.1
23.8
9.8
3.0
0.8

20.4
37.5
25.7
114
3.8
1.0
0.2

14.3
32.0
345
13.8
4.2
1.0
0.2

11.8

33.3
10.0
13.2
3.4
1.3
0.3
0.2

28.4
9.7
255
155
9.8
7.8
2.3
0.8
0.2
0.1

30.5
225
24.0
15.8
5.4
1.8

27.0
19.7
22.2
16.3
10.2
3.4

1.1

24.9
17.3
29.2
13.9
111
2.7

0.9

19.6

35.3
33.7
9.7
3.0
0.5
0.1
0.0

5.4
12.5
34.9
33.5
9.9
3.1
0.6
0.1
0.0
0.0

21.4
39.5
24.8
10.2
3.2
0.8

18.8
36.5
27.0
12.1
4.2
1.1
0.2

13.7
31.9
345
14.3
4.4
1.0
0.2

10.9
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Glu432 (M1)
Glu432 (M2)
Glu432 (M3)
Glu432 (M4)
Glu432 (M5)
Glu432 (M6)
Glu432 (M7)

Lys329 (MO)
Lys329 (M1)
Lys329 (M2)
Lys329 (M3)
Lys329 (M4)
Lys329 (M5)
Lys329 (M6)

Lys431 (MO)
Lys431 (M1)
Lys431 (M2)
Lys431 (M3)
Lys431 (M4)
Lys431 (M5)
Lys431 (M6)
Lys431 (M7)
Lys431 (M8)

Tyr302 (MO)
Tyr302 (M1)
Tyr302 (M2)
Tyr302 (M3)
Tyr302 (M4)

RNA_Rib173
(MO)
RNA_Rib173
(M1)
RNA_Rib173
(M2)

RNA_Rib284
(MO)
RNA_Rib284
(M1)

14.8
25.0
17.4
12.0
6.8
2.2
0.7

24.0
151
25.1
16.3
10.8
6.4

2.3

20.6
14.4
21.0
17.4
12.5
8.1
4.1
1.4
0.5

48.0
25.0
21.7
5.3
0.0
90.4
8.4

1.3

7.0

79.2

26.5
33.0
18.6
7.5
2.3
0.6
0.1

13.6
28.6
33.3
16.8
5.6
1.5
0.6

11.7
254
32.0
194
8.0
2.6
0.7
0.1
0.1

71.6
195
7.6
13
0.0
6.6
86.5

6.9

84.5

12.7

14.9
24.9
17.6
121
6.9
2.3
0.7

23.6
15.2
25.3
16.9
11.0
6.2

1.9

19.8
14.4
21.0
17.7
12.9
8.3
4.2
1.4
0.4

47.6
25.1
21.9
5.4
0.0
90.1
8.5

14

6.7

79.4

26.3
33.0
18.9
7.7
2.4
0.6
0.1

13.2
28.4
335
17.1
5.8
1.5
0.4

11.3
25.2
32.0
19.8
8.2
2.7
0.7
0.2
0.1

71.8
194
7.5
1.3
0.0
6.0
87.0

7.0

84.2

12.8

14.4
25.5
17.2
12.1
6.8
2.2
0.7

24.3
14.7
26.0
16.4
11.0
5.9

1.7

20.5
14.0
21.4
17.6
12.6
8.2
4.0
1.4
0.4

47.9
25.1
21.7
5.4
0.0
90.0
8.7

14

6.4

79.5

26.9
33.1
18.1
7.2
2.2
0.5
0.1

141
28.9
335
16.3
5.4
1.4
0.4

12.0
25.8
32.2
18.8
7.9
2.5
0.6
0.1
0.0

72.0
19.2
7.5
1.3
0.0
6.6
86.5

6.9

84.5

12.6

14.9
24.9
18.0
12.4
7.2
2.3
0.7

22.4
15.3
25.3
17.4
114
6.4

1.8

18.9
14.1
21.0
18.1
13.2
8.5
4.4
1.4
0.5

47.2
25.0
22.3
5.5
0.0
89.9
8.6

1.5

6.9

78.7

26.2
33.1
19.0
7.7
2.4
0.6
0.1

13.0
28.5
33.6
17.2
5.8
1.5
0.4

111
25.2
32.1
19.8
8.3
2.6
0.7
0.2
0.0

71.6
19.5
7.5
1.3
0.0
6.1
87.0

6.9

84.3

12.8

207




RNA_Rib284 112 20 113
(M2)
RNA Rib284 23 07 23
(M3)

RNA Rib284 03 01 03
(M4)

Glycogen_Glucl 904 152 90.0
73 (MO)
Glycogen_Glucl 8.4 783 87
73 (M1)
Glycogen_Glucl 1.2 6.4 1.3
73 (M2)

Glycogen _Gluc3 145 138 116
70 (MO)
Glycogen_Gluc3 3.5 705 3.1
70 (M1)
Glycogen _Gluc3 679 129 70.6
70 (M2)
Glycogen_Gluc3 116 23 12.1
70 (M3)
Glycogen_Gluc3 2.2 0.4 2.3
70 (M4)
Glycogen_Gluc3 0.3 0.1 0.3
70 (M5)

2.0

0.8

0.2

12.2

81.0

6.7

11.0

72.8

13.3

24

0.4

0.1

11.3

2.3

0.4

89.9

8.8

1.3

11.7

3.2

70.4

12.1

2.3

0.3

2.0

0.7

0.1

15.9

77

6.3

14.4

70.0

12.8

2.3

0.4

0.1

11.6

24

0.4

89.8

8.8

1.4

12.9

3.3

69.3

11.9

2.2

0.3

2.1

0.7

0.1

13.2

80.3

6.5

11.9

72.1

13.1

2.3

0.4

0.1

Table B.7  Mass isotopomer distributions from parallel labeling experiments with

GX50 grown on glucose and xylose at the specified ratio.

Tracer: A) [1,2-*C]glucose + [1,2-*C]xylose
B) [1,6-**C]glucose + [5-13C]xylose
C) [1,2-*C]glucose
D) [1,6-*3C]glucose
E) [1,2-*C]xylose
F) [5-13C]xylose

208




Ratio 1:0 2:0 0:1 0:2
Tracer C D C D E F E F
Ala232 (MO0) 44.2 12.3 437 121 488 319 486 315
Ala232 (M1) 147 66.7 148 668 130 506 129 506
Ala232 (M2) 324 145 327 146  30.2 125 304 128
Ala232 (M3) 6.2 5.7 6.3 5.7 5.7 4.3 5.8 4.4
Ala232 (M4) 2.4 0.8 2.5 0.8 2.2 0.6 2.3 0.7
Ala260 (MO0) 436 11.7 430 115 476 312 474 30.9
Ala260 (M1) 127 66.0 127 66.1 127 500 126 49.9
Ala260 (M2) 333 152 338 153 7.1 13.2 7.0 13.2
Ala260 (M3) 7.2 6.0 7.4 6.0 255 47 258 5.0
Ala260 (M4) 2.7 0.9 2.8 0.9 5.0 0.7 5.0 0.8
Ala260 (M5) 0.4 0.2 0.4 0.2 2.1 0.1 2.1 0.2
Gly218 (M0) 494 760 489 760 512 761 509 76.1
Gly218 (M1) 38.1 164 385 164 36.6 16.3 369 16.3
Gly218 (M2) 9.6 6.6 9.7 6.7 9.4 6.6 9.4 6.7
Gly218 (M3) 2.9 1.0 2.9 0.9 2.8 0.9 2.8 0.9
Gly246 (MO0) 466 743 461 745 499 748 497 747
Gly246 (M1) 388 173 392 172 120 170 119 170
Gly246 (M2) 108 7.0 109 7.0 301 7.0 304 7.0
Gly246 (M3) 3.3 1.1 3.3 1.1 5.6 1.0 5.7 1.1
Gly246 (M4) 0.5 0.2 0.5 0.2 2.3 0.2 2.3 0.2
Val260 (MO0) 26.8 7.8 259 80 31.7 152 313 149
Val260 (M1) 119 105 119 108 106 354 104 356
Val260 (M2) 325 608 329 603 338 36 341 357
Val260 (M3) 111 144 113 144 91 100 9.1 10.1
Val260 (M4) 139 54 142 55 11.8 3.1 120 3.1
Val260 (M5) 2.8 0.9 2.8 0.8 2.3 0.5 2.3 0.5
Val260 (M6) 1.0 0.1 1.0 0.1 0.8 0.1 0.8 0.1
Val288 (MO0) 266 7.8 257 80 31.2 151 30.8 1438
Val288 (M1) 10.7 100 107 103 102 350 101 352
Val288 (M2) 328 605 331 601 198 355 199 355
Val288 (M3) 108 148 111 148 195 104 19.7 105
Val288 (M4) 146 5.7 148 5.7 6.4 3.3 6.4 3.3
Val288 (Mb5) 3.2 0.9 3.3 0.9 10.2 0.6 104 0.6
Val288 (M6) 1.1 0.2 1.2 0.2 2.0 0.1 2.0 0.1
Val288 (M7) 0.2 0.0 0.2 0.0 0.8 0.0 0.8 0.0
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Leu274 (MO0)
Leu274 (M1)
Leu274 (M2)
Leu274 (M3)
Leu274 (M4)
Leu274 (M5)
Leu274 (M6)
Leu274 (M7)

116200 (MO)
116200 (M1)
116200 (M2)
116200 (M3)
116200 (M4)
116200 (M5)
116200 (M6)
116200 (M7)

116274 (MO)
le274 (M1)
116274 (M2)
11e274 (M3)
11e274 (M4)
11274 (M5)
116274 (M6)
le274 (M7)

Pro258 (MO0)
Pro258 (M1)
Pro258 (M2)
Pro258 (M3)
Pro258 (M4)
Pro258 (M5)
Pro258 (M6)

Met218 (MO)
Met218 (M1)
Met218 (M2)
Met218 (M3)
Met218 (M4)

Met320 (MO)
Met320 (M1)

