

## Proceedings of the 1977 MACSYMA Users' Conference

 LexpreswHeld at
University of California
Berkeley, Califomia
July 27-29, 1977



## FOREWORD

The technical program of the 1977 MACSYMA Users' Conference, held at Berkeley, California, from July 27 to July 29, 1977, consisted of the 45 contributed papers reported in this publication and of a workshre. The workshop was designed to promote an exchange of information between implementers and users of the MACSYMA computer system and to help guide future developments.

The resporse to the call for papers has well exceeded the early estimates of the con erence organizers; anc che high quality and broad range of topics of the payers submitted has been most satisiying. A bibliograpky of papers concerned with the MACSYMA system is included at the end of this publication.

We would like to thank the members of the program comittee, the many referees, and the secretarial and technical staffs at the University of California at Berkeley and at the Laboratcry for Computer Science, Massachucetts Institute of Technology, for shepherding the many papers through the submisaion-to-pubilcation process. We are especially appreciative of the burden carried by V. Ellen Lewis of M.I.T. for serving as axpert in document preparation from computer-readable to camera-ready copy for several papers.

This conference originated as the result of an organizing session called by Joel Moses of M.I.T. at the 1976 ACM Symposium on Symbolic and Algebiaic Computation, at Yorktowr. Heights, New York, in August 1976. It owes its success to his continuing encouragements and efforts, not. to mention his intellectual and practical skills in keeping the MACSYMA project thriving.

We wish to acknowledge the kind cooperation of ACM, ACM-SIGSAM, the Electronics Research Laboratory and the Department of Electrical Engineering and Computer Sciences of the Universicy of California, the Laboratory for Computer Science of M.I.T., NASA Langley Research Center, and the E.S. Energy Research and Development Administration.

We wish to extend our gratitude to the Scientific and Technical Information Programs Division of the NASA Langley Research Center for publishing these proceedings.

Richard J, Fateman, Gf neral Chairman
Carl M. Andersen, rogram Comoftee Chairman

OFFICERS OF THE 1977 MACSYMA USERS' CONFERENCE

## General Chairman:

Richard Fateman, University of California, Berkeley

## Program Chairman:

Carl M. Andersen, The College of William and Mary in Virginia

## Program Committee:

Mary Ellen Brennan, Aesospace Corporation, Los Angeles
Jo Ann Howell, Los Alamos Scientific Laboratory, University of California
John Kulp, Research Laboratory of Electronics and Plasma Fusion Center, Massachusetts Instizute of rechnology

Toel Moses, Laboratory for Computer Science, Massachusetts Institute of Technology
Edward Ng , Jet Propulsion Laboratory, California Institute of Technology
David Stoutemyer, University of Hawaii

Editorial Comitree:
Carl M. Andersen, The Gollege of William and Mary in Virginia
Jeffrey Golden, Laboratory for Computer Science, Massachusetis Institute of Technology
John N. Shoosmith, NASA Langley Researich Center

- Treasurer:

Michael Genesereth, Harvard University and Massachusetts Institute of Technology

Local Arrangements:
Richard Fateman, Univessity of California, Berkeley

## PREFACE

Symbolic and algebraic manipulation enables one to do exact, symbolic mathematical computations on a computer. To illustrate the difference between rumeric and symbolic processing, consider a computer program (in oRTRAN, say) which, given the quantities $A, B$, and $C$, can apply the quadratic formula to aplroximate the roots of the quadratic equation $A *_{x} * * 2+B *_{x}+C=0$. The names $A, B$, and $C$, must of course correspond to numerical values at run-time. This is because the program has been written to provide numerical processing. If $A$ had as its run-tine value the expression " $Q$," $B$ had value " $(-P * Q-1)$," and C had value "P," the FORTRAN program would be useless. Nevertheless, by applying the quadratic formuld symbolically, the two roots $[-(-\mathrm{P} * \mathrm{Q}-1) \pm \mathrm{SQRT}(\mathrm{P} * * 2 * \mathrm{Q} * * 2+2 * \mathrm{P} * \mathrm{Q}+1-4 * \mathrm{P} * \mathrm{Q})] /(2 * \mathrm{Q})$ can be represented. By further efforts, this expression can be reduced to the set of values ( $P, 1 / Q$ ). This substitution (in this case, into the quadratic formula) and subsequent simplification are but two of the necessary operations in an algebra system. Some of the more elaborate facilities that can be built up (and have been, in MACSYMA) include partial differentiation, indefinite integration, inversion of matrices with symbolic coefficients, solution of polynomial equations, and manipulation of truncated power series. The range of capabilities can be seen in the papers -in this conference.

MACSYMA is a large symbolic and algebraic manipulation system which has been under development at the Laboratory for Computer Science (formerly Project MAC) of the Massachusetts Institute of Technology sirice 1969. The system has more than quintupled in size since the first paper describing it appeared in 1971. It is, by any measure, a rather lar,e program, and this makes it a challenging project from many points along the computer hardware-software spectrum. Some papers on the LISP system in these proceedings address this issue.

During the last several years, the community of users of the MACSYMA system has grown at an increasing rate; and because of the wide geographical range of the ARPA computer communication network of the Defense Conmunication Agency, there are now users from Hawaii. to Cambridge, England. Another contributing factor in the growth has been the ability of Joel Moses and his staff at the Laboratory for Computer Science to make available at relatively low cost the most versatile of algebraic manipulation systems currently implemented. Another is the synergistic effect of the community ltself: where the output of one person's program may be the input to the next person's, and where nearly instantaneous feedback on features and repair of bugs are the rule rather than the exception.

Many of the users of NACSYMA (including contributors to this conference) are also using or have used othar systems (ALTRAN, FORMAC, REDUCE, SAC-1, and SCRATCHPAD, to name a few) with symbolic and algebraic manipulation facilities. Many of the techaiques are not specific to MACSYMA, but are algebraic manipulation contributions independent of particular system context. Thus we view this conference as a collection of persons interested in advancing the field of inquiry in "symbolic and algebraic manipulation," and applying the fruits of this inquiry to other areas. We believe the papers bear out this view.

Until wacently, major funding for MACSYMA development has come from the Advanced I $\geqslant$ search Projects Agency, Department of Defense, under Office of Naval Research Contract N00014-70-0362-0006. More recent additions to the sponsors' ranks have come from agencies whose own personnel and contractors have used MAG:YMA. These include the U.S. Energy Research and Development Administration, the National Aeronautics and Space Administration, and the U.S. Navy. Combining resources to provide the unique facility of the MACSYMA Consortium, these sponsors have provided an invaluable resource.

Richard J. Fateman
General Chairman

## AUTHOR INDEX


Ivie ..... 317
CONTENTS
FOREWORD ..... iii
PREFAOE ..... v
AUTHOR INDEX ..... vii

1. MACSYMA'S SYMBOLIC ORDINARY DIFFERENTIAL EQUATION SOLVER ..... 1 Jeffrey $\boldsymbol{I}$. Golden
2. A PRǗriram for the solution cf integral equations ..... 11 Richard A. Bogen
3. SYMBOLIC LAPLACE TRANSFORMS OF SPECIAL FUNCTIONS ..... 21
Yannis Avgoustis
4. AN IMPROVED ALGORITHM FOR THE ISOLATION OF POLYNOMTAL REAL ZEROS ..... 43
Richard J. Fateman
5. 드́ating point isolation of zeros of a real polynomial via macsyma ..... 53 Bruce W. Char
6. freserving sparseness in miltivariate polynomial factorization ..... 55 Paul S. Wang
7. ON THE EQUIVALENCE OF PCLYNOMIAL GCD AND SQUAREFREE FACTORIZATION PROBLEMS ..... 65
David Y. Y. Yun
8. DIFFERENTIAL FORM ANALYSIS USIING MACSYMA ..... 71 Hugo D. Wahlquist
9. INDICIAL TENSOR MANIPULATION ON MACSYMA ..... 75
Richard A. Bogen and Rychard Pavelle
10. PURE FIELD THEORIES AND MACSYMA ALGORITHMS ..... 87 Wiiliam S. Ament
11. BLACK HOLES AND RELATIVISTIC GRAVITY THEORIES ..... 97
A. J. Fennelly and Richard Pavelle
12. the evaluation of atomic variables in macsyma ..... 109 Jeffrey P. Golden

- 

13. THE VARIETY OF VARIABLES IN MATHEMATICAL EXPRESSIONS ..... 123
Joel Muses
14. RATIONAL APPROXIMATION TO $e^{-x}$ WITH NEGATIVE REAL POLES ..... 131 Elizabeth Cuthill
15. TIMING FORMALAS FOR DISSECTION ALGORITHMS ON VECTOR COMPUTERS ..... 145 W. G. Poole, Jr.
16. SYMBOLIC CALCULATIONS IN A FINITE DYNAMIC ELEMENT ANALYSIS ..... 151 Kajal ${ }^{\prime} .$. Gupta and Edward W. Mg
17. SYMBOLIC MANIPULAIION TECHNLQUES FOR VIBRATION ANALYSIS OF Laminated elliptic plates ..... 161 C. M. Andersen and Armed K. Noor
18. OBSERVATIONS ON APPROXIMATE INTEGRATIONS ..... 177
Edward W. Jg
19. LISP: PROGRAM IS DATA - A HISTORICAL PEPSPECTIVE ON MACLISP ..... 181
Jun L White
20. LIISP: DATA IS PROGRAM - A TUTORIAL IN LISP ..... 191 Jon L White
2i. DATA REPRESENTATIONS IN PDP-10 MACLISP ..... 203
Guy Lewis Steele Jr.
21. FAST ARITHMETIC IN MACLISP ..... 215
Guy Lewis Steele Jr.
22. ON COMPUTING CLOSED FORMS FOR SUMMATIONS ..... 225
Robert Monck
23. INDEFINITE HYFERGEOMETRIC SUMS IN MACSYMA ..... 237
R. Wm. Gosper, Jr.
24. MODULAR POLYNOMIAL ARITHMETIC IN PARTIAL FRACTION DECOMPOSITION ..... 253
S. K. Abdali, B. F. Caviness, and A. Pridcr
25. A NEW ALGORITHM FOR THE IN EGRATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS ..... 263 Michael Rothstein
26. SUMMATION UF RATIONAL EXPONENTIAL EXPRESSIONS IN CLOSED FORM ..... 275 Joel Moses and Jacques Cohen
27. USER AIDS FOR MACSYMA ..... 277
V. Ellen Lewis
28. THE DIPFICULTIES OF USING MACSYMA AND THE FUNCTION OF USER AIDS ..... 291Michael s. Genesereth
29. AN AUTOMATED CONGULTANT FOR MACSYMA ..... 309
Michael R. Genesereth
30. A MACSYMA COMPUTER-ALGEDKA MOVIE DEMONSTRATION ..... 315
David R. Stoutemyer
31. SOME MACSYMA PROGRAMS FOR SOLVING DIFFERENCE EQUATIONS ..... 317
John Ivie
32. SOME COMMENTS ON SERIES SOLUTIONS ..... 327
Richard J. Fateman
33. POWER SERIFS SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN MACSYMA ..... 347
Edward L. Lafferty
34. RADICAL SIMPLIFICATION MADE FASY ..... 361
Richard E. B. Zippel
35. A CONSTRUCTIVE APPROACH TO COMMUTATIVE RING THEORY ..... 369 Davir A. Spear
36. REDUCTION OF THE EQUATION FOR LOWER HYBRID WAVES IN A PLASMA TO A NONLINEAR SCHRÖDINGER EQUATION ..... 377 Charles F. F. Karney
37. RAY TRAIECTCRIES IN A TORUS: AN APPLICATION OF MACSYMA TO A COMPLEX NUMERICAL COMPUTATION ..... 385 John L. Kulp
38. APPLICATION OF MACSYMA TO FIRST ORDER PERTURBATION THEORY IN CElestial mechanics ..... 395 John D. Anderson and Eunice L. Lau
39. SYMBOLIC COMPUTATION OF RECURRENCE EQUATIONS FOR THE CHEBYEHEV series solytion of ltadear ode's ..... 405 K. O. Geddes
40. $\sin (x)^{* *} 2+\cos (x)^{* *} 2=1$ ..... 425
David K. Stouteayer
4\%. MATRIX COMPUTATIONS IN MACSYMA ..... 435
Faul S. Wang
41. SYMBOLIC COIIFUTER VECTOR ANALYSIS . . . . . . . . . . . . . . . . . . . 447 David R. Stoutemyer
42. A NATURAL WAY TO DO SPATIAL LINEAR GEOMETRY II MACSYMA . . . . . . . 461 Juan Bulnes
43. VARIETTES OF JPERATOR MANIPULATION . . . . . . . . . . . . . . . . . 473 Alexander Doohovskoy
44. PROGRESS REPORT ON THE DETERMINANT OF A RANDOM MATRIX . . . . . . . . 491 F. A. Grünbauri

BIBLIOGRAPHY 493


# MACSYMA's Symbolic Ordinary Differential Enuation Soiver ${ }^{*}$ 

Jeffrey P. Golden
Laboratory for Computer Science
Massachusetts Institute of Technology


#### Abstract

This paper describes MACSYMA's symbolle ordinary differental equation solver ODE2. Although avallable in MACSYMA for apprnximately three years now, a paper descriting how to use it had never previously been written. Also, this paper showcases the code for this routine, which is of interest because it is writien in top-level MACSYMA language, and may serve as a good example of programming in that language. Other symbolic ordinary differential equation soivers are mentioned.


## 1. The ODE2 Package

MACSYMA's ordinary differential equation (ODE) solver CDE2 may te used for symbolically solving elementary ODEs of first and second order. It consists prinarily of a set of restines based on techniques described in reference 1 for Moses' SOLDIER ODE program, and in reference 2, whith had been used unt: recently as the major textbook in M.IT.'s iniroductery ODE course 18.03. The ODE2 package was written primarily by an MIIT. graciute sudent, Ben Kulpers, as a term project in a seminar on algebraic manipulation taught by Richard Fareman in the fall of $1972 \cdot 73$ It has since been maintained, modiffed, and improved by the author.

When the user calls the OOE 2 routine, eg. as followis:

(C2) ODE2 $(x, y, x)$;

[^0]the ODE package ODER LISF DSK SHARE Ior ODER FASL DSK SHARE if the user is using NEWIO MACSYMA) is automatically loaded in. Or, the user cain load it in by typing e.g. LOADFILE (ODEP, LISP, OSK, SHARE); For this example, after several out-of-core files are loaded in, the answer is obtained:


We see from this example how ODE? is used. r'amely, it takes three arguments: an ODE of ficst or second order (only the left hand side need be giver, if the right hand side is 0), the dependent variable, and the independent variable. When successful, it returns either an rxplicit or implicit solution for the dependent variabic. $C$ is used to represent the constant in the case of first order equations, and K1 and K2 the constants fc. second order equations. An alternative schame, whict: has been suggested, of generating sequences of constants, e.g. K1, K2, K3, ..., so that different : Jlutions might use different "constants", has not yet been implemented. If ODF2 cannot ojtain a solution for whatever reason, it returns FALSE, after perhaps printing out an error message to the user.

The methods implemented for first order equations in the ordur in which they are tested are: linear, exart - perhaps requiring an integrating factor, homogeneous, Bernoulli's equation, and a generalizt:d homogeneous method described in reference 1 .

For second order: constant coefficient, exack, linear homogeneous with mon-constant coefficients which can be transformed to constant coefficient, the Euter or equidimensional equation, the method of variation of parameters, and equations which are free of either the independent or of the dependent variable so that they cail be reduced to two first order linear equations to be solved sequentially.

In the cosrse of solying ODEs, seyeral variables are set purely for informational purpores: METHOD denrees the methed of solution useri e.g. LINERR, IMTFACTOR denotes any integrating factor used, OUEINDEX denotes the index for Bernoulli's method $a$ : for the generalized homogeneous method, and YP denotes the particular solution for the variation of parameters technique.

Since the code is written in top-level MACSYMA language, it may easily be extended not only by the author, but by other MACSVRA users as well. Indeed, there is much room for extension and improvement. The basic app oach used in ODE2 is a pattern-directed one relying heavily on the MACSYMA commands EXPAND, COEFF, FREEOF, DERIVDEGREE, HIPOW, and SUBST, and on the MACSYMA pattern matciar DEFMATCH in check ig for linearity. The basic power of the routine comes from MACSYMA's advanced indefinite integration package (ref. 3) and, of course, the INTEGRATE command is heavily used. Finally, basic restructurirg of expressions is needed throughour, and for this RATSIMP is used heavily.

In order to solve initial value problems (IVPs) and boundary value problems (BVPs), the routine IC1 is available for first order equations, and IC2 and BC2 written by David Stoutemyer for second urder IVPs and BVPs, respectively. They are used as in the following examples:
(C3) $\operatorname{IC1}(02, x=Y P 1, Y=0)$;
(D3)

$$
\cos (x)+1
$$

$\cos (x)+1$
3
X
(C4) $\operatorname{DIFF}(Y, X, 2) \bullet Y * \mathcal{D I F F}(Y, X)^{\wedge} 3=0 ;$
(D4)

(C5) JDE2 (X,Y,X);
(07)

$$
\frac{Y^{3}-6 K I Y-6 X}{3}
$$

(C8) RATSIMP(XC2(D7, X=0,Y=0, $\operatorname{DIFF}(Y, X)=2))$; 3
$2 Y-3 Y+6 X$
(D9)
3
(C10) EC2 (D7, $X=0, Y=1, X=1, Y=3)$;
3
$Y-10 Y-6 X$
(D11)
3
(The jumps in the line-number in the above examples are due to "hidden" calis to SOLVE.)
In order to see mrre clearly which methods have been implemented, a demonstration file is available. To run is the user may do DEMO(ODER, DEMO,DSK,SHARE); and follow the usual prescription for running DEMO files as noted in the MACSYMA Manual (ref. 4).

The ODE2 package was used heavily ir the work described by Richard Fateman in reference 5, in David Stoutemyer's OPTVAR variational optimization package, available via the SHARE file directory and described in reference 6, and in Stoutemyer's INTEQN integral
equation solver, implemented in MACSYMA by Richard Bogen, also available via the SF:ARE directos $y$ and described in reference 7.

## 2. Other Symbolic ODE Solvers

Another program for solving OnEs which uses a heuristic search approach, and is called EULE, is described in references 8 ,9. Its author, Peter Schmidt of the University of Bonn, West Germany, did not have access so a pouerful algebraic manipulation system and integration package such as with MACSYMA, so he was forced to implernent his cwn simplification routines and EULE does not solve the integrals generated in its solutions. EUL E solves only ODEs of the first urder. However, Schmidt ciaims a high success rate in this area. EULE does handle a few more first order cases than ODE2 currently does, e.g. Riccati equations, and EULE's heuristic techniques may enable it to solve some "interesting" ODEs; however, the author believes that ODE2 could handle all of these cases as well with at most a few more pages of MACSYMA code. In fact, since the simplification and transformation capabilities of MACSYMA are so much more powerful than those of EULE, in experiments run by the author it turned out that several ODEs which Schmidt claims required heuristics and substitutions of variables in EULE, were actually solvable in ODE2 by more elementary methods, e.g. integrating factors or the generalized homogeneous method (which is not used by EULE as such.) ODE2 is much more successful than EULE in using methois that are implemented in both. (It is interesting to note that ODE2's first order methods, while not nearly as extensive as EULE's, only amount to 70 lines of MACGYMA code. Of course, ODE2 has some second order methods as well, and these amount to 120 lines of MACSYMA code. I think this data offers an interesting measure of the power of MACSYMA! EULE which together with all of its components has been developed only for the purpose of solving ODEs consists of about 8500 PLII statements (ref. 8).) Schmidt tested EULE using iwo standard ODE tomes. A comparable test $r$ as not been done for ODE2.

Other methods for solving ODEs using MACSYMA have bein o: are being implemented. Richard Bogen wrote a routine in the MACSYMA language for solving ODEs and systems of ODEs using Laplace transforms. Its top-level routine is called DESOLVE ar:d it is described in the file SHARE;DESOLN USAGE. It may be loaded tnto MACSYMA by LOADFILE(DESOL音, LISP, DSK, SHARE);. DESOLVE may be used for initial value problems as well, and it can handie some equations of greater than secondi order.

Edward Lafferty is working on a package written in the MACSYMA language for solving ODEs in terms of power series. This work is described in reference 10. Indeed, Ben Kuipers, the primary author of ODE2, began a series solvei as well for Fateman's course.)

One project that yet remains (and which is urged often by Dave Stoutemyer) is to merge these three ODE solvers, using general analytical techniques, Laplace transforms, and series methods, respectively, into one versatile ODE solver so that the user can get the power of all three approaches in one routine.

I wish to thank Ellen Lawis ior her heipful assistance.

```
*)
APPENDIX
The MACCYMA code for ODE2 follows. (This code comes from the file JPG;ODER 27. Certain less important sections have been omitted.)
/* The Ordinary D:fferential Equation Solver.
This package consists primariiy of a set of routines taken from Moses' thesis and Boyce \& DiPrima for solving O.D.E.s of ist and 2nd order. The tep-leval rcutines are ODE2, IC1, IC2, and BC2. */
ODE2 (EQ, YOLD,\(X):=S U B S T(Y O L D, Y N E H, O D E 2 A(S U B S T(Y N E H, Y O L D, E Q), Y N E W, X)) \&\)
ODE2A(EQ, Y, X):=RLOCK \(\left[D^{2}, A 1, A 2, A 3, A 4, Q\right]\), IMTFACTOR: FALSE, METHOD: 'NONE, IF FREEOF( \({ }^{\prime}\) DIFF \((Y, X, 2), E Q\) )
THEN IF FTEST(ODE1(EQ, \(Y, X))\) THEN RETURN( \(Q\) ) ELSE RETURH(FALSE \()\), IF DERIVDEGREE(DE: EXPAND(LHS(EQ)-RHS(EQ)),Y,X) 2
THEN RETURN(FAILURE(MESI,EQ)),
A1: \(\operatorname{COEFF}\left(D E,{ }^{\prime} \operatorname{DIFF}(Y, X, 2)\right)\),
Az: \(\operatorname{COEFF}\left(\operatorname{DE}^{\prime} \mathrm{DIFPF}^{\prime}(Y, X)\right)\),
A3: \(\operatorname{COEFF}(C E, Y)\),
A4: DE - Al* \({ }^{\prime} \operatorname{DIFF}(Y, X, 2)\) - A2* \({ }^{\prime} \operatorname{DIFF}(Y, X)\) - A3*Y,
IF PR2(A!) ANO PR2( 12 ) AND PR2(A3) AND PR2(A4) AND
FTEST(HOM2 (A之, A2,A3,Y,X))
THEN IF A4=0 THEN RETURN(O) ELSE RETURN(VARP \((Q,-A 4 / A 1, Y, X))\), (F FTEST(REDUCE(EQ,Y,X)) THEN RETURN(Q) ELSE RETURN(FALSE))\&
ODE1(ET, Y, X): =BLOCK ([DE,F,G,O],
IF DERIVDEGREE(DE: EXPAND(LHS(EQ)-RHS(EQ)),Y,Y) 1
THEN RETURN(FAILURE(MES1,EQ)).
IF LINEAR2(DE, \(\operatorname{DIFF}(Y, X)\) ) = FALSE THEN RETURN(FAILURE(MES2,EQ)).
DE: SOLVEI(DE,'DIFF(Y,X)).
IF FTEST(SOLVELNR(DE, \(Y, X)\) ) THEH RETURN( \(Q\) ),
IF FTEST(INTFACTOR( \(G, F, Y, X)\) ) THEN RETURN(EXACT( \(O * G, O * F, Y ; X\rangle)\), /* LINEAR2 binds F and G *i
IF FTEST(SOLVEHOM(DE, \(Y, X)\) ) THEN RETURN(Q),
IF FTEST(SOLVEBERNOULLI(DE, \(Y, X)\) ) THEN RETUFN( \(Q\) ),
IF FTEST(GENHOM(DE,Y,X)) THEN RETURN(Q) ELSE RETURN(FALSE)):
\(\operatorname{PR2}(5):=\operatorname{FREEOF}(Y, \operatorname{DIFF}(Y, X), \operatorname{DIFF}(Y, X, 2), F) 8\)
FTEST(CALL):=IS(NOT((Q: CALL)=FALSE))
SOLVE1(EQ, Y): =
BLOCK([DIEPFLAG,EQ1],DISPFLAG: FALSE,EQ1:SOLVE(EQ,Y),FIRST(EV(EQI)))s
```

```
SOLVE2(EQ,Y):=BLOCK([DISPFIAG,EQ1],
    DISPFLAG:FALSE,EQ1:SOLVE(EQ,Y).
    IF NOT(LENGTH(EQ1)=1) THEN RETLRM{FAILURE(MES4,EV(EQ1))),
    FIFST(EV(EQ1)!)$
MATCHDECLARE([F,G],FREEOF(X))%
DEFMATCH(LINEAR2,F*X+G,X)%
/:% B&DiP, pp. 13-14 */
SOLVELHR(EQ,Y,K):=BLOCK([F,G,H],
    IF LINEAR2(RHS(EQ),Y) = FALSE THEN RETURN(FALSE),
    H: XE^(INTEGRATE(F,X)),
    METHOD: 'LINEAR,
    RETURH(Y=W*(INTEGRATE(G/H,X)+'C)))E
/* B&DiP.pp. 34-41 */
I*TTFACTOR(M,N,Y,X):=BLOCK([B1,B2,DMDX,DMDY,ONDX,DNDY,OD],
    DMDX: RATSIMP(DIFF(M,X)), OMDY: RATSIMP(DIFF(M,Y)),
    DNDX: RATSIMP(DIFF(N,X)), DNDY: RATSIMP(DIFF(N,Y)),
    IF (PD: DMDY-DNDX) = 0 THEN RETURN(1),
    IF DHDX-DHDY=0 AND DMDY+DNDX=0 THEN RETURN(1/(許2 + N^2)).
    IF FREEOF(Y, (B1: RATSIMP(DD/N))) THEN RETURN(*EA(INTEGRATE(B1,X)j),
    IF FREEOF(X, (B2: RATSIMP(DD/M)))
        THEN RETURN(XE^(INTEGRATE(-02,Y))) ELSE RETURN(FALSE))S
EXACT(M,N,Y,X):=BLOCK([A,B],
    INTFACTOR: SUBST(YOLD, YNEM,Q),
    A: INTEGRATE(RATSIMP(M),X),
    B: RATSIMP(A + INTEGRATE(RATSIMP(N-DEFF(A,Y)),Y)),
    METHOD: 'EXACT.
    RETURN(B='C))$
7* B&DiP. pp. 43-44 */
SOLVEHOM(EQ,Y,X):=@LOCK([CO,A1,A2,A3],
    A1: RATSIMP(SUBST(X*QQ,Y,RHS(EQ))).
    IF NOT(FREEOF(X,Al)) THEM RETURN(FALSE),
    A2: INTEGRATE(1/(A1-QQ),QQ),
    R3: SUBST(Y/X,QQ,A2),
    METHOD: 'HOMOGENEOUS,
    RETURN(RATSIMP('C*X = XE^A3)))*
/* B&DiP, D. 21. problem 15 */
6
```

```
SOLVEBERNOULLI(EQ,Y,X):=BLOCK([A1,A2,N],
    Al: COEFF(EQ: EXPAND(RHS(EQ)),Y,1),
    N: HIPOH(RATSIHP(EQ-Al*Y),Y),
    A2: COEFF(EQ,Y,N),
    IF NOT(NUMBERP(N)) OR N=O OR NOT(EQ = Al*Y + A2*Y^H) THEN RETURN(FALSE),
    A1: INTEGRATE(A1,X),
    METHOD: 'BERNOULLI, ODEINDEX: N,
    RETURN(Y = %E^AI* ((1-N)*INTEGRATE(A2*XE^((N-1)*Al),X) + C) ^ (1/(1-N) )))$
1% Generalized homogeneous equation: y' = y/x *H(yx^n)
            Reference: Moses' thesis. */
GENHOM(EQ,Y,X):=BLOCK([G,U,N,A1,A2,A3],
    G: RHS(EQ)*X/Y,
    N: RATSI!{P(X*DIFF(G,X)/(Y*DIFF(G,Y))),
    IF MOT(FREEOF(X,Y,N)) THEN REIURH(FALSE),
    A1: RATSIMP(SUBST(U/X^&,Y,G)},
    A2: INTEGRATE(1/(U*(N+A1)),U).
    A3: RATSIMP(SUBST(Y*X^N,U,AZ)),
    METHOD: 'GENHOM, ODEINDEX: N,
    RETURN(X = 'C*KE^A3))$
f* Chatil of solution mgthods for second order linear homogenaous equations */
HOM2(A1, AZ , A3, Y, X):=
    IF FTEST(CC2(A2/A1,A3/A1,Y,X)) THEN C ELSE
    IF FTEST(EXACTZ (A1, A2, A3,Y,X)) THEN Q ELSE
    IF FTEST(XCC2(A1,AZ,A3,Y,X)) THEM Q ElSE FAl.SEs
/* B&D1P, pp. 106-112 */
CC2(F,G,Y,X):=BLOCK([A,SIGN,RAIDPRODEXPAND,ALPHA],
    IF NOT(FREEOF!X,Y,F) AND FREEOF(X,Y,G}) THEN RETURN(FALSE),
    METHCD: CONSTCOEFF, RADPRODEXPAND: FALSE,
    SIGN: ASKSIGN{A: F^2-4*G).
    IF SIGN = ZERO THEN RETURN(Y = XE^(-F*X/2) * ('Kl * /K2*X)),
    IF SIGM = POS THEN
        ZETURN(Y * 'KI*XE^((-F+SQRT(A))*X/2) + /K`*NE^((-F-SQRT(A))*X/2)),
    A: -A, ALPHA: X*SQRT(A)/?,
    IF EXPONENTIALIZE = FALSE THEN
        RETURN(Y = XE^(-F*X/2)* ('K1*SIN(ALPHA) + KK2*COS(ALPHA) )),
    RETURN{Y = XE^(-F*X/2) * ('K1*EXP(XI*ALPHA) + 'K2*EXP(-XI*ALPHA))))&
/a BaD1P. pp. 98-99; problem 17 %/
```

```
EXACTZ(A1, A2,A3,Y,X):=BLCN([B1].
    IF DIFF(A1,X,2) - DIFF(A2,X) + A3 = 0
        THEN B1: KE^(-IATEGRATE((A2 - DIFF(A1,X))/A1, X))
        ELSE RETURN(FALSE),
    MET:HOD: 'EXACT,
    PETURN(Y = 'Kl*Bl*INTEGRATE{1/(A1*B1),X) + /K2*B1))%
f* B&DIP, pp. 113-114; problem 16 */
XCC2(A1, A2 , A3, Y, X):=BLOCK([D, R1],
    IF A3=0 THEN RETURN(FALSE),
    D: RATSIMP((Al*DIF'F(A3/A1,X) + 2*A2*A3/A1)/(2*(A3/A1)^(3/2);).
    IF |REECF(X,Y,D) THEN B1: CC2(D,1,Y,Z) ELSE RETURN(FALSE),
    METHOD: 'XFORMTOCONSTCOEFF,
    RETURN(EUSST(INTEGRATE(SQRT(A3/A1),X),Z,Bl)))$
f* Eaviv. pp. 124-127 *j
VARP(SOLN, G,Y,X):=BLOCK([Y1,Y2,Y3,Y4,VR]|
    Y1: RATSIMP(SUBST(['K1=1,'K2=0],RHS(SOLN))),
    Y2: RATSIMP(SUSST(['K1=0,'K2=1],RHS(SOLN))),
    WR: YI*DIFF}(Y2,X)=Y2*DIFF(Y1,X).
    IF WR=0 THEN RETURN(FALSE),
    Y3: RATSIMF(Y1*G/WR),
    Y4: RATSIMP(Y2*G/LR),
    Y): RATSIMP(Y2*INTEGRATE(Y3,X) - Yl*INTEGRATE(Y4,X)),
    METHOD: 'VARIATIONOFPARAMETERS,
    RETURN(Y = RHS(SULN) + YP))&
/* Methods to rcduce second-order aquatimns free of x or y */
REDUCE(EQ,Y,X):=BLOCK(r.81,OQ),
    B1: SUBST(['DIFF(Y,Y)=QO.'DIFF{Y,X,2;=@Q], EQ),
    IF FNEEOF(Y,B1) THER RETURN(NLI(EQ,Y,X)),
    IF FREEOF(X,PI) THEM RETURN(NLZ(EQ,Y,X)) ELSE RETURN(FALSE)):
/# B&DIP, P. 89, problem 1 w!
NL1(EQ,Y,X):=ELOCK([DE,B,AL,AL,V],
    DE: SUBST(['DIFF(Y,X)=V, 'OIFF(Y,X,2)='DIFF(V,X)], EQ),
    IF (B: ODEI(DE,V,X)) = FALSE THEN RETURN(FALSE).
    A1: SUBST([V='DIFF(Y,X),'C='K1], B),
    A2: SOLVEZ{A1.'DIFF(Y,X)),
    IF A2=FALSE THEN RETURN(FALSE),
    IF FTEST(ODEI(AZ,Y,X))
```

THEN (METHOD: 'FREEOFY, RETURN(SUBST('K2, C, Q $\left.{ }^{\prime}\right)$ ) ELSE RETURN(FALSE))
/\$ BsDip, p. 89, problem 2 */
ial.2(EQ, Y, X): =BLOCK([DE, B, A1, A2, YZ,V],
DE: $\operatorname{SUBST}\left(\left[{ }^{\prime} \operatorname{DIFF}(Y, X)=V,{ }^{\prime} \operatorname{DIFF}(Y, X, 2)=V *^{\prime} \operatorname{DIFF}(V, Y Z), Y=Y Z\right], E Q\right)$,
IF ( $B: \operatorname{ODEL}(D E, V, Y Z)$ ) = FALSE THEN RETURN(FALSE),
Aí: $\operatorname{SUBST}\left(\left[V a^{\prime} \operatorname{DIFF}(Y, X), Y Z=Y,{ }^{\prime} C=X I\right], B\right)$,
A2: SOLVE2(A1, $\operatorname{DIFF}(Y, X))$,
IF A? =FALSE THEN RETURN(FALSE),
IF FTEST(ODEI (A2, $Y, X)$ )
THEN (METHO:9: 'FREEOFX, RETURH(CUBST('K2,'C, @))) ELSE RETURH(FALSE))S
IC1(SOLN, XC, YC): $=$
EV(SOLN, C=RHS(SOLVE1 (EV(SOLH, XC,YC), C)). RATSIMP)8
BC2 (SOLN, XA, YA, XB, YB) : = BLOCK ([DISPFLAG, SIHSSOLVE,TEHP],
DISPFLAG:FALSE, SINGSOLVE:TRUE,
TEMP: MAP(LAMBEAI[ZZ], EV(SOLN,ZZ,EYAL)),
SOLVE([EV(SOLN, XA,YA), EV(SOLN,XB,YB)], ['K1,'K2])),
If LENGTH(TEMP)=1 THEN RETURM(FIRST(TEHP)) ELSE RETURM(TEMP)):
IC:(SOLN, XA, YA, DYA) : $\times$ BLOCK ([DISPFLAG, SIHGSOLVE,TEMP],
DISPFLAG:FALSE, SINGSOLVE:TRUE,
TEMP: LHS(SOLH) - RHS(SOLH),
'TEMP: MAP(LAMtDA([ZZ], EV(SOLk,ZZ,EVAL)),
SOLVE([EV) SOLA, XA, YA), SUBST([ $O \subset A, X A]$,
LHS(DYA) =-SUBST(O,LHS(DYA), DIFF(TEMP,LHS (XA)))
/DIFF(TEMP, LHS(YA)))].
['K1,'K2])],
IF LE*GGTH(TEMP):1 THEN RETURN(FIRST(TEMP) ELSE RETURN(TEMP))
FAILURE(MES,EQ):=(LDISP(SUBST(YOLD, YMEW,EQ)), OISP(HES), FALSE)\&
MES: $\quad$ NOT A PROPER CIFFRERENTIAL EQUATION"?
MESZ: FIRST ORDER EQUATION NOT LINEAR IN Y'"s
MES3: "CANNOT DETERMINE SIGM OF CONSTANT EXPRESSICN":
MESA: "MULTIPLE SOLUTIONS TO :IRST PARTIAL PROBLEM"8

## RFFERENCES

1. Moses, J.: Symbolic integration. Ph.D. Thesis, Massachusetts Inst. Technol., Dec. 1967. (Also available as Report MAC TR-47.)
2. Boyce, W. E;; and DiPrina, R. C.: Elementary Differential Equations. Second ed., Join Willey \& Sons, 1969.
3. Moses, 1. Symbolic Integration: The Stormy Decade. Commun. ACM, vol. 14, no. 8, Aug. 1971, pp. 548-560
4. The Mathlab Group: MACSXMA Reference Manual. Version 8. Lab. Comput. Sel., Massachusetes Inst. Technol., Nov. 1975.
5. Fateman, R.: An Approach to Automatic Aspmptotic Expansions. Proceedings of the 1976 ACM Symposium on Symbolic and Algebratc Coryputation, Aug. 1976, pp. 365-371.
6. Stoutemyer, D.: Computer Algebraic Manipulation for the Calculiss of Variations, the Maximum Principle, and Automatic Contro!. ALOHA System Technical Report A74-5, Univ. of Hawail, Nov. 1974.
7. Bogen, R.: A Program for the Solution of Integral Equations. Priceedings of the 1977 HACSYMA Users' Conference, MASA CP-2012, 1977. (Paper no. 2 of this compilation.)
8. Schmidt, P.: Automatle Symbolic Solution of Dtiferential Equations of First Order arid First Degree. Proceedings of the $19 \% 6$ ACM Sympnstium on Symbolic and Algebraic Computation, Aug. 1976, pp. 114-125.
9. Schmidt, P.: Maschinelia Symboische Losung von Differentialgleichungen 1 Ordnung und 1 Grades. Doktorgrades dizsertation, Univ. Bonn, $19 \% 6$.
10. bafferty, E.L.: Power Series Solution of Ordinary Differential Eguations. Procecdings of the 1977 MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 34 of this compilation.)



Sincs completins this, we have ciscovered several new tecrniques and these have been added to the program. This paper is intended to supplement the work reported in reference 1 , so the emphasis here is on tine new techniques tinat are not deseribed there. Following a discussion of these techniques an outline of the prograil is given, some limitations are mentioned, and a comparison is made fith the earlier GEDUCE version. Firelly some plarned future improvements are described. A demonstration is presented in the appendix.

## TECHNIQUES

The tyofs or integral equations considered by the progrem are those refucible to the "quasi second-kind":

$$
p(x)=v\left(x, p(x), \int_{a(x)}^{b(x)} w(x, u, p(x), p(u)) d u\right)
$$

and the"first-kind":

$$
\int_{a(x)}^{b(x)} w(x, u, p(u) ; d u=f(x)
$$

where, for this paper, $p(x)$ in the unknow function, $x$ is the independert variable, and $u$ is the integration variable.

The original REDETE program concains five techniques applicable to certain second-kind equations, two for certain first-kind equations, and two usable for woth types of equations. These are summarized in table $I$. Sinve implementine these in MacsMhs, a further search of the 1 iterature tumed up two aditional first-kind techntques.

Kanwal (ref. 3) gives a generalization of Abel's methot for singular integrands ot the form:

$$
\int_{a}^{x} \frac{p(u) d y}{(h(x)-n(u))^{k}}=f(x), \quad 0<k<1
$$

The solution 1s:

- $p(x)=\frac{\sin (k \pi)}{\pi} \frac{d}{d x} \int^{x} \frac{h^{\prime}(u) f(u) d u}{(h(x)-h(u))} \quad-k \quad$ where $h^{\prime}$ denctes $\frac{d h}{d u}$.

Conilian (ref. 4) Eives a methoc for linear fixed-limit first-kini equations with finite-rank integrands. These have the form:

$$
\int_{a}^{b}\left[\sum_{i=1}^{n}(x) r_{j}(u) \mid p^{\prime}(u) d u=f(x)\right.
$$

Letting the coefifcient of $q_{j}(x)$ in $f(x)$ be $c_{j}$ and assuming $p(u)$ to be:

$$
\sum_{k=1}^{n} d_{k} l_{k}(u)
$$

the problem is reduced to tiat cf solving the $n$ simultaneous linear equations:

$$
c_{j}=\sum_{k=1}^{n} d_{k} \int_{a}^{b} r_{j}(u) r_{k}(u) d u \quad j=1,2, \ldots, n
$$

for the $d_{k}$. This gives one solution. The resuit of adding to this linear combinations of funcions orthogonal to all of the $r_{k}(u)$ Eives additional solutions.

In addition to the two techniques mentioned thus far, one sther has buen made svailable. Stoutemyer proposed a generalization of a method in Goursat (ref. 5) for transforming ary variaule-limit finite-rank integral equation. into an ordinary differential equation. It is applicable to both first-kind and second-kind equations. There are munerous methods for solving differential equations and MACSYMA already possesses rodines inplementing some of these methods. Consequently, this reduction sient ficartly enlarges the class uf integral equations for which exact solutions can be obtained. The method is remariably simple. We are given an integral equation of the form:

$$
\left\{\begin{array}{cc}
f(x) & \text { or } \\
p(x)-f^{\prime}(x)
\end{array}\right\}=\int_{a}^{x} \sum_{j=1}^{n} q_{j}(x) r_{j}(u, p(u)) d u .
$$

Letting $R_{j}(x)=\int_{a}^{x} r_{j}(u, p(u)) d u$, we have:

$$
\left\{\begin{array}{c}
f(x)  \tag{1}\\
p(x)-f(x)
\end{array}\right\}=\sum_{j=1}^{n} q_{j}(x) R_{j}(x) .
$$

Equation (1) together with its firgt $n-1$ derivatives with respect to $x$ gives a set of $n$ simultane ous equations linear in the $n$ uriknown $R_{i}(x),\{=1, \ldots, \ldots, n$. Solvirg these equations and substitutine for the $\mathcal{K}_{( }(x)$ in the $n^{\text {m }}$ derivative of equatior (1) gives an ordinary differrntial equation for $p(x)$ which is of order $n-1$ or $n$ deventing on whether the left, side of equation ( 1 ) was $f(x)$, for first-kind, or $p(x)-f(x)$, for second-kind. Indtial conditi-ns can be ohrajned by setting $x=a$ in equation (1) and iw dorivatives, then solving successively for $g^{\prime}(a), p^{\prime}(a), \ldots, p^{m}(a)$, where $m$ is $n-6$ or $n-1$ as above.

We illustrace this techniaue with e ron-trivial example. Eansder:

$$
\begin{align*}
& -\frac{9 x^{6}}{20}+\frac{5 x^{4}}{6}-\frac{x^{2}}{4}-\frac{2 x}{15}=\int_{1}^{x}\left(u x^{2}+u^{2} x\right) p(u) d u \\
\text { Letting } P_{1}(x)= & \int_{1}^{x} p(u) \text { du and } n_{2}(x)=\int_{1}^{x} u^{2} p(u) \text { du } y \text { felds: } \\
& -\frac{2 x^{6}}{20}+\frac{5 x^{4}}{6}-\frac{x^{2}}{4}-\frac{2 x}{15}=x^{2} R_{1}(x)+x \bar{r}_{2}(x) \tag{2}
\end{align*}
$$

Takirg two successive derivatives gives:

$$
\begin{align*}
& -\frac{27 x^{5}}{10} \frac{12 x^{3}}{3}-\frac{x}{2}-\frac{2}{15}=2 x^{3} p(x)+2 x R_{1}(x)+R_{2}(x)  \tag{3}\\
& -\frac{27 x^{4}}{2}+10 x^{2}-\frac{1}{2}=2 x^{3} p^{\prime}(x)+9 x^{2} p(x)+2 R_{1}(x) \tag{4}
\end{align*}
$$

Solving equations (2) and (3) for $R_{1}(x)$ we have:

$$
R_{1}(x)=\frac{-2 x^{4}+10 x^{2}}{4}-2 x^{2} p(x)
$$

Substitutirg this into equation (4) and re-arraritue terms resulte in:

$$
2 x p^{\prime}(x)+5 p(x)=-9 x^{2}+5
$$

whose solution is $p(x)=\mathrm{cx}^{-5 / 2}+1-x^{2}$. To solve for $c$ we let $x=1$ in cquation (3) ani, acting that $\pi_{1}(1)=F_{2}(1)=0$, fird that $p(1)=0$, which implies $c=0$.

## EXAMTNATION OF TUE FROGAM

The program is invoked by thy calling sequence:
IEQN(expression, unkrown, terhnique, napprox, guess).
The first argunent is the integral equation. Trailing arguments may be omitteu, in wheh case they will assure default values which are:
unknow - drfaults to the first function enesuntered in ar ir.tegrand which fankncwn to MACcMMA.
techn:que - defaults to FIRS'. which causes all applicable techniques to be triad entil one succeeds (see below). napprox - defaults to 1 and represents the maximum number of iterations or adjustable collocation parameters for an approximate eolution:
guess - defaults to NONE and represents the initial gus. s for NEUMANN Or FIRSTIINDSERIES techniques. If NONE, guess will be the value obtained by :atting all integrals in the expression to zero.

The method used by the program is to fector the first argument to IEQN and for each factor containing an integral the equation "factor $=0$ " is algebraically solved for the unknown in terms oi the other parts of the factor. If a solution re;ults, then "second-kind" techniques are iried. ctherwise the program tries "first-kind" techniques. These techniques are listed below in outline form giving corditions under which $t$ ey are applicable. (The nane of the techrique, which can ve used as the third argument of IEQN, is semitalized.)
(Exact.)
Second-Kind ..echniques
Constant limits of integration (Fredholm type)
Finite-rank integrand - FINITERANK
A constant lower limit and $x$ as the upper limit (Volterra type) Integrand linear in $p(u)$

Convolution integral - TRANSFORM (Laplace transform) Finite-rank integrand DIFFEQN (Con.ersion to ODE)

## Approximate)

Arbitrary limits of integration Integrand inear in $p(u)$ - FREDSERIES There exists a point at which the limits are equal - TAYLOR NEUMANN しOLLOCATE

## First-Kind Techniques

(Exact)
Constant limits of integration Integrand linear in $\mathrm{p}(\mathrm{u})$ Finitr-rank integrands - rINITERANK
A constant lowar limit and $x$ as the upper limit Integrand inear in $p(u)$

Abel's equation - ABEi Convolution integral - TRANSFORM Finite-rank integrand - EIFFEQN
(Approximate)
Arvitrary limits of integration जIRSTKINDSERIES COLLOCAIIE

It is diffiouit to make an accurate compainson between the execution times of the MACSYMA and REDUCE versions fif several reasons. The PDP-10 processor on which MACSYMA muns is significantiy faster and has more memory space resulting in fewer garbage collections. Also the REDUCE versions of the SOLVE, INIEGRATE, and LAPLACE routines were interpreted rather than compiled and PEDUCE includes display generation times in its figures. Consequently, the exeoution times for the examples given in reference 1 were around 10 times tie figures obtained when these examples were run on MACSMMA.

The text of the program was approximately $30 \%$ smaller on MACSYNA due to the avai aojlity of more built-in functions. Naturally, the MACSYMA version could handle more cases because of more comprehensive integration, equationsolving, and transform routines.

At present, the major difficulty in using the integral equation solver is the fr-quent exhaistion of availarle storage due to the loadins $\sin ^{\prime \prime}$ files comiainins many awriliary functions which are not part of the initial system. Indeed, a single problum may cause functions ir: a dozen such filej to be referenced. Once loaded, the space they occupy cannct be re-used even if they are rio longer needed. In this situation, the user can save relevant values, load a fresh M\&CSYMA, and continue where he left off. If, however, all the space was consumed in a single call to IEQN, because of autempting several solution techniqיes, then the user should try separate calls for each one. It is urlikely that this approach will cause difficulty since the principal limitations of particular techniques arise not from space or time constraints, but from the inability of some functiors to handle certain kinds of arguments. In particular, for linear integral equations the trouble spits are the inverse Laplace transform, which is limited to rational functions, and the ordinary differential equation solver which is limite. to firet and second order equations. Thus the corresponding cases ol convolution equations containing nonpolynomial functions and of finite-rank integrals with rank greater than two can only be handled by the approximate mo chods. For non-linear finite-rank equations, solutions can be found oniy it corresponding ncn-linear differential equations or algebraic equations can ve solved.

FUTURE IMPROVEMENTS

Aside from alleviating the proklems mentioned in the previous section, there are a number of ways in which the program could be extended. Eiger... analysis as well as testing existence and uniqueness theorems could automatically provide useful information even whan no solution can be dete mined. Integra? transforms shich as those of Fourier and Mellin and the Wiener-Hopf technique would enable the program to be used for some important integrals with infinite limits. Fini diy, the program could be made to handle systens of integral equations the Ereatly extenaing its applicability. Incorporation of these techuiques is under current investigation.

## REFERENCFS

1. Stoutemyer, D.: Anelytical Solution of Integral Equations Jsing Computer Algebra. Trans. Math. Sof ware, June 1977.
2. Hearn, A.C.: REDTCE 2 Users's Manual. Computational Physics Group, Univ. Utah, 1973.
3. Kanwal, F.P.: Linear Irtegral Equations: Theory and Technique. Academic Press, 1971.
4. Cochran, I.A.: The Anelysis of Linear Integral Equatinns. McGraw-Hill Book Co., 1972.
5. Goursat, E.: Integral Equations - Calculus of Variations, A Course in Mathematical Analysis. Vol. 1II, Pt. 2, Dover Publ. Inc, 1964.

APPENDIX - Illustratire Examples
(C1) $\operatorname{INTEGRATL}(P(U) /(X * 2-U * * 2) * *(1 / 3), \mathrm{U}, 0, \mathrm{X})=\mathrm{X}$;
(D1)

(C2) $\operatorname{IEQN}(D 1)$
DEFAUTT 2N IRG, THE WNKNOWN: $P(X)$
DEFAULT SRD ARG, TECHIIQUE: FIRST
DEFAULT 4 TA ARG, NUMBER OF ITERATIONS OR COLLOCATION PARAMETERS: 1
DEFAULT 5TH ARG, INITIAL GUESS FOR NEUMANN CR FIRSTKINDSERIES: NONE
(E2)

(C3) $\mathrm{P}(\mathrm{X})=1 \mathrm{C}^{\prime} \operatorname{INIEGRATE}(\mathrm{P}(\mathrm{U}) * * 2, \mathrm{U}, 1, \mathrm{X}, *$
(C4) $\operatorname{IEQN}(D 3, P(X), D I F F E Q N, 1, N O N E) \$$
(E4)

$$
\left[P(X)=\frac{1}{X+C}, \text { DIFFEQN, }\{X=1, P(X)=1]\right\}
$$

(C5) $P(X)=2 * X+\operatorname{INTEGRATE}(X * U * P(U), \tau, 0,1){ }^{*}$
(C6) $\operatorname{IE} 2 N(D 5, \dot{P}(X), A L L, \mathcal{C}, N O N E) \$$
(E8)
(E9)
(E10)
$26 \mathrm{X}^{\text {[3X, FREDSERIES, } 2]}$
$\left[\begin{array}{c}9\end{array}\right]$
(E11)
〔3x, COLLOCATE, $2 \mid$

TABLE I - SUNMARY OF TECHNTQUES IREVIOUSLY REPORTED ON (in ref. 1)

| Name | Form to which applicable | Metriod |
| :---: | :---: | :---: |
| FINITERANK | 2nd-kind,fixed limits, finiterank integrands. | Given $p(x)=$ "expr", distribute integration is expr over all sums, then replace each integral of $q_{j}(x) r_{j}(u, p(u))$ by $c_{j} q_{j}(x)$ where $c_{j}$ is an arbitrary parm. to be determined. This gives $p(x)=g(x)$. Then solve the $n$ simul. lin. eqns. $c_{j}=\int_{a}^{b} r_{j}(u, g(u)) d u$ |
|  |  | for the $c_{j}, j=1, \ldots, n$. |
| " | ```1st or 2nd-kind, rank-1, variable limits.``` | Special cases of the DIFFEQN method for a rank-1 integral. |
| ARANSTORM | 1st or 2nd-kind, convolution, variable limits. | Take Laplace trans., solve for trans. of $p(x)$, then invert. |
| FREDSERIES | 2nd-kind, linear. | Given $p(x)=f(x)+\int K(x, u) p(u) d u$, the solution is $p(x)=f(x)$, |
|  |  | $\int G(x, u) f(u) d u$, where $G(x, u)$ is |
|  |  | the quotient of two infinite series whose terms are found from recurrence relations. |
| TAYLOR | 2nd-kind, variable limit. | Given $p(x)=f(x)+\int_{a(x)}^{b(x)} w(x, u, p(u)) d u$ |
|  |  | $f^{\prime}$ nd a point c where $a(c)=c(c)=c$. Fxpand $p(x)-f(x)$ in Taylor series about $x=c$ by differentiation. |
| NEUMANN | Pnd-kind. | Make a guess for $p(x)$ and iterate |
| FIRSTKINDSERIES | 1st-kind. | using original equation, |
| COLLOCATE | any. | Assume a particular form for $p(x)$ |
|  |  | involving $n$ arbitrary parameters. |
|  |  | Substitute in equation and tvaluate at $n$ values of $:-$ to get a set |
|  |  | of simul. eqns. to solve for paras. |
| Differentiation | 1 s ¢-kind, ver. limit. | Differentiate given equetion some number of times to see if a zndkind equetion results. |



SYMBOLIC LAPLRIE TRANSFOMHS DF SPECIAL FUNCTIONS *<br>Yannis Avgoustis<br>Laboratory for Compu*er Science (formerly Praject MACl Massachusetts institute of Technology

## ABSTRACT

A MACSMMA implementation of the Laplace Trcisform for Special Functiona is describec. The Generalized Hypergeometric Func:ions are used as a basis for the rapresentation of approximately fifty Special Fuxctions. Only a raiativaly small number of formulas that generally involve Generalized Hypergeometric Functions are utilized for the integration stago.

A sample of actual anamples and their timing is provided at the end of the paper.

## 1 INTRODUCTION

We describe a design for tha Laplace Transform of Special Functions which has been implementad in MACSMM (rof. 11. In our design we have employed approximately all of the fifty well known Special Functions, known also as the Functlons of Matheartical Physiss (raf. 2). (ref. 3). In dasigiling the laplacei Transform capability, wo have considered it as part of the "deflnitut entegratior" problem and our design la planned to covar a significant part of definite Integration through interaction at some later time with the other Integral Transforms; auch as Hankel, Y. K, Fourler, Mollin, ete.

One faces two main difyicu:tles wher, dealing with this problen. First, definite integration generally is a recursivaly unsolvable problew (raf. \&). Sesond, the area of Special Functions io :all known for ite "chaotic state" (ref. 5).

Wang and Eogen have also morked on the oroblex of definite Integration (ref. 6) and Laplase Transforme (ref. 7). Howevar, thay both were interested

* This work was supported, In part, by EPDA contract Number E(11-1)-3379 and
NASA Grant NSG 1323.
mainly in Elementary Functions. To the best of rur knowisige there has been no other system designed for any of the integral transforms or definite integration for the Special Functions.

In our design wo take advantage of the fact that most of the Special Functione can be connidered as particular irstances of the Generalized Hypergxciaficic Function and therefore can be integrated, using the Generalizea Hypergeometric Furction representation, with a table consisting of very tow formulas. A natura: consequence le that the result of the integration procedure Invoives Generalized Hypergenmetris Functions. Hence an additional step is required to reduce the Gereraiized Hypergeometric Functione into Special or/and Elementary Functions.

## 11 THE GEMERAL IDEA

We begin with the definitions of the Geraralized Hupergeometric Functions (rot, 8), (ref. 2), and the Laplace Transforms (ref. 9). (ref. 103.

Definition 1. We call the Generalized Hypergeometris Function, othoruise known as the Gureralized Gauss function, the serisa

$$
\begin{align*}
& p_{q}\left\{a_{1}, a_{2}, \ldots, a_{p} ; b_{1}, b_{2}, \ldots, b_{q} ; z\right\}  \tag{i}\\
& \\
& \left.\quad \operatorname{lnf}_{n=0} \quad \sum_{n}\right)_{n}\left(a_{2}\right)_{n} \ldots\left(a_{p}\right)_{n} z^{n} \\
& \left(b_{1}\right)_{n}\left(b_{2}\right)_{n} \ldots\left(b_{q} \prime_{n} n!\right.
\end{align*}
$$

where $a_{2}$, $a_{2}, \ldots . a_{p}$ and $b_{1}$, by,....bo are complex parameters, 2 is ecowplox
 or $\left.p_{q} F^{[(a) ;}(b) ; z\right]$ or simnly $p_{q} f(z)$.

The series $p^{F} q^{(z)}$ catistias the differantial equation

$$
\begin{equation*}
\left.\int_{i z}^{d} \frac{d}{d z} \frac{d}{d z}+b_{1}-1\right)\left(z^{d}-d+z_{2}-11 \ldots\left(z \frac{d}{d z}+b_{q}-1\right)\right. \tag{2}
\end{equation*}
$$



Datinitlon 2. Lis call the Laplaco Transtorm of a real or complax function flt, defined for all real nonnegative vaiues of $\ell$, the integral

$$
\begin{equation*}
\int_{0}^{\infty} f(t)_{a}^{-p t} d t \tag{3}
\end{equation*}
$$

If it exisit for some values of the complex varigble $p$. It is written Lifitil and deiermines a function $F(p)$; thus

$$
\begin{equation*}
L[f(t)]-\int_{0}^{\infty}+(t)^{-p t} d t=F(p) \tag{4}
\end{equation*}
$$

The key ldeas in our design, depiciad in flaure 1, are
3
Stage 1. Repressnt the Spaclal Functione, if poseisie, as particular Inatances of the Generalized Hypergoometric Functien.

Stage 2. Provide a falriy general formula to integrate the rasulta of atage 1.

Stage 3. Take the result of Etage 2 involving a Genersilized Hypergeometric Function, and reduce it to an olementary orfand Spacial Function(s).

Hence. our deeign altarnatez betwean two levalss

Level 1. The expression Involvec Special or/and Elementary Functions.
Leve: 2. The expreesion invoives Ceneralized Hypergeometric Functions.

We next jroceed with a eisple flluetration of the sbove scheme.

## Bliutration

Givon Input

$$
t^{-3 / 2} I_{3}\left(2 a^{1 / 2} t^{1 / 2}\right) e^{-p t}
$$

 12). the following will take plice in each of the three otagase

Stage 1.
Beceua*

$$
\begin{equation*}
i_{v}(x)=s^{-v i x} 1 / 2 \quad\left(x e^{-1 / 2}\right) \tag{6}
\end{equation*}
$$

(5) bacomes

$$
\begin{equation*}
1 t^{-3 / 2} J_{3}\left(210^{1 / 2} t^{1 / 2}\right) \text {-it } \tag{7}
\end{equation*}
$$

Bacaupe

$$
d_{v}(z)=\frac{z^{v}}{2^{v}[(v+1)} f_{2}\left(v+1 ;-1 / 4 z^{2}\right.
$$

(7) Decomes

$$
\begin{align*}
& a^{3 / 2} \\
& --b_{i}\left[4 ; \text { at } e^{-p:}\right. \tag{9}
\end{align*}
$$

Stage_2.
In this stage we integrate by using the following formala (ref. 13)

$$
\begin{align*}
& \int_{0}^{\infty} t \theta-1{ }_{m} F_{n}\left(a_{1}, \ldots . a_{m} ; r_{1}, \ldots, r_{n} ;(1 t)^{k} e^{-p t} d t\right. \tag{18}
\end{align*}
$$

Which is valid for Reis) > $0 . m+k<n+1$, where $k, m, n$ are integers.
Thus (9) becomes

## Stage 3.

(ref. 2)
At stage 3, we appiy to (11) the folloulng "Kummer's transformation"

$$
\begin{equation*}
{ }_{1} F_{1}(a ; r i z)=a_{1}^{2} F_{1}(r-a ; r ;-2] \tag{1121}
\end{equation*}
$$

and (11) reduces to

$$
\begin{equation*}
\sum_{5_{p}^{3 / 2}}^{-2 / 0} 2_{1}[3 ; 4 ;-2 / p] \tag{13}
\end{equation*}
$$

We recopnizs that the series in (13) it an instance of an incomplete Gemma function (ref. 2), becauan

$$
\begin{equation*}
1^{F}{ }_{1}(a ; u+1 ;-x)=a x^{-8} \gamma(a, x) \tag{14}
\end{equation*}
$$

Therefore, (14) finally becomas

$$
\begin{equation*}
\frac{e^{* / p} p^{2}}{2 a^{3 / 2}} \gamma(3, a / p) \tag{15}
\end{equation*}
$$

As ue have already mentioned, wh have daalt with around fifty Special Functions end our goal is to interprot them as particular instances of the Generalizad Hupergeometric Function.

He have divided the set of the Specia! Functione into two major types. The firet type includes all Special Functions that are directly transtormed through snme relation into a Generalized Hypergeometric Function, and the second type inclufas those functions that are expressed in terms of otner Special Functions and ultimately are expreased in terms of Special Functions of the first type. This is the major objective of the first stage and it has tuen influenced by the iendoncy to "itilize and manipulata as few Special Functionses is necessary.

For example, the Besse: function of the flrst kind $J_{v}(z)$ belongs to the firai type and in automatically transformed into a Generalized Hypergeometric Function through relation (81.

The Hanke: function of the first kind, $H_{y, 1}(x)$, le expressed initially se sum of first and edcond kind of Rassel functions as it is shown in (16)

$$
\begin{equation*}
H_{v, 1}(z)-J_{v}(z)+\mid Y_{v}(z) \tag{16}
\end{equation*}
$$

Here $J_{v}(z)$ is function of the first tupe, while $Y_{v}(x)$, a Bessal function of the secons kind, is not. $Y_{v}(z)$ transformed in terme of $J_{v}(z)$ as long as $v$ Is not an intager through the relation

$$
\forall_{v}(z)=\left(\cos (v p i) J_{\varphi}(z)-J_{-v}(z)\right) \operatorname{coc}(v p i)
$$

Thus wa have ultimatoly expressed $H_{v, i}|z|$ In terme of the ifrst type function $J_{4}(2)$. which in turn can readily be tranofermatu inio a Generalized Hypergeoweirle Functian. Fine case In which $v$ it an intwger, $Y_{y}(z)$, considered separatsly.

In a similar nay we have considerrod producte of Special Functions which can te expressed as aingle Ganeralized Hypergeometric Function. 1hus the product of two Bessel functions " $J_{v}(2)_{m} J_{m}(2)$ " is proctuct belonging to the firat type and is transformad into Gerneralized Hypergeometric Function through the rilations (8; and (18)

$$
\begin{equation*}
\left.0 F_{1} t r i x\right]_{8} f \text { i } z 1=2 F_{3}(r / 2+\infty / 2, r / 2+8 / 2-1 / 2 ; r, \quad r+z-1 ; 4 z) \tag{18}
\end{equation*}
$$

On the ofver hand, the product $I_{V}(z) A_{n}(z)$, where $I_{V}(z), K_{m}(z)$ are medified Bessel functions of the firat and satond kind, raspectively, belongs to the

second type and is uitimately expressibls in torma of functions of tre first type. for noninteger values of the index m.

## IY LAPLACE TRANSFOPMS

A design for the Laplace Transform aljorithem shosid incorperata two wajor components: the integration process, and the different Laflace Trannforme properties.

Le decidnd to form a sabla which contains as fac formuas as presibio. This sirategy thas the following consequences:

1. The ouarsil design of the eystem bacomes algorithmic in the senee that the system morks cisterministicaliy ant knows wiat it can really do and what it cannot, and does not miste time by trying different approaches.
2. The main burden asd difficulty of the problem shifts frow stage 2 to ntage 1 and especially stage 3, where wa hava to rehuce the Generalized Hupergeometric Functions to some Elementary or/and Spacial Functionis).

As Iar ge the Laplace Tranetormi propertias are concerned, our general policy conslatg of eppluing them in citage 2, ir the Generallzed Hypergeometric Function level. Hence, stage 2 cm be fivided inta two subatages.

Subtage 2.1 Utilize the Laplace I:anaforwe properties.
Substage 2.2 integrate.

This policy changse only in caseo there such postponmsnt of the application of the Laplace Transtorms properties untll stage 2 . crused Irreparable damagu and fallure in our acheme Iflgurn ll. Therefore the Laplace Traneforms properties have been considered in two types. Properties of the first type can oe applied in eubstage 2.1. Indepenctently of what kind of Specisi Functionfes thet the imput expression contains. Thus, for example, all the well known iproperties, euch Ae tho "acale property" (ret. 10)

$$
\begin{equation*}
L\left(0^{-a t}(f(1))-F(p+a)\right. \tag{19}
\end{equation*}
$$

belong to the first tupe.
Properites of sine ascond luge cannot be applied after stagn 1 for certain Special Functions and our echeme is unabla to proceed zuccessfully to ntages two and thras. For mamyls, the property

$$
\begin{equation*}
\text { I.if(asinhts) - } \int_{0}^{\infty} J_{p}(t u) g(u) d u \tag{26}
\end{equation*}
$$

where $g(p)=L\{f(t)]$, cannot $\omega$ e applied after stage 1, for the Bessel function J8, as in, for example.

$$
\begin{equation*}
J_{0}(\operatorname{seninh} t] e^{-p t} \tag{2!}
\end{equation*}
$$

Bince after the complation of the first stage we get

$$
\begin{equation*}
\theta^{5} 1!1 ;-\frac{a^{2}}{4} \sinh ^{2} t_{0}-p t \tag{22}
\end{equation*}
$$

Expressior (22) cannot be integristed since our table does not cuntain any formulas with such functional arguments while it is too late to apply property (28).

The above mentioned example could be gelved by two recursive calls to our scheme iflgure 11. First, by calling the schema as described for the Laplace Transforms, and second oy callinq the same scheme in which the Laplace Transforms properties and Integration formulas have been substituted with Hanke! Transforme properties and Integration farmulas (ref. 9).

On a first examination, a program that can take the Laplace Transforms of approximately fifty Specia! Finctions would imply that quite big number of formulas mould be necessary to be incorporated in the table look-up of our second stage. It turns out thst relctively very fisu formulas are needer. Thus, formula (la) has beeft applicable to large number of Special Functions (ref. 14). (ref. 21. (ref. 3:, nawely the Bessel Functions of the first and second kind, both Modifled Bessel Furitiens, the two kinds of Hankel Functions. also the Struve functions, the Lowmel furtitions, and the kelvin flanctions, the Uhittaker. the error and toth Incomplete Camma functions, for almest all the values of their indices and for linear and quadratic functions of the argument. Furthermore, in cooperation with general formulas of other Irtegral Transforms, formula (10) contributes in integrating composite functions like Jfisinhtl, is: we have already shoun.

Cur-ently, our table lisok-up incorporates soven formulas and our destgn te generaily capabie of infegrating exprestions described in the two categories belous

> 1. Special Functions of limes or quadratic argument multiplied with
a. Trbiersery power of tho argument.

- Trigonometric and expenential functions of linear argument.

2. Products of two Special Functions of linear or quadratic argument. multiplied with the same kind of functions we mentboned in the first category. The Special functions of this category cen be functions of only one of the following greuos:
a. Any kind of Bessel, Morified Eesse!, or Hankel functions.
b. Orthogonal Polynomials.
s. Confluent Hypergeomatric Functions.

Houswe, the potentiality of keeping vary few formias around in the table of our second stags mould be of limited value if we were unable to complete succestuliy the third stags, to reduce the Generalized Hypergeometric Function to som Elementary orfand Spacial Function(s).
$V$ THE REDUCTION STAGE.
In the reduction stage the Generalized Hypergecmetric runction is reduced, if that is possible, to ecms Elsmentary or/and Special Functionfs). Priorlty is always given firgt to those methons that reduce the Series into Elementary Functlons and then to those that reduce to the wt common Spectal Functions, such as error. Besse! etc. The affor: in the reduction stege Increases as the number of the serles parameters, ard subsequently the $p$ and $q$ values, increase. If the reduction is unsuccessiul then the series $p_{p} F_{q}(x)$ is roturned.

The reducticn fage incorporatee tuo phases. In the first phase algorithm: Independent of the values of $p$ and $q$ of the saries $p_{q}(z)$ are applied. In the secend fhase epecial algorithes dependent on the parameters ars parformod.

A surprisingly useful rule, incorporated in the firet raduction phase. It the following.

If numerator parameter of the series of $\mathcal{F}_{\mathrm{q}}(z)$ exceeds ay a positive Integer. ojy $k$, a denominator paramete: then the series $p_{q}(x)$ can be expreosed se the um of $k+1 \quad p-1^{F} q-1(z)$ 's.

Such a seriss splitting, though it doss not aciually fully raduce a ${ }_{p} F_{q}(z)$, simplifiae the reduction by decreasing the $p$ arid $q$ valuss.

To illustrate series oplitting, cinsider

$$
\begin{equation*}
t^{3} \cdot g\left(t^{1 / 2}\right)^{2},-p t \tag{23}
\end{equation*}
$$

after stages one and two have been completed, we get

$$
\begin{equation*}
6 p^{-4} 3_{3}\left[1 / 2,1,4 ; 1,1,1 ; 0^{-1}\right] \tag{24}
\end{equation*}
$$

Now, at stage three anc after a trivial generai reduction rule, (24) bacomes

$$
\begin{equation*}
6 p^{-4} 2_{2}\left[1 / 2,4 ; 1,1 ;-p^{-1}\right] \tag{25}
\end{equation*}
$$

then applying our general "eplitting" ruls; (25) reducas to

$$
\begin{align*}
& 6 p^{-4}\left[{ }_{1} F_{1}\left[1 / 2 ; 1 ;-p^{-1}\right]-3 / 2 p^{-1}{ }_{1} F_{1}\left[3 ; 2 ; 2 ;-p^{-1}\right\}\right.  \tag{25}\\
+ & \left.9 / 16 p^{-2}{ }_{1} F_{1}\left[5 / 2 ; 3 ;-p^{-1}\right]-5 / 56 p^{-2}{ }_{1} F_{1}\left[7 / 2 ; 4 ;-p^{-1}\right]\right]
\end{align*}
$$

which ultimately gields

$$
\begin{gather*}
6 p^{-4} e^{-1 / 2} p^{-1}\left[1_{g}\left(-1 / 2 p^{-1}\right)+3 / 2 M_{-1 / 2,1 / 1^{(-p}}(-1)\right.  \tag{27}\\
+9 / 10^{\circ} p^{-2}(-p)^{3 / 2} M_{-1,1}\left(-p^{-i}\right)-5 / 96 p^{1} M_{-3 / 2,3 / 2}\left(-p^{-1} ;\right]
\end{gather*}
$$

where $M_{i, j}$ is a Whittaker function.

In the second phase, reductions ere bisiy for the cases $g_{g} F_{g}(z), g_{1}(z)$, ${ }_{1} F_{\mathcal{E}}(z)$, and the difficulty increases significantly for higher $p^{\prime} s$ and $q$ 's. Ws $\therefore$ have been mainly concerned with the Confluent Hypergeometric Furciion reduction, $1_{1} F_{1}(z)$, and the Garess Hypergeometric Functions, $2_{2} F_{1}(z)$, that include, in addition to certain important Special Functions; the Elementary Functions. The most important tools here are the different trarisformations: inear, quadratic. ets (ref. 15), (ref. 2), (ref. 16), and the Contiguous Functions Reiations (ref. 17).

The different transiormations (linaar, quadratic, etc) are performed as soon as it is detectes that the Generalized Hypergeomtric Function is reducible to some other ones and which are definitely known io be reducible to some Special or Elementary Functions in one or more staps. We clarify the above ideas in a simple example, where $\varepsilon$ quadratic transformation is applied to a Gauss Hipergeor atric Sunction.

## Suppose we are given

where

$$
\begin{equation*}
{ }_{2} F_{1} \text { [alpha, beta; gamma; arg] }=2 F_{1}\left[3 / 4,5 / 4 ; 1 / 2 ; z^{2}\right] \tag{28}
\end{equation*}
$$

$$
\text { beta }- \text { alpha }=5 / 4-3 / 4=1 / 2
$$

therefore the quadratic transformation

$$
\begin{align*}
& z \quad 31 \text { a } 1 \quad z^{2} \\
& \begin{array}{ccccc}
(1--)^{-a} & 2^{F_{1}}[-,-+-; & b+-; & -----] \\
2 & 2 & 2 & 2 & (2-z)^{2}
\end{array} \tag{50}
\end{align*}
$$

is applicable. Hence, the following relation holds:

Upon application of a simple general reduction rule, the right hand side of expression (31) becomes

$$
\begin{equation*}
(1-z / 2)^{3 / 2} 1 F_{g}[3 / 2 ; ; z] \tag{32}
\end{equation*}
$$

and finaliy, raking into account the relation

$$
\begin{equation*}
{ }_{1} F_{8} l a ; z=(1-z)^{-a} \tag{33}
\end{equation*}
$$

expression (28) raduces to

$$
\begin{equation*}
\frac{1}{6(1+z)^{3 / 2}}+\frac{5}{6(1-z)^{3 / 2}} \tag{34}
\end{equation*}
$$

"Contiguity" has been also found useful and has been put inio use in the reductior of the Generalized Hypergeometric Functions.

Definition. We cal: two Generalized Hypergeometric Functions contiguous if they are alike except for one pair of parameters in which they differ by a anity.

Thus the Hypergeometric Function $\mathcal{F}_{1}[a, b ; c ; z]$ is contiguous to ${ }_{2} F_{1}[b+1, b: c ; z]$ and obviously to only five others. Iny three of the contiguous functions can he connected with a linear relation, the so called Contiguous Functions (Recurrence) Relations. Such relations are applied to a Genuralized Hypergeometric Function whenever it has been predetermined that the resulting series can be reduced to Special orfand Elementary Functions.

## Glven

$$
{ }_{1} F_{1}[-1 / 2 ; 3 / 2 ; 2]
$$

(35)
and violrg the folloulng contigucus relation

$$
\begin{equation*}
(a-c+1){ }_{1} F_{1}[a ; c ; z]-a{ }_{1} F_{1}\left[a+1 ; c_{;} z\right]+(c-1){ }_{1} F_{1}[a ; c-1 ; z]-0 \tag{36}
\end{equation*}
$$

we get

$$
: 1 / 2 \mathcal{L}_{1}[1 / 7: 3 / 2 ; 2]+1 / 21 F_{1}[1 / 2 ; 1 / 2 ; 2]
$$

Where the firat series la idensified as an arror and the acond es an incomplate Gamsa function, namely

$$
\begin{equation*}
-1 / 41 z \pi^{1 / 2} \operatorname{Erf}\left(1 z^{1 / 2}-1 / 2 z^{1 / 2} \div(-1 / 2,-z)\right. \tag{38}
\end{equation*}
$$

Similariy, the Hypergsometric Function

$$
z^{〔} 1[\Leftrightarrow a+9 / 2 ; c ; 2]
$$

can be reduced through succescive use of the contiguous relations to the following sum

```
    (c-a-9/2) (c-a-7/2) (c-a-5/2) (c-a-3/2)
    \(\left(c-2 a-9 / 2 ;(c-2 a-7 / 2)(c-2 a-5 / 2)(c-2 a-3 / 2) 2^{c}!a, a+1 / 2 ; \quad c ; 2\right]\)
- \(4-\frac{a(c-a-9 / 2)(c-a-7 / 2)(c-a-5 \cdot 2)(1-z)}{-2 F}[a+1, a+3 / 2 ;\) c; 2]
        \((c-2 a-11 / 2)(c-2 a-9 / 2)(c-2 a-7 / 2)(c-2 a-3 / 2)\)
            \(a(a+1):(c-a-9 / 2)(c-a-7 / 2)(1-z)^{2}\)
```



```
4. \(a(a+1)(a+2)(c-a-9 / 2)(i-z)^{3}\)
```



```
            \(a(a+1)(a+2)(a+3)(1-2)^{4}\)
\(+(c-2 a-15 / 2)(c-2 a-13 / 2)(c-2 a-11 / 2)(c-2 a-9 / 2) 2^{F}[a+4, a+9 / 2 ;\) cः 2\(]\)
We next notice that the parametere of each of the above Fypergeonetric Series satiefy a similar relation to (29). Therefore a quadratic transformation ls applicatie to each of then, that ultimatyly leads to the following sum of
``` Legendre functions
\[
\begin{aligned}
& 2^{c-1} \Gamma(c) z^{(1-c) / 2}(1--z)^{T c-2 a-1!/ 2} \\
& (c-a-9 / 2)(c-a-7 / 2)(c-a-5 / 2)(c-a-3 / 2) \\
& \left(\underset{(c-2 a-9 / 2)(c-2 a-7 / 2)(c-2 a-5 / 2)(c-2 a-3 / 2)}{ } P_{\left.c-2 a-1,1-c^{(t-z)^{-1 / 2}}\right)}\right. \\
& -4 \frac{a(c-a \cdot 9 / 2)(c-a-7 / 2)(c-a-5 / 2)}{(c-2 a-11 / 2)(c-2 a-3 / 2)(c-2 a-7 / 2)(i-2 a-3 / 2)} P_{c-2 a-3,1-c}\left((1-z)^{-1 / 2}\right) \\
& a(a+1 i(c-a-3 / 2)(c-a-7 / 2) \\
& +6-10-12(1 / 2) \\
& (c-2 a-13 / 2)(c-2 a-11 / 2)(c-2 a-7 / 2)(c-2 a-5 / 2) \\
& -4 \frac{a(a+1)(a+2)(c-a-9 / 2)}{(c-2 a-15 / 2)(c-2 a-11 / 2)(c-2 a-9 / 2)(c-2 a-7 / 2)} P_{c-2 a-7,1-c}((1-z ;-1 / 2) \\
& +\frac{a(a+1)(a+2)(a+3)}{(c-2 a-15 / 2)(c-2 a-13 / 2)(c-2 a-11 / \bar{c})(c-2 a-9 / 2)} \rho_{\left.\left.c-2 a-9, j-c^{((1-z)-1 / 2}\right)\right]}
\end{aligned}
\]

VI COMIENTS AND CONCLUSIONS.
The Laplace Transforme package is relatively fast, as the actual eramples in the appendix show. Furthermore, it is capatie of oulckly rejecting cases that it cannot process.

The Laplace Transforms system is capable of proyiding rosuits for the well known Spacial Functions limited to essentiaily linear and quadratic argumenta. However, cases like equation (21), menitioned earlier, or the following one
\[
\begin{equation*}
t^{-1} J_{1}\left(a t^{-1}\right) e^{-p t} \tag{4.2}
\end{equation*}
\]
are some of those that the present Laplace Transforms Implementation is unable to provide an answer, unless it will interact properly with other Integral Transforms. We axpect to generallze this system to thoes other transforms in the coming year،

Currently our sustsm is able to solve arproximatelly 80\% of the entries of the correspondiriy chapters of the Tables of Integral Transforma the Bateman's Manuacript Projactl. We expect to be able to cover \(3 / 4\) of the rema!ning cases in the coming months by Increasing the capabirities of our first and third stages. Finally, we should add in favor of our implomentation, ita capability to irtegrate meprasslons that aro only implicitiy includen in Bateman' © Manuscript Projzct.

\section*{APPEND: \(X\)}

This is a sample of some act,dal exziples of the Laplace Transform system in MASSYMA. "Definte" is the top fumction that calls the integral transforms, it takes tho arguments: the expression tis be integrated and the variable, and assumes limits of iritegration f.om zero to infinity.
/* Laplace transforms */
ASSUME ( \(P\) > 8);
```

(Cil)
IP > Bi

```
(CLZi TME:TRUES
TIME- 1 MSEC.
(C!3) /* Some "Confluents".
" \(M[k, m](z)\) " is a hizittaker function.
"GAMiAAINCOMPLETE \((a, b) "\), and "GAMMAGREEK (a,b)" are current names
for the Incomplete Gamme functinns: Пa,b), and \(\gamma(a, b)\). */
\%E^(A*T)*T^2*ERF(T^(1/2))**E^(-P*T);
TIME= 22 MSEC.
(013)
ERF (SCRT (Ti) T xE
(C14) CEFINTE (\%,T):
RPART FASL DSK MACSYM being loaded
loading done
Ie \(A\) - \(P\) positive, negative, or zero?
NEGATIVE;
GAMMA FASI. DSK MAXOUT being leaded
leading done
TIME-431 MSEC.
(D14)

(C15) T^ \(11 / 2\) ) *GAMIAINCOMPLETE(1/2,A*T)*世E^(-P*T):
TIME- 632 MSEC.

(CI6) DEFINTE(X,T):
TIME= 1586 MSEC.


TIME- 12 MSEC.
(019
\[
H_{1 / 2, i} \text { (T) } T^{3 / 2} \approx{ }^{-P T}
\]
(C20) DEFINTE (\%,T);
TIME 263 MSEC.

(r.21) /: Some Bessel functa (bi*s). */ /* J[v](z), lst kind of bf's. w/
f(\% Y[v] (z), 2nd kind of bf's.t!
/* \(H(v, 1](z)\), 1at kind of the 3rd kind of of'g (1at Hankel). */

 TIME 16 MSEC.
1021)

(C22) TIEF:NTE (X,T):
TIHE- 256 MSEC.
(022)

soar (xpl) : \(\underset{(---)}{n} x E\)
02 P
SOPT (P)

T1ME. 9 MSEC.
i023)
\[
Y_{1}\left(A T T^{3 / 2} x E^{-1}\right.
\]
(C24) DEFINTE(\%.T):
TITIE 968 MSEC.
(C25) 1^(3/2)*
TIME= 12 MSEC.
(D25) \(H_{i / 2,1}(T) T^{3 / 2} \mathrm{KE}^{-\mathrm{PT}}\)
(C26) DEFINTE (\%, T);

(C29) /* \(\|(v](z), K[y](z)\), Modified bf's. w/

TIME- 11 MSEC.
(029)
\[
1_{1}(T) \operatorname{soRT}(T) X E^{-P T}
\]
(C38) DEFINTE (\%, T):
TIME= 235 MSEC.

(C31) T^(5/2)wK(1/2) (T) *ZE^(-P*T):
IIME: 12 MSEC.
(D31)
\[
K_{1 / 2}(T) T^{5 / 2} x^{-P i}
\]
(C32) DEFINTE (\%, T):
TIME 1761 MSEC.


TIME- 15 MSEC.
(035)
\(1_{8}(2 \operatorname{son}(a) \operatorname{sonill})^{2} \underset{e^{-P T}}{ }\)
(C36) DEFINTE \((\%, T)\) :
TIME- 944 MSEC.
(036)


TIME- 15 HSEC.
(1537)
(C38) DEFINTE (\%,T):
TIMEW ZES MSEC.


TiME: is MSEC.
(039)
(C46) OEFINTE(\%,T)I

TIME 2938 MSEC.

(C41)/* Related to bf's functions. */ 8* Struve functions. */
 TIME. iS MSEC.
(041)

(C42) GEF (NTE (\%, T):
TIME. 1136 MSEC.
( \(\mathrm{D}_{4}\) 2)
4. SQRT (XP) SQRT (P)

TIME- 18 MSEC.
(1043)
hStauve (T) TXE \(\mathrm{XE}^{-P 1}\)
(C44) DEFINTE (X, T): TIME- 229 MSEC.
(D44)
16 \%
\[
3 \mathrm{xpl}^{3 / 2}{\underset{p}{2}}_{1}^{2}+11^{3 / 2} p^{3}
\]

\section*{(C45) /: Lommel functions. */}
 TIME- 15 MSEC.
(045)
\[
S_{i / 2,-4 / 2}\left(\text { SORTITI) } r^{1 / 4} N E^{-P T}\right.
\]
(C46) CEFINTE(X,T):

TIME= 226 MSEC.
\(=\frac{1}{4 P}\)
\%1 SART(\%P1) ERF(-2 \%1 SQRT (P1) यE
(D46)

2 P

REFERENCES
1. The Mathlab Groupt MACSYMA Reference Menual. Lab. Comput. Sc:.. Msstachusetts Inst. Tuchnol., Nov. 1975.
2. Erdely' \({ }^{1}\). Magnusi and Uosehettinger, Tricomis Higher Transergndental Functions. Bateman Manuscript Pralect - Volcase 1.2 and 3. McGrau-lilil Book Co. . 1953.
3. Hochstadt, H.: The Functions of Kathamatical Physics. Inierscience Publ.. 1971.
4. Nang. P. S.2 The Undecidabllity of the Existence of Zeros of Fieal Elementary Funciions. J. Assoc. Comput. Mach., vol. 21, no 4. Oct. 1974, pp. 586-589.
5. Vilanik, N. J.: Stapial Functions and the Theory of Group Representationg. Translations of Methematica! Monographer vol. 22. American Math. Soc. . 1968.
6. Heng, P. S.g Evaluation of Definite Integrals ra Symbolic Manipulation. Pr.o Thesis. Massachusetts Inst. Technol., Det. 1971. (Also avaliable as TR-32)
7. Bogeri, R. A.t Automatle Computation of direct and inverse Laplace Tranaforme using Computer Symolic Mathematics. Proceedings of the 10th Hawall Internationa! Conference on Syetemy Sciencer, Jan. 1977, pp. 161-169.
8. Slater. L.: Generalized Hypargemetric Functions. Cambridge Univ. Proas. 1965.
9. Enedion, 1. H. 1 Tha Uae of Integrai Transforma. McGraw-Hill Book Co.. 1972.
18. Hisdik, Jt La Transformation de Laplace plusiers variables. Maseon et Cie. 1969.
11. Wzison, G. N. A Trestiec on the Theory of Beesel Functions. Cambridge Univ. Press. 1952.
12. Tranter. C. J. \(\mathrm{I}^{2}\) Bessel Functiona. Hert Pub. Co., Inc., 1969.
13. Erdelyl, Maymual and Oberheitinger. Tricomis Tablee of Integral Traneforms. Gateman Manuscript Project - Volumes 1 and 2, MicGraw-Hill Book Co., 1954.
14. Buchhoiz, H.: The Contluent. Hupergeosetric Furnction. Sprlayer Tracte Nat. Philos., vol. 15, 1969.
-5. Abremowlit, M.i ant Stegun, Irene A.: Handeook al Msthematical Functions. Dover Publ. Inc., 1965.
16. Goursat, E. M.: Sur. I' aquation differentiallo lineaire qui admet pour iniegrale le serio hupergeonetrique. Rn. Scl. Ecole Norm. Sup. 121. 10, 3-142. 1881.
17. Rainville, E. D.: The Contiguous Function Relations for \(\mathrm{p}^{\mathrm{F}} \mathrm{q}\). Buls. Amertean Math. Soc., vol. 51, 194E, pp. 714-723.


Level 2.


Figure 1.



\title{
N77-28754
}

AN IMPROVED ALGORITHM FOR THE ISOLATION OF POLYNOMIAL REAL ZEROS*

\author{
Richard J. Fateman
}

University of California Berkeley, California 94:20

\section*{SUMMARY}

The Collins-Lons alq, rithm for computing isolatiag intervals for the zeros of an integer polynomial requires the evaluation of polynomials at racional points. This implies tre use of arbitrary precision integer arithmetic: This faper shows how careful use of single-precisica floating-point arithmeac wichin the context of a slightly modified algorithm can make the calculation considerably faster ani no less exace. Typically, \(95 \%\) or more of the evaluations can be done without exact arithmetic. The precise speed-up depends on the relative costs of the arithmetic in a given implementation. Our implementation on the LEC KL-10 computer is some 5 to 10 times faster than the original Univac 1110 implementation in SAN-T. We are able to attribute about a factor of three improvement to the MACSYMA machine and language, and 2.7-3.3 speed-up to the algorithm itself.

\section*{., TNTRODUCTIC.:}

Collins and Loos (reference 1) sketch an algor:hm, and provide some implementation details for computing a set of intervals on the leal line ( \(a 1, b 1], \ldots,(a n, b n]\) such that each faterval contains a single or multiple real zero of a polynowial \(P\). The multiplicity of the ith interval is also computed. This \(a\) ? gorithin requires the exact evaluation of \(P\) and its derivatives at rational points. For most of the algorithm, one is actually unconcerned about the value of \(P\) or its derivatives, since the sign ( \(+1,0\), or -1 ) is sufficient to determine whether \(P\) is above, on, or below the \(x\)-axis.

The sign may be determined, as shown in section 2 , by a procedure using primarily floating-point arithmetic; in case the sign cannot be so determined, either higher precision or exact rational arithmetic is used. It might be temp: Ing to dismiss this technique as being "machine dependent", and so it is; however, the dependency is isolated to a single floating-poirt value represencing the maxinum relative error in the result of a floating point operation. We k-ow of r computer for which this number cannot be determined.

\footnotetext{
* The work described herein was performed with the help of MACSYMA which is supported, in part, by the Unitcd States Energy Research and Development Acministration under Contract Number E(11-1)-3070 and by the National Ae onautics and Spase Admin*stration under Gant NSG 1323.
}


In places where exact values are compu:.ed in ref. 1, we are usually able, through the use of (pessimistic) floating-point interval arithmetic (ref. 2) to avoid the attendanc cost of exact arithmetic. In fact, most of the reliance on exact arithmetic demonstrated in the tests (duplicating those in (ref. 1)) is generated by exponert overflon rather than insufficient accuracy.

\section*{2. HORNER'S RULE WITH ERROK BOUNDS}

Assume we wish to evaluate a polynomial \(p(z)=\sum_{j=0}^{n} a_{j} z^{n-j}\) at a point \(z=x\).
\[
\begin{equation*}
p(z)=p(x)+(z-x) \sum_{j=0}^{n-1} b_{j} z^{n-1-j} \tag{2.1}
\end{equation*}
\]
where Horner's recurrence provides the \(b_{j}\) 's:
\[
\begin{aligned}
& b_{0}=a_{0} \\
& b_{j}=x b_{j-1}+a_{j}, j=1,2, \ldots, n-1 \\
& \text { and } b_{n}=p(x)
\end{aligned}
\]

Assume we are using arithetic subject to truncation and round-off error. Then for some small constants \(\alpha_{j}, \beta_{j}\), the computed value of \(b_{j}\) is
\[
\begin{equation*}
b_{j}=\left(x b_{j-1}\left(1+\beta_{j-1}\right)+a_{j}\right) /\left(1+\alpha_{j}\right) \tag{2.2}
\end{equation*}
\]
(assume \(b_{-1} \equiv 0\) for the following)
\[
\begin{align*}
p(z) & =\sum_{j=0}^{n} a_{j} z^{n-j}=\sum_{j=0}^{u}\left[\left(1+\alpha_{j}\right) b_{j}-x b_{j-1}\left(1+\beta_{j-1}\right)\right] z^{n-j} \\
& =\sum_{j=0}^{n}\left(1+\alpha_{j}\right) b_{j} z^{n-j}-x \sum_{j=0}^{n-1} b_{j}\left(1+\beta_{j}\right) z^{n-1-j} \\
& =b_{n}\left(1+a_{n}\right) \quad z^{0} \sum_{j=0}^{n-1} b_{j}\left(\left(1+\alpha_{j}\right) z-\left(1+\beta_{j}\right) x\right\} z^{n-1-j} \tag{2.3}
\end{align*}
\]

Application of (2.1) provides; at \(z=x\)
\[
\begin{equation*}
b_{n}\left(1+\alpha_{n}\right)=p(x)-\sum_{j=0}^{n-1} b_{j}\left(\alpha_{j}-\beta_{j}\right) x^{n-j} \tag{2.4}
\end{equation*}
\]

Thus the magnitude of the error \(\left|b_{n}-p(x)!=\sum_{j=0}^{n-1} b_{j}\left(\alpha_{j}-\beta_{j}\right) x^{n-j}+b_{n} \alpha_{n}\right|\). Since \(\left|\alpha_{j}\right|,\left|\beta_{j}\right| \leq \varepsilon, \varepsilon\) a unit in the last place, \(\left(\varepsilon=2^{-27}\right.\) on a 27-hit base 2 mantissa machine such as the PDP-10),
the bulk of the error is \(\leq 2 \varepsilon \sum_{j=0}^{n}\left|b_{j}\right| \quad|x|^{n-j}\)
The above analysis, due to \(W\). Kahan, can be extended to complex values of \(x\) (ref. 2 and 3 ).

We wish to extend the analysis to include approximation of \(x\) by a floating point representation; and approximation of each \(a_{j}\) by a floating point representation.

That is \(x=\hat{x}(1+\delta), a_{j}=\hat{a}_{j}\left(1+\gamma_{j}\right)\).
An alternative to (2.2) is then
\[
\begin{equation*}
b_{j}=\left(x(1+\delta) b_{j-1}\left(1+\beta_{j-1}\right): a_{j}\left(1+\gamma_{j}\right) /\left(1+\alpha_{j}\right)\right. \tag{2.2'}
\end{equation*}
\]
which becomes, analogous to (2.3):
\[
p(z)=b_{n}\left(\frac{1+\alpha_{n}}{1+\gamma_{n}}\right)+\sum_{j=0}^{n-1} b_{j}\left\{\left(\frac{1+\alpha_{j}}{1+\gamma_{j}}\right) z-\frac{(1+\delta)\left(1+\beta_{j}\right)}{\left(1+\gamma_{j-1}\right)} x\right\} \quad z^{n-1-j}
\]

Following the analysis to (2.4) yields
\(b_{n}\left(1+\alpha_{n}\right)=\left(1+\gamma_{n}\right)\left[p(x)-\sum_{j=0}^{n-1} b_{j}\left\{\left(\frac{a_{j}-\gamma_{j}}{1+\gamma_{j}}\right)-\frac{\left(\delta+\beta_{j}-\gamma_{j-1}+\delta \beta_{j}\right)}{1+\gamma_{j-1}}\right\} x^{n-j}\right]\)
Thus the magnitude of the error, neglecting terms which are products of two small terms is bounded by \(\hat{e}\), the rhs of the equation below:
\(\left|b_{n}-p(x)\right| \leq\)
\(\left|\gamma_{n} p(x)\right|+\left|b_{n} \alpha_{n}\right|+\left|\sum_{j=0}^{n-1} b_{j}\left\{\alpha_{j}-\gamma_{j}+\gamma_{j-1}-\delta-\beta_{j}\right\} x^{n-j}\right| \leq 5 \varepsilon \sum_{j=0}^{n}\left|b_{j}\right||x|_{\left(2.5^{\prime}\right)}^{n-j}\)
Typically the integer coefficients of \(p\) will be representable exactly as
floating point numiders, as will \(x\) (since \(x\) typically is an exact binary fraction resulting from bisection of intervals with binary fraction end points) so that \(\delta\) and the \(\gamma_{j}\) will frequencly be zero.

It may be argued that. we have calculated \(\hat{e}\) imprecisely, but the rhs of (2.5') is a sum of positive terns and the error invol'jed can be shown to be a second order effect. Being pessimisiic, we use \(6 \varepsilon\) rather than \(5 \varepsilon\) as a coefficient so as to be positive of bounding the error.

Thus if we wish to find the sign of a polynomial \(p\) at a point \(x\), we evaluate \(\hat{p}(\hat{x})\) and \(\hat{e}\), the error bound. If \(\hat{e} \geq|\hat{p}(\hat{x})|\), then we do not know the sign definitely. We can re-evaluate to higher precision: ho: much higher can be estimated from equation (2.5). If \(p(x)=0\), we will have to use rational arithmetic to prove it; thus if \(\hat{p}(\hat{x})=0\), a direct test for zero asing rational arithmetic would be needed.

\section*{3. IMPLEMENTATION}

A first draft of this paper and a MACSYMA implementation were mentioned in a talk at the SYMSAC conference, August, 1976 (ref. 4). Since that time, Professor Locs was kind ensugh to supply an ALDE language version of the program descrifed in (ref. 1). After correcting a few typographical errors presumably not present in the SAC-I progran, it was possible to duplicate the resulcs cf (ref. 1) fairly closely. We were not able to achieve exactly the same numbers of evaluations, a situation which we believe arises because the SAC-I program differs in some respects frrm the ALDES description. This duplication was done by writing in MACSYMA's Algol-60-1ike language, followed by semi-automatic translation to LISP, followed by compilation to machine language.

Certain programs were already fn existence in MACSYMA, and did not have to be programmed for this application; these included some involved with the detection of floating point overflows. In step 4 below, one minor improvement was achieved by a sifuple 4 line assembly language alteration. This amounted to \(1 \%\) in total tin.e. All other programming was done in higher level lenguages such as LISP.

The MACSYMA implement. iion running on a DEC-KL-10 computer seems to run faster than the SAC-I implementation on the UNIVAC 1110 by a factor of 3 or more; this, using the most faithful recreation of the algorithm as seemed appropriate. Computing a strict isoldtion list for the 5 th Legendre polynonial, L[j] requirea . 74 seconds in SAC-I, . 138 seconds \({ }^{2} n\) MACSYMA. For L[25] the times were 35 and 11 seconds, respectively. An attempt to divorce these numbers from storage allocation time may make the comnarison more relevent: if SAC-I spends \(1 / 3\) of its time in such bookkeeping (a figure suggested by Prof, Loos), and MACSYMA spent 5 of the 11 seconds in LISP "garbage collection". (gc) by actual measurement; then the two systems compare at 23 and 6 seconds respectively. We suspect that MACSYMA's host system has relatively faster
multiple-precision integer arithmetic, resulting in these shorter times.
Improvements to the Collins-Loos algorithm proceeded in several steps.
Step 1:
All computations of polynomial sfgns were attempted in single-precision floating-point arithmetic, first. No exact values ware computed except when needed (equations 24 and 25 of ( \(r\) ?f. 1)), when the error in the floating-point evaluation was toc high to determine the wign, or an exponent overflow occurred during the sign computation. Nota that some poiynomials can never be evaluated without overflow in single-precision because their coefficients are too large to be expressed in the floating point range. For such cases we must use come other technique: exact rational arithmetic, approximate unlimited-exponent arithmetic such as MACSYMA's "bigfloat" system, or some other algorlinim entircly, (The DEC-10 floating-point format specifies a 27 -bit fraction, 8 -bit (excess 128) exponent, and 1-bic sign. Arithmetic is base 2 (not 8 or 16).)

For the same polynomial, 1 [25], \(93.7 \%\) of the arithmetic could be done in single-precistion floating-point. The time was reduced from 11 seconds to about 7.2 (2.5 in gc). As noted in (ref. 1), these polynumials can be handled very rapidly by a Sturm-sequence base root-finder, and in fact MAUSMMA's tosk 7.5 seconds ( 4.3 in gc ) on this polynomial..

Incidentally, the speed difference between SAC-I and MACSYMA on Sturmsequences is also about 3:1.

Step 2:
Computations were done in single-precision initially, then in multiple precision when possible, otherwise using exact arithmetic. The software multipie precision (ref. 4) removes the need to check for exponent overflow in Horner's zule, but incurs a higher cost than the binary rational arithmetic advocated by Collins and Loos, in some cases. (In fact, binary rational erithmetic is very similar to floaring point arithmetic, the difference being that the "fracticn" is of varying length, and is exact. If that length is amail, the floating-point arithmetic will be comparatively more expensive. For L[30], the "longes." binary rational endpoint of an isolating interval \(\mathrm{a} / \mathrm{b}\) is only 8 bits long in \(a\) and \(b\), suggesting that floating point is at a disadvantage here.)

Fcr L[25] again, \(93.7 \%\) of the arithmetic could be donz in singleprecision, another \(4.6 \%\) in multiple-precision, and only \(1.8 \%\) in exact arithmetic. Considering the fact that \(I[25]\) cannot even be evaluated at its computed root bound (16) withent overflow in single-precision, this seens fairly impressive.

Step 3:
It is possible to eliminate all exact computations within the scope of
the algorithm by replacing the tangent construction in (ref. 1) by a procedure suggested in the earlier drafe of this fiper reçuiring only evaluation with rigorous error bounds. It was hoped that this removal of all exact arithratic would speed up the computation. The alternative of using essentially the same tangent algcrichm but with floa:ing-point interval arithmetic, and when recessary, exact arithmetic was more successful. Although it was possible to reduce the number of exact evaluations to a very small number (e.\&., 20 of some 1300 for \(\mathrm{L}[30]\) ), some of the floating point multiple precision evaluations were slower than exact evaluation at a binary-rational point.

It appears that singie-precision floating-point interval arithmetic nearly albays is sufficient, in the tests suggested by Collins and ioos. Most decisions can be made with this arithmetic and it is faster than multipleprecision. In the table below we do not tabulate the multiple-precision measurements. When an interval caicularion is insufficiently precise for a decision, we reve:t momentarily back to exact evaluation for fisolating interva: computation for that polynomial derivative. A move elaborate algerithni would usa exact avaluation for redoing exactly the smallest computation that failed, but we did not choose this technique, because of algerithm complexity.

Step 4:
Since so much of the computation is done in floating point, we gought to decrease the time spent in arithmetic by open-compiling floating point arithnetic in the one short program implementing Horner's rule.

This is easily done in MACLISP, iut at the expense of loss of overflow detection. Four instructions were inserted in the compiler-generated LAP (IISP Assembly Program) code for the Horner's rule program to reset flags at the beginning and at the end test (once) for overflow in any of the operations. The coefficfents in the polynomial and its derivatives were also converted to floating point, once in the main loop. In case this could not be done recause of overfiow, the original verston of the algorithm was used for that polynomial derivative under cons:deratinn. These chanzes sped un the run-time considerably, to about 2.3 seconas for L[25] (plus ge). This is 10 times faster than tioe original program running on the UNiVAC 1110 , and 2.2 times faster than our. orn version of the Collins-Loos algorithm.

\section*{4. EMPIRICAL TESIS}

The tests in table 1 are representative of a larger class of tests with randomly generated polynom'als, at least in the relative flming of the varims zero-finding programs being sompared. Furtier comparisons, includin addi:Ional work mentionad in section 5, should be forthcoming.

\section*{5. ANALYSIS}

By nomparison with (ref. 1), we may add only a few itcms of interest.

Since the "worst case" for our algorithm is similar to the Collins-ioos worst case, we can only observe that empirically, most calculations were not "worst case" and could be done in single-precision floating print. The major problem, that of overflow, could be handled by more elaborate scaling procedures, suci as carrying an additional word for the exponent. We did not pursue chis. The time for finding all real zeros of a polynomial of degree \(n\) if fikely to be on the average, under our algorithm, \(0\left(n^{3}\right)\) by the same argments as in (ref. 1).

We expect ficther progress in fifs arfi can be made in cwo directions: Given the isolating intervals, it may be shown that a Newton-iteration's convergence can he assured, using starting points developed from the strict isolation list of the second derivative of the polynomial of interest; also, the vast difference \(i, t\) time for finding these intervals veisus numerically approximating the roots is disturbing. Since the library programs for polynomial zero approximation using standird numerical procedures are an order of magnitude faster, it seems reasonaie to obtain approximatiors in this way, and then "prove" the locations of the zeros, and their multiplicities after the fact. Bruce Cher, a Berkeley graduate student has worked on this problea using a simple techaique described in reference 5. it is not clear that we could compute even the one greatest-comon-divisor calculation to remove multipie roots in less tine than we covld find all isolating intervals for the roots by the nmerical methods currently available. Char's frogran appears to he mach faster than the functionally sinflar progran described in reference 6. For example, the roots of the 13 th cyclocmic polynomial are isolated oy pinkert's algorithm in 220 seonds on a FDP-10. Char's routine takes less than 0.5 seconds on a PDF-iO (perinaps a model 4 tines faster thin P...kert's). Char:'s routine must sometires defer to other methods such as dercribed :.ere, 'where floating point yields to exact calcu'ation, but this is only when its internal checks fenonstrate that the isolation of all complex rcots (currently, of a real polymonfal) has not heen achieved.

As the program currently exists, it is faster than Sturm sequence calculations or most polynomials with few real roots, and thus should be used In piace of that zero-finder, except when it is known in advance that many real zerss extst. Since the numerical programs are so much faster, we expect that: the usefulness of this program is quite restricted, in tcrms of the typical MACSILA user, to those applications where misdiagnosis of a zero would have special dire consequences in the course of a unputation, and furthermore, the polynomial is inewn in advance to be numerically difficulc.

We are grateful to Prof. W. Kanan int numerous discussions on this topic.

\section*{6. REFERENCES}
1. Coillns, G. E.; and Loos, R.: Polynomial Real Root Isolation by Differentiation. Proceedings of the 1976 ACM Symposium on Symbolic and Algebiaic Computation, Aug. 1976, pp. 15-25.
2. Adams, D. A.: A Stopping Criterion for Polynomial Root Yinding. Commun. ACM 10, no. 10, OCN. 1967, pp. 655-658.
3. Kahan, W.: Implementation of Algorithms, Parts I and II, Tech. Rep. 20, Dept. of Computer Science, University of California (Berkeley), 1973. (Avafiable from DDC as AD 769 24.)
4. Fateman, R.: The MACSYMA 'Big Floating-loint' Arithmetic System. Proceedings of the 1976 ACM Sympos!um cs Egmbolic and Algebraic Computation, Aug. 1976, pp. 209-213.
5. Swith, B. T.: Error Bounds for Zeros of a Polynomial Based Upon Gerschgorin's Theorems. J. Assoc. Comput. Mach., vol. 17, no. 4 (0.s. 1970), pp. 601-674.
6. Pinkert, J. R.: An Exact Mechod for Finding the Roots of a Complex Polynomial. ACM Trans. on Math. Software, vol. 2, no. 4 (Dec. 1976), pp. 351-363.
Table 1: Tine for Pinding the Isolation Intervals for the nth Legendre Polynomial
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline
\end{tabular}
\(m \operatorname{mon} \underset{\sim}{1} \underset{\sim}{n} \underset{\sim}{\infty}\) \begin{tabular}{lrr|}
\multicolumn{4}{l}{ FLOATING POINT } & \\
time & fevs & eevs \\
0.129 & 45 & 7 \\
0.485 & 162 & 9 \\
1.15 & 356 & 12 \\
2.16 & 597 & 16 \\
4.14 & 944 & 63 \\
7.57 & 1325 & 195
\end{tabular}
옹융․ E8C. \(\stackrel{N}{N}\) 응
ain
\(\begin{array}{lll}7.31 & 875 & 388\end{array}\)
*Multiply time in seconds by 1.5 to include storage reclamation time. This ratio has been
estinated for SAC-1, and is typical ior MACSYMA measurements (alchough actual time is highly dependent on amount of system free storage). The colum labelled "eevs" indicates number of exant evaluations, "fevs" floating point evaiuations. 4th and 5th colums are tizes and counts for the PDP-10 transiation are derijed from reference 1 . The The last three colums indicate the results using floating point evaluations, then exact evaluation. arithmetic were used. The results in the last columa could be imprifloating point interval b attempting operations in floating point rather than giving up on a complete stage when an overflow or insufficiently precise result is encountered.

FLOATING POINT ISOLATION OF ZEROS OF A REAL PGLYNOMIAL VIA MACSMMA

\author{
Bruce d. Char \\ University of California, Borkeley
}

ABSTRACT

Given a square-free polynomial \(P\) of degree \(n\) with floatins-point representable (real) cocfficients, we would like to find \(n\) disjoint regions, each containing a root of P. Existing mothods (ref. 1, 2) can be slow because of their reliance upon rational arithmetic. we propose a faster techrique which uses only floatin: poirt arithmetic. A MACSMM function, BOUHD, was written which when given such a polyncmial P, produces \(n\) complex discs \(C[i]\), cach containing a true root of \(P\). After compating the dises, BOUND detemines if they are a set of isolnting regions for the true roots of \(P\) (i,e. that no two of the C[i] overlap). The routine uses the Jenkins-1riub zero-finding algo ithm (ref, 3)MACSMA's ALLRCOTS function- 0 get approximations to the zeros, each approximation becoming the center \(i\) a disc. The radius of each C[i] is based upon error bound results by Adams (raf. 4) and Smith (ref. 5).

BOUND :uns in time \(O\left(n^{2}\right)\), with all calcuations using the standard floating-point arithmetic of the Decsystem- \({ }^{-1}\). As a compiled MACLISP routine, ECUND has been found to be 10 to 100 times faster than rational aritlmetic root-isolating techniques in SAC-1 on the trivac 1110 and the Decsystem-10 by Pinkert (ret. 1) and Collins and Aicritas (rer. 2), in test polymomials of degree 15 or iess. It should be noted howevar, that BCNDD dons not allow the user to specify ine siee of the zero-containing recions nor is it guaranted to rind isolatin; reeions as the rational arithmotic methods are. It may alsc bronk down due to underflow/overflcw during intentnediate complations on ill-conditionod polynomials. A tesinique to extract the best of both the rational and floating-point arithretic approachos would be to use tho above procedure as a quick first atiempt, reservine rational arithretic for when the intial method iails.

We anlicipate several developronts thit will improve or extond BOUND. Since the Jonkins-Traub algoritha and Agans's and Sith's results work for polynonials with complex epoficients, the aditiun of complex aritemetic to \(\| A C=I S P\) will aldow ECUDD in be nasily extended to work in that seneral case. Because the quaitity of tho zerotindins and the radil of the \(C[i]\) are in part dependent on tide precision of the fioatine-point rerresentation, BOUND would profluce smaller recions ir implemented in dodble precision. Stith Loing invostieated aro the imprevemen of the existin; error bounds, and deveiopent of mithods that can be applicd to polymithls with nonmational ouribicients.


\section*{REFERENCES}
1. Pinkert, James R.: An Exact licthod for Findine the foots of a Compiex Polynomial. ACM Transactions on 'bthema*ical Software, vol. 2. no. 4, Dee. 1976, pp. 351-363.
2. Collins, Georee E.; and Akritas, Alkiviadis: Polynomial Real foot Isolation Usine Descarte's Rule of Signs. Proceccings of the 1976 AC: Symposium on Symbolic and Aigemraic Computation. Association of Conputily Machincry, 1975. pp. "772-275.
3. Jenkins, i.A.; and Traub, J.Y.: Zoros of a Conplex Polynomial. Commications of the ACli, vol. 15, no. 2, Feb. 1072, pp. 97-99.
4. Adame, Duane A.: A Stopping Criterion for Poimorial Root vindiut. Communications of che ACM, voi. 10, no. 10, Oct. 1967, pp. \(65=-658\).
5. Smith, Brian T.: Error Bounds for Zeros of a Polynonial Based Upon Gerscherrin's Theorons. Journal of the Association ror Computing lhehinery, vol. 17, no. 4, Oct. 1970, pp. 661-0́74.


\title{
PRESERVINC SPARSENESS IN MULTIVATIATE POLYNOMIAL IACTORIZATION
}

\author{
Paul S. Wang \\ Labnratery for Computer Science is Mathematics Department, MIT
}

\section*{INTRODUCTION}

Working on heuristic programe for factoring pol; nomials over the integers, Ciaybrook has come up with many farly large mulivariate polynomals. He has proposed ter of these polyncmials as test cases for any algorithmic approach to factoung 'ief. 1). Attempts were made to facter these ter polynomiats on MACSYMA (ref 2 ). However it dad not get very far with any of the iarger po'ynomials. At that time MACSYMA used an algorithm created ty Wang and Rothschitd. This factoring algorithm has also been impicmented for the symbolic manipulation system, SCRATCHPAD (ref. 3) of IBM. A closer look at this old factormg algorithm (OFA) (ref. 4) revealed shree problem areas, each of which contribute to losing sparsencss and intermediate expression growth. This study led to effective ways of avoiding these problems and actually to a new ficinting algorithm (NFA) (ref. 3), (ref 6).

The three problems are known as the extraneous factor problem, the leading coefficient problem, and the bad-zero problem. These prislems are examined separately in the following trree settons. Their causes ant effects are set forth in detail. Then the ways to avoid or iessen these problems are described.

The NFA has been impiemented on MACSYMA. Its performance 0.1 the ten polynomials proposed by Claybrook is tabulated in Appendix A.

\section*{aVoidinc extraneous ractors}

Consider factoring \(\left[\left(x_{1}, x_{2}, \ldots, x_{1}\right) \in Z\left[x_{1}, x_{2}, \ldots, x_{t}\right]\right.\) which is primitive and squarefree. U \(t\) reducas to a polynomial with only one variable by substituting selecied integeri for \(x_{2}, \ldots, x_{f}\). Let \(\tilde{U}(x)=U\left(x, a_{2} \ldots, c_{f}\right)\) Facters of \(U\) are constructed from the irreducible factors of \(\tilde{H}(x)\) by a kind of Hensel process.

An extraneous factor in this context is a univariate factor of \(U(x)\) over \(\mathbf{Z}\) which does nol lend to an actual factor of \(U\left(x, \ldots, x_{t}\right)\), after multuariate \(p\)-adic construction. Consider, for example.
\[
U(x, y, z) \bullet\left(x^{3} \bullet y^{4} z^{3}\right)
\]

If the evaluation \(y=z=1\) is made, then
\[
U=(x, 1,1) \cdot\left(x^{3} \cdot 1\right)-\left(x^{2}-x \cdot 1\right)(x \cdot 1)
\]

Since \(U(x, y, z)\) is irreducible over \(Z_{i}\) nether of the two univariate factors can lead to a real factor

\section*{of \(U(x, y, z)\). They are all extrareocs factors.}

Obviously the cause of getting extraneous facters is enlucky points oi evaluation. There are three undesirable eifects of havint such faciors it the factoring process. Firstly, a combinatornal search for true factors has to be done at the enci of the factoring procedure. Secondly, the multivariate \(p\)-adic construcion of en has to be carried out all te way to reach the bound for the toial degree, \(h\), of \(U\left(x, x_{2}, \ldots, x_{t}\right)\) in \(x_{2}, \ldots, x_{i}\), as opposed to reaching fhirl on the average, if all \(r\) factors are not extraneous Thirdly, the extramensfartors grow in sure and density as they go through the mulnamate constructoon procesi, q . "unnhbuted by the stia or cienrity of the given polynomial.

To illustrate the growth pnenomenon, let us coninue the example where \(\left.F_{0} i x\right)=x^{2}+x+1\). \(G_{0}(x)=x+1\) and
\[
U(x, y, z)=x^{2} \cdot y^{4} z^{3} z F_{0}(x) G_{0}(x) \bmod s
\]
where \(\underline{s}\) is the ideal \((y-1.2-1)\).
The multivarate \(p\)-adic consitucten poducs from \(r_{0}^{\circ}\) and \(G_{0}\) polynomals \(F_{1}\) and \(\Sigma_{i}\) such that
\[
U \equiv F_{1} C_{1} \quad \bmod \quad\left(s^{i+1}, b\right)
\]
where \(b\) is a prime or prime power bigger than the coefficient bound.
The first few \(F\), and \(C_{i}\) are shown below with \(b=6\) ans.
\[
\begin{gathered}
F_{1}=2 Z \cdot X(-Z \cdot 207 Y \cdot 1) \cdot 211 Y+x^{2} \cdot! \\
C_{1}=Z \cdot 207 Y \cdot X \cdot 1 \\
F_{2}=2 Z \cdot X(-Z \cdot 207 Y-1) \cdot 21 Y Y \cdot X^{2} \cdot 1 \\
C_{2}=Z \cdot 207 Y \cdot X \cdot 1 \\
\left.F_{3}=Z^{2}+X(6.07 Y \cdot 1) Z \cdot 278 Y^{2} \cdot 20 Y Y \cdot 1\right) \\
\cdot 2 \cdot 203 Y) 7 \cdot 200 Y^{2}+211 Y \cdot X^{2} \cdot 1 \\
\left.C_{3}=11 \cdot 207 Y\right) Z \cdot 278 Y^{2} \cdot 207 Y \cdot X \cdot 1
\end{gathered}
\]

Therefore if is clear that extraneous facion siculd te avoded of at all possible. The approach taken here is to evaluate the given polynomal \(U\left(x, \ldots, x_{i}\right)\) at sereral different sets of prints \(\left\{a_{2}, \ldots, a_{t}\right\}\) and to factor these resulung nimvariate images over \(Z\) The set that gives the minimum number of factors will be seleted. flin meas that the regmerient in OFA of 8 -ting many zeroes and plus or minus-one's as substutuon vaiues has to te relased For the purpose of .

Evoiding extraneous factors the conditions on the \(a_{i}\) 's are: (1) \(\operatorname{deg} U(x)=\operatorname{deg} U\left(x, \ldots, x_{t}\right)\) in \(x\) and (2) \(\tilde{U}(x)\) is squarefree. If these \(a_{i}\) 's are generated at random, then the probability of getting an extraneous facior for any ore set of \(a_{i}\) 's is low.

To use several different substitutions ard choose the best should virtually eliminate the possibility of the cccurrence of extraneous factors Experiments on the machine indicate that two to three different substitutions will almost always suffice. Furthermore, the different univariate factorizations can be matched fo: deg ee compatibility among the factors. This, of course, provides additional informetion on the number of true factors.

Although one would like to use random evaluations, one would also like to use integers that are smoll in size so that the coefficients of \(u(x)\) are not unnecessarily large. In the program, the substitution suts are generated ranciomly mortulo a prime which is increased in size for each new set.

\section*{solving the leading coefficient problem}

The given polynomial \(U\left(x, \ldots, x_{t}\right)\) can be written for a selected main variable, say \(x\), in the form
\[
U=V_{r_{1}} x^{n}+\ldots+{ }_{0}
\]
where \(V_{i}, Z\left[x_{2}, \ldots, x_{t}\right] . V_{n} \neq 0\) is the leadirg coefficient. In this paper, the term "leading coefficient" always means that of the main variable, \(x\). Some older factoring algorithms, for edample, (ref. 7), require a monic input. If \(V_{n} \neq \|\) then the change of variable \(x=y / V_{n}\) is made and the monic polynomial
\[
w=v_{n}^{n-1} u\left(\frac{y}{v_{-n}}, x_{2}, \ldots, x_{t}\right)
\]
is factored. An inverse transformation is required on the irreducible factors t.ius obtained. This apprcich is impractical because coefficients of \(W\) are much larger and denser than those of \(U\). In OFA no such monic transformation is made. Instead, a leading coefficient recovery scheme is used.

In the multivariate case, the leading coefficient problem is cauced by \(V_{n}\) not being an integer. Let \(f(x)=\left(x^{2}+1\right), g(x)=\left(x^{2}+x+1\right)\) and \(\tilde{U}=f(x)_{g}(x)\) over Z. In doing the multivariate \(p\) adic construction one computes the difference
\[
\mathrm{R}\left(x_{1}, \ldots, x_{\mathrm{r}}\right)=\mathrm{f}(x)_{\mathrm{g}}(x)-\mathrm{U}\left(x, \ldots, x_{t}\right)
\]

If \(\mathrm{V}_{4}\) is not an integer, then degree of R in \(x\) is 4 , which is the aegree of \(U\) in \(x\). This means for example one may gei something like \(c(x)=3 x^{4}+2 x\) as the coefficient for, say, the \(\left(\because_{2}-a_{2}\right)\) term in R. And the following congruence has to be solved
\[
\alpha(x) f(x)+\beta(x) g(x)=3 x^{4}+2 x
\]

If \(\operatorname{deg}(c(x))<\operatorname{deg}(f)+\operatorname{deg}(g)\), there exist unique \(\alpha\) and \(\beta\) with \(\operatorname{deg}(\alpha)<\operatorname{deg}(g)\) and \(\operatorname{deg}(\beta)<\operatorname{deg}(f)\) satisf ying \(\alpha f+\beta g=c\). However, this is not the case for equation (!). In \(f a c t\), one has
\[
\begin{gathered}
-5 f+\left(3 x^{2}-3 x+5\right) g=c(x) \\
\left(3 x^{2}+3 x-2\right) f+(-3 x+2) z=c(x)
\end{gathered}
\]
and an infinite number of linear combinations of these two equations. Because \(\alpha(x)\) and \(\mathcal{E}(x)\) are used to correct the factors and because the true factors and their homomorchic images are unique, complications arise if \(\alpha\) and \(\beta\) are nonunique. In OFA a unique selection is made based on the condition \(\operatorname{deg}(\alpha) \leq \operatorname{deg}(g), \operatorname{deg}(\beta)<\operatorname{deg}(f)\). However this choice can not be more appropriate than the condition \(\operatorname{deg}(\alpha)<\operatorname{deg}(g)\) and \(\operatorname{deg}(\beta) \leq \operatorname{deg}(f)\). In either case, the factors thus constructed are only correct up to tinits in the underlying coefficient domain of truncated p-adic polynomials in \(x_{2}, \ldots x_{i}\). Therefore they often are much denser than necessary. This also explains why correct coefficients have 'o be recovered after the p -adic construction.

Dealing with the leading coefficient probiem in the context of the polynomial greatest common diviser computation, Yun (ref. 8) suggested that the leading coefficiente of the given polynoma! or andeasily computible divisor of it be "imposed" on the univariate factors for p-adic construction- Fhe solution to the leading coefficient problem here is to "predetermine" the correct leading coefficients of the factors of \(U\left(x, \ldots, x_{t}\right)\).

To do this, the leading coeffici=nt of \(U\left(x, \ldots, x_{t}\right), V_{n}\), is factored over \(Z\) first. Let
\[
V_{n}=F_{1}^{e_{1}} F_{2}^{e_{2}} \ldots F_{k}^{e_{k}}
\]
where \(F_{i}\) are distinct irreducible polynomials in \(Z\left[x_{2}, \ldots, x_{t}\right]\). Some of the \(F_{i}\) 's may be intege s. Let us assume that \(V_{n} \neq\) an integer, for the case is tivial otherwise. Let \(\widetilde{F}_{i}=F_{i}\left(a_{2}, \ldots, a_{t}\right)\). The integers \(\left\{a_{2}, \ldots, a_{t}\right\}\) are chosen to satisfy the two conditions given in the previous section, and, for leading coefficient distribution, the additional condition: For each nonintegral \(F_{i}, \widetilde{F}_{i}\) has at least one prime divisor \(p_{i}\) which does not divide any \(\tilde{F}_{j}, j \neq i\), or the content of \(\tilde{U}(x)\).

Let \(\sigma\) be the contert of \(\tilde{U}(x)\) and \(u(x)=\tilde{U} / \sigma\). Now \(u(x)\) ran be factored into distinct irreducible factors over \(Z\).
\[
u(x)=u_{l}(x) \ldots u_{r}(x) .
\]

Assuming no extraneous factors, then \(U\left(x^{\prime}, \ldots, x_{i}\right)\) has \(r\) distinct irre acible factors \(G_{i}\left(x_{1}, \ldots, x_{i}\right), i=1, \ldots, r\). Let \(C_{i}\left(\sim_{2}, \ldots, x_{t}\right)\) be the leading coefficient of \(\mathrm{G}_{\mathrm{i}}, \tilde{\mathrm{C}}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}\left(a_{2}, \ldots, a_{t}\right)\) and \(\mathrm{C}_{\mathrm{i}}\left(x_{, ~}, a_{2}, \ldots, a_{t}\right)=\sigma_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}(\dot{d})\) where \(\sigma_{\mathrm{i}}\) is some divisor of \(a\). The following lemma allows one to determine \(C_{i}\left(x_{2}, \ldots, x_{l}\right)\) up to integer multiples.

Lemma If there are no extraneous factors then, for all \(i, j\) and \(m, F{ }_{j}^{m}\) divides \(C_{j}\) if and only if \(\mathcal{F}_{j}\) divades lc( \(\left.u_{i}\right) \sigma\).

Proof If \(F_{j}^{\mathfrak{m}} \mid C_{i}\) then \(\tilde{F}_{j}^{m}\) divides \(\tilde{C}_{i}=i c\left(u_{i}\right) \sigma_{i}\). On the orher hand, if \(F_{j}^{m}\) does not divide \(C_{i}\) then \(\tilde{C}_{i}=\tilde{F}_{1} 1 \ldots \tilde{F}_{k}^{s_{k}} \quad\) with \(s_{j}<m\). Thus \(p_{j}^{m}\) does not aivide \(\widetilde{C}_{i}\) which implies that \(\tilde{F}_{j}^{m}\) does hot divide \(\operatorname{lc}\left(u_{i}\right) \sigma\).

The readers are referred to [6] for details of this leading coefficient distribution aigorithm The process will be illustrated here by an example. Consider
\[
U(x, y, z)=\left(\left(y^{2}-z^{2}\right) x^{2}+y-z^{2}\right) *\left(4(y+z) x^{2}+x y z-1\right) *\left(y z^{2} x^{2}+3 x z+2 y\right)
\]
where the factors are to be found. Factoring the leading coefficient of \(U(x, y, z)\) over \(Z\) gives
\[
V_{6}=2^{2} y z^{2}(y+z)^{2}(y-z)
\]

Therefore, we have \(F_{1}=2, F_{2}=y, F_{3}=z_{1}, F_{4}=;+z\) and \(F_{5}=y-z\). The sets of in.iegers \{5,-12\}, \(\{-14, .0\}\) and \(\{-23,3\}\) satisfy the three requirements and ali give three factors for \(U(x)\). Let us use \(y=5\) and \(x=-12\). Thus \(\widetilde{F}_{1}=2, \widetilde{\vec{F}}_{2}=5, \widetilde{F}_{3}=-12, \widetilde{F}_{4}=-7\) and \(\vec{F}_{5}=17\). Factoring \(\tilde{U}(x)=U(x, 5,-12)\) one obtains \(\tilde{U}(x)=2 u_{1} u_{2} u_{3}\)
where
\[
\begin{aligned}
u_{1} & =119 x^{2}+139 \\
u_{2} & =28 x^{2}+60 x+1 \\
\text { and } u_{3} & =360 x^{2}-18 x+5
\end{aligned}
\]

Now \(119=-\tilde{F}_{4} \tilde{F}_{5}\) gives \(C_{1}=-F_{4} F_{5}=\left(z^{2}-y^{2}\right)\). Similarly, \(C_{2}=4(y+z)\). And \(2: 360=\tilde{F}_{2} \tilde{F}_{3}{ }^{2}\) implies that \(C_{3}=y z^{2}\). These are correct leading coefficients of the true factors of \(u(x, y, z)\) up to integer multiples.

\section*{COMBATTING THE BAD ZERO PROBLEM}

From \(\tilde{U}(x)=f(x) g(x)\) over \(Z\) with \(f(x)\) and \(g(x)\) relative!y prime, the multivariate p-adic construestion algorithm of OFA computes the differ .ice
\[
R\left(x_{,}, \ldots x_{t}\right)=f(x) g(x)-U\left(x_{1}, \ldots x_{t}\right)
\]
which is congruent to zuro mod \(\underline{s} \underset{\sim}{s}=\left(x_{2}-a_{2} \ldots x_{t}-c_{t}\right)\). Now \(R\) can be expresued in the form
\[
R=c_{2}(x)\left(x_{2}-a_{2}\right)+c_{3}(x)\left(x_{3}-a_{3}\right)+\ldots+c_{t}(x)\left(x_{t}-a_{t}\right)+D\left(x_{1}, \ldots, x_{2}\right)
\]
where the \(a_{i}\) 's are the integers of evaluations and \(D \equiv 0 \bmod s^{2}\). The goal is to obtain ithe coefficients \(c_{2}(v), \ldots, c_{t}(x)\). In other words, we need the coefficients of the linsar terms in the power
series expansior: of \(R\) at \(x_{2}=a_{2}, \ldots, x_{t}=a_{i}\). In gereral, for the stage of the \(\beta\)-adic construction where the residue is zero mod \(\underline{s}^{i}\) but nonzero mod \(\underline{s}^{\mathrm{i}+1}\), the coefficients of the degree \(i\) terms in the power series form of \(R\) will be needed. One way to do this is to substitute \(y_{i}+a_{i}\) for \(x_{i}\) and work with \(U\left(x, y_{2}+a_{2}, \ldots, y_{t}+a_{t}\right)\) expanded. After the substitution, \(\underline{s}\) becomes ( \(y_{2}, \ldots, y_{t}\) ) and obtaining coefficients of terms in \(y_{2} \ldots, y_{t}\) of any degree is very easy. Furthermore modulo operations witn \(\underline{s}^{\mathbf{i}}\) are simply 'runcations.

