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Random sampling and model
competition for guaranteed
multiple consensus sets estimation
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Abstract
Robust extraction of consensus sets from noisy data is a fundamental problem in robot vision. Existing multimodel
estimation algorithms have shown success on large consensus sets estimations. One remaining challenge is to extract
small consensus sets in cluttered multimodel data set. In this article, we present an effective multimodel extraction
method to solve this challenge. Our technique is based on smallest consensus set random sampling, which we prove can
guarantee to extract all consensus sets larger than the smallest set from input data. We then develop an efficient model
competition scheme that iteratively removes redundant and incorrect model samplings. Extensive experiments on both
synthetic data and real data with high percentage of outliers and multimodel intersections demonstrate the superiority of
our method.
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Introduction

Robust extraction of consensus sets (CSs) from noisy data is

a fundamental problem in computer vision. Applications are

numerous, ranging from data parameterizations, to feature

extraction and 3-D reconstruction, and to frame-to-frame

motion segmentation.1–6 The problem is inherently challeng-

ing as multiple heterogenous models can coexist in the data.

An ideal estimator should be able to robustly handle multiple

challenges from both model and noise perspectives.

Figure 1 shows several typical data sets where reliable

model extraction can be difficult: the number of models is

generally unknown (Figure 1(a)), model size can exhibit

large variations (Figure 1(b), large and small triangles CS),

the data can contain a high percentage of outliers (Figure

1(c)), and multiple models can overlap (Figure 1(d)). Further-

more, many real-world problems can exhibit multiple

challenges at the same time. In this article, we focus on

extracting both large- and small-sized CS from the data. Here,

the size refers to the inliers ratio, that is, the ratio between the

number of inliers in CS over the total number of data points.

Since the probability of a random sample being an inlier of

a small CS would be much lower than it being an inlier of a

large CS, small CS extraction is particularly challenging.

Tremendous efforts have been made to resolve each or

combinations of these challenges.2–14 For example, random

sample consensus (RANSAC)3 is probably the most widely
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used technique that applies straightforward optimization

techniques to search for the best hypothesis. Although

highly successful, RANSAC assumes that data contains

only a single model and hence only extracts one model.

To extend the RANSAC for multimodel estimation, sequen-

tial RANSAC sequentially estimates the parameters of one

of the current best model and removes the inliers from the

data. The method is highly efficient but its heuristic ‘‘fit-

then-remove’’ procedure loses random sampling, the solid

theoretical basis of RANSAC,3 and the confidence of extrac-

tion degrades severely as more models get extracted.

It is also possible to apply RANSAC to simultaneously

extract multiple models. For example, multi-RANSAC7

asks the user to specify the model number which, in reality,

is generally unknown. Other approaches, such as Hough

transform (HT),2 randomized HT (RHT),4 mean shift

(MS)5,6 attempt to estimate the model number by finding

the local maximums (peaks) in parameter space. However,

if the data contains a high percentage of outliers, these

methods can easily fail due to the large number of peaks

caused by noise.

To address this challenge, J-Linkage10 adopts agglom-

erative clustering to group points that potentially belong to

the same model. Specifically, it attempts to construct the

sample sets such that neighboring points would be selected

with a higher probability. Such a sampling scheme, how-

ever, is biased and cannot guarantee that it can find small

CS from the input data. In fact, our experiments show that

this clustering procedure has a high risk of assigning out-

liers as clustered data. More recent solutions aim to

robustly estimate inliers scales15–20; however, they still

cannot guarantee that both big and small CS can be accu-

rately extracted. In essence, existing multimodel estimation

algorithms are highly successful on extracting large CS, but

they cannot guarantee the robustness on extracting small

CS when they coexist in the data sets.

Instead of customizing solutions to separately extract

small and large CS, we present a novel framework with

proved reliability to simultaneously extract both types of

CS. Our technique is based on smallest CS random sam-

pling, which we prove can guarantee to extract all CS larger

than the smallest set from input data. We then develop an

efficiently model competition scheme that iteratively

removes redundant and incorrect model samplings.

Extensive experiments on both synthetic data and real data

demonstrate that our approach can handle unknown model

number, a high percentage of outliers, large model size

variations, and multimodel intersections.