185
16.1
22.7
20.3
125
1.7
1.7
0.5

24.4
13.8
28.6
151
12.7
4.4
0.8
0.2

21.9
14.0
27.5
16.0
135
5.4
1.4
0.3

22.9
16.6
28.7
151
12.7
3.2

0.9

25.0
24.7
24.5
19.1
6.8

20.7
20.7

7.8
3.2
13.6
56.3
13.2
5.0
0.7
0.1

8.9
8.4
47.4
26.7
7.0
1.4
0.2
0.1

8.0
7.9
43.7
217.6
9.7
2.5
0.5
0.1

8.0
9.5
50.1
23.0
7.3
1.7
0.3

15.4
33.0
33.7
135
4.4

12.5
27.9

17.4
16.1
23.0
20.7
12.7
7.8
1.8
0.5

23.5
s
28.9
154
12.9
4.5
0.8
0.2

21.0
14.0
21.7
16.3
13.7
5.5
1.4
0.4

22.6
16.5
29.3
14.9
12.7
3.1

0.9

24.1
25.0
24.8
19.2
6.9

20.0
20.7

8.3
3.5
141
55.4
13.0
4.9
0.7
0.1

9.2
8.6
47.3
26.4
6.9
1.3
0.2
0.0

8.1
8.2
43.6
27.5
9.5
2.5
0.5
0.1

8.0
9.8
50.0
23.0
7.3
1.8
0.3

9.4
12.4
45.5
245
8.2

7.7
9.8

22.0
16.7
25.0
18.0
10.8
5.8
1.3
0.4

26.9
15.1
25.0
17.4
8.8
5.8
0.8
0.2

24.1
154
24.3
17.9
9.9
6.4
15
0.4

26.4
17.3
29.4
13.3
10.3
2.5

0.8

27.5
26.2
20.9
17.6
7.8

21.9
22.4

9.7
21.0
35.0
24.9
7.0
2.0
0.3
0.1

14.7
32.0
35.9
13.5
3.3
0.6
0.1
0.0

13.2
29.8
35.0
15.7
5.0
1.2
0.2
0.1

13.7
31.8
35.3
13.9
4.2
0.9
0.2

15.9
32.9
33.7
13.2
4.2

12.9
28.1

21.6
16.7
251
18.1
10.9
5.9
1.4
0.4

26.4
15.1
25.1
17.6
8.8
5.9
0.9
0.2

23.6
15.4
24.4
18.1
10.0
6.6
1.5
0.5

26.1
17.2
29.6
13.4
10.5
2.5

0.8

27.0
26.4
21.0
17.7
7.9

21.5
225

9.4
21.2
351
24.9
7.1
2.0
0.3
0.1

14.3
32.0
35.9
13.8
3.4
0.6
0.1
0.0

12.7
29.8
35.0
15.9
5.1
1.2
0.2
0.1

13.4
31.9
35.4
141
4.2
1.0
0.2

155
32.9
33.8
135
4.3

12.6
28.0
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Met320 (M2)
Met320 (M3)
Met320 (M4)
Met320 (M5)

Ser390 (MO0)
Ser390 (M1)
Ser390 (M2)
Ser390 (M3)
Ser390 (M4)
Ser390 (M5)

Thr376 (MO)
Thr376 (M1)
Thr376 (M2)
Thr376 (M3)
Thr376 (M4)
Thr376 (M5)

Thr404 (MO0)
Thra04 (M1)
Thr404 (M2)
Thr404 (M3)
Thr404 (M4)
Thr404 (M5)
Thr404 (M6)

Phe308 (MO)
Phe308 (M1)
Phe308 (M2)
Phe308 (M3)
Phe308 (M4)
Phe308 (M5)
Phe308 (M6)
Phe308 (M?7)
Phe308 (M8)

Phe336 (MO0)
Phe336 (M1)
Phe336 (M2)
Phe336 (M3)
Phe336 (M4)
Phe336 (M5)

23.6
20.1
10.3
4.6

35.1
19.7
30.3
9.9
4.1
0.9

30.4
20.9
27.7
14.0
5.5
1.6

28.1
17.8
27.9
14.4
8.4
2.5
0.9

20.2
10.4
26.7
13.1
16.6
7.0
4.2
1.4
0.4

20.5
9.7
26.5
12.8
16.8
7.2

32.9
17.6
6.9
2.3

114
57.7
19.7
8.9
2.0
0.5

22.1
40.8
234
9.7
3.1
0.9

19.8
38.6
254
11.3
3.8
1.0
0.3

7.6
2.9
10.3
57.0
154
5.6
1.0
0.2
0.1

7.4
3.1
10.0
56.7
15.6
5.9

23.8
204
10.3
4.7

34.9
19.3
30.7
10.0
4.1
0.9

29.5
21.4
28.0
144
5.2
1.5

27.1
17.8
28.5
14.7
8.3
2.6
0.8

19.6
10.3
26.9
13.2
17.1
6.8
4.1
1.4
0.4

195
9.7
27.3
13.0
17.1
7.0

36.7
29.1
12.5
4.2

11.3
57.7
19.8
8.8
2.0
0.5

9.3
41.7
30.5
13.3
4.2
1.0

8.5
35.2
33.4
15.8
5.5
1.3
0.3

7.6
2.9
10.3
57.1
15.3
5.6
1.0
0.2
0.1

7.6
3.2
10.3
56.3
15.7
5.8

18.4
17.3
13.5
6.4

2815
16.8
11.0
22.6
7.0
3.1

314
23.0
21.1
16.9
5.6
2.0

28.0
20.3
17.7
16.8
11.9
4.0

1.4

5.7
24.1
8.0
28.9
114
11.5
6.8
1.9
1.8

5.6
23.9
7.8
16.2
20.8
6.5

33.0
17.2
6.8
2.0

28.0
46.5
16.8
6.8
1.5
0.3

22.5
41.1
23.4
9.3
2.8
0.8

20.3
38.6
25.2
11.1
3.6
1.0
0.2

6.8
14.4
34.4
31.9
9.0
2.8
0.5
0.1
0.1

7.0
14.5
34.2
31.6
9.2
2.9

18.5
17.3
13.7
6.5

39.1
16.9
11.0
22.8
7.1
3.1

30.9
23.1
21.3
16.9
5.8
2.0

27.5
20.2
17.8
16.8
12.1
4.2

1.4

5.4
24.3
7.9
29.2
11.3
11.6
6.7
1.9
1.7

5.3
24.0
7.9
16.4
20.8
6.3

32.9
17.5
6.9
2.2

27.8
46.7
16.9
6.8
1.5
0.3

22.1
41.3
23.4
9.6
2.9
0.7

19.8
38.6
25.5
11.3
3.7
0.9
0.2

6.5
14.4
34.7
31.8
9.2
2.8
0.5
0.1
0.1

6.6
14.4
344
31.6
9.4
3.0
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Phe336 (M6)
Phe336 (M7)
Phe336 (M8)
Phe336 (M9)

Asp390 (MO)
Asp390 (M1)
Asp390 (M2)
Asp390 (M3)
Asp390 (M4)
Asp390 (M5)

Asp418 (MO0)
Asp418 (M1)
Asp418 (M2)
Asp418 (M3)
Asp418 (M4)
Asp418 (M5)
Asp418 (M6)

Glu330 (MO0)
Glu330 (M1)
Glu330 (M2)
Glu330 (M3)
Glu330 (M4)
Glu330 (M5)
Glu330 (M6)

Glu432 (M0)
Glu432 (M1)
Glu432 (M2)
Glu432 (M3)
Glu432 (M4)
Glu432 (M5)
Glu432 (M6)
Glu432 (M7)

Lys329 (MO)
Lys329 (M1)
Lys329 (M2)
Lys329 (M3)
Lys329 (M4)
Lys329 (M5)

4.3
1.5
0.4
0.1

30.5
21.1
27.8
14.0
5.2
1.5

28.3
18.0
28.0
14.4
8.2
2.4
0.8

23.1
16.5
28.8
14.9
12.6
3.2

1.0

19.0
14.2
25.8
17.1
14.3
6.6
2.3
0.7

22.0
14.6
26.3
16.3
13.3
5.6

1.0
0.2
0.0
0.0

9.6
41.6
30.2
13.2
4.4
1.1

9.1
35.1
32.6
15.8
5.6
1.6
0.3

7.6
9.3
49.9
23.3
7.6
2.0
0.4

6.6
7.6
38.9
28.3
12.8
4.3
11
0.2

13.5
28.7
34.0
16.5
5.5
1.5

4.3
1.6
0.4
0.1

30.0
21.0
27.9
14.3
5.2
1.6

27.5
18.2
28.2
14.7
8.2
2.5
0.8

22.3
16.6
29.2
15.0
12.7
3.2

1.0

18.1
14.2
26.1
17.3
144
6.7
2.3
0.7

21.0
14.9
26.8
16.5
13.4
5.8

1.0
0.2
0.0
0.0

9.3
41.9
30.2
13.2
4.4
1.1

8.8
35.3
32.8
15.6
5.6
1.6
0.3

7.4
9.5
50.2
23.0
7.6
1.9
0.4

6.4
7.7
39.2
28.4
12.7
4.3
1.1
0.2

9.3
8.9
40.9
27.2
10.1
2.9

11.6
4.6
1.5
1.5

31.6
22.8
21.2
16.8
5.6
2.0

28.0
20.5
17.7
16.7
11.7
4.0

1.4

26.5
17.2
29.3
13.2
10.5
2.6

0.8

20.5
155
23.4
18.6
114
7.4
2.3
0.8

24.0
16.1
23.7
17.9
10.0
6.5

0.5
0.1
0.0
0.0

22.5
41.5
23.0
9.5
2.8
0.7

20.4
38.8
25.0
11.0
3.6
1.0
0.2

13.6
31.9
351
13.8
4.3
1.0
0.2

11.2
27.0
33.7
17.9
7.3
2.2
0.5
0.1

14.1
28.8
33.8
16.2
5.4
1.3

11.6
4.6
1.5
1.5

31.5
22.8
21.2
16.9
5.6
2.1

27.7
20.5
17.8
16.7
11.9
4.1

1.4

26.3
17.1
29.5
13.2
10.6
2.6

0.8

20.2
15.5
235
18.8
114
7.5
24
0.8

23.7
16.3
23.6
18.0
10.1
6.6

0.5
0.1
0.0
0.0

22.1
41.3
23.4
9.5
2.9
0.7

20.0
38.7
25.3
11.2
3.7
1.0
0.2

13.3
32.0
35.2
14.0
4.3
11
0.2

10.8
27.0
33.8
18.3
7.3
2.2
0.5
0.1

13.3
29.0
34.0
16.3
5.6
14
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Lys329 (M6)