However substitution and expansion greatly increase the size and deasity of \(U\). For instance, a term \(x_{2}{ }^{\mathrm{a}} x_{3}{ }^{\mathrm{b}} x_{4}{ }^{\text {c }}\) becrmes \(\left(y_{2}+a_{2}\right)^{\mathrm{a}}\left(y_{3}+a_{3}\right)^{\mathrm{b}}\left(y_{4}+a_{4}\right)^{\mathrm{c}}\) which has \((a+1)(b+1)(c+1)\) terms when expanded. The exponential growth is worst if ali \(a_{i}^{\prime}\) 's are not zero. Hence the name "bad-zero problem." This growth problem is so bad that the hactoring program may run out of core for moderately-sized polynomials.

Therefcre, such substitution should not be made. If \(R \equiv 0 \bmod \underline{s}^{i}\), anr: \(R \nexists 0 \mathrm{mod} \underline{s}^{i+1}\), then the coefficient of \(\left(x_{2}-a_{2}\right)^{i}\), for example, can be obtained by the formula
\[
\frac{1}{i!}\left(-\frac{d^{i}}{d x_{2}} R\left(x, x_{2}, \ldots, x_{t}\right)\right)_{x_{2}=a_{2}}
\]

A typical term of degree \(i\) in \(R\left(x_{n, \ldots}, x_{t}\right)\) looks like
\[
\begin{equation*}
c(x)\left(x_{2}-a_{2}\right)^{e_{2}} \ldots\left(x_{t}-a_{t}\right)^{e_{t}}, e_{1}+\ldots+e_{t}=i \tag{2}
\end{equation*}
\]

To obtain \(c(x)\) one uses the general fermula
\[
\begin{equation*}
\left.\frac{1}{e_{2}!\cdots e_{t}^{!}} \frac{d^{e_{2}}}{}{ }^{e_{2}} \cdots{\frac{d}{d x_{t}}}^{e_{t}} R\left(x, \ldots, x_{t}\right)\right|_{x_{i}=a_{i}} \tag{3}
\end{equation*}
\]

This method has no exponential expression growth problem. Polynomial differentiation and evaluation being relatively inexpensive, it should be an improvement over the OFA which uses substitution and expansion. Many polynomials that can not be factored by OFA because of storage problems should be doable by this method. However, the number of possible terms in the form (2) can be large, which means (3) may be computed many times.

In the worst case, \(i\) equals \(\bar{n}\), which is the total degree of \(U\left(x, x_{2} \ldots x_{1}\right)\) in \(x_{2} \ldots x_{t}\). The number of passible terns in the form (2) with \(e_{2}+\ldots+{ }_{t}=h\) is then given by \(\binom{h+t-2}{t-2}\) which is of crder \(\alpha\left(h^{t-2}\right)\) is \(h\) is much larger than \(t\). However if there are mextranesus factors and if the leading coefficients of the factors are correctly tetermined, then (i) the maximum degree of any \(x_{i}, i=2, \ldots, t\); \(n\) the factors are much less than \(h\) and (ii) the p-adic construction of ten need only be carried out to \(i=[h / r]\) if there are \(r\) factors. Even sc, experiments on the machine indicate that nany applications of formula (3) result in zero. In other words, too of ten we are looking for terms
that are not there. The way to improve the situation is to do the p-adic construction variable-byvariable instead of introducing all variables \(x_{2}, \ldots, x_{t}\) at once. Thus the actual factors of \(U\left(x, x_{2}, a_{3}, \ldots, a_{1}\right)\) are consiructed first. From these factors in two variables, the true factors of \(U\left(x, x_{2}, x_{3}, a_{4}, \ldots, a_{t}\right)\) are then constructed, etc. We shail not go into decails here. Interested readers are referred to [6] where a linearly convergent variable-by-variable parallel p-adic construction is, described in full detail.

The author wishes tc thank Joel Mcses for suggesting this paper and Miss Dianne Foster for carefu! copying and editing.

\section*{REFERENCES}
1. Claybrook, B.G.: Factorization of Multivariaie Polynomials Over the Integers. SIGSAM Bulletin, Feb. 1976, p. 13.
2. The Mathlab Group: MACSYMA Reference Manual. Lab. for Comp. Sci., Massachusetts Inst. Technol., Nov. 1975.
3. Griesmer, I.H.; Jenks, D.R.; and Yun, D.Y.Y.: SCRATCHPAD Users' Manual. IBM Research Report, IIA 70, June 197j.
4. Wang, P.S.; and Rethschild, L.P.: Factoring Multivariate Polynomials Over the Integers. Math. Comp., vol. 29, ne. 131, July 1975, pp. 935-950.
5. Wang, P.S.: Factoring Larger Multivariate Polynomials. SIGSAM Bulletin, Nov. 1976.
6. Wang, P.S.: An Improved Multivariate Polynomial Factoring Algorithm. Submitted to Math. Comp., 1977.
7. Mueser, D.R.: Algorithms for Palynomial Factorization. PhD Thesis, Univ. of Wisconsin, Aug. 1971.
8. Tun, D.Y.Y.: The Hensel Lemma in Alysbraic Manipulation PhD Thesis, Massachusetts Inst. Technol., Nov. 1973.

\section*{APPERDIX A}

Contained here are ten faxtoring examples done by MACSYMA using the cld factoring algorithm (OFA) (ref. 4) and the new factoring algorithm (NFA) (ref. 6;. These polynomials are proposed by claybrook (ref. 1) who factored them using a heuristic approach. To conserve space, these polynomials are given in factored form below. The timing for OFA and NFA was done on a DEC KL-10. Claybrook's timings are obtained from (ref. 1). He did his timing on a Univac 1108. Times listed in Table 1 are in.seconds. A* indicates running out of store.

FACTORING TIME COMPARISONS

Polynomial
OFA NFA Clavbrcok

1
2
3
4
5
6
7
8
9
10
\begin{tabular}{crr} 
& & \\
\(*\) & 3.30 & 174.65 \\
0.96 & 0.95 & 6.85 \\
\(*\) & 7.83 & 10.06 \\
\(*\) & 5.12 & 149.26 \\
\(*\) & 9.07 & 160.03 \\
\(*\) & 5.92 & 172.16 \\
0.27 & 0.28 & 1.97 \\
3.398 & 0.58 & 25.38 \\
10.52 & 2.82 & 67.49 \\
79.68 & 0.56 & 129.07
\end{tabular}

\section*{TABLE 1}

The ten polynomials
(1) \(\left(W^{4} z^{3}-X Y^{2} z^{2}-W^{4} X^{5} Y^{6}-W^{2} X^{3} Y\left(-X^{5} z^{3}+Y Z+X^{2} Y^{3}\right)\right.\)
\(W W^{4} z^{6}+y^{2} z^{3}-W^{2} x^{2} y^{2} z^{2}+x^{5} z-x^{4} y^{2}-w^{3} x^{3} y\)
(2)
\[
(Z+Y+X-3)^{3}(Z+Y+X-2)^{2}
\]
(3) \(\quad\left(-15 Y^{2} Z^{16}+29 W^{4} X^{12} Y^{12} Z^{3}+21 X^{3} Z^{2}+3 W^{15} Y^{26}:\right.\)
\[
\left(-z^{31}-H^{12} z^{20}+y^{18}-V^{14}+X^{2} y^{2}+x^{21}+w^{2}\right)
\]
(4) \(U^{4} X Z^{2}\left(6 W^{2} Y^{3} Z^{2}+18 U^{2} W^{3} X Z^{2}+15 \| Z^{2}+10 U^{2} W X Y^{3}\right.\) )
\[
1-14 U W X Y^{4} Z^{4}-25 U^{2} W^{3} Y Z^{4}+8 U W X^{3} Z^{4}-32 U^{2} W^{4} Y^{4} Z^{3}
\]
\[
\left.+48 u^{2} x^{2} v^{3} z^{3}-12 v^{3} z^{2}+2 u^{2} w x^{2} v^{2}-11 u u^{2} x^{3} v-4 w^{2} x\right)
\]
(5) \(\quad\left(31 U^{2} X Z+35 W^{2} Y^{2}+6 x Y+40 W X^{2}\right)\left(U^{2} \psi^{2} X \gamma^{2} Z^{2}+24 U^{2} \mu x Y^{2} Z^{2}\right.\) \(+12 U^{2} X Y^{2} Z^{2}+2\left\{U^{2} X^{2} Y Z^{2}+43 W x Y Z^{2}+3 i w^{2} y Z^{2}+8 u^{2} w^{2} z^{2}\right.\) \(+44 U W^{2} Z^{2}+37 U^{2} Y^{2} Z+41 Y^{2} Z+12 W X^{2} Y Z+2 i U^{2} u X Y Z+23 X Y Z\)

\(+37 w^{2} x z+39 u k x z+43 u x^{2} v+24 x Y+9 u^{2} u x^{2}+22 u^{2} w^{2}\)
(6) \(X Y\) Y- \(13 U^{3} W^{2} x Y Z^{3}+H^{3} Z^{3}+4 U X Y^{2}+47 X Y\)
\(143 U X^{3} y^{3} z^{3}+36 u^{2} u^{3} x y z^{3}+14 u^{3} x^{3} v^{3} z^{2}-29 w^{3} x v^{3} z^{2}\)
\(-20 u^{2} u^{2} x^{2} Y^{2} z^{2}+36 u^{2} u \pi Y^{3} z-48 u f x^{3} v^{2} z+5 u \omega x^{2} v^{3}\)
\(+36 U W^{2} Y^{3}-9 U W Y^{3}-23 U W X^{3} Y^{2}+46 U X^{3} Y^{2}+8 X Y^{2}+31 U^{2} W^{3} V^{2}\)
\[
-9 u^{2} y^{2}+45 x^{3}-46 u^{2}+w
\]
(7)
\[
(Z+Y+X-3)^{3}
\]
(8)
\[
\left(3 z^{3}+2 w z-9 y^{3}-y^{2}+45 x^{3}\right)\left(w^{2} z^{3}+47 x y-w^{2}\right)
\]
(3) \(\left(-18 X^{4} Y^{5}+22 Y^{5}-26 X^{3} Y^{4}-38 X^{2} Y^{4}+29 X^{2} Y^{3}-41 X^{4} Y^{2}+37 X^{4}\right)\)
\[
\left(33 x^{5} Y^{6}+11 Y^{2}+35 x^{3} y-22 x^{4}\right)
\]
(18) \(X^{6} y^{3} z^{2} 13 z^{3}+2 H z-8 X y^{2}+14 H^{2} y^{2}-y^{2}+18 X^{3} y\)
\[
\left(-12 w^{2} \times y z^{3}+w^{2} z^{3}+3 x y^{2}+23 x-\psi^{2}\right)
\]

64



\title{
ON THE EQUIVALENCE OF POLYNO:ALAL GCD AND SQUAREFREE FACTORIZATION PROBLEMS
}

\author{
David Y. Y. Yun
}

\author{
Mathematical Sciences Department IBM Thomas J. Watson Research Centyr Yorktown Heights, New York, 10598 USA
}

\section*{(Extended Abstract.)}

The importance of computing greatest commor divisors (GCD's) of polynomials has been recognized more than a decade ago. All symbolic and algebraic computation systems must provide some form of polynomial GCD capability in order to handie the fundamental extension field of rational functions. The complexity of the GCD problem is aggravated by the fact that mos: of these systeras use an expanded canonical representation for polynomials, which is at its worst, in terms of space requirement and comprehensibility, when the polynomials are multivariate. Much work has been done to understand and improve algorithms for computing GCD's over the past decate (ref. 1,2,3). But the need for a symbolic system to maintain relatively prime numerators and denominators in a rational function continues to cause a large amount of computer time to be spent computing GCD's.

In 1974, Brown (ref. 4) paved the vay to a "factored" representation of rational functions for symbolic systems. The idea is that if both the numerator and defominator are factored into irreducible polynomials (primes in the polynomial domain) then the computation of GCD's simply invoives finding the minimum powers of identical primes. Unfortunately, there are two drawhacks to Brown's approach. First, such a "factored" representation, though naintaining the relatively prime property of numerator and denominator (with minimum effort). dows not result in canonically represented polynomials - that is, identical rational functions may appear
differently in the numerator and denominator polynomials. The other is. as Brown correctiy pointed out, factorization of polynomials into primes is too expensive an operation, so trat his "factored" representation can only look for "sharable factors" by inexpensive means and maintain such partially factored forms. Consequently, equivalence of rationa! functions in such a representation caty only be recognized by subtractions and, in most cases, expansions as well as GCD computations. Even though some symbolic systems have successfully utirized the "factored" representation (mainly in term: of the ability to comprehend expressions), it is no: clear what is the actual trade-off between the effort for GCD computations that is presumably saved and the zacrifice of canonical form with the possible gain of maintaining some "sharable" factors.

In 1976, Yuan p blished an improved algorithm for finding the "squarefrec" factorization of a polynomial (ref. 5). By definition, a polynomial is said to be squarefree if it has no divisur (or factor) of multiplicity greater than 1. Thus, the problem of finding the squarefree

\section*{factorization (abbreviated as SQFR) is that of findinp polynomials}
\[
\begin{aligned}
& P_{1}, P_{2}, \ldots, P_{k} \text { such that } P=P_{1}^{\prime} P_{2}^{2} \ldots P_{k}{ }^{k} \text {, where } P_{k} \neq 1 \text {, each } P_{i} \text { is squarefree, and } \\
& \operatorname{gcd}\left(P_{i}, P_{j}\right)=1 \text { for all } i \neq j \leq k .
\end{aligned}
\]

Although the squarefree factorization is not quite the complete factorization of polynomials into primes, it is a canonical form for polynomials, as Yun pointed out. In fact, a result of Knuth indicates that the probability of the squarefrec factorization being the same as the complete factorization for an arbitrary polynomial is approximately \(4 / 5\). Such a result further increases the usefulness of a squarefree representation for polynomials whici: has no parallel in the case of integers (i.e., given an integer, there is no known algorithm that will produce its squarefree factorization without iinding its prime factorization first). On the other hand, squarefree factorization constitutes an essential step in polynomial factorization (ref. 6, 7, 8) , partial fracticn decomposition of rational functions (ref. 9), and rational function integration (ref. 10, 11, 12).

TF mathematical theory for the new algorithm is given by the following the results (ref.

\section*{5):}

Fundamental Theorem of Squarefree Decomposition:
If \(P(x)\) is a primitive polynomial in \(D[x]\) where \(D\) is a field of characteristic \(\mathbf{0}\) and

Corollary 1: Let \(D=\operatorname{gcd}\left(P_{i} P^{*}\right)\), then \(P^{\prime} / D-(P / D)^{\prime}=P_{i=2}^{k}(i-1) P_{i} \prod_{i \neq i} P_{j}\).
Corollary 2: \(\operatorname{gcd}\left(P / D, P^{\prime} / D-(P / D)^{\prime}\right)=P_{1}\).
Based on inese results, an algorithm for finding the squarefree factorization of a polynomial \(\mathbf{P}(\mathbf{x})\) can be given. Let \(\left(G, A^{*}, B^{*}\right) * \operatorname{gcd}(A, B)\) denote the computation of \(G C D\) of \(A\) and \(B\) and assignment of the GCD to \(G, A / G\) to \(A^{*}\). and \(B / G\) to \(B^{*}\).

Yun's algorithm (ref. 5 ) is as follows:
\[
\left(W, C_{1}, D_{1}\right)-\operatorname{gcd}\left(P, P^{\prime}\right)
\]

For \(i=1 . \operatorname{step} 1\), until \(C_{i}=1\),
\[
\operatorname{Do}^{\prime}\left(P_{i}, C_{i+1}, D_{i+1}\right)-\operatorname{gcd}\left(C_{i}, D_{i}-C_{i}^{\prime}\right)
\]

Yun's 1076 paper got as far as comparing three algorithms for squarefree factorivation and showing the superiority of the new algonithm both experimentally and by algorithmic analysis of certain models for computation. However, there was no attempt to derive any specific expression for the computing cos: bound nor any reducibility result. In this paper, we will show that the total computing cost of the squarefree factorization of a polviomial with degree \(\boldsymbol{n}\) (i.e. \(\operatorname{SOFR}(\mathrm{n})\) ) is bounded by and, in fact, equal to \(2^{\circ} \mathrm{GCD}(\mathrm{n})\). The crusial observation is that the inputs to calis of the GCD function in Yun's new algcrithm are more "halanced" in terms of degrees than those algorithns previously proposed. Since the reduction of squarelice finctorization problem to \(\mathbf{G C D}\) problem hinges on the use of a two-argument funstion (GCD) to do the job of ane-argument function (SכFR), the balancing of degrees becomes eepecially important. (The other algorithms for squarefree factorization turn out to call on GこD functions with one input far more domirant in degree than the other.)
rinus, we will show that a closer re-examinatien of Yun's 1976 paper reveals the reducibility of SQFR to GCD. The natural question that follows is whether CCD is reducible to SQFR. That is answered aff:rnatively \(b=\) the other half of this paper and the derivation will actually' suggest an algorithm ior computing GCD's when input polynomials are already represented by their SQFR form.

The fundamental theorem for this reduction process is Theorem: For squarefree polynomials A and B,
\(\operatorname{gcd}(A, B)=A^{*} B / \operatorname{sqfrpt}\left(A^{*} B\right)\)
where the squarefrec part of \(P=\operatorname{sqfpt}(P)=P_{1} P_{2} \ldots P_{h}\).
if \(P=P_{1}{ }^{1} P_{2}{ }^{\mathbf{2}} \ldots P_{k}{ }^{k}\), hence, a by-promuct of \(\operatorname{sqf}(P)\).
This theorem, which is reminiscent to the relationship beiv :en GCD and LCM. suggests an obvious way of reducing GCD to SQFF. That is, for \(F=F_{1}{ }^{\prime} F_{2}{ }^{2} \ldots F_{k}{ }^{k}\) and \(G=G_{1}{ }^{\prime} G_{2}^{2} \ldots G_{m}{ }^{m}\). compute ged \(\left(F_{j}, G_{j}\right)\) for all \(i\) and ; by the methor of the theorem since cacia \(F_{i}\) and \(G_{i}\) is squarefrem. (Note that this type cf "cross GCDing" is also necessary for the "factored" repressentation of Brown." Unfortunately, there are \(k\) * \(m\) GCD's required which forces \(k\) and \(m\) into the computing cost expressien and affects the reduetion process of CCD to SQFR - we are looking. for strong reducibility of GCD to SQFR with constant cost for transiformation of problems, as in the reduction of SQFR to GCD case whe: the constant is i.

A corollary of the theorem provides a hint for a different approach.
Corollary: For pelynomials F and G. let FS and GS denote saípt(F) and suffi(G) respestively.

Thus, a polynomian \(D_{1}\) msqfitiged \((F, G)\) ) can be computed, according to the corollary, from \(\operatorname{sqifpt}(F)=F_{1} F_{2} \ldots F_{k}\) and \(\operatorname{sqfrpt}(G)=G_{1} G_{2} \ldots G_{m}\).

Similarly, we compuie \(D_{j}=\operatorname{gad}^{d}\left(\Gamma_{j} \ldots F_{k}, G_{j} \ldots G_{m}\right)\) according to the corsilaty for all \(j\) ap 10 \(\min (k, I)\). Finally, it will be shown that ged(F.G) \(=\mathrm{D}_{1} \mathrm{D}_{2}\)... \(\boldsymbol{D}_{\text {minalk, m }}\).
 GCD's. squarefree parts of \(F\) and \(G\) are peefed off successivply and collectively The tetal cost of computing the D's, hence the CCD, via the method of the coroilary adds ap to L , than 6*SQFR( \(n\) ), where the degrees of \(F\) and \(G\) are assumed to be \(n\). In other words. GCDin) problem is strongly reducibie ts SQFR(n) with a multif ying constant of of.

If \(F\) and \(G\) are alraay in SOFR form, then the cost for computing their GCD is bounded by \(4^{*} \operatorname{SOFR}(n)\), i.e., the cost for somputing GCD of polynomials in SOFR form is not more than twice that of puting them in SQFR form eriginally. Another potential advantage of such a GCD algorithm is that the computirg cost will be generally dependent on the minirum of ane degres of the input polynomials whan the degre es are not equal, mainly because the comphation goss on only urtil min(k,m) is reached. Previously, all GCD algorithms fave shown a stromy dependence on the maximum of the degrees, which is the cause of the need to "balance" the inputs of calls to OCD functions, as noted earlier.

At this point, we can draw the following combusion
Theorem: GCD(n) problem is equival nt to SOFR \((n)\) problem.
It sheuld be toted that the derivation of above results are based on the assum; that
\[
a^{2} M(n) \geq M(a n) \geq a M(n) \text { for all } a \geq 1
\]
where Min: stands for the cest for multiplying polynomials of depte \(n\) (ref. is. p 2xof. I et \(X(n)\) denote \(M(n)\), GCO(n), or SOIR \((n)\). Then te satisfiablity of the following comolion has also been assuried:
\(\sum_{i=1}^{n} X\left(n_{i}\right)<X\left(\sum_{i=1}^{n} n_{1}\right)\) ior any \(n_{1} i n N\) :
 represents no severe restricion on our rewalt


N77-2875?
differential form analysis ustng macsyma*
Hugo D. Wah1quist
Jet Pr pulsion Laboratory
California Institute of Tc.chnology

ABSTRACT

The calculus of exterior differtntial forms has increasing applications in several areas of applied mathematics and theureticar physics. The furmalism was developed initially by \(F\). Cartan (ref. 1) for his own research in differential geometry. Modernized and updated bv present day mathematicians, it has become a standard tool ior mathematical work in the differential geometry of manifolds (refs. 2 and 3).

With that genesis it is not surprising that the techniques of differential forms are useful in general relativity (ref. '). Many problems in relativity can be concisely expressed and efficiently solved using differential forms together with Cartan's "method of moving frames." The calculational effort involved is often significantly reduced compared to the standard tensor formalism. Other areas of theoretical physics in which differential forms have utility, as well as elegance, include Hamiltonian mechanics, staristical mechanics, and the calculus of variations (refs. 5 and 6).

In recent years the geometric techniques of exterior calculus developed (again by Cartan) for systems of partial differential equations (refs. 1 and 7) have been applied to physically important nonlinear equations. Many results on transformation properties, invariance groups, and conservation laws can be derived directly and systematically using these methods (ref. 8). When the methods are applied to nonlinear eaulitons which exhibit the recently dissovered "soliton" phenomenon (the Korteweg-de Vries equation, for instance), a beautiful algebraic.structure associated with the equations is revealed. These so-called "prolongation structures," which are essentially "free" Lie algebras, can be shown to lead directly to solution methods such as the inverse scattering method, Bäcklund transformations, and exact nonlinea. supeiposition principles (ref. 9). The prolongation structures also have a geometrical interpretation in teims of affine connections over solution manifclds (ref. 10). From this viewpoint they appear to be closely related to nonlinear, gauge-invariant, field theories; the Yang-Milis fields.
\({ }^{*}\) This paper presents the results of one phase of research carried out at the Jet Propuision Laboratory, California Institute of Technology, under Contract No. NAS \(7-100\). sponsored by the National Aeronautics and Space Administration.

The utility of differential forms is not limited to proving abstract general theorems; they also provide an efficient calculational tool for deriving particular results in specific problems (ref. il). As ia other areus of analysis, the computer can be of great help in carrying out the accual manipulations. Exterior calculus has been implenented in P1/1-FORMAC by F. Ernst (ref. 12). The major purpose of his programs wis to facilitate the use of differential forms in general relativity, although the programs are not restricted to that application. Recently, we have written a small file of routines in MACSYMA which we are using to perform differential form calculations in the theory of nonlinear differential equations. These routines accompiish only partial imelementition: in fact, the main reason for this paper is to advertise the ned for implementing exterior calculus in MACSYMA which clearly has the facilities to do the complete job. My hope is to provoke enough interest in someone sufficiently knowledgeable to do the jot right.

Algebroically, the differential forms constitute a Grassman algebra over che cotangent space of a manifold involving the noncommutative exterior product operation, usually denoted by the wedge symbol, \(\wedge\). The exterior dexivative, \(d\), is the umique operation of differentiation leading from one differential form to another. Its application to a form of rank \(p\) results in a form of rank \(p+1\).

When in addition the dual tangent vectors of the manifold are introduced, new invariant algebraic and derivative operations can be defined: contraction batween vectors and forms, and Lie derivatives of both forms and vectors.

The paper describes the MiACEYMA file which has been written to perform these operaticns and discusses tie impzovements and acditions which are needed to accompiish a complete and efficient implementation. Examples of differential form calculations are also displayed.

\section*{REFERENCES}
1. Cartan, E., "Les systèmes differentials extèrieurs et leurs applications géométrique," Hermann, Paris, 2945 . This is the principal source.
2. Hermann, R, Interdisciplinary Mathematics, Vols. T-XII, Math. Sci. Press, Brookline, MA, 1976. Much of the classical work on differential geometry, partial differential equations, lie groups, etc. which is important for applications is reconstructed in these volumes in modern mathematical language and notation, of ten emplaing exterior calcuius.
3. Choquet-Bruhat, Y., "Géométrie diffêrentielle et systèmes extêrieurs," Dunod, Paris, 1968. A thorough, fairly rigorous, well-balanced coverage of exterior calculus.
4. Israel, W., "Differential forms in general relativity," Comm. Dublin Inst. Adv. Studies Ser. i, No. 19, 1970. The utility of differential forms in general relativity is convincingly demonstrated herein.
5. Flanders, H., Differential Forms, Academic Press, New York, 19;3; D. Lovelock, and H. Rund, Tensors, Differential Forms, and Variational Principles, Wiley, New York, 1975. These are both excelIent introductions to the subject of differential forms with applications to Riemannian geomitry, variational calculus, and other areas of theoretical physics.
6. Estabrook, F. B. and Wahlquist, H. D., "The geometric approach to suts of ordinary differentiai equacions and Hamiltonian dynamios," SiAM Review 17, Ni. 2, 201-220, 1975. A review article treating Hamilonian theory in the langlage of differontial forms.
7. Slebodsinski, W., Exterior Forms and Sppications, Polish Scientific Pub1., Warsaw, 1976. A farly complete sumary of Cartan's thenry of partial differential systems is included. In Englisin tramiation.
8. Harrison, B. K. and Estabrook, F. B., "Geometri- approach to invarlance group; and solut ions of partial diferential systems," I. Math. Dhys. 12, \(653-666,1971\). The lie derivative of the differential ideal of Forms is used to systemat \(z_{z}\) invariance groups and similariiy solutims of partal differential equations.
9. Wahlquist, H. D. and Estabrook, F. B. "orolomationstructures ot monl'near evolution equat lions," . J. Math. Phy: . 16, 1-7, 1975. Nisa,
 1-97, l976. Two papers whin ident tail titles whic! introdich be
 limear solitun equat ions, and ratate them to salution mathots.
10. Hermann, R., "The pseudopotentials of Estabrook and Wahlquist, the ge:metry of solitons, ard the theo:y of connections," Phys. Rev. Lett. 36, 835 , 1975. In which the geometric significance of prolongation strictures is revealed.
11. Estabrook, F. B., "Some old and new techniquer for the practical use of exterior differential forms," in Bäcklund Transformations, No. 515, Springer Lecture Notes in Mathematics, p. 136-161, Ed. R. M. Mi:ra, Springer-Verlag, New York, 1976. A concise discussion of forms and their uses together with properties, identities, and calculational te:hnicues.
12. Ernst, F., "Manipulation of diffevential forms on a digital computer," Proceedings of che Relativity Seminar, PORS IIT-10, Illinois Institute of Tenthology, Chicago, 1969. A documentation of the EI/1-FORMAC implementation of exterior calculus.


\section*{N57-28758}

\author{
ungeral tensor manipulation on macsuma \\ Richard A. Bogen \\ Laboratory for Computer Science \\ Massachusetts Institute of Technology \\ Cambridge, Massachusstts 62139 \\ Richtrd Pavelle \\ Logizon. Inc. \\ Hartwell Avenue \\ Lexington: Massachusetts 02173
}

\section*{ABSTRACT}

Wa describe a new computational tool for ohysical calculations. It is the firet computer system capable o" performing indicial tensor calculuslas opposed to componetic tensor calculus). It is now operational on the symbolic manipulation systom. MACSYMA. Ke nutiline the capabllities of the system and describe some of the chysical problemg ue have considered as well as othere we are examining at thle tima.

\section*{INTROOUCTIOH}

Symoolic or alzebraic computer manipulation aystems arm finding arowing role in phusles by performing complex calculations without error. While symboIle manipulation has been used in Duantum Elactrcdynamics, Quantum Mechanics. Colustla; Mechaile and gravitat'on theorles (ref.l). it is in the grayitation thearies where these eystame are now becoming essential top's. Symbolic manipulation gives one the ability to gutas af exact solutions gf gravitational fiald equationo or use approximation oroceduras to find then (ret.2). Symbolic calcuIftion slso provides one the froedom to considar lengthy problems whose solution by hand hould be error wrone and could take monthg. A recent parar reviewe some of the problems in gravitation which have been efudied using symbolic manlpulation 28 woll as the computing aystess which are now in uer (ref.3).

The usual symbolic computing system for gravitation calculations operates in the following manner: The uasr often wishes to study a particular metric and inputs each specific component relative to coordinate system or nonceordinata frame. The sustem then computes the geometric objects or differential equations of interest. Trare are many types of relativistic calculations which computer systems are performing (ref.3). We have had such a system running on MACSMMA aince 1973. In 1974, however, we began congtruction of a novel package for porforming actual Indicial tensor analysis as sposed to the usual cumponent tensor calculus. The purpose of this paper is to describe the current capabilities of our indisial iensor maniphlation system. ITMS. We shall also describs some of the problems we have solved ae well as others of current ifiterest.

\section*{INDICIAL TENSOR MANIPULATION}

We represent a tensor \(r^{i j k . .}\) as a function of two arguments which are the re... llets of Indices. A list in MACSMMA is a sequence of its elements which are separated by commas and onclosed by square orackets. Thus we writo the above tensor 30 \(7([r, 0, \ldots .],. l i, j, k, .]\).\() white acalar is represented ty a function\) with empty lists such as \(P([1,(1)\).

In ITMS ordinary differentiation of a tensor with raspect to coordinate \(k\) \(x\) cauges the \(k\) indsx to be appended onto the listlebisur) as an aditional argament to the tensor function. Thus we ropresant \(Y\) as \((\{(i, j), \|, k)\). Since ordinary differentiation is commative, mullipie cidinary derivative indices are bortol in atphanumeric order causing expressions nuch as
 MACSYMA' s implification routice. He may also dectare a tenoor independent of coordinates and thi ciauses tio ordinary derivative to vanigh. Inis teature It amployed in weak tield approximationg and algebraically degenerate motrics

Where the Lorentz metric appears as a function of the metric tensor. We may also identify a metric by entering the command " metric(g)"' lal| ITMS function names and definitions are uritten with double quotes in this text) whirh enables MACSMMA to raise and lower indices of a tensor with respect to the tensor named \(g\). With such a definition so may employ the "cont:"act" command so that the statement "'contract(gili,j],[])*g![l, \([j, k])]\) reiurns "'delta([i], (k))". . The Kronecker delta as well as the generalized Kronecker delta are also used in the contract routine for index substitution. The function, "deltal[], (1)" is the dimension of the manifold with a default of 4. In contrast to hand calculations, one of the difficulties faced with indicial tensor manipulation is the ease with which one may create expressions with more than one moyeriant and contravariant dumm index with the game symbol. To avoid the error we employ an a'gorithm in ITMS whereby dunmy indices are always represented by the set \(\% 1, \% 2, \ldots \%\). Whenever a dummy index is generated, a counter is incrsazed by one and appended onte the \(\%\) syribol to form a new index. For a given metric tho calculation of a curvature tensor may cause the counter to reach a large number. However, expressions with multiply dummy indices are avoided. Clearly, in such a calculation, many of the terms are capable of being combined, differing only ir the index number. Simplification of this kind is carpled out by expanding the expression and applying the function "rename" which resets the counter to zero and renames dimmy indices in each of the expinded terms. The resulting expraselon le then the same order of comploxity as one would find by hand calculation.

Multiple covarlant differentiation of any tensor dengity is based upon an algorithm deacribed olsewhere (ref.4). The resultant expresgion hay be expressed in terma of Christoffel eymbols or evaluated for a particular indicial metric if ons ias been defined.

Other features whave implemsited include a function called "shou" " which displaye ang incexed object with ite appropriate covariant and contra.ariant indices. A functicn called "nterms" will tell the user the upper limis to the number of terirs an expreszion would have if fuliy expanded. This is useful for avolding the manipuiation of an expression which le so large that the eyatem is not capabio of simplifying it. If too large the user may use itMS th simplify the subexpressions and combine them later or decide a new approach to the calculation is appropriate. A "unction called "defcon" allows one to imm pose various types of coniraction properties such as whether a given vector is null or whather a givan tensor is trace frea. A unction "geodegic" evaluates expressione in coordinate systems in which undifferentiated Christoffel symbols are set to zero. ITMS has pattern matching routiner to ensble the user to apply various conditions on differentiated tensors zuzh as the Lorantz conditions. Another featere is the ability of ITMS to perform differentiation ith respect to the metric tensor and its derivatives. This enables ITMS te compute field equations for altarnative relativintic Lagranglans (ref.5). ITMS also manipulates the numericai tensor densitios.

To exemplify the speec and ability of the system we can carry out verification ef the Biarichi identity (see any text on relativity) given by \(p^{\text {lj(kI;a) }}\) and emploifing the simplification riufines of ITMS in 4 seconds cpu time. Here the parsentheses inply symetrization of enclosed lidices, the semicolon is covariant differentiation and the hook denates anti-symmetric indices. As another eximple, the Balakram identite (raf.6) which is \(R^{\text {IJ }}\) - O can be varified in 48 seconds cpu time.

Hany calculatione in gravitation atralghtforward with lTM5. The definItione of the Christoffel symboto, curvature tensor, and varlous geometrical
objects are programmed in the system as functions or the metric tensor or other geometrical oijects. For example we mas define the metric tensor and its inverse by commands in ITMS notation such as

COMPONENTS \(\{g([1,[i, j]), E([1,[i, j])-i *(2 * H([],[i, j])+E([1,[i, j]) * H(11,[1)])\)
for the weak field metric approximation defined by the metric tensor components
\[
g_{i j}-E_{i j}+L *\left(2 * H-H_{i j} E_{i j} \quad g^{i j}-E^{i j}-L *\left(2 * H^{i j}-H * E^{i j}\right.\right.
\]

Here \(E\) is ins Lorentz matric, \(H\) is an arbitrary tensor fieid Hits trace ij ij and \(L\) is an infinitegimal expansion parameter(ref.7). In this case it is usual i] is impose the Lorentz condition \(H\),j
- 8. For such a metric we can use 11715
to compute the firsl order Risaann tensor, Einstein tensor and Heyl tensor in Lese than 10 seconds cpu time with the implementation of the Lorentz condition. While the full manipulative abllity of the ITMS sygtem has not been rigorously tested we have had occasion to compute Elnstoin teneors with forth order metrics replacing the right kand side of (1). These calculations involved the manipulation of expressions with more than 1800 tarme which ware contractad and simplifled. Thus the memory space available to ITMS is sean to 70 quite large.

One of the large calculations used to test ITHS involved the study of the gravitation thesples of \(H\). Yilmaz. To Mird order, Yilmaz metric is (ref.8)
\(\therefore\)
where \(H\) is the trace of \(H\) which gatisfies the Lorentz condition \(H\). 0 . ITMS was uead to computa the third order Einstein tensor \(G\) for (2) and ab subtract from it the third order tensor d'Alembertian of \(H\). These calcuiatiors with ! TMS indieate tha theory is valid to first order, but when carried to zecond order difficulties ariss which ir.alidate the theory to all orders. These resulta are presented els.whers (ref 9).

An analusis thich is ideally suited to lIMS is the study of various metric gravitational theories by using algebraically special metrics (ref. 18) where the metric take: the form
\[
\begin{equation*}
g_{i j}=E_{i j}-2 * m \times i_{j} \tag{3}
\end{equation*}
\]
where \(m\) is constant, \(E\) is the Lerentz motric and \(L\) is a null vestor with respect to both, \(g_{i j}\) and \(E_{i j}\). For the metric (3) one also has a number of differential identities which arise from the differentiation of the identity for null vactors. \(L \mathcal{L}\) - 0. Imblementing these identities we can compute the ficci tenser for (3) in 30 secorids cpu tian and verify the well snown exprassions for the Einstein vacuum field aquations in thess coordinatas (refile). We are num attempting to find algebralcally spectal solut'ons for the Mansouri-Chang equations (ref.111 in addition to the Kilmister-Yang equations (raf.12) which have been discussed in particular coordinate systems (ref.13).

Conformally flat metrics of the form
\[
\begin{equation*}
C_{1 j}=P_{1 j} \tag{4}
\end{equation*}
\]

Whern \(P\) is a scalar and \(E\) is the Lorantz mutric ropresent ideal candidateo i)
fir IIMS since simplifisations become extensive. Fer the metric (4) wo have oxamined the claso of Riemannlan Invarlants dofined in terms of tre generalized

Kronecker delta by

These invariants are discussed in quantum grovity as they satisfy the CaussBonnet theorem in 2 a dinensional spaces. Using lTMS we have expressed the general term \(\operatorname{Lim}\) as an ordinary divergencs in contermally flat space-t mes of 2 f dimensions and thereby found alternice expressims fer thatantisies of Horndeski (ref.1.f).

One of our hopes is that IThs will also have the ability is carry out neec'ed invertigations in dikerential geometry, Many identities in fiemannian geometry are of great importance in physics and new identities will oresumably be discovered when computar systens can take the emormous orudge. y out of this particular kind of calculation. The difficulty facea is the conatruction of an algorithm for the comslicated symmetry propertius mich ora encounters. We are presently attempting to construct an aporop ate algorithe which will permit tensorisl manipulations of this type.

A sor , what orimitive fazture whien lims currantly paspessen is the indicial tensor manipulation of non-symatric mateica, Given a non-symatrie metric and affinity as in the Einstein-firaus theory (ref. 15 ) we can moloy fins to compute the various georietrical tensars. However, we have not yet implatented appropriat simplification rowtines.

While we have etressed the relativigtic ano dillersatial yemetrical cspects \(0^{\circ}\) ITMS, the package has oeen used by others and .. weliev: lith, with minar modisications. will finc aphlicesions in many branches of miysics.

\section*{APPENDIX}

Below we exhibit the output for the weak field approximation in General Relativity(ref.7). (E11) and (E12) are the covariant and contravariant metric tensors to first order in \(L\). The previous commands (C5)-iC8) define the metric tensor to be \(G\), cieclare the Lorentz metric \(E\) ti be constant with respect to ordinary differentiation and specify its inner product. (E16) demonstrates that the contraction of the inner product of \(G\) with itself, to first order, is equal to the Kronecker delta as expected. The first order Ricci tensor is displayed by (E20). (E21) is the same tensor after implementation of the Lorentz condidion. Contracting the Ricci tensor with the metric we obtain the scalar curvatore displayed in (E23). We then construct the contravariant Einstein termor displayed in (E25). A convenient feature of ITMS is seen in (C2S) where the metric is redefined as \(E\) to enable us to display the ordinary d'Alenibertian in the first term of (E28). Then redefining the metric as G we take the covariant divergence of the Einstein tensor to find it vanishes identically as expected.
(CS) DECLARE (E,CONSTANT):
(CG) DEFCON(E)
(CT) DEFCONIE,E,DELTA) \&
(CB) METRIC (G)
 \(+E([1,5],[])\) )
(C10) COMPONENTS (G([], \([1, J]),-2 *(P([],[]) * E([1,[1, J])-2 * P([],[1, J])) * L\) \(+E([] ;[I, J]) 1 \$\)
(C11) SHOW (G([1, J1, [1)):
(E11)
(C12) SHOWIG([],[!, J]))s
(E12)
\[
\underline{5}^{1 J}-2\left(P^{1 J J}-2 p^{1 J} 1 L\right.
\]
\{C13) RATVARS (L) \(\$\)
(C14) RATWEIGHT (L, 1.)
(C15) RATWTLVL: \(1 \%\)
(C16) SHOW (CONTRACT (RATEXPAND (G(iI, J], [l)*G([],[J,K]));is
(E16)
DELTA \({ }^{K}\)
(C17) RIEMANN([S,U,N], [N]):
(C18) 017.EVAL
(C19) RICCI:CONTRACT (RATEXPAND (D18)):
(C20) SHOW(RICCI)s
(E28) \(-2 L P_{U, * 1 S}^{* 1}+2 E^{x 1 \pi 2} L P_{S U, x 1 \% 2}-P_{. \pi 1 \% 2} E^{x 1 \pi 2} L E_{S}\)
\(-2 L p^{\% 1}\) S. \%1 U
(C21) SHOW(LORENTZ (RICCI) )
(E21)
\[
2 E^{x 1 \% 2} L P P_{S U, x 1 \% 2}^{-P}, \% 1 \% 2^{* 1 \% 2} L E_{S}
\]
(C22) SC: CONTRACT (RATEXPAND (RICCI*G(t], \((S, U]))\) )
(C23) SHOW(SC):
(E23)

(C24) EINSTEIN:CONTRACT (RATEXPAND ( (RICC] - SC*G([S,U], [])/2)*G([], [1,S])* G([],[J, (U])])
(C25) SHCW(EINSTEIN) \&

\[
-2 P^{x 1 J} x_{2}^{x / 21}
\]
(C26) METRIC(E)s
(C27) EINSTEIN:MAKEBUX (EINSTEIN):
(C28) SHOWIEINSTEIN) :

(C29) METRIC(C)t
(C38) LOVDIFF (EINSTEIN,J) \$
(C31) D30,EVAL\$
(C32) CONTRACT (RATEXPAND (O31))
(C33) SHOW(D32):
(E33)

\section*{REFERENCES}
1. Barton, D.: and Fitch, J. P.: Applications of Algebraic Manipulatinn Programs in Physics. Rep. Prog. Phys., 35. 1972, pp. 235-314.
2. Pavelie, R.: Unphysical Characteristics of Yang' o Pure Space Equations. Phys. Rev. Latt., 37. 1976. pp. 961-964.
3. a'Inverno, R. A.: Algebraic Computing in Ceneral Relativity. Gen. Rel. Grav., 6. 1975, pp. 567-593.
4. Pavelle, R.: Multiple Covariant Differentiation- A New Method. Gen. Rel. Grav. 7, 1976, pp. 383-386.
5. Buchdahl, H. A.: The Hamiltonian Derivatives of a Class of Fundamental Invariants. Quart. J. Math., 19. 1948. pp. 158-159.
6. Balakram: A Theorem in Tensor Calculus. J. Lon. Math. Soc., 4, 1929.
7. Weber, J.: General Relativity and Gravitational Laves, Interscience Publ. . 1961, Section 7.1.
8. Yilmaz, H.: New Approach to Relativity and Gravitation. Annals of Physics., 81, 1973, pp. 179-280.
9. Fennelly A. J.; and Pavelle, R.: Noriviability of Yilmaz' Gravitation Theories and his Criticisms of Rosen's Theory. Gen. Rel. Grav.. 1977. in press.
10. Adler, R.; Bazin, M.; and Schiffer, M.: Introduc;ion to General Relativity. McGraw-Hill Book Company Inc.. 1975, Chapter 7.
11. Mansour i, F.; and Chany, L. N.: Gravitation as a Gauge Theory. Prys. Rev., 13, 1976, pp. 3192-3200.
12. Yang, C. N.: Integral Formalism for Gauge Fields. Prys. Rev. Lett.; 33, 1974, pp. 445-447.
13. Pavelle, R.: Unphysical Solutions of Yang's Gravitational-Field Equations. Phys. Rev. Lett., 34, 1975, pp. 1114.
14. Horndeski, G. W.: Dimensionally Dependent Divergences. Prac. Camb. Ptill. Soc., 72, 1972, pp. 77-82.
15. Scnrodinger. E.: Space-Time Structure. Cambridge Univ. Press., 1963, Chapter XII.


PURE FIELD THEORIES AND MACSYMA ALGORITHMS

\author{
William S. Ament \\ Naval Research Laboratory
}

\section*{SUMMARY}

A pure field theory attempts to describe physical phenomena through singularity-free solutions of ficld equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing ci.ecks for generalizations. The fields of general relazivity are the 10 components of a sjmmetric Riemannian metric tensor \(g_{i j}\); those of the Einstein-Straus generalization are the 16 couponents of a nonsymmetric \(g_{i j}\). Algebraic properties of \(g_{i j}\) are exploited in top-level MACSYMA commands toward performing some of \({ }^{\text {fij }}\) the algorithms of tha generalization. The lightcone for the theory as left by Einstein and Straus is fo:nd and simplifications of that theory are discussed. Attention is called to the need for spinor theories; the algebra of \(g_{i j}\) may help in their construction.

PURE FIELD THEORY (PFT)
A pure field theory (PFT: (ref. 1, final pages) attempts to describe physical phenomena in terms of singularity-free solutions of a set cefield equations, the Euler-Lagrange equations of an action prificiple. The physical wisdom goes into assembling the action integral and into interpreting any specific results; the intervening mathematics appears strictly algorithmic and therefore doable with, and perhaps only with, computer symbol manipulations such as done by MACSMA. Einstein's general rolativity (GR) is a prototype PFT. GR serves both as the physical basis for test algorithms and as model for the followirg outline of 'formal' PFT.

One has a coordinate manifold of (presunably) four dimensions, parameterized by Gaussian coordinates \(x^{i}, i=1,2,3, A\). Dependent 'fields' having N scalar components \(f=f\left(x^{i}\right)\) are assembled, together with their low-order coordinate derivatives \(f_{i f}, f, i j\), ..., into a scalar density \(L\) serving as integrand of the action principle LL. The scalar fields fof GR are the 10 components of a symmetric Riemannian metric tensor \(\hat{g}_{i j}=\hat{\mathbf{g}}_{\mathbf{j i}}\).

Algorichmic Process No. 1 (AP1): Coordinate Independence
Taking the integration of \(L L\) over a coordinate region \(V\) having smoth boundary \(B\), check that the value of LL is properly invariant to coordinate transformetions interior to V .
\[
\begin{aligned}
& 86 \\
& \therefore=1 \text { BTENTIONALYY BCAM }
\end{aligned}
\]

\section*{AP2: Get the Field Equations as suler-Lagrange Equations of LL}
 throughout \(L\), retaining terms of first degree in \(d f, d f, f, \ldots\) in the expansion of the result, and integrating by parts to eliminate, in \(V\), derivatives
 to zero, are then the \(N\) scalar field equations in the \(N\) scalar fields \(f\).

AP3: (Gauge Conditions (Ref. 2)
When the dependent scalars \(f\) are components of a tensor such as the \(\hat{g}_{i j}\) of \(G R\), then coordinate transformations in \(V\) such as \(T: x^{i} \rightarrow x^{i}+y^{i}\left(x^{j}\right)\) require corresponding transformations for the indexed fieid components. For example,
\[
d \hat{g}_{i j} \equiv-\hat{g}_{i j, n} y^{n}-\hat{g}_{n j} y, n-\hat{g}_{i n} y_{, j}^{n}
\]
is a 'variation' of \(\hat{\mathrm{g}}_{i, j}\) arising from a mere infinitesimal coordinate transformation T . The 10 Euler-Lagrange equations of GR are linear in second dert.vatives of \(\hat{g}_{i j}\) but there are four scalar Bianchi identities of third differential order arising from invariance of \(L L\) to the four \(d \hat{g}_{i j}\) possible with a four-parametar gauge transformation \(y^{i}\left(x^{j}\right)\). The (unassembled) algorithms for finding the 'gauge variations' and correspunding Bianchi-like identities should be some mix of those of AP1 and AP2.

\section*{AP4: Small Amplitude High Frequency Waves and the Ifgit Cone}

If a PFT is to describe physical vacuum somewhere and is to be singularity-free, then the PFT describes vacuum everywhere. The acceptcd physical vacuum permits gravitational, electromagnetic, and neutrino waves propagating according to \(u\) single light-cone or dispersion relation. To find the light cone: In each of the \(N\) field equations, substitute \(f+d f\) rexp \(\left(\mathrm{Kb}_{\mathrm{f}} \mathrm{x}^{\mathrm{I}}\right.\) ) ( \(K\) a frequency parameter, \(b_{i}\) a propagation vector, df an infinitesimal scalar araplitude) for each \(f\) in each ifeld equation. Expard and retain only terms linear in the df of highest degree in K --which tren factors out, along with \(\exp ()\). The result is N equations each lirear and homogeneous in the N amplitudes \(d f\), each homogeneous in the \(b_{i}\). Factor the coefficient determinant, finding a sufficient number of quadratic facturs \(b_{i} \hat{E}^{i j} b_{j} \equiv b g b\) to feel sure that bgb \(\equiv 0\) is the light-cone equation. [If no such bgb factor is found ar belleved, then ase what you may have learned for revising l.]

\section*{AP5: GR With Non-Phenomenological Source Terms}

The \(\hat{g}^{19}\) of \(b g b=0\), built from the \(f\) and their coordinate derivatives, is necessarily symetric, and its inverie san be construed as (up to a corformal scalar factor \(S\); the Riemannian metric tensor \(\hat{g}_{i j}\) of GR. Use the algorithms
of \(G R\) to get the Einstein tensor \(G_{i j}\), a form in the \(f, f_{i}, \ldots\). . Ise the field equations for eliminating from \(G_{i j}\) the highest derivatives of the \(f\). What's left over is either zero (vacuum) or counts as a \(T_{i j}\) energy-tensor source term-again a form in the \(f\) and their (low-order) derivatives. [Select, or eliminate che need for selecting, conformal scalar \(S\). Recognize any \(T_{i j}\) as
implied in \(L\) according to Noetherian principles.

APf: Neutrinos and Spin one-Half
Unless sone of the \(f\) in \(L\) are spinor variables, there will be no neutrinos among the vacuum waves, or other ' \(\mathrm{spin}-\frac{1}{2}\) ' structure in the field equations. Thus: prepare a 'spinor version' of \(L\) and plod through the foregoing semialgorithms. [Conversion to 'spinor form' appears algorithmic in GR, starting from a Riemannian metric tensor (ref. 3), but may not be so in other PFT's.]

\section*{EINSTEIN-STRAIS THEORY}

The scalar fislds of Einstein-Straus (ES) theory (refs. 1 and 4) are the 16 components of a nonsymmetric teasor \(g_{i j}\). This \(g_{i j}\) is used in an \(L\) and in subsequent development in a way suggested in \(G R\), but the \(g_{i j}\) is in no way usable for or equivalent to the symmetric Riemannian 10 -component metric tensor \(\hat{g}_{i j}\) of \(G R\). The ES field equations are derived from an action principle; no one appears to have asked after the 'vacuum waves' of ES theory, their light cone, or its mathematical connection with GR. So we began with the problem of finding the vaculm waves of the ES ffeid equaticns--equations given in terms of an affine connection or 'gamma' defined as the solution of a \(64 \times 64\) linear equation system
\[
\begin{equation*}
g_{i j, k}=g_{i n} \Gamma_{k j}^{n}+g_{n j} \Gamma_{i k}^{n} \tag{1}
\end{equation*}
\]

Let the inrerse \(g^{j j}\) be defineri through \(g^{n i} g_{n j} \equiv g^{i n} g_{j n}=\delta_{j}^{i}\). This leaves another order for the summation over the 'dunmy index' \(n\) : \(h_{j}^{i}=g^{i n} g_{n j}\), with \(g^{n i} g_{j n} \equiv\left(h^{-1}\right)_{j}^{i}\). Let \(A A=h_{i}^{i}=\) trace ( \(h\) ), \(C C=\left(h_{j}^{1}{ }_{j}{ }^{j}{ }_{i}\right)=\operatorname{trace}\left(h^{2}\right), B E=\left(A A^{2}-C C\right) / 2\). Then \(a=h_{j}^{i}\) satiefies
\[
\begin{equation*}
Q(h)=h^{4}-A A * h^{3}+B B * h^{2}-A A * h+1=0 \tag{2}
\end{equation*}
\]
\(Q\left(h^{-1}\right)=0\) by symmetry. Matrix \(h\) has generally four eigenvertors \(V[\mathrm{n}]\) and eigenvalues \(v[n]\) :
\[
\begin{equation*}
h_{j}^{i} v[n]^{j}=v[n] v[n]^{i} \quad ; \quad h_{j}^{i} v_{i}[n]=v[n] v[n]_{j} \tag{3}
\end{equation*}
\]

One can normalize so that \(V[m]_{i} V[n]^{i}=\delta[n, m]\) and (surming over the repeated 'eigenindex' \(n\) ) \(V[n]_{i} V[n]^{j}=\delta_{i}^{j}\). The symmetry of \(Q(h)\) implies that if \(\mathrm{O}(\mathrm{x})=0\) then \(Q(1 / \mathrm{x})=0\) so that if \(\mathrm{v}[\mathrm{n}]\) is an eigenvalue then so ic \(1^{\prime} v[n]=v\left[n^{\prime}\right]\), say. Thus, eigenindices \([n]\) (which are not tensor indices) run over say \(1,1^{\prime}, 2,2^{\prime}\) and we introduce op: \(o p[n]:=n^{\prime}, o p\left[n^{\prime}\right]:=n\). With this, and with \(u[n]^{2}=v[n], u[n] u\left[n^{\prime}\right]=1\), we have \(h_{j}^{i}=v[n] v[n]^{i} v[n]_{j}\) and
compatible representations
\[
\begin{equation*}
g_{i j}=u[n] v\left[n^{\prime}\right]_{i} v[n] j \quad, \quad g^{i j}=u\left[n^{\prime}\right] v\left[n^{\prime}\right]^{i} v[n]^{j} \tag{4}
\end{equation*}
\]

Thus, the 16 -scalar \(g_{i j}\) of ES thecny has a natural 18 -parameter representation with spinor-li:ce (ref. 3) eigenindexing, and supplies what may be called a built-in vierbein provides by the four directions \(v[n]^{i}, r_{1}=1,1^{\prime}, 2,2^{\prime}\).

The ES field equations being in terms of the garmas, we solved (1) for the gammas using \(\Gamma_{j k}^{i}=g{ }^{n i} W_{n j k}\) with \(W\) represented in the manner of (3), (4) through eigenindices as \(W_{i j k}=Z[p, q, r] V[p]_{i} V[q]_{j} V[r]_{k}\) say. By exploiting symmetries, the \(64 \times 64\) problem (ref. 5) of inverting \({ }^{*}\) ) tor the gammas reduces to a \(10 \times 10\) problem for finding \(Z[p, q, r]\). The straight orward MACSYMA solution, giving terms of up to degree 6 in \(A A\), 5 in \(B B\), is corpirationaliy uceless (as suspected by Schrödinger, ref. 4, p. 111): formally, there are snme 472 terms before replacing three scalar symbols by three \(h_{j}^{1}\) matrices.

The ES field equations, however, entail the gammas in symmetrized or internally contracted forms, so that it was possible to use eigenincexing to set them in terms of the basic fields \(g_{i j}\) without resort to the formal inversion of (1). The \(16 x 16\) determinant of the homogeneous equation system resulting from AP2 was much too big for the computer but could be made tractable: (1) Resolve the equations and the \(b_{i}\) along vierbein directions, as aiready done for the gammas by the \(W \rightarrow Z\) above. (2) Then \(b g b\) has to be two formally identical terms, one in eigenindices 1,1' the other in 2,2'; replace variables having 2,2' indices with random integers. (3) Any \(b_{i}\) given in eigenindex or vierbein. comporents as (b1,b1',b2,b2') = bis orthogonal, for any possible \(\hat{\mathrm{g}}_{\mathrm{ij}}\) 'merric', to \(\underline{c}=\left(b 1,-b 1^{\prime}, 0,0\right)\) and to \(\underline{d}=\left(0,0, b 2,-b 2^{\prime}\right)\) in the sense \(\mathrm{b}_{\mathrm{i}} \hat{\mathrm{g}}_{\mathrm{i}}^{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \equiv \mathrm{Fgc} \equiv \mathrm{cg} b \equiv 0\) and bgd \(\equiv 0\). A final such vector \(e=\left(b 1, b 1^{\prime},-b 2,-b 2^{\prime}\right)\) satisfies cge \(\equiv 0 \equiv\) dge; cgd \(\equiv 0\) but bge \(\neq 0\) generally. Taike the amplitude-tensor \(\operatorname{dg}_{\mathrm{ij}}\) as a \(4 \times 4\)
quadratic form (exterior product) in the near-orthogonal vector system \(\underline{b}, \underline{c}, \underline{d}, \underline{e}\), with 16 unknown coefficients as new 'amplitudes'. The substitution diagonalizes the \(16 \times 16\) equation system 2 nto \(6 \times 6\) and \(10 \times 10\) blocks. Both blocks appear degenerate (coefficient determinants vanishing). But eliminating
equations of the result one at a time gives a sequence of identical bgb factors in which the structure of the symbols of the \(1, l^{\prime}\) term is matched by that of the integers of the \(2,2^{\prime}\) term. The resulting eigenindexed bgb then implies a \(\hat{\mathrm{g}}^{\mathrm{i}}\) from which the light-cone metric is then, via \(\mathrm{Q}(\mathrm{h})=0\)
\[
\begin{equation*}
\hat{g}_{i j}=s\left[\left(g_{i n h^{n}}^{j}+g_{j n} h_{i}^{n}\right)+B B\left(g_{i j}+g_{j i}\right)\right] \tag{5}
\end{equation*}
\]
where \(S\) is an undetermined conformal scalar. But: the nature of the waves propagating according to the bgb light-cone equation remains unknown, owing to complexity and, particularly, to failure to eliminate 'gauge transformations' mentioned in AP3. (That failure may also ascount for the degeneracy of the coefficient determinant.)

In \(G R\) the \(b g b=0\) light-cone equation is known a priori; it is asserted in the metric tensor \(\hat{g}_{i j}\). In examining final equations, for the nature of the 'vacuum waves' one can take \(\hat{g}_{i j}\) as locally diagonal, thus rendering symbolically indexed expressions in compact, inspectable forms. No such diagonalization is seen valid in ES theories, and finding bgb may always have to be done with explicit components. If so, the foregoing sketch of a zoute to bgb will save much time.

Published variants of ES theory use the gammas and are thereby unnecessarily complicated. In Riemannian geonetry the gammas, defined in serms of the metric tensor \(\hat{g}_{i j}\), are used for forming tensors from derivatives of further scalar and tensor objects. But ES theory is in terms of the \(g_{i j}\) from which the gammas are defined, via equation (1), and there are no further objects. Therefore the gamas are superfluous. The ES equations follow GR by using a Riemann tensor given compactly in terms of the gammas and their first derivatives. The Riemann tensor has two basic definitions, equivalent in GR: The coefficient of tensor \(T_{d}\) in \(T a ; b ; c-T a ; c ; b\) is the Riemann censor \(R^{d} a b c-b u t\) there is no \(T_{a}\) in ES theory for which this function of the Riemann tensor migut be needed. Alternatively, the lower-indexed Riemenn tensoi \(R_{i j k l}\) is the non-trivial tensor of lowest degree formable from a 'metric tensor' \(g_{i j}\) and its derivatives. Handcrafting gives, with
\[
\begin{align*}
{[i j k] \equiv } & \frac{z_{2}}{2}\left(g_{i k, j}+g_{k j, i}-g_{i j, k}\right)  \tag{6}\\
R_{i k n j}= & \frac{1_{2}}{2}\left(g_{i j, k n}+g_{k n, i j}-g_{i n, k j}-g_{k j, i n}\right)+ \\
& +r E^{k y}([i j x][k n y]-[i n x][k j y])
\end{align*}
\]
in which \(I E^{i j}\) is the (symmetric) inverse to \(g_{(i j)} \equiv\left(g_{i j}+\varepsilon_{j i}\right) / 2\), and orier of the indices is to be respected. (Compare eq. (7) with eq. (30) of ref. 6, p. 153.)

The class of PFT's now under consideration is therefore restricted to those starting from the foregoing tensor \(R_{i j k m}\) contracted to a curvature scalar \(R\) by some multıplier \(M^{i j k m}\) concocied from \(g^{i j}, h^{i}{ }_{n} g^{n j}, \ldots\), and then maltiplied by various similarly availaile Jacobians \(J\) to form the sealar density \(L\); these forms are essentially unique in \(G R\), where \(M^{i j k m}=\hat{g}^{i k} \hat{g}^{j m}\) and \(J=\left(\operatorname{det}\left(\hat{S}_{i j}\right)\right)^{\frac{1}{2}}\). In this general ES theory, each term of \(L\) can have a scalar coefficient arbitrarily dependent on scalars \(A A, B B\) formed from \(g_{i j}\).

Tensor \(R_{i k n j}\) has the familiar symmetries
\[
R_{i k n j}=R_{n j i k}=-R_{k i n j}
\]

In forming a 'curvature scalar' \(\mathrm{N} * \mathrm{R} \equiv \mathrm{M}^{\mathrm{iknj}} \mathrm{R}_{\mathrm{iknj}}\), one may assign the same symmetries to the multiplying tensor \(M\). Equation (2) restricts the occurrence of \(\mathrm{g}^{i j}\) usable in M to essentially four forms \(\mathrm{g}^{\mathrm{ij}}, \mathrm{g}^{j i}, \mathrm{~h}_{\mathrm{m}} \mathrm{g}^{\mathrm{mj}}\) and \(\mathrm{h}^{j} \mathrm{~m}^{\mathrm{mi}}\), generically represented here as \(F^{j j}\). In view of the symmetries, \(M\) can be given as a 10 -parameter form Me of symmetrically arranged products \(F^{i n}{ }^{j k}\) plus a 3-parameter form Mo of products \(F^{i k_{F}}{ }^{n j}\). In addition, from totally antisymmetrized derivatives \(a g(i, j, k)=g_{[i j, k]}\) oue can assemble a legitimate twoparameter scalar \(N N=N(a, b, c, d, e, f) a g(a, b, c) a g(d, e, f)\); tensor \(N\) has two additional parameters. Thus symbolic action integrana \(L=M * R+N N\) is a form linear in a total of 15 free scalar parameters. Any 'parameter' is actually some function \(f(A A, B B)\) depending on the basic fields \(g_{i j}\) via the \(A A, B B\) of equation (2).

\section*{CONFORMALLY TNVARIANT ES THEORY}

The present attempt is to assign the foregoing 15 parameters so that LL is conformally invariant, i.e., its value is unchanged by the substitution \(g_{i j} \rightarrow g_{i j}+w g_{i j}\), where \(w i s\) an arbitrary infinitesimal scalar function of coordinates. We choose conformal invariance because no plausible alternatives are visible [suggestions are welcome, particularly those having 'soinor' implications], because physicists have said kind things about such conformal invariance, because the problem of assigning confornal scalar S of AP5 and equation (5) becomes eliminated, and most of all, because the choice appears to give a well posed, doable problem having a possibly unique answer.

The present situation with this problem is best described as fluid. The implicatinn, if any, of 'gauge invariance' is not yet understood in this context, Several unmentioned algebraic simnlifications male the proidem easier
than it appears at first glance; not all such algebraic niceties are incorporated, and the present package of computer commands requires too much thinking at the keyboard.

\section*{APPROPRIATE SYMBOL MANIPULATIONS IN MACSYMA}

First described are notational and other conventiens, then some general purpose commards and functions.
\[
\begin{aligned}
& \text { Let } g_{i j} \rightarrow g(i, j) ; g^{i j} \rightarrow g g(i, j) ; g_{i j, k} \rightarrow g l(i, j, k) \\
& g_{i j, k p} \rightarrow g 2(i, j, k, p) ; \Gamma_{j}^{i} k \rightarrow \operatorname{gam}(i, j, k), \Gamma_{j h, p}^{i} \rightarrow \operatorname{gaml}(i, j, k, p), \ldots \\
& \text { (conventional symbol) } \rightarrow \text { (MACSYMA typein and display symbol). }
\end{aligned}
\]

No attempt at displays in textbook format is made; one has to remember that both indices \(i, j\) of \(g g\) and the first index of gam and gaml are upper (U) indices whereas the other indices above are lower (L) indices. Thus \(g^{n i} g_{n j} \rightarrow g g(n, i) * g(n, j) ; r e p e a t e d\) index \(n\) is a 'dummy' index of sumation appearins once as U-index and once as L-index. U-index \(i\) anu L-index \(j\) here are 'free' indices appearing once each.

An indexed expression EE is valid only when each free \(U\) - or J-index is represented by the same symbol (lecter or atom), and occurs only once, in each term of EE , and when any dunmy index symbol appeans just once in any term as U-index, once as L-index. A validity-checking TEST(EE) is readily constructed. One builds desired forms by 'contraction' on one or more free indices. For example, \(s=s(i, j, k)=t(i, j, n) \neq(n, k)=t * u\), where free \(U\)-index \(n\) in \(u\), L-index \(n\) in \(t\), becomes dumy index \(n\) in the contracied tensor product \(s=t w\). To JOIN \(t, u\) as \(s\) then entails 1) preserving the final free indices \(i, j, k\) and 'contraction' dummy index \(n\) while 2) cnanging dummy indices \(x\) of cay \(u\) so as to differ from these of \(s\). This is done by DECLARE'ing \(1, j, k, n\) to be constants while changing any item say \(x\) of LISTOFVARS ( \(u\) ), found in the similar list of dumaies of \(s\), to some new symbol say \(x r r=\operatorname{CONCAT}(x, r r)\). But this process should not change other atomic symbols such as the AA,BB of (2)--such symbols are thus initially DECLARED constant.

Of course replacement symbol xrr could be found in \(t\); also \(t\), \(u\) and a valid resulcing \(s\) may contain identical, possibly cancelling, terms disguised by having different symbols for the same dummy variable. Thus one wants a function corverting each term of an expression \(E E\) to consistent canonical indexing. Conmand hox (EE,ILIS) does this term by term: ILIS is a list of free indices declared constant. Internal to h 0 x , YLIS \(=[\mathrm{yl}, \mathrm{y} 2, \ldots]\) is an adequately long list of symbols deciared constant, and NAMES is an alphanumerically ordered internal list of these names (such as \(g, g g, g a m 1\) ) which occur in the term. Suppose IlIS is \([b, x, y, a]\) and \(f(i, j, b, p, a)\) is a factor in the formal term of EE; h0x finds this factor as the one containing \(b\), finds its LISTOFVARS [ \(1, f, p]\), substitutes \(y 1, y 2, y 3\) for \(i, j, p\) throughout the term and reconsiders
the result with ILIS \(=[y 1, y 2, y 3, x, y, a]\), YLIS \(=[y 4, y 5, \ldots]\). Or if che initial ILIS were empty and the foregoing factor's name \(f\) is first in NAMES then \(\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3, \mathrm{y} 4, \mathrm{y} 5\) are substituted in order for the LISTOFVARS \([\mathrm{i}, \mathrm{j}, \mathrm{b}, \mathrm{p}, \mathrm{a}]\) and become the new ILIS. At the close, the constants \([\mathrm{yl}, \mathrm{y} 2 \ldots\) ] of YLIS are replaced by variables \(\mathrm{p} 1, \mathrm{p} 2, \ldots\) to avoid conflicts in any iteration of h0x. I believe that h0x converts a valid EE to unique form of minimal length when each term of EE has some dumy-containing name occurring just once so as to appear in NAMES, and the order of indices within each named object is unique. Otherwise h0x(EE, []) will produce an EE with durny symbols pl,p2 not necessarily in minimal form. Regrettably, this now calls for ad hoc measures and iterations of hox, which never increase the number of terms.

The symmetry \(\operatorname{IE}(a, b)=\operatorname{IE}(b, a)\) is invoked automatically by a prior DECIARE(IE, COMMUTATIVE); this imposes the canonical ordering IE(a,b) for either form. Declaring ALF commutative, and C constant, then doing LiSTOFVARS (APPLY(ALF, \([a, y, C, x, b, x 2])\) ) produces the alphanumerically ordered list [ \(\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{x} 2, \mathrm{y}]\)--sans constant C , of course. ALF may analogously be used to order \(g_{i j}, y x \rightarrow g 2(i, j, y, x) \equiv g 2(i, j, x, y)\) in the latter form, and used in canonical antisymmetrizing commands.

Ferhaps the central problem in simplification of dummy-indexed expressions is seen in an example: Let scalar form \(F\) be \(I E^{x y}\left(K_{x y}{ }^{-1} \mathrm{~K}_{\mathrm{yx}}\right)\). Tensor \(I E^{\mathrm{Xy}} \rightarrow \mathrm{IE}(\mathrm{x}, \mathrm{y})\) has been declared 'commutative' so that IE ( \(y, x\) ) appears alphanumerically reordered as \(I E(x, y)\). Thus, though nothing is asserted about tensor \(K\), scalar \(F\) as contracted frm IE, \(K\) above is to vanish--it would if the indices of the second factor of \(F\) were canonically reordered as permitted by the symmetry of IE. Our dodge has been: substitute the name \(A K\) for \(K\) in \(F\), do h0x (F, []) so that the priority in the order of the new indexing goes to \(A K\), resulting formally in \(\mathrm{F}=\mathrm{AK}(\mathrm{p} 1, \mathrm{p} 2) *(\mathrm{IE}(\mathrm{p} 1, \mathrm{p} 2)-\operatorname{IE}(\mathrm{p} 2, \mathrm{p} 1))\), whereupon the declared symatry of IE produces cancellation in the last factor and one gets the wanted \(F=0\).

Clearly, what one wants is some simplifier that orders dumy indices, of factor, in a monomial, taking full account of dealared symmetries of tensor factors in which dummies have already been assigned. The problem is complicated by (a) the variety of possible symmetries and antisymmetrias, (b) multiple occurrences of tex sor names in the monomial, (c) the present necessity to change dumny eigenindex \(p^{\prime}=o p[p]\) in step with \(p=o p\left[p^{\prime}\right]\), (d) the utility of keeping intact the symbols for free indices.

One plausible way to keep free indices, say \(i, j, k\), of a form \(\mathbf{f}=\mathrm{f}(\mathrm{i}, \mathrm{j}, \mathrm{k}\), dummies \()\), is to contract f with a 'holding tensor' \(\mathrm{H}=\mathrm{H}(\mathrm{i}, \mathrm{j}, \mathrm{k})\), process the contracted scalar Hf, and then substitute back \(i, j, k\) for the \(\mathrm{pl}, \mathrm{p} 2, \mathrm{p} 3\) of the final result as indexed with priority set by the name \(H\). But this sometimes results in some terms with the anticipated factor \(H(p 1, p 2, p 3)\) while other terms have factors say \(H(p 1, p 2, o p[p 1])--m a k i n g\) for unwanted thought and typing.

The sketched algorithms of AP2,AP3,AP4 require different types of differentiations. All can (apparently) be done in a single overall comand TENSDIFF (EE,NLIS) by supplying appropriate versions of DIFFLIS, listing forms of derivatives, when TENSDIFF calls on it, NLIS lists names of tensors
considared differentiable, a\&l other symhols and functions being considered constants. Exampie: \(\operatorname{TENSDFF}(f(i, j, p) * g(i, j)\), \([g] ;\) first sees nane \(g\) in NLIS, goes to a list GSUBS to find \(g(a, b)=g \%[a, b]\) evaluates EE as \(\operatorname{FEE}: f(i, j, p) * g \%[i, j]\) does \(\operatorname{DIFF}(F E E)\) returning \(f(i, j, p) * \operatorname{DEL}(g \%[i, j])\), replaces the MACSYMA symbol DEL ky DDEL, DDEL(array member) being specified in DIFFLIS, e.g., \(\operatorname{DDEL}(\mathrm{g} \%[\mathrm{a}, \mathrm{b}]):=\mathrm{gl}(\mathrm{a}, \mathrm{b}, \mathrm{ik})\). Such incexed forms \(\mathrm{g} \%\), \(\mathrm{gg} \%\), gam\% as may remain are reconverted to initial forms through the array definitions of list CBACK, reversing GSUBS. Index-renaming as in JOIN prevents dumm indices nccurring in SIFFLIS from conflicting with those already in EE. The generic differentiation index "ik" is then to be roplaced by some chosen symbol, and before any second differentiation the result should (as with. an iterated JOIN operation) be boiled down and converted to relatively harmless indices via hox.

After all differentiations, one goes immediately to eigenindexed forms as much more compart and perspicuous. The basic substitutions are \(g(x, y):=y: f(x, y)\) and \(g r(x, y):=x * f(x, y) \cdots\) the tensor indices \(x, y\) of \(g, g g\) become eigenindices and the freestanding factors \(x, y\) are in effect the eigenvalues \(u\) of equation (4). Function NUFF then sequantially extracts each factor \(f(p, q)\) and in its coefficient replaces \(q\) with op[p], op[q] with \(p\). Function CRIMP(EE,NAMES) the:. renames and reorders, term by term, the eigenirdices \(p\) together with their 'oppositus' \(p^{\prime}=o p(p)\) in the general manner of hox, though with priorities as set by the ordered list NAMES of germane function names. With sufficient application of CRIMP, some minimum of ad hoc substitution, and luck, the naned objects are sanonically indexed and may be factored out, leaving a pulynonial \(P=P\left(A, \ldots, p l, p l^{\prime}, \ldots\right)\) linear in undetermined parameters \(A\). One must eventually allow for \(p^{\prime}=o p[p]\) as implying \(p^{\prime}=1 / p-\)-but not too scon, for expression \(p * p^{\prime} * Z\) (other indices) represents a sum over eigenindes \(p\) with result \(4 Z\). Function CRTMP leaves indices of objects in NAMES as constants, other freestanding indices, like the above \(p, \mathrm{p}^{\prime}\), as variables. Function CFDO does sums over such variables: CFDO applied to \(p^{*} p^{\prime}\) yields 4, applied to \(p^{\prime n}{ }^{\prime} \mathrm{p}^{\mathrm{n}+2}\) yields the scalar AA of equation (2), etc. Polynomial \(P\) is reuucible to degree 3 in \(P^{2}\) through \(Q\left(p^{2}\right)=0\), equation (2). Requiring \(P\) to vanish then gives a set of linear relations among the pa:ameters \(A\), which may now be solved for in familiar ways.

\section*{REMARKS}

Described elsewhere in these Proceedings (ref. 7) is a tensor manipulating package ITMS, designed primarily to analyze field equations of GR based on a symmetric metric tensor \(\hat{g}_{i j}\). Our developing package is aimed at finding \(\hat{\mathrm{g}}_{\mathrm{i} j}\) as upshot of field equations derived from action integrals based on nonsymmetric tensors. There appears to be no significant duplication of ITMS items. I welcome appropriate extensious \(O\) ITMS and recommend its use in case of overlappiń capabilities.

I call attention to the probiem of providing a spinor representation natural for the non-symmetric \(g_{i k}\). The present \(n, n^{\prime}\) eigenindexing is suggestive of two-component spinor notation, and the elgenvectors may provide a natural framework for a spinorization.

\section*{REFERELCES}
1. Einstein, A.: Meaning of Relativity. Fourth or Fifthed. Princeton Univ. Press, 1955.
2. Misner, C. W.; Thorne, K. S.; Wheeler, J. A.: Gravitation. W. H. Freeman and Co., 1973.
3. Pi\&ani, F. A. E.: Introduction to Gravitational iadiation Theory. Brandeis Summer Institute in Theoretical Physics 166, 1964.
4. Schrödinger, E.: Space-Time Structure. Cambridge Univ. Press, 1950.
5. Einstein, A.; Keufman, B.: Algebraic Properties of the Field in the Relativistic Theory of the Asymmetric Field. Ann. of Math., vol. 59, no. 2, 1954, pF. 230-244.
6. McConne11, A. J.: Applications of Tensor Analysis. Dover Publ., 1957.
7. Bogen, R. A.; Pavelle, R.: Indicial Tensor Manipulation on MACSYMA. 1977 MACSYMA Users' conference, NASA CP-2012, 1977. (Paper no. 9 of this cor pılation.)


\title{
N77-28760
}

BLACK HOLES AND RELATIVISTIC GRAVITY THEORIES

\author{
A. J. Fennelly \\ Physics and Astronony Department \\ Western Kentucky University \\ Bowing Green, Kentucky 42101 \\ Richard Pavelle \\ Logicon, Inc. \\ Hartwell Avenue \\ Lexington, Messachuseits 02173
}

\section*{ABSTRACT}

We constder all presently known relativistic gravitatior theortes which have a Riemannian background geometry and possess exact static, spherically symmetric solutions which are asymptotically flat. He show each theory predicts the existence of trapped surfaces (biack holes). For a general static isotropic metric wo use MACSMA to compute the Newman-Penrose equations, the black hole radfus, the impact parameter and capture radius for photon accretion, and verify asymptotic flatness. These results are then applied to sevaral of the better known gravitation theorles. It appears the claims of Hawking, Lightman, Lee and Rosen regarding the existence of black holes in several theories are not valid. and black holes are a natural consequence of present ideas about gravity.

INTRODUCTION

The subject of black holes has become very popuiar in recent years. With dozens of papers appearing in sctentific journals each month and popular articles in abundance, the sutject of black holes is a true mystery since there is no known method for observing theri directily if Indeed they exist. Opponents develop theories which they believe eliminate black holes entirely while proponents attempt to show thac black holes are legitimate or that their extstence is
temporary in the evolution of certaln classes of siars. Our purpose in this paper Is to show that black holes are a natural consequence of the basic format of gravitation theortos (at thts time) when solutions of fleld equattons can be found in sxact form and where the background yeometry of the spaca-time is Riemannian. The calculations involved in the analysts are extremely complicsted and wo wonld not have attempted shis narticular problem without the atd of MACSYMA. MACSYMA possessas a number of spectal purpose relativistic programs as part of the component tensor manipulation system, CTMS, in addition to ITMS (ref.1). Given tho metric components as timplictit or explicit functions of the coordinates, CTMS can compute all geometrical objects such as Riemann tensors,etc. It also has the capabilities for finding the Newman-Penrose sein coefficients as well as a host of othar objects owing to the genera? ity of MAESYHA and CTMS.

\section*{TRAF̄ED SURFACES AND PHOTON CAPTURE}

The 1 tne element for a static spherically symmetric metric may be written in isotropic form us
\[
\begin{equation*}
d S^{2}=c^{2 \psi}\left(d R^{2}+R^{2} d \delta t^{2}\right)-d^{2 \phi} d t^{2} \tag{1}
\end{equation*}
\]
where \(\psi(R)\) and \(\phi(R)\). We use isotroptc form rather than Schwarzschild coordinates for alance the literature shows that (1) with its high deyree of symmetry Tends itself to closed form solutions more madity than other metrics. For example a closed form solution of the Brans-Dicke theory in Schwarzschild coordinates has never been exhtbited (ref.2).

98

A trapped surface (the physical measure of the radius at which physical laws change) is one for which all geodesic congruences converge, f.e.,strike a singu?arity \{ref.3, ref.4). The measura of the convergence of geodesic is the spin coofficient (ref.5)
\[
\begin{equation*}
\rho=i_{\mu ; v^{\prime} \vec{m}^{7}} \tag{2}
\end{equation*}
\]
where \(l_{\mu}\) is the tangent vector to an outward directed null geodesic congruence. the semi-colon is covariant differentiation and mb is tho complex vector spanning the celestial sphere. The vactors \(i_{\mu}, m_{\mu}\) and \(\bar{m}_{\mu}\) are combined with an Ingoing tangent vector \(n_{\mu}\) io form a complex null teirad. The mexric is given by
\[
\begin{equation*}
g_{\mu \nu}=1\left(\mu^{m} \nu\right)=m_{\left(\mu^{\bar{m}} \nu\right)} \tag{3}
\end{equation*}
\]
where ( ) is symmetrization. The tetrad obeys usual inner product rules (ref.5).

The isotrooic metric (1) may be written in terms of a new luminosity coordinate by the transformation
\[
\begin{equation*}
e \phi_{d t}=e^{\phi} d v+e \phi_{d R} \tag{4}
\end{equation*}
\]
which gives the transformed metric (1) as
\[
\begin{equation*}
d s^{2}=-e^{2 \phi} d v^{2}-2 \theta^{\phi+\psi} d v d R+R^{2} e^{2} / d \Omega^{2} \tag{5}
\end{equation*}
\]

Tha null tetrad components are eastly found, and the complex expansion of the null congruence is then found by MACSYMA to be
\[
\begin{equation*}
A \propto 1+R \psi^{\prime} \tag{6}
\end{equation*}
\]
where \(\psi^{\prime}=d \psi / d R\). The expanston \(p\) will be negative and a trapped surface will form only if \(1 \rightarrow R \neq 0\). Clearly, a large ciass of metrics will satisfy this cordition for some critical finita value(s) of the rasius which wa denote by \(R_{t}\).

This trapped surface location is coordinate dependent. For comparison we shall wish Co transform the expression \(R_{t}\) to Schwarzschild coordinutes by choosing the coordinate system in which we redefine the radius by \(r=R e \psi\). Tius having found the trapped location for (1) we easily find \(r_{t}\).

For metric to represent the gravitational field of an isolated particle it is necessary that the field vanish asymptotically at large distances from the particle end the space-time reduce to that of special relativity. The invariant measure of "asymptotic flatness" is satisfied if the Weyl invariant
\[
\begin{equation*}
\Psi_{2} \equiv-1 / 2 c_{a b c d} 1^{a_{n}}\left(1_{n}^{c_{n} d-m} c_{n}^{d}\right) \tag{7}
\end{equation*}
\]
vanishes asymptoticaily as \(R\) where ciabed \(^{\text {is the }}\) Heyl tansor. For the metric (1) we find CTMS gityes the following expression for the Weyl inyariant as


It is well known that Generai Relativity predicts both the existence of a trapped surface and the logically rolated physical consequence which is an impact paramster for particle capture residing outside the trapped surface (ref.6). This is a non-Newtonian effect and it is therefore of interest to determine whether other relativistic gr steories also prodict such a phenomenon. The only assumption we make is that the geodesic equations which are valid in General Relativity hold in other theories ton. This assumption is reasonable since alternatives to the geodestc equations of motion have not been proposed.

For the matric (1) and motion in the equatorial plane the geodesic equations

Immedtately give two constants of the motion \(h\), and \(K\). These follow respectively from \(g_{\phi \phi} d s / d d=0\) and \(g_{t t} d s / d t=0\). Writing \(\lambda=K / h\) as th. impact parameter one finds orbital equations which may be put in the form
\[
\begin{array}{lc}
d R & R  \tag{9}\\
-- & \pm \\
d \phi & -- \\
\lambda
\end{array}\left[R^{2} e^{2(\psi-\phi)}-\lambda^{2}+\frac{E^{2} \lambda^{2} R^{2} e^{2 \psi}}{h^{2}}\right]^{1 / 2}
\]
whers \(E=0\) for a photon and \(E=1\) for a material particie.
We proceed now directly to the photon \(E=0\), since material particles are more drastically affectied and will simply give more extreme figsical behavior. Orbits are stable doun to a critical radias given by \(R=R_{c}\). We find a general method for ccmouting the value of \(R_{c}\) is given by simultaneously setting \(d R / d \phi=0\) and \(d / d R(d R / d \phi)=0\). These equations also give a corresponding critical impact parameter \(\lambda_{c}\). These conditions are found to give \(R_{c}\) from
\[
\begin{equation*}
1+R\left(\phi^{\prime}-\psi^{\prime}\right)_{R=R_{c}}=0 \tag{10}
\end{equation*}
\]
and
\[
\begin{equation*}
\lambda_{c}=R_{c}{ }^{\left.2 \Gamma \phi\left(R_{c}\right)-\psi\left(R_{c}\right)\right]} \tag{11}
\end{equation*}
\]
for the corresponcing capture impact parameter.

\section*{VALUES OF THE PHYSICAL PARAMETERS}

We now apply MACSYMA to the equations cerived above for the study of varions gravitation theorles. He adopt the following notetion for our physical parameters:
\(R_{t}=\) iocation(s) of trapped surfaces thisotropic coordinates from (6)

\(r_{t}=\) corresponding location(s) in Schwarzschild ceordinates by transformatien \(R_{c}=\) location(s) of photion capture radif in isotropic coordinates from (10) \(r_{c}=\) corresponding iocation in Seliwarzschild coordinates by transformation \(\lambda_{\mathbf{c}}=\) corresponding impuct parameter for photon capture(ccordinate independent) In each theory we usa MACSYMA to compute and simplify the physical parameters as well as verify the condition of asymptotic flatness. By equatiag (1) to che actual metric in each theory wo can solve for \(\phi\) and \(\psi\). Then we use MACSYMA to compute (6), (8), (10) and (11) as well as transform the physical perameters to Schwarzichlid coordinates.
A) EENERAL RELATIVITY: The isotropic form of the Reissner-Nordstron metric is

where \(E\) ts the charge of the mass M. We find
\[
\begin{array}{cc}
R_{t}=1 / 2\left(M^{2}-E^{2}\right)^{1 / 2} & r_{t}=M \pm\left(M^{2}-E^{2}\right)^{1 / 2} \\
R_{c}=1 / 4(M+K) \pm 1 / 2 \sqrt{2}(M+K)^{1 / 2}(3 M+K)^{1 / 2} & \text { where } K=\left(9 M^{2}-8 E^{2}\right)^{1 / 2} \quad \text { and } H \leq K \leq 3 M \\
r_{c}=3 M / 2 \pm 1 / 2\left(9 M^{2}-8 E^{2}\right)^{1 / 2} & \lambda_{c}=(3 M+K)^{3 / 2} /\left(\sqrt{2}(M+K)^{1 / 2}\right) \tag{13}
\end{array}
\]

The results for the trapped surface location are known whereas the form of the metric (12) and the photon capturg parametiers appear to be new. Setting \(E=0\) in (13) the parameters become
\[
\begin{equation*}
R_{t}=H / 2 \quad r_{t}=0,2 H \tag{17}
\end{equation*}
\]
\[
R_{c}=M(1 \pm \sqrt{3} / 2) \quad r_{c}=0,3 M \quad \lambda_{c}=N \cdot 3 \sqrt{3}
\]
all of witch are known (ref.7) and confirm the valldty of orr congutations.
B) Rosen's Thecry (ref.8) : This theory has recetved wide attention recentiy and is presently the most popular alternativa to General Relativity. One of the reasons for this is the belief that the theory does not predict the extstence of black holes. He shall now see this ciaim is faise. Rospn's metric is
\[
\begin{equation*}
d s^{2}=e^{2 M / R}\left(d R^{2}+R^{2} d \Omega^{2}\right)-e^{-2 M: R_{1}} d t^{2} \tag{15}
\end{equation*}
\]
and wa find
\[
\begin{gather*}
R_{t}=M \quad r_{t}=M \cdot e  \tag{16}\\
R_{c}=2 M \quad r_{c}=2 M \sqrt{\theta} \quad \lambda_{c}=2 H e
\end{gather*}
\]

Wa now see trapped surfaces do exist in this cheory as well as capture radil and photon impact parameters.
C) Brans-Dicke Theory: We use the matric in tis standard form (ref.2) to find \(3 \Leftrightarrow\)

\[
\begin{aligned}
& R_{c}= \operatorname{SQRT}(3 \omega+4) \\
&(--\infty+\cdots) \\
& \operatorname{SQRT}(4 \omega+6)
\end{aligned}
\]

where
\[
\begin{align*}
& P=\frac{(\omega+1) \sqrt{2}}{\sqrt{\omega+2} \sqrt{2 \omega+3}}  \tag{18}\\
& \alpha=\frac{M \sqrt{\omega+2}}{\sqrt{2} \sqrt{2 \omega+3}}
\end{align*}
\]

Here too we find contradiction with earlier results which claimed that EransOicke black holes are fentical to those of General Relativity (ref.9). Note that trapped surfaces do not form in?ess the coupling constant \(\omega\) is negative. Also, (17) reduce to (14) as \(\omega\) Jecomes infinite as one would expect since this is the asymptotic correspondence 1 imit of the Brans-Dicke thecry.
D) Yang-Kilmister Theary (ref.10) : Two solutions of the Yang-Kilmister equetions are given as (ref.ll)
\[
\begin{equation*}
d s^{2}=(1-H / R)^{2}\left(d R^{2}+R^{2} d A^{2}-d t^{2}\right) \tag{19}
\end{equation*}
\]
and
\[
\begin{equation*}
d s^{2}=(1+H / 2 R)^{4}\left(d R^{2}+R^{2} d R^{2}\right)-d t^{2} \tag{20}
\end{equation*}
\]
which give respectively
\[
\begin{gather*}
\rho=R / R-M  \tag{21}\\
R_{t}=M / 2 \quad r_{t}=2 M \quad R_{z}=M / 2 \quad r_{c}=2 M \quad \lambda_{c}=2 M \tag{22}
\end{gather*}
\]

The first solution (19) is peculiar as it implies, from (21), an impenetrable barrier at \(R=M\) corresponding to \(r=0\) in Schwarzschild coordinates. The secong solution exhibits more unusual behavior since the trapped surface location. capture radius and impact parameter resids at the same radius in Schwarzschild coordinates. These results are not surprising since it has been shown, using MACSYMA, that these metrics are unphysical (ref.12) by possessing solutions which give incorrect physical predictions.
E) Lightman-Lee Theory (ref.13): A metric for this theory 13
\[
\begin{equation*}
d s^{2}=\left[\frac{2 R-M}{2 R-3 M}\right]^{2}\left(d R^{2}+R^{2} d R^{2}\right)-\left[\frac{2 R-H}{2 R+M}\right]^{2} d t^{2} \tag{23}
\end{equation*}
\]
which yiaids
\[
\begin{gather*}
R_{t}=M / 2(3 \pm \sqrt{6}) \quad r_{t}=N / 2(5 \pm 2 \sqrt{6}) \\
R_{c}=N / 2(3+2 \sqrt{3}) \quad r_{c}=N / 2(5+3 \sqrt{3}) \quad \lambda_{c}=N / 2(7+4 \sqrt{3}) \tag{24}
\end{gather*}
\]

It has been claimed iref.14) that (23) does not contain a black hole racius at M/2 and \(3 W / 2\), where the metric components become singular, since there radit cannot be encountored after travelling a finito affine distance. This claim is Invalid since, from (24), we find a trapped surface forms at \(M / 2(3+\sqrt{6})\) which lies beyond 3M/2. It is clear black hole forms in this theory too.

We have establised that black holes are a normal rather than a pathological feature of viable gravitation theories. This fact is amplified by the new observation that photon ccpture and photon impact parameters are also normal occurrences in the behavior of the gravitational fleid of dense bodies. Thus we have disproven the clatim that black holes do wit extst in Rosen's theory as well as shown that the trapped surface exists and can be approached in the LightmanLee theory. In addition wa have shom that Brans-Dicke biack holez are quite unlike those of General Relativity. We are now using MACEMMA to Investigate a recent attempt introducing Quantum theory into the subjact of black holes in the study of the "evaporation of blark holes" in which particles can tunnel out of the trapped surface. These results will be presented elsowhere.

\section*{REFERENCES}
1. Bogen, R. A.; and Pavelle, R.: Indicial Tensor Mantpulation on mace fma. Proceed'ngs of the 1977 MACSYMA Users' Conference, NASA CP-2012, 1077. (Paper No. 9 of this Compllation).
2. Brars, C.; and Dicke, R. H.: Mach's Principle and a Relativistic Theory of Gravitation. Phys. Rev., 124, 1961, pp. 925-935.
3. Penrose, R.: Gravitational Collapse and Space-Time Singulerities. Phys. Rev. Lett., 14, 1965, pp. 57-59.
4. Hawking, S. W.: Occurrence of Singularities in Open Universes. Phys. Rev. Lett., 15, 1965, pp. 689-690.
5. Newman E.; and Penrose, R.: An Apprsach to Grawitational Radiation by a Method of Spin Coefficients., J. Math. Phys., 3, 1962, pp. 536-578.
6. Darwin, C.: The Gravity Field of a Particle, I. Proc. Roy. Soc. London A., 249, 1958, pp. 180-194.
7. Misner, C. W.; Thorne K. S.; and Wheeler J. A.. Gravitation. W. H. Fresman, and Co.. 1973, Pp. 921-924.
B. Rosen, N. A Bi-Metric Theory of Gravitation. Gen. Re1. Grav., 4, 1973, Dp. 435-44B.
9. Ha:king, 5. H.: Black Holes in the Brans-Dicke Thaory of Gravitation. Commun. Math. Phys., 25, 1972, pü. 167-171.
10. Yang, C. N.: Integrai Formalism for Gauge Fields. Phys. Rev. Lett., 33, 1974, pp. 445-447.
11. Pavelle, R.: umphysical Solutions of Yang's Gravitational-Field Equations. Phys. Rev. Lett., 34, 1975, pp. 1114.
12. Pavelle, R.: Unphysical Characteristics of Yang's Pure Space Equations. Phys. Rev. Lett., 37, 1976, pp. 961-964.
13. Lightman A. P.; and Lee, K. :.: New Two-Matric Theory of Gravity with Prior Geometry. Phys. Rev. D., 8, 1973, pp. 3293-3302.
14. Lightman, A. P.; Press, H.; Price R.; and Teukolsky, S.: Problem Book in Kelativity and Gravitation, Problem 17.12, Princeton Univ. Press, 1975.


The Evaluation of Atomle Variables in MACSYMA*

Jeffie; P. Golden
Labcratory for Computer Susnce
Massachusetts Institute ce Technolog7

\section*{1. Iniroduction}

In this tutorial paper, we explore the many issues involving the use of atomic variables, of names, in MACSYMA. We hope thereby to gast insight into she complexities of emaluatlon which may sometiries cause frusiration to the MACSYMA user. Some of the simpier aspects will be glossed over as they are adequately covered in the MACSYMA Reference Manual (ref. 1), and as we may rssume that all MACSYMA users are sonewhat familiar with them.

\section*{2. Evaluation-Firee Expressions}

We begin by looking at "evaluation-frex" expressions, in which names staind for themselves.
(C1) FACTOR( \(\left.X^{\wedge} 2-Y^{\wedge} 2\right)\);
(D1) \(\quad-(Y-X)(Y+X)\)
The basic idea in the above example is clear to the INACSYMA user. We wish to factor the polynomial \(x^{2}-y^{2}\) over the integers, so we type in the command line shown at (CI), obtaining the answer at (DI). \(X\) stands for itself ard \(Y\) stands for itself.

\section*{3. Implicit Assignment}

Now, we decide to expand the result (D1). We may ifpe
(C?) EXPAND(D1):
or more usually

\footnotetext{
- This work was supported, in part, by :tse Unitet States Energy Research and Development Administration under Contract Number Eill-1)-3070 and by the National Aeronautics and Space Administration under Grant NSC 1329.
}
(C2) EXPAND(x):
obtalning
(D2)
\[
z^{2}-y^{2}
\]

In this case, we know that \(D 1\) or \(\$\) do not stand for themselves, but rather that they both refer to the expression \(-(Y-X)(Y+X)\); D1 because MACSYMA implicitly labelled tha: expression with "D1", and \(x\) because in MACSYMA it refers to the "previous" expression or computation.

\section*{4. Evaluation:}

It is important to be clear on the process by which the command tines (C1) and (C2) were handled. These command lines were cvaluated, meaning that in order to determine the expressions FACTOR and EXPAND were to operate on, their arguments, the expressions \(X^{\wedge} 2-Y^{\wedge} 2, D 1\), or \(X\) were evaluated (and simplified) first, and this means that the variables or names in them were evalucted one ame. Evaluation of names means that If a name has been implicitiy or explicitly assigned a value, that we obtain that value. If a name has nor been assigned a value, the evaluator just returns the name itself.

\section*{5. Explicit Assignment}

We know that we can expltcilly assign a vatue to a name with the use of : (coton). So, if we wish to ho.'I on to a polynomial, say \(x^{2}+x+y\), and Invent a name of our own for th, we can type
(C3) POLY1: \(X^{\wedge} 2+X+Y\);
(D3)
\[
Y+x^{2}+x
\]
we know that POLYI and 03 are the same in the sense that the \(\begin{aligned} & \text { both refer to the same expression. }\end{aligned}\) \(Y+X^{2}+X\) We also note that even though \(X\) and \(Y\) have no assigned values (are "unbound"), and thus evaluation produced no changes in our polynontal, that it has been reordered by the simplifier. Lastly, \(\mathbf{D 3}\) lueing an implicilly assigned name goas on the LABELS list, while POL in being an explicitly assigned name goes on the Values list, which perhaps is named somewhat confusingly. (These lists have many uses as noted in the inanual.) The following should be clear:
(c4) noly1-2ax
(04)
\[
y+x^{2}-x
\]

\section*{6. MACSYMA Options}

We can also \(u\) ess explicit assignment to reset the value of a MACSYMA option. A MACSYMA option is simply a name that has been initially assigned a value by MACSYMA, and which directs the performance of MACSYMA a certain way by its current setting. Thus, \(1 f\) we wish to see the computation time elapsed in evaluasing command line., we may type
```

(C5) TIME:TRUES
timez 1 mssc.
(C6) FACTOR{ (X 3+Y^3);
time= 90 msec.
(D6)
(Y+X)(Y' (Y X + X X )
(C7) TIME:FALSE\&

```

When we reset a MACCYMA option, even if we reset it back to its initial value, it goes on the MYOPTIOMS list.
(CB) [LABELS,VALUES, HYOFTIOKS];
(D8) [[C8, D7, C7, D6, C6, D5, C5, D4, C4, D3, C3, D2, C2,
D1. C1], [P0LY1], [TIME]]

\section*{7. The EV Command}

Often, we only wish to reset the value of a MACSYMA option temporarily, say, for a single computation. We may do this as follows:
(C9) \(\operatorname{SIM}(X) x \operatorname{COS}(X)\), EXPONENTIALIZE;

(D9)
4
This sets the value of the MACSYMA cption EXPONENTIALIZE, normally FALSE, to TRUE oniy during the evaluation of the expression \(\sin \times \cos x\), thus causing the trigonometric expression to be converted to exponential form.

First, let us note that (C9) as given above is an easy way for typing in
(C9) SIM \((X) \times \operatorname{COS}(X)\), EXPONENTLALIIE:TRUE;
The titter form is also acceptable, but the former abtreviated variant is avallable for many

MACSYMA options, and may aiso be introduced by the user by EECLAREing a variable as an EVFLAG (see the manual, p. 120).

We aiso note that (C9) is an abbreviated sjutax for a call to the EV commanid, and could have been giver as
(C9) EV(SIN \((X) * \operatorname{COS}(X), E X P O N E N T I A L I Z E):\)
EV is by far the most frequentiy used command in MACSYMA. The above example on the face cf it looks very simple, and indeed, in most instances EV gives the expected result in a straightiorward manner. Unfortunately, as we shail see later on In this paper, EVs many variants which lead to its great usefulness, are also the reason for its complextty, in understanding it and In how it is handled by MACSYMA.

\section*{8. Single Leval of Evaluation}

Lat's now assign to \(X\) the value of \(Z\) :
(C10) \(\mathrm{X}: 2\);
(010)

\section*{2}

We know what typing in \(x^{2}-y^{2}\) does:
(C11) \(X^{\wedge} 2-Y^{\wedge} 2 ;\)
(D11)
\[
z^{2}-r^{2}
\]

Let us now request the value of 02 :
(C12) D2;
(D12)
\[
x^{2}-y^{2}
\]

We notice that the value of 92 has not changed even though \(X\) has now been assigned a value. This is because MACSYMA ordirarily evaluates exprestions (in this case D2) only one time and does not re-evaluate expressions even If doing so would result in further change.

\section*{9. Multileveled Evaluation}

One can request evaluation untif no farther change takes place by using the IMFEVAL ("Infinite evaluation") flag of FY, as follows:
(C13) D2,INFEVAL;
(n13)
\[
Z^{2}-Y^{2}
\]

In designing MACSYMA, we chose to ordinarily evaiuate expressions only one time as this gives the user much more control over his/her expressions in that he;she can control the number of times evaluation is to take place. In almost every case this is not an important issue as variables appearing in expressions are usually either unbound (stand for therriselves) or are bound to expressions containing vartables all of which are unbound. Thus, in almost every case, It would make no difference if we evaluarad vartables only one ame or attempted to evaluate them more than cuce.

However, suppose the user hes an expression whict, is labelled, say, L1, which contains one or more cecurrences of the variable \(A\) and that \(A\) in rum has been assigned as value a !arge expression. (One way of accomplishing this easily is by assigning to Ll befort assigning to A) Then, thanks to the evaluation scheme descrioed above, the user can play around with the expression Ll, i.e use : 1 in his/her command lines, without fearing that a large expression will be plugged in for A before the user wants this to occur.
(As another example, when the user typed D2; at (C12), the user may have only wanted to see D2 displayed again, rather than wanting additional computation to take place at that poist. Cr, when the user types VALUES; at MACEYMA, the user wants to see the names of the variables that have been assigned to, rather than their yalues.)

When the user wants this plug-in to 41 so take place, this may be done simply with MACSYMi by typing any of the following command-lines:
EV(LI); Ō LL, RESCAN; or L1,IMFEVAL:

The first two are equivalent, and take advantage of the fact that calling EV causes the expression 11 to be evaluated one extra time, i.e twice. This is cbviously the teason the flag is ramed "RESCAN". (The reason for this extra evaiuation will be gone into further beiow, when EV is taken up again.)

The above example, however, is actualiy somewhat artificial. If the user wanted the above effect, it is more usual to either postpone assigning to \(A\) until that assignment is needed, or to use the SUBST command when needed to substlute in that large expression for \(h\) However, one circumstance in which a sittuation similaz to that above occurs is when using the SOLVE command, as in the following:
(c14) KILL(X)8
(C15) SOLVE \(\left(x^{\wedge} 3+X+C, X\right)\);
\begin{tabular}{|c|c|}
\hline & 2 \\
\hline & SQRT(27 C + 4) \\
\hline (E15)! & 6 SgRT(3) \\
\hline & C 1/3 \\
\hline (E16) & (E15--) \\
\hline & 2 \\
\hline
\end{tabular}
solution
\begin{tabular}{|c|c|c|}
\hline & & XI SQRT(3) 1 \\
\hline & XI SQRT(3) 1 & 22 \\
\hline \multirow[t]{2}{*}{(E17)} &  &  \\
\hline & 22 & 3 E18 \\
\hline . & & II SQRT(3) 1 \\
\hline & XI SGRTi3) 1 & 22 \\
\hline \multirow[t]{2}{*}{(E18)} &  & -------ヘ-*-* \\
\hline & \(2 \ldots 2\) & 3 E16 \\
\hline & 1 & \\
\hline \multirow[t]{2}{*}{(E19)} & X \(=\) E16 - - - & \\
\hline & \(3 \mathrm{El6}\) & \\
\hline \((019)^{\prime}\) & [E17, E18, E19] & \\
\hline
\end{tabular}

We note that in order to keep the sobitions E17, E18, and E19 to the cubic equation sornewhat smaller than they otherwise might be, the babel Elo is automatically assigned oy SOLVE to a subexpression common to all three solutions. The babel El5 is also generated as an auxiliary label. Thus, we gain somewhat in the size of displayed expressions at the expense perhaps of some convenience in manipulating the expressions.

Now, let us look at what might be seen by some 23 a problem with MACSYMA's evaluaiton and simplification scheme. Suppose we have
(C20) \(\sin (x) \cos (x)\); \(\quad \cos (x) \operatorname{SIN}(x)\)
(D20)
(C21) EXPONEMTIALIZE:TRUES
(E22) \(\operatorname{DIFF}(D 20, X)\);
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{XI X} & & \multicolumn{3}{|c|}{81 X - \%IX} \\
\hline & Xİ (XE & - RE & ) \(\operatorname{SIM}(\mathrm{X})\) & (㫨 & + \(\mathrm{XE} E\) & ) \(\cos (x)\) \\
\hline \multirow[t]{2}{*}{(022)} & & & & & & \\
\hline & & 2 & & & 2 & \\
\hline
\end{tabular}

Rote that the EXPONENTIALIIE flag has been reset in the middle of a computation. The result ubtained in 022 (which, by the way, is equivalent to \(\operatorname{cus}^{2}(x)-\operatorname{Sin}^{2}(x)\) ) at first sight may be surprising to the MACSYMA user. We see that even though the EXPOMENTIALIZE switch has been set to TRUE via C21, that D22 sth has SIK's and COS's in itt This can be seen to be a result of MACSYMA's single level evaluation and simplification scheme in its interaction with the rute for differentiation of products. Thase parts of the result which are generated by DIFF are scanned and converted into exponentiall, whereas the unrescanned subexpressions are unchanged. The user can obviously obtain the prohably desired result, i.e. a fuily exponentalized expression, by causinge a rescan to take piace, eg. by
(C23) EV(DIFF \((020, X))\);

(023) \(\qquad\)
4


4
or by
(C24) EV(D22):

(C25) EXPONEMTIALIZE:FALSFS

\section*{(Cč5 resecs EXPONENTIALI2E back to its default value.)}

The results \(\mathbf{b 2 3}\) and 024 are different for reasons explained in tree section on EV below.
The singie fevel evaluation and simplification scheme gives the user the exira flexiblity and control destrable in certain circumstances. Aiso, manipuiation of expression: is faster, as expressions are not ordinarity rescanned uniess specifically requested by the user. (An e-ception to this is in MACS:MA's rational function package, where, in order for algorithms to work

correctly, it may be recessary for expressions to be consistent with the current environment) An implementation which automatically rescans expressions whenever flags such as EXPONENTIALIZE are reset since the last time the expressions were scanned is possible, although cumbersome, and it would remove some level of corctrol frem the user.

\section*{10. The EV Command Explained}

We have seen several examp'es of the versatility of the EV ccmmand above. The EV command is used to control the environment in which an evaluation and/or simplification are to take place. The general syntax is
exp, arg2, ... argn
meaning tha: the expression exp is in be avaluated and simplified in the environment given by the remaining arguments, the argi. For exarnpie, noting (C9) above
(c9) \(\operatorname{SIN}(X) * \operatorname{COS}(X)\), EXPONENTIALIIE;
we se that the intention is that the expression \(5 I M(X) \neq \cos (X)\) be simplified, i.e transformed, in the environment where EXPONENTIALIZE is TRUE.

To see how ihls affects evaluation, we consider the example
(C26) \(x^{\sim} 2+1\);
(D28)
2
(C27) \(x, x=3\);
(D27)
\(x+1\)

10

The expression \(\approx\) (or D26) is to be evaluated in the environment where \(X\) has value 9 , giving \(10 . X\) has value 3 while evahuating \(X\) (026) irrespective of any value \(X\) might have in the "outside world". Also, \(X\) will revert to tes "outilde world" (global) yalue when evaluation of the call to EV In C 27 is completed. (By the way, the syntax \(X: 3\) may alse be used for \(X=3\) here)

Now, let ux see just how the evaluation of the call to EV in \(\mathbf{E 2 7}\) takes place. First, the name \(X\) is evaluated, giving \(X^{2}+1\), thereby obtaining the expression EV is to work on. In general, names appearing in the first argumen' to EV are evaluared one time at this stage. Usually, thessy names are labels which point to (whose values are) the expressions EV is to work on. The evaluation (or the name \(X\) ) will not take place in a case ide EV \(\left(x^{2}+1, x=3\right)\); where the nane \((x)\) is the lefit hand side of an equation or assignment. Obvicusly, the global vaive of \(X\) is not wanted in tinis case..

Next, \(x\) is bound to 3 , and the expression \(x^{2}+1\) is evaluated in this environment, giving 10 . So, we note that the original expression \(x\) was evaluaied twice l.e. one extra time.

Using this'informition, we can analyse huw the command lines (C23) EV(DIFF(D20,i:)); and (C24) EV(D22); are handled. In the case of C23, first the values of D20 (which is \(\operatorname{COS}(X) * \operatorname{SiN}(X)\) ) and of \(X\) (which is \(X\) ) are retrieved. Then, the resulting expression \(\operatorname{DIFF}(\operatorname{COS}(X)\) a \(S I M(X), x)\) is evaluated, which means, since EXPOHENIIALILE is TRUE and since the evaluation of argumenis takes place before DIFF is called, that \(\cos (X)\) and \(\sin (X)\) are converted to exponentials before the differentiation is carried out. Thus, we see that \(\operatorname{EV}(\operatorname{DIFF}(D 20, X))\); is equivalent here to \(\operatorname{DIFF}(E V(D 20), X)\); In the case of \(C 24\), first the value of D22 is retricved, which is an expresston contatning both SIN's and COS's and exponentials. Then, this expression is evaluated, which in this case, sisice EXPONEITIALILE is TRUE, simply causes the occurrences of \(\operatorname{SIN}(x)\) and \(\operatorname{Cos}(x)\) to be converted to exponentials.

Noting the above analysis, the examples in the manual folowing the description of the SURST command should be clear. There the differences between substifution as performed by the SUBST command and binding as performed by EV, as well as the differences in the order in which and extent to which evaluation takes place are itlustrated. (ihe argurnents in 2 call to SUBST are, of course, evaluated before substlution takes place.)

We have seen akove how EV may ba used to affect evaluation. We have also seen the use of the IIFFEVAL fieg of EV to cause repeated evaluation of an expression until no furtiter change takes place. Now, we will briefly mention other flags of \(E y\) which may be uset to affect how evaiuation and simplification takes place.

Especially when we use EV to plug in solutions obtalned by SOLVE, eg.
(C?A) \(X^{\wedge} 3+K+C, E I G\), RATSIMP:

we may wish ore more evaluation than normal to cake place, in this case to eilminate the \(\mathbf{E} 15\). This may be done with the IMFEVAL flag of EV, bist if we wish to control the number of extra evaluations (usually, only one will be necessary), thls maj be done with the EVAL flag of EV.
(C29) \(X^{\wedge} 3+X+C, C 19\), EVAL, RATSIMP;
(029)

0
In fact, one extra evaluation will take place for each mention of the EVAL flag. EV finds that El9 evaluates to an equation thar is used to obtain a value for \(X\). The RAistmp flan is a so-called EVFUH which is used to obtain the simplification, we devire, by composing it around the first argument, l.e. \(\mathbf{C 2 9}\) is equivalent to

(EXPONEMTIALIIE, used ahove, is calted an Evflac. It is a trua flag, used to afiect simplification of trigonometric functions.)

There is also a NUAER flag to EV which is used to cbtain numerical, ie floading point, answers where prossible. Eg.
(C30) SIM (1/2)+SORT(1+8I), RECTFORH, HUHER;
(D30) \(0.45508987 \mathrm{KI}+1.57810968\)
Sometimes, e.g. when the Mumer effect of EV is desired, but the extra evaluation done bp \(\boldsymbol{c}^{j}\) is iser, the HOEVAL flag maj be used to hiricate that rutstitutions rather than evaluations are to be used where necessary. (An example of the use of MOEVAL is given later.) EV wili also use substituions rather than binding when the left band sides of equations in its latter arguments are non-atomic. Eg.
(c31) 2*SIH(X)^2+2x \(\cos (x)^{\wedge} 2, \cos (X)^{\wedge} 2=1-S I M(X)^{\wedge} 2, E X P A B D ;\)
(D31)
EV also plays a roie in MACSYMA's noun/verb scheme in converting noums like 'ififf ("derivative") Inte verbs tike DIFF ("differentate", as noted in the manual.

\section*{11. Program Binding}

This saction discusses the binding names to ralues in function calls and the handilitg of BLOck variables. We proceed by constidering an example. The folloumg function defialtion for MYTAYLOR defines a very limited Tapior serles capability.
```

(C32) MYTAYLOR(EXPR,VAR,POINT,HIPOLER):=
BLOCK[[RESULT].
RESULT: SUBST(POIMT,VAR,EXPR),
FOR I:I THEN HIPOWER
DO (EXPR: DIFF(EXPR,VAR)/I,
RESULT: RESULT+(VAR-POINT)^I
\#UEST(POIMT,VAR, EXPR)).
RETURN(RESULT))\&
(C33) MYTAYLOR(SI'(X),X,A,3);
3 2
\operatorname{cos}(A)(Y-A) SIM(A)(X-A)
(033)
| 6

```

The definition for MYTAYLOR has four names, EXPR, VAR, POINT, and HIPOWER, which are
called the "formai parameters" of the function defintion. They are bound in turn to the values of the arguments or "actual parameters" of the function call; in the case of (C33), to \(\operatorname{SIM}(x), x\), \(A\), and 3 , respectively, ( \(X\) and \(A\) are unbound) when the call is handied. When the body (right hand side of the function definition) of MYTAYLOR is extted upen completion, these bindings are undone, and EXPR, VAR, POIRT, and HIPONER again take on whatever values they may have had prior to the call. We also note that EXPR is assigned a new value each time the DO statement loops. This, of course, causes no difficulties.

The definition aiso has a bocal BLOCK variable RESULT. Being a BLOCK variable, it is treated as unbound upon entering the BLOCK, and in this ase, in the first actual statement of the BLOCK, it is assigned to. RESULT is reassigned in the body of the DO statement, and, noting the last statement of the BLOCK, its final value is actually the value returned by the call to KYtaylor. And, like the formal parameters of the definition, when the BLOCK is exited, KESULT takes on whatever value it may have had outside the BLock.
(We note that we can use this iast fact to temporarily reassign the value of a MACSYMA option, as in the following example for teaching : MACSYMA a possible simplification rule \(0^{\circ} 0 \rightarrow\). 1. Here, we want simplification turned of white the rule is being set up to avold getting an error message.
(C34) \(0^{\wedge} 0\);
0
- thas bean generated
(C35) BLOCK\{[SIMP],SIMP:FALSE, TELLSIMP(0^0,1));
rule shaced on **
(D35)
[**RJLE1, SIMPEXPT]
(C36) 0~0;
(D36)
1 1
Lastly, the definition has a local D0 variable I I is given an initial value of 1 In the deffinition. This is the value I has the first time through the body of the DO. Each successive time through the body of the DO, the value of \(I\) is incremented by 1 . And, just as with BLOCK variables, when the \(D O\) statement is exited, I takes on whatever yalue it may have had outside she Do.

The above example exhibits no real difficutles. When a function call is made, variables are bound to certain values. The values these variables had prior to these binilings are placed on a list, and when the body of the function, BLOCK, or 00 statement is exited, these prior values are retrieved and the variables are reassigned to them.

But, let us exhibts a case that doesn't work so well. Consider
(c37) \(F(x):=\operatorname{SIm}(x)+x s\)
(C38) \(F(-x)\);
(D38) - SIN(X) \(=X\)
This is surely the answer we experted. We note that \(X\) was bound to \(-X\) during the evaluation of the body of the definition for F. But, what if
```

(C39) F(X):=EV(SIN(X)+X,NUMER)S
(C40) F(1/2);
(D40)
0.97942555
(C41) F(-X):
(D41) SIM(X) + X

```

The intention of the user is to obtain numerical ansvers in cases like C40. But, notice what happened in evaluating the command line for C4l. Variables in EVs first argument are evaiuated twice, and \(X\) evaluated twice gives \(-(-X)\) or \(X\), not the \(-X\) the user probably intended.

One way to get around the problem in this case is to use the ROEVAL flag to EV.
(c42) \(F(X):=E V(S I N(X)+X\), NUMER, MOEVAL \() \$\)
(C43) \([F(1 / 2), F(-X)]\);
(D40) [0.9794255j, \(-\operatorname{SIN}(X)-X]\)
Note that SIM is handied by the simplifier, rather than by the evaluator.
In general, however, when EV is lused as above in the body of a function definition, a better and sometimes necessary solution is to name one's local program variables (i.e. function, BLOCR, or DO variables) difíerently from ore's symbolic variables (the varlabies appearing in one's actual expressions). E.g. If one expects that \(X X\) mill sot appear in one's expressions (or in that of a user of one's programs?), then the following will work.
(C44) \(F(X X):=E V(S I M(X X)+X X, N U M E R) S\)
(C45) \([F(1 / 2), F(-X)]\);
(D45) [0.97942555, - SIN(X) - X]
Problems like the above ocsur rarely in using MACSYMA. We are thinking about solutions to it. It is discussed in reference 2 anci a poxsible solution via a change in implementation of MACSYMA is proposed there.

\section*{12. Single-Quote and Quote-Quote}

Single-quote ( 1 ) and qunte-quote ( 1 ) are two operators which affect the evaluation of names (and of other forms) in essentiaily opposite ways. A complete discussion of tiese operators is given in section 3.2 on Evaluation in the MACSYMA manual, and that discussicn will not be repeated here. Essentially, precesing a variable by a singlequote prevents an evaluation from taking place; while preceding a variable by a quotequote causes an extra evalication and simplification to take place. The effect of singlequote is at evaluation time, while that of quotequote is at parse time. Quote-quote is often used to cause re-evaluation of a ©-label.

One interesting use of single-quote is when using the IMFEVSL flag of EV. Suppose one has an expression named EXPR which one wishes to repeatedly evaluate until no further change takes place. Suppose, however, that EXPR contains a variable, say \(X\), which one would prefer to retain 2: = name in the expression, even though \(X\) is now bound. One simple way of doing this is as follows.

EV(EXPR, INFEYAL, \(X=\) ' \(X\); ;
This assigns to \(X\) the vaiue of \(X\) during the "infinite" evaluation of EXPR, thus causing \(X\) to rernain unchanged in the process.
(By the way, using singlequote, of course, offers another solution to our groblem above, eg.
(C46) \(F(X):=E V(\mathcal{C}(\operatorname{SIN}(X)+X), N U M E R) \leqslant\)
(C47) [F(1/2),F\{-X)];
(D47)
\[
[0.97942555,-\operatorname{SIN}(X)-X]
\]
)

\section*{13. Other Issues}

To keep this paper reasonably sized, only the evaluation of atomic variables was discussed. Thus, many other evaluation issues were not mentioned. For the sake of compleieness, a list of these omitted issues is given here: Other evaluation-forms, e.g. compound statements, tite coloncolon ( \(:\) ) operator, LAMBDA notation, APPL; and MAPping, 60 and RETURN, predicate evaluation, passing function names into programs and the evaluation of fuaction names, passing array names into programs, the evaluation and simplification of SUM and PRODSCT, the noun-verb scherie, subscripted variables and functions, running interpreted (normal) functions vs. running translated or compiled sunctions, and debugging what the evaluator has done to you. Many of these issues are discussed at tength in the manual, or may be the subject of future papers.

1 wish to thank Joel Moses for coaxing me into writing this paper, Ellen Lewis for her heipful assistance, and all mernbers of the Mathlab Group and others at M.I.T. and elsewtere for our man: discussions, agreements, and disagreements on the subject of evaluation - a hotly contested issue!

\section*{QEFERENCES}
1. The Mathlab Group: MACSYMA Reference Manual. Version 8. Lab. Comput. Sci, Massachusetts Inst. Technol, Nov. 1975.
2. Moses, J: The Variety of Variables in Mathematical Expressions. Proceedings of the \(\mathbf{1 9 7 7}\) MACSYMA Use s' Conference, NASA CP-2012, 1977. (Paper no. 13 cf this compilation.)


\section*{N77-28762}

\title{
THE VARIETY OF VARIABLES IN MATHEMATICAL EXPRESSIONS
}

\author{
Joel Moses \\ Laboratnry for Computer Science, MIT \({ }^{*}\)
}

The methods of evaluating mathematical expressions in a symbolic mathematical systern differ from system to system. We show that classical computer science evaluation approaches are inadequate for this task. The problem is that one is mixing two worlds - the world of mathematies and the wirld of programming. An approach which separates these two worlds is indicated, anc: various alternatives to it are indicared.

Consider the evaluation of the following pair of statements in a programming language such as FORTRAN or PL/I. The statements are written in MACSYMA syntax.
(Cl)
\[
y: i ;
\]
(C2)
\[
x: y+2 ;
\]

After the first statement has been evaluated, the variable \(y\) will have the value 1 stored in a cell reserved for \(y\). In evaluating the second statement, C 2 , tine value of \(;\) is ohtained from that cell, a constant 2 is add \(=d\) to it, using integer addition, and the recult is stored in the cell reserved for \(x\). This process of looking up values in cells temporarily reserved for variables is equivalent to the usuai method of evaluation of variables employed in most programming languages.

Now consider a slight variation on the two statements above:
(CI)
\[
\begin{aligned}
& x: y+2 ; \\
& y: l_{i}
\end{aligned}
\]
(C2)
Suppose that \(y\) has no value at the time the first statement is reached. What is the value to be given to \(\boldsymbol{x}\) ? Different languages will have different results. Some might automatically store some starting value, say 0 , for all variables. Others may discover the problem in the compiler and give an error message. In an algebraic manipulation sysiem such as MACSYMA, neither of these actions occurs. The result stored in the rell reserved for \(x\) is the expression \(y+2\). This is obtained in the following manner. The identifier \(y\) is encountered and tite cell rescrved for it is examined. This yields the information that \(y\) has no value at this time. Thus the result returned for \(y\) is the expression y itself. Such an action cannot be taken ty an algebraic language which does not have a symbclic expression as a legal data type, and it is one thing which makes algebraic manipulation languages differ from other language.. Next the constant 2 is evaluated as usual. The addition is har.dled differently. Since we no longer have numbers only, numerical addition becomes

\footnotetext{
*. This work was supported, in part, by ERDA contract Number E(11-1)-3070 and NASA Grant NSC 1323.
}
simplification of sums. The simplifier may use numerical addition but in this case cannot, and thus returns the expression \(y+2\) to be stored s.t the cell for \(x\).

Now consider the second statement. C2. The evaluation done here is quite normal, that is, a constant 1 is stored in the cell reserved for \(y\). Consider the value for \(x\) after this point, however. Either \(x\) has the old value of \(y+2\) or plse it has the value 3 , which utilizes the newly obtained value of \(y\). That there is an issue here is due solely to the fact that the variable 2 has a vaiue if, volving the symbol \(y\). In the usual algebraic language, if \(x\) depended on an cld numerical value of \(y\), and then \(y\) 's value changed, no one would expect \(x\) 's value to change automatically.

Let us consider the alternatives for the value of \(x\) again. The value \(y+2\) is easy to gei. because that is exactly what is rored in the cel: reserved for \(x\). We claim that users of algebraic manipulation systems want to get the value 3 most of the time. There are several ways of getting that value for \(x\). The rest of this papei will discuss such afproaches, and the difficilties that they engender.

The basic idea of the aliernative approaches is to re-evaluate the value of a variable. Thus in MACSYMA the commana
(C3) \(\quad x\);
will return \(y+2\), but
(C3) FV(x);
will return 3.

The EV function will, in effect, evaluate the expression \(y+2\) for \(x\). Since \(y\) now has the value 1 , simplifying \(1+2\) will yield 3. Thus the MACSYMA user can in this case choose either of the alternative values for \(x\). The EV command is instfficirnt in handing more complex cases, however. Furthermore, experience indicares that the value the user would norma:'y want to see is 3, and thus extra work should be required for getting the \(y+2\) rather than the ?, as is now the case.

A simple example, where EV fails to give the desired value, is shown below:
(Cl')
(C2")
\[
\begin{aligned}
& y: y+i ; \\
& y: z+2 ;
\end{aligned}
\]
\[
\text { (C3") } \quad=w+3 ;
\]

Consider the possible values for \(x\) : Using the usual aigebraic evaluation scineme, \(x\) evaluates to \(y+1\). Using \(E V(x)\), we would get \(z+3\) after simplification. Our user probably wants to see \(w+6\). We could get that by calling EV twice, or EV( \(x, E V A L\) ), but that simply exposes the problem with EV, that one may need to hild its hand until one gets the velue one desiies. The Ley to getting \(w+6\) automatically is to consider another evaluation strategy; namely a Markovian or infinite evaliation strategy.

The basic idea behind infinite evaluation is to keep evaluating the results unti! there is no change. The process ends when one obtains a constant or a variable which has not yet been given a value. Such a strategy has recer'ly been introduced into EV with the INFEVAL mode Thus, EV( \(x\), INFE'/AL) would yield \(w+6\) in the example above.

There are two basic problems with the infinite evaluator strategy. It is noi the strategy you want when dealing with usual programming variables. Moreover, when it is clear that you want something like infinite evaluation, it is not precisely infinite evaluation that you want. We shall deal with the latter, and easier, issue first.

Consider a situation which might acur when one lises substitution of variables a number of times in a problem:
\[
\begin{aligned}
& x: f(y, x) ; \\
& y: g_{1}(u, v) ; \\
& z: g_{2}(u, v) ; \\
& u: h_{1}(r, s) ; \\
& v: h_{2}(r, s) ; \\
& r: k_{1}(p, q) ; \\
& s: k_{2}(p, q) ;
\end{aligned}
\]

What are the possible values for \(x\) ? The usual evaluation strategy will yield \(f(y, z)\). EV \((x)\) will yield in expression in \(u\) and \(\nu\). EV \((x\), INFEVAL) will yield an expres on in values \(p\) and \(q\). Suppose you wanted to see \(x\) in terms of \(r\) and \(s\). This request, which is nc. urireasonable, is hard to satisfy in gerieral using the strategies we have discussed. There is an easy solution, however. This is to make \(r\) and \(s\) temporarily appear to have no value, and then infinitely evaluate \(x\). We call the roie that \(r\) and splay in this case shadow variables. Shadow variables are variables which have known values, but are temporarily considered to be atomic

Shadow variables are, in a serise, already in use in MACSYMA in various ways. When solving cubic or quartic equations, certain intermediate results are generated and given E labe's. The final result is given in terms of these E labels. The reason for using the E labels is to keep the expression relatively small. We claim that the E fabels are acting as shadow variables for those in:- smedlate expressions they possess as values. Unfortunatsly, there is no easy way to keep the \(E\) labels from being evaluated on command. An expression cintaining them, when evaluated using EV, will substituse the values for the E labels. The shadow variable scheme, when implemented, would allow one to introduce shadow variables and specify exactly when their values are to be shown. There are yet other situations in MACSYMA r:here a similar nced for shadow variables shows up. MACSYMA's constants \&E and KPI have numerical values associated with them which are revealed when one evaluntes an expression with, say, EV (expression, NUMER). Thus \%E and \&PI may be said to be shadow variables. Similarly the functions SIN and COS are shadowing
their numerical counterparts. Thus E:J(SIIN(I), NUMER; calls the "value" of the SIf; function in ordet is obtain a numerical result.

In the abuve we have considered evaluation of mathematical expressions without dealing with the companion operation, that is, simplification. Since these two operations tend to get confused, we would like to indicate a possible distinction. We like to consider evaluation as a relatively straightforward, well-defined, and simple operation whose basic job is to replace variables end functions with arguments by their "values". Simplification, on the other hand is a less well-defined operation which coes not usually deal with programming concerns such as variables and their values, but rather with equivaience transformations on the mathematical objects themselves. We would like the result of evaluation to be unique. We know that the results of simplification are of ten not \(s \in\) well defined and different users will want different results.

