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FOREWORD 

The technical program of the 1977 MACSYMA Users' Conference, held at 
Berkeley, California, from July 27 to July 29, 1977, conststed of the 45 
contributed papers reported in this publfcation and of a vorkshq. 
shop was designed to promote an exchange of iaformatio? betHeen implementere 
and users of the MACSDlA computer system and to help guide future developments. 

The work- 

The respotse to the call for papers has well exceeded the early estimates 
of the con-erence organizers; anL che high quality and broad range of topics 
of the papers submitted has been nost satisfying. 
concerned with the MACSYMA systsm is included at the end of this publication. 

A bibliography of papezs 

We would like to thank the members of the program consittee, the many 
referees, and the secretarial and technlcal stafFs at the University of 
California at Berkeley and at the Laboratory for Casrputer Science, Massachuretts 
Institute of Technology, for shepherding the many papers through the submission- 
to-pubi icatfou process. We are especially appreciative of the burden carried 
.by V. Ellen Lewis of M.I.T. for serving as expert in document preparation from 
computer-readable to camera-ready copy for several papers. 

This conference originated as the result of an organizing session called by 
Joel Moses of M.I.T. at the 1976 ACM Symposium on Symbolic and Algebiaic Comput- 
ation, at Yorktowr. Heights, New Pork, in August 1P76. It owes its success to his 
continuing encouragements and efforts, m'ot to mention his intellectual m d  
practical skills jn keeping the MACSYMA project thriving. 

We wish to acknowledge the kind cooperation of ACM, ACM-SIGSPM, the Elec- 
tronics Research Laboratory and the Department of Electrical Engineering and 
Computer Sciences of the University of California, the Laboratory for Computer 
Science of M.I.T., NASA Langley Research Cater, and the U.S. Energy Research 
and Development Administration. 

We wish to extend our gratitude to the Scientific and Technical Information 
Programs Division. of the ?SASA Langley Research Center for publishing these 
proceedings. .I 

Richard J. Pateman, Gcaeralb Chairman 

Carl M. Andersea, :ogram Coolnittee Chairman 
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PREFACE 

Symbolic and algebraic manipulation enables 0-12 to do exact, symbolic- 
mathematical computations on a computer. To illustrate the difference between. 
cumeric and symbolic processiag, copsfder a computer program (in YORTRAN, say) 
which, given the quantities A, B, and C, can apply the quadratk formula to 
apl'roximate the roots of tb3 quadratic equation F*x**2+B*x+C = 0. The 
names A, B, and C, must of course correspond to numerical values at run-time. 
This is because the progrm has been written to providc numerical processing. 
If A had as its run-time value the expression "Q," B had value "(-P*Q-1)," and 
C had value "P," thz FORTRAN program would be useless. 
applying the quadratic formulcl symbolically, the two roots 
[-(-P*Q-l)'SQRT(P**2*Q**2+2*P*Q+l-4*P*Q)]/(2*Q) can be represented. By further 
efforts, this expression can be reduced to the set of values (P, l/Q). 
substitution (in this case, into the .quadratic formula) arid subsequent slmp1.i- 
fication are but two of the necessary operations in an algebra system. Some of 
the more elaborate facilities that can be built up (and have been, in MACSYMA) 
include partial differentiation, indefinite integration, inversion of matrices 
with symbolic coefficients, solution of polynomial equations, and manipulation 
of truncated power series. 
in this conference. 

Mevertheless, by 

This 

The range of cdpabilities can be seen in the papers 

MACS'IMA is a large symbolic and algebraic manipulation system which has 
been under development at the Laboratory for Computer Science (fomerly 
Project MAC) of the Massachusetts Institute of Technology siT;ce 1969. 
system has mare than quintupled in size since the first parar describing it 
appeared in 1971. 
it a challenging project from many points along the eomyter hardware-software 
spectrum. Some papers on the LISP system in these proceedings address this 
issue. 

The 

It is, by any measure, a rather 1ar;te piogram, and this makes 

During the last several years, the community of users of the MACSYMA system 
has grown at an increasir.g rate; and because of the wide geographical range of 
the ARPA computer communication network of the Defense Coaaunication Agency, 
there are JOW users from Hawall. to Cambridge, Englad, Another contributing 
factor in the growth has been the ability of Joel Moses and his staff at the 
Laboratory for Computer Science to make avaalable at relatively low cost the 
most versatile of algebraic manipulation systems currently implemented. 
is the synergistic effect of the comunitg itself: 
person's program may be the input to the next perscn's, and where nearly 
instantaneous feedback on features and repair of bugs are the rule rather than 
the exception. 

Another 
where the output of one 

Many of the users of FACSYMA (including contributors to this conference) 
are also using or have used othdr systems (ALTRAN, FORMAL, REDUCE, SAC-1, 
and SCRATCHPAD, to name a few) with symbolic and algebraic manipulation 
facilities. Many of the techaiques are not specific to MACSYMA, but are alge- 
braic manipulation contributions independent of particular system contsxt. 
we view this conierence as a collection of persons interested in advancing the 
field of inquiry in "symbolic and algebraic manipulation," and applying the 
fruits of this inquiry to other areas. 

Thus 

We believe the papers bear out this view. 
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Until -‘icently, major funding for NACSYklA development has conie from the 
‘Idvanced rsezrch Projects Agency, Department of Defense, under Office of Naval 
Research Contract N00014-70-0362-0006. 
ranks have come from agencies whose own personnel and coiltractors have used 
MACXMA. 
the National Aeronautics and Space Administration, and the U.S. Navy. 
resources to provide the unique facility of the MACSYMA Consortium, these 
sponsors have provided ar! invaluable resource. 

Richard J. Fateman 
General Chairman 

More recent additions to the sponsors’ 

These include the U.S. Energy Research and Development Administratio?, 
Combining 
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I V'ACSI(MA'5 .. Syrnbolie Ordinary Differentiid Equation S o k c  

Jeffrey P. Golden 
Laboratory for Computer Science 

Massachusetts hstttute of Ttihnwiogy 

ABSTRACT 

Thio paper describes MACSI'MA's symbolle ordinary differential 
equation solver ODE2 Although avaikbk io MACSYMA fw approximately three 
years now, a paper descrittng how to use It had never previously been written. Also, 
this paper showcases tk code for :his routine, which is of interest because it Is 
writm in rop-level MACSYMA language, and may serve as a good exaccple of 
programming in that language. Other symbolic ordinary differential equation 
soivers are mentioned. 

.i 

1. 'fhc ODE2 Packa_gL 

MACSYMA't ordinary differential quatban (ODE} solver GDE2 may be used for 
tymSo?ically solving elementary ODE; of first and second order. It consistf pri'narily of a set of 
routines based on techniques described in reference I for Noses' SOLDIER ODE program, and in 
reference 2, whlch had been used t!l recently as the major textbook In M,I.T.'s iQ;roductcry 
ODE course 18.03. TA? ODE2 pac e Mas written prmariiy bv an M.I.T. gradmtc w d m t ,  Ben 
Kulpcrs, a3 a term project in P srrniny an algebraic rrani;?uiatton taught by Richard Fa!etnau In 
the fall of 1972.73 It. has slnsl~ been 

inc, e.g. at Coliuws: 

Inulned, modified, and krnprovk by the author. 4 
t 

When the user calls the 

(CZ) ODE2(X,T,X); 

o Thls work was supported, In part, by the United States Energy Resemh anu Development 
Administration under Contract tlumber €(lt-I)-307Q and by the National Aeronautics and Space 
Admiclstration under Grant NSC 1323. 



the ODE package ODER LTSF DSK SHME !or ODER FASL DSK SHARE if the user is using 
NEW10 MACSYMA) f5 autsmatlcaily load& in. Or, the user rail load it in by typing e . ~ ~  
LOADFILE( ODEP, LISP, DSK ,SHARE) ;. For this example, after seveiral out-of-core files are loaded 
in, the answer is obtained: 

W e  see from this example how ODE? fs us&. r'imely, rt taker three arguments: an ODE 
OP flist or second order (only the Idt hand stde need be giver, if the right hand side is O), the 
dependent variable, apd the independent variakle. Wheo successful, it returns eith?r an cxplicit 
or implicit solution fur the dependent variabk. C is used tr, rep-sent the constant in the Lase of 
first order eq*!abions, and K1 and K2 the cnnstants fc; seconcl order equation;. A n  alternative 
sch~me, vhid. :?as been sue;gested. of generating squences of constants, e.g Kl, K2, K3, ..., so 
that different rhtions might use different "'constants", has not yet been implemented. If ODF2 
cannot &tab a solur:on for whatever reason, it returns FALSE, after perhaps printing out an 
error message ta the uscr, 

i 

T h e  methods implementdd for first order equation? In ,he order In which thev are tested 
are: linear, exa? - perhaps requiring an intcgaa'ing factor, homogeneous, Beroolrlli's equation, 
and a generalizt-d homogeneous mcthwl described in reference 1. 

For second order: constant coefficient, exact, linear hqmogenmus wlth non-constant 
coefficients which can be transformed to constailt coefficient, the Eurer or equidimensional 
equation, the method of variation of parameterJ, and equations which are free of either the 
independent or of the dependent variable so that they ca.1 be reduced to two first order lincar 
equations to bc solved sequentially. 

In the c o m e  of hJ!ving Or3 Es, several variables are set pur?ly for informational purpores: 
METHOD denrtes the methcd of solution usni e.g. LINEAR, 1NTFACTI)R denotes any integrating 
factor wsd, OIEIND€X denotes the index for Bernoulli's method 0: for the generalized 
homogeneous mdthod, and YP deiates the particular solution for thP variation of parameters 
techniq w e. 

Since thc code is written in toplevel MACSYMA language, it may easily be extended not 
only by the author, but by o h r  MACSXiA users as well. Indeed, there is much room for 
extension and improvement. The basic app:oach used in ODE2'ls a pattern-directed one relying 
heavily on the MACSYMA commands EXPAND, COEFF, FREEOF, DERIVCEGREE, HIPOW, and 
SUBST, and on the MACSYMA pattern matclicr DEFHATCH in checki ;g for linearity. T h e  basic 
power of thz routine comes from MACSYMA's advanced indefinite integration package (ref. 3) 
and, of course, the XEHTEBRATE command is heavily ured. Flnally, basic restructurlcg of 
expressions is needed throughout, and for this RATSIMP is used heavily. 

f 
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In order to solve initlal value problems (IVPs) and boundary value problems (BVPs), the 
routlria IC1 Is available for flrst order quations, and IC2 and 8C2 written by David Stoutemyer 
for second brder IVPs and BVPs, respectively. They are tisd as in the followiiig examples: 

(C9) 'DIFF(Y,X,2) Y*'DIFF(Y,X)̂3 = I); 
d Y  dY 3 

2 4% 

2 

(D4) --- + Y (-0) = 0 
dX 

(C5) dDEZ(X,Y,X); 
3 
Y - 6 K l Y - 6 X  

3 
= K2 (07) 

(The jumps In the IIncnumber in the above examples are due to "hidden" calls to SOLVE.) 

In order to see mrre clearly whish methodr have been implementeci, a demonstration file Is 
available. To run i; the user md) do DEMO(ODER,DEMO,DSK,SHARE); and follow the usual 
prescription for running OEWO files as noted Ir! the MACSYMA Manual (ref. 4). 

The ODE2 package was used heavily Ir the work described by RIchard Fateman In 
reference 5, In David Stoutemyer's OBTVAR variatlonal optimization package, available v3a the 
SHARE file directory and described In reference 6, and In Stoutemyerk INTEQN Integral 

... i !. 
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eqpatim solver, implemented hi WACSYMA by Richard Bogen, also available via the SEARE 
dir-toi y and described in reFerence 7. 

2. Other Symbolic ODE Solvers 

Another program for solving OIsEs which uses a heuristic search approach, and is called 
EULE, is described in references 8.9. Its author, Peter Schmidt of the University of Bonn, West 
Germany, did cot have access :o a poxerful algebraic manipulation system and integrxtion 
package such as with MACSYMA, so he was forced to implement his cwn simplification routines 
and EULE does not solve the integrals generate3 in its solutions. EULE solves only ODEs or the 
flrst urder. However, Schmidt c'lainu a high success rate in this area. EULE does handle a few 
more first order cases than ODE2 currently does, e.g. Rkcati equations, and EULE's heuristic 
techniques may enable it to s~lvc some "interesting" ODEs; however, the author beileves that 
ODE2 could handle all of these cases as well with at most a Pew more pages of MACSYM 4 code. 
In fact, since the simplification and transformation capabilities of MACSYMA are so much more 
pawerful than those of EULE, in experiments run bj the author it turned out that several ODES 
which Schrnldt claims required heuristics and substitutions of variables In EULE, were actual!y 
soivab!e in ODE2 by more elementary methods, e.&. integrating fvctorr or the generalized 
h o m T e n m u s  method (which is not used by EULE as such.) ODE2 is much more successful than 
EULE in using methds that are implemented-in both. (It is interesting to note that ODE25 first 
order methods, while not nearly as extensive as EULE's, ody amount to 70 lines of MACSYMA 
code. O f  course, ODE2 has some second order methods as welt, and these amount to 120 fines of 
MACSYMA code. I think this data offers an interesting measure of the power of MACSYMA! 
EULE which together with all of its components ha3 been developed only for the purpose of 
solvhg ODE5 consisu of about 8500 PldI statements (ref. 81.) Schmidt tested . E W E  using two 
standard ODE tomes. A comparable test kas nut been done for ODE2 

Other methods for solving ODES using MACSYMA h a w  bedn 0: are being implemented. 
Rlchard Bogen wrote a routine in the MACSYMA 'lanpage for solving QDEs and systems of 
ODES using Laplace transforms. Its top-level routine Is called OESOLVE ar.d it is described in the 
file SHARE;DESOLN USAGE. It may be ioaded tnto MACSYMA by 
LOADFILE( DESOLH, LISP, DSK ,SHARE) ;. DESOLVE may be used for initial value problems as well, 
and it can handle some equations of greater than seconci order. . 