Lys431 (MO)
Lys431 (M1)
Lys431 (M2)
Lys431 (M3)
Lys431 (M4)
Lys431 (M5)
Lys431 (M6)
Lys431 (M7)
Lys431 (M8)

Tyr302 (MO)
Tyr302 (M1)
Tyr302 (M2)
Tyr302 (M3)
Tyr302 (M4)

RNA_Rib173
(MO)
RNA_Rib173
(M1)
RNA_Rib173
(M2)

RNA_Rib284
(MO)
RNA_Rib284
(M1)
RNA_Rib284
(M2)
RNA_Rib284
(M3)
RNA_Rib284
(M4)

Glycogen_Glu

c173 (M0)

Glycogen_Glu

c173 (M1)

Glycogen_Glu

c173 (M2)

1.9

19.0
131
24.8
16.2
15.1
7.3
3.1
1.0
0.3

44.9
39.4
12.1
3.6
0.0
66.7
9.6

23.6

8.6

52.9

29.2

8.2

0.4
11.5
254
325
191
8.0
2.6
0.7
0.2
0.0
71.6
195
7.5
13
0.0
10.5
82.8

6.7

76.3

19.6

3.0

0.9

0.2

21.2

72.8

6.1

1.7
17.9
134
25.3
16.6
15.2
7.4
3.1
1.0
0.2
44 4
39.6
12.3
3.7
0.0
67.1
9.7

23.3

7.6

54.2

29.1

7.9

1.2

83.0

9.1

7.9

0.7
7.9
8.1
34.9
29.0
13.7
4.7
1.3
0.3
0.1
71.6
194
7.6
1.3
0.0
9.8
83.4

6.7

76.6
19.3
3.0
0.9

0.2

22.7
71.4

5.9

1.8
20.3
15.0
17.0
18.8
12.5
8.6
5.5
1.8
0.6
48.8
13.6
30.6
6.9
0.0
79.9
7.6

12.5

5.4

2.3

70.1

9.5

12.7

70.7

7.6

21.8

0.4
12.1
25.8
324
18.7
7.8
24
0.6
0.1
0.0
71.7
19.5
7.5
1.3
0.0
17.5
76.3

6.2

84.3

12.7

2.1

0.7

0.2

42.0

53.4

4.6

1.8
19.7
15.0
17.1
18.8
12.7
8.7
5.6
1.8
0.6
48.7
13.5
30.8
7.0
0.0
80.1
7.7

12.2

4.8

2.2

71.0

9.6

12.4

71.8

7.5

20.7

0.4
115
25.7
32.6
18.9
8.0
2.5
0.7
0.1
0.0
71.6
195
7.6
13
0.0
16.5
77.2

6.2

84.3

12.7

2.1

0.7

0.1

38.9

56.3

4.8
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Glycogen Glu 184 223 184 236 179 796 202 797
¢370 (MO0)

Glycogen_Glu 6.0 63.3 59 623 3.9 16.7 4.3 16.6
c370 (M1)

Glycogen Glu 56.8 11.8 573 115 25 3.0 2.5 3.0
c370 (M2)

Glycogen Glu 152 21 148 21 474 05 46.0 05
c370 (M3)

Glycogen_Glu 3.0 0.4 3.0 0.4 8.5 0.1 8.2 0.1
c370 (M4)

Glycogen_Glu 0.5 0.1 0.5 0.2 198 0.1 189 0.1
c370 (M5)

Ratio 1:1 2:2 1:2 2:1
Tracer A B A B A B A B
Ala232 (MO0) 446 157 447 155 451 181 446 137
Ala232 (M1) 147 637 144 641 145 620 146 65.6
Ala232 (M2) 320 143 322 141 318 139 321 143
Ala232 (M3) 6.2 55 6.2 55 6.2 5.3 6.2 5.6
Ala232 (M4) 2.4 0.8 2.4 0.8 2.4 0.7 2.4 0.8
Ala260 (MO0) 438 152 439 149 443 175 438 131
Ala260 (M1) 120 630 118 635 119 613 120 65.0
Ala260 (M2) 295 150 281 148 274 146 299 150
Ala260 (M3) 10.7 5.8 120 5.8 121 56 103 5.9
Ala260 (M4) 3.3 0.9 3.4 0.9 3.4 0.8 3.2 0.9
Ala260 (M5) 0.7 0.2 0.8 0.2 0.9 0.1 0.7 0.2
Gly218 (MO0) 494 759 493 761 497 76.1 497 76.2
Gly218 (M1) 381 165 381 163 379 163 378 16.3
Gly218 (M2) 9.6 6.7 9.6 6.6 9.6 6.7 9.6 6.6
Gly218 (M3) 2.9 1.0 2.9 0.9 2.9 0.9 2.9 0.9
Gly246 (MO0) 46.1 743 46.0 746 463 746 464 746
Gly246 (M1) 30 173 337 171 331 171 352 171
Gly246 (M2) 143 7.1 154 70 157 7.0 139 70
Gly246 (M3) 3.8 1.1 3.9 1.1 3.9 1.1 3.7 1.1
Gly246 (M4) 0.8 0.2 0.9 0.2 1.0 0.2 0.8 0.2
Val260 (MO0) 269 74 27.0 82 275 8.4 269 7.1
Val260 (M1) 119 178 117 164 118 207 119 145
Val260 (M2) 330 553 333 561 331 524 331 584
Val260 (M3) 11.0 137 108 135 107 130 11.0 139
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Val260 (M4)
Val260 (M5)
Val260 (M6)

Val288 (MO)
Val288 (M1)
Val288 (M2)
Val288 (M3)
Val288 (M4)
Val288 (M5)
Val288 (M6)
Val288 (M7)

Leu274 (MO)
Leu274 (M1)
Leu274 (M2)
Leu274 (M3)
Leu274 (M4)
Leu274 (M5)
Leu274 (M6)
Leu274 (M7)

116200 (MO)
116200 (M1)
116200 (M2)
116200 (M3)
116200 (M4)
116200 (M5)
116200 (M6)
116200 (M7)

lle274 (MO)
11e274 (M1)
le274 (M2)
11e274 (M3)
le274 (M4)
116274 (M5)
l1e274 (M6)
11274 (M7)

Pro258 (MO0)
Pro258 (M1)
Pro258 (M2)

13.5
2.7
1.0

26.8
10.3
31.2
121
13.3
4.6
1.3
0.3

18.3
16.5
23.4
20.1
12.3
7.2
1.7
0.5

24.2
141
28.3
15.7
12.0
4.7
0.8
0.2

21.6
14.3
27.2
16.5
12.9
5.7
14
0.4

24.2
16.7
29.7

5.0
0.8
0.1

7.3
17.4
55.0
14.0
5.2
0.8
0.2
0.0

6.5
5.8
22.9
48.0
11.9
4.2
0.6
0.1

8.1
14.8
46.3
23.4
6.1
1.2
0.2
0.0

7.2
13.8
43.1
24.8
8.5
2.2
0.4
0.1

7.7
16.6
47.6

13.6
2.7
1.0

26.8
10.1
30.7
12.6
13.0
5.1
1.4
0.3

18.3
16.4
23.7
20.0
12.2
7.2
1.7
0.5

24.2
14.0
28.2
15.8
11.9
4.9
0.8
0.2

21.6
14.2
27.2
16.6
12.7
5.8
14
0.4

24.2
16.4
29.9

5.0
0.8
0.1

8.1
16.0
55.9
13.8
5.2
0.8
0.1
0.0

7.3
5.0
20.9
49.9
11.9
4.3
0.6
0.1

9.1
13.7
47.8
22.5
5.6
11
0.1
0.0

8.1
12.9
44.4
24.1
8.1
2.1
0.4
0.1

8.1
15.0
49.1

13.3
2.6
0.9

27.3
10.2
30.3
12.6
12.7
5.1
1.4
0.3

18.8
16.5
23.6
19.8
121
7.1
1.6
0.5

24.7
141
28.1
15.7
11.7
4.8
0.8
0.2

22.1
14.3
27.0
16.5
125
5.7
1.4
0.4

24.7
16.5
29.8

4.7
0.7
0.1

8.3
20.4
52.2
13.3
4.9
0.8
0.1
0.0

7.1
7.5
25.8
44.2
10.9
3.8
0.6
0.1

9.2
17.8
45.7
21.0
5.2
1.0
0.1
0.1

8.1
16.5
42.8
22.6
7.6
1.9
0.3
0.1

8.6
19.5
45.9

13.6
2.7
1.0

26.7
10.3
315
11.9
13.5
4.4
1.3
0.3

18.3
16.4
23.4
20.1
12.3
7.3
1.7
0.5

24.3
14.0
28.5
15.5
12.1
4.6
0.8
0.2

21.8
14.2
27.4
16.3
13.0
5.6
1.4
0.4

23.9
16.6
29.6

5.2
0.8
0.1

7.0
141
58.3
14.2
5.4
0.8
0.2
0.0

6.5
4.1
18.9
52.7
12.4
4.6
0.7
0.1

7.9
121
49.0
23.7
5.9
11
0.2
0.1

7.1
11.3
45.3
25.2
8.5
2.2
0.4
0.1

7.1
13.2
50.3
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Pro258 (M3)
Pro258 (M4)
Pro258 (M5)
Pro258 (M6)

Met218 (MO)
Met218 (M1)
Met218 (M2)
Met218 (M3)
Met218 (M4)

Met320 (MO)
Met320 (M1)
Met320 (M2)
Met320 (M3)
Met320 (M4)
Met320 (M5)

Ser390 (MO0)
Ser390 (M1)
Ser390 (M2)
Ser390 (M3)
Ser390 (M4)
Ser390 (M5)

Thr376 (MO0)
Thr376 (M1)
Thr376 (M2)
Thr376 (M3)
Thr376 (M4)
Thr376 (M5)

Thr404 (MO)
Thra04 (M1)
Thr404 (M2)
Thra04 (M3)
Thr404 (M4)
Thr404 (M5)
Thr404 (M6)

Phe308 (M0)
Phe308 (M1)
Phe308 (M2)