It turns out that a classic way to implement simplification algorithms is with a Markuv algorithm, i.e., infinite evaluation. Since we indicated that infinite eyaluation might be of use in evaluation, it is not surprising that one algebraic maniz, ulation system, SCRATCHPAD, has opted for having only an infinite evaluation scheme. This is reasonable only as long as one avoids writing subroutines and stops using variabler in the usual programming sense. In such a case, one can get into unexpected difficulties, with one of the simplest of them shown below:
(Ci) (C2)
\[
\begin{aligned}
& f(x):-x+1 ; \\
& f(x+2) ;
\end{aligned}
\]

Consider the vaiue of \(f(x, 2)\) called for in C2. In MACSYMA, using the usual evaluatlon strategy, you would get \(x+3\). But with infinite evaluation for all variables you will get en infinite loop, since the \(x\) occurring in the expiession \(x+1\) In the definition of \(f(x)\) forces one to keep evaluating its value. SCRATCHPAD preyents the user from defining functions in the usual way, but this is clearly unsatisfactory in gen:ral.

Infinite evaluatton thu; has a drawback in that it allows infinite loops. The possibility for looping may be essential when dealing with most Marknv algorithms. But mathematicians do not evaluate expressions that way. When \(x\) depends on \(y\) and \(y\) depends on \(x\) that leads to a system of equations to be solved and not one to be evaluated or simplified. Evaluation of mathematical expressions requires a finite number of substtutions and no loops are allowid. We shall cail "finite evalution" the process which evaluates without bound, but which checks for loops and thus avoids infinite loups. We believe that infinite evaluation has been in vogus in certain symbolic systems due, in part, to a confusion between simplification ald evaluation. Simplification algorithms, if implemented as Markov algorithms will, in fact, require loops! If a ioop is foc:ad in finite svaluation, we shail assume that evaluation stops and an error message is given.

Ancther approach that has been taken is to racognize that some variables will be evaluisted once and others infinitely, and to force the user to choose the mode by a declaration or a change in the speling of the variable's name. An approach which relies on declarations is cssentially the one taken in REDUCE. In addition to our desire for a distinction between finite
and infinite evaluation and for a shadow variable capability, we eschew the declaration or the spelling approach because one does not want users of interactive systems to make declarations unless they're absoluteiy required, as successful interactive systems such ds APL and LISP have clearly indicated. In addition, the declaration approach is unnecessarily restrictive, since it does not normally allow a variable to be used in both the usual or finite evaluation nodes in the same subroutine, for example.

Hence our goal is to indicate an evaluation strategy that i) gives the user the usual strategy when he wants it for a given variable, 2) gives him the finite evalue tion strategy when it is more appropriate and (3) allows him to switch from one mode io the nther while requiring hardly any declarations. This particular feat af magic appears possible winen we make the following observations:
1) Variables used inside subroutines are usually intender for programming objectives anci no: as symbolic data objects. Users of such variables will usuaily want them to be evaluated tust once.
2) Variables used in an interactive step-by-step mode, with the exception of labels, are usually intended as symbolic data objects. Users or such variables will usually desire them to be evaluated finitely. Labels, such as MACSYMA's \(C_{i}\) and \(D_{i}\) labels are not data objects. The values of labels will usually be desirec: to be evaluated finitnly, however.

If we take these observations to heart, then we would evaluate all variables inside subroutines just once, and all variables occurring in step-by-step (top level) calculations finitely. We could allow for exceptions by declaration, but such declarations will rarciy be necessary. Yet this doesn'i solve the probiem. The bisic dilemma is that inside a given subroutine one could have the identifier \(x\) representing a local variable (which is to be evaluated just once for its value) and implicitly have a data object containing the variable \(x\) (which is to be evaluated finitely for its (usually different) value).

Before 1 describe a proposed solution, let me recall some remarks marte to me by the late, famous computer sctentist, C. Strachey, in 1965. Strachey said that mathematicians never really understood the concept of a variable. The variables in mathematics are clearly constants. It is computer soientists who were the first to deal with and appreciate variability in mathematical ob jects.

I was deeply Impressed by Strachey's comments and to my sorrnw I have learned how misleading they were. Mathematicians, physitists and engineers, I have concluded, have used a tnuch richer concept of variable than computer scientists have ever dreamt of. Since symbolic and algebraic manipulation sysiems are essentially the only computer systems to attempt to deal with mathematics in the way it is usually deait with, they have been most hurt by the interpretation of variables in vogue in computer science. In part, computer scientists have been overly enamored by varlability of our variables (e.g., \(x: x+1\) ), and have only lately learned that there is much to be gained in ease of understanding by restricting variability. In part, zad this is a major point of the
present effort; variables in computer science have not shown much variety of interpretation. The reason is largely that the data objects in vogue in computer scierice (i.e., numbers) dos not possess. much structure.

Getting back to the present subject, we note that one solution is to recognize that there may be several different variables with the same name at the same time throughout a computation. Many languages already allow one to use the same identifter for both a function and a variable, since the usage is so ve:y different. Others might let one use array names which are the same as variable names. Again the usage differentiates them In mathematics it is common to play such games, some would call them puns, depending on coniext to give sufficient information regarding the rype of the variable intended and its mode of irterpretation. In our situation, we claim that there is no acceptable solution unless each variable can essentially have two different values, a regular one and a symbolic one. At any given time, the value chosen is a function of the interpretation assigned to the variable. The reinaining questions are largely of how one determines what interpretation to assign.

We are, therefore, led to propose the following eyaluation strategs:
Rule 1. A variable used in the top level, step-by-step mode uses its symbolic value, unless a declaration is made to do the contrary. The symbolic value is then evaluated finitely.

Rule 2. A variable used inside a subrestine uses its regular value which is not further evaluate1, unless there is a declaration made to do the contrary.

Rule 3. A label used at the top level steres its value in its regular value cell. The value of a label is further evaluated finitely.

Switching modes, an issue we made much of sarlier, could be accomplished with EV using the following rule.

Rule 4. In a subroutine, EV of a programming variable first evaluates using the variable's regular value. The result is then evaluated finitely, using only the symbolic values for any variables. Should a variable given to EV not have a regular value or be declared syinbolic, its syrnbelic value (wihich always enisis) is useti and evaluated finitely.

We believe that such rules allow for the diversity of usage of variables in symbolic and algebraic manipulation systems that users expect. Since the scheme above has rot yet been implemented, we unfortunately do not have practical experience as yet to indicate its acceptance in such a context, but we hope this situation will be remedied soon.

We shall now discuss various approaches which are closely related to the proposal above. The first is that instead of having two value cells for each variable, one would achieve largely the same purpose by automatically renaming one of the variables. For example. any variable occurring inside a subroutine and not declared to be symbolic could be renamed, for example, by
automatically attaching the symbol \% to the name. Thus, the symbolic and programming variables would be distinct and the values would not clash. The communications between the two modes would be handled by EV still, but slightly differently. For example, suppose we communicate the expressicn \(x+1\) into a subroutine which would like to assign different values to 1 . Inside that subroutine, we might use the variable J, and then perform SUBSTITUTE (J. 'I, expression). Here, 'I will indicate that we mean the -ymboir variable I, rathe: than the programming variable 1.

Another approach, which is closer to what the FORTRAN-based (e.g., FOFMAC) rather than the LISP-based systems have attempted is to disallow assignment to symbolic variables and to force users to simulate the Markov algorithm evaluation by explicit substitution, Thus if you wish to substitute 2 for \(y\) in an expression, you explicitly make the substitution or similarly indicate it with EV(expression, \(y=2\) ). This forces the user to separate his mathematical and programming zorlds and could avoid some confusions. It does appear to force the user to be more explicit in his evaluations, which may get tiresome. It also necessitates another mechanism for dealing with shadow variables and possitily even with labels for expressions.

\section*{CONCLUSION}

This paper discusses various distinctions which can be made regariting evaluation of mathernatical expressions: regular evaluation vs. infinite evaluation vs. finite evaluation, regular variables vs. mathematical variables vs. shadow variables vs. labels, simplification vs. evaluation vs. solution of equations. We claim that the unsatisfactory state of evaluation strategies in syinbolic systems is due to insufficient use of such distinctions ir. the past. Yet we ran claim to have only begun the discussion about such distinctions and the various mechanisms for implementing them in a human engineered manner.

This paper resulted from discussions that have been going on in the Mathlab Group for the past year. Not surprisingly, a number of positions on evaluation have arisen. We shall mention only two here. In a companion paper, Jeffrey Golden defends MACSYMA's current evaluaiton strategy. This strategy has changed somewhat in the past year with the introduction of the INFEVRL mode in EV. Arother view is held by David Barton. He maintains that mathematicians hardly evaluate expressions. Usually they restrict the range of solutions with side conditions (e.g., let \(x^{2}=\pi\) in ...) until only one restilt is possible. He also maintains that assignment to mathematical variables should appear syntactically different from assignment to programming variables. Substitution also repiares evaluation in many cases in his scheme. The approach of this paper may be viewed as a compromise between such views.

We wish to acknowledge the usefuiness of discussions with David Barton and Jeff Colden, as well as with Michael Genesereth, Barry Trager, and Richard Zippel.


RATIONAL APPROXIMATION TO \(e^{-x}\) With NEGATIVE REAL POLES
Elizabeth Cuthill
David W. Taylor Naval Ship Research and Development Center

\section*{SUMMARY}

This note describes an application of MACSYMA to the generation of an expansion in terms of Laguerre polynomials to obtain approximations to \(e^{-x}\) on \([0, \infty)\) of the form
\[
\frac{p_{m}}{\left(1+\frac{x}{m}\right)^{m}}
\]

Here \(P_{m}\) is a polynomial of degree \(m-1\) in \(x\). These approximations are compared with those developed by Saff, Snhönhage, and Varga [3]. Their's are optimun Chebyshev approximations. In particular, Table 3 contains a comparison ot the maximum errors in the Chebyshev sense showing the superior performance of the approximations in [3] when this norm is used. Table 4 contains a comparison of the least squares errors. In such a comparison, the approximation developed in this paper are superior.

Kaufman and Taylor [4] consider approximarions to \(e^{-x}\) of the form
\[
\frac{\mathrm{P}_{m}}{\left(1+\mathrm{B}_{1} x\right)\left(1+\mathrm{B}_{2} x\right) \cdots\left(1+\mathrm{B}_{\mathrm{E}} x\right)}
\]
where \(B_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\) are positive real numbers. In this note we also consider the expansion of \(e^{-x}\left(1+B_{1} x\right) \ldots\left(1+B_{m} x\right)\) in terms of Laguerre polynomials. The first few terms of such an expansion are derived witt. MACSYMA.

\section*{INTRODUCITON}

In the few months that we have been working with MACSYMA, we have found that it provides us with a greatly expanded capability for generating and exploring the behavior of a variety of approximations. In this note we discuss one such application of MACSYMA for the generation of rational approximations to \(e^{-x}\) on \([0, \infty)\) with negative real poles. There has been considerable interest in the past few years in such approximations because of their importance in developing and analyzing numerical methods for solving certain systems of differeatial equations [1, 2].

In particular, in a recent paper, Saff, Schönhage, and Varga [3]
developed a sequence of rational approximations to \(e^{-x}\) for \(x\) on \([0, \infty)\) of the form
\[
\begin{equation*}
\frac{p_{m}}{\left(1+\frac{\mathrm{x}}{\mathrm{~m}}\right)^{m}} \quad \mathrm{~m}=1,2, \ldots \tag{1}
\end{equation*}
\]
(with \(\mathrm{P}_{\mathrm{m}}\) a polynomial of degree \(\mathrm{m}-1\) ) which are optimum in the Chebysinev nurm and converge geometrically to \(e^{-x}\) on \([0, \infty)\). On considering this sequence of approximations, a natural question arises - how does it compare to an approximating sequence obtained by using for \(P_{m}\) the iirst in terms of the expansion of
\[
e^{-x}\left(1+\frac{x}{m}\right)^{m}
\]
in Laguerre polynomials? Such an expansion can be generated analytically. The availability of MACSYMA allowed us to easily obtain the required expansion to answer some of our questions.

A recent paper of Kaufman and Taylor [4] considers a more general form for the approximating function:
\[
\begin{equation*}
\frac{P_{m}}{\left(1+B_{1} x\right)\left(1+B_{2} x\right) \ldots\left(1+B_{m} x\right)} \quad m=1,2, \ldots \tag{2}
\end{equation*}
\]
where again \(P_{m}\) is a polynomial of degree \(m-1\) in \(x\) and the \(B_{m}\) are real and positive. They prove an existance theorem for best Chebyshev approximations of this form to \(e^{-x}\) on \([0, \infty)\). Their numerical results suggest that the best uniform approximation to \(\mathrm{e}^{-\mathrm{x}}\) from this class has only one pole and for \(\mathrm{m}=2\) they prove such a result. Here we consider the first fer approximations of this type which can again be generated using the approp:iate number of terms of an expansion of \(e^{-x}\left(1+B_{1} x\right)\left(1+B_{2} x\right) \ldots\left(1+B_{m} x\right)\) in Laguerre polynomials. In these expansions \(P_{m}\) depends not only on \(x\) but on the parameters \(\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\). Nearly optimum values for the \(\mathrm{B}_{\mathrm{i}}\) in the Chebyshev sense for the first few such approximations are obtained and compared with those obtained in [4].

RESULTS
The first case considered is the generation of a sequence of approximations to \(e^{-x}\) of the form
\[
\begin{equation*}
\frac{P_{m}}{\left(1+\frac{x}{m}\right)^{m}} \tag{3}
\end{equation*}
\]
for \(m=1,2, \ldots, 10\), by a sequence of expansions of the form
\[
\begin{equation*}
\sum_{i=0}^{m-1} A_{i, m} L_{i}(x) \tag{4}
\end{equation*}
\]
where
\[
A_{i, m}=\int_{0}^{\infty} e^{-x}\left(1+\frac{x}{m}\right)^{m} v_{i}(x) e^{-x} d x
\]

We do not expect such an approximation to behave well for large \(m\), but for small \(m\) we cxpect it to do reasonably well. Table 1 contains the values of \(A_{i}\) generated by MACYSMA for \(m=1,2, \ldots, 10\). Table 2 contains the equivalent polymomials. The program used for generating such an approximation of order \(m\) is given in Figure 1. Figure 2 shows the execution of the program of Figure 1 for \(m=4\).

Since the Chebyshev approximations are developed in [3] and (4) gives a weighted least squares approxination, we expect cur maximum absolute error to be larger than that obtained in [3] for an approximation of the same order. This is confirmed by Table 3 which contains estimates of the maximum errors on \([0, \infty)\) for the approximations in Table 2 ind in Reference [3]. The relative error for the approximat ion sequence presented bere remains under control somewhat longer than for the minimax approximations of [3]. An estimate of the interval on which the relative error remains under \(10 \%\) for both sets of approximations is also given in Table 3. Note that beyord that point there wil! in general be less than one significant figure in the approxination.

Table 4 contains weighted least squares errors in two forms:
\[
\begin{equation*}
\left[\int_{0}^{\infty} e^{-x}\left(e^{-x}-\frac{P_{m}}{\left(1+\frac{x}{m}\right)^{m}}\right)^{2} d x\right]_{1}^{1 / 2} \tag{5}
\end{equation*}
\]
and
\[
\begin{equation*}
\left[\int_{0}^{\infty} e^{-x}\left(e^{-x}\left(1+\frac{x}{m}\right)^{m}-p_{m}\right)^{2} d x\right]^{1 / 2} \tag{6}
\end{equation*}
\]

Note that for given \(m\) and \(P_{m}\), MAC TMA can perform the integration in (6) exactly.

The approximations given by (4) behave somewhat erratically with respect to the error norm (5), but they behave more regularly with respect to the error norm (6) used in generating the approximation.

For the general approximating form it expres:ion (2), the first three approximations to \(e^{-x}\) of the parametrized form
\[
\begin{equation*}
P_{m}=\sum_{i=0}^{m-1} A_{i, m}\left(B_{i}, \ldots, B_{m}\right) L_{i}(x) \tag{7}
\end{equation*}
\]
where
\[
\begin{equation*}
A_{i, m}=\int_{0}^{\infty} e^{-x}\left(1+B_{1} x\right)\left(1+B_{2} x\right) \ldots\left(1+B_{m} x\right) L_{i}(x) e^{-x} d x \tag{8}
\end{equation*}
\]
were generated. In particular, for \(m=1\),
\[
\begin{equation*}
A_{0,1}=\frac{B_{1}+2}{4} \tag{9}
\end{equation*}
\]
so that the approximating function is
\[
\begin{equation*}
\frac{B_{1}+2}{4\left(1+B_{1} x\right)} \tag{10}
\end{equation*}
\]

The entire set of approximations generated by varying \({ }^{B}{ }_{1}\) gnes through the point \(x=.5\) with a Jalue of .5 . Since \(\left|e^{-.5}-.5\right|=1.2065 \ldots\), we have a bound on how weil (1) can perform in appreximating \(e^{-x}\) on \([0, \infty\) ) for any fixed value of \(B\).

From Table 3 we have that for \(B_{1}=1\) in (10), an estimate of tre maximum error in approximating \(e^{-x}\) on \([0, \infty)\) is .25. This can be improved to .109 by taking \(J_{1}=2.435\).

For \(m=2\), we determine
\[
\begin{aligned}
& A_{0,2}=\frac{B_{1} B_{2}+B_{1}+B_{2}+2}{4} \\
& A_{1,2}=-\frac{B_{1} B_{2}-2}{8}
\end{aligned}
\]
so that the approximating function has the form
\[
\begin{equation*}
\frac{\left(B_{1} B_{2}-2\right) z \div B_{1} B_{2}+2\left(B_{2}+B_{1}\right)+6}{8\left(1+B_{1} Z\right) \cdot\left(1+B_{2} Z\right)} \tag{11}
\end{equation*}
\]

As noted in Table 3 , when \(B_{1}=B,=.5\), an estimate of the maximum error in using (i1) as an approximation to \(e^{-x}\) on \([0, \infty\) ) is .033. It appears that this can be improved only slightly by changing the values of \(\mathrm{B}_{1}\) and \(\mathrm{B}_{2}\). Kaufman and Taylor [4] show that the optimur Chebysirev approximation to \(\mathrm{e}^{-\mathrm{x}}\) of the form (2) with negative real poles has \(\mathrm{B}_{1}=\mathrm{B}_{2}\). The optimum approximation in the Chebyshev sense which they determine has \(B_{1}^{2}=B_{2}=.52416\) and has anl estimate for the maximum error on \([0, \infty)\) of .02271.

For \(m=3\) we determine
\[
\begin{aligned}
& A_{0,3}=\frac{3 B_{1} B_{2} B_{3}+2\left(B_{1} B_{2}+B_{1} B_{3} \div B_{2} B_{3}\right)+2\left(B_{1}+B_{2}+B_{3}\right)+4}{\varepsilon} \\
& A_{13}=-\frac{3 B_{1} B_{2} B_{3}+\left(B_{1} B_{2}+B_{1} B_{3}+B_{2} B_{3}\right)-2}{8} \\
& A_{23}=-\frac{3 B_{1} B_{2} B_{3}+2\left(B_{1} B_{2}+B_{1} B_{3}+B_{2} B_{3}\right)+\left(B_{1}+B_{2}+B_{3}\right)-2}{16}
\end{aligned}
\]

With this set of expressions,
\[
B_{1}=.214 \quad B_{2}=.27 \quad B_{3}=.3
\]
or any permutation thereof appears to be near optimum. With this set of narameters our estimate for the maximum error is .019 which compares with the value of . 056 from Table 2 for \(B_{1}=B_{2}=B_{3}=1 / 3\) and . 00805, the error estimate of Kaufman and Taylor obtained when \(B=B_{1}=B_{2}=B_{3}=.27127\) in (2) and \(P_{3}\) was determined to minimize the Chebyshev norm. \({ }^{3}\) They determined that this value for \(B\) was near optimum.

For convenient reference, a table of the first ten Laguerre poiynomials generated by MACSYMA is appended as Figure 3.

\section*{REFERENCES}
1. Cody, W. J.; Meindardus, G.; Varga, R. S.: Chebyshev Rational Approximations to \(\mathrm{e}^{-\mathrm{x}}\) in \([0, \infty)\) and Applications to Heat-Conduction Problems. J. Approx. Theory, \(\underline{2}, 1969\), pp. 50-65.
2. Cavendish, J. C.; Culham, W. E.; and Varga, R. S.: A Comparison of CrarkNicolson and Chebyshev Rational Methods for Numerically Solving Lirear. Parabolic Equations. J. Comp. Physics, 10, 1972, pp. 354-368.
3. Saff, E. B.; Schönhage, A.; and Varga, R. S.: Geometric Convergence to \(\mathrm{e}^{-\mathrm{x}}\) by Rational Functions with Real Poles. Numer. Math. 25., 1976, pp. 307-322.
4. Kauman, E. E., Jr.; and Taylor, G. D.: Best Rational Approximations with Negative Poles to \(\mathrm{e}^{-\mathrm{x}}\) on \([0, \infty)\). To appear in Pade and Rational Approximations: Theory and Applications (E. B. Saff and R. S. Varga, Eds), Academic Press, Inc.


TABLE 2
appacximating polynomials \(P_{m}\) (See Equation (3))
\[
\begin{aligned}
& P_{1}=\frac{3}{4} \quad P_{2}=-\frac{7 Z-33}{32} \quad P_{3}=\frac{z^{2}-32 z+152}{144} \\
& p_{4}=\frac{61 z^{3}-523 z^{2}-1678 z+16814}{16384} \\
& P_{5}=\frac{-551 z^{4}-12384 z^{3}+73652 z^{2}+28896 z-956216}{960000} \\
& P_{6}=\frac{2833 z^{5}-110015 z^{4}+1480040 z^{3}-7442760 z^{2}+288600 z+796: 1960}{79626240} \\
& P_{7}=-\left(3771 L^{5}-326804 z^{5}+9525750 z^{4}-120833040 z^{3}+621070920 z^{2}\right. \\
& \text { - 58785120 z - 7221056400)/7228354560 } \\
& P_{8}=-\left\{3374353 z^{7}-161279391 z^{6}+1981437900 z^{5}+13989908310 z^{4}\right. \\
& -472304862120 z^{3}+3058703597880 z^{2}-190815090480 z \\
& \text { - } 43270628481360 \text { / } / 43293270343680 \\
& P_{9}=\left(323197 z^{8}-24586616 z^{7}+706666604 z^{6}-9122407392 z^{5}\right. \\
& +37275042840 z^{4}+284113381440 z^{3}-2860087476960 z^{2}+61728145920 z \\
& +49362418082880) / 49369423380480 \\
& P_{10}=-\left(23881093 z^{9}-2478867747 z^{8}+104255443296 z^{7}\right. \\
& \text { - } 2266707280992 z^{6}+26146314869472 z^{5}-126953976270240 z^{4} \\
& -296150820215040 z^{3}+4937695894897920 z^{2}+1012259928060 z \\
& \text { - 99090082245700160)/99090432000000000 }
\end{aligned}
\]

TABLE 3.
ERROR ESTIMATES
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{m} & \multicolumn{2}{|c|}{Maximım Errer} & \multicolumn{2}{|l|}{Interval in which relative error remains less than \(10 \%\)} \\
\hline & For Approximatinn (3), (4) & From [3] & For Approximation (3), (4) & Using Approximation from [3] \\
\hline 1 & . 25 & . 16 & - & - . \\
\hline 2 & . 033 & . 025 & [0,2,0] & [0,1.6] \\
\hline 3 & . \(0>6\) & . 015 & [0,2.7] & [0,1.9] \\
\hline 4 & . 026 & . 0079 & [0,4.4] & [0.2.8],[3.1,4.1] \\
\hline 5 & . 0135 & . 0031 & [0,4.9] & [0,4.0] \\
\hline 6 & . 0080 & . 0089 & [0,7.1] & [0,4.7] \\
\hline 7 & . 001 i & . 00019 & [ \(0,8,2]\) & [0,7.3] \\
\hline 8 & . 0042 & . 000121 & [0,8.7] & [0,7.4] \\
\hline 9 & . 0059 & . 000070 & [0,10.1] & [0,7,4] \\
\hline 10 & . 0043 & . 000030 & [0,12.5] & \([0,8]\) \\
\hline & & & & \\
\hline
\end{tabular}

TABLE 4.
LEAST SQUARES ERRORS


FIGGRE 1. - PROGRAM TO GENERATE \(\mathrm{P}_{\mathrm{m}}\)
```

time:true;
l[n](x,a):=((2*n-1+a-x)/n)*1[n-1](x,a)-((n-1+a)/a)*1[n-2](x,a);
1[0](x,a):=1;
1[1](x, a):=1-x;
fn(x,n):=(1+x/n)**n*2x立(-x);
for i:0 thi*u m-1 do
(li[i]:ev(1[:](x,0), ratsimp),
in:-integrate(li[i]*exp(-x)*fn(x,m),x),
display(a[i,m]:ev(in,x:0,ratsimn)));
displav(p[m]:ev(sum(a[i,m]*li[i],i,0,m-1),ratsimp));

```
figure 2. - execution of prograif to generate \(\mathrm{r}_{4}\)
\({ }^{\circ} \mathrm{K}\)
(C11) m:4;
TIME = 1 MSEC.
(D11) 4
(C12) demo(e,1,dsk,elizc);
(C13) TIME:TRUE;
TIME = 1 MSEC.
(D13)
TRUE
(C14) \(\left.L[N](X, A):=\left(\left(2^{*} N-1+A-X\right) / N\right) * L N-1\right](X, A)-((N-1+A) / N) L[N-2](X\) A);

TIME \(=1\) MSEC.
(D14) \(L_{N}(X, A):=\frac{2 N \cdot 1+A-X}{N} \quad(X, A)\)
\[
-\frac{1-1+A}{N} L_{N-2}(X, A)
\]

T(15) L[U](X,A):=1;
TIME= 1 MSEC.
(D15)
\[
L_{0}(X, A):=1
\]
(c16) \(L[1](x, A):=1-x\);
TIME = 1 MSEC.
(D16) \(\quad L_{1}(X, A):=1-X\)
T(17) FN \((X, N):=(1+X /!1) * N * \operatorname{EXP}(-X)\);
TIME = 1 MSEC.
(D17) \(\operatorname{FN}(X, N):=\left(1+\frac{X}{N}\right)^{N} \operatorname{EXP}(-X)\)
(Ci8) FOR I: 0 THRU M-1 DO
(LI[I]:EV(L[I](X,0), RATSTMP)
 DISPLAY(A[I,M]:EV(IN, X:0,RATSIMP)) );
\[
A_{0,4} \times-1024
\]
\[
1,4=\frac{359}{2048}
\]
\[
\begin{aligned}
& A_{2,}=\begin{array}{c}
13 \\
4096 \\
183
\end{array} \\
& A_{3, y}=-\begin{array}{c}
8192
\end{array}
\end{aligned}
\]

FIGURE 2. - CONATINUED
```

TIME= 9266 MSEC.
(D18) DONE
(C19) DISPLAY(P[M]:EV(SUM(A[I,M]MLI[I],I,0,M-1),RATSIMP));
P
TIME = 40 MSEC.
(D19)
-
TIME $=10392$ MSEC.
(D20) DEMO TERMINATED
(C21)

```
figure 3. - table of laglerre polynomials úenerated by macsyma
```

        ;
    ```

```

(C16) L[0](2,i):=1*
(C17) L[1](2,A):=1-2*
(C1B) EOR =:O THRU \because-1 ON OISPLAY(LI[I]:EV(L[I](7., n), RATSIMP))*
LI =
LI = 1-7
LT}=\frac{\mp@subsup{z}{2}{2}-42+2}{2

```






```

                                    - 2P>56n 7. + 4n20n)/4n२2n
    ```




\author{
ON VETTOR COMPITERS \\ W. G. Poole, Jr. \\ College of William and Mary
}

\section*{TIMING FORMULAS FOR DISSECTION ALGORITHMS}

SUMMARY

The use of the finite element and finite difference methods of ten leads to the problem of solving large, sparse, positive definite systems of linear equations. Recently the one-way dissection and nested dissection algorithms have been developed for solving such systems. Concurrently, vector computers (computers with hardware instructions that accept vectors as operands) have been developed for large scientific applications. In reference 1, George, Poole and Voigt analyzed the use of dissection algorithms on vector computers. Ir that paper, MACSYMA played a major role in the generation of formulas representing the time required for execucion of the dissection algorithms. In the present paper the author describes the use of MACSYMA in the generation of those formulas.

\section*{DISSECTION ALGORITHMS}

When finite difference or finite element methods are used for approximating solutions of partial differential equations, it is often the case that a large, sparse, positive definite system of linear equations,
\[
\begin{equation*}
A x=b \tag{1}
\end{equation*}
\]
must be solved. We shall assume that the domain over which the differential equation is defined is a square region covered by an \(n\) by \(n\) grid consisting of \((n-1)^{2}\) small squares called elements. It follows that \(A\) is an \(n^{2}\) by \(n^{2}\) matrix. The ordering of the unknowns at the grid pcintis determines the location of the nonzero components of \(A\) and, consequently, the storage and time required to solve the linear system by Gauss elinination.

An ordering of the unknowns called one-way dissection is due to George (see ref. 2). Referring to figure is the idea of one-way dissection is first to divide the grid with \(m\) horizontal separators. The unknowns in the \(m+1\) remaining rectangles are numbered vertically toward a separator and then the

This paper was prepared as a result of work supported in part under NASA Contract. No. NAS1-14101 at ICASE, NASA Langley Research Center, Hampton, VA 23655 and in part by Office of Naval Research Contiact No0014-75-":0879.
separator nodes are numbered. The problem is to derive formu as for storage and timing requirements and to minimize those formulas with respect to \(m\) (see ref. 2).

The secund dissection scheme is called nested dissection (again, see ref. 2) and has been shown to be asymptotically optimal (see ref. 3). The idea here is to divide the grid with both horizontal and vertical separators as shown in figure 2. Unknowns in regions 1-4 are numbered before those on separators 5-7. Each of the regions i-4 is a square and may itselif be dissected using horizontal and vercical separators. Thus the idea may be applied recursively and, in the case \(n=2^{k}-1\), nested dissection will terminate after \(k-1\) steps.

Although both dissection orderings were analyzed in reference 1 , only nested dissection will be discussed further here because it is a more important algorithm and the generation of its ciming furmula was 2 much more formidable task.

The nested dissection algorithm is nontrivial to descrive in detall. It was fiast developed and analyzed with scalar computers in mind by A. George in tie early 1970's. The rirst attempts at obtaining a timing formula were done by hand and only gave a description of the asymptotic behavior, \(0\left(n^{3}\right)\). Later, the first few terms were generated by hand. Then in reference 3, A. George obtained the entire formula with the aid of ALTRAN.

\section*{VECTOR COMPUTERS}

The existence of vector computers, 1.e., computers with hardware instructions that operate on vectors rather than scalars, raises the question of how effective tite dissection techniques are on thic rather new class of computers. It is assumed that these computers have basic vector instruction execution times which are of the form
\[
\begin{equation*}
T_{*}(j)=S_{*}+j P_{*} \tag{2}
\end{equation*}
\]

Where \(T_{*}(j)\) is the total time for the vector instruction *; \(S_{*}\) is an overhead time, called "start-up" timc; \(P_{*}\) is the "per-result" time of that instruction; and \(f\) is the length of the vectcr.

The large value of \(S_{*} / P_{*}\) on currently available vestor computers implies that one pays a significant penalty for operation on short vectors; consequent\(1 y\), one would prefer aigorithms which permit the longest possible vectors (see ref. 4). However, both of the dissection algorithms work by repeated subdivision of the grid until a minimum operation count is obtained. It is this apparent confilct between the cost of using shorter vectors and the corresponding lower operation counts that was studied in reference 1.

\section*{GENERATION OF FORMULAS}

In reference 1 , Georse, Poole and Voigt were interested ir obtaining parameterized versions of the timing formulas for the dissection algorithms on vector computers. Such formulas were needed in order to study the effects of varying several parameters. They identified nine par meters characterizing the vector computers: 3 start-up times for vector addition, multiplication, and inner product; 3 per-result timers for the same instructions; and 3 scalar operations. Furthermore, there was a parameter, \(n\), related to the problem size and another, \(\ell\), related to the algorithm which the user could vary at liberty. The goal was to choose \(\ell\) so as to minimize the timing formula for a given set of computer parameters and a given problem size. Ubtaiaing the timing formulas was useful in several ways:
(1) With the formulas in hand, one could study the effects of changing values for the parameters. In a hypothetical sense one could try to optimize subject to certain side constraints. In a very practical sense, manufacturers announced changes in the parameter values several times;
(2) There are several options in the implementation of the dissection algorithns. For example, one san use a vector inner product or a vector "outer product" version (see ref. 1). The choice reduces to comparing the time required for a vector inner product versus a vector addition plus a vector multiplication. Timing formulas permitted analysis of such options;
(3) Considerable insight into the vectorization of algorithms was gained. For example, average vector lengths could be studied;
(4) Without the formula, a table of timing values for particriar chcices of the parameters could ie generated by execcting a model of the algorithm. However, the coefficients in the formulas could not be generated.

The nested dissection timing formula was generated in the following manner. The execution of the nested dissection algorithm was simulated in a top-down fashion. The top level, level 1, involved several summations of which
\[
\begin{equation*}
\sum_{i=1}^{j-1}\left(2^{i}-2\right)^{2} \theta\left(\frac{n-2^{i}+1}{2^{i}}, \frac{4(n+1)}{2^{i}}, 4\right) \tag{3}
\end{equation*}
\]
is typical, where \(\theta\) is a procedure at the recond level. Each of the second level procedures called several third level procedures, e.g.,
\[
\begin{equation*}
\operatorname{THETA}(Q, P, K):-\operatorname{CHLSKY}(Q)+P \operatorname{LOWSOL}(Q)+\operatorname{MODNES}(Q, P, K) \tag{4}
\end{equation*}
\]

CHLSKY, LOWSOL and MODNES are three of the third level procedrres defined to be the timing formulas for simple numerical computations, e.g.,
\[
\begin{aligned}
& \operatorname{CHLSKY}(Q):=\frac{(P A+P M) Q^{3}}{6}+\frac{(S A+S M+P M) Q^{2}}{2} \\
&+\left(D S R+\frac{S M}{2}-\frac{S A}{2}-\frac{2 P M}{3}-\frac{P A}{6}\right) Q-S M
\end{aligned}
\]
is the timing formula for the factorization of a dense linear system. These third level procedures were formulas fcr factorization, lower solve and upper solve of dense systems and banded systems and matrix modifications of the form
\[
\begin{equation*}
\mathrm{A}:=\mathrm{A}-\mathrm{UVW}^{\mathrm{T}} . \tag{6}
\end{equation*}
\]

Finally, the bottom level consisted of the parameters which characterize the vector computer. E.g.,
\[
\begin{equation*}
S A+Q P A \tag{7}
\end{equation*}
\]
is the time for \(a\) vector add of length \(Q\).
The second and third levels each consisted of 10 to 15 modules and level 4 consisted of 9 instruction parameters, 1 pirameter related to the algorithm and 1 relaied to the grid size for the prcblem. The top level module contained several MACSYMA sums of the form
\[
\begin{gather*}
\operatorname{SUM}\left({ } ^ { \prime } \left(\operatorname { E V } \left(\left(\left(^{\mathrm{I}}-2\right)^{2}\right) *\left(\operatorname{THETA}\left(\left(\mathrm{~N}-2^{\mathrm{I}}+1\right) /\left(2^{\mathrm{I}}\right), 4 *(\mathrm{~N}+1) /\left(2^{\mathrm{I}}\right), 4\right)\right),\right.\right.\right.  \tag{8}\\
\operatorname{EXPAND})), \mathrm{I}, 1, I-1) .
\end{gather*}
\]

This is the MACSYMA form of the sum in eq. (3). The entire generated formula consists of over 200 terms and can be found in Appendix \(B\) of reference 1. The formula was checked by evaluating it for several sets of parameter values and comparing the results to execution times of a FORTRAN simulation of the algorithm. The one-way dissection formila was generated in a similar, but much more forward, famer.

\section*{CONCLUDING REMARKS}

MACSYMA has been shown to be of considerable value in the study of the performance of the nested dissection algorithm when used on hypothetjcal vector computers. The derived timing formulas lead to an understanding of the effects of varying the parameters which characterize the computers. Options in the algorithm's implementation can be studied as well as the extent to which the algorithm vectorizes.

\section*{REFERENCES}
1. George, A.; Poole, W. G., Jr.; and Voigt, R. G.: Analysis of Dissection Algorithms for \(\because\) 'sctor Computers. ICASF Report No. \(7 €-17\), June 8, 1976. (Availabie as NASA CR-145177.)
2. George, A.: Numerical Experiments Using Dissection Methods to Solve \(n\) by \(n\) Grid Problems. SIAM J. Numerical Analysis, vol. 14, no. 2, Apr. 1977, pp. 161-179.
3. George, A.: Nested Dissection of a Regular Finite Elewent Mesh. SIAM J. Numerical Analysis, vol. 10, no. 2, Apr. 1973, pp. 345-363.
4. Lambiotte, J. J., Jr.; and Voigt, R. G.: The Solıtion of Tridiagonal Linear Systems on the DCD STAR-100 Computer. ACM lrans. Math. software, vol. 1, no. 4, Dec. 1975, pp. 308-329.

FIGIRE 1. - ONE-WAY LISSECTION WITH 0"DERING OF UNKNOWNS INDICATED BY NUMBERS (m \(=3\) ).


FIGURE 2. - ONE STEP OF NESTED DISSECTION WITK ORDERING OF UNKNOWNS INDICATED GY NUMBERS.



\section*{N77-28765}

\section*{SYMBOLIC CALCULATIONS IN A FINITE DYNAMIC ELEMENT ANALYSIS}

Raja? K. Gupta and Edward W. Jg Jet Propulsion Laboratory

\section*{INTRODUCTION}

Since this paper 's addressed to an audience primarily interested in symbolic cumputations, we shall briefly describe the context of engineering mathematics to motivate the computational aspect. The present problem is concerned with prestressed membrane elements with application to the davelonment of large furlable conical spacecraft antennas whose reflector surfaces are made of stretched membranes (Ref. 1). The mathematical aspect involves the application of a finite element method to approximate the membrane deformation as a function or time. The phrase 'dynamic element' is used here to connote time dependent corrections to the static models attacked by the usual finite element method. The general strategy and overall scope of the present application is described by Gupta (Ref. 2) and in the following we shall confine ourselves to the computational problems. Throughout this paper we shall use capital letters for vectors and matrices, and lower case letters for scalars. We shall describe in detail a second order problem for which MACSYMA was used only for checking purpose, and then in brevity a fourth order problem for which a symbolic system is necessary. At the end, some sample output is displayed to indicate the complexity of the computational problem.

\section*{A SECOND ORDER PROBLEM}

For the simpler problem we are dealing with a second order time harmonic differential equation in two dimensions, \((x, y)\) and a time variable t:
\[
\begin{align*}
\frac{1}{n^{2}} \frac{\partial^{2} u}{\partial \xi}+\frac{1}{b^{2}} \frac{\partial^{2} u}{\partial \eta^{2}} & =\frac{Q}{\sigma h} \frac{\partial^{2} u}{\partial t^{2}}  \tag{i}\\
\xi & =x / a, n=y / b
\end{align*}
\]
rubject to boundary conditions for the four corners of each rectanguiar finite element, say, \((0,0),(1,0),(1,1)\) ard \((0, i)\) :
\[
u(0,0)=a_{1}, u(1,0)=q_{2}, u(1,1)=q_{3}, u(0,1)=q_{4}
\]

Here we are simulating a thin rectangular membrane of thickess \(n\), mass per unit area \(\rho\) and uniform tensile force per unit length \(\sigma\), and ( \(a, b\) ) specified the size of the rectangle. The solution is onstructed from a second-order expansion of the time harmonic problem, with natural frequency u, i.e.,
\[
\begin{equation*}
u \approx\left(A_{0}+\omega A_{1}+\omega^{2} A_{2}\right) Q^{\top} e^{i \omega t} \tag{2}
\end{equation*}
\]
where \(A_{0}, A_{1}\) and \(A_{2}\) are vector functions of instantaneous nodal disp?acement and also of the frequency of such motion, and \(Q^{T}\) is a unit vector, all these vectors being dependent only on \(\xi\) and \(\eta\). We have no formal proof that such expansion converges, but in (Ref. 2) it is given physical arguments and empirical evidence that such expansion does lead to dramatis improvement over the usual finite element approach. Substituting eq. (2) into eq. (1) and equating like powers of \(\omega\) render the foilowing equations:
\[
\begin{align*}
& \nabla^{2} A_{0} Q^{\top}=0  \tag{3}\\
& \nabla^{2} A_{1} Q^{\top}=0  \tag{4}\\
& \nabla^{2} A_{2} Q^{\top}+\frac{\rho}{\sigma h} A_{0} Q^{\top}=0 \tag{5}
\end{align*}
\]
with the corresponding boundary coulitions that \(A_{0}=\left[q_{1}, q_{2}, q_{3}, q_{4}\right], A_{1}=0\) and \(A_{2}=0\), wheie the above symbol \([,,\),\(] ia used throughout the present paper for\) a now vector, and the superscript \(T\) signifies the transpose of a matrix or vector.

At this step we have to rhoose certain vasis functions to form the solutions, for exampla,
\[
\begin{align*}
& A_{0} Q^{\top}=c_{1}+c_{2} \xi+c_{3} \eta+c_{4} \eta \eta  \tag{b}\\
& A_{1} Q^{\top}=d_{1}+d_{2} \xi+d_{3} \eta+d_{4} \xi \eta \\
& A_{2} Q^{\top}=e_{1}+e_{2} \xi+e_{3} \eta+c_{4} \xi \eta+P\left(c_{1}, \cdots, c_{4}, \xi, \eta\right)(\xi)
\end{align*}
\]
where these coefficients have to satisfy the boundary conditions, and \(p\) is a particular integral that satisfied eq, (5). Once a set of basis functions is p.tcked, we need to calculate the \(A\) vectors as functions of \(\xi, \eta\) and the boundary parameters \(a\) and \(b\).

The next step concerns the application of the principle of minimum total potential energy. In particulir, a sufficient condition for this principle is given by equating the lateral strain energy and the kinetic energy of transverse vibration, i.e.,
\[
\begin{align*}
& \Delta U=\Delta T  \tag{9}\\
& \Delta U=\iint_{\text {Arai }} \frac{\partial h}{2}\left\{\frac{1}{a}\left(\frac{\partial u}{\partial \xi}\right)^{2}+\frac{1}{b}\left(\frac{\partial u}{\partial \eta}\right)^{2}\right\} d \xi d \eta  \tag{10}\\
& \Delta T=\iint_{\text {Aiva }} \frac{1}{2} \operatorname{cab}\left(\frac{\partial u}{\partial t}\right)^{2} d_{\xi} d \eta \tag{11}
\end{align*}
\]

Substizution of eq. (2) into eqs. (10) and (11) gives
\[
\begin{align*}
& \Delta U=\frac{1}{2} Q\left(K_{c \mathrm{c}}+2 \omega^{2} K_{\mathrm{c} 2}+0^{4} K_{22}\right) Q^{\top}  \tag{12}\\
& \Delta T=\frac{1}{2} \omega^{2} Q\left(M_{c \mathrm{c}}+2 \omega^{2} M_{\mathrm{c} 2}+\omega^{4} M_{22}\right) Q^{\top} \tag{13}
\end{align*}
\]
where the K 's are otiffness matrices and the M's are mass matrices. The zerothorder terms correspond to the well-known staric counterparts in the usual finite element method and the higher-order terms represent dynamic correcifions. These matrices are given by
\[
\begin{align*}
& \begin{aligned}
K_{i j} & =\frac{\sigma h}{2} \iint_{A_{1 r e a}}\left(\frac{1}{a} \frac{\partial A_{i}^{T}}{\partial \xi} \frac{\partial A_{j}}{\partial \xi}+\frac{1}{b} \frac{\partial A_{i}^{T}}{\partial \eta} \frac{\partial A_{j}}{\partial \eta}\right) d \xi d \eta \\
M_{i j} & =\sigma h a b \\
\int_{\eta}^{2} & A_{i}^{r} A_{j} d \xi d \eta
\end{aligned} \\
& \text { The disappeararice of the odd terms is due to the synuetry of the problem. } \tag{15}
\end{align*}
\]

Finally, we can appiy the above expressions to eq. (9) and obtain an equation of motion in the form
\[
\begin{equation*}
\left[K_{c c}-2 w^{i}\left(M_{c c}-K_{o 2}\right)-w^{+}\left(M_{i 2}-K_{22}\right)\right] Q=\sigma \tag{16}
\end{equation*}
\]

This is a quadratic eigenprobiem and is to be solved numerically. The maln use of a symbolic calculator is to prepare and simplify the matrices \(\mathrm{K}^{\prime} \mathrm{s}\) and M's in the form of FORTRAN statements for the inclusion into a numerical program. The symbolic calcilation steps may be sumarized is follows:
(1) The vectors \(\left[c_{1}, c_{2}, c_{3}, c_{4}\right]\) and \(\left[d_{1}, d_{2}, d_{3}, d_{4}\right]\) are zomputed from the boundary conditions.
(ii) \(A_{0}\) and \(A_{1}\) are computed from these two vectors.
(1i1) The particular integral \(P\) in eq. (8) is chosen. So far the choice has been made from an ad hoc procedure. In the next section we shall describe an attempt towards a more systemacic approach for this step.
(iv) From the boundary conditions the vector \(\left[e_{1}, e_{2}, e_{3}, e_{4}\right]\) can be calculated in terms of \(\left[c_{1}, c_{2}, c_{3}, c_{4}\right]\) which in turn gives the vector \(A_{2}\).
(v) Once the As are determined, we need to compute the matrices \(K_{i j}\) and \(M_{i f}\) through symboilc diffezentiations and integrations.
(vi) The output has to be simplified and formatted for inclusior in a FORTRAN program.

\section*{A FOURTH ORDER PROBLEM}

For a plate bending problem we are dealing with the bithatmonic equation
\[
\begin{equation*}
\frac{1}{a^{4}} \frac{\partial^{4} u}{\partial \xi^{4}}+\frac{2}{a^{2} b^{2}} \frac{\partial^{4} u}{\partial \xi^{2} \partial^{2} \eta}+\frac{1}{b^{4}} \frac{\partial^{4} u}{\partial \eta^{4}}=-\frac{1}{b^{4}} \frac{\partial^{2} u}{\partial t^{2}} \tag{17}
\end{equation*}
\]

Conceptually the approact is exactly the same as the above proolen. The difference in size, however, is two crdex of magnitude. There are now 12
boundary conditions, 4 each \(i n u, \partial u\) and \(d \underline{u}\). Thus all the vectors and matrices described above are now of dimensions 12 and 12 , respectively. The algebraic manipulation is most extensive, and a symbolic system is an absolute necessity here.

For this problem the six steps above basically carry through, with the exception of (iii) which can be somewhat hazardous. We shall illustrate this process in some detail here. Following the same procedure from eq. (1) to eq. (5), we get, witt. \(D_{\xi}=\partial / \partial \xi, D_{\eta}=2 / \partial i\)
\[
\begin{align*}
& \left(D_{\xi}^{2}+D_{\eta}^{2}\right)^{2} A_{c} Q^{T}=0  \tag{18}\\
& \left(D_{\xi}^{2}+D_{r_{1}}^{2}\right)^{2} A_{2} Q^{T}+\beta A_{0} Q^{T}=0 \tag{19}
\end{align*}
\]

Let \(-\frac{1}{\beta} H(\xi, \Pi)\) be a solution of eq. (28), and let \(P(\Gamma, \Pi)\) be a particular integral of (19). Thus we have,
\[
\begin{equation*}
\left(D_{5}^{2}+P_{n}^{2}\right)^{2} P(\xi, \eta)=H(\xi, r) \tag{20}
\end{equation*}
\]

Let
\[
\begin{equation*}
\left(D_{\xi}^{2}+D_{1}^{2}\right) P(;, \eta)=R(\xi, \eta) \tag{21}
\end{equation*}
\]

We can formally invert the above equations by defining che anttderivatives as \(D_{\xi}^{-n}\) and \(D_{n}^{-n}\). Combining eqs. (an) and (21) gives us
\[
\begin{align*}
\left(D_{k}^{2}+D_{\eta}^{2}\right) & \left.R_{\xi}, 1\right)=H(\xi, \eta)  \tag{22}\\
K(\xi, \eta) & =D_{\xi}^{-2}\left(1+D_{\xi}^{-2} D_{\eta}^{2}\right)^{-1} H(4, \eta)  \tag{23}\\
& =D_{\xi}^{-2}\left(1-D_{5}^{-2} D_{n}^{2}+D_{1}^{+1} D_{1}^{4}-\cdots\right) H(!, \eta) \tag{24}
\end{align*}
\]

To satisfy the twelve boundary conditions we an choose a simple bivariate cubic function, viz.,
\[
\begin{equation*}
\left.A_{1}\right)^{T}=c_{1}+C_{2}+C_{3} \hat{1}+C_{4} r^{2}+C_{5} \xi^{2} r+\ldots+C_{12}^{n} \tag{24}
\end{equation*}
\]

Then \(D_{n}^{n} H\left(\xi, \dot{n}^{\prime}\right)=0\) for \(n>3\), and only two terms remain in eq. (24), i.e.
\[
\begin{equation*}
R(\xi, \eta)=D_{\xi}^{-2} H(\xi, n)-\operatorname{L}_{\xi}^{-4} \operatorname{Dn}^{2}+1(\xi, i) \tag{26}
\end{equation*}
\]
aid, similarly,
\[
\begin{align*}
& P(\eta, \eta)=D\left\{D_{1}^{-2} R(j, \eta)-D_{i}^{-4} D_{n}^{2} R(i, \eta)\right. \\
& =J_{i}^{-2}\left[D_{\xi}^{-2} H_{i}(\eta)-D_{q}^{-4} D_{4}^{2} H\left(H_{i}\right)\right] \\
& \rightarrow D_{y}^{-4} D_{\eta}^{2}\left[D_{j}^{-2} H(\eta, \eta)-D_{q}^{-4} D_{n}^{2} H(i, y)\right] \\
& =M_{3}^{4} H\left(y_{y}^{\prime}+\right)-2 D_{y}^{-L} \operatorname{Din}_{y}^{2} H(\xi, n)
\end{align*}
\]

The last cimpification comes from \(D_{n}^{n} H\left(\xi, r_{1}\right)=0, n>3\) and \(\left(D_{\xi} D_{n}-D_{n} D_{\xi}\right)\) * \(H\left(\xi, \eta^{\prime}\right)=0\).

So the above represents a somewhat ad hoc procedure to find a particular integral, but obviously the answer is not unique, because we could have reversed the role of \(D_{\xi}\) and \(n_{\eta}\) at eq. (23) and/or at eq. (27), This freedom is howevar constrained by the physica of the problem which requires certain symmetry in the matrices \(K^{\prime} s\) and M's.

\section*{SAMPLE OUTPUT}

On the next two pages, we present some sample output from MACSMA to indicate the complexity involved. We print the vectors \(A_{0}\) and \(A_{2}\) from equ. (6) and (8), and \(A_{0}\) from eq. (25). The matrices, however, a=e a bit too unwieldy to display for the present purpose. The two different \(A_{0}\) 's demonstrate that the fourth urder problem is two orders of wagnitude more complex than the second order problem (the vectors being one order and the matrices belng two orders).

The two vectors on this page, given b; eqs. (D5) and (DE) correspond to \(A_{0}\) and \(A_{2}\) from ecs. (6) and (8).
```

15) MATEIXMFFEFH,FITT:
```
(05)


EE MATRINMFGFHAES:




\(\frac{E^{2} E T A}{1 E}\)

The vector given below coiresponds to \(A_{0}\) from eq. (25).
(C4. MATRIKMAF(FH,VE):
(DA) MATFIXCT-EETA \(X 1^{3}+2 X I^{3}+3 E T A X I^{2}-3 X 1^{2}-2 E T H^{3} X 1+3 E T A^{2} X I\)



\(\left.-3 E T A^{2} X_{1}+E T A X I\right],\left[F E T H^{3} X I-Z E E T A{ }^{2} X I+E E T A X I J\right.\).
CAETA XI \({ }^{3}-A X I^{3}-A E T A X I^{2}+A Y I^{2}\).


\(\left[E E T A I^{3}-3 E T A X 1^{2}+E E T A^{3} X 1-3 E T A^{2} X 1+E T A X 1-E E T A^{3}+3 E T A^{2}\right]\).
\(\left[-E E T A A^{3} X 1+\right.\) ETG \(^{2} X I+E E T A^{3} \cdot\) EETH \(\left.^{2}\right]\),


Bropoductallity of The oxiglinal page ls pone

\section*{REFERENCES}
1. Oliver, R. E., and Wilson, A. H.: Furlable Spacecraft Antenna Development: an interim report. Tcch. Memo 33-537, Jet Propulsien Labrratory, Pasałena, Caiifernia, 1972.
2. Gupta, K. K.: Ca a Finite Dynamic Element Method for Free Vibration Analysis of Structures. Computer Methods in Applied Mechanics and Engineering, vol. 9, pp. 105-120, \(19 / 6\).


\title{
SYMBOLIC MANIPULATION TECINIQUES FOR VIBEATION
}

ANALYSIS OF LAMINATED ELLIPTIC PLATES*
C. M. Andersen

The College of William and Mary in Virginia
Ahmed K. Noor
The George Washington University
Joint Institute for Advancement of Flight Sciences at NASA Langley Research Center

\section*{SUMMARY}

A computational scheme is presented for the free vibration analysis of laminated composite \(\because, \quad\) ptic plates. The scheme is based on Hamilton's principle, the Rayleigh-Ritz technique and symmetry considerations and is implemented with, the aid of the MACSYMA symbolic manipulation system. The MACSYMA system, through differentiation, integration and simplification of analytic expressions, produces highly-efficient. FORTRAN code for the evaluation of the stiffness and mass cuefficients. Multiple use is made of this code to obtain not only the frequencies and mode shapes of the plate, but also the derivatives of the frequencies with respect to various material and geometric parameters.

\section*{INTRODUCTION}

Many of the foundary-value problems which arise in engineering and physics cannot be solved in a closed or analytic form. Therefore, numerical metheds are necessary for their solution. Nevertheless, we can expect that some of the steps in the solution process will be symbolic or analytic in nature. For example, early steps in the solutiun process may involve (a) casting the governing differential or functional equations in a more convenient formi for solution through replacement of the fundamental unknowns by ne:I variables which are dimensionless or have other desirable properties, and (b) the iniroduction of approximation functions or perturbation expansions and a regroupirg of the various terms. Thus, the solution process can be thought of as consisting of a symbolic (or analytic) phase followed by a numerical phase. With the aid of computerized algebraic manipulation, we may sometimes carry the symbolic phase of the calculation further than is conventionally done and thereby reduce the cost and/or improve the accuracy of the calculations.
*Work supported by NASA Langley Research Center.
Prgía intemtionally blank

A case in point is the free vibration analysis of laminated composite elliptic plates (refs. 1 and 2). A Flate is a flat body whose thickness is small compared to its other dimarsions. Plates and other structures formed from composite materials such as graphite or boron fibers imbedded in a matrix of epoxy or polyimide resins have considerable interest to the aircraft indust. \({ }^{y}\) y because of their high strength and rigicity, easy machinability and light weight. These composites are characterized by ex \(\begin{aligned} & \text { remely high tensile }\end{aligned}\) stiength in the direction of the fibers but relatively low strength in directions normal to the fibers. As a consequence, the composites are typically used in laminated structures where the orientation of the fibers changes from lamina to lamina. The highly anisotropic behavior of composite materials considerably complicates the anaiysis of the structures in which they are used. An investigation of the dependence of the frequencies of vibration (and the associated mode shapes) on the various geometric and lamination parameters is needed for the efficient lesign of plates made from composite materials. This requires not only the efficient evaiuacion of the frequencies and mode shapes for a given set of parameters, but also the efficient computation of the derivatives of the frequencies wich respect to the various design variables. Such derivatives provide information about the sensitivity of the frequencies to changes in the design variables.

The objectives of the present paper are to develop a computational schene for the free vibration analysis of laminated composite elliptic plates with clamped edges and to identify the major advant?ges gained from the use of symbolic manipulation in the sclution process. The main elements of the scheme include. (1) the use of the Rayleigh-Ritz method in conjunction with Hamilton's princinle, (2) simplification of the computation through considerations of various types of symme ries, (3) the use of the MACSYMA symbolic manipulation system to generate efficient FOKTRAN codn, and (4) multiple use of that code in the determination of both frequencies and frequericy derivatives. Because of the elliptical shape of the plates, MACSYMA is able to provide short exact analytic forms for a large number of expressions which would otherwise have to be apprcximated through the use of numerical quadrature.

\section*{MATHEMATICAL FORMULATION}

Figure 1 shows an elliptic plate and its Cartesian coordinate system. The z-axis is normal to the flat stirfaces of the plate, and the \(x\) - and \(y\) axes lie in the middle plane alcilg the principal axes of the ellipse. The problem domain is thus specified by
\[
\begin{equation*}
(x / a)^{2}+(y / b)^{2} \leq 1 \quad-h / 2 \leq z-h / 2 \tag{1}
\end{equation*}
\]

In this study we treat the plate vibration problem as a three-dimensional elasticity problem. A free vibration mode of the plate is described by a frequency \(\omega\) (actually an angular velocity) and ty the displacement amplitudes \(u_{i}(x, y, z)(i=1,2,3)\). A point in the vibrating plate with equilibrium position \((x, y, z)\) wil: have the position
\(\left(x+u_{1}(x, y, z) \sin \omega t, y+u_{p}(x, y, z) \sin \omega t, z+u_{3}(x, y, z) \sin \omega t\right)\) at time \(t\).
The components \(\varepsilon_{i j}(x, y, z)\) of the strain tensor are defined in terms of the displacement components \(u_{j}\) by
\[
\begin{equation*}
\varepsilon_{i j}(x, y, z)=\frac{1}{2}\left(\partial_{-i} u_{j}+\partial_{j} u_{i}\right) \quad(i, j=1,2,3) \tag{2}
\end{equation*}
\]
where \(\partial 1=\partial / \partial x, \partial 2=\partial / \partial y\) ind \(\partial 3=\partial / \partial z\). We group the six strain components into a vertor \(\Xi_{I}(x, y, z)(I=1 \rightarrow 6)\) by letting
\begin{tabular}{lll}
\(\bar{\varepsilon}_{1}=\varepsilon_{11}\) & \(\bar{\varepsilon}_{2}=\varepsilon_{22}\) & \(\bar{\varepsilon}_{3}=\varepsilon_{33}\) \\
\(\bar{\varepsilon}_{4}=2 \varepsilon_{23}\) & \(\bar{\varepsilon}_{5}=2 \dot{\varepsilon}_{31}\) & \(\bar{z}_{6}=2 \varepsilon_{12}\)
\end{tabular}

We analogousiy define a stress vector \(\bar{\sigma}_{I}(x, y, z)(I=1 \rightarrow 6)\) in terms of the six independent coriponents of the stress tensor and assume the stressstrain relationship is linear and given by the constitutive relation
\[
\begin{equation*}
\bar{\sigma}_{I}(x, y, z)=\sum_{j=\bar{i}}^{6} c_{I J}(z) \varepsilon_{j}(x, y, z) \quad(I=1 \rightarrow 6) \tag{4}
\end{equation*}
\]

We assume that \(C_{I_{J}}(2)\) is constant within each layer but can vary from layer to layer. Further, we assume that the fibers are all parallel to the \(x-y\) pla.ı. As a consequence, the \(c_{\mathrm{IJ}}(2)\) form a symmetric matrix of the form


The strain energy \(U\) and the vinetic energy \(T\) are given in ierms of the strains and displacements by
\[
\begin{align*}
& U=\frac{1}{2} \int \sum_{I, J=1}^{6} \bar{\varepsilon}_{I}\left(x, y, z_{i}^{\prime}\left[c_{I, j}(z) \bar{\varepsilon}_{J}(x, y, z)\right] d x d y d z\right. \\
& T=\frac{u^{2}}{2} \int \rho(L) \sum_{i=1}^{3}\left[u_{i}(x, y, z)\right]^{2} d x d y d z
\end{align*}
\]
whe re \(\rho(z)\) is the density of the plate material. Since we assume that \(\rho(z)\), like \([c(z)]\), is constant within each layer but can vary from layer to layer, the incegrations in the z-directioii are to be performed in a piecewise manier.

The quaritity \(\Pi\left(u_{i}\right)=T-U\) is to be regarded as a fanctional of the displacement functions \(u_{j}(x, y, z)\). Hamilton's variational principle states that \(u_{i}(x, y, z)\) must be such that the quantity \(n\left(u_{i}\right)\) is stationary with respect to variations in the displacement functions, i.e.
\[
\begin{equation*}
s \pi=0 \tag{7}
\end{equation*}
\]
where \(\delta \pi\) is the symbol for the first variation of \(\pi\). The variational principle thus gives rise to a set of elliptic partial differential equations in the \(U_{j}(x, y, z)\). However, rather than explicitly deveioping these differential equations we shall adopt a slightly different approach. We approximate the \(u_{i}(x, y, z)\) in \(n\) by linear combinations over a set of approximation functions. The coefficients \(\psi_{j}(j=1 \rightarrow N)\) which appear in these linear combinations are determined from the requirement that
\[
\begin{equation*}
\frac{\partial \pi\left(\psi_{i}\right)}{\partial \psi_{i}}=0 \quad(-i=1 \rightarrow N) \tag{8}
\end{equation*}
\]

This results in a linear generalized eigenvalue problem of the form
\[
\begin{equation*}
\sum_{j=1}^{N} k_{i j} \psi_{j}=\omega^{2} \sum_{j=1}^{N} M_{i j} \psi_{j} \tag{9}
\end{equation*}
\]
where
\[
\begin{align*}
& K_{i j}=\frac{1}{\pi} \frac{\partial^{2} U}{\partial \psi_{i} \partial \psi_{i}}  \tag{10}\\
& M_{i j}=\frac{1}{\pi \omega^{2}} \frac{\partial^{2} T}{\partial \psi_{i} \partial \psi_{j}}
\end{align*}
\]

\section*{SYMBOLIC PHASE OF COMPUTATION}

The first step \(\mathrm{ir}_{\mathrm{i}}\) the symbolic phase of computation is to approximate the isplacements \(u_{i}(x, y, z)\) in the functional \(\pi\). The boundary conditions
\[
\begin{equation*}
u_{i}(x, y, z)=0 \quad(i=1,2,3) \tag{11}
\end{equation*}
\]
along the ciamped edge of the plate are automatically satistiad by the use of approxirations of the torm
\[
\begin{equation*}
u_{i}(x, y, z)=\sum_{k} z^{k} \sum_{m, n} \phi_{i}^{m, n, k}\left[1-(x ; a)^{2}-(y / b)^{2}\right] x^{m} y^{n} \tag{12}
\end{equation*}
\]
where the upper limit of \(k\) in the summation is one higher for \(i=1\) or 2
than for \(i=3\). The number of terms needed in the expansion (12) depends on the thickness of the plate as well as on the accuracy desired for the solutions. The \(\psi j\) of eqs. (3) through (10) are the coefficients \(\phi_{j}^{m, n, k}\) taken in some arbitrary order. The symbolic phase of the computation can proceed as follows:
(1) Select a (new) pair of indices, \(i\) and \(j\), for which expressions for \(K_{i j}\) and \(M_{i j}\) are desired (see the section on Symmetry Considedations). \({ }^{i j}\)
(2) Set all \(\psi_{k} \begin{gathered}\text { to zero except } \psi_{i} \\ \text { undefined }\end{gathered}\) and \(\psi_{j}\), which remain as
(3) Form the terins of \(u_{k}(x, y, z)(k=1,2,3)\) which depend on \(\psi_{i}\) and \(\psi_{j}\) using eq. (12).
(4) Compute the terms of \(E_{I}(x, y, z)\{I=1-6)\) which depend on \# \(_{i}\) and \(\psi_{j}\) using eq. (2).
(5) Evaluate the terms of the integrands of \(U\) and \(T\) which depend on \(\psi_{i}, \psi_{j}\) using eq. (f).
(6) Evaluate the integrarids of \(\because_{i j}\) and \(M_{i j}\) by differentiation with resject to both \(\psi_{i}\) and \(\psi_{j}\) using eq. (10).
(7) Evaluate \(K_{i j}\) and \(M_{i j}\) by performing the integrations over \(x, j\) and \(z\) via pattern matching.
(8; Simplify the nonzero \(K_{i j}\) and \(M_{i j}\) and develop FOTTRAN expressions for them.
(9) GG to step (1) unless finished.

In step (7), the integration with respect to the \(z\) conrdinate is accomplished symbolically (analytically) simply by introducing new variables \(c\left\{\begin{array}{l}2\end{array}\right)\) and
\(D^{(\ell)}\) defined by
\[
\begin{align*}
& C_{I J}^{(\ell)}=\int_{-h / 2}^{h / 2} z^{\ell} C_{I J}(z) d z \quad(I, J=1 \rightarrow 6 ; \quad \ell=0,1,2 \ldots)  \tag{13}\\
& D_{D}^{(\ell)}=\int_{-h / 2}^{h / 2} z^{\ell} \rho(z) d z \quad(\ell=0,1,2 \ldots)
\end{align*}
\]
and the integration with respect to \(x\) and \(y\) is accomplished by the replacements
\[
\begin{align*}
& x \rightarrow a r \cos (\theta)  \tag{14}\\
& y \rightarrow b r \cos (\theta)
\end{align*}
\]
followed by exact closed-form integration in \(r\) and \(\theta\). The expressions produced for \(K_{i} j_{n}\) and \(M_{i j}\) in step (8) are very simple since an Miju expression contalns at most a single term, and a \(K_{i j}\) expression conjains at mosc three terms. The \(M_{i j}\) are linear in the \(J_{D}(\ell)\) and the most general form for the \(K_{i j}\) is
\[
K_{i j}=\left\{\begin{array}{l}
\lambda_{1}  \tag{15}\\
\lambda_{2} A \\
\lambda_{3} B \\
\left(\lambda_{4} A 2+\lambda_{5} B 2+\lambda_{6} A 2 B 2\right) /\left(\lambda_{7} A B\right)
\end{array}\right.
\]
where \(\lambda_{1}, \lambda_{2}\) and \(\lambda_{3}\) are linear combinations of the \(C_{i j}^{(i)}\) with ratjonal number coefficients; \(\lambda_{4}: \lambda_{5}\) and \(\lambda_{6}\) are integer multiples of the \(C\left(\begin{array}{l}\text { l }\end{array}\right.\) \(\lambda_{7}\) is an integer; and the FORTRAN variables \(A, B, A B, A 2, B 2, A 2 B 2\) are defined by
\[
\begin{align*}
& A=a \\
& A 2=a^{2} \\
& B=b \\
& B 2=b^{2} \\
& A B=a b \\
& A 2 B 2=a^{2} b^{2} \tag{10}
\end{align*}
\]

The symbolic phase ends when the FORTRAN code nas been traasferred to a local computer for the numerical phase of computatior.

\section*{NUMERICAL PHASE OF COMPUTATIOR}

The first goal of the immerical plase of computation is to solve the linear generalized tigenvalue problem (eq. (9)) for the lowest few frequencies \(\omega_{k}(k=1,2, \ldots\).\() . To accomplish this the mumerica? program ovaluates\)
the \(C\binom{l}{j}\), the \(D^{(\Omega)}\), the FORTRAN variables of eq. (16), ard finally the \(K_{i j}\) and \(M_{i j}\). Then the eigeivalues \(\left(\omega_{k}\right)^{2}\) and their associated eigenventors \(\psi_{j}\) may be determined by the meshod of subspace iteration (ref. 3).

The second goal of the nuesrical phase of computation is to determine the derivatives of the , \(\cdot k\) with respect to cranges in geometry, fiber orientations or material properties. The derivative of the freguency \(\omega_{k}\) with respect to the plate area mab (keeping the aspect ratio \(a / b\), thickness \(h\) and material properties fixed) is given by
\[
\begin{equation*}
\left.\frac{\partial \omega_{k}}{\partial(\pi a b)}\right|_{h, a / b}=\frac{-\left.\sum_{i, j=1}^{N} \psi_{i}^{(k)} \frac{\partial\left(\pi a b K_{i j}\right)}{\partial(\pi a b)}\right|_{h, a / b} \psi_{j}^{(k)}}{2(\pi a b)\left(\sum_{i, j=1}^{N} \psi_{i}^{(k)} M_{i j} \psi_{j}^{(k)}\right)} \tag{17}
\end{equation*}
\]

This equation takes into account the fact that each \(M_{i j}\) is proportional to the area but is independent of the aspect ratio. The derivative on the RHS of eq. (17) is evaluated by ising the FORTRAN code for the \(K_{i j}\) but with FORTRAN variables of eq. (16) defined as follows:
\[
\begin{array}{rlrl}
A & =a / 2 & B & =b / 2 \\
A 2 & =a / b & B 2 & =b / a \tag{18}
\end{array}
\]
where the sumation in the denominator is the same as in cq. (17). We now need to make the \(\lambda 1\) ard \(\lambda_{6}\) terms of eq. (15) vanish since they do not depend on \(a / b\). We accomplish this by settirg
\[
\begin{align*}
& A=N b / 2 \\
& B=-N b^{2} /(2 a) \\
& A B=a b \\
& B 2=-\mathrm{Nb}^{3} / \mathrm{a}  \tag{2i}\\
& \mathrm{~A} 2 \mathrm{~B} 2=0
\end{align*}
\]
where \(N\) is a very large number (e.g., \(N=10^{15}\) ), and compensate for the introauction of \(N\) by dividing by \(N\) after the summation indicated in eq. (20) has been carried out. When the derivatives of \(w k\) with respect to area, aspect ratio and thicknoss are known, one can easily determine the derivatives of \(\omega_{k}\) with respect to \(a, b\) and/or any other runctions of mab, \(a / b\) and \(h\).

Derivatives of \(\omega_{k}\) with respect to the fiber orientation angles or material properties may be computed similarly, but for these cases the FORTRAN variables of eq. (21) regain their original definitions (eq. (16)) and the \(\lambda_{i}(i=1 \rightarrow 6)\) are replaced by their appropriate derivatives. This kind of multiple use of a large block of FORTGin code is very useful for reducing the length of the FORTRAN program as well as the amount of symbolic computation. Both are further reciuced by the symmetry considerations discussed in the nex: section.

\section*{SYMMETRY CONSIDERATIONS}

There are three types of symmetries which help simplify our calculations. These are associated with a) symmetry of the [ K\(]\) and \([\mathrm{M}]\) matrices, b) rotation-reflection symnietry of the undeformed plate, and c) symmetry of the stiffness and mass coefficients wich respect to interchanging the roles of \(a\), \(b\) and the subscripts 1,2 .

\section*{Symmetry of the \([K]\) and \([M]\) Matrices}

The first type of symmetry is the symmetry of the \([K]\) and \([M]\) matrices under transposition, that is
\[
\begin{align*}
& \ddot{n}_{j}=K_{j i}  \tag{22}\\
& M_{i j}=M_{j i}
\end{align*}
\]
(see eq. (10)). The presence of this symmetry means that we need symisolic exprossions only for those \(K_{i j}\) and \(M_{i j}\) with \(i \leq j\)

\section*{Rotation-Reflection Symmetry of the Undeformed Plate}

The second type of symmetry is the symmetry of the (undeformed; plate itself. Various rotations or reflections may leave the botndaries and material properties of the plate invariant (ref. 4). For instance, by our assumption that the fiber directions are parallel to the plate, rotations of the plate by l8.90 about the \(z\)-axis leave \([\bar{c}(z)]\) invariant.

A consequence of this symmetry (the symmetry group is calied \(\mathcal{C}_{\dot{c}}\) in Schoenfies notation (ref. 5)) is that there are two families of solutions those with \(\sigma=1\) and those with \(\sigma=-1\) in the relations
\[
\begin{align*}
& u_{1}(x, y, z)=-\sigma u_{1}(-x,-y, z) \\
& u_{2}(x, y, z)=-\sigma u_{2}(-x,-y, z)  \tag{23}\\
& u_{3}(x, y, z)=\sigma u_{3}(-x,-y, z)
\end{align*}
\]

Equation (23) defines the minimum symmetry exhibited by the laminared plates considered in the present study.

The largest symmetry group which can leave the boundaries invariart is the group \(D_{2 h}\). A plate which has this symmetry is invariant under ;otations by \(180^{\circ}\) not only around the \(z\)-axis but around the \(x\) - and \(y\)-axes as woll. Further, it is invaridnt under reflections in the \(x-y, y-z\) and. \(z-x\) planes and under inversion (the operation which sends the generic point ( \(x, y, z\) ) to the point \((\cdots x,-y,-z))\). Plates with \(D_{2 h}\) symmatry have eight families of solutions each corresponding to cae of the possible combinations of \(\sigma_{1}= \pm 1, \quad \sigma_{2}= \pm 1, \sigma_{3}= \pm 1\) in the relations
\[
\begin{align*}
& u_{1}(x, y, z)=-\sigma_{1} u_{1}(-x, y, z)=\sigma_{2} u_{1}(x,-y, z)=-\sigma_{3} u_{1}(x, y,-z) \\
& u_{2}(x, y, z)=-\sigma_{1} u_{2}(-x, y, z)=-\sigma_{2} u_{2}(x,-y, z)=-\sigma_{3} u_{2}(x, y,-z)  \tag{24}\\
& u_{3}(x, y, z)=\sigma_{1} u_{3}(-x, y, z)=\sigma_{2} u_{3}(x,-y, z)={ }_{3} u_{3}(x, y,-z)
\end{align*}
\]

For the four families with \(\sigma_{3}=-1\) the middle surlace of tine plate (the surface with \(z=0\) ) is deformed with planar motions only. In order for a laminated compos, te plate to have the full. \(D_{2 h}\) symmetry, the fiber angle with respect to the \(x\)-axis, \(\varepsilon(z)\), must take only the values \(0^{\circ}\) and \(90^{\circ}\) and \(O(z)\) must enual \(O(-z)\).

The group \(D_{\hat{c} h}\) has three subgroups of order four which contain \(C_{2}\). as a subgroup. In schoentlies notation they are called \(C_{2 h}, C_{2 v}\) and \(D_{2}\). Each of these subgroups correspond to a possible plate symmetry higher than the minimal cis \(_{2}\) symmetry yet lower then the full \(0_{2 h}\) symetry. Plates with any of these symmetrias have four families of solutions. Plates wiln symmetry \(C_{2 h}\) have \(n(z)\) equal to fi( \(\left.-z\right)\) ard have solutions characterized by \(\left(0,0_{3}\right)=(1,1),(1,-1),(-1,1)\) or \((-1,-1)\) in
\[
\begin{align*}
& u_{i}(x, y, z)=-\sigma u_{1}(-x,-y, z)=-\sigma_{3} u_{1}(x, y,-z) \\
& u_{2}(x, y, z)=-0 u_{2}(-x,-y, z)=-\sigma_{3} u_{2}(x, y, z)  \tag{25}\\
& u_{3}(x, y, z)=\sigma u_{3}(-x,-y, z)=\sigma_{3}\left(u_{2}(x, y,-z)\right.
\end{align*}
\]

Plates with symmetry \(C_{2 v}\) have fiber angles of \(0^{\circ}\) and \(90^{\circ}\) only and havo solutions characterized by \(\left(0_{1}, a_{2}\right)=(1,1),(1,-1),(-1,1)\) or \((-1,-1)\) in
\[
\begin{align*}
& u_{1}(x, y, z)=-\sigma_{1} u_{1}(-x, y, z)=\sigma_{2} u_{2}(x, y, z) \\
& u_{n}(x, y, z)=\sigma_{i} u_{2}(-x, y, z)=-\sigma_{2} u_{2}(x,-y, z)  \tag{26}\\
& u_{2}(x, y, z)=\sigma_{1} u_{3}(\cdot x, y, z)=\sigma_{3} u_{3}(x,-y, z)
\end{align*}
\]

Plates with symmetry \(D_{2}\) are invariant under rotations by \(180^{\circ}\) abcut the \(x-, y\) - and \(z\)-axes and thus have
\[
\begin{equation*}
\theta(z)=-\theta(-z) ;-90^{\circ} \leq 9 \leq 90^{\circ} \tag{27}
\end{equation*}
\]

For these plates we let
\[
\begin{equation*}
u_{i}(x, y, z)=u_{i}^{e}(x, y, z)+u_{i}^{0}(x, y, z) \tag{28}
\end{equation*}
\]
where
\[
\begin{align*}
& u_{i}^{e}(x, y, z)=u_{i}^{e}(x, y,-z)  \tag{29}\\
& u_{i}^{G}(x, y, z)=-u_{i}^{0}(x, y,-z)
\end{align*}
\]

Ther the solutions are characterized by \(\left(\sigma_{1}, \sigma_{2}\right)=(1,1),(1,-1),(-1,1)\) or \((-1,-1)\) in
\[
\begin{align*}
& u_{1}^{e}(x, y, z)=\sigma_{1} u_{1}^{e}(-x, y, z)=-\sigma_{2} u_{1}^{e}(x,-y, z) \\
& u_{2}^{e}(x, y, z)=-\sigma_{1} u_{2}^{e}(-x, y, z)=\sigma_{2} u_{2}^{e}(x,-y, z)  \tag{30}\\
& u_{3}^{e}(x, y, z)=\sigma_{1} u_{3}^{e}(-x, y, z)=\sigma_{2} u_{3}^{e}(x,-y, z)
\end{align*}
\]
with \(\left(\sigma_{1}, \sigma_{2}\right)\) replaced by \(\left(-\sigma_{1},-\sigma_{2}\right)\) in the corresponding relations for \(u_{i}^{0}\). If any two of the eqs. (25), (26) and (30) hold simultaneously then eq. (24) must hold. On the other hand, eq. (23) is a consequence of eqs. (25), (26) or (30) separately.

Solutions lacking the appropriate symmetry are possible only in the (unlikely) event that the eigenvalues for members of twe different families of solutions coincide, in which case the solutions are linear combinations of
symmetric solutions. The presence of families of solutions with different symmetries means that with the choice of a proper ordering of the \(\psi \boldsymbol{i}\) the [K] and (M) matrices have a block diagonal form with one block for each family of solutions \(\tau\). That is, II may be written as
\[
\begin{equation*}
\pi=\underset{\tau}{\Sigma} \pi_{\tau} \tag{3i}
\end{equation*}
\]
where \(\Pi_{T}\) contains the \(\psi_{i}\) associated with the symmetry \(\tau\). This results in repiacing a large problem by two, four or eight (depending on the symmetry grouo) smaller jubproblems. For each of the subproblems, the expansion in ey. (12) is adjusted to match the desired symmetries.

Symmetry of Stiffness and Mass Coefficients With Respect to Interchanging the Roles of \(a, b\) and the Subscripts 1,2

The third type of symmetry is reiated to the observation that when given a physical place we may analyze it in two different ways - with the semi-major axis of the plate along the \(x\)-axis or along the \(y\)-axis. The two ways are equivalent but resulc in interchanging the numerical values for \(a_{*}\) and \(b\) and for some of the material properties \(\bar{r}_{I j}(z)\). Let \(K_{i j}\) and \(K_{i j}^{*}\) be components of the stiffness matrices (before the partitioning of eq. (31)) for the same physicai problem as formulated it the two different ways. While it is not true in general that \(K_{i j}\) equals \(K_{i j}^{*}\), it is true that for eadch pair of indices \(i, j\) there corresponds a pair \(i^{\prime}, j^{\prime}\) such that \(K_{i j}=K_{i}^{*} j^{\prime}\); thus
\[
\begin{align*}
& k_{i^{\prime} j}\left(a, b, c_{1 i}^{(l)}, c_{13}^{(l)}, c_{16}^{(l)}, c_{22}^{(l)}, c_{23}^{(l)}, c_{26}^{(l)}, \ldots\right) \\
&  \tag{32}\\
& =k_{i j}\left(b, a, c_{22}^{(l)}, c_{23}^{(l)}, c_{26}^{(l)}, c_{11}^{(l)}, c_{13}^{(l)}, c_{16}^{(l)}, \ldots\right)
\end{align*}
\]

Thus, while \(K_{i j}\) and \(K_{i \prime j}\) ' do not necessarily have the same numerical value, they do have assentially the same algebraic form, and the roRTRAN code usea to evaluate \(K_{i} \bar{j}\) can serve to evaluate \(\dot{K}_{i} \cdot j\) ' as well. The relation turns out to be even istronger for the [ \(M\) ] matrix since
\[
\begin{equation*}
M_{i j}=M_{i \prime j} \tag{33}
\end{equation*}
\]

The first, second and third types of symmetries interact with each other in the following way. Either all the index pairs \(i, j\) in the block of the [K] matrix associated with symmetry \(\tau\) correspond to index pairs \(i^{\prime}, j\), in the block having a different symmetry \(\tau^{\prime}\) or they all correspond to \(j^{\prime}, j^{\prime}\) in tree same block. For the former case thes FORTPAN code generated to find the solutiuns witn symmetry \(l_{\text {can }}\) be used to find the solutions with symmetry \(\tau^{\prime}\) as well. Srir the latter case the relations (22), (32) and (33) together serve to reduce the EORTREN code needed for symmetry t to little more than half that needed when considering eq. (22) alone. For this case the code is executed once and the incomplete [K] and [M] saved. Then the code is executed
a second time with variables interchanged as in eq. (32) and the two sets of matrices are merged. The interactions oi the three types of summetry are summarized in Table 1 for the five symmetry groups of interest. The symmetry considerations discussed in this section arply equally well for the determ:nation of the derivative matrices in eqs. (17), (19) and (20).

TASLE 1. - INTEAACTIONS AMONG THE EIRST, SECOND AND THIRD TYPES OF SYMMETRTFS
\begin{tabular}{|c|c|c|c|}
\hline Symmetry Grcup of Plate & symmetry Parameters. \(\tau\) & \begin{tabular}{l}
Syminetries for which \\
[K] and [M] are simpli- \\
ticd by eqs. (22), (32) ern (33)
\end{tabular} & ```
Symmetries interrelated
by eqs. (22), (32)
ano (33)
``` \\
\hline \(C_{2}\) & \((0)\) & (1), -1) & \\
\hline \(\mathrm{C}_{2 h}\) & ( \(0, \square_{3}\) ) & \[
\left(\begin{array}{l}
7, i),(1,-1),(-1,1) \\
(-1,-1)
\end{array}\right.
\] & \\
\hline \(C_{2 v}\) & \(\left(o_{1}, s_{2}\right)\) & \((1,1),(-1,-1)\) & \((1,-1) \sim(-1,1)\) \\
\hline \(\mathrm{D}_{2}\) & \(\left(\sigma_{1}, \sigma_{2}\right)\) & \((1,1),(-1,-1)\) & \((1,-1) \leftrightarrow(-1,1)\) \\
\hline \(E_{2 h}\) & \(\left(o_{1}, c_{2}, o_{3}\right)\) & \[
\begin{aligned}
& (1,1,1),(1,1,-1), \\
& (-1,-1,1),(-1,-1,-1)
\end{aligned}
\] & \[
\begin{aligned}
& (1,-1,1) \leftrightarrow(-1,1,1) ; \\
& (1,-1,-1) \leftrightarrow(-1,1,-1)
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NUMERICAL RESULTS}

Numerical results have been nbtained for moderately thick laminated plates with symmetry \(D_{2}\). For the case \(\pi_{1}=\sigma_{2}=1\), we use the following version of eq. (12) which takes eq. (30) into account:
\[
\begin{align*}
& u_{1}(x, y, z)=\left[1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}\right]\left[y x_{1}(x, y)+x z_{x_{4}}(x, y)+y z^{2} x_{7}(x, y)+x z^{3} x_{10}(x, y)\right] \\
& u_{2}(x, y, z)=\left[1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}\right]\left[x_{x_{2}}(x, y)+x_{5}(x, y)+x z^{2} x_{8}(x, y)+y z^{3} x_{11}(x, y)\right] \\
& u_{3}(x, y, z)=\left[1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}\right]\left[x_{3}(x, y)+x y z x_{6}(x, y)+z^{2} x_{9}(x, y)\right] \tag{34}
\end{align*}
\]
where
\[
\begin{align*}
i_{i}(x, y) & =i+11+i x^{2}+22+i y^{2}+33+i x^{2} y^{2}+\psi_{44+i} x^{4}+\psi_{55+i} x^{6} \\
& +66+i x^{4} y^{2}+47+i x^{2} y^{4}, 88+i x^{6}+\psi_{95+i} y^{6} \quad(i=1 \rightarrow 11) \tag{35}
\end{align*}
\]

This appron:mation scheme results in matrices [K] and [M] having dimension 110 by 110 and requires the generation of 3541 GORTRAN statements. Similar approximetion schemes are used for the other fal.ilies of solutions. Typical results are showin in figure 2. Thrse results are for eight-iayered plates with \(h=b / 10\) and fiber orientations (with respert to the \(x\)-axis) which are alternateiy \(\theta\) and \(-\theta\), where \(\theta=45^{\circ}\). The material properties are chosen to be those typical of a high-modulus graphite-epoxy composite. Figure 2 shows the variation with the aspect ratio \(a / b\) of the lowest frequencies and of the derivatives of these frequencies with respect to the fiker orientation angle. .

\section*{CONCLUDING REMARKS}

The major advantages of using symbolic manipulation in the free vibration analysis of laminated composite elliptic p?ates are
1) The accurate and ieliable symbolic evaluation of large numbers of derivatives and integrals
2) The concise form of the resulting FCKTRAN expressions for \(k_{i j}\) and \(M_{i j}\)
3) The ease of implementing symmetry concepts
4) The simplicity of evaluating the first derivatives of the frequencies with respect to the design variables

The muitiple usage of the large blocks of FORTRAN code generated by MACSYMA allows the calculation of frequency derivatives with no extra symbolic effor: and very little extra numerical computation. Of course, the symbolic apprcach would be useless were it not for the fact that the output is in the form of FORTRAN statements which reed never be keypunched. Manua: operations on such a large quantity of data would surily introduce errors which would be very difficult to rectify.

The major disadvantages are
1) The large amount of FORTRAN code needed to obtain accurate nonerical results
2) The relatively lonc symbolic comntation inmes
3) The slow speed of transferring data from the symbolic processing computer to the number processing computer when the two computers are not on the same network

Seveial extensions of the present work come to mind, such as studyin; plates with other boundary conditions and other geometries. Shapes requiring numerical quadrature for the \(x-y\) integration may also be invostigited. The various integrals required can be identified, isolated and assioned variable names through the use of symbol manipulation much as the z-integrals are treated in the present study. The techniques used hereir are applicable to a wide variety of other boundary-value problems.

\section*{REFERENCES}
1. Andersen, C. M.; and Noor, Ahmed K.: Free Vibration of Laminated Cem,osite Elliptic Plates. Advances in Engineerirg Science, Volume 2, NASA CP-2091, 1976, pp. 425-438
2. Ashton, J. E.; and Whitney, J. M.: Theory of Laminated Plates. Technomic Publ. Co., 1970.
3. Bathe, K. J.; atad Wilson, E. I..: Numerical Methods in Finite Elemen: Analysis. Prentice-Hal?, Inc., 1976.
4. Noor, A. K.: Symmetries in Laminated Composite Plates. Froceedings af the Eighth Southeastern Conference on Theoretiral anci App?ied Mechanics, Virginia Polyt.ch. Inst. \& State Univ., Apr. 1976, pp. 225-246.
5. Hamermesh, Morton: Group Theory and It; Application to Physicul Problems. Addison-Wesley Pub. Co., Inc., c. 1962.


Fin. 1. Clamped laminated ellintic plate.


Fiq. 2. Effect of \(a / b\) on \(\omega^{2}\) and \(\frac{1}{\omega} \frac{d \omega}{d \theta}\) for clamped eight-layered ellintic plates with \(D_{2}\) symmetry arid fiber orientations alternateiy \(+45^{\circ}\) and \(-45^{\circ}\). \(\mathrm{h} / \mathrm{b}=1 / 10 ; \mathrm{E}_{\mathrm{L}} / \mathrm{E}_{T}=40 ; \nu_{L T}=1 / 4 ; \mathrm{r}_{\mathrm{LT}} / \mathrm{E}_{\mathrm{T}}=3 / 5\); \({ }^{n_{T} T} / E_{T}=1 / 2 ; \omega_{0}^{2}=\left(E_{T} h^{2}\right) /\left(o b^{4}\right)\).
c
m

N7. 28767

UNCLAS

\title{
N77-28767
}

OBSERVATIONS ON APPROXIMATE INTEGRATIONS

\author{
Edward W. Ng \\ Jet Propulsion Laboratory
}

\section*{Extended Abstract}

In this presentation we explore a class of integration strategies that fall in between the two extremes of symbolic integration and numerical quadrature, which are, respectively, aimed at the computer generation of answers ir the form of exact expressions and numerical values. We shall first discuss the theoretical advances in symbolic integration, as motivation to the following, then examine three major contexts of applications with attendant case studies, ard finally explore four possible types of strategies for approximate integration. In particular we shall comment on the feasibility and adequacy (or inadequacy) of MACSYMA for implementing these strategies.

We begin with theoretical discussions. In this aspect we have discerned two major paradigms of strategies, which we label the "pattern-recognition paradigm" and the "problem-solving paradigm". These labels, chcugh far from perfect, are chosen to indicate the emphacis only. In the former class we include, for example, Risch's algoritim, (Ref. 1) and Moses' new apprgach based on extension operators (Ref. 2). We believe these strategies to be particularly characterized by the search of algorithmic ability to recognize that certain expressions or operators belong to some specified class of such. The problem solving paradigm is obviously inherited from heuristic strategies of artificial inteiligence. In this latier class we include, for example, Wang's definite integrations (Ref. 3) and our elliptic integrations (Ref. 4). All these theoretical strategies suffer from practical limitations of one kind or another. Notably among these are the multivariate factorization problem, the optimal selection of input vis-a-vis output ciass of expressions and intelligent choice of contours for definite integration. The optinal selection needs particular elaboration here. Take for example the integration of rational functions. It is easy to devise an efficient algorithn to decide if a given rational function can be integrated in terms of rational functions. But such algorithm would be of extremely limited interest because it would return a negative auswe: for most inpur expressions, such as something as simple as \(1 /(x+1)\). The addition of one 'new' function (logarithm) in the output class dramatically expands the problem-solving horizon. On the other hand, we obviously cannot carry tins to the other extreme of choosing a large number of new functions, lest the result be next to worthless. All these discussions, however, force us to consider :hat we mean by 'usefulness' of an output expression, which in turn leads us to considering three major contexts of applications.

At this laboratory we have been assocfated with an applied mathematics group which provides consultation and support to a diversity of engineers and scientists. Although our picture is still somewhat limited, it does give us an
indication of the major contexts in which integration tools are considered necessary or useful. The first is the usual explcratory context, where a scientist or engineer encounters isolated integrals which he needs to tackle. Here he typically wants closed form solution, but often settles for an approximate answer. The need here is based on the motivation to "do something with" the result, that is, to either stidy its dependency on some parameters or on some other mathematisal operctions. The second context revolves around multiple Integration. Here the goal is usually numerical evaluation, but one is interested in reducing the dimensionalicy of integration as much as possible, because multiple quadrature is costly both in computing fime and accuracy. The third context concerns multi-parameter studies, where the integral depends on a number of parameters, this making numerical results difficult, if not impossible te interprete. For example, if the integral is a function of six parameters, the numerical result would require a six-dimensional table or six-dimensional hypersurface to represent. In all these coniexts of applications, current technology forces an investigator to take either alternative of the two \(x\) tremes of numerical versus analytic results (with some exceptions to be mentioned later). It is fair to say that most "real life" problems are nonelegant in nature and for which analytic results are difficult and unikeiy to come by. For example, a pulynomial of 5 th degree whose coefficients are derived from data or other computations are usually irreducible over the integers. In most non-trivial algorithms of integration this fundamental limitation is often fatal, because they involve, in one form or another, partial fraction decomposition which depends on factorization. All these discussions point to the need of a compromising approach between the extremes of numerical and exact integration. Such an approach (let us call it approximate integration), is resorted to by scientists and engineers in :solated instances, but has not deen investigated as a possible general purpose tool in the sense of a quadrature scheme or a symbilic integration algorithm. The important point to stress is that the approximate approach is intended to yield an output that is an expression, rather than a table of numbers.
dt this stage we have examined four broad categories of such approximate schemes. The first consists of the approximation of the integrand by a set of basis functions such as polynomials or splines. There have been some isolaced applicatjons using such appro:imation, for instance, in finite element analysis. One example is given in the particular integration of mass and stiffness matrices given in (Ref. 5). Here the integrand, after a sequence of symböic manipuiations, is made up of a matrix of bivariate polymomials which are readily Integrated. In a more general veln, Andersen (Ref. 6) describes the variety of integrations for triangular and quadrilateral finfte elements.

The second approach may be labelled interpolatory scheme. Here the spirit is analogous to the derivatinn of quadrature schemes. f.e., by approximating the integranc by some interpolation formula and then integrating term by texm. An example can be cited from Filon quadrature (Ref. 7). Here the integrand is of the form \(f(x)\) sico(ax) where sico is either sine or cosine. The integration interval is subdivided into \(n\) segments and \(f(x)\) is interpolated by a quadratic In each segment to fit the midpoint and two endpoints of that segment. The interpolated expression can then be integrated analytically. Similar techniques
can be applied to other types of functions. As pointed out by a referee, interpolation actually can be viewed as a special case of approximating in terms of a basis, it being the Lagrange polynomials associated with the in:erpolation polrits and having an integral error criterion subject to exact fit at these points.

The third approach is based on a reduction of transcendence of the integrand. Terrawise integration of approximations of the integrand by power or asymptotic series is a well-known example in this category. This strategy amounts to an approximation of the integrand by a polynomial. However, one can also approximate the intezrand by a rational furction. For example, take the exponential of a polynomial. For a proper range the evponential can be approximated by a rational function, but there is an associated difficulty here, namely, that the rational function consists of polynomials of high degrees, and that some kind of telescoping procedure need be appliad in order that the integrated result is manageable. An example will be presented to detall the advantages and disadvantages of such 2 strategy.

The last approach is to compute the intagral by quadrature and then approximate the answer by, for example, some basis functions. ihis approach can hardly be considered under the umbrella of fntegration (it is more of a curve or surface fitting problem). In a paper on practical approximations (Ref. 8) the author gives an example on the approximation of an integral. The basic idea will carry through to a more general problen where quadrature can be used instead. We shall comment on the pros and cons of this approach.

In the oral presentation we shall provide a concrete example for each approach and Hiscuss the MACSYMA relevance to each. Though we do not have a coherent theory behind each, we balleve this invastigation is a modest beginning of approaches of practisal significance.

\section*{REFERENCES}
1. Risch, R.: The Probiem of Integration in Finite Terms. Trans. American Math. Soc., vol. 139, 1969, pp. 167-189.
2. Mcses, J.: Toward A General theory of Special Functions. Commun. ACM, vol. 15, no. 7, July 1972, pp. 550-554.
3. Wang, P.: Evaluation of Definite Integrals by Symbolic Manipulation. Rep. 92, Lab. Comput. Sci., (formerly Prnj. MAC), Massachusetts Inst. Technol., 1971.
4. Ng, E.; and Polajnar, D.: A Study of Alternative Methods for Symbolir. Calculation of Elinptical Integrals. Proceeding of 1976 ACM Symposium on Symbolic and Algebraic Computations, Aug. 1976, pp. 372-376.
5. Gupta, K.; and Ng, E.: Symbolic Calculations in a Finite Dynamic Element Analysis. Proceedings of the 1977 MACSMiA Users ' Conference, NASA CP-2012, 19/7. (Paper no. 16 of this compilation.)
6. indersen, C.: Use of Computerized Symbolic Incegration in Finite Element Deveiopment. Procecdings of the ACM Annual Conferexine, pp. 554-562, 1974.
7. Chase, S.M.; and Fosdick, L.D.: An Algorithm for Filon Quadrature. Commun. ACM, vol. 12, no. 8, Aug. 1969.
8. Cody, W.J.: A Survey of Practical Pational and Folynomial Approximation of Functions. SIAM Rev. vol. 12, no. 3, 1970.


\section*{LISP: PROGRAM IS DATA}

\title{
A HISTORICAL PERSPECTIVE ON MACLISP
}

Jon L White
Laboratory for Computer Science, M.I.T.*

\begin{abstract}
For over 10 years, MACLIS? has supported a variety of projects at M.I.T.'s Artificial Intelligence Laboratory, and the Laboratory for Computer Science (formorty Project Mi.C). During this time, there has been a continuing development of the MACLISP systen, spurred in great measure by the needs of MACSYMA development. Herein are reported, in a mosiac, historical style, the major features of the system. For each feature discussed, an attempt will be made to mention the year of initial development, and the names of persons or projects primarily responsible for requiring, needing, or suggesting such features.
\end{abstract}

\section*{INTRODUCTION}

In 1964, Greanblatt and ohers participated in the check-out phase of Digital Equipment Corporation's new computer, the PDP-6. This machine had a rumber of innovative features that were thought to be ideal for the development of a list processing system, and thus it was very appropriate that the first working program actually run on the PDP-6 was an ancestor of the current MACLISP. This early LISP was patterned after the existing PDP-1 LISP (see reference 1), and was produced by using th: :ext editor and a mini-assembler on the PDP-1. That first PDP-6 finally found its way inio M.I.T.'s Project MAC for use by the Artificial Intelligence gr up (the A.I. group later became the M.I.T. Artificial Intelligence Laboratory, and Project MAC became the Laboratory for Computer Science). By 1968, the PDP-6 was running the Incompatible Time-Sharing system, and was soon supplanted by the PDP-10 Today, the KL-10, an adavanced version of the PDP-10, supports a variety of time sharing systems, most of which are capabie of running a MACLISP.

MACSYMA (ref. 2) grew out of projects started on the 7090 LISP 1.5, namely Moses' SIN program and Martin's MATHLAB. By implementing the Project MAC Symbolic and Algebraic manipulation system in LISP, many advantages were obtained. Oi paricular importance were (i) a basic data convention well-suited for encoding algehraic expressions, (ii) the ability for many independent individuals to make programmitg contributions by adhering to the programming and data framework of LISP, and (iii) the availability of a good compiler and debugging aids in the MACLISP system. As the years rolled by, the question was .sked "What price LISP"? That is, how much faster could the algebraic system be if the advantages brought by the LISP system were abandoned and an all-out effott was made in machine language? Moses nas estimated that about a factor of two could be gained (private communication), but at the cost of shifting much of the project resources from mathematical research to coding and prograniming. However, that loss could have been much larger had not MACLISP developmert kept pace, being inspired by the problems observed during MACSYMA development, and the devetopment of other projects in the A.I. Laboratory. The most precarious strain placed on the supporting LISP system ty MACSYMA has been its sheer size, and inis has led to new and fundamental changes to MACLISP, with more yet still in the future. Many times, the MACSYMA

\footnotetext{
*During the calendar year 1977, the author is located at the IBM Thomas J. Watson Research Center, Yorktown Heights. NY 10598.
}
system was not able to utilize the solution generated for one of its problems, due to the familiar trap of having aiready too much code invested in some bypass solution: but there has generally been an interchange of ideas amongst those groups using MACLISP at the A.'. Lab and LCS, and another group may have received the benefit of an idea born by MACSYMA needs.

Because the system is still evolving after a decade of development, it is useful to think of it as one big piece of data, a progiam still amenable to further critical revicw and emendation. Below are presented some of the developments of this past 10 years, with a little bit of explanation as to their significance and origin.

\section*{HOW K E GOT TO WHERE WE ARE}

\section*{Clever Control Features}

In 1966, Greenblatt suggested abandoning the a-iist model for program variables, and returning to a standard save-and-restore stack model such as mighi be used by a recursive FORTRAN. This was the first LISP to do so, and a later LISP developed at Bolt, Beranek, and Newman (BBN) in Cambridge used a model whereby storage for program variables was dynamically allocatec on the top of a stack. Both stack models could achieve a significant speed-up over the a-list models, but at a cost of limiting the use of FUNCTION (see ref. 3). The BBN LISP later became INTERLISP (ref. 4), and currently has a stack model with the same function capabilities as the a-list model. In 1975, the PROGV feature was added and is apparently unique to MACとISP. PROGV is essentially PRC 3, except that the list of variables is not syntactically present, but rather is computed \(\mathbf{2} 3\) an argument to PROGV; previously. about the best one could do was to call EVAL (or APPLY) with a dynamically-constructed LAMBDA expression.

In 1969, Sussman, noticing features of the MULTICS operating system, demanded some similar features for MACLISP: asynchronous interruption capability, such as alarmclocks, job-console control keys, hardware faults, interprocess communication, and exceptional process conditions (chiefly, errors). Many LISP systems now petmit the user to supply functions for thandling standard LISP errors, and provide for some mechanism at the job-console to interrupt the system, putting it into a top-level-like loop called BREAK. MACLISP permits interruption capability on any character of the input-console keyboard; the user may designate any function to be run when a particular key is typed. To some degree, these features appeared concurrently in INTERLISP, but especially the stackframe and debugging facilities of INTERLISP inspired similar ones in MACI.ISP. In mid-1976. MACLISP cous finally give an interrupt to the user program on several classes of hardware-detected conditions: acce:s (read or write) to a specific address, attempted access to non-existent address, attempted write access into read-only memory, parity error, and illegal instruction. Furthermore, some operating system conditions could trigger special interrupts: system about to shut down in a few minutes, and consolc screen altered by system. Eivident from the development of LISP-embedded systems was the need fur a NOINTERRUPT facility, which could protect user-coded processes from an accidental, mid-function aborting such as might occur during an asynchronous interrupt. Steele desigred and implemented the current scheme in late 1973.

Sussman's development of MICRO-PLANNER (ref. 5) required some more capabilities for intelligent, dynamic memory management; and thus White, in 1971, introduced programmable parameters for the garbage collector - a minimum size for each space, a maximum allowable, and a figure demanding that a certain amount be reclaimed (or found free) after a collection. Then in the next year came the GC-DAEMON mechanism, whereby a user function is called immediately after e teh garbage collection so that it can intelligently monitos the uage of memory and purposefully modify the memory-ntanagemert parameters. Baker, who has recently done work on concurrent garbage collection (ref. 6). has produced a typical storage monitor using the MACL.ISF mechanisms (ref. 7).

Sussman's later development of CONNIVER (ref. 8) showed the need for a sort of non-local GOTO, as a means of quickly aborting a computation (such as a pattern-matching data-base search) that had gone down a wrong path. Thus in 1972 White devised the CATCH and THKOW facilities (THROW provides a quick, non-local break-cut to a program spot determined by CATCH), and implemented FRETURN as a means of an impromptu "THROW" out of any stackframe higher up than the current point of computation (this is especially effective if an error break occurs, and the user can supply by hand a correct return value for some pending sutroutine call several levels up the stack). In 1975. Stecie coded the EVALHOOK feature, which traps each interpretive entry to EVAL during the evaluation of a piece of code: this permitted users to write debugging packages that can effectively "single-step" through an evaluation.

The embedding of advanced programming-language systems in LISP, such as MACSYMA, MICRO-PLANNER, CONNIVER, and LLOGO (ref. 9) required a means of insulating the supporting system (writien as LISP code) from the users \(c_{\text {d }}\) de (written in the ne:s experimental language). Sussman and White noticed that the action of INTERN was rimarily a table look-up, and they implemented this table (in 1971) as a LISP array, which artay is held as the value of the global variable OBARRAY. Thus a user can change, or even LAMBDA-bind, the INTERN envirenment. Similarly, the action of the programmable reader could be controlled by exposing its syitax and macro table as the value of the global variable READTABLE, which was done in 1972. In 1975, the MAPATOMS function as found in INTERLISP was implemented for quickly applying a function to all the objects on a given OBARRAY. All these embedded systems wanted to have better control over the LISP top-level and break-level loops; so in 1971 two features were added: 1) ability to replace the top-level and break-level action with a form of the users choice, and 2) a facility to capture control after a system-detected error has occurred but before re-entry to the top level. At first, the error-break permitted only exiting by quitting out back to top level, but later these breaks were such that many errors could be corrected and the computation restarted at the point just prior to the error detection. By early 1975, it was noted that many applications wanted to alter what might be called the default input reader and the default output printer: the formel because their code files were writ:en with many macro and special facilities, and the latter because of the occurrence of circular list structure. Thus the two variables READ and PRINI, if non-NIL, hold a user-supplied function for these operations.

\section*{-1/O Facilities}

In 1968. White proposed a programmable, macro-character input reader, and by the summer of 1969, the reader was in operation. Since that time, some other IISPs have added certain special features to their readers, such as inputting 'A as (QUOTE A), or as in INTERLISP, permitting the user to change the meaning of break, separator, and escape characters; but to the author's knowledge none have any user-progranmable macro \({ }^{\prime}\) facility, nor so wide a range of parsing options as does MACLISP.

The PRINT function of MACLISP has remained relatively neglected over the years; but in 1973 Steele implemented the PRINIEVEL and PRINLENGTH facilities as inspired by the INTERLISP PRINTLEVEL facility. LISP has always had the notion of "line length", such that if mure than a specified number of characters were output without an intervening newline character, the a newline was automatically inserted by the system (ihis was especially practical in the days when model 33 Teletypes were the main terminal used, and the operating system did not take care of preventing too long a line). MACLISP allowed aia override on this automatic insertion feature, but in 1976 Steele modified this facility so that, even when not overriden, it would not insert the generated newline character in the middle of some atom. Along with the macro-reader in 1968 . White installed dynamically-variahle base conversion for fixnums, so that any base between 2 and 36 could be used; for what it's worth, Steele extnded this for roman numerals also in 1974.

\footnotetext{
I Of course the macro functions are written in LISP. what else!
}

The problem of "perfect" output for flowting-point numbers on the PDP-10 has appareaily not been solved in any other system. That is, given the more-or-less standard input algorithm for base conversion from floaing-point decimal numbers (dfpns) to floating-point binary numbers (bipn:s, construct an output sonversion algorithm such that
i) every representabie bfpn is converted to a shortest dfpn, and
ii) if e is a representable bipn, and \(\mathrm{e}^{*}\) is its dfpn image by the output algorithm, then the input algorithm applied to e* produces exactly e.
In 1972, White devised and instalied in MACLISP an algorithm that was more nearly "perfect" than any other known to the author or to persons of his acquaintance; and in May 1977 White and Steele improved that algorithm so that they think it is "perfect" (a proof of which is forthcoming). Most other algorithms will increase the least-significant bit of some numbers when passed through the read-in of print-out cycle (see reference 10 for a possible explaration of why this problem is so hard). Golden anticipates MACSYMA's usage of this capability. "perfect" print-out, if it inderd is truly so.
inspired by LISP 1.6 (ref. 11), a preliminary version of a multiple \(1 / \mathrm{C}\) scheme was coded up by Stallman in 1971. Prior to this, MACLisP could effectively READ from at most one file at a time, and PRINT out onto at most one file at a time: furthermore, there were no provisions for I/O other than the ASCII streams implicit in READ and PRINT. That preliminary version was abandoned in early 1973. and a decision was made to copy the design of th MLLTICS version i/0 (which had teen developed rather independently). This scheme, coded by Steele and ready for ure early in 1975, has been turmed "Newio". It has since been undergoing continuing check-out and development up until now, and in January 1977 hecame the standard MACLISF on the ITS versions. although we have not yet made the necessary modifications to the TOPS- 10 version.

Between 1967 and 1971. the A.I. Libb Vision Group, and MACSYMA Group saw the need for a faster method of getting compiled LISP subroutines off disk storage and into a running systen. Back then, the compiler would produce a file of LAP code, which would be assembled in each time it was required. The first step in this direction was taken in 1969 when White devised a dynamic array spuce. with automatic garbage collection. Then White and others worked out a relocaiable format for disk storage such that the load in time could be minimal: Stee'e and White implemeated this scheme between 1972 and 1973, caied FASLOAD. Golden reported that the tine to load in all the routines comprising the then-existing MACSYMA dropped from about an hour to two minutes; continuing MACSYMA development certainly required this FASt L.OADiag scheme. Closely following in time was the AUTOLOAD scheme, whereby a function that was not part of the in-core environment, but resident in FASI format on disk, would be FASLOADed in upon first invocation.

\section*{Arthmetic Capabilities}

Perhaps the most stunnin; achievement of MACLSSP has been the method of arithmetic that has permitted FORTRAN-like speed from compiled LISP code. In 1968 , Martin and Moses, foresecing future needs of MACSYMA, demanded better arithmetic capabilities from MACLISP: In i969, Martin changed the implementation of numbers se that FIXNDMs and FLONUMS consumed only one word, rather than three - that is, the L.ISP 1.5 format was ahandoned and numbers were implemented mer:ly as the pointer to the full-word space cell containing their value. Such a scheme had already been accomplished, partially, in other LISess. After that change ir the intern eter had been completed, some new functions were introduced for type-specific arithmesic:
\[
\begin{aligned}
& \text { for fixed point: }+-\bullet / 1+1- \\
& \text { for floating point: }+\$-\$-\$ / \$ 1+\$ 1-\$ \\
& \text { for eithe, (hut not mixed): }=\ll
\end{aligned}
\]

Later, more functions were added, such as fixed-point square-root, and greatest-common-divisor. The fixed-point functions would be an automatic dectaration to the compiler that all arguments and resulfs would be fixnums. and that all arithmetic can oe modulo \(2^{25}\) : similarly. the flonum functions would specify the use of floating point hardware in the compiled code.

At the same time, Binford suggested installing separate full-word stacks for FIXNUMs and for FLONLAis, and interpreting these stack addresses as the corresponding type number. Then White proposed eliminating the discontinuity in FIXNUM representation caused by the INUM scheme, so that open-compilation of numeric code would need no extra, interpretive-like steps to extract the numerical value from a LISP. number: \({ }^{2}\) White also designed a scheme for using the number stacks, interfacing compiled subroutines with one ancther and with the interpreter. The redesign of number storage. and the design of a numeric subroutine interfase, was for the purpose of permitting the compiler to produce code similar to what a PDP-10 FORTRAN compiler could produce on essentially numeric programs. \({ }^{3}\) Work then began on the compiler to take advantage of all this, and a preliminary version for arithmetic code was operational by late 1971, under the care of Golden and Rosen wh? did most of the early coding. Rosen and White developed optimization in the compiler during 1972, and White continued this work through the end o: 1976. In 1974. White and Steele extended the array data facilities of MACLISP to include FORTRAN-like arrays of fixnums and flonums so that the compiler could optimize array references in numerical code; see Steele's paper describing the current output available from the compiler (ref. 13).

Early along in MACSYMA development, Moses and Martin saw the need for variable-precision integer arithmetic, and thus the BIGNUM functions were born, with most algorithms taken from Knuth (ref. 14). During 1972 and 1973. Golden suggested the need in MACSYMA for some of the usual transcendental functions, like SIN, COS, natural logarithm and anti-logarithm, and arc-tangent (these were adapted from some rational approximations originally developed by White in 1967); for GCD. HAULONG, HAIPART, and improvements to the the exponentiation function EXPT; and for the ZUNDERFLOW switch, which permits interpretive arithmetic routines to substitute a real zero for any floating-point result that causes a floating-point underflow condition. By combining the binary and Lehmer algorithms from Knuth (ret. 15), Gosper produced a GCD algorithm early in 1976 which runs much faster on bignum inputs. Abo, in 1976, a feature was added to the interpretice floating-point addition and suburaction routines such that \(i\) : the sum is significantly less than the principal summand. then the sum is converted to zero; the variable ZFUZZ holds a scale-factor for this feature, which is still considered experimental (LISP370 has a more pervasive use of a similar ceature in all floating-point arithmetic and I/O functions).

Randomness has always been a property of MACLISP. having had a linear-shift-register RANDOM nunber generator since early times. This generator produced a maximally-long sequence, was extremely fast, and moderately acceptable for most applications. However, it failed the correlated-triples test, and when it was used to generate random scenes for display on the LOGO Advent color projector, it produced some very nice kaleidoscopic pictures; so in late 1976, a modification of Knuth's Algorithm A (ref. 16) was coded by Horn.

\section*{Ancillary Packages}

A number of ancillary functions have been coded in I.ISP, mostly by persons who were LISP users rather than system developers, and are kept stored in their compiled. FASL format for loading in when desired. In 1970. Binford coded a small, but powerful, subset of the INTERLISP in-core editor as a LISP package, but this was later recoded in machine language: a more extensive version of the INTERLISP editor has been coded by Gabriel in 1975. In \(\mathbf{1 9 7 0}\), Winston designed and coded INDEX.

\footnotetext{
\({ }^{2}\) MACLISP, by inspecting the numerical value of a number coming into the FIXNUM-conser, supplies a canonical. read-only copy for fixnums in the range of about \(-1000.10+200\). This significanily reduces the number of new cells required by rurining arithmetic code, without significantly sowing down the operations. Currently, no similar action is taken for FLONUMs
\({ }^{3}\) The generally-accepted opinion in 1968, and indeed in some quarters up until 1973. was that 1.1sP is inherently a hundred times slower on arithmetic than is FORTPAN. Fateman's note in 1973 efiectively rebutted this opinion (ref. 12), but in 1969 it toots faith to gon ahead with this plan; only Martin and the author had a clear resolve to do so then.
}
a package to analyze a tile of LISP prograns and report on certain properties therein. During 1972, Goldstein replaced an existirg, slow pretty-printer (called GRiND) with a programmable pretty printer (ref. 17), and Steele spruced-up an existing TRACE package to have more featares. After the Newio scheme became operational. two packages were coded for the fast dumping onto disk and retrieval therefrom of numeric arrays. and a FASDUMP package was irupiemented for MACSYMA that could quickly and efficiently store list structure ois disk (Kulp had a hand in developing this package, but it may no longer be in use). Many of these user-supplied packages now reside on a disk area called LIBLSP, which includes a FORMAT package by White for printing out numbers under control of a format (such as is used in FORTRAN), a package for reading and printing circular list structures, various debcgeing packages and s-expression editors, and many others.
in 19,3 Prati was continuing work on a "front end" for LISP, CGOL (ref. 18), which he had begun at Stanford University in 1971, and he had it generally operational at a number of sites by 1975. It exemplifies the Pratt operator-precedence parser (now used at the front end of MACSYMA), and has some of the character of MLISP (ref. 19). However, the CGOL-to MACLISP conversion is dynamic and fast, and furthermore, an acceptable inverse operation has been implemented. so that one can effectively use this ALGOL-like language while still retaining all the advantages of MACLISP (fast interpreier, good compiler, many detagging aids, etc.). It is not at all impractical to replace the MAClISP default reader and prinier with CGOL's (sce notes on READ and PRINI if, the last paiagraph of "Clever Control Features" above), so that CGOL may be properly thought of as an ahternate external syntax for LISP. See reference 7 for a practical example - one particular GC-DAEMON function for MACLISP, coded in CGOL.

MIDAS, the A.I. Lab's assembly-language system for the PDP-10, cooperates with MACLISP to the extent of being able to produce a FASL format file. A number of these ancillary packages have this been coded in machine language for greater efficiency. In mio 1973, Steele coded a versiot, of Quicksort (ref 20) which is autoloadable as the function SORT: in 1976, after Newio became stabie. Steele coded a file-directory query package (called ALLFII.ES), and designed a package for creating ancontrolling subjobs (tasks) in the ITS time-sharing environneat (called HUWible). ('sing the HUMBLE package. Kulr and others interfaced the text editer TECO with MACLISP, for incicased programmer efficiency in debugging and updating LISF programs. Kulp and others had proposed a textprocessing system suitable for use with a photo-composer to be written in MACLISP and using thase features, but this has not yet been realized. With the ALARMCLOCK facility for periodic interrupts, and HUMBLE for driving sut-tasks, MACLISP is felly equipped for ineconing a time-sharing system.

\section*{Expent Systems}

Martin's desire to be able to use MACSYMA on the MULTES system led to the start of a MULTICS version of MACLISP, begun in late 1971 by Reed; after this was futly operational in 1973. Moon, who had worked on it wrote the now-extinct MACLISP Reference Manal published ir March 1974 (ref. 21). Althuagh there has been little use of MACSYMA on the MULTICS version, it was successfully transplanted there: several other extension systems developed on the PDP-10 version were also sucressfully tested on the MULTICS version, such as LLOGO and CONNIVER.

In the summer of 1973, the MACLISP system was extended to permit its use on TOPS-i0, DEC's non-paged time sharing system. Much help on this tevelopment has come from members of the Worcester Polytech Computation Center, and fron the resources of the Computer Science depariment of Carnegie-Mellon University. The impetus for having a TCPS-10 version came from many academic institutions, where students with interests in arificial intelligence had been intrigued by MICROPLANNER and CONNIVER and their appications, and had wanted to experiment with these systems on their own PDP-10s. i.ater, as M.I.T. gradeate students and professors moved to other universities. they took with them the desire to use MACLISf. rather than any of the other dvailabie L.ISP alternatives. The major difficulty in export to these other institutons has been their lack of adequate amounts of main memory - fuw places could even run the MAC isp compiler, which lequires \(65+\mathrm{K}\). At we
me Moses had ardesire to export MACSYMA through this means, but this has not proved feasible, Even for the KI-10 and KL-10 processors, which have paging boxes, the TOPS-10 operating system does not give user pregrams sufficient control over the page-map; consequently, this version of MACLISP is to some degree less efficient in its memory utiazation.

The TENEX an 1 TOPS- 20 operating systems should be able to support the TOPS- 10 version of MACLISP, under a compatibility mode, but there has been somu difficulty there. in 1971, a specially tailored version of MACLISP was ran under the TENEX sysiem, but this version died out for lack of interest. If future interest demands \(: 1\), there should be no trouble in getting almost the full range of MACLISP features found on the ITS version to be implemented in a TOPS-20/TENEX versioin. In 1976 Gabriel adapted the TOPS-10 version to run on the Stanford A.I. Laboratory operating system. and there is currenuly an increasing body of users out there.

\section*{Revised Data Renresentations}

A major step was taken in 1973 when the long-awaitud plans to revise the storage strategy of MACLISP saw the light. A plan called Bibop (acronym for Blg Bag \(\mathrm{O}^{*}\) Pages), inspired in part by the prior INTERLISP format, was designed by White, Steele, and Macrakis; and this was coded by Steele during the succeeding year. The new format relieves the need for a LISP user to make precise allocations of computer memory, and permits dynamic expansion of 'each data space (although only the array storage area can be dynanically reduced in size). In 1974, numeric arrays were added, and in 1976 a new data type called HUNK was added as a s-expression vector without any of the overhead associated with the array data type. Steele's paper in these proceedings (ref. 22) gives a detailed account of how tide currem storage picture looks inside MACLISP.

Especially MACSYMA, as weil as Winograd's SHRDLU and Hewitt's PLASMA systems, needed the efficiency and versatility of these new formats. The concept of "pure free storage" entered the picture after Bibop became operational: this is list and s-expression structure that is essentially constant, and which can be removed froni the active storage areas that the garbage collector manages. Furthermore, it can be made read-only, and shared among users of the same system; in MACSYMA, there are myriads of such cells, and the consequent savings is enormous. Thus the incremental amount of memory required for another MACSYMA user on the system starts at only about 45 K words!

\section*{The Compiler}

Greenblatt and others wrote a compiler for the PDP-6 lisp, patterned initially after the one for 7090 LISP on CTSS. This carly attempt is the grandfather of both the surrent MACLISP and current LISP 1.6 compilers. However, optimizing LISP code for the the PDP-6 (and PDP-10) is a much more difficult task than it might first appeai to be because of the multiple opportunities provided by the machine architecture. That early compiler had too many bugs to be really useful, but it did provide a good, basic structure on which White began in 1969 (joined by Golden in 1970) to work out the plans tor the fast-arithmetic schemes (see ref. 13). The LISP 1.6 compiler has apparently not had so thorough 3 check-out and debugging as the MACLISP compiler, since its reputation is unreliability. The ANTERLISP compiler was produced independently, and seems to be quite reliable; but comparisons have shown that average programs compile into almost twice as many instructions through it than through the MACLISP compiler.

\section*{Ad-Hoc Hacs}

As the number of nev and interactive features grew, there was observed need for a systematic way to query and change the status of various of the operating system and LISP system facilities. We did not want to have to introduce a new LISP primitive function for every such feature (there are scores!), so thus was born in 1969 the STATUS and SSTATUS series. The first argument to these functions selects one of many operations, ranging from getting the time of day from a home-built clock, to reading the phase of the moon, and to setting up a special TV terminal line :n monitor the garbage collector. Later,
in 1975, the function SYSCALL was added as a LISP entry into the time-sharing system's CALL series of operations. (See reference 23 for information on the ITS system.)

Between \(19 \% 0\) and 1972, the demands of the A.f. Lab Vision group necessitated the installation of a simulated TV camera, called the FAKETV, along with a library file of disk-stored scene images. A cooperative effort between the Vision group and the LOGO group led to the design of a Display-slave - a bigher, display-orientated language for use with the Lab's 340 Display unit using the PDP-6 as an off-line display processor. Goldstein, because of his inierest in LLOGO (ref. 9), participated in the initial design along with Lerman and White; the programming and coding were done by the latter two.

In 1973, terminal-input echo processing (rubout capability) was enhanced, and cursor control was made available to the user for the existing display terminals. When the A.I. Lab began using the home-built TV terminal system, Lieberman coded a general-purpose display packages in LISP for u:e on the TV display buffer. When Newio became available in 1975. Lieberman and Steele showed examples of split-screen layouts usabie from LISP, and in 1976 Steele showed how to code a variety of "rubout" processors in LISP. Furthermore, Newio permitted extended (12-bit) inpu' from the keyboards associated with these eerminals.

In 1973, MACLISP copied a feature from LISP 1.6 for improving facilities in linkage between compiled subroutines - the UUOLINKS technique. All compiled subroutine calls are done indirect through a table, which contains interpretive links for subroutine-io-subroutine transfer. Under user option, these links, may be "snapped" during run time - that is, converted to a single PDP- 10 subroutine transfer instruction. A read-only copy is made of this table (after a system such as MACSYMA is generated) so that it may be restored to its unsnapped state at any time. The advantage of this is that, normally, subroutine transfers will take place in one or two instruction executions, but if it is desired to debug some already compiled subroutines, then one need only restore the interpretive links from the read-only copy.

Inspired by MACS'MA's history variables, MACLISP adopted the convention in early 1971 that the variable "*" would hold the most recent quantity obtained a: top level.

In 1973, 'Vhite codeci an s-expression hashing algorithm called SXHASH, which has been useful to routines doing crmonicalization of list structure (by hashing, one can greatly speed-up the search to determine whether or not there is an s-expression copy in a table EQUAL to a given s-exprescion).

To accommodate the group that translated the lunar rocks query-information system from INTERLISP to MACLISP, the convention was established in 1974 that car[NIL]=cdr[NIL]=NIL. This seems to have been widely accepted, since it simplifies many predicates of the form (AND \(X(\operatorname{CDR} X)(\operatorname{CDDR} X)\) ) into something like (CDDR \(X\) ).

WHERE DO WE GO FROM HEKE?
The major probiem now with MACLISP, especially as far as MACSYMA is concerned, is the limitation imposed by the PDP-10 architecture - an 18 -bit address space, which after overhead is taken out. only leaves about 180 K words for data and compiled programs. Steele discusses some of our current thinking on what to do about this in his paper (ref. 22) of these proceedings, under the se tion "The Address Space Problem". Since the LISP machine of Greenblatt (ref. 24) is such an attractive aliernative, and is even operational now in 1977, we will no doubt explore the possibilities of incorporating into PDP- 10 MACLISP some of its unique features, and in general try to reduce the differences between them. For the future of MACSYMA, we foresee the need for new, primitive data types for efficient use of complex numbers and of double-precision floating-point numbers. We anticipate also the need to have a version efficiently planted in the TOPS- 20 system.
\begin{tabular}{|c|c|c|}
\hline MIT Professors & Research Staff & Students \\
\hline toel Moses & Jon L White & Guy L. Steele Jr. \\
\hline William A. Ma tin & Jeffrey P. Golden & David A. Moon \\
\hline Gerald J. Sussman & Richard Greenblati & Eric C. Rosen: \\
\hline Ira P. Goldstein & Thomas O. Birford* & John L. Kulp \\
\hline Vaughan Prath & Jerry B. Lerman* & Richard P. Gabrisi* \\
\hline Patricx H. Winston & R. William Gesper** & Henry Lieberman \\
\hline Terry L. Winograd* & & Richard M. Stallman \\
\hline Carl E.. Hewitt & & Stavros Macranis \\
\hline Richard J. Fateman* & & David P. Reed \\
\hline Berthold K. P. Horn & & Henry G. Baker. Jr. \\
\hline * \(=\) No longer at M.I.T & & \\
\hline
\end{tabular}

\section*{REFERENCES}
1. Deutsch, L., and Berkeley, E.; The LISP Implementation for the PDP-1 Computer, in THE PROGRAMMING LANGUAGE "LISP". edited by Berekeley, E., and Bobrow, D., Information International Inc., 1964.
2. MACSYMA Reference Manual. Project MAC Mathlab Group, M.I.T., November 1975.
3. Moses, J.: The Function nf FUNCTION in LISP. Al Memo 199. Artificial Intelligence Lab, M.I.T.. June 1970 .
4. Teitelman, W.; INTERLISP Reference Manual (Revised edition). Xerox Palo Alto Research Center, 1975
5. Sussman, G., Winograd, T, and Charniak, E.; Micro-Pl.iner Reference Manual (revised). Al Memo 203A. Artificial Inteiligence Lab, M.I.T., December 1971.
6. Baker, H.; A Note on the Optimal Allocation of Spaces in MACLISP. Working Paper 142, Artificial Intelligence Lab. M.I.T., March 1977.
7. Baker, H.; List Processing in Real Time on a Serial Computer. Working Paper 139, Artificial Intelligence Lab, M.I.T., February 1977.
8. McDermott, D., and Sussman, G.; THE CONNII ER REFERENCE MANUAL. AI Meno 259A, Artificial Intelligence Lab, M.I.T., January 1974.
9. Goldstein, I.; LLOGO: An Implementation of LOGO in LISP. AI Memo 307, Artificial Intelligence Lab, MII.T., June 1974.
10. Matula, E.; In-and-Out Conversions. CACM 11, I. Janyary 1968, pp. 47-50.
11. Quam, L.: STANFORD LISP 1.6 MANUAL. SAILON 28.3, Artificial Intelligence Lab, Staaford University, 1969.
12. Fateman, R.; "Reply to an Ed torial", SIGSAM Bulletin, 25, March 1973, pp. 9-11.
13. Steele. G.: Fast Arithmetic in MACLISP. Proceedings of the 1977 MiACSYMA Users Conference, NASA CP-2012, 1977. (Paper no. 22 of this compilation).
14. Knuth, D.; The Art of Computer Programming, V2. Addison-Wesley, 1969, pp. 229-240.
15. \(\longrightarrow\), ibid., pp. 293-307.
16. ———, ibid., pp. 26-27.
17. Goldstein, I.; Pretty-Printing. Converting List to Linear Structure. Al Memo 279, Artificial Intelligence Lat, M.I.T , Feburary 1973.
18. ?ratt, V.; CGOL - An Alternative External Representation for LISP Users. Working Paper 121. Artificial Inteliigence Lab, M.I.T., March 1976.
19. Smith, D.; MLISP. AlM-135, Artificial Inteligence L.ab, Stanforc University, 1970.
20. Kruth, D: The Art of Computer Programming. V3. Addison-Wesley, 1४73, pp. 114-116.
21. Moon, D.: MACLISP Reference Minntal, Revision O. Laboratory for Computer Science (formerly Project MAC). M.I.T., March 1974.
22. Stcele, Gi.; Data Representations in PDP-10 MACLISP. Proceedings of the 1977 MACSYMA Uscrs Conference, NASA CP-2012. 1977. (Paper no. 21 of this compilation).
23. Eastlake, D.; ITS Status Report. AI Memo 238, Artificial inteligence Lab, M.1.T.. April 1972.
24. Greenblatt, R.; The Lisp Machine. Working Paper 79, Artificial Intelligence Lab, M.I.T., November 1974.

\section*{LISP: DATA IS PROGRAM}
A TUTORIAL IN LiSP
Jon L White
Laboratory for Computer Science, M.I.T.*

\begin{abstract}
A novel approach at teaching LISP to a novice is herein developed. First, the abstract data lormat is presented, emphasizing its real structure and its machine implantation. Then the technique of writing plograms in the data language, and of "interpreting" them, is presented. Hustrative features are drawn from various extant LISP implementations.
\end{abstract}

\section*{IN'TRODUCTION}
The design of LISP as a programming language was based on the desire for a practical implementation of recursively defined subroutines capable of operating on data of arbitiarily complex structure. This paper will develop, partly from a historical point of view and partly for the benefit of a programming novice, the requirements placed on the data implementation, and the usefulness of the data structure to symbolic computation. A self-contained and motivating data presentation for the novice has not been adequately handled elsewhere, as previous works invariabiy define a classic logical language of well-formed-formulae over a character alphabet - an approach which does not relate well to the structured nature of LISP data, and which carnot provide the basis for explaining one of the primary data predicates: FQ. In addition, the goal of embedding the programming honguage into tire data language, and achieving efficient interpretation thertin, will be discossed. LISP is unique in that a simple data operation will take an expression of the data language and. leaving its structure intact, extend it to be an applicable function in the programming language. This is essentially the ability to create LAMBDA expressions dynamically (and, where appropriate. to create FUNARG expressions, and to compile functions at run time). It is not expected that this paper will be sufficient for a novice actually to learn how to program in LISP, but it should provide a good, basic understanding of the concepts involved.

\section*{THE DATA}

\section*{Its Structure}

In many programming languages, the data are essentially "flat" objects. In FORTRAN, the basic datum is an integer (or floating point number), limited in information content to some fixed number of bits, and the basic arithmetic operators are not thought of as decomposing an integer into sub-parts. Even the notion of a vector of numbers is quite "flat" since the components of such a vector are not themselves considered to te sub-vectors, but merely numbers. In languages which provide for characterstring processing, there is a similar "flatness", with 'number' replated by 'character', and 'vector replaced by 'string'. Just as we would not want each program variable to be restricted to one kind of data. similarly we would no: want our most general type of composite data to be restricted as to the aype

\footnotetext{
* During the calendar year 1977, the author is located at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY 1059\%, and wirhes to acknowledge members of the LISP370 project as having contributed to the development of ideas in this paper.
}
of subcomponents it may have. Another problem in these languages is that the prograr variables must of ten be restricted to data of a particular size - FORTRAN integer variabies being implicitly limited by the word size of the supporting machine, FORTRAN vectors (and vector variables) requiring explicit compile-time dimensioning of sizes, and PL/I string variatles being limited analogously by explicit program declaration.

One goal of LISP is to remove the limitations of "flatness" and size from the data objects and their corresponding variables; e.g., typeless variables are permissible in LISP, and the transition from hardware-supported integer arithmetic (modulo, say, \(2^{35}\).) to infinite-precision integer arithmetic need not concern the programmer (except for the question of computation cost). For the data to be of the most general structure, its components must not be restricted as to type; in short, the dita should be defined recursively. Twe obvious features of structured data sets a.e: 1) that at least some of the data structures have more t'an one component (otherwise, there would be no structure!), and 2) that without any real loss of generality it is sufficient to have only binary structures, since there is a na aral, easy embedding of any other into these.

LISP has, for its basic non-atomic data, objects of two components which are decomposed by the functions CAR and CDR, and which are built up by the function CONS. These functions represent, in an abstact sense, the necessary operators defined over a structured data set - CONS being mnemonic for the constrution function, and the other two, subcomponent accessers, being named after a particular feature of the architecture of the IBM 704 on which ti.e first LISP systern was implemented. In fact. actual machine architecture has deeply influenced LISP design, for one ooal of LISP was to become a useful programming langijge. Thus, a first step was to assign a logical record of menory (that is, some finite nuinher of bits easily accessible by the supporting hardware) to hold a data object; we call such a block of memory a "cell", and use the machine address of the cell as a handle for the object. An address used this way will variously be called a "pointer" or "rame" of the stored object. Half of the bits in the cell (or thereabouts) hold the first part of the pain, accessed by C.AR, and the other half hold the second, of CDR, part. Computer architecture intrudes at this point, in that the computer word is often chosen as the unit of memory for a cell, partly because of economy in memory utilization and partly because of a computer instruction repertoire which permits easy decomposition of data stored this way. This has been true for almost all PDP10 LISPs, and quite a few IBM360 LISPs, but LISP370 (an experimental LISP at IBM's Research Center) uses a double werd for each celi, and the MULTICS MACLISP takes four words per cell. At first, this storage method seems to invalidate the goal of not limiting the size of a data object to a fixed bound, but this is not nearly so serious as it may seem, since the parts of a cell are interpreted as names for other cells; thus a dat ohject is thought of as a graph, consisting of all the celis and links reachable from a given pointer by CAR and CDR.

In the world of algebraic manipulation, any reasonable fixed allocation for the mañinum size of integers will prevent most simplification algorithms from working. \({ }^{1}\) Fot this tiason, most good LISP \(\boldsymbol{s}\) gstems provide for variable-precision integer arithmetic, often by embedcting the parts of a long integer fito one of the other complex data structures. However, the maximum size ci a data structure is limited by the total number of names available for nodes of the conceptual graph which it represents, and this name space is limited by the number of biss in a half-cell. At the outset of LISP development, large computers had up to 32 K worde ef main memory, and this was thought te be larger than any program would ever need; however, applications soon came up requiring many times that number of LIS? cells

\footnotetext{
IAn "unreasonable" size allocation would be one in which only a few hundred integers sould fit in main memory at one time. The default allocation for most languages is one tomputer word per integer, because there is generally built into the hardware the circuitry for quickly doirs arithmetic on one- or two-word cells. One can only go so far in attempts to speed up arithmetic with larger and larger circuitry. as the work of Winograd shows in references 1 and 2. Another approach at increasing speed has been to analyze nunierical algorithms, trying to separate out the parallel parts so that duplicate arithmetic units may carry out the subcomputarions in parallel; the ILLIAC-IV has much circuitry involved in the latter approach.
}


> attached to that particular object may be easily accessed - the FNAMF thus serving as a kind of "key". The standard input routine for LISP, generally called READ, cuastriets s-expressions by parsing an input stream of characters; but in particular, when it parses a siring into a PNAME, it uses a function INTERN to locate the canonical symbol with that PNAME; INTERN, in turn, accompliches this by keeping a table (called the OBARRAY, or the OBLIST) of all canonical symbols, creating new ones as the need arises. Some implementations do not permit the creation of any syrabols except the canonical ones, so that no two distinct symbols would have the same PNAME; but in others not : strict, the terminology "uninterned atom" is used to mean a symbol not entered (and heace not "canonical") on the cutrent OBARRAY. The importance of an external, address-free reference will be seen as this paper fevelops the presentation of "he LISP data language as a programming, language: atomi, symbols are used as names (in, the informal sense) for system subroutines, for user-lefined subrouines, for program variables, and for a few specially recognized constants.

\section*{Atoms - Numbers}

The desire to use machine hardware arithmetic instructions, and to economize on storage, has led LISP to introduce the class of atoms called FIXNUM (and, in most systems, FLONUM also). The programming language provides basic predicates for testing whether a given object is an atom o, numeric type, the most general such being NUMBERP, and most LISP systems support a variety of numeric data types with associated type-specific predicates in order to accommodate programming needs (some LISPs also provide a basic predicate to test whether an object is an atomic symbol, such as SYMBOLP in MACLISP and LITATOM in INTERLISP, but some others 'o not - the programmer resoring to a compound form like "atom[x]^~numberp[x]"). A fixnum, for example, has a word in which a number is stored in the usual computer notation (say, 2 's complement in a \(\mathbf{3 6}\)-bit word); rumeric operations will now be facilitated, but the output routine will have to go through some base-conversion process to produce the digit-string that one would like to see for that number. On the input side of the question, a digit-string can be evaluated assuming a particular radix notation, and a new cell (or cells, it a multipleprecision integer is indicated) allocated for stoing the incoming number. At this point, a certain anibiguity is evident concerning the input parser: should a string of characters, all of which are decimal digits, be converted into a fixnum, or into a symbol with that string as PNAME? As a convention, such a siring would be input as a fixnum (or flonum if the sequence alsc had some characier recogrized ty the parser as a floating point indicator), and another convention is established for escaping the special significance that the parser might apply to particular characters. In MACLISP, the character ! is used in prefix of any character that might otherwise cause the parser not to include that character in the PNAME of a symbol. For example.

1729
could be read in as a fixnum, the least integer expressible as the sum of two cubes in recisely two different ways, whereas
/1739
would be read in as a sjmbul with four characteis in its PNAME. There are no systemie properties associated with a number other than its numerical value, so there seems to be no need to try to identify a cranonical storage beation for a given value (but se:ne systems do canonicalization, of varying degrees. ia order to reduce storage utilization).

\section*{Lists}

The gencral data structures of LISP are then built up over the fielt of atomic objects with the construction function CONS. The basic non-atomic object, because of the way it is consiructed and storec, is called by some persons a "cons" cell, ty others a "pais", and by many others a "list" celi. As a function. CONS is anti-commutative in that if \(c_{1}\) and \(c_{2}\) are uncqual, then CONS \(\left\{e_{1}, e_{2} \mid\right.\) and \(\operatorname{CONS}\left[e_{2}, e_{1}\right]\) are also unequal. Graphically, this is seen in figure 1 in that the edges emanating from a node have a definite left-hand and right-hand orientation; also evident is the binary nature of cONS, in that each non-atomic node has precisely two edges emanating from it (and each atomic node has none).

The external, linearized representation of a non-atomic object: calied its "print representation", is a modification of a fully-parenthesized notation. The full notation is easily described: let \(e_{1}\) and \(e_{2}\) be any two data nbjects, and let \(e_{1}{ }^{*}\) and \(e_{2}{ }^{*}\) be theit respective print representations. Then a data object constructed from \(\mathrm{c}_{1}\) and \(\mathrm{e}_{2}\), that is by \(\operatorname{CONS}\left[\mathrm{e}_{1}, e_{2}\right]\), will have the print representation
\[
\left(e_{1}^{*}, e_{2}^{*}\right)
\]

It is generally convenient to think of the pair cell as holding a list, even though this is only art interpretation in the mind of the beholder: the CAR part of a pair is the first elenent of the list, and the CDR part is the tail of the list with the first elemeni removed. Ostersibly. by successive applications of the CDR function, sonte atom will be reached; by convention, we desire this atom to be the symbol NIL, and elevate it to the status of the null list. i.e., the list with no elements. Many LISP systems will permit list operators to work with lists terminaiing in sonic other atom, but by fixing on this conventional use of NIL, the following simplification can be made for the print representation:
(i) Instead of ( \(e_{1}{ }^{*}\). NIL), we will print ( \(\mathrm{e}_{1}{ }^{*}\) )
(ii) Suppose there is a list \(/\) which prints as
\[
\left(e_{1}^{*} e_{2}^{*} \ldots e^{*}\right)
\]
then, for \(!^{\prime \prime}=\) cons \(\left[\mathrm{e}_{0}, I\right]\), instead of ( \(e_{0}{ }^{*} .\left(e_{1}{ }^{*} e_{2}^{*} \ldots e^{*}\right)\) ),
we will print ( \(e_{0}{ }^{*} e_{1}{ }^{*} e_{2}{ }^{*} \ldots e^{*}\) )
Figure 2 shows a graph for a data strizture, as in figure 1, with the two possible print representations printed below it. Note, also, the several common references to the boxes for the symbols ABC and NIL. and the duplication of the boxes for the fixnum 35; sec how the graph more directly shows the canonicalization that has taken place for the input of symbole and the du-lication for input of numbers.

\section*{THE PROGRAMS}

What kind of operations might one want to do in this data world? McCarthy's classic paper, "Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I" (ref. 6, one migit say the grandfather of LISP papers), is a good start at answering this question. Both it and the LISP 1.5 Prograinmer's Nianual indicate that the elementary opet, dions CAR, CDR, CONS (discussed above as bsing the requisite operations needed over any binary structured data set), and the elementary predicates ATOM. EQ, along with the mathematical notions of functional composition, conditional expression, and recursive definition comprise a sufficient means to build up any computable function on this data domain. \({ }^{3}\) This collection of primitive functions and functional schemata is minimal in that no one part can be derived from the others alonc. (The two points, sufficiency and minimality, have been proven by Mike Levin, one of the early oliginators of LISP). Of course, in real sage, many more functions art added for the convenience of the programmer; part of the job of a Lisp system implementer is to choose a reasonable set of basic. system-supplied functions - not so large as to bloat the computer's nemory, and noi so small as to unduly cramp the prograntmer.

Historically, the developm nt of LISP as we know it today, was quite accidental. Originally, it was assumed that various functions could be cefined and written down witt. some mathsmaticai rigor, using a more-or-less standard mathematical notation which was called the Meta-language (see refs. 5.5). Then from this presentation, one would compile the algorithm into a machine language program, with subroutines holding their data ard exit addresses on a stack in order to provide for recursive operation

\footnotetext{
\({ }^{3}\) It is interssting to note that the paper (ref. 6), while laying the foundation of a good nor-numeric data structere for computers (symbolic expressions), at the same time has had a profound effect on the development of program schemsi, namely the way in which programs are pui together from components. Conditional expression and memory operation wre required in any non-trivial programining world: but McCarthy, by emphasizing functional composition and resursive definition. injected a bit of mathematical common-sense into the world of sequential programming.
}
- hardiy the interpretive LISP we know today! In any programming project, the task of getting programs into the computer always becomes more difficult as time goes on (and time has a nolnrious infamy for always going on), so someone had the bright idea of transcribing prosiams, not into machine language, but bato the data language already defined, namely s-expressions. so that they could be automatically translated into machine language. The first mechanical compiler was, of course, written in machine language, but it was not very successful (needless to say, subsequent compilers were written in LISP). Then. one of the programmers associated with the original LISP project had the bright idea of making ari s-expression evaluator, which could interpret these encoded progratis, and hence, through EVAL, the LISP interpreter was born.

That single idea has had enornous consequence on the developinent of the fields of list processing, artificial intelligence, and symbolic manipuiation. Although some other languages, such as APL, permit the dynamic evaluation of cemputed expressions, in none save LISP is the programming langaage so thoroughly embedded into the data. In no other is there the smooth naturalness with wiich Lilip piograms may dissect, anatyze, report upon, review, "dress-up". synthesize, emulate, and compile other LISP programs.

Functions. Functional Composition, and QUOTF
What, then, is the: transcription scheme? It is really quite simple. First, we note that most LISP systems have at least the characters of the 6-bit ASCII alphabet, which is 26 uppercase letters, 10 digits, some punctuation marks, and the usual assortment of special characters found on most typewriters of teletype maclines. Then, a variable or function is representec by the symbo: of the corresponding PNAME; numbers stand for themselves, that is the; will be transcribed directly: functional application is shown as a list of the function and all its arguments in order; functional composition is shown as hist compesition; the elementary operations are represented by the atomic symbols CAR. CDR. CONS. ATOM, and EQ; and some of the basic arithmetic operators are implemented with memonic names in prefix notation (instead of wri:ng " \(x+z+2.3\) ", we would arite in prefix notation "plus \([x, 2,2,3 \mid\) "). As an example illustrating all the rules mentioned so far, we would transcribe
\[
\begin{equation*}
5 \cdot[\log \sin (x+2+2.3)] \tag{1}
\end{equation*}
\]
into a list printable as
(TIMES 5 (LOG (SIN (PLUS X Z 2.3))))
If all our functions were defined only over numbers, then the intent of such a program, coded in list structure, is clear: add together the numeric values of the variables \(x\) and \(z\) and the number 2.3 , take the trigonometric sis of the resuit, then the natural log of that, and finally multiply by 5 . But some of our functions are defined over lists as well as other objects, and the question arises as to how the argument for such a function is obtained. For example, suppose we wart to print out the list (PL.US \(X\) 3). and suppose coincidentally that the variable X has the value 7 . Then what does
(PRINT (PLUS X 3))
do as a program? By the above rules, it should print out the number 10. How then are we to indicate that we want to print out the list (PL.US X 3)? It becomes necessary to add a rule in the transeription seheme that overrides the rutation for functional composinion - for this purpose, we use the atom QUOTE in the first element of a list to indicate that the second element is not a sub-program, but rather is to be taken directly as data without any interpretation. Line \((2)\) above would print out the number 7 . whereas
(PRINT (QUOTE (PI I'S X 3))
"\%ould print out the desired list, (PLUS X 3). Line (2) could be a transcription of the expression "print \((x+3)^{\prime \prime}\), whereas line (3) could be that for "print (' "LUS X 3)'|".

There are several kinds of overrides to the functional composition rute, to be discussed in turn below. Because of the similarity of structure -- namely, an atonic symbol at the first element of a list - many persons have begun referring to these overriders as "functions" also; but they should more 196
properly the viewed as parts of the syntat of the programming language LISP. Ir. LISP 1.5, they are called "special forms". In particular, they represent the realization in LISP of some of the abstract. universal concepts found in any prictical programming language: t.g., COND, PROG, SETQ, DEFINE. I ISP further has QUOTE as just discussed, and LAMBDA - the former to distinguish data expressions from programs in which the data might be embedded. and the latter to distinguish programs from some data in which they, in turn. might be embedded. At this point. it nust be stressed that these raies and conventions comprise part of the programmatic merpretation of 115 ? data expressions: other. radically different interpretations are possible, eg. without QIO1F, or without PROG and SETO, but they are generally less usabie.

Program interprettion also imples an importance to the sequence in which the sub-computations are carried out. if there were no memory cells in a computer, nor any side-effecis during computation. then the order of evaluation of the sub-parts of a program would be irrelevant. For example, what difference would it make if. in computing " \((x+3) \cdot(y-5)\) ". the sum were peiformed after the difference calculation" Logically, none: but if whike computing the difference "y-5", some action is taken that changes the value of the variable \(x\). then probably a different final product would result. The normat rule fer LISP program interpretation is left-io-right order of evaluation, beginning with the first element of the list. This first clement, corresponding to some function to be applied. is inspected for a basic function definitien. or 'or one supplied by the programmer (which may involve recursion through the interpreter) \({ }^{t}\) and then the first argument to the function is calulated according to the program part in the second element of the list: and then the third. and so on. Finally, the function is invoked with the corresponding arguments. The special forms PROG and SETQ do not come under this normal rule PROG corresponds to the sequential natute, with GOTOs. of FORTRAN programs; and SETQ corresponds to the notion of assigning a new value to a variabie while releasing the old value. Because of lack of spate, these features will not be further discussed in this paper.

\section*{Predicaies and Conditional Expressions}

Predicates operate on data to produce one of two values - Irue or false. In the LISP world, we let the symbol NIL encode the value false and T encode frie. However, as a convenience, we ablow any non-NIL value to be returned by a predicate, and in so doing interpret it as true. Futhermore, we remove NIL and T fion the collection of possible program sariables, considering them as constants which stand for themselves just as numbers do.

The elementary predicate ATOM is a function which is true for terminal nodes of the graphstructured data (the items in rectangular boxes in figures 1 thra 3), and false for cons cells. It is apparent that the domair of ATOM on which it is fufs is precisely the domain of s-expressions on

\footnotetext{
4 Normally, the identity of the function, or sub-program, to he applied is evident upon "inspection", in that it will be an atomic symbol with some direct functional property. What happens when this is not the case has never been clearly defined -- notice, for example, the discrepancy between lines \(18-19\) and tine 21 on page 71 of the LISP 1.5 Programmerv Manual (ref. 5). and reference 6 has an ewen more corfusing bug it: the corresponding spot of the definition of EVAl. Moxt IISP satems make one evaluation of the first element, then evaluate all the remaining elements once in order to oblain the arguments, and then begin a process of re-evaluation of the result from the first element until it in directly disecrnible to be a function. There is no problem undess some relevant memory kowation is changed, such as thappens in the following example. First, note the shorthand convention of writing exp instead of COUOTF ex?.
}
(ISUBST 3 ' \({ }^{\prime}\) (PCOGi2 (SETOX (PLDS XN:) DIFFERENCE)
\(X\)
y)

In ins case. by evaluating the first element successively iwice, one gets a result diderent from that obiasinad by the order of evaluation just mentioned above.
which CAR and CDR are applicable. Atoms which are interpretable as numbers are stored in computer meinory in such a way as to require specialized functions and predicates, for the purpose of achieving efficiency in numeric operations; e.g., NUMBERP, FIXP, FLOATP. GREATERF, and nemeric-equal. In MACLISP, and some uthers, many new numeric functions and predica:es have been introduced generally having shorter names, such as \(>\) as a less general form oi GREATERP, = for (exact) numeric equal, + for addition restricted to fixnuins. \(+\$\) for addition sestricted to flor.ums, and so on. \({ }^{5}\)

The predicate EQ. a function of two arguments, is a test for pointer identity; let us see how this works. In figure 3, two lists LI and L2 are shown graphically aleng vith their print representaticn (in L.), the edges are not shown as extending all the way to the rectangular boxe: for atoms, merely because of the complexity of drawing too many intersecting lines). Suppose for example that the top node of LI is stored in a cons cell at computer address 0129, and \(L 2\) at 3724. Let \(x, y, z\) be program variables such that \(x=L 1, y=L 2, \leq n d z=1.1\). This means that the variables hold some pointer to a cons cell - the bits of \(x\) and \(z\) would correspond to the decimal number 129, and those of \(y\) to 3724 . But a LISP system interprets this pointer according to its data classification; thus ATOM is false for each of the varizbles, and each would be printed out as

\section*{(LIST (QUOTE FCO))}

Now, EQ is true of \([x, z]\), but false of \(\{x, y]\) and \([y, z]\) because \(x\) and \(z\) hold the same pointer, but \(x\) and \(y\) are different pointers corresponding to isomorphic structures.

Of course, not all functions. even over the doman of numbers, are smooth and "analytic"; discontinuities of various sorts can be introduced by conditional expressions. Let DELTA be defined as a function of \(x\) and \(n\) as follows: if \(x>n,-1\) if \(x<n\), and 0 otherwise. This conditional expression would be transcribed into LISP as

> (COND ((GREATERP X.N) 1)
> ((LESSS X N) -1)
> (T 0) \()\)

As with QUOTE, COND is a special form in the programming language, and indicates that a sequence of sub-lists follows, each sub-list consisting of one or more expressions. The first elements of the sub-lists are evaluated in sequence order until the first one that comes up not false is found; the remaining clements of that sub-list are then evaluated and value of the last element (which might also incidentally be the first) is taken as the resulting value for the COND expression. In addition to the "discontinuity" which the conditional expression introduces, there is a noticeaile programmatic feature. namely that of selective evaluation. Not all of the predicates are evaluated, but only those whict, in seguence, turn out to be false, up until the first one liat is true. Obviousiy. COND may be thought of as a compound predicate; so are OR and AND, whose definitions are in accord with one's intuitive notion. It may be helpful to see corresponding code for OR and AND in terms of COND:


To found out the logical connectives. NOT operates as truth-value inversion. Both (NOT \(x\) ) and (NULL \(x\) ) operate the same as the expression (COND ( \(x\) NIL) (T)).

\footnotetext{
\({ }^{5}\) LISP system: which have introduced novel data 'ypes generally have introfuced functions and predicates with restricted domains in order to operate efficiently on them. This is one way of extending I.ISP.
}

\section*{Lefining Functions}

The expression (4) above is almost a definition for a function "delia". but it is not symmetric in the two variables \(x\) and \(n\), if you were to write (DELTA 3 5), you would want to know whether \(X\) woud hold 3 and N 5 , or ice-versa. The symbol LAMBDA is a special form to indicate that a function is oeing defined from an expression, by specifying the order in which the variables of the expression shall correspond to the incoming arguments. Rewriting (4) as a functional expression, we get
\[
\begin{aligned}
& \text { (LAMBDA (X N) } \\
& \text { (COND ((GREATERP X N) I) } \\
& \text { ((LESSP X N)-1) } \\
& (\text { T 0)) ) }
\end{aligned}
\]

Now (5) is an expression that can be applied to [3.5] and result in -1 . but when applied to [7.2] results in 1. The syntax permits us to write this expression directly in the functional position of a list intended for program interpretation:
\[
((\operatorname{LAMBDA}(X N)(\operatorname{COND}((>X N) 1)((\leqslant X N)-1)(T 9)) 35)
\]

However, for convenience of writing, we might like to define DELTA as a function name corresponding to the functional expression (5); in the case of recursive definition. there is no choice about the matter, we must start out with some function name so that we can write dove the definition using that name. Consider the classic case. defining the factorial function.
\[
\text { (LAMBDA }(\mathrm{N}) \text { (COND }((=\mathrm{N} 0) 1)(\mathrm{T}(* \mathrm{~N}(\text { fact-cortinuation }(-\mathrm{N}(1))))
\]

At the point where fact-continuation occurs, we would like ancther copy of the entire functional expression substituted, so that the coniputation could be carried on recursively. Rather than eatend the notation to encompass cyclic structure, or to infinite sub-structure, we fiad that using a symbol as a name for a furction being defined solves not only this problem, but also that of conciseness. Thus the factorial definition becomes:
(DEFINE FACT (LAMBDA (N)
\[
\begin{aligned}
& (\operatorname{COND}((=N \mathrm{~N})() \\
& \left.\left.\quad\left(\mathrm{T}\left({ }^{*} \mathrm{~N}(\text { FACT } i-\mathrm{N} 1)\right)\right)+\right)\right)
\end{aligned}
\]

Function definition is generally realized in a LISP system by executing a program that places a property on the property list of the symbol which is the function name; DEFINE (or DEFUN in MACLISP) is a special form which causes this to happen.' Evaluating (DEFINE FOO exp) will cause an attribute-value pair to go on the property list of FOO - the attribute name is EXPR, and its corresponding value is exp. The interpreter can then quickly recognize FOO to be a function name by accessing its EXPR property, and substituting the LAMBDA expression so obtained tor the name. In the case of machine-language subroutines, a starting-address is stored under the SUBR attribute, and. after the arguments are obtained, the interpeter can quickly despaich control off to the relevant location. In such a LISP, one needs only the ability to rad-in lists and to cvaluate them after read-in in order to add subroutines (or programs, if you will) to the system. The so-called "top level" of a LiSP system is basically a lcop:

\section*{A: print(eval(read())) go \(A\)}

From this we can see the importance of INTERN to the input RFAD function: it is necessary that both instances of "FAC"" in (6) above be read in as pointing to the same atomic object (and not merely to atoms with the same PNAME). and the same holds true of the three instances of "N". Thus it is that one programs in LISP, and interacts with LISP environment.

\footnotetext{
TThere are L.ISP systems that do not use the property list for function definition, hut instead use whatever mechanism implements the assignment of a value to a variable. This appreach is adequate. atthough it means that one could not use a symbol both for a variable name and a function name.
}

Let us consider a definition of an "equality" predicate EQUAL defined over all the data types mentioned in this paper. such that two s-expressons are printed out in linear format the same way if and only if they are EQUAL. For numbers, the numeric equality predicate is used; for symbols, SAMEPNAMEP and for lists, the definition is recursive over the C.AR pari and the CDR part. Historically. EQUAL was defined before any considerationt was given to multiple copies of atomic objects all with the same PNAME: hence EQ was generally used instead of SAMEPNAMEP; berause if two symbols were stored in different locations then they necessarily had diterent PNAMEs. As far as the author knows, all LISP systems still use EQ here, ana this is considered satisfactory.
```

