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Abstract

Differentiation matrices obtained with infinitely smooth radial basis function (RBF) collo-
cation methods have, under many conditions, eigenvalues with positive real part, preventing
the use of such methods for time-dependent problems. We explore this difficulty at theoretical
and practical levels. Theoretically, we prove that differentiation matrices for conditionally
positive definite RBFs are stable for periodic domains. We also show that for Gaussian RBFs,
special node distributions can achieve stability in 1-D and tensor-product nonperiodic domains.
As a more practical approach for bounded domains, we consider differentiation matrices based
on least-squares RBF approximations and show that such schemes can lead to stable methods
on less regular nodes. By separating centers and nodes, least-squares techniques open the
possibility of the separation of accuracy and stability characteristics.
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1 Introduction

RBFs are increasingly being used in the numerical solution of partial differential equations [1, 2,
3, 4, 5], and are a viable alternative to more traditional methods, such as finite differences, finite
elements, and spectral methods. RBF-based methods have several attractive features, most notably
fast convergence (exponential for some cases) and the flexibility in the choice of node location. In
the presence of rounding errors, however, it is often difficult to obtain highly accurate results –
see, e.g. [5, 6, 7]. For time-dependent problems, in particular, differentiation matrices often have
unstable eigenvalues requiring severe dissipation in time. In this article we are concerned with
finding effective ways to solve time-dependent problems using RBFs.

Given a set of centers xc
0, . . . , x

c
N in Rd, an RBF approximation takes the form

F (x) =

N
∑

k=0

λk φ
(

‖x− xc
k‖
)

, (1)

where ‖ · ‖ denotes the Euclidean distance between two points and φ(r) is a function defined for
r ≥ 0. The coefficients λ1, . . . , λN may be chosen by interpolation or other conditions at a set of
nodes that typically coincide with the centers. In this article, however, we may allow node and
center locations to differ. Common choices for φ fall into two main categories: infinitely smooth
and containing a free parameter, such as multiquadrics (φ(r) =

√
r2 + c2), inverse quadratics

(1/(c2 + r2)) and Gaussians (φ(r) = e−(r/c)2); and piecewise smooth and parameter-free, such as
cubics (φ(r) = r3) and thin plate splines (φ(r) = r2 ln r).

Although several authors have investigated RBF-methods for time-dependent problems [2, 3, 8],
these methods remain underdeveloped compared to those for elliptic problems. In this article we are
particularly interested in using the method of lines. In periodic regions, like the unit circle and the
unit sphere, we prove in section 2.2 that RBF methods are time-stable for all conditionally positive
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definite RBFs and node distributions. However, in nonperiodic domains experience suggests that
RBFs will produce discretizations that are unstable in time unless highly dissipative time stepping
is used.

In [9] we exploited a connection between Gaussians RBFs (GRBFs) in 1-D and polynomials.
Using standard tools of potential theory, we found that GRBFs are susceptible to a Runge phe-
nomenon. Moreover, we found that the use of GRBFs with arbitrary nodes may lead to very large
Lebesgue constants, making it difficult to obtain very accurate approximations. Using potential
theory, however, one can obtain stable nodes that prevent the Runge phenomenon and allow stable
approximations. One way to stabilize RBF-approximations for time-dependent problems is to use
these special nodes to generate differentiation matrices, as we show in section 3.

Stable nodes, however, are not known for general regions in high dimensions and are not suitable
for adaptive resolution. A viable alternative for stabilizing RBFs in time-dependent problems is the
use of least-squares techniques. In section 4 we explore a discrete least-squares method that has the
simplicity of collocation for nonlinearities and the like, yet allows stable explicit time integration.
Section 5 contains our final remarks.

2 RBFs and the method of lines

The method of lines refers to the idea of semidiscretizing in space and using standard methods for
the resulting system of ordinary differential equations in time. A rule of thumb is that the method
of lines is stable if the eigenvalues of the spatial discretized operator, scaled by the time-step ∆t,
lie in the stability region of the time-discretization operator, although in some cases the details of
stability are more technical and restrictive [10].

2.1 Unstable eigenvalues: A case study

Consider as a test problem the transport equation,

ut = ux, −1 ≤ x ≤ 1, t > 0 (2)

u(t, 1) = 0, u(0, x) = u0(x). (3)

A differentiation matrix for this problem can be easily obtained by noting that u = Aλ and ux =

Bλ, where A and B are matrices with elements Ai,j = φ(‖xi−xc
j‖) and Bi,j =

d

dx
φ(‖x− xc

j‖)
∣

∣

∣

∣

x=xi

,

xj are N + 1 collocation nodes, u and ux are vectors containing the RBF approximations of
the function u and ux at the collocation nodes, and λ is the vector of the coefficients λj . The

differentiation matrix is then given by D̃ = BA−1. In order to enforce the boundary condition,
assuming that xN = 1, we delete the last row and column of D̃ to produce a matrix we now call
D. This leads to the coupled system of ordinary differential equations

ut = Du. (4)