14.0
11.9
2.6
0.8

24.8
25.0
24.2
18.8
1.2

20.4
20.7
22.6
19.9
11.3
5.0

36.0
18.2
21.7
12.2
4.6
1.3

30.2
21.6
26.5
147
5.3
1.7

27.4
18.0
26.0
15.9
8.9
2.9
0.9

14.2
14.0
18.6

20.2
6.2
14
0.2

9.3
18.3
43.5
21.7
1.2

7.5
144
36.8
26.1
11.3
3.9

14.2
55.7
19.3
8.5
1.9
0.4

115
42.4
28.7
124
4.0
1.0

10.2
36.9
31.3
14.8
5.2
1.4
0.3

6.1
4.1
18.4

s
12.0
2.6
0.8

24.8
25.2
23.9
18.9
1.2

20.2
20.9
22.3
19.9
115
5.2

36.0
18.0
26.8
13.0
4.8
1.4

30.1
21.5
26.4
15.1
5.3
1.7

27.3
18.2
254
16.2
9.1
2.9
0.9

12.8
14.9
17.3

19.9
6.3
1.4
0.2

9.9
17.1
45.0
21.0
7.1

8.0
13.8
38.0
255
10.8
3.8

13.9
56.0
19.3
8.5
1.9
0.4

11.8
43.6
28.1
11.8
3.8
1.0

10.5
38.2
31.0
14.0
4.8
1.3
0.2

6.9
3.8
16.8

13.8
11.8
2.6
0.8

25.3
25.2
23.9
18.5
7.1

20.8
21.2
22.1
19.5
11.3
5.1

36.5
17.7
26.4
131
4.9
1.4

30.5
21.4
26.2
14.9
5.3
1.7

27.8
18.2
25.0
16.1
9.0
2.9
0.9

12.9
15.3
171

18.7
5.8
1.3
0.2

10.2
20.6
42.9
19.7
6.5

8.3
17.0
37.1
24.1
10.1
3.3

16.0
54.6
18.8
8.3
1.9
0.4

13.3
43.1
27.5
11.5
3.7
0.9

11.9
38.3
30.0
13.6
4.7
1.3
0.2

6.4
5.1
20.8

14.2
12.1
2.7
0.9

24.9
251
24.3
18.7
7.0

20.6
21.0
22.6
19.9
11.0
4.9

36.0
18.1
28.2
12.0
4.6
1.3

30.3
21.3
27.0
14.6
5.2
1.6

27.7
18.0
26.3
15.6
8.7
2.8
0.8

14.5
13.8
19.2

21.0
6.6
15
0.2

8.7
15.8
46.3
22.0
7.3

7.0
12.6
38.7
26.7
11.2
3.7

12.5
56.9
19.5
8.7
1.9
0.4

10.4
43.9
28.8
121
3.9
1.0

9.2
38.0
31.6
145
5.1
1.3
0.3

6.3
3.3
15.0
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Phe308 (M3)
Phe308 (M4)
Phe308 (M5)
Phe308 (M6)
Phe308 (M?7)
Phe308 (M8)

Phe336 (MO)
Phe336 (M1)
Phe336 (M2)
Phe336 (M3)
Phe336 (M4)
Phe336 (MS5)
Phe336 (M6)
Phe336 (M?7)
Phe336 (M8)
Phe336 (M9)

Asp390 (MO0)
Asp390 (M1)
Asp390 (M2)
Asp390 (M3)
Asp390 (M4)
Asp390 (M5)

Asp418 (MO0)
Asp418 (M1)
Asp418 (M2)
Asp418 (M3)
Asp418 (M4)
Asp418 (M5)
Asp418 (M6)

Glu330 (M0)
Glu330 (M1)
Glu330 (M2)
Glu330 (M3)
Glu330 (M4)
Glu330 (M5)
Glu330 (M6)

Glu432 (MO0)
Glu432 (M1)

20.2
13.9
11.3
4.6
2.5
0.8

141
13.5
17.7
19.5
14.2
11.5
5.6
2.8
1.0
0.3

30.3
21.5
26.7
14.6
5.2
1.6

27.8
18.3
25.8
15.7
8.7
2.8
0.9

23.7
16.9
29.1
14.5
11.9
3.0

0.9

19.0
14.6

51.5
13.9
5.0
0.8
0.1
0.0

6.1
4.3
18.1
51.1
143
5.1
0.9
0.2
0.0
0.0

11.5
42.3
28.6
12,5
4.1
1.0

10.7
36.7
31.0
14.7
5.2
1.4
0.3

7.6
16.3
46.6
20.9
6.8
1.7
0.3

6.4
13.1

21.8
134
11.8
4.6
2.5
0.8

12.7
14.4
16.2
20.5
14.0
11.8
6.0
2.9
11
0.4

30.4
21.4
26.3
14.9
5.3
1.7

27.6
18.4
25.2
16.0
9.0
2.9
0.9

23.9
16.6
29.4
14.3
11.9
3.0

0.9

19.0
14.5

52.6
13.9
5.0
0.8
0.1
0.1

7.0
4.1
16.6
51.8
14.3
5.1
0.9
0.2
0.0
0.0

11.5
43.7
28.0
12.0
3.8
0.9

10.9
38.1
30.6
14.0
4.8
1.3
0.3

8.1
14.8
48.4
20.3
6.6
1.6
0.3

6.9
12.1

21.9
13.2
11.7
4.6
2.4
0.8

12.9
14.8
15.8
20.6
13.9
11.6
6.0
2.9
11
0.4

30.8
21.4
26.1
14.8
5.3
1.6

28.1
18.5
24.9
15.9
8.9
2.9
0.9

24.4
16.7
29.3
141
11.7
2.9

0.9

19.5
14.6

48.8
13.2
4.6
0.8
0.1
0.1

6.5
5.4
20.6
48.3
13.4
4.8
0.9
0.1
0.0
0.0

13.3
43.2
27.3
11.6
3.7
0.9

12.4
38.2
29.6
13.6
4.7
1.2
0.3

8.6
19.2
45.3
19.0
6.1
1.5
0.3

7.2
15.7

19.8
14.0
11.0
4.5
2.4
0.8

14.4
13.1
18.3
19.3
14.4
11.2
5.4
2.7
1.0
0.3

30.5
21.3
26.8
14.6
5.2
1.6

27.9
18.2
26.1
15.5
8.6
2.8
0.8

23.7
16.7
29.2
14.4
12.0
3.0

0.9

19.1
14.5

54.7
14.4
5.2
0.9
0.1
0.2

6.2
3.4
14.7
54.2
14.8
5.4
1.0
0.2
0.0
0.0

10.2
43.8
28.7
12.3
3.9
1.0

9.7
38.0
31.3
14.4
5.0
1.4
0.3

7.1
13.0
49.8
21.2
6.9
1.7
0.3

6.0
10.6
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Glud32 (M2)
Glu432 (M3)
Glu432 (M4)
Glu432 (M5)
Glu432 (M6)
Glu432 (M7)

Lys329 (MO0)
Lys329 (M1)
Lys329 (M2)
Lys329 (M3)
Lys329 (M4)
Lys329 (M5)
Lys329 (M6)

Lys431 (MO)
Lys431 (M1)
Lys431 (M2)
Lys431 (M3)
Lys431 (M4)
Lys431 (M5)
Lys431 (M6)
Lys431 (M7)
Lys431 (M8)

Tyr302 (MO)
Tyr302 (M1)
Tyr302 (M2)
Tyr302 (M3)
Tyr302 (M4)

RNA_Rib173
(MO)
RNA_Rib173
(M1)
RNA_Rib173
(M2)

RNA_Rib284
(M0)
RNA_Rib284
(M1)

25.7
17.4
13.6
6.7
2.3
0.7

20.9
151
26.4
16.8
12.8
6.0

1.9

18.0
13.3
23.7
175
14.4
8.0
3.6
1.1
0.3

44.9
355
15.4
4.3
0.0
71.7
9.2

19.1

5.5

29.2

38.5
25.8
11.3
3.7
1.0
0.2

7.4
s
41.3
251
9.1
2.5
0.6

6.4
12.2
36.3
27.0
12.4
4.3
1.1
0.3
0.1

71.8
19.4
7.5
1.3
0.0
11.0
82.4

6.6

81.6

15.0

25.6
17.5
iste
6.8
2.3
0.7

21.1
15.0
26.6
16.9
12.6
6.0

1.8

18.0
13.3
23.5
17.6
14.3
8.1
3.7
1.2
0.3

44.9
34.2
16.4
4.5
0.0
71.4
9.4

19.3

5.6

30.5

40.0
25.4
11.0
3.5
0.9
0.2

9.0
13.1
42.2
24.2
8.6
2.4
0.6

7.7
11.7
37.1
26.6
11.7
3.9
1.0
0.2
0.1

72.0
19.2
7.4
1.3
0.0
11.6
81.9

6.6

80.8

15.7

25.6
17.3
13.3
6.7
2.3
0.7

21.6
15.0
26.5
16.8
125
5.9

1.7

18.3
135
23.5
17.4
14.2
8.0
3.6
1.2
0.3

45.1
33.7
16.6
4.5
0.0
73.5
9.2

17.3

5.2

24.9

38.6
23.9
10.3
3.3
0.8
0.2

8.3
16.5
41.2
23.2
8.1
2.2
0.5

7.2
14.5
36.6
254
11.3
3.8
1.0
0.2
0.0

72.0
19.2
7.4
1.3
0.0
11.6
81.8

6.6

82.7

14.1

25.8
17.3
13.7
6.7
2.3
0.7

21.3
14.9
26.9
16.6
12.8
5.8

1.7

18.1
13.3
24.3
17.2
14.5
7.9
3.4
1.1
0.3

44.8
36.0
15.0
4.2
0.0
73.2
9.1

17.7

5.0

254

40.6
26.4
115
3.7
1.0
0.2

8.5
11.6
42.7
25.2
9.0
2.4
0.6

7.2
10.4
37.3
27.4
12.2
4.2
11
0.2
0.0

71.9
19.3
7.5
1.3
0.0
12.0
81.4

6.5

81.6

15.0
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RNA Rib284 459 25 448 25 495 23 492 25
(M2)

RNA Rib284 155 0.8 152 08 156 0.8 158 0.8
(M3)

RNA_Rib284 4.0 0.1 3.8 0.2 4.8 0.1 4.6 0.2
(M4)

Glycogen _Glu 828 271 829 180 830 284 824 209
c173 (MO0)

Glycogen_Glu 8.6 674 87 758 8.7 66.2 8.6 73.2
cl173 (M1)

Glycogen _Glu 8.6 55 8.5 6.1 8.3 5.4 9.0 5.9
cl173 (M2)

Glycogen Glu 223 349 196 230 254 389 199 268
c370 (MO0)

Glycogen_Glu 5.7 53.2 53 629 6.2 500 5.2 59.9
c370 (M1)

Glycogen_Glu 468 9.8 50.1 116 426 9.2 470 110
c370 (M2)

Glycogen_Glu 175 1.7 175 20 176 1.6 19.0 1.9
c370 (M3)

Glycogen_Glu 5.4 0.3 54 0.4 55 0.3 59 0.3
c370 (M4)

Glycogen_Glu 24 0.1 2.1 0.1 2.8 0.0 2.9 0.1
c370 (M5)
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Figure B.1  Growth rates for wild-type E. coli, GX50 and LMSE?2 for various
glucose:xylose concentrations. Error bars indicate standard error (n>3).
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Figure B.2 Representative growth curves for LMSE2 grown on a (A) 1:1, (B) 2:2,
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GX50 (15%)

Normalized Flux
(per 100 sugar)

1x Gluc Qgiuc=13.49 2x Gluc Qouc=14.18
u=0.89

1x Xyl G=15.38 2x Xyl %i=15.98
u=0.85 p=0.81
. amm— .