(DEFINE EQUAI
(LAMBDA (X Y)
(COND (:EQXY)T)
((ATOM X)
(COND ((NOT (ATOM Y)) NIL:
((AND (NUMBERP X) (NUMBERP Y,) (= X Y))
((OR (NUMBERP X) (NUMBERP Y)) NIL)
(T (SAMEPNAMEP X Y)))
((ATOM Y) NIL)
((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y))
(T NIL)!)

```

It would be instructive for the reader to consider this example line by tine to verify how it works. Note carefully that EQt:hi does not define "graph-isomorphism", but rather a concept that has come to be called "access-equivalence". Two structures are said to be access equivalent (or EQUAL) if any access chain (a sequence of CARs and CDRs, for LISP) leading to an atcmic object in one stiucture also leads to the same atomic object in the other. See figure 4 for a graphic , resentation of two structures that are EQUAL but not isomorphic

\section*{REFERENCES}
1. Winograd, S:; On The Time Required to Perform Adstion. J. ACM 12. 2. April 1965. pp. 277-285.
2. Winogred, S.: On The rime Required to Perform Multiplication. J. ACM i4. 4. Oct 1\%67. pp. 743-802.
3. Knuth. D.: Mathematics and Computer Science: Coping with Finiteness. Science. 194 17 Dee 1'776. pp. 1235-:242.
4. Weissman. Clark; I.ISP I.5 Primer. Dickenson Publishing Co., 1967.
5. MeCarthy, John, et. al.: LISP 1.5 Programmer's Mamuat, The MIT Press, Second edition 1965.
6. MeCarthy John: Recursive Functions of Symbolic Expressions and Their Computation by Machne. Part I. CACV 3. 4, April 1960. pp. 184-195.


Figure 2


Figure 4


\begin{abstract}
The internal representations of the various Maclisp data types are presented and discussed. Cartain implementation tradeoffs are considered. The ultimate decisions on these tradeoffs are discussed in the light of Maclisp's prime objeciive of being an efficient high-ievel language for the implementation of large systems such as MACSYMA. The basic strategy of garbage collection is outlined, with reference to the specific rapresentations involved. Certain "clever tyicks* are explained and justified. bue "address space crunch" is explained and some alternative solutions explored.
\end{abstract}

\section*{INTRODUCTION}

Maclisp is a version of LISr which is used not only as a user application language bur as a systems programing language, supporting such system: as MACSYMA and CONNIVER. As such, it has been carefully designed with speed as one of its major goals. Generality, ease of use, and debuggability have not been neglected, but speed of compiled code has been the primary consideration. This is a departure from the traditional view of LISP as a friendly and general but slow and clumsy language.

The representations of daca objects in Maclisp have undergore a continuous evolution towards this goal. Wien Machisp was first created, the data representations were designed for simplicity and compactness at the eapense of speed. Since then there have been at least two major revisions, each to speed up compiled code and simplify the processing of the data. Here we discuss tie current implementáion on the PDP-10 (Maclisp aiso runs on Multics, and on the "LISF machines- teing constructed at the MIT Artificial Intelligence Laboratory). We shall contrast it with previous Maclisp implementations and implementations of other LISP systems, and discuss some of the design decisions involved.

\section*{ORGANIZATION OF THE PDP-10}

The data representations in MecLISP have been carefully designed to take full advantage of the PDP-10 architecture. fluil understanding of the design decistons involved requires the following minimal knowledge of the pDP-io instruction set.

The PDP-10 operates on \(36-b i t\) words. Memory addresses designate words, not bytes, and are 18 bits wide; thus two addresses can fit in one word. There is a class of instructions which manipulate half-words; for example, one can store into half of a medory word and either not affect the other half or set the other half to ali zeros or all ones.

The PDP-10 has 16 accumulators, each 36 bits wide. All but one can be used for indexing; all cen be used as stack pointers; all can be used for arithmetic.

The accumulators can also be referenced as the first 16 bemory locations (though they are hardware registers and not actually memory locations). For reasons explainud later. Maclisp devotes certain accumulators to specific purposes. Accumuiator 0 contains the atom NIL. Accumulators 1-5 may contain pointers to data objects; these are used to pass arguments to LISP functions and return vaiues from them. Accumulators \(6-10\) are scratch registers, and are generally used for arithmetic. Accumulator 11 is reserved for a future purpose. Accumulators 12-15 are usad for stack pointers to the four stacks.

Every user FDP-10 instruction has the following format:
\begin{tabular}{|c|c|c|c|}
\hline opcode & ac & \(\theta\) & idx \\
\hline
\end{tabular}

Each instruction has a 9-bit operation code and a 4-bit field specifying an accumulatior. The effective memory address (or immediate operand) is unifortily computea by adding to the 18 -bit address field the contents of the accumulator specified by the 4 -bit index field (a zero indox field means no indexing). If the sindirection bit " \(\varrho\) " is set, then a word is fetched using the computed address and the process iterated on the address, index, and rields of the fetched word. In this way the PDP-10 allows multiple levels of indirection with indexing at each step.

\section*{MACLISP DATA TYPES}

Maclisp currently provides the user with the following types of data objects:

FIXNUM Single-precision integers.
FLONUK Single-precision floating-pcint numbers.
BIGNUM , Integers of arbitrary precision. The size of an integer arithmetic result is limited cnily by the amount of storage available.
SYriBOL Atomic symbols, which are used in LiSP as identifiers but which are also manipulable data objects. Symbols have value cells, which can contain LISP objects, and property lists, which are lists used to store information which can be accessed quickly given the atom. Symbols are written as strings of letters, digits, and other nor-special characters. The special symbol NIL is used to terminate lists and to denote the logical value FALSE.
LIST The traditional CONS cell, which has a CAR and a CDR which are each LISP objects. A chain of such cells strung tagether by their CDR fields is called a list: the CAR fields contain the elements of the list. The special syabol NIL is in the CRR of the last cell. A chain of list cells is written by writing the CAR elements, enclesed in parentheses. A nonNIL non-list CDR field is written preceded by dot. An example of a list is (ONE THO THREE), which has three clements which are all symbols. It is made up of three ilst cells thus:


ARRAY
Arrays of one to five dimensions, dymanically allocatable.
HUNK Short vectors, similar to L:ST cells except that they have more than two components. This data type is fairly new and is still experimental.

POINTERS
In Maclisp, as in most LISP systems, the unit of data is the pointer. A pointer is typically represented as a memory address, witt, the components of the data objact pointed to in the memory at that address. The reason for this is that LISP data objects have varying sizes, and it is desirable to manipulate them in a uniform nanner. Numbers, for example, may occupy varying numbers of words, and it is not always feasible to put one as such into the accumulators. A poin*er, being enly 18 bits, can always fit in one accumulator regardless of the size of the object pointed to; moreover, it renuires only 18 bits for one data object to concain another, since \(-t\) need actually only contain a pointer th the other.

Given a pointer, it is necessary to be able to determine what kind of object is being pointed to. There ere two alternatives: one can either have a field in every data object specifying what type of object it is, or encode the type information in the pointer to the objeat. The latter method entails an additional choice: one san either adjoin type information to the memory address (in which case it takes more bits to represent a pointar), or yrrange it so that the type is implied by the memory address itself (in which case the memory must be partitioned into different areas reserved for the various data types). Machisp has generaly used this last solution, primarily because of the half-word manipulation facilities of the PDP-10. Two memory addresses will fit in one word with no extra bits left over. (Contrast this with an ISM 370, wich has \(32-b: t\) words and 24-bit addresses: on this machine one would use \(32-b i t\) pointers, encoding type information in the extra elght bits.) This is extremely useful because a list cell will fit in one word; the left half can contain a pointer, to tha CAR and the right half a pointer to the COR.

The method Machisp presently uses for detarmining. the type of a data objert involves using a date type table. The 18 -bit adicess space ( 256 K words) of the PDP-10 is divided into segments of 512 words. All objocts in the same segment are of the same data type. To find the data type of an object given its address, one takes the nine high-order bits of the address and uses them tn inciex the data type table (called ST, for Segment Table). This table eitry cuntains an encoding of the date type for objects in the corresponding segment:
\begin{tabular}{ll} 
Bit 0 & 0 if atomic, 1 otherwise. \\
Bit 1 & 1 if list cells. \\
Bit 2 & 1 if fixnums. \\
Bit 3 & 1 if ilonums. \\
Bit 4 & i if bignums. \\
Bit 5 & 1 if symbols. \\
Bit & 1 if arrays (actually, array pointers; see below). \\
Bit 7 & 1 if value ceils for symbols.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Bit 8 & If rumber stack (one of bits 2-3 should also be \\
\hline Bit 9 & is currently unused. \\
\hline Bit 10 & 1 if memory exists, but is net used for data. \\
\hline Bit 11 & 1 if menory does not exist. \\
\hline Cit 12 & 1 if memors is pure (reed-only). \\
\hline Bit 33 & 1 if hunks. \\
\hline Rits 14-17 & ara currently unused \\
\hline Bits 18-35 & (the right half) contain a pointer to the symbul representing the date type, nasely one of LIST, FIXNUM, etc. The symbal RANDOM is used for segments containing no standard Machisp data objects. \\
\hline
\end{tabular}

The ancoding is redundant to take advantage of the PUP-10 instruction set and to optimize certain common oparations. There is an inetruction which can test solected bits in a half-word of an accumulater and sety if any ars set. Thus, one can cest for a number by testing bits 2,3 , and 4 tonciher. Bit 0 (the sign bit) is 1 for list, hunk, and vaiue cell segments (nan-atoms) and \(C\) for all others (atoms). This saves an instruction when making the very comon test for atnm-ness. since one can use the skip-on-memory-sign instruction instead of having to fetch the table entry into an accumulator. The right half of a table entry contains a pointer te the symbol which the HacliSP function TYPEP is supposed to return for objects of that type. Thus, the TYPEP function need only extract the right half of a table entry; it does not have to test all the bits individually. finally, the system arranges for all the symbols to which a table entry can goint to be in consecutive memory locations in one symbol segment. Since these symbols have consecutive memory address, the right half of a table entry can be used to index dispatch tables by type. For example, the EQUAL inaction, which determines whether two LISP objects are isomorphic, first compares the data types of its two arguments; if the data types match. chen it does an indexed jump, indexed by the right half of a Segaent Table entry, to deteraine how to compare the two objects.

By way of contrast, let us briefly consider the storage convention formerly used by Maclisp. Memory was partitionad into several contiguous regions, not all of the same 5120 . The lowest and highest addresses uf each region were known (usually the low address of one region was one mors then the highest address of the region below it). To determine the data type of pointer it mas necessary to compare the address to the adiesses of all the boundaraes of the regions. This was somewhat faster than the current table method if only one or two comparisons Were needed (as in setarmining whother a pointer gointed to a number, since the number regions were contiguous), but slower in the general case; furthermore, thore was no convenient way to dispstch on the data type. On the other hand, the table methud requires space for the entiru 512 -word table, twen if ouly a seall number of segments are in use. (Thers is another 5iz-word table for use by the garbage collector, the GC Segnent Table (GCST), which doubles this penaity.) The deciding advantage of the table method is that it permits dymaic expansion of the storage used for alach kind of dats. The region method raquires all list cells, fols example, to be in contiguous region; once ithis rcgion is fixed, there is no easy way to expand it. Licer the table method, any currently unused segment can be pressed into service for list colls merely by changing its table entry. An additional bonus of the table schome is that the space required for the instructions to do type-check is small, and so it is often worth-while to compils such type-checks in-line in coapiled code rather than calling a eype-checiang subroutine.

In practice now date egments are not allocated randomly, but from the top
of memory down. As new pages of memory are needed thay are acguired from the timesharing system and used for segments (on the ITS systew, there are two segments per page). Compi?ed prograiss are loaded starting in low memory and working up; thus between the highest program loaded and the lowest data segment allocated there is a big hole in memory, which is eaten away from both ends as required. This hole has Heen whimsically named "the BIg Bag of Pages" from which now ones are drawn as needed; hence the name "BIBOP" for the scheme. (The TOPS-10 timesharing system provided by DEC does not allow memory to be grown from the top down, but only from the bottom up. When running under this time-sharing system Maclisp has a fixed region for loading programs, and aliccates new data segments from the bottoa up.)

\section*{data representations}

List cells, as mentioned above, are represented as single words. The CAR pointer

Fixnums are rapresentad as single words which contain the PDP-10 representation of the number. As explained more fully in reference 1 , this representation permits arithmetic to he performed easily. If a pointem to fixnum is in an accumulator, thes any arithmetic instruction can access the valus by inuexing off that accumiator with a zero base address.

Flonums are represented as single words in a manner similar to fixnums.
Eignuas each have a single word in a bignum segment. The left half of this word is all zeros or all ones, representing the sign of the number. This representation of the sign is compatible with that for fixnums and flonums; thus the sign of any number can be testad with the test-sign-of-memory instruction. (Bignums were formerly rapresented as list cells with special pointers in the CAR; this did not permit the compatibility of sign bits, and aade it difficult to test for either numbers or lists.) The right half points to a list of positive fixnums, which represent the magnitude of the bignum, 35 bits per fixnum, least significant bits first in the list. A iist is used instead of a contiguous block of storage for both ease of allocation and generality of usa. The least significant bits come first in the list to ease the addition aigorithm.

Symbols are quite complex objects. Each symbol has one word in a symbol segment and two words if another segment. The right half of the one word points to the symbol's property list, which is an ordiary list; the left half points to the two-word block. These two words in turn are laid out so:


The "bits" have various specialized purposes. The value cell for the symbol is in a value coll segment. Notice that bits 13-17 of the first word aro zero. specifying no indexing or indirection. This permits an instruction to indirect through this word to get the value of the symbol. Getting the adaress of the twoword block also eakes an instruction; thus one can get the value of a symbel in two instructions. The "args" property is used by the Maclisp interpreter for cherking the number of argumert to a function (for symbols are also used to denote the names of functions). The print name is a list of fixnums containing the characters of the symbol's naze, Dacked five ascil characters to the word.

The special symbol Nil is no represented in this manner. The address of NIL is zero. This allowe a pariticularly fast check for NIL; one can use the jump: if-zero instruction. This is why accumulator 0 (which is also memory location 0 ) is reserved for NII. Accumulator 0 normally contains zero itself; in this way taking CAR or CDR of NIL yields NIL. This allows one to follow a list by CDR pointers to a predetermined depth and rot have to check at each step whether one has run off the end. (This trick was borrowed from interlisp (ref. 2).) Most functions make special checks for NIL anyway, so this non-standard representation is not harmful. PRINT, for example, just cheriks for NIL specially and just outputs "Nii" without looking for a print name. Mil does have a property list, but it is not stored where it is in other syabols; the property list functions must check for NIL (which takes only one instruction anyway). NIL has wo value cell. and always evaluates to NIL.

One might wonder why normal symbols are divided up into two parts, and why the value cell is not simply part of the two-word block. The answer is that once constructed the two-word block normally does not change, and so may be placed in read-only memory and shared between processes. If several MACSVMA processes are in use, this sharifig may ease core requirements by tens of thousands of words.

To save even core memory, symbols are not provided with value celis until necessary (most symbols are never actually given values). Instead, they are made to point to a "standard unbound" value call, which is read-only and contains the marker specifying that no value is present. When an atteart is made so writu into this value cell, the write is intercepted and a new value cell created for the symbol in question.
(Eesides making parts of symbols read-only, Maclisp currently allows for read-only list cells, fixnums, flonums, and bignums. These are useful for constructing constant data objects which are raferred to by compiled code but never modified, and for proparties on property lists whose values are not expected to change (such as function definitions). In certain cases, such as the property-1ist modifying routines, checks are mave for read-only objects, and such objects are copied into writable \(u\) emory if necessary to carry out the operation. Thie copying causes the old read-omly copy to be wasted from then on, but this is acreptable as such copying is seldoa necessary in iraciice. This strategy may be contrasted to the approach of Interlisp (ref. 2). in which an entire page of memory is made writable if an attempt is made to modify any object on that page. This apnroach is more genaral than that of MacLiSP, but in practice tends to reduce the sharing of pages among processes, increasing the load on the time-sharing system.)

Value cells, though not properly a Maclisp data tyfe, are worthy of discussion. They art single words, containing a pointer in the right half and zero in the left half. This apparent waste of 18 bits is motivated by speod considerations. Compiled code often referencus the value cells of global variables. Since the left Malf of value cell is zero, test for NIL can be done with single skip-if-memory-zero instruction; this is useful for switches. Furthermore, if a value call is known to colltain a list, the CAR or CDR can be taken in one instruction, using a half-word instruction with indirect addressing, because the index and indirection fields are zero. without having to fetch the valua into dal accumulator first. Similarly, if value cell contains a number, the sign can be tested and the valuc (except for bignums) accessed by using indirect addrissing. (It should be noted init compiled code does not keep local variable values in raiue cells, but uses oven more clever techniques involving stacks.)

Arrays have a complicated representation because they can be of arbitrary size, and must be allocated as contiguous block for officient indexing. The solution chosen is to split it into two parts: Special ARray coll (caliod SAR.
not SAC, for some reason) in an array sugment, and tra block of cata. The data itself is kept just below the hole in memcy, floatha ahove loaded programs. When new prograws are loaded, the array data is shbifled upward in memory, and the special array pointers are updnted. Sidilariy, when allocating a new aryay or reclaiming an old one it may bo necessary to shuffle the array data.

The snecial array peinter is two words:


A complate discussion of the SAR contents and array access methods is beyond the scope of tais papar. Notice, however, that the indirection and index fielus are chosen to be 0 and 7 for the two SAR words. The first adniss an indirection for calling the array as if it were a runction, according to Haclisp convention; the second allows indexing uff accumulator 7 for accessing the data from compiled code. See raference 1 for a fulier trwetment of this.

Hunks are like list ceils, but consist of several contiguous mords. They ars alvays a power of two in size, for convenience of allocation. Hunks of sizes other than powers of two are created by allacating a hunk of a size just big enough, and then marking some of the halfwerds as being unused by fililing them with a - - pointer (actualiy 777777). This was chosen because it never points to a data object, ant because it is easily ganerated with instructions that set half- or full-words to all ones. It 13 theo-consuming to determine the actual size of hunk, since one must count the number of unused halfwords, but then hunks wire created as an exporimental space-saving representation with properties somewhere betwen thuse of lists and arrays.

\section*{GARBAGE COLLECTION}

Every so often thare ccales a point when all the space currentiy existing for data objects has been allecated. At this point there are two alternativas:
[1] allocate a new segment for data objects of the type needad.
\([2]\) attempt to raclais space used by data objacts which are no longer niseded (by the prucess of garbage collection).
A study by Conrad indicates that the best stratedy is to do [2] only if [1] fails because one's address space (256K words, in this case) is completaly cllocated, PROVIDED that one has the facility to compuct one's data storage and de-ajlocate
segments. (Ref. 3) Since Maclisp currently hasn't the ability to de-allocate segments ("once a fixnuw, always a fixnum"). this strategy must be modified. One must be cautious about allocating a new segment, since the allocation cannot be undone; thus Maclisp tries garbage collection first unless explicitiy told otherwiso by the programer, and then allocates a new segaent if garbage collection fails to reclain enough space for the revuired data type.

Suppose, for example, that it is necessary in allocate a new list cell. The CONS function checks the freelist for the data type "list cell"; if the freelist is not empty, then the first cell on that list is used. (There is a frealist for each data type, which esnsists of all the currenty uneused objects in all the segments for that data type, strung togethet such that each object points to the next. This can be done oven for objects which ordinarily do not contain pointers. such as fixnums and flonums, since those objects are large eacugh to contain at least a single poluter. There is set of fixed locations, one for gach data type, which contain pointers to the first cells on the respactive freelists.)

If, In our example, the list cell freelist is empty, then the garbage collector is invoked. Controlled by user-settable parameters, the garbage collector way decide simply to allocate a new list sugment (which involves getting a new memory page from the time-sharing systea, altering the Segment Table, and adding the newly allocated objects to the freelist). If it decides not to do this, or if the attempt fails for any reason, ther tife actual garbage collaction process is undertaken. This involves finding all the data objects which are accessible to the user program. An object is accessible if it is pointed to by compiled code, if pointed to by a global variable or internal pointer register (such as accumulators 1-5). or if pointed to by another accassible object. Notice that this definition is recursive, and so requires a recursive se rehing of all the data objeris to determine which are accessible. This searching is known as the park phase of the garbage collertor.

Associated mith each data object is a "mark bit" for use by the garbage collector. As the garbage collector locates each accessible object, it sets that object's mark bit. For list cells, fixnums, flonums, bignums, and hunke, these bits are stored in part of memory unrelated to the aemory occupiad by the data abjects themselves. For each 512 -word segment there is a "bit block" of 16 words, bach holding 32 mark bits. The locatirn of the bit blonk is found by using the top 9 bits of the address of the data object to index the GC Segment Table. (Bit biocks themse:ves are allocated in special "bit block" segnents: thus bit blocks are treated internally as yet anothor data type. Occasionally the obscure error message "GLEEP - OUT OF BIT BLOCKS" is orinted by LISP in the highiy infrequent. situasion where it cannot allocate new bit block after allocating a new segment which needs bit block.; No bit blocks are needed for symbols and special array pointers. Recall that the ieft half of aymol word points to two-word block. Since such a two word block is always at af even addrass, the lea bit of the pointer to it is normaliy 2ero. This bit is used during garbage coliection as the mart bit for that symbol. Soecial array pointers have room in them for variety of bits, and one of them is used as a mark bit. Value colls are only reclaimed when the symbol pointing to them is reclaimed fand not even then, if compiled code points to the value cell, which fact is indicated by alt ia the two-word symbol block pointing to the value call), and so they requiro no mark bits.

To ald the garbage collector in the mark phasa, the GCST contains come bits which also encode the data type redurdant:y, in fora useful to the marking routine. The bits indscate whether the object must be inarked, and if so the method of marking; thay alse indicate how many pointers to other objects art contained in the object now being marked.

After recursively locating and marking all accessible cells, the garbaga collector then performs a sweep phase, in which every data object is examined, and those which have not been warked are added to the appropriate freelist. To aid the sweep phase, each GCSI entry has a fieid dy which all fintices fof segments of the same data type art linked together in a list. In this way the garbage collector does nof need to scan the entire segment table looking for entries for each type. For eacn segment, the garbage =ollector examines each data object in the segment and its mark bit, and adds the object to the appropriate freelist if the mark rit is not set. For symbols and arrays it also resets the mark bit at this time. (Bit blocks are reset at the beginning of the mark phase.)

If, in our example, the garbage collection process has not raclaimed enough list cells (as detarmined by another programer-specified farameter), than it will try to allocate one or more new list cell segments. If, however, this causes the total number of list cells to excerd yet another programer-specified parameter, then a "user incerrupt" is signaled, and a function written by the progracser steps in. In MACSYMA, this function is the one tilat typically infores you:
```

YOU HAVE RUN OUT OF LIST SPACE.
DO YOU HANT MORE?
TYPE ALL; NONE; A LEVEL-NO. OR THE NAKE OF A SPACE.

```

The reason for all these parazeters is the necessary caution desuribed abve: if wll tae ayailable sigments gat ailocated as list cell segments (which can cisily happen due to intermeaiate expression swell, for oxample), then they camnot be used for anything else, including coxpiled code. This is why, in MACSYMh, if you use up too much list spacio, you can't load LP DEFINT thereafier!

Array data (as opposed to the SAR objects) is handied by a special routine that knows how to shuffle them ap and down in core as necsssary. When a nes array is allocated, the garbage collector has the same decisicn to make as to whether to allocate more memory or atteupt to reclaie unused arrays. The decision here is less critical, since mezory allocatad for arrays CAN be de-allocated, and so no programer-specified paramoters are usac. Array data only goes away when the corcesponding SAR is reclaimed by the normal garbage collection process (or when the array is explicitly killed by the user, using the arearray function).

For the interested readei, the oreat of aCSt entry is shown hera:
Bit \(0 \quad 1\) if data cbjects in this segment must be marked.
Bit \(1 \quad 1\) if this segment contains value cells.
Bit 2 if symbols.
Bit \(3 \quad 1\) if special array poin:ers.
Bit \(4 \quad 1\) if the right half of this data object contains a
Bit 5 pointer (true of list, bianum, and hunk data objects).
Bit \(5 \quad 1\) if the left half of this data object contains a pointer ('irue of list and hunk objects .- note thik symbols and special array pointers get special treatment). It is always true that bit 4 is set if this one is.
81t 6 1 if hunks (in this cese, tho st entry is used to decermine thn size of the hunk).
8its 7-12 are unused.
Bits 13-2l contain the index into GCST or the next entry with the same data type, or zero if this is the last such entry. (Segment o never contains data objects, except NIL, which is treatad specialiy anyway.)

Bits 22-35 contain the high 14 bits of the address of the bit block for this segment, if any.

Since bit blocks are 16 words long, the low four bits of the address of such a bit block are always zero. Thus the GCST entry only needs to contain the high 14 bits of the address. These 14 bits are right.adjusted in the GCST entry for the convenience of a clever, tightly-coded marking algorithm. This algorithm works roughly as follows:
[a] Shift the address of the data object to be marked right by 9 bits, putting :se low 9 bits into the next accumulator.
[b] Use the high 9 address bits to fetch a GCST entry into the accumulator holding the high 9 address bits, skipping on the sign bit (whether io mark or not).
[c] Test bits 1, 2, 3 (special treatment), skipping if none are set.
[d] Shift the two accumulators left by 4 bits. This brings four of the 10 w 9 address bits back into the first accumulator, which together with 14 bits from the GCST entry yield the address of a hord in the bit block. The 5 bits remaining in the second accumulator indicate the bit within the word to use as the mark bit. Finally, bit 4 is brought into the sign bit of the first accumulator.
[e] Rotate the second accumulator. bringing the 5 bits.to the low end.
[f] Indexing off the first accumulator, fetch the word of mark bits.
[g] Set a mark bit in the word. skipping if it was not already marked. (If this doesn't sxip, then we exit the marking algorithm. It is not necessary to stora back the word of mark bits.) The bit is selected by indexing off the second accumulator into a tavle of words, each with one bit sot.
[h] Store back the word of mark bits.
[i] Test the sign bit of the first accumulator (bit 4 of the GCST entry:. jumping to the exit if not set.
[J] If bit 1 is set (bit 5 of the GCST ontry). recursively mark the pointer in the left half. If bit 2 is set (bit 6 of the GCST entry), mark all the pointers in the hurk.
[k] Iteratively wark the pointer it, the right half.
1 have taken the trouble to outine these steps carefully because most of them ara single PDP-10 inszructions, =arefully designed to perform two or throe useful operations simultantously. The peint is that the careful design of tables and the use of redindant encoding can greatly iucrease the speed of critical inner loops. (It should albo bo mentioned that such caroful thought about design is usually warranted only for criticai inner loops!) I should also mencion that most of the constants which have been nentioned in this paper (bit numbers, sizes or segments, anc so on) are represented symbolically in the taxt of the Maclisp code; one can change the size of segment by changifg a slagle definition, and the sizes of fields in GCST entries, positions of bits, ant 30 on will be adjustad by asstrbly-time computations. I have used numbers in this paper only for cencreteness.

For certain spaces the mark bits are actually used in the inverted sense: 1 means not marked, and 0 means marked. This allows the sweup loop to test for an entire block of 32. words all beling marked by testing for a zero word of mark bits: the loop can then just skip over the bioch, and avoid tasting the individuai bits. The test for atero word is done while moving the word into an accumulator, which has so be done anyway, and so is assentialiy freo.

\section*{THE ADDRESS SPACE PROBLEM}

One of the difficulties currentiy facing Maclisp is the klimited" address space provided by the PDP-10. The architecture of the machine inherentiy limits addresses to 18 bits; hence a single program cannot address more than 256 K woris of memory. Combined with the fict that Maclisp does not presentily allow for deallocation of data segments for of isaded compiled code, for that matter), this severely limits the use of nemcry. S:e MACSYMA problems, for example, would require much more than 256 K of programs and list data to wolve; others requirg less than 256 x at any one time, but cannct be run becais.se of the de-allocation difficulty.

It is fairly clear that completaly solving the de-allocation problem would be more trouble than it is worth, and rould not stave off the fundamental difficulty inderinitaly. As both MicSYMA problems and MACSYMA itself grow in size, we will feel more and more the "acidress space crunch". The only general way to solve this problem is to arrange for a bigger address space.

There are three solutions which are presently at ali realistic. Two involve continued use of the PDP-10 architecture, but modified in several ways ts allow programs to access more memory. These modifications may or may not be made available by DEC, ane may or may not be retrofitiable to the MACSYMA Consortium KLIO processor. The dfference between the two schenes involves the decision as to whether Maclisp data pointers should still fit into ib oits. If not, there is tmmediately a factor-ct-two nemory penalty, since list cells must be two words instead of one. However, there are also some technical advantages to rurh an arrangement, as well as the ohvious advantage that list sjace can become bigger than 256K. If pointers zre kept to 18 bits, then all LiSp data must fit in 256K. tut any anount of cospiled code and any number of arrays could be loaded. Both of these schames have been werked out on paper to f great extent by Guy L. Steele Jr. and Jon L. White, to compare their merits and so prepare for the possibility that one of them may te needed. Either scheme woild require good deal of work fat least one to twi man-years) to implement fully in boti the interpreter and the compliar.

Tha third solution involvas moving to another machine architecture altogether. This leaves open the choice of machine. Few comercially availabie machines are as conducive to the support of LISP as the PDP-10, and it probably would not be practical to undertake completely new implementation. Maclisp does presently run on Multics (on honeywell 6180 processor), but is rather slow, and the Multics system is expensive and not widely avaliable. The best bet in this direction seems to be the LISP machine, fesigr.sd by Richard Greenblatt, Jom Knight. et al. at the MIT Artificial Intelligence Laboratory. The prototype machine has been working for a number of months now, and the basic software is beginn.ay to stuti signs of life. It is not inconcetvable that MACSYKA may be rin experimeitally on it by sumper 1977. The LISP machina has a 23-bit address space, and makes morio efficient use of its memory than evan the pap-10. However, although it is much less expensive than allo, it is not designed for time-sinaring.

The PDP-10 1m lementation ift Maclisp and of MACSYMA will certainly be usefin for at least the next five to ten years. After that, only time can teli.

\section*{SUMMARY}

Macl:s? is designed to be an efficient, high-level systems programing language. rather than pricarily sil applications prograsiang language. Its internal
organization is a carefully chosen balance between useful generality and specialcase efficiency tricks. A thoughtful choice of \(r\) ta and table representations can exploit the architecture of the host gachine \(t\) gain speed in critical places without great loss of generality. The use of symblic assembly parameters can avoid tying the system to a single rigid fcrmat. The greatest effort has been expended on speeding up type-checking, access to values in global variables, and garbage coilection, since these are among the most frequent of LISP operations. The address space crunch may eventually force yet another redesign if the PDP-10 architecture is retained.

\section*{REFERENCES}
1. Steele, Guy L. Jr.: "Fast Arithmetic in Maclisp." Proreedings of the MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper No. 22 of this compilation.)
2. Teitelman, Warrea: InterLISP Reference Manual. Revised edition. Xerox Palo Aito Research Center (Palo Alto, 1975).
3. Conrad, William R.: A compactifytng garbage collector for ECL's non-homogeneous heap. Technical Report 2-74. Center for Research in Coaputing Technolory, Harvard U. (Cambridge, February 1974).



\begin{abstract}
Maclisp provides a compiler which produces numerical code competitive in speed with some FORTRAN implementations and yet compatible with the rest of the Maclisp system. All numerical programs can be run under the Maclisp internreter. Additinnal declarations to the compiler specify type information wifich allows tris generation of optimized numerical code which generally does not requi.ee the garbaga collection of temporary numerical results. Array accesses are almost as fast as in FORTRAN, and permit the use of dynamically allocated arrays of varying dimensions. Here we discuss the implementation decisions regarding user interface, data representations, ond intarfacing conventions which allow the generation of fast numerical LISP code.
\end{abstract}

\section*{INTROUUCTION}

For several years now Maclisp has supported a compiler which produces extremely good numerical code. Measurements made by fateman indicate that the generated code is competitive with FORTAAN. (Ref. 1) Expressing such numerical code dces not require the use of special numerical language embediled within LISP, in the manner that some higher-level languages allow the user to write machine code in the middle of a program. Rather, all numerical programs are completely cumpatible with the Maclisp interpreter. The compiler processes the interpreter definitions along with additional numerical declaratiens. These declarations are not required; omitting them merely results in siowar complled code. For convenience, special numeric functions are provided whici: carry implicit declared type informatior. (such as + and \(+\$\) for integer and floating poift addition, as opposed to PLUS), but the user need not use them to get opsimized numerical code.

\section*{CHANGES TO THE MACLISP LANGUAGE}

The primary change to the MacLiSP language, \(\Delta=\) seen by the user, was the creation of numerteal declarations for uso by the cowiller. A general compiler declaration mechanism was already a part of tite language, so adding the numerical declarations was not difficult. This mechanism involves writing a macilsp axplession beginning with the word DECLARE and followed by various declarations. Declarations may be gloval o: local. Global declarations are written by themseives In a file, and affect all following functions; locas declarations are written within the text of a Maclisp function, and affect only the scope of the construct they are written within.

The simplest new declarations are statements of the types of variabies. Recall that MacLisp has three basis numeric types: fixnum, flonum, and bignum. Thess are (respectively) single-precision integers, single-precision floating-point
numbers, and arbitrary-precision intejers. Only the first two types can be operated on directly by hardware instructions, and so they are the only types of interest to the compiler. An example of a variable declaration:
```

(DECLARE (FIXNUM I J K) ;single-precision integers
( FLONUM A B FOO ZAP) ;single-precision reals
(NOTYPE SNURF QUUX)) ;no specific type

```

If a variable is always numeric but sometimes may hold bignums, it must be declared NOTYPE. The default assumption is that a variable is NOTYPE (that is, may contain any Maclisp data object); NOTYPE declarations are primarily useful to undo previous numeric declarations.

The types of the arguments and returned values of functions may bo similariy declared:
(DECLARE (FLONUM (CUBE-ROOT FLONUM)
(INTEGER-PONER-OF-REAL FLONUM FIXNUM))
(FIXNUM (FIBONA'CI FIXNUM) (LENGTH-OF-LIST NOTYPE))
(NOTYPE (BETWEEN-ZERO-AND-ONE-PREDICATE FLONUM) ))
This declaration specifies that CUBE-RCOT takes a FLONUM argument and delivers a FLONUM result, that INTEGER-POWER-OF-REAL takes a FLONUM and a FIXNUM and delivers a FLONUM, and so on. The types of the arguments could also be specified by using a local declaration:
(DECLARE (FLONUM (CUSE-ROOT))) ;global declaration
(DEFUN CUBE-ROOT (X)
(DECLARE (TLONUM X)) ;local declaration
(EXPT X . 333333333 ))
The result type must be sjecified by a global declaration, however, and declaring the argument types globally also can help the compler to produce better code for functions which call the declared function.

Arrays may alsc oe declared globally to the compiler. Maclisp arrays come in three types, which are assentiallu FIXNUM, FLONUH, and NOTYPE. (There are other types also, but these do not concern us here.) The ARRAY declaration takes a subdeclaration specifying the array type; the subdeclaration in turn soacifies the names of arrays and their dimensions. Ar example:
(DECLARE (ARRAY (FIXNUM TUPIE 1 TABLE 2)
(FLONUM VECTOR 1 MATRIX 2)))
This declares TUPLE and VECTOR to be one-dimensional arrcys, and TABLE and MATRIX to be a two-dimensional arrays. (MacLISP arrays may have up to five dimensions.) If tha vilues of the dimensions are also known ahead of time, a slightly different form may be used:
(DECLARE (ARRAY* (FIXNUM (TUPLE 43) (TABLE 3 5))
(FLONUM (VECTOR 3) (RATRIX ? 17)) ))
This declares TUPLE to bo of length 43, TABLE to be 3 by 5, and MATRIX to have 17
columns and an unknown number of rows. Note that "?" can be used to denote an unknown dimension value: even partial dimension information can help the compiler to optimize array accesses.

The user can write arithmetic code using the traditional names plus, DIFFERENCE, TIMES, and QUOTIERT; these functions work on any kinds of numbers, even bignums, and admit mixed-mode arithmetic. In the pesence of type declarations, the compiler may be able to deduce that the arguants are always florams, for exampla, and produce hardware instructions for fleating-point arithmetic. The user can also use the FIXSW and FLOSW declarations to tell the compiler that such "generic" arithmetic will always involve only fixnums or onjy flonums.

As a convenience to the user, however, several versions of the common arithmetic functions are provided:
\begin{tabular}{|c|c|c|}
\hline generic & fixnum oniy & flonum only \\
\hline PLUS & + & + 5 \\
\hline DIFFERENCE & - & -5 \\
\hline TIMES & * & * \(\$\) \\
\hline QUOTIENT & 11 & \(1 / 5\) \\
\hline REMAINDER & 1 & \\
\hline GCD & 11 & \\
\hline GREATERP & > & > \\
\hline LESSP & < & \(\leqslant\) \\
\hline EQUAL & = & \(\cdots\) \\
\hline EXPT & \(\wedge\) & \({ }^{\text {a }}\) (fixnum \\
\hline
\end{tabular}
(The division functions are written as "//" instead of "/" because "i" is a MacLISP escape character.) The functions in the last two columns are completely equivalent to those in the first column, except that they convey additional type information about their arguments and risults. (An exception is that the fixnum-only functions do not check for overflow, so in a situation where, for exampls, 100000000 and 100000000 were multiplied together, TLMES would produte a bignum, whereas would overflow and produce not-very-meaningful fixnus. The flonum-only functions do not check for overflow either, whereas the generic functions give an arror for overflow, and either an error or zero for underflow.)

\section*{CHANGES TO THE MACLISP IMPI EMENTATION}

In order that the arithmetic machine instructions might be used directly on Maclisp numeric data objects, it was necessary to modify Maclisp to use a uniform representation for fixnums and flonums. Before the fast-arithmetic scheme was implemerited, MacLISD, like many other LISP systems, used two representations for Bingle-precision integers. One represented the integer as a poinier to a machine word containing the value, in the same manner as floating-point numbers were representad. The other encoded the value into the priniser itself, using pointer values which were otherwise iforthless because they pointed at code instead of data objects. The motivation behind the earlier dud representation was to avoid allocating storage for small integer values, which are frequently used. (InterLisp has for several years "open-comoiled" arithmetic functions as single machine instructions. (Ref. 2) Unfortunately, it still has a dual representation for integers: as a result, befory adding two numbers it must call a ruutine which determines at run-time the represencation of each number and converts each into a

full machine word representation. Compiled Interlisp code also calls a similar routine for floating-point numbers, not becacse of multiple represeritations, but in order to perform error-checking as completely as the interpretar does. This runtime checking destroys any advantage jained by open-compiling the arithmetic instructions.)

The pointer encoding was removed from Maclisp for the fast-arithmetic scheme, and all numbers are now uniformly encoded as pointers to full machine words which contais the pachine representations of the values. In order to aveid allocating storage for frequently used small integers, therg are several hundred worde of memory containing consecutive small integer values, and small integers are created by maxing a pointer to one of these stardard locations, rather than allocating a new word for each use of a small integer. (Maclisp does not allow the words used to contain numbers to be medified in the way interilsp allows using the SETN primitive (ref. 2), so there is no difficulty in sharing such words. In fact, thest small integer locations are even shared among all the MacLISP processes in the time-sharing system by making them read-only.)

While arithmetic on bignums cannot be compiled as standard arithmetic machine instructions, their representation his been chosen to permit sign tes:s to be open-compiled. A bijnum is a pointer to a word which has the sign of tie bignum in the sign bit (and in fact tho entire ieft half), and a pointer to a list of fixnums (which rapresent the magnitude) in the right half. Thus all numbers are pointers to words which contain the sign of the number in the sign bit, and such functions as MINUSP can always be compiled as single machine instructions.

In order to preserve the uniformity of the function-calling interface, it was decided that all arguments to functions must be valid Maclisp data objects. On the other hand, it is not desirable to have to "number cons" out of free storage, with the garbage coilection overhead that. implies, in order to pass numbers to furictions. The solution used was to introduce twin extra pushdown lists iscacks) called the fixnum and flonum pdls. The storige in these pdis appear thave fixnum or flonum data type, but they ary allocated as sincks rather than as garbagecollected heaps. These stacks can be used co hold temoorary numerical values and the values of PROG variables which have been declarad to be numeric, but they can also be used to allecate pseudo-ciata objects compatible with Maclisp's standard number representation. A pointer to fixnum pdi location is indistinguishable from an ordinary fixnum for most purposes: it is a notnter to full machine word containing the numeric value. A typical code sequence resulting from compining (FOO (+A5)) is:
;assume accumulator 1 has the pointer value of \(A\) in it
MOVE 7,(1) iget the machine word for A into accumulator 7
A.DDI 7,5 ;add 5 to the machine word

PUSH FXP, 7 ; push resulting word into fixnum pdl
MOVEI 1, (FXP) ; copy fXp pointer into argument accumulator 1
CALL 1,FOO
SUB FXP,[1,.1] iremove pushed word from fixnam pdl
To the function foo the pointer passed in accumulator 1 has the precise format of a Maclisp integer: a pointer to a machine word containing the integer value. Note that the value of the varlable A may itself have beon such "pdi number"; the MOVE instruction would move the machine word value into accumulator 7 whether it was a pdl number or an ordinary fixnum.

One of the difficulties of using stack-allocated numbers is that they have a definite ilfetime; on reiurn from the function they are passed to, they are do-
allocated and no longer exist. By the time they are de-allocated, there must be no more pointers to that word accessible to the user progras, or else subsequent references might see a wrong value because the pdl word was reallocated for some other purpose.

To overcome this difficulty the notion of safety kas devaloped. A copy of a pointer is safe if it can be guaranteed that the copy will become inaccessible before what it points to is de-allocated if the pointer in fact points to a pdl number. Alternativeiy, a use for a pointer is safe if that use joesn't require a safe pointer. The fast-arithmetic compiler does some complex analysis to determine what situctions are safe. Some standard conventions for safety:
[1] A pointer in a giobal (special) variable may have an indefinits lifetime, and so putting a pointer in a global variable is unsafe. It follows that such a variable may nnt contain a pointer to a pdl number, sinca we cannot guarantae such a pointer to be safe. Consequently, any pointer actually obtained from alobal variatie is safe.
[2] Consing a pointer into a list call (or using RPLACA to put a pointer into an existing list call) is similariy unsafe. Pointers actually occurring if list structure aust therefore be guaranteed safe.
[3] It is not possible to return ndi number as the value of a function, because there would be no retura to the code to de-allocate it. Therefore returning a pointer from function is unsafe, and all pointers actually returned from functions ars sofe.
[4] Passing a pointar as an argument to a function is safe; therefore pdi numbers (unsafe pointers) may be passed as arguments to functions. All function arguments arí thius potentially unsafe. They may be passed on down to other chlled functions. but may not be returned or otherwiss used as if they were safo.
[s] Pdl numbers may be pointed to by ordinary compiled local variaties. Such zocal vartables may or may not have unsafe values, depending on where the values cane from. The compiler must guarantee that when the value of 0 local variable is used either tho value is safo or the use is safe.

Suppose we wrote a function such as:
(DEFUN ZAP (A) (CONS A 'FOO))
We are putting the argument \(A\) into a list cell (an unsafe use), but the argunent \(A\) is also (potentially) unsafo. In this situation the compiled code must create a safe copy of the unsare pointer. The complled code therefore uses routine PDLNMK ("pdi number gake") which chesks for a pdl number and sakes a copy by doing a number cons if necessary. That is, if the pointer given to polNHK is already safe, it is returned as is; but if it is unsafe, asafo copy is wade with the same value. The compilad cade for ZAP would look liks this:
\[
\begin{array}{ll}
\text { HOVEI 2, 'FOO } & \text { iput constant "fon" in accumulator } 2 \\
\text { JSP T, PDLNMK } & \text { imaks sure accumulator i has z safa pointer } \\
\text { JCALL 2,CONS } & \text { icall CONS }
\end{array}
\]

If A is not a pdl number, PDLNMK dees nething; but if it is, PDLNHK replaces the pointer in accumulator 1 with a freshly allocated flxnum with the same value as the pdl number. In this way a safe value will be rassed to the CoNs function. (The convention about function arguments being petentially unsafe has en exception in CONS, so that CONS atself need not always perform rDLNHK on its arguments. The compiler knows about this exception, and guarantees that anyone who calis rons will provide safe arguments. lif practice, arguments passed to cons often can be
gunanterd safe by compile-time analysis, and it saves time not to have CONS use PDLNMK.)

Notice that one consequence of the use of PDLNMK is that two numbers which are apparently EQ (i.e. the same pointer) may not be if the compiled code has to make a copy. For example, consider this code:
(DEFUN LOSE (X)
(SETQ G X)
(EQ XG))
The result of the EQ test could be NIL, even though the global variable \(G\) apparently is assigned the same pointer as was passed to LOSE as an argument. If an unsafe pointer is passed to LusE, G will receive a safe copy of that value, which will not be the same pointer, and so the EQ test wili fall. (This is ancther reason why Maclisp does not have a SETM primitive: since the compller can make copies of a number without warning, conceivably SETN wight modify one copy of a number but not the other, with anomalous results.)

Recall that one unsage use of a pointer is returning it as the value of a function. We would like for numeric code not to evar have to "number cons", but we cannot return a pdi number from a function. The soldition to this dilema is to allow numeric-valued functions to have two entry points. One is the standard . Maclisp entry point, and is compatible with the standerd Maclisp calling sequence; calling the function there will prosuce a haclisp pointer value, which will involve a number cons if the value is in fact numeric. The other is a special ontry puint which is non-standard, and can only be used by compiled code which knows that the called function is numeric-valued. Entering a numeric function there will deliver a machine word in accumulator 7 instead of the standard pointer in accumalator 1.

In order to use this special calling sequence, both the called funstion and the calling function must be complled with declarations specifying thet the ralled function is numeric-valued. The compiler will then compile the called functior to have two entry points, and the calling function to uss the non-standard numeric entry point.

The entry points are actually implemented as two consecutive locations at the beginning of the function. The first is the standard entry point; it merely pushes the address of a special routine FIXI (or FiCATI, for a fionum-valued function) onto the stack, and then falls into the non-standard entry point. The function then always produces a machine number in accuaulator 7. If the function is called at the numeric entry point, it will deliver its value as a machine mord. If called at the staidard entry point, then on delivering the machine word it will "return" to FIXI, which performs "number cons" on the machine word, producing a normal rixnum (or FLOATl, which produces a flonum), and then returns to the caller. As an example, here are two functions witi, appropriate declarazions:
(DECLARE (FLONUM (DISC FLONUM FLONUM FLONUM)))
```

(DEFUN DISC (A B C)
(-5 (*S B B) (*S 4.0 A C)))
(DEFUN Quad (A B C)
(PROG (D)
(JECLARE (FLONUM D))
(SETO D (DISC A B C))
(COND ((MINUSP D) (RETURN (ERROR)))

```

The code produced would look like this:


Notice that DISC does no number consing at all if called at tho numeric entry point. It dess all arithaetic in the accumulators, and returns machine mord as its result. The code is remarkably compact, or the kind one ordinarily expacts from a FORTRAN compiler.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{9}{*}{QUAD:} & PUSH P. 1 & ; save \(A, B\), and \(C\) on the stack \\
\hline & PUSH P, 2 & : to praserve thes across the \\
\hline & PUSH P. 3 & : Call to DISC \\
\hline & NCALL 3, DISC & ;csil DISC with the same arguments \\
\hline & PUSH FLP, 7 & ;push the result orto flonum ydl \\
\hline & JUMPGE 7,00003 & ; Jump if value non-negative \\
\hline & MOVEI T,0 & \\
\hline & CALL 16, ERROR & ;cail the ERROR routine \\
\hline & JRST G0005 & igo to G0005 \\
\hline \multirow[t]{7}{*}{60003:} & MOVEI 1. (FLP) & ; get a pointer irito R Sonum pdl \\
\hline & NCALL 1, SCRT & call sqRT with that pointer \\
\hline & FSBR 7, P-1 (P) & ;floating subtract machire vilue of 8 \\
\hline & MOVE 10,0-2(P) & ;fetch machine word value of \(A\) \\
\hline & FSC 10.1 & imultiply by 2.0 (using "floating scale") \\
\hline & FDVR 7.10 & ;divide as 7 by ac 10 \\
\hline & JSP T, FLCONS & iperform a flonum cons \\
\hline \multirow[t]{3}{*}{c0005:} & SUB P, [3, 3] & ;clean up the stacks \\
\hline & SUP FLP, [1, 1] & \\
\hline & POPS P. & ireturn pointer value in accumalator 1 \\
\hline
\end{tabular}

There are soveral peints to note about GUAD:
(1) It was not declared to be numeric-valued. As rasult, when returning a number it must do a numbor cons. Moreover. it cioes not have a numeric entry point.
(2). Recause DISC was deciered to bs numeric-valued, QUAD uses NCALL instend of CALL to invoks it: NCALL enters at the numeric entry point. The result of OISC is expected in accumulator 7. Since QUAD nteds to use this result to gass to SQRT, it makes a pdl number out of this machine word. In this way function valuus can be made into bdt numbers after all - - but by tho callor rather than the called function.
(3) As an aside, the compller makes some other neat optimizations. It uses a JUMPGE instruction fer MINUSP, because the value to be tested is in an accumulator anyway. It takes advattage of the address arithmafic of tho PDP-10 to fetch machine woids pointed to by pointers on the stack in one instruction. It knows how to use sevaral accumulators for arithmetic, and to arrange for the result to ond up

In the correct accumulator. It expresses the multiplication by 2.0 as a "floating scale" instruction, which is faster thin the multiplication instruction if one operand is a floating-point power of two.

The representation of arrays in Macl? SF was carsfully redesigned to allow fast access to them by compiled code, again taking advantige of the powerful address arithmetic of the PDP-10. There are essentially two kinds of arrays: sexpression arrays, whose components may be any safe pointers, and numeric arrays, whose components must be all fixnum machine words or ali flenum machine words.

The Maclisp ARRAY data type is a pointer to double word (the "spectal array pointer") which in turn points to the array data. fhc reason for this is that the pointer must point to fixed place (as all Macl.ISp pointers must), but the actual array data may have to be shifted around by the garbage collector to accomncdete new storage raguests, beczusa arrays are net of a uniform size. When the garbage collector moves the array data, it updates the the contents of the special array pointer, but ti,e special array pointer iiself may remain in a fixed. plact.

In exchange for she flexibility of dymalcally allocated arrays, however. one pays the price of always accessing the array data indirectiy through the special array pointer. This cos: is alleviated by taking advantage of addressing arithmetic. The second word of ench special array peinter points to the array data, which is arranged linearly in row-majer order; this second word furthermore specifies indexing by accumulator 7.


Compiled code can access a numeric array datum by calculating the ilnear subscript value in accumulator 7 and then using an indirect fotch through the second word of the special array pointer for the array. The linear subscript ralue is of course calculated as
\[
\left(\ldots\left(\mathrm{Jl} \mathrm{D}_{2}+\mathrm{J} 2\right) * \mathrm{D}+\mathrm{J3} \ldots\right) * \mathrm{Dn}+\mathrm{Jn}
\]
whera the Ni are the dimensions of the array and tha Ji ara the actual subscripts. For example, suppose that accumulator 1 contains a pointer to a by 5 by \(1311 \times \mathrm{cma}\) array, and that accumulators 2,3 , and 4 contain fixnuw subscripts for that array. Then to fetch the desired datum this code mould be used:
\begin{tabular}{ll} 
MOVE 7,(2) & ifetch first subscript into ac 7 \\
IMLLi 7,5 & imultiply by 5 (second dimension) \\
ADD 7.(3) & iadd in socond subscript \\
IMULI 7,13 & imuleiply by 13 (third dimeision)
\end{tabular}


ADD 7.(4)
MOVE 7,81(1)
;add in third subscript
;fetch innitrect through special array pointer
If the number of dimensions of the array has been declared to the compiler but not the values of the dimensions, the compiler arranges to fetch the aimension values at run time. This is aasy because the array is arranged so that negative subscript values fetch the dimension information. (The ilisp bser is not supposed to use this fact, but only compiled code.! The same example for a three-dimensional array of arbitrary dimensions aight look like this:
\begin{tabular}{|c|c|}
\hline MOVE 10.(2) & ifetch first subscriyt into ac 10 \\
\hline MOVNI 7,2 & ;put -2 into ac 7 \\
\hline EMULI 10,01(1) & ;multiply by second dimension \\
\hline ADD 7.(3) & ;add in second subscript \\
\hline MOVNI 7.1 & ;put -1 into ac 7 \\
\hline IMULI 10,01(1) & ;multipiy by third dimension \\
\hline ADD 10, (4) & ;add in third subscript \\
\hline MOVE 7.19 & ;pove into ac 7 for subscripting \\
\hline MOVE 7,01(1) & ;ferch indirect through special array pointer \\
\hline
\end{tabular}

The code is a little longer than before, but will work for any three-dimensional array. In general, the compiler tries to minimize subscript computations. If the exact dimensions are declared, or if some of the subseripts are constant, the compiler will do part or \(1 l l\) of the subscript calculations at compile time.

For s-expression arrays, the pointer data are stored two per word, with elements having even llnear subscripts in the left half of a word and ehe succeeding odd subscripted elements in the right half of the word. The compiler must generate code to test the parity of the linear subscript and fetch the correct half-word. Suppose that a pointer to one-dimensiona: array is in accumulator 1. and a fixnum subscript is in accumbator \(z\). Then the following code would be generated:
\begin{tabular}{|c|c|c|}
\hline & Move 7, (2) & ; fetch subscrip: into ac 7 \\
\hline & ROT 7,-1 & ;divide by 2 , putting remainder bit in sign \\
\hline & JUMPL 7,60006 & ; jump if linear subscript was odd \\
\hline & HLR2 3,01(1) & ; fatch poirter from left half \\
\hline & JRST 60007 & ; jump to 00007 \\
\hline G0006: & HRR2 3,01(1) & ;fetch pointer from right half \\
\hline
\end{tabular}

If the compiler can determine at complle time that the linear subscript wili always be ofd or always oven, it will simplify the code and onit the JUMPL, JRST, and the unused halfword fetch.

\section*{sUruary}

Machisp sufports the compllation of numerical programs into code comparable to that profuccd by a FORTRAN coupiler whily maintaining complete compatibility with the rest of the Haclisf systein. All numaric code will run in the Machisp interprster; additional information may be given to the compllor in the form of deciarations to help it gelierate the best possible codo. If such diciarations are omitted, the worst that happens is that the code runs slower.

Compatibility with non-numeric functions was achieved ty the judicious choice of a uniform representation for LISP numbers combined with a ionpatible stack-allocated representation for temporary numeric values geread beiween functions. The use of stack allocation reduces the need for garbage collection of numbers, while the uniformity of representation eliminates the need for most runtime representation checks. One exception to this is that the use of stackallocated numbers mus: be restricted; this difficulty is kept in check by maintaining a careful interface between safe and unsafe uses, ald analyzing the safety of pointers as much ee possible at coapile time.

While numeric functions and non-numeric functions may call each other freely, a special interface is provided for one numeric function to call another in sucin a way as to \({ }^{\text {w }}\) void number consing.

Arrays are stored in such a way that they may be dynamically cllocated and yot accessed quickly by compiled code. This is aided by the rich address arithmetic provided by the PRP-10.

The philosophy behind the implementation is that the generality of LISP and the speed of optimized numeric code ara not incompatible. All that is needed is a well-chosen, uniform represencation for data objects suitable for use by hardware instructions, combined with a willingncss to handio ieportant special cases cleverly in the compiler.

\section*{REFERENCES}
1. Fateman, Richard J.: Reply to an Editorial." SIGSAM Bulletin 25 (Marrh 1973), 9-11.
2. Teitelman, Warren: InterLisp Reference Manual. Revised edition. Yerox Palo Alto Research Center (Paío Alto, 1975).


\title{
N77-28772
}

ON COMPUTING CLOSED FORMS FOR STMMATIONS
Robert Moenck
Division of Physical Sciences
Scarborough College
University of Toronto

\begin{abstract}
The problem of finding closed forms for a sumation involving polynomials and rational functions is considered. A method closely related to Hermite's method for integration of rationai functions is derived. The method expressts the sum of a rational function as a ratimal funciion part and a transcendental part involving derivatives of the gamma function.
\end{abstract}

\section*{Section 1. Introduction}

Mathematicians have long been interested in finding closed form expressions for formal summations.

For example:
\[
\sum_{i=1}^{n} i=\binom{n}{2}
\]
or
\[
\sum_{i=1}^{n} \frac{1}{2^{i}}=1-\frac{n+1}{2^{n-1}}
\]

The hiscory of this protlem is dotted with the names of the gitants of mathematics; names like Newton, Euler, Bernoulli or Boole. Jordan (ref. 1) gives a comprehensive survey of this field of mathematics. In spite of the many years of work which has been devoted to the prublem; there is no generai alporithmic approach to finding such closed forms. Jordan's book is more like a cookbook of approaches, rather than a rigorous algorithmie treatment, such as we would like to have for computer applications.

For this reason, since the turn of the century, the fleld has devaloped in other directions. In particular the areas of approximat ton theory and numerleal analysis have been it's progeny. However, the need for indlug cloed forms for stmmations still exists. It is usefu? for large portions of the stady of comb: natorles. So, it would be nice, if the problem could be solved algorithmically. with the afd of alyebrate manfpulation. This paper is intended to lay some ground work to explore partis of the peohlen.

One teason that there is hope for an algorlthmi sotution, Is the remarkable

success in solving the integration problem. Work by mathematicians like Risch (ref. 2), Moses (ref. 3) and many others has resulted in the development of algorithms for finding closed forms for a large range of integrals. As Boole (ref. 4) noted ii his work on differences over a century ago, there are strong parallels between the two probiems. In this paper, we shall explore some of them and use the methods of the integration problem as a light to guide our way.

To a large extent the problem of finding closed forms for summations has been neglected in the work of algebraic manipulation. Johnson (ref. 5) considered the zero recognition problem for combinatorial sums and Gosper (ref. 6) considered the problem of automatically economizing summations. Recently, Cheatham (rei. 7) described a program which attempts to find a \(=10 s e d\) form for summations computed by loops in a program, and in reference 8 Gosper describes a method based on continued fractions, for finding summations.

In section (2) we present some notation and properties of differences. Section (3) sketches the summation of polynomials. Section (4) deals with Finding the rational part of a sumation of a rational function and section (5) briefly considers the transcendental part.

\section*{Section 2. Some Notation}

If we are presented with a definite summation and asked to find its closed form:
\[
\begin{equation*}
g(n)=\sum_{i=a}^{n} f(i), \tag{1}
\end{equation*}
\]
one way we can approach the problem is to find the indefinite summation:
\[
h(x)=\sum_{i=0}^{x-1} f(i)
\]

Then one can evaluate \(h(x)\) to obtain \(g(n)\).
\[
\left.g(x)=\sum_{n}(x)\right]_{x=a+1}^{x=n+1}
\]

This brief sketch sidesteps the issue of any singularities which may occur in the function over the range of sumaticn. However, it does point out the importance of tne indefinite summation, the quantity we shall be oncerned with here.

Inplicit in our notation for (eq. 1) is that itakes on integral values between \(a\) and \(b\). Therefore, if we take the first differeace of \(h(x)\) :
\[
\begin{equation*}
\Delta h(x)=h(x+1)-h(x)=f(x) \tag{2}
\end{equation*}
\]
we obtain \(f(x)\), the function we are trying to sum. Conversely, if we apply the inverse difference operatior \(\Delta^{-1}\) to \(f(x)\) :
\[
\Delta^{-1} f(x)=h(x)
\]
we obtain the indefinite summation.
This leads to our first parallel between summation and integration: we can obtain an expression for the summation by anti-differencing the function; much in the way one obtains an integral by anti-differentiation. Also, the study of differences leads to the understanding of sums, much in the way differentiation is the key to integration.

The anti-difference is unique up to the addition of functions whose first difference is zero. Examples of such functions are:
a) constants
b) functions with period 1 e:g. \(\sin (\pi x)\).

Since the beginning of the study of differences; it has been convenient to employ an operator notation to express equations. We shall use the notation employed by Jordan (ref. 1), which is fairly standard. The common and most useful operators are:
a) the Shift Operator
\(\mathrm{E}: \mathrm{Ef}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{I})\)
b) the Difference Operator
\(\Delta: \Delta f(x)=E f(x)-f(x)\)
c) the inverse difference operator \(\Delta^{-1}: \Delta^{-1} f(x)=\sum_{i=0}^{x-1} f(i)\)

We will use the invease difference operator \(\Delta^{-1}\) to represent the quantity we wish co compute, to avoid any confusion between it and any bounded sums which will de expressed by the summation operator \(\Sigma\). Dacasionally, we shall extend the notation by irdicating the variable involved in the difference and the length of the difference:
i.e.:
\[
f(x, y)=f(x+h, y)-f(x, y)
\]

Normally \(x\) will be understood from the context and \(h=1\), and so this extra embellishment will not be necessary.

In modern terms operators a) and b) are derivations on an extension field \(F\left(x, x_{1}, \ldots, x_{n}\right)\) over some ground field \(F(x)\). Using these derivations Cohn (ref. 9) constructs a Difference Algebra much like Ritt's (ref. 10) Differential Algebra. However, Cohn is more concerned with the larger problem of systems of difference equations, rather than the simple linear difference equation (eq. 2).

\section*{Properties of Differences:}

The following properties can be simply derived from the definition of differences:

P1)
\[
\Delta k f(x)=k \Delta f(x) \quad, \quad k \in F
\]

P2)
\[
\Delta\left(f(x)+\varepsilon^{\prime}(x)\right)=\Delta f(x)+\Delta g(x)
\]

P3)
\[
\Delta(f(x) \cdot g(x))=f(x) \cdot \Delta g(x)+E g(x) \cdot \Delta f(x)
\]

P4)
\[
L\left(\frac{1}{g(x)}\right)=-\frac{\Delta g(x)}{g(x) \operatorname{Eg}(x)}
\]

P5)
\[
\Delta\left(\frac{f(x)}{g(x)}\right)=-\frac{f(x) \Delta g(x)+g(x) \Delta f(x)}{g(x) E_{g}(x)}
\]
\({ }^{P} 6^{\circ}\)
\[
\frac{\Lambda}{1}(f(g(x)))=\frac{q_{(x)}}{\Delta g(x)} f(g(x))
\]

It is the slight discrepancies between these propertis and their analogous ones in differential algebra, that prevents direct application of its results and methods.

\section*{Section 3. Sums of Polynomials}

The simplest form of *unction we might vant to sum is a polynomial:
\[
a(x)=\sum a_{i} x^{i}
\]

In the case of differential algebra, the integral is easily obtained since:
(3)
\[
D x^{n}=n x^{n-1}
\]

Therefore, the integral is constructed by anti-differentiatios. Howevex, differences of powers do not have such a concise form:
\[
\Delta x^{n}=\sum_{i=0}^{n-1}\binom{n}{i} x^{n-i}
\]

Thuc expressing a function as a sum of powers is not a convenfent form in difference algebra. Instead, the factorial functions are used:
(4)
\[
[x]_{n}=x(x-1)(x-2) \quad \ldots(x-n+1)
\]

The difference of a factorial is:
\[
\begin{equation*}
\Delta[x]_{n}=E[x]_{n}-[x]_{n}=n[x]_{n-1} \tag{5}
\end{equation*}
\]

This has the concise form of (eq. 3) and so is a oetter representation. We can convert a polynomial to che factnrial form using Newton's formule, which expresses a function in terms of it's higher differences:
(6)
\[
f(x)=\sum_{i=0}^{n} \frac{[x]_{1}}{1!} \Delta^{1} f(0)
\]
where \(f(x)\) is a polynomial of degree \(n\). The higher differences can be found using a difference table after evaluating the polynomial at the points \(x=0,1, \ldots, n\). Now:
(7) \(\quad f(x)=\sum_{i=0}^{n} \frac{[x]_{i}}{i!} f_{i}\)
and so:
(8)
\[
\Delta^{-1} £(x)=\sum_{i=0}^{n} \frac{[x]_{i+1}}{(i+1)!} f_{i}=\sum_{i=0}^{n}\binom{x}{i+1} f_{i}
\]
eg: To compute \(g(x)=\Delta^{-i}\left(3 x^{3}-2 x+1\right)=\Delta^{-1} f(x)\)
The difference table is:
\begin{tabular}{ccccc}
\(\mathbf{x}\) & \(\mathrm{f}(\mathrm{x})\) & \(\Delta \mathrm{f}(\mathrm{x})\) & \(\Delta^{2} \mathrm{f}(\mathrm{x})\) & \(\Delta^{3} \mathrm{f}(\mathrm{x})\) \\
0 & 1 & 1 & 18 & 18 \\
1 & 2 & 19 & 36 & \\
2 & 21 & 55 & & \\
3 & 76 & & &
\end{tabular}
and so
\[
\begin{aligned}
\Delta^{-1} f(x) & =\Delta^{-1}\left[\binom{x}{0}+\binom{x}{1}+18\binom{x}{2}+18\binom{x}{3}\right] \\
& =\binom{x}{1}+\binom{x}{2}+18\binom{x}{3}+18\binom{x}{4} \\
& =\Delta^{-1}\left(1+[x]_{1}+9[x]_{2}+3[x]_{3}\right) \\
& =\Delta^{-1}\left([x]_{1}+\frac{1}{2}[x]_{2}+3[x]_{3}+\frac{3}{4}[x]_{4}\right)
\end{aligned}
\]

To convert from factorial representation to power reprosertation we can expand the factorial functions using their definitions.
\[
\begin{aligned}
{[x]_{1} } & =x \\
\frac{1}{2}[x]_{2} & =-\frac{1}{2} x+\frac{1}{2} x^{2} \\
3[x]_{3} & =6 x-9 x^{2}+3 x^{3} \\
\frac{3}{4}[x]_{4} & =-\frac{5}{2} x-\frac{21}{4} x^{2}-\frac{9}{2} x^{3}+\frac{3}{4} x^{4} \\
\text { Total } g(x) & =2 x-13 \frac{3}{4} x^{2}-\frac{3}{2} x^{3}+\frac{3}{4} x^{4}
\end{aligned}
\]

\section*{Section 4. Sums of Rational Functions}

The next larger class of problems is sums of rational furictions. In fategration, these are approached using Hermite's method which performs a partial fraction decomposition of the function. Moses (ref. 3) describes this process. The partial fraction decomposition breaks the rational function into a sum of rational functions whose denominators are powers of square free factors of the original denominator. Then using integration-by-parts the integral can be expressed as a rational function portion and a transcendental portion which is a sum of logarithms.

We shall follow this method. with slight modifications, to derive a rational portion of the summation and a transcendental portion. The match of the two methods is close enough that we can dercribe it as Hermite Sumation.

Remembering from soction 3 that powers are not nice forms for summation, we define a factorial operator on function:
\[
\begin{equation*}
[f(x)]_{k}=f(x) \cdot f(x-1) \cdot f(x-2) \ldots f(x-k+1) \quad \text { for } k>0 . \tag{9}
\end{equation*}
\]

We can extend this operator by noticing:
\[
\begin{equation*}
[f(x)]_{k}=[f(x)]_{\ell} \cdot[f(x-\ell)]_{k-\ell} \tag{10}
\end{equation*}
\]

If we define \([f(x)]_{0}=1\) and assert that (10) is an identity then substituting \(k=0\) we get:
\[
\begin{equation*}
[f(x)]_{-\ell}=\frac{1}{[f(x+\ell)]_{\ell}} \tag{11}
\end{equation*}
\]

We will call the value of \(k\) or \(\ell\) in equations 9 anc 11 , the factorici degree of function, because of its parallel to the "power" degree. We now proceed to examiae the differences of factorials.

A special case of this is eq. 5 for factorial polynomials.
\[
\begin{align*}
\Delta[f(x)]_{-l} & =-[f(x)]_{-(l+1)} \frac{\Delta}{l} E f(x)  \tag{13}\\
& =\frac{\Delta_{E f(x)}}{[f(x+l+1)]_{l+1}}
\end{align*}
\]

Notice that the factorial degree is decreased (resp. increased) by 1 on differencing factorials (resp. reciprocal factorials).

\section*{Shift Free Decomposityon:}

If we are given a product of functions we can decompose it into a product of factorial functionc. Suppose our product is of the form:
\[
s=a \cdot b \cdot c
\]
where \(a, b, c\) are mitually relatively prime and \(E==b\). Then:
and \(\quad \operatorname{GCD}(S, E S)=b\)
so we can divide out \(b\) and a irom \(S\) and form:
\[
\mathbf{s}=[\mathrm{b}]_{2} \cdot \mathbf{c}
\]

Applying this method repeatedly we can pat a product into the form:
\[
\begin{equation*}
s=\left[S_{1}\right]_{1} \cdot\left[S_{2}\right]_{2} \ldots\left[S_{k}\right]_{k} \tag{14}
\end{equation*}
\]
where the individual \(S_{f}\) are shift-free. Given a rational function we can perform a shift-free partlal fraction decomposition:
(15)
\[
\frac{A(x)}{S(x)}=\sum_{i=1}^{h} \frac{A_{i}}{\left[S_{i}\right]_{i}}
\]
and also a complete shift-frre partial fraction decomposition.
\[
\begin{equation*}
\frac{A(x)}{S(x)}=\sum_{j=1}^{k} \sum_{j=1}^{i} \frac{A_{1, j}}{\left[S_{i}\right]_{j}}=\sum_{i=1}^{k} \sum_{j=1}^{i} \frac{A_{i, j}(x)}{\left[f_{i}(x+i)\right]_{j}} \tag{16}
\end{equation*}
\]

This complete shift-free paitial fraction decomposition is completely analogous to the starting point of the inteßration-by-parts phase of Hermite's method. It can be computed in the same way the complete squase free partial fraction decomposition for integration is done (see eg. Horowicz ref. 11 or Yin ret.13). We can also deduce \((f(x+k), \Delta \quad\{(x+1))=1\) iff \((f(x+k), f(x+i))=1\). k-1
This will be true if we have performed a k-shift-free decompogition of \(f(x)\).

\section*{Shift Independence:}

We can test if a iunction is shift free using the GCD construction above. However this doea not eliminate all the cases. Consider:
\[
\frac{A(x)}{S(x)}=\frac{1}{x(x+3)}
\]

Cur CCD tes: will say \(S(x)\) is l-shift-free which might lead tcerrors if we assume it is \(k\)-shift-free for all \(k E Z\). We might cpll such function shift dependent sirce it is not 3-shift-free. We can test for shift independence using the following method:
1) form \(S(x+k)\) whers \(k\) is a new variable. \(S(x+k)=x^{2}+(2 k+3) x+\left(k^{2}+3 k\right)\).
2) Compute the resultant with respect to \(k\) :
\[
\operatorname{Res}(S(x+k), S(x))=R(k)
\]
\[
\operatorname{Res}\left(x^{2}+(2 k+3) x+\left(k^{2}+3 k\right), x^{2}+3 x\right)=-k^{4}-9 k^{2}
\]
3) Test for integer roots of \(R(k)\); these will disclose any \(k\) 's with non-trivial GCD's of the form.
\[
\operatorname{GCD}\left(S(x), E^{k} S(x)\right)
\]
i.e.: \(k=0, \pm 3\). Choose: \(k=+\) ?.
4) Apply Stirling's Method to convert the rational function into a factorial denominator. i.e. multiply top and bottom by \((x+1)(x+2)\) to obtain
\[
\frac{A(x)}{S(x)}=\frac{(x+1)(x+2)}{[x+3]_{4}}
\]
5) Proceed as before.

Summation by Parts
From property P3) of differences we can deduce the rule for sumation-byparts:

\section*{(17)}
\[
\Delta^{-1}(u \cdot \Delta v)=u \cdot v-\Delta^{-1}[E v \Delta u]
\]

We can apply this to a typical term in our complete shift-free partial fraction decomposition.
\[
\Delta^{-1} \frac{A_{i, j}(x)}{\left[f_{1}(x+1)\right]_{j}}, j \leq 1
\]

First we can apply the extended euclidean algorithm to find \(B, C\) suci that:
\[
\begin{equation*}
B f_{i}(x+i-j+1)+C \underset{j-1}{A} f(x+1-j)=1 \tag{19}
\end{equation*}
\]

This can be used to expand the term further as:
(19)

Applying sumnation by parts to the first term of eq. 19 ,
(20)
\[
\begin{aligned}
\Delta^{-1}\left(\frac{D \cdot \Delta_{1} f(x+1-j)}{\left[f_{1}(x+1)\right]_{j}}\right) & =\frac{-D}{\left[1_{1}^{(x+1-1)]_{j-1}}\right.}-\Delta^{-1}\left(\frac{-\Delta D}{E[f(x+1-1)]_{j-1}}\right) \\
& =\frac{-1}{\left[f_{1}(x+1-1)\right]_{j-1}}+\Lambda^{-1}\left(\frac{\Delta D}{[f(x+1)]_{j-1}}\right)
\end{aligned}
\]

The second terms of (20) and (19) and any terms of factoriai degree \(j-1\) in the complete shift-free partial fraction decomposition, can be combined together to 232
\[
\begin{aligned}
& \Delta^{-1} \frac{A_{1, j}(x)}{\left[f_{1}(x+1)\right]_{j}}=\Delta^{-1} \frac{A_{1} j^{C} \Delta_{1} f(x+i-j)}{\left[f_{1}(x+1)\right]_{j}}+\Delta^{-1 \frac{A_{1}}{} \frac{B f(x+i-j+1)}{\left[f_{1}(x+1)\right]_{j}}} \\
& =\Delta^{-1} \frac{D_{j} \frac{\Delta}{} \frac{f(x+1-j)}{\left[f_{1}(x+1)\right]_{j}}+\Delta^{-1} \frac{A_{1,1}}{\left[f_{1}(x+1)\right]_{j-1}} .}{.}
\end{aligned}
\]
give the next term of the iteration:
\[
\Delta^{-1}\left(\frac{\Delta D+A_{1, j} B+A_{i, j-1}}{\left[f_{i}(x+i)\right]_{j-1}}\right)
\]

The same method can be applied again. Continuing in this way we eventually obtain an expression for the indefinite sum of a rational finction as a rational funcion nlus an indefinite sumation of terms with shi \(t\)-free denominators of factorial degree 1.

\section*{An Example of Hermite Sumation:}
\[
\text { We wish to coüpute: } \quad \Delta^{-1} \frac{A}{B}
\]
whe-e:
\[
\frac{A}{B}=\frac{-\left(x^{2}+3 x+3\right)}{x^{4}+2 x^{3}-3 x^{2}-4 x+2}
\]

First we put 1 into a shift free form:
\[
E B=x^{4}+6 x^{3}+9 x^{2}-2
\]
and
\[
\operatorname{GCD}(B, \Sigma B)=\left(x^{2}+2 x-1\right)
\]
and so \(\quad \frac{A}{B}=\frac{-\left(x^{2}+3 x+3\right)}{\left[x^{2}+2 x-1\right]_{2}}\)
Next we perfors a complete shift-free decomposition on \(\frac{A}{B}\) :
\[
\frac{A}{B}=\frac{-(3 x+5)}{\left[x^{2}+2 x-1\right]_{2}}+\frac{-1}{\left[x^{2}+2 x-1\right]_{1}}=\frac{C}{D}+F
\]

Now we want to put \(\frac{C}{D}\) into a form suitable for summation by parts. Since \(E^{-1}\left(x^{2}-2 x-1\right)=x^{2}-2\).
\[
\frac{C}{D}=\frac{C \Delta\left(x^{2}-2\right)}{\left[x^{2}+2 x-1\right]_{2}}+\frac{H\left(x^{2}-2\right)}{\left[x^{2}+2 x-1\right]_{2}}
\]

Since \(\left(x^{2}-2\right)\) is shift free:
\[
\left(\Delta\left(x^{2}-2\right),\left(x^{2}-2\right)\right)=1
\]
and therefore we can eaploy the extended euclidean algorithr to solve the equation:
\[
\begin{aligned}
-(3 x+5) & =S(2 x+1)+T\left(x^{2}-2\right) \\
& =-(x+1)(2 x+1)+2\left(x^{2}-2\right)
\end{aligned}
\]

So \(\frac{C}{D}\) is of the form:
\[
\begin{aligned}
\frac{C}{D}= & \frac{-(x+1)(2 x+1)}{\left[x^{2}+2 x-1\right]_{2}}+\frac{2\left(x^{2}-2\right)}{\left[x^{2}+2 x-1\right]_{2}} \\
& \frac{-(x+1) \Delta(x-2)}{\left[x^{2}+2 x-1\right]_{2}}+\frac{2}{\left[x^{2}+2 x-1\right]_{2}}
\end{aligned}
\]

Now we perform sumation by parts to obtain:
\[
\Delta^{-1} \frac{C}{D}=\frac{x+1}{\left(x^{2}-2\right)}-\Delta^{-1}\left\{\frac{\Delta(x+1)}{E\left(x^{2}-2\right)}\right\}+\Delta^{-1} \frac{2}{\left[x^{2}+2 x-1\right]_{1}}
\]
and so:
\[
\begin{aligned}
\Delta^{-1} \frac{A}{B}=\Delta^{-1} \frac{C}{D}+\Delta^{-1} F & =\frac{x+1}{x^{2}-2}+\Delta^{-1}\left\{\frac{-1}{\left[x^{2}+2 x-1\right]_{1}}+\frac{2}{\left[x^{2}+2 x-1\right]_{1}}\right. \\
- & \left.\frac{1}{\left[x^{2}+2 x-1\right]}\right\}=\frac{x+1}{x^{2}-2} .
\end{aligned}
\]

Section 5: The Transcerciental Part
'e have reduced the problem of summation of rational functions to the summation of a set of terms with shift-free denominators. Now we define a set of functions:
\[
\Psi_{m}(x)=D^{m} \log \Gamma(x+1), m>0
\]
where \(r(x)\) is the gama-function, a generalization of the factorlal. The funccions \(\psi_{\mathrm{m}}\) have the property:
\[
\begin{aligned}
\Delta \psi_{\mathrm{in}}(x) & =D^{m} \Delta \log \Gamma(x+1) \\
& =D^{m} \log \frac{\Gamma(x+2)}{\Gamma(x+1)}=D^{m} \log (x+1) \\
& =D^{m-1} \frac{1}{x+1}=\frac{(-1)^{m-1}(m-i)!}{(x+1)^{m}}
\end{aligned}
\]

Therefore the sum of a nagative power of \((x+1)\) 18:
\[
s^{-1} \frac{1}{(x+1)^{m}}=\frac{(-1)^{m-1}}{(m-1)!} \psi_{m}(x)
\]

The functions \(\psi_{m}(x)\) are also known as rie polygamula functions.
We can now expand the remainder of our rational function in terms of its roots:
\[
\frac{A(x)}{B(x)}=\sum_{i=1}^{k} \frac{a_{i}}{\left(x-b_{i}\right)^{j(i)}}
\]
where \(j(i)\) is the multiplicity of che root.
Using the \(\psi_{\text {m }}\) functions the indefinite sumation of remainder of the rational function is:
\[
\Delta^{-1} \frac{A(x)}{B(x)}=\sum_{i=1}^{k} \frac{a_{i}(-1)^{j(i)-1}}{(j(1)-1)!} \psi_{j(1)}\left(x-b_{i}-1\right)
\]

Tne functions \(\psi_{m}\) play a role similat to logarithms in the integration \(o^{\text {e }}\) rational functions. I conjecture:
a) The functions \(\psi_{m}(x)\) are transcendental with respect to the ground ileld \(F(x)\).
b) If \(b_{i}\) are the shift-fres rosts of a polynomial then \(\psi_{j(1)}\left(x-l_{1}\right)\) are algebraically independent.

If these statements are true then one could argue, much as Hermite did for integration, that the rational and transcendental parts of a sumation are unique.

\section*{REFERENCES}
1. Jordan, C.: Calculus of Finite Differences. Chelrea, N.Y., 1965, 3rd ed.
2. Risch, R.: The Problem of Integraticn in Finite Teras. Trans. A.M.S.139, May 1969, pp. 162-189.
3. Moses, J.: Symbolic Integration: the Stormy Decade. Comm. A.C.M., vol. 14 nc. 8, Aug. 1971, pp. 548-560.
4. Boole, G.: A Treatise on the Calculus of Finite Difierences. Cambridge, 1860.
5. Johnson, S.C.: On the Problem of Recognizing Z.ro. J.A.C.M., vol. 18, no. 4, Oct. 1971, pp. 559-565.
6. Gosper, R.W.: A Calculus of Series Rearrangements. Proc. Symp. on New Directions in Algorithms and Complexity, C.M.V. 1976.
7. Cheatham, T.E. and Townley J.A.: Symbolfc Evaluation of Programs: A Look at Loop Aralysis. Proc. 1976 Symp. on Symbolic and Algebraic Computation, R.D. Jenks Ed., A.C.M. New York, Pp. 90-96.
8. Gosper, R. Nm., Jr.: Indefinite Hypergeomerric Sums in MACSYMA. Procecdings of the 1977 MACSMMA Users' C nference, NASA CP-2012, 1977. (Paper no. 24 of this compilation.)
9. Cohn, R.M.: Difference Algebra. Interscience, N.Y. . 1965.
10. Ritt, J.F.: D'fferential Algebra. Coll. A.M.S., vol. 33, 1950.
11. Horowitz, E.: Algorithms for Partial Fraction Integration. Proc. 2nd Symp, on Symbolic and Algebraic Manipulation, Max 1971. S.k. Petrick ed., pp. 441-457.
12. Yun, D.: On Yartial fraction Decomposition Algo:ithms. Proc. ig 17 IFIP Congress.

\[
N 77-28773
\]

Indefinite Hypergeometric Sums in MACSYMA \({ }^{*}\)

> P. Wm, Gosper, dr.

XEROX Palo Alto Research Center
ABSTRACT
We present a MACSYMA function which, given the summand
\[
\begin{equation*}
a_{n}=\Delta g(n)=g(n+1)-g(n) . \tag{A}
\end{equation*}
\]
finds \(g(n)\), the "incefinite sum", within an additive constant, provided that \(g(n+1) / g(n)\) is e rational function of n. Wo then have the identity
(B)
\[
\sum_{n=p}^{q} a_{n}=g(q+1)-g(p) .
\]

Examplos:
\[
\begin{gathered}
\sum_{n=0}^{m} \frac{1}{n^{2}+\sqrt{5 n-1}}-\frac{\sqrt{5-3}}{6} \cdot \frac{2}{3}\left(\frac{1}{2 m+\sqrt{5-1}}+\frac{1}{2 m+\sqrt{5+1}}+\frac{1}{2 m+\sqrt{5+3}}\right), \\
\sum_{n=0}^{m} \frac{n(n+a+b) a^{n} b^{n}}{(n+a)!(n+b)!}=\frac{1}{(a-1)!(b-1)!} \cdot \frac{a^{m+!} b^{m+1}}{(m+a)!(m+b)!}, \\
\left.\sum_{n=0}^{m} \frac{n^{4} 4^{n}}{(2 n}\right)=\frac{2}{693}\left(\frac{(m+1)\left(63 m^{4}+112 m^{3}+18 m^{2}-22 m+3\right) 4^{m}}{\binom{2 m}{m}}-3\right) \\
\sum_{n=0}^{m} \frac{(3 n)!(n)}{a!(n+2)!27^{n}}=\frac{\left(81 m^{2}+261 m+200\right)(3 m+2)}{40 m!(m+1)(m+2) 27^{m}}=\frac{?}{3}
\end{gathered}
\]

Ohe aforithm seaks a "feloscoplng function" f(n) saibsying
(C)
\[
f(n)=f(n) a_{n}
\]
which, if used to eliminate \& from (A), yialds the function al equation
(fync)
\[
\frac{a_{n+1}}{a_{n}}=\frac{f(n)+1}{f(n+1)}
\]
whence, from ( \(\boldsymbol{\theta}\) ) and (C),
(voila)
\[
\sum_{n=n}^{2} e_{n}-a_{0}\left((n(q)+1)-a_{p} f(p)\right.
\]

From \((A)\) end \(\{C)\) It can be shown that \(f(n)\) is a rational function \(11 g(n+1 / / s(n)\) is. Our algorithm delarmines \(f\) as a finite contirued traction whos terms are polynomiati in m. Wo awail aither a mathematical proof of lis - ffectiveness, or alternatively, an example on which if tails, to delermine whether it is decition procedure, or meruly a useful but fallible houristic.
*This work was supported, in part, by the National Science Foundation, and was fosteriod by the nespitable and unfeltered environment of the Stanlord Arlifistal Intelligence Laboratcry.

\section*{Suns and Summinds, Range and Domain}

If \(g(n+1) / g\left(n\right.\) is a rational function of \(n\), then \(g(n), t\) in fiarefore \(a_{n}=\Delta_{g}(n)\), is wenatant timse a procivel of n consecutiv, valuc; of some rational function. We shall ral; such functiens "hypergesmof ic forme". We beligve our algorithm finds all invarse differences which hava this form, thus periorning indafinite summation on generalized hypergeomalric series.

Of course, not all finite preducts of rational functions sum te functions of the same ty wa just as not all rationai functions integrate to rational functions. One might 3 ak, therofore, whother precieding highar functiens from the answor \(g(n)\) might thwart our algorithry the way procluding iogarithms, etc, would thwart an integratiar: algorithm. The answer is yes, but not noart, as bedly. II appears shat among the familier highop funtiono, only the polygammas* of certain linear argumonts have first difiorancos in the forin of hypergeonsific torms. This psucity of functions applicable to the expression of indefinite sums is due to the leck of a diecrats analogua to the chuin ruis, and has the unfortunate consequance that a given sum is less likely to have e closed form than is an integre! of similar complexity. In particular, the only theargeomelric serites whost indefinits suns are faciliated by polygammas are those vith rational summands. Should it be aesded, faily simple partial fractions algo-ithm can sum rational furations as polygammas, al least when it in clear how to adequatel' factor the summarats cinnominator. (Polygammas in the cummands might be handied sesing summation by parts, but not in the algorithm under discussion.)

It is a littlo surprising that the rational summands which require polygammas are invariably specied eases of hypergeometric summands which are amenable to cur MACSYMA sum function, e.s.
\[
\sum_{n=1}^{m} \frac{1}{m^{2}}-\psi(1)-\dot{\psi}(r \cdot+1)
\]
will simplify no further ( \(\psi^{\prime}\) ' is the trizamme furction), yot this sum ia the special case \(x \rightarrow 0\) of
\[
\sum_{n=1}^{m} \frac{(x-1) n^{2}}{(m-x) \mid(n+x)!}=\frac{\left.m\right|^{2}}{x^{2}(m-x)(m+x)!}-\frac{\sin \pi x}{\pi x^{3}}
\]

Hera the leloscoping function was \(\pi\left(n i=n^{2} / x^{2}-1\right.\). (We iso used the istorial reflection formule, \(x!(-x)!=\pi x / \sin \pi x\).\() in genera!, the tolescoping function f(n)=-1 / t a_{n}\) yiolda the identity
\[
\sum_{a=0}^{m} a_{0}\left(1-\left(a_{0}\right)\left(i-\left(a_{1}\right) \cdots\left(1-i a_{m+1}\right) \cdots \quad \frac{1-\prod_{0}^{m}\left(1-\left(a_{m}\right)\right.}{1}\right.\right.
\]

Letling \(\rightarrow 0\), we have an arbilrary sum as the limit of e product over the same range (which ie clerr frem ponsidering the exparier of the product through the O(d) ferme.) When \(a_{n}\) te rational in \(n\), we cen always express this product and the aummand as hypergeometric terms prior to taking the limill. Thus, for another example of the oum of reciprocet squaris, use \(a_{n}-1 / n^{2}\) (and, for convenience, replece ( by ( \({ }^{2}\) ):
\[
\sum_{n+6}^{n+1} \frac{1}{(n+1)^{2}\binom{n}{!}\binom{n}{-6}}-\frac{1}{4^{2}}-\frac{(m-6)(m+1)!\sin n c}{m!^{n} n^{3}}
\]
(The value \(\zeta(2)=\pi^{2} / 6\) is evident \(i f m \rightarrow \infty\) before \(f \rightarrow 0\). )

\footnotetext{
*derivativer of \(\log \Gamma^{\prime}(x)\)
}

\section*{Sans and Summinds, Range and Domain}

If \(g(n+1) / g\left(n\right.\) is a rational funclion of \(n\), then \(g(n), r\) dinareiore \(a_{n}=\Delta_{g}(n)\), is te constant timss a product of n consecutiv, valucy of some rational function. We shall rall such functiong "hypargeomefic torme". Wo beligeve our algorithm finds all invarse differences which hava this form, thus pertorming indetinite sunmzaion on generalized hypergeometric series.

Of course, not all finite products of rational functions sum \(\ddagger\) functions of the same ly 20 . just es not at rationai functions integrate to rational functions. One might ask, therefors, whether precluging higher functiens from the answer \(g(n)\) might thwart our ugoritho the way preciuding iogarithms, elc., would thwart an integratiar: algorithm. The answer in yos, but not noar', as badly. It appoars that among the iamilier higher funtiono, only the polygammas \({ }^{*}\) of certain linear arguments have first difiersncos in the fortn of hypergeonstric ferms. This paucity of functions applicable to the expression of indefinite sums is due to the lack of ediecreis analogue to the chuin ruie, and has the unfortunate consequence that t given sum is lese likely to have a closed form than is an integret of similar complexity. in particular, the only hyengoometric series whose indefinits suras are faciliated by polygammas are those vith rational summands. Should it be aesdad, a fariy simple wartial fractions algorithm can sum rational furctions as polyzammas, af heast when it in clear how to adequatelf factor the summarj's cinnominator: Polygammas in the eummande might be handed ising fummation by parte, but not in the algorithm undor discussion.)

It is a little surprising thal the retional summands which require polygammse are iwariably apecied eseses of hypergeomelrie summands which are amenable to cur MACSYMA sum function, e.e.
\[
\sum_{n=1}^{m} \frac{1}{n^{2}}=\psi(1)-\dot{\psi}(r-+1)
\]
will simplify no further ( \(\psi^{+}\)is the frigamm furction), yet this sum is the specist cese \(x \rightarrow 0\) of
\[
\sum_{n=1}^{m} \frac{(n-1)!^{2}}{(m-x)](n+x)!}=\frac{m!^{2}}{x^{2}(m-x)(m+x)!}-\frac{\sin \pi x}{\pi x^{3}}
\]

Here the telescoping function was \(f\left(n ; m n^{2} / x^{2}-1\right.\). (We aiso used the factorial roflection formule, \(s!(-x)!=\pi x / \sin \pi x\).\() In genera!, the telescopinz function f(n)=-1 / \AA_{n}\) yields the identity
\[
\sum_{n=0}^{m} a_{n}\left(1-\left(a_{0}\right)\left(i-\left(0_{1}\right) \cdots\left(1-i a_{n-1}\right)=\frac{1-\prod_{n=0}^{m}\left(1-\left\{a_{n}\right)\right.}{!} .\right.\right.
\]

Letting \(\rightarrow 0\), we have an arbitrary sum us the limit of a product over the same range (which le elerr from cisnsidering the axpewier of the produel through the O(f) terma.) When a in ralional in \(n\), we cen dways express this product and the summand as hyparseomatric terms prior to taking the liwith. Thun; for another example of the fum of reciproce! squaris, use \(a_{n}-1 / n^{2}\) (and, for convenience, replece © by \(\boldsymbol{a}^{2}\) ):
\[
\sum_{n+0}^{n-1} \frac{1}{(n+1)^{2}\binom{n}{4}\binom{n}{-6}}-\frac{1}{4^{2}}-\frac{(m-6)!(m+8)!\sin n c}{m!^{!} \pi t^{5}}
\]
(The value \(S(2)=\pi^{2} / 6\) is evident \(\| m \rightarrow \infty\) before \(\{\rightarrow 0\). )

\footnotetext{
*derivatives of log \(\Gamma(x)\)
}

Unfortunately, the current dporithm is not a decision. procedure for the expressibility of indefinite hypergeometric sums in closed form. The top level picsedure heuristically bounds the cumplexity of the telescoping function \(f\), to prevent the main iteration, when given an impossible problem, from plunging down an endiess continued fraction. Another as yet nonrigoroue aspect of the main iteration: it uses a rather shortsighted, "greedy" algorithm to determine the successive term polynomials, and we have yet to show that it will nevur need to barktrack when solving the functional equations which arise from series. (If necessary, backtrack could to instalied, but it might be vary costly in cases which turn out inexpressible in closed torm.)

\section*{The Aigorithm}

The oniy significant problem is to solve the rational functional equation
(func)
\[
\frac{a_{n+1}}{a_{n}}=\frac{f(n)+1}{f(n+1)}
\]
for f. Sinca this followed from differencing \(g(n)=f(n) a_{n}=f(n) \Delta g(n)\), we have
\[
f(n)=\frac{g(n)}{g(n+1)-g(n)}=\frac{1}{\frac{g^{(n+1)}}{g(n)}-1}
\]
which is rational when \(g(n+1) / g(n)\) is. Because we have no boundary condition fo satisfy, equation (func) is easier to satisty than a lirst order linear recurrence with polynomial coefficients. In fact, if \(f(n)\) is a solution, then so is \(f(n)+c / a_{n}, c\) arbitrary. Thus if the summand \(a_{n}\) is rational, then there is a continuum of rational \(f\) satisfying (func), differing only in the "constant of summation" othat they add to the sum g .

If \(f\) is a rations: function, then the quotients from Euclid's algorithm (using pelynomial division) form the torme of its continued fraction:

\({ }^{\prime} p_{k}(n)\)
Our MricSYMA algorithm successivaly determines \(p_{1}, p_{2}, \ldots\), with the proviso that no \(p_{i}\) be constant for \(i>\) 1 , so as to guarantee the uniqueness of the representation.

Since the term ratio \(a_{n+1} / a_{n}\) is rational function, we can write it as \(P(n) / Q(n)\), where \(P\) and \(Q\) ore polynomials. Then \(f\) must satisfy
(1)
\[
P(n) f(n+1)-O(n)(f(n)+1)=0 .
\]

In pariicular, this relation holds for large \(n\), where \(f(n) \rightarrow p_{1}(n)\). We thus "greedily" determine \(p_{1}\) as the polynomial approximation to \(f\) which most nearly satisfies (1), that is, the oolynomial which minimizes the degree of the lefthand side. We then substitute \(p_{1}(n)+1 / \delta_{2}(n)\) for \(f(n), s 0\) that we can recursively delerming the rest of \(f^{\prime}=\) continnued ! action as \(f_{2}\), the solution of the new functional equatio:)
\[
\frac{a_{n+1}}{a_{n}}=\frac{p_{1}(n)+\frac{1}{f_{2}(n)}+1}{p_{1}(n+1)+\frac{1}{f_{2}(n+1)}} .
\]

We write this equation in the form
\[
\text { (2ndform) } \quad A(n) f_{2}(n) f_{2}(n+1)+B(n) f_{2}(n)+C(n) f_{2}(n+1)+D(n)=0,
\]
where \(A, B, C\), and \(D\) are poiynomials. Then we "greenily" seek the polynomial \(p_{2}\) which, in place of \(f_{2}\). most nearly satisfies (2ndform). We proceed in this way, replacing (subst)
\[
f_{i}(n) \text { by } p_{i}(n)+1 / f_{i+1}(n)
\]
until we either find \(\boldsymbol{o}_{\boldsymbol{k}}(\boldsymbol{n})\) which exactly satisfiss our equation, or we conclude that no solution exists. Fortunately, further substitutions of the form (subst) lead to no equations more complicated than (2ndiorm).

Woriced Example: we seek
\[
\sum_{n=0}^{m}(n-r / 2)\binom{r}{n}
\]
in closed form. Equation (func) becomes
\[
\frac{n-r / 2+1}{n-r / 2} \frac{r-n}{n+1}=\frac{f(n)+1}{f(n+1)}
\]
or
\[
\begin{equation*}
(n-r / 2+1) /(n-r) f(n+1)+(n-r / 2)(n+1)(f(n)+1)=0 . \tag{11}
\end{equation*}
\]

In arder to determine the first polynomial of f's continued fraction, we must first determine the degree of that polynomial. We do this by replacing \(f\) with the "polynomial" estimate \(p_{1}(n)=a n^{9}+O\left(n^{q-1}\right), q\) to be determined. Suppose \(q>0\). Then ( \(\$ 1\) ) becomes
\[
2 a n^{q+2}+O\left(n^{q+1}\right)=0,
\]
implying \(a=0\), meaning that \(q\) was too large. So \(q\) must be 0 , and thus \(p_{1}\) must be econstant \(a\), making \(\{1\) )
\[
(2 a+1) n^{2}+O(n)=0 ;
\]
which determines \(a=-1 / 2\) and therefore \(f(n)=-1 / 2+1 / f_{2}(n)\). This determines the new equalion
\[
\begin{equation*}
r\left(n-\frac{r+1}{2}\right) f_{2}(n+1) f_{2}(n)+2\left(n-\frac{r}{2}\right)(n+1) f_{2}(n+1)+2(n-r)\left(n-\frac{r}{2}+1\right) f_{2}(n)=0 \tag{f2}
\end{equation*}
\]
to te solved for \(f_{2}\). Again, if we estimate \(f_{2}\) by \(p_{2}(n)=a n^{q}+O\left(n^{q-1}\right)\), (i2) becomes
\[
r a^{2} n^{2 q+1}+4 a n^{c+2}+O\left(n^{2 q}\right)+C\left(n^{7+1}\right)=0 .
\]

Now \(q\) must be positive since we have forbidden \(p_{i}\) to be constant for \(i>1\). But if \(q>1\) then \(2 q+1>q+2\), forcing \(a\) to be 0 , which is equivaient to redusing \(q\). So \(q=1\), and the above bescomes
\[
\left(r a^{2}+4 a\right) n^{3}+O\left(n^{2}\right)=0
\]
which determines \(a=-4 / r\). Now we know that \(p_{2}(n)\) is of the form \(-4 n / r+b\), and we can determine \(b\) by substituting this expression ior \(\mathcal{f}_{2}\) in \((\$ 2)\), leaving for the lefthand side
\[
(2-b)\left(4 n^{2}+(4-b r-2 r) n+b \frac{r(r-1)}{2}+2\right)
\]

Which identically vanishe if \(b=2\). Thus we have fr and the solution
\[
f(n)=-\frac{1}{2}+\frac{1}{-\frac{4 n}{r}+2}=\frac{n}{r-2 n}
\]
whence, by
(voila)
\[
\sum_{n=p}^{q} a_{n}=a_{q}(f(q)+1)-a_{p} f(p),
\]
wo got
\[
\sum_{n=0}^{m}(n-r / 2)\binom{r}{n}=\frac{(m-r)\binom{r}{m}}{2}
\]
(This example was suggested by D. Knuth.) Incidentally, Eulor, (rots. 1, 10), had the special case \(m=\infty\) of (voila) in 1753, but he didn't get much mileage out of it. Chrystal \{rof. 2\} gives (voils) within' a change of variables, but atill underestimates its zonerality. He credits Euler in "Nov. Comm. Petrop., 1760", but I can't locate this.

In certain cases where the continued fraction fails to terminate guickly, it is possible io deovee the esneral formula for the ith term. With this yol can iell it and when the fraction will ferminale, and in an' case get an interesting identity. Consider, for example,
(2F1)
\[
{ }_{2} F_{1}\left[\begin{array}{c}
a, 1 ; z]= \\
\sum_{n \geq 0}\binom{n+a-1}{a-c} x^{n} \\
\binom{a-1}{a-c}
\end{array}\right.
\]
which encempasses ihe Tayior sories of many useful functions, e.c.
\begin{tabular}{lr}
\((1-x)^{\mu}\) & {\([a=-p, c=1, x=x]\)} \\
\(-\frac{\ln (1-x)}{x}\) & {\([a=1, c=2, x=x]\)} \\
\(\frac{\arctan x}{x}\) & {\(\left[a=1 / 2, c=3 / 3, x=\cdots x^{2}\right]\)} \\
\(\frac{\arcsin x}{x \sqrt{1-x^{2}}}\) & {\(\left[a=1, c=3 / 2, x=x^{2}\right]\)}
\end{tabular}

First off, 'we note that equation (voila) has arbitrary uppor and lower llmits on the etm. We exploif this dez-ee of Ircedom by shifting the zummation index by c-1, so that (2F1) becomes
\[
2^{F},\left[b_{c}^{2,1} ; z\right]: \frac{z^{1-c} \sum_{n=c-1}\binom{n+a-c}{a-c} z^{n}}{\binom{a-1}{a-c}}
\]
which, if we replace \(a-c\) by \(b\), oliminates a parameter from the summand. (Summing for nze-1 means for \(n=\) \(c-1, c, c+1, \ldots\) regardiess of whethe. \(c\) is integral or even resi.)

Equation (func) new beromes
\[
\frac{n+b+1}{n+1} z=\frac{f(n)+1}{f(n+1)}
\]

Experience indicales that, having delermined \(p_{i}\) in the form ( \(\left.A n+B\right) / C\), tay, we should clear out the denominator C by writing
\[
f_{i}(n)=\frac{1}{C}\left(A n+B+\frac{1}{f_{i+1}^{(n)}}\right) \cdot \text { instaad of } \frac{A n+B}{C}+\frac{1}{i n+1}(n)
\]
before going on to determina fiol. This will usually laad to simpler coefficients in the later polynomiale. tup solution will then begin
\[
f(n)=\frac{1}{z-1}\left(1+\frac{b z}{\left.(1-x) n-b x+1+\frac{(b-1) z}{(1-x) x-(b-1) z+2+\frac{2(b-z) x}{(1-x) n-(b-2) y+3+\frac{3(b-3) z}{\cdots}}}\right)}\right.
\]
and, in general, the \(i\) th equation
\[
(-1) i\left((i-2)(b-i+2) z f_{i}(n) f_{i}(n+1)-(n+i-1) f_{i}(n+1)+(n+b-i+3) x f_{i}(n)-1\right)=0
\]
determines
\[
f_{i}(n)=\frac{1}{(i-2)(b-i+2) z}\left((1-z) n-(b-i+2) z+1-1+\frac{1}{f_{i+1}^{(n)}}\right)
\]
which in turn yields the i:1tit equation
\[
(-1)^{i+1}\left((i-1)(b-i+1) z f_{i+1}(n) f_{i+1}(n+1)-(n+i) f_{i+1}(n+1)+(n+b-i+2) z f_{i+1}(n)-i\right)=0,
\]
for iz3. Finally, since \(a_{0}-1\) and if the series convargesi \(a_{n} \rightarrow 0_{n}\)
\[
{ }_{2} F_{1}\left[\begin{array}{l}
a, 1 \\
c
\end{array} x\right]=\frac{1}{1-x}\left(1+\frac{(a-c) x}{(1-a) x+c+\frac{(a-c-1) x}{2(a-c-2) x}}\right)
\]

By the same mathod we can aleo establish
\[
\sum_{n=m}^{\infty} \frac{z^{n}}{n!}=\frac{z^{m}}{m!}\left(1+\frac{z}{\left.m+1-z+\frac{z}{m+2-x+\frac{2 x}{m+3-z+\frac{3 z}{\cdot!}}}\right)}\right.
\]
which, for \(\boldsymbol{m}=\mathbf{0}\), gives a nice continued fraction for \(e^{z}\).

\section*{Messy Details}

I have glossed over three problems that arise in determining the suscessive polynomisla, namely, what degree polynomial to choose, how many coofficients must be solved for at once, ane what to do about multiple solutions.
1) The poliynomial degree:

The MACSYMA wigorithm basically chooses the largcst integer \(q\) such that when an \({ }^{\boldsymbol{q}}\) is subetifuted for \(f_{i}(m)\) in the expression
(ithform)
\[
A(n) f_{i}(n) f_{i}(n+1)+\frac{\left.B^{\prime}\right)+C(n)}{2}\left(f_{i}(n+1)+f_{i}(n)\right)+\frac{B(n)-C(n)}{2}\left(f_{i}(n+1)-f_{i}(n)\right)+D(n)=0,
\]
more than one of the four lefthand terms is of maximal degrec in \(n\). Whan there be such \(\boldsymbol{z}\) largest \(q\), the coefficient of the highest power of a will contain at least two different powers of e, 80 that the coefficient can be eliminated with anonzero choice of \(a\). But on the first torm \((i=1), G(n)=0\) and \(C(n)=D(n)\), and 4 can happen that \(\operatorname{deg}(B(n)+C(n))<\operatorname{deg}(B(n)-C(n)\), i.e. \(B(n)\) and \(C(n)\) have the forms
\[
c_{n^{p}}^{p}+d_{B} n^{p-1}+O\left(n^{n-2}\right) \text { and }-c n^{p} \cdot d_{C} n^{p-1} \cdot O\left(n^{p-2}\right)
\]
respectivaly. Then, sisce \(\operatorname{dog}\left(f_{i}(n+1)+f_{j}(n)\right)=\operatorname{deg}(B(n)-C(n))+1\), there is no largeat q meating our condition. In this ense, we estimito \(f_{j}(n)=a n^{9}+b n^{9-1}+O\left(n^{-2}\right)\), and the quantliy we ore trying to annihilate becomes
(tricky) \(\left.\quad B(n) f_{i}(n+1)+C(n) f_{i}(b)+D_{i n}\right)=a\left(c q+d_{B^{*}} d^{i}\right) n^{p+q-1}-c n^{p}+O\left(n^{p+q-2}\right)+O\left(n^{p-1}\right)\).
Here we can zero the high order coelficient with aither of two choicest \(q=-\left(d_{\mathrm{a}}+d_{c}\right) / \mathrm{o}\) or \(9=1\). Tibe program heuristically chooses this largar of these, provided it is on intoger, on the theory that there ie a sood chance of later determining that a a 0 , should the choice prove wrons. But this rensening is questionable in light of the functional equation
(loser)
\[
\left(\left(U(n)-n^{105}\right)^{2}-n\right)(n /(n+1)-1) \times 0 .
\]

The two colutions of this equation are evidently
\[
f(n)=n^{105} \cdot \sqrt{n} \text { and } f(n)=\frac{1}{n-1} \text {, }
\]
but only the second solution is a rational function. Thus, any alloinpl to find the firsl solution will result in nontermination. Yet the arroneous choice of \(p_{1}(m)=n^{105}\) raduces the lefthanc side of (loser) to degree 107, while the correct choice \(p_{1}(n)=0\) only reduces it to degree 210 . Our meek excuse is that ir problems arising from sums wo never encounter such products as \((f(n+1))^{2} f(n)\), which appoars in (leser). (Robert Maas helped construct this examplo).

At the end of tha next saction, we give an example where the heuristic succeeds in retrosctively delormining that the higt coofficient is 0 , but very nearl; requires backtracking to do is.
2) The need to consider more than one cocificient at a time:

The aforementioned (tricky) cise, in which the exponent becomes involved in the cositicients, is the snupce of another, less sericus annoyancr. In this case, and this atono, if is necessary to deformine each coefficient of \(p_{1}\) in terms of the next lewar one. Considar the sum
\[
\sum_{n=3}^{m} \frac{\binom{2 n}{n}^{2}}{(n+1) 4^{2 n}}
\]
which deformines the iunctional equation
\[
\frac{(n+1 / 2)^{2}}{(n+1)(n+2)}=\frac{(n)+1}{(n+1)} .
\]

In the notation of the praseding discussion, \(c=1, d_{B}=1, d_{c}=-3\), and thus \(q=2\). Now suppose we estimatod \(f(n)\) as \(a n^{2}+\delta n+O(2)\). Then we would have
\[
\left(\frac{5 a}{4}-b-1\right) m^{2}-O(n)=0
\]

Had we meraly estimatad \(f(n)\) br \(a n^{2}\), we would have arroneously datermined a on the essumplion that \(b\) was \(D\), and then zone on to determine that \(b\) was, in fect, nonzero. Since a's value dopende on b's, this incorreet value of a would fail to annihilets the \(n^{2}\) form, leaving that job for \(b\). If \(c\) is expanded on the linear form, it happens that tha constan: term remains unvanquishad, and the conlinused fraction procese will plunge down an almost eertninly bettomiess hole. This would be a whame, since the aguation could have been solved with the first ferm:

This, incidentally, provides
\[
f(n)=4 n^{2}+4 n .
\]
\[
\sum_{n=1}^{m} \frac{\binom{2 n}{n}^{2}}{(n+1) 4^{2 n}}=\frac{(m+1)\binom{2 m+1}{m}^{2}}{4^{2 m}}
\]

In principle, it is nover nacussary to solve simultaneous equations, even in this worat case. It in meroly necessary to determina esch cositicient in terms of the as yof undelermined succeadint caeliticient, and only in those casss whare \(B(n)+C(n)\) has lower degree than \(B(n)-C(n)\), and only for the firal polynomial. In practico, our alyorithm invokes MACSYMA's LINSOLVE linear aystem package, moinly for ha automathe back subutifution.

Incidonally, the only way that a coeificient could dopend on the next swo coelticienta woutd be if the functional equation conteined three distinct invocatiens of \(f\), ayy \(f(n-1)\), \(f(n)\), and \(f(n+1)\).

Very occasionally, an equation for a coafticient can have no solutionsl This happens while aumming
(weirdo)
\[
\sum_{n=0}^{n} \frac{(4 n-1)\binom{2 n}{n}^{2}}{(2 n-1)^{2} 4^{2 n}}
\]
which requires the solution of
\[
\frac{(n-1 / 2)^{2}(4 n+3)}{(n+1)^{2}(4 n-1)}=\frac{f(n)+1}{f(n+1)}
\]

Proceeding as beiore, we would again find \(q=2\) and estimating \(f\) by \(a n^{2}+b n+O\left(1_{r}\right.\), we would determine that \(a=-2-2 b\). Then estimating \(f=-2(b \cdot 1) n^{2} \cdot b n+c \cdot O\left(n^{-1}\right)\), wo would deterimine \(b=(1 \epsilon c+1) / 3\). But this leaves the equation
\[
3 a+9 c+3+0(n)=0
\]
and there is no way to choose \(c\) to annihilate tho coefficient of \(n\), since if dapends on the next conlinued fraction term rather than on \(c\). It is unsafe to choete \(c\) arbitrapily, since our nonrational summand precludes the "conslant of sumnation", so we must postpone the datermination until after datermining that the zecond continued iractien term is \((-16 n+36 c+13) / 3\), whish leaves us the lefthand side
\[
\left.-3(6 c+1)(180 c+15) n-324 c^{2}-117 c+16\right)
\]

Our pationce is rawarded, onr the determination \(c=-1 / 4\) :erminates the problem, but with the ironic result that \(b=1 / 3\) and \(a=0\), so that the choice \(q=1\), which is always avaiable in such ceset, was correct after all. (See the first sentence aftor equation (trisky).) Incidentally, we have delermined
\[
f(n)=-\frac{4 n^{2}}{4 n-I}
\]
and thus
\[
\sum_{n=0}^{m} \frac{(4 n-1)\binom{2 n}{n}^{2}}{(2 n-1)^{2} 4^{2 n}}=\frac{\binom{2 m}{m}^{2}}{4^{2 m}}
\]
3) Multiple roots when determining acoafficiont:

If \(f(n)\) is a rational function with rational coetticiants, wo san be atre thal no irrational cosaficient will arise in Its continued fraction. It is therefore reasonable to hope that in solving a functional equation for sueh e continusd fraction, no nonlinesr equation need be selved. This hepe is aubstantiaily fulfilled, but for a couple' of elitehes. For example, in establishing the idantity
\[
\sum_{n=0}^{m} n^{t}=\frac{m i n+1)\left(2 m \cdot:\left(3 m^{2}+3 m-1\right)\right.}{30}
\]
wie would determine the telescoping function to te
\[
f(n)=\frac{n}{5}-\frac{1}{2}+\frac{1}{3 n+\frac{3}{10 n+c+\frac{1}{\left.10\left(c^{2}-10\right) n-c^{2}-10\right)^{2}} \cdot \frac{c^{4}}{\left(c^{2}-10\right) n+c}}}=\frac{(n-1)(2 n-1)\left(3 n^{2}-3 n-1\right)}{36 n^{3}}+\frac{c}{300 n^{4}}
\]
where \(c\) is the arbitrary "constant of summation" which we get when the summand ie rations. But our algorithm is not smart enough to lasve \(c\), (which is also the coafficient of \(n^{0}\) in \(p_{3}(n)\) ), undefarmined, and tite consequences of this grces can be annoying. To determine the linear coefticient in \(p_{3}\), an is subetituted for \(f_{3}(n)\) in the current (i.e. the inird) equation, resulting in a polynomisl of the form a(10-a) \(n^{4}+O\left(n^{3}\right)\), which determines \(a=10\). But then, when we go to determine \(c\) by estimaling \(f_{3}(n)=10 n+c\), we find gave a polynomial of the form \(\left(c^{2}-10\right) n^{2}, O(n)\). In other words, the choice a \(=10\) "fortuitcusly" annihilated the cubic, \(a z\) well us the quartic term. Ordinarily, the only quadratic aquations we oncounlor are of the degenerate form aik-a \(=0\), which ocsur when we are determining the high coafficiant of exch \(p_{i}\) offor \(i=1\). H cheosing a (or any lower cooflicient) annihilates only one ferm of the axprassien being raduced, then the next ferm canmt be quadratic in the cosffisiont below a. This ip because squares of cooflicients of \(f\) ean only come from the \(f(n) f(n+1)\) term of the functional equation, but here the firzt quadratic instances of each zomficient some two powert of \(n\) spart. But when two or more powers of \(n\) disappear with one choice of coetficient, we may be loft with a nondegenerale quadratic equalion for the next coefficient.

Greedily pursuing our oxample, then, we find \(c=\sqrt{10}\), which makes oup. continuad fraction for \(f\) an indeterminats form. Either by performing the algerithm or faking limits, we find that the continued fraelion found by the greedy algerithm is actually one form shoriers
\[
f(n)=\frac{n}{5}-\frac{1}{2}+\frac{1}{3 n+\frac{3}{10 n+\sqrt{10} \cdot \frac{1}{\sqrt{10 n^{2}-n}}}}
\]

Although MACSYMA solves quadratic aquetions as sesdily as linesr ones, the infroduction of surds info the computation can consume valuable time and ctorese, aseacially if it happens more than ance; or involvec large sxpressions containing zymbolic parameters. It the original sum was rational and involved no surds, yet a surd arises in the sourse of the solution, it is protzbly always ants to arbitrorily replece this surd by 0 or enything else zonvenient, but until this alop has beon mathemalically justified, if should be laken only rhen the sraedy sppringh runs out of time or stopage.

The quadratic final term of the above continued iraction lllistrates arsther conjecture which, if irue, woutd simplify the solution algorithm. We note that in converting a rational function to a continued fraction with Euclid's algorithm, mosi remaindars are of degree one less then the corresponding diviejr, and, consequently, the nexi partisl quotient is linear. But it some remsinder is "fortuitously" Iwo or more powers lese than the divisor, then the nexi quotient will be quitratic or greater. Recall that on the form proceding the quadratic (and last) form in our exsmple, wo ware "fortuiteusly" able to annihilate threo polynomial lerme with iwo degrees of iraedom. We theretore conjaciure that the degree of a givan polynomial is simply \(1+\) however mary fortuftove annihilstions occurred during the determination of the provious polynomial.

\section*{Knówina wation to Qut}

How many lerms of a continued fraction should we compuls before relinquishing hope of it iermination? 1 can only offer that secms th be a safo and reasonable bound, namely 1 - the sum of the magnitudes of the integer roots, \(x_{j}\), of the resultant of \(P(n)\) and \(Q\left(n^{\prime}+x\right)\) with redpect to \(n\), where \(P(n)\) and \(Q(n)\) ars the numerator and denominator of the term ratio \(a_{n+1} / a_{n i}\) and muitiple roots are to be waighted by their muitiplicities \(m_{i}\). This represents ali of the possible intager chifts of the denominator with respeet to the numerator which resull in ons or mors cancellations.

\section*{Possible Extensions}

Trigonometric sums might be handied by a process which first converts to complex exponential notation, then replaces some po:xer of \(e^{2 i z}\) by the "base" \(q\), thus forming a basic, or \(q\) analog hypergsometric eum. Then we would apply the existing MACSYMA function to the corresponding ordinary hypergeonnefrin, and form the a analog of the result, if we got one. This is, however, highly epeculative, and, th any event, would be unlikely to find sush fancy toloscoping functions as \(f(n)=-1-\cos 2^{n} x\), which provides the ideritity
\[
\sum_{n=0}^{\infty} \frac{1}{\sin 2^{n} x}=\cot \frac{x}{2}-\cot 2^{m} x .
\]

Just as with definite inlegration, "hatem problem definite (typically infinite) summation is somolicaled by the bewildering variety of techniques available. One especially promising lecinnique historically procedes and generalizes the mothod described in this paper (ret. 3). Yo see the relation betwesn the motiods, we point out snother way of looking at the telescoping function \(f(n)\), that is, as the "spliting function" determining the proportions inio which the nth term of a serias be partitioned, prior to combining the left partion of each term with the right portion of the preceding turm. Writing \(f_{n}\) for \(/(\mathrm{H})\), wo heve
\[
\begin{aligned}
a_{p}+a_{p+1}+\ldots \bullet a_{q} & =\left(-f_{p}+1+f_{p}\right) a_{p}+\left(-f_{p+1}+1+f_{p+1}\right) a_{p-1} \bullet \ldots+\left(-f_{q}+1+f_{q} a_{4}\right. \\
& =-a_{p} f_{p}+\left(1+f_{p}-f_{p+1} \frac{a_{p+1}}{\varepsilon_{p}}\right) a_{p}+\ldots+\left(1+f_{q-1}-f_{q} \frac{a_{q}}{a_{q-1}} a_{p-1}+\left(1+f_{q} m_{q}\right.\right.
\end{aligned}
\]
which yielde equation (voila) upon the satisfaction of (func). But suppese it is mat posuible to anmintato the quantity
\[
u_{n}=1+f(n)-f(n+1) \frac{a_{n+1}}{a_{n}}=1+f_{n}-f_{n+1} \frac{a_{n+1}}{a_{n}} .
\]

Then we will have only succeeded in ereating a now serios whose forms ars \(u_{n}\) fimes the old ones. But If \(u_{n}\) is reasonably simple and numerically amall, it misht be possible to itorate this spliting procest indefinitoly, se that in the limit, all of the orisinal terme ard multiplied by 0 . When the varlous edge effectia are takan into account, this process yields many interesting identitias, such as
\[
{ }_{2} F_{1}\left[\begin{array}{l}
a, 1 / 2 \\
3 a
\end{array} ; 3 / 4\right]=\frac{2^{3 a+2} a!(3 a)!}{3^{3 a+1}(2 a)!^{2}} .
\]

Sometimes, the edge effecls invoive limits which have hius far aludad enalysis, whersupor, we invoke a nonrigorous technique which involves inlarpreting finite products over noninteger ranges. This reaults in conjectural identitios such as
\[
{ }_{2} F_{1}\left[\begin{array}{c}
-a, 2 a+1 \\
2 / 3
\end{array} ; 8 / 9\right]=2 \cdot 3^{4} \cos \pi(a+1 / 3) .
\]

All of thesu tonjecturai formulas can be proven for countably many values of their parameters, sind they have withstood extersive numerical lesting at other values, tuit thay remain tantalizingly uncertified.

Defore the next MACSYMA Lsers' Conisience, we bese to repert on a partial implementation of a aystem for definite sumination

\section*{Late Developments}

Kovin Karplus of Slanford has beon devologing a roughly paraliel eot of MACSYMA functiona, so at to effectively double the fate of algerithmic experimentation. Discustions with him led nee to discover that
\[
\sum_{n=0}^{m} n \frac{(n-1 / 2)!^{2}}{(n+1)!^{2}}=4 \pi \cdot \frac{(12 m+16)(m+1 / 3)!^{2}}{(m+1)!^{2}}
\]
is an out-and-out counterexample th the greedy algorithm, zince the currect telosenping function is
\[
f(n)=-12 n^{\prime}-28 n-20-\frac{4}{n},
\]
while the pelynomia: which most nearly satisfies (func) is
\[
p_{1}(n)=\frac{44 n^{2}+60 n+4}{3 j}(1)
\]

As a result, I patched the algorithm to only determine \(q\) of its \(q+1\) undotermined coefticienis on non terminat ferms where \(q>1\), thus treating all such cases in the manner of (weirdo). This seemod to repaif the problem, at the cost of oxhausting list storage capasity on cerlain cases that had formerly worked. Fortunalely, on 20 April 1977, ell of this kludgery was panoered obsolete whan I found a desision procedure for this probiem. (A discrele uratog to the Risch algorithm for indefinite intogralion.) The prosadure to simpler, and makes beltor use of Joff Ggiden's rocently insialled FUNMAKE and SUBST(LAMBEAA ... capabilitios, and, as a result, runs ton to fifty times faster than the continuad frection dgorithm. For those most interafted, the details will be available in a handout at the conterance.

Here follows the transeript al athort demo of both algorithma:
(CI) loadfile(bother, is, dak, rwg) \&

BOTHER SUMIS DSK RWG being loaded
loading done
```