The difficulty of using the method of lines with RBFs for (2)-(3) with arbitrary nodes is that
some eigenvalues of the differentiation matrix may have positive real parts. This is illustrated in
Figure 1. This figure was obtained with GRBFs using coincident, equally spaced centers and nodes
in [−1, 1]. In Figure 1(a) the shape parameter is fixed, c = 1. Notice that for N = 5 all eigenvalues
have negative real part, but as N is increased eigenvalues move to the right half-plane making it
difficult to use explicit finite-difference methods for time integration. Similarly, in Figure 1(b) we
observe that, for fixed N , eigenvalues move to the right half-plane as c is increased. It is well known
that the limit c → ∞ is equivalent to polynomial interpolation so that the Runge phenomenon
causes instability. While experiments indicate that for a given N , the shape parameter c can be
chosen small enough that all eigenvalues will lie in the left half-plane, this requirement is rather
restrictive for large values of N – to the extent that spectral convergence seems to be compromised.
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Figure 1: Eigenvalues of D for GRBFs with equally spaced nodes in [−1, 1]: (a) c = 1; (b) N = 9.

2.2 Spectra in the absence of boundaries

In polynomial approximation, boundaries play a major role in stability. Similar observations have
been made experimentally in RBF approximation [11]. There is reason to think, then, that in the
absence of boundaries (e.g. the differentiation matrix D̃), eigenvalue stability is possible. In this
section we show that this is indeed the case.

We shall need the concept of conditionally positive definite functions. A radial function φ : R →
C is called conditionally positive definite of order m if for any set of distinct nodes x0, x1, ..., xN ,
and for all λ ∈ CN+1 \ {0} satisfying

N
∑

j=0

λjp(xj) = 0, (5)

for all polynomials p of degree less than m, the quadratic form

N
∑

i=0

N
∑

j=0

λ̄iλjφ(‖xi − xj‖) (6)

is positive [12]. In this case, it is common to augment expansion (1) with a polynomial of degree at
most m− 1 in order to impose (5). For the rest of this section we shall assume that interpolation
nodes and centers coincide, i.e., xj = xc

j . The augmented RBF expansion at these nodes takes the
form,

F (xi) =
N
∑

j=0

λjφ(‖xi − xj‖) +
m−1
∑

k=0

αkpk(xi), (7)

where {p0, p1, ..., pm−1} is a basis for the space of d-variate polynomials of degree at most m−1. At
this point we are interested in the spectrum of the finite-dimensional RBF operators that represent
a differential operator with constant coefficients L, like the Laplacian or a convection operator.

We can write (5) and (7) in matrix form,
[

A P
PT 0

] [

λ

α

]

=

[

F

0

]

, (8)

where the elements of A are Ai,j = φ(‖xi − xj‖), the elements of P are Pi,j = pj(xi), and
Fi = F (xi). An RBF discretization of the operator L can then be written as

L =
[

AL PL
]

[

A P
PT 0

]−1 [
IN+1

0

]

, (9)
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where AL
i,j = Lφ(‖x − xj‖)|x=xi

, PL
i,j = Lpj(x)|x=xi

, and IN+1 is the identity matrix of order

N + 1. We shall next show that the eigenvalues of L are purely imaginary if AL is antisymmetric,
and real if AL is symmetric. We point out that for positive definite RBFs, the restriction that L

must have constant coefficients can be dropped, and only linearity is needed.
Suppose that ν is an eigenvalue of L with eigenvector u. Then we have that

Lu = νu ⇐⇒ AL
λ + PLα = ν(Aλ + Pα) and P T

λ = 0.

Notice that λ
∗P = λ

∗PL = 0 and (6) gives λ
∗Aλ > 0, where ∗ denotes the complex conjugate

transpose. Therefore, we obtain

ν =
λ
∗AL

λ

λ
∗Aλ

,

and since A is symmetric,

ν̄ =
λ
∗(AL)T

λ

λ
∗Aλ

.

Thus if AL is symmetric, we have that ν = ν̄, and if it is antisymmetric, ν = −ν̄.
Gaussians and inverse quadratics are positive definite RBFs and multiquadrics are condition-

ally positive definite of order 1 [12]. Moreover, the matrix of elements
d

dx
φ(‖x− xj‖)

∣

∣

∣

∣

x=xi

is

antisymmetric. Hence, D̃ has only imaginary eigenvalues.
For conditionally positive definite RBFs, therefore, deviations of the spectrum from the imag-

inary axis occur when boundary conditions are enforced in D̃ to generate D. RBFs methods for
differential equations on the unit circle or unit sphere, on the other hand, are boundary-condition
free, making RBF methods suitable for time-dependent problems on such regions.