Random sampling and model competition

Our approach consists of two major steps: smallest CS

random sampling and global model competition.

Step one: Smallest CS random sampling

The objective of the sampling step is to guarantee all valid

models will be successfully sampled at least once. Here,

any model with higher inliers ratio above user specified

will be considered as a valid model. Many recent

approaches have modified the sampling strategy, for exam-

ple, by including user interactions, adding heuristics or

priors, and so on. For instance, J-Linkage10 and multi-

RANSAC7 construct the minimal sample sets in a way that

neighboring points are selected with higher probability.

The main issue with these sampling schemes is that they

destroy the randomness of sampling and hence no longer

guarantee to find models with largely scattered data points.

We believe that an unbiased random selection of individu-

als is very important for multimodel estimation. We there-

fore do not apply any strategy or prior information to

change, speed up or simplify the random sampling. Instead,

we apply the simple random sampling on the entire data.

Although standard RANSAC also adopt random sam-

pling, it takes the inliers ratio of the largest CS dynamically

to estimate the random sampling times. As a result, it can

only be used for single model estimation. In contrast, we

propose the following smallest CS sampling strategy to

guarantee that even the smallest model meeting our

requirement would be correctly sampled at least once.

Given input data fxigi¼1;:::;N of N points, our method

starts with randomly sampling a set of � model hypotheses

fMjgj¼1;:::;�. Different from RANSAC, we use S! to repre-

sent the probability of choosing an inlier from the smallest

required CS when a single data point is selected, so that the

probability that a point is an outlier is 1� S!. For given

sampling with � sample points, the probability of all points

Figure 1. Examples of challenges for multiple model estimation.
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are inliers is ð1� S!Þ� and the probability of getting at

least one outlier in that sample is 1� ð1� S!Þ�. With �
samples, the probability that all samples have at least one

outlier is
�

1� ð1� S!Þ�
��

. Finally, the probability that at

least one sample contains only inliers is

P confidence ¼ 1�
�

1� ð1� S!Þ�
��

(1)

To extract the correct model with enough confidence, the

value of probability P confidence is usually set as high value

like 99%. A common scenario is that S! is not known

beforehand where some low value can be given according

to different applications. Once we set a threshold S!, we can

solve for the required sampling times � from equation (1) as

� ¼ logð1� P confidenceÞ

log
�

1� ð1� S!Þ
�� (2)

Different from the single model RANSAC, the advan-

tage of using the above sampling times � is that we have a

probability of 99% to correctly sample every CS with

higher inlier ratio than S! at least once. In other words, the

proposed technique guarantees to extract every model with

a simple inliers ratio threshold S!.

Step two: Global model competition

The result of random sampling is a set of � model hypoth-

eses fMjgj¼1;:::;�. Our next step is to extract the global

optimal models iteratively from this data set.

Recall that algorithms such as J-Linkage10 propose to

merge models with small distance. However, these tech-

niques have a number of drawbacks: (1) Merging different

models means both optimal and suboptimal sampling of the

same model are combined. This increases the risk of bring-

ing outliers into the merged cluster. (2) Model merging will

only assign one data to one model, and therefore, it cannot

guarantee the correctness in the case of model intersection

where a data point can be associated with multiple models.

(3) The merge of multiple models loses the properties of

model sampling, that is, the confidence probability of the

merged model cannot be calculated. Rather than merging

models, we select the top competitive models through the

following global model competition scheme.

Given a set of � model hypotheses fMjgj¼1;:::;�, we

define the class of each hypotheses with the following four

categories:

Definition 1. Maximal model hypotheses (MMH). The

inliers of this hypotheses model only contain the largest

CS from one real model.

Definition 2. Redundant model hypotheses (RMH). The

inliers of this hypotheses only contain a part of CS from

one real model.

Definition 3. Intersected model hypotheses (IMH). The

inliers of this hypotheses contain the largest CS from one

real model, which shares part of inliers with other mod-

els due to intersection.

Definition 4. Noise model hypotheses (NMH). The

inliers of this hypotheses only contain gross outliers.