Edward Lafferty is working on a package written in the MACSYMA language for solving 
ODES in terms of power series. This work is described in reference 10. (Indeed, Ben Kuipers, the 
primary author of ODE2, began a series solver as well for Fatemanh course.) 

O n e  project that yet remalns (and which it urged often by Dave Stoutemyer) is 'to merge 
these three ODE solvers, using general analytical techniques, Laplace transforms. and series 
metbcads. respectively, into one versatile O X  solver so that the user can set the power of all three 
approaches in one routine. 

I wish to thank Ellen Lewis :or her helpful assistance. 
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APPENDIX 

.- The MACCYMA code for ODE2 follows. (This code comes from the fll- _. 

Certain less important sections have hsen omltted.) 

t* The Ordinary D'fferential Equation Solver. 
This package consists primarl3y of 81 set of routines taken from Moses' 
thes?s and Boyce & DiPrima for solving 0.D.E.s of 1st and 2nd order. 
The top-leva1 rcutines are ODE2, IC1, IC2, and BC2. %/ 

ODE~A/EO,Y,X):IBLOCK(~DZ,A~,A~,A~,A~,~~, 
EMTFACTOR: FALSE, WETHOD: 'NONE, 
IF FREEOF( 'DIFFlY ,X, 2) ,EQ) 

IF DERIVDEGREE(0E: EXPAND(LHS(EQ)-RHS(EQ)),Y,X) f 2 

A1 : COEFF( DE, 'DIFF( Y, X, 2) ) , 
Al: COEFF(DE,'DSFF(Y,X)), 
A3: COEFF(CE,Y), I 
A4: DE - Al*'DIFF(Y,X,2) - AE*'QIFF(Y,X) .. A3%Y, 
IF PRL(AI) AXD PR~(AZ). PND P R ~ ( A ~ )  AND PRP(A~) AND 

THEN IF FTEST(ODEl( EQ,Y,X)) THEN RtTURN[Q) ELSE RETURM(FALSE 

THEN RETURN(FAILURE(HESl,EQ)], 

FTEST(HCIMZ(A1 ,A2 ,A3,Y ,X j 1 
THEN IF A4=0 THEN RETUR#(Q) ELSE RETURH(VARP(Q,-A4/AI,Y,X)), 

4F FTEST(REDUC€(EQ,Y,X))~ THEN RETURN(Q) ELSE: RETURN(FALSE))S 
\ 

OOEl(Er),Y,X):=BLOCK([D&,F,G,~~, 
IF DERIVDEGREEfDE: EXPANP(LHS(EQ)-RHS(€Q)],Y,X) C 1 

THEN RETURN( F A I ~ R E ( H E S ~  ~cj) ., 
IF LINEARZ(DE,'DIFF(Y,X)r FALSE THEN REJuRW(FAILURE(HES2,EQ)). 
DE: SOLVEl(DE,'DIFF(Y,X)),j 
IF FTEST(SOLVELNR(DE,Y,X))i THEH RETURN{Q), 
IF FTEST(INTFACTOR(G,F,v,X)) THEN RETURN(EXACT(Q*G,@F,Y,Xj), 

IF FTEST(SOLVEHOM(DE,Y,X)) THEN RETURN(O), 
IF FJEST( SOLVEBERNOUL~I[DE, Y, X)) THEN RETURN( Q) , 
IF FTESr(GENHOH(OE,Y,X)] THEN RETURHIQ) ELSE RETURN(FALSE))S 

/* LINEAR2 binds F and G %I 

PR2( F) :=FREEOF( Y,'DIFF( Y ,X), "I)IFF(Y ,X,2),F)8 

FTEST(CAL<) :=IS(NOT((Q: CALLI~FALSE) )I) 

S3LVE1( EO, V) : = 
BLOCK( [DIZPFLAG, EQl l,DISPFLAS:FALSE,EQl :SOLVE( €0, Y) ,FIRST(EV( E01 ) ) )$ 

5 
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SOLVE2 ( EQ , Y ) : =BLOCK ( [ DIS PFLAG , EQ1 3, 
DISPFLAG :FALSE, EQ1 :SOLVE( EQ, Y) , 
IF HOT( LENGTH(EQ1)al) THEN ZET~R?~(FaILuRE(#ES4,EV(EQI))), 
FIRST( EV( EQ1) ) )II 

?lATCHDECLARE([F,G],FREEOF( X))S 
DEFMATCH( LINEAR2,F*X+G,X)S 

/a BLDIP, pp. 13-14 a/ = e  
1 I I 
$ SOLVELWR( EQ, Y, X )  :=BLOCK( [F, S,#], 

IF LINEARZ(RHS(EQ1.Y) = FALSE THEN RETISRN(FALSE), 
W: XE^(INTEGRATE(F,X)), 

RETURFI( Y=Ws( IH TEGRA;E( GIV, X)+'C)))E 

i 
I 

1 METHQ3 : 'LINEAR. 

I : 
I /* BbDiP, pp. 34-41 */ 
~ 

IHTFACTOR( M, ti, Y, X) :=BLOC#( f 81 , B2, DMDX,DMDY, DNDX, DNDY, DO], 
DHDX : RATSIMP(DIFF(H, X) ) , 
DNDX: RATSIMP(DIFF( N, X)), 
IF (PD: DMDY-DNDX) = 0 THEN RETURN(l), 
IF DHDX-D@DY=O AND DMDY+DNDX:O THEM RETURW(I/(N"2 + Ĥ 2)), 
IF FREEOF(Y, (01: RATSIflP(DDiH))) THE# RETUaNtXE*(IWTEG~ATE(Bi,X)j), 

DWDY: RATSIMP( DIFF( H, Y) ) , 
DNDY: RATSIHP(D1FF (W,Y)), 

IF FREEOFIX, (82: RATSIMP(DD/PI))) 
THEN RETURN(XE^( INTEGRRTE(-D2,Y))) ELSE RETURN!FAlSE~)!l 

1 

.;' 

EXACT( M, N, Y, X) :=BLOCK( [ A, Si, 
IIJTFACTOR: SUBST(YOLD,YNEU,Q), 
A: INTEGRATE( RATSIHP(H), X) , 
8: RATSIMP(A + INTEGRATE( RATSIMP( N-DIFF( R,Y)) ,Yj), 
HETHOD : 'EXACT, 
RETURN( B='C))S 

i 

.- 

./I 

1 

I 
I 

1 
1 /a BLDIP, pp. 43-44 *I 

SOLVEHOH( EO, Y, XI :=BLOCK( [QQ,Al, A2 ,A3 J, 
A1 : RATSIMP(SUBST( X*M, Y, RHS(EQ) ) ) , 
IF NOT(FREEOF(X,Al)) THEH RETURC(FALSE), 
A2: INTEGRATE( l/(AI-QQ),QQ), 
A3 : SU8ST( Y/X, OQ, A2 ) , 
ME'THOD:. OMOHOGENEOUf, 
RETURN(RATSIYP('C*X 8 XE*A3)))S 

/r B&DIP, p. 21, problem 15 */ 

6 
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SOLVEBERNOULLI( EQ,Y ,X) :=BLOCK([Al,hZ,N], 
A1 : COEFF( EO: EXPAND( RHS( EQ]) ,Y, I), 
N: H13QW(RATSlM~(Eq-Alau),Y), 
Ai!: COEFF(EQ,Y,N), 
IF NOT(NUMBERP(N)) OR #=O OR NOT(EQ = A b Y  + A2*YAM) THEN RETURN(FALSE), 
AI : INTEGRATE( AI, X) , 
METHOD: 'BERNOULLI, ODEINDEX: N, 
RETURN(Y X P A I  ((l-N)~INTE6RATE(A2*XEA((N-1)*Al),X) + 'C) A (1/(1-!4))))$ 

/* Generalized hOmOg8~eOUS equation: y0 = y/x * H(yx^n) 
Reference: 14b5es0 thesis. a/ I 

. .  
GENHBM( EQ, Y, X) :=BLOCK ( f. G, U, N, A1 , 82, A31, 

G: RHS(EQ)aX/Y, 
N : RATSlHP[ X*DIFF( 6, X)/( Y*DTFF( 6, Y) ) ) , 
IF NOT(FREEOF(X,Y,N)) THEN REIL[RW(FALSE), 
AI: RATSIMP( SUBST( U/X'?i,Y ,6)), 
A2 : INTEGRATE( l/(!k( fi+Al] 1, U) 
A3: RATSI~P(SUBST(~~X^N,U,AZ)~, 
HETHOD: 'GENH013, ODEINDEX: M, 
RETURN(X s 'C*XEAA3))S 

/a Chaiti of soluflsn rcsthods for second order linear homogenaous equat 

HUH21 AI, A2, A3, Y, X) := 
IF FTEST(CC2(A2/A1,A3/Al,Y,X)) THEN Q ELSE 
IF FTEST(EXACTZ(Al,AZ,A3,Y,X)) THEN Q ELSE 
IF FTEST(XCC2(Rl,A2,A3,Y,X)) THE# 0 ELSE FALSE8 

/m BlhDiP, pp. 106-112 8/ 

CCZ(F,G,Y,X):~BLOC#([A,SIGN,RADPRODEXPAND,ALPHAJ, 
IF KOT(FREEOF!X,Y,F) AND FREEOF(X,Y,B)) THEN RETURN(fALSE), 
METHCD: 'CONSTCOEFF, RADPRODEXPAMD: FALSE, 
51W: ASKSIGN(A: F̂ 2-4*6), 
IF SIGN 0 ZERO THEN RETURN(Y 0 XP'(-FoX12) t ('Kl 4 'KZM)), 
IF SIGM = PO5 THEN 

PETURN(Y 1 'KI*XÊ ( (-F+SQRT(A))*X/2) + 'KP*ZF̂ ( (-F-SQRT(A))*X/2)), 
A; -A, ALPHA: WSQRT(A)/2. 
IF EXPONENTIALIZE 8 FALSE THEN 

RETURN(Y = XEA(-F*X/2) * ('Kl*EXP(Xf*ALPHA) + 'K2wSXP(-XI%ALPHA)) 
RETURN( Y 8 XEA(-F*X/2) * ('#l*SIN(ALPMA) + 'KZ*COS(ALPHA))) e 

/e $&DIP, pp. 98-99) problem 17 I/ 

ons */ 
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EXACTZC AI ,A2 ,A3, Yo X) :=BLCX( I R1], 
9 ,  

j 
: j  
I IF DIFF(A1,X.E) - DXFF(A2,X) + A3 0 

THEN 61: XEA(-13TEGRATE((A2 - DIFFfAl,X)}/Ab, X)) 
ELSE RETURN( FALSE), I HET;iOD : 'EXACT, 1 

I PETURN(Y = 'Kl*Bl*INTEGRATE{ l/rAMl),X) + 'KZatB1) 18 

4 
/is( EdrDlF, pp. 124-127 ni 

tat B&DIP, pp. 113-114, probldm 16 */ 

XCCZ(A1, A2, A3, Y, X) :=BLOCK([ D, el], 
IF A3=0 THEN RETURN( FALSE), 
0': RATSIMP( (Al*DIFF(AJ/Al,X) + 2*A2*A3/Al)/[Z*(A3/A1)^(3/2)E 1, 
IF kREECF(X,Y,D) THEN 81: CCP(Q,l,Y,Z) ELSE RETURN(FALSE), 
HETHQD: 'XFORP4TOCONSTCOEFF, 
R€TURN (3JBST( INTEGRATE (SqRT( A3/A1), X) , 2, B 1 ) ) )S 

1 
f 
i 

i 

I 
! 

..... 

_- 

I 
/ 8 

f /+ Methods to r6duca secsed-order equa%bns free of x or y o/ 

VARP( SDLN, G, Y, X 1 :=BLOCK( [ Y 1, Y2, Y3, Y4,WR J D  

Y 1 : RATSIMP( SUBST( [ 'Kl= 1 ,'Ki=O 3, RHS( SOLN) ) ) , 
Y 2 : RATS IHP ( SUB5Tl[ 'K b o ,  'K2= 1 3, RHS [SOLN ) ) ) , 
WR: YhDIFF(Y2,X) - YZ*DIFF(Yl,X], 
IF WR=O THEN RETURN(FALSE), 
Y3: RATSINP( Yl*G/WR), 
Y4: RATSIMP( YZatG/WR), 

METHOD: 'VARIATIO~OFPARAHETEBS, 
RETURN(Y = RHS(3OLMI + W))$ 
Y?: RATSIflP(Y2%INTEGRATE(YJ,X) - Jl*INTEGRATE(Y4,X)), 

P 

, 

r ' 

! 

REDUC€(€Q.Y,X):=BLOCK(r8BpW], 
81 : SUBST(['DIFF( Y, Xl=Qo, 'DIFF: Y ,X,2]=QQ], EQ), 
IF FREEOF( Y,B1) THEY RETURN6NLB(EQ,YeXJ), 
IF FREEOF(X,BI 1 THER RETURNS#L2(EQ,Y,X)) ELSE WETURk(FALSE))$ 

/* B&DlP, p. 89, problem 1 a? 