Differential equations with periodic boundary conditions on a interval of the real line can be
naturally mapped to a boundary condition free problem on the unit circle. For instance, solving
ut = ux with periodic boundary conditions in [0, 2π] is equivalent to solving ut = uθ on the unit
circle, where θ is the polar angle. Considering the norm ‖xi − xj‖ =

√

2 − 2 cos(θi − θj), one can
easily show, in light of the observations above, that the RBF differentiation matrix in this case has
only imaginary eigenvalues

Similarly, problems on the unit sphere are boundary-free. As an example, consider the convec-
tive test problem presented in [13],

ut + (cosα− tan θ sinϕ sinα)uϕ − (cosϕ sinα)uθ = 0, (10)

where α is constant and the spherical coordinates are defined by x = cos θ cosϕ, y = cos θ sinϕ,
and z = sinϕ. We again consider the Euclidean metric, so for nodes xj on the sphere, ‖xi−xj‖2 =
2− 2(cos θi cos θj cos(ϕi −ϕj) + sin θi sin θj). To demonstrate that explicit time integrators with a
positive definite RBF can be stably used for this problem, all is needed is to show that AL for the
operator L(·) = −(cosα− tan θ sinϕ sinα)∂ϕ(·) + (cosϕ sinα)∂θ(·) is antisymmetric. Notice since
this is not a constant coefficient operator, so imaginary spectrum can only be proved for positive
definite RBFs. Straightforward calculations show that

AL
i,j = −2

dφ(r)

dr2

∣

∣

∣

∣

r2=‖xi−xj‖2

(cosα cos θi cos θj sin(ϕi − ϕj) + sinα(cos θi sin θj cosϕi − cos θj sin θi cosϕj)) ,

which is indeed antisymmetric.
It is worth pointing out that the spectrum of D̃ in such conditions is sensitive to perturbations

on the nodes, i.e., small deviations of the set of nodes from the set of centers is likely to generate
unstable eigenvalues. In Figure 2 the spectra of two differentiation matrices are shown for the
periodic transport problem on the unit circle. Both matrices were obtained with equally spaced
centers and nodes, GRBFs, N = 13, and c = 1. In the first case we considered centers θc

j = 2πj/14,
j = 0, ..., 13, and nodes θj = θc

j . Imaginary spectrum is guaranteed in this case and the numerical
results agree with this prediction. In the second case we used θj = θc

j +0.01. The matrix obtained
in this instance has real eigenvalues as shown in the figure.

In the remainder of this article, we shall explore ways to stabilize RBF methods for time-
dependent problems with boundary conditions. We shall next study how the interpolation nodes
can be used to avoid unstable eigenvalues.
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Figure 2: Eigenvalues of D̃ on the unit circle with equally spaced centers and nodes: set of centers
and nodes coincide (◦); nodes are shifted 0.01 units from centers (+).

3 Gaussian RBFs as polynomials

For GRBFs with equally spaced centers in [−1, 1], i.e., xc
k = −1 + 2k/N = −1 + kh, k = 0, . . . , N ,

we have that (1) becomes

F (x) =
N
∑

k=0

λke
−(x+1−kh)2/c2

= e−(x+1)2/c2

N
∑

k=0

λke
(2kh−k2h2)/c2

e2kxh/c2

. (11)

Following [9], we make the definition β = 2h/c2 = 4/(Nc2) and use the transformation

s = eβx, s ∈ [e−β , eβ ],

to find that

G(s) = F (log(s)/β) = e−
N
4β

(log s+β)2
N
∑

k=0

λ̃ks
k = ψN

β (s)

N
∑

k=0

λ̃ks
k, (12)

where the λ̃k are independent of s. Throughout this section we assume that β is a fixed parameter.
Using the fact that G/ψN

β is a polynomial, in [9] we presented necessary conditions for uniform
convergence of the GRBF interpolation process. Specifically, if we let µ be the limiting node
density function [14] of nodes on [−1, 1] and define

uβ(z) =
β

4
Re
[

(z + 1)2
]

−
∫ 1

−1

log(|eβz − eβt|)µ(t)dt, (13)

then the GRBF interpolant converges exponentially to the target function, provided that this
function has an analytic extension in the largest region of the complex plane that includes all
level curves of uβ that cross the interval [−1, 1]. On the other hand, if the function being in-
terpolated does not satisfy this requirement, approximations lead to spurious oscillations whose
amplitude grows exponentially with N . This is analogous to the Runge phenomenon in polynomial
interpolation.