(C2) bothersum({-1)\uparrown/n\uparrow2,n,1,的,%efdopth:3;
TIME= 11585 MSEC.
(D2)
(C3) %cf:
TIME= }0\mathrm{ MSEC.

```

```

(D3)

```

Old yarsion fails (correetly) to find a closed form, but finds a nice continued fraction for f(n), which it atores in XCF. Binding XCFDEPTH to an integer ovarrides the houristic depth limitor.
(C4) loadfile (nueum, ?s, dak, share) \&
NUSUM 19 DSK SHARE ... joaded
(C5) nf3*3个n:
TIME. 3 MSEC.
3 N
(D5)
N 3
(C6) nusum (\%, n, 0,m)
TIME= 1209 MSEC.
(DG)


\section*{Now vorsion (Jecision proctodure) does an tasy case.}

(C7) \(n \uparrow 3 * 3 \uparrow n * n!/ \operatorname{prod}(3 * i-2, i, a, n+b)\); TJME = 43 MSEC.
\[
\begin{aligned}
& \quad{ }^{3}{ }^{N} 3^{n} N! \\
& \hdashline N+8 \\
& 1==-1 \\
& !! \\
& ! \\
& ! \\
& 1=A
\end{aligned}
\]
(D7)
(C8) nusum (X,n,0,m);
TIME: 5358 MSEC.
\[
3(3 B-2)^{2}(3 B+13)
\]
(D8)

\(-3\left(127 B^{3}-216 \theta^{?}+5498-448\right) n^{3}+\left(81 \theta^{3}-486 B^{2}+945 B-600\right) M^{2}\)
\(+181 \theta^{3}-216 \theta^{2}+1538-361 M+27 \theta^{3}+81 \theta^{2}-1448+5213^{M} M+111\)

(C9) unsum ( \(\%, m\) );
TIME= 3005 MSEC.
(D9)

(C18)
Now vercion does a toughar case. UNSUM (backward differonec) then checks in.

\section*{REFERENCES}
1. Euler, L.: Considaratio Quarundam Sorierum Quas Singularibus Proprietatibus Sunt Praedilas.

Novi Cementarii academiae scienarimm Petropolitanae 3 (1750fi), 1753, pp. 86-108

This appears in the Collected Works as
1a. Opera Orinia, Series I, Volume 14, Teubner, 1925, pp 525-6.
2. Chrysial, G.: Algebro, an Elementary Texi, Cheisez, 1964, Chapler XXXI, Eac. 12, p. 392.
3. Gosper, R. Wm., Jr.: A Calculus of Sories Rearrangements. Algorithma end Complexity, Nete Directions ard Recem Resulis, Acadamic Press, 1975, (Ed. J. Traub), pp. 121-153.

This paper is stored as TELESCXGP[1,RWG]@SAM, converted from TELESC.POX by the POX document compiler, which was extended for this occasion by its developer, Roberi Meat, of Stanford University.


1N77-28774

MODULAR POLYNOMIAL ARITYMETIC IN PARTIAL FRACTION DECOMPOSITION*
S. K. Abdali
B. F. Caviness
A. Pridor

Rensselaer Polytechnic Institute

ABSTRACT

Algorithms for general partial fraction decomposition are obtained by using modular polynomial arithmetic. An algoritnm is presented to compute inverses modulo a power of a polynomial in terms of inverses modulo that polynomial. This algorithm is used to make an improvement in the Kung-Tong partial fraction decomposition algori.thm.

INTRODUCTIO\&

The partial fraction adecomposition (pfd) of rational functions constitutes an important step in some symbolic inteqration algoritrms (Horowitz ref. 1). Such a decomposition is frequently needed älso in electrical network theory and control theory (e.g., Kuc ref. 2, Hsu and Meyer ref. 3). Consequently, a number of pfd algorithms leaiing with the gereral and the important special cases conly linear or quedratic factors in the denominator of the rational function being decomposed) have appeared in the literature (see references in Kung and Tong, ref. 4). These algorithms fall into two categories: those based on applying the extended Euclide 7 n algorithm (see Knuth ref. 5) and those based on solving linear systems of equations. Prior to 1969, the pfd algorithm most widely implemented in jymbolic computation systems (e.g., Engelman's MATHLAB ref. 6, Moses' SIN ref. 7) was one of the former type and dated back to Hermite (ref. 8). Horowitz (ref. 1), however, discovered a faster algorithm of the latter type. The latter type algurithms require solving \(n\) linear equations in \(n\) unknowns, where \(n\) is the degree of the denominator in the rational fraction to be decomposed. Thus in the general case, they require \(O\left(n^{3}\right)\) operations using classical elimination methods, or o(n2.8i) operations using Strassen's method (ref. 9). In special cases, the best bound is \(O\left(n^{2}\right)\). Eut quite recently,
*Research partially supported by National Science Foundation Grant MCS-7623762.

Kung and Tong (ref. 4) have given an \(O\left(n \log ^{2} n\right.\) ) algoritiom which is again vased on the extended Euclidean algorit'm.

This paper uses the notation of modular polynomial arithmetic to derive pfd algorithms. This formulation brings out the similarities between the general pfa algorithms and the wellknown technique of pfd by substitution for non-repeated linear. factors (e.g., Kuo ref.2). The Kung-Tong algorithm is then easily derived as an adaptation of the general algorithr for fast computation. An algorithm is presented to obtain inverses modulo powers of a polynomial in terms of inverses modulo that polynomial. This is used in an improvement to Kung-Tong algorithm, which improvement although asymptotically minor, is believed to be of practical value in symbolic computation systems.

PRELIMINARIES

Throughout this paper, polynomials are assumed to be univariate with coefficients in some given field.

Let \(B\) be a fixed polynomial. As usual, the relation congruence modulo \(B\) and the binary operation mod on polynomials are defined by
\[
\begin{aligned}
& X \equiv Y(\bmod B) \text { iff, for some polynomial } Q, X=Q B+Y \\
& X \bmod B=Y_{v} \text { where } X \equiv Y(\bmod B) \text { and } \operatorname{deg}(Y)<\operatorname{deg}(B) .
\end{aligned}
\]

Let \(A\) be a polynomial relatively prime to \(B\). Then it is well-known (see, e.g., Herstein ref. 10) that there exist unique polynomials \(X, Y\) satisfying
\[
\begin{equation*}
A X+B Y=1, \operatorname{deg}(X)<\operatorname{deg}(B), \operatorname{deg}(Y)<\operatorname{deg}(A) \tag{1}
\end{equation*}
\]

Accorringly we have the following:
Definition 2. 1 (Inverse and division modulo \(B\). Defined only if the denominator is relatively prime to B.)
(a) \(\frac{1}{A} \bmod B=X\) where \(A X \equiv 1(\bmod B)\) and deg \((X)<\operatorname{deg}(B)\)
(b) \(\frac{A}{C} \bmod B=\left(A \cdot\left(\frac{1}{C} \bmod \right.\right.\)
B)) \(\bmod B\)

Definition 2.2 ( 2 - ncated Folynomial quotient)
\[
\lfloor A / B \mid=(A-(A \bmod B)) / B
\]

We use \(M(n), D(n), F(n)\) to denote (an upper bound on) the number of operations needed, rewectively, to meltiply two pclynomials 254
of degree \(n\), divide a pulynomial of degree \(2 n\) by one of degree \(n\), obtain polynomials \(X\) and \(Y\) of (1) when given \(A\) and \(B\) with max (deg \((A)\), \(\operatorname{deg}(B))=n\). We assume that the following convexity conditions are satisfied.
\[
\begin{aligned}
& a M(n) \leq M(a n) \quad a \geq 1 \\
& \Sigma M\left(n_{i}\right) \leq M\left(\Sigma n_{i}\right), \quad n_{i} \text { integer } \\
& \Sigma F\left(n_{i}\right) \leq F\left(\Sigma n_{i}\right), \quad n_{i} \text { integer. }
\end{aligned}
\]

It is reasonable to require such conditions as they are satisfied by the bounds \(M(n)\) and \(F(n)\) for all existing algorithms. Similar conditions are usually assumed, for example, by Aho, Hopcroft, and Ullman (ret. il), Kung and Tong (ref. 4).

PARTIAL FRACTION DECOMPOSITION PROBLEMS AND SIMPLE ALGORITHMS

Following Kung and Tong (ref. 4), we define three problems related to parcial fraction decomposition.
1) General partial fraction decomposition (PF) Problem.

Let \(Q_{1}, \ldots, Q_{k}\) be pairwise relatively prime folynomials of degree \(n_{1}, \ldots, n_{k}\), respectively. Let \(\ell_{1}, \ldots, \ell_{k}\) be positive in:tegers ana let \(P\) be a folynomial such that
\[
\operatorname{deg}(P)<\operatorname{deg}\left(\prod_{i=j}^{k} \dot{Q}_{i}^{\ell}\right)=\sum_{i=1}^{k} n_{i}^{\ell}{ }_{i}=n
\]

The problem is to obtain the polynomials \(\mathrm{p}_{\mathrm{ij}}, \mathrm{l} \leq \mathrm{i} \leq \mathrm{k}\), \(\therefore \leq j \leq \ell_{i}\) satisfying
\[
\begin{equation*}
\frac{P}{\prod_{i=1}^{k} Q_{i}^{\ell} Q_{i}}=\sum_{i=1}^{k} \sum_{j=1}^{\ell_{i}} \frac{P_{i j}}{Q_{i}^{j}}, \quad \operatorname{deg}\left(P_{i j}\right)<\operatorname{deg}\left(Q_{i}\right)=n_{i} . \tag{1}
\end{equation*}
\]
2) Problem P1: (Special canse of PF with \(\left.\ell_{i}=1,1 \leq i \leq k.\right)\) Given pairwise relatively prime polynomians \(R_{1}, \ldots, R_{k}\), and the polynomial \(P\) such fhat
\[
\operatorname{deg}(P)<\operatorname{deg}\left(\prod_{i=1}^{k_{i}} R_{i}\right)
\]

The problem is to obtain the polynomials \(C_{1} \ldots, C_{k}\) satisfying
\[
\begin{equation*}
\frac{P}{\prod_{i=1}^{k} R_{i}}=\sum_{i=1}^{k} \frac{C_{i}}{P_{i}}, \operatorname{deg}\left(C_{i}\right)<\operatorname{deg}\left(R_{i}\right), 1 \leq i \leq k \tag{2}
\end{equation*}
\]
3) Problem F 2: (Special case of PF with \(k=\) J.)

Given polynomiais \(F, Q\) such that \(\operatorname{deg}(P)<\operatorname{deg}\left(Q^{\ell}\right)\), to obtain the polynomials \(C_{1}, \ldots, C_{\ell}\) satisfying
\[
\begin{equation*}
\frac{p}{Q^{\ell}}=\sum_{j=1}^{\ell} \frac{C_{j}}{Q^{j}}, \operatorname{deg}\left(C_{j}\right)<\operatorname{deg}(Q), 1 \leq j \leq \ell . \tag{3}
\end{equation*}
\]

It is well known (e.g., Horumisz ref. l) that the polynomials to be determined in the above three problems all exist and are unique.

Using the modular polynomial arithmetic, we can now state simple algorithms for solving problems Pl and P2.

Algorithm 3.1 To solve P1.
for \(i+1\) to \(k\) do
\(c_{i}=\frac{P}{\left(\prod_{j=1}^{k} R_{j}\right) / R_{i}} \bmod k_{i}\).
The algorithm is derived by multiplying both sides of (2) by \(\mathrm{K}_{i}\) and reducing each side modulo \(\mathrm{K}_{\mathrm{i}}\).

Remark Note the similarity with the algorithm that works by substitution in the case of non-ropeated linear factors (ref. 2). If \(R_{i}=x-a\), then according to that algorthm one wolild obtain \(C_{i}\) by substituting a for \(x\) in the fraction after cancelling \(x-a\) from the denominatcr. That is,
\[
c_{i}=\left(\frac{p}{\frac{\Pi R_{j}}{x-a}} \text { evaluated with } x=a\right)=\frac{\frac{r}{\Pi R_{j}}}{\frac{x-a}{x-a}} \bmod -a
\]

Algorithm 3.1 is thus a straichtforward generalization of that approach replsaing substitutions by evaluation modulo a polynomial.

Algorithm 3.2 To solve P 2 .
begin \(P^{\prime} * P\);
for \(j \leqslant \ell\) downto 1 do
\[
\begin{aligned}
& \frac{\text { begin }}{C_{j}+P^{\prime}} \bmod Q ; \\
& P^{\prime}+\left\lfloor P^{\prime} / Q\right\rfloor \\
& \text { end }
\end{aligned}
\]
end
The PF problem can now be solved by cascading solutions of P1 and P2:
Algorithm 3.3 (Horowitz ref. 1) To solve PF.

\section*{begin}
\(1 \frac{\text { compute } R_{i}}{}+Q_{i}^{\ell}, i=1, \ldots, k ;\)

j \(\quad\) end \(\begin{aligned} & \quad i=1 \\ & \text { folve problems } P 2 \text { for the fractions } C_{i} / Q_{i}^{l}, i=1, \ldots, k ; ~\end{aligned}\)
The above algorithm lends itself to fast computation, and will be discussed further in section 5 . We close this section with another useful algorithm which requires computing inverses m.Jduio \(Q_{i}\) only, not \(Q_{i}^{l i}\).

Algorithm 3.4 To solve PF.
```

```
begin
```

```
begin
    \(\frac{n}{D}+P ; E+\prod_{i=1}^{k} Q_{i}^{\ell_{i}} ;\)
    \(\frac{n}{D}+P ; E+\prod_{i=1}^{k} Q_{i}^{\ell_{i}} ;\)
    for \(i \leftarrow 1\) to \(k\) do
    for \(i \leftarrow 1\) to \(k\) do
    hedin
    hedin
    \(E \leftarrow E / Q_{i}{ }_{i} \quad ;\)
    \(E \leftarrow E / Q_{i}{ }_{i} \quad ;\)
        \(F+\frac{1}{E} \bmod Q_{i} ;\)
        \(F+\frac{1}{E} \bmod Q_{i} ;\)
        for \(j \leftarrow \ell_{i}\) àownto 1 do
        for \(j \leftarrow \ell_{i}\) àownto 1 do
            begin
            begin
            \(P_{i j} \leftarrow(D \cdot F) \bmod Q_{i} ;\)
            \(P_{i j} \leftarrow(D \cdot F) \bmod Q_{i} ;\)
            \(D+\left(D-P_{i j}+E\right) / Q_{j}\)
            \(D+\left(D-P_{i j}+E\right) / Q_{j}\)
            end
            end
        end
        end
end
```

```
end
```

```

In this section, we consider the computation of \(\frac{1}{A} \bmod B^{\ell}\), Where \(A\) is relatively prime to \(B\) and \(d=y(A)<\ell d e g(B)\). By applying, say, the Extended Euclidean Algorithm directly, we will need \(O(F(0 \cdot \operatorname{ldeg}(B))\) operations. We describe below an alternative method in which us: is made of the inverse modulo \(B\) only.

Lemma \(<.1\) Let \(A, B\) be relatively prime polynomials and let \(X_{i}=\frac{1}{A} \operatorname{lnod} B^{i}\) for each \(i>0\). Then
च) \(X_{i+j}=\left(X_{j}+X_{i}\left(I-A X_{j}\right)\right) \bmod B^{i+j}\).
b) \(X_{2 i}=\left(x_{i} \cdot\left(2-A x_{i}\right)\right) \bmod B^{2 i}\).

These relations (with \(j=1\) ) are used below to compute \(\frac{1}{A} \bmod B^{l}\) in a ma ner reminiscent of the binary algorithrn for exponentiation (Knuth ref. 5).
Algorithrn 4.1 Computation of \(\frac{1}{\lambda} \bmod B^{\ell}\)
begin
\(X_{1}+\frac{1}{A} \bmod B ; D+1-A X_{1} ;\)
\(u \leftarrow \max \left\{2^{W}: 2^{w} \leq \ell\right\} ; v+\ell-u ; z \leftarrow I ; C \leftarrow B ; Z \leftarrow X_{1}\); while \(u>1\) do
\(\frac{\text { hegin }}{u+u / 2 ;}\)
\(\mathrm{q}+\mathrm{v}: \mathrm{u}\);
\(r+c^{2}\);
\(2+2(2-A Z) \bmod C\);
\(z+2 z\);
if \(4=1\) then
\(\frac{\operatorname{beg} i n}{v}-u ;\) C . CB; \(2+\left(X_{1}+2 D\right) \bmod C\); \(z * z+1\); end
\(\frac{\text { end: }}{1 \mathrm{a}} \mathrm{z}\)
enc
The correctness of the above algorithm follows from the fact fint aftet exection of each line, it is the case that \(2 u+v=\ell\),
\(0 \leq v<u, Z=X_{z}, C=B^{2}\), and \(u\) varies through consecutive dacreasing powers of 2 from about \(\ell\) at entry to 1 at exit (where \(\mathrm{v}=0\) ).
Theorem 4.1 Algorithm 4.1 computes \(\frac{1}{A} \bmod \mathrm{~B}^{\ell}\) in
O(F) (deg
\((B))+(\log \ell) M(\ell \operatorname{deg}\)
(B)) ) operations.

ZhST ALGORITHMS FOR PARTIAL FRACTION DECOMPOSITION

We now turn to the adaptation of the pfd methods fur fast computations, the resulting algorithm being essentially that of Kung and Tong (ref. 4). In addition to the notation iri the statement of the general PF problem, we use two other syabols:
\[
\begin{aligned}
& \ell_{\max }=\max \left(\ell_{1} \ldots n_{k}\right) \\
& \bar{n}=n_{1}+\ldots+n_{k} .
\end{aligned}
\]

Lemma 5.1 Lines 1 and 3 of Algorithm 3.3 can be executed in \(\bar{O}(M(n))\) and \(O\left(\left(\log \ell_{\text {max }}\right) P M(n)\right)\) operations resuectively.

The analysis of Line 2 of Algorithm 3.3 is mure involved. This line requires the execution of Algorithm 3.1, i.e., the computation of
\[
\begin{equation*}
c_{i}=\frac{p}{\left(\prod_{j=1}^{k} R_{j}\right) / R_{i}} \bmod R_{i}, 1 \leq i \leq k \tag{1}
\end{equation*}
\]

Writing \(R^{\prime}\) for \(\prod_{j=1}^{k} R_{j}\), we have
\[
\begin{equation*}
C_{i}=\frac{p}{\frac{R^{r}}{R_{i}}} \bmod R_{i}=\left(\frac{P \bmod R_{i}}{\frac{R^{\prime}}{R_{i}} \bmod R_{i}}\right) \bmod R_{i} \tag{2}
\end{equation*}
\]

The computatior of all of \(\frac{R^{\prime}}{R_{i}} \bmod R_{i}\) is not easy to arrange for a fast algorithm. Instead, let us introduce the new quantity
\[
R=\sum_{j=1}^{k} \frac{R^{\prime}}{R_{j}}
\]

Now \(R \bmod R_{i}=\left(\sum_{j=1}^{k} \frac{R^{\prime}}{R_{j}}\right) \bmod R_{i}=\left(\frac{R^{\prime}}{R_{i}}+\sum_{\substack{j=1 \\ j \neq i}}^{k} \frac{R^{\prime}}{R_{j}}\right) \bmod R_{i}=\frac{R^{\prime}}{R_{i}} \bmod R_{i}\) since each term in the last summation is a multiple of \(R_{i}\). Hence from (2), we get
\[
c_{i}=\left(\frac{P \bmod R_{i}}{R \bmod R_{i}}\right) \bmod R_{i}
\]
(This result, derivable so readily in terms of modular arithmetic, has a more intricate proof in Kung and Tong (ref. 4)'. That is,
\[
\begin{equation*}
c_{i}=\left(\left(P \bmod R_{i}\right)\left[\frac{1}{R} \frac{1}{\bmod R_{i}} \bmod Q_{i}^{\ell}\right]\right) \bmod R_{i} \tag{4}
\end{equation*}
\]

By using a binary splitting technique, Kung and Tong (ref. 4) show how to obtain all of \(P \bmod R_{i}\) and \(R \bmod R_{i}\) in \(O((\log k) \cdot M(n))\)
operations. For the inverse part wo may use Algorithm 4.1. Hence by Theorsm 4.1 and the assumptions on the bound \(F(n)\), we obtain

Lemma 5.2 All of the inverses in (5) can be computed in \(F(\bar{n})+O\left(\left(\log \ell_{\max }\right) \cdot M(n)\right)\) operations.

Now we have
Lemma 5.3 Linc 2 of Blcorithm 3.3 can be executed in \(F(\bar{n})+O\left(\left(\log \ell_{\max }\right) \cdot M(n)\right)+O((\log k) \cdot M(n))\) operations. Theorem 5.1 The general PF problem can be done in \(F(\bar{n})+O\left(\left(\log \ell_{\max }\right) \cdot M(n)\right)+O((\log k) \cdot M(n))\) operations. The original Kung-Tong algorithm requires \(F(n)\) instead of \(F(\bar{n})\) as the first term. Recall thät \(n=\Sigma n_{i}{ }_{i}\), while \(\bar{n}=\Sigma n_{i}\).

\section*{REFERETCES}
1. Horowitz, E.: Algorithms for Symbolic Integration of Rational Functions, Ph.D. dissertation, Univ. of Wisconsin, Madison, Wisconsin, 1969. See also Algorithms for Partial Fraction Decomposition and Rational Function Integration, in Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation, S. R. Petrick ed. (March 1971), ACM, New York.
2. Kuo, F. F.: Network Analysis and Synthesis, 2nd edition, John Wiley, New York, 1966.
3. Hsu, J. C.; Meyer, A. U.: Modern Control Principles and Applications, McGraw-Hill, New York, 1968.
4. Kung, H. T.; Tong, D. M.: Fast Algoritinms for Partial Fraction Decomposition, Tech. Report, Computer Science Department, Carnegie-Mellon University, February 1976.
5. Knuth, D. E.: Semi-Numerical Algorithms, Addison-Wesley, Reading, Mass., 1969.
6. Engelman, C.: MATHLAB: A Program for On-Line Assistance in Symbolic Computations, Proc. 1965 FJCC, Spartan Books, Washington, D. C.
7. Moses, J.: Symbolic Integration, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, Mass., 1967.
8. Hermite, C.: Oeurres de Charles Hermite, (Picard E.: editor), Vol. 3, Gauthiers-Villars, Paris, 1912.
Э. Strassen, V.: Gaussian Elimination Is Not Optimal, Numerische Math., 13, 1969, pp. 354-356.
10. Herstein, I. N.: Topics in Algebra, Blaisdell Publishing Co., New York, 1965.
11. Aho, A. V.; Hopcrofi, J. E.; Ullman, J. D.: The Design and Analysis of Computer Algorithms, Adison-Wesley, Reading, Mass., 1574.


\title{
: N77-28775
}

A NEW ALGORITHM FOR THE INTEGRITIUN OF EXPONENTIAL
AND LOGARITHMIC FUNCTIONS*
\(=-\)
Michael Rotrstein
Univ rsidad Simon Bolivar

\section*{ABSTRACI}

A new algorithm for symbolic integration of functions built up from the rational functions by repeatedly applying either the exponential or logarithm funztions is discussed. This new algorithm does not require polynomial factorization nor partial fraction decomposition and requires solutions of linear systems with only a small number of anknowns. It is proven that if this algorithm is applied to rational functions over the integers, a computing time bound for the algorithm can be obtained which is. a polynorial in (1) a bound on the integer length of the coefficients, and (2) the degrees; of the numerator and denominator of the rational function involved.

\section*{INTRODUCTION AND SGME NECESSARY CONCEPTS}

In this paper we discuss new alyorithm for symbolic integration of rational functions of logarithms and exponentials obtained (roughly speaking) by repeatedly applying the logaritho and exporiential functions to rational functions in the integration variable. No restriction is placed on the constant field. except that arithmetic in this field be recursive, and that no functional expression obtainabie from sur expressions above by addition, subtraction, multiplicatien and division be a new constant.

As many authors have done in this area (see a complete history of the subject in ref. 1) we shall use the notation and concepts described by fisch (ref. 2). In particular we shall work with differential fields of the form
\[
F=F_{n}=k\left(z, \theta_{1}, \ldots, \theta_{n}\right)
\]
where \(K\) is the constant field of \(\mathcal{F}, \quad\) is the integration varable,
```

*Work supported in part by National Science Foundation Grant
MCS76-23762 (to Rensselaer Polytechnic Institute) and by
Grants GJ 32181 and MCS)6.15035 (to University of Utah).

```
and each \(\theta_{n}\) is a monomial (logarithmic or exponential) over
\[
F_{i-1}=K\left(z, \theta_{1}, \ldots, \theta_{i-1}\right), F_{0}=K(z)
\]

We shall also say that \(F_{n}\) is a Liouville extension of \(F_{i}(i<n)\) i.. this situation.

Our algorithm will require the existence of algorithms to perform arithmetic in \(k\), and also, algorithms for the usual arithmetic operation defined on the domains \(S_{i}=F_{i-1}\left[e_{i}\right]\) and \(E_{i}=\left\{p / \theta_{i}^{\ell}, F \cdot \varepsilon S_{i}\right.\) and \(\left.\ell \varepsilon Z\right\}\), like addition, \(s\) :btraction, multiplication, and division (for elements of \(s_{i}\), obtaining a quotient and a remainder).

Finding gca's (yreatest common divisors) of elements of \(s_{i}\) can be done ky appiying Euclia's algorithm. Notise that this gcd is always monic. For \(E_{i}\), we define the gcd \(o^{*}\) two elements \(f\) and \(g\) by pointing out that we can find \(p\) and \(Q\) in \(S_{i}\) such that ged \(\left(P, \theta_{i}\right)=\operatorname{gcd}\left(Q, \theta_{i}\right)=1\) and for some integers \(j, m\), we have that \(f=P \theta_{i}^{j}\) and \(g=Q \theta_{i}^{m}\). We tren define \(\operatorname{gcd}(E, g)=\operatorname{gcd}(P, Q)\).

We shall also require \(a^{1}\) gorithms for finding \(X\) and \(Y\) in \(S_{i}\) such that \(A X+B Y=C\) with deg \(X<\operatorname{deg} B\) for given \(A, B, C\) in \(S_{i}\) with gcd \((A, B)=1\). Wc rhall refer to these equations as univariase polynomial equations (U.P.E.'s).

Finally, we will need the ability to compute the resultant of given elements \(A, B\) of \(S_{i}[x]\) (where \(a\) is some indeterminate over \(S_{i}\) ) with respect to \(\theta_{i}\). We shall denote this function by \(\operatorname{Res}\left(A, B, \theta_{i}\right)\).

Now some more definitions:
a) Given a non-zero element \(f\) of \(F_{m}(m \leq n)\) ther. exist unique \(P, Q\) in \(S_{m}\) such that \(P / Q=f, \operatorname{god}(P, Q)=1\) and \(Q\) is monic. We shall zall \(P\) the numerator (denoted by num \(E\) ) and \(Q\) the denomjrator (denoted by den \(\underline{f}\) ) off. Let us also define num \(0=\frac{1}{0}\) and den \(0=1\).
b) We shall say that \(f\) in \(F_{m}\) is a proper elemont of \(F_{m}\) if \(f=0\) or deg (hum \(f\) ) \(\operatorname{deg}\left(\operatorname{den} f\right.\) ) and also, if \({ }^{0} m\) is oxponentiel over \(F_{m-i}\), then \(0_{m}\) does not divide den \(f\). This implies that all square free factors \(q\) of den \(f\) satisfy ged \(\left(q, q^{\prime}\right)=1\).
c) If \(f\) is a proper element of \(F_{m}\), we shall say that \(f\) is normal (in \(F_{m}\) ) if den \(f\) is square-fres (equivalently, if jod \(\left.\left(\operatorname{den} i,(\operatorname{den} f)^{\prime}\right)=1\right)\).
d) Let \(D_{m}\) denote \(E_{A}\) if \({ }^{0} m=\exp u, u \varepsilon F_{m-1}\), otherwise \(D_{m}=S_{m}\).

Notice that \(a \geq\) these definitions are valid with \(m=\) and \(\mathrm{F}_{-1}=\mathrm{K}\).

\section*{ALGORITHM OUTLINE}

We shall now discuss the operations done by our algorithm when presented with some integrand \(f(x) \in F_{n}\) Let \(Q=\) num \(f\). \(R=\) den \(f\) and, by a division process, obtain \(P_{1}, T\) in \(S_{n}\) such that
\[
Q=P_{1} R+T, \operatorname{deg} T<\operatorname{deg} R, \text { or } T=0
\]

If \({ }^{\theta}{ }_{n}\) is not exponential over \(F_{n-1}\), we now have co compute
\[
\int P_{1} \text { and } \int \frac{\mathrm{R}}{\mathrm{R}}
\]

Otherwise, let \(R=\theta_{n}^{j} R_{1}, R_{1}\) in \(S_{n}, g C^{\prime}\left(R_{1}, \theta_{n}\right)=1\), and solve
the U.P.E.
\[
T=\theta_{n}^{j T_{1}}+R_{2} T_{2}
\]
for \(T_{1}, T_{2}\), with deg \(T_{1}\) < deg \(R_{1}\) (and deg \(T_{2}<j\) ).
We then have to compute
\[
f E(z)=\int P_{1}+\int \frac{T}{R}=\int\left(P_{1}+\frac{T_{2}}{O_{n}^{j}}+\int \frac{T_{1}}{R_{1}}\right.
\]
and thus, we have sucreeded in decomposing our integral into irtegrating an element of \(D_{n}\) and incegrating a proper element os. \(F_{n}\) 。

To integrate elements of \(D_{n}\), we employ a mothod similat \(t=\) one described by Rigch (ref. 2) with the following changes:
a) In the logarithmic case, the algorithm invoied recursively is the aigorithm described hercin instead of Risch's., A special purpose algorithm is also ciscussed in reference 1 , pp. 46-49.
b) In the exponential case, we use a different algorithm to solve the resuiting differential equation for \(X\)
\[
X^{\prime}+u^{\prime} X=T
\]
with \(X, u, T\) in \(F_{n-l}\), where exp (i) is a regular monomial cver \(F_{n-1}\).

This algorithm will be described in section 3.
To intearate proper elements g of \(F_{n}\) we use an algorithm described by D. Mack (ref. 3) whirh yieles
\[
\int g=h_{1}+\int h_{2}
\]
where \(h_{2}\) is normal in \(F_{n}\). Our :lgorithm to find \(\mathrm{S}_{2}\) will be detcribed in section 4 . In section 5 we will present a computing time analysies for the rational function case.

\section*{SOLVING A SPECIAL CASE OF A DIPFERENTIAL FQUATION}

In thig section we vill prosent a method for sulving the differential equation
\[
X^{\prime}+v X=T
\]
for \(X\) ia \(F_{n}\), assuning that \(v\), \(T\) are in \(F_{n}\), and that exp(fv) is a -eqular monomial over \(F(f)\), where \(f_{V}\), if not in \(F_{n}\), is edementary over \(F_{n}\). Thus, \(X,: E\) it exiata, 18 anique.
(The zeason for not requiring fv to be in fis that this algorichm will be invoked recursively and unter those circimstances, we cannot guarantee that \(f v\) be \(3 . F_{i \prime}\) zren though our
\(=\)
\(=\)
\(=\)


1

1

3
other conditions will apply.)
In order to find \(X\), let
\[
\mathrm{v}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}} \quad \text { and } \quad \mathrm{T}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}
\]
with \(v_{1}, T_{1}\) in \(D_{n}, v_{2}, T_{2}\) in \(S_{n}\), where, if \(\theta_{n}\) is exponential over \(F_{n-1}\left(D_{n}=E_{n}\right)\) ther \(\theta_{n} \nmid v_{2}\), and \(\theta_{n} \nmid T_{2}\). We will also require that gcd \(\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\) and gcd \(\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)=1\) and that \(\mathrm{v}_{2}, \mathrm{~T}_{2}\) be monic.

Let us further factor
\[
\mathrm{v}_{1}=\overline{\mathrm{v}} \hat{\mathrm{v}} \quad \text { and } \quad \mathrm{T}_{1}=\overline{\mathrm{T}} \hat{\mathrm{~T}}
\]
in such a way that \(\hat{v}, \hat{T} \in S_{n}\) are monic, gcd \(\left(\bar{v}, T_{2}\right)=\operatorname{gcd}\left(v_{2}, \bar{T}\right)\) \(=1, \bar{v}, \bar{T}\) are in \(D_{n}\) and every square-free factor of \(\hat{v}\)
(respectively \(\hat{T}\) ) divides \(T_{2}\) (respectively \(v_{2}\) ). We can then prove that \(\operatorname{gcd}(\overline{\mathrm{v}}, \hat{\mathrm{v}})=\operatorname{gvd}(\bar{T}, \hat{T})^{2}=1\).

Now, let \(p_{1}, \ldots, p_{k}\) be a square-f=ee basis for \(\hat{v}, \hat{T}, v_{2}, T_{2}\). Assume each \(p_{i}\) is monic, obtaining
\[
v=\frac{\bar{v}}{\prod_{i=1}^{k} p_{i} b_{i}} \quad T=\frac{\bar{T}}{\prod_{i=1}^{k} p_{i}}
\]
where the \(b_{i}, c_{i}\) are integers with \(b_{i} \neq 0\) if \(c_{i}=0\).
It can be shown that \(X\) can then be represented uniquely 25
\[
x=\frac{\overline{\mathrm{x}}}{\prod_{i=1}^{k}{p_{i}}_{x_{i}} \quad \text { with } \bar{x} \varepsilon D_{n}, ~}
\]

\footnotetext{
3
3
}
if we assume trit no \(p_{i}\) divides \(\bar{x}\) (though possibly gcd \(\left(\bar{x}, p_{i}\right)\) F 1) .

We will now find the \(x_{i}\), as follows: if we substitute these values of \(X, v, T\) in (1), we obtain
\[
\frac{\bar{x}, \prod_{i=1}^{k} p_{i}-\bar{x} \sum_{i=1}^{k}\left(x_{i} p_{i}^{\prime} \sum_{\substack{j=1 \\ j \neq i}}^{k} p_{j}\right)}{\prod_{i=1}^{k} p_{i}^{x_{i}+1}}+\frac{\bar{v} \bar{x}}{\prod_{i=\bar{i}}^{k} p_{i} x_{i}+b_{i}}=\frac{\bar{T}}{\prod_{i=1}^{k} p_{i}^{c_{i}}} .
\]

If \(b_{i} \neq 1\) we notice that \(x_{i}=c_{i}-\max \left(b_{i}, l\right)\). Otherwise (for \(b_{i_{0}}=1\), we can have \(p_{i_{0}}\) dividing the numerator of this expression. But this can happen if and only if
\[
\operatorname{gcd}\left[p_{i_{o}}, \theta_{n}^{\alpha}\left(\bar{v} \prod_{i=1}^{k} p_{i}^{a_{i}^{-b} i}-x_{i_{o}} p_{i}^{\prime} \prod_{\substack{i=1 \\ i \neq i_{o}}}^{k} p_{i}^{a_{i}}\right)\right] \neq 1
\]
where \(a_{i}=\max \left(b_{i}, 1\right)\) and \(\alpha\) is the smallest non-negative integer such that the expression in parenthesis times \(\theta_{n}^{\alpha}\) belongs to \(S_{n}\). But this is true if and only if
\(\operatorname{Res}\left(p_{i_{o}}, \bar{v} \theta_{n}^{\alpha} \prod_{i=1}^{k} p_{i}^{a_{i}{ }^{-b}{ }_{i}}-x_{i_{o}} \theta_{n}^{\alpha} p_{i}^{\prime} \prod_{\substack{i=1 \\ i \neq i_{o}}}^{k} p_{i}^{a_{i}}, \theta_{n}\right)=0\).

Since this is a polynomial equation in \(X_{i_{0}}\), we can sheck whether our root is an integer (bigger than \(\left.c_{i_{0}}-1\right)\) and solve for it;
\[
\text { otherwise we } \operatorname{set} x_{i_{o}}=c_{i_{o}}-1
\]

We then obtain an equation of the form
\[
\overline{\mathrm{A}} \overline{\mathrm{X}}^{\prime}+\overline{\mathrm{B}} \overline{\mathrm{X}}=\overline{\mathrm{C}}
\]
with \(\bar{A}, \bar{B}, \bar{C}, \bar{X}\) in \(D_{n}\). If \(\theta_{n}\) is exponential over \(F_{n-1}\) we can do a similar computation to find an equivalent equation with \(\overline{\mathrm{A}}, \overline{\mathrm{B}}\), \(\bar{C}, \bar{X}\) in \(S_{n}\). Thus, assume \(\bar{A}, \bar{B}, \bar{C}, \bar{X}\) are in \(S_{n}\). In order to find \(\overline{\mathrm{X}}\), we now do the following analysis:

We can assume that gcd \((\bar{A}, \bar{B})=1\), since otherwise, let \(g=\operatorname{gcd}(\bar{A}, \bar{B})\). Then \(g \mid \bar{C}\) (otherwise no solution exists) and we obtain the equivalent equation \(\frac{\bar{A}}{g} \bar{X}^{\prime}+\frac{\bar{B}}{g} \bar{X}=\frac{\bar{C}}{g}\).

We have three different cases:
i) \(\operatorname{deg} \overline{\mathrm{A}}=0\) and \(\operatorname{deg} \overline{\mathrm{B}}>0\).

In this case, either \(\overline{\mathrm{C}}=0\), (so that \(\overline{\mathrm{X}}=0\) ) or deg \(\overline{\mathrm{B}}>\) \(\operatorname{deg} \overline{\mathrm{C}}\), so that no solution exists, or \(\operatorname{deg} \overline{\mathrm{B}} \leq \operatorname{deg} \overline{\mathrm{C}}\) and we can find the leading coefficient of \(\bar{X}\), (since \(\operatorname{deg} \bar{A} \bar{X}{ }^{\prime}<\operatorname{deg} \bar{B} \bar{X}\) ) arriving at an equation of the form
\[
\bar{A} \hat{X}^{\prime}+\bar{B} \hat{X}=\hat{C}
\]
with deg \(\hat{C}<\operatorname{deg} \vec{C}\), so that we can solve it recursively.
ii) \(\operatorname{deg} \overline{\mathrm{A}}=\operatorname{deg} \overline{\mathrm{B}}=0\).

Since, by assumption, our solution, if it exists, is unique, we obtain that deg \(\bar{X}=\) deg \(\bar{C}\) and a set of equations of the form (1) but with \(v, T, X\) in \(F_{n-1}\). We then enter our algorithm recursively, noting (though not trivially) that these equations satisfy the same conditions we had before, with respect to \(\because\).
iii) \(\operatorname{deg} \bar{A}>0\).

In this case, we point out that if we let \(\bar{X}=Q \bar{A}+R\), (deg \(R<\operatorname{deg} \bar{A}\) ) and substitute, we obtain
\[
\overline{\mathrm{C}}=\overline{\mathrm{A}} \overline{\mathrm{X}}^{\prime}+\overline{\mathrm{B}} \overline{\mathrm{X}}=\overline{\mathrm{A}}\left(\mathrm{Q}^{\prime} \overline{\mathrm{A}}+Q\left(\overline{\mathrm{~A}}^{\prime}+\overline{\mathrm{B}}\right)+R^{\prime}\right)+\overline{\mathrm{B}} R
\]

Thus if we solve the UPE
\[
Y \bar{A}+Z \bar{B}=\bar{C} \quad \text { for } Y \text { and } Z
\]
with \(\operatorname{deg} Z<\operatorname{deg} \bar{A}\), we must have that \(Z=R\), and \(Q\) must be the solution of the equation
\[
\bar{A} Q^{\prime}+\left(\bar{B}+\bar{A}^{\prime}\right) Q=Y-Z^{\prime}
\]
which we can solve (if \(Y=Z^{\prime}\) then \(Q=0\) ) by checking gcd ( \(\bar{A}, \bar{B}+\bar{A}{ }^{\prime}\) ) and applying one of (i), (ii) or (iii) again.

It is very important to note that (iii) should be applied after computing a bound on deg \(\bar{X}\) and noting that deg \(Q \leq \operatorname{deg} \bar{X}\) \(\operatorname{deg} \bar{A}\). If we obtain that deg \(Q<0\), then there is no pōssible solution. Note that after the first time we apply (iii), no computation on the bound of \(X\) is required, since this bound is already known. Finally, the first time we apply (iii), we compute a bound on deg \(X\) using methods dencribed in reference 2.

\section*{INTEGRATION OF NORMAL ELENIENTS OF F \(\mathrm{F}_{\mathrm{I}}\)}

In this sfction we will present a new algorithm for finding the integral of a normal element of \(F_{n}\). The algorithm is justified and explained in the following:

Theorem i.
Let \(f\) be normal in \(F_{n}, P=\) num \(f, Q=\operatorname{den} f\). Let \(r(\alpha)=\) resultant ( \(P-\alpha Q^{\prime}, Q, \theta_{n}\) ). Then \(\int f\) is elementary if and only if all the roots of \(r(\alpha)\) are constants, if and only if \(r(\alpha)=s t(\alpha)\) with \(t(\alpha) \varepsilon K[\alpha]\) and \(s \varepsilon S_{n}\).

\section*{Theorem 2.}

Using the same notation as in Theorem 1 , if \(f\) is elementary, let \(c_{1}, \ldots, c_{m}\) be the roots of \(r(\alpha)\) and \(v_{i}=\operatorname{gcd}\left(P-c_{i} Q^{\prime}, Q\right)\). Then
i) If \(\theta_{n}\) is logarithmic cuer \(F_{n-1}\) or \(n=0\), then \(f=\sum_{i=1}^{m} c_{i} \frac{v_{i}^{\prime}}{v_{i}}\).
ii) If \(\theta_{n}=\exp (w), w \varepsilon F_{n-1}\), then \(f=\sum_{i=1}^{m} c_{i}\left(\frac{v_{i}^{\prime}}{v_{i}}-n_{i} w^{\prime}\right)\) where \(n_{i}=\operatorname{deg} v_{i}\).

Theorem 3.
Using the same notation as in the two previous theorems, if \(f\) is elementary, then \(r(\alpha)\) (and \(t(\alpha)\) ) define the least degree extension of the constant field, necessary to express the intcyral of \(f\). This theorem answers affirmativaly the open problem asked by Risch on page 171 of reference 2, and generalizes a result of Trager (ref. 4). For proofs of these statements, we refes the reader to reference 1 .

\section*{COMPUTING TIME ANALYSIS FOR THE RATIONAL FUNCTION CASE}

In this section, we will present a computing time analris of this algorithm for the rational function case. rirst if \(P\) is a polynomial with integer coefficients,
\(P=\sum_{i=0}^{n} a_{i} x^{i}\), we define
norm \(P=|P|=\sum_{i=0}^{n}\left|a_{i}\right|\).
Now, we define \(F(m, n, d)\) as the class of functions \(P / Q\), with P, Q relatively prime univariate polynomials over the integers, \(\max (|P|,|Q|) \leq d, \operatorname{deg} P \leq m, \operatorname{deg} Q \leq n \cdot\)

We shall use the definitione and notation for dominance and codominance used, for examplo, \(\underset{y}{ }\) Collins (ref. 5).

Then, we have the following theorem. Fcrif \(f(m, n, d)\), the time required by the algorithm described herein is given by
\(\mathrm{T}_{\mathrm{INTG}}(\mathrm{m}, \mathrm{n}, \mathrm{d}) \leq \mathrm{n}^{8} \mathrm{~L}^{2}(\mathrm{dn})+\mathrm{n}^{6} \mathrm{~L}^{3}(\mathrm{kn})\)
\[
+\max (m+1-n, 0) n L^{2}(d)+1
\]
(if we assume that the norm of any of the partial results except the resultant, is also bounded by \(d\) ) where \(L(d)=\log _{2}(d!+1\).

Proof: we have two cases to consider.
(a) \(m \geq n\), and
(b) \(m<n\).

If \(n<n\), we do a quotient-remainder operation, and then we continue with D. Mack's alrorithm and the algorithm described in section 4 . We then have the following computing times.

The quotient-remainder operation requires constant time. D. Mack's algorithm requires time \(n^{5} L(n d)^{2}\) as proven in reference 3.

The algorithm in section 4 requires time dominated by:
i) \(n I_{\text {( }}(\mathrm{d})\) to compute \(Q^{\prime}\)
ii) \(n L(d)\) to compute \(P-\alpha Q^{\prime} \quad(\operatorname{deg} P<n)\)
iii) \(n^{3} L(d)\) to compute \(R=\) resultant \(\left(P-\alpha Q^{\prime}, Q\right)\).
(We point out that \(\operatorname{deg}_{\alpha} R \leq n\), and its norm is bounded by \((2 n): d^{2 n}\) \(\leq 2 n^{2 n} d^{2 n}=(2 d n)^{2 n}\) and thus \(\left.L(n o r m R) \leq n L(d n)\right)\).
iv) \(n^{8}+n^{6} L^{2}\) (norm \(\left.R\right)+n^{3} L^{3}\) (norm \(R\) ) \(\leq n^{8} L^{2}(d n)+n^{6} L^{3}(d n)\) to compute the roots of \(R\) (as given in private comminication from G.E. Collins assuming number of roots \(=n\) ).
v) \(n\left(n^{2} L(d)+n L^{2}(d)\right)\) to compute \(\operatorname{gcd}\left(P-=Q^{\prime}, Q\right)\) for \(1 \leq i \leq n\) (assuming there are \(n\) distinct roots of \(R\) ).

Adding these times, it is clear that the time to compute the roots of \(R\) dominates all other computing times, and we obtain the desired result that the computing time for the algorithm in section 4 is dominated by
\[
n^{8} L^{2}(d n)+n^{6} L^{3}(d n)
\]

Finally, if \(m>n\), the time to compute the quotient-remaindex is given by \((m+1-n) n L^{2}(d)\) and the time to compute the integral of the polynomial part (by the classical method) is given by \((m+1-n) L^{2}(d)\).

If we add all these computing times we obtain the result that we quoted at the beginning.

Note: The bounds on the time to compute the resultant and the norm of \(R\) were obtained from reference 5 .

\section*{CONCLUSIONS}

We have shown that for rational functions integration in finite terms can be done in time bounded by a polynomial in the size of the input, if part of that size is the deg ee.

In the general case, we conjecture that the computing time, for the case where the number of monomials is fixed, yields a polynomial in the same sense as above. (No better bound can be obtained, as shown by the example \(\left.\int x^{n} e^{x} d x.\right)\), This conjecture, though, implies that the computing time of any algorithm for symbulic integration is at least exponential. in the number of monomials in the integrand.

\section*{REFERENCES}
1. Rcthstein, Michael: Aspects of Symbolic Integration and Simplification of Exponential and Primitive Functions, Ph.D. Thesis, University of Wisconsin, Madison, 1976. Pvailable from Xerox University Microfilms, Ann Arbor, Michigan.
2. रisch, Rofert H.: The Problem of Integration in Finite Terms, Trans. Ancr. Math. Soc., 139, May 1969, pp. 167-189.
3. Mack, Dieter: On Rational Integration, University of Utah, Computational Physics Group Report UCP-38, September 1975.
4. Trager, Barry M.: Algebraic Factoring and Rational Function Integration, Proceedings of the 1976 Symposium on Symbolic and Algehraic Computation, R. D. Jenks, Ed., Assor. for Comp. Mach. N. Y., 1976.
5. Collins, George E.: The Calculation of Multivariate Polynomial Resultants, JAcM 18, \#4, October 1971, pp. 515-532.

\title{
SUMMATION OF RATIONAL EXPONENTIAL EXPRESSIONS IN CLOSED FORM
}

\author{
Joel Moses \({ }^{\text {b }}\) \\ and Jacques Cohen \({ }^{n}\)
}

\begin{abstract}
A program is described which provides, whenever possible, symbolic closed form solutions to summations of rational exponential expressions, i.e., of the type
\(\mathrm{x}=\mathrm{u}\)
\(\sum_{x=\ell}\left(F_{0}+F_{1} / F_{2}\right) a^{x}\)
where the F's are polynomials in \(x\). The program is based on a decision procedure recently developed by M. Karr. The decision procedure consists of determining if the resulting sums is in itself a rational exponential, and if so, generating that expression. The paper firsi reviews some of the classical techniques summarized by \(\mathbf{C}\). Boole for attempting to find chsedf forms \(\left\{\begin{array}{l}\text { or the given }\end{array}\right.\) type of summations. Karr's method is then informally presented. His :.e.inod not only provides a decision procedure but also appears better suited for computer implernontation than the classical techniques. Several examples of the program's use are provided.
\end{abstract}
- L_aboratory for Computer Science, M.I.T., Cambridge, Mass. 02139. This work was supported by the United States Energy Research and Development Administration under contract E(II-1)-3070 and by NASA under Crant NSG 1323.
*at. Physics Dept., Brandets Iniversity, Waltham, Mass. 02154. This work was supported ty the National Science Foundation under Grant Number DLR-74-24569.


User Aids for MACSYMA \({ }^{*}\)
by V. Eilen Lewis

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts

\section*{1. SUMMARY}

The aids available to the MACSYMA user are described, from the printed manual, primer. and system introduction to the various on-line sources of help. This is a tutoria! paper which is, in fact, a "user atd" itself.

\section*{2. PRINTED MATERIAL}

When a new user requests information about MACSYMA, he is sent a standard package consisting of the MACSYMA, Reference Manual, the "MACSYMA Primer", and the "Introduction to ITS for the MACSYMA user. These three documents comprise the printed documentation for MACSYMA and are intended to provide enough information to a prospective user te permit him to (1) determine whether or not MACSYMA can help him solve his problem, and (2) get started using MACSYMA.

\subsection*{2.1. The M/aCSYMA Reference Manual}

The Reference Manual is, of course, the most complete document dealing with the MACSYMA System. It describes all the functions, commands, switches and options available in the system. Most serious MACSYMA users will want to have one for reference. It has indices of functions and switches, as well as detalled information dealing with programming and the internal operation of MACSYMA. It is updated approximately every 12 to 18 months. In between
*. This work was supported, In part, by the United States Energy Research and Deveiopment Administration under Contract Number E(II-1)-3070 and by the National Aeronautics and Space Administration under Crant NSG 1323.
\[
\begin{equation*}
210^{2 n^{6}} \tag{277}
\end{equation*}
\]
revisions, information about new features is avallable on-line in the file HACSYM; UPDATE \(>^{\text {ºn }}\).

\subsection*{2.2. The "Introduction to ITS" and the "MACSYMA Primer"}

The "Introduction to ITS for the MACSYMA user" attempts to explain to those whose primary purpose in using the computer is using MACSYMA how to cope with the time-sharing system (ITS) on which MACSYMA runs. This is at best a stop-gap measure, but an essential one for the moment, because MACSYMA runs on a "research" system. The assumption is that the person cusing the computer wants to have access to any part of the operating system at all times. For a programmer this is a "feature" (an advantage), but for a user this can be a distinct disadvantage. The "Introduction to ITS" is intended to offset this disadvantage.

The MACSYMA Primer is a brief description of some of, the commonly used features of MACSYMA. By use of a number of examples, it demonstrates MACSYMA's syntax and gives a short "cook book recipe" for how to use MACSYMA.

Using these two documents, a potential user can establish a connection to the computer, and get started using MACSYMA.

\section*{3. THE ON-LINE AIDS}

MACSYMA is a system with a lot of built-in expertise. Once the user has gotten himself connected to it, it is reasonable to hope that MACSYMA zan offer information about itself should the user desire it and respond to simple user queries.

\subsection*{3.1. The PRIMER}

For the novice user, or other users who want some instruction in a particulter aspect of MACSYMA, there is the on-line Primer. This is concelved as an interactive educational too: which leads the user through some sample calculations. It allows tre user to type commands, but intercepts them for checking before they reach MACSYMA's evaluator. If a rommand is typed correctly, it is passed on to the evaluator and MACSYMA handles it exactly as if it had been typed In from top level MACSYMA. If a command is not correst, the Primer tries to identify the source of the error and give the user an appropriate error message. The command is not passed on to MACSYMA and the user ts asked to "Try again." Thus the user gets "hands ori" experience
*. This file may be printed out with the command :PRINT MACSYH;UPDATE >carriage return> at DDT levei
typing actual MACSYMA commands but in a controlled situation where he will be introduced to the complexities of the system without having to flounder around.

The cornmand to start up the Primer is PRIMER(); \({ }^{*}\) This will print out a brief introduction and offer a choice of subjects to learn about, thus:

\section*{(C1) PRIMER();}

Hello. Please terminate your responses with a ; What would you like to go over? (Select, the number of the script you would like to see.) INTRO is a general introduction for people who have never used MACSYMA or this PRIMER before.
1 - INTRO
2 - SIMPLIFTCATION
3 - SCkATCHPAD
4 - SYNTAX
5 - ASSIGNMENT
6 - FILING
7 - MATRICES
8 - SHARE
9 - EXIT

These topics are called scripts because their interactive nature makes them closer to dramatic scripts than to narratives. The user selects a script by typing its number (or its name) followed by a semicolon. (IMTRO is the introductory script and should be run oy new users.) There is a "standard" introduction consisting of the INTRO script (which inserts the SYNTAX script), the SIMPLIFICATION script, and the so-called SCRATCHPAD script \({ }^{\text {tht }}\). These scripts lead one to the nex:, with an optional nsdering offered. Additional sc.ipts are available on MATRICES, FILING (the various kind: of aisk files ind how to use them), and ASSIGNMENT (how to define functions and assign variables). Scripts will eventually be added dealing wilh EVALUATIOh, program writing, and (in the spirit of seif explanation) User Aids. Some of the information on the SHARE directory may aiso be printed out in the Primer, by seiecting the SHARE script, which offers a further selection of file names to be printed. The PRIMER command may also be given a script name as an argument, e.g. PRIMER (SATRICES) ; and it will then run that script.

The user is moved around from script to script in the Primer depending on how he answers the "yes or no" questions the Primer asks:

\footnotetext{
*. This is called a "function of no arguments", since MACSYMA functions take their arguments inside parenitheses.
*中. SCRATCHPAD is meant to imply the ability to "fiddle" with MACSYMA expressions. No connection with another manipuiation system is intended.
}

Do you need help with HACSYMA syntax?
YES;

Other script switches are accomplished by the primer printing out the list of scripts again and allowing the user to select a script or to exit. (Also at any point the user may type control-uparrow, tha MACSYMA "quit" character, and exit back to top level MACSYMA).

The user will be invited to try out the various commands as they are explained, e.g.
Here is a simple example of the use of SUBST. The numerator of this expression is equal to 1 for all \(X\), but, the MArSYMA simplifiers will not simplify it directly.
(C2) \(\left(\sin (x)^{\wedge} 2+\cos (x)^{\wedge} 2\right) /\left(x^{\wedge} 2+39\right) ;\)
22
\(\sin (x)+\cos (x)\)
(D2)
\(-\cdots---\cdots-\cdots-x^{2}\)

Thers are three ways to use SUisSt on this example:
One could substitute 1 for \(\operatorname{SIN}(x)^{\wedge} 2+\cos (X)^{\wedge} 2\)
One could substitute \(1-\operatorname{SIN}(X)^{\wedge} 2\) for \(\cos (x)^{\wedge} 2\)
Or one could substitute \(1-\cos (X)^{\wedge} 2\) for \(\operatorname{SIN}(X)^{\wedge} 2\).

The first way is more direct, but in more compiex examples where the sin squared plus cos squared is deeply entwined with other elements of the expression the second or third way would be necessary. Pick the way you like best and simplify the expression by using SUBST.

The user may then perform the indicaied operation, or if lie is not sure how to proceed (or has tried once or twice and beeia unsucezsful), he may, type NO; and the Primer will show him how to do it:
(C3) NO;
O.K. I'll do it for you.
(C3) \(\operatorname{SUBST}\left(1, \operatorname{SIn}(X)^{\wedge} 2+\cos (X)^{\wedge} 2, x\right)\);
1
\(x^{2}+39\)

\subsection*{3.2. The HELP Command}

The casual MACSYMA user frequenty wants to do one task, invert a matrix or solve a differential equation, for instance. The advanced user sometimes needs to k.low one thing like what switches affeit a particular command. That is to say, there are specific questions users have, which fit into two general forms:
1. How do I <do something>?
2. What are the <argiments, switches> for <command>?

Of course, the user could ask a knowledgeable user these questions, or look them up in the Reierence Manual, but this is not always convenient. So the HELP(); command has been implemented. The HELP ( ) ; command starts up a small "natural language" subsystem which can understand English in a flexible but limited way. Sentences it cannot understand are returned with the constructions or words the system does not undertand pointed out, so the user may rephrase his question. This HELPer is the beginning of the ADVISOR subsystem which will ultimately take the place of the communication with humars advisors for n.ost questions (see ref. 1).

Basically, this subsystem will be able to understand and replv to questions of the two forms stated above: "How do I _?" and "What are the _ for _ ?" The flexibility of the system permits, for instance, the two questions:
1. How do you append two lists?
2. How do I sake one list out of two lists?
by recognizing that they are both requesting information about the APPEND command. Questions of the form
"How can I integrate D3?"
can also be handied, since the subsystem has access to the rest of the user's MACSYMA and can find out what D3 is, even replying "I'm sorry, MACSYMA cannot integrate <expression>." should that be the case.

To exit from the HELPer, type BYE.
3.9. Options, Describe, and Example

\subsection*{3.3.1 Options}

Users sometimes need to ask a more general sort of question, like "What can I do with a matrix?" or "What kinds of operations can I perform on trigonometric functions?" The OPTIUNS(); command was conceived for this purpose.

OPTIONS(); starts up the "Options Intcypreter". Note that OPTIONS may take the name of a command or a general topic (e.g. MATRICES, SIMPLIFICATION, FACTOR) as an argument. The effect of OPTIONS(); is
(C4) OPTIONS();
```

OPTION FASL DSK MACSYM belng loaded
loading done
OPTIONS interpreter (Type "EXIT;" to exit.)
l - INTERACTION
2 - DEBUGGING
3 - EVALUAATION
4- LISTS
5 - MATRICES
6 - SIMPLIFICATION
7- REPRESENTATIONS
8 - flOTTING
9 - TRANSLATION

```

This list of topics is the top of a branching hierarchical structure like an inverted tree which organizes the namas of MACSYMA commands and switches by topic or function. A portion of the tree looks like this:


The Options Interpreter uses the same mechanism for moving around in this tree that the Primier uses for script selection, thus referring back to the print out from OPTIONS(); the user types 3 number followed by a semi-colon to see the things under a particular topic (a "node" in the tree). Tor example:
(C4) OPTIONS();
OPTIONS interpreter (Type "EXIT;" to exit.)
1- INTERACTION
2 - DEBUGGING
3 - evaluation
4 - LISTS
5 - MATRICES
5 - SIMPLIFICATION
7 - REPRESENTATIONS
8 - PLOTTING
9 - TRANSLATION
6;
1 - EXPANSIOM
2 - FACTERING
3 - TRIG

Continuing further
```

1;
1 - EXPAND (C)
2 - RATEXPANC (C,S)

```

A command will have the symbol (C) after in, a switch will have the symbol (S), atid 3 variable will have ( \(V\) ). Contineting down the tiee, if the user selects "I", the EXFAND command, MACSYMA prints out:
```

1:
1 - MAXPOSEX (S)
2 - MAXNEGEX (S)

```
showing the switches which affect that command. If the user selects "l" at this point, the MAXPOSEX switch, MACSYMA prints cut
```

no options

```
indicating that he has reached the bottom of the tree. To move back up, perhaps to check out the RAT SXPAND command, the user types
```

back;
1 - EXPAND (C)
2 - RATEXPAND (C,S)

```
and the system moves him back up to the next higher level. To exit from the OPTIONS Interpreter, type exti;

\subsection*{3.3.2 Descr Ibe}

The OPTIONS command allows the user to select a command or a small set of commands. The user can then check the command in the manual or use the DESCRIBE command to find out what it does exactly, and what arguments it takes. DESCRIBE takes a command name or a switch name as an argument and princs out the section of the manual which explains the command or switch. \({ }^{*}\) DESCRIBE works within OPTIONS, taking the number of the command:
```

1- FACTOR (C)
2 - GFACTOR (C)
3. - FACTORSUM (C)
4-GFACTORSLM (C)
5 - SQFR (C)
5 - PARTITION (C)
DESCRIBE(1);
FACTOR(exp) factors the expression exp containing any number of
variables or funcitons, into factors irreducible over
the integers.

```
0. Of course, this is oniy as good as the latest version of the manual, and might be out of date if new features have been added.

Or DESCRIRE can be used directly from top level MACSYMA:
(C5) DESCRIBE(FACTOR);
FACTOR (exp) factors the expression exp containing any number of variables or functions, into factors irreducible over the integers.
(D5)
OONE

\subsection*{3.3.3 Example}

The EXAMPLE command fits very closely with DESCRIBE. It also takes a command as an argument and gives exampies of how that command may be used, and the sort of output it gives.
(C6) EXAMPLE(FACTOR);
EXAMPL 2 DSK DEMO being loaded
loading cone
(C7) FACTOR\&\& FACTOR(2^63-1);


Since the EXAMPLE command is actually a demonstration (see DEMO corrmand teiow), it prompts the user with a "." at the left margin after each command line is procested, so the user may type a space to see the next command line, or control-uparrow to "QUII" out of the EXAMPLE.

\subsection*{3.4. Demonstrations, and the DEMO Directory}

Another way a user can find out how various MAESYMA functions worl, and get an idea of how MACSYMA can be used on real problems is to run some of the demonstrations which are contained in the DEMO directory.

The clirectory may be listed at system top level (DDT: level) and the files loaded into MACSYMA with the DEMO command, e.g.
(C9) DEMO(NDEMO, FILE, ISK, DEMO).

\section*{4. USER SPECIFIC INFORMATION}

All the user aides discussed thus far have been for getting information about the system. It is sometimes necessary for a user to get information about his own functions or the current state of his MACSTMA.

\subsection*{4.1. Information about User-Defined Functions and Variables}

\subsection*{4.1.1 DISPFUN and GRIMO}

Suppose the user has defined a function \(\mathbf{F}(\mathbf{X})\), for instance:

(D10)
\[
F(x):=x^{2}+2 x+1
\]

The user can redisplay this function using the command DISPFUN(F);
(C11) DISPFIN(F):
(D11)
\[
F(x):=x^{2}+2 x+1
\]

In thls way be can check the correctiess of tha definition, or review it.
If the function the user had dei ined is a block statement, e.g.
(CI2) MYTAYLOR(EXPR,VAR, POINT,HIPONER): \(=B L O C K\) ([RESULT],
RESULT: SUBST(POINT, VAR, EXPR),FOR I: 1 THPRI HIPOHER DO (EXPR: DIFF(EXPR,VAR)/I,RESULT: RESULT+(VAR-POINT) I* SUBST(POINT, VAR,EXPR)), RETURM(RESULT))\&
*. :LISTF DEvo<carrlage return>
```

just displaying it may not te very helpful, especially if the user is trying to "debug" it. The command GRIND(G); can be used and will display the function $G$ with the various paris of the BLOCK statement indented properly so their structure can be more easity seen, for example:
(C13) GRIND(AYTAYLOR):
BYTAYLOR (EXPR, VAR, POINT, HIPOWER): $=$ BLOCK([RESULT], RESULT: SUBST(POINT, VAR, EXPR), FOR I THRU HIPONER DO
(EXPR:DIFF(EXPR,VAR, 1)/I, RESULT: RESULT+(VAR-POIMT) ${ }^{\wedge}$ I*SUBST(POINT, VAR,EXPR)), RETURN(RESULT))s
(D13)
DONE

```

Using GRIND on a function like \(F(X)\) above (which fits on one line) produces the one cimensional representation in whilh the function was irput, although in general it might be equivalent but slightiy re-arranged.
(C14) GRIND(F);
\(F(X):=X^{\wedge} 2+2 * X+18\)
(D14)

\section*{OONE}

\subsection*{4.1.2 PROPERTIES and ARRAYIMFO}

The command Propertics takes a function or a variable as an arzument, and prints out the thirifs MACSYMA knows about it, e.g. that it is a function. For example:
(C15) PROPERT:ES(HYTAYLOR);
PROPFN FASL DSK MAXOUT betng icaded
loading done
(D15)
[FUNCTIOM]
(C16) PROPERTIES(GRIND):
(D16) [SYSTEM FUNCTEON]

The command ARRAYINFO takes the name of an array as ant argument, anci writ print out the information about the array: whether or not it is declared and its dimensions.

\subsection*{4.2. INFOLISTS}

INFOLISTS is a list of the lists of information MACSYMA mairtains about the user's MACSYMA state. Typing INFOLISTS; will produce the following output:
(C17) INFOLISTS;
(D17) [LABELS: LALUES, FUNCTIONS, ARRAYS, MYOPTIONS, PROPS, ALIASES, PULES, GRADEFS, DEPENDENCIES, FEATURES]

EV(INFOLISTS); will produce a list of the things in each of the lists. The lists maintained are:

LABELS - The line labels in the current MACSYMA which hzve been assigned, that is all C-lines. D-lines, and E-lines.

VALUES - All the vasiables the user has assigned a value to explicitly with the : operator, by , Variable name

FUNCTION3 - All the functions the user bas defined with the :- operator, except subscripted (array) functions.

ARRAYS - All arrays and matrices, deciared and undeclared, and all array functions.
MYOPTIONS - All the MACSYMA options (switches) the user has changed.
PROPS - Any atoms which have prowitize steh as atvalues, matchdeclares, or properties specified by the DECLARE function.

ALIASES - Tise user's abint abbilited names for quantities, e.g. ALIAS(INTEG, INTEGRATE) sets up INTEG as a short spelling for INTEGRATE.

RULES - Any simplification rules or pattern matching rules the user has defined using the TELLSIMP, TELLSIMPAFTER, DEFMATCH, o: DEFRULE COmmands.

GRADEFS - Those functions for which the user has defined derivatives.
DEPENDENCIES - The funcional dependencies deciared by the user with the DEFENDENCIES or GRADE command.

PEATURES - Special mathematical of other properties of functions. Three are buili into MACSYMA: INTEGER, EVEN, and ODD, but the user can add others.

\subsection*{4.3. Tracing and Debugging Aids}

The TRACE tunction accepts the names of functions as arguments, and will print out information each time the functions being traced are cailed, e.g.
(C18) TRACE(MYTAYLOR):
MTRACE FASI. DSK MACSYM being loaded
loading done (D18)
[MYTAYLOR]
(C19) MYTAYLOR(SIM(X), X,A,3);
1 enter MYTAYLOR [SIn(X; \(X, A, 3]\)
3 - 2
\(\cos (A)(X-A) \quad \sin (A)(X-A)\)

\((D 19)-\)\begin{tabular}{cc}
\(\cos (A)(X-A)^{3}\) & \(\sin (A)(X-A)^{2}\) \\
\hdashline\(-\cdots \cos (A)(X-A)+\sin (A)\)
\end{tabular}

This permits the user to make a better guess as to where his function is not behaving as he expects.

The UNTRACE function is the complementary function which removes the trace from functions (e.g., UNTRACE(MYTAYLOR);). UNTRACE(): will remove traciug from all furictions. TRACE: ); will print out a list of all functions being traced.
(C20) TRACE\{);
(020)
(C21) UNTRACE():
(021)
[MYTAYLOR]
[MYTAYLOR]

There is a switch which helps the: user keep track of what variables he has assigned values to. This is SETCHECK. SETCHECK may be set (using the : operator) to a list of variables, and MaCsVMA will print out a message any time an assignment is made to one of those variables.

There are a few other debugging aids, which are explained in the manual in the section on Debugging Functions.

\section*{5. FINALLY, THERE ARE STILL PEOPLE!}

Finally, stould the user find these various aids inadequate, there are still human advisors around to whom he cail put his questions. These human advisors are MACSYMA's best "User Aid", and the user is ercouraged to sontact them with his problems. This can be done within MACSYMA by using the SEND command, e.g.

\section*{(C22) SEND("HOH RO I Invert A MATRIX7"):}

Notice the quotation marks, they are part of the command. This will send a message to one of the MACSYMA helpers who is logged in at the time. Alternatively, the user desiring help can exit from MACSYMA with a control-Z and use the DDY command :SEND to contact a perticular person \({ }^{\text {² }}\), or in eases of desperation, the :LUSER command. \({ }^{\text {4. }}\)

\section*{6. REFERENCES}
1. Genesereth. M. R.: "An Autonated Consultant for MACSYMA". 1977 MACSYMA User's Cenference, NASA CP-2012, 1977 (paper no. 30) of this compilation.

\footnotetext{
*. See the "Introduction to ITS for MACSYMA Users" for detalls
*. Once again, see the "Introduction to ITS."
}


\title{
The Difficulties of Using MACSYMA and the Function of User Aids \({ }^{\text {* }}\)
}

\author{
Michael R. Genesereth \\ Center for Research in Computing Technology Harvard University \\ Laboratory for Computer Science \\ Massaciusets Institute of Technology
}

\begin{abstract}
The aifficuities of using a computer system to help solve a problem can be divided into learning difficulties, resource knowledge difficulties, and communication difficulties. The purpose of this paper is to explore the nature and manifestations of these difficulties in MACSYMA and to explain the function of user aids in dealing with them. A learning difficulty Trises whenever a system is too large or too complex to understand fully. A resource knowledge difficulty arises wherever a usar is unable to solve his problem due to a deficiency in ihis ur. Jerstanding. A communication difficulty is due to a difference between the primitive cbjects, actions, and relations of a user's problem and those provided by the system. The importance of this distinction ites tit the way each difficulty is hancled: learning difficulties by primers, lectures, tutcrs; resource knorledge difficultes by manuals, information networks, consultants; communication difficities by bringing the system closer to the user's needs. In all cases, the optimal assistance can be provided by an ald that maintains and uses an explicit, internal "model". of the user's siste of anow!edge, his goals, and his "plan" for achieving them.
\end{abstract}

\section*{Intróduciton}

Consider ascientist trying to solve a mathematical problem with the ald of an algebraic manipuiation systerit ile MACSYMA. If he were to solve the problem by hand, he would personally have to grapple with the problem tiself and all the subproblems that arise. By using MACSYMA, he can delegate many subprobiems and thereby save time anc effort. However, to

\footnotetext{
- This work was supported, in part, by the United States Energy Research and Development Administration under Contract Number E(11-1)-3070 and by the National Aeronautics and Space Administration un:ter Grane NSC 1323.
}
do so, he must (1) understand the refevant portions of MACSYMA, (2) be able to remedy any difficitten that arise from a deiciency in this understanding, and (3) expend the additional effort necessary to communicate to MACSYMA the essential details of his problem. In general, when a person employs any tool to help solve a problem, he is trading off the effort required for these three tasks in return for the tool's powerful or unique atilities at solving his probiem.

The purpose of this paper is to explore the nature and manifestations of these tasks in the context of MACSYMA and to explain the function of user aids in facilitating their execurion. People sometimes complain that MACSYMA is difficult to understa id or to control, and they usually cite specific properties of the system as primarily responsible, eg. too many commands, too hard to specify subexpressions. In all cases, these complaints are attributable to increases in the difficulty of one or more of the above tasks. Difficulties encountered in acquiring an initial understanding of a system will hereafter be calen learning difficulties; problem solving difficulties resulting from a deficiency in this understanding will be called resource kriowledge difficulties; and difficulties in communicating to the system the essential details of a problem and in retrieving a comprehersible result will be called communication difficulties. The importance of this distinction lies in the way each difficulty can best be handled. All three difficulties can be lessened by improving MACSYMA itself. However, learning difficulties can also be treated by tutorial aias, and resurce knowledge difficulties by "uset-initiative" information sources. It will be argued that in all three cases the ultimate aid is one that maintains and uses a "model" of the user's problem and his "plan" for solving it.

The analysis presented here \(t\) concerned enly with difficulties arising from the use of MACSYMA: it dees not consider those arising from ill formulated or partially formulated problems. Such problems are not uncommon, e.g. a scientist will occasionally engage in algebraic manipulation without a precise goal because he wants the insight that comes from writirg his result in different forms. Although the paper does mention in general terons the ronstraints on MACSYMA's design, it does not consider specific imple,nentational or mathematical difficulies, e.g. address space problems, the representation of derivatives.

A learning difficulty arises when a spstem is too large or its primitives ton es.iplex for 2 new user to understand fully. MACSYMA, for example, has over 350 comrinanis and 200 switches, and the behavior of many commands like TRIGREDUCE cannot be simply described. Learning difficulties are bist countered either by simplifying the system or by providing tutorial aids like primers and lectures.

A resource knowledge difficulty arises when the user finds himself unable to proceed further in solving his problem due to a deficiency in his kncwledge of MACSYMA. He might not, for example, be able to remember the name of the command for putting a sum of quotients over a common denominator (COMBINE). Or, he might be unaware of a commend's dependence on the setting of some variable, e.g. EXPAND and MAXPOSEX. Or, he might get an incorrect answer due to a programming mistake but not know where in his derivation he went wrong. Resource knowledge difficulties are best treated by user-initiative information sources, e.g. manuals, information networks, and consultants.

A communication difficulty results from a differente between the objects, actions, and relarions of the user's problem and those provided by the system. The difference may be either simple or complev. A "simple" difference is eliminated by defining the re'evant concepts. For exampie, MACSYMA can renresent a matrix and compute and solve its characieristic polynomial, but it knows nothing about eigenvalues. The user with a matrix eigenvalue problem may either call the appropriate commands one by one or define a function A "complex" difference results when there is no homomorphic mapping between the primnives of the user's problem and their representation in MACSYMA. For example, a user may want to write an expression as (V/C) \({ }^{2}\), but MACSYMA insists on writing \(V^{2} / C^{2}\). The most straightforward solution to communication difficulties is for the system designer to bring "he sys.em's primitives closer to those of the user.

It is important to keep ill mind a bask distinction between learning and resource knowiedge difficulties on the one hand and communication difficulties on the other. A conmunication difficulty results from the difference between the expertise required to solve the user's problem and that provide" by the system. A learning or rescatce krowledge difficulty is due 3 the user's silsunderstanding of the system, no matter how appiof riate the system is to the problem at hand. A communication difficulty vaties inversely wifh the system's expertise and wouid exist even if the user understood MACSYMA perfectiy. raring and resource knowledge difficulties vary directly with the complexity of that portion or tre system appropriate te the user's problem and are oiherwise independent of the problem.

The advantage of a large algebraic manipulation system like MACSYMA over a smaller, sparer system like REDUCE is that MACSYMA has more mathematical knowledge built in. As a consequence, the user is not forced to communicate as nuch tathematical knowledge to the system, and it is even possible that the sjstem offers expertise with whinh the user himself is unfamiliar. The disadvantage is that MACSYMA can be more difficult to understand and to use. In other werds, t:', communication difficulty is drastically decreased for increased learning and resource knowledge diffic ities.

One advantage of numerical computation over symbolic manipulation is that the former can sometimes succeed where the latter thails -- many problems are amenable only to numerical techniques. This is unfortunate because graphs and tabies alone do not offer as much structure as closed form or even series solutions. The inadequacy of numerica: solutions can be viewed as a communication difficulty in which the answers are not as readily interpretable in the user's terms. Thus, when both namerical computation and symbolic manipulation are applicable, the laiter bat; the advantage of more comprehensible results and, due to the decreased communication difficulty, may actually be more efficient in terms of user time.

In providing the optimal assistance for each of these three types of difficulties, one feature is common, nameiy the importance of a model for the user's goal and his plan for achieving it. In order to provide taformation tailored to the user's need, the tutor or consultant must know what the user knows and what he is trying to do. If MACSYMA were able to keep track of the structure of the user's session (why he is doing what he is doing), it could chonse defauits and disambiguate input in a way that is not now possible. The automatic user aids of the future -tutors, constaltanis, ard apprentices -- will very likely maintain and use such models.

This paper deals with the three types of difficulties in turn. The first section describes MACSYMA's tutorial aids, discusses their strengths, and suggests some amprovements. The second section classifies and explains the observed manifestations of resource knowledge difficultics by way of an explicit model ef the "typical" MACSYMA user and describes MACSYMA's provisions for dealing with these difficulties. After listing the requirements for communication with MACSYMA, the third seation outlines its current capabilities for easing communication difficuities and suggests several improvements that would further reduce their degree. The frurtin section states in very general terms why MACSYMA has developed as it has. The final section describes the state of implementation of the suggestions made in the paper, indicates some stortcomings of the model used in section 2, and argues that the difficulties of using a computer system need not be proaibitive if adequate user aids are provided.

\section*{1. Learning Difficultes}

A learning difficulty arises when a systern is too large or its primitives too complex for a new user to understand fully. The effect of having too many commands and switches is that the use, cannot remember all the capabilities available and tr.e details of each; there is just too much information. A mnemonic naming scheme is one way MACSYMA tries to cotinter this difficulty. Obviously, a good naming scheme should be unambiguous, systematic, piescriptive, and designative of the command's exact furetion.

Minemonic naming is the best way to help a user recail the name of a command or switch. frowever, the best way to help him remember the range of capabilities availabie is to provide a conceptual framework for those capabilities. A primer is a user cid that supplies information irom a fixed syllabus. This facilitates the learning process by structuring the material to be iearned. MACSYMA has a small hard copy primer (ref. I) that is supplied to all new users.

The best way to help a user remember the details of a command's use, e.g. its arguments, options, side effects, is practice. MACSYMA also has an interactive primer (ref. 2) in which the user participates by solving test problems under its auspices (via the PRIMER command). The atvantage is that the user is forced to try out what he has learned immediately aftc: \(h \geq\) learns it. The user's solution is checked for mistakes by specialized analysis functions supplied by the primer's auther.

In the future, thir analysis and maybe even the invention of examples may be automated. The work reported in (refs. 3, 4, 5, 6) suggests a possible impiementation. The MACSYMA tutor would maintain a model of the user's knowledge of MACSYMA based on the material already presented to him alid a model of the task he was given; and it would obtain through analysir of his actions and statements a model of his plan for solving the problem. It would examine these models in an attempt to recognize any tutorial "issues" (ref. 4) in its syllabus and, finding one, would generate the appropriate correction. The const-uction of such a tutor, however, has not yet been seriously considered.

One other tutorial approach is the traditional lecture and problem set discipline. The MACSYMA staff jeatly offers a si\% lecture mini-course at M.I.T., and there are plans to videotape these lectures for general circulation.

The disadvartage of a tutorial aid is that the information provided is not tailored to the user's current problem. While a full presentation may be best in the long run, some users may not have the time or patience to consult such an aid before tackling their problem.

\section*{2. Resnurre Knowledge Problems}

The MACSYMA user typicrily has a mathematical problem he is trying to solve and approaches MACSYMA for its powerful abilities at algebraic manipulation. The domain in which the problem is expressed (here mathematics) is called the task environment, and the user typically knows a good deal about it. This knowledge is represented in figure 1 as the box labeled T. He also has a model of MACSYMA's abilities ( M ) and maintains a dynamic model for the state of his current MACSYMA ( m ). In solving his problem, the person uses this knowledge to map his protlem from the task environment to MACSYMA, solve the resulting MACSYMA problem, and interpret the result. For example, he represents his equations as a matrix, inverts it, and reads off the solutions. In executing this procedure, he implicidy generates and follows a plan P, i.e. a goal-subgcal tree that he believes will solve his problem. This view of the user's use of MACSYMA leads :o the configuration in figure 1 .


Fig. 1 - A MACSYMA user's data structures
A resource knowledge difficulty arises when a user is unable to proceed further in solving his problem due to a deficiency in his model of MACSYMA (M). When this happerr, the user must either strike out at random or consuli one of the information sources aivailatle to him. Difficulties due to errors in the user's model of his task environment (T) ars not treated here, though they often arise. One might, for example, balk at seeing an imagin: ry solution when trying to find the intersection of two rircles, unill one realizes that the carcles do not intersect. Difficulttes due to deficiencies in the user's model of his current MACSYMA (m) stem from deficiencies in M or \(\mathbf{T}\) and are dealt with in part by improving sommunication of MACSYMA's state to the user as described in section 3.

In analyzing resource knowiedge difficulties, several questions naturaily arise. Is there any way to bound and classify the sorts of difficulties that can belall the user? Of what use are user aids in dealing with these difficulties? This section presents some data on the information needs of users experiencing resource knowledge difficulties and explains this data by way of a model of the "typical" MACSYMA user.

\subsection*{2.1 Observed Information Needs of MACSYMA Users}

One of \(\mathrm{M}_{2}\) ACSYMA's strongest user aids is its staff of human consultants, a vailable on-line to help users with resource : nowledge difficulties. D'ring the last three years, the author has served as a MACSYMA consultant and recorded many of these consuitation sessions. During the same three years, Profs. Gorry, Martin, and Szolovitz have offered a course on "knowledge-based systems" at M.I.T. in which one of the requiremen's is the solution of a MACSYMA problem and an analysis of the resulting protocol. The analyses were supposed te indicate which information sources were consulted and why. The author also had the opportunity to read many of these arialyses.

An examination of the data obtained from such consultations and protoccl analyses reveals that in using MACSYMA, people perceive the need for five general clasess of information.
(1) The user needs to know the name of a command or teshnique to do some task. If he were to phrase his need as a question, he would ask "How do 1 do ..?" This is called a HOWDO need.
(2) He needs to know a command's prerequisites, arguments, postrequisites, etc. He would ask "What are the ... of ...?". A WHAT need.
(3) He needs to check his beliefs about MACSYMA. He would ask "Is it the case that ...?". An IS need.
(4) He needs a procedural explanaion of how a command works or a result was obrained. He would ask "How did MACSYMA do ...?". A HOW need.
(3) MASSYMA has returned an unexpected result, and he can find nothing wrong with his derivation. He needs sufficient information to pinpoint and correct the misconceptirn underlying his erronenus expectation. He would ask "Why is it that ...?" A WHY need.

Of course, the syntax the person uses need not correspond to thase five categories, only the underlying question. For example, "Can you tell me how to invart a matrix?" means "How do I Invert a rnatrix?" and a complaint of "DI3 is positive!" means "Why is DI3 positive?".

\subsection*{2.2 A Model fo: the "Typical" MACSYMA User}

The analysis presented here assumes that in solving his problem the user acts in accordance with a standard, high levei planning algorithm. This algoritimis best represented as a "state and tra:tsition augmented rietwork" (called SATAN) in witich the states represeni problom solving commitments and the transitions are augmented by predicates and problem solving actions (accesses and updates to \(M, m\), and \(P\) ). For the present discussion, however, the full network described in (ref. 6) may be simplified to the flowchart in figure 2.


Fig. 2 - A fiowchart for the "typical" user's planning strategy
The initial goal is the solution of the MnCSYMA version of the user's problem. . In processing a goal, the problem solver either selects a "canned" method (a "template") or develops one especially from the facts about the objects and relations involved. The method chosen may be a single command or a high levei program with commands and other goals as steps (a "proceduial net"). In processing these subgoals, the problem solver generates yet other procedural nets until a level is reached containing only MACSYMA commands. Thus, the normal operation of the problem solver implicttly generates a hierarchical goal-subgoal tree, the root of which is the user's uitimate goal and the fringe of which is his MACSYMA solution. At any given level, the problem solver may insert additional gnals to achieve prerequisites or check results. It may also transform the plan, omitting or rearyanging steps, in order to optimize it. This step is not shown In figure 2. This means that the goal "tree" may in fact become a directed acyclic graph. It is Important to remember that the plan need not be explicit, i.e. the user need not be conscious of his plan; the essentiai point is that the user acts as if he were following a plan.

During the planning process, the user forms expectations about the results of his plan. When he checks these results, however, he may discover a discrepancy between these expectations and the facts (a bug manifestation). This discrepancy may be due either to a simple planning or execution mistake, e.g. a sign error, or to a more significant deficiency in M, m, or \(\mathbf{T}\) (called a misconception). However, the point in his plan at which the misconception had its effect (the locus) may not be immediately apparent. If so, the user must pinpoint the locus in order to uncover the misconception. In debugging his plan, the user is assumed to operate in accordance with a standard, high level debugging algorithm. Like the planring algorithm, this algorithm is also best described as an augmented aetwork. However, for the present purposes, it can be simplified to the flow chart in figure 3.


Fig. 3 - A flowchart for the "typical" user's debugying strategy
It is when the user finds himself unable to perform any of the steps in the planning or debugging procedures due to a lack of knowledge about MACSYMA (deficient M) that a resource knowledge difficulty becomes manifest.
(1) A HOWDO need artses in box A of the planning algorlthm.
(2) WHAT needs arise in boxes B, C, D.
(3) An IS motd cani arise in any box, but most often in debugging.
(4) The user may be unable to identify the locus of a misconception in box \(E\) of the debugging algorithm a.zd therefore expertences a HOW need.
(5) He may be unable to find anything wrong with his plan, l.e. he needs help in eitiner bow E or F. This is a WHY need.

According to this mechanistic model of MACSYMA problem solving, a resource knowledge
difficulty is viewed as the user's inability to make a transition from some problem solving state, and the kind of difficulty that arises identifies the offending state. The importance of having such a model is that it explains how resource knowledge difficulties arise and sets a neat'y specifiable bound on the types of difficulties and thereby on the types of assistance that user aids must provide.

\subsection*{2.3 The Function of User Aids}

In order to deal with the difficulties listed in section 2.1, system designers of ten provide an ariay of user aids.

The most common aid is the system's reference manual. MACSYMA's manual is avaiiable both in hard copy and on line (via the DESCRIBE command). The function of a manual is to provide quick reference to the facts about a command or variable, given its name. Thus, a manual effectively satisfies WHAT needs and many IS needs.

Also common is the system's trace capability. MACSYMA allows a user to trece all function estries and exits (the TRACE command) as well as the settings of variablas (the SETCHECK variable). The purpose of tracing is th help the user discover the locus of the misconception underlying, his bug manif estation, and thereiore it helps meet HOW needs.

A less common user aid is the "inverted manual", or information network. MACSYMA's version of this is available via the OPTIONS command. An information network is essentially a thesaurus of commands indexed by category and is primarily intended to help the user find the commands applicable to a particular task. Its primary effest is to ariswer HOWDO questions.

WHAT, HOWDO, and IS problems can be dealt with directly by an information source with no sencitivity to the user's purposes or state of knowledge. A WHY or HOW problem, however, often calls for different enswers to different people in cibiertat situations. Such a problem arises when a misconception gives rise to a bug manifestation, and is treatment calls for providing the user with enough information to correct the misconception. A source able to provide just this information and no more must have a model of the user's state of knowledge (M), his model of the current MACSYMA ( \(m\) ), his goal ( \(T\) ), and his plan for achieving it ( \(P\) ), and It therefore must be considerably more sophisticated than the other, user-indeperdert aids. A consultant is an information source that seeks to improve the user's model of the system in "userinitiative" mode. Consultation is a method widely used in computer centers for coping with WHY and HOW questions, and MACSYMA's consulting staff has proved to be its most effecrive user aid. A consultant can deal with all five kinds of problems and provide information callored to the user's need and level of understanding. Armed with the consultant's advice, the user can often surmount his difficulty and continue solving his problem.

Unfortunately, human consultants are a scarce resource and quite expensive. And, as MACSYMA is exported and its user community grows, even more consultants might have to be
provided. For this reason, work has begun on the construction of an autumated consultant, called the Advisor. This program should be able to converse with the user in English about a difficulty he has encountered and provide advice tallored to his need. The MACSYMA Advisor is a program distinct from MACSYḾA with its own separate data base and expertise. However, for converience the program can be called directly from MACSYMA (via the HELP command) and cast access the user's data structures. As currentl; implemen,ted, the Advisor deals only witis the "straight line" or nested use of MACSYMA commands anci not loops or user-defined functions. For a concrete example of the Advisor's performance, one should see the abstract printed in these proceedings. As with the proposed MACSYMA tutor, the MACSYMA advisor relies heavily on fes partial models of the user's state of knowledge, his goal, and his plan for achleving it.

\section*{3. Comrnunication Difficulties}

A communication difficuity is the result of the difference between the primitive objects, actions, and relations in the user's problem and thosz provided by the system. Thus, the degree of such a difficulty is a function of both the user's problem and the system's expertise. Although a resource knossledge difficuliy can be thought of as a communication difficulty, the concern here is with those difficulties that remain even when the user's model of MACSYMA is cunplete.

The difference may be either simple or complex. A sin.ple difference is eliminated by defining the relevant concepts. For example, MACSYMA can represent a matrix and compute and solve its characteristic polynomial, but it knows nothing about eigenvalues. However, the user with a matrix eigenvalise problem may educate MACSYMA simply by defining a function that calls the appropriate commands. The disadvantage of a "conservative" system (ref, 7 ) is that the user must convey large amounts of knowiedge th this form. A complex difference results when there is no homomorphic mapping between the primitives of the user's problem and their representation in MACSYMA. For example, a user may want to write an expression as (V/C) \({ }^{2}\). but MACSYMA instas: on witing \(\boldsymbol{v}^{2}, C^{2}\). Or, zuser may define his operators by the identities they satisfy, but MACSYMA insists on function definitions and unidirectional repiacernent iuies. The disadvantage of a "radical" system (ref. 7) is that its "model" of algebraic manipu'ation is in some domains toc narrow and rigid to accommodate the full range of models possessed by users. Some recent work on reformulating probiem descriptions expressed in the user's language in terms of a system's model of the dumain is reperted in (ref. 8). However, ne such capability is yet avalable in MACSYMA, and so the user muss translate his probiems into MACSYMA's terms. Fortunately, MACSYMA is, within limits, a diverse systern offering both radieal representations where applicable and a flexible general representation otherwise.

The communication task consists of breaching the distance between the user's problem and the appropriate system model. The necessary information that must be conveyed to the sysiem Includes:
(i) Input expressions, constraints, and domain-dependent expertise, eg. inequalities, order iruncation information, physical arguments

\begin{abstract}
(2) operations to be performed, e.g. solving an equation, showing two expressions equal
\end{abstract}

In evaluating the degree of the input communication difficulty, the two most important issues are the amount of material that must be presented and the degree of tleaiblity in order and format of its presentation. The information that must be retrieved from MACSYMA inciudes:
(3) form of the solution, e.g. "expanded in \(\mathrm{Z"}^{\prime \prime}\)

\section*{(1) information about MACSYMA's state, e.g. values of switches}

Furthermore, the user might want an explanation of how the result was obtained. If the syssem's model is similar to the user's, the explanation should \(b e\) quite simple, eg. integration by parts; if the technique used is very different, the explanation might be more complicated, e.g. explaining the whole Risch algorithm. Recent work reported in (refs. 6, 9, 10) indicates how a system ceuld be made to explain its behavior.

\subsection*{3.1 Present Capabilities in MACSYMA for Facilitating Communication}

Occasionally, a user may want to update or verify his model of the current MACSYMA (m). For this purpose, MACSYMA has a full set of information commands and variables. These differ from the commands mentioned in section 2 in that they provide information about the state of the user's particular MACSYMA and not about. MACSYMA in general. These sources fall into two categories: finding information about an object given its name, e.g. DISPFUN, DISPRULE, and PRINTPROPS, and finding the names of all objects having a given feature, e.g. VALUES, FUNCTIONS, GRADEiSS, erc. The sources available are listed in (ref. 2) and described in detall in (ref. 11).

Very often MACEYMA produces large, unwieldy results affording little insight. In a recent paper (ref. 12). Divid Stoutemyer discusses a parkage written in MACSYMA to extract the "qualitative" features of an expression, e.g. Its sign behavior, convexity or concavity, zeros, periodicity, etc. For users as interested in the gratitatye beinavior of an expression as its symbolic details, this package should be of great value. It a acks the communication problem through Item (3) of the above list.

The idea behind a specialized "appication package" is to convert MACSYMA into an expert in a given domain and thereby lessen communication difficulties. A gond example is MACSYMA's explicit tensor manipulation package. Another example is the forithcoming TRANSLATE helper tiat will lead the user by the hand through the translation and compilation process. The tensor package brings with tt much knowledge that the user would otherwise have to communicase himself. The TRANSLATE helper guides the user's activities according to a model of the translation process and thereby saves protlem solving effort on the part of the user. In this manner, these packages convert MACSYMA in limited dornains from its normal "operator-based" mode into a "nodel-based" system.

\subsection*{3.2 Suggested Improvements to MACSYMA}

When a persen chooses to employ any tool to tielp him solve a problem, even if he has a complete model of how it works, he must expend the effort necessary to specialize the tool (e.g. define functions in MACSYMA; build jigs for a woodworking machine), and transform his problem into an amenable form, (e.g. represent his linear equations as a matrix). Obviously, some tools are better suited to a given problem than others. Among computer systems, two extremes stand out, namely the expert problem solver and the programming language.

An expert is an agent with language, knowledge, and abilities tailored to a particular domain and able to solve any reasonable, apprnpriate problem without outside guidance, e.g. an electronic circuit analysis program like SCEPTRE. Assuming the expert is flexible about input and does not employ too alien a model, the user need only describe his problem, then sit back and wait for the answer. Communication difficulties, among others, are minimal. In fact, iten (4) above is completely unnecessary.

The appruach of programming language designers is to provide some emputational primitives useful th the user in writing code to solve his problem. Usually, the user must contribute his own problem solving skills in writing the code. The meaning of a primitive is usually independent of the use to which it is put, e.g. COEFF works the same whether the problem is solving a quadratic or computing syzygies. The lower the "level" of the primitives, the greater the simple differences between the user's world and the system's but the fewer the complex differences.

MACSYMA is primarily a programming ianguage, albeit a very high level one, with oniy a few expert question-asking submodules, e.g. the tensor package. One could imagine, though, a system somewhere between these two extremes. It would keep track of the user's goals and actions and terminology and would use this isiformation to 9 acilitate input and try to solve his problem using a mechanical problem solver able to take advice from the user at crucial points. This possibility is discussed further beiow.

Several of the ideas presented in this section are concerned with the conception of mathematical knowledge as a body of progremming rules, implemented in MACSYMA as variable values, function definitions, TELLSIMF rules, etc., rather than as a set of mathematical definitions and constraints. A rule in MACSYMA consists of (1) an identity and (2) an application procziure. An identity is always interpreted as a unidirectional replacement rule, i.e. whenever an expression matches the left hand side of an identity, it is replaced by the right hand side and never the other way around. The match procedure is for the most part "local". Althoug's global conditions can be tested in the predicates constraining the variables of 2 TELISIMP rule, the properties of the expression enclosing the one being matched cannot be easiny checked. And, most significantly, there is no sensitivity to . se user's goal or plan, no overall direction to decide when a replacement rule should be made and when bypassed in order, for example, to achieve a cancellation or prevent an infintte loop.

There are various types of application procedures. Some rules are applied at only a sirgle level, eg. XTHRU, MULTTHRU. Others have automatic recurston buitt in, e.g. TRIGEXPAND, LOGCONTRACT, TELLSIMP rules. The application is in all cases deterministic, despite the possibility of a non-unique match berween the pattern and the expression, e.g matching \(X+Y\) to \(A \sim B+3\).

When a user complains that MACSYMA is too hard to control , he is usually referring to its lack of selectiv!ty in the automatic, recursive aplication of evaluation or simplification rules. MACSYMA provides automatic recursive application to save the user the drudgery of appiyirg a large body of system-defined and user-defined rules by hand. However, the user may occasionally want a rule to be appliec noruniformiy, e.g. when evaluating only certain derivatives in an expression after plugging in values for some varizbles. Or, he may want a rule applied in reverse. Due to MACSYMA's unidirectionality, this requires thar a second rule be defined, which can result in an infinite loop. In using automatic, recursive rule applicaticn, the user is sacriticing the effort necessary to control MACSYMA to eliminate the drudgery of applying the ruies himself.

In orcler to avoid the complications that can arise from the use.'s ignorance of the rules used by the general simplifier and commarids like INTEGRATE, these rules should be made explicit and controllable. This suggestion has already beer realized in the realm of trigonometric simplification, where all sules are named and can be activated or deactivated by the setting o: a switch. It would be convenient if the "," syntax at top level MACSYMA could be extended to activate rules for one line's duration just as it is now used to define substitution rules. With this syntax one would be able to say, for example, D4, X \(=2.7^{2}=4\), SINRULEI,EXPONENTIALIZE. This suggestion is in keeping with the viev of the "." syntax as an "environment setup" command.

More generally what is needed is a beiter structuring of simplificition rules. It is doubtral that 2 user would define rulce for the internal use of heuristic commands since their operation usually is too complex to describe. Therefore, complex commands tike INTEGRATE should deactivate all potentia!ly conflicting user rules until their work is done. One way of implementing this that would offer oiher desirable features is in the form of "environments": sets of rules, variable bindings, function definitions, declarations, and assumptions that can be "shallow bound". A primitive form of environment structuring is already available in MACSYMA through the context mechanism. As with contexts, environment: should be hierarchically structured. It would then be possible for the environm. nts for certain domains, like gravitation theory and continuum mechanics, to share the knowledge of common subdomains like tensor manipulations, white remaining distinct from conflicting domains like N-wtonian physics.

Another improvement would be the ability to add properties to expressions as well as variables. It is currently possible to dechate paitial information abour varistice, "es DECLARE(N,INTEGER); however one cannot declare similar information about expressoms even though it might be useful for later manipulations. Fur example, in integrating an expression, the user might make an assumption about the sifn of a varable that coold be used by the LIMIT command at a later time. The new MACSYMA internal represeritation wether with

MACSYMA's high level data base system (ref. 12) should be able to represent such information quite easily. Furthermote, it should allow the user to tell MACSYMA the semantic significance of expressions, eg. that \(G \dot{V} / \mathrm{M}\) is a convection term, and to define semantic ruies to prevent combining semantical!y incoripatible terms, e.g. arding apples and oranges. This ability. is available now cnly in the restictive form of the "invisitie boxes" generated by the TBOX command.

Perbaps the most ambitious suggestion is to transform MACSYMA from the programming language that it is now into a rrore inteligent, problem solving system, a sort of "mathematician's apprentice". The essential idea behind this proposal is for the system to maintain and use information about the user's goal and his plan for achieving it. MACSYMA's syntax, while remaining the same, would no longer denote fixed, pre-defined operations but would serve rather only as a convenient language for communicating the mathematical operations the user wants performed. With this view, a command or syntax could mean different things in different situations. For example, COEFF might mean RATCOEF in solving a quadratic but have its curcent definition in finding polynomial solutions to a polynomial equations; or \(F\) in \(\operatorname{DiFF}(F, X)\) might mean the variable \(F\) if \(F\) has a value or the function \(F\) if it has a function definition. The input would be interpreted on the basis of not only the command line but also the user's plan. Simitariy, the application of a rule would depend on not only the rule's pattern but also some notion of its use in achieving the user's goal Where the system is unable to decide which of several interpretations the user prefers, it could inform him of the options rather than choosing a default as it does now. The essential idea again is to observe and use the structure of a user's session with MACSYMA to help ease his commurication requirements. The implementation of such an apprentice could rely at the start on the programming apprentice technology described in (raf. 14).

Even if an apprentice were available, the user would still have to direct most mantpulations of expressions. One frequently occurring type of manipulation is the application of several rules to some subpart of an expression. The SUBSTPART command was implemented for this purpore. However, the use of SUBSTPART requires a careful count of parts to select the desired subpart; if afterward the aser wishes to apply another transformation, he must supply the part specification again; and of course all the intermediate expressions are saved. A better alternative is the use of a two-dimensional editor, a mechanism whereby the user is given control of a moveable "window" around an expression which he can 200 m in on the desired subexpression using simple "up" and "down" commands, apply as many rules as he likes, then zoom out again to find the overall expression suitably modified. Such an editor would be much less tedious than the current SUESTPART mechanism and would avoid the accumulation of unwanted intrermediate results. A primitive 2D editor was prngrammed for MACSYMA by Richard Bryan but never released due to the inefficiency of the 2D display routines; with the current implementation, however, an efficient editor could be implemented.

In the long run the best solution to the subpart specification problem and the expression input problent is the graphics tablet. Technology has developed to the point where the recognition of hand-written expressions is feasible (refs. 15, 16). The remaining problem is

inefficiency; however, with the advent of r. 3 -timeshared computers such as the LISP machine (ref. 17), the necessary processing need not be prohibitive. A less extreme alternative is the use of a light pen for 2D editing with keyboard input. A user could type in his expressions on the keyboard but move his window and cancel terms using a light pen. The disadvantage of either of these proposals is the limited availability of tablets and devoted processors at present. The LISP machi.ie could, hnwever, make the idea of "MACSYMA in a briefcase" a reality in a clecade or so.

\section*{4. MACSYMA's Evolution}

People sometines complain that MACS YMA is difficult to understand or to control, and they usually cite specific properties of the system as primarily responsible, e.g. tou many commands, too hard to specify subexpressions. These properties are not inherently difficuities but rather give rise io difficulties when the system is applied to certain tasks or by making the system difficult to understand or to use.

Such properties are not the results of poor design decisions. Rather, they are the best effe"ts of an active group of programmers to satisfy the conflicting goals of program modularity and efficiency and satisfaction of the user's needs (ref. 7). The resolution of this conflict is considerably harder 1 or algebraic manipulation systems like MACSYMA than for more traditional programming languages. Most other programming language designs in a sense "define" the world in which they operate. MACSYMA's goal is to match as closely as possible a world that is already defined, namely mathematical manipulation as used in iextbooks and on thousands of blackboards and notepads. Although some people say the constraints can and should be changed, with the current goal, they cannot be, even for a particularly eiegant or wellstiuctured design.

MACSYMA must aiso satisfy the often conflicting needs of a diverse user community. Many capabilties in MACSYMA were originally implemented to satisfy a particular need. As new users required analogous capabilities for other classes of expressions and in different environments, the capabilities had to be suitably broadened or refined. Vieweci historically. MACSYMA is an excellent example of evclutionary programming. It is reminiscent of the progress of "normal science" described by Thomas Kuhn (ref. 18) in which a theory. or "paradigm", is repeatedly patched to repair its weaknesses until it is supplanted by a cegnitively cleaner descendant. The growth of MACSYMA has led some people to believe that the new paradigm can be achieved oniy by avoiding the creation of new commands or by implementing simpler, more understandable evaluation algorithms. However, complexity in MACSYMA has usually resulted from the attempt to satisfy the conflicting needs of different users; if a num symbolic manipulation paradigm doss arise, it will have to take these differing needs into account. The MACSYMA of the future will have to maintain an explicit, internal "model" of the user's goals and of his "plan" for schieving thom.

\section*{5. Commentary}

One of the purposes of this paper is to suggest some research projects oriented toward minimizing the difficulties of using a complex system like MACSYMA. Som: of these projects are already underway. The MACSYMA Advisor is scheduled for limited release thir summer. The new rational function representation is aiready partly implemented. The other projects are mentioned here to indicate some directions in which MACSYMA might go and to solicit implementation ideas and comment on their value.

The model for the "typical" MACSYMA user presented in section 2, on which the analysis of resource knowledge problems is based suffers two major deficiencies. The first is that it says littie about domain dependent expertise. A sophisticated MACSYMA user probably mentally employs specialized procedural strategies and representations. The former are approximated by the templates in M ; the latter are not dealt with at all. The model was designed to explain the performance of novise users as observed in several dozen protocois of MACSYMA usage; protocols of more advanced users were hot included. The second major deficiency is :tat the model does not take learning into account. There is no sensitivity to how tine user comes by his misconceptions. Also there is no information that could be used to determine how a consultant could best teach a point. It might, for example, be expedient to lie about something to make an explanation as simple as possible. These are several theories of learning in the literature (refs. 19. 20) that could be used in this regard.

The contributions of this paper are (i) irs statement of the distinction between the various, essentially "orthogonal" types of difficulties of using a tool to help soive a problem and (2) its explaration of the runction of user aids in meeting these difficulties, resulting in its proposal for more advanced aids based on this explanation. A learning difficulty arises when a system is too large or its primitrves too complix for a new user to understand fully. A resource knowledge difficulty can arise whenever one is faced with a problem solving situation in a domain which one does not fully understand. The lack of knowiedge may be incidental, as it is when the domain or device is fairly simple but time constraints make it impossible for the user to iearn all that is necessary (eg. using a calculater or uscilioscope). Or it may be esselitial, as whell the domain is very comolex and the user can't possibly learn everything (e.g. MACSYMA or business or law). Furthermore, the need is acute for computer systems like MACSYMA in which the level of commands is so close to the level of the task environment that the user is apt to confuse a simply defined procedure (like COEFF) with its mathematical counterpart (here coefficient) that it at best approximates. A communication difficulty can arise whenever a systen's designer eannot provide every iniended user with expertise tailored exclusively to his need. MACSYMA's knowledge based approach to algebraic manipulation drastically reduces communication difritulties; and ty transforming MACSYMA from a programming language into a mathematician's apprentice, these difficultics might be even further reduced. Although the knowledge based apperoach engenders increased learning and resource knowledge difficulties. these difficulties need not be prohibitive, if adequate user aids - tutors and advisors -are provided.

\section*{Peferences}
1. Moses, J.: A MACSYMA Primer. Lab. Computer Sri., Massachusetts Inst. Technol., Oct. 1975.
2. Lewis,V.E.: User Aids for MACSYMA. Proceeaings of the 1977 MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 23 of this compilation.)
3. Brown, J.S.;Burton,R;and Bell,A.: SOPHIE: A Sophisticated Instructional Environment for Teaching Electronic Troubleshooting (An Example of AI in CAI). Rep. 2790, Bolt Beranek and Newman, Inc., 1974.
4. Burton,R.;and Brown,J.S.: A Tutosiing and Student Modelling Paradigm for Gaming Environments. SICCSE Vol. 8, No. I, Feb. 1976, pp. 236-246.
5. Goldstein,I.P.;and Miller,M.: AI Learning Envircnments. Memo 389, AI Lab, Massachusetts Inst. Technol.; Dec. 1975.
6. Genesereth,M.R.: Automated Consultation for Compiex Computer Systems. Ph.D. Thesis, Harvard Univ., 1977.
7. Moses, J. Algebraic Simplification: A Guide for the Perplexed. Commun. ACM Vol. 14, No. S, Aug. 1971, pp. 527-537.
8. Mark,W.S.: The Reformulation Model of Expertise. TR-172, Lab. Computer Sci., Massachusetts Inst. Technol, Dec. 1976.
9. Davis,R.;Bucha:ian.B.;and Shorthfe,E.: Production Rules as a Representation for a KnowledgeBased Consultation Program. AlM-266, AI Laí, Stanford Univ., Oct. 1975.
10. Swartout,W.R.: A Digitalis Therapy Advisor With Explanations. TR-176, Lab. Computer Sci., Massachusetts Inst. Technol., Feb. 1977.
II. Mathlab Croup: MACSYMA Reference Manual. Lab. Computer Sci., Massachusetts Inst. Technol., Nov. 1975.
12. Stoutemyer, D.: Qualitative Analysis of Mathematical Expressions Using Computer Symbolic Mathematics. Proceedings of the 1976 Symposium on Symbolic and Algebraic Computation, Aug. 1976, pp. 97-104.
13. Genesereth,M.R.: DB: A High Level Data Base System with Inference. Memo 4, MACSYMA Group, Massachusetts Inst. Technol., Dec. 1976.
14. Rich,C.ard Shrobe,H.E.: Understinding LISP Programs. Working Paper 82, AI Lab, Massachusetts Inst. Technol., Dec. 1974.
15. Martin, W.A.: Symbolic Mathematical Laboratory. TR-36, Lab. Computer Sci., Massachusetts Inst. Technol., Jan. 1967.
16. Williams,T.G.: On-Line Pasing of Hand-Printed Mathematical Expressions. NASA CR-1455, 1969.
17. Greenblatt,R.: The LISP Machine. Working Paper 79, AI Lab, Massachuseats Inst. Techriol., Nov. 1974.
18. Kuhn,T.: The Structure of Scientific Revolutions. Univ. of Chicago Press, 1970.
19. Sussman,G.J.: A Computational Model of Skill Acquisition. Elsevier Pub. Co., 1975.
20. Winston,P.W.: Learning Stuctural Descriptions irom Examples. TR-231, AI Lab, Massachusetts Inst. Technol. Sept. 1970.


\author{
An Automated Consultant for MACSYMA* \\ Michael R. Gencsereth \\ Center for Research in Computing Technology \\ Harvard University \\ Laboratory for Computer Science \\ Massachusetts Insilute of Technoiogy
}

Consider a person trying to solve a problem with a computer system he does not fully underst-nd. And assume that, although he has encountered a difficuity due to his lack of knowledge, he is unwilling to learn more about the system than is necessary to solve the problem. The simplest way for him to acquire just the information he needs and nu more is to consult an expert. Then, armed with the expert's adivice, he may surmount the difficulty and solve the problem. A conisultant is an information sourre that seeks to improve the user's model of its domain in "user-initiative" mode. Consultation is a method widely used in computer centers as well as in domains like business, !aw, nd medicine. Unfortunstely, human consultants are a scarce resource and quite expensive.

The purpose of this paper is to propose as an alternative an automated consultant, as exemplified by an "adzisor" for the algebraic manipulation system MACSYMA. Such a program should be able to converse with its user in English about a difficulty he has ericountered and provide information tailored to his need. The MACSYMA Advisor is a program distinc: from MACSYMA with its own separate data base and expertise. However, for convenience the program can be called direcily from MACSYMA and can access the user's data structures contained therein. The Advisor described here deals only with the "straight-line" or nested use of MACSYMA commands and not loops or user-defitied functions.

The implementation of the Advisor relies heavily on an explicit, internal "model" of the user's state of knowledge, his goals, and his "plan" for achleving them. As a result, it can provide
- This work was supported, in part, by the United States Energy Research and Development Administration under Contract Number E(11-1)-3070 and by the National Aeronautics and Space Administration under Grant NSG 1323.
(This arti-le is an extendeci abstract of a paper to be published in the proceedings of the Fifth International Joint Conference on Artificial Intelligence.)
more precise answers to a larger class of iniormation needs than traditional user aids, such as manuals, information networks, and simple questh. 7 -answering programs.

As a cencrete example of the Advisor's performance, consider a scientist trying to solve a matrix eigenvalue problem using MACSYMA, as thustrated in figure I. An advisor episode is the connected fragment of discourse between a user and the Advisor that begins when the user types HELP() in MACSYMA and ends when he bids the Advisor goodbye. Each episode can ha:ve any number of sibepisodes. A subepisode begins when the user asks a question and ends when the Advisor considers itself done. During a subepisode the Advisor may ast the user questions and expect answers; however, further questions by the user are ignored. In the protocol the first episode contains two subepisodes; the others one cach, as marked.
(C1) (M[1,1]:2*Z,M[1,2]:Z,M[2,1]:2*2-3,M[2,2]:Z-3) \&
; The user tries to input hi:: matrix by airecily assigning to elements.
: Unbeknownst to him, this results th the creation of an array named \(M\).
; In C2, he checks \(M\) and finds that his attemft failed.
(C2) \(\mathrm{Mi}_{i}\)
(D2)
M
(c3) HELP()8
Advisor: Speak up!
IA. User: How do I construct a matrix?
Advisor: Use MATRIX or ENTERMATRIX.

User: Wrat are the arguments to MATRIX?

1E
Advisor: The rows of the matrix being cunstructed.
User: Bye.
(C3) H:MATRIX([2*2,2],[3-2*2,3-2]);
(03)
\begin{tabular}{ccccc}
1 & 2 & 2 & 2 & \(]\) \\
{\(\left[\begin{array}{lllll}2 & 2 & 3 & -2 & ]\end{array}\right]\)}
\end{tabular}
: He enters his ratrix. Note that the signs of two of the ciements : are different from before.
(64) (M[1, 1]-X)*(M[2,2]-X)-M[1,2]*M[2,1];
(D4)
\[
(2-x-3)(2 z-x)-2(22-3)
\]
; Here he trifs to compute the characteristic polynomial. The
; sutscripi notasion is used for both array and moirix access. When
; an array exists, it means array : : lection, elise matrix. Here is
; selecting from the array \(M\) nut the matrix as he axpects.

\section*{(C5) SOLVE(D4);}

Error - more unknowns than equations.
; He tries to solve the polyzomial, but forgets to specify the variable ; to solve for. Not understanding the error message, he dectdes to ; solve it himself.
(C6) RATSTMP(D4);

\section*{2}
\((-3 x-3) z+x+3 x\)
(C7) (A:1,B:COEFF(D6,X,1),C:COEFF(D6,X,0))\} ; Intending to wise the quadratic formula, he picks out the coeffictents ; of D6. Unfortunately, by using a "3", he doesn't see that the answer ; he gets is not what he expects.
(C8) \(\left(-B+\operatorname{SQRT}\left(B^{2}-4 * A * C\right)\right) /(2 * A)\);
(D8)
0
(C9) c ;
(D9)
0

\section*{(C10) HELP()8}

User: In line C7, I used COEFF to get the zeroth cuefficient of D6. The real coefficitit is \(-3 * 2\), bu: MACSYMA returned 0 ?

Advisor: COEFF(EXP, VAR, FOW) returns the correct coefficient of

Etiner expand first and then use COEFF or use RATCOEF.
User: Ok, thanks. Bye.
(C10) B:RATCOEF(06,X,1);
(D10)
3-32
(C11) C:RATCDEF(D6,X,0);
(D11)
\(-32\)
(C12) (-B-SQRT( \(\left.\left.B^{2}-4 \approx A * C\right)\right) /(2 * A)\);
```