NLI ( EP, Y, XI :=BLOCK ([DE, B ,AI ,A2, VI, 
DE: SUBST(['DIFF(Y. X)oV, 'DIFF( YPX,2)8'DIFF(V,X)j, SO), 

A1 : SUBSTC[W='DIFF(Y,X),Zco'#11, D), 
A2: SOLVE2iA1, 'DIFF( Y, X) 1, 
IF AP=FALSE THEN RETURN( FALSE), 
IF FTEST( ODE1 (A2, Y, X) ) 

ZF ( a : ODE I DE, V, XI 1 ,, FALSE THEN RETURN( FALSE), 

8 
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THEN (METHOD: 'FREEOFY. RETUilN(SUBST( 'K2,'C;O))) ELSE RE?ORN( FALSE) )t 

/a B&DIP, p. 89, problem 2 81 

gL2( EO, Y, X 1 :=BLOCK( [ DE, 8, AI, A2, Yt ,V 1, 
DE: SUBST( ['DIFF( Y ,X)=V, 'DIFF( Y,X,2)=V~'DIFF(V,Yt), Y=YZ 1, EQ), 
IF (e: ODE1(DE,V,YZ)) = FALSE THEN RETURN(FPILSE), 
Ai: SUBST([Ly'DIFF(Y,K),YZ=Y,'C~'KI 1, 6). 
A2 : SOLVEZ( A1 ,'DIFF( Y ,X)), 
IF: A '=FALSE THEN RETURN(FALSE), 
IF F fEST(ODE1 (.a, Y ,X) ) 

THEN (METMCH: 'FREEOFX, fiErU,PH(sUBST('K2,'C,0))) ELSE !IETURH(FALSE) IS 

IC1( SOLN , XC , YC) : = 
EV( SOLN, C=RHS( SOLVE1 ( EV( SCLiJ, XC, YC 1'2) 3 RATSIHP 19 

8C2(SOLH, XA, YA, X8, YB) :=BLOCK( [ DXSPFLAG,S~EGSOLVE,rEnP 3, 
DISPFLAG :FALSE, SINGSOLVF :TRUE, 
TEHP : HAP( LAHSCA( [ ZZ 3, EV( SWI, ZZ, EVRL) 1, 

SOLVE( [ EV(SOLN, XA, YA) , EVI SOL?#, XB, YB) 1, [ 'K1, 'K2 I) 1, 
IF LENGTH(TE#P)=I THEN RETURWFIRSTC Y'EHP)) ELSE RETURN(TEHP) IS 

IC?( SOLN, XA, YA,DYA) :=BLOCK( [ DISPFLAG,SP#GSOLVE, TEMP], 
DISPFLAC:FALSE, SXNGSOLVE:TRUE, 
TEHP: LHS(S0LH) - RHS(SOLW), 
TENP: HAP( LAHbOA( [ZZ J, EV( SOLh, Z2,EVAL) 1, 

SOLVE( [EWi SOtW, M, YW) , SUBST( (0 '3, #A 3, 
IWS(DY~)~-SUBST(~,lHs(DYA),~~fF(T~HP,LNS(XA))) 

/DIFF(TWP, LHSC YA) 1 11, 
C'KI ,'K2 I) 1 

IF L€%GT!4[TWP)s1 THEM RETURH(FlRH(TE#P)) ELSE IRETURN( TERP))# 

FAILURE(MES,EQ) :=( LbISP(SU6sr(YOLD,YNEw,EQj j, OISPIIWES), FALSE)$ 

HESt : 
HES2: 
RES3: 
HES4 : 

'NOT A PROPER UIFFEHEtiTfAL fQOAVIOWPS 
'FIRST ORDER EQtlATIOFI MOT LINEAR IN Y m 8  
"CANNOT DETERIIINE S16N OF CONSTANT EXPRESSICN"8 
wMULfIPLE SOLUTIONS TO FIRST PARTIRL PROBILEPI*$ 
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Rie; 3rd A. Bogen 
University of Hawaii 

This paper is atended to supplement an a-.ticle by StoutenU;*:r (1.t.f. 7) 
whix? describes a program for %he bolution cf one dimensional integral eqaa- 
tions. 
in M&CSyE"sI with several adGitional techniqt4es which are explained herein. 
By utilizing many rnetll.ds, the program can obtain closed-fcrm and series 
solutions to a large class of linear and ncn-linear problems. One of the 
techniques developed, reducticn to a differential equation, has not pre- 
*V iously appeared in the li kcature in the general form described in this 
paper. 

The program, krst written in REDUCE (ref. 2) has been irnpleioented 

Die intwface between a person and a ccrnpukcar ,mystem may be considered 
to take place on many possible "lewis", as distine&.shed by the facilities 
m ~ s t  cften used. In a symbolic mathemtics systen, e,g. FZACSYVA, there are 
system designers. who work mainly in LIS? offering an initial set of ".A 
fbnctims. The applicetjm programers in turn use these f m t i o n s  t3 c m -  
struct others which are useful to the casual users who need to solve some 
particdlar problem by invoking a sequence of built-in functions. The ease 
tAth which each level OS user can accor,?lish his task is dependent an how 
con,pleLe end well-designed the facilities are at sll lower levels. Ideally 
there should ba no need for a user a% fJne Ieve? %Q prrqam at n lower level. 
The arguments for u3it-g a pre-written program rather than writing m e  from 
scratch are 89 strong as 
spposed tu h m l  calculation; i,e. 2% save8 tine and uft'ords less chance of 
makin6 &E error. 

equations. FA!XW& Already crztains routines fbr solvlng various kindo of 
algebraic .md ordinary 4ifSercntial equations, fn reference *, Stoutcmycr 
dawribes a program he wrote in the HEDLK''F symbolic mathematics tnnaage 
(ref. 2) for soZjliri int-gral equetiona. In order ta make this racillty 
available to usera n T  ?~W%+I, &E ?mplaxent,ntian wag kcgtm in duly 13:'6, 

hose for ;;sing a computer in the fir3i p l c m  BD 

Son'e of the noat w e h l  progrants are tt-ase for sglvixg cartain types of 

2 1 



Sincc cccltletird; tkis, we ?lave ciscovered several ilew tecbsdqlJes nnd theL,e 
have txer, ad.ied to tf:.e Frsgrm. .This paper is intended tc suppizment the 
..*,. wuf-k - 
ti:lt are not desc?ib& th?re. 
oatline cf +.i;e prcgraii is given, s,me limitaTions are mFntioneci, and a csm- 
psrism is =a&: :dtL +!?e earlier XZG'CE version. 
ir,i~rovements ales described. 

resorted in reference 1 ,  so the enphasis here is on tile nev techiques 
Foll.;l.s',xg a diccssion of thsse t-cbLequeE an 

FirA:lly s3rie' plwaed ruture 
A demoristratior, is presentad in the appendix. 

The Yj7?es of integral equations considered by the pl'ogrea are those 
reducible TC) =he "quasi second-krnd": 

where, for %is paper, p(x) ir the unkrmwn function, x is the independcrt 
variable, azd u is the integration vai*iable. 

The originti1 ;%D'L?E prcgram coni.ains five :.echniques applicable to 
certain sewnd-ki n;i equations, tko for certain first-kind equattons, and 
two usable fcr Loth types ar equqtiocs. 
Sin-?e impienenting t k s e  in f.2AG.WJ&, a further search of the literature 
turrleci up t w  additional firs t-kind techntques. 

integrands of the fcrm: 

I'hese are sumlzrizad in table I. 

Kanwal (ref. 31 gives a generalizai.l&-, of kb5l's metho3 far singular 

" 
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Let+_Lns the rcef;lcien+ of q.(x) i n  f(x) be c . and sssming p(u, to be: 
J J 

i 

c 

C "  -I 

I 

the Froblem is reduced to tLat cf' solvipz the 11 slmltaneous linear ea.Liaticrr.s: 

for :'he dk. 
combinatiom of fLinc-.ionc orthogonal to all of the ?,{u) gives additicnal 
szluzions. 

In addition t:, the twc techniqu-es lrientioned %bus fer, one ather k.c.s &en 
made' wailable. 
(ref. 5) for transfoming arLy veriable-limit firllte-rank integral equati$?r. 
ir,tc an ordinary d! f'fe,rent Inl, equation. 
and second-kind equ&t',crs. 
% i d  equaticns and EUCSXfl& already possesses rotitines im~lernenting c m 4  of 
these methods. Consequently, this reduction sierr:flcar.tly enlarges the class 
cf integral 'eqtrations for which exact sdlutions can be obtained. 
is rernerkebly sirrplc. 

This gives m e  solution, ?he resurt of eciding to this linear 

Stoutemye? proposed a generalization of a methcd i n  Soursat 

It is applicable to both first-kind 
There are nmerous rnethsda for solving differen- 

The method 
We are given an integral equaticei cf the form: ' 

I 
I 

1 
.i 
1 - \  
i 

,\ 
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A 
-22 .1cx 2 1  - 7 = 2Xjpqx) + 9x 2 Fix) + 2Ii,Ix\. 2 L 

Solving equtions (2) ancl (3) for R,(x) we txve: 

,- - 4 R (x) = -Yx + 1 7 ~ "  - ' 1 - - 2x'p(x>. 
Subs ti tut.ir.g this into equation (4) and re-arrar.c i t-4 tens r e m 1  ts in: 

# 

i 
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techkque - defaults to FIRS':' which causes all applicable 
techniques to be tried -mtil,one succeeds (see below). 

napprox - defaults to 1 and represents the maximum number of 
iterations or adjustaLle colloc&tion parameters for an 
approximate Folution; 

guess - defaults to NOXE and represents the initial @::s for, 
NEXJN.AIiTJ or FIASThi,WSERIES teckaiques. If NONE, -. le initial 
guess xiill be the value obtained by :?tting all ii-tegrsls in 
the expresLcion to zero. 

The me'bd used by the program is t3 f~ctor the fixt Srgment to EQN and 
for each factor conteining an integral the equatj-on "factor = 0" is 
algebraically solved for the unknown i,i terns PI' the other parts of th? 
factor. Zf a solution re ,ults, then ".:ecorrd-kind" technique? are iried. 
SkhenkLse the program trj es "f! rst-kin:?" tachniqtles. These techniques sre 
li?ted below in ontline foim giving cc::ditims under which t' ey are agpli- 
cable. (The naiiie of the techr-iqut, which can Le used as the tnird argunent 
of IEQN, is nz-)italized.) 

Second- Kind '.le chni ques 
(Exact ? 

Constant limits cf integratiori (Fredholm type) 

A constant lower limit an$ x as the upper limit (Voiterra tyge) 
Finite-rank integrand - FINITERANK 
1r;tegrand linear in p(u) 

Finite-rank integrand DIFFEQX (Con..-ersion to ODE) 
Convolution integral - TFLANSFOFN (Laplace transform) 

, Apprcximate ) 
Arbitrary limits of integration 

Integrand linear in g(u) - FFEDSRIES 
There exis3 a point at which the limits are equal - TAYLOR 
"N 
LQLLOCATE 

First-kin2 Techniques 
(F,xac t 1 Constant limits of integration 

Integrard linear in ~ ( u )  
Finitr:-rank integrands - J?IMITER~NR 

A constirit lowm limit and x as the upper limit 
Intet:rand iinear In p(u) 

Abel's equation - ABEL 
ixvolution iiitegral - TRANSFORM 

Finite-rank integrand - C1FFEQ.X 
(Approximate) 

k 9 i  Lrary limits of li ntegration 
dIRSTKINDSERlES 
COLLOCATE 

15 
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It is difficuit to make an accurate compal'5son betwcen the executicn 
t2mes of the NACSYIQI and REDUCE versions for several reasons. The pI?P-lrJ 
prccessor on which FALCSYiiA runs is significaitiy faster and has more memory 
space -2csulting j n fewer garbage collections. Also the REDUCE versions. of 
the SOLVE, INTEGRATE, and LAPLACE routines wero interpreted rather than 
compiled and 3EDUC9 includes display generation tims in its figures. 
Consecpently, the execution times for tne examples glven in ref'erence 1 were 
arounz 10 tines tile figures ob5ained when these examples were run on IJiACSYMA. 

The t,ext of the prrgram wae a;2prsximately 30% smaller on MACSYMA due to 
the a-mi:.a3ility of mw.? built-in functions. Naturally, the version 
coi1,ld handle more ctises because of mope compi-ehensive integratioa, equation- 
solving, and transfom routines. 

At Fresent, the sa jor difficultyin using the integral equation solver 
is the fr-quent e-xhaustion of available storage due to the 'loadiw s l  fixes 
cotiieininlg many ar:ili.ary functions which are not part of the initial system. 
Indeed, a single problm may cause functions Ic a,dozen such filer: to be 
refesencea. 
are rio lcnger needed. 
load a fyesh MJCSk'MA, and continue where he left off. If , however, all the 
space was consumed in a singlr cell to IEQN, because of abtemptin;: several 
solutivn techniqTe.s, then the user should try separate calls foil each one. 
It is ~ A i k e l y  that this appi-ozch twill causc difficulty since the principal 
limitations of part.iculaz techniques arise not fi,om space or time con&raints, 
but from the ir!ability of Tome functioris ts handle certain kinds of arguments. 
In particular, for linear integral equations the trouble .*psts m e  the inveyse 
Laplace transform, which is limited to rational functions, trnd the ordiiiary 
differential equation solver which is limite.. to fimt and second order equa- 
tions. Thiis the corre'apo'nding cases of cmvolution equations containing non- 
polynomial functions and of finite-rank integrals with rm.k greater than two 
can Qnly be handled by the approxiiuate nlr,thods. 
equations, solutions "an be found only i i correspondirg ncn-linear differen- 
tial equations or algebraic equations car, be solved. 