In [9] we also showed that one can find node distributions for which GRBF interpolation
converges whenever the target function is analytic on [−1, 1]. In Figure 3 we present plots of
these density functions for several values of β. Notice that for large β, the density functions
approximately constant except near the ends of the interval. For small β, on the other hand,
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Figure 3: Numerical approximations of the optimal density functions for several values of β. Dashed
line shows the Chebyshev density function.

density functions are close to the Chebyshev density function. In Figure 4 we show 21 nodes
generated with such density functions. For large β the nodes are nearly equally spaced and for
small β they are similar to Chebyshev extreme points [15].

As in polynomial interpolation, although convergence may be guaranteed for sufficiently smooth
functions for a given set of interpolation nodes, approximations may not converge in the presence
of rounding errors due to the rapid growth of the Lebesgue constant [16]. For GRBFs, we found
that under most conditions these constants grow exponentially with N . If nodes are obtained
with optimal density functions, however, the growth of these constants seems to be logarithmic [9].
In this article we shall see that these optimal nodes also lead to stable approximations for time
dependent problems.

3.1 GRBF differentiation matrices

Although the differentiation matrix for RBFs can be generated using the guidelines presented in
section 2, for GRBFs in 1-D with equally spaced nodes, we can derive an explicit formula for
the entries of the differentiation matrix. This approach circumvents the difficulty of inverting the
usually ill-conditioned interpolation matrix A.

Using the fact the GRBFs with equally spaced centers are polynomials in a transformed vari-
ables, we can find the entries of the differentiation matrix using the aid of Lagrange interpolation.
In [17] Berrut and Trefethen argue that the barycentric form of the Lagrange interpolation should
be the method of choice for polynomial interpolation. In order to differentiate GRBF interpolants,
consider the barycentric formula for the GRBF interpolant presented in [9],

F (x) = v(x)

N
∑

k=0

wk

(eβx − eβxk)
f(xk)

N
∑

k=0

wk

(eβx − eβxk)
v(xk)

. (14)

where the wk are the barycentric weights defined by

wk =









N
∏

j=0
j 6=k

e−
β
4
(xk+1)2

(

eβxk − eβxj
)









−1

(15)
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Figure 4: Node locations obtained using density function computed by solving an integral equation
for N = 20 and several values of β.

and

v(x) =
1

N

N
∑

k=0

e−
Nβ
4

(x−xc
k)2 .

From (14) the following expression for the GRBF cardinal function can be derived:

Lj(x) =
wjv(x)

eβx − eβxj

/

N
∑

k=0

wkv(xk)

eβx − eβxk
, x 6= xj , Lj(xj) = 1. (16)

We can rewrite (16) as

Lj(x) =
wjv(x)

si(x)

(

eβx − eβxi

eβx − eβxk

)

, (17)

where si(x) =
∑N

k=0 wkv(xk)(eβx − eβxi)/(eβx − eβxk). Multiplying both sides of (17) by si and
differentiating the resulting equation gives

L′
j(x)si(x) + Lj(x)s

′
i(x) = wj

(

v′(x)

(

eβx − eβxi

eβx − eβxk

)

+ v(x)

[

eβx − eβxi

eβx − eβxk

]′
)

.

Since si(xi) = wi and Lj(xi) = 0 for j 6= i, we have

L′
j(xi) =

βv(xi)e
βxiwj

(eβxi − eβxj )wi
. (18)

In order to derive an expression for L′
j(xj), notice that v(x) =

∑N
k=0 Lk(x)v(xk). Differentiating

v and solving the resulting equation for L′
j(xj) gives

L′
j(xj) =

v′(xj)

v(xj)
−

N
∑

k=0
k 6=j

L′
k(xj)

v(xk)

v(xj)
. (19)

Therefore, the entries of the first-order differentiation matrix are D̃i,j = L′
j(xi). This formula-

tion for D̃ is both far more robust than the one presented in the previous section and computa-
tionally more efficient. We point out, however, that in some cases it is necessary to rescale (15) to
avoid overflow [9].
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Figure 5: Error in the approximation of df/dx, where f(x) = 1/(1 + 25x2), using the barycentric
formulation for D (•) and the standard RBF algorithm (∗).

In Figure 5 we present the error of the approximation of df/dx from values of f(x) = 1/(1+25x2)
at nodes in [−1, 1]. We used β = 2 and the nodes were generated with approximate optimal
density functions. We observe that the use of both stable nodes and the stable formulation for the
differentiation matrix permits convergence to machine precision, while the use of differentiation
matrices obtained with the standard algorithm presented in section 2 gives very poor results for
large N . We point out that the need for stable nodes is due not only to the Runge phenomenon,
but also to avoid the rapid growth of the Lebesgue constants. In the presence of rounding errors, if
we were to approximate sin(πx) instead of f in the approximation problem above using equispaced
nodes, spectral convergence would be lost for N > 40 for the standard algorithm and for N > 65
for the barycentric algorithm with an minimum error of about 10−6, even though convergence
would be guaranteed for this function by Theorem 2.2 in [9].