Figure B.4 Comparison of estimated fluxes for various glucose/xylose mixtures.
Highlighted changes indicate at least a 15% relative difference compared
to the fluxes estimated for the 1x case. Fluxes highlighted blue indicate a
flux increase while fluxes highlighted red indicate a flux decrease. No

significant change was observed when the glucose or xylose
concentration was doubled.
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Appendix C
SUPPLEMENTARY DATA FOR CHAPTER 4

Table C.1  3C-labeling (%) in biomass components during growth on glucose, yeast
extract, casamino acids, or tryptone and *3C-methanol (average of two
replicates).

Co-substrate Glucose Yeast Extract ~ Casamino Tryptone
Acids
Time (hours) 24 48 24 48 24 48 24 48

Avg

Ala260(MO0)
Ala260 (M1)
Ala260 (M2)
Ala260 (M3)

9 8 6 8 8 7 6

OO Fr ©K
OO Fr ©K
RPN ON
Or F PR
ORr KL ©RK
oORr N ON
oL NON

Avg

Val288 (MO0)
Val288 (M1)
Val288 (M2)
Val288 (M3)
Val288 (M4)
Val288 (M5)

OO OO PFrr WOo
OO OO PFr ©WOo
OO OO OkKrOo
OO OO OkKrOo
OO OO OoOkKr o
OO OO Ok o
OO OO OkKrOo

Avg

Leu274 (MO0)
Leu274 (M1)
Leu274 (M2)
Leu274 (M3)
Leu274 (M4)
Leu274 (M5)

OO OoOONOWO
OO OoOONOO
OO OO OkKrOo
OO OO OkKrOo
OO OO OkKrOo
OO OO OoOkKr o
OO OO OoOkKr o
OO OO OkKrOo

Avg

11e274 (MO0)
11e274 (M1)
Ie274 (M2)
11e274 (M3)
11e274 (M4)
11274 (M5)

OO OON WP
OO OON WP
OO OO OkKrOo
OO OOOkKrOo
OO OO OkKrOo
OO OO OoOkKrOo
OO OO O wOo
OO OOOkKrOo
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Avg

Ser390 (MO0)
Ser390 (M1)
Ser390 (M2)
Ser390 (M3)

Avg

Thr404 (MO)
Thr404 (M1)
Thr404 (M2)
Thr404 (M3)
Thr404 (M4)

Avg

Asp418 (MO0)
Asp418 (M1)
Asp418 (M2)
Asp418 (M3)
Asp418 (M4)

Avg

Glu432 (MO0)
Glu432 (M1)
Glu432 (M2)
Glu432 (M3)
Glu432 (M4)
Glu432 (M5)

Avg
RNA_Rib284
(MO)
RNA_Rib284
(M1)
RNA_Rib284
(M2)
RNA_Rib284
(M3)
RNA_Rib284
(M4)

Avg

QO ON WP O OO PFr ©Wo OO PFr ©Oo

OO OO WP

16

o NP~ ODN OOk F O P NO OB~

OOk WUl w

17

OOk EF O O OO OoOkKro OOk O

O OOFrPF O

12

OOk PEF OPRF O O OOk o OFr N OB

QOO FrPF O

~

14

17

QO FNOLPR O OO OoOkro OOk K

QO OFrDN OB

~

15
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Glycogen_Glu 89 90 56 57 58 48 50 39
c370 (MO0)

Glycogen_Glu 9 7 22 18 26 29 27 28
c370 (M1)

Glycogen_Glu 2 2 14 14 11 16 16 21
c370 (M2)

Glycogen_Glu 0 0 7 8 3 6 6 10
c370 (M3)

Glycogen_Glu 0 0 2 3 0 1 1 2
c370 (M4)

Glycogen_Glu 0 0 1 1 0 0 0 0
c370 (M5)

Table C.2  ODgoo for growth on co-substrates both with and without $3C-methanol

(average of two replicates)

(-) MeOH (+) MeOH

Time (hours) 0 24 48 72 0 24 48 72
Co-substrate

His 0.047 0.040 0.036 0.035 0.056 0.056 0.056 0.055
Tyr 0.055 0.049 0.048 0.046 0.056 0.060 0.059 0.052
Met 0.044 0.035 0.035 0.030 0.041 0.044 0.047 0.043
Arg 0.051 0.043 0.040 0.041 0.050 0.049 0.053 0.052
Val 0.050 0.043 0.042 0.040 0.042 0.047 0.046 0.043
lle 0.043 0.037 0.038 0.035 0.037 0.042 0.045 0.042
Leu 0.043 0.037 0.037 0.036 0.045 0.051 0.055 0.052
Phe 0.041 0.038 0.036 0.037 0.047 0.053 0.056 0.054
Lys 0.042 0.044 0.042 0.039 0.041 0.048 0.053 0.052
Gly 0.045 0.049 0.048 0.049 0.048 0.060 0.064 0.066
Cys 0.045 0.051 0.047 0.048 0.044 0.046 0.042 0.041
Trp 0.047 0.061 0.053 0.058 0.047 0.068 0.060 0.063
Ser 0.042 0.062 0.063 0.060 0.048 0.071 0.070 0.068
Pro 0.042 0.043 0.042 0.044 0.048 0.057 0.066 0.065
Glut 0.049 0.055 0.059 0.059 0.051 0.069 0.076 0.078
Asn 0.044 0.050 0.057 0.063 0.044 0.059 0.070 0.079
Thr 0.041 0.047 0.048 0.049 0.047 0.074 0.087 0.090
Gln 0.044 0.084 0.117 0.146 0.043 0.080 0.130 0.173
Ala 0.040 0.089 0.332 0.296 0.039 0.175 0.384 0.373
Asp 0.049 0.085 0.202 0.446 0.050 0.111 0.318 0.596
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Ac 0.040 0.088 0.215 0.196 0.041 0.117 0.255 0.246

Pyr 0.037 0311 0.271 0.258 0.042 0.354 0.330 0.326
Suc 0.040 0.459 0.409 0.383 0.040 0.515 0.500 0.497
Xyl 0.041 0931 0.803 0.774 0.037 0.963 0.910 0.889
Gluc 0.041 1.166 1.088 1.046 0.042 1.244 1206 1.196

Table C.3  3C-labeling (%) in biomass components during growth on a co-substrate
and 3C-methanol after 72 hours for the non-degradable amino acids
(average of two replicates).

Co-substrate His Tyr Val Met Arg lle Leu Phe Lys

Avg 2 1 o0 1 3 1 1 2 2
Ala260(MO) 97 98 100 98 96 98 98 98 97
Alaégo(M1) 1 1 o 1 2 1 1 1 1
Alaégo(M2) 1 1 o 1 2 1 1 1 1
Ala6O(M3) 1 1 o o 1 1 1 1 1
Avg 1 0 0 0O 0 0 0 0 0
Val288 (M0O) 99 100 101 100 100 100 100 100 100
Val2g8(Ml) 0 0O 0O O 0 0 0 0 0
Val2g8(M2) O O O O 0 0 0 0 0
Vval2g8(M3) O 0O O O 0O 0O 0 0 0
Val2s8(M4) O O O O O O 0 0 0
Val2s88(M5) 0 0O 0O O 0O 0O 0 0 0
Avg o o0 o0 ©0 0 0 0 0 0
Leu274 (MO) 100 100 100 100 100 100 100 100 100
Leu274(M) O 0O O O O O 0O 0 0
Leu274(M2) O 0 O O O O 0O 0 O
Leu274(M3) O 0 O O O O 0O 0 0
Leu274(M4) O 0O O O O O 0O 0 O
Leu274(M5) O 0 O O O O 0O 0 0
Avg o o0 o0 ©O0 0 0 0 0 0
lle274 (MO) 100 100 100 99 100 100 100 100 100
le274(M1) 0 o0 0 1 0 0 0 0 0
Nle274(M2) O O 0O O 0 0 0 0 0
Mle274(M3) O O 0O O 0O 0O 0 0 0
Mle274(M4) O O 0O O 0 0 0 0 0
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116274 (M5)

Avg

Ser390 (MO0)
Ser390 (M1)
Ser390 (M2)
Ser390 (M3)

Avg

Thr404 (MO0)
Thr404 (M1)
Thr404 (M2)
Thr404 (M3)
Thr404 (M4)

Avg

Asp418 (MO0)
Asp418 (M1)
Asp418 (M2)
Asp418 (M3)
Asp418 (M4)

Avg

Glu432 (MO0)
Glu432 (M1)
Glu432 (M2)
Glu432 (M3)
Glu432 (M4)
Glu432 (M5)

Avg
RNA_Rib284
(MO)
RNA_Rib284
(M1)
RNA_Rib284
(M2)
RNA_Rib284
(M3)
RNA_Rib284
(M4)