Once loaded, the space they occupy cannc,t be re-used even if they 
In this situation, the user can save relevant values, 

For non-linear finite-rank 

,' 

Aside from alleviating the problenm mentioned in the previous section, 
there are a number of ways in which the progrvn could be extended. 
analysis 2s well as testing existence and uniqueness theorems could auto- 
matically provide useful infonation even wli2n no solutsoli can be dete mined. 
1-tegra' transforms s u h  as those of F'curier. and Mellirl and the Wiener-Hcpf 
technique wciuld enable the program to be used for some important integrals 
with infinite limits. FiniIly, the program could be made to handle nystelns 
of integral cquatior,s +uh I:: &,r.eatly extencling its applicability. Incorpova- 
tion of these teciuii qc?s Is under current investigacion. 

Eigen- 
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APPENDIX - Illustrati?-c Examples I I 

( c I ) I ~ ~ G R A T E  ( P ( IJ ) ,' ( x**x~**c2 )* ( i /? ) , u ,a, x ) =X ; I 

- 
> \  , x 

$ 1  
.- 
..- 

1 

/ 
I 

(c3) P ( X>=I - INTEGRATE( F (u)**2, U, 7 ,x; $ 
(C4) BQN(D3,P(X) ,DKF'FCQN, 1 ,NOIE)$ 

(E4 1 

, 
/ 

I [ P(x) = -----, DIFFEQV,, X = 1, P(X) = 1 

x + c  

(Ell) 
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TABU I - ' S w a y  OF TECHNIQUES fT?EVT?USLY REPORTED ON (in ref (I 1 ) 

FINITERANK 

FREDSRLYS 

TAnOP 

FIRSTKINDSERIES 

COUOCATE 

Differentiation 

Fom to which applicable. 

?nd-kind, fixed. limits, 
finiterank integrands. 

1st or 2nd-kind9 rank-I, 
variable limtts 

1st or 2nd-kind, convolu- 
tion, variable limi ts. 

Znd-kind, 1:. .near. 

2nd-kind, variable limit. 

2nd- kind - 
1 s t- kind. 

any. 

?s%-kind, v m .  limit, 

Ne tnod -- 
Given p(x)="expr", distribute 
integration in expr over all sums, 
then replace each integral of 
qj{x?r .(u,p(u)) by c .q .(x> whrre J J J  
c. is m arbitraw pam. to be 
determined. This gives p(x)=g(x). 
Then solve the n sirn-~l.. lin. sq~1S. 

,1 

for the c j=l,...,n. 

Special cabes of the DIFFEQN 
method for a rank-I intc.gra1. 

Take Laplace trans., solve for 
tram. of p(x), then invert. 

GLven p(x)=f(x)+ K(x,u)p(u)dt, 
the solutior. is p(x)=f(x)+ 

j' 

j 
1 G(x,u)f (u)du, where G(x,n) is 
the quotient of two infinite 
series whose terms are found 
from recurrence relations. 
Givea p(x)=f(x)Ai(x{ b(x) 

w\x,u,P(u: )du 

fi".nt d point C where a(c)=c(c)-c. 
Fxpand p(x)-f(x) in Taylor series 
.?bout ac-c by differentiation. 

Make a guess For p(x) and iterate 
ubing original equation I 

Assume a particular f o m  far p(x) 
involving n arbitraq paramc. ters. 
Substitute in equation and bvalu- 
ate at n values of z to get a set 
cf siml. eqns. +LJ solve for pams. 

Differentiate given equtition some 
riumbei- of t.imes to w e  if a 2nd- 
kind aquctson results. 
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Yami I Avgaua t i s 
Laboratory for Compu+ss Science (fornrerly Project rtRCf 

nassachusefte !net1 tute of Technologg 

ABSTRACT 

A M S m A  impleaentation of the Laplace Trmsform for Spacial Fmctiooa 
Ir describei. The Gensra!!zed Hypergeoaetric Functions are used as a baain for 
tha raprs~~ntation of approximately fifty Special Furlctione. Only a reiatir;aty 
m a l  I number of fOPlUia8 that geneval Itl invotvo Gsnarol irsd Hypergeoaetr ic 
Functions ara Lati:ited for the integraticvr stago, 

A earnpi8 of actual rc?lamp!oo rJnd their timing is provided at the and of 
tRa p.var, 

I JNTROtWCfIOE3 
us describe 0 dreign for tira L8piace Transform of Spec!ol Functions 

uhlch has bee6 implementad in H"lA (ref. 1). In oar desfpn hle have employed 
approxintotely all of the fifty watt knoun Special Funstlone, kaoun also 3s ths 
Funct!ons of flaChalatk3l Phyaits (ref. 21, (ref. 3). In desi@rfng the I.epI8cct 
Transform capability, ue have considered i t  as part of the "dsfinittr 
'ntegratior;" problarn and o w  design Ie ~laiulcd to cavar a significant part wf 
definite Integration through interaction at ~ a m e  later time with the othtv- 
Integral Transforms, auch aa Hankel, Y, K, Fourier, tlellln, ett . 

ana faces tuo maln dlfticu!tlea uhsr, dealing with thio problea. Firsti, 
definite integrotlon generally is a rstwlrivsly unaoIvab18 prmlaM (raf, 41. 
Sec,ondr the area of Speclel Functions le :#¶It knawn for its "chaotic etaran 
(ref, 5). 

Usng m d  Bogen hevsr el10 uarked on the oreblel af deb!nits Intopratton 
Housver, thay both u8re interested (ref. E) and Laplace Tronsforro (ref, 71. 
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ralnly in Elesssntary Functions. To ths beet ol fur knouIs.jge there has been no 
otbr suaten, designed %f &w& of the integral transforms or def Ini ta integration 
for the Spacial Functicns. i 

In o w  dtslgn UD take advantage at th3 fact that most of the Special 
Functicca czn bs sonaidered ad peft'lcular irstances of the Generalized 
Hypsrgscm~tfric Function and therefore can bur integrated, using the General ixad 
Hyperpeomatric Fwrctiorr raprasentatim, with a table canelsting of very fer, 
formulas. A natwa? ccwsequstsce I8 :hat the result of the Integration procedure 

reqcired to rsduco ths Gemra: lasd Hypsrgbomstric Funct lops Inlo Special w / a d  
E I eaen tar y F m c  t i ons. 

- "  1 

I 
/I' 
\+ 
,' 1 
4 ,  fnvoives General itsd klgpergs~etrie Functiwoe. Hence an addl tional step 'f ; 
- 1  * 

I 
; I  

? j  
j !  

' :  

f4- 

I f THE GENERAL IDEA 

Ftmetlans (raft 81, .(ret. 21, dnd ths Laplace Transforme (ref. 91, frat. 183. 
Ua begin with ths definitima of the Genwalited Hypergsonrstetc 

22 



Stage 1. Raprossnt tha Spectal Ftmtione, if paseible, a8 particutar 
Instances of the General itod Hypergsmetr-ic Function. 

Stage 2. Provide a fslrly general farmlo to intsg~ata ttm rssulte of 
atege 1. 

Stags 3, Take the result of stagr, 2 tnvolvi~ 81 Cener;alizad 
&pergsotnetric Function, a d  rsduca ft to an elesantarg crland Special 
Functlcn(s1. 

bh next proceed uith 0 si' la Illurtrrtlm of Sh. .bovs et-. P 

Qra 1. I 
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! 
f t11) 

I 
I 

'b 
I 

Stoae 3. 

At utaga 3, Me apply to Ill) th% tulDwing *KU;IIRO~~J) transformation' 
(rat. 2) 

Me recognizn that the asria8 In (13) iI an Instance of an tncc%-,plets 
Comma function (ref. 21. becaw. 

iflt at o+la -HI - yta,x) 
Therefore, (14) final ly become 

(14) 

(151 

,_, 

1 
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I . 

Ai ue MYS 8IraodU wantioned, UP have dolalt uith around fifty SpeciaJ 
Functtonr crsd our goal Is to intsspriat them a5 particular lnstances of thn 
C8nsf-a 1 I Had k!ypsrgeome tr I c F m c  t 1 on. 

Ue haua divided the set of the Special Function+ into tuo major types. 
The firat type includes el t Specie1 F'wfctiqns that are directly transtormedi 
through snme relation into a Generalized Hypargearaetric Function. and the second 
ttdps includas those functions that are expressed in terms nf othsr Spacial 
Function8 %nd ultinmtely are expronasd in term af Special Functions of the 
ficlst fylss. Th:a is the major objective of the first etaga and i t  has been 
influancud by the tendency to wtilizs m i  nrnipulats as feu Special Functions PT 
lo necsrsaru. 

Far e~mplo, th6 Besse! function of ths first klnd Jv(z) belongs to th& 
tlrei tllps and ir Butoaatically ttcsrrafw*sad into a Generalized Hypsrgeaastric 
Functicw through relaticn (8). 
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sezond type and is ultiaately cxprsssibls in t w m a  of f m t i o n e  a3 tl.s first 
tLgs, for- ncrnlntegsr values of tb indew e. 



1 

E 

where gfp) .I Lffftll. cannut 3s applied after stage 1, for the Btssel function 
Je. as in, for swampto. 

since attei 

Express i or 
fornufas u 
(26). 

the comp:rrt:on ot the first stage we get 

(221 cannot be lntegr-ted since our table does not crrntain ang 
th such functional arguaents &!le it is too late to apply propevtql 

fhs above armtionad exmple could ea sclved by tuo recursivs call3 ta 
our scheme ifigure iIs Fltrt, b~ calling the echams as dzrscribed for the 
Laplace franatorms, and second ioy cattinq ths same scheme In uhich the Laplace 
Transforms properties end Integration formufas have bean sltbsti tuted ui th Hankel 
frensfoms properties and lntegetion farnulas (ref. 9). 

On a first ersaination, a PTograa that can take the Laplace Transforms 
of approxinateiy fifty Special Ftmctions uoufd imply that quite ib big n,uutssr of 
formulas uculd be necesrary to bd) incorporated in the tabis look-up of o w  
second stage. I t  turns out tbt relctively vary f w  formulas are nncds4. Thus. 
forsuba (181 h?.) brsfr appficable ta & targo rmLbsr of Special FwtIanB (ref. 
141, (ref, 2). (ref. 3:. nmPsly tha 8eblsel Func:ions at the first rcprd second 
kind, both nodiflad 8asbel Fucitlsrss, the tw kin& of H9nkhl Fwxtianr, also 
the Struvs functimr, the Lorr~l fuwtimr, and the KaIvin ftncticm, the 
Uh1ttnkc.r. the errw and both lncoldolsta Caasa func\ions, for alnrst all the 
veluer of their indices ami fur Iinew and quadratic functions of the argument. 
Fwthtrnore. in emperation uilh Wneral formla$ of other lctegral T*ansformr, 
Oarmula (lc5) contknibut*+ In integrating compasitr functions I ike Jg)(sinht), 
us have already sham. 

b. Trlgonomtrlc and rrprnsntlal functiorrsr ot I inear 
argument. 
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ZE Products of tuo Specisl Functions of linsar or quadratic argument, 

The Swgial Fonctions of this category ctn be functions of only one of the 
multiplied uith thb 9am8 kind of functions ue ma,nti;oned in the f i ~ e t  category. i 
follouing grcum: 

a. 

b. 

Any kind of Bt)8lc\e1, floeitied 8esse?. or Hankel 
functions. 

Or tilogona I Po I porn i a 1 9. 

Canf luant Hgpergeametp i c Funct i ona. 

~ u u ~ ~ ~ ,  the potmtiality of keeping v e q ~  feu formtrfes around in the 
tabla of our Jacond stag3 uould ba of limited value if .ue uere unable to 
complete succrs~ful !g the thlrd stag*, to reduce the General lted Hypargsonstric 
Function s o w  Elementar(g ?rr/and Sp3cial Function(81. 

v TNE REWCrfrn STYE. 
fn the rQcAtctlan stags the Generalized Hyp*Jrwtc.metric iunctlon 1s 

reduced. i f  that ie Oosaibla. to acae EIJJlllsntaty w/anrt Spaeiat Functionfs). 
PrloritU Is aluays given first tv those method8 that reduce the Series into 
Elementary Functions and then to those that rsduce to the 1 6t common Spaclel 
Functions, sccb $#Q errorr 8sseel bfc The sfforf In tnls raductlon stoge 
lrwrsaasa at the nuMmr of the ssrlss paramtors, and eubabquently the p and q 
v~lues, Increase. I f  the ret'uction ta Vnsuccesslul then the rarlss pFq(t) is 
ref ur nab, I 

i 

Tho rsdvctttn etage lncerrpar$tee trro phaaes. In the flrst phase 
oIgrrrt?hrnr Independent of tl-ie vplluss O# p and q of the ssrlas pFq(t) are 
Oppl lad, In the sacond phsra rt;eclal slgari thab dependent on t'hs parameter* 8r9 
par twrad, 

A rurprlalngly useful rut@, Incvrpocrtrd in the f Ira* reduct ion phme, 
le k ? w  follauing. 



I 

Such a eariss spl I t t  Ing, though it doee not ac Zual fy ful ly rxluce a 
pFqfz) , e!vl If ise the reduction by decreaalng the p ar,d t; values. 