To illustrate how optimal nodes stabilize RBF approximations of time-dependent problems, in
Figure 6 we show the behavior of the eigenvalues of the RBF differential matrixD with incorporated
boundary conditions. The matrix D was derived with the barycentric algorithm and β = 2. Now
all eigenvalues lie in left-half plane, so standard explicit time integration techniques can be used
together with this spatial approximation.

The spectral radius of D is shown in Figure 7 as a function of N for β =0.1, 1, and 10. Notice
that for large N , the spectral radius grows as O(N 2). We observe that for β = 10, the growth was
O(N) for several values of N , but for large N the effects of the rapid growth of the density function
near the boundary (see Figure 3) forces clustering of the nodes. The spacing between nodes for
large N near the ends of the interval is approximately O(1/N 2). The restriction on time-step sizes
for GRBFs on stable nodes, is therefore, similar to the one for polynomial approximation.

The results in this section extend immediately to tensor-product regions of uniform center
locations in higher dimensions. Although this type of region is usually of little interest to RBF users,
they help us to illustrate the fact that the location of collocation nodes can be used to stabilize RBFs
and improve accuracy. Figure 8 presents results for the convective test problem, ut = ux + uy, for
(x, y) ∈ [−1, 1]×[−1, 1] and t > 0, with initial condition u(0, x, y) = exp(−20((x−0.2)2+(y−0.2)2))
and boundary conditions u(t, 1, y) = u(t, x, 1) = 0. We used GRBFs with β = 2, 27 nodes, and
equally spaced centers. We can generate stable nodes in this square by taking the tensor product
of stable nodes in [−1, 1] (Figure 8(a)). In Figure 8(b) we show rescaled eigenvalues of the RBF
convection matrix when ∆t = 0.04. Notice that for stable nodes, they lie inside the fourth-order
Runge-Kutta region of stability; for equispaced nodes, however, some lie outside. Figure 8(d)
shows the computed solution with clustered nodes at t = 0.7 using fourth order Runge-Kutta.

8



−50 −40 −30 −20 −10 0
−200

−150

−100

−50

0

50

100

150

200

Re(z)

Im
(z

)

Figure 6: Eigenvalues of the GRBF differentiation matrix for β = 2 and stable nodes: N=30 (•);
N=50 (◦); and N=70 (∗).
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Figure 9: Spectra of differentiation matrices generated with multiquadrics and three sets of inter-
polation nodes: equally spaced (◦); Chebyshev (+); and GRBF stable nodes (∗).

Although asymptoticly stable nodes for other radial functions, like multiquadrics and inverse
quadratics, are not known, Figure 9 indicates that clustering of nodes may also be used to stabilize
discretizations obtained with these functions. This figure presents the spectrum of D obtained
with multiquadrics, shape parameter c = 1, equally spaced centers, N = 19, and three sets of
interpolation nodes. Notice that for Chebyshev and equispaced nodes the differentiation matrices
present unstable eigenvalues, but for GRBF stable nodes for β = 1, D has only eigenvalues with
nonpositive real part.

3.2 GRBFs and mapped polynomial methods

Since the early 1990s attention has been given to mapped polynomial methods, such as the one
introduced by Kosloff and Tal-Ezer [18]. The interpolant for mapped polynomial methods takes
the form

F (x) =

N
∑

k=0

λkPk(y),

where Pk form a polynomial basis and y is some function of x. The mapping proposed in [18] is

y =
1

ξ
sin(x sin−1 ξ), 0 < ξ < 1.

The stable interpolation nodes are thus given by Chebyshev nodes [15] in the variable y. The
parameter ξ controls the degree to which the grid is stretched under the mapping.

Different strategies to choose the parameter ξ have been proposed in the literature (see [19]
and references therein). The goal is to allow near-spectral convergence in space with a time-step
restriction of O(N−1). To achieve this objective one has to take ξ close to 1 as N is increased;
effectively one makes an explicit tradeoff between accuracy and stability.

According to (12), GRBFs with equally spaced centers can be seen as a mapped polynomial
method. We believe that in most cases, given β one can find ξ so that both methods present
similar convergence and stability properties. Figure 10 shows limiting node density functions for
the Kosloff-Tal-Ezer method. Comparing this with Figure 3, we see similar clustering behavior of
the density functions near ±1.
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Figure 10: Density functions for several values of ξ for the Kosloff-Tal-Ezer modified Chebyshev
method.

4 Least-squares approximations

Although the previous section presents an stable algorithm for Gaussian RBFs, stable nodes for
other radial functions, like multiquadrics, are yet not known. Moreover, the task of finding stable
nodes becomes more complex – perhaps impossible – in higher dimensions with complicated ge-
ometry. We propose using least-squares approximations to avoid this difficulty. In [20] Buhmann
presents several benefits of using least-squares instead of interpolation.