$-\operatorname{SORT}(12 Z+(3-3 Z)+3 Z-3$

```
(D12)
2
(C13) EV(D12.2:1);
(013) - SQRT(3)
; Here he plugs in a vaiue for 2 to check the eigenvalue.

User: DI3 is wrong.
Advisor: What were you trying to do?
User: Find the eigenvalues of M.
Advisor: You used the determinant formula to compute the characteristic: polynomial. You used RATSIMP si simplify in You used the quadratic formula to soive it to otiain the eigenvalue. Am I right?

User: Yes.

Advisar: Did you intend the \(M[1]\),\(] to select elements frum the matrix M\) ?
User: Obviously.
Advisor: When an array exists, the subscript notation means to select the corresponding element from the array. It works as matrix element selection only witen no arref exists. Were you aware you had an array?

User: No.

Advisor: An array is automatically created when an assignment is made to an unbound subscripted variable. Incidentally, to compute the characteristic polynomial of a matrix, you should use CHARPJLY.

User: Bye.
(C14) CHARPOLY(M,X):
\(32+X\{-2-3\}+x\)
- ( \(\mathrm{X}-3\) ) ( \(2-x\) )

Tho user recomputes the characteristle polynomiai and trits PACTOR ; from the result of which the roots are obvious.
(C16) LOGÕUT():
Fig. 1 - Protorol of MACSYMA use and masultation
The examples in this protocol were chosen to iliustrate the most importan: of the Advisor's abilities. A. full list of the types of quastions it can answer follows.
(1) "What is the ... of ...?" Retrieval of a property of an object or concept given its name, e.g. subepisode IB.
(2) "How do 1 do ...?" Retrieva" of a command or method given a description of the task to be performed, suhepisode 1A.
(3) "Is it the case that ...2" Evaluation of predicates.
(4) "Why is it the case that '...?" Ability to pinpoint a deficiency in the user's understanding and provide a precise answer, e.g. episodes 2 and 3.
(5) "How does MACSYMA do ...?" Procedural explanation of a result or fact.

Of these, the questions requiring the most sophisticated treatment are WHY and HOW. WHAT, HOWDC, and 15 questions can be answered directly, with no consideration of the user's purpose or his state of knowledge. A WHV or HOW quest:on calis for different answers to different people in different situations. The primary implementational contribution of this research is its technique for handling such questions and the data structure? it uses.

Although the varicus parts of the Advisor have all been implemented, as of this writing they have not yet been combined into a working system Also, the present data base is at best meager. The current timetable calis for its release to the MACSYMA user community this summer, where if successful it will find heavy use and provide valuable data for further improvements.

The important coriributions of this research are (1) its recognition of the need for a consultant in any sufficiently complex domain and an indication of the nature of the user's needs, (2) a demonstration by design and partial implementation of the feasibility of automating such a consukant, (3) the model debugging algorithm utilizing a partial, axplicit runtime model of the user and a partial plan for his behavier and bastd on an expicit design model. In general, a consultant is necessary whenever one is faced with (1) a probiem solving situation (2) in a domain one toes not fully understand. The lack of knowledge may be incidental, as it is when the domain or device is fairly simple but time constraints mate it impossible for the user to learn all tnat is necessary (e.g. using a calculator or oscilloscope). Or it may te essential, as wher the domain is very complex and the user can't possibly learn everything ie.j. MACSYMA or business or law). Furthermore, the need is acute for computer systems like MACSYMA in which the level of commands is 30 close to the level if the task envirommett that the user is apt to confuse a simply fefined procedure (ilke COEFF) with its mathematical counterpart (here coefficient) that it at best approxinnates. it would be of interest to see whether ait automased business or legal consultant ceuld \(b e\) constructed and how effective the rechniqu \({ }^{3}\) described here would be in those demains.

\author{
David R. Stoutemyer \\ University of Hawail
}

\section*{ABSTRACT}

The compeling excitment of using a pcwerful interactive computer-algebra system is hard to convey without a live demonstratior, which is ofien impractical because of the size or location of an audience. However, a movie of a live demonstration is frobably the next best way to convey the impact of irteractive computer-algebra to an audience of newcomers. Sound projection 16 mm equipment is far more available than the alternative of videc tape equirment, which suffers from marginal resolution. Availadie from naticnal educational film 1ibraries and from the developers of computer-algebra systems, such films could significantly inerease the awareiess and utilization of this underutilized resource. To this end, I have produced a \(10-\mathrm{minute}\) prototype 8 mm sound movie MACSYMA demonstration to show at this conference. willie not of sufficient quality to be reproduced as a distributed 16 mm film, it is hoped that this prozotype will inspire a full-scale effort by some one with more cinematographic talent, with more funds, with access to bigh quality photographic resources, and with access to \(n\) fast terminal with high resolution.
\[
\begin{gathered}
314 \\
\text { Rat infentianaly arant }
\end{gathered}
\]


\section*{4 N7-28779}

SOME MȦCSYMA PROGRAMS FOR SOLVING
DIFFERENCE EQUATIONS*
John Ivie
University of California, Ferkeley.

\section*{INTRODUCTION}

We describe here a set of programs to find closed-form solutions to linear recurrence relations (or "difference equations"), namely equations of the forn
\[
\begin{equation*}
a_{k} u(n+k)+a_{k-1} u(n+k-1)+\ldots+a_{0} u(n)=g(n) \tag{1}
\end{equation*}
\]
where the coefficients \(\exists_{i}\) are either constants (the constant coefficient case) or polynomials in (the variable coefficient case).

I would like to thank Richard Fateman for suggesting this problem to me, as well as for all of his help with the MACSMiA system.

\section*{CONSTANT COEFFICIENT CASE}

The Characteristic Equation Method
We first consider the homogeneous case, that is when \(g(n)=0\) in equation (1) above. 5y substituting, \(x k-1\) for \(u(n+k-1)\) in equation (1), we obtain a polynomial equation; the soiution to the recurrence relation can then be written as a linear conbination of the roots of this polynomial. All of this is fairly easily done by means of the MACSYMA "SOLVE" command.
* This work was made possible by access to the MACSYMA system at M.I.T. , stpported in part by ERDA under Contract Number E(11-1)-3070 and by NASA under Grant NSG 1323.

This is an extended abstract of a paper to appe in the ACN Trangactions on Mathematical Software .

rlang

In the inhomogeneous case, when the right hand side of equation (1) is non-zero, we first find the homogeneous solution as above, and then add to it a particular solution of equation (1). This particular solution is found by the method of undetermined coefficients, which gives a set of linear equatiors to be solved via the "SOLVE" comand. In our case here, we assume that \(g(n)\) is either a polynomial in \(n\), a corstant raised to a polynomial power, or sine or cosine of a linear function of \(n\).

This method is implemented by the "CHAR" portion of our programs, which are given in an appendix.

\section*{The Method of Generatirg Functions}

This is another method for sclving constant coefficient recurronce relations. This method finds the homogencous and particular solutions at once, but is slower in our implamentation than the character stic equation method.

The basic idea of this method is the following: define the generating iunction \(F(x)\) of the sequence \(u(n)\) as
\[
\begin{equation*}
F(x)=\sum_{n=0}^{\infty} \cdot u(n) x^{n} \tag{2}
\end{equation*}
\]

Using the recurrence relation (1), we can arrive at an algebraic equation for \(F(x)\), so that \(F(x)\) can be expressed as a rational function in \(x\). We can then rewrite this rational function for \(F(x)\) in terme of a partial fraction decorposition, so that the coefficients \(u(n)\) in \(F(x)\) can be identified, which gives the solution to the recurrence relation. (This technique is very much like a discrete Laplace transform). The main MACSYMA commands used to do all of this are "SOLVE" and "DIFF".

This method is implemented by the "GENF" portion of cur programs.
variable coefficient case

One method for solving variable coefficient recurrence relations is that of exponential generating functions. We assums that our generating function for the seque.ice \(u(n)\) is of the form
\[
\begin{equation*}
Y(x)=\quad \sum_{n=0}^{\infty} u(n) x^{n} / n! \tag{3}
\end{equation*}
\]

Taking successive derivatives and using the recurrence relation (1), we obtain an ordinary differential equation for \(Y(\bar{x})\). Expanding the solution to the differential equation in a Taylor series, we see that the \(n\)th term of the series is the solution to our recurrence relation (1). This method can be programed using the MACSYMA commands "ODE2" and "POWERSERIES" . This technique is implemented by the "VARCI" portion of our programs.

One major problem with this method is that there may be no way to find a closed-form solution to the differential equation which is obtained, or even to express a closed-form solution in a "nice \({ }^{\text {: }}\) form. However, an explicic closed-form solution is available for first-order recurrence relations; this is implemented by "VARC2" in our programs. For secondorder recurrences, a special check is made for those that can be solved in terms of Bessel functions; this is given by "BESSELCHECK" in our program listings.

\section*{TESTING THE PROGRAMS}

Using our programs, we were able tc solve problems and examples taken from several textbooks (as given in our list of references ). The following is a small sample of sore typical problems:
(C66) \(\operatorname{CHAR}\left(U(N+1)-U(N),(1 / 6) * N^{*}(N-1) *(N-2)+N-1, U, N, 1,[U(0)=1]\right)\);
(D71)
\[
U(N)=N\left(\frac{N}{24}-\frac{N}{4}+\frac{23 N}{24}-\frac{7}{4}+1\right.
\]
(C72) \(\operatorname{CHAR}\left(U(N+2)-2 * U(N+1)+U(N), N * * 2, U_{2}, N, 2,\lceil U(G)=0, U(1)=\geq 1) ;\right.\)
(D77)
\[
\left.U(N)=N^{2} \frac{N}{12}-\frac{N}{3}+\frac{5}{12}\right)+\frac{5 N}{6}
\]
(C78) \(\operatorname{GENF}\left(U\left\{(N+2)-U(N), 2 * * N, U, N, 2,(U(0)=i, U\{1)=0\}_{N}\right) ;\right.\)
(D84)

(C85) CHAR(U(N+2)-4*U(N), 3+2*N, U,N,2, (U(0)=1,U(1)=01):
(D90)

\(\left.\begin{array}{l}\text { (C43) } \\ (\mathrm{D} 44)\end{array} \operatorname{VAFCl}(\mathrm{U}(\mathrm{N}+1)-(\mathrm{N}+1) \times \mathrm{U}(\mathrm{N}), 0,0, \mathrm{~N}, 1, \mathrm{UU}(\mathrm{D})=1]\right) ;\)
(D44) \(U(N)=\mathrm{N}!\)
(C4b) VARCl \((\mathrm{U}(\mathrm{N}+1)-(\mathrm{N}+1) \times \mathrm{C}(\mathrm{N}), 1, \mathrm{U}, \mathrm{N}, 1,[\mathrm{U}(\theta)=1]):\)
N \(U(N)=N!\begin{aligned} & ==== \\ & / \\ & == \\ & I 6\end{aligned}\)
(C42) VAKC2(0(N+1)-(N+1)*J(N),1,U,N,1,[U(D)=1]; \(\mathrm{N}-1\) N
(D4 2 )
\[
\begin{aligned}
& /===\backslash \quad==== \\
& \text { ! ! = } \quad====
\end{aligned}
\]
(D41)
(C12) VARCl \(\left(\mathrm{U}(\mathrm{N}+2)-(3 * N+2)^{*} \mathrm{U}(\mathrm{N}+1)+5 * \mathrm{U}(\mathrm{N}), 0, \mathrm{U}, \mathrm{N}, 2,1 \mathrm{U}(0 ;=0, \mathrm{U}: 1)=11\right)\);
(D12) A LINEAR COMBINATION OF BESSEL FUNCTIONS

Using the 77 problems from tie references which we tried, we found that CHAR had an average running time of 585 msec. , while that for GENF was 1113 msec . . Thus, the characteristic equation met:od is much faster in our implementation here.

\section*{CONCLUDING REMARKS}

After this paper was written, we became aware of a similar paper by Cohen and Katcoff (to appear in Transactions on Mathemati:al Software). Their methods sesm somewnat more general (they deal with systems also); however, our programs are much shorter and seem to have faster runni.g times.

\section*{REFERENCES}
1. Anderson, Ian: A First Course in Combinatorial Mathematics. Oxford Univ. Press,Inc., 1974.
2. Brand, Louis: Differential and Difference Equations. John Wiley \& Sors, Inc., 1966.
3. Goldberg, Samuel: Introduction to Difference Equations. John Wiley \&Sons,Inc., 1958.
4. Hail, Marshail, Jr.: Combinatorial Theory. Blaisdell Pub. Co., 1957.
5. Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill Book Co.,Inc., 1968.

APPENDIX

For completeness, we give here a listing of the actual MACSYMA code for our prcgrams.
/*THIS BLOCK CHECKS FOR A POLYNOMIAL IN N*/
POLYP (G, N) : = BLOCK (! \(D, F, C]\),
G: RATEXPAND(G), IF FREEOF (N,G) THEN RETURN (TRUE), D:HIPOW (G,N), F:TRUE, FOR I:D STEP -1 THRU DO (C: \(\operatorname{COEFF}(G, N, I)\) IF NOT (FREEOF (N,C)) THEN F:FALSE, \(\mathrm{G}: \operatorname{RATEXPAND}\left(\mathrm{G}-\mathrm{C} \times \mathrm{N}^{* *} \mathrm{I}\right)\) ), RETURN (IS (G=i AND F) ) ) \$
/*THIS BLOCK CHECKS FOK A CONSTANT TO A POLYNOMIAL POWER*/
POLYINN \((X, N):=B L O C K([B, E]\),
IF INPART \((X, \phi)=" *\) THEN
 IF INPART ( \(\mathrm{X}_{\mathrm{f}} 0\) ) \#"**" THEN RETURN (FALSE), B: INPART ( \(\mathrm{X}, 1\) ) , E:INPART \((X, 2)\), IF NOT FREEOF (N,B) THEN RETURN (FALSE), RETURN (POLYP (E,N!)) \$
/*THIS BLOCK IMPLEMENTS THE CHARACTERISTIC EQUATION METHOD「/
```

CHAR(E,G,U,N,K,IV):=ELOCK([GENSOL,HOMSOL,PARSOL,LOS,MULTIPLICITIES,
H,V,L,SS,DISPFLAG].
LOCAL (A,AA, E,R,M),
DISPFLAG:FALSE,
FOR I:0 THRU K DO
AA[I]:COEFF(E,U(N+K-I)),
H:D.
FOR I:D.THRU K DO
H:H+AA[I]*U(N+K-I),
IF H\#E THEN RETURN("ERRONEOUS INPUT"),
FOR I:J THRU K DO
H:SUBST(U**(K-I),U(N+K-I),H).
MULTIPLICITIES:TRUE,
LOS:SOLVE (H,U),
FOK I:I THRU LENGTH(LOS) DO
(R[I]:LOS[I],R[I]:RHS(EV(R[I])).
M(I):MULTIPLICITIES(I|).
HOMSOL:
SUM(SUM(A[I,J)*N**(M(I)-J),J,I,M{I])*R(I]**N,I,I,LENGTH(LOS)).

```
    IF \(G=0\) THEN
        (V:I J.
        FOR I:1 THRU LENGTH(LOS) 00
        FOR J:I THR' M[I] DO V:CONS (A[I,J],V)
                L: [ ],
            FOR Q: 0 THRU K-1 DO L: \(\operatorname{CONS}(S U B S T(Q, N, H O M S O L)=U(Q), L)\),
            SS:EV(SOLVE (L,V),IV).
            RETURN (U(N) \(=(E V(H O M S O L, S S I)))\)
    ELSE IF POLYP (G,N) = TRUE THEN
        (G:RATEXPAND(G), FARSOL:SUM(B[J]*N**J,J, D, HIPOW(G,N)),
        FOR J:g THRU K DO
            (L: \(0, \mathrm{~V}: \mathrm{E}\),
                FOR I: 0 THRU K DO
                (L: RATEXPAND (SUBST ( \(\left.\mathrm{N}+\mathrm{K}-\mathrm{I}, \mathrm{N}, \mathrm{B}(\mathrm{J})^{*} \mathrm{~N}^{*} \mathrm{~K} \mathrm{~J}\right)\) ),
                        \(V: R A T E X P A N O(S U B S T(I, U(N+K-I), V))\) ),
                        V : RATSIMP (V).
                        IF V\#O THEN RETURN(V) ELSE PARSOL:N*PARSOL),
                V:E,
                FOR I: 0 THRU K DO (L:RATEXPAND(SUBST(N+K-I,N,PARSOL)),
                V : RATEXPAND (SUBST(L,U(N+K-I),V))),
                L: [ ].
            FOR I: \(\mathrm{E}^{\text {THRU GIPOW(PARSOL,N) DO }}\)
                L: CONS (COEFF (V=G,R,I),L) .
                V : \(\mathrm{l}_{\mathrm{J}}\).
```

    FOR J:\emptyset THRU HIPOW(PARSOL,N) DO
    V:CONS[B[J],V.),
    \therefore TOLVE (L,V),
    *ARSOL:EV(PARSOL,SSI)
    ELSE IE POLYINN(G,N) = TRUE THEN
(PARSOL:Bl*G,
FOK J:O THRU K DO
(L:O,V:E,
FOR I:O THRU K DU
(L:SURST(N+K-I,N,PARSOL), V:SURST(L,U(N+K-I),VI),
V:EATSIMP(V).
IF V\#O THEN RETURN(V) ELSE PARSOL:N*PARSOL).
SS:SOLVE(V=G,Bl).
PAKSOL:EV(PARSOL,SS))
ELSE IF INPART (G,0)=STN OR INPART(G,0) = COS THEN
(PARSOL:B[1]*SIN(INPART(G,1)* + B[2]*COS(INPART {G,1)),
FOR J:D THRU K CO
(L:O, J:E,
FOR I:D THPU K DO
(L:EXPAND(SUBST (N+K-I,N,PARSOL)),
V:EXPAND(SUBST(L,U(N+K-I),V))).
V:TRIGEXPAND(V),
IF V\#\# THEN RETURN(V) ELSE PARSOL:N*PARSOL).
V:E,
FOR I:O THRU K DO(L:EXPAND(SUBST(R+K-\Sigma,N,PAFSOL)),
V:EXPAND(SUBST(L,U(N+K-I),V!i).
V:TRIGEXPAND(V),
I: \ ],
LT:{SIN(INPART(G,1)),COS(INPART(G,1))],
FOR JJ:1 THRU 2 DO
L:CONS (COEFF(V=[G,LT[JJ]),L).
v:[ ],
FOR J:1 THRU 2 DO
V:CONS (B[J;,V).
SS:SOLVE(L,V),
PARSOL:EV(PARSOL,SS))
ELSE RETURN("CAN'T BE SOLVED IN CLOSED FORM BY PROGRAM"),
GENSOL:HOMSOL + PARSOL,
V:[ ],
FOR I:I THRU LENGTH(LOS) DO
FOR J:l THRU M[I] DO V:CONS(RIII,J!,V),
L:[ ],
FOR Q:9 THKU K-1 DO
L:CONS (SUBST (Q,N,GENSOL)=U(Q),L),
SS.EV(SOLVE(L,V),IV),
RETURN(U(N)=(EV(GENSOL,SS))))\$

```
/*fHIS BLOCK IMPLEMENTS THE GENERATING FUNCTION METHOD*/
GENF (E, C, U,N,K,IV) :=BLOCK (IMULTIPLICITIES,L,V SS,VV,LOS, NR,F,SOL,P,DISPFLAGI, LOCAL ( \(A, A A, B\) ),
DISPFLAG:FALSE,
FOR I: 斤 THRU K DO
\(A A[I]: \operatorname{COEFF}(E, U(N+K-I))\), \(H: 0\),
FOR I: 6 THRU K DO
\(H: H+A A[I) * U(N+K-I)\),
If HaE THEN RETURN("ERRONEOUS INPUT"),
L: E,
FOR I: 1 THRUK DO

    IF \(G=0\) THEN
            ( \(\mathrm{S}: \operatorname{SOLVE}(L, F)\).
                F: EV (F,S) )
    ELSE IF POLYP \((G, N)=T R U E\) THEN
            (G: RATEXPAND(G),
            V:SuBST \(\left(X^{* *} K /(1-X) * \operatorname{COEFE}(G, N, 0), \operatorname{COEFF}(G, N, 0), G\right)\),
            \(V V: \operatorname{RATSIMP}(\operatorname{DIFF}(1 /(1-x), X))\).
            FOR I:I THRU HIPOW ( \(G, N\) ) DO
                    (V:SUBS'T(X**K*X*VV*COEF (G,N,I), COEFE(G,N,I)*N**I,V),
                    VV: RATSIMP (DIFF (X*VV,X)) ,
            V : RATSIMP (V) ,
            3S:SCLVE (L=V,F).
            \(F: E V(E, S S i)\)
    ELSE IF POLYINN (C,N) =TRUE AND HIPOV(INPART(G,2),N) < 2 THEN
        (Gl: (X**K)*(INPART(G,1)**COEFF(INPART(G,2),N,0)).
                G2:1-X*(INPART(G,1)**COEFF(INPART (G,2),N,1)).
                リ: KATSIMP(G1/G2).
                SS:SOLVE (L=V,F),
                F:EV(F,SS))
    ELSE \(\operatorname{AETURN}(" C A N ' T\) BE SOLVED IN CLOSED FORM BY PROGRAM"),
    MULTIPLICITIES:TRUE,
        LOS:SOLVE (NEWRAT \((F), X)\).
        FOR I:1 THRU LENGTH(LOS) DO
        (R|I]:LOS[I], R[I):RHS(EV(R|I|)),
            MiIj: MULTIPLICITIES[I]).
```

    v:l ],
    B:PROOUCT(<l-R[I]*X)**M{I],I,1,LENGTH(LOS)),
    FOR I:1 THRU LENGTH(LOS) DO
    FOR J:1 THKU MII| DO
    ```

```

P:SUM(SUM(P|I,J],J,I,M{I|),I,I,LENGTH(LOS)),
L:\ ],
NF:RATEXPAND(NUM(F)/ABS(COEFF(DENOM(F),X,O);), P:RATFXPAND(P),
FOK I:O THRU HIPOW(RATEXPAND(B),X)-1 DO
L:CONS (COEFF (NF=P,X,I),L),
SSS:EV (SOLVE (L,V),IV),
SOL:SUM (SUM(A[I,J]`COEFE(DENOM (F), X,O\/ABS (COEFF(DENOM(F), X,G))*
BINOMIAL(J+N - 1,N)*R[I]**N,J,I,M|I|),I,I,LENGTH(LOS)),
RETURN{U(N)=(EV(SOL,SSS)))})
*THIS BLOCK FINDS THE NEW PÓLYNOMIAL ASSOCIATED TO F*/
NEWRAT (E'):= BLOCK([HD,CP,DP],
HD :HIPOW {DENOM (F),X),
CP:COEFF(DENON (F),X,HD),
DP:SUM((COEFF(DENOM(F),X,I))/CP*X**I,I,O,HD),
RETURN(SUM(COEEF(DP,X,HD~I)*X**I,I,0,HD);)S
/*THIS BLOCK IMPLEMENTS THE VARTABLE COEFFICIENI METHOD*/
VARC1 (E,G,U,N,K,IV):=BLOCR (|V,VV,EQ,Y,CAUCHYSUM,FINSOL,SERSOL,DISPFLAG].
LOCAL (A,B) ,DISCFLAC,FALSE,
FOR I:G THRU K DO
{A[I]:COEFE (E,U(N+I)},
A[I;:RATEXPAND (A{I]).
IF POLYP(A|I|,N)=FALSE THEN RETURN("CAN*T DO ITT*)),
IF K=2 AND (B:BESSELCHECK(E,K) \# FALSE) THEN RETURN(B).
V:RATEXPAND (E),
FOR I:X STEP -1 THRU 0 DO
FOR J:HIPOW(A\I|,N) STEP -1 THRU O LO
(V:RATSUBST (X**J*'DIFF(Y,X,I+J),N**J*U(N+I),V).
V:RATEXPANC(V)).
V: RATSUBST(Y,'DIFF(Y,X, }|),V)\mathrm{ .
V: ARTTEXPAND (V),
IF POLYP(G,N) = TRUE THEN
(G:RATEXPAND (G), VV:G,
FOR I:O THRU HIPON (G,N) DO
VV:SUBST (X** I,N**I,VV).
VV:\&E**X*VV)
ELSE RETURN("CAN'T DO IT*).

```


EQ:V-VV, DEPENDENCIES(Y(X)), SOL: OLE2 (EQ \(=0, Y, X)\).
IF \(K=1\) THEN FINSOL:INITIALI (SOL, \(X=0, Y=E V(0)(0), I V)\) )
ELSE IF \(K=2\) THEN FINSOL: IC(SOL, \(X=0, Y=E V(U(\theta), I V), \operatorname{DIFF}(Y, X)=E V(U(1), I V)\)
ELSE RETURN("O.J.E. CAN'T BE SOLVED AT PRESENT BY MACSYMA"),
    CAUCHYSCM:TRUE.
SERSOL: POWERSERIES (RHS (FINSOL), X,0), SERSOL: EXPAND(SERSOL).
IF ATOM(SERSOL; THEN RETURN("U(N)=0 FOR N > ©"),
B: INPART (SERSOL, 1).
E:EV:B,X=1),
IF \(\operatorname{ATOM}(B)=E A L S E\) THEN B:SUBSTPART ( \(N, B, 4\) ).
RETURN(U(N)=((N!)*B)))\$
    /*THIS BLOCK CHECKS FOR A BESSEL RECURRENCE RELATION*/
```

BESSELCHECK (E,K):= BLOCK {[A,ANS}.
LOCAI. (A).
FOR I:0 THRU K DO
(A[I]:COEFF(E,U(N+I)).
A[I]:RATEXPAND(A[I])).
IF NOT(INTEGERP(A[0])) THEN RETURN(FALSE),
IF NOT(INTEGERP(EV(A|||,N=0))) THEN RETURN(FALSE),
IF NOT(HIPOW(A[l],N)=1) THEN RETURN(FALSE);
IF NOT(INTESERP(COEFF(A|||,N,1))) THEN RETURN(FALSE).
IF MOT(A| [\=1) THEN RETURN(FALSE),
ANS:-A LINEAR COMBINATION OF BESSEL FUNCTIONS".
/*EXACT DETAILS ARE OF NO STGNIFICANCE,SINCE WE ARE MERELY
DEMONSTR:TING THE EEASIBILITY OF THIS APPROACH*/
RETURN {ANS)) \$

```
    /*THIS BLOCK IMPLEMENTS THE FIRST ORDER MFTHOD*!
\(\operatorname{VARC} 2(E, G, U, N, K, I V):=B L O C K(1 H, P, Y, C, S O L)\),
LOCAL (AF, P).
    P:(-1)*COEFF(E,U(N))/COEFF(E,U(N+1)).
    \(V: G / \operatorname{COEFF}(E, U(N+1))\),
    S[J]:SUBST(J,N,P).
    S[I]:SUBST(I,N,P).
    \(P[N]: \operatorname{PRODUCT}(S \mid I], I, 1, N-1)\).
    H[I]:SURST(I,N,V)/PRODUCT(S|J],J,1,I-1),
    V1:SUM(H(え), I, O,N).
    \(A P: \operatorname{EV}(U(B)-\operatorname{SUBST}(Q, N, V), I V)\),
    RETURN (U (N) =AP*P(N]+P(N]*VI;)


\title{
SOME COMMENTS ON SERIES SOLUTIONS \\ Richard J. Fateman \\ Univereity of California, Berkeley
}

1N77-28780

\section*{1. SUMMARY}

The use of power series and truncated power series in the MACSYMA system for algebraic manipulation is illustrated. Algebraic and differential equations are soived using Taylor series or asymptotic series. Deficiencies of the current scheme are noted, and remedies suggested.

\section*{2. Infinite Power Series}

The general term "series" is used for at least iwo different types of expressions in MACSYMA (ref. 1). A power seties, informally, is an exact representation of a function usually of one complex variable, f(z), sometimes requiring the summation of ar: iffinite number of terms, where the power series may converge only for \(|z|<R, w^{\prime}\) re \(R\) is the radius of zonvergence. Examples:
```

exp (x)= sum(x^1/1!,1,0,inf), cunvargent for |x|< inf;

```

```

    a[0]ra[2]=a[j]:0 j\geq4
    (or more compactly, x+3*x^ 3) convergent for |x|< inf;
1/(1-x)=sum(x^1,1,0,1nf) convargent for |x|< 1;

```

These are power series expansions about \(x=0\). Translation to a point a \(\neq 0\) is trivially accomplished for a finite series: \(x+3 n x^{3}=m>a^{3}+a+\left(0, a^{2}+1\right)(x-a)+9 ; a(x-a)^{2}+3 \pi(x-a)^{3}\). For a function \(f(z)\) analytic at a finite point \(c, a\) uncar transformation can be used to map the point \(c\) to the origin. Expansior: about a pole of \(f(z)\) in the compiex plane is sketched in section 5 . Such problems are examired in \(\mathbf{t}\) mathematical context in numerous texts of which reierences \(2-3\) are examples.

\footnotetext{
o. The work described herein was performed with the help of MACSYMA, which is supported, in part, by the United States Energy Research and Develcpment Administration under Contract Number E(11-1)-3070 and by the National fieronautics and Space Administration under Grant NSG 1323.
}

Power series as used in MACSYMA need not consist solely of non-negative expor, ants: \(\exp (x) / x=\operatorname{sum}\left(x^{i} /(i+1), 1, i, i, i n f\right)\).

They need not consist solely of integer exponents: \(\exp (x): x^{1 / 3}=\operatorname{sum}\left(x^{i+1 / 3} / i t i, i, 0\right.\), inf \()\).
The existence of power series solutions to various types of equations, (iypically differenta! equations) has been estabished, (see. for example, ref. 3) but proofs, even if constructive, rarely provide a means for expressing in ciosed form, in terms of some limited class of functions and forms, the power series itself. By "forms" we mean summations, products, or integrals with finite or infinite limits, or derivatives of finite order of knowe functions.

To be more precise, in terms of finite presentation, a univariate power series is a triple: ( x , \{ \(\left.\mathrm{I}_{\mathrm{k}}\right\}\), \(\left\{\mathrm{a}_{\mathrm{k}}\right\}\). The first item, x , is the independent variable (indeterminate) of the series, \(\left\{\mathrm{l}_{\mathrm{k}}\right\}\) is a sequence of exponents, and \(\left\{a_{k}\right\}\) is a sequence of coefficients. Usually the sequerces are infinite, and therefore cannot be represented in a computer by enumeration, but rather by generation. It is convenient to require that given some value from \(\left\{I_{k}\right\}\), say \(j\) the corresponding \(k\) such that \(I_{k}=j\) can be feund: this is the operation of finding out the coefficient of a given power of \(\mathbf{x}\).

MACSYMA produces power series via the POWERSERIES coinmand in a closeiy related form. The triple specified above is only a slight generalization of the representation: the summation form used in MACSYMA devolves down to a subset of the integers, and thus the exponents are a function of the index rather than members of the exponent set.

Furthermore, the MACSYMA default result for the product of two infinite series
 (with CAUCHYSUM:TRUE) sum(sum( \(a_{j} d b_{x-p}, 0,0, k_{2} k, k, 0_{1}\) inf) in which the coefficsent of \(x^{k}\) is a finite sum. If the conve-sion to "Caychy"-styie products were the only barrier, then there would be little cause for alarm. Much more difficult is the generation ô an explict form for composition. Although impilcit forms, usually recurrence relations for the sequence \(\left\{a_{i}\right\}\), can be calculated, these do not satisfy our "finite closed form" restriction.

Thus white infinite power series are a powerful mathematical construction, operations on them may lead outside the domain of stries with explicit ftnitely gene:ated terms.

This is not to say this leads necessarily to intractable problems: on the contrary, we can say the same thing about trigonometric or algebraic functions (square roots for example) since they may lead from the finitely-generated rational numbers to algebraic or transcendental numbers.
\(N\) "'ertheless, If one is attempting to compute with power seriss, it is useful to minimally ensure that the ratio test for convergence can be computed for any power series expression: \(\lim \left(a_{n} / a_{n-I}, n, i n f\right)<\inf\), where \(a_{n}\) is the coefficient of \(\boldsymbol{x}^{n}\). The finitely-generated restriction gives one a good possibility for this, although it is not a necessary condition for the power-saries ratio test to be computable.

\section*{3. Truncated Power Series}

The second type of series construction in TACSYMA which by and large ignores quertions of ultimate convergence, but has considerable estantage in terms of ease of computation, is the truncated jower series (TPS- so called in ALTRAN and SCRATCHPAD) or the "Taylor Series" form in MACSYMA. Since it is unreasonalte to restric sur discussion to Taylor series (no negative exponents), and the name used in MACSYMA is primarity of historical origin, we will use the phrase truncated power series or TPS to denote this type of expression. A TPS is a finste subset of the coefficient-exponent pairs in a full power scries. The representation includes an indication of the order of truncation which has been imposed by the user and/or the system. In some cases the order of truncation is altered by operations, which include all rational operations (where division by TPS with a zero constant term may lead to a truncatedLaurent serics with negative exponents). Additional operations such as power series reversion, multivariate expansions, a type of asymptotic expansion, and extension to more terms are described in the MACSYMA manual (ref. 1 , also see ref. 4 for a more detailed discussion of univariate TPS in MACSYMA). Other systems offering automated handling of TPS include ALTRAN and SCRATCHPAD (ref s. 5.6). Facilities are present in many earlier algebra systems for handling "weighted variables" but it seems that only recently has an appreciation developed foi the fac: that these rudimentary powerseries ideas are eusily generalized to operations such as inversion and reversion.

We indicate in passing that asymptotically fast methods of computation on TPS have been described by Brent and Kung (ref. 7), Kung and Traub (ref. 8), to replace the classical methods (see, for example, Lipson (ref. 9) or Knuth (ref. IN). Eior the remainder of this paper we will be concerned with the use of TPS in the solution of equations, and the relative rapidity of the aigorithms underlying the methods will not mith affect the usefulness of the results.

For our purposes, we choose to omit from the TPS repertoire a number of the more snphisticated features. We consider a TPS to be identical with a power series with the change that \(\left\{I_{k}\right\}\), the set of exponents, is necessarily finite (and a prefix of tie infinite set), and each operation on TPS must preserve as many terms in the answer as can be guaranteed correct, given the operand description. In some cases additional assumptions are made. For example, given the TPS \(Y=1-x+\ldots\), then \(1 / Y=1+x+\ldots\) Yet if \(Y\) is in fact \(\ldots+1-x+\ldots\), eg. \(I / x+1-x+\ldots\) then \(1 / Y-x-\) \(x^{2}\) - ..., rendering even the constant term incorrect. Thus we will assume, except when explicitly stated otherwise, that all negative exponent tarms are given.

\section*{4. Algebraic Equations and Truncated Power Series}

If we lay aside cautions concerning the validity of expressing an unknown function as a TPS, we can often proceed to find tite coefficients in the series by substitution into a defining equation. We illustrate with examples of algebraic equations and differential equations. Additional examples can be demonstrated combining these twc, or adding the operation integration.

The techniques in this section are not intended to be general prescriptions for all problems of this nature, but to illustrate a common-sense approach which frequently is useful.

Consider the following irreducible cubic equation:
\[
L^{3}-e x(L+i)=0
\]

The three roots for \(L\) obtainable by means of the cubic formula are, as expected, unwieldy. If we assume the existence of a solution \(L(e)=\operatorname{sum}\left(L_{i} \mathcal{L}_{i=}{ }_{j}^{i}, 0,1, i n f\right)\) and try to determine \(\left\{L L_{i}\right\}\) by substitution, we find that setting tu zero coefficients of various powers of \(e\) in the equation resulf in inconsistencies (e.g. \(-1=0\) ). A few moments consideration of the defining equation suggests that such a series does not exist, but that if we solve for \(L^{3}\), then a cube root of the lowest term in \(e\), (el) will provide a basis for expansion. In fact, substitution of \(e^{3}\) for \(e\) in the origirral equation (or alternatively, expansion of \(L\) in terms of the cube-root of \(e\) ), serves the purpose precisely.

Now that the general form has been chosen there are several levels of generality in which the coefficients may be found.

The infinite fower series appruach, namely to substitute power series forms into the defining equation and soive for the arbitrary coefficients in slosed form as a function of \(n\), the index of \(e^{1 / 3}\), would be iste most powerful. Unfortunately, MACSYMA cannot do this automatically, aithough with sufficient prompting part of the algebra cair be accomplishad. (lt would be interesting to completely characterice what can be done by mechanical means to find closed form solutions; the result would be analogous to the Risch integration algorithm.)

Less satisfactory, but more to be expected considering the smail set of solvable recurrences, is the derivation of a recurren a which can be marched to any desired order.

Yet more likeiy is that a set of equations can be generated such that all \(L L_{i}\) up to some fixed 1 - \(\mathbf{N}\) can be found. Of course it may happen that the defining equations for the cocfficients are no mure tractabie than the original equation. This is certainly possible for algebraic equations but if we start with a differential equation we have at least traded it for an alget, aic problem.

Elementary arithmetical considerations suggest that polynomial equations of the form \(\mathrm{L}^{\mathrm{n}}\). exliower order terms in \(L\) ) \(=0\) have formal power series solutions for \(L\) in terms of \(\mathrm{e}^{1 / n}\). In fact the degree of the smaliest non-zero term can be predicted. A complate procedure for such determinations for algebraic expressions would be interesting, but in general we must tackle ather difficult problenis: The computation of \(L L_{0} \ln L=\operatorname{sum}\left(L L_{i} * e_{1,0, i n f}\right)\) given a defining polynomial in \(L\) is in general as hard as (and may be the same as) finding an algebraic expression for \(L\) itself. If \(e\) is missing from the equation, then trivially \(L=L L_{\text {* }}\)

Some algebraic equations can be dealt with in a very powerful framework involving "Newionlike" iterations. (ref. 8) Rather han use these somewhat esoteric methods hert. we will proceed on a more direct path to specific eamples. Section 7 treats Newtor iterations briefly. The results colncide when both approaches are appropriate.

As an illustration of the algebraic substitution technique on the example given abnve, we
present the following dialogue with MACSYMA. The definition of the function SOLVEALL is more complex than need be, perhaps, for this simple function, but it illustrates the "blind" use of this substitution technique. In this particular case, \(\mathrm{LL}_{0}\) is found from the coefficient of \(\mathrm{e}^{3}, \mathrm{LL}_{1}\) is found from the coefficient of \(e^{3}\) (and is chosen arbitrarily to be one of the three roots of \(L_{1}{ }^{3}-1=\)
 \(L_{L_{6}}\) appear in the equation, their values are not determined because the appropriate coefficients are already zero.
(C1) EQ: L^3-E*(L+1);
(D1)
\(L-E(L+1)\)
(C2) \(\operatorname{DEFTAYLOR(H(E),SUM(LL[I]*E\wedge I,I,0,INF));~}\)
(D2)
[H]
(C3) TAYLOR(SUBST(H(E),L,EQ), E, O,4);
\((03) / T / L_{0}^{3}+\left(3 \mathrm{LL} \mathrm{LL}_{0}^{2}-\mathrm{LL}-1\right) E\)

\(+\left(3 \mathrm{LL}_{3} \mathrm{LL}_{0}^{2}+6 \mathrm{LL}_{2} \mathrm{LL} \mathrm{LL}_{0}+\mathrm{LL}_{1}^{3}-\mathrm{LL}\right)_{2}^{3}\)


Note that the first three coefficients imply that \(L_{L_{0}}=0, L_{L_{1}}-1 / 3\), and \(L L_{1}=0\) simultaneo \(i_{1}\), clearly inconsistent.
(C4) EQ3:SUBST(Eヘ3, E,EQ);
(DA) \(L^{3}-E^{3}(L+1)\)
(C5) RES:TAYLCK(SUBST(H(E), L, EQ3), E, 0,6);
\((05) / T / L L_{0}^{3}+3 L L L_{0}^{2} E+\left(3 L L_{0} L_{0}^{2}+3 L L_{1}^{2} L L\right) E_{0}^{2}\)


The value of RES above is the result of substituting a series into EQ3, the same as EQ but with \(E\) replaced by \(E^{3}\). We now define a fairly general proctam to solve for all the coefficients in such a defining equation. The program below is not asymptotically fast, since examples can be concocted for which it is \(O(n\) !) for n terms desired. Iterative methods described in section 6 provide the potential for much faster construction of terms, yst the relative simplicity of SOLVEALL below - in iut relying on how the equation wa; generated, is attractive.
(C6) /* SOLVE EQ FOR CC[0] . CC[LIM] AS REQUIRED TO MAKE EO(X) ZERO. */
```

SOLVEA!L(EQ,X,CC,LIM):=
BLOCX([C,VARS,S,K].
K:O,
NHILE EQSO AND K<LIM DO
(C:COEFF(EQ,X,K).
IF CFO THEN
(VARS:LISTOFVARS(C),
UNK:MINF, /* MINUS IMFINITY *:'
FOR I IN VARS DO
IF NOT(ATOM(I)) AND PART(1,0)aCC AND PART(I,1)>UNK THEN
UNK:PART(I,1).
/*PICK OUT HIGHEST INDEX */
IF UNK = MIAF THEN ERROR("INCGNSISTENT"),
f% HO WAI TO MAKE COEFF. ZERO %/
UNK:CC[UNK].

```
```

    S:SOLVE(C,UNK),
    IF S =[] THEN ERROR("INCONSISTEMT")
        ELSE (IF REST(S)*[] THEN PRINT
                                    ("MULTIPLE SOLUTIONS: FIRST ONE CHO:IEN"),
        UNK::RHS(EV(S[1])), /* ASSIGN COEFFICENT ViLUE */
        EQ:EV(EQ))),
    k:K+1)

```
(C7) SOLVEALL(RES,E,LL,6);
SOLUTION

\section*{(E7)}

MULTIPLICITY 3
SOLUTION
\[
L L_{Q}=0
\]

XI SQRT(3) - 1
(E8)

*I SQRT(3) + 1
(E9)

(E10)
\(L L=1\)
MULTIPLE SOLUTIONS: FIRST ONE CHOSEM SOLUTIOM

KI SQRT(3) + 1
(E11)
\(\mathrm{LL}_{2}=-\cdots-\ldots\)
solution
(E12)
\(L L=0\)
3
(012)

DONE
The difficulty with multiple solutions for \(L_{1}\) can be nicely resolved in MACSYMA as follows: Let \(w\) be a primitive root of \(w^{3}-1\) (i.e. a root of the irreducible factor of \(w^{3}-1\) with roots which generate all distinct cube roots of \(\left.1: w^{2}+w+1\right)\), remove old values of \(L L\), and then set \(L L_{j}\) to \(w\). SOLVEALL then uses the given value for LL, and proceeds to find the olarr coefficients. By informing mACSYMA via TELLRAT and ALGEBRAIC about the special properties of \(\mathbf{w} \mathrm{LL}_{2}\) come out nitcely reduced.
(C13) (KILLiLL), TELLRAT( \(\left.K^{\wedge} 2+K+1\right)\), /* 4 IS PRIMITIVE CUBE-ROOT OF 1 */ LL[1]: \({ }^{\text {G }}\), ALGEBRAIC:TRUE)S
(CI4) SOLVEALL(RES,E,LL,6); SOLUTION

\section*{(E14)}

MULTIPLICITY 3
SOLUTION
(E15)
\(11+i\)
23

\section*{\(L=0\)}

0

SOLUTION

\section*{(E16)}
\(L L=0\)
3

\section*{5. Differential Equations and Truncated Power Series}

This section deals with an admittedly trivial difierentia; equation as an illustration. We demonstrate the types of oyerations supplied by MíSYMA and how to use them. The differential equation (assume right haind side :s zero) is entered on line Cl 7 , we remove the previous vaiues for the LL-array, and generate tie TAYLORSOL as giveii beiow.
(C17) DE: \(\operatorname{DIFF}(H(E), E, 2)-A^{\wedge} 2 * H(E) ;\)
2
(D17)
\(=-{ }_{2}^{d} H(E)-A^{2} H(E)\)
dE
(C18) XILL(LL)8
(C19) DETAYLOR:TAYLOR(DE,E,0,6);
\((D 19) / T / 2 L L_{2}-L_{0} A^{2}+\left(-L L A_{1}^{2}+6 L L_{3}\right) E+\left(-L L_{2}^{2} A^{2}+12 L L_{4}\right) E^{2}\) 1.

\(+\left(-L L_{5} A^{2}+42 L L_{7}\right) E^{5}+\left(-L L_{6} A^{2}+56 L L_{8}\right) E^{6}+\cdots\)

\section*{(C>0) SOLVEALL(DETAYLOR,E,LL, 718}
(LL7) TAYLORSOL: TAYLOR(H\{E),E,0,7);


To check this result by "automatic" means, we use MACSYMA's ODE solver, which uses standard textbook recipes, mostly drawn from reference II. These procedures solve many classes of first and second order linear ordinary differential equations. Anticipating a query about the value of " \(A\) ", we specify \(A>0\) below. The answer is reformatted by simplification via RADCAN, and \(\mathrm{K} 1, \mathrm{~K} 2\) arbitrary constants are reited to \(\mathrm{LL}_{0}\) and \(\mathrm{LL}_{1}\) arbitrary constants by the simultaneous solution of the two linear equations for initial conditions. The result is expanded as a Taylor series to order 7 in E., where it is seen in ine D32 to agree to that order with TAYLORSOL generated earlier.
(C28) ASSIME(A>0)8
(C29) RADCAN(ODE2(DE,H(E),E));
dERIVD FASL DSK MAXOUT being loaded
loading ccne
- AE \(\quad\) AE
(D29) \(\quad H(E)=X E \quad(K i 2+X E \quad K 1)\)
(C30) /* IMPOSE INITIR: CONDITIONS H(0)=Li[0], \(H^{\prime}(0)=L!(1] * /\)
\(\operatorname{IC2}(x, E=0, H(E)=L L[0], \operatorname{DIFF}(H(E), E)=L L[1]) ;\)


Wn will return briefly to this eximple in the next section when steps (Cl9) through (C27) are mathematically reformulated and simplified for the special case of a regular solution to a second order linear differential equation, expander at the origin.

\section*{6. An Introcuction 0 Asymptotic Series}

This section will necessarily be very sketchy since asymptotic series are both complicated, and discussed in great detail elsewhere. (see (ref. 2) for example).

Consider the function \(\sin (1 / x)\). It is not possible to construct a Taylor series in ascending powers of \(x\), since there are no derivatives at \(x=0\). The fact that there is an essential singularity at zero is a sufficient be-rier to power series expansion. However, for sufficiently large \(x\), when \(1 / x\) is sufficieritly small, \(\sin (1 / x)\) behaves like \(1 / x(\sin (y)=y+\ldots)\).

The notion of in asymptotic series is quite useful in the approximation of functions. Whether or not the series converges is not necessarily important: just as we were willing co deal with a truncated power series, we can deal with a truncated asymptotic sories. MACSYMA is capable of producing some series irom defining expressions as illustrated below.
(C1) TAYLOR(SIN(1/X),X,0,5);
Essential singularity encounterad in

> 1
> \(\operatorname{SIN}(-)\)
> \(X\)
(C2) \(\operatorname{TAYLOR}(S Y M(1 / X),[X, 0,5, A S Y M P]) ;\)
(02)/T/


Unfortinately, many of the most useful asymptotic expansions do not have such a simple
structure. For example, instead of a series in descending powers of \(x\), we may need a series in powers of exp(x). A series which MACSYMA cannot "automatically" handle is easily produced via the program given below. The reference to Olver is ref. 2 in the References. We do not define "irregular singularity" or "rank", but the interested reader may refer to ref. 2 for background. Incidentally, this program is a demonstration of the brevity possible in MACSY MA programs for non-trivial mathematical transformations.
(C3) /* EXTENSTON OF LG (WKBJ) APPROXIHATION FOR LINEAR 2NO ORDER ODE'S IN THE NEIGHBORHOOD OF AN IRREGULAR SINGULARITY (SUBCASE: UNIT RANK AT INFINTIY). SECTION 7.1 IN OLVER.
(SOLVES
\[
W^{\prime \prime}+F(Z) * W^{\prime}+G(Z) * W=0
\]

GIVING SPECIFIED NUMBER OF TERGS,)
*/
\(\operatorname{CDE} 701(F F, G G, W W, Z, T M S):=\quad / * 791\) indicates section 7.1 in 01ver */ BLOCK ([RHO],
LOCAL (F, G, LAMBDA, MU, A, \(W\) ),
\(/ * F[I]\) and \(G[I]\) represent terms in expansion of arguments
\[
\text { FF and } G G * /
\]

F[I]: \(=\operatorname{LIMIT}\left(Z^{\wedge} I *\left(F F-S U M\left(F[J] / Z^{\wedge} J, J, 0, I-1\right)\right), Z, I N F\right)\),
G[I]:=LIMIT(Z^I*(GG-SUM(G[J]/Z^」, J, O,I-1)), \(Z, I N F)\),
RHO: (1/4*F[0]^2-G[0])^(1/2),
IF RHO \(=0\) THEN RETURNiODE70103()),
/* SPECIAL CASE OF SECTION 7.1.3 */
\(1 *\) lambda[0] and lambda[1] correspond to two solutions in series. Same for mu[01, mu[1]. */ LAMBDA[I]: \(=-: / 2 *\) * \([0]+(-1)^{\wedge} I\) *RHO,
MU[I]: \(=-(F[1] * L A M B D A[I]+G[1]) /(F[0]+2 * L A M B D A[I])\),
\(A[0,0]: / K 1, A[0,1]:{ }^{\prime} K 2, \quad / *\) arbitrary constants */
A[S,I]: \(=1 /(5 *(F[0]+2 * \operatorname{LaMBDA}[I]) *\)
(SUM( (LAMBDA[ 1\(] * F[J+1]+G[J+1]-(S-J-M U[I]) * F[J]) * A[S-J, I]\). J,1,S)
\(+(S-M \cup[I]) *(S-1-\operatorname{MU}[I]) * A[S-1, I])\),
\(\left.K_{L}^{*} I\right]:=\chi E \wedge(L A M B D A[I] * Z) * Z^{\wedge} M U[I] * S U M\left(A[S, I] / Z^{\wedge} S, S, 0, T i H S\right)\), RETURN(WW=W[1]+W[0]))\&
(C4) TESTF: \(\left(2 * Z^{\wedge} 2+2 * Z+5\right) / Z^{\wedge} 28\)
(C5) TESTG:(2*Z+3)/Z^28
(C6) ODE70:(TESTF,TESTG, \(W, 2,3)\);
f* solve \(z^{\wedge} 2 * W^{\prime \prime}+\left(2 * z^{\wedge} 2+2 * z+5\right) * w+(2 * z+3) * w=0\) */
```

    7 K2. 45 K2 325 K2 - 2 Z
    (---. + ----- + ------ + K2) XE
    22 2 3
        8 48 2
    ```
(D6) \(\mathrm{H} *-\cdots+\cdots\)
\(Z\)
\begin{tabular}{|c|c|c|}
\hline 3 Kl & 5 \% & \(25 \% 1\) \\
\hline 22 & 2 & 3 \\
\hline & 82 & 162 \\
\hline
\end{tabular}

This section is required for exercise "1.2 in Clver, so we proceed to fill in the "blank" in the above program namely program ODE79103.
(C7) /* OLVER SECIIGN 7.1.3 "Transformation of Fabry* */
ODE70103()::
BLOCX [LF2,G2,NEVF,NEWG,ANS],
F2:SUBST(Z^2,Z,FF).
G2:SUBST(Z^2,Z,GG).
NEWF: \(2 * 2 * F 2-2 * 2 * F[0]-1 / Z\),
NEHG: \(Z^{\wedge} 2 *\left(4 * 62+F[0]^{\wedge} 2-2 * F[0] * F Z\right)\),
IF 2*S[1]=F[0]*F[1] THEM
/* REGULAR SIMGULARITY AT Z=INF: CONVERSENT POUER SERIES */ ; Method in Olver. Section 5.4, but expand at infinity. See below for expansion at zero. */


ELSE
ANS:ODE701.(NEWF,NEWG, \(V, L, T M S)\),

(C8) TESTF:2/23
(C9) TESTG:-(1/4+5/16/2)/28
(C10) /*OLVER EXERCISE 7.1.2 */
ODET01(TESTF,TESTG,W,L,4);

(C11) /* THIS ANSWER HAPPENS TO BE EXACT. PROOFT BELOW: */
```

~DIFF(W,Z,2)+TESTF*'DIFF(H,Z)+TESTG*N,%,DIFF,E:YPAND;
(011)
0

```

Another standard technique for series expansion is the method of Frobenius. Here we dispense only with the case of rocts of the indicial equation which do not differ by an integer (or zero). The latter case requires separate, but fairly simple creatmeni. One example is worked an lines (Cl3)- Cl )
(C12) /* OLVER SECTION 5.4.1: REGULAR SINGULARITY. ASSUME WITHOUT LOSS OF GENERALITY EXPAKSION AT ORIGIN (METHOD OF FROPENIUS). :

ODE504(FF,GG,WN,Z,TMS): : /*01ver section 5.4.1 \%/
BLOCK([DISCR,SD],
LOCAL (ALPHA,F,G,A,Q,W),


DISCR: (F[O]-1)^2-4*G[0], \% DISCRIAINANT OF INDICIAL EQUATIJN */ SD: RADCAN(SQRT(DISCR)),
ALPHA[I]: \(=\left(-F[0]+1+(-1)^{\wedge} 1\right.\) 車SD \() / 2\), /* GUADRAIIC SOL. \(* /\)
\(Q(X):=X *(X-1)+F[0] * X+G[0]\),


Q!ALPHA[I]+S),
A[0,0]:'K1,A[0,1]:'K2, /*RRITRARY CONSTS */
IF IHTEGERP(ALPHA[0]-ALPHA[1]) THEN ODE50501() /* ROOTS DIFFER BY IMTEGER CR 0 */
ELSE RETJRN(WW= W[O]+NTij!)s
(C13) FF: \(4 \mathrm{HE}^{\wedge} 2 / 25\)
(C14) GG:-3x \(\cos (2) / 2^{*} 2\)
(C15) RATSIMP(ODE504(FF,66,W,Z,3));
\(2 \operatorname{SQRT}(3) \quad 3\)
\((015) W=(Z \quad((176 \operatorname{SQRT}(3)-253) K 12\)
```

        2
    +(108-117 SQRT(3))K1 2 +(72 SQRT(3) - 432)K1 Z % 732 K1)
+(-176 SQRT(3)-253) k2 Z Z +(117 SQRT(3) + 108) k2 Z
SORT(3)
+(-72 SURT(3)-432) K2 Z + 792 K2)/(792 Z )

```

To close this scetion, we show how to generate, in a rather brief program, a Taylor series expansion we have seen before; the solution to \(\operatorname{DIFF}(\mathrm{H}(\mathrm{E}), \mathrm{E}, 2)-\mathrm{A}^{2} \mathrm{i} H(\mathrm{E})=0\).
(C16) /* EXPANSION IN SERIES, ORDINARY POINT.
ASSUME HITHOUT LOSS OF GENERALITY EXPANSICN AT ORIGIN
OLVER SECTION 5.3.2 */
TAYSER(FF,GG,WH, Z,TMS): :
BLCCK\{[],
LOCAL(A,F,G),
A[0]:'K1,A[1]:'K2,
A[S]:\#-1/S/iS-1)*SUM(F[J]*(S-J-1) \(A[S-3-1]+6[J] * A[S-J-2], J, 0, S-2)\), \(F[I]:=\operatorname{LIMIT}\left(\left(F F-S u M\left(F[J] * Z^{\wedge} J, J, 0, I-1\right)\right) / Z^{\wedge} 1,2,0\right)\), \(\operatorname{G[I]}:=\operatorname{LIMIT}\left(\left(G G-\operatorname{SUM}\left(G[J]=Z^{\wedge}, 3,3,0,1-1\right)\right) / Z^{\wedge} I, 2,0\right)\),
\(\left.\operatorname{RETURN}\left(M N=S U M\left(A[S] * I^{\wedge} S, S, 0, T H S\right)\right)\right) \$\)


This is the same as D27 of the previcus section.

BEROLUNBLLITY OF HA ORIGNAL PAOE IS POCM

\section*{7. The Use of Netvon Iteration over a Power Series Domain}

A powerful technique ior solving algebraic problems is pointed out in references 8 and 9 . We restate Lipson's thenrem 3.1 (ref. 9) to justify the following constructions.

THEOREM: Let \(f(x)\) be a polynomial with coefficients in a power series domain (series in \(t\) with coefficients in \(F\) ) \(D=F[i t]\) Let \(a\) in \(\bar{r}\) be an \(O(t)\) approximation co a root of \(f(x)\) (i.e. \(x=a\) is a solution to \(f(x\rangle=0\) when \(t-0)\). Furthermore, suppose that a satisfies \(f^{\prime}(a) \neq 0\) when \(i=0\) iwhere the prime indicate: differentiation with respect to \(x\) )

Then the sequence of iterations \(x_{0}=a, x_{1}, \ldots\) compuied according to
\[
x_{k}=\left\langle x_{k-1}-f\left(x_{k-1}\right) / f^{\prime}\left(x_{k-1}\right)\right) \bmod t^{\left(2^{k}\right)}
\]
is such that \(x_{k}\) is an \(O\left(t^{\left(2^{k}\right)}\right.\) approximation to \(x\).
Reference 8 generalizes this result somewhat by explaining how an iteration can be ronstructed for a polynomial \(f(x)\) which joes not satisfy the condition on f'(x). This "Neuten polygon" calculation will not be demonsirated here.

We note in passing that our eariier examples do not satisfy the requirements of this theorem.
The following protocol does not demonstrate the most efficient formulation of this iteration, since one can concoct (as demonstrated in ref. 9) efficient Horner's rule evaluation of a polynomial and ite first derivative at a power-series point, and furthermore, the essential computations can be done by asymptotically faster methods (ref. 7). Yet, since one is much more likely to be interested in the first few terms of an expansion than any others, an \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) or slightly worse algorithm for n terms is not objectionable.
(Cl) /* NEWTON'S METHOD FOR ROOT-FINDING OVER A POWER SERIES DOMAIN */

7 INPUTS:
EX: EXPKESSION IN VARIABLES \(W\) AND T. EX=O MILL BE SOLVED APPROXIMATELY
FOR W(T) TO ORDER \(H\) OR HIGHER.
AROOT IS A ZERO OF EX WHEN TaC, SUCH THAT DIFF(EX, W) WITH TaO
IS NONZERO. (THIS CONDITIOM IS EHECKED.) \%/
MEWTONROOT(EX,W,T,N, AROCT): :
BLOCK ([DEX,S,I].
UEX:DIFF \((E X, W)\).
/* CHECK INITIAL COMDITIONS TN NEXT IF STATEMENT */
If TAYLOR(SUBST(AROOT, \(W, E X), T, 0,6): 0\)
OR TAYLOR(SUBST(ARCOT, \(H, D E X), T, 0,0)=0\)
then return(PRIht("not able to expand at e, arootl),

S:ARONT,
FOR I:1 NEXT \(2 * \mathrm{I}+1\) HHILE \(\mathrm{I} \leq=\mathrm{N}\) D 0
(S:RATDISREP(SUBSTIS,W,S-TA:LOR(EX/DEX,T,O,I)));
S:TAYLOR(S,T,0,2*I+1)/* PREPARE FOR NEXT ITERATIOK */), RETURN(S) IS
(C2) I* THE FOLLOWING EXAMPLES ARE TAKEN FROM REF. 9. */
f* PROBLEM 1. COMPUTE A SQUARE ROOT OF \(A=1+T+2 * T^{\wedge} 2+3 * T^{A} 3+\ldots\)
? ORDER 8 ERROR. */
NEWTONROOT \(\left(X^{\wedge} 2-\left(1+T+2 * T^{\wedge} 2+3 * T^{\wedge} 3+4 * T^{\wedge} 4+5 * T^{\wedge} 5+6 * T^{\wedge} 6+7 * T^{\wedge} 7\right\}, X, T, 7\right.\)
,1);

(C3) i*PROBLẼi 2. COMPUTE A SOLUTION TO. A CUBIC */
MEMTOHROOT \(\left(X^{\wedge} 3-2 /(1-T) * K+1, X, T, 7,1\right)\) :
\((03) . T / T+2 T-6 T^{2}+58 T^{3}-622 T^{4}+7509 T^{5}-96822 T^{6}\)
\(+1307466 T^{7}+\ldots\).
(C4) /*PROBLEM 3. REVERT T=ATAN(X) TO FIMD A SERIES FOR TAN(T) */

MEWTONRCOT(ATAN(X)-T, X,T,7,0);


\section*{8. Comments on the Impletnentation}

Several notational probiems seem apparent. If a TPS is displayed as \(\bar{Y}=1+X+\), does this mean that \(Y-1-x\) is \(O\left(x^{2}\right)\) ? How would the display differ if the difference :vas \(O\left(x^{3}\right)\) ? The eilipsis is insufficient, and \(1+x+O\left(x^{2}\right)\), if such is the case, would resolve the question. This information is ava!! !bie internally, in most cases, anyway. As pointed out by R. Zippel (private communication), how can ore compuie \(n\) in \(\sin (x)^{2}+\cos (x)^{2}-1=0+O\left(x^{n}\right)\) ? A calculus of orders seems tc be the next siep in this direction: \(\left(1+O\left(x^{2}\right)\right)=(1+O(y)\rangle=1+O\left(x^{2} y y\right)\), not \(1+\ldots\). Addition and other operations would have to be implemented, along with a carefui treatment of the asymmetrical use of this notation on the left and right hand sides of equations.

Another deficiency, not illustrated in this paper exists in terms of the consistency of TPS operations in parts of MACSYMA. For exanuple, matrix operations with TPS enties forces a corversion to a non-TPS form. In the process, information is lost which can be of considerable benefit. It also appears that significart time savings may be possible by recognition of TPS matrices as a special case: computing the inverse of a matrix of TPS entries can be cione in a varlety of ways by matrix-wise series expansion, for example.

The implementation of infinite summations "SUM"s is currently in flue, because of important work due to R.W. Gosper (reporied in this Proctedings). Wryle it is possible to solve the equation (CI) as mentioned earlier, to get a closed-form formula for \(L_{n}\) in finite terms, the manipulation is not yet routine using MACSYMA.

What is needed, minimally, is the capability of moving independent variables both in and out

 or \(\operatorname{sum}\left(a_{j}, i, 0, n\right)=s \operatorname{sum}\left(a_{j}, i, 0, n-1\right)+2_{n}\). Suitable generalizations of these transformations, plus a neat methodology for specifying which transformation to use where wuuld provide a basic facility. More elaborace simplificacions can be programmed, but without this type of facility, the lone user has a difficult time. We note that thisproposed facility is different from one which does exist in MACSYM A, namely the simplification of sums to closed forms when possible, mentioned in the previous paragraph.

\section*{9. Conclusions}

We hope we have given a sufficient number both of main-line and incidental comments concerning the use of series, especially in MACSYMA to lliustrate the principal well-understood approaches. While the detalls of derivation of these methods, and the underlying (sometimes quite sophisticated) programming and mathematical algorithns have not been explained in this paper, sufficient informaticn on these topics is avallable in the references.

We have deliberately avoided discussion of methods for convergent or asymptotic series approximations of integral equations, and transcendental equations. This is not because of lack of
material: rather, there is a wealth of material, especially on integral approximation and integral equation solution. The work of Stuitemyer (ref. 13) originally in REDUCE has been made available in MACSYMA by Richard Bogen (reported in these Proceedings). Early work by Paul Wang (ref. 14) and Seih Chaiken at MIT provide procedures for integral approximation by the methods of stationari phase, steepest descent, and other schemes. There are a growing number of references to work in other systems, principaily REDUCE, FORMAC (ref. 15) and ALTRAN along: the lines of the more straightforward cational methods. These may be identified through recent ACM SIGSAM Bulletin listings of abstracts. We would like to note the interesting use of Tajlor series in a combined numerical/symbolic mode as in (refs. i6, 17). The idea in these papers is to use symbolic methods in a compiler as a technique for producing numerical approximation programs. By separating the two passes, machine resources can be optimized for the differing requiremerits of symbolic and numerical routines.

We hope to ciassify, describe, and extend approximation work in a variety of areas. including but not iimited to the areas explored in this paper, at a later time. A number of researchers have examined simple applications of the method of successlve approximation (Picard's method) in a symbolis context. The combination of this technique with power series is very prontising.

A common question raised by the automatic soiution of equations by series is: How do we knc.v these meshods produce a convergent series, or how can we find the radius of convergence. The answer to both of these qutsions is: we use the same methods that mathematicians use by "hand"; there is very ittle magic in the automation of these methods. They are for the most part "formal" methods whose convergence can be guaranteed only by additional consideration of the problem ai hand. Indeed, some of the asymptotic methods will usually produce a divergent serie;; this does not mean the result is meaningless or useless, since such series have a wide use in the literature.

Significantly absent from this paper is a discussion of the validity of series solutions, and how to diagrose the appropriateness of various approaches to solving algebraic or differential equations by approximation. This problem is probably best solved by practitioners in each given area who are familiar with particular approaches relevant in their special problem domains. The toois provided by MACSYMA, plus simple programs as outlined above serve as early steps coward more useful cooperation between the applied mathematician and the cemputer.

\section*{REFERENCES}
I. MACSYMA Users Manual. Lab. for Computer Sci., Massachusetts Inst. Technol., 1975.
2. Olver, F. W. J.: Asymptotics and Special Functions. Academic Pross, 1974.
3. Wasow, W.: Asymptotic Expansion: for Ordinary Differential Equations. Johin Wiley and Sons (Iiterscience), 1965.
4. Zuppel, R. E.: Univariate Power Series Expansions in Algebraic Manipulation. Proceedings of the \(\mathbf{3} 976\) ACM Sympasium on Symbolic and Algebraic Ccmputation. Aug. 1976, pp. 198-208.
5. Norman, A. C.: Computing with Formal Power Series. ACM Trans. on Math Software, vol. 1, no. 4; Dec. 1575, pp. 346-356.
G. Brown, W. S., ALITRAN User 'Manual. Bell Telephone Lab Inc., 1973.
7. Brent, R.; and Kung, H. T.: !'ast Algorithms for Manipulating Formal Power Series. Tech. Rep., Computer Sci. Dep., Carneg,ie-Melion Univ., Jan. 1976.
8. Kung. K. T.; and Traub, J. F.: All Algebraic Functions Can be Computed Fast. Tech. Rep., Computer Sci. Dep.; Carnegie-Mellon Univ., Juiy 1976. July, 1976.
9. Lipson, J.D.: Newton's Meihod: A Great Algebraic Algorithm. Proceedings of the 1976 ACM Symposium on Symbelic and Alesebraic Computation, nug. 1970, pp?60-270.
10. Knuth, D. E., The Art of Computer Programming, Vulume 2: Seminumerical Algorithms. Addison-Wesley Pub. Co., Inc., 1969.
II. Boyce, W. E., an d DiPrima, R. C.: Elementary Differential Equations. JohnWiley \& Sons, Inc., 1969.
12. Nayfeh, A. H.: Perturbation Methods. Johr. Wiley \& Sons, Inc., 1973.
13. Stoutemyer, D. K., Analytical Solution of Integral Equations Usi.gg Computer Algebra. UCP. S.4. Computer Sci. Dep., Univ. of Utah, June 1975. (to appenr, ACM. Trans on Math. Software).
14. Wang, P. S.: Appliration of MACSYM íto an Aumptetic Expansion Problem. Proceedings of the 27th ACM Annual Conference- Volume 2, Aug. 1972, pp. 844-850.
15. Hanson, J. N.: Experimenrs with Equation Solutions by Functional Analysis Algorithms ard Formula Man'pulation J. Computer Physics, vol. 9, 1972. pp. 26-52.
16. yan de Riet, R. P.: The Automatic Solution of Partial Differential Equatigis by Mearis oi

Taylor Series Using Formula-Manipulation Methods. ACM SIGSAM Bulletin, no. 28. Dec. 1973, pp. 33-36.

1?. Barton, D.; Willers, I. M.; and Zahar, R. V. M.: Taylor Series Methods for Ordinary Differential Equations - An Evaluation. Mathematical Software. J. Rice, ed., Academic Dress, 1971, Fp. 369-390.

NTR 28781 UNCIAS


POWER SERIES SOLUTIONS OF
ORDINAKY DIFFERENTIAL EQUATIONS IN MACSYMA*

\author{
Edward L. Lafferty \\ The MITRE Corporation
}

\section*{introduction}

\begin{abstract}
A progran nas been developed winch extends the differential equatior solving capability of MACSYM to power series solutions and is available via the SHAKE library. The program is directed toward those classes of equations with variable coefficiente (in particular, those with singularities) and uses the raethod of Frobenius. Probably the most important distinction between this package and others currently available or being developed is that, wherever possible, this program will attempt to provide a "couplete" solution to the equation ratice inan an approximation, i.e., a finite number of terms. This solution will take the form of a sum of infinite series.

The Frobenias metnod stated simply here as a refresher (see Ref. 1, p.18.) for a mere complete treatment) asserts that for a homogeneous, linear, differential equation of the form:
\[
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \tag{1}
\end{equation*}
\]
where \(P\) and \(Q\) are polynomiais in \(X\), then at the ordinar point, \(X=X p\), a solution exists of the form:
\end{abstract}
where \(A_{( }\)and \(A_{1}\) are arbitrary constants and are the values of \(Y(0)\) ard \(Y^{\prime}(0)\).

The method fur her asserts that for a regular singular point, \(X=X s\), the solution is the sum of two linearly independent solutions:

\footnotetext{
*. The work described in this paper was begun by B. Kuipers in 1973 and the autnot is indebted to himfur aevoral ideas and at least one routine. in addition, the author wishes to acknowledge the encouragement and assistance of J. P. Golden throughout the course of the effort.
}

where \(r l\) and \(r 2\) are the exponents of the singularity.
There are two special cases:
i) rlar2, in which the \(B^{\prime}\) s are founc to be \(A^{\prime}\) ( \(r 1\) )* and the second solution contains a logarithmic term;
and ii) \(r 1-i=S\), an integer, in which the \(E^{\prime} s\) are found to be (r-r2) \(A^{\prime}(r 2)\) and the second solntion contains a logarithmic term except for the very special case in which it is found that some one of the \(A^{\prime}\) s (in addition to \(A\) ) is arbitrary (see ref. 2 for a particularly 0 complete treatment of this case).

At top level, after a LOADFILE(SERIES,FASL,DSK, SHARE), the program is called by the starement SERIES(equaticn; \(\gamma, x\) ), where "equation" is a second order linear ordinary differential squation and " \(y\) " and " \(x\) " are the dependent and independent variables respectively. (Uf course, the dependencies between the variables must be established frior to typing the equation.)
rationale for complete series solutions

Virtually all elementary courses in differential equations introdice the student to the power series method at an early stage, and many such courses continue to solve problems by using direct substitution of the power series into che equatior and determining the racurrence relation. Even in those instances where the student is introduced to approximation methods using Tayıor coefficients to determfe a recurrence relation for each term in the solution, the authors (for example, see references \(i, 2,3,4,5\) ) frequantly will revirt to direct substitution so that the student may better understand the behovior of the variables, arbitrary constants, and parameters of the equations.

While the mathematictan who is intimately famillar with the theory and

\footnotetext{
* \(A^{\prime}(r i)\) denotes the partial derivative of A with respect to \(R\) evaluated at rl.
}
practice of solving differential equations may have no difficulty recognizing instantly that certain forms are Bessel equations, legendre equations, or hypergeometrics, the average mathematician or, more importantly, the engineer who has only a superficial understanding of this subject may not. Early in the pursuance of this project, I confronted several advanced degreed mathematicians with the equation (later found in Ref. 6, p. y7):
\[
\frac{d^{2} Y}{\frac{d Y}{--}} \frac{d X}{d X}-\frac{--}{X}+Y=0
\]

Unly one of five even offered a tentative identification of this equation as a Bessel, and of the five, two proceeded to solve it by the method of rrodenius. (The above equation will also be used throughout this paper to illustrate some of the internals of the program. These results will be numbered (4a), (4b; etc.)

Sumarizing, then, the reason for including such a capability within hacSYlia, we find st usefui for:
a. the stude: \(t\) who wishes to understand the theory;
b. the mathematician or engineer who may fail to recognize the particular form; and
c. the theoretical mathematician working on advanced forms who prefers to start from basic principles.

\section*{THE METHOD}
'the first step in the solution process is the diagnosis of the equation for singularities. While only one (the one at which a solution is desired) of these singularities is of concern to the program for what is to follow, it may be generally useful for the user to know at what points the equation possesses poles of one sort or nnother. The program uses Stoutemyer's ZERUSANDSINCLLAKIIIES routine because ot its generality, e.g., it will find poles of \(\log (x)\), \(\operatorname{Lan}(x)\), etc., as well as polynomials.

The indicial equation is computed from:
\[
\begin{equation*}
R^{2}+(P-1) k+Q_{0}=0 \tag{5}
\end{equation*}
\]
where \(P\) and \(Q\) are the values of \(P(x)\) and \(Q(x)\) at \(x=0\), computed by: 00
\[
\begin{equation*}
L(0)=\operatorname{Lim}_{x=>0}(x P(x)) \text { and } Q(0)=\operatorname{Lim}_{x=>0}\left(x^{2}(Q(x))\right. \tag{6a,6b}
\end{equation*}
\]

Solving this equatica for \(R\) yields the roots \(r 1\) and \(r 2\). From these roots, it is determined whether the fiual solution will contain a logarithmic rerm, i.e., if \(r 1=r 2\) or if \(r 1-r 2=S\) (an integer). In addition, the very special case is cetected in whicn the roots differ by an integer, but the solution does not possess a logarithmic tera, i.e., wherein:
\[
A_{i-1}=0
\]
and therefore, the cuefficient \(A\) is finite ard arbitrary. 1

At this point it is time to begin the direct substitution of the series:
\[
X=\left.\right|_{\substack{\operatorname{man}=m}} ^{\substack{\operatorname{Ni} F \\ N=m}} A X^{H+R}
\]
( \(r=0\) for an ordinary point) into the equation and evaluate the derivatives. The MACSYMA PUWERSERIbS function is then used to deteruine a single series for the entire left-hand side of the equation.*For our example (eq. 4) the result is:

INF
\(=\mathbf{a n}=\)
\(i=A_{I 6} X^{R+16}+\left(A A^{2}+(216-2) A_{I 6}^{R}\right.\)
\(16=0\)
(4a)
\[
\left.+\left(16^{2}-216\right) A\right) x^{R+16-2}
\]

\footnotetext{
* while this is a fo:m of overkill for this operction, the routine can hande the jub and will be necessary for later oferations.
}

Ar important feature of the program is the routine which computes the recurrence relation. This is done by removing tre sumation sigy and by equating like powers of the independent variable to zero. Some program shortcuts are raken in this process, but it is essentially a replication of whar is done by hand. The example result looks like this:
(4b)

The recurrence relation which is available to the user is expressed in the form:
\[
\begin{equation*}
A_{N}=f(\cdots) A_{N-H} \tag{8}
\end{equation*}
\]
or for singular points:
\[
\begin{equation*}
A_{N}(R)^{f(N, R) A} A \tag{8a}
\end{equation*}
\]
if \(\|>1\), there are some adjustments which must now be made to the rest of the solution.* For our equation the recurience relation becumes:
\[
A=-\frac{A}{(R-N-2}(R+N)
\]

In some cases this is as far as ti, e user may want to go in determining the solution to his equation. In particuiar, if the function on tise rigit-fand side of equation (8) contains more than one "A" term, no easy simplification metnod is available, and the program can then compute only a finite number of terms for each of the solutions to be determined. In the spectal cases, of course, appropriate differentiation of the recurrence relation is required before this can be done for the second solution. In all cases where the recurrence relation is expressed as a single term in \(A\), the program then proceeds to determine a complete solution as an infinite series. It is here that the system aust perform two interestiry functions which will be descrihed in the next section, i.e., differentiation of partial products and the

\footnotetext{
* [nese wili not be described in detail here for lack of space, but suffice it to say that some " \(A\) " values must be set to zero in the solution, and the exponents of the independent variable must be adjusted to reflect the missing terus.
}
simplification of partial products** into factorials and polynomials.

The special cases \(r 1=r 2\) and \(r l-r 2=5\) are handled hy the following relation:
\[
\begin{array}{cc:c} 
 \tag{9}\\
B & d A(R) & N \\
N & d K & \text { evaluated at } r l
\end{array}
\]
and the solutions will have the logarithaic form. For our equation which is the \(\mathrm{r} 1-\mathrm{r} 2=\mathrm{S}=2\) case, the final solution would be:

(4d)

THE CUHPLETE SULUTIUN

Prodauly tae most interestiag section of the procram is that which perforas the transfermation fror equations (4c) to (4d). This involves

\footnotetext{
*" The tern "partial products" is used to distinguish them from completely finite products, i.e., those that can be computed by che function, PRODUCT, and iafinite products. Anotner commonly accepted term is "indefinite" products.
* The darM function and ins pruduct analog, FFF, is discussed in the next section.
}
expressing the recurrence relation as an infinite series of partial products in if, the index: and \(K\), the general exponent of the singularity. This must be difterential ed with respect to \(k\) in the two speciai cases (eq. 9) ang then simplified.

Tro slightly different approaches were raken to this problem and code for botn currently exist. The first, retaining the PRODUCT and SUM forms throughout, is deemed tu be inferior and will not be described here; but a package does exist which cin handle the siapler equations using this iechnique.

In working with the more complicated cases, it was found useful to change the representation of the partial products to the more compact "factorial function" (FFF) of Rainville (see Ref. 3, pp 109-112).
\[
\begin{equation*}
\operatorname{FFF}(\exp , n)=\exp (\exp +i)(\exp +2) \ldots(\exp +n-1) \quad n \geq 1 \tag{10}
\end{equation*}
\]
and \(\quad \operatorname{FFF}(\exp , 0)=1, \exp p \nmid 0\)
and the familiar ipecial case:
\[
\operatorname{FFF}(1, n)=n!
\]

This metnod has a distinct advantage in that quotients of FEF's simplify easily and the gradient of \(F F F\) with respect to a variableffirst argument is simpiy
```

d(FFF(exp,n))
dr

```
where HANM (exp, \(n\) ) ir the partial sum of the harmonic zeries:
\[
\begin{align*}
& \operatorname{HARH}(\exp , n)=/_{1}^{\operatorname{tam}=} \quad 1  \tag{13}\\
& x=1
\end{align*}
\]
and the spectal case:
\[
\begin{equation*}
\operatorname{HARH}(1, n)=\operatorname{SUM}(1 / k, k, 1, n) \tag{13a}
\end{equation*}
\]

Simplification of factcrial function quotients is accomplished using the following algorithm:
\(\operatorname{FFF}(\) alph, nalph \() / \operatorname{FFF}(\) bet, nbet \():=\)
\(\operatorname{FFF}(\mathrm{m}+1, \mathrm{n} \cdots)^{\sim}(\) pow \()\)
\(\operatorname{FFF}(\min (\tilde{l} 1 \mathrm{ph}, \mathrm{bet}), \mathrm{abs}(\mathrm{rho}))^{\wedge} \mathrm{signun}(\mathrm{rho})\)
where:
\[
\begin{aligned}
& \text { rhoxdipn-idet } \\
& \text { pow=polysign(alphtnalph-bet-nbet) } \\
& \text { main(alphtnalph-l; bet+nbet-1) } \\
& \text { n=max (alph+nalph, bet+nbet)-min(alph+nalph, bet+nbet) }
\end{aligned}
\]
and
thus giving nicer looking results. Mcre importantly it allows the easy removal of the troublesome denominators (see Ref. 3, p.44) which occur in case ii) above since
\(\operatorname{FFF}(r-r 2,1)\)
\(\operatorname{FFE}(r+k-r 2, n)\)
(14a)
simplifies by the above algoritha to
FFF \((r-r 2-1,1)\) FFF \((r-: 2+1, n-1)\)
(14b)

In addition, the compact notation or FFF and HARM may lead eventually to a-tomatic recognition of closed forms by MACSIIA, or at least assist a user's visual recognition process.

USER OPTIONS

There are several facilities which the user may control. In particular, he may control the point around whict, the solution is determined by setting the variable POLNTFXPAiv: [0] and the maximum number of terms to be computed in a finite serles by settiag the variable NUMTEKIS: (5). The above variables have only limited use in the program currently. However, they have ultimately a more general use. In particular, the POINTEXPAND flag is used to determine whether the equation being processed.has singularities at that point. However, if the variable is net zero, the translation will not be made to the new point and, therefore, although the diagnosis will be correct, the solution will not. NUMTERAS is used for computing a partiad series as well as for computing the Taylor soefficient of polvnomials \(P\) and \(Q\) and may be aseful in those cases where a complete solution is not possible.

In addition to the above options, the user may set the flag VERBOSEl [FALSE] to TRUE \(i o\) obtain automatic printout of the diagnostic information relating to the equation, i.e., the recu rence relation, the location and type of singularities, and the roots of the indicial equation. This may be particularly useful if the routine is attempting to solve an equation for which it is not now equipped, i.e., irregular singular points, conplex rcots, equations of urris higher than two, etc., or wheri the user is only interested in tuc diagnostics rather shan the complete solution.

\section*{THE FUTURE}

In order to produce a program in a reasonable period of time, certair restrictions were imposed which can, with varying amouncs of difficulty, be relaxed, and there are some basic extensions which might prove valuable in the fiture. We will attempt to enumerate some of these here. It should be noted that several of the internal routines were coded with these extensions in mind, i.e., certain data are now comprted which are not used in the current program, and these will be noted where applicable.

\section*{Higher Order Equations}

The metnod of Frobenias readily extends to higher order linear differential equations and up to the point of diagnosis, this has been generalized. This, in the author's opinion, is the most valuable future improvement which might be undertaken. It is required that the \(n\) roots of an nth order equation be computed, \(n\) arbitrary constants be allocated, and \(n\) solutions be generated. Even the special cases of rlor2... \(=\mathrm{rn}\) and rl \(r 2, r^{2}-r 3, \ldots, r n-1-r n=S\) can be solved by taking \(n\) derivatives of the recurrence relation, although this may require some thought (see Ref. '3, p. 12U).

\section*{Solution Around Points Other Than Zezo}

While the user can easily transform his equation into one whose solution can be determined around zero by the transformation:
\[
\begin{equation*}
\text { new } X=X-p o 1 a t \tag{15}
\end{equation*}
\]

It would be a trivial matter for the program to recognize POINTEXFAND \(=0\) and perform the translation and retranslation for him.

\section*{Complex Roots}

An unnecessary restriction exists in the current program for \(t 1\), ra complex. The sestriction ran be relaxed rather easily by computing the reai parts of \(r 1\) and \(r 2\) and using them in the diagnosis and solution of the equation as follows:

\section*{Irregular Singuizrities}

At preseat the program will not attempt a solution around an irregular sirgular point. It may be possible to attempt complete solutions to the equation around an irregular singularity, but some work must be done ts determine the validity of such solutions (see Ref. 3, p. 136). There ase, however, other approximation methods for these cases which may be alequatf. in view of the work involved to incorporate an extension to the program.

\section*{Convergence Tests}

A useful feature suuld be added to the program at the polnt of gelisration of the securcense relation or after completion of the final solution which would perform a test for convergence. This would give the user important additional information regarding the radius of convergence and vilidity of the solutions thus cbtained.

\section*{User Cueing}

It was assumed in the constructior of this capability that the user could substitute the values for arbitrary conscants after the solution was obtained. For certain applications, it might be desirable for the program to interrupt its execution to ask the user for the inftial values of the dependent variable and its derivatives, In addition, where variable parameters are used instead of constants in the polynomiaj cocfficients, \(P\) aud \(U\), the program doas not currently make assumptions regarding the ranges aul will, for example, produce soditions in terms of MIN (parameter, 0 ) and MAX (parameter, 0). The user may, of course, reenter the routine having, made assumptions about the parameters. (Sae the final example of this paper.) However, since these relationships could, in fact, cause a ajor variation in the solution type, it would be desirable for the program to sense these ambiguities qud cue the usar for his assumptions prior to final diagnosis of the equation and initiation of the solution.

\section*{Non-Honogeneous Cases}

At present the program solves only homogeneov 1fnear differential equations of the form:
\[
\begin{equation*}
\because+P(x) Y^{\circ}+Q(x) Y=0 \tag{17}
\end{equation*}
\]

Another particular solution may be obtalned for equations of the form:
\[
\begin{equation*}
\because{ }^{\prime}+P(x) Y^{\prime}+Q(x) Y=F(x) \tag{17a}
\end{equation*}
\]
provided the functivia on the right-hand side can be expressed as a power series. Some modification will be required to the program to recognize this case as wall as to insure that the routine which computes the recurrence relation does not encuanter any froblems in combining the additional series.

Ton-Polyroaial Coefficients
If tie functions \(P\) and \(U\) can be expressed in terms of power series, then a modification of the program can be made siailar to the non-homogeneous case which would allow solution by this method. Again there must be some work done to setermiae whether the routines will encounter expressions beyond their capauility.

\section*{CONCLUEION}

Several more elaoorate extensions come to nind, but they require more than a mere modification of this package. The first would le to incorporate this capability into the current ODE solving capability of UACSYMA such that in situations where ODE cannet rcognize a particular form, it automatically attempts a power series solution. Naturally, certain tests should be made by OUE (or alternatively, built into the SERIES package) prior to this attempt depending on the current state of its capability.

A final and far more extensive venture which has been suggested by others and is highly endorsed in this faper is the extension of MACSYMA's differential equation solving iate the realm of systems of differential equations similar to tat currently available for algebraic equations in LINSOLVF, SOLVE, and ALGSYS Inis is a project worthy of serious consideration by the communty at large and will require the resources of more than a single indtividual since, in order to do it justice, all of the differential equation capabilities should te examined for possible inclusion in such a system.

\section*{EXA!SPLES}

The following section contains examples of several of the cases noted above, i.e., solution around:
1. simple ordinary point;
2. ordinary point in which one or both solutions truncate after a finite numoer of \(t\) as;
3. regular siagular point ( \(r\) 1-r2 \(=\mathrm{S}\) ) but the solution does not contain a logarithote tem;
4. the generajizad lovergeonetric equation in which the user makes \(n\) initial assuraplion.

Note that in tac ext re bava already shown an example of the logarithmic case of 3. adove and the reader is dirccted to the SHARF demo file for a more couplete set of examples.
(C6) DEPEHDEHCIES(Y(X));
(D6)
(C7) /*ordinary points*/
EY1: \(\operatorname{DLFF}(Y, X, 2)+3 * X * \operatorname{DIFF}(Y, X)+3 * Y=0 ;\)
2
\(\frac{d Y}{d X}+3 X \frac{d Y}{d X}+3 Y=0\)
(CB) SERIES (\%,Y,X);
(D8)
(C9) /*Truncation of a series term*/
EQ2: \(\left(1+X^{\wedge} 2\right) * \operatorname{DIFF}(Y, X, 2)-2 * Y=0\);
(D9)

(ClU) SEKIts (\%,Y,X);
(D14)
(C42) /*roots a positive integer-non-log case*/
\(\operatorname{EQ8:X} \operatorname{X} \operatorname{JIFF}(Y, X, 2)-(4+X) * \operatorname{DIFF}(Y, X)+2 * Y=0 \$\)
(C4J) SEKIES (\%, Y, X) ;

(C25) /*The generalized form of the hypergeometric is:*/ HY1: X* \((1-X) * \operatorname{DIFF}(Y, X, 2)+(G A L I \cdots(A L P H+B E T A+1) * X) * D I F F(X, X)-A L P H * B E T A * Y=0 ;\)
(D26) \(\frac{d Y}{--}(G X A L I-X(B E A A+A L P H+!))-A L P H Y\) BETA \(+(1-X) X-\frac{d^{2} Y}{2}=0\)
(C27) /*since we already know that SERIES will be confused by the paranet ers*/

ASSUME (1-GAl1>0)
(C28) SERIES (HY1,Y,X);
```

(D38) Y = A.
INF

```

```

            INF
            ===== K
    A.B
    0!
        ====
        K=0
    ```

REFERENCES
1. Boyce, i. E.; and DiPrima, R. C.: Elementary Differential Equations. Second ed., John Wiley \& Sons, Inc., 1969.
?. Codaington, E. A.: An Introduction to Ordinary Differential Equations. Prentice-Hall, Inc., 1961, pp. 162-166.
3. Rainville, E. D.: Intermedłate Differential Equations. Second ed., Macmillan, 1904.
4. Hildebrand, F. B, Advanced Calculus for Engineers. ?rentice-Hall, Iac., 1949.
5. Kaiuville, E. D.: Elementary Differential Equations. Macmillan, 1949.
0. Watson, G. N.: Theory of Bessel Functions. Second ed., Cambridge University Press, 1958.
\(=\)

2
1


\title{
N77-28783 \\ Radical Simplification Mad3 Easy \({ }^{\boldsymbol{N}}\) \\ Richard E.E. Zippel \\ Laboratory for Computer Sclence Massachusetts Instltute of TE innology
}

It is a fortunate person who has not been styinied by an algebraic manipulation system which was unable to manipulate fully the algebraic numbers and functions wilch occured'in a problem. Here we see three diatinct types of problems. Some slmplifiers are "gullible" enough to be coaxed into arroneous sequences of transformations such as:
\[
1=\sqrt{1} \sqrt{1}=\sqrt{1}=\sqrt{(-1)(-1)}=\sqrt{-1} \sqrt{-1}=-1
\]

On the other hend, there are the "conservative" simplifiers which reifuse to reduce expressions like \(\sqrt{6}-\sqrt{2} \sqrt{3}\) to zero. This conservatism is at least partially justified by the sort of problems into which the gullible simplifier can fall. The tilird and final deficiency In algebraic simplifiers (and the one which we will dwell on the most) may be described as the problem of tha naive simplifier, Typical of these sorts of problems is:
\[
\sqrt{5+2 \sqrt{6}}=\sqrt{2}+\sqrt{3}
\]

Adnittedly many users are themselves gulity of being naive in this sense (the above Identity is not really obvious), but for some reason we don't seem willing to accept this naiveté on the part of our systems.

Some previnus work has been diune on the problem of simplification of algebraic exprossions. S.L. Kleman (ref. 1) did early work on the problem in a more general context. Both B.F. Caviness (ref. 2) and R.J. Fateman (ref. 3) did work on unnested radicals in thelr theses and have written a recent summary of their work (ref. 4). Our work generalizes all the results on simplification of radicals contained in these two theses. For the sake of simplicity all the examples qiven here are in algebralc number fleids. However; the results are fully general and dspend upon only the characteristlc of
*Thls work was supported, in part, by the United States Energy Research and Development Administration under Contract Number E(11-1)-3070 and by the National Aeronautics and Space Administration under Grant NSG 1323.
ground fleld.

\section*{Basic Definitions}

We will nead some mathematical termingiugy In this discussion. If \(k\) is a fieid then the fleld of rational functions in \(\alpha\) over \(k, k=k^{\prime}(\alpha)\), is called an extension of \(\boldsymbol{k}\). If \(\alpha\) is the zero of some lereducible polynomial with cuefficients in \(k, p(x)\), then \(K\) is said to be an algobraic extension of \(k\) and \(a\) is said to be algebraic over \(k\). Otinerwise \(K\) is a transcende. \(\boldsymbol{t}\) tal extension of \(k\) and \(a\) is transcendental over \(k\). \(K\) is a \(k\) vecior space of finite dimension if and only if \(a\) is algebraic. The degree of \(K\) over \(k\), written [ \(K: K\) ] is finite when \(\alpha\) is algebralc and in which case is equal to the degree of \(p(x)\). If \(p(x)\) cons!sts of two terms, i.e. \(\rho(x)=a x^{n}+b\), then \(K\) is said to be a radical extension of \(k\). A tower of fields is said to be radical if each extension in the tower is radical. Generally a racical fleld \(L\) over \(k\) is an extension of \(k\) for which there exists a radical tower of fields between \(L\) and \(k\). (Nota that we differ from a common usuege of the term "radical extenslon" which refers to a purely inseparable extension.) An element of a radical extension of \(\boldsymbol{k}\) can always be written in terms of (possibly nested) radicals.

The work contained in this paper comss from the author's thesis (ref. 6). The proofs of the thgorems quoted in this paper can be found there.

\section*{Gullible and Conservative Radical Simplifler3}

The prohlem into winlsh the gullible syistem fell, and which the conservative system avolded, can be characterized by the following transformation: \(\sqrt{A B} \rightarrow \sqrt{A} \sqrt{B}\). Assuming all square roots take the same iuranch and all occurrences of a single radical refor to tho same element (assumptions which will be maintained througiout this paper) this transformation is valid if arid only if \(\arg A B=\arg A+\arg B\). The correct transformation is
\[
\sqrt{A B} \rightarrow e^{l(\arg A B-\arg A-\arg B) / 2} \sqrt{A} \sqrt{B} .
\]

Thus we have \(\sqrt{(-1)(-1)}=-\sqrt{-1} \sqrt{-1}=(-1)(-1)=i\) as desired.
In general this transformation iakes the cllowing form:

Similar expressions are valld for logarithms but thelr consideration would take us a bit far afleid. It shouid be noted that for algebralc functions there are other techniques which may be useful. For instance, we might want to know under what circumstances \(\sqrt{A B}=\sqrt{A} \sqrt{B}\), where \(A\) and \(B\) are functions of \(x\). This may be a valid transformation for \(x\) in a certain ragion, in which caso restricting \(x\) to that reglun may be the appropriate
courst of action.
From now on we shall assume that in implementing the techniques outlined below sufficlent cere is taker: with regard to the problems just mentioned. This is not too difficult and we shall point out the one point at whinh care must be exercised.

\section*{Construction of the Basls}

Assume \(K\) is a radical extension of \(x\) of degree \(m\). Their \(K\) is an \(m\)-dimension \(i\)-vector space. We propose to find a set of elements \(\left\{a_{1}, \ldots, a_{m}\right\}\) contained in \(K\), linearly Independent over \(k\), which spans \(K\). Then all the elements of \(K\) may be expressed as:
\[
\omega_{1} \alpha_{1}+\omega_{2} a_{2}+\ldots+\omega_{m} a_{m}
\]
where the \(\omega\), are elements \(o_{i}^{i} k\). As an example consider \(K=k(\sqrt{2}, \sqrt{3}, \sqrt{6}), k=Q\). We shall see that \([K: k]=4\) but wo have elgint candidates for the \(\alpha_{1}\) :
\[
1, \sqrt{2}, \sqrt{3}, \sqrt{6}, \sqrt{2} \sqrt{3}, \sqrt{2} \sqrt{6}, \sqrt{3} \sqrt{6}, \sqrt{2} \sqrt{3} \sqrt{6} .
\]

Our algorition will recognize \(\sqrt{6}=\sqrt{2} \sqrt{3}\), thus plaking as a besis \(1, \sqrt{2}, \sqrt{3}, \sqrt{2} \sqrt{3}\). A more llluminating example is provided by \(k=Q(\sqrt{6}), k: k(\sqrt{2}, \sqrt{6+2 \sqrt{6}})\). Recognizing
\[
2(6+2 \sqrt{6})=(2+\sqrt{3})^{2}
\]
we will use \(1, \sqrt{2}\) as the basis elemente and let
\[
\sqrt{5+2 \sqrt{6}}=\frac{2+\sqrt{6}}{\sqrt{2}}=\sqrt{2}+\frac{\sqrt{2} \sqrt{6}}{2}
\]

This technique is based on the following result:
Theorem: Let \(x=k\left(a_{1}{ }^{1 / r}, \ldots, a_{n}{ }^{1 / r}\right)\) and let \(\Lambda=\left\{x=a_{1}{ }^{3} 1 \ldots a_{n}{ }^{3}|\quad| 0 \leq s, \leq r\right.\) and \(x\) is not a perfect \({ }^{\text {th }}\) power of an element of \(\left.k\right\}\), then the degree of \(K\) over \(k\) is the number of elements of \(\mathbf{A}\).

It is clear that \([K, k]\) is bounded by the cardinallty of \(\Delta\) since \(K\) contains the set of linear combinations of alements of \(k\) and \(r^{\text {th }}\) roots of elements ar \(\Delta\). The theorem says that the elements of \(\Delta\) are actually linearly Independent. This is precisely the set of basis elements for which we were loiking.

In the general problem we have radicals \(\beta_{1}{ }^{1 / r_{1}}, \ldots, \beta_{n}{ }^{1 / r_{n}}\) which we adjoin to \(k\). Let \(r\) be the least common multiple of the \(r_{1}\) and let \(\alpha_{i}=\beta_{i} / 1 r_{l}\). So, \(K=k\left(\alpha_{1}{ }^{1 / r}, \ldots, \alpha_{n}{ }^{1 / r}\right)\). Clearly \(\Delta_{1}=\left\{\alpha_{1}{ }^{6} 1 \ldots \alpha_{n}{ }^{8} n \mid 0 \leq s,<r_{1}\right\}\) forms a group under mavtiflication modulo \(\alpha_{1}{ }^{\prime} /\). Some of the elements of \(\Delta_{1}\) may ectually be perfect \(r^{\text {th }}\) powers as elemenis of \(k\). Any such element generates a subgroup of elements which are perfect \(\boldsymbol{r}^{\boldsymbol{m}}\) powers \(\boldsymbol{i n} \boldsymbol{k}\). Consider
the following exampla: let \(n=3, r=6\) and assume all the \(r\), are also 6 . \(\Delta_{1}\) has \(8 \times 6 \times 8=218\) elements. If we can datermine that \(\mathbb{a}_{1}^{2} \alpha_{2}^{3}\) is a perfect slxtin power then we elso heve
\[
\begin{gathered}
\left(\alpha_{1}^{2} \alpha_{2}^{3}\right)^{7}=a_{1}^{4}, \quad\left(\kappa_{1}^{2} \alpha_{2}^{3}\right)^{5}=a_{2}^{4} \\
\left(a_{1}^{2} \alpha_{2}^{3}\right)^{4}=\alpha_{1}^{2}
\end{gathered}
\]

All are perfect sixth powers thet is, \(\alpha_{1}\) is a perfect cube and \(\alpha_{2}\) is a perfect square. This reduces the slze of \(\Delta_{1}\) by a factor of 6 .

There are many techniques avallable for finding the "quotient group" as it is called. We present one method which is particulerly suggestive in cur particular case. With r.otation as before, the \(n \alpha_{1}\) are nf crder \(r_{1}\). Lat \(\alpha_{1}{ }^{m}{ }_{1} \ldots a_{n}{ }^{m} n\) be an element of \(\Delta_{1}\), which is a perfect \(r^{\text {th }}\) Hower in \(k\). Assume \(m_{1} \leadsto 0\). Let \(w=m_{1} /\left(r_{1}-m_{1}\right)\) mod \(r_{1}\), where the ratio is reduced to lowest terms \(\ln \mathbb{Z}\) (the rational integers) and then the division takes place in the finite field. Then
\[
\left(a_{2}^{m_{2}} \ldots a_{n}^{m_{n}}\right)^{n+}=\left(a_{1}^{\left.r_{1}-m_{1}\right)^{w}=a_{1}^{m_{1}}, ~}\right.
\]
and we have recuiced \(\alpha_{1}\) 's order to \(m_{1}\). We also know that
\[
\left(\alpha_{2}^{m_{2}} \ldots \alpha_{n}^{m_{n}}\right)^{r_{1} / m_{1}}=1
\]
so we may repeat the procedure with thls new smaller expression and obtain further reducilons.

To illustrate this technique consider our favorite example:
\[
\begin{equation*}
\sqrt{5+2 \sqrt{6}}-\sqrt{2} \tag{1}
\end{equation*}
\]

We have \(a_{1}=6 \geqslant 2 \sqrt{6}, a_{2}=2, k=Q(\sqrt{6})\). We are looking for perfect squaies. \(\Delta_{1}\) is of order 4 and there are only 3 eiements to check: \(a_{1}=5+2 \sqrt{6}, \alpha_{2}=2\), and \(\alpha_{1} \alpha_{2}=10+\) \(4 \sqrt{6}\). \(\alpha_{2}\) is obviously not a perfect square. For \(\alpha_{1}\) 've have to work a blt. Assume it Was,
\[
\left.6+2 \sqrt{6}=(a+b \sqrt{6})^{2}=a^{2}+6\right)^{2}+2 a b \sqrt{6}
\]
where \(a\) and \(b\) must be rational numbers. The resulting pair of equations must possess solutions in rational numbers. This leads to
\[
a^{4}-5 a^{2}+6=\left(a^{2}-2\right)\left(a^{2}-3\right)=0
\]
whilch plainly has no rational roots. Thus \(\alpha_{1}\) is not a perfec: square in \(Q(\sqrt{6})\). (An alternative manner of dutermining thls is to factor \(x^{2}-a_{1}\) over \(Q(\sqrt{6})\) if an algebralc factoring elgorithm is avallable.) By analogous reasoning we deduce ihat \(a_{1} a_{2}\) is
perfect square (which was pointed out earler). Now contes the dangerous part. By taking square roots we get
\[
\sqrt{2} \sqrt{5+2 \sqrt{6}}=2+\sqrt{6} .
\]

Makirig the appropilate substitution in ! 1 ) we finally get \(\frac{\sqrt{6} \sqrt{2}}{i 2}\) (or \(\sqrt{3}\) ) as desired. An inappropriaie cholce of the root of unity at this step would be the source of incorrect answars.

At SYMSAC '76, Fatemary posed the following problem due to Shanks:
\[
\sqrt{11+2 \sqrt{29}}+\sqrt{16-2 \sqrt{29}+2 \sqrt{55-10 \sqrt{29}}}=\sqrt{22+2 \sqrt{6}+\sqrt{6} .}
\]

The iriply nested radical is not a square as an elainent of \(Q(\sqrt{29}, \sqrt{65+10 \sqrt{29}})\), but as an element of \(\mathrm{Q}(\sqrt{5}, \sqrt{29}, \sqrt{55+10 \sqrt{29}})\) It is:
\[
16-2 \sqrt{29}+2 \sqrt{65-10 \sqrt{29}}=(\sqrt{5}+\sqrt{11-\sqrt{29}})^{2}
\]

In the next section we show how to determine the fleids in which to search for perfect powers; what we consider here is the resulting simplification problem:
\[
\begin{equation*}
\sqrt{11+2 \sqrt{28}}+\sqrt{11-2 \sqrt{28}}=\sqrt{22+2 \sqrt{6} .} \tag{2}
\end{equation*}
\]

Using the technique Just descibed, we have \(\alpha_{1}=11+2 \sqrt{29}, a_{2}=11-2 \sqrt{29}\), and \(a_{3}=\) \(22+2 \sqrt{5} . a_{1} \alpha_{2}=5\), which heppens to be a pe fect square in \(k\). This gives the following reduction:
\[
\sqrt{11-2 \sqrt{20}}=\frac{11-2 \sqrt{29}}{\sqrt{5}} \sqrt{11+2 \sqrt{29}} .
\]

Continulng, we get
\[
\alpha_{1} \alpha_{3}=242+4 \sqrt{29}+22 \sqrt{6}+4 \sqrt{6} \sqrt{29}=(\sqrt{6}+11+2 \sqrt{29})^{2} .
\]

So finally
\[
\sqrt{22+2 \sqrt{5}}=1+\frac{11-2 \sqrt{29}}{\sqrt{5}} \sqrt{11+2 \sqrt{29}} .
\]

And thus all the radicals involved in (2) can be expressed in terms of a single quadratic extension of \(\mathbf{Q}(\sqrt{6}, \sqrt{29})\).

\section*{Denesting Nested Radicais}

The fundemental concept in this section is that of nesting, and in particular, what the nesting level of a fleld is. Ruther than glve the rigorous definition of nesting order (which would probably only serve to confuse the reader) we shall rely upon his intuition and the following examples. The fleids \(k(\sqrt{2}), k(\sqrt{2}, \sqrt{3}), k(\sqrt{6+2 \sqrt{6}})\), and \(k(\sqrt{1+\sqrt{2}})\)

are singly nested over \(k, k, k\), and \(k(\sqrt{2})\) respectively. The next to iast field is singiy nested because it is contained in a fleld which is singly nested (i.e. the second fleld). Thus the nesing of a fleid is roughly the minimal amount of nesting needed to express the most deeply nested expression in the field over a particular ground fleld. We are not able to compute the minimal nesting level of any fleid but we are able to prove the following theorem.
Theorem: let \(E\) be an algabraic cxtension of \(k\) of nesting level \(n\) and let \(L=E\left(a^{1 / r}\right)\). If \(L\) can be expressed with nestinf level \(n\) then there is at. element \(\beta\) of a proper subflalt of E such that ap is a perfoct \(r^{\text {m }}\) power In AR .

As an example consider \(\sqrt{5+2 \sqrt{6}}\). Then \(\dot{N}=\mathbb{C}, E=Q(\sqrt{6})\). The only pioper subtield of \(E\) is \(Q\). Thus we have \(\beta=2\) or 3 since \(2(5+2 \sqrt{6})=(2+\sqrt{0})^{2}\) and \(3(5+2 \sqrt{8})\) \(=(3+\sqrt{8})^{2}\). In the general quadratic case we have
\[
\beta(p+\sqrt{q})=\left(a_{0}+a_{1} \sqrt{q}\right)^{2}
\]

Since \(a_{0}\) and \(\theta\) are elements of a fleld we may assume \(a_{1}=1\) and we ives the equations
\[
\begin{gathered}
\theta p=a_{0}^{2}+q, \quad \beta=2 a_{0} \\
\beta^{2}-4 \theta p+4 q=0 .
\end{gathered}
\]
or
Since \(\beta\) must be ratianel \(p^{2}-q\) must be a perfeci square. letting \(d^{2}=p^{2}-q\), we hevo the following classical formula:
\[
\sqrt{p+\sqrt{q}}=\sqrt{\frac{p+d}{2}}+\sqrt{\frac{p-d}{2}}
\]

It is easy to extend thls technique to arbltrary degree extensions of k . From a practical point of view, however, the systems of equations can become quite unwleldy when the degree ts much above 3. The author's thesls contains a number of gerieral formulas which were derlved in this manner, but with quite a blt of work. For instencu:
\[
\begin{aligned}
& \sqrt[3]{\left(m^{2}+m n+n^{2}\right) \sqrt[3]{(m-n)(m+2 n)(2 m+n)}+3 m n^{2}+n^{3}-n^{3}} \\
& =\sqrt[3]{\frac{(3-n)(m+2 n)^{2}}{9}}-\sqrt[3]{\frac{(2 m+n)(m-n)^{2}}{9}}+\sqrt[3]{\frac{(m+2 n)(2 m+n)^{2}}{9}} \\
& \text { Conclusions }
\end{aligned}
\]

Vie have hoped to point out that what had been thought to have been difficult problem, the simplification of nested radicals, is estually not very much riore difficats than simplification of un-nested radicals. Of the algorith s presented only the de-nesting algorithm is really very costly, and that algorithm is really not necessary. All the results mentioned here are either classical or cirect corcllaries of clessical results. What we hope to have contributed is a novel way of looking at classical mathematics.

\section*{REFERENCES}
1. Kleiman, S.L.: "Computing with Rational Expressions in Several Algebralcally Dependent Varlables." Bell 'aboratorles Tech. Rep., 1968.
2. Cavinass, B.F.: On Canonical Forms and Simplification, Ph.D. Diss., Carnegic-Mellon Univ. 1968.
3. Fateman, R.J.: Essays in Algebralc SImplification. Ph.D. Diss., Harvard Unly. 1971. (Reivised version avallable as MIT Tech. Rep. MAC TR-95 1972.
4. Caviness, B.F. and Fateman, R.J.: Simplification of Radical Expressions. Proceedingy of the 1976 Symp, on Symbolic and Algebralc Computation, Aug. 1976, pp. 321-333.
5. Zippel, R.E.B.: "Simplification of Nested Radicals with Applications to Solving Poiynomlal Equations. \({ }^{n}\) M.S. Thesis, Mass. Inst. of Yech., 1977.

NTT 28783

UNCLAS

\section*{N77-28783}

\author{
A CONSTRUCTIVE APPROACH TO \\ commutative ring theory \\ David A. Spear \\ Massachusetts Institute of Technology
}
1. INTRODUCTION

We are building. in MACSYMA , a system for Commutative Ring Theory .
The object is to determine how much of the theory of commutative rings can be made effective , and to realize those parts of the theory on a computer. We adopt 2 basic goals :
(1) to provide a language capability.
(2) to provide a problem-solving capability.

Our main interest is in solving ring theory problems: however it is clearly desirable to be able to express information in a language reasonably close to that of ring theory. We present here an outline of the system as we envision it.

The implementation has just begun and is proceeding rapidly but as of now only a small part of the system is ready for use.

\section*{2. ALMISSIBLE RINGS}

By an admissible ring. we mean a ring which is allowable in four system. As the system grows, the class of admissitio rings yinill expand. Some axioms of admissibility are:
\[
\begin{aligned}
& 368 \\
& \text { miniminIMAl.Y BLANK }
\end{aligned}
\]
(1) \(Z\) is admissible \((Z\) cienotes the integers).
(2) If \(R\) is admissible so is \(R[X]\).
(3) If \(R\) is admissible and 1 is a finitely generated ideal of \(R\) then R/I is admissible .
(4) If \(R\) is admirsible and \(R\) is an integral domain then the quotient field of \(R\) is admissible.
(5) If \(R\) and 5 are admissible so is their direct sum.
(6) If \(R\) and \(S\) are admissitle so is their tensor product (over Z).
(7) If R is admissible so is any finitely generated subring of R.

The smallest class of rings satisfying thes3 axioms we shall call
the elementary rings. Thus we rive
(elementary ringsl c ladmissible ringsl
Initialiy, all admissible rings will be elementary.
Examples of elementary rings :
(1) \(\quad 0[x] / /\left[x^{2}-2\right] \quad\) (the field \(0\left(2^{1 / 2}\right.\), ;
(2) \(\quad 2\{x] / /\left[X^{2}+1\right\} \quad\) (the ring of Gaussian integers)
(3)
\(Z_{5}[A, B, C] / /\left[A^{2} B-C^{7} \cdot A^{2} B^{3} C^{4}\right\}\)
(4)
\(0[X, Y] / /\left[X^{2}-Y^{3}\right]\)
(5)
\(0(X)[Y] / /\left[Y^{2}-X\right]\)

It should bs apparent that the elementiry ringe form a large and intsresting class of rings.

\section*{3. ALGORI THMS FOR ELEMENTARY RINGS}

Built into the system are a collecion of algebraic algorithms which work in any elementary ring. Some of these algorithms are classical, others fairly recent, and some, due to the author, are apparently new. In developing the system, most of our ene:gy has been directed toward enlarging and improving its package of algorithms. To give an idea of the strength of the system , Le list some of the problems which it is able to solve.

Let \(R\) be an elementary ring and let \(a_{1} \ldots, a_{n} R\).
Let \(I\) be the ideal of \(R\) generated by the a and let
\(S\) be the subring of \(R\) generated by the \(a_{i}\).
(1) ideal membership .

Given \(r\) \& decide whether or not \(r\) !
(2) subring nembership.

Given \(r \in R\) decide whether or rot \(r \in S\).
(3) syzygies.

Find all sulutions \(x_{1}, \ldots, x_{n}\) e \(R\) to the equation
\[
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
\]
(4) algeiralc relations.

(5) prime test.

Decide if 1 is a maximal ideal.
\(+\)
Decide if lis a prime ideal.
Decide if lis a radical ideal.
(6) dimension.

Compute the dimension of R. (Xrull dimension).
Compute the transcencience degree of F over \(\mathbf{S}\).
(7) ideal intersection.

Given ideals 1 and \(j\) compute their intersection.
(8) ideal contraction .

Compute the intersection of the ideal 1 with the subring \(S\).
(9) units -

Given \(r \in R\) decide if \(r\) is a unit in \(R\). if so, compiste \(1 / r\).
(18) zero-divisors .

Given \(r\) \& \(R\) ecide if \(r\) is a zgro-divisor in \(R\).


\section*{4. THE CANONICAL FORM}

The solution to each of the proklems described above
depends on a fundamental algorithm for expressing ideals In a canonical form. Thie algorithm appears to have been
firat discovered by Buchberger (ref. I) . Similar algorithms
have been constructed by Richman (ref, 2), Shtokhamer (ref. 3), and Lauer (ref. 4). My owi version, independently obtained, is only slightly different from Buchberger's ; however the difference is crucial - it is the key to solving most of the problems listed in the previous section. The canunical form for an ideal I is denoted IDEALBASIS (1). IDEALBASIS has been implemented by David R. Barton .

\section*{5. EXAMPLES}

We give eome concrete examples, illustrating the use of the system :
(C1.) R: RING( \(\left.\mathrm{a}[\mathrm{X}, \mathrm{Y}] / /\left(\mathrm{K}^{\wedge} 2-\mathrm{Y}^{\wedge} 3\right)\right)\);
(01)
\(G[X, Y] / /\left[X^{2}-Y^{3}\right]\)
(C2) DOMAINP (R) :
(D2) TRUE
(C3) FIELDP (F) ;
(D3) FALSE
(C4) DIMENSION (R) ;
(134) 1
(C5) I: IDEAL ( [X] , R ) ;
(D5) [X]
(C6) RaCICALP (I);
(E6)
(E7)
(07)
(C8) RADICAL (I) :
(D8)
\([X, Y]\)
(C9) R: RING ( \(\left.Z[X] / /\left[X^{\wedge} 2-2\right]\right):\)
(09) \(\left.2[\mathrm{X}] / 1 \mathrm{IX}^{2}-2\right]\)
(C1E) I: IDEAL ( [7] , R ) :
(D10)
(C11) PRIMEP (I, R) :
(E11)
(E12)
(E13)
(D13)
FALSE
(C14) UNIT( \(3+2 * X\), R):
(E14) \(\quad(3+2 X)(3-2 X)=1\)
(D14)
trie
(T,15) R: RING (Q [X,Y]) ;
(D15) \(\quad a[X, Y]\)
(C16) I: IDEAL ( \(\left.\left[X^{\wedge} 3 * Y^{\wedge} 4, X^{\wedge} 2 * Y^{\wedge} 6\right] ; R\right):\)
(016)
\(\left(X^{3} Y^{4} \cdot X^{2} Y^{6}\right)\)
(C17) J: IDEAL ( \(\left.\left[X * Y^{\wedge} g, X^{\wedge} S * Y\right], R\right)\);
(in17)
\(\left[X Y^{9}, X^{5} y\right]\)
(C18) INTERSECTION (I, J) ;
(D18)
\(\left[X^{2} \gamma^{9}, X^{5} Y^{4}\right.\)
(C19) S: SUBRING \((a[X+Y, X * Y\}, R) ;\)
(D19)
(L20) MEMBER \(\left(X^{\wedge} 2+Y^{\wedge} 3, S\right) ;\)
\((D 28)\)

\section*{6. FUTURE PLANS}

Within the next year, many impruvements and additions to the system are likely. For example, he plan to alluw R-modules into the system . Algebraic Number Theory and Algebraic Geometry offer othe possible directions for the system. However , much of the growth of the system will be determined by the needs of its users. We welcome suggestions for changes or rew features.

A complete , current desciption of the Ring Theory System can be found on the MC file:

DAS; RINGS INFO
This file also contains descriptions of sustem commands. examples, and other information relevant to the use of the sysitem. 1 would like to thank David R. Barton for his excelient implementation of IDEALBASIS. I would also like to thank Alox P. Doohovskoy and Barry M. Tw. sger for their encouragenent and for many helpful suggestions.

\section*{RCFERENCES}

\begin{abstract}
1. Cuchberger , B : Ein Algorithmisches Kriterium Fur Algebraischen Gleichungssystems. Aequationes Mathematicae , vol. 4,1978 .
\end{abstract}
2. Bichman . F.: Constructiva Aspects of Noetherian Rings . Pros: American Math. Soc. : vol. 44 . 1974 , pp. \(436-441\).
3. Shtokhamer , R.: Simple Idal Theory: Some Applications te Algebraic Simp:ification. Tech. Rep. UCP-36 . Univ. of Utah , 1975 .
4. Lauer . M. : Canonical Representatives ior Residue Classes of a Polynonizl ldeal. Proceedings of the 1976 ACM Sympusium on Symboile and Algsbraic Computation. Aug . 1976. pp. 339-345.


\title{
Recuestion of the Equatlon for Lower Hybrid Wavos in a Plasma \\ It a Nonlinear Schrödinger Equation* \\ by \\ Charles F. F. Karngy
}

> Research Laboratory of Electronics and Plasrna Fusion Center, Massachusetts Institute of Technolozy

The equations descriting the nonlinear propagation of waves in an anisoiropic plasma are raroly exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. In ihis paper we will describo how MACSYMA may te usf.a to make such approximations, and so reduce the equation describing lower hybrid wayes into the nonlinear Schrödinger equation which is soluble by the inverse scatiering method (ref. 1). It should be pointed out here that we have not used MACSYMA to do the whole problem; rather MACSYMA is used at saveral stages in the calculation that are oiherwise cone by hanci. This is not to say that MACSYMA could not do the whole problem, just that there is anitural division belween calculations that ers easiest done by hand, and those that are eesiest done by mactine.

The equation describing the steady-state rwo-dimensional electrostatic propagation of lowar hybrid waves in a homogenoous magnetized plasma is (refs. 2, 3)
\[
\begin{align*}
& \kappa_{2} \frac{\partial^{2}}{\partial x^{2}} \phi-\left|K_{k}\right| \frac{\partial^{2}}{\partial z^{2}} \phi+a \frac{\partial^{4}}{\partial x^{4}} \phi+b \frac{\partial^{4}}{\partial x^{2} \partial z^{2}} \phi+c \frac{\partial^{4}}{\partial z^{4}} \phi \\
& \quad+\frac{c_{0}}{4} \alpha_{0} \frac{\partial}{\partial x}\left[\frac{|V \phi|^{2}}{n_{0} T} \frac{\partial}{\partial x} \phi\right]+\frac{c_{0}}{4} \beta_{0} \frac{\partial}{\partial z}\left[\frac{\left[\left.\nabla \phi\right|^{2}\right.}{n_{0}^{T} T} \frac{\partial}{\partial z} \phi\right]=0, \tag{1}
\end{align*}
\]
where \(\phi\) is the complex potential and \(x\) and \(z\) are the directions parallol and perpendicular to the magnetic field and the other quantities are constants. (The real potential is Re[ expl-tif)] where \(\omega\) is the frequency of the wave.) The significance of the terms in equation (1) is as follows: The first two ferms (with coefficents, \(K_{\perp}\) and \(K_{\|} \|\)) describe the linear, cold, electrostatic response; they constifute a wave equation and have solutions which propagate along well defined rays iref. 4). The terms with coefficients \(a, b\), and \(c\) ir. equation (i) are the corrections due to the finita tomparoture cf the plasma; the effect of these terms is to cause the ray to disperse. The terme on the sursond line (with coefficients \(\alpha_{0}\) end \(\beta_{0}\) ) are due to the nonlinearity of the plasma; these terms arise because in regions where the electric potential is high, the so-callad poideromotive force expels some of the plasma, causing a change in the dielectric properties of the medium.