To illustrate series splitting, cmsider 

t3 \!Os[ t1/2)2 e-pt 

after stages ona and tuo have been complete.!, H@ get 

6 ~ " ~  gF3t 112, 1, 4: 1, 1, 1; p- ll (2%) 

NOLI, at stage three anr' after a trivial general reduction rule, (241 
becomes 

6p-4 2F2t 112, 41 1, 1: -p-'I 

then abplying our general "cplitting" rule, (25) redUC86 ta 

2 -'-have been vainly concerned ui th the Confluent Hypergeometric Furction reduction. 
~ 1Flfr1, dnd the Gac-ss Hypergeometric Functions, zF~(z), that include, in 

add: tion to certain important Special Functions, the Elementary Functions. The 
' most important tools here are the different trarlsformationsr i inear, quadratic, 

et= (ref. 151, (ref. 21, (ref. 16). and the Contiguous Functicns Relations (ref. 
17). 

The di ffarent transformations (I insar, quadratic, etc) are performed as 
soon as it is detected that the Genag%Iized Hypergeomtric Function is reducible 
to Borne other ones and uhich are &finitsly known Po be reducible to some 
Special or EIomentary Function* in one or more stape. We clarify the above 
idea3 in a simple exaaple, whe-e s quadratic tran?formetion in applied to a 
Gauss Hty~ergeo~3tr ic Function. 
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Suppose ue are given 

2F1 talpha,beta: gamma; argl 2F1[ 3/4, 514; 1/2; 2 1  !Z&) 
where f 

therefore the quadratic transformation 

bnta - alpha = 5/4 - 311 = 1/2 1231 

is appl icabict. Hsnce, the fol louing relation holds: 

2 z 

(2-212 2 
3/4, 5/41 1/2; ------I .I (1 - -I3/* 2F1[ 3/2, 8; 0; ZI (31 1 

Upon apDlication of a simple general rcduc?ion rule, the right h a d  side of 
expression (31) becomes 

and f!mlig. caking into account the relation 

1Fg[ a; ; z' - (1 - rima I (33) 

express i ?n (-8 L 1 reduces to 
\ 

1 5 
(34) ---..-- --- + --------- 

6[1-zI3/* i 
I \ 

"Contiguity" has been also found useful aqd has been put into use in the 
reductior of the Generalized Hypergeometric Functions. 

Definition. We cal: two Generalized Hypergeometric Functions cont iguotis 
i f  they are alike except for one pair of parameters in uhich !hey differ bg a 
an\ ty. 

Thus the Hypergeometric Ftrnction 61[a,b:c:zI is contiguolrs to ~F~t~+l,ir:t:~l 
and obviously to only five others. 2\ny three of the contiguous functions can hc 
conr,ected ui th a I ireear relation, the BO cal led Contiguous Fui~ct ions 
(Recurrence) Relations. Such relations are applied to a General izccl 
Hypergeometric Function uhenever i t  has been predetermined that the resulting ' 

aeries can be reduced to Special or/and Elemnsntary Functions. 
I 
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G I yen 
sfit -1121 3/28 ZI 

\ 
I 

8ndl Gstcg the folloulng contigums relation 

(351 
t, 
$ I 1  ; j  

I I Garnee function, namalu 4 
uhere the first series 10 identified as an arror end the second E.S an Jnconplete 

1 

< &I M/2; e; 21 (39) i j  i 1 
j .  i 1 

1 
I 
1 ; following aum 
'. 

c8n ba reduced through succsscive use of tha contiguous ralatlona to the s I 

x 

We next notice that the pararnatsra of each of tha above Hypergeometric 

l k .  

4 

S8rle.t Satiefy 8 slmiler relation to (23). Therefore a quadratic transformtion 
la appllcetle to each of theu, that ultimatlslb leads ?o the follouing eum ef 
Legandrs functions 

. 
I 

I 
f 1 
i 
1 31 
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VI COMMENT5 A N 0  CONCLUSIONS. 

Ths Laplace Transferme paclage is relatively fast, as t m  actual 
evamples in the appendix ehou. Furthernore, It is capable of oulcklg rejecting 
caaee, that It cannot process. 

The Laplace Trr~nsforms sggtem Is capable of providing rarulte tor th:t 
we1 I known Eipsclal Functiona I ilrl ted to eseetitifti ly I ineac an3 quadrat la 
argument 8- Hausver, caaes I I ks equrrt i on (21 1 neni 1 onad ear I 1 er , or the 
tollowlng one 

t'l Jlfat'll e-Pt (-432) 

are somu of those that the present Laplace Transforms Imploiwntatlon Is unable 
to provide an ansusr, unlsse It k.111 Interact propsrly uith ether tntegral. 
Transforms. We axg3sct to gsne~allsa tha system to thcsr: oth%h* trsnsforrns In the 
coming years 

Currently our t~stsnr la able to 8olvs ayprowimetelly 8Bx of the entrlss 
of the carrespondlnj chapters of the Tables of Integral franafornn (The 
Batemm*s tlanuscript Project). Ue eupect to be able to cover 314 of the 
rama!.-rlng cases in the coalng months by Increasing the capabllltiss of our flrst 
end third stages. Flnelly, tie ehwld edd Ir: fever of our imglaaantaticn, Its 
capabf I 1  ty to Ir.tsgr*ets sxprssslone that aro oqly Imp1 Ici tly lncludsd In 
Ba teinao' e Hanurcr 1 p t Pro jac t. 
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APPEt40 i !( 

This is a sample of some act.JaI ewimles of the Laalace Transform 
system in RACSYflA. "Oefinte" ;s the top fuvction tt'zt calls the integral 
transforms. i t  takes two arguments: the expression t:r be integrated 
and the variable, and assumes limits of integration f:om zero to infinity. 

/* Laplace transforms */ 

ASSUII~E(P a); 
(Pi 1) 

(ClZi '1ilE:TRUES 
TIRE- 1 nSEC. 

[P > 01 

(C?3) I* Come "Conf luents". 
"flrk,ml (z)" i9 a kittaker function. 
"GAFI,lAINCOFIPL~TE(a,&)". and "CAflfiwGREEK(a.bf" are current tlames 
fer the Incorra!ete Gammc functions: nd.b). and J(a.bf. */ 

~~IA*T)*TnZ*E~F(T^(1/2tI*~^(-P*:): 
TIflE- 22 IISEC. 

~013) ERFfSCATIT;) T XE 

(C14) EEFilrTE(f. TI : 

RPART FASL OSK RACSYR being loaded 
loading dune 
la A - P positive. negative, or zero? 

2 A T - P T  
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fItE- 2938 ESEC. 
1 f 

(cbl) /* Related to bt.3 tunctiovs. 81 
/* Struve functions. */ 
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AI? IMPROVED ALGCRITHM FOR THE ISOLATIOEU' OF TOLYNOML XEAL ZEROS* 

Richard J. Fateman 

University of California 
Berkeley, California 94120 

S M R Y  

The Collins-Loos alg. jrithm for computing isolatiag Jntervals for the 
zeros of an integer yo1yno;lial requires the evaluation of polynomials at 
rational points. 
mstic. This paper shows how careful use of single-prec€sic.l floating-point 
arithme-ic wichin the context of a slightly modified algorithm can make the 
calculation considerably Easter ai.< no less exacc. Typically, 95% or more 
of the evaluations can be done without exact arithmetic. The precise speed-up 
aepends on the relative costs of the arithmetic in a given implementation. 
Ocr implementation on the IiEC KL-10 cornputer is some 5 to 10 times faster than 
the original Univac 1110 implener!tation in Str-I. 
about a factor of three improvement to the MACSYMA Eachine and language, and 
2.7-3.3 speed-up to the algori-thm itself. 

This irntlles +,be use of arbitrary precision integer arith- 

We are able to attribute 

'. . I?lTRODUCTIC2 
Collins an3 Loos (reference 1) sketch an algori'\m, and provide some 

implementation details for coaputing a set of interva3s 011 the ieal line 
(a1 ,bl], . . . (an,bn] such that each iaterTral contains a singls or multiple 
real zero of a polynoiaial P. 
computed. 
tivts at rational points. For most of the algori.thm, one is actually 
unconcerned about the value of P or its derivatives, since the sign (+l, 0, or 
-1; is sufficient to determine whether P is above, on, or below the x-axis. 

The multiplicity of the ith interval is d s o  
ThiL a'o,orith,n requires the exact evaluation of P and its deriva- 

The sign may 3e determined, as shown in section 2, by a procedure using 
primarily floating-point arithmetic; in case the sign cannot be so determined, 
either higher precision or exact rational arithmetic is used. 
temF. Lng to dismiss this technlqLe as being "machine dependent", and so it is; 
however, the dependency is isolated to a single f loating-poir t value repre- 
senting the maxirmm relztire error in the result of a floating point opera- 
tion. 

IC might be 

We k-ow of r: computer for which this number cannot be detemiued. 
- -  

* The work described herein was performed with the help of MACSYMA which is 
supported, in part, by the Unitcd States Energy Research and Development 
Achinistration under Contract Number E(ll-1)-3070 and by the National 
Ae-onautics an$ Space Admin*stration under G-ant NSG 1323. 

, ..e' 
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In plares where exact values are computed in ref. 1, we are usdally 
able, through the use of (p~ss imistic) floating-point interval arithmetic 
(ref. 2) to avoid the attendanE cost of exact arithmetic. In fact, most of 
the reliance on exact arithmetic demonstrated in the tests (duplicating 
those in (ref. 1)) is generated by exponect overflow rather than insnfficient 
accuracy. 

2. HORNEX'S RULE WITH ERROK EOUNDS 

n 
Assume we wish to evaluate a polynomial p(z) = C a, zn-j 

j-0 
at a point 2 = x. 

j=o J 

where Homer's recurrence provides the b 's: 

bo = a. 
b. = x b + a , j = 1,2 ,..., n-1 

and bn = p(x) 

j 

J j-1 j 

I 

! 

i \ 
i 

Assume we are using arith-etic subject to truncation and round-off error. 

Then for some small constants 

(1 + Bj-l) + a.)/O + aj) bj = (x bj-l 

j, Bj, the computed value of b is 
j \  

J 
(assume b = 0 for the following) -1 - 

n 11 I 

p(z) = C a zn-j = C [(l + a.) bj - x b (1 +Bjm1)] zn-j I J j -1 j =O j j =O 

n n- 1 n-1- j (1 + a.) b. zn-j - x 1 b. (1 + Bj) 2 
j =O 

= C 
3 j =O J J  

r.-1-j n-1 

j =O 
= bn (1 + an) Z' C b ((1 + a ) z -(I + Bj) 'x} z (-2.31 

j j 

Application of (2.1) provides; at z = x 
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(2.5) 
Ti-1 
C Thus the magnitude of the error Ibn - p(x)] bj(aj - Rj\ xn-j + b a 1 .  

11 n j=c! 

I Fince I I Bj I 5 E, E a unit in the last place, ( E = fZ7 on a 27-hit Dase j 
2 mantissa machilie such as the FDP-lo), 

n 
the bulk of the error is - < 2 E c 

j =O 
lbjl Ixln-’ (2.5; 

The above analysis, due to W. Kahan, can be extended to complex values of 
x (ref. 2 and 3). 

kie wish to extend the analysis to include approximation of x by a floating 
point rnpresentation, and approximation of each a b’y a floating point represen- 
tation. j 

That is x = 2 (1 + 61, a = 8 (1 +yj). j j  
An alternative to (2.2) is the? 

which becomes , analogous to (2.3) : 

Following the analysis to (2.3) yields 

Thus the magnitude of the error, neglecti,ig terms which are products of 
two small terms is bounded by 2, the rhs of the equation below: 

Ibn - P(X)I 5. 

Typically the integer cozffirients of p will be representable exactly as 
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i' floating puict numoers, as will x (since x typically is an exact binary 
fraction resulting from bisectior? of intervals with binary fraction end i 

1 points) so that 6 and the y will frequently be zerc I 

1 It may be argued that we have calculated i2 imprecisely, but the rhs of 
(2.5') is a sum of positive t e m s  and the error invol-led cbn be shown to be a 

coefficient so as to be positive of bounding ch? error. 

> - 1  

\ I second or3er effect. Being pessimistic, we use 6E: rather than 5c as a ! I 
! 

Thus if we wish to find the sign of a polynomlal p at a p c h t  X, we 
1 evaluale e(G> and ê , the e r m r  bound. If 0 Ip^(Ei>l, ther, we do xot know the sign 

i 
I definitely. UP can re-evaluate to higber precision: ho:i much higher cdn be 
I estimated from equation (2.5). If p(x) = 0, we will have to use rational I 

i I 

; 

arithmetic to ?rove it; thus if $(a) = 0, a direct test for Zero asing rational 
arithmetic would be needed. 

3. WPLEMENTATION 
f I 

A first draft of tbir paper and z MACSYMA implemcntation were mentione2 
in a talk at the SYMSAC confrrence, August, 1976 (ref. 4). Since that time, 
Professor LOCS was kind emugh to srpply an PLDEF laliguage versicjn of the 
program descriFed in (ref. 1). E-fter correcting a few typographical errors 
presumab1:I not present in the SAC-I prograi?, it was possible to duplicate the 
resulcs cF (ref 1) fairly closely. We were not able to achieve exactly the 
sane nuiers of evaluatiom, a situation which w2 believe arises 5ecause 
the SAC-I program differ3 in some respects frrm the &DES description. This 
duplication was done by writing in NACSYMA's Algol-60-like language, followed 

j 

I by semi-autonatic translation to LISP, follwed by compilation to machine 
\ language. 