We seek least-squares approximations in a discrete norm. With this approach, given N + 1
centers, we select M nodes at which to compute the residual of the approximations; quadrature
nodes are one obvious choice. The goal is to minimize the norm of the residual

R(λ;x) = u(x) −
N
∑

k=0

λkφ(‖x− xc
k‖)

in the interior of the domain and enforce the boundary condition at boundary nodes.
Boundary conditions can be enforced weakly or strongly. In the first approach, the coefficients

λk minimize the residual in the interior and boundary; i.e., boundary conditions may not be
satisfied exactly at boundary nodes. In this case, a weighted norm may be used to penalize errors
at boundary nodes more heavily than at interior nodes [21]. We found that this technique may
require very large weights at the boundary to stabilize explicit RBF-based methods for time-
dependent problems, which in turn usually worsens the condition number of the matrices used in
the approximations. We believe that a more efficient way to use discrete least-squares is to enforce
boundary conditions strongly.

In order to derive a least-squares differentiation matrix, assume a general region in Rd and
Dirichlet boundary conditions. Given MI nodes in the interior of the domain, we can write the
norm of the residual at these points in matrix form,

R(λ) = ‖AIλ − uI‖. (20)

Here ‖ · ‖ is the discrete 2-norm in RMI and AI is the RBF evaluation matrix at interior nodes. If
in addition we have Mb nodes on the boundary, we require

Abλ = ub, (21)

where Ab is the RBF evaluation matrix at boundary nodes and u = [uI ,ub]
T is a vector containing

the values of the target function at the least-squares nodes.
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Figure 11: Eigenvalues of D for multiquadric RBFs with equally spaced centers: (a) c = 1; (b)
N = 13.

To solve this constrained least-squares problem, we use the method of direct elimination. The
method consists of reducing the number of unknowns in λ in order to satisfy the constraint equation
(21), and solving the resulting unconstrained reduced system through a QR factorization. The
details of the derivation that follows can be found in [22].

We start by computing the pivoted QR decomposition of Ab,

AbΠb = Qb

[

Rb1 Rb2

]

,

where Πb is a permutation matrix, Qb ∈ RMb×Mb is orthogonal, and Rb1 ∈ RMb×Mb is upper
triangular and nonsingular. Moreover, let

AIΠb =
[

AI1 AI2

]

,

where AI1 ∈ RMI×MB , and define ÂI2 = AI2 − AI1R
−1
b1 Rb2. The solution of the constrained

least-squares problem is then given by [22]

λ = Πb

[

Rb1 Rb2

0 RA

]−1 [
QT

b ub

QT
AuI

]

,

whereQARA is the reduced QR decomposition of ÂI2, QA ∈ RMI×(N+1−Mb) andRA ∈ R(N+1−Mb)×(N+1−Mb).
If we now let B be defined as in section 2, ux = Bλ, where here B can be rectangular, we have

D̃ = B Πb

[

Rb1 Rb2

0 RA

]−1 [
0 QT

b

QT
A 0

]

. (22)

Notice that D̃ is now an M ×M matrix. Boundary conditions can then be enforced by modifying
the matrix D̃ to reflect desired values of ub. For our test problem given by (2) and (3), we can
enforce (3) by simply removing the last column and row of D̃, as in section 2, to obtain the
matrix D. We point out that this method can also be used with other boundary conditions, like
Neumann boundary conditions, by modifying the constraint equation accordingly and minimizing
the residual at interior and boundary nodes.

Figure 11 presents the eigenvalues of the least-squares differentiation matrix for multiquadrics.
To generate this data we used twice as many nodes as centers. All numerical results presented
in this section were obtained with Chebyshev nodes (xj = cos(πj/(2N)), j = 0, 1, ..., 2N). This
choice of nodes is not required for stability and in several numerical tests equally spaced nodes were
successfully used. In Figure 11(a), we used shape parameter c = 1 and equally spaced centers. It
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Figure 12: Error in the approximation of df/dx, where f(x) = tanh(10x)− tanh(10), using multi-
quadric RBFs with equally spaced centers (∗) and imperfectly adapted centers (•).

can be observed in this figure that if N is increased, most the spectrum moves further to the left of
the imaginary axis. In Figure 11(b) we fixed N = 13 and varied c. All eigenvalues presented in this
plot allow stable explicit time integration. For instance, one could use fourth order Runge-Kutta
in time with ∆t = 0.13 if N = 13 and c = 1.