We wish to reduce equation (1) to a more manapoable form To do this we must decide what type of solution we are looking for. Since we are intorested ir situations where the nonlinsar terms are perfirbations to the linear ferms, and since wave-like solutions are known for linear problenss, interasting solutions to consider are ones of the form
*Work supported by U.S. Erargy Reseaich and Dovelopment Administration (Contract E(11-1)=3070) und by the Nistional Science Foundation (Contrast ENG76 06242)
\[
\begin{equation*}
\phi(x, z)=\Phi(x, z) \operatorname{txp}\left(k_{z} z-l k_{x} x\right), \tag{2}
\end{equation*}
\]
where the wavenumbers \(k_{x}\) and \(k_{z}\) are constants and the complex envelope, \(\Phi_{,}\)is slowly varying compared with the exponential. Sinct wo wish to treat the vonlinear terms as a parturbation, we need only consider the leading order contributions to these terms. Thus we can immediately simplify the nonlinear terms since each derivative operator will bring down either \(l k_{z}\) or \(-l k_{x}\); thus thay may be written as
\[
\begin{equation*}
\frac{\epsilon_{0}}{4} \alpha_{0} \frac{\partial}{\partial x}\left[\frac{|\nabla \phi|^{2}}{n_{0} T} \frac{\partial}{\partial x} \phi\right]+\frac{\epsilon_{0}}{4} \beta_{0} \frac{\partial}{\partial z}\left[\frac{|\nabla \phi|^{2}}{n_{0} T} \frac{\partial}{\partial z} \phi\right]=C\left|\psi^{2}\right| \beta_{\rho} \operatorname{sxp}\left(l k_{z} z-l k_{x} x\right), \tag{3}
\end{equation*}
\]
where \(C\) is a constant. The problem remaining is to reduce the complexity of the linear terms. This we can do by saying that the dispersion has only a weak effyct on the solution (in the final equation we will see inatithon monlinearity and dispersion are treated as being perturbations of the same order). If we neglect dispersion onitirely, then a solution for \(\bar{\omega}\) is
\[
\begin{equation*}
\Phi(x, z)=\Phi\left(z-v_{p} x\right) ; \tag{4}
\end{equation*}
\]
i.e. the waves travel along characteristics. We will treat the effects of both dispersion and norlinearity by letting \(\Phi\) have an explicit \(x\) dependence; thus
\[
\begin{equation*}
\phi(x, z)=\$\left(z^{0}, x^{0}\right) \exp \left(t k_{z} z-l k_{x} x\right), \tag{5}
\end{equation*}
\]
where \(z^{\prime}=z-v_{s} x, x^{\prime}=x\). We order the dependencies in equation (5) as follows
\[
\begin{equation*}
\mu k_{x}\left|\geqslant\left|v_{k} \partial / \partial z^{\prime}\right| \geqslant\left|\partial / \partial x^{\prime}\right|,\left|k_{k}\right| \geqslant\left|\theta / \partial z^{\prime}\right| .\right. \tag{6}
\end{equation*}
\]
[This ordering is not the only possibie one; ijr instance iforales and Lee (ref. 2; considered the case where \(k_{z}-k_{z}=0\), and derived a medifiot hortoweg-deVries eauation.]

Rathier than using thie erdering directly lis equation (1), it is more convenient to treat the more general problam. So we re-write the linsar terms in equation (1), to give
\[
\begin{equation*}
L\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial z}\right) \phi+\text { noniinagr terms }=0, \tag{7}
\end{equation*}
\]
where \(L\) is a polynomial,
\[
\begin{equation*}
L(p, q)=K_{\perp} p^{2}-\left|K_{1}\right| q^{2}+a p^{4}+b p^{2} q^{2}+c q^{4} \tag{b}
\end{equation*}
\]

Now if \(L(\partial / \partial x, \partial / \partial a)\) operates on equation (5) wa may make the replacements
\[
\begin{equation*}
\partial / \partial x \rightarrow-L K_{k}-v_{k} \partial / \partial x^{f}+\partial / \partial x^{\prime}, \partial / \partial z \rightarrow \frac{I}{z}+\partial / \partial z^{\prime} \tag{9}
\end{equation*}
\]

Wo may then Taylor expend \(L\) about \(-k_{k}\) and \(h_{a}\). This \(i s, i f\) course, most essily done on MACSYMA:

(C2) GRADEF(L1 \((P, Q), L I I(P, Q), L 12(F, Q)) 5\)
(C3) GRADEF \((L, 2(P, Q), L 12(P, Q), L 22\{P, Q)) S\)

Unfortunately MACSYMA has no notation for the derivative of function with respect to its arguments; thus we use GRADEF to define \(L 1\) to clenote the derivative of \(L\) with respect to its first argument, ete
(C4) L(P, Q);
(D4) L(P, Q)
(C5) \(\%, P=-X I * K X-Z E P S * V G * D Z 1+Z E P S \wedge 7 * D X 1, O=X I * K Z+Z E P S * D Z 1 ;\)
(D5)
Here we have just written \(L(P, Q)\), substituted for \(P(=\partial / \partial x)\) and \(Q(-\partial / \partial z)\) using equation (9). In order to incorporats the ordering information implied by equation (6) we have introduced the small parameter ZEPS. (ZEPS is chosen valhar than, say, EFS; sinse MACSYMA will treat it as the main variable in CRE forms.) DLI and DXI are used to danote \(\partial / \partial z^{\prime}\) and \(\partial / \partial z^{\prime}\) respectively.
(C6) TAYLOR( \(\chi\), ZEPS, 0,2)S
(C7) LEXPAND: EV(X,L \((-x I * K X, X I * K Z)=L\), L1(-XI*KX, XI*KZ)=L1, L2(-KI天KX, XI*KZ) \(=\) L2, L11 (-XIKKX, XIKKZ) =L11, L12:-XI*KX, XI*KZ)=L12 L22(-XI*KX,XI*KZ)=L22);
\((0) / R / 1 / 2\left(\left(021^{2} L 11 V^{2}-2021^{2} L 12 V G+02 i^{2} L 22+20 X 1 L 1\right)\right.\) ZEPS \({ }^{2}\)
\[
* i-i \text { DZ1 LI Vs }+2 \text { 0Z1 L2) 2EPS }+2 \mathrm{~L}
\]

We carry out the Taylor expansion using TAYLOR, keoping terms up to ZEPSA2. The result, LEXPANII, is made more compact by making the fuxctionsl depandence of \(L\) on \(K X\) and \(K Z\) implicit.

Since we are interested in the balance of the nonlinear term, equation (3), against the dispersive part of the linear operstor, \(L\), we demand that all but the \(\operatorname{IEPS}{ }^{\wedge} 2\) term in 07 vanish identically. (Note that the the 2EPS^2 ferm confains then dispersive operator, \(\mathrm{c}^{\mathbf{2}} / \mathrm{d} \boldsymbol{x}^{2 \boldsymbol{2}}\).)
(C8) LEXPAHDC: COFFF (LEXPAHD, ZEPS,0):
(CB)/R/
The zeroth order term is jusi \(L\left(-\left\langle k_{k}, i k_{k}\right)\right.\). Setting it to zero
\[
\begin{equation*}
\left(-1 n_{x}, u_{j}\right)=0 \tag{10}
\end{equation*}
\]
just states that \(k_{z}\) and \(k_{z}\) must satisly the linear dispersion ralalion
(C9) LEXPAMD1:COEFF (LEXFAND, ZEPS, 1):
(D9)/R/
- R2l LI VG + ozi L2
(C10) SOLVE(AEXPAMD1=0,Vg);

SOLUTIOA
(E10)
\[
\begin{gathered}
L ? \\
V G= \\
{[E 10]}
\end{gathered}
\]
(D10)
Solting the first orday term to zero gives us the expression for \(v_{f}\). We recogrize ElO as the familiar expression for the group veiocity in edispersive medium,
\[
\begin{equation*}
v_{p}=\left.\frac{L_{p}}{L_{p}}\right|_{p=-i k_{n}, q=i k_{z}} \tag{11}
\end{equation*}
\]
(The subscripts \(p\) and \(q\) denoie derivativee.)
(C11) LEXPANDR:CNEFF (LEXPAND,ZEPS,2);
```

(D11)/R/ 1/2 (DZ1 L11 VG-2 D21 L12 VG + D21 L22 + 2 DXIL .1 )

```
(C12) AA:COEFF(LEXFAHD2,DX1):
(D12)/R/ 11
(C13) BB:COEFF(LEXPAND2,DZ1,2);
```

(D13)/R/

```
```

1/2 (LI1 VG - 2 Ll2 VG + L22)

```
```

1/2 (LI1 VG - 2 Ll2 VG + L22)

```

Finelly wa have the orider 2EPS^2 terme. Note that it has the form \(A \partial / \partial x^{\circ}+\theta \partial^{2} / \partial r^{\prime 2}\), where \(A\) and \(B\) are given by (AA in D12 and BB in D13)
\[
\begin{equation*}
A=L_{p}, B=\frac{1}{2} L_{P P_{G}} v^{2}-L_{\rho Q} \nu_{B}+\frac{1}{2} L_{Q Q} . \tag{12}
\end{equation*}
\]
 the inoniinear ferm, equation (3), we obtain
\[
\begin{equation*}
A y_{r^{\prime}}+B C_{z^{\prime} z^{\prime}}+\left.C N^{2}\right|^{2}=0 \tag{13}
\end{equation*}
\]

If \(A\) is pure imaginary and \(B\) and \(C\) are reat (which turns out to be the caso) then equation (13) is the nonlinear Schrödinger equation.

The last task is to oveluate tire coolficients \(A\) and \(B\), for \(L\) given by equation (8). Again, in order to get manageable expressions, we will do thir apprentmately. This time wo note that the coefficients, \(a, b\), and \(c\) are much smaller than \(K_{d}\) and \(K_{r}\) Agais such manipulations are most readilly performed on MACSYMA:

(C15) (L1:DIFF (L, P),
L2:DIFF(L,O). L11: DIFF (LI, P), L12:DIFF(Li, 0 ). L22:DIFF(L2,0),

\section*{VG:EV(RHS(E10)))s}

Here we have defined \(L\) [see eq. (8)] The smallness of \(a, b\), ad d is implied by the small parameter 20TA. We have also defined the various cyrivatives of \(L\) and VE. The ovaluation of \(A\) (AA) is straightforsard. Wo Taylor expand AA to c'stain the leading term.
```

(C16) AA:EV(AA, P=-XI*KX,C=XI*KZ,EVAL;
3
(C16)/R/ (2 XI B KX KZ + 4 KI A KX) 2DTA - 2 XI KPERP KX
(C17) AA:TAYLOR(AA, ZDTA,0,0):
(D17)/T/
2 KPERP KI KX + . . .
i.0.

$$
\begin{equation*}
A=-2 U k_{1} K_{1} . \tag{14}
\end{equation*}
$$

```

Wo repeat this wilk \({ }^{5}\) ( 88 ).
(C18) \(\mathrm{BB}: \mathrm{EV}(\mathrm{BE})\);
\((D 18) / R /\left(\left(4 B C^{2} P^{8}+\left(24 A C^{2}+2 B^{2} C\right) D^{2} D^{6}+\left(32 A B C-2 B^{3}\right) D^{4} Q^{4}\right.\right.\) \(\left.+\left(24 A^{2} c+2 A B^{2}\right) P^{5} Q^{2}+4 A^{2} B^{8} P^{8}\right) 20 T A^{3}\)
 \(+\left(\left(24 A C-B^{2}\right)\right.\) XPERB \(+8 A B K P A R Z P^{4} Q^{2}+\left(4 A B K P E R P+4 A^{2}\right.\) XPAR \(\left.) P^{6}\right)\) \(Z D T A^{2}+\left(\left(4\right.\right.\) CKPAR KPERP \(\left.+B K P A A^{2}\right) Q^{4}+\left(6 C\right.\) KPERP \(\left.^{2}+8 A K P A R^{2}\right) P^{2} Q^{2}\) \(+\left(B K P E P P^{2}+4 A\right.\) KPAR KPERP \(\left.) P^{4}\right) 2 D T A+\) KPAR \(^{2}\) KPERP \(Q^{2}+\) KPAR KPERP \(^{2} \mathrm{P}^{2}\) ) \(\operatorname{A}\left(B^{2} P^{2} Q^{4}+4 A B P^{4} Q^{2}+1 A^{2} P^{6}\right) 2 D T A^{2}\) \(+\left(2 B\right.\) KPERP \(P^{2} p^{2}+4 A\) KPERP \(\left.F\right)\) ZOTA + KPERP \(^{2} P^{2}\) ) (C19) BB:TAYLOR(B6,ZOTA,0,1):

 \(/\) KKPERP \(^{2} \mathrm{P}^{2}+\ldots\).

Note that we have taken the Tkylor series expansion of BB up to order 2DTA This is because the order 2DTA^d term is proportionsi to the order 20TA^0 terms in \(L\) (see D14), and thus when we set \(L\) to zero [see eq (10)] the leading order term will verish (this is just a refiection of the fact that "cold" contributions to \(L_{1} K_{\perp} p^{2}-K_{1} \mid k^{2}\), are non-dispersive). There arc a number of ways of incserporating the fact that \(L=0\) into D19, we chose the following.
(C20) SOLVE(L=0,KPERP);
SOLUTIOA
(E20)
\(K\) KERP \(=\frac{(C Q+B P Q+A P) \text { 2DTA }+K \text { KAR } Q}{P^{2}}\)
(D20)
[E20]
(C21) 8B:EY(SE,E20)S
(C22) EB:TAYLOR(BB, 2DTA, 0,1);
\(\left(3 \mathrm{co}^{4}+38 p^{2} 0^{2}+3 A 0^{\circ}\right) 2 \mathrm{DTA}\)
(D22)/T/


2
0
(Rote that incieed the coofficient of 20TANO is 2ero.)


(Here we have Just subsilituted for \(p\) and 4) Thus
\[
\begin{equation*}
\theta=-\frac{3}{k_{2}^{2}}\left(a k_{2}^{4}+b n_{1}^{2} n_{2}^{2}+c k_{2}^{1}\right) \tag{18}
\end{equation*}
\]

Finally a scalo transformation on \(\boldsymbol{t}_{8} x^{\prime}\), end \(z^{\prime}\) in equation (13) ytalda
\[
\begin{equation*}
v_{q}+v_{t z}+2|v|^{2} v=0 \tag{18}
\end{equation*}
\]
- sisendard form of the nonilinear Schrbdinger equation.

We cor:- huve seved comw slept in the MACSMM computation had we worked with the expll.i form . L (Pist right from the beginning. Howover tha would hove had the diedvantage

of confusing the two small parameters ir the problem (ZEPS and ZUTA). A'so some of the generality of tine method would be list. For instance, a simple extension of the method outlined above to inclu's the effects of a third spatial dimension [which introduces a term, \(K_{\perp} \mathrm{d}^{2} / \mathrm{j} \boldsymbol{\mathrm { y }} \mathrm{y}^{2}\) in eq. (1)] is possible (rot. 5). This leads to an unusual generalization ef the nonlinear Schrödinger equation,
\[
\begin{equation*}
i v_{T}+v_{\xi \xi}-v_{i \eta}+\left.\langle | v\right|^{2} v=0 . \tag{17}
\end{equation*}
\]

The procedure presinted her was suggesied by the work of inewell and Kaup (ref. 6), who use a more craditional multiple-tinio-scales approacr. The help of F. Y. F. Chu in preparing this paper is graiefully acknowiadered.

\section*{REFERENCES}
1. Scoti, A. C.; Chu, F. Y. F; and Mciaughlin, D. W.: The Solitor: A Now Concept in Applied Science, Proc. IEEE, vol. 61, no. 10, Oct. 1973, pp. 1+43-1483.
2. Morales, G. l; and Lee Y. C.: The Nonlinear Filamentation of Lower-Hybrid Cones, Phys. Rav. Lett, vol. 35, no. 14, Oct. 1975, pp. 930-933.
3. Karnoy, C. F. F.; Chu, F. Y. F.; Johnston, G. L.; ard Bers, A.: Solution fo Goundary Value Problow for Propagation of Lower Hybric Wavas, Plasma Res. Rep. 76/11, Research Laboratory of Electronics, Massachuselts Institute of Tachnology, Jan. 1976
4. Eriggs, R. \(d_{\text {; }}\) and Parker, R. R.: Transport of RF Energy to the Lower Hybrid Resonance in an Inhomogeneous Plasma, Phys. Rev. Lett, vol. 29, no. 13, Sep. 1972, pp. 852-855.
5. Sen, A; Karney, C. F. F.; Johnston, G. Li and Eers, A: Threo-Dimensional Effects in the Nonlinear Evalution of Lower Hybrid Cones, Papar D17, Proc. Annsal Conirolled Fusion Theory Conference, San Diego, Hay 1977.
6. Newell, A. C.f and Kaup, D. L: Nonlinear Propagation Along Lower Hybrid Cones, Paper 4F-15, Bull. American Phys. Soc, vol. 21, no. 9, Dct. 1976, p. 1095.


\title{
N77-28785
}

\author{
Ray Trajectories in a Torus: \\ An Apilicaition of MACSYMA to a Complex Numerical Computation* \\ by \\ John L. Kulp \\ Research Laboratory of Electronics and Plasma Fusion Center, Massachusetts Insitute of Technology
}

The study of ray trajectories of plasma waves in a 'oroidal geomeiry using MACSYMA is an example of how symbolic, numerical, and graphical faciilities can be used in concert to accomplish a complex computational geal. Computational features of this study which are of parliculasignificance include: the derivation of code (i.e. writing funciions to generate program fragments), the use of array functions to simplify the apecification of a numerical iteration scineme, and the graphical presentation of the retults. Mathematicaliy, this sludy originates in the solution of a linear inhomogeneous partial differential equation in 3 dimensions by the method of characterishics. It is possible to describe this equation compactly by using vector notation, and by specifyis.g the spatial variation of the coefficients in teims of intermediale paramelers. Howaver the transformation of the equation into a form amenable to solution is very ledious.

This work is part of a study of the heating of plasmas by radio frequency waves ociurring in controlled thermonuclear fusion research (ref. 1). The objective is to oblain \(\%\) description of the rf field structure excited by a waveguide located at the edge of a ior idal plasma confinemen! device. A steady-state, single frequency driven oscillation is assumed and an examination is marse of the resulting spatial distribution of fields. In the electrostatic aproximation, the eloctric potential is then given by
\[
\nabla \cdot K(r) \cdot \nabla \phi(r)=D(\nabla, r) \phi(r)-0
\]
where \(r\) is a spatial position vector and \(\mathbf{K}\) is a second rank dielectric tensor. For the parametep range of inlerest, this second order equation is hyperbolic, and its characteristic surfaces \(\psi(r)=c o n s t\) can be found from the characteristic form, \(r(\nabla \psi, r)=0(r e l\). 2). This nonlinear first ordir equation can be solved by integrating \(\nabla \psi\) along the characleristics of \(D(\nabla \psi, r)\) which are rays in 3-dimersions. Unfortunately, transforming to the coordinates given by \(\nabla \psi\) does not, in generat, reduce the order of \(D(\nabla, r)\) since it is a second order operalor in 3 independent variables. Thur some additional assumptions are necessary to make the calculation of \(\phi\) tractable. If there is. a spatial coordinale along which \(D\) is uniform, a Fourier decomposition of \(\phi\) with respect to that coordinate is ustally successful in reducing the number of dimensions of the equation. However, this may be inconvenient for other reasons, such as difficully in applying !nitial conditions, or in infegrating the resulting Fourier spectrum. An alternative is to pursue solutions in the WKB approximation which have the form,
*Work supported by U.S. Energy Research and Development Administration (Contract E(11-1)-3070)
\[
\phi(r)=\tilde{\phi}(r) e^{i \psi(r)}
\]
and where \(|\nabla \log \tilde{\varphi}| \ll|\nabla \psi|\) is assumed. The former approach has been investigated (ref. 3) for a straight cylinder geometry. Here, the WKB approach is followed since it is more readily generelized (computationally) to models resulting in higher order equations.

In the following sections, (1) a description of the method for finding \(\tilde{\phi}\) ar \({ }^{-\mu} \psi\) is given, (2) the implementation of the calculation on MACSYMA is presented, and (3) a samp's case is shown to inustrate the display of results.

\section*{WKB Solution Along the Characteristic Rays.}

Let \(k \equiv \nabla \psi\). The characteristic equation \(D(k, r)=0\) by itself is not sufficient to determine \(k\). Mote information can be obtained by noting tha!
\[
\frac{d D(k(r) r)}{d r}=0 \text { is also implied so that } \frac{\partial D}{\partial k} \cdot \frac{\partial k}{\partial r}=\frac{\partial D}{O} .
\]

Thus by integrating along \(\partial D / \partial k\) we can find \(k\). The initial values of 2 components of \(k\) are required (the third can be found f:om \(D(k, 0)=0)\). The rays defined by the tangent vector do/ak are the bi-characleristics of \(D\). Let \(s\) be the distance along the ray from some starting point and \(S=|\omega 0 / \partial k|\). Then, the equations for determining \(\psi\) Lecome:
\[
\begin{array}{lr}
\frac{d r}{d s}=\frac{\partial D}{\partial k} / s & \text { (trajectory equation) } \\
\frac{d k}{d s}=-\frac{\partial D}{\partial r} / s & \text { (Wave vector equation) } \\
\frac{d \psi}{d s}=\left(k \cdot \frac{\partial D}{\partial k}\right) / s & \text { (phase } \epsilon \text { quation) }
\end{array}
\]

For the electrostatic equation, note that \(\mathbf{k} \cdot \partial \mathrm{D} / \partial \mathbf{k}=\mathbf{0}\), so the rays are lines of constant \(\psi\). In wave propagation terminulogy, \(\partial D / \partial k\) is in the direction of the group velocily of the excited waves.

To solve for \(\phi\), iei \(\phi(r)=\tilde{\phi}(r) e^{i \psi(r)}\) so that
\[
D(\nabla, r) \dot{\psi}=D(\nabla, r) \tilde{\phi} e^{i \psi}=e^{i \psi} D(i(\nabla \psi)+\nabla, r) \tilde{\phi} .
\]

Now \(D\) can be expanded to first order in \(\nabla\) the WKB approximation) to obtair,
\[
\nabla \cdot\left(\hat{\phi} \frac{\partial D}{\partial k}\right)=0 \text { or } \frac{d \tilde{\phi}}{d s}+\nabla \cdot \frac{\partial D}{\partial k} / S=0,
\]
which can be integrated to give the usual WKB amplification factor
\[
\tilde{\phi}=\frac{S(0)}{S(s)}
\]

To solve the equations for \(\psi_{k}\) expressions for \(\partial D / \partial k\) and \(\partial D / \partial r\) must be verived. Once oblained, these expressions must be simplified with a goa: of gelting an approximate analytis result, or of producing rade which can be numerically evaluated efficiently. The explicit \(r\) dependence of \(D\) can be represented
\[
G(\nabla, r)=D\left(\nabla_{1} a_{0}(r), a_{1}(r), \ldots, a_{m}(r), c_{2}, c_{1}, \ldots\right)
\]
where the \(j_{i}\) 's are physically convenient parameters such as the imposed magnetir field components or plasma density and the c,'s are constants characterizing the particular situation being studied (o.g. the rf source frequancy, or the peak magneiic field amplitude). Let \(a=\left\{a_{0}, a_{1}, \ldots\right\}\). Then \(\partial D / \partial r\) can be computed using the chain rule for difisentiation,
\[
\frac{\partial D}{\partial r}=\frac{d a}{d r} \cdot \frac{\partial D}{\partial a} .
\]

Note da/dr is a \(3 \times m\) matrix which is fixed by the plasma configuration being studied and is nol dependent on the plasma model being used as reflected in \(X\) (this dependence occurs in \(\mathrm{D} D / \mathrm{h}_{\mathrm{d}}\) ).

\section*{Implementation of the Ray Calculations on MACSYMA.}

The implementation of the calculation of ray irajectories involves the following steps: (1) calculate D in a form where its dependencies on \(k_{i}\) and \(a_{i}\) are explicit; ( 2 ; calculate the derivatives \(\partial D / \partial k\) and \(\partial D / \partial r\), then put them in a form suitatle for numerical evaluation; (3) use these derivatives in an iterative scheme for solving dr/ds and \(\mathrm{dk} / \mathrm{d} s\); and finaily (4) present the results graphically. Once the rays have been found, \(\tilde{\phi}\) can be computed by svaluating \(S(k, r)\), and \(\psi\) by summing \(\delta \psi\) along the ray. Finally, a complete solution is oblained by suf arimposing solutions for the differcrt initial values of \(k\) and \(r\) which characterize the source of the excitation. This part of the solution will not be discussed here.

The derivation of \(D\) raises two trequently enccuntered issues. First, the order of the calculation must be considered so that the nost simplification can be obtained at each step with a minimum of storage overhead. Second, it is often propitious to mike sertain approximations on the resulting form of \(D\) to avoid unwieldy expressions at later stages (i.e. when computing the derivalives and simplifying the results of differentiation). For the equation of interest her., \(D(k, r)\) \(=\mathbf{k} \cdot \mathrm{K}(\mathrm{r}) \cdot \mathrm{k}\), the above concerns motivate us to compute D by expressing K as simply as possible,
(C2) ** Vector Index of Refraction*/
KK: MATRIX( \(F \begin{aligned} & \text { KKRR, } \\ & -X I * K R T, ~ X I * K K R T ~\end{aligned}\) KKİKKRT, KKTT, E\%I*KKRP, XKTP,
\(\left.\begin{array}{l}\text { - KI *KKRP } \\ \text { KKTP } \\ \text { KKPP }\end{array}\right\}\)
while refaining its basic symmetry. Once the matrix multiplications have been carried out, and simplifications accomplished (in this case SCANMAP ( MULTTHRU, . . . ) suffices) the elemenis such os KKRR are replaced by expressions such as:
(C5) /R Define the rematining elements of KK that are needed. "/
KKRR : 1- WPI2/(1-HCI2)
- WPI2*AMU/(1-WCI2*AMU^2)s


Automatic generation of appropriate type declarations for the famporary variables would make the translation and compilation process less tedious. Finally, as in any such automatic scheme, certain numerical problems may be obscured (like the cancellation of large numbers) or particular restructuring optimizations lihe Horrer's rule miay be overivoked. For example, consider the subexpression below:
(C14) D10;
(D14) - \(\frac{\left.2 \text { WCIPHI (1-WCIPHI }{ }^{2}\right) \text { WPI2 }}{\left(1-\text { WCIPHI }^{2}-\text { WCITHETA }^{2}\right)^{2}}+\frac{2 \text { WCIPHI WPI2 }}{2-\text { WCIPHI }^{2}-\text { WCITHETA }^{2}}\)


This expression results from a straightinrward salculation of the derivatives. An obvious optimization can be obtained as shown next:
(C15) (E:SUBSTPART(FACTOR(PIECE), \(\%,[1,2]), \operatorname{SUBSTHART(FACTOR(PIECE),E,[2,3])):~}\)
(D15) - -2 WCIPHI WCITHETA WPI2 \(-1+\) WCIPHI \(^{2}+\) WCITHETA \(^{2}{ }^{2}\) WCIPHI WCITHETA WPIZ \({ }^{2}\) (-1+AMU \({ }^{2}\) WCIPHI \({ }^{2}+\) AMU \(^{2}\) WCITHETA \(\left.^{2}\right)^{2}\)
(C16) (E:PART(D15,1,1,1))*MULTTHRU(1/E,D15);

\(\left(-1+A M U^{2} W C I P H I^{2}+A M U^{2} \text { WCITKETA }\right)^{2}\) ?

It is not clear how to -pply such optimizalions automaticaily on large expressions. In some cases pattern matching and partial fraction expansions can be andied with some success (this approach was suggested by P. Wang and is currently under inve:';ation). At the time of this work, the OPTIMIZE command was extremely inefficiant computationally, but has since teen rewritten by \(\mathcal{M}\). Genesereth and is now quite fast. Despite some of the drawbacks mentioned above, the use of OPTIMIZE has been very helpful in this application.

The implementation of ( 3 ), the lieration scheme for integrating (dr/ds, dk; ds), is achieved by the use of array functions. Array functions have two important advanlages over the usual

Here, WPI乞 and WCI2 are paramelers ( \(a ; s\) ) and AMU is a constant. The number of \(a_{i}\) 's might vary between 3 and \(10 \mathrm{~d} t\) pending on the plasma model. Approximations car, be introduced by expanding in terms of, say, 1/AMU, but for this case it is not necessary.

To accemplish (2) the calculation of derivatives of \(D\), the matrix da/dr is enterea (it is usually rather sparse) and multiplied by a list of derivatives oblained by comouting \(\partial \rho / \lambda a_{i}\) for each \(a_{i}\) Computing \(\partial \mathrm{D} / \partial \mathrm{k}\) and thus \(|\partial \mathrm{D} / \partial \mathrm{k}|\) is straightlorward. Now, it is expected that applying FACTORSUM to various subexpressions may result in a simpler form (noie, for instance, the common WPI2 term in KKRR above). This is done by the command

\section*{scanmap (Lambdas [x], \\  .... );}
where the IF conditional assures the preservation of common subexpressions.
One reason for doing step (2) on MACSYMA is that the malrix arithmetic irvolves a considerable amount of work is done by hand. But perhaps even more significant is the lact that the MACSYMA command, OPTIMI7E, can now be used to automatically generale a procedure BLOCK tor evaluating the expressions effiziendly. The BLOCK genierated by OPTIMIZE consists of a sequence of assignments of subexpressions to temporary, local variables. For example,
(C1) \(r(A+B \wedge 2)+G\left(A+B^{\wedge} 2\right)\);
\[
F\left(A+B^{2}\right)+G\left(A+B^{2}\right)
\]
\[
\text { (D2) BLOCK([T2,T0], TO: } \left.B^{2}, T 2: A+T 0, \operatorname{RETURA}(\Gamma(T 2)+G(T 2))\right)
\]
```

Using OPTIMIZE is a highly convenient way of accomplishing the familiar programing lask of finding common subexpressions, and rewriling the expression in larms of a sequence of stalements constituting an evaluation "iree" of the subexpressions. Furthermore, the derivalives for the six' equations being integrated (dr/ds and dk/ds') can be calculated in "parallel" (sharing common suberpressions). The BLOCK can be translated and compiled for greater execution efficiency. As might be expected, this optimization often significantly reduces the amount of code required to evaluate an expression, leading to hoth execution and storage efficiency. A typical list of the derivatives requires $45 k$ words $t 0$ store on disk (with the SAVE command), and yel the procedure BLOCK generaled requires less than 3 k words. A more useful comparison would be oblained by writirg on disk using FASSAVE (which preserves common subexpressio:s) or STRINGOUT, but both of these run out of available menory when applied to tha origiral expression.

There are several prcblems with this nigthod as it is currenlly implemented. A lypical BLOCK might contain a total of 250 temporary variables, when, in fact, a data flow analysis would show that a considerably smaller number of temporaries is needed (i.e. they van be reused).

DO-loop form of specification. First, the order in which particular values of $k(s)$ ur $r(s)$ are computed does not have io be specified. They are computed as meeded. This makes it much easier to medify a code since one does not have to be corcerned with the order of a sequence of command slatements. Second, programs specified this way are highly modular so it is very simple to change one single array function definition in the run time environment, i.e it iras bolh the advantages of a function and of an array. The current liabilities of array functions are: they can use up more storage if used where arrays would not olherwise be used; in the currerl implementation, -iferences (calls or array acsesses) to array functions ars not iranslaled or compiled efficiently.

As an example of how the compulation of one element of $\mathbf{r}$ is set up, consider the following MACSYMA commands for implementig a predicler-corrector iteration:
(C1) /* Adams-Bashforth Yredictor step. */
PSTEP:Y[N-1]+55/24*9Y[N-1]-59/24*OY[H-2]+37/24*OY[N-3]-9/24*DY[N-4]s
(C2) /* Corrector siep */


(D3) $R_{N}:=R_{N-1}+55 / 24 D R_{N-1}-59 / 24 D R_{N-2}+37 / 24 D R_{N-3}$
$-3 / 8$ DR $_{N}-4$


The function DSIEP computes all the elements of $\delta \mathbf{r}$ and $\delta k$ in paralie!. Nots the ease with which the iteration scheme car be changed. Il the array functions were to be compiled, lerms like $\mathrm{Y}[\mathrm{H}]$ would be replaced by ARRAYFUNCALL (Y,N) in the forms PSTEP and CSTEP. The derivation of starting points is done separately. In this calcclation, each element oir, $\mathbf{k}, \delta \mathbf{r}, \delta \mathrm{k}$, and $a$ is defined as an array function. Whilc saving elemenis of a is not essential to the infegretion, it is usetul for subsequent calculations to knoy lise trajectisy through the parameter space given by a(s).

It should be pointed out that in using array funclions, one is making a fradeolf between programming convenience versus execution and storage efficiency. To what extont is the inefficiency inherent rather than implementition dependenl? The ordinary implementation of array functions in MACSYMA suffers from excessive "number consing" (rel. 4) resulting in a need for large number spaces and costly additional garbage collection. This problem was sileviated by $C$.


Karney, who implemented a new array function callirz routine for the MACSYMA interprefer (not yet installed) which allows LISP number arrays to be usad with array functions. The main outstanding difficulty is that array functions cannot be referenced efficienlly. In principle however, the check for array elements being undefined should only require one o: two machine instructions; thus there is hope thal subsequent implementations will have relatively unimportant overhead assucialed with them.

## Displcy of the Ray Trajectories.

The graphical display of the ray trajeclories employs a rather exiensive library package of graphics capabilities implemenied by C. Karney, called PLOT2. The main significance of this package is that it interacts with the MACSSMA environment, thus giving both MACSYMA and PLOT2 more power than each would have by themselves. The interactive nature of PLOT2 due to its residing in MACSYMA is particularly advantageous for exploring the parameter space defined by a(s). This is done simply by ertering a formula depending on the parameters and talling FLOT2 on it. Rescaling and changing view points (in the case of 3-0 plots) are very simple interactive operations.

A sample ray trajectory plet is shown in Figure 1. The outer ring is a top view of the iorus. The ray starts at the right outside edge of this ring and circles around the torus untii it hits the edge again. The inner e.rcle is a projection of the miner crossection of the torus inlo a single plane. The ray plolting consists of plotting a template indicating the boundaries of the torus and the sector marks followed by ctils to FLOT2 using the POLAR option. The tempiale is, computed once for each change in aspect ratio and is displayed with REPLOT.

It is important to note that the actuai calculation of the rays is invoked by the slolting routine asking for the data in the arrays. Once the array functions and initial conditions have been specified, the array dala cen be oxtracted in any order by any other rouline wilhoul explicitly calling main progran to do the computation. For instance, one may not ba directly interested in the rays at all, tut simply in the ouxiliary paramelers, in which case referenring them causes the rays to be computed first.

## Summary.

Space fimitations do not permit more thorough discussion of how the capabilifte:mentioned here are used in this continuing sludy. Several different model equalions. $D$, and a large number of different parameters are being invasligated. The poirils to be emphasized are: (1) MACSYKIA is in some sense evolving inlo a "complele" system where user can formuiale his equations, approximate and simplify them symbolically, and if need be, study solutions to them numerically and graphically (the drawtacks being that some facilities are not implemented efficiently yet or are loo awkward to useh, (2) since NACS'MMA is a symbolic manipulation envircnment, if can have facilities to automato various well-defined steps in the creation of numerical procedures; and (3) array functions are an effective way to implement numaical itaration schemes with degree of simplicity and flexibility uncharacieristic of most numerical
programming !acilities. A major outstanding problem in generating expressions for merrerical evaluation, is finding effective restructuring methods for obtaining expressions which evaluate efficiently (i.e. minimizing multipications).

## REFERENCES

1. Kulp, J. L.; Johnston, G. L.; and Bers, A.: Progress Report No. 117, Research Laboratory of Electronics, Massachuselts Inst. Tech., 1976, p. 223
2. Roubine, E. ed.: Malhematics Applied to Fhysics, Springer-Verlag, New York, 1970, p. 286
3. Colesiock, P., Bull. Am. Phys. Soc. 21, 1144 (1976)
4. Steele, G.: Fast Arithmetic in MACLISP. Praceedings of the 1977 MACSYMA Useis' Conference, NASA CP-2012, 1977. (Paper No. 22 of this compilation.)



## APPLICATION OF MACSYMA TO FIRST CRDER PERTURBATION THEORY

In Celestial mechanics*
John D. Anderson and Eunite 1. Lau
Jet Propulsion Labora:ory

## SUMMARY

The application of MACSFA to general first order perturbation theory in celestial mechanics is explored. Mechods of derivation of small variations in the Keplerian orbital elements are developed. As an example of the methods, the small general relativistic perturbations on the two-lody Newtonian motion, resulting from tha rozation of the central body, are developed in detail.

## GENERAL PROBEEM

The total acceisartion $\ddot{\underline{r}}$ on many objects in the solur system can be written in the following form.

$$
\begin{equation*}
\ddot{\underline{x}}=-\frac{\mu r}{r^{3}}+\underline{a}_{p} \tag{i}
\end{equation*}
$$

where the first term on the right hand side of the expression is the two body acceleration, and the second term is a perturbative acceleration, assumed small enough that a first order perturbetion theory is adequate to describe the motion. The zero ordel solintion to equation (1) is the two body solution $\left(\underline{a}_{p}=0\right)$ which yfelds a Keplerian ellipse with constent orbital elements (a, e, $\left.M_{0}{ }^{P} 1, \Omega, \omega\right)$.

In this poper we use Gauss'u perturbation equations to derive time varis." tions in the Keplerian orbital elements to the first order in the small perturbative acceleration. In terms of radial $R$, tranverse $S$, and no:mal wiomponents of $a^{2}$, the variations in che Keplerian semimajor axis a, the eccentricity $\in$, the mean anomaly $M_{0}$ at the initial time epoch, the ircilination of the orbit 1 , the longitude of the ascending node $\Omega$, and the argament of the parifocal point $w$, are given ty the following set of equations (ref. 1).

$$
\begin{equation*}
\frac{d a}{d t}=\frac{2}{n}\left(1 \cdot \cdot e^{2}\right)^{-\frac{1}{2}}\left(\operatorname{Re} \sin v+s \frac{p}{r}\right) \tag{2}
\end{equation*}
$$

The work presented in ihis paper represents one phase of researeh carried out at the Jet Propulsion Liboratory, Calffornia Instituce or 'fechnciugy, unter NASA Contract NaS 7-10\%.

$$
\begin{align*}
& 394  \tag{395}\\
& n \\
& n+\cdots
\end{align*}
$$

$$
\begin{align*}
& \frac{d e}{d t}=\frac{\left(1-e^{2}\right)^{\frac{1}{2}}}{n a}\left\{R \sin v+S \frac{r}{p}\left[\left(1+\frac{p}{r}\right) \cos v+e\right]\right\}  \tag{3}\\
& \frac{d M}{d t}=\frac{r}{n a^{2} e}\left[R\left(\frac{p}{r} \cos v-2 e\right)-S\left(1+\frac{p}{r} \sin v\right]\right.  \tag{:}\\
& \frac{d i}{d t}=\frac{r}{n a^{2}}\left(1-e^{2}\right)^{-\frac{1}{2}} w \cos (v+\omega)  \tag{5}\\
& \sin i \frac{d i}{d t}=\frac{r}{n a^{2}}\left(1-e^{2}\right)^{-\frac{1}{2}} W \sin (v+\omega)  \tag{6}\\
& \frac{d \omega}{d t}=\frac{r}{n a^{2} e^{2}}\left(1-e^{2}\right)^{-\frac{1}{2}}\left[-R \frac{p}{r} \cos v+S\left(1+\frac{p}{r}\right) \sin v\right]-\cos : \frac{d \Omega}{d t} \tag{7}
\end{align*}
$$

where

$$
\begin{align*}
& n=\left(\mu / a^{3}\right)^{\frac{1}{2}}  \tag{8}\\
& p=a\left(1-e^{2}\right)  \tag{9}\\
& r=(\underline{r} \cdot \underline{r})^{\frac{1}{2}} \tag{10}
\end{align*}
$$

and $v$ is the true anomainy in the polar equation for the Keplerian ellipse.

$$
\begin{equation*}
\frac{p}{r}=1+e \cos v \tag{1.1}
\end{equation*}
$$

The application of MACSYMA to the soiution of equatious (2) ihrough (7) proceeds according to the following stepa.

Step 1. Evaluate the components $\mathrm{F}, \mathrm{S}$, and W of the perturbative acceleration ${ }^{\mathbf{a}} \mathbf{p}$.

$$
\begin{align*}
& R=\frac{\frac{a}{p} \cdot \underline{r}}{r}  \tag{12}\\
& s=\frac{r}{n a^{2}}\left(1-e^{2}\right)^{-\frac{k}{2}}\left(a_{p} \cdot \underline{r}\right)-\frac{r}{p} R(e \sin v)  \tag{13}\\
& W=\frac{1}{n a^{2}}\left(1-e^{2}\right)^{-\frac{1}{2}}{\underset{a}{p}} \cdot(\underline{r} X \dot{r}) \tag{14}
\end{align*}
$$

The magnitude of the orbital angular momentum ( $\underline{x} \times \underline{i}$ ) is $(\mu / p)^{/ 2}$, and if $W$ :s defined as the unit vector normal te the orbital plane along the angular momentum vector, then

$$
\begin{equation*}
\mathrm{W}={\underset{\mathrm{a}}{\mathrm{~F}}} \cdot \underline{W} \tag{15}
\end{equation*}
$$

Step 2. Substitute $R, S$, and $W$ into equations (2) through (\%) and simplify. Step 3. Multiply the six time derivatives from Step 2 by che comion factor

$$
\begin{equation*}
\frac{d t}{d v}=\frac{r^{2}}{n a^{2}}\left(1-e^{2}\right)^{-\frac{1}{2}} \tag{16}
\end{equation*}
$$

Simplify the results to obtain expressions $d a / d v, d e / d v, d M_{o} / d v, d: / d v, d \Omega / d v$, and $d \omega / d v$.

Step 4. Integrate the six derivatives from Step 3 between the limits $v$ to $v$. Simplify the results. The resulting six expressions represent the variafions $\Delta a, \Delta e, \Delta M_{0}, \Delta i, \Delta \Omega$, and $\lambda \omega$ as explicit functions of the unperturbed true anomaly $v$ 'or as implicit functions of time by means of the Keplerian relations between $t$ and $v$.

Step 5. Obtain the serular time rate of change of the Keple:ian elements by evaluating the variations from Step 4 ut $v_{0}=0$ and $v=2 \pi$. The rates are given by

$$
\begin{equation*}
\dot{a}_{s}=\frac{n}{2 \pi}[\Delta a]_{0}^{2 \pi} \tag{17}
\end{equation*}
$$

with similar expressions for the other elements.

## EXAMPLE

In order to illustrate the general method, we select a relativistic perturbative acceleration that arises because of the rotation of the central body (ref. 2)

$$
\begin{equation*}
a_{p}=\frac{6 \mu}{2} \underline{h}(\underline{r} \cdot J) r^{-5}+\frac{2 \mu}{c^{2}}(\underline{\underline{i}} X J) r^{-3} \tag{18}
\end{equation*}
$$

where $h=x \dot{r}$ is the orbital angular momentum, and $J$ the $3 p i n$ angular momentum per unit mass for the centical body. We choose the equator of the central isody as the reference plane cor the orientation elements ( $1, \Omega, \omega$ ) of the orbit. Then, the spin angular momentum is along the $z$ axis and

$$
\begin{equation*}
\underline{J}=(0,0, j) \tag{19}
\end{equation*}
$$

The untt vectors $\underline{P}, \mathbb{Q}$ in the orbit plane, where $P$ is alrected to perifocus, as well as the vector $W$ along $h$, are defined by the following MACSYMA statements.
(C1) PX:COS (OMEGA)*COS(NODE)-SIN(OMEGA)*SIN(NODE)*COS (I) \$
(C2) PY:COS (OMECA)*SIN (NODE) $+\operatorname{SIN}(O M E G A) * \operatorname{COS}(N O D E) * \operatorname{COS}(I) \$$
(c3) rZ:SIM (OMEGA)*SIN(I) \$
(C4) QX:-SIN(OMECA)*COS (NODE)-COS (OMEGA)*SIN(NODE)*COS (I) \$
(C5) QY:-3IN(OMEGA)*SIN(NODE)+COS (OMEGA)*COS (NODE)*COS (I) \$
(C6) QZ: $\operatorname{COS}(O M E G A) * \operatorname{SiN}(I) \$$
(C7) WX:SIN(NODE)*SIN(I) \$
(C8) WY:-COS (NODE)*SIN(I) \$
(C9) WZ: $\cos (I) \$$
where tive Eulerian angles $i=I, \Omega=N O D E$; and $\omega=O M C G A$ are defined in the usual sense.

Now, the position $\underline{x}$ and velocity $\dot{\underline{E}}$ vectors are given by,

$$
\begin{align*}
& \underline{\mathbf{r}}=x_{\omega} \underline{\mathbf{p}}+\dot{y}_{\omega} \underline{\mathbf{Q}}  \tag{20}\\
& \underline{\dot{\mathbf{r}}}=\dot{\mathrm{x}}_{\omega} \underline{\mathbf{p}}+\dot{\mathrm{y}}_{\omega} \underline{q} \tag{21}
\end{align*}
$$

where

$$
\begin{align*}
& x_{\omega}=x \cos v  \tag{22}\\
& y_{\omega}=r \sin v  \tag{23}\\
& \dot{x}_{\omega}=-(\mu / p)^{\frac{1}{2}} \sin v  \tag{24}\\
& \dot{y}_{\omega}=(\mu / p)^{1 / 2}(\cos v+e) \tag{25}
\end{align*}
$$

The corresponding MACSYMA definitions are as follows:
(C30) XOMEGA:R*COE (V) \$
(C31) YOMEGA:R*SIN(V) \$
(C32) XOMECADOT:-(M/P;**(1/2)*SIN(V)\$
(C33) YOMECADOL: ( $(\mathrm{M} / \mathrm{P}) * *(1 / 2)) *(\operatorname{COS}(\mathrm{~V})+\mathrm{E}) \$$
(C34) X: XOMEGA*PX+YOMECA*QX\$
(C35) Y:XOHECA*PY+YOMECAKQY\$
(C'36) Z:XONEGA*PZ+YOMEGA*QZ\$
(C37) DX:XOUEGADOT*PX+YOMEGADOT*QX\$
(C38) DY: XOMEGADOT*PY+YOMEGADOT*QY\$
(C39) DZ:XQKEGADOT*PZ+YOMEGADOT*QZ\$
We now cerive expressions for $R, S$, and $W$ as given by equatione (12) (13), and (15) for the perturbative acceleration of equation (18).

First of all, che scalar product of $\underline{r}$ and ( $\underline{X} \dot{\underline{r}}$ ) is zexo by inspection, so

$$
\begin{equation*}
\text { P. }=\left(2 \mu / c^{2}\right) \underline{r} \cdot(\underline{\dot{x}} X \underline{J}) r^{-4} \tag{26}
\end{equation*}
$$

The MACSYMA evaluation of the triple stalar product and then $R$ proceeds as fo -lows:
(C40) ENTERMATRIL $(3,3)$;
ROW 1 COLUMN 1 X ;
ROW 1 COLUMN 2 Y ;
ROW 1 COLUNA 3 Z ;
ROW 2 COLUMN 1 DX;
ROW 2 COLUIN 2 DY;
ROW 2 COLUMN 3 DZ;
ROW 3 COLUMN 1 0;
ROW 3 COLUN 2 0;
ROW 3 COLUMN 3 J;
MATRIX-ENTERED
(C41) DETERMINANT (\%);
(C42) RATEXPAND (\%);
(C43) RATSUBST $(1, \operatorname{SIN}(N O D E) * * 2+\operatorname{COS}(N O D E) * * 2, \%) S$
(C44) RATSUBST( $1, \operatorname{SiN}($ OMEGA) $* * 2+\operatorname{COS}(O M E C A) * * 2, \%) \$$
(C45) RATSUBST ( $1, \operatorname{SIN}(I) * * 2+\operatorname{COS}(1) * * 2, \%)$;
(C46) RATSUBET $(1, \operatorname{SIN}(V) * * 2+\operatorname{COS}(V) * * 2, \%)$;
(D46)
$\frac{E \cos (I) J \operatorname{SQRT}(M) R \operatorname{Cos}(V)+\operatorname{Cos}(I) J \operatorname{SQRT}(M) R}{\operatorname{SQRT}(P)}$
(C50) FACTORSUM(D46);
(D50)

$$
\frac{\cos (I) j \operatorname{sinT}(V) R(E \cos (V)+1)}{\operatorname{SoRT}(P)}
$$

C51) CAPR:2*M*\%/R**4/C**2;
(D51) $\frac{2 \cos (I) J M^{3 / 2}(E \cos (V)+1)}{\mathrm{U}^{2} \operatorname{SQRT}(\mathrm{P}) \mathrm{R}}$
(C52) RATSUBST( $\mathrm{P} / \mathrm{R}, 1+\mathrm{E} * \operatorname{COS}(\mathrm{~V}), \mathrm{D}$ (1);
(C53) CAPR:\%;
(D53) $\frac{2 \cos (\mathrm{I}) \mathrm{JM}^{3 / 2} \operatorname{SQRT}(\mathrm{P})}{\mathrm{C}^{2} \mathrm{R}^{4}}$
Because $\underset{p}{ } \cdot \underline{\dot{r}}=0$, the expression for $S$ from equation (13) is obtained as follows:
(C55) CAPS:-R*CAPR*E*SIN(V)/P;
(D55) $-\frac{2 E \cos (I) J M^{3 / 2} \operatorname{SIN}(V)}{\sigma^{2}}$
The final component of $a_{p}$, normal to the orbit plane, is obtained by forming the scalar product betweeh $\underline{W}$ and $a^{\text {a }}$ First of all we obtain the triple scalar product $W$. ( $\dot{\mathfrak{r}} \times \underline{J}$ ) and then evgluate $W$ with the knowledge from the two body problem that $\underline{W} \cdot \underline{h}=(\mu p)^{\frac{1}{2}}$. The MACSYMA evaluation follows.
(C64) ENTERMATRIX $(3,3)$;
ROW 1 COLUMN 1 WX;
ROW 1 COLUMN 2 WY;
ROW 1 COLUMM 3 WZ;
ROW 2 COLIJMN 1 DX;
ROW 2 COLUMN 2. DY;
KOW 2 COLUMN 3 DZ ;
ROW 3 COLUMN 1 0;
ROW 3 COLUMN 2 ;
ROW 3 COLUMN 3 J ;
MATRIX-ENTERED
(C65) DETERMINANT(\%) \$
(C66) RATSUBST $(1, \operatorname{SIN}($ NODE $) * * 2+\operatorname{COS}$ (NODE) $* * 2, \%) \$$
(C67) RATSUBST $(1, \operatorname{SIN}(0 M E G A) * * 2+C O S(O M E G A) * * 2, \%) \$$
(C68) RATSUBST( $1, \operatorname{SIN}(\mathrm{I}) * * 2+\operatorname{COS}(\mathrm{I}) * * 2, \%) \$$
(C69) RATSUBST $(1, \operatorname{SIN}(V) * * 24 \operatorname{COS}(\mathrm{~V}) * * 2 \%)$;

400

```
:
```

(C77) FACTORSUM(D69);
$(\mathrm{D} 77)-\frac{\operatorname{SIN}(\mathrm{I}) \mathrm{J} \operatorname{SQRT}(M)(\operatorname{COS}(O M E G A) \operatorname{SIN}(\mathrm{V})+\operatorname{SIN}(O M E G A) \cos (\mathrm{V})+E \operatorname{SIN}(O M E G A))}{\operatorname{SQRT}(\mathrm{P})}$
(C82) D77/SIN(I);
(C83) TRIGREDUCE (\%);
(C84) \%*STN(T);
(C85) RATSIMP (\%);
(C86) FACTORSUM(\%);
$(\mathrm{D} 86)-\frac{\operatorname{SIN}(\mathrm{I}) \mathrm{J} \operatorname{SQRT}(\mathrm{M})(\operatorname{SIN}(\mathrm{V}+\mathrm{OMEGA})+E \operatorname{SIN}(\mathrm{OMEGA}))}{\operatorname{SQRT}(\mathrm{P})}$
(C87) $\% * 2 * M / C * * 2 / R * * 3$;
(C88) $\%+6 * \mathrm{Cl}^{2} \mathrm{~S} Q \mathrm{RT}(\mathrm{M} * \mathrm{P}) * Z * J *(1+\mathrm{E} * \operatorname{COS}(\mathrm{~V})) / \mathrm{C} * * 2 / \mathrm{P} / \mathrm{R} * * 4$;
(C89) $\operatorname{ACTCRSUM}(\%)$ :
(D89) $-2 \operatorname{SIN}(\mathrm{I}) \mathrm{J} \mathrm{M}^{3 / 2}(\operatorname{SIN}(\mathrm{~V}+\mathrm{OMEGA})-3 \mathrm{E} \cos (\mathrm{OMEGA}) \cos (\mathrm{V}) \sin (\mathrm{V})$
$-3 \cos (O M E G A) \sin (V)-3 \mathrm{E} \sin (O \operatorname{ILGA}) \cos ^{2}(V)-3 \sin (O M E G A) \cos (V)$.
$+E \operatorname{SIN}(O M E G A)) /\left(C^{2} \operatorname{SQRT}(P) \mathrm{R}^{3}\right)$
(C91) D8G/SIN(I);
(C92) TRIGREDUCE (\%);
(C93) FACTORSUM $6 \%$ ) \$
(C9!) \%*SIN(I);
(D94) $\frac{\operatorname{SIN}(I) \int \mathrm{M}^{3 / 2}(3 \mathrm{ESIN}(2 \mathrm{~V}}{(\operatorname{OMEGA})+4 \operatorname{SIN}(\mathrm{~V}+\mathrm{OMEGA})+E \operatorname{SIN}(O M E G A))} \mathrm{C}^{2} \operatorname{SQRT}(\mathrm{P}) \mathrm{R}^{3}$
(C95) CAPW:\%\$

Now that $R, s$, and $W$ have been ohtalned, the variations in the -1 ements can be derived from eqquations (2) through (7). The. MACSYMA expression for de/dr In equation (3) is
(C4) $\operatorname{SQRT}(1-E * * 2) *(\operatorname{CAPS} * \operatorname{SIN}(V)+\operatorname{CAPS} *(R / P) *((1+(P / R)) * \operatorname{COS}(V)+E)) / N / A ;$
We perform some substitwions, and multiply by dt/dv to obtain le/dv as follows.
(C5) RATSURST (E/A,1-E**2,\%);
(C6) RATSUBST(S@PT (M/A**3),N,\%);
Now multiply by $d t / d v$.
(C7) \%*(R**2/SQRT (M*P));
-(C8) FACTORSUM(\%);
(D8) $-2 \cos (I) J \operatorname{SQRT}(M)\left(A \Psi R^{2} \operatorname{COS}(V)+A E P R \operatorname{COS}(V)-P R^{2}+A R^{2}\right.$ $\left.-A P^{2}\right) \operatorname{SIN}(V) /\left(A C^{2} P^{3 / 2} R^{2}\right)$
(C9) RATSUBST(P/(1+E*COS (V)), R,\%);
(C10) RATSUBST(N*A** $3 / 2$ ), SQRT(M) $\%$ );
(C11) RATSUBST (A* (1-E**2) , $\mathrm{P}, \%$ );
(D11) $\frac{2 \operatorname{COS}(I) I N \operatorname{SIN}(V)}{c^{2} \operatorname{SQRT}\left(I-E^{2}\right)}$
This is the final expression for de/dv.
We will illustrate one more MACSYMA derivation of a variation by determining $d \Omega / d v$ from equation (6).
(C41) R*CAPW*SIN(V+OMEGA)/N/A**2/SQRT (1-E**2)/SIN(I);
(C42) SUBr $T(S Q R T(P / \therefore), \operatorname{SQRT}(1-E * * 2, \%) ;$
(C43) \%*(K**2/SQRT (M*P));
(D43) $\operatorname{JMESN}(V+$ OMEGA $)(3 E \operatorname{SIN}(2 V+$ OMEGA $)+4 \operatorname{SiN}(V+O M E G A)+E \operatorname{SIN}(O M E G A)$
(C44) $j * M / A^{* *}(3 / 2) / C * * 2 / N / P * *(3 / 2) ;$
(C45) D43/\%;
(C46) TRIGREDUCE (\%) ;
(C47) FACTORSUM (\%);
(D47) $-(4 \cos (2(V+0 M E G A))+3 E \operatorname{ccs}(3 V+20 M F G A)+E \cos (V+20 M E G A)$ - $4 \mathrm{E} \cos (v)-4) / 2$
(C42) RATSUBST(A* (1-E**2), ${ }^{\text {P }, ~ D 44) ; ~}$

402
(C49) RATSUBSTT $(\mathrm{N} * * 2 * A * * 3, \mathrm{M}, \%$ );
(N49) $\frac{I N}{C^{2}\left(1-r^{2}\right)^{3 / 2}}$
(C50). RATEXPAND (D47);
(C51) D50/2;
(C52) RATEXPAND (\%);
(C53) $2 * \% *$ D49;
(ע53) $2 \mathrm{~J} N\left(-\cos (2(V+\mathrm{OMEGA}))-\frac{3 \mathrm{E} \cos (3 \mathrm{~V}+2 \mathrm{OMEGA})}{4}\right.$

$$
\left.-\frac{E \cos (V+20 \text { MEGA })}{4}+E \cos (v)+1\right) /\left(C^{2}\left(1-z^{2}\right)^{3 / 2}\right)
$$

This is the final expression for $\mathrm{d} / \mathrm{h} / \mathrm{dv}$.
A complete listing of the six derivatives follows.

$$
\begin{align*}
& \frac{d a}{d v}=0 \\
& \frac{d e}{d v}=2 n\left(1-e^{2}\right)^{-\frac{1}{2}} \frac{j}{c^{2}} \cos 2 \sin v \\
& \frac{d M_{0}}{d v}=\frac{2 n}{e} \frac{1}{c^{2}} \cos i \cos v \\
& \frac{d y}{d v}=2 n\left(1-e^{2}\right)^{-3 / 2} \frac{1}{c^{2}}[1 / 2 e \sin v+1 / 2 \sin (v+2 \omega) \\
& +\sin (2 v+2 \omega) 1-3 / 4 e \sin (3 v+2 w)] \sin i \\
& \frac{d \Omega}{d v}=2 n\left(1-e^{2}\right)^{-3 / 2} \frac{1}{c^{2}}[1+e \cos v-1 / 4 e \cos (v+2 \omega) \\
& \frac{d \omega}{d v}=-2 n\left(1-e^{2}\right)^{-3 / 2} \frac{1}{c^{2}}\left[3+\frac{\left(1+2 e^{2}\right)}{e} \cos (2 v+2 \omega)-3 / 4 e \cos (3 v+2 \omega)\right] \\
&
\end{align*}
$$

403

MACSYMA has produced expressions which can be integrated by inspection. The secular rates in the elements follow almost immediately.

$$
\begin{aligned}
& \dot{\omega}_{s}+\cos i \dot{\Omega}_{s}=-4 n^{2}\left(1-e^{2}\right)^{-3 / 2} \frac{j}{c^{2}} \cos i \\
& \sin i \dot{\Omega}_{s}=2 n^{2}\left(1-e^{2}\right)^{-3 / 2} \frac{j}{c^{2}} \sin i \\
&(d i / d t)_{s}=0 \\
& \dot{a}_{s}=0 \\
& \dot{e}_{s}=0 \\
& \dot{M}_{o s}=0
\end{aligned}
$$

The physical interpretation of these secular expressions is that the perifocal point regres es slowly for satellite motions in the same general direction as the rotation of the central body, and advances slowly for retrograde satellite motions. The line of nodes of the orbit always advances slowiy no matter what the value of the inclination angle. The sacular variations can be interpreted in terms of a slow dragging of an inertial coordinate system by the rotating central body. This ocsurs in general relativistic mechanics, but not in Newtonian mechanics where the angular momentum of the central body has no direct effect on the orbital motion. The differences between the two theories of motion are described very well by the example of this paper. The results agree with those obtained by Lense and Thirring (ref. 3).

## REFERENCES

1. Brouwer, D. and Clemence, G. M.: Methods of Celestial Mechanics, Academíc Press, 1961.
2. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, 1972.
3. Lense, Von 3. and Thirring, H.: ひ̈ber den Einflus der Eigenrotation der Zentralkörpar auf die Bewegurg der Planeten und Monde nach der Einsteinschen Gravitaifionsicheorie. Phyaik. Zeitschr., vol. XIX, 1918, pp. 156-163.


# N77-28:87 

SYMBOIIC COMPUTATION OF RECJRRENCE EQUATIONS Fok the chebyshey series solution of linear ode's*<br>K,O. Geddes<br>University of Waterloo, Waterloo, Ontario, Canada

## AESTRACT

If a ifnear ordinary differential equatina with polynomial coefifcients is converted into intagrated form then the formal substitution oi a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for ceriving the general recucrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.

## 1. INTRODUCTION

The most widely used methads for computing the numerical solution of an ordenary differential equation (ODE), in the form of etither an intial-value problem or a boundery-value problem, are diserete-varlable methods. That is to say, the solution is obtained in the form of discrete values at aelected points. Methods for computing an approxinate solution in the form of a continuous function (usually a polynomial or rational function) have recelved some attention in the literature. Probably the best kiown continuous-varlable method is the Lanczos taumethod (ref. 1) which is closely related to the Chebyshev sertes methods of Clenchaw (ref, 2) and Fox (ref, 3) for linear ODEs.

* This research was supported by the National Research Councfil of Canada under Grant A8967.


The Chebyshev method has also been used for a first-order non-linear ODE (refs. 4 and 5) but the method then requires iteration whereas it is a direct method in the case of linear ODEs. More recen:ly, the Chebyshev series method has been extended to the solution of parabolic patial differential equations (refs. 6 and 7).

The most extensive treatment of Chebyshev series methods is contained in the book by Fox and Farker (ref. 8). The basic approach is serieg substitution followed by the solution of resulting recurrence equations. ill of the authors treat the series substitution and generation of the recurrence equations as a hand computation prior to the application of a numerical procedure for solving the recurrence equations. Howevar, except for paritcalariy simple speciai cases, the generation of the recurrence equations is a tedious and error-prone hand manipulation which could well be programed in a language for symbolic computation. In this paper, procedures are described for generating the recurrence equations for arbitrary-order 1 near ODEs with polynomial coefficlents. There is no need to restrict the method to first and second order equations as previous authors have done. furthermore, the method can also be applied to problems containing indeterminates (for example, indeterminate initial conitions) and to efgenvalue problems. An attractive feature of the method is that the associated conditions may be of initial-value type, boundary-value type, or any 1 inear combination of function and derivative values at one or more pojnts.

The procedures described here have been implemented in the ALTRAN language (ref. 9). Once the recurrence equations have been generated their solution could, in the standara case, be accomplished by a numerical procedure roiher than a symbolic procedure. However, in the potentiallv powerful application of the method to problems cuntaining indeterminates a symbolic solution of the recurrence equations will sometimes be desired. Therefore this second phage has also been coded in the ALTRAN lavguage. The standard problem without indeterminates is obviously a prime candidate for a hybrid symbolic/numer!c computational procedure. In keeping with the potential desire for a symbolic solution, we restrict our attention to a cliss of problems Eor which the truncated Chebyshev series can be obtained by a direct method. Thus we consider only linear ODEs with polynomial coefficients. of courre, a Inear $O D E$ whose coefficients are rational functions could be converted to one with polynomial coefficients and therefore, in principal, the method can be applied to any linear ODE whose coefficients are lictions which can be appioximated well by rational functions.

The method assumes that the solution is desired in the interva) $[-1,1]$ (which means that a simple transformation of variables will be required, in general, before applying the method). The truncated Chedyshev series produced by the method is a near-miniolax polynomial approximation of the true solution to the problem. This is based on the fact that, for any function continuous in $[-1,1]$, the minima: error in the truncated Chaboshev serias of degree $n$ is never appreciably larger than the error in the best minimax Folynomial of degree $n$ (e.g. ref. 10). The goodness of the approximate
solution obtained therefore depends on the ability of polynomials to approximate the true solution. A more powerful class of approximating functions is the rational functions. Hopever, the computation of near-minimar rational functions would be best accomplished in the form of Chebyshev-Pade approximations (ref. 1i) which require, as an initial step, che generation of Cheby,ihev series coefficients. Thus the method discussed in chis paper is a basic building blook as well as a powerful method in its om right.

## 2. CONVERSION TO INTEGRATED FCRM

Consider an ordinary differential equation of order $v$ with poiynomial coefficients:

$$
\begin{equation*}
p_{v}(x) y^{(v)}(x)+\ldots+p_{1}(x) y^{\prime}(x)+p_{0}(x) y(x)=r(x) . \tag{1}
\end{equation*}
$$

We will temporarily ignore the $v$ associated conditions which would serve to specisy a unique solution oi (1). We seek a solution uf the form

$$
\begin{equation*}
y(x)=\sum_{k=0}^{\infty} c_{k} T_{k}(x) \tag{2}
\end{equation*}
$$

where the prime (') Indicates the standard convention that the first coefficient is to be halved and where $T_{k}(x)$ denotes the Chebyshev polynomial of the first kind:

$$
T_{k}(x)=\cos (k \arccos x) .
$$

If the reries (2) is substituted into the differential equation (1) then the left side of (1) can be expressed in the form of a Chebyshev serias. By expressing the right-hand-side polynomial $r(x)$ In Chebyshev form, wo can t. vate coefficients on the left and right to obtain an infinite set of linear equations in the unknowns $c_{0}, c_{1}, c_{2}, \ldots$ (ref. 8). There will be $v$ additional equations derived from the associated conditions.) This infinite ifnear system has the property that the lower triangular part is zerc except for a fev sub-diagonals and it therefore becones finite undar the assumption $c_{k}=0$ ( $k>$ kmax), for some chosen knax. This assumption must be valld, to within some absolute error tolerance, if the solution $y(x)$ is to have a convergent Chebyshev series expansion, Thus one may solve the llnear system, for increasing values of kniax, until some convergence criterion has been satisfied.

However, as is noted in reference 8, the linear system is much simpler if (1) is first converted to integrated form. This is because the series resulting from indefinite integration of (2) is much simplur than the series resulting from formal differentiation. Specifically, formal differentiation of (2) ylelds
while indefinite integration of (2) yields

$$
\begin{equation*}
f_{y}(x)=\sum_{k=1}^{\infty}(1 / 2 k)\left(c_{k-1}-c_{k+1}\right) T_{k}(x)+K \tag{4}
\end{equation*}
$$

(where F denotes an arhitrary constant). The end result is that in the infinite linear system derived from the integrated forp of the differential equation (1), each individual equation contains only a finite number of terms. In the original (ifferential) form, each individual equation in the infinite Iinear system is itself infinite. Thus a very substantial reduction in coaplexity is achieved by considering the integrated form. The coefficients are then specified as the solution of a finite recurrence relation (with nonconstant coefficients) rither than an infinite recurrence relation.

The derivation of the recurrence equation is described in detail in the next section. The following thecrem gives a formula for the polynomial coefficients of the integrated form of the order $v$ differential equation (1), in terms of the polynomials in the original torm. This formula for the new polynomials is readily incorporated into a pregram written in any of the computer languages for symbolic computation, since each new polynominl its specified explicitly as a linear combination of derivatives of the original polynomials (and the new right-hand sitce is obtained by integratiag the original right-hand-side polynomial). an induceion proof for Theorem 1 is given in reference 9 and is caitted here.

## Theorem 1:

The ordinazy differentiat equation (1) of order $v$ with polynomial coefficients $p_{Y}(x), \ldots . p_{0}(x)$ and right-hand-side polynomial $r(x)$ is equivalent to the integrated form

$$
\begin{align*}
q_{0}(x) y(x) & +\int q_{1}(x) y(x)+\ldots+\int f \ldots f q_{v}(x) y(x) \\
& =s(x)+K_{v}(x) \tag{5}
\end{align*}
$$

where the polynomial coefficients $q_{0}(x), \ldots, q_{v}(x)$ are given by

$$
\begin{equation*}
q_{m}(x)=\sum_{k=0}^{n_{i}}(-1)^{m-k}\binom{v-k}{m-k} p_{v-k}^{(m-k)}(x), 0 \leq m \leq \nu \tag{6}
\end{equation*}
$$

and where the right-hand-side polynomial $s(x)$ is given by

$$
\begin{equation*}
s(x)=\iint . . \iint x(x) \tag{7}
\end{equation*}
$$

In (5) - (7) the notation $K_{v}(x)$ denotes an arbitrary polynomial of degree $\nu-1$ arising from the constants of integration and the notations

$$
\int j \quad \therefore \quad \int f(x) \text { and } f^{(i)}(x)
$$

denote the results of appiying, respecively, indefinite integration itimes and formal differentiation $i$ times to the function $f(x)$.

## 3. GENERAI. FORM OF THE SECUFEENCE EQUATION

For an orditarv differential equation of order $ソ$ in the integrated form (5) we: seek a solution in the form of the Chebyahev series (2). Substititing (2) fato the left sile of (5) and removing the sumation sign and the $c_{k}$ out.side the integral signs yields

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k}\left\{q_{0}(x) T_{k}(x)+\int q_{1}(x) T_{k}(x)+\ldots+\iint \ldots \int q_{v}(x) T_{k}(x)\right\} \tag{8}
\end{equation*}
$$

an order to express (8) in the fort of a Chebyshev aeries (where the coefilcient of $T_{k}(x)$ will be a linear combination of $c_{i}$ ' $s$ '), the polyzomials $q_{0}(x), \ldots, q v(x)$ are converted into Chabyshev form. Then the following identities (ref. 8) are appiled:

$$
\begin{align*}
& T_{k}(x) T_{j}(x)=(1 / 2) T_{k+j}(x)+(1 / 2) T_{k-j}(x)  \tag{9}\\
& \int T_{i}(x)=(1 / 2(1+1)) T_{i+1}(x)-(1 / 2(1-1)) T_{i-1}(x) \tag{10}
\end{align*}
$$

where, for the monent, we may assume that $k$ i.s "large enough" in (9) and that 1 is "large enough" in (10) to avoid non-positive sibscripts. This transforms (8) into the following form, for $k$ large enough (i.e. neglecting the first few terms):

$$
\begin{equation*}
\sum_{k} c_{k}\left\{v_{0} T_{k+h}(x)+v_{1} T_{k+h-1}(x)+\ldots+v_{2 h} T_{k-h}(x)\right\} \tag{11}
\end{equation*}
$$

where the coefficients $v_{i}(0 \leq i \leq 2 h)$ are rational expressions in $k$ aris:ag Erom repeated applications of (S) and (10) and $h$ is some positive integer. Then changing the indices of summation in (11), separately in each term, converts (11) into a Chebysiev series of the following form (neglectin: the first few terms):

$$
\begin{equation*}
\sum_{k}\left\{u_{0} c_{k-h}+u_{1} c_{k-h+1}+\ldots+u_{2 h} c_{k+h}\right\} T_{\underline{k}}(x) \tag{12}
\end{equation*}
$$

where the coefficients $u_{i}(0 \leq i \leq 2 h)$ are rational expressions in $k$. The firs: few terms could be derived independently. Finally, by converting the right-hand-side poljnomial in (5) into Chebyshes form, we are ready to equete coefficients End solve for the $c_{1}$ 's. The coefficients of $T_{0}(x), \ldots, T_{y}-1(x)$ would not be equated becauge of the arbitrary term $K_{V}(x)$ appearing in (5). Instead the first $v$ equations would come from the associated conditions.

The following example will serve to illustrate. Consider the problem:

$$
\begin{align*}
& \left(1+x^{2}\right) y^{\prime \prime}(x)-y^{\prime}(x)+x y(x)=2-x^{2}  \tag{13}\\
& y(0)=0 ; y^{\prime}(0)=1 \tag{14}
\end{align*}
$$

The integrated form of (13) is, from (5) - (7),

$$
\begin{align*}
\left(1+x^{2}\right) y(x)+\int(-1-4 x) & y(x)+\iint(2+x) y(x) \\
& =x^{2}-(1 / 12) x^{4}+K_{2}(x) \tag{15}
\end{align*}
$$

Substicuting (2) into (15) and converting the polynomials into Chebyshev form yields

$$
\begin{align*}
\sum_{k=0}^{\infty} c_{k} & \left\{\left[(3 / 2) T_{0}(x)+(1 / 2) T_{2}(x) j T_{k}(x)\right.\right. \\
& +\int\left[-T_{0}(x)-4 T_{1}(x)\right] T_{k}(x) \\
& \left.+\iint\left[2 T_{0}(x)+T_{1}(x)\right] T_{k}(x)\right\} \\
& =(11 / 24) T_{2}(x)-(1 / 96) T_{4}(x)+K_{2}(x) \tag{16}
\end{align*}
$$

where some cunstant tems on the right have been absorbed into the arbitıary linear term $z_{2}(x)$. Appiying the identities (9) and then (10) yields, after much manipulation, the following form for the factor $\{$ ) in (16), for $k$ large encagh:

$$
\begin{align*}
& \left\{[8(k+2)(k+3)]^{-1} T_{k+3}(x)+\left(1 / 4-(k+2)^{-1}+[2(k+1)(k+2)]^{-1}\right) T_{k+2}(x)\right. \\
& +\left(-[2(k+1)]^{-1}-[8(k+1)(k+2)]^{-1}\right) T_{k+1}(x)+\left(3 / 2-[(k-1)(k+1)]^{-1}\right) T_{k}(x) \\
& +\left([2(k-1)]^{-1}-[8(k-1)(k-2)]^{-1}\right) T_{k-1}(x) \\
& \left.+\left(1 / 4+(k-2)^{-1}+[2(k-1)(k-2)]^{-1}\right) T_{k-2}(x)+[8(k-2)(k-3)]^{-1} T_{k-3}(x)\right\} \tag{17}
\end{align*}
$$

To obtain the general coefficient of $T_{k}(x)$ on the left side of (16), the index of sumation must be changed separately in each term of the iactor (17). Foi example, for the first term

$$
\sum_{k} c_{k}[8(k+2)(k+3)]^{-1} T_{k+3}(x)
$$

the desired change of index is $k+k-3$, which yields

$$
\sum_{k}[8(k-1) k]^{-1} c_{k-3} T_{k}(x)
$$

where again we are neglecting the first few temb 1 i the series. After changing the : dices of sumation appropriately, the left side of equation (16) becomes

$$
\begin{align*}
& \sum_{k}\left\{[8 k(k-1)]^{-1} c_{k-3}+\left(1 / 4-1 / k+[2 k(k-1)]^{-1}\right) c_{k-2}\right. \\
& +\left(-[2 k]^{-1}-[8 k(k+1)]^{-1}\right) c_{k-1}+\left(3 / 2-[(k-1)(k+1)]^{-1}\right) c_{k} \\
& +\left([2 k]^{-1}-[8 k(k-1)]^{-1}\right) c_{k+1}+\left(1 / 4+1 / k+[n k(k+1)]^{-1}\right) c_{k+2} \\
& \left.+[8 k(k+1)]^{-1} \sum_{k+3}\right\} T_{k}(x) . \tag{18}
\end{align*}
$$

Working out the first few terms using special cases (see section 4) of identitles (9) and (10), and obtaining the flrst two aquat lons from the wo associated conditions (14), we obtaln the follouing luifinte set of inear equations which define the Chebyshev coefficients of the solution function $y(x)$ :

$$
\begin{array}{rlr}
1 / 2 c_{0}-c_{2}+c_{4}-c_{6}+\ldots & =0 \\
c_{1}-3 c_{3}+5 c_{5}-7 c_{7}+\ldots & =1 \\
-5 / 24 c_{1}+7 / 6 c_{2}+3 / 16 c_{3}+5 / 6 c_{4}+1 / 48 c_{5} & =11 / 24  \tag{19}\\
1 / 48 c_{0}+0 c_{1}-17 / 96 c_{2}+11 / 8 c_{3}+7 / 48 c_{4} & \\
& +15 / 24 c_{5}+1 / 96 c_{6} & =0 \\
1 / 96 c_{1}+1 / 24 c_{2}-21 / 160 c_{3}+43 / 30 c_{4}+11 / 96 c_{5} & & \\
& +21 / 40 c_{6}+1 / 160 c_{j} & \approx-1 / 96
\end{array}
$$

The remoining equations are obtained by equating to zero the coefficient of $T_{k}(x)$ in (18), for $k=5,6,7, \ldots$. Note that (19) is a 7-diagonal system starting from the fourth equation.

In general, the dasirec Chebyshev coefficients satisfy a ( $2 \mathrm{~h}+1$ ) - term innear rezurrence equation of the form

$$
\begin{equation*}
u_{0} c_{k-h}+u_{1} c_{k-h+1}+\ldots+u_{2 h} c_{k+h}=0 \tag{20}
\end{equation*}
$$

where the coefficients $u_{i}$ are rational expressions $\ln k$. Equation (20) will be valid for $k \geq h$ except that the first few right-hand-sides may be nonzeru depending on the degree of the right-hand-side polynomial in (3). The value of $n$ depends on the order $v$ of the differential equation and on the degree of the left-hand-side polynomials in the integrated form (5). Tach appication of the product formula (9) and each application of the integr.adion formula (10) increases the value of $h$ by one. Lower and upper bounds in $h$ can be readily determined from the original order-v differential equation (1); namely, if maxdeg is the maximum of the degrees of the left-inand-side porynomials in (1) then

$$
\begin{equation*}
v \leq h \leq v+\text { maxdeg. } \tag{21}
\end{equation*}
$$

The first $v$ equations in the infinite linear system come from the associated conditions and will be equations containing an infinite number of terms. If $h>v$ then there will follow $v$-h "special" cases of the getieral. recurrence equation (20), with nonzero right-hand-sides in general, resulting from equating the coefficients of the terms $T_{V}(x), \ldots, T_{h-1}(x)$. The remaining linear equatioas result from equating the coefficients of $\mathrm{r}_{\mathrm{k}}(\mathrm{x})$, $k=h, h+1, \ldots$ and will all be in the form of recurrence eḍuation (20) except that there will be a few more nonzero right -nand-sides if

$$
\operatorname{deg}[s(x)] \geq h,
$$

where $s(x)$ is the right-hand-side polynowial in the integrated form $5:$

## 4. SPECIAL CASES OF THE RECURRENCE EQUATION

The derivation of the general recurrence equation (20) as described in section 3 is not difficult to implement in a symbolic language. We now consider the derivation of the "special" equations which require the application of modified versions of the product formula (9) and the integration formula (10). In other words, we now want to consider what happens when we drop the assumption that $k$ is "large enough" which was ass.red in the derivation of equation (20).

The product formula (9) is in fact correc for all values of $k$ and $j$ if the subscript $k-j$ is replaced by $|k-j|$. The irtegral formula (10) has a special form for tae cases $i=0$ and $1=1$, amely

$$
\begin{equation*}
\int T_{0}(x)=T_{1}(x) \text { and } \int T_{1}(x)=1 / 4 T_{2}(x) \tag{22}
\end{equation*}
$$

where an arbitrary constant of integration is implied. These special cases could be incorporated into a program for generating the recurrence equations but the cost of deriving each individual "special" equation would be approximately equal to the cost of deriving the one general equation (20). Fortunately, the form of the special equations can be deduced immediately from the general equation without extra work. Referring to the example in section 3 , the third equatica of (19) arises from equating coefficients of $T_{2}(x)$ in the transformed form of (16). Lf we "blindly" obtain the left-side coefficicnt of $T_{2}(x)$ by setting $k=2$ in the general formula the jracketed expression in (18)) we obtcin the equation

$$
\begin{align*}
1 / 16 c_{-1}+0 c_{0}-13 / 48 c_{1}+7 / 6 c_{2} & +3 / 16 c_{3}
\end{aligned} \begin{aligned}
& +5 / 6 c_{4} \\
& +1 / 48 c_{5} \tag{23}
\end{align*}=11 / 24 .
$$

If the negative subschipt is interpreted in absclute value - i.e. if we equate $c_{-1}$ with $c_{1}$ - then the $t^{\text {hird }}$ equation of (19) results. Our task is now to prove that this "rule" holds in general.

The main point is that negative subscripts may be carried throughout the derivation and their interpretation in absolute value may be postponed until the final step. Theor $2 m s$ 2, 3, and 4 below show that the "special" cases of the recurrence equation can be inmediately deduced from the general recurrence equation. Proofs of these theorems appear in refexence 9 and are omitted here. The proofs require careful attention to the symmetries involved in the tiansformations applied to convert (8) into (12).

## Theozem 2:

Identities (9) and (10) are valid when non-positive subscripts occur on the left and /or right in the sense that $T_{i}(x)$ represents $\left.T i\right|^{(x)}$.

The following simple example will clarify the application of Theorem 2. Consider the differential equation

$$
y^{\prime}(x)+y(x)=0
$$

or, in integrated form,

$$
\begin{equation*}
y(x)+\int y(x)=0 \tag{24}
\end{equation*}
$$

Substituting the series (2) into (24) yields

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k}\left\{T_{k}(x)+\int T_{k}(x)\right\}=0 . \tag{25}
\end{equation*}
$$

$f$ fplying formula (10) gives

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k}\left\{T_{k}(x)+(1 / 2(k+1)) T_{k+1}(x)-(1 / 2(k-1)) T_{k-1}(x)\right\}=0 \tag{26}
\end{equation*}
$$

The tnird term in brackets would cause trouble if we evaluated it for $k=1$ but we will never do so because we do not equate coefficients of $T_{0}(x)$. Continuing with the example, the next step is to change indices of summation in (26) yielding

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k} T_{k}(x)+\sum_{k=1}^{\infty}(1 / 2 k) c_{k-1} T_{k}(x)-\sum_{k=-1}^{\infty}(1 / 2 k) c_{k+1} T_{k}(x)=0 . \tag{27}
\end{equation*}
$$

414

Equating coefficients of $T_{k}(x)$ on the left and right of (27) gives the general recurrence equation:

$$
\begin{equation*}
(1 / 2 k) c_{k-1}+c_{k}-(1 / 2 k)=_{k+1}=0 \tag{28}
\end{equation*}
$$

For this first-order differential equacion we muot equate cofficiente of $T_{k}(x)$ foi $k \geq 1$. Theorem 2 gives a valid interpretation to (26) for each value of the index $k$ but we have yet to prove that (28) is valid when, for example, $k=1$. In this example, examination of the lower limits of sumation in (27, reveals that (28) is clearly valid for $k \geq 2$. The case $k=0$ will not be required. For $k=1$ (i.e. equating ejefficients of $T_{1}(x)$ ), the midale summation in (27) has a factor $1 / 2$ assoclated with the first term in its sum and the third sumation will contribute two terms to the coefficient of $T_{1}(x)$ namely, the terms with $k=-1$ and $k=1$. Thus the coefficient of $T_{1}(x)$ comes from the terms

$$
c_{1} T_{1}(x)+(1 / 2)(1 / 2) c_{0} T_{1}(x)-(1 / 2)(1 / 2(-1)) c_{0} T_{-1}(x)-(1 / 2) c_{2} T_{1}(x)
$$

The special form of the recurrel ce equation corresponding to $k=1$ should therefore be

$$
\begin{equation*}
1 / 2 c_{0}+c_{1}-1 / 2 c_{2}=0 \tag{29}
\end{equation*}
$$

But (29) is precisely the result of satting $k=1$ in the general recurrence equation (28).

The following two theorems prove that the left side of the general recurrence equation (20) is valia for all $k \geq 1$, in the sense that negative subscripts are tc be interpreted in absolate value. Recall that the left side of the general recurrence equation is citained by transformir.e (11) into (12). Sy Theorem 2, the range $\mathrm{C}^{*}$ the inder of summation in (11) may be taken to io 0 to $\infty$ (with the usuai "prine" on the summatior sj.gn as in (2)). Changing the indices of summation in the terms of (11) transforms (11) into. the for 1

$$
\begin{align*}
& \sum_{k=h}^{\infty} v_{0}(k \leftarrow k-h) c_{k-h} T_{k}(x)+\sum_{k=h-1}^{\prime \prime} v_{1}(k+k-h+1) c_{k-h+1} T_{k}(x) \\
& +\ldots+\sum_{k=-h}^{\infty} v_{2 h}(k+k+h) c_{i x+h} T_{k}(x) \tag{30}
\end{align*}
$$

where the notation $v_{i}(k \nleftarrow f(k))$ denotes, in an obvious way, an opcration os substitution in the rational expression $v_{1}$. Collecting terms, (30) takes the general form (12) where the new rational expressions $u_{i}$ are given by

$$
\begin{equation*}
u_{i}=v_{i}(k+k-h+i), 0 \leq i \leq 2 h \tag{31}
\end{equation*}
$$

Theorem 3 gives a symmetry property of the rational expressions $v_{\text {t }}$ and then Theorem 4 uses this sy mmetry property to prove the validity of the general recurrence for $k \geq 1$. In the substitution operations appearing in Theorem 3 , the symbol " = " is used in place of the symbol " $*$ " in order to emphasize the fact that they are arithmetic evaluations in contrast to the change of indices occurring in (30) and (31).

Theorem ?:
The rational expressions $v_{i}(0 \leqslant i \leq 2 h)$ appearing in (il) satisfy the following symmetry property:

$$
v_{i}(k=l)=v_{2 h-i}(k=-l), 0 \leq i \leq h
$$

for any value of $\%$.

## Theorers 4:

The expression (12), which defines tha general form of the recurrence equation, is valid for values of the $1 n d e x k \geqslant 1$ in the sense that negative subscipts are to be interpreted in absolute value.

Firally in this section, we mention the interpretation of the term $k=0$ in (12) which would be required in equating coefficients of $T_{0}(y)$. of course for any differential equation. (1) of order $v \geq 1$ the cecfficient cf $T_{0}(x)$ is undetermined because of the constants of integration. However, the method discussed in this paper cen be applied directly to a differential equation of order 0:

$$
\begin{equation*}
p_{0}(x) y(x)=r(x) \tag{32}
\end{equation*}
$$

in order to compute the Chebyshev series coefficients for an expilicit rational function $r(x) / P_{0}(x)$. In this case the coefficients of $T_{k}(x)$ on the left and right must be equated for all $k \geq 0$. The coefficient of $\mathrm{T}_{\mathrm{g}}(\mathrm{x}$ ) on the left of the transformed form of (32) is not that obtained by direct application of the general expression in (12):

$$
\begin{equation*}
u_{0}(k=0) c_{-h}+u_{1}(k=0) c_{-1}+1+\ldots+u_{2 h}(k=0) c_{h} . \tag{33}
\end{equation*}
$$

Rather, che correct coefficient of $T_{0}(x)$ comes from the last $h+1$ summations in (30) and it is

$$
\begin{equation*}
1 / 2 v_{h}(k=0) c_{0}+v_{h+1}(k=1) c_{1}+\ldots+v_{2 h}(k=h) c_{h} . \tag{34}
\end{equation*}
$$

Using (3i), (34) becomes

$$
\begin{equation*}
1 / 2 u_{h}(k=0) c_{0}+u_{h+1}(k=0) c_{1}+\ldots+u_{2 h}(k=0) c_{h} \tag{35}
\end{equation*}
$$

Comparice (35) with (33) we see that, for the special case $k=0$ in (12), the terms with negative subscripts must be 1 gnored and the term in $\varepsilon_{0}$ must have a factor $1 / 2$ associated with it.

## 5. SPECIFCATION OF THE PROCEDURES

Procedures for generating the general recurrence equation (20) for the differential equation (1) are specified in a pseudo-Algol algorithmic notation. Four basic "system" functions for polynomial manipulation are assured:

```
degree ( }p,x\mathrm{ ) - returns the degrve of the polynomial p in the indeterminate \(x\)
derivative (p,x,n) - returns the n-th derivative of the polynomial p
                                wlth respec: to the indeterminate *
coefficient (f,x,n) - returns the coefficient in the polynomial p of
    the n-th power of the indeterminate x
substitute (r,x,expr) - returns the result of substituting the
    expression expr for every occurrence of the
    Indeterminare x in the rational expression r.
```

A brief description of each procedure is given followed by the algorithmic specification.

## Description of the Rrocedures:

(i) Procedure generate_recurience.

```
Input parameters: v, p
Output parameters: recurrence_equqtion, h
```

The polynomials $p_{k}(0 \leq k \leq . i)$ in the diffarential equation (1) are passed into the procedure. It is assumed here that the indeterminate in these polynomials is $x$ and it is aiso assumed rhat the global array comb his been initialized such that
$\operatorname{comb}(i, j)=\binom{1}{j}$.
The indeterminate arrsys tk and ck are assumed; tk (j) is used to tepresent the Chebyshev poiynomial $T_{k+1}(x)$ wheye $k$ is as indeterminate and ck( $j$ ) is used to represent the term $c_{k+1}{ }^{k+1}$ in the general recurrence equation. $k$ appeara mily as an indeterminate $k+1$ in these procedures. On return, recurrences equation

"half-length" as defined by (20).
Each pass through the m-loop adds on term into factor, where the terms in factor are defined by the bracketed expression in (8). The first part cf the $m \rightarrow l o o p$ converts the given polynomials into the $m$-th polynomial of the integrated form, using Theorem i. Then follow procedure calls which implement the identities (9) and (10). Finally, the appropriate substitutions are performed to transform (11) into (12) which yields the general recurrence equation.
(2) Procedure chebyshev_form.

Irput parameters: $p$, degp
Output: the Chebyshev form of $p$ is returned
The polynomial $p$ of degree degp in the indeterminate $x$ is converted into Chebyshev form. It is assumed that the global array xpower has been initialized such that the element xpower(1) is the Chebyshev form of $x * * 1$, using an array of indetern: nates $t$ where $t(j)$ represents $T_{j}(x)$.
(3) Procedure product_tk_times.

Input parameters: $p$, degp
Gutput: the representation of $\dot{T}_{k}(x) * p$ is returned
The polynomial p of degree degp, assumed to be in Chebyshev form, is multiplied by the polynomial $T_{k}(x)$ by applying identity (9) to each term of $p$. The indeterminate arrays $t$ and ${ }^{k} k$ are as discussed above.
(4) Procedure integrate.

Input parameters: $\mathrm{p}, \mathrm{h}$
Output: tie representation of the integral of $p$ is retuinad
It is assumed titat $p$ is a linent combination of the elements tk ( $-h$ ) ,..., tk( $h$ ) where the meaning of the array tik is discussed above. The integral of $p$ is computed by applying identity (10) to each term of $p$.
proced.are generate_recurrence ( $v, \mathrm{p}$, recurrence_equation, $h$ )
degp * degree ( $p_{v}, x$ )
q \& chebyshev_form ( $\mathcal{V}_{v}$, degp)
factor $\leqslant$ product_tk_times $\{, \mathrm{deg} p)$
$h * \operatorname{degp}$
418
for $m=1$ step 1 until $v$ do
$q+p_{v-\mathbb{m}}-(v-\pi+1) \geqslant$ derivative $\left(p_{v-m+1}, x, 1\right)$
$\operatorname{sign}+-1$
fol $i=m-2$ step -1 until 0 do
sign $\leftarrow-$ sign
$q+q+\operatorname{sign} * \operatorname{comt}(v \cdot i, m-i) * \operatorname{derivative}\left(p_{v-1}, x, m-i\right)$
doend
degp + degree $(q, x)$
$q$ \& chebyshev.form ( $q$, deqp)
term + product_tk_times ( $q$, degp)
hnew - degp
for $1-1$ step 1 unt. 11 m do

```
        term & integrate (term,hnew)
        hnew & hnew + 1
```


## doend

factor $\leqslant$ factor + term
$h+\max (h, h n e w)$
doend
recurrence_equation -0
for $j=-\mathrm{h}$ step 1 untll h do
soef + coefficient (factor, tk(j),1)
-oef - substitute (coef, $k, k-j$ )
recurrence_equation + recurrence_equation $+\operatorname{coof} * \operatorname{ck}(-j)$
doend
end of procedure generate_recurrence
procedure chebyshev_form (p,degp)
newp $\leftarrow 0$
for $k=0$ step 1 until degr do
newp \& newp + coeffictent $(p, x, k) *$ xpower (k)
duend
return (newp)
end of procedure chebyshev_form
procedure product_t':_times (p,degp)
newp 40
for $j=0$ step 1 until degp do

```
newp + newf + coefficient (p,t(j),1)* (tk(j) + tk (-j))/2
```

doend
return (newp)
end of procedure product_tk_times
procedure Integrate ( $p, h$ )
newp -0
for $j=-h$ step 2 until $h$ do
newp $*$ newp + coefEICIen $:(p, t)(j), 1) *(t k(j+1) /(k+j+1)-(2 k(j-1) /(k+j-1)) / 2$
doínd
return (newp)
end of procedure integrate.

## 6. SAMPLE PROBLEMS

Reference 9 contains a listing of an ALTRAiv program which is an implementation of the prucedures in section 5 and also incluaes an implementation of a method for solving the recurrence equations. The progran will accept problems with indetarminates in the associated conditions and also with indeterninates in the differential equation itself. The solution of the recurrence equations is by a method of backward recurrence which obtairs a solution under the assumption $c_{k}=0$ for $k>k m a x$ where kmax is sperified. A strategy coule easily be inplemented for updating kmax until some desired alsolute accuracy is satisfied.

The following three sampie problems illustrate the application of the method.

Probiem.: (Standard Inithal-value problem)
$y^{\prime}=y ; y(0)=1$
Value of kmax: 10
Recurrence equarion generated:
$-(1 / 2 k) c_{k-1}+c_{k}+(1 / 2 k) c_{k+1}=0$
Maxinum absolute error in $c_{k}(0 \leq k \leq 10)$ :
$.11\left(10^{-7}\right)$
Size of last computed coafficient:
$c_{10}=.55\left({ }^{-9} 0^{-9}\right)$

## Problem 2: (Complicated boundary-value problem)

$\left(1+x^{2}\right) y^{\prime \prime}-y^{\prime}+x y=2-x^{2}$
$y(0)=1 ; y^{\prime}(0)+2 y(1)-1 / 2 y(-1)=0$
value of kmax: 10
Recurrence equation generated:

```
\(1.8 \mathrm{k}(\mathrm{k}-1) \mathrm{c}_{\mathrm{k}-3}+(1 / 4-1 / k+1 / 2 k(k-1)) c_{k-2}\)
\(-(1 / 2 k+1 / 8 k(k+1)) c_{k-1}+(3 / 2-1 /(k-1)(k+1)) c_{k}\)
\(+(1 / 2 k-1 / 8 k(k-1\rangle) c_{k+1}+(1 / 4+1 / k+1 / 2 k(k+1)) c_{k+2}\)
\(+1 / 8 k(k+) c_{k+3}=0\)
```

Size of last computed coefficient:

$$
c_{10}: .34\left(10^{-5}\right)
$$

Problem 3: (Indeterminate initial conditions)

$$
\begin{aligned}
& \left(1+x^{2}\right) y^{\prime \prime}-y^{\prime}+x y=2-x^{2} \\
& y(0)=\mu_{1} ; y^{\prime}(0)=\mu_{2} \\
& \text { Value of kmax: } 10
\end{aligned}
$$

Recurrence equation generated: same as problem 2 .
Remark: Each $c_{k}$ is a bilinear polynomial of the form

$$
c_{k}=a_{k} \mu_{1}+b_{k} \mu_{2}+d_{k}, \text { for constants } a_{k}, b_{k}, d_{k}
$$

Size of last computed coefficient:

$$
c_{10}=.45\left(10^{-5}\right) \mu_{1}+.20\left(10^{-5}\right) \mu_{2}+.24\left(10^{-6}\right)
$$

## Sumpary of Timing Statistics:

The following table gives the executici times for these three proslems on a Honeywe11 66/60, where:
$T_{1}=$ time, in seconds, to generate the general recurrence cquation:
$T_{2}=t i m e$, in aeconds, to solve the equations for $c_{k}(0 \leq k \leq 10)$.

|  | $T_{1}$ | $T_{2}$ |
| :---: | :---: | :---: | :---: |
| Probiain 1: | 4 | 10 |
| Problem 2: | 160 | 80 |
| Problem 3: | 160 | 73 |

422

## REFERLNCES

1. Lanczos, C.: Applied Analysis. Prentice-Hall, Inc., 1957.
2. Clenshaw, C.W.: The Numertal Solution of Ltnear Difierential Equations In Chebyshev Series. Proc. Cambridge Phil. Soc., vol. 53, pt. 1, Jan. 1957, FP. 134-149.
3. Fox, L.: Chebyshev Methods for Ordinary Differ antial Equations. Computer J. vol. 4, no. 4, Jan. 1962, pp. 318.331.
4. Nortion, H.J.: The Iterative Solution of Nonlinear Ordinary Differential Equations in Chebysher Series. Computer J., vol. 7, no. 1, Apr. 1964, pp. 76-85.
5. Lewanowicz, S.: Solution of a First-urder Nonlinear Differentia. Equation in Chebyshev Series. Zastusot. Mat., vol. 15, no. 2, li?s, pp. 351-268.
6. Knibs, D.: The Numerical Solution of Parabolic Partiai Differential Equations Using the Method of Lanczos. J. Inse. Math, \& Its Appl., vol. 11, no. 2, Apr. 1973, pp. 181-190.
7. Dew, P.M.; and Scraton, P.E.: Chebysliet Methods for the Numerical Solution of Parabolic Partial Differential Equations in Two and Three Space Yariables. J. Inst. Math. : Its Appl., vol. 16, no. 1, Aug. 1975, pp. 121-131.
8. Zex, L.; and Parker, 1.B.: Chebyshev Polynominls in Numertcal Analyois. Oxford Unxv. Prea3, Inc., 1968.
9. weddes, K.O.: ALTRAN Procedures for the Chebyshev Series Solution of Linear ODE's. Kes. Rep. CS-77-05, Univ. Waterloo, Feb. 1977.
10. Powel1, M.J.L.: On the Maximum Errors of Polynomial Approximations Defined by Interpolation and By Least Squares Criteria. Computer J., vol. 9, no. 4, Feb. 1967, pp. 404-40\%.
11. Gragg, W.B.; Johnson, G.D.: The Laurent-Pode Table. Proceefings of the 1974 IFIP Congress, pp. 632-637.


$$
\sin (x)^{* *} 2+\cos (x)^{* *} 2=1^{+}
$$

David R. Stsutemyer
University of Hawa: i

ABSTRATT
This is a chronicle of manifold attempts to achieve tasteful automatic employment of the identities $\sin ^{2} x+\cos ^{2} x \equiv 1$ and $\operatorname{cosb}^{2} x-\sin ^{2} x \equiv 1$, in a manner which truly minimizes the complexity of the resulting expression. Aft.er describing the gisappointments of trigonometric reduction, trig nometric expansion, pattern matching, Poisson ser'es, and Demoivre's theorem, the author reveals how he achieved his goal by the method of comparative combinatorial substitutions.

## INTRODUCTION

It is no coincidence that the spectre of the identity

$$
\begin{equation*}
\sin ^{2} x+\cos ^{2} x \equiv 1 \tag{1}
\end{equation*}
$$

is raised in many papers on computer aigebraic stmplification, such as referencs 1,2 , and 3 . This is a well-known identity, with especially frequent opportunities for employment. - The identity

$$
i^{2}=-1
$$

is perhaps the only one that enjoys greater use. However, the former dues not share the univariate binomial property of the latter, making a profound difference in the ease of their effective routine use in computer algebra.

Identity (i) and its hyperbolic connerpart

$$
\begin{equation*}
\cosh ^{2} x-\sinh ^{2} x \equiv 1 \tag{2}
\end{equation*}
$$

are merel." the simplest cases of an infinite set of such identities, but i will sonfine my attention to these two identities becausa:

1. To my knouledge, none of the Existing computer algebra syspatis provides a totally satisfactory bullt-in amployment of even thase two identities.
2. Until these two identities can be treated satisfactorliy, why worry about the others.

[^1]3. In a cercain sense, these identities most concisely convey the central facts concerning their constituents: The sine and cosine are dependent, as axe their hyertolic courterparts. The other trigonometris and hyperbolic identities are partly mere re:terations of these facts.
4. I conjecture that dramtic opportunities for these two identities far outnumber these foi any other two such trigonmetric or hyperbolic identities--perhaps even all of the oner suci identities combined. Many engineering and science rabs utili.o sin, cos, sinh, or cosh, raised only to modest $\because$. ns, with arguments that are mere indeterminates, such as $\theta$, o a product of simple coeffisients and indeterminates, such as wt or $2 \pi x$. For sich expressions, application of the few applicable identities other than identities (1) or (2) is most likely $o \mathrm{o}$ increase the complexity of the expression, as we shall see.
5. A failure to exploit identities (1) or (2) is mare noticeabie wan a failure to exploit more esoteric identities, Uncomitted computer-algebra candidates sare quick to notice examples wiere they can outperform a computer-algebsa system. Unfortinately, many tho might enjoy and benefit 17 cm computer algebra are subject to the all-tco-prevaiant human tendency to sumarsly dismiss aew opportunities on the basis of a hastily-formed first impression. However, perhaps the scoffer's scorn is somewhat deserved. Is it not, embarrassing thas computer-aigebra systems that car do such an elegant fob of factoring and integration cannot exploit one of the few identities that origonometry rtudunte are likely to remember.

I was unconcerned with surh matters until I first suffered at the lands of $\sin ^{2} 2+\cos ^{2} x$. It happened during the testing of a fortheoming moregeneral tensor version of the vector curvilinear-components function described *in reference 4. - To make a long story less long, the components of the secundkind Christoffel symol are computed from those of the contravariont metric tensor and the first-kind Christotrel aymbol. These in twrn are cometed from those $u$ the covariant uetric tensor, which are $I_{\text {t }}$ turn comphised from those of the Jacokian matrix, which are computed from the transformation from curvilinear to rsotangular cartesian compnents. Durirg all of these computations, there aie offen cpportunities to employ identities (1) ard (2) when the coordinate transformation involvea trigonometric ans hyperbolie functions, as do many of the classic orthogonal curvilinear coordinates. Aetunlly, "obligations" is a nore approprinte word than "cpporturitites" here, because is all auch upporiunitiea were not expleited as soon as they arose, the compu. tation frequently could not he completed because of storage exhaustion or computing times tinat had passed the bounds of decency, with no end in a!ght. The objecilve was to make the entire computation utomatic, untouched ay human hands. This ejective necessitates a simplifier which exploits one or more instanees of lematitios (i) and (2) in all of thelr guises, with differing arbitrary subexpressio 3 as the arguments of the trigenometric and hyperbolic functions.

Given a transformation from curvilinear coordinates $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ to Cartesian coordinates $x_{1}, x_{2}, \ldots, x_{m}$, with $m>n$ :

$$
\begin{equation*}
x_{j}=f_{j}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right), \quad(j=1,2, \ldots, m) \tag{3}
\end{equation*}
$$

it was desired to compute the Jacobian matrix A, with elements

$$
\begin{equation*}
a_{i j}=\frac{\partial_{j}}{\partial \theta_{i}} \quad(i=1,2, \ldots, n) . \tag{4}
\end{equation*}
$$

From this, the components of the covariant metric tensor are computed as those of the matrix product

$$
\begin{equation*}
G=A A^{T} \tag{5}
\end{equation*}
$$

The desired second-kind of Christoffel symbol involves linear combinations of the derivatives of $G$ and the inverse of $G$, but a general need for automatic trigonometric-hyperbolic simplification was already evident in the results of expression (5) and sometimes even expression (4).

Of the 12 classic orthogonal coordinate systems reported, the coordinate transformations of 8 involve either trigonometric functions, hyperbolic functions, or joth. Relatively simple instances of those 8 are

Spherical:

$$
\begin{aligned}
& x=r \sin \theta \cos \phi, \\
& y=r \sin \theta \sin \phi, \\
& z=r \cos \theta \\
& \text { El_iptic } \operatorname{cylindrical}: \\
& x=a \cosh u \cos v, \\
& y=a \sinh u \sin v, \\
& z=z .
\end{aligned}
$$

For orthogonal coordinates, $G$ in expression (5) should simplify to a diagonal matrix.

General use of the built-in fractional-power simplifier, RADCAN, was necessary because 2 of the 12 reported coordinate transformations involve square roots and because for vector analysis the square roots of the diagonal elements of $G$ ase computed.

Using RADCAN alone, it required 2.2 seconds for spherical coordinates and 1.4 seconds for elliptic cylindrical coordinates to compute $G$ matrices that were inadequately simplfied. For example, some off-diagonal elements did not
simplify to zero in spherical coorainctes, and the following values were somputed for $\sqrt{g_{11}}$ in spherical and elliptic-cylindrical coordinates respectively:

$$
\begin{gather*}
\operatorname{sqrt}\left(\sin ^{2} \phi+\cos ^{2} \phi\right) r \sin \theta  \tag{E}\\
a \operatorname{sqrt}\left(\cosh ^{2} u \sin ^{2} v+\sinh ^{2} u \cos ^{2} v\right. \tag{7}
\end{gather*}
$$

RADCAN alone is clearly inadequate. The lack of off-diagonal zerorecognition had particularly disastrous effects on the computed inverse of $G$ and on the somputed Christoffel symbols. Indeed, it often led to storage exhaustion or patience exhaustion during these subsequent calculations.

A perusai of the MACSYMA manual suggests TRIGREDUCE as the obvious candidate for overcoming these problems, and TRIGREDJCE can indeed exploit the syntactically most obvious guises of identities (1) and (2). Fowever, corresponding to expressions (6) and (7), this technique gave

$$
\begin{gather*}
\frac{i r \operatorname{sqrt}[\cos (2 \theta)-1]}{\operatorname{sqrt}(2)},  \tag{8}\\
\frac{i c \operatorname{sqrt}[\cos (2 v)-\cosh (2 u)]}{\operatorname{sqrt}(2)}, \tag{9}
\end{gather*}
$$

using 10.4 and 4.5 seconds respectively. hpparently TRIGREDUCE also combines products of trigonometric or hyperbolic functions into corresponding functions of multiple angles, which is more than we want. Other coordinate systems revealed that TRIGREDUCE also combines prociucts ois such function; of different arguments into such functions of sums, which is even less desirable in our circumstances.

This suggests following TRIGREDUCE with TRIGEXPAND, wo undo these undesired multiple-angles and angle sums. TRIGEXPAND will not expand 1 into $\sin ^{2} \theta+\cos ^{2} \theta$, so we hope for some net simplification from this apprusimately inverse pair. This pair sas followed by RADCAN, for its rational and fraccional-power simplification. Although this strategy helped for some coordinate systems, corresponding to expressions (6) and (i) this technique gave

$$
\begin{gather*}
\frac{r \operatorname{sgrt}\left(\sin ^{2} t-\cos ^{2} \theta+1\right)}{\operatorname{sqr} i(2)}  \tag{10}\\
\frac{a \operatorname{sqrt}\left(\sin ^{2} v-\cos ^{2} v+\sinh ^{2} u+\cosh ^{2} u i\right.}{\operatorname{sqrt}(2)} \tag{11}
\end{gather*}
$$

using 4.9 and 4.1 seconds respectively. Clearly this strategy is still far fromideal.

Undainted, I next tried using the pattern mescher as follows: MATCHDECLARE (XTRUE, TRUE) $\$$ TELLSIMPAFTER (SIN (XTRUE) $\uparrow 2+\operatorname{COS}(X T R U E) \uparrow 2, ~) ~ \$$. TELLLSIMPAFTER (COSH (XTRUE) $\uparrow 2-\operatorname{SINH}(X T R U E): 2,1) \$$

428

This technique failed to simplify some of the spherical-coordinate off-diagonal elements to zero. Also, corresponding to expressions (6) and (7), t: is technique gave

$$
\begin{gather*}
r \sin e  \tag{12}\\
a \operatorname{sqrt}\left(\cosh ^{2} u \sin ^{2} v+\sinh ^{2} u \cos ^{2} v\right) \tag{13}
\end{gather*}
$$

The patterns are evidently unable to operate together to simplify $\cosh ^{2} u \sin ^{2} v+\sinh ^{2} u \cos ^{2} v$ to $\sin ^{2} v+\sinh ^{2}:$ Al so orher coordinate systems revealed that the two terms of each pactern are not treated symmetrically. Under the internal ordeling, one of each pair is considered to be the "leading variable", which lends a bias towards terms of one type. For example, the expression $\sin ^{2} x$ is transformed to $1-\cos ^{2} x$.

More desperate then, I couli no longer postpone learning about Poisson series, which are canonical and effioient. In the suite of MACSYMA Poisson functions, OUPOFPOIS seemed more appropriate. However, the line print revealed some serious restrictions on the allowable arguments of this function. Some, such as the restriction to trigonometric arguments that are linear combinations of indeterminates, with integer coefficients, are fundamental oo the nature of Foisson series. Others, such as the limitation to single-precision integers and indeterminates in the trigonometric arguments with names chosen
 mentation. Clearly these restrictions are too severe to permit direst autumatic use of OUTOFPOIS from within the curvilinear coordinates fusction. Nevertheless, if Poisson simplification did the right thing, I was willing ts write a front-end filter which feeds OUTOPOIS only those portions ef an expressior which, with indeterminates temporarily renamed appropriately, meet the restrictions. Aithough OUTOFPOIS does not perform hyperbolic simplifisation, I was willing to take what I could get, and I had hopes for using a trick such as replacing cosh $x$ with cos(ix). However, before investing all of this effort, I tried renaming the coordinate variables manually, then using

$$
\operatorname{TRIGSIMP}(U):=
$$

(U: RATSIMP(U),

$$
\text { OITOFPOIS(NUIT(U))/OUTOFPOIS(DENOM(U))) } \$
$$

Corresponding to expressions (6) and (7), this technicue gave

$$
\begin{gather*}
\frac{i \operatorname{sqrt}(2) r \operatorname{sqrt} \cos (2 u)-1]}{2}  \tag{14}\\
a \operatorname{sqrt}\left[\left(\sinh ^{2} u-\cosh ^{2} u\right) \cos (2 v)+\sinh ^{2} u+\cosh ^{2} u\right] / \operatorname{sqrt}(2) \tag{15}
\end{gather*}
$$

rsing 3.5 and 2.1 seconds respectively. Again we see that the simplification is too drastic, indiscriminately replacing products and powers of trigonometric functions with trigonometric functions of maltiple angles and sums. This may be ideal for series approximations to periodic solutions of equations, but it is not ideal for all trigonometric situations. A lovely arswer such as $\sin ^{9} x$, for example, will be converted to a 1 expression truly ugly to behold.

Neverth :less, I think that the above-mentioned front-end filter would be worthwhile in nany situations.

At this point, casual perusal of the manual was replinced with an incensive study, which revealed that using EV(..., EXPONENTIALIZE) will convert the trigonometric functions to complex exponentials, which can then be simplified with RADCAN, after which EV(..., DEMOIVRE) converts complex exponentials co sines and cosines. A final RADCAN then gives any spurious "i"'s an opportunity to cancel. Corresponding to expressions (6) and (7), this technique gave

$$
\begin{align*}
i r & \operatorname{sqrt}\{[\sin (2 \theta)+i \cos (2 \theta)] \sin (4 \theta)+!\cos (2 \theta) \\
& -i \sin (2 \theta)] \cos (4 \theta)-2 \sin ^{2}(2 \theta)-i \sin (2 \theta) \\
& \left.-2 \cos ^{2}(2 \theta)+\cos (2 \theta)\right\} / 2, \tag{16}
\end{align*}
$$

$$
i \text { a } e^{-u} \operatorname{san} t\left\{\left[e^{2 u} \sin (2 v)+i e^{2 u} \cos (2 v)\right] \sin (4 v)+\left[e^{2 u} \cos (2 v)\right.\right.
$$

$$
\left.-i / e^{2 u} \sin (2 v)\right] \cos (4 v)+\left(-e^{4 u}-1\right) \sin ^{2}(2 v)-i e^{2 u} \sin (2 v)
$$

$$
\begin{equation*}
\left(-e^{4 u}-1\right) \cos ^{2}(2 v)+e^{2 u} \cos (2 v!\} / 2 \tag{17}
\end{equation*}
$$

usi/k 37 and 16.7 secones respective'.y.
The multiple angles were unforeseen, so I tried inserting a TRIGEXPAND between the DKMOIVRE and final RADCAN. Corresponding to expressions (6) and (7), this technique geve

$$
\left.\begin{array}{rl}
r & \operatorname{sqrt}\left[\sin ^{6} \theta-2 i \cos \theta \sin ^{5} \theta+\left(\cos ^{2} \theta+2\right) \sin ^{4} \theta-4 i \cos ^{3} \theta \sin ^{3} \theta\right. \\
& \left(-\cos ^{4} \theta+4 \cos ^{2} \theta+1\right) \sin ^{2} \theta+2 i \cos \theta-2 i \cos ^{5} \theta \sin \theta-\cos ^{6} \theta \\
& +2 \cos ^{4} \theta-\cos ^{2} \theta / / 2
\end{array}\right)
$$

using 32.4 and 20.3 seconds respectively.
Nox I : zalize that $\in$ ven if the occursences of imaginary $i$ all. disanpeared, this process is much like the Poisson simplification -- too drastic for my purposes.

The MACSYMA priner (reference 5) mentions all of the above techniques, except using REALPART where I used DEMOIVRE, which gives equally disappointing
results for this application.

Resclved now to writing my own irig-hyperbolic, simplirication function, I first. tried the following: 430
$\operatorname{TRIGSJMP}(\mathrm{J}):=$
(U: RADCAN(U),
TRIGPOLYSIMP(NUM(U))/TRIGPOLYSIMP(DEMOM(U))) \$
TRIGPOLYSIMP(U):= BLOCK ([L],
Make a list $I$ of all unique rubexpressions
which occur as the arguments of both $\sin ^{m}$ and $\cos ^{n}$, with $n, n \geq 2$,
FOR X IN L DO $U$ : REMATNDER( $U, \operatorname{SIN}(X) \uparrow 2+\operatorname{COS}(X) \uparrow 2-1)$,
Perform a similar massage for $\sinh$ and $\cosh$,
U) $\$$
Corresponding to expressions (6) and (7), this technique gives $r \sin \theta$,
$i a \operatorname{sqrt}(\cos i-\cosh u) \operatorname{sqrt}(\cos v+\cosh u)$,
using 2.6 and 3.2 seconds respectively.
Within TRIGPOLYSIMP, using RATSUBST( $1, \operatorname{SIN}(x) \uparrow 2+\operatorname{COS}(x) \uparrow 2, U$ ) instead of FEMAINDER (U,SIN(X) $2+\operatorname{COS}(X)+2-1$ ), and similariy for iuentity (2) gives rirtually identical results.
At the expense of missing opportunities such as replacing $1-\cos ^{2} x$ by $\sin ^{2} x$, checking for the presence of both $\sin ^{m}$ and $\cos ^{n}$ removed most of the bias present in the pattern-matching; alternative. As revealed by expressions (20) and (21), this technique does an adequate job for these two coordinate systems, , though $\sin ^{2} v+\sinh ^{2} u$ is slightiy preferable to $\cos ^{2} v-\cosh ^{2} u$ for computational and esthetic reasons. (I regard " + " as slightly simpler than "-".) This technique also did an adequate.job for the other tested coordinate systems, so it is not clear to ne now why I looked further. Perhaps it was because I knew that the technique as still too drastic for many purposes. For example, a lov, answer such as $\sin 9 x+\cos 9 x$ is replaced by an expression toc obscene to list, here.
A way to very nearly reiain symmetry and to 2 void an increase in axpression complexity is to compare the complexities of the expressions obteined by ritionally substituting $1-\cos ^{2} x$ for sin 2 , iy rationally substituting $1-\sin ^{2} x$ for $\cos ^{2} a$, and by substituting neither, for eack relevant species of $x$ in the expressior. Naturaliy, similar comparisons are done for cosh and sinh. For these comparisons, the least complex nandiaate wins, with ties rroken in an arbitrary asymmetric manner. The complexity function can be derigned to reflect the user's value judgoments. For simplicity, I defined the complexity as the length of an expression, with the length of a MAPATOM as 1 and the length of a complete subexpression as 1 plus the sum of the lengths of the uperands. However, the built-in LISP function ?STRING was a faster length measure, probably becuuse it is a compiled LISP function rather than an interpreted MAUSYMA function.

The technique then is to replace the above TRIGPOLXSIMP with a function that makes a set of elements, with each element being, for a unique argument $x$, a set cortaining $\sin x, \cos x$ or both, excording to which of these occur to at least the second power. Analogous elements are also included for cosh and sinh. Then, the appropriate substitutions are successively tried, retaining at each stage the expression with shorter length. Corresponding to expressions ( 6 ) and (7), this "comparative sequential substitutions" tecmique gave

$$
\begin{gather*}
r \sin \theta  \tag{22}\\
a \operatorname{sci}^{\operatorname{rit}}\left(\cosh ^{2} u \sin ^{2} v+\sinh ^{2} u \cos ^{2} v\right) \tag{23}
\end{gather*}
$$

using 5.6 and 6.5 seconds respectively. Unfortunate $\%$ y inis technique misses opportunities euch as replacing $a \cos ^{2} u \sinh ^{2} v+a \sin ^{2} u \cosh ^{2} v$ by $a\left(\sin ^{2} u+\sinh ^{2} v\right)$. This example requires replacing $\cos ^{2} u$ by $1-\sin ^{2} u$ and $\cosh ^{2} v$ by $1-s^{i n h}{ }^{2}$, but either alone temporarily lengthers the expression, causing the combination to be overionked.

This phenomenon suggests trying all combinations of feasible substitutions, taking the shortest of thyse results. Corresponding to expressions (6) and (7), this "comparatire combinatorial substitutions" technique gives

$$
\begin{gather*}
r \sin \theta  \tag{24}\\
a \operatorname{sqrt}\left(\sin ^{2} v+\sinh ^{2} u\right) \tag{25}
\end{gather*}
$$

using 7.1 and 7.6 seconds respectively.
Of course the computing time would grow dramatically with the number of distinct spectes of $\sin x, \cos x, \sinh x$, and $\cosh x$ that occur to at least the second power, but the computing time grows even more damatically when less-than-optimally simplified expressions are used for subsequent calculation o? the Christrefel symbcl components. Also, the combinatorial comparisons are organized in a manner to share some common substitutions between candiaates and to eliminate some candidates before computing all of them -- sort of a depth-first substituition and comparison. Moreover, we cre dealing with situations where there are not meny distinct species. If the combinatorial growth was with respect to the number of terms rather t? an the number o: epectes, this algorithm would be less practical for this tansor application.

Of the various techntques, I am hapiest with this last one of comparative combinatorial substitutions. However, I expect to remain content oniy until I suffer at the hands of an example such as

$$
\text { mess }+2 \sec ^{2}-\tan ^{2} x
$$

which would most esthetically transform to

$$
1+\operatorname{mess}+\sec ^{2} x
$$

or an example such ais

$$
\left(\text { mess }+\sin ^{2} x+\cos ^{2} x\right)^{1000}
$$

which for most purposes is best replaced by
$(\text { mess }+1)^{1000}$.
Thus, it $m$ ght be useful to fudicionsly utilize all 12 srigonometric and hyperbolic functions, together with an inside-out utilization of TRIGPOLYSIMP cri all sums, rather than merely the top-level numerator and denominator.

## CONCLUSIONS

I have come to regard identities (1) and (2) as a blessing rather thin a curse. The ability io use variou: judicious combinations of dependent trigonometric and dependent hyperbolic functions often permits a far more compact and understandable answer than is possible when such side relations are not present. The urge to canonicalize in a straightforwaid fashion can preclude some of these opportunities. It is possible and sometimes necessary to automatically exploit the types oi non-canonical simplifications described here.

## ACKIYOWLEDCMENTS

I thank David Barton, Richard Bogen Richard Foteman, Daffay Goiden, Joel Moses, Stavros Mecrakis and Richard Zippel for their assistance during various stages of my quest.

## REFERENCES

1. Fateman, R.J.: Essays in Algebraic Simplification, Harverd Ph.D. Thesis and MIT Project MAL Technical Report 95, 1972.
2. Hearn, A.C.: The Computer Solution of Algebraic Problems by Pattern Matching, University of Utah Computational Physics Report 8, 1971.
3. Moses, J.: Simplification - A Guide for the Perplexed, Commications of the ACM, August 1971.
4. Stoutemyer, Lavid R.: Symbclic Comruter Vector Ansiysis . Proceedings of the 2977 MACSYMA 'Jsers' Conference, NASA CP-2012, 1977. (Paper no. 43 of this compilation.;
5. Mathlab Group: MACSYMA Primer, Project MAC, MIT, 1975.
 An inportant facility for a computer symbolic matherratics system is matrix computation. CSYMA provides many built-in facilities for manipulating matrices. The matrices may have numerical or symbolic entries. This $r$ z.ns matrix elements may involve indeterminates and furstional expressions. Computations will be dore exactly, keeping symbols as symbols. The purpose of this article is to describe these matrix facilities, to explain their use atd to give some idea as to the algoritnms or procedures used.

In section 2 the question of how to form a imatrix and how to create cther matrices by transforıning existing matrices within MACSYMA ts addressed. Arlthmetic and other computation with matrices is discussed in section 3. The user control of computational processes through the use of OPTION VARIABLES is indicated in section 4. In sections 5 and 6 two algoithms designed specially for sparse matricta are given. Section 7 compares the computing times of several different ways to compute the determinant of a matrix.

## FORMING AND TRANSHORMINC MATRICES

Matrices are crezied in MACSYMA by entering a new mairix, making transformation on an existing matrix or collecting elements of an array or coefficients of a set of linear equations. To enter a matrix, fir example,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

one just types MATRIX ([A, Bl. [C,D]). If the matrix is large and one wishes to type the entries one at a time then the command A:ENTER( $m, n$ ); can be used. The integers $m$ and $n$ are the dimensions of the matrix to be ensered. Sometimes the value of an entry can be expressed as a function of the zow and column indexes. Iis this case the command GENMATRiX which generates a matrix from a MACSYMA arny is useful. For instance, if an $m x n$ matrix $A$ is needed with $A_{i j}-i / j$, one first defines an array $B$ by Bil,jk= if Then the command *This work was supported by E?DA cont:act Ell-1-3070 and by NASA grant Mọc 1323.

$$
0,4
$$

- AGE: CITfENTIONALIY BLANK

CENMATRIK $(B, m, n)$ will construct the desired ratrix. The MACSYMA reference manual (ref. 1) cortains a more ceailed description of CENMATRIX.

The comma:d A:INDENT'm) produces an $m \times m$ identicy matrix; A:DIACMATRIX $(m, x)$ produces an $m \times m$ diagonal matrix with each diagoral praty $x$.

MACSYMA provides several commands for taking a pait or a submatrix of an existing matrix. The command MINOR(A,i,j) produces a new matrix by deleting row i and column jfrom A. $\operatorname{ROW}(A, n)$ and $\operatorname{COL}(A, n)$ give, as a matrix, the $r: h$ row and colurn of $A$ respectively. In general. SUEMATRIX $\left.i_{i}, \ldots, i_{m}, A, j_{1}, \ldots, j_{n}\right)$ produces a sinatrix from $A$ by deletirg the rows $i_{1}, \ldots$ $i_{m}$ and colurnns $j!, \ldots, j_{n}$. The ( $\left.i, j\right)$ th eviry in a matrix $A$ is aciessed by $t_{j} p i n g A[i, j]$.

There are also facilities for modifying or transforming a given mairix. TRANSPOSE (A) returns $A^{T}$. ADDROW $(A, R$; produces a matrix which is equal to $A$ with $R$ appended $a$. the last row. MATRIXMAP(fn,A) creates a new matrix of the same dimensions as $A$ where each entry is formed by applying the given function fn to each element of $A$. The function in can be a MACSYMA function or a user defined function. For example, if one wants to make a marrix of numerators of the entriss of A one can do MATRIXMAP(NUM,A).

A user can change the ( $i, j$ )th entry $c_{i}$ a matrix $A$, to $x$, say, by typing Ali.j]x. This change is made on $A$. If one wishes a new matrix then the change should be made on a copy of $A$. COPYMATRIX(A) gives a new marrix which is a copy of $A$.

As a rule, MACSYMA commands will not alter existing expressions. There are a few exceptions to this rule and they are clearly inoicated in the MACSYMA reference manual (ref. I). To eriphasize the effect $0^{*}$ an expression altering command we show the fcllowing example
(CI) A:MATRIX([1,2], [4,7])\$
(C2) A: $(2,2): 99$
(C3) $A_{i} \quad\left(\begin{array}{ll}1 & 2 \\ 4 & 9\end{array}\right)$

Let a set of linear equations EQI, ... EQm in the wariables $X 1, \ldots, X m$ be given. The commands

COEFMATRIX(eqlist,varlist) and AUCCOEFMATRIX(eqlist,varlist) are used to produce the coefficient matrix and augmested coefficient mathx, respectively, where eqlist is [EQI, ..., EQm] and varlist is [ $\mathrm{Xl}, \ldots, \mathrm{Xm}$ ].

## MATR:X COMPUTATIONS

Between two matrices of the same dimension and tetween a scalar and a matrix the arithmetic operators $*,-, a, t$ and $/$ are used for an elementivise effect. Thus if

$$
\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)
$$

then

$$
A i \cdot 1=1 / A=\left(\begin{array}{cc}
1 / 2 & 1 / y \\
v / 2 & 1 / w
\end{array}\right)
$$

and

$$
A+2=A x A=\left(\begin{array}{cc}
x^{2} & y^{2} \\
& \\
z^{2} & w^{2}
\end{array}\right)
$$

The usual matrix multiplication user the dot operator. Multiplying a matrix by itself a nuinber of times is indicated by the operator if. Thus

$$
\text { Att2 = A.A }=\left(\begin{array}{cc}
x^{2}+y z & x y+y w \\
2 x+z w & z y+w^{2}
\end{array}\right)
$$



As an aside, we should note that :hese operations are not exchesively reserved for matrices: the dot and $i t$ operators are used for noncommutative multiplication and powers in general. Computation involving noncommutative multiplication tetween variables can be done by declaring the variable NONSCALAR and using the dot operator. For example:
(Cl) DECLARE ([A, B], NONSCALAR\&
(CZ) $(A \cdot B) \cdot(A-B), E X P A N D ;$

$$
\mathrm{A}^{<2>}+\mathrm{B} \cdot \mathrm{~A}-\mathrm{A} \cdot \mathrm{~B}-\mathrm{B}^{<2>}
$$

Note now exponents resulting fron noncommutative miltiplication are displayed. The inverse of A is Att-l. Among these matrix computations, the inverse is the most time sonsuming. The exact invarse of a matrix whose entries are polynomials, rational functions ard other functicnal expressions is often much larger than the matrix itself. In some cases, moderately-sized symbolic matrices (under $10 \times 10$, say) with not very complicated entries may heve inverses whose size exceeds the maximum store available to MACSYMA. In other cases, the inverse is of reasonable size but the computation rune out of store at an intermediate stage. This difficulty, called intermediate expression swell, is common to miny other symbolic compuration processes: polynornal greates:-common-divisor calculation (GCD), factoring and definite integration, gust to nane a few. The challenge to algorithm designers is to avoid or control intermediate expression growsh while keeping the algo:ithms ;easonably fast. In general, the best procedure to use is dependent on the problem to be solved. There are two different inversion procedures in MACSYMA: a basic Bareiss-type Fraction Free Caussian Eliminailon (FFOE) algorithm (ref. 2) and z special procedure. fnr sparse matrices. The latter is a speria: feature in MACSYMA and will be described in the section, "Inverse of Sparse Matrices."

The FFEG uses :he usual Gaus*ian elimination process which educes the given matrix to the identity by elementary row operations while transforming an identity matrix appended to the given matrix to the desired inverse. However, in order is avoid compuning with fractional forms which involves many costly CCD calculations, the elimination is made fraction-free. . irst each row is multiplied by the least common multiple of it denominators. Then the elimination is carried out with cross multiplication instead of division. Significant improvemeni in speed resuits from fracticnuret elimination. However, cross-multiplication adds to intermediate expresion growth.

When the FFCE has reduced a given matrix to upper triargular form, the last diagoniml element is equal to the determinant of the (rascaled) matrix. Therefore it is also a method for computing the determinant of a matrix. The command in MACSYMA using this technique to calculare a determinant is DETERMINANT(A). There are three other ways to compute the cleterminant also intiplemented in MACSYMA. These wili be described in section 6. One can alsn ottain the triangular form, the achelon form (essentially the triangular form with the first crity ot each row normalized to 1), the rank and characteristic polynomial of matrix $A$ by TRIANGULARIZE(A), ECHZLON(A), RANK(A), and CHARPOLY(A,x), respecr vely.

## OPTIONS IN CONTROLLING COMPUTATION

Matrix computations can result in expressions which are rather large and complicated. Therefore it is imporiant to carefully control the manner in which a given computation is exccuted. User control options are provided in MACSYMA in the form of OPTION VARIABLE or SWITCH settings. There are many SWITCHES in MACSYMA. Each SWITCH may have two or more possible settings waich aifect the behavior of one or severpl routines controlled by the SWITCH. A SWIT CH is set, like any other variable, by using the : operator. For exampie. if RATMX:TRUE is done, then all matrix arithmetic will be done in CRE form (ref i). In a fresth MACSI: :A system, each SWITCH has a defautr value or seting. RATMX has the defant value FALSE, which means MATRIX arithmetic will be dorie in general representaiton. Vectors in MACSYM 4 can be represented as one-dimensionai matrices. However it is often convenient to represent vectors as lists. A list V:[A, B, C] represents a row vector. To mix computation with lists and matrices ore sets LiSTARITH to TRiJE. If $A$ is a $3 \times 3$ matrix then V.A is a $1 \mathbf{X} 3$ matrix and A.V is a $3 \times 1$ matrix. Setting SPARSE o TRUE enables several rowtines specially designed for sparse symbolic matrix computations to be activated. Other options control operations of scalar-matrix arithmetic and nonconmutative operations. The availabie options are described in detail in the manual. Efficient use of these controls -ories with experience with a given application, and experimentation.

## INVERSE OF SPARSE MATRICES

The question of whether the inverse of given matrix will fit in the available menory space to MACSYMA depends on the size, the number of indeterminates and the rumber of ecro entries in the matrix. A matrix with many zero entries is said to be sparse. Sparse matrices occur frequently in practice. One often-asked question in connection with inverting a sparse matrix is how to order the rows and colunins to fazilitate the computation. MACSYMA has programs for reordering rows and columins. We present its algorithm here in more detall to provide the user with a deeper insight.

If the given matrix is sparss its inverse may also have many zero eniries. One obvious example of this situation is a triangular matrix. Substantial computation can be saved if the zero entries in the invarse are predicted so that they do not have to be computed. It has been shown that this can be done if and oniy if the given matrix is block reducible (ref. 3). Let $Q$ be an in n sparse matrix. If there is a way of reordering rows and columns so that $Q$ becomes

$$
\hat{Q}=\left(\begin{array}{ccccc}
\hat{Q}_{11} & \hat{Q}_{12} & \hat{Q}_{13} & \cdots & \hat{Q}_{1 t} \\
0 & \hat{Q}_{22} & \hat{Q}_{23} & \cdots & \hat{Q}_{2 t} \\
0 & n & \hat{Q}_{33} & \cdots & \hat{Q}_{3 t} \\
. & \vdots & \cdots & & \cdot \\
. & \dot{0} & \cdot & \cdot \\
0 & 0 & j & \cdots & \dot{Q}_{t t}
\end{array}\right), t \geq 1
$$

where $\hat{Q}_{i j}$ is a matrix of dimension $n_{i} \times n_{r} n_{1}+\ldots+n_{1}=n$ and if $t>1$ then $Q$ is reducible. Utherwise $Q$ is irreducibie. A fairly efficient algorithm is impiernented in MACSYMA for compuaing $\hat{Q}^{-1}$ from $\hat{Q}_{i n}{ }^{-1}$. $\hat{Q}^{-1}$ has the same blow structure as $\hat{Q}$. To obtain: $Q^{-1}$ from $\hat{Q}^{-1}$ is just a matter of undoing the now and column permutations that transformed $Q$ to $\hat{Q}$.

Now let us consider the means of obiairing the desired block structure. A direated graph (ref. 2) $\mathrm{g}\left\langle C^{\prime}\right.$ can be associated oo the matrix C . This graph has $n$ nodes labeied $I$ through $n$. The nodes are linked by directed edges representing nonzero entries of $Q$. An edge from nude 1 to node $j$ represents the nonzero entry $q_{y}$. This edge is labelied $q_{i r}$ Only the nonzero entries of $Q$ are represented in $g(Q)$. A sequence of edges ieading frominode 110 j is :alled a path from ito f , A subgraph is isolated if any pair of nodes in the suograph are connetted and no nodes nutsode the subgraph are connected to any inside, such isolated :.jbgraphs are called etrong comenonents of $g(Q)$ The strong zumponents of $g(Q)$ give rise to the biock structure of $Q$ We denote by $S_{Q}$ the number of strong components in giQ).

The outcome of the above scheme is dependent on the miven order of the rows an: 1 columns of $Q$. This means that 2 permutaion of the rows artirs columns may resuff in an atsociated graph with more strong components and therefore lead th a refined biock structire of $Q$. For example, if $Q$ is given as

$$
q=\left(\begin{array}{lll}
0 & 0 & a \\
b & : & d \\
e & 1 & 8
\end{array}\right)
$$

then $g(Q)$ looks like

440

which his only one strong component. However. by interchanging the first and third rows of $\mathbf{Q}$ one would find $I=2$. Indeed two is the maximum number of blocks $Q$ has. As a matter of fact $Q$ can always be fully reduced if nonzero slements are assigned on the main diagonal before constructing $g(Q)$.

## DETERMINANT OF SPARSE MATRICES

There are four different ways to compute a determinant in MACSYMA. If RATMX is FALSE the DETERMINAP'T command uses general representation and a Bottom-UD mincr expansion (BU) suggested by Gentleman and Johnson (ref. 4). The BU method computes a!l possible $2 \times 2$ minors in the last two columns (rows). Then all the $3 \times 3$ minors, etc. The BU methor was also programmed in LISP by Fateman to render expressions in CRE form. The command using it is NEWDET. If RATMX is TRUE, then one of two methods is used by the DETERMINANT cominand depending on the sexing of SPARSE. If SPARSE is FALSE, the FFGE method mentioned before is used. A. SPARSE is TRUE, then a routine, TDBU. specially designed for taking the determinant of matrices with many zero eritries is called.

We describe the TDBU sparse determinant algorithm in more detail, since we beheve it to be one of the most efficient methods for this purpose currently implemented on a symbolic mathematical computer system.

If the given matrix, $Q$, is reducible to a block triangular form, then its determinant is the product of the determinants on the main diagonal multiplied by 1 or -1 dejending on the rowcolumn reordering. Let us assurne $Q$ is sparse and irreducible. A minor expansion method is employed for the determinant of $Q$ - It consists of a Top-Down analysis phase and a Bottom-Up computation phise. The Top-Down phase conitructs a graphical structure of minors needed to be computed and the interdependence between these minors. This avoids almost all unnecessary minors. Then the minors needed are computed Bottum-Up so thet there is no repeated computation. The inethod is named TDBU (ref. 5).

Let us illustrate the TDBU by an example. Considar tine $6 \times 6$ tridiagonal matrix.

## EPRDDUEBRITY OF THE ORIGINAL FAGE IS POOR

$$
Q=\left(\begin{array}{cccccc}
B & C & 0 & 0 & 0 & 0 \\
A & B & C & 0 & 0 & 0 \\
0 & A & B & C & 0 & 0 \\
0 & 0 & A & B & C & 0 \\
0 & 0 & 0 & A & B & C \\
0 & 0 & 0 & 0 & A & B
\end{array}\right)
$$

By the list $\left\langle i_{1}, \ldots, i_{k}\right\rangle$ we derote the minor at the intersection of the last $k$ columns and the rows $i_{1}, i_{2}, \ldots, i_{k}$. Using the position of the nonzero entries the following tree is constructed:


There are lif nodes be:ides the root. However some of these nodes represent obviously singular minors. If a singularity check is used which looks for an entire row or column of ze.os in. a ininor, several branches can be cut from this tree. With signed multipiar. labels attacised to the branches the tree structure now becomes the following:

iherefore, only 8 minors need be computed. As the bottom-up computation progresses minors no longer needed are discarded. Thus the storage required for minors is limited to slightly more than one set of necessary jx i minors.

## TIMING COMPARiSONS

Timing iasts have been conducted for the three differsnt methods for determinant computations: the fraction-free Gaussian elimination (FFCE), the bottom-up minor expansion (BU), and the TDBU. Two ferms of sparse matrices are used: the tridiagonal (TRID) and the tridiagorial with a block structare (BLK). In the following tables an X indicates running out of cure. The timings (including garbage collection time) are measured on a DEC KL-10.


## BLK (6)

$\left.\begin{array}{ccccccc}{[C+B} & C+A & 0 & 0 & 0 & 0 & ] \\ {[B+A} & C+B & C+A & 0 & 0 & 0 & ] \\ {[B} & 0 & 0 & C+B & C+A & 0 & 0\end{array}\right]$

BLK

| DIMENSIDN | FFGE | BU | TDEU |
| :---: | :--- | :--- | :---: |
| 6 | 1485 | i66 | 209 |
| 8 | 5318 | 684 | 356 |
| 10 | 17410 | 1523 | 363 |
| 12 | 43883 | 2952 | 1163 |
| 14 | 184642 | 5933 | 1584 |
| 16 | $x$ | 16763 | 2044 |
| 18 | $x$ | $x$ | 3006 |
| 20 | $x$ | $x$ | 3643 |
| 27 | $x$ | $x$ | 4807 |
| 24 | $x$ | $x$ | 6187 |
| 26 | $x$ | $x$ | 7992 |
| 28 | $x$ | $x$ | 9587 |

time in milliseconds

TMID(6)
$\left.\begin{array}{ccccccc}{[C+B} & C+A & 0 & 0 & 0 & 0 & ] \\ {[B+A} & C+B & C+A & 0 & 0 & 0 & ] \\ {\left[\begin{array}{c}{[ }\end{array}\right]} \\ {[ } & 0 & B+A & C+B & C+A & 0 & 0\end{array}\right]$

| TRID |  |  |  |
| :---: | :---: | :---: | :---: |
| DIMENSION | FFGE | RU | TOBU |
| 6 | 1563 | 177 | 214 |
| 8 | 69:9 | 718 | 758 |
| 10 | 22750 | 1281 | 1446 |
| 12 | 57251 | 2760 | 2114 |
| 14 | 148445 | 6899 | 2970 |
| 16 | X | 17367 | 4739 |
| 18 | $x$ | k | 6921 |
| 20 | $x$ | $x$ | 9367 |
| 22 | * | $x$ | $\geq 2565$ |
| 24 | K | $x$ | 17132 |
| 26 | K | $x$ | 23138 |
| 28 | K | $x$ | 38319 |
| time intmilliseconds |  |  |  |

## REFERENCES

1. Mathlab Group: MACSYMA Reference Manual. Lab. Compu. Sci., Massachasetts Inst. Techncl., Nov. 1975.
2. Lipson, J.D.: Symbolic Methods for the Computer Solutior of Linear Equations With Appications to Flow-Graphs. Froceedings of the 1968 Summer Institute on Syinbolic Mathematical Computation, IBM Corp., 1959, pp. 233-303.
3. Wang, P.; and Minamikawa, T.: Taking Advantage of Zero Enties in the Exact Inverse of Sparse Matrices. Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, Aug. 1976, pp. 346-350.
4. Gentleman, W. M; sind Johnson, S. C.: Analysis of Algorithms, A Case Study: Determinants of Matrices With Polyriomial Entries. ACM Trans. Math. Software, vol. 2, no 3, Sept. 1976, pp. 232-241.
5. Wang, P.: On the Expansion of Sparse Symbotic Determinants. Proceedings of the Joth Hawait Internationa! Conference on System Sciences, Jan. 1977.


## SYMBOLIC COMPUTER VECTOR ANALYSTS*

David 7. Stoutemyor
University of Hawail

## ABSTRACT

A MACSYMA program is described whi ch performs symbclic vector algebra and vector calculus. The progren can combine and simnli fy symbolic expressions including dot products and cross products, together with the gradier.t, divergence, curl, and Laplacian operators. The distributin of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

## INTRODUCTION

Vector algebra and vector calculus enjoy diverse use throurhout engineering, science, and mathematics. Vector analysis lends conciseners that often simplifies the derivation of mathonatical theorems and the statement of physical laws. Vector nntation often clearly conveys geometric or physical interpretations that greatly facilitate unacretanding. At one extreme, vector analysis prcides a systematic method for deriving the mathematical statement of physieal laws in specific orthogonal curvilinear coordinate systems. At another extreme, vector msiysis provides a means of stating and operating on these physical laws incependent of a coordinate system, free from the distracting details of indiviaual somponents.

However, many enginecrs and. scientists do not use vector analysis frequeitily encugh to remain familiar with many of tio special rector identities that are sometimes ciucial to simplifying vector expsessions. Also, though systematic, the expansion of vector expressions into specific orthogonal curviinnear components is usuaily tedious and fraught with opportunities for blunders. Other tedious bl ander-prone operations include deriving sealar or vector potentials from given vector fields. This arificle describes a computer progran which holps overnom? these human frallties by autonating taese processes.
*This work was supported by National Science Foundation grant MC375-22893.


The next section gives a brief demonstration of the program. Sujsequent sections outline the underlying mathematical and programming techniques, then summarize the performa ce for more comprehensive examples.

## A DEMOLSSTRATION

The vector-ai dysis package contains various default and optional simplifications for the dot and cross products together with the operators, GRAD, DIV, CUR , and LAPLACIAN. The vector operands may be an arbitrary mixture of similar-length ordered lints, representing the specific components, together with indeterminates declared NONSCALAR, representing the vectors as abstract entities. For example, to establish $P, Q, F$ and $G$ as vector entjites, we type
(C3) DECLAFE([P, Q, F, G], NONSCALAR) $\$$
Now, let's, attempt to prove the following rector identity, where "~" represents the cross product operator:
(C4) $\left(\mathrm{P}^{\sim} \mathrm{Q}\right) \cdot\left(\mathrm{F}^{\sim} \mathrm{G}\right)+\left(\mathrm{Q}^{\sim} \mathrm{F}\right) \cdot\left(\mathrm{P}^{\sim} \mathrm{G}\right)+\left(\mathrm{F}^{\sim} \mathrm{P}\right) \cdot\left(\mathrm{Q}^{\sim} \mathrm{G}\right)=0$;
(D4) $\quad F \cdot(G \sim Q) \sim P-F \cdot(G \sim P) \sim G+F \cdot G \sim P \sim Q=0$
Evidently she default simplifications are nut drastic enough, so we type
(rj) VECTORSIMP (\%) , EXPANDALL;
(D5) $0 \doteq 0$
Now, let's determine the exparsion of an expression involving vector differential operators:
(c6) EXAMPLE: LAPLACIAN $(\% P I *(S+H))=\operatorname{DIV}\left(3^{*} S^{*} P\right)$;

$$
\% \mathrm{PI} \text { LAPLACIAN }(\mathrm{S}+\mathrm{H})=3 \mathrm{DIV}(\mathrm{P} \mathrm{~S})
$$

(C7) VECTORSIMP(EXAMPLE), EXPANDALL;
(D7) \%PI LAPLACIAN $S+\% P I$ LAPLACIAN H $=3$ DIV P $S+3 P \cdot$ GRAD S
Suppose that we wish to find the alecific representation of this equation in parabolic coordinates. To avoid having to look up the definition of parcbolic coordinates:
(C9) BATCH(COORLS);
(C10) TYYUFF:TRUE $\$$
(Cl3) /* PREDEFINED (COORDINATE TRANSFORMATIONS:
CARTEGIAN2D, CARTESAAND,
FOLAR, POLARCYLINDRICAL,
SPHERICAL, OBLATESFHEROIDAL, PROLATESPHEROIDAL,
OBLATESPHEROIDALSQRT, PROLATESPHEROIDALSQRT,
ELLIPTIC, ELLIPTICCYLINDRICAL, CONFOCALELLITYIC, CONFOCALELLTPSOTDAL,
PARABOLIC, PARABOLICCTLINDRICAL, EARABOLOIDAI,

BIPCAAR, BIPOLARCYLINDRICAL,
TOROIDAL,
CONICAI */
/* heserved coordinate variailes and paramelers: */
LISTOFVAFS (COORDS) ;
(D13) [X,Y,Z, R, THETA, PHI, E, U, V, F, W, ©]
(D14)
BATCH DONE
In general, coordi:ates are specified as a list with the first element being a list of the transformation to a set of rectangular Cartesian coordinates. The remaining elements are the ordered curvilinear coordinate variables:
(C15) PARABOLIC;
(D15)

$$
\left[\left[\frac{\mathrm{U}^{2}-\mathrm{v}^{2}}{2}, \mathrm{U} \mathrm{v}\right], \mathrm{u}, \mathrm{v}\right]
$$

First we use the function SCALEFACTORS to derive a set of global scale factors. Then we use the function EXPRESS to express its argument in the corresponding coordinate system:

$$
\begin{aligned}
& \text { (CI6) SCALEFACTORS(PARABOLIC) } \$ \\
& \text { (C17) EXAMPLE: EXPRESS(EXAMPLE); } \\
& \{D 17) \frac{\% P I\left(\frac{d^{2}}{d v^{2}}(S+H)+\frac{d^{2}}{d U^{2}}(S+H)\right)}{V^{2}+U^{2}}= \\
& \frac{3\left(\frac{d}{d V}\left(S \operatorname{SQRT}\left(v^{2}+U^{2}\right) R_{V}\right)+\frac{d}{d U}\left(S F_{U} \operatorname{SQRT}\left(V^{2}+U^{2}\right)\right)\right)}{V^{2}+U^{2}}
\end{aligned}
$$

Alternativeiy, the globia scale factors can be established or changed by supplying the coordinate system as a second argument to EXPRESS rather than an argument to SCALEFACTORS.

Suppose that $H$ depends only on $U$, that $P$ depends only upon $V$, and that $S$ depends upon both $U$ and $V$. To expand tine above derivatives, taking advantage of these simplfications:
(C18) $\operatorname{DEPENDS}([\mathrm{S}, \mathrm{H}], \mathrm{U},[\mathrm{S}, \mathrm{P}], \mathrm{V}) \$$
(C19) EXAMPLE, DIFF;

$$
\begin{aligned}
& \text { (כ19) } \frac{\operatorname{mPI}\left(\frac{a^{2} S}{d V^{2}}+\frac{d^{2} S}{d U^{2}}+\frac{d^{2} H}{d U^{2}}\right)}{v^{2}+U^{2}}=3\left(c \operatorname{SQRT}\left(V^{2}+U^{2}\right)\left(\frac{a}{d V} P_{V}\right)\right. \\
& +\frac{d S}{d V} \operatorname{SQRT}\left(V^{2}+U^{2}\right) P_{V}+\frac{\therefore S V P_{v}}{\operatorname{SQRT}\left(v^{2}+U^{2}\right)}+\frac{d S}{d U} P_{U} \operatorname{sQRT}\left(v^{2}+U^{2}\right) \\
& \left.+\frac{S U P_{U}}{\operatorname{SQRT}\left(V^{2}+U^{2}!\right.}\right) /\left(v^{2}+1^{2}\right)
\end{aligned}
$$

How, suppose that we are given the following parabolic-coordinate componets of a gradient recto:
(C20) EXAMPLE: $\left[\left(2^{*} \mathrm{U}^{*} \mathrm{~V}^{*} \cdot 3+3^{*} \mathrm{U}^{* *} 3^{* V}\right) /\left(\mathrm{V}^{* *} 2+\mathrm{U}^{* *}{ }^{*} \mathrm{z}\right)\right.$,

(D20) $\left[\frac{3 U v^{3}+3 U^{3} v}{v^{2}+u^{2}}, \frac{2 u^{2} v^{2}+u^{4}}{v^{2}+u^{2}}\right]$
and we wish to determine the corresponding scalar potential relative to the potential at the point $[0,0]$ :
(C21) POMENTTAL(EYAMPLE);
(D21)

$$
u^{2} v \operatorname{sORI}\left(v^{2}+u^{2}\right)
$$

There is an analogous function named VECTOAPCTENTIAL that computes the vector potential associated with a given cur* vector.

## TECHNiQUE

Vector algebra has an intriguing structure. Besides containing the ordinary scalar operations, vector algebre has two special products with somewhat bizarre properties. Although the dit and eros s products are both distributive with. respect to vector edition, and although scalar factors in ether operand may be factored out of the dot and cross product:

1. Vectors are not closed under the dot operation: ( $p \cdot q$ is a scalar.)
2. Vectors are closed under the ross operation only in threedimensional space, the cross product being undefined otherwise.
3. The dot product is commutative

$$
p \cdot q \equiv q \cdot p
$$

but the cross product is antlcommatative
4. Neither is associgtive. $(p \times(q \times r) \neq(p \times q) \times r$, whereas $p \cdot(q \cdot \gamma)$ and $(p \cdot q) \cdot r$ are invalia.)
5. Neither has a multiplicative unit. (There does not exist a fixed $u$ such that for arbitrary $p, u \times p=p$ or $p \times u=p$ or $u \cdot p=p$ or $p \cdot u=p$.)
6. Both admit zero divisors. (For all nonzero $p$,

$$
\begin{equation*}
p \times p=0, \tag{3}
\end{equation*}
$$

9า. 'iere exist nonzero $q$ such that $p \cdot q=0$ ).
7. Both are connected via ordinary scalar aitiplisation, deroted with "*", by the strange side relation

$$
\begin{equation*}
p \times(q \times r) \equiv(p \cdot r) * q-(p \cdot q) * r \tag{h}
\end{equation*}
$$

2. The structure is even more complicated if we consider dyedics, triadies, etc.

Vector calculus is equally rich in comparison to its enalar rounterpart. Besides containing the usual derivatives, vector calculus has three special differential operators. Although the gridient, aivergence, and curl are oucarive (for exmple, grad(constant* $\phi$ ) $\#$ constant*(grad $\phi j$ ) and additive (for exmpl', $\operatorname{grad}(\phi+\psi) \equiv \operatorname{grad} \phi+\operatorname{erad} \psi)$ :

1. The gradiant anu divergence are not closed. (The gradient of a scalar is a vector, snd the divergence of a vector is scalar.)
2. Vectors are closed under the curl operation cnly in threudimensional space, the curl being undefined of:ierwise.
3. Compositions of these operators do not generaliy comate, but they do satisfy the following lientitles
$\operatorname{cur} 1(\operatorname{srad} \phi) \equiv 0$,
$\operatorname{div}(\operatorname{curl} p) \equiv 0$.
$\operatorname{curl}(c u r l p) \equiv \operatorname{gran}(\alpha \operatorname{v} p)+\operatorname{div}(\operatorname{grad} p)$.
Here $\phi$ denotes a scalsr, the gradient of a vector 13 a dadic, and the divergence of a dyadje is a vector.
4. When applied to various produnts, most oi hese opretona have expansions sinilar but not identical to the ordinary derlvative of an ordinary product:

$$
\begin{align*}
\operatorname{grgd}(\phi p) & \equiv D \operatorname{grad} \phi+\phi \text { dv } p,  \tag{8}\\
\operatorname{div}(\phi p) & \equiv(\operatorname{grad} \phi) \cdot p+\phi \text { div } p,  \tag{9}\\
\operatorname{curl}(\phi p) & \equiv(\operatorname{grad} \phi) \times p+\phi \operatorname{curl} p,  \tag{10}\\
\operatorname{grad}(p \times q) & \equiv(\operatorname{grad} p) \times q+(\operatorname{erad} q) \times p  \tag{11}\\
\operatorname{div}(p \times q) & \equiv q \cdot(\operatorname{curl} p)+p \cdot(\operatorname{curl} q) \tag{12}
\end{align*}
$$

$$
\begin{align*}
\operatorname{curi}(p \times q) \equiv q \cdot(\operatorname{grad} p)-p \cdot\left(\operatorname{grad} r_{1}\right)+p \operatorname{div} q-q \operatorname{div} p, \\
\operatorname{grad}(p \cdot q) \equiv(\operatorname{grad} p) \cdot q+(\operatorname{grad} q) \cdot p \tag{13}
\end{align*}
$$

For bravity, the composition div gred is often genoted as the Laplacian operator:

$$
\begin{equation*}
\text { Laplacien } \phi \equiv \text { div grad } \phi \equiv \nabla^{2} \text {. } \tag{15}
\end{equation*}
$$

The Laplacian inherits the linearity of div and grad, together with the following expansion for product orerands:

$$
\begin{align*}
\text { Laplacian }(\phi \psi)=\phi & \text { Laplacian } \psi+2(\text { Laplacian } \psi)(\text { Laplacian } \psi) \\
& +\psi \text { Laplacian } \phi . \tag{16}
\end{align*}
$$

For, many phyai=al problems, symmetries or houndary surfaras encourage the use of orthegonal curvilinear coordinates that are not rectaneular Cartesian. For example toroical coordinates are most apr: spriate for many controlled fusion problems, and oblate spheroidsl coordinates are most appropriate for some geophysical problems. In such irstances, it is often necessary to know the specific partial differential representstion of the gradient, divergenes, curl, or Laplacian in order to derive the differential equations pertainimg to the desired coordinates.

If the orthogonal curvilinear coordinates are denoted ty $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$, and a transformation to some rectangular. Cartesian coordinates $x_{1}, x_{2}, \ldots, x_{m}$,
with $m>m$; is given by. with $m \geq n$; is given by

$$
\begin{equation*}
x_{j}=f_{i}\left(0_{2}, \theta_{2}, \ldots, \theta_{n}\right) . \quad(j=1,2, \ldots, n), \tag{17}
\end{equation*}
$$

then coordingte scaie factors are defined by

$$
\begin{equation*}
\dot{n}_{k}=\left[\sum_{j=1}^{m}\left(\frac{\partial f_{j}}{\partial \theta_{k}}\right)^{2}\right]^{i / 2}, \quad(k=1,2, \ldots, n) \tag{:8}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\sum_{j=1}^{m} \frac{\partial f_{j}}{\partial \theta^{k}} \frac{\partial f_{j}}{\partial \theta^{\ell}} \equiv 0, \quad(k \neq \ell) \tag{19}
\end{equation*}
$$

Otherwise the coordinates are nonorthogonal. The function 3CALeFACTORS attempts to verify equa*ion (19), priating n warning together with the s!mplilied left, hand side when it aves not succeed in dolng so. This precsution revealed an error in the alleged-crthogonal confocal-par-bolcilal coordinatan listad in the reference tables of two widely used vector-anmizals texis? Computer alpebra is advisable for checking even when a published "snewer" is available.

Most of the classie orthopona: coordinate-transfomation examples of equation (17), involve trigonometric functions andor hyperbolie functions andor square roota. Thus, there is a vital need for effective trlponometiris, hyperbolle, and fractional-power almalitication durine the evaluation of formulas (18) and (19;. The tullt-in RADCAN function prividea the
ractional-power simplification, bat it was necessary to develop a new trigonometric/hyperbolic simplifier, different from those built-in. Though crucial to the perforaance of this portion of the vector package, a sufilciently thorough discussion of this new simplifier would iead us too far astray here, so the simplifier is discussea separately in referonce 1.

Let

$$
\begin{equation*}
H=\prod_{k=1}^{n} n_{k} \tag{20}
\end{equation*}
$$

Then, using ordered lists to represent the components of a vestor, the fineral formulas for the gradient, divergence, and iaplacion are

$$
\begin{array}{r}
\operatorname{grad} \phi=\left[\frac{1}{h_{1}} \frac{\partial \phi}{\partial \partial_{2}}, \frac{1}{h_{2}} \frac{\partial \phi}{\partial \theta_{2}}, \cdots, \frac{1}{h_{n}} \frac{\partial \phi}{\partial \theta_{n}}\right], \\
\operatorname{div} p=\frac{1}{H} \sum_{k=1}^{n} \frac{\partial}{\partial \theta_{k}}\left(\frac{H p_{k}}{n_{k}}\right), \\
 \tag{23}\\
\text { Lapiacian } p=\frac{1}{H} \sum_{k=1}^{n} \frac{\partial}{\partial \theta_{k}}\left(\frac{H p_{k}}{h_{k}^{2}}\right) .
\end{array}
$$

For $n=3$, the general formila ficr the curl is

$$
\text { curl } \begin{align*}
p= & \left(\frac{\hbar_{1}}{H}\left(\frac{\partial}{\partial \theta_{2}}\left(h_{3} p_{3}\right)-\frac{\partial}{\partial \theta_{3}}\left(h_{2} p_{2}\right)\right),\right. \\
& \frac{h_{2}}{H}\left(\frac{\partial}{\partial \theta_{3}}\left(h_{1} p_{1}\right)-\frac{\partial}{\partial \theta_{1}}\left(h_{3} p_{3}\right)\right) \cdot \frac{h_{3}}{H^{2}}\left(\frac{\partial}{\partial \theta_{1}}\left(h_{2} p_{2}\right)-\frac{\partial}{\partial \theta_{2}}\left(h_{1} p_{1}\right)\right)_{1} . \tag{2x}
\end{align*}
$$

The symbulic dif 'erentistion arid nigebra decessary for ent uat ing formulas (18) through (24) is stralghtforwarl but teduus - ar idenh computer.algebra application. In fart, aftar completing tils vertor anajals paciaze I diacovered that a package sinilar to ehls curvillnear-components port ${ }^{2}$ an had already been written by Nritin 3 . Cole.

It 13 sometimes derited to compute the Inverse of thest iircsamilal operations: Given a apecifle vector field, find fela, llomexista, for which the given fleld la the pradient or curl.

If a givan vector $p$ is the trailent of an unknown acalar poicnt ind then denoting un arbitrary polnt by $\hat{\hat{y}} \boldsymbol{a}\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \ldots, \hat{\theta}_{i}\right.$,

1
$\vdots$
1

3

$$
\begin{align*}
\phi(\underline{\theta})=\phi(\underline{\hat{\theta}}) & +h_{1} \int_{\hat{\theta}_{1}}^{\theta_{1}}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) d \theta_{1}+\dot{n}_{2} \int_{\hat{\theta}_{2}}^{\theta_{2}} p_{2}\left(\hat{\theta}_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}\right) d \theta_{2} \\
& +\ldots+h_{n} \int_{\hat{\theta}_{n}}^{n} p_{n}\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \ldots, \hat{\theta}_{n-1}, \theta_{n}\right) d \theta_{n}, \tag{25}
\end{align*}
$$

where $\phi(\hat{\hat{\theta}})$ is an undeterminable constant.
Successful closed-form computation of these integrals may depend upon the chosen $\hat{\underline{\theta}}$ and the chosen ordering of the components of $\underline{\theta}$. The validity of this formula depends upon the assumed existence of a scalar potential. Consequently, the function POTENTIAL attempts to use differentiation and simplification to verify any candidate constructed by this formula.
If a given vector $p$ is the curl of an unknown three-dimensional vector potential $q$, then

$$
\begin{align*}
& q=\left[\frac{1}{h_{1}} \int_{\hat{\theta}_{3}}^{\theta} h_{1}^{3} h_{3} p_{2}\left(\theta_{1}, \theta_{2}, \theta_{3}\right) d \theta_{3}-\frac{1}{h_{1}} \int_{\hat{\theta}_{2}}^{2} h_{2} h_{2} p_{3}\left(\theta_{1}, \theta_{2}, \hat{\theta}_{3}\right) d \theta_{2},\right. \\
&-\frac{1}{h_{2}} \int_{\hat{\theta}_{3}}^{\left.h_{2}^{3} h_{3} p_{1}\left(\theta_{1}, \theta_{2}, \theta_{3}\right) d \theta_{3}, 0\right]+\operatorname{grad} \psi,} \tag{26}
\end{align*}
$$

where $\psi$ is an arbitrary twice-differentiable scalar potential. Successful closed-form computation of these integrals may depend upon the chosen $\hat{\theta}_{2}$ and $\hat{\theta}_{3}$ together with a well-chosen cyclic permutation of the components of $\underline{\theta}$. The validity of this formula depends upon the assumed existence of a vector potential. Consequently, the function VECTORPOTENTIAL attempts to use differentiation and simplification to verify any candidate constructed by this formula. Formulas (25) and (26) are generalizations of those given in pages 201-202 of reference 2. For the program, $\underline{\hat{\theta}}$ in equations (25) and (26) is specified by the global variable POTENTIALZEROLOC, which is initially set to $[0,0, \ldots, 0]$.
MACSYMA has scveral built-in features which greatly facilitate the implementation of extensions such as this voctor package:

1. The syntax extension facility makes it easy to introduce new operators, such as " $\times$ ", GRAD, DIV, CURL, and LAPLACIAN, together with their parse binding powers and restrictions on their valid operand types. However, attempted implementation of GRAD, DIV, CURL, and LAPLACIAN respectively as DEL, DEL •, DEL $\times$ and DEL $\uparrow 2$ caused incredible chaos, which should not be surprising to anyone who has written an extendable parser.
2. The declaration facility made it easy to establish the automatic outative and optional additive properties of GRAD, DIV, CURL, and LAPLACIAN. We declaration facility also made it easy to supplement the algeoraic properties of the built-in operator "•" with commativity.
3. A built-in fleg permitted defeat of the default associativity property of "•", and another built-in flag provided optional distribution of "•" over "+". A built-in flag alsu permitted the automatic factoring of scalars from dot operands.
4. The pattern-matching automatic-substitution facility made it easy to implement simplifications such as transformations (3), (5) and (6).
5. The procedure-definition facility together with a builit-in function for determining the parts of expressions made it possible to implement the other expansions and simplifications without recourse to the lower-level MACSYMA implementation language.

Simplifications that are unlikely to enlarge an expression, that do not drastically change the form of an expression, and that are easy to implement via declaration and automatic pattern-matching substitutions were made automatic. Examples include the use of transformations (1), (3), (5) and (6).

Other expansions, such as expansions (2), (4), (7), and (8) through (27), togetiner with the employment of additivity or distributivity require a specific request by the user, via the furction VECTORSIMP, together perhaps with the appropriate setting of various global variables.

It is expected that most users will wish to use the function VECTORSI:TF with the flag EXPANDALL set to its defaylt value of FALSE, requesting only the least controversial expansions, or set to TRUE, requesting nearly every programmed exparsion. However, for the user who needs fine control there is a hierarchy of flags permitting individual control over each of the programmed expansions or over various logical groupings of these. The flags are

```
EXPANDALL,
    EXPANDDOT,
        EXPANDDOTPLUS,
    EXPANDCROSS,
        EXPANDCROSSPIUUS,
        EXPANDCROSSCROSS,
EXPANDGRAD,
        EXPANDGRADPLUS,
        EXPANDGRADPROD,
EXPANDDIV,
        EXPANDDIVPLUS,
        EXPANDDIVPROD,
```

```
EXPaNDCURL,
    EXPANDCURLPLUS,
    EXPANDCURLCURL,
EXPANDLAPLACIAN,
    EXPANDLAPLACIANPLUS,
    EXPANDLAPLACIANPROD.
```

The PLUS suffix refers to emploring additivity or distributivity. The PROD suffix refers to the expansion for an operand that is any kind of product. EXPANDCROSSCROSS refers to expansion (4), and EXPANDCUKLCURL refers to expansion (7). EXPANDCROSS=TRUE has the same effect as EXPANDCROSSPLUS= EXPANDCROSSCROSS=TRUE, etc. Two other flags, EXPANDPLUS AND EXPANDPROD, have the same effect as setting all similarly suffixed flags true. When TRUE, another flag named EXPANDLAPLACIANTODIVGRAD, replaces the LAPLACIAN operator with the composition DIV GRAD. For convenience the flags have all been declared FVFLAGS.

Those who prefer a plethora of functions to a plethora of flags are encouraged to define a corresponding set of functions which merely locally set the appropriate flag, then use VECTORSIMP. Those who loathe both approaches are free to ignowe all of this.

## TEST RESULTS

A crucial question is: How complicated can problems be, for the various portions of the vector package, before exhausting the available memory space or a reasonable amount of computing time? Unfortunately, the answer to this question is very problem-dependent, difficult to characterize concisely and objectively. However, to suggest rough indications, this section summarizes a variety of test results.

First, to test the non-component simplifications, default simplification, followed by VECTORSIMP with EXPANDALL=TRUE, was applied to the expressions in Table 1 , taken from pages 32-33, 60, and 215 of reference 2 .

These examples all cor:ectly simplified to zero, with the exception of case 6 , which simplified to

$$
-a \cdot c \times\left(a \cdot b \times c^{x} \cdot b-a \cdot b \times(b \times c)\right)-(a \cdot d \times c)^{2}
$$

A second application successfully annihilated the term containing $b \times(b \times c)$, and rearranged the first term to give

$$
a \cdot(a \cdot b \times c * b) \times c-(a \cdot b \times c)^{2} .
$$

$a \cdot b \times c$ could be factored out, clearly revealing that the expression is zero, but the built-in scalar-factoring-out mechanism does not recognize that $a \cdot b \times c$ is a scalar despite its vector components.

Regarding the orthogonal curvilinear components portion of the package, Table 2 reforts the times required to compute the scale factors, and express three particula expressions in a vaviety of three-dimensional coordinate systems. The first expression is an equation arising in magnetohydrodynamics given in reference 3:

$$
\begin{equation*}
\text { Laplacian Laplacian } w+\operatorname{Curl}(\eta \text { Curl } w)=-C u r] \underset{\sim}{\xi} . \tag{27}
\end{equation*}
$$

The second expression is the Navier-Stokes equation of fluid mechanics:

$$
\begin{align*}
\frac{\partial v}{\partial t}= & v \text { Laplacian } v-v \operatorname{grad} v \\
& +\frac{v}{3} \operatorname{grad} \text { div } v-\frac{\operatorname{grad} p}{\rho} . \tag{28}
\end{align*}
$$

The third expression is all but one term of another equation from magnetohydrodynamics, given in reference 4:

$$
\begin{gather*}
\frac{\partial \mathrm{B}}{\partial t}=\operatorname{curl}(v \times \mathrm{B})-\frac{c}{4 \pi e} \operatorname{curl}\left(\frac{(\operatorname{curl} \mathrm{~B}) \times \mathrm{B})}{N_{e}}\right) \\
-\frac{c k}{e N_{e}}\left(\operatorname{grad} N_{e}\right) \times\left(\operatorname{grad} T_{e}\right) . \tag{29}
\end{gather*}
$$

The omitted term was

$$
\begin{equation*}
\operatorname{curl}\left(\frac{c^{2}}{4 \pi} r \cdot(\operatorname{curl} B)\right) \tag{30}
\end{equation*}
$$

where $r$ is a resistivity dyadic. Although the vector package fortuitously represents the gradient of a vecto: as a list of derivatives of lists, which can be interpreted as a dyadic, the package was not designed to treat dyadics in general. The function EXPRESS expands expressions into components from the inside out, and expansion of the curl operatio requires an argument that is a list of three elements. Thus, EXPRESS halts with an error message when it tries to expand the outer curl in expression (30).

The definitions of the coordinate systems are given in reference 5. As indicated in Table 2, the scale-factor computation depends strongly on the complexity of the coordinate system, whereas the time requirad to express vector expressions does not.

To test the function named POTENTIAL, the fully-expanded gradient of each of the expressions in Table 3 was derived in three-dimensional rectangular Cartesian coordinates. Then, with POTENTIALZEPSUUC set as indicated, POTENTIAL was applied in an attempt to generate an expression differing from the original iv no more than a constant.

For case 2, POTENTIAL printed a warning that it could not verify the solution by differentiation together with simplification. However, expansion of the trigonometric factor of the gradient revealed the answer was correct. (The integration utilized this expansion, whereas the verification simplification did not.)

In contrast, POTENTIAI, was able to verify the solution for the similar case 3 , which has no angle sum.

## CONCLUSIONS

$$
=\ldots
$$

The examples here demonstrate that vector analysis is a feasible and worthwhile supplementary program package for a computer-algebra system.

## ACKNOWLEDGMENTS

Richard Bogen has been an invaluable critic and teacher, who greatly helped bring thic effort to a successful conclusion. Jeffrey Golden is, as always, an unfailing source of gcod suggestions.

REFERENCES

1. Stoutemyer, David R,: $\sin (x) * * 2+\cos (x) * * 2=1$, Proceedings of the 1977 MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper :10. 41 of this compilation.)
2. Brand, L.: Vector and Tensor Analysis', John Wiley \& Sons, Inc., 1947.
3. Nielson, C.W., and Lewis, R.: Partacle-Code Models in the Nonradiative Limit, Methods in Computational Physics, Vol. 16, J. Killeen, ed., Academic Press, Inc., 1976, p. 116.
4. Boris, J.P., and Book, D.L.: Solution of Continuity Equations by the Methud of Flux-Corrected Transport, Methods in Computational Physics, Vol. 16, J. Killeen, ed., Academic Press, Inc., 1076, p. 379.
5. Spiegel, M.R.: Vector Analysis, McGraw-Hill Book Co., 1967.

TABLE 1

| Case | Input Expression | Computing Time (seconds) |  |
| :---: | :---: | :---: | :---: |
|  |  | Default | VECTORSIMP |
| 1 | $(d-a) \cdot(b-c)+(d-b) \cdot(c-a)+(d-c) \cdot(a-b)$ | 0.02 | 0.3 |
| 2 | $\begin{aligned} & (b-a) \cdot(b-a)+(c+b) \cdot(c-b)+(d-c) \cdot(d-c) \\ & +(a-d) \cdot(a-d)-(c-a) \cdot(c-a)+(d-b) \cdot(d-b) \\ & +(a+c-b-d) \cdot(a+c-b-d) \end{aligned}$ | 0.04 | 0.6 |
| 3 | $\begin{aligned} & (a-b) \cdot\left(k-\frac{a+b}{2}\right)+(b-c) \cdot\left(k-\frac{b+c}{2}\right) \\ & +(c-a) \cdot\left(k-\frac{c+a}{2}\right) \end{aligned}$ | 0.03 | 0.3 |
| 4 | $\begin{aligned} & (a+b-c-d) \cdot(a+b-c-d)- \\ & (a-b-c+d) \cdot(a-b-c+d)-4(a-c) \cdot(b-d) \end{aligned}$ | 0.02 | 0.7 |
| 5 | $\begin{aligned} & (b \times c) \times(a \times d)+(c \times a) \times(b \times d)+(a \times b) \times(c \times d) \\ & +2(a \cdot b \times c)+d \end{aligned}$ | 1.3 | 4.8 |
| 6 | $(a \times b) \times(b \times c) \cdot(c \times a)-(a \cdot(b \times c))^{2}$ | 4.0 | 2.0 |
| 7 | $\begin{aligned} & (a-d) \times(b-c)+(b-d) \times(c-a)+(c-d) \times(a-b) \\ & -2^{*}(a \times b+b \times c+c \times a) \end{aligned}$ | 0.5 | 8.6 |

TABLE

| Coordinates | time in seconds |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Scale <br> Factors | Eq. (27) | Eq. (28) | Eq. (29) |
| parabclic cylindrical | 0.7 | 0.4 | 0.9 | 0.9 |
| rectangular Cartesian | 0.8 | 0.8 | 0.8 | 1.2 |
| polar cylindrical | 2.5 | 0.3 | 0.4 | 0.8 |
| paraboloidal | 3.4 | 0.4 | 0.9 | 1.3 |
| conicai | 6.9 | 1.5 | 1.3 | 2.1 |
| spherical | 7.4 | 0.4 | 0.8 | 0.8 |
| elliptic cylindrical | 9.3 | 0.4 | 0.5 | 3.4 |
| confocal ellipsoidal | 17.8 | 1.9 | 1.1 | 2.5 |
| bipolar cylindrical | 20.5 | 0.4 | 0.5 | 1.4 |
| oblate spheroidal | 21.8 | 0.5 | 1.2 | 1.0 |
| prolate spheroidal | 35.3 | 0.5 | 0.5 | 1.5 |
| toroidal | 57.0 | 0.5 | 0.5 | 2.6 |

TABLE 3

| Case | Expression | POTENTIALZEROLCC | time in <br> seconds |
| :---: | :---: | :---: | :---: |
| 1 | $x y^{2} z+\left(x^{3}+3 x\right) y$ | $[x=0, y=0, z=0]$ | 1.1 |
| 2 | $x^{3} \sin (x x+b) e^{3 y+\pi} z^{2} \log (1+z)$ | $[x=0, y=0, z=0]$ | 11.2 |
| 3 | $x^{3} \sin (a x) e^{3 y+\pi} z^{2} \log (1+z)$ | $[x=0, y=0, z=0]$ | 4.2 |
| 4 | $x /(y+z+1)$ | $[x=0, y=0, z=0]$ | 1.0 |
| 5 | $\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}-3^{-1 / 2}$ | $[x=1, y=1, z=1]$ | 5.9 |
| 6 | $\log _{e}\left(x^{2}+y^{2}\right)$ | $[x=1, y=0, z=0]$ | 1.1 |



# A NATURAL WAY TO DO SPATIAL LINEAR GEOMETRY IN MACSYMA 

Juan Bulnes<br>Stanford Artificial Intelligence Laboratory


#### Abstract

A set of routines appropriate for use as an interactive aid in 2-dimensional calculations with planes, lines and points is presented. The mathematical language usedi is vector calculus. The simplicity with which these routines can be written in MACSYMA is quite remarkable, and that is the main reason for presenting them here. Because of the natural way in which geometric intuition is mapped into them, they can serve as a model for an interactive computational aid for architects.


## INTRODUCTION

This paper is concerned with the application of MACSYMA to 3-dimensional linear geometry calculations. A number of routines are presented which provide a designes cith a most natural language for interacting with the system. Fer example, the designer may be wr. wrchitect who has drawn tentative plans for a structure which he wishes to meet certain specificatidis regarding shape, perspectives, etc.; his design having been driven by the outward shape he has in mird, he may know the exact dimensions of some of the subsystems of his structure, but there may be many essential gaps in his knowledge of how they fit together; also he may still be wondering as to which of his givers can be used as initial reference and whether the rest would then be under-, over- or uniquely determined by these. Our routines permit him to interactively explore the consequences of his decisions. In the situation envisioned, the structure does not have any curved surfaces, although it is possible to deal with them, with some extra work.

The mathematical language chosen is three dimensional vecior calculus and all surfaces are $r$ epresented parametrically. Thus a line is represented by a vector depending on one parameter and a plane by one that depends on two parameters. This is different from the usual representation in analytic geometry, where a plane is represented by an equation in three variables and a line by a system of two equations, and where the variables $X, Y$ and $Z$ stand for the three coordinates of a point. In our represeatation, a point is represented by an ordered triple [a,b,c] and our parameters do not represent coordinates. Thus the vector $[X, Y, Z]$ with three free parameters represents the entire 3-dimensional space, while $[0, X, 0]$ represents the $y$-axis, the same as $[0, Y, 0]$ or $[0, U, 0]$

The objects we are dealing with are points, lines and planes. It seems handier to represent an object like a line by a vector with one free parameter rather than by a system of two equations. It will be shown that this representation makes the routines tha: compute distances and angles extremely simple; in fact they are written in just the language of vecior calculus.

The most important convention we have kept throughout is that for any line the free parameter will be named $X$ and for any plane the parameters will be $Y$ and $Z$. Thus, computing the intersection between two planes can be done by renaming the parameters of one of them to $X$ and $U$, and then solving the resulting system of three equations for $Y, Z$ and $U$; the solution will contain $X$ and will therefore be a line.

While the above is a convention for the system we are building in MACSYMA, the following are conventions for the sake of this exposition only. We shall use lower case letters a,b,c,... to represent numerical quantities, as opposed to parameters (however, responses typed back by MACSYMA will appear always in upper case). Thus we may talk about the point [a,b,c], for instance; or about some horizontal plane [Y,Z,a]. Upper case identifiers A,B,..., L1,L2,... and PLI,PL2,... will be used as arguments in the definitions of MACSYMA functions. But $X, Y, Z, U$ will be reserved for the parameter names.

The author wishes to acknowledge his debt to Bill Gosper who taught him how to use MACSYMA and substartially contributed to the system shown in the sequel.

## BASIC VECTOR CALCULUS IN MACSYMA

Vector addition, substraction, multiplication and division by scalars are already built in MACSYMA. So is also the dot product. For example:
(C1) $[a 1, a 2, a 3]+[b 1, b 2, b 3]$;
(DI)

$$
[B 1+A 1, B 2+A 2, B 3 * A 3]
$$

(C2) a*[bl,b2,b3];
(D2)
[A B1, A B2, A B3]
(C3) $[a 1, a \varepsilon, a 3][b], b 2, b 3] ;$
(D3) A3B3+A2B2+A1B1
Thus the only basic operation that nees's be added is the cross product, also called vector product. The following routine suggested by Bill Cosper combines the MACSYMA functions DETERMINANT and MATRIX so as to write the cross product in the very same way it is defined in textbooks.

$$
\operatorname{CROSS}(A, B):=\operatorname{DETERMINANT}(\operatorname{MATRIX}\langle[(1,0,0],[0,1,0],[0,0,1]], A, B))
$$

Thus:
(C4) $\operatorname{CROSS}([a 1, a 2, a 3],[b 1, b 2, b 3]) ;$
(D4) [A2 B3-A3B2, A3B1-A1B3, A1 B2-A2B1]
Of course D4 would make a more efficient definition of the cross product. But Cosper's routine is worthy of presentation for its elegance, tecause it illustrates the capabilities of the MACSYMA language and also for its additionat merit that it follows the mnemotechnic rule by which the definition is commonly remembered.

Using SOLVE in addition to the basic set of operations just described, one can program a set of useful routines for using MACSYMA as an interactive calculational aid, in a language that follows almost verbatim a tutorial exposition of vector calculus. We start with the norin of a vector:

$$
\operatorname{NORM}(A):=\operatorname{SQRT}(A \cdot A)
$$

The distance between two points is the norm of the difference vector:

$$
\operatorname{DISTANCE}(A, B):=\operatorname{NORM}(A-B)
$$

Vectors of length one are useful for many purposes, for instance for determining angles. The following function,

$$
\text { UNITL(A) := } \frac{A}{\operatorname{NORM}(A)}
$$

yields a vector of length one pointing in the same direction as $A$. While writing such a function is barely justified from the point of view of economy in typing and not at all justified from the point of view of computational efficiency, it seems worthwhile to keap the user in touch with the intuition behind what he is doing.

Passing a line through two points:

$$
\operatorname{LINE}(A, B):=A+X *(B-A)
$$

And a plane through three points:

$$
\operatorname{PLANE}(A, B, C):=A+Y *(B-A)+Z *(C-A)
$$

Cetting the point of intersection of a line and a plane:
$\operatorname{INTERSECTION}(L, P L):=\operatorname{EV}(L, \operatorname{SOLVE}(L-P L,[X, Y, Z]))$
There are several ways to compute the intersection line between two planes. One possibility is the following routine, suggested by Bill Cosper.

PLANEINT ERSECTION $\langle$ PL1, PL2; :-
BLOCK([INT], INT : SOLVE(PL1-EV(PL2, Y = X, Z $=U),[Y, Z, U]), E V(P L 1, I N T))$
This function works fine in most cases; but when the planes are parallel, SOLVE falls and gives the message "inconsistent equations", and that is what it should do. The same happens to INTERSECTION when the line and the plane don't intersect. However, PLANEINTERSECTION fails for the following pair of perpendiculai planes because of the asymmetry steriming from the fact that we solved for three arbitrary parameters out of the four.

## (C5) PLANEINTERSECTION $([Y, 0,2], 2, \mathrm{Y}, \mathrm{Z}]$ ); INCONSISTENT EQUATIONS:(2)

Switching around $Y$ and $Z$ in the first argurnent does not do any good, but, curiously enough, doing it with the seconc one dues:
(C6) PLANEINTERSECTION([Y,0,Z],[2,Z,Y]); SOLUTION
(E6)
(E7)
$U=0$
$Y=2$
(E8)
$Z=X$
(D8)
$[2,0, X]$
By tracing SOLVE we find the solution to the puzzle:
(C9) PLANEINTERSECTION([Y, $0, Z],[2, Y, Z]$ );
1 ENTER SOLVE [[Y-2, - X, Z-U], [Y, Z, U]]
INCONSISTENT EQUATIONS:(2)
What has happened is that the second equation says $X=0$, but $X$ is considered a coefficient because it is being solved for [Y,Z,U]. Swithing the second argument helps because we then have $U$ $=0$, which is O.K. for a variable U.

Failure of PLANEINTERSECTION due to the above situation is a rare occurrence; a more serious problem of this and other routines is occasional numerical unstability. In the next section we shall discuss some modifications that help with the latter; also we will show how to construct a routine for intersecting planes that never fails unless the planes do not intersect.

In the rest of this section we shall use a function VCOEFF instead of the MACSYMA function COEFF. The definition of VCOEFF will be given in the next section, as we see why COEFF does not always work.

The following function GRADVECT computes a vector of unitary length perpendicular to a plane.

$$
\text { GRADVECT }(P L):=\operatorname{UNITL}(\operatorname{CROSS}(V C O E F F(P L, Y), \operatorname{VCOEFF}(P L, Z)))
$$

Similarly, the unitary vector pointing in the direction of a line.
UNITDIR(LINE) := UNITL(VCOEFF(LINE, X))

The angle between two lines can be computed with help of UNITDIR. The simplest way is the following.

## ACOS(UNITDIR(L1).UNITDIR(L2))

However, as the referee suggested, it is numerically preferable to use ATAN2 instead of ACOS or ASIN, as follows.

## ANGLEBETWEENLINES(L1,L2):=

BLOCK([INT1,INT2],INT 1:UNITDIR(L1),INT'2:UNTTDIR(L2), ATAN2(NORM(CROSS(INT1,INT2)),INT 1.INT2))


#### Abstract

This routine computes the correct angle modulo 2 n . In practical applicaions you would probably prefer to compute angles modulo $\pi$, because repeated use of the cross product makes it difficult to keep track of the orientation of the different unitary vec'ors. Also angles are computed in radians, but converting them to degrees is trivial.


A function for computing the shortes: distance between two lines is

## DISTANCEBETWEENLINES(L1, L2) :-

ABS((EV(L1, X = 0) - EV(L2, X = 0)). UNITL’CROSS(VCOEFF(L1, X), VCOEFF(L2, X) $)$ ))
which takes the vector from a random point on one line to a random point on the cther one and projects it onto the vector perpendicular to 6 sth lines. However it fails when the lines are parallel, in which case the appropriate procedure is to take a random point on the first line by an $E V(L, X=0)$, and compute its distance to the other line using the following function.

DISTANCEFROMPOINTTOLINE(A, L) :=
$\operatorname{NORM}(\operatorname{CROSS}(A-E V(L, X=0)$, UNITL(VCOEFF(L, X) $)$ )
Other useful functions are:
DISTANCEFROMPOINTTOPLANE(A, PL) : :
$A B S((A-E V(P L, Y=0, Z=0))$. GRADVECT(PL $))$
ANGLELINEWITHPLANE(L, PL) := ABS(n/2 - ACOS(UNITDIR(L). GRADVECT(PL)))
The names of these routines are self explanatory. The following one computes the angle beiween two $\mathbf{p}^{\prime}$ 'ales.

```
SOLIDANGLE(PL1, PL2):= \pi-ACOS(GRADVECT(PL1).GRADVECT(PL2))
```

An interesting problem is passing through a point $P$ a plane perpendicular to a line $L$. It can be solved in the following way: let the vector $[X, Y, Z]$ represent a random point in 3-space; then [ $X, Y, Z]-P$ is a vector from $F$ to a random point; restricting $[X, Y, Z]-P$ to being perpendicular to $L$, we obtain an equation in $X, Y, Z$; solve it for $X$ and substitute the solution into $[X, Y, Z$; the resulting vector depends on $Y$ and $Z$ and represents the plane sought. The following routine embodies this procedure.

```
NORMALPLANE(P,L):= EV〈[X,Y,Z], SOLVE( ([X, Y, Z]-P). UNITDIR(L), X 》)
```

But this function, like PLANEINTERSECTION, may fail in some cases; i.c., if the first coordinate of $\mathbf{P}$ is 0 , it will return [ $X, Y, Z$ ]. Forrunately the following simple mudification makes it reliable.

NORMALPLANE(P,L) := EV $[[X+Y-Z, X-Y+Z,-X+Y+Z]$,
SOLVE( ([X+Y-Z, X-Y+Z, $-X+Y+Z]-P)$. UNITDIR(L), X ))

Similarly, given a line $L$ and a poili $P$ not on $L$, we can $d r a w$ through $P$ a line perpendicular to $L$ and intersecting $L$ in the following way.

## DRAWPERPLINE(P, L) := LINE(P, EV(L, SOLVE(LINE(P, L) . UNITDIR(L))))

However, if we now want to find the point of intersection of $L$ with the perpendicular drawn by DRAWPERPLINE, we often find that they do not intersect. This is due to the errors of numerical approximation: the two lines may miss each other by less than a millionth of an inch. The second argument to LINE in the function definition of DRAWPERPLINE is supposed to determine on $L$ the nearest point to $P$; I have found that the following way of using differentiation to find the closest point makes the function more friendly.

```
DRAWPERPLINE(P,L):- LINE(P, EV(L,SOLVE(DIFF( (P-L). (P-L), X, I)))
```

In a similar way we might continue defining functions for solving many kirds of geometric problems. But we shall leave our account here and discuss some practical issues in the next two sections.

## SOME HINTS ON MAKING THE SYSTEM MORE FRIENDLY

The foregoing routines suffice for most practical calcuiations. However, "ou may often want tc look at the numerical values of your points or lines. The following value serves to illustrat: a problem associated numerical evaluation.
(D10) ( $70635125614569702699748018112244808857010 * X$
+1666520868167951809628782280558541766013175 )
/1875956846319908260995774089014019351503416
(C11) 7,numer;
(D11) 0.0
To see what has happened, let us look at its floating point representation.
(C12) BFLOAT(D10);
(D 12) $5.330613025256711 \mathrm{~B}-43$ ( $7.063512561456975,40 \mathrm{X}+1.006520868167952 \mathrm{E} 42$ )
The solution to this and other problems is to use EXPAND.
(C13) EXPAND(D10);

(C14) \%,numer;
(D14) $\quad 0.037652852 \mathrm{X}+0.88835778$

466

The MACSYMA function COEFF offers an analogous difficulty, as illustrated by the following case.

[^2]$$
\frac{x+5}{7}
$$
(C16) $\operatorname{COEFF}(\%, X)$; (D16)
$$
0
$$
(C.17) COEFF(EXPAND(D15), X);
(D17)
$$
\frac{1}{7}
$$

This is the reason why we had to use a function VCOEFF instead of COEFF in the lasi section. Our definition of VCOEFF is as follows.

$$
\because C O E F F(V, X):=\operatorname{MAP}(L A M B D A([L], \operatorname{COEFF}(E X P A N D(L), X)), V)
$$

In my own experience, the system is quite friendly if one keeps expressions in expanded form and exercises extreme caution with floating point conversions. In the use of Eval in the routines, one may include the EXPAND argument throughout. When converting a value using numerical evaluation, it is wise to do it always in two steps: first expand it and then evaluate it. Use of EV(2,EXPAND,NUMER) won't do any good; you have to say:

## (INT:EXPAND(\%), EV(INT,NUMER))

As for the particular type failure of PLANEINTERSECTION showed in the previous section, it occurs so seldom that I have preferred to keep it as it is. However, the following routine will never fail unless we encounter a plane whose twa COEFFs are linearly dependent - which could. have been created by giving three colinear points to the routina PLANE. Also it will return NIL if the two plares are parallel.

PLANEANTERSCT(P1, P2) :=

```
BLOCK([INT1,INT2,INT3], INT1:GRADVECT(P1),
INT2:ABS(YCOEFF(P2, Y). INT1), INT3:ABS(VCOEFF(P2, Z). INT1),
IF MAX (INT2, INT§) \(>0\) THEN
INTERSECTION(IF INT2 > INT3 THEN EV \(\langle\mathrm{P} 2, \mathrm{Y}=\mathrm{X}, \mathrm{Z}=0\) ) ELSE EV(P2, Y=0, \(\mathrm{Z}=\mathrm{X}\) ), P 1) + X * UNITL(CROSS(GRADVECT〈P2), INT1)
ELSE NIL )
```

This routine works by first locating the coefficient of P2 whose direction meets P1 at a steeper angle and taking a line on P2 in the direction of that coefficient; the point of interseation of this line with Pl is then used as a starting point for the line of intersection of the two planes, which points in the direction of the cross product of the GRADVECTs of the two planes.

## THE USE OF THE SYSTEM: AN EXAMPLE FROM APOLLONIUS.

The referees have exp-essed the desire to see some examples of the use of the system described in the previous sections. Also one of them raised the question whether there are problems in which the symbolic capability of MACSYMA offers a clear advantage.

To me, the main advantage of the system is its flexibility. If you need to get started on some calculations of your own, here you rave an environment where you can compute things exactly as you want. Not having had much experience with other systems for this purpose, I can't give a comparative answer. I hope that the example shown below will permit the experienced user to draw his own conclusions.

As for the question on the symbolic capability, my answer is a qualified yes. I have found examples where it is useful; but in many other cases I have found it necessary to force MACSYMA to stick with numerical approximated values. Thus I will make a case both ways. I hope that the example worked out as weil as the problem of the quarter cylinder mentioned below, will make the reader enthusiastic about symbolic calculation. I can think of examples which make much heavier use of this facility. On the other hand, I hope to temper the enthusiasm so that symbolic computation will not be abused, because the complexity of algebraic expressions grows extremely large in three dimensional calculations and in many creses they will blow up MACSYMA's storage capacity.

For example, consider the fellowing two problems. First give yourself three points $P$ [ $[\mathrm{p} 1, \mathrm{p} 2,0]$, $\mathrm{Q}:\left[\mathrm{q} 1, \mathcal{q}^{2}, 0\right]$ and R:[r1, 2,0$]$, and sompute the coordinates of the center CNT of the circumscribed circle of the triangle. Then let MACSYMA do a RATSIMP on DISTANCE(CNT,P)-DISTANCE(CNT, Q), and it will compute 0 . Now give yourself four points with symbolic coordinates in space and compute the coordinates of the center CNT of the circumscribed sphere. You will get a huge expression for each coordinate of CNT. When I asked for RATSIMP(DISTANCE(CNT,Q)-DISTANCE(CNT,P)), MACSYMA was not able to handle it.

When doing practical calculations, it pays to keep values stored in numerical form so as to minimize the size of expressions. Granted this, I have found that a limited use of the symbolic capability cans be very useful. For instance, consider the following problem. You want to make a plece in the shape of a quarter of a cylinder that should be inserted between two planes $\mathbf{A}, \mathbf{B}$ that are not parallel, and the axis of the cylinder is not perpendicular to either of the planes. The planes, the radius and the axis of the cylinder are given; so are also the planes F1, F2 of the two non curved faces of the quarter cylinder. You want to make your cylinder by rolling up a sheet of metal, which should be cut for you on order. Then you maj use MACSYMA as follows. Define a line on the cylinder depending on one parameter THETA; THETA is the angle that the plane through LINE(THETA) and through the axis makes with F1. You are interested in the range $0 \leq T H E T A \leq \pi / 2$. Now you can compute the intersections IA(THETA) and IB(THETA), of LINE(THETA) with A and B, respectively, Similarly let IR(THETA) be the intersection of LINE(THETA) with some reference plane perpendicular to the cylinder axis. The distance on the cylinder surface from LINE(THETA) to the edge on F1, is THETA times the radius. With all these functions of THETA, you can now plot the shape of the sheet of metal, which you want cut so that it will fit into your structure. It cannot be overemphasized that for an application of this nature, it is con' enient to keep everything but THETA in numerical form.

Now let us look at a sample problem. Presenting any practical application in a short paper like this, I am forced to restrict MACSYMA's output to its shortest possible form. For this reason, I will make ure of the following function.

NUMVAL(A) := BLOCK([TMP], TMP: EXPAND(A), EV(TMP, NUMER))
(I am not claiming there are no better ways of achieving the same effect. Having writien this section after my paper was revipwed, I can only apologize if this way of doing it is sar from optimal.)

Now consider the following variation of the Apolionius' problems: given two plares PLI and PL2, and two points A and B, find the center and the radius of a sphere through A and B that is tangent te PL.1 and to PL2. We shall take some numerical values for the planes and the points.
(C.18) PLI : PLANE $([1,0,0],[0,1,0],[0,0,1])$; (D18)
$[-\mathrm{Z}-\mathrm{Y}+1, \mathrm{Y}, \mathrm{Z}]$
(C19) PL2 : PLANE([1,0,0], [2,1,0], [2,1,6]);
$[Z+Y+1, Z+Y, 6 Z]$


Let LOC1 be the loius of the points that are equidistant from A and B Let LOC2 and LOC3 be the loci of the points that have the same distance to PL1 and to PL2. We use the line of intersection of PL1 and PL2, IL12, as an intermediate value.
(C22) LOC1 : NUMVAL( NORMALPLANE ( $(A+B) / 2, \operatorname{LINE}(A, B))$;
(D22) [1.3333333s Z - 21, $3.33333334 Z-2 Y-21,-1.33333333 Z+2 Y+21]$
(C23) IL 12 : NUMVAL(PLANEINTERSECTION(PL1, PL2));
(D23) [0.75 X + 1, 0.75 X, - 1.5 X$)$

(D24) $[1.28445704 \mathrm{Z}+0.75 \mathrm{Y}+1,0.75 \mathrm{Y}-0.12975651 \mathrm{Z}, 0.57735026 \mathrm{Z}-1.5 \mathrm{Y}]$
(C25) LOC3: NUMVAL(EV(IL12, X=Y) $+\mathrm{Z} *$ ( GRADVECT(PL1) - GRADVECT(PL2) ) ; (D25) $\left[-0.12975651 \mathrm{Z}+0.75 \mathrm{Y}+1,1.28445704 \mathrm{Z}+0.75 \mathrm{Y}, 0.5^{5 \prime 7} 75026 \mathrm{Z}-1.5 \mathrm{Y}\right]$

Intersecting LOC1 with LOC2 and with LOC3, we obtain two lines LOC4 and LOCj, respectively, on waich such a sphere may exist. Of course it will exist in at most one of them, bet we do not yet know on which one.
(D26) $[-0.87226738 \mathrm{X}-27.657506,0.914488 \times 2.894995 \%,-2.2318895 \mathrm{X}-12.8312547]$
(C27) LOC5: NUMVAL(PLANEINTERSECTION(LOC1, LOC3)),
(D27) [0.63169204 X - $1.08222031,1.92112805 \mathrm{X}+20.611859,9.264817-0.97358996 \mathrm{X}]$

Now we proceed to find out whether there is any point on LOC4 or LOC5 that has the same distance to, say, A and PL1.

```
(C28) Q4A : NUMVAL(DISTANCE(LOC4,A)T2 );
(D28) 6.5889733 X' +164.071367 X + 2138.6957
```

(C29) Q5A : NUMVAL (DISTANCE(LOC5.A) T2);
(D29) $\quad 5.0376453 X^{2}+21.8869693 X+116.789719$
(C30) Q41 : NUMVAL(DISTANCEFROMPOINTTOPLANE(LOC4,PLI) 12 );
(D30) ABS $(1.26756976 \mathrm{X}+22.310988)^{2}$

The last line is typical of some of the minor problems one frequently encounters. It is the price one has to pay for using a system of such great generality. It still seems much less than the price one pays with more conventional systems. So we try again.
(C31) QA1: NUMVAL( PART(DISTANCEFROMPOINTTOPLANE(LOC̄i,FL1),1)T2); (D31) $\quad 1.60698665 \mathrm{X}^{2}+56.56593 \mathrm{X}+497.78018$
(C32) Q51 : NUMVAL(PART(DISTANCEFROMPOINTTOPLANE(LOC5,PL1),I)T2); (D32) $0.8313226 \mathrm{X}^{2}+29.262555 \mathrm{X}+257.51048$
(C33) REALROOTS(Q41-Q4A);
(D35)
(C94) REALROOTS(Q51-Q5A);
(D35)
[E34, E35]

So we know there is no such sphere on LOC4 but there are two of them on LOC5. Now we proceed to determine their centers and radii.

```
(C36) CNT1 : NUMVAL(EV(LOC5, E34));
(D36) [- 4.2238372,11.0574374, 14.1088072]
(C37) CNT2: NUMVAL(EV(LOC5, E35));
(D37)
                            [3.1670384, 33.534875, 2.71568334]
(C38) RADIUSi : NUMVAL(DISTANCE(CNT1,A));
(D38) 11.5125996
(C39) RADIUS2 : NUMVAL(DISTANCE(CNT2, A);
(D29) 22.18041
```

Finally let us check for the sphere in CNT! whether it actually fulfills the conditions of the problem.

| (C.40) NUMVAL(DISTANCE(CNT1, B):; |
| :--- |
| (D40) |
| 11.5125997 |

(C4i) NUMVAL(DISTANCEFROMPOINTTOPLANE(CN T1, PLI); (D41) $\quad 11.5125996$
(C42) NUMVAL(DISTANCEFROMPOINTTOPLANE(CNT1, PL2)); (D42) 11.5125997

Yes, it does so! Also we have good reason to be happy with the numerical accuracy of the answer. Notice the use of symbolic evaluation in the commands (C28) through (C32).

## CONCLUSION

The foregoing routines are useful for interactive calculations of thre dimensional linear structures. They could provide a medel for practical interactive systems for architects and other designers, which could be enhanceu by the addition of graphic facilities. Also they show how naturally vector calculus can be expressed in MACSYMA.

It is plain that the same approach can be used to express a lor more of vector calculus in MACSYMA. Linear transformations and the like can be expressed most eastiy. Our use of SOLVE could have been handied also by LINSOLVE. But SOLVE can also be used for problems involving curyed surfaces. Differential geometry can be readily treated in this manner too, using also the MACSYMA functions for differentiating and integrating.

Textbook problems in dynamics of solic bodies are typically expressed in the language of vector calculus. Thus they can be naturally sreated using this approach. A fun project would be to work out a course in rational mechanics with MACSYMA by using also its ability to solve differential equations.


# Verieties of Operator Manipulation ${ }^{1}$ <br> Alexander Dochovskoy <br> Laboratory for Computer Science <br> Messachusatts Institute of Technology 

N77-23792

SUMMARY

Symbolle operator manipulation began when program (d,differentiate,verb) was perceived as Ceta (D,Derivative, noun). Although this realization took more than 100 years (ref. 1), the nineteenth century mathphysicists soon developed this percsption in three mejor directions: direct and indirect methods for the solution of differential equations, calculus of finite differences, and the fractional calculus.

We p:opose a change in MACSYMA syntax in arder to accommodate the operator manipulations necessary to implement these classical symbolic methods as well as their modern counterparts. To lilustrate the virtue and convenience of this syntax extension, we show how MACSYMA's patternmatching capacity can be used to implement a particular set of operaior identitios due to throte which can be used to obtain exact solutions to nonlingar differsntial equations.

## 1 INTAOOUCTION

What is an operator calculus? The usad technical meaning involves in isomorphism betwean an afgebra of functions, say of the form

$$
f(x)=\sum a_{k^{\prime}} x^{k}
$$

and an algebra of operators

$$
f(x)-\sum e_{k} x^{k}
$$

sush that pointwise multiplication of functions coos info operator mulfiglicstion:

$$
f(x)_{g}(x) \rightarrow-f_{-1}(X)
$$

[^3]The isomorphism $f(x) \rightarrow-\rightarrow f(X)$ is also requirect to be linear. ${ }^{1}$
Easically, this means that expressions involving the operator $X$ can be manipuiated algebraically. Operator slagebre the becomes a tool for finding soiutions to equations or studylag their siructure. For example, consider the (linear) differential equation

$$
(p(D) Y f(t))=g(t)
$$

where $p(D)$ is a polynomial in the operator $D=d / d l$ over the coefficient ring $K[t]$. We might try to solve this equation using various transform methods. for example, using the Laplace transform. This is the typical mindirect method" which consists of transiating the original problem into a corrasponding problem in some "image space", solving there, ar:i then transforming back. If $g(t)$ $\exp \left(t^{2}\right)$,however, the Laplace transform of the RHS does not exist. The "direct" methxidon the other hand, deals with the original problem itsolf; one could consider a factorization of the operator polynomis

$$
\left(D-r_{1}\right)^{z 1}-\left(D-r_{N}\right)^{8 n}(f(t))-g(t)
$$

and then return the answer in the form

$$
f(t)=\left(D-P_{1}\right)^{-\infty} \quad\left(D-r_{n}\right)-\operatorname{st}(g(t)) .
$$

The problem now is to give mearing to the inverse operstors while preserving basic algebraic lawe such as:

$$
D^{P} D^{\prime}=D^{p+q}
$$

Using a slightly different language, one can view tite svoiution of "operater techniquess" 2 as the realizatien that something conceptually and computationally useful can se gaired from imposing asid sfudying the structure of the dual algetra $A^{*}$ of operators er functionals acting ess some given algebra $A$. For example, $A$ might be $Q[x]$ the ring of univariale polyromials over the rationals. Typically, one introduces a puiring

$$
<, \geq s A^{*} \times A \cdots-\cdots \infty
$$

where $R$ is some relevant ring of scalars. The next step is to define a preduct in the dual algebre. There are various ways of doing this; one example is

$$
\begin{equation*}
c_{1} L_{2}, v^{\prime}-\sum \operatorname{bin}(n, k)<L_{1} x^{k}><_{2} x^{n-k} \tag{1}
\end{equation*}
$$

The product is commutative and associative. The "evaluation" map (usually culted the augmentation")

$$
\epsilon_{\text {app }} p(x)=p(0)
$$

serves as the multipicative identity in the dual sigebra of functionals acting on univariato polynomals

1. In some cases functional composition is also preserved under the map.
2. Also known symbolic mothod, symbolic calcutus, functional calculuy, operator calculus,oper stional celculus, functional operations

$$
L=A . L=L
$$

with the product defined as $\ln (1)$ above. For generalized functions with the pairing given by

$$
\left\langle F_{g g}\right\rangle=\int F(x)_{g}(x) d x
$$

and with i product defined by convolution
the role of the idenitity is pleyed by the delia function
The duality between the algebra and the functionals acting on it is made mors explicit by definins the adjoint $L^{*}$ such that

$$
\left\langle M L^{2} v\right\rangle=<M, v>
$$

It Is also possible to contemplate the meaning of operations appliod to operatars, such as the darlvative of an operater foiament of the dual algebral. Suppose that $A$ is the algebra of polynomiafe in one variable, then one meaning (refs. 2,3) is zivan by

$$
\langle; p(x)\rangle=4, x p(x)\rangle
$$

A more familiar meaning of the derivative of an operator is found in the contaxt of generalized functions (functionals) Facting on a sutable space of test functions, d(1). The pairing is given by

$$
\langle F, \phi(t)\rangle \propto \int F(t) \phi(t)
$$

and in this case the derivative of the functional $F$ is dasined by

$$
\langle F, \theta(t)=-4, \phi t \mid\rangle
$$

(to errive at this one uses iniegration by parts and then forgets). Of course the great virtue of this definition is that the meaning of $F^{7}$ no longer depende on the meaning or existencs of a derivative (in the ordinary sense) for $F$. This is yery convenient for functionals $F$ which are defined as a limit of a sequence of functions. Thus, the woll-known delta function(tal) has a derivative which behaves es

$$
\left\langle t^{\prime}(t-a), \phi(t)\right\rangle=-\phi(s)
$$

These are just some of the mathematical parallals beiween "operator" methods applied to the differsince celculus as well as the differential calculus. Rote (raf. 3) has refined the assence of these ideas Into a very seneral theory of operators which for example finaily explains the somewhat mystorioue umbral oparator calcults dov!loped in classical imvariant theory. In addifion, It provides - neat solution to the problem of computing "connection" coefficients betwsen various classes of polynomials.

In what follows we attempt to mustrate the varialy of applications and 90 ono of the common tivomos in various operator catculi arising in fure and applied mathomatics. MACSYMA's pattornmatching fecility, fogether with the extended syntax we propose, is idesl for implamenting these Idass.


## 2 OPERATORS IN MACSYMA

Let us examine some of the MACSYMA programming aspects of operator aigebra. For example; suppose we are dealing with a linear operater. L. In MACSMMA, thera are several ways of expressing identities invoiving the operaior $L$ In order to say that $L$ is linee.f, we must first define a predicate to recognize sums:

$$
\text { SUTH }(X):=1 S\left(P A R T(X, 0)=m^{*}+\cdots\right.
$$

We cant ihen define a simplification rula by

$$
\operatorname{LET}(L \text { (SUM) , L(FIRST (SUM) })+L \text { (REST (SUM })\} \text {, SUMTI, SUM })
$$

An alternative method is to set up a rule using MATCHDECLARE and DEFRULE; in order to have the identity applied automatically, one can use TELLSIMP. Or, finally, one can simply say

DECLARE (L, LINEAR)

The exigencies of these methods can be overcome with a little help from primers, advisors, etc. (refs. 4,5). Of course tha last method is a response to the programming inconveniences of the first two and aiso aifests to the mathematical importance of the notion of LINEAFity. Other basic algebreic proparties of operators and functions which have been subsumed under the CECLARE function includa COMANTATIVE,R-ASSOCIATIVEL-ASSOCIATIVE, As an example, the following MACSSMA Command

## (C33) DECLARE (L, LIMEAR, H, COTMUTATIVE); <br> (D33) <br> DOAE

hes the following effects
(C34) L(X+Y):
(U34) L(X+Y): L(Y) $+L(X)$
$($ (C36) $H(X, Y)-H(Y, X)+M(X, Y, Z)-H(Y, Z, X) ;$
1036)
defining \& (linear) shift endomorphism $E^{\text {fi }}$ on the algobra of unlvariate polynomials fover some comvenient ringh. How could we express this idenity in MACSMMap The problem is thut we cant oven write down the left-hand side of (1)

```
(C2) {E^(A[l])](P(X));
A
E
MOT A PROPER FUIICTION - MOAPPLY
```

The usual suggestion is to break up the operator $E^{a_{i}}$ and append a, as a new operands to a function $E$ defined by

$$
E(p, x, a, l):-p(x+a[1])
$$

This has the unpleasant semantic consequence of destroying (at the user level) the unity and Identity of the operato. $E^{\boldsymbol{t} i}$ and introduces an unrecessary syntactic restriction upon a,l (recursivaly) forcing them to be atoms since thay now appear as formal parameters in a function definition. But we may not want to apply the operator immediately. Perhape a little simplification

$$
\left(E^{a}\left(E^{b}(p)\right)=\left(E^{a} * E^{b} X_{p}\right)=\left(E^{a+b} X(p)\right.\right.
$$

will reveal the structure of interest to the user. That is, we may want to took at the consequencos of the R -module structure given by

$$
\begin{gathered}
E^{d}(p+q)=E^{a}(p)+E^{a}(q) \\
\left(E^{\mathbf{d}}+E^{b} X p\right)=E^{a}\left(p^{\prime}\right)+E^{b}(p) \\
\left(E^{a_{i}} E^{b} \dot{K}(p)=E^{a}\left(E^{b}(p)\right)\right. \\
E^{0}(p)=p
\end{gathered}
$$

This is simply an absitraction of the axioms for e vector space over a field in which the "scalars" are allowed to be elements of a ring R. 1

If is this interplay between different algebraic structures which leads to the mathematical power of oporator calculi and to the programming difficulties in their implementations.

To tahe full advantage of a calculus of operstors acting on sa.ne domsin, one must respect the aspersic structurs of BOTH the oparators and the domain.

How can we enable the MACSYMA user to use compound expressions in the functional position? In the current wiAcsyma eviluation schems, when a compound expression occurs in the functional position and is not en atom or a subscriptad function, MACS'MMA orrs out with the message as in the exampla above. Instead, it is not unreasonable to return the original form with the compound expression in the functional position simply apperbed before the given arguments (with "MCAPPLY"). With this modification the following kinds of expressions become possible in MACSYMA.

1. In our example $R$ is the essociative ring of shift operators $E^{*}$.
2.1 Combinetoriá Actions

Mumbers and lists of them can act operators:
(C1) (1) (F):
(DI) 1 (F) 2
(C3) $[1,2,3,3 \mathrm{KF}$ )
(D3) $[1,2,3,3\} \mathrm{F}\}$

These two examples suggest that the user can use the new operator syntax to conveniently define the action of combinatorial objects. For example, in the sfudy of the representiations of the symmetric group, $[1,2,3,3]$ might represent the cycle structure of a conjugacy class. Many other interesting discrete actions arise from clessical invariant theory, differential geometry, ariod the cliference calculus.

### 2.2 Identitics for Nonsfomic Oparators

Consider now the iterates of a class of linear operiters indexed in some way:

$$
L x\}^{N}
$$

We would like to say that all these are linear. One could of course DECLARE(LXXLINEAR) ${ }^{3}$ and induce linearity for all the iterates. With symbolic exponents however, this is not possible. Using the new syntex, we may proceed as follows:
(C61) MATCHDECLARE (NRN, TRUE) 8
(C52) MATCHDECLARE (ULU, TRUE) :
(C.63) TELLSIMP ( (L IUNU)ANNN) (SUM).

Then, te a result, we obfain the following sutomatic simplifications:


2. In future MACSYMAs une may be able to give meaning to such an expression directly through a function definition.
3. If and when DECLARE takes nonatomic arguments

Below we give further oxamples of the new syntax, involving operator forms arising in differential calculus and in the finite difference calculus.
(C2) MATR1X(TD[1,1], $\mathrm{t}[1,21],[012,1], 0[2,211) ;$
(02)

| 10 | D ] |
| :---: | :---: |
| [ 1, 1 | 1, 2 ] |
| 1 | -1 |
| 10 | D ] |

(c3) DETERMINANT (\%) (F):
(D3)

$$
\mathrm{D}_{1,1} \mathrm{D}_{2,2} \mathrm{D}_{1,2}^{\mathrm{D}_{2,1}}{ }^{1(F)}
$$

(C4) (E^A) (F):
(D4) (E) (F)
(C5) (E^(A[J])) (F):
(05)

(C6) ( $1+0$ ) (F);
(D6) (IU +19(F)
(C7) $(1 /(1+D))(F) ;$
(07)
(C8) $(D D X]+D[T])(F, G):$
(a8)
$\left.\mathrm{O}_{\mathrm{K}}+\mathrm{D}_{\mathrm{T}}\right)(\mathrm{F}, \mathrm{C})$
(C9) (EXP (D)) (F) z
(D9)
(XE I (F)
(C18) FIRST(z):
(D18)
HE
(C12) TAYLOP (09, $0,8,4$ )
(012)

$$
\left.\frac{0^{4}}{24}+\frac{0^{3}}{6}+\frac{D^{2}}{2}+D+1\right)(+)^{-}
$$


(ul3)

$$
D_{X}+D_{T}
$$

(GE ) (F)

## 3 EVALUATION AND SIMPLIFICATION OF OPERATOP FORAE

Now that we can write down enmpound cserniar forms in MACSYMA, we are faced with the tast. of telling MACSYMA what they mean. One convonient way of doing this would be to atrach properties to the non-atomic objects forming the operator part of an expression (the abillty to aftach properties to non-alomic objects will soon be »vailable in MACSYMA). Naively, one migh' thapo to simply write a function definition of the form

$$
(D[X] * D[T])(F, G):=2 * D[X](D I F F(F, \eta, G)
$$

or use MACSYMA's pattern-matching facilities

> MATCHDECLARE (IFFF, GGG, XXX, TY: , TRUUEIS

TELLSIMP ( ( $D[X X X] *$ [TTT1) (FFF, GGG) , $2 x[D X X X]$ (DIFF (FFF, TTT), GGG) Is
In either case, thore are several ambiguities to be resolved.

1. How is MACSYMA to recognize instances of the L.HS? What does the user mean when he types the function definition? Does the user intend to specify a relation involving fixed mathematical constants $\mathrm{D}[\mathrm{X}] \mathrm{D}[T]$ or does he intend to specify an identity involving the programming variables $X, T$ ? When using DEFRULE, one uses MATCHDECLARE to restrict the sense of the variables used to describe the pattern.
2. Even if the LHS could be recognized unambiguously, the user may still be forced tu label his "elimplificstion" rules since the same LHS may trinsform to distinct RHS's. For example,

$$
(D[x]=[1][T])(F, F):=
$$

$$
\begin{aligned}
& \{2 \times 0[X] \operatorname{DIFF}(F, T), F) \\
& \{2 * 0[T](D I F F(F, X), F)
\end{aligned}
$$

or,

The last exampia raflects the possibility of making choices involving the order of simplification and evaluation.

These choices ariso because wo may hase relatively complicated ( R -module) inieraction
between the algebralc structures of the operators and the elements of the domain upon which they act.

If one views the world of (algebraic/MACSYMA) expressions os made up of operators/programs In Op applied to objects/data in Dom, then the intertwining of simplitication and evaluation can be represented/defined by the diagram

which sometimes commutos:

and sometimes dous not commuts:

which says that

$$
D D^{-1}=0^{-1} O F
$$

It is ciear that this noncommutsivity is an impediment to the development of an operational caiculus.

## 4 SMMBCIIC METHOOS IN DIFFERENTIAL CALCULUS

Historically, there heve been noveral approaches to the resteration of commutativity in the ebove diagraim. One method is conceptually trivial. The diagram can be made commutative by redefining the operand

$$
f(t)--\infty f(t)-f(0)
$$

to have vanishing Initial condition. Ore can also define the inverse indefinitely by

$$
D^{-1}=f^{x}+c=\int_{a}^{x}
$$

and treat the constante separately. This lads io the symbolic calculus systematically developed by Whrphy,Carmichasl,Hargrasve,Bcole (ref. 6, 7) and others. Together with the Leibniz rule for products and the Tayior expension theorem, the principat identities are (ret. 8)

$$
\begin{aligned}
& \left.F(D) \theta^{z(x)}=\theta^{x(x)} F\left(0+g^{\prime \prime} \mid x\right)\right) \\
& F\left(x+g^{2}(\mathrm{CD}) a^{g(\mathrm{D})}-g^{g(0)} F(x)\right. \\
& F\left(D^{2}\right) \sin \cos (a x)=F\left(-a^{2}\right) \sin k \cos (a x) \\
& F\left(D^{2}\right) \text { sinhicosh }(a x)=F\left(-a^{2}\right) \text { sinhlcosh }(a x)
\end{aligned}
$$

Using the extended operator syntax suggested here, one can easily implement these identities and apply them to the selution of differential equations. We illustrate below soms of the symbolic methods which can be used to deal with orcinary and partial differontial equations. One advaniage of these "direct" methods as opposed to "indirect" transform methods is the minimization of existence ascumptions.

### 4.1 Ordinary Differantial Equations: Constänt Coafficiants

There are several methods avellable in MACSMMA to solve differential equations (refs. 9,10). In thls section we discuss the "direct" symbolic method applied to ordinary differertlal equations with consitant coefficients.

Let D be differentiation with respect to I and consider the differental equation

$$
(D+1)=t^{3}
$$

An oparator approsch to the solution gives

$$
\begin{gathered}
1=(1+D)^{-1} 1^{3} \\
1-\left(1-0+0^{2}-D^{3}+m n^{3}\right.
\end{gathered}
$$

The ection of the operatore ${ }^{1}$

$$
\begin{gathered}
t=t^{3}-a^{3}+0^{2} t^{3}-n^{3} t^{3}+\ldots \\
t=t^{3}-3 t^{2}+6 t-6
\end{gathered}
$$

(often) yields substantial dividends by clarifying the structure of tha probiem and providing offectiva means of computation.

Essentially we have used Euclidean Identity

$$
P(D)(D)+P(D)=1
$$

applied to the given function $g(t)-t^{3}$

$$
[P(D) Q(D)+R(D)] g=g \rightarrow P(D) Q(D) g=g
$$

since wo arrange $R(D) g=0$ (by making the degree $R$ in $D$ high enough). Wo can then pick out our solution as $f=$ anh

Now consider slightly more general differential equation $P(D)=g$ (constant coefficients) where 8 màz not te a simple polynomial. Ona can still look for f direcliy by inverting P(D)

$$
f=p^{-1}(D)
$$

but the RHS may not be compactily expressible now. To remeiy this one can generalize the provioses Idea and look for a $Q(D)$ such thet

$$
\text { QON }-0.2
$$

Then using the extended Euclidean algorithm to look for $A(D), E(D)$ such that

$$
P(D) A(D)+B X D O(D)=U(D ;
$$

one hopes that UXD) will be 1. If it is, then

$$
[P(D) A(D)+E(D)(D)] s=s ; P(D) A(D) g=E
$$

and we can pick out the solution es ! $=A(D)$.
II UXO 1, then

$$
[P(D) A(D)+E X D X X D)] g=L X D ; P(D) U^{-1}(D) A(D) g=g
$$

and we can agsin pick out our solution as $f=U^{-1}(D) A(D) g$ hoping thet the lower dagree of U(D) will make it easier to invert than $\mathrm{P}(\mathrm{D})$. A(D), may or may not be stmplof than the original g to deal with.

1. This simple example is intended only to halo specity the lssus of interaction between the operstor algebra and the module of functions
2. This stetement (dess to Robert Folntemg) formalizes what one dons Intuitively when solving equations by "inspection"

Of course, independent of the Euclidean algorithm, one might try is find an operator $\mathrm{L}_{2}$ such that on $L_{1}$ can be found with the properiy thet

$$
P_{P\left(D_{1}\right.}^{1}+L_{2}=1
$$

Then the solution can be obisined as above.

## 42 Linear Equations with Variable Coatficients

As an example of the economy sometimes afforded by working directly with the differential operators, consider the following equation (ret. 11)

$$
\left(D^{4}+2 x^{-1} D^{3}-x^{-2} D^{2}+2 x^{-3} D-1 X f\right)=0
$$

One can attempt e power serios solution to this equation (rot. 10), but enother spprosth is to factor the differantial operator as

$$
\left(D^{2}+x^{-1} D+1 x D^{2}+x^{-1} D-1 x\right)=0
$$

Since the two iactore commute, one can fird a solution of the form $f=f_{1}+f_{2}$ whare

$$
\left(D^{2}+x^{-1} D+1\right)\left(f_{1}\right)=0,\left(D^{2}+x^{-1} D-1\right)\left(f_{2}\right)=0
$$

These simpler Bessel equations then lead fo the solution of the original problem:

$$
=c_{1} J_{8}(x)+c_{2} Y_{8}(x)+c_{3} J_{8}\left(|x|+c_{4} Y_{8}(\mid x)\right.
$$

Thus, by taking advantege of the operator algebra instead of using brute porce, one can discover or preserve the inherent structuris of a problem. Moses (rof. 12) hes recently elucidated this idea for algebraic aigorithms; it oppolies equally well to operational mothods in applied mathenatics.

### 4.9 Linsar Pertial Difforential Equations

The principal operator ldantitios above have their natural analogues in the mullivariable case. Let $\mathrm{C}_{1}, \mathrm{D}_{2}$ derole the partial derivatives with retpect to $x, y$. Then

$$
\begin{aligned}
& F\left(D_{1}, D_{2}\right) e^{f(x, y)}=*^{f(x, y)} F\left(D_{1}+D_{1} f, D_{2}+D_{2} y\right) \\
& e^{f\left(D_{1}, D_{2}\right)} F(x, y)=F\left(x+D_{1}\left(y y+D_{2} f\right) e^{f\left(D_{1}, D_{2}\right)}\right. \\
& F\left(D_{1} p_{2}\right)\left(f i x x+b_{i}\right)=F(a, b) f^{(n)}(w x+b y)
\end{aligned}
$$

Aa an example (ret. 13) consider the inflial-value probiem

$$
u_{1}-d u_{x}+b u_{y}+c u_{z} i l>0
$$

with initial values $u(x, y, z, 0+)=f(x, y, z)$. $1, x \mid D^{-1}$ denote the operator

$$
D^{-1} g(x, y, z, t)=\int_{0}^{t} g(x, y, z, s) d z
$$

Than the PuE can be integrated with raspect to $t$ and expressed in the form

$$
\begin{aligned}
& u(x, y, z, t)-u(x, y, z, 0+)=Q\left(a D_{x}+b D_{y}+c D_{z}\right\} u\left(x, y, z_{2}, t\right) \\
& u(x, y, z, t)-f(x, y, z)=Q\left(a D_{x}+6 D_{y}+c D_{i}\right) u(x, y, z, t)
\end{aligned}
$$

or, vaing the direct symbelic method to ssive for $u$, we oblain

$$
\begin{aligned}
& u(x, y, z, t)=\left[1+Q\left(\Delta D_{x}+b D_{y}+c D_{z}\right)^{-1} f(x, y, z)\right. \\
& -\sum(-1)^{n} D^{n}\left(\omega 0_{x}+b D_{y}+c D_{2}\right)^{n} f(x, y, z) \\
& -\sum(-1)^{n}\left(i^{n} / n\right)\left(a D_{x}+b D_{y}+c D_{z}\right)^{n}(\{(x ; y, z) \\
& =-f\left(a D_{x}+b D_{y}+C D_{z}\right) f((x, y z) \\
& -0^{-a t D_{x p}-b t D_{y} e^{-c t D_{x}}(f(x, y z)} \\
& -f(x-s t y) y-b t, z-c t)
\end{aligned}
$$

ualig Taylop's theormm in operator ferm.
This example egain illuatrates the power and the economy of the symbolte mothod which takes ascyantege of the inherent algobraic structure of the problem and reluria a more mosningiul result.

### 4.4 Nonlinear Partial Difforuntial Equations

Recently, in looking for exact sotutions to nentinear avolution equatioms, Ryoge Hrota irofs. 10, 15) has developsd acalculua tased on the differantial operstor ${ }^{3}$



Using an appropriato substitution, one can express e given nquation in terma of such diffarential operators. The resulting forms are then amenable to n perturbation oxpanation which leads to the solution.

Using this approach Mirota has been able to treat the modified Kortsweg-deVrles 3quatlon, the
 two-dimensiona! sino-Corton equation.

The difieronilal operaiors (eta) sallsfy number of ldentiliss which are used to ropluce itse usual partin! serivatives with bllinear forms involving the nww difarsinial operators. For oxample,
3. Wa uee DIFF to denots the partial derivative
(D17)
(018)

$$
\left.\left(0_{X K 1}^{P F 1}\right)(A A 1, B 81)=(-1)^{P F 1} 0_{X X 1}^{P F 1}\right)(B 81 \text {. AA1) }
$$

CC1 1
(031) (TE

XX1






As an example of the Hrota mothod, considar the two-weve Intersetion described by the -quations
(10101)

$$
\begin{aligned}
& F_{X} V 1_{T}+F_{T}=-F 1 F 2 \\
& F_{X} V 2+F 2_{T}=F 1 F 2
\end{aligned}
$$

(0182)
where the waves F1 and F2 propagate with velocities V1 and V2. The sutestitution
(C183) EV (D101,F1=G!/F,F2-G2/F);
(D183)

(C105) EV(0102,FiwG1/F,F2-G2/F):
(0185)
yieles the equations (using D42 here)
(C106) APPLY1 (D183,FULEEH71):


(D187)


Hircte now usos perturbation endests
(D188)

$$
F=F_{5} E P S^{5}+F_{4} E P S_{4}^{4} F_{3} \operatorname{EPS}^{3}+F_{2} \mathrm{EPS}^{2}+F_{8} E P S+F
$$

*9299)

$$
01-G_{5} \mathrm{EPS}^{5}+\mathrm{G}_{4} \mathrm{EPS}^{4}+\mathrm{C}_{3} \operatorname{EPM}^{3}+\mathrm{E}_{2} \mathrm{EPS}^{2}+\mathrm{c}_{1} \mathrm{EPS}
$$

10119) 

$$
\mathrm{G} 2-\mathrm{H}_{5} \mathrm{EPS}^{\mathrm{S}}+\mathrm{H}_{4} \mathrm{EPS}^{4}+\mathrm{H}_{3} \mathrm{EPS}^{3}+\mathrm{H}_{2} \mathrm{EPS}^{2}+\mathrm{H}_{1} \mathrm{EPS}
$$

Lop subzituting sind equating like powars of a, ons obtains the following equations the first fow orders of s:

$$
\begin{aligned}
& \left(D_{T}+V 1 D_{X} X\left(G_{1}, 1\right)=0,\left(D_{T}+V 2 D_{X} X H_{1}, 1\right)=0\right. \\
& \left(D_{T}+V 1 D_{X} X G_{1} F_{1}\right)=\left(D_{T}+V 1 D_{X} X G_{2}, 1\right)=0 \\
& \left(D_{T}+V 2 D_{X} X\left(H_{1}, F_{1}\right)+\left(D_{T}+V 2 D_{X} X r_{2}, 1\right)=0\right.
\end{aligned}
$$

Surprisingly, the zeroth order solutions

$$
\Rightarrow \quad G_{1}-G_{1}\left(x-v_{1}\right) ; H_{1}=H_{1}\left(x-v_{2}\right)
$$

Induce an exact solution in a relattraly shmple vay. All the highos ordar equationa are astomaticetly estisfled if ell the fighor order terma are chosian to te wero and $\mathfrak{f}_{1}$ sutisfies the equations
(0112)

$$
\begin{aligned}
& F_{X} V_{1}+F_{1}=H_{1}^{H_{1}} \\
& F_{X} V Z+F_{1}=-W_{1}
\end{aligned}
$$

These have a conaral solution

$$
F_{1}=U_{1}\left(x-V 1 T I+U_{2}(x-V 2 T)\right.
$$

where

$$
\begin{aligned}
& \text { (DIFFT V1 CIFF } \left.X_{X} \mathrm{H}_{2}(\mathrm{X}-\mathrm{VR} \boldsymbol{T})=\mathrm{H}_{3} \mathrm{O}-\mathrm{V} 2 \mathrm{~T}\right) \\
& \left(\text { DIFF }_{T}+V_{2} \text { DIFF }_{X} \mathrm{~N}_{1} X-V I T\right)=-G_{1} X-V_{1} T
\end{aligned}
$$

end leads to the exect solution of the eriginal equation


## REFERENCE9

1. Arbogast,LF.A.: Du Caicul das Derivatisns. Strasbourg, 1800.
2. Pincherle,S.: Operatori lineari e coeflicienti di fattoriali. Alti Accad. Naz. Lincei, Rend. Cl. Fis. Mat. Nal. (6) XVIII, 1933, pp. 417-519.
3. Rota,G: Finite Operator Calculus. 1 Math. Analysis and Applications, Vol. 42, No. 3, Academic Press, June 1973.
4. Geneseretn,M.R.: An Automaled Consultant for MACSYMA. Proceedings of the 1977 MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 30 of this compilation.)
5. Lewis, V.E: User Aids for MACSYMA Proceedings of the $10 \% \%$ MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 28 of this compilation.)
6. Boole,A: Treatiso on Differential Equations. Chelsea,Now York (reprinted from 1859).
7. Boole,A.: Treatise on the Calculus of Finite Differences. Dovaritew York, 1960 (reprinted from 1872).
8. Stephens,E:: Elementary Theory ol Operational Mathematics. McGraw-Hill Book Co., 1937.
9. Golden, L.P.: The Evaluation of Atomic Variables in MACSYMA. Proceedings of the 1977 MACSYMA Users' Conference, RASA CP-2012, 1977. (Paper ne. 12 of this compilation.)
10. Lafferty, EL.: Power Series Solution of Ordinary Differential Equations. Proceedings of the 1977 MACSYMA Users" Conference, NASA CP-2012: 1977. (Paper no. 34 of this compilation.)
11. Martin,W.T; and Reissner,E.: Elamentary Differential Equations. Addison-Wesley Pub. Co., 1964.
12. Moses, 1 : Algebraic Structures and Their Algorithms. in Algorithms and Complexity (J.F. Traub ed.), Academic Press, 1976.
13. Liverman,T.P.G:: Generalized Functions and Direcl Operational Methods. Prentice-Hall Inc., 1964.
14. Hirota,R. Direct Methed of Finding Exact Solutions of Nonlinear Evolution Equations. in Backlurd Transformations, the Inverse Scatturing Method, Solilions, and Their Applications (R.M.Miura ed.), Springer-Verlag, 1976.
15. Hirota,R. A Now Form of Backlund Transformations and Its Retation to the Inverse Scattering Problem. Progress of Theorotical Physics, Vol. 52, No. 5, Nov. 1975, pp. 1498.

F. A. Erünhoum<br>University of Califomia, Berkeley

## ABSTRACT

Let $X_{1} \ldots X_{n}$ denote a random vector with Gaussiar distribution with mean vector $\bar{m}_{i}$ and correlation natrix $R_{i j}$.

The explicit computation of moments of the type

$$
\begin{equation*}
E\left(X_{1}^{p_{1}} x_{2}^{p_{2}} \ldots X_{n}^{p_{n}}\right) \tag{1}
\end{equation*}
$$

is best done by expressing the usual powers in terms of Hermite polynomials $H_{n}(x)$ and computing the expectations for these in terms of multigraphs. (See ref. 1.) Computations similar to these are common in quantum field theory where: $\phi^{n}:=H_{n}(\phi)$.

Here we propose to describe the use of MACSYMA for dealing with a much tougher but related problem, described below.

If $A$ is an $\bar{n} \times n$ real matrix we want to find out what information about $A$ is contained in the set of moments of the random variable.

$$
\begin{equation*}
\operatorname{det}(A+E) \tag{2}
\end{equation*}
$$

Here $E$ denotes an $n \times n$ matrix each of whose entries is a Gussian random
variable with mean zero and some joint correlation matrix.
In the case of independent entries with a comon non-zero variance the result -- partially obtained using MACSYMA is

Theorem. The moments of $\operatorname{det}(A+E)$ determine exactly the singular values of $A$ and its determinant.

Crucial for this work is the possibility of computing quantities similar tu (1) where puwers of $X_{i}$ are replaced by powers of minors of the matrix $E$. We obtain some interesting multigraph expansions but the picture is still far from complete and a good deal of extra experimentation is needed. We anticipate the MACSYMA will be quite valuable is this aspect of our work.

## REFERENCE

1. Grünbaum, F. A.: Inverse Problems for Nonlinear Random Systems. Partial Differential Equations and Reluted Tonics, Volume 446 of Lectures Notes in Mathematics, J. Goldstein, ed., Springer-Verlas, 1975, pp. 247-26ذ.

## BIBLIOGRAPHY

Ament, W.S.: Intensity Statistics for a Multipie-Scatter Model Via Computer Symbol Manipulation. Naval Research Laboratory, Code 5404, Washington, D. C.

Ananda, M.P.; Broucke, R.A.; and Hamata, N.: Computation of Force Components of a Cravitationa: Potential. Tech. Memo. 391-444, Jet Propul. Lab., Caiifornia Inst. Technol., June 1973.

Ardersen, C.M.; and Bowen, J.T.: A Computer Program for Anisotropic Snallow Shell Finite Elements Using Symboltc Integraiton. NASA TM X-3325, 1976.

Arıdersen, C. M.; and Darden, G. C.: Evaluation of Integrais for a Ten-Node Isoparametric Tetrahedral Finite Elemen*. Paper presented at the SIAM-SIGNUM Fall Meeting (San Francisco), Dec. 1975.

Andersen, C.M.; and Noor, Ahmed K. Use of Group-Theoretic Metheds in the Development of Nonlanear Shell Finite Elements. Proceedings of the Conference on Symmetry, Similarity, and Group Theoretic Methods in Mechanics, Univ. of Calgary (Albsrta, Canada), Aug. 1974.

Andersen, C.M.; and Noor, Ahrsed K.: A Computerized Symbohe Integration Technique for Development of Triangular and Quadrilateral Ccmposite Shallow Shell Finite Elements. NASA TN D-8067, 1975.

Andersen, C.M.; and Noor, Ahmed K.: Free Vibrations of Laminated Composite Elliptic Plates. Adv. in Engr. Sci., vol. 2, NASA CP-2001, 1976, pp. 425-438.

Barouch, E.; and Kaufman, G.M. Estimation of Undiscovered Oil and Gas. NSF Grant SIA7422773, Sloan School, Massachusetts Inst. Technol., 1976.

Barton, D. R.; and Zippel, R.: A Polynomial Decomposition Algorithm, 1976 Proceedings of Symposium on Symbolic and Algebraic Computation, Assoc. Comput. Mach., August 1976, pu. 356-358.

Bender, C.M.; Keener, R.W.; and Zippel, R.E.: New Approach to the Calculation of $F[1](\alpha)$ in Massless Quartum Electrodynamics. Phys. Rev. (to appear), NSF Grant 29463, ERDA Contract E(11-!)-30: 3, and Alfred P. Sloan and NSF fellowships.

Bers, A.: Symbolic Computation of Nonlinear Wave Interactions. NS: (GK.037979X1) and ERDA (AT(1i-1)-3037), Bull. of Am. Phys. Soc., 1ar. : 775.

Bers, A.; Kulp, J.L.; Watson, D.C.: Analyti. Studies of Nonlinear Plasma Froblems Symbolic Manipulation Programs on a Computer. Massachusetts Instit. Technol., Res. Lab. of Electronics, Quar. Prog. Rep. no. 108, Jan. 1973, pp. 157-185.

Bers, A; and Retman, A. Nonlinear Interaction of Three Wave Packets in Time and Space. Massachusetts Instit. Technol. Resuarch Laboratory of Electronics, AEC Contract AT(il-1)3070, Plasma Research Report, PR11-757, Apr. 1975.

Blau, Irwin: The Value of Information in Non-Zero/Sum Stochastic Games. Ph.D. Thesis, Massachusetzs Instit. Technoi., May 1974.

Bogen, R.A.: Automatic Computation of Direct and Inverse Laplace Transforms Using Computer Symbolic Nathematics. Univ. of Hawail, OivR Contract N00014-70-A-0362-0006 and by NSF Grant MCS75-22893, 1976.

Bogen, R.A.; et al. : The MACSYMA Reference Manual, Version 3, ONR Contract N00014-75-C(Ni61, Lab. for Comp. Sci., Massachusetts Inst. Technol., Nov. 1975.

Bogen, R. A.; and Paveile, R.: Indiciai Tensor Manipulation on MACSYMA. Lett. Math. Phys., vol. 2, 1977, in press.

Caviness, B. F.; and Fateman, R.J.: Simplification of Radical Expressions, Proceedings of tiie Symposium on Symbolic and Algebraic Computation, Assoc. Comput. Mach., Aug 1976, pp. 329-338.

Chattergy, R.: Reliability Analysis of On-Line Computer Systems Using Computer-Algebraic Manipulations. ONR contract N00014-50-A-0362-000. and NASA contract NAS2-8590, Univ. of Hawail, Aloha System Technical Report A76-1, Jan 1976.

Chow, S.K.; Hou, A.H.; and Landweber, L.: Hydredynamic Force and Moment Coefficients of an Eiongated Body of Revolution Rapidly Approaching a Free Surfece in Planar Motion. Westinghouse Research Laboratories, Pittsburgh, PA., Researci, Report 75-IC0-LANCH-PI [ES 575], Aug. 1975.

Chow, S.K.; Hou, A.H.; and Landweber, L.: Hydrodynamic Coefficients of an Elongated Body Rapidly Approaching a Free Surface. Journal of Hydronautics, vol. 10, no. 2, Apr. 1976.

Chu, D.: Machine Inversion of Remote Sensing Data. SB Thesis, Massachusetts Instit. Technol., June 1975.

Cohen, J: Symbolic and Numerical Comptater Analysis of the Combined Local and Overall Buckling of Rectangular Thin-Walled Columns. Comp. Meth. in Appi. Mech. and Engineering, vol. 7, 1975, pp. 17-38.

Dagalakis, N.: Electromechanical Design and an Inertial Spool Superconductirg Generator. Ph.D. Thesis, Nifassachusetts Instit. Technol., Nov. $19{ }^{\prime} 74$.

Djaferis, T.E.; and Mitter, S.K.: Exact Solution of Lyapunov's Equation Using Algebraic Meihods. Proceedings of the Decision and Control Conference, (Clearwater Beach), Fla., Dec. 1976.

Djaferis, T.E.; and Mitter, S.K.: Exact Solution of Some Linear Matrix Equations Using Algebraic Methods. ERDA grant D(49-18)-2087 and NASA grant NGL-22-009-124, Electonic Sys. Lab., Massachusetts Inst. Technol., ESL-P-746, May 1977, 22 pp.

Fan, P.Y.: Computationa! Problems in Modeling the Oil and Gas Discovery Process. SM Thesis, Massachusetts Instit. Tecinol., June 1976.

Fateman, R.j:: Optimal Code for Serial and Parallel Computation. Communications of the Assoc. Comput. Mach., vol 12, no. 12, Dec. 1969, pp. 694-695.

Fateman, F.J.: The User-Level Semantic Matching Capability in MACSYMA. Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation, Assoc. Comput. Mach., 1971, pp. 311-323.

Faternan, R.J.: A Case History in Interactive Problem Solving. SIGSAM Bulletin no: 28, Dec. 1973.
Fateman, R.J.: On the Computation of Powers of Sparse Polynomials. Stud. in Appl. Main., vol. 53, no. 2, June 1974, pp. 145-155.

Fateman, R.J.: An Algorithm for Deciding the Convergence of the Rational Iteration $x[n+1] m(x[n])$. Accepted for Publication, Assoc. Comput. Mach. Trans. on Math Software.

Fateman, R.J.: The MACSYMA 'Big-Floating-Point' Acthmetic System. Proceedings of Symposium on Symbolic and Algebraic Computation, Assoc. Comput. Mach., Aug. 1976, pp. 209-213.

Fateman, R.J.: An Algorithm for Deciding the Convergence of the Rational Iteration $x[n+1]=f(x[n])$. Accepted for Publication, Assoc. Comput. Mach. Trans. on Math Software.

Forman, E.H.: Statistical Models and Methods for Measuring Software Reliability. Contract N00014-67-A-0214, Tech. Memo. TM-64805, George Washington Uniiv., Dec. 1974.

Fuller, S.H.; Gaschig, J.G.; and Gillogly, J.J.: Analysis of the Alpha-Beta Pruning Algnrithm. Contract N00014-67-A-0214, Dept. of Computer Science Report. Carnegie-Mellon Univ. Pittsburgh, PA., July 1973.

Cosper, R.W.: Acceleration of Series. ONR contract no. N00014-70-A-0362-0005, Massachusetts Instit. Technol. Art. Int. Lab., AlM-304, Mar. 1974.

Goss, Blake Alan: Modulation by Mode Conversion with an Electrooptical Substrate. SB Thesis, Massachusetts Inst. Technol., May 1973.

Guibas, L.J: The Analysis of Hashing Algorithms. Xerex Palo Alto Fiesearch Center, CSL-76-3, July 1976.

Herschcovitch, A.; and Politzer, P.A.: Time Evolution of Velocity-Space Instabilities on Counterstreaming. Magnetically Confined Electron Beams. NSF Grant ENG. 75-06242. Phys. Rev. Letters, vol. 36. nn 23, june 1976.

Hirshman, S.P.; Sigmar, D.J.; and Bers, A.: Application of MACSYMA to the Neoclassical Transport Problem of Impurities and Alpha-Particles in Tokamaks. Massachusetts Instit. Technol., Plasma Dynamics internal Memo 18, Mar. 1974.

Howard, J.C.: The Formulation of Simulation Models of Aeronautical Systems. Ames Res. Cen., NASA, Seventh Annual Conference on Modeling and Simulation, Univ. of Pittsburgh, Apr. 1976.

Karney, C.F.F.: Parametric Coupling to Low Frequency Plasma Waves. SM Thesis, Massachusetts Inst. Technol., Jan. 1974.

Karney, C.F.F.: Stochastic Heating of Ions in a Tokamal by Rr Power. PhD Thesis. Massachusetts Inst. Technol., May 1977.

Karney, C.F.F.; Bers, A.; Kulp, J.L.: Darametric Excitation of Ion Waves by Waves Near the Lower Hybrid Frequency. NSF Grant ( SK -28282XI), Massaテhusetts Instit. Technol. Quarterly Progress Report No. 110, July 1973, pp. 104-117.

Khalit, H.M., and Ulery, D.L.: Multiparameter Families of Difference Approximations to the Heat Operator in an Aibitrary Region. ONR Contract N0014-70-A-0362-0001, Adv. in Comp. Meth. for Part. Diff. Equations, AICA, 1975, pp. 304-311.

Knuth, D.E.: Notes on: Generalized Dediekind Sums. NSF Grant CJ 36473, ONR Contract Noom4-70-A-0362-0001, Stanford Univ., STAN-CS-75-480, Feb. 1975.

Knuth, D.E.; and Pardo, L.T. Analysis of a Simple Factorization Algorithm. NSF Grant DCR7203752 A02, ONR Contract NR 044-402, and IBM, Stanford Univ., STAN-CS-76-538, Jan. 1976.

Knuth, D.E.: Evaluation of Porter's Constant. NSF Grant DCR72-03752 A02, ONR N00014-70-A-0362-0001, Comp. and Math. With Appi., Feb. 18\%6, pp. 137-139.

Kong, J.A.: Optics of Bianisotroplc Media. Proceedings of Optical Society of America, Washington, DC, April 1974.

Kong, J.A.: Arialytical Studies of Electromagnetic Problems with MACSYMA. Proceedings of the Joint Conference of the Union Radio Science Internationale and the Institute of Electrical
and Electronic Engineers, Atlanta, Ga., Joint Services Electronics Program Contract 8142, June 1974.

Kong, J.A.: Probing the Earth with Microwave Remote Sensing: An Example of Semi-Numerical Studies or Electromagnetic Waves by Computers. Massachusetts Instit. Technol., Res. Lab. of Electronics Progress Report 114, 1974, pp. 81-85.

Krajcik, R.A., and Nittc, M.M.: Bhabha First-Order Wave Equations. V. Indefinite Metric and Foldy-Wouthuysen Transformations. ERDA, Phys. Rev. D., vol. 14, no. 2, July 1976.

Kulp, J.L.: Use of Symbolic Computation for Nonlinear Wave Interactions. SB and SM Thesis, Massact.usetts Instit. Technol., Aug. 1973.

Kuip, J.L.; Bers, A.; and Moses, J:: Nem Capabilities for Symbolic Computation in Plasma Physics. Proceedings of the Sixth Conference on Numerical Simulation of Plasmas, Univ. of California at Berkeley, July 1373.

Kulp, J.L., Karney, C.F.E., and Bers A.: Symbolic Computation of Nonlinear Wave-Wave Interactions. NSF Grant (GK-28<82X1), Massachusetts Instit. Technol. Quar. Prog Rep. no. 110, July 1973, pp. 86-102.

Lebne-Dengel, Z.; E. G. Njoku; and J. A. Kong: A MACSYMA Study of wives in Uniazial Media. Massachusetts Inst. Technol., Res. Lab. of Electronics Progres; Report 114, July :974, pp. 86-87.

Lee, C.E. and Ca:ruthers, L.M.: LARC-1: A Los Ailamos Release Calculation Program for Fission Product Transport in HTGRs During the LOFC Accident. LA-NUREG-6563-MS, Los Alamos Scientific Laboratory, Nov. 1976.

Levner, D.: Mathemaical Tools for Markov Modeing of System Availability and Reliability. Carnegie-Mellon Univ., Pittsburgh, Pa.

Lewir, V. E.: Introduction to ITS for the MACSYMA User. Lab. for Comp. Sci., Massachusetts Inst. Technol., 1977.

Massachusetts Instit. Technol. World Oil Project: Oil Supply Forecasting Using Disaggregated Pcol Analysis. Workirg Paper No. MIT-EL-76-009WP, May 1976.

Metcalfe, Ralph: Spectral Methods for Boundary Value Prublems. Ph.D. Thesis, Massachusetts Instit. Technol., Sept. 1973.

Moses, J.: Algebraic Simplification. A Guide for the Perplexed. Comm. Assoc. Comput. Mach., vol. 14, no. 8, Aug. 297i, pp. 527-537.

Moses, 5. Symbolic Integration: The Stormy Decide. Comm. Assoc. Comput. Mach., vol. 14, no. 8. Aug. 1971, pp. 548-560.

Moses, J; and Yun, D.Y.Y.: The EZ GCD Algorithm. Proceedings of the Assoc. Comput. Mach. National Convention, Aug. 1973.

Moses, J: The Evolution of Algebraic Manipulation Algorithms. IFIP 74, North-Holian.l Pub. Co., 1974.

Moses, J.: MACSYMA - The Fifth Year. Proceedings of the Eurosam 74 Coni., Stockholm, Aug. 1974.

Moses, J. The Current Capabilities of the MACSYMA Systern. Proceedings Assoc. Comput. Mach. National Conference, Oct. 1975.

Moses, J.: Algebraic Structures and Their Algorithms. Proceedings of the Symposium on Algorithms and Complexity: Naw Directions and Recent Results, Pittsburgh, Apr. 1976.

Moses, J.: An Introduction to the Risch Integration Algorithm. Proceedings Assoc. Comput. Mach. National Conierence, Oct. 1976.

Noor, A.K.; and Andersen, C.M.: Mixed Isoparametric Elements for Saint-Venant Torsion. Comp. Meth Appl. Mech. and Engr., vol. 6, 1975, pp. 195-218.

Odlyzko, A.M.: Lower Bounds for Discriminants of Number Fields. Ph.D. Thesis, Massachusetts Instit. Technol., 1976.

Parrish, W.; and Pickens, J.R.: M.I.T-Mathlab meets UCSB-OLS, an Example of Resource Sharing. NIC I7161, RFC 525, June is73.

Pavelle, R.: Ceneral Static Curved Solutions of Einstein's Equations for Spherically Symmetric Metrics. Dercepiten Technology Corp., Winchester, Mass. ARPA Contracti DAHCl5 73 C 0369, 1974.

Pavelle, R.: Yang's Gravitational Field Equations. Perception Technology Corp., Winchester, M13s., Phys. Rev. Letters, vol. 33, 1974, p. 1461.

Pavelle, R.: Unphysical Solutions of Yang's Gravitational-Field Equations. Phys. Rev. Letters, vol. 34, no. 17, Apr. 1975, p. 1114.

Pavelle, R.: Conservec; Vector Densities and their Curl Expressions. J. Math. Phys., vol. 16, May 1975, pp. Ils9-1200.

Pavelle, R.: Multiple Covariant Differentiation - A New Method. Gen. Relativ. and Cravit, vol. 7, no. 4, 1976, pp. 383-386.

Pavelle, R.: Unphysica! Characteristics of Yang's Pure-Space Equations. Phys. Rev. Letters, vol. 37, no. 15, Oct. 1976, pp. 961-964.

Perception Technology Corporation Use of Symbolic Manipulation Techniques to Examine Gravitational and Unified Field Theories. Final Technical Report, Contract No. DAHC 1573 C 0569, June 1974.

Pless, Vera; and Sloane, N.J.A.: Complete Classification of $(24,12)$ and ( 22,11 ) Self-[ual Codes. Lab. for Comp. Sci. TM-49, Massacinusetts Inst. Technol., June 1974.

Pless, Vera; and Sloane, N.J.A.: On the classification and Enumeration of Self-Dual Codes. AD.PA order no. 2095 and ONR contract no. N0014-70-A-0362-006, J. of Combin. Theory, Series A, vol. 18, no. 3, May 1975, pp. 313-335.

Ramakrishnan, R.: A Study of Pool Mcief Ambiguties and of the Statistics of Parameter Estimation, with an Application in Nitrogen Matabolism. Ph.D. Thesis, Columbia Univ., 1974.

Reliman, A.i and Bers, A: Stability Analysis of a Finite Difference Scheme Using Symbolic. Computation. Massachusets Instit. Techaci. Res. Labb. of Electronics, PRR-756, Aprit 1975.

Robbins, K.A.: Disk Dynamos and Magnetic Reversal. Ph.D. Thesis, Massarhusetts Instit. 'Technol., June 1975.

Kosen, B. and Roycraft, T.J.: Automation of Meteorological Perturbation Theory. ARPA Grant DA-ARO-D-31-124-73-G138, Stevens Inst. Technol., Prog. Rep., Dec. 1973.

Kosen, B. and Roycraft, T.J.: Finite Amplitude Baroclinic Waves. Stevens Inst. Technol., March 1976.

Kumore, F.C.: The Rotating Air Gap Arrnature Machine as a Superconducting Induction Motor for High Speed Ship Propulsion. SM Thesis, Massachusetts Instit. Technol. Aug. 1976.

Stoutemuer, David R.: Analytical Optimization using Algebraic Manipulation. Univ. of Hawaii, The Aloha Sysiem, TR A겨-3; July 1974.

Sxouternyer, D.R.: Computer Agebralc Manipulation for the Calculus of Variations, :he Maximum Principle, and Automatic Controi. Univ. of Hawall, Aloha System, TR A74-5, Noy. 1974.

Szeto, Ellen W.: Dumbbell Model for the Classical Radiation Reaction. BA Thesis, Mount Holyoke Con., Mar. 1977.

Townsend, J.C.: Second-Order Small Disturbance Theory for Hypersonic Flow Over Power-Law Bodies. Ph.D. Thesis, Univ. of Virginia, Dec. 1974.

Trager, B.: Aigorithms for Computing with Algeoraic Functions. SM Thesis, Massachusetts Instit. Tiechnol., June 1976.

Trager, B.: Algebraic Factoring and Rational Function Integration. Proceedings of the Symposium on Symbolic and Algebratic Computation. Assoc. Comput. Mach., Aug. 1976, pp. 219-226.

Underhill, Dwight W.; Reeds, James A; and Bogen, Richard: Mathematical Analysis of Velocity Programmed Chromatography. Analytic Chem., vol. 45, Dec. 1973, p. 2314.

Walton, 1.G.: The Development and Application of the Rayleigh-Ritz and Galerkin Methode. MS Thesis, Univ. of California, Santa Cruz, June 1975.

Wang, P.: Automatic Computation of Limits. Proceedings of the 2nd Symposium on Symbelre and Algebraic Manipulation., Assoc. Comput. Mach., 1971.

Wang P.: Symbolic Evaluation of Definite Integrals by Residue Theory in MACSYMA. Proceedings IFIP 74, pp. 823-827.

Wang, P.; and Rothschild, L.: Factoring Multivariate Polynomials over the Integers. Math. Comp., 1975, pp. 935-950.

Wang, P.: Factoring Multivariate Poiynomials over Algebraic Number Fields. Math. Comp, Apr. 1976.

Wang, P.; and Minamikawa, T.: Taking Advantage of Zero Entries in the Exac/ Inverse of Sparse Matrices. Proceedings of the Symposium on Symbolic and Algebraic Computation, Assoc. Comput. Mach., Aug. 1976, pp. 348-350.

Werschulz, Arthur G.: Computational Cemplexity of One-Step Methods for a Scalar Autmmenntr Difierential Equation. Carnegie-Mellon Univ., Sept. 1976, 21pp

Werschulz, Arthur G.: Computational Complexity of Ore-Step Methods for Systems of Differential Equations. Carnegie-Mellon Univ., Sept. 19\%\%, 29pp.

Werschuiz, Arthur C.: Optimal Order and Minimal Complexity of One-Step Methods for Initial Value Problems. Carnegie-Mellon Univ., Sept. 1976, 34 pp.

Yao, A.C.; and Knuth, D.E.: Analysis of the Subtractive Algorithm for Greatest Common Divisors. Proceedings of the Nat. Acad. Scl., no. 72, 1975, pp. $4720-4722$.

Yilmaz, H.: New Approach to Relativity and Gravitation. Annals of Phys., vol. 81, no. 1. Nov. 1973. pp. 179-200.

Iilmaz, H.: On the "Derivation" of Einstein's Field Equations. Atn. Journ. of Phys., vol. 43, no. 4. Apr. 1975, p. 319.

Yilmaz, H.: Generalized Field Theory of Gravitation. Nuovo Cimento, vol. 31 B, no. 8, Feb. 1976. pp. 241-218.

Yilma2, H: Physica! Foundations of the New Theory of Gravitation Annals of Phys, val. 10, no. 2, Oct. 1974, pp. 413-432.

Yilnazx, H.: A Cene:zlized Nordstrom-Reissner Metric. Lett. Nuovo Cimento. Sept. 1977.
Yun, D.Y.Y.: On Algorithms for Solving Systems of Polynomial Equations. SIGSAM Bulletin, Sept. 1973.

Zippel, R.: Power Series Expansions in MACSYMA. Proceedings of the Conference on Mathematical Software Il, Purdue Univ., May 1974.

Zippel, R.: Univariate Power Series Expansions in MACSYMA. Proceedings of Symposium on Symbolic and Algebraic Computation, Assoc. Comput. Míach., Aug. 1976, pp. 198-208.


This report was printed specifically for you order from our collection of more than 1.5 million technical reports.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are printed for each order. Your copy is the best possible reproduction available from our master archive. If you have any questions concerning this document or any order you placed with NTIS, please call our Customer Services Department at (703)487-4660.

Always think of NTIS when you want:

- Access to the technical, scientific, and engineering results gene ated by the ongoing multibillion dollar R\&D program of the U.S. Goverriment. - R\&D results from Japan, West Germany, Great Britain, and some 20 other countries, most of it reported in English.

NTIS also operates two centers that can provide you with valuable information:

- The Federal Computer Products Center - offers software and datafiles produced by Federal agencies.
- The Center for the Utilization of Federal Technology - gives you access to the best of Federal technologies and laboratory resources.

For more information about NTIS, send for our FREE NTIS Products and Services Catalog which describes how you can access this U.S. and foreign Government technology. Call (703)487-4650 or send this sheet to NTIS, U.S. Department of Commerce, Springfield, VA 22161. Ask for catalog, PR-827.

Name
Address

Telephone



[^0]:    * This work was supported, In part, by the United States Energy Research anci Development Administration under Contract Sumber $E(11-1)-3070$ and by the National Aeronautics and Space Admiristration under Grant NSG 1323.

[^1]:    $\dagger_{\text {This work was supported by National Science Foundation grapit MCS75-22893. }}$ $4 r^{24}$ 1.: MTEMTIOMALEX BCAMS

[^2]:    (D15)

[^3]:    1. This work was supported, In part, by the Unlted States Ereargy Research and Dovelcpmert Administration undar Contract Ptentear E(11-1)-3070 and by the National Aoronsutles and Space Administration under Grant NisG 132\%.
    