The objective of model competition is to extract the

MMH and IMH models completely and efficiently from

the entire model hypotheses fMjgj¼1;:::;�. Let f�jgj¼1;:::;�
denotes the set of inliers of model fMjgj¼1;:::;�. Our model

competition is composed by repeatedly selecting the pre-

emptive model with global maximal inliers ratio in each

iteration. Let  1 denotes the selected model at the first

iteration. We have

 1 ¼ arg max
j

cardð�jÞ
�

� �
; j ¼ 1; :::; � (3)

where cardð�jÞ denotes the number of elements of the

inliers set �j, and � denotes the total number of elements

of the entire input data.

If the inliers ratio of the selected model M 1
is higher

than the given threshold S!, then this model is more likely

to be sampled more than once during the initial � times

sampling while many possible non-optimal redundant

model hypotheses may coexist within the model set

fMjgj¼1;:::;�. To avoid selecting the RMH models, we

search through each of the rest model hypotheses and

update its unique inliers set in the current iteration as

�1
j ¼ �0

j ��0
j \� 1

(4)

Proposition 1 Equation (4) significantly reduce the

inliers of RMH model while maintaining the inliers of

MMH, IMH, and NMH.

Proof.
� If �0

j belongs to the MMH model, we have

�0
j \� 1

¼ ∅, and thus, equation (4) will not change

the inliers number of MMH model.

� If �0
j belongs to other non-optimal redundant sam-

pling RMH of model M 1
, then the intersection is

non-empty set, that is, ∃A 2 �1
j \� 0

;A∉∅. During

the model competition step, only the global optimal

sampling model with largest number of inliers will

be selected, and the overlapping inliers with other

RMH model are removed. As a result, the inliers

ratio of other RMH model will be significantly

reduced, and they will hardly be selected in the future

model competition iterations. In our experiment, we

observe that the inliers reduced ratio is usually over

90% by updating equation (4).
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� If �0
j belongs to IMH models, which has overlapping

inliers with � 1
. The intersection data will be

removed from �0
j , and the unique inliers of model

�0
j will be maintained. Considering the truth that two

straight lines intersect only in one point, and two

planes intersect only in line, the intersection between

two sets are usually small. As a result, different to the

RMH model, the majority part of the �0
j will be

maintained in this updating process.

� If �0
j belongs to NMH model, its original inliers ratio

will be lower than S!, and the updating will further

decrease its inliers. As a result, this model will still

have no chance to be selected in the model compe-

tition iteration.

Through iteratively selecting the most competitive model

and updating the rest of the model hypotheses, we can

reformat equations (3) and (4) as the following recursive

algorithm

 w ¼ arg max
j

cardð�jÞ
�

� �
; j ¼ 1; :::; �; �j∉f� ‘

g‘¼1;:::;w�1

(5)

�w
j ¼ �w�1

j ��w�1
j \� w

;�j∉f� ‘
g‘¼1;:::;w (6)

where cardð�jÞ denotes the inlier number of model

hypotheses fMjgj¼1;:::;�, � denotes the number of elements

of the entire input data, and � denotes the total number of

model hypotheses. f� ‘
g‘¼1;:::;w�1 represents the selected

prominent model in the previous w iterations. Thus, only

one with largest inliers ratio among the rest model hypoth-

eses can be selected.

The confidence of each output model can be calcu-

lated as

P w

¼ 1� 1�
cardð�0

 w

Þ
�

0
@

1
A
�

0
B@

1
CA
�

(7)

where �0

 
w

is the inliers number of selected model  w, and

the superscript zero represents a model being selected.

Rather than using its updated inliers at w times iteration,

its original overall inliers will be used to compute the

model probability. The model competition iteration will

finish when no new model with sufficient unique inliers

is found. Based on the above algorithm, we can automati-

cally determine the model number.

Our iterative model competition process is highly effi-

cient. In our experiments, we find that over 95% of the total

computation time is used for generating sufficient model

hypotheses via random sampling and only 5% of the time is

used for model competition. As we have mentioned in the

previous section, random sampling can be easily speed up

via parallel processing. Therefore, our scheme can be

potentially used on applications that demand real-time per-

formance. The complete random sampling and model com-

petition algorithm is shown in Table 1. The parameters of

the remaining models in each iteration step are recomputed

after choosing the most prominent model.