Two of the most important features of RBFs are their flexibility in the shape parameter and
center locations, compared to a standard polynomial basis. The centers locations can be exploited
to increase resolution in specific regions. For instance, the function f(x) = tanh(10x) − tanh(10)
varies sharply near x = 0 and is almost constant in other parts of the interval [−1, 1]. Therefore,
clustering centers more densely in the middle of the interval, one would expect to get better
accuracy. This is indeed the case, as shown in Figure 12. In this plot we compare derivative
approximations with equally spaced centers and adapted centers given by xc

j = (2/π) sin−1(−1 +
2j/N). As expected, the error decays faster if adapted centers are used. No unstable eigenvalue
was observed for all data presented.

The standard representations of smooth RBFs subspaces are in most circumstances ill-conditioned.
This would make continuation of Figure 12 to, say, 10−10 virtually impossible in double precision.
For GRBFs with equally spaced centers, however, well-conditioned representations can be com-
puted. In Appendix A we present an algorithm based on an Arnoldi-like iteration to generate
orthogonal basis for GRBFs with equally spaced centers. This approach also relies on a close
connection between GRBFs and polynomials. In Figure 13 the error of the approximations of
the derivative of f(x) = sin(πx) using GRBFs with β = 2 is presented. The least-squares dif-
ferentiation matrix was used for these approximations. Notice that the Arnoldi iteration permits
approximations close to machine precision, while convergence for the standard GRBF basis stops
with error of O(10−6).

Figure 14 shows the eigenvalues of the least-square GRBF differentiation matrix for β = 2 and
N =30, 50, and 70. The Arnoldi iteration was used to compute an orthogonal basis.

In Figure 15 we consider the numerical solution of the transport equation with initial condition
u0(x) = exp(−(5x − 3.5)10). In Figure 15(a) the exact solution is presented for t = 1 together
with two numerical solutions obtained with GRBFs and 20 centers. Basis functions were computed
with the Arnoldi iteration with β = 1. It can be observed that the least-squares method gives
slightly better results. For the least-squares approximations we used twice as many Chebyshev
nodes as centers. Figure 15(b) shows the maximum error, max |uexact(t, x)−uapprox(t, x)|, (t, x) ∈
[0, 1]×[−1, 1], for several values of N . In this instance the least-squares method and the collocation
method on GRBF nodes presented similar rates of convergence and errors. Fourth-order Runge-
Kutta was used for time-integration with time-step ∆t = 10−3.
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Figure 13: Error in the approximation df/dx, where f(x) = sin(πx), using an orthogonal basis
generated with an Arnoldi iteration (•) and the standard Gaussian radial basis (∗).
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Figure 14: Eigenvalues of the least-square GRBF differentiation matrix for β = 2: N =30 (•);
N =50 (◦); and N =70 (∗).
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Figure 15: (a) Solution of the transport problem at t = 1 using N = 20 centers: exact solution
(dotted line); least-squares method (solid line); and collocation method on GRBF nodes (dashed
line). (b) maximum error for several values of N obtained with the collocation method on GRBF
nodes (◦) and the least-squares method (∗).

To illustrate the least-squares scheme on 2-D regions, we solve the wave equation utt = uxx+uyy

with zero Dirichlet boundary conditions in a peanut-like region defined by parametric equations

x =
√

cos2 θ + 4 sin2 θ cos θ, y =
√

cos2 θ + 4 sin2 θ sin θ, 0 ≤ θ < 2π. Figure 16 presents the
eigenvalues of the Laplacian operator discretized with multiquadrics, shape parameter c = 1, and
200 uniformly spaced centers. Notice that if the collocation method is used with nodes that coincide
with centers, we obtain a matrix that has complex eigenvalues ( Figure 16(a)). Using the least-
squares method with 432 uniformly spaced nodes, on the other hand, one obtains a matrix with
almost purely real spectrum, as expected for the Laplacian, and smaller spectral radius.

Figure 17 presents the numerical solution of the wave equation with initial conditions u(0, x, y) =
exp(−30(x2 + (y − 1)2)) + exp(−50(x4 + (y + 1)4)), and ut(0, x, y) = 0. The least-squares method
was used together with a leapfrog discretization in time with time step ∆t = 0.01. Notice that
this time-discretization scheme for the second order derivative requires a purely real spectrum for
stability. A fine grid was used to plot the solution at t=0, 0.33, 0.66, 1.

5 Final remarks

Eigenvalue stability is a crucial factor in the usefulness of RBF discretizations for time-dependent
problems. In section 2 we proved that under mild conditions, RBF methods are eigenvalue stable
in the absence of boundaries, including methods on periodic domains. However, in the presence of
boundaries, RBF collocation is quite likely to be unstable.

In section 3 we showed that Gaussian RBF collocation is stable when special node distributions
are used in one dimension. As far as we know, this is the first conclusive demonstration that node
locations can eliminate instability asymptotically. While in principle this result should extend to
tensor product regions, there is probably little practical interest in implementing RBF methods in
such cases, since polynomials are also available.