Avg
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Glycogen_Gluc 21 27 23 19 20 20 16 17 17
370 (MO0)
Glycogen_Gluc 10 13 15 15 13 14 13 12 15
370 (M1)
Glycogen_Gluc 20 22 24 25 23 24 24 23 25
370 (M2)
Glycogen_Gluc 25 22 22 25 24 24 26 25 24
370 (M3)
Glycogen_Gluc 15 10 11 11 12 12 13 14 12
370 (M4)
Glycogen_Gluc 9 6 5 6 7 6 8 8 6
370 (M5)

Table C.4  3C-labeling (%) in biomass components during growth on a co-substrate
and BC-methanol at 72 hours for degradable amino acids (average of two
replicates)

Co-substrate Cys Trp Pro Gly Ser Glu Asn Thr GIn Ala Asp

Avg o 1 2 2 1 2 2 5 3 1 2
Ala260(MO0) 9 98 9 97 99 96 95 92 93 98 95
AlasoM) O 1 1 1 0 2 3 3 4 1 3
Ala260 (M2) 0

Ala260 (M3) 0

Avg

Val288 (M0)
Val288 (M1)
Val288 (M2)
Val288 (M3)
Val288 (M4)
Val288 (M5)

O OO OO kRrOo

Avg

Leu274 (MO)
Leu274 (M1)
Leu274 (M2)
Leu274 (M3)
Leu274 (M4)
Leu274 (M5)

o

O OO OO0oOkRrOo
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84

8
83

4
89

3
92
4

RNA_Rib284
RNA_Rib284

Avg
(MO0)
(M1)




RNARib284 3 4 6 6 5 6 6 10 8 6 6
(M2)
RNARib284 1 1 3 3 1 2 2 4 1 1 1
(M3)
RNARib28¢4 0 0 1 1 0 1 0 1 0 0 0
(M4)

Avg 12 15 36 41 19 28 25 35 19 18 12
Glycogen_Gluc 69 56 22 20 46 30 32 23 43 46 61
370 (M0)

Glycogen_Gluc 14 23 20 16 27 26 31 20 29 29 23
370 (M1)

Glycogen_Gluc 9 14 26 24 17 25 23 26 19 17 12
370 (M2)

Glycogen _Gluc 5 5 20 23 8 14 11 20 8 7 4
370 (M3)

Glycogen_Gluc 1 1 8 12 2 4 3 8 1 1 1
370 (M4)

Glycogen _Gluc 2 0 3 5 0 1 1 2 0 0 0
370 (M5)

Table C.5 C-labeling (%) in biomass components during growth on a co-substrate
and ¥ C-methanol at 72 hours for non-amino acids (average of two
replicates)

Co-substrate Ac Pyr Suc Xyl Gluc
Avg

Ala260(MO0)
Ala260 (M1)
Ala260 (M2)
Ala260 (M3)

P N OO B>~
O, N OB
O, WWON
OO WwWwwrRr
QOO

Avg

Val288 (M0)
Val288 (M1)
Val288 (M2)
Val288 (M3)
Val288 (M4)
Val288 (M5)

OOk WNOWw
OO OOoOFr ©WOo
O OO ON WP
O OO OWWwPEr
OO OON YO

N
o
=
=
=

Avg
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Leu274 (MO)
Leu274 (M1)
Leu274 (M2)
Leu274 (M3)
Leu274 (M4)
Leu274 (M5)

Avg

11e274 (MO)
11e274 (M1)
11e274 (M2)
11e274 (M3)
11e274 (M4)
11e274 (M5)

Avg

Ser390 (MO0)
Ser390 (M1)
Ser390 (M2)
Ser390 (M3)

Avg

Thr404 (MO0)
Thr404 (M1)
Thr404 (M2)
Thr404 (M3)
Thr404 (M4)

Avg

Asp418 (M0)
Asp418 (M1)
Asp418 (M2)
Asp418 (M3)
Asp418 (M4)

Avg

Glu432 (M0)
Glu432 (M1)
Glu432 (M2)
Glu432 (M3)
Glu432 (M4)
Glu432 (M5)
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Avg 10 7 5 1 1
RNA Rib284 71 80 84 96 98
(MO)

RNA_Rib284 18 14 13 2 1
(M1)

RNA_Rib284 8 5 3 1 1
(M2)

RNA_Rib284 2 1 0 0 0
(M3)

RNA_Rib284 0 0 0 0 0
(M4)

Avg 23 21 11 6 2
Glycogen_Gluc 36 45 64 81 93
370 (MO0)

Glycogen Gluc 30 24 22 12 5
370 (M1)

Glycogen Gluc 20 18 9 5 2
370 (M2)

Glycogen_Gluc 11 10 4 2 0
370 (M3)

Glycogen _Gluc 3 2 1 0 0
370 (M4)

Glycogen_Gluc 1 1 0 0 0
370 (M5)
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Figure C.1 Yeast extract as a co-substrate results in improved growth when methanol
Is present. Growth was characterized in medium containing 1.5 g/L
glucose (A) or 1.5 g/L yeast extract with (dashed line) or without (solid
line) 60 mM 3C-methanol. A substantial improvement in growth was
observed when yeast extract was the co-substrate. Error bars indicate
standard error (n = 2).

o Fructose 6-phosphate

*C-labeling (%)
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Figure C.2 High *C-labeling is observed in fructose 6-phosphate, a key intermediate
in methanol assimilation via the RuMP pathway. 3C-labeling of fructose
6-phosphate was measured for the base strain grown on 1.5 g/L yeast
extract and 60 mM 3C-methanol at 24 and 48 hour timepoints. Error bars
indicate standard error (n = 2).
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Figure C.3 Amino acids are the major components of casamino acids, tryptone, and
yeast extract. The relative amount of amino acids, both as free amino
acids and in peptide form, was measured for casamino acids, tryptone,
and yeast extract. Amino acids composed >52% of the total dry weight.
Error bars indicate standard error (n = 4).
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Figure C.4 Casamino acids, tryptone, and yeast extract affect growth similarly when
methanol is present. The increase in ODsoo in the presence of methanol
was compared to control experiments without methanol. Error bars
indicate standard error (n = 2).
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Figure C.5 3C-methanol assimilation is enhanced when casamino acids, tryptone, or
yeast extract are used as co-substrates. 13C-labeling of biomass
components from *C-methanol was measured for each co-substrate at 48
hours. Error bars indicate standard error (n = 2).
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Figure C.6 Deletion of Irp has a similar effect as adding threonine to yeast extract in
the base strain. The base strain and the Alrp strain were both grown in 1.5
g/L yeast extract + 60 mM 3C-methanol, or 1.5 g/L yeast extract + 5 mM
threonine (Thr) + 60 mM *C-methanol. The *3C-labeling of RNA and
glycogen were measured by GC-MS. Adding threonine to yeast extract in
the base strain resulted in similar labeling as Alrp strain grown in yeast
extract alone as the co-substrate. Error bars indicate standard error (n =
3).
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Figure C.7 Yeast extract and threonine as co-substrates also results in improved
growth with methanol present. Growth of the base strain was
characterized in medium containing 1.5 g/L yeast extract and 5 mM
threonine with (dashed line) or without (solid line) 60 mM methanol. An
improvement in growth was observed when methanol was present. Error
bars indicate standard error (n = 3).

238



Appendix D
SUPPLEMENTARY DATA FOR CHAPTER 5

Table D.1  Metabolic network model used for 3C-metabolic flux analysis in M.
acetivorans. “2e” represents two electrons.

Glycolysis

(1) G6P (abcdef) <=> F6P (abcdef)

(2) FBP (abcdef) <=> F6P (abcdef) + P;

(3) FBP (abcdef) <=> DHAP (cba) + GAP (def)
(4) DHAP (abc) <=> GAP (abc)

(5) GAP (abc) <=> 3PG (abc) + ATP + 2e

(6) 3PG (abc) <=> PEP (abc)

(7) Pyr (abc) + 2ATP -> PEP (abc)

Pentose Phosphate Pathway

(8) Ru5P (abcde) <=> R5P (abcde)

(9) F6P (abcdef) <=> H6P (abcdef)

(10) FAH (a) + Ru5P (bcdef) <=> H6P (abcdef)
(11) RSP + 2ATP -> RuBP

(12) RuBP + CO2 -> 2 3PG

Amphibolic Reactions
(13) Pyr (abc) + CO2 (d) + ATP -> OAC(abcd)

TCA Cycle

(14) AcCoA (ab) + 2e <=>PFOR-C2 (ab)

(15) PFOR-C2 (bc) + CO2 (a) <=> Pyr (abc)

(16) OAC (abcd) + AcCoA (ef) -> Cit (dcbfea)

(17) Cit (abcdef) <=> ICit (abcdef)

(18) ICit (abcdef) -> AKG (abcde) + CO2 (f) + 2e

(19) AKG (abcde) -> SucCoA (bcde) + CO2 (a) + 2e
(20) SucCoA (abcd) <=> Suc (%2 abcd + %2 dcba) + ATP
(21) Suc (%2 abed + %2 dcha) <=> Fum (2 abcd + Y2 dcba) + 2e
(22) Fum (Y2 abcd + %2 dcba) <=> Mal (abcd)

(23) Mal (abcd) <=> OAC (abcd) + 2e

Fermentation Reactions
(24) AcCoA (ab) <=> Ac (ab) + ATP
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Amino Acid Biosynthesis

(25) Glu (abcde) + ATP + NH3z -> GIn (abcde)

(26) Glu (abcde) + AKG (fghij) -> CO2 (e) + Glu (fghij) + 2e + SucCoA(bcde)

(27) OAC (abcd) + Glu (efghi) -> Asp (abcd) + AKG (efghi)

(28) Thr (abcd) -> Gly (ab) + AcCoA (cd) + 2e

(29) Ser (abc) + THS <=> Gly (ab) + MEETHS (c)

(30) LL-DAP (% abcdefg + % gfedcba) -> Lys (abcdef) + CO2 (g)

(31) Asp (abcd) + 2 ATP + GlIn (efghi) -> Asn (abcd) + Glu (efghi)

(32) Cys (abc) -> Ala (abc)

(33) AKG (abcde) + 2e + NH3 -> Glu (abcde)

(34) Glu (abcde) + ATP + 2 2e -> Pro (abcde)

(35) Glu (abcde) + CO2 (f) + GIn (ghijk) + Asp (Imno) + AcCoA (pq) + 5 ATP + 2e ->
Arg (abcdef) + AKG (ghijk) + Fum (Imno) + Ac (pq)