It is important to note that we do not impose any prior

information about the model number. Instead, any model

with higher inliers ratio above user specified S! will be

considered as an interest model, and will be extracted with

a sufficient high confidence P confidence by our method.

Regarding other factors such as large size variations, a

high percentage of outliers, and model intersection, recall

that the small-scale model with a small number of liners

and a high percentage of outliers may be easily lost in

previous approaches. We believe an unbiased random sam-

pling is the key to conquer these challenges. By applying

simple random sampling on the entire data, our technique

guarantees that every model that is larger than the smallest

scale will be extracted.

Experiments

In this section, we first compare our random sampling and

model competition (RSAMC) with sequential RANSAC,

HT,2 and J-Linkage,10 and then, we test our approach in

challenging real data, including point cloud 3-D plan fit-

ting, and multiobject matching. We choose these tech-

niques as bench as for a number of reasons: The

sequential RANSAC is based on single model RANSAC,

which has similar probability foundation like our approach.

The HT2 represents the kind of methods, such as RHT4 and

Table 1. The complete random sampling and model competition
algorithm.

Input: data points, model confidence P confidence, and mini inliers
ratio threshold S!

1. Random sampling
1.1 Independent random sampling with uniform probability on

the entire data
1.2 Initialize the model set with its inliers error tolerance
1.3 Repeat from step 1.1 until sufficient sample times � of

equation (2) has been reached
2. Model competition

2.1 Choose the most prominent model  w with largest inliers
ratio by equation (5).

2.2 Calculate the confidence P w
of selected model  w by

equation (7)
2.3 If P w

� P confidence

Recompute the selected model set f� ‘
g‘¼1;:::;w with �w

Recompute the inliers of remainder models f�jgj¼1;:::;�, and
�j∉f� ‘

g‘¼1;:::;w by equation (6)
2.4 Repeat from step 2.1 until P w

< P confidence, which means
none model with sufficient high confidence can be found.

Output: a set of models f� ‘
g‘¼1;:::;w with confidence probability

fP ‘
g‘¼1;:::;w
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Figure 2. Star 5 data set with Gaussian noise (�n ¼ 0:0075) and increased gross outliers (gross outliers ratio ¼ 0%, 50%, 75%, 90%).
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Figure 3. Star 11 data set with Gaussian noise (�n ¼ 0:0075) and increased gross outliers (gross outliers ratio ¼ 0, 50, 75, 90%).
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MS5 in parameter space. The J-linkage10 is one of the most

popular approaches for the multiple model estimation.

Notice that our technique does not aim to resolve the model

finesse problem, we did not compare with approaches that

address the model inliers scale estimations.15–19

Line fitting

The results on synthetic data with multiple models,

increased outliers, and model intersection are reported in

Figures 2 and 3. We observe that all four methods produce

Figure 5. 3-D reconstruction data set. 3-D plane CSs by our RSAMC is displayed in different colors. CSs: consensus sets; RSAMC:
random sampling and model competition.

Figure 4. Kite 6 data set with large model scale changes and multiple model intersections.
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the correct results with gross outliers ratio less than 50%.

However, both HT (Figures 2(b) and 3(b)) and J-Linkage

(Figures 2(d) and 3(d)) fail when the outliers ratio reaches

90%. The sequential RANSAC can produce correct result

with five lines (Figure 2(c)). However, when the number of

lines increases to 11, the sequential RANSAC fails (Figure

3(c)) due to a high percentage of outliers.

Figure 4 shows the results on Kite data with large model

size variations. Both big and small CS are included in these

data (Figure 4(a)), that is, large triangle and small triangle.

All method successfully find the large CS. However, HT

fails to detect the small-scale model in parameter space,

and both sequential RANSAC and J-Linkage lose one small

CS (Figure 4(c), Figure 4(d), top line of the small triangle).

RSAMC is the only one that works correctly in all the

experiments (Figures 2(e), 3(e), and 4(e) and (f)). We

believe that it is because RSAMC guarantees the confi-

dence probability to extract even the smallest CS.