Certain progrdms were already In existence in MACSYMA, and did not have 
to be programmEd for this applicatfon; these included some involved with the 
detection of floating point overflows. In step 4 below, one minor improvement 
was achieved by a sir,iple 4 lrne assembly Janguage alteration. 
1% in total the. All other programming was done in higher level lrnguages 
such as LISP. 

Thls amounted to 

The MACSYMA implement-tion running on a DEC-KL-10 computer seems to run 
faster than the SAC-T implementstion an the UNIVAC 1110 by a factor of 3 or 
more; this, using the mo:t faithful recreatim of the algorithm as seemed 
appropriate. 
L[jJ requirea .74 seconds in SAC-I, .1?8 seconds 'n MACSYMA. For L[25] the 
timLs wero, 35 and 11 seconds, respectively. An attempt to divorce these 
numbers from storage allocation time may make the comnarison more relevmt: if 
SAC-I spends 113 of its time in such bookkeeping (a fighre suggesred by Prof 
Loos), and MACS-YMA spent 5 of the 11 seconds In LISP "garbage collection" (gc) t 
by actual measurement; the.1 the two system coapare at 23 and 6 seconds i 
respectiJely . We suspect that MACSYMA's host system has relatively faster i 

Computing a strict isolation list €or the 5th Legendre polynoirlial, 

E 
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multiple-precision integer arithmetic, resultfng Fn these shorter tfmes. 

Improvements to the Collins-Loos algorithm proceeded 3.n several steps. 

Step 1: 

All computations of polynom€al signs were attempted in single-precrsion 
floating-point arithmetic, first. No exact values wzre computed except whcn 
neadeci (equations 24 and 25 of (r?f. 111, when the error in the floating-point 
evaluation was toc high to determine the c,ign, or an exponent overflow occurred 
during the sign comwutation. Note that some poTynomials can never be evaluated 
withou: ovsrf 1%- in single-precision because their coefficients &are too large 
to be expressed in the floating point range. For such cases we mit use come 
Dther technique : ekact rational arithmetic, hpproximate unlimited-exponcn t 
arithmetic such as MACSYM4's "bigfloat" system, or some other algorliiaz 
entircly. (The DEC-10 floativg-point fomat speccfies a 27-bit fraction, &-bit 
(excess 128) exponent, and l-biL sign. Arlthmetic is base 2 (not 8 or 16).) 

For the same polynomial, T,[25], 93.7% of the orfthmctic could be done In 
single-precisjon. floating-point. The time was reduced from 11 seconds to about 
7.2 (2.5 m gcS,. As noted in (ref. l), these polywmials can be handled very 
rapidly by a Sturn-sequence base root-finder, and in fact MACSYMA's took 7.5 
seconds (4.3 in gc) on Pds polynomial.. 

Incidentally, the speed difference Setween SAC-I and MACSYMA on Sturm- 
sequences is a193 abolrt 3: 1. 

Step 2: 

Coinputations were d m e  in single-precision initi.a?.ly, then in multiple 
precision when possible, otherwise wing exact arithmetic. The software 
multipie precision (ref. 4) removes the need to check for exponent overflow in 
Homer's zule, but incurs a Sj-ghor cost than the binary rational arithmetic 
advocated by Collins and Loos, in some cases. 
metic is very similar to floating poict arithmetic, the difference being that 
the "fracticn" 1s of varying lencth, and is exact. If that length ip amell, 
the floating-point arithmetic wfll be comparatively more expetrsive. 
the "longes*_" binary rational endpoint of an isolatinj interval a/b is only 8 
bits long in a and b, suggesting that floatinp; point is at a disadvantage here.) 

(In fact, binary rational srith- 

Fot L[30], 

Fcr L[25] again, 93.7% of the arithmetic could be dona in single- 
precision, another 4.6% in rnultipl...-precision, a7d only 1.82 in exact arith- 
metic. Considering the fact that TA[25] cannot even be evsluated at its 
computed root bound (16) without overflow in single-precision, this s e e m  
fairly impressive. 

Step 3: 

It is possible 'to elimipate all exact computations within the scope of 
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the algorithm by replacing the tangent constnction fn (ref. 1) by a procedure 
suggested ir, the earlier drzf:: of this p.pei requiring only evaluatjon with 
rigorous error bounds. It was hoped that this removal of all exact arithrrstic 
would speed up the computation. The alternative of using essentially the same 
tmgent algcrithm but with floncing-point interval arithmetic, and when 
rlecessary, exact arithmetic was more successfuY.. Although it was possible tc 
reduce the number of exact evaluations to a very small number (e.&., 20 of some 
1303 for Lf30]), some of the floating point mvltiple precision evaluations were 
slower than exact evaluation at a binary-rational point. 

It appears that singie-precision f loating-poict interval arithmetic 
nearly alvays is sufficient, in the tests suggested by Collins and ioos. liost 
decisions can be mad= with this arithmtic and it is faster than n;ultiple- 
precision. 
measurements. When an h?tervrl cslcularion is insufficiently precise for a 
decision, we revert momrntarfly back to exact evaluation for isolating intervar 
computation for that polyr,omial derivative. 
usa exact zvaluation for redoing exactly the smallest cmputation that failed, 
but we did not choose this technique, because of algerithm complexity. 

In the tablr belon we dr not tabulate the multiple-precision 

A m z e  elaborate algcti thnt would 

Step 4: 

Since so much of the ccmputation is done in floatfog point, we sought to 
decreGse the time spent in arj thmptic by open-compiling floating poirr: arith- 
vnetic in the one short prograni imyLeQenting Horner's rule. 

This 19 er.silv done in MACLISP, hut at the expense of lass of overflow 
detection. Four instructions were inserted in the compiler-generated Iju? 
(LISP Assembly Program) code for the Morner's rule program to reset flags at 
the beginning and pt the e:id test (once) for ov~rfiow In any of the operations. 
Tie CoefficienEs in the pclynomial and its derivative.s were stno cowerted to 
floiiting point, once in rile main loop. In case this could not be done because 
of overflow, the original version or' the algorithm was used for thee polynomial 
derivative under cons! daratinn. These changes sped u:, the run-time considere- 
bpi, to about 2.3 seconas for 21251 (plus gc), This is 10 t i m s  faster than 
t:le original program running on the UNiVAC 1110, and 2.2 times fmter than our. 
OWI version of the Collins-Loos algorithm. 

4. EMPIRICAL TESTS 

The tests in table 1 are representative of a larger class of  test^, w$t$ 
randomly genetatod polynorn-'als, at least in the relative Cirning of the vaci3i:s 
zt.r.3-f inding progrnms being ?ompared. Further cgmparisons , lncludine nddi- 
tional work ntentionl-d in section 5, should be fcmhcaining. 

&,. comparison wtth (ref. 11, we may add only i;l few lttms of interest. 

48 



1 i 

d >  

Since the "worst case'' for our algorithm is 
-$ case, WE. can only oherve that empiripally, 
I case" and could, be done j n singleprecision 

similar to the Collins.-Lilos worst 
most calculations wt'.re not ''worst 
floeting ?mint. The mr?jor Frohlen, 

I; that of overflow, could be handled by more elaborate scaling prccedxres- :;!~cEl 
~ as carrying aLi additions1 word for the exponent. \-?e did not DU-YUL chis. 1 1 ~  
time for finding all rezf zeros of a qolynomial of degree ri iz likely to be nn 
the average, under our xlgorithm, O(n by the- zaiirr ai?,-'itetIts a3 in [ref. 1). 

We expect fuithei progress in this arc., can be made in cwo directions: 
Given the isolating fE:eNPk, it may be shown that a ::eWto.i-iteration's 

ts91ation list of the second dekfvative 05 the polynomial of interest; also, 
the vast difference iti time for findin; these intervals veisus numerically 
approximating the routs is disturbing. 
polynonial zero apprcixination using stand,rd numerical procedures are an order 
of magnitude faster, it seens reasona2:e to obtain approxinatior.s in this way, 
and then "psove" the 1ocatJons of the zeros, and their multfp1.rcitics after 
:hc fact. 
using ii sixple techiique described in reference 5. It is not clear that ME 
could compute even the onr- greatest-colnr,lon-div~~~r calculation to Tcnove 
mii1tip:e ro3ts in l.es tine thin we covld find all itsolatlng intervafs for 
the rdots Ly KLe nu~erical. methods currently available. 
appears to Fe m x h  faster than the functionally sinilnr prc6ram described in 
reference 6. 
isolatea by Diniiccr's algorithm L T ~  220 seconds mi n PDP-1C. 
takes less thar. C.5 secbnds on a PDP-:.O (qcrhaps a nlodel 4 tines faster th,n 
P-Aert's). 
de, cribed :.ere, vhere fhating point yields to exact calcu'ation, but this is 
only 4 e n  its internc.1 checks isndnstrate that the isolation of all complex 
roots (currentl},, of a rqal poll,loninl) has not: been achieved. 

,.-- - ~ ~ v e r g e n c e  can he assured, using starting points developed f ron the strict 

Since the library prograrns for 

Bruce Char, a Berk-filey graduate stncient has worked OF this problen 

Char's y~-og;tan 

For example, the roots of the 13th cyclotomic pclynaminl zre 
Char's routine 

Char's routhe must sometices defcr to other rritlthods such 3s 

As tte pragram currently extsts, it is faster than Sturm sequence 
calculatloas or, most pcIyflo=Iia1s with few real. raots, and thus skould he used 
in piace of th,it zero-finder, except when it is known in Ctdvancc that many 
real zeri.8 exibt. Since the numerical pragrnms are so much faster, we expect 
that the wefu!ness of this program is quite restricted, in tcrms tri the 
typical MACS12U wer, te those applications viler? risdtagnaats of n zero would 
have special dire consequences in the course of B dmputotion, and furthzrmare, 
the polyrrurnit.1 fs ;-n@wn ill advancs to ba numerically ditficn?:, 

We are grateful to Prof. W. Kanan Erir sumeroue dlscussiorlsl on tkia topic. 
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FLOATING POINT ISOLATION OP ZEROS QF A REAL PrLYNOI",IAL VIA I.IAC3YEA 

Briicc 'fJ. Char 
University of California, Ecrkcley 

ABSTRACT 

Given a square-free polynor-iai P of degree n -&th floating-point 
representable (real) coefficients, we would like to fjnd n disjoint 
regions, ea& containing a root of P. Existin; ricth&s (ref. 1, 2) c m  
be slow because of their reliance upron rationxi arithnctic. \!e 2roWss 
a faster tcch?iqc~c which uses ocly f Iontin:: poirlt witkmctic. 
function, ljoW2, was written m i c h  when given such a plynminl P, 
prxiuces n cm?Ic?x discs CEi], cnch containing a true root of P. After 
cornpiting tne discs, BOUND detemincs if' they arc a set of isl-itinz 
regions for the true roots of P (i.c?. that n10 twcr ot the C:i] overlap), 
The routine IBCS thc Jenkins-lrwb zero-finding algoh 4 t h  (ref a 3)- 
MACSyMA's URCdTS function- *o get approximations to thc zeros, each 
approximation Scccning the ccntcr 2; a disc. The radius of caeh Cii] ip, 
based upon z r m r  b u n d  t-csults by Adms (r?f'. 4) 2nd %itn (rcf. 53. 

BOEJD r'uns in tipe O(n2), with all ~ a ? f ~ ~ l , . ~ t i ~ n s  usin: the 
stmdard floritin,--point arithmetic of the ikcsystm-qO. As 3 cotlpiltd 
PIACLISP routine, € X W D  has bcen found to be 10 to 100 tincs T3st~r t h m  
rational aritllnetic root-isol?ting techniques :n SAG1 on thc Ucivnc 
1110 and the Dccsystom-10 by Pinkert (rei*. 1 1  and Collins and A:x*itr,s 
(ref. 21, :n tcst poiynmials of dcgmc 15 c,r i~s3. It stiould bo riot4 
howev?~, that BOXiI! docs not allor thc user tc spxif'y Lhc s i x  of t k  
2cro-containin;J rcclons nor Is it &urt!*antccd to rind isohLin; rceions 
as the ratiorial arithnctic ncthods are. Tt nay slsc b r m k  down duc to 
underf:cM@vcrfXx durirq ints,nediatc coropctLit. icns on i 11-conditiowd 
polynixnials. I\ t+J?miquc to extract the tcst of' both t% rition-31 mri 
floatins-point ?rithr~t~tiC 3bproachcs wiild Sc to us:, the ~ ~ C V I :  ppOcc(1urc 
as a quick first attm?t, rcscrviiic ration-11 nrithnctic for *ti-?n tm 
initial nethod r'aild. 
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PRESERVING SPARSENESS IN WLTIVAXAFE PULY~JOM~AL T'ACTORIZATION 

Paul 5. 5"lrig 
Laboratcyy for Compute: Science ,?c Mathema:ics Department, MIT 

1NTRODUCTIO::I 

Wcrking on heuristic program* for factoring poljnomds over the rc;regxs, CiaybrooL has 
core up with many fairly large muliivariatr! p4ynornials. He has proposed kri of these 
polynomials 2s test cases for any algorithmic app-oach to factn!tnj: :;e[. I) Artempas were madt to 
facicr these ter polyn;llrr?!+!: on MACSk'kA (ref 2) However it did not get rery far with any Of 

Rorhxhitd. This factoring algorithm has a!so been implemented for the syrnbolx manip&Wsn 
sycem, SCRATCHPAD (ref. 3) of SBk. A closer loch 3t ::tis old factoring! alEorithm (OF.4) (rd. 
4) reveakd three problem areas, each of which contrioute to losing sparsenc.ss and rnrermdrate 
exyressrun growth. This rtudy led to effective ways of avdiding these pcoblems and actually to P 
new f hctorrnv algorithm (KFA) (ref. 5). (ref 61. 

li the iarger pa'ynonrals. At that time M A C S Y M A  used an algorithm created t p  W a n g  and 

The three problems are known as the exvan~ods factor problem. the leading cclcfrrcwnt 
problem, and the bad-zero problem. These prcblems are examined separarely in the following 
thee se-tions. Their causes anA effects are LPI: forth in detail. Then the bays to avoid or ;essen 
these p:&lrrns arc described. 