(36) 3PG (abc) + Glu (defgh) -> Ser (abc) + AKG (defgh) + 2e

(37) Asp (abcd) + 2 ATP + 2 2e -> Thr (abcd)

(38) Asp (abcd) + Pyr (efg) + Glu (hijkl) + ATP + 2 2e -> LL-DAP (% abcdgfe + %
efgdcba) + AKG (hijkl)

(39) AcCoA(ab) + Pyr (cde) + Pyr (fgh) + + Glu (ijklm) + 2e -> lle (abgdeh) + CO>
(@) + CO2(c) + AKG (ijklm)

(40) Asp (abcd) + GAP (efg) + FBP (hijklm) + PEP (nop) + 2ATP + Glu (grstu) + 2e -
> GAP (klm) + DHAP (jih) + CO2 (a) + Phe (nopbcdefg) + AKG (grstu) + NH3

(41) Asp (abcd) + GAP (efg) + FBP (hijkim) + PEP (nop) + 2ATP + Glu (grstu) + 2e -
> GAP (klm) + DHAP (jih) + CO2 (a) + AKG (grstu) + Tyr (nopbcdefg) + NH3

(42) Asp (abcd) + GAP (efg) + FBP (hijklm) + PEP (nop) + GIn (grstu) + R5P(vwxyz)
+ Ser (aabbcc) + 4ATP + 2e -> GAP (klm) + DHAP (jih) + CO2 (a) + GAP (wzv)
+ Pyr (nop) + Glu (grstu) + Trp (aabbccybgfedcx)

(43) Ser (abc) + AcCoA (de) + 3 ATP + 4 2e + SO4 -> Cys (abc) + Ac (de)

(44) Pyr (abc) + Pyr (def) + Glu (ghijk) + 2e -> Val (abcef) + CO2 (d) + AKG (ghijk)

(45) AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + 2e -> Leu (abdghe) + CO2 (c)
+ CO; (f) + AKG

(46) Asp (abcd) + METHS (e) + AcCoA (fg) + ATP + 2e -> Met (abcde) + Ac (fg) +
THS

(47) R5P (abcde) + METHS (f) + GIn (ghijk) + 2 ATP -> His (edcbaf) + AKG (ghijk)
+22e+THS

Isoprene Synthesis
(48) AcCoA (ab) + AcCoA (cd) + AcCoA (ef) + 2 2e + 3 ATP -> IPP (bcfed) CO: (a)

Biomass Formation

(49) 0.49 Ala + 0.267 Arg + 0.27 Asn + 0.27 Asp + 0.087 Cys + 0.46 Glu + 0.46 GIn
+0.466 Gly + 0.076 His + 0.297 lle + 0.39 Leu + 0.343 Lys + 0.167 Met + 0.167
Phe + 0.205 Pro + 0.295 Ser + 0.301 Thr + 0.054 Trp + 0.172 Tyr + 0.356 Val +
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0.463 G6P + 0.552IPP + 0.069 GAP + 0.271 3PG + 0.206 OAC + 0.476 R5P +
31.214 ATP + 0.254 2e -> 31.214 ADP + 31.214 Pi + 37.1 Biomass

Methanogenesis

(50) E-CH3 (a) + CO (b) <=> AcCoA (b)
(51) CO2 (a) + 2 2e + THS <=> MEETHS (a)
(52) FAH (a) + THS <=> MEETHS (a)

(53) METHS (a) <=> MeCoM (a) + THS
(54) METHS (a) <=> E-CH3 (a) + THS

(55) MeOH (a) <=> MeCoM (a)

(56) MeCoM (a) + 2e <=> CHj4 (a)

(57) CO2 (a) + 26 <=>CO (1)

(58) MEETHS (a) + 2e <=> METHS (A)

Transport

(59) CO2 (a) -> CO2.ext (a)
(60) NHs.ext -> NHs

(61) SOgs.ext -> SO4

(62) MeOH.ext -> MeOH
(63) CH4 -> CHa.ext

Labeling dilution from CO2 and external acetate
(64) COz.unlabeled (abc) + CO; (def) -> CO- (abc) + CO2.out (def)
(65) AcCoA.unlabeled (ab) + AcCoA (cd) -> AcCoA (ab) + AcCoA.out (cd)

Table D.2  Results from *C-MFA of M. acetivorans grown on methanol and
methanol + acetate. The reaction numbers correspond to the reactions
listed in Table D.1. The fluxes are normalized to a methanol uptake rate
of 1000. 95% confidence intervals of fluxes (LB95 = lower bound, UB95
= upper bound) were determined by evaluating the sensitivity of the
minimzed SSR to flux variations. Data from a *3C-methanol + acetate
and methanol + [U-*C]acetate were fit simultaneously to estimate fluxes.

Condition Methanol Methanol + Acetate
SSR 132 262
Net Fluxes
Reaction No. Best Fit LB95 UB95 Best Fit LB95 UB95
(1) -2.5 -2.8 -2.2 -3.4 -4.2 -2.6
(2) 5.7 5.0 6.6 8.0 6.2 9.9
(3) -7.8 -8.9 -6.9 -10.9 -13.4 -8.4
(4) -5.7 -6.6 -5.0 -8.0 -9.9 -6.2
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(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)

-13.5
-18.9
21.0
3.2
3.2

0.0
0.0
21.3
54.9
54.9
7.4
7.4
7.4
0.0
0.0
0.0
14
1.4
-5.4
6.0
0.0
14.2
3.5
-1.0
1.8
1.4
2.6
36.5
11
1.4
3.9
5.1
1.8
1.6
0.9
0.9
0.3
3.1
1.9
2.1
0.9
0.4

-15.5
-21.3
18.4
2.8
2.8

0.0
0.0
18.7
48.4
48.4
6.5
6.5
6.5
0.0
0.0
0.0
13
1.3

5.3
0.0
12.4
2.6
-1.8
1.6
1.3
2.3
32.2
1.0
1.3
3.1
4.1
1.6
1.4
0.8
0.8
0.3
2.7
1.7
1.8
0.8
0.4

-11.9
-16.6
23.6
3.9
3.9

0.6
0.6
23.9
61.4
61.4
8.3
8.3
8.3
0.4
0.4
0.4
1.8
1.8

6.7
0.4
16.1
4.4

2.0
1.6
2.9
40.8
1.2
1.6
4.9
6.1
2.0
1.8
1.0
1.0
0.3
3.4
2.1
2.3
1.0
0.5

-19.1
-31.0
33.9
4.6
4.6

0.1
0.1
24.8
76.1
76.1
10.4
10.4
10.4
0.1
0.1
0.1
2.1
2.1

8.3
0.1
14.9
0.1
3.3
2.5
2.0
3.6
50.6
1.5
2.0
10.2
2.3
2.5
2.2
1.2
1.3
0.4
4.3
2.6
2.9
1.2
0.6

-23.5
-38.0
26.1
25
3.5
0.0
0.0
19.1
58.8
58.8
8.0
8.0
8.0
0.0
0.0
0.0
1.6
1.6

6.4
0.0
11.5
0.0
1.9
2.0
1.5
2.8
39.1
1.2
1.5
7.7
1.7
2.0
1.7
1.0
1.0
0.3
3.3
2.0
2.2
1.0
0.4

-14.7
-23.8
41.5
5.8
5.8

0.6
0.6
30.4
93.2
93.2
12.7
12.7
12.7
0.4
0.4
0.4
2.6
2.6
-5.8
10.2
0.4
18.6
14
4.2
3.1
2.4
4.4
62.0
1.9
2.4
12.6
3.8
3.1
2.7
1.5
1.6
0.5
5.2
3.2
3.5
15
0.7
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(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
Exchange Fluxes
(1)
3)
(4)
(5)
(6)
(8)
9
(10)
(14)
(15)
(17)
(18)
(20)
(21)
(22)
(23)
(24)
(29)
(50)
(51)
(52)
(53)
(54)
(59)

2.9
5.3
71.3
-284.3
3.2
-354.6
71.3
1000.0
645.4
71.3
-282.1
158.9
40.7
3.1
1000.0
645.4
8797.7

968.9
227.4
386.9
0.0
0.3
672.5
691.6
394.5
661.2
619.2
189.8
956.7
47.3
854.3
107.0
2.6
359.7
0.0
Inf
>1000
280.2
>1000
0.0
659.1

2.6 3.3
4.7 5.9
62.8 79.7
-288.3 -280.2
2.8 3.9
-367.0 -342.3
62.8 79.7
999.8 1000.2
633.0 657.7
62.8 79.7
-286.0 -278.2
148.2 169.7
35.9 455
2.7 3.4
999.8 1000.2
633.0 657.7
5976.4 10622.4
Not in model
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
0.0 Inf
1.6 Inf
1.6 Inf
0.0 Inf
0.0 0.9
507.1 Inf
396.9 Inf
0.0 Inf
0.0 Inf
0.0 9.2
0.0 Inf

4.1
7.4
103.7
-296.4
4.6
-394.0
103.7
1000.0
606.0
103.7
-288.5
122.5
56.5
4.3
1000.0
606.0
6824.3
194.5

>1000
>1000
>1000
0.0
Inf
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000
4.2
>1000
>1000
0.0
44.3
79.8
>1000
0.0
2.6
>1000

3.1
5.7
80.0
-306.9
3.5
-426.1
80.0
999.9
573.9
80.0
-297.3
93.9
43.6
3.3
999.9
573.9
6210.2
148.8

0.0
0.0
0.0
0.0
0.0
0.0
>1000
>1000
0.0
0.0
0.0
0.0
0.0
0.0
1.6
>1000
153.1
0.0
34.6
67.3
>1000
0.0
0.0
0.0

5.0
9.0
127.0
-285.8
5.8
-361.2
127.0
1000.1
638.8
127.0
-279.7
151.5
69.1
5.2
1000.1
638.8
8754.4
253.2

Inf
Inf
Inf
Inf
Inf
Inf
Inf
Inf
Inf
Inf
Inf
Inf
Inf
Inf
7.6
Inf
Inf
0.1
67.6
175.0
Inf
Inf
64.6
Inf
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(56) 841.1 0.0 Inf 562.8 0.0 Inf

(57) 830.1 103.4 Inf Inf >1000 Inf

(58) 4250 1524  >1000  Inf >1000  Inf

Table D.3  Mass isotopomer distributions from labeling experiments using *3C-

methanol, 3C-methanol + acetate, or methanol + [U-*C]acetate as
substrates.