Plane fitting for 3-D reconstruction

Range data acquired by Laser sensor or multiview recon-

struction usually contain fewer gross outliers but a high

percentage of pseudo outliers caused by multiple scene

structures. Figure 5 shows the results of fitting planes to

a couple of 3-D points.21 The ‘‘Piazza Dante’’ data includes

Figure 6. ‘‘Google SketchUp Data’’ data set with houses in urban scenes. 3-D plane CSs by our RSAMC are displayed in different views
and colors. RSAMC: random sampling and model competition.
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2971 points constructed from 39 camera views, and the

‘‘Pozzoveggiani’’ data contains 11094 points captured by

48 cameras. Our approach can extract both large walls and

small structures correctly. 3-D points that belong to the

same plane are visualized by the same color, as shown in

the right column of Figure 5.

Figure 6 displays a house data set from Google

SketchUp22 of urban scenes in the first column. Two views

of our plane fitting results are shown in the second and third

columns. Large model size variations and multiple model

intersection appear frequently in this data set. Nevertheless,

our approach can robustly extract the large walls as well as

small ceilings and side walls.

Feature matching

In Figure 7, we apply our proposed approach to obtain

homography of multiple objects through scale invariant

feature transform (SIFT) feature correspondences. The

building images in Figure 7(a) come from the visual geome-

try group at Oxford, and the books images in Figure 7(b)

and (c) are captured by our group using the Cannon

Marker III camera. Four books are captured at different

poses and positions. Our approach successfully handles

both gross and pseudo outliers in the initial local feature

correspondences. It further extracts all CS correctly, as

shown by different color points in Figure 7(c).

Some further discussions

In this section, we discuss the difference between our

approach and sequential RANSAC, since it also removes

inliers assigned to estimated models. A sequential

RANSAC method extracts multiple models by repeating

two steps: RANSAC model extraction and removal of

inliers from the point set. One major disadvantage of this

method is that removal of incorrect inliers, which is caused

by misclassification, may seriously impact the subsequent

Figure 7. Homography estimation and segmentation of multiobject by RSAMC. RSAMC: random sampling and model competition.
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RANSAC process. In other words, the wrong model choice

in the previous step will lead to failure of subsequent model

extraction. Another disadvantage of the sequential RAN-

SAC is that it may fail when a point set contains multiple

intersecting models with limited sizes. For instance, in the

case of 2-D point set with multiple intersecting lines, the

sequential RANSAC will extract a plane with maximal

inliers, and then remove all inliers even include those inter-

secting inliers of other planes. As a result, other plane with

limited size may not be extracted, as shown in Figure 4(c).

We believe that the essential reason of the sequential

RANSAC’s disadvantages arises from its greedy ‘‘fit-

then-remove’’ strategy, which destroy the randomness of

sampling, and hence no longer guarantee to find all models.

In contrast, our smallest CS method is based on unbiased

random sampling on the entire point set, even the smallest

model with limited size would be correctly sampled at least

once by our approach. In addition, we also develop an

efficient model competition scheme, which can iteratively

remove the redundant and incorrect model samplings. As a

result, we can avoid the disadvantages of sequential RAN-

SAC and guarantee to extract all model larger than the

smallest model correctly.

Conclusions

We have presented a simple but effective method for multi-

model estimation. At the core of our work is a smallest CS

random sampling scheme and a global multimodel compe-

tition algorithm. We have proved that our techniques are

guaranteed to extract both large and small CSs from data.

Experimental results on challenging synthetic data and real

data demonstrate the robustness of our method.

There are many future directions that we plan to

explore. In our algorithm, the distance threshold for model

inliers is uniform across all models. In reality, the thresh-

old should adapt to model scales. As immediate future

work, we will explore integrating our solution with robust

inliers scale estimation15–20 to dynamically adjust the

threshold. We also plan to valid our technique on several

real-world problems, such as video surveillance. In par-

ticular, it will be highly useful to customize a robust

model fitting framework to conduct scene motion flow

segmentation and clustering in dynamic environment

where our solution is effective.
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