The NFA has been impiemented on WACSYMA. Its performance ab 'he ten polynomials 
proposed by Claybrook is tabulated in Appendix A. 

AVOiDINC EXTRANEOUS FACTORS 

Consider factoring I'(x, x2 ..., x$ E ZIw, x2 ..., vt] which is primwe and squarefree. If t: 

Vi%) .I U(x, u2 .... ut). Factors of U art construetd from the irreducible frctors of a(r) by a kind 
of HenscJ process. 

reduce5 co a polynomial with only one variable by substituting sclec:ed integer; for xp ..", rt. Let I 
N , 

An extraneous factor in this context is a unlvariate factor of W x )  over 2 which d a s  DIW 
lad to an actual factor of U(x, ..., zt), after Multlwiate p-adrc construcrton. Consrder, for exampic, 

3 4 3  I 
- I  U!%.y,o (r Y z 1 

:f the evaluation y - z - 1 Is made, thrn 



t I 
f 

of V(x,y,d. They are all extrmeots facto::. 

Obviously she cauw cJf gexrn; ex:r;neous factcrs JS cniuckx pmnrs oi evaluation There 
are ihree undesirable elfectj of h a v i y  such fac:ors i r a  :he factoring process. Firstly, a 
comb~i~~tor~al search for true factors h3.s to tie done at the enu of :he factoring procedure. 
Secondly. the multivariate p-adrc constrx:ion of:?n has to 3e carried our dl 't e way tu reach the 
bound for the toal degree, A, of b{x, i2, .., kt) rn x?. .-., x:, as opposed to reaching fhlr?. on [be 
average, if all t factors are not extraneous Thirdly, the extrari I. fartors grow in size arid 
density as they go through :he rnuki1arratc ~ori~tr~~:!oil pmceSI, q *:ntnhibited b~ the site 07 
denpity of the gigen polynorniat. 

A. 

where 5 ks the ideal (7-1. 2-1). 

T h e  multivariall: p-ad:c cont:rurt;sn producps from i, and C, polynom.al3 F, and 3, such 
that 

' 0 g FIG, zc4 (i*', 6) 
where 6 IS a prrmr! or prime power bigger thin ti e coeffrcmt bound. 

T h e  first few F, and G, are shown bclar wkk+ b-825. 

FI 22 X (-2 207Y * I) 291'~' 1. x 2 t 
GI - 2 - 237v x 1 
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zvoiding extraneous factors the conditions on the ais are: (I) ?,egfi(x) - degU(x, ..., xt) in x and 
(2) fj(x) is squarefree. If these ai's are generatvd at random, the2 the probability of getting an 
extraneous factor for any oce set of ai's is low. 

I T o  use several different substitutions arid choose the & should virtually elimina:: the 
possibility of the ccciirrence of extraneous factors Experiments on the machine indicate that two 
to three different substitutions will almogt always suffice. Furthermore, the different univariate 
factorizations can be matched fo- deg -ee compatibiliiy among the factors. This, of course, provides 
additional rnform;.tion on the number of true factors. 

I 
, 

r' ' 
Although one would like to use random evaldations, one wou!d also like to use integers that 

are s m l l  in size so that the Coefficients of u(x) are not unnecessarily large. In the program, the 
substitution scts are generated randomly morhlo a prime which is incrased in size for each new 

4 
t 

5 ;  

set. 

SOLVING THE LEADING COEFFICIENT PROBLEK 

T h e  given polynomial U(x, ..., x,) can be written for a selected main variable, say x, in the 
form 

0 u = v,,x" + ... + .' 
'& where Vi 6 Z[xz, ..., xtI. V n  f 0 is the leadirg coefficient. In this paper, the term "leading 

coefficient" always means tha: of the main variable, x. Some older factoring algorithms, for 
upmple, (ref. 71, require a mcnic input. If Vn # I then the change of variable x - ylV, is made 
;-,1i the monic polynomial 

1 .  

- 1 1  
V .n I ,  j 

i ,  
i i  

n-1 w = v, 'U( 2, x2.. . . ,xt> 

is fauored. This 
2pprrIch IS impractical because coefficients of W are much larger and denser than those of U. In 

A n  inverse transformation is required on the irreducible factors t w s  obtained. ' I  - 
' OFA no such monic transformation is made. Instead, a leading coefficient recovery scheme is used. 

~ 

In the multivariate case, the leading Coefficient problem is caurtd by Vn not beirig an 
integer. Let f(r) - (x2 + 1). g(x) = (x*+ x + 1) and 0 = f(x)&) over Z. In doing the multivariate p- 
adic construction one computes the difference I 

R(x, ..., XJ = f(x)g(x) - U(X, ..., xt) 
If V4 is not an integer, then degree of R in x is 4, dhich is the degree of U in Y. This means for 
example one may ge, something like c(x) = 3w4 + 2x as the coefficient for, say, the (xz - az) term in 
R. And the followirrg congruence has to be solved 
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If deg(c(x)) c deg(f) + deg(g), there exist unique Q and 6 with deg(a.) < deg(g) and c'eg(@) < deg(f) 
satisfying af + flg = c. However, this is not the cxse for equation (1). In frct, one has 

-5f + (3x2 - :Ix + 5)g = c(x) 
(3x2 + 3x - 2)f + (-3x + 2jg - c(x> 

and an infinite number of linear combinations of tf,ese two equa:ions. Because a(x) and b(x) are 
used to correct the fac:ors and because the true factors and their homomorFhic images are unique, 
comptications arise if a and #l are nonunique. In OFA a unique selection is made based on the 
condition de&) 5 deg(g), deg(fl) < deg(f). Howevei this choice can not be more appropriate than 
the condition d,eg(a) < deg(g) and deg(6) 5 deg(f). In either case, the factors thus constrbcted are 
only correct up to cnits in the underlying coefficient domain of truncated p-adic polynomials in 
x2, ... 3. Therefore they often are much denser than necessary. This also explains why correct 
coefficients have to be recovered after the p-adic construction. 

Dealing with the leading coefficient probrem in the context of the polynomial greatest 
ccmrnon c!ivisQ& computation, Yun (ref. 8) suggested that the leading Coefficient: of the gilten 
polynqrd cir%n-&sily computible divisor of it be "imposed" on the univariate factors for p-sdie 
cons:ri;c:ie?=,,.T$:'P qh+im to the leading coefficient problem here is to "predetermine" the correct 
leading coeffic%>i:+t)I.e factors of LJ(x, ...,xt). 

y. 

1 
--.< 

T o  do this, the leading coeffickmt of U(x, ...st), V,, is factored over Z first. Let 

el e2 ek Vn = F1 F2 , ... pk 
where Fi are distinct irreducible polynomials in Z[xZ, ..., xtl Some of the F;s may be integts. Let 
us assume that Vn f an integer, for thc case is trivial otherwise. Let gi = Fi(a2, ...,a1). T h e  integers 
{a 2,...,zt) arc. chosen to satisfy the two conditrons given in the previous section, ana, for leading 
coefficient disriihulion, the additional condition: For each nonintegral Fi, Fi has at least one prime 
divisor pi which does not divide any ? ., j # i, or the content of "Vx). 

nl 

yu 

J 
rJ 

Let u be the content of U(x) and u(x) - Glu. how u(x) ran be factored into distinct 
irreducible factors ovtr Z. 

Assuming no extraneous factors, then Uix, ..., xt) ha: r distinct irrc A Jcible factors Gi(x, ..., %.), i = 1. ..., r. 
Let Cik2,.-.,xt) be the leading coefficient of Gi, CVi = Ci(a2, ..., at) and Gi(x,a2, ..., at) = u,u,(x) where si 
is some divisor of u. T h e  following lemma allows one to determine C,(xz, ..., xl) up to integer 
mu It ip les. 

u(x) = UI':X) I. ur(x). 
U 

/' 

i 
L e m m a  If there are no extraneous factors then, l'or all i,j a d  rn, F T  divides Ci if and only if PI' 
dxtdes lc(ui)u. 
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- 1  
1 

T h e  readers are referred to &I for details of this leading coefficient distribution aigorithm 1 

- i r  
j j  i T h e  process will be illustrated here by an example. Consider 

i ! I 2 2 9  2 2  

where the factors are to be found. Facroring the leading coefficient of V(x,y,z) over Z gives 
v6 = 22yr2:y + z)2()' - 2) s 

--. .. . -- - .  

2 where the ui's are the integers of evaluations aad D 0 mod 5 , T h e  goal IS to ob;[$-&s- 
cwfficlents c$Y). ..., ct(x). In other words, we neecl the coefficients of the linzar terms in the power 
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series expansio:! of R at x2 = a2,...,xt = at. In geiieral. for the stage of the padic constrilction where 
the residue is zero mod s,' but nonzero mod $+I, the ccjefficients of the degree i terms in the power 
series form of R will be needed. One way to do this is to substitute yi + ai for xi and work -.L*ich 
U(r,yp + a2,...,yt +, at) expanded. After the substitution, s becomes (y 2....,yt) and obtzining 

i coefficients of terms in y2,...,yr of any degree is very easy. Furthermore modulo operations witn 2 
are simply iruncations. 

However substirution and expawon greatly increace the size and density of U. For instance, 
a term x2 a b  x3 x4' 5ecqmes (y2 + a$ (y3 3 a3) b (y4 4 a,,)' which has (a t I)(b + I)(c + i) terms when 

expanded. The exymential growth is worst if al; a,'s are not aero. Hence the name "bad-zero 
problem." This growth problem is so bad that the .*actoring program may run out of core, for 
moderately-sized polynomials. 

Therefcre, such substitution should not be made. If R C mod 2, and R $0 mrd 5 "', 
then the coefficient of (x2 - a2)*, for example, can be obtained by the formula 

\ 

A typical term of degree i in R(x ,..., xt) looks like 

1 t 

e 
(2) 

e2 
c(x> <x2-a2> ... (xt- at> t ,  e +...+e = i. 

T o obtain c(x) one. uses the general formula 

- dxt e,! ... e' dxZ t' i x = a  
i i  

This method has p.0 exponential expres:;ion growth problem. Pslynomial differentiation 
and evaluation being relatively inexpensive, it should be an imyovement over the OFA which uses 
substitution and expansion. Many polynomials that can not be factored by OFA because oi storage 
problems should be doabk by this method. However, tho number of possibk terms in rhe fo;m :2) 
can be large, which means (3) may be computed many times. 

In the worst case, i equals N. which is the total degree of U(x,x2, ... xt) in x2'".xt. T h e  number 

crder o(A - ) ;.f h is much larger than 1. However if' there are I!? extraneous factors and if the 
leading corfficients of the factors are correctly determined, then (i) the maximum degree of any 
xi. i - 2, ..., t in the fkctors are much less than h and (ii) the p-adic construction often need only be 
carried ou! :o i - INr] if there are T factors. Even sc, experiments on the machine indicate that 
.nany applications of formula (3) result in zero. In other wordr, too often we are looking for term 

of ptssibfe terms in the form (2) with e2 + ... + "t 7 I, is t h m  given by( h -k t - 
r2 t - 2  
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that are not here. T h e  way to improve the situation is :o do the p-adic construction variablr-by- 
variable instead of intxeducing all variables x2, .... xt at ohce. Thus the actual factors of 
~J(X,X~~~,...,G~) are cons:rucred first. From these fdctors in cwo variaSks, rhe true factors of 
U(x,xpx3.a4. ..., at) are then constructed, etc. W e  rhail not go into deca:ls here. Interested readers are 
referred to kl where a linearly convergent variable-by-variable parillel p-adic construction is 
described in full detail. 

T h e  author wishes tc thank Joel Mcset for suggesting this paper and Miss Dianne Foster 
for carefu! copying and editing. 
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APPENDIX A 
I 

Contained here are ten fxtoring examp7es done by MACSYMA using 
the cld factoring J!gorithm (OFA) (ref. 4) and the new factwing algorithm 
(NFA) [ref. 6;. These polynomials are proposed by Claybrook (ref. 1) who 
factored them using a heuristic approach. 
are given in factored form below. 
DEC KL-10. 
timing on a Univac 1108. 

To conserve space, these polynomials 
The timing for OFA and NFA was done on a 

Claybrook’s timings: are obtained from (ref. 1). He did his 
Tjmes listed in Table 1 are in seconds. A * indicates 

r:!nning out of store. 

Polynomial 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

The ten polynomials 

FACTORING TIWE COMPARISONS 

OFA 

* 
0.96 * 
* 
* 
* 

0.27 
3.398 
10.52 
79.68 

N FA 

3.30 
0.95 
7.83 
5.12 
9.07 
5.92 
0.28 
0.58 
2.82 
0. St 

C1 aybrook 

174.65 
6.85 
?0.06 
944.26 
160.03 
172.16 
1.97 
25.38 
67.49 

129.01 

i 

I 
‘ I  
, I  

TABLE 1 

i (11 (U 2 O X Y  z - w  x Y - u  x V ) ( - X  2 + Y Z * X  Y )  1 
4 3  2 2  4 5 6  2 3  5 3  2 3  

4 6  2 3  2 2 2 2  5 4 2  3 3  s 
IU 2 + Y  2 - w  N Y z * x  2 - X  Y - w  x Y) I 

1 
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3 2 
( Z * Y + X - 3 3  ( Z + Y + X - Z )  

2 16 4 12 12 3 3 2  15 24 
(-15Y Z ~ 2 9 W  X Y Z +21X Z + 3 U  Y i:., 

31 12 29 18 14 2 2 21 2 
(-2 - u  2 + Y  - Y  + x  Y + n  + U )  

2 2 3 4 2  2 3 2  2 3  2 
U X Z  (6U Y f + 1 8 U  U X f  +15I.I2 + M U  U X Y )  

(- 44 u 
2 

+ 48 1' 

2 
(31 u x z 

2 2  
+ 1 2 u  X Y  

4 4  2 3  4 3 4  2 4 4 3  
U X Y  Z -25U U Y Z  + 8 U U X  2 -32U U Y 
2 3 3  3 2  2 2 2  2 3  
x Y z - 1 2 Y  2 + 2 u  u x  r - 1 1 u u  n Y -  

2 2  2 2 2  2 2  2 

2 2 2  2 2 2 2  2 
2 + 2 5 u  x Y Z  * 4 3 U X Y t  431u w z  + 8 U  

+35W Y + 6 X Y + 4 $ L 1 # ) l U  bl X Y  2 +2JU 

P 
2 

4 w  X) 

U X Y  f 

u z  

2 2  

2 L  

2 2  2 - 2  2 2 2  
+ 4 4 U U  2 *37u Y 2 + 4 1 Y  2+121;x v z 4 2 1 u  U X Y Z + 2 3 X Y L  

2 2 2 2  2 2  2 2  2 2  2 2 2  
+ 4 7 U  iJ P + I 3 U U  X 1 + Z X Y  +42U U V +BU V +27lRJXY 

2 2 2 2  2 2  
+ 3 7 U  X t + 3 9 U U X 2 + 4 3 U K  Y + Z ( : X Y + g U  U X  + Z Z U  U )  

3 2  3 3 3  2 
(6) X Y Q - 1 3 U  e3 U Y Z  + U  2 + 4 U X Y  +4?XY) 

3 3 3  2 3  3 3 3 3 2  
( 4 3 U X  Y z +38U u X Y t  4 I f U  x Y 2 " 

3 3 2  asu X Y  2 
2 3 3 2  2 3  2 2 2 2 2  

-20U W X Y Z +95U U # Y  E-48Ub.X Y Z + t i U W X  V 

2 2 3 2  2 3  3 3 2  3 2  
4 3 6 U W  Y - 9 U G Y  - 2 3 U W X  Y + 4 6 U X  Y + 8 X V - + 3 1 U  ii Y 

2 2  3 2 
-8tJ Y +45X - 4 6 U  W)19 
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3 3 2  3 2: 2 
(8) ( 3 2  + Z U Z - S Y  - Y  + 4 5 X ) ( U  z i - 4 7 X Y - U )  

(3) (-18X Y + 2 2 Y  - 2 6 X  Y - 3 8 X  Y + 2 9 X  Y - 4 1 X  Y + 3 ? X 1  
4 5  5 3 4  2 4  2 3 4 2  4 

5 G  2 3 4 
(33X Y + 1 1 Y  i s s x  Y - 2 2 X I  

6 3 2  3 2 2 2  2 3 
(18) X Y 2 (32 + 2 U Z - & X Y  + 1 4 U  Y - Y  + 1 & X  Y) 

2 3 2 3  2 2 
(-12w X Y Z  +*1 2 + 3 X Y  + 2 s x - u 1  

& 
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O N  7 HE EQUIVALENCE OF POLYNO'rflitL 
GCD AND SQUAREFREE F A 0  ORIZATIOA PROBLEMS 

David Y. Y. Yun 

Mathernatic.aI Sienccj Deprrtmerrt 
lBM Tboma- J. Watson Reseal-h Centrr 

Yorktown Heights New York, 10598 USA 

(Extended Abstract.) 

The importance of tcmputing greatest commo:: divisors (CECD's) of polynomials has h e n  

recognizcd more :han a decade ago. All symbolic and algebraic computation systems must 

provide some form of polynomial GCD capability in order to handic the fundamental extension 

field of ratioaal functions. The complexity of the GCD problem is aggravated by the fact thiat 

mod of these systems use an expanded canonical representation for polynomials. which is at its 

wimt. in terms of space requiremeqt and comprehensibility. when the polynomials are multivari- 

ate. M u c h  work ha\ been done to understand and improve algorithms Lor cornputin): GCD's ovw 

the past decade (ref. 1, 2. 3). But the need for a symbolic syrtcm to maintain relatively prime 

numerators and denominators in a rational function continue% to CLUM a 1:rrge amount of 

computcr tirnr: to bc $pent computing CCD's. 

In 1974, Brown (ref. 4) paved the v ay to 3 "factored" rcprcwntation of raticrnal 

functions for :iyrnbolic rygtems. The idea is that if both the numerator and dcr.ominaior arc 

factored into irreducible pdynomials (primes in the polynomial domain) then tlir com!wtation of 

GCD's simply invtr'ves finding the minimum pcwcrr of idtnticul primcc. Unfortunutci!t. there arc 

t WHO driiwhark\ to Browrt'r irpproach. First. such ti "lactored" rcprcseritntion. thouph rtitintiiitiing 

the relatively prime propcrty of nurncratw and dunonrina!or (with mininwni dlort). dot-s not 

result in c;isonicolly rcprewnted polyiiomirrls - that is, itlcntical rational functions ni.iy ;lppcac 
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1 
1 

differently in the nuinerator and denominator polynomials. The other is. as Brown correctly 

pointed out, factorizatim of poiyncmials into primes is too expensive 3n operation. $0 tkit his 

"fectored" representation can only look for "sharable factors" by ifiexpensive means and maintain 

I 
I 

such partially factored forms. Consequently. equivalence of rational functions in such a reprc- 

sentation can only be recognized by subtractions and, in most cases. expansions as well as GCD 

computations. 5ven though some symbolic systems have successfully uti'izcd the "factored" 

representation (mainly in term: of the ability to comprehend expressions), it is no? clear what is 

the actual trade-off between the effort for GCD computations that Zs presumably savcd and the 

aacrifice of canonical forin witti the possible g d n  of maintaining some "sharable" factors. 

In 19?h, YWI p Stished an improved algorithm for finding the "squarefrec" factorization 

of a polynoniial (ref. 5). By definition, 

(or factor) of multiplicity greater than 1. Thus, the problem of finding the Sgilarefree 

polynosial is said to be squarefree if it has BO divisor 

1 

! factorization (abbreviated as SQFR) is that of findins polynomials i 

P,, Pp ...? Pk such that P = P,IPz2 ..-Ykk. where Pk # I, each Pi is squarefree, and 
gcd(Pi. Pj) a 1 for all i f j 

1 I' I k. 

Although the squarefree factorizatiori is not quile the complete factorization of polyomiab into i 
, 

primes, it is a canonical form for polynomials, as Y u n  pointed out. In fact, a result of Knuth 
1 
' 1  indicates that the probability ol the squarefree factorizarir-n being the same as the complete I 

factorization for an arbitrary polynomial is approximately 4/5. Such a result furthe: incrcases the 

usefulness of a squarefree reprevcntation !or polynomials which has no parallel in the case of 
7 1  

Integers (Le., given an integer, there is no known algorithm that will produce its squarefree 

factorization without ;inding its prime factorization first). O n  1% othct hand, squarefree - ,  

I !  

factorization comtltutes an essential step in polynomial factorization (ref. 6, 7, 8) , partial 

fracticn decomposition of rational functions (ref. 91, snd rational function integration (ref. IO, 11, 

12). 

i 
1 

66 



\ _- 
, 

- 1  

TP: mathematical tbeoty for the new algorithm is &en by the following th. zst results !ref. 

5): 

Fundamental 'T'neorem of Squarefree Decomposition: 

If P(x) is a primitive polynomial in D[x] where D is a field of characteristic 0 and 

the squarefce iaric;;.r:?It>n of P is P,P,L...P,k. then gcdtP,P') = P2P32..,Plk-2. 
Corollary 1: Let D = gcd(P.TY). then P/D - (Y/DY * Pi fi2(i-l) Pi IC8 n P, . 
Corollary 2: gcd(P/D, F"/D - (P/D)') = PI. 
Based on ;;lese results. an algorithm for finding the squarefree factorization of a polynomial P(x) 

can be given. Let (G, A+, B*) gcd(A,B) denote the compulation of GCD of A and R and 

assignment af the GCD to G. A/G to A*. and B/G to €3'. 

Yun's algorithm (ref. 5) is as follows: 

(W, C,, DI) + gcd(P,P); 

For i Q 1. step 1, until C, = 1. 
DO 'Pi, C,+l, Di+l) .- &cd(C,, D, - Ci9. 

Yun's 1076 paper got as far as comparing three algorithms for !quarefree factori-alion and 

showiag the superiority of the new algordhrn both experimentally and by algorithmic analysis of 

certain moddcls for computation. However, there was no attempt to derive any specific expression 

for the computing cos: bound nor any reducibility result. In this paper, we will show th3t the 

totat computing cost of the squarefree factorization of a plvriomial with degree n (Le. SQFR(n)) 

1s bounded by and. in fact, equal tu 2*GCD(n). The rru;irl observetlon is that the inputs to calls 

of the GCD fur.ction in Yun's new algwithm arc more "halanced" in Kerms ol degree$ than tk~se 

algorithm previously proposed. Since the reduction of square tree factori3tation problem to GCD 

problem hinges on the use of a two-srgumer.t funztion (GCD) lo do the job of a one-argument 

function (S3FR). the balancing of degrees becomes eepecialIy important. (The other algi:ri!hms 

for squarefree lactorimtion turn out to call on a,?D functions with one input far mor* domicant 

in degree than the other.) 
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f 
.i-bIus, w e  will show that a c!txer re-examination of Yun's 1376 papei reveals the rcfli~i- I 

~ 

bility of SQFR to GCD. The natural question that fallows is whether CCD is rducible to SOFR. 

That is anshered aff:rnrativeij + the other half of this paper and the derivation will actually 

suggest an algorithm h r  computing GCD's when input polynomials are already represalted by 

I 
- 

their SQFR form. 

The fundamentdl theorem for this reductian proCeJs is 

Theorem: For squarefree polynomials A and B. 
, 

1 I 
I 

gcd(A,B) = A*B/sqfrpt(A*B) 
wheie the gq*iaref!t~ part of P = sqfrptqP) P P,PpP,. 
;f P = P11P22 .,Pkk, hence, o by-prdiuct bf &(PI. 

I 
j 

- 
Thic theorem, which is reminiscent to the relationship betv xfi CCD and LCM. suggustv an I 
obvious way of ;.educing GCD to SQFF,. That is, for F = F,IFz *... Fkk end G P CillG2Z...G,,n'. 
cuinpute gcd(F,, Gj) for all I and ; hy the metborl ol the theorem since crck F, end G, is squire- 

1 

I 
I 

' 1  I I 
frep. 

of Brown.' Unfortunately, there are k*m GCD's required which forces k and m into the 

(Note that this type Lf *'cross GCDing" is also neccssiry for the "fdctotd' qvcscntation 

computinp: cost exprrssicn and affectrr the rudu-tisn p~ocess of GtCO to SQFR - w$ arc Irwkinp 
lot sttong reducibility of GCD to SQFR with constant cost for ttsmformotion of probtrms. JS in 

Qhe reducliod of SQFR In GCD cafe whc: the constant ir 9. 
I 

A corollary ol the thcnrcm providcs a hint for a different approach. 
I 

Corollary: For pc.'ynomiuls F ir~d G. kt FS and GS denote rq.pt(P) a d  sqCrpt(G) rc\pcti\rly. 

Then sqfrpt(god(F.G)) w gcmFS.GS) I F'Y 'GS/sqfrpt(FS*GS) 

Thus. a pcrlynomiur DlnsqfrptfgL.l(f-,Ci)) can be computed, eccotdinp IO I ~ F  ccrmlldry, froni 

68 I 
I 



S*SQFR(n). where the d:grees of F and G are assumed ic y  be n. In othcr wtrrcts. CiC'LXn) 

problem is \trongfy reducible to SUFK(nl u irh a rntiitir'yiqg cc:n$itarrt trf 5. 

If F and <; are alr:aay in S3FR form. then the ctist f,ir ccmputing their Gt'D i:; hcrundtd 

by 4*S&R(n), i e., ths. cost icr <:ompiiZing GCD of polynomids in SYFR form i\ n r t ~  mtrw thJrt 

twice ililrt of puttinp f h m  in W F R  fcmn originally. Antslhcr potential advantage of such ii GCD 

algorithm io ihal thp compu:isg, cost %;ill be gmesally dependant nn thc minimum 5: ane drgrrrr 
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DIFFERENTIAL FO!W ANAV'ISIS USING YACSYMA 

Hugo D. Wahlquist 
Jet Pr >pulsion Laboratory 

California Institute of Tcchnology 

ABSTRACT 

The calculus of exterior differential forms has increasing applications in 
sever21 areas of applied mathemntics and thedreticki physics. 
was developed initially by F. Cartan (re:. 1) for his uW,i research in differ- 
ential geometry. Modernized and updated bv present day mathematicians, it has 
become a standard tJol Lor mathematical work in the differential geometry of 
manifolds (refs. 2 and 3). 

Tne fdrmalism 

With thzt genesis it is