Tracer 13C-Methanol 13C-Methanol Methanol + [U-

+ Acetate 13C]Acetate

Ala232 (M0) 395 60.6 49.5

Ala232 (M1) 434 275 15.3

Ala232 (M2) 125 9.3 27.8

Ala232 (M3) 3.9 2.2 5.4

Ala232 (M4) 0.7 0.4 2.1

Ala260 (M0)  38.6 58.7 48.8

Ala260 (M1)  42.0 28.1 15.6

Ala260 (M2)  14.0 9.9 27.5

Ala260 (M3) 4.4 2.8 5.7

Ala260 (M4) 0.9 0.5 2.1

Ala260 (M5) 0.1 0.1 0.3

Gly218 (M0) 735 75.1 54.0

Gly218 (M1) 183 17.0 34.1

Gly218 (M2) 7.0 6.8 9.2

Gly218 (M3) 1.2 1.1 2.7

Gly246 (M0)  70.1 72.1 53.2

Gly246 (M1) 205 19.0 34.0

Gly246 (M2) 7.7 7.4 9.6

Gly246 (M3) 1.5 1.3 2.8

Gly246 (M4) 0.2 0.2 0.4

Val260 (MO0) 27.2 49.9 39.7

Val260 (M1) 265 30.6 12.9

Val260 (M2) 32.0 14.2 20.0

Val260 (M3)  10.2 4.0 8.7

Val260 (M4) 3.3 1.1 14.6
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Val260 (M5)
Val260 (M6)

Val288 (MO0)
Val288 (M1)
Val288 (M2)
Val288 (M3)
Val288 (M4)
Val288 (M5)
Val288 (M6)
Val288 (M7)

Leu274 (MO)
Leu274 (M1)
Leu274 (M2)
Leu274 (M3)
Leu274 (M4)
Leu274 (M5)
Leu274 (M6)
Leu274 (M7)

116200 (MO)
116200 (M1)
116200 (M2)
116200 (M3)
116200 (M4)
116200 (M5)
116200 (M6)
116200 (M7)

11e274 (MO)
le274 (M1)
11e274 (M2)
le274 (M3)
11e274 (M4)
lle274 (M5)
116274 (M6)
l1e274 (M7)

Met218 (MO)
Met218 (M1)
Met218 (M2)
Met218 (M3)

0.6
0.1

26.9
25.8
31.5
11.2
3.6
0.9
0.2
0.0

23.3
155
25.6
24.6
7.9
2.5
0.5
0.1

25.8
15.4
26.4
24.6
6.1
1.4
0.2
0.1

23.2
15.6
25.7
24.6
8.0
2.5
0.5
0.1

25.9
25.6
34.9
9.6

0.2
0.0

48.8
30.5
14.8
4.4
1.2
0.3
0.1
0.0

42.8
30.0
18.1
6.6
1.9
0.5
0.1
0.0

47.3
29.7
16.3
5.2
11
0.3
0.0
0.1

42.6
30.2
18.1
6.7
1.9
0.5
0.1
0.0

36.9
35.3
20.0
5.8

3.0
1.1

39.5
13.0
19.9
8.8
14.3
3.2
1.2
0.2

35.0
13.7
12.6
14.2
10.2
11.0
2.4

0.8

38.7
12.1
11.8
14.4
9.8
11.2
1.6
0.6

34.7
13.6
12.6
14.2
10.2
11.3
2.5

0.9

50.0
13.9
28.3
5.1
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Met218 (M4)

Met320 (MO)
Met320 (M1)
Met320 (M2)
Met320 (M3)
Met320 (M4)
Met320 (M5)

Ser362 (MO0)
Ser362 (M1)
Ser362 (M2)
Ser362 (M3)

Ser390 (MO0)
Ser390 (M1)
Ser390 (M2)
Ser390 (M3)
Ser390 (M4)
Ser390 (M5)

Thr376 (MO)
Thra76 (M1)
Thr376 (M2)
Thr376 (M3)
Thr376 (M4)
Thr376 (M5)

Thr404 (MO0)
Thra04 (M1)
Thr4o4 (M2)
Thra04 (M3)
Thrao4 (M4)
Thr404 (M5)
Thr404 (M6)

Phe302 (M0)
Phe302 (M1)
Phe302 (M2)
Phe302 (M3)

Phe308 (MO)
Phe308 (M1)

3.4

22.7
24.0
33.3
12.9
5.3
1.4

32.4
43.7
17.3
6.6

30.7
41.4
18.4
7.3
1.9
0.4

31.5
41.1
18.0
7.0
1.8
0.1

31.2
39.7
19.0
7.4
2.1
0.5
0.1

67.6
22.4
8.3
1.7

22.6
14.6

1.7

324
33.5
22.0
8.4
2.8
0.7

52.3
30.7
13.0
4.0

49.7
30.7
13.7
4.5
1.1
0.3

50.3
30.4
13.3
4.4
1.1
0.6

48.8
30.8
141
4.6
1.3
0.3
0.1

69.4
21.1
7.9
1.5

39.9
29.4

2.3

44.4
16.0
28.0
7.2
3.5
0.7

43.6
18.8
28.9
8.6

41.0
18.2
27.6
8.8
3.6
0.8

41.9
18.4
26.7
8.4
3.4
1.2

41.3
19.0
26.6
8.5
3.6
0.8
0.2

52.6
33.9
10.6
3.0

35.1
11.8
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Phe308 (M2)
Phe308 (M3)
Phe308 (M4)
Phe308 (M5)
Phe308 (M6)
Phe308 (M7)
Phe308 (M8)

Phe336 (MO)
Phe336 (M1)
Phe336 (M2)
Phe336 (M3)
Phe336 (M4)
Phe336 (M5)
Phe336 (M6)
Phe336 (M7)
Phe336 (M8)
Phe336 (M9)

Asp302 (MO0)
Asp302 (M1)
Asp302 (M2)
Asp302 (M3)

Asp390 (MO0)
Asp390 (M1)
Asp390 (M2)
Asp390 (M3)
Asp390 (M4)
Asp390 (M5)

Asp418 (MO0)
Asp418 (M1)
Asp418 (M2)
Asp418 (M3)
Asp418 (M4)
Asp418 (M5)
Asp418 (M6)

Glu330 (MO0)
Glu330 (M1)
Glu330 (M2)
Glu330 (M3)

23.3
24.3
10.6
3.5
0.9
0.2
0.2

22.4
143
22.6
23.9
11.3
4.0
1.0
0.3
0.1
0.2

64.6
234
8.9
2.2

30.5
41.7
18.4
7.2
1.9
0.4

21.0
27.8
34.3
12.1
3.9
0.8
0.1

21.0
27.8
34.3
12.1

19.2
8.1
2.6
0.7
0.1
0.0
0.1

39.0
29.0
19.4
8.5
2.8
0.8
0.2
0.1
0.1
0.1

67.9
21.9
8.4
1.8

49.8
30.8
13.7
4.4
1.1
0.2

48.2
311
144
4.7
13
0.3
0.1

443
33.1
16.0
5.0

13.3
8.0
14.2
6.9
8.2
1.9
0.8

34.8
12.0
13.3
8.0
14.0
6.9
8.1
2.0
0.7
0.2

49.5
35.9
11.3
3.3

40.6
18.1
28.1
8.8
3.6
0.8

40.4
18.4
27.7
8.9
3.7
0.8
0.2

31.0
13.4
22.0
12.0
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Glu330 (M4) 3.9 13 16.2
Glu330 (M5) 0.8 0.2 4.0
Glu330 (M6) 0.1 0.0 1.4
Glu432 (M0) 185 38.8 275
Glu432 (M1) 255 325 13.4
Glu432 (M2)  32.8 18.7 21.9
Glu432 (M3)  15.1 7.2 11.8
Glu432 (M4) 6.0 2.2 17.1
Glu432 (M5) 1.7 0.6 55
Glu432 (M6) 0.4 0.1 2.3
Glu432 (M7) 0.1 0.0 05
Lys329 (M0)  25.3 45.3 38.2
Lys329 (M1) 257 317 15.0
Lys329 (M2)  31.3 16.0 19.9
Lys329 (M3) 125 5.2 9.5
Lys329 (M4) 4.1 1.4 12.9
Lys329 (M5) 1.0 0.3 3.4
Lys329 (M6) 0.3 0.1 1.1
Lys431 (M0) 225 40.1 34.1
Lys431l (M1)  24.4 31.6 16.2
Lys431 (M2)  30.1 18.3 19.9
Lys431 (M3) 148 7.1 10.5
Lys431 (M4) 5.9 2.3 12.9
Lys431 (M5) 1.7 0.6 4.3
Lys431 (M6) 0.4 0.1 1.7
Lys431 (M7) 0.1 0.0 0.4
Lys431 (M8) 0.0 0.0 0.1
Tyr302 (M0)  67.5 69.4 51.4
Tyr302 (M1) 225 21.2 34.9
Tyr302 (M2) 8.3 7.9 10.7
Tyr302 (M3) 1.7 15 3.1

248




QG6P

I 1000
34:04 ‘ mm 500
46+06 46+06 — 100
@ F6P H6P Ru5P
80+1.3 | - 20
-_—5
EBP 46+08
109+13 — 1
| | RSPy | —— 0
8.0+1.3 Ne—
DHAP GAF;\, 0.1+0.1
191+23
@3PG ;.4 RuBP
31.0+36
PEPD) co,
33.9+4.0 2064 5
104 + 12
~ Pyro MEETHS
76.1+8.8
288+ 5
248+2.9| PFOR-C2
co
76.1+88
ACEIAE e »AcCoAa—L METHS
Exchange 19427 < 104 £ 12
’.._\.“_ Cit 394 +17

OAC
2103 104+1.2 10412 MeCoM « MeOH

Mal ICit 606 +17 1000
21+0.3 ( 104+1.2

Arg
synthesis

Fum AKG 50.6+5.9 Glu CH,

01+01
Suc SucCoA

0.1+01
Figure D.1 Metabolic flux map for M. acetivorans grown on methanol and acetate.

Parallel labeling experiments were performed using **C-methanol +
acetate and methanol + [U-*C]acetate.
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