For problems in complicated geometries, finding universally stable nodes for RBF collocation
seems daunting. In section 4 we proposed using least-squares approximations as the foundation
of a differentiation matrix. This offers the possibility of separating the requirements of accuracy
(governed mostly by the RBF centers) and stability (mandating clustering near boundaries). The
added flexibility can be used to adapt centers to data, or to use an Arnoldi-like iteration for eq-
uispaced centers to circumvent RBF conditioning issues. Differentiation matrices based on the
least-squares idea can incorporate boundary conditions strongly and remain as convenient as collo-
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Figure 16: Eigenvalues of the Laplacian operator on the peanut region discretized with multi-
quadrics: (a) collocation method on uniformly spaced nodes; (b) the least-squares method.
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Figure 17: Numerical solution of a vibrating peanut-like membrane using multiquadrics: (a) t = 0;
(b) t = 0.33; (c) t = 0.66; and (d) t = 1.
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cation methods for variable coefficients and nonlinearity. We have demonstrated that they remain
eigenvalue stable for widely different discretization parameters. A systematic exploration of their
accuracy and stability will be undertaken in future work.
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Appendix A

An Arnoldi-like iteration for GRBF approximations

The Arnoldi iteration has been widely used to construct orthonormal bases of the Krylov
subspaces, Span(b, Ab,A2b, ..., Anb), where A is a given matrix and b is a vector. In general, the
basis {b, Ab,A2b, ..., Anb} is computationally unstable, however, the Arnoldi iteration allows stable
computations. Notice that a new member of the GRBF basis can be constructed from an old one
through pointwise multiplication by a function of x. This is the starting point for our Arnoldi-like
iteration. The Arnoldi algorithm to produce an orthogonal GRBF basis on [−1, 1], {q0, q1, . . . , qN},
is depicted below:

q0(x) = exp(−Nβ(x+ 1)2/4)
q′0(x) = (−Nβ(x+ 1)/2)q0(x)
q0(x) = q0(x)/‖q0‖
q′0(x) = q′0(x)/‖q0‖
For k = 1 : N

v(x) = qk−1(x) exp(βx)
v′(x) = q′k−1(x) exp(βx) + βqk−1(x) exp(βx)
For j = 1 : k − 1

v(x) = v(x) − 〈qj , v〉qj(x)
v′(x) = v′(x) − 〈qj , v〉q′j(x)

end
qk(x) = v(x)/‖v‖
q′k(x) = v′(x)/‖v‖

end

In our implementation, the inner product 〈·, ·〉 is the usual discrete L2 inner product. The inner
most loop is the modified Gram-Schmidt orthogonalization. In some cases reorthogonalization may
be needed due to rounding errors. In this algorithm we also included the steps to generate the
derivatives q′j of qj .

If roundoff errors are not present, this algorithm reduces to a Lanczos-like iteration. For the
orthogonal basis {q0, . . . , qN} generated with the algorithm described above, there exist constants
ak and bk such that

sqk = ak−1qk−1 + bkqk + akqk+1,

where s = eβx. Furthermore, if β ¿ 1 then ak = O(β) and bk = 1 +O(β).
The three term formula can be easily verified since sqj ∈ Span{q0, . . . , qj+1}, which implies

that 〈sqk, qj〉 = 〈qk, sqj〉 = 0 if j+1 < k. Hence, sqk = ckqk−1 + bkqk +akqk+1 for some constants
ck, bk, and ak. And ck = 〈sqk, qk−1〉 = 〈qk, sqk−1〉 = 〈qk, ck−1qk−2 + bk−1qk−1 + ak−1qk〉 gives
ck = ak−1.

The bounds for bk can be obtained from

bk = 〈sqk, qk〉 =

M
∑

j=0

eβxjq2k(xj)dx,

which gives e−β ≤ bk ≤ eβ and bk = 1 + O(β) for β ¿ 1. Similarly, we can show that e−β ≤
‖sqk‖ ≤ eβ . Now using that this basis is orthonormal, we have |ak−1|2 + |ak|2 = |bk|2 − ‖sqk‖2,
and it follows that ak = O(β), for small β.
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We point out that for c > 0.7, a simple modification of (12) gives a well-conditioned GRBF
approximation,

F (x) = e−(x+1)2/c2

N
∑

k=0

λkTk

(

eβx − cosh(β)

sinh(β)

)

= e−
βN
4

(x+1)2
N
∑

k=0

λkTk

(

eβx − cosh(β)

sinh(β)

)

, (23)

where Tk is the kth Chebyshev polynomial. For smaller values of the shape parameter, however,
the exponential term in front of the sum becomes very close to zero for some values of x, to the
extent that accuracy is compromised. This is usually the case when the parameter β is fixed. Note
that in the limit c→ ∞, (23) becomes a sum of polynomials, in agreement with [11, 23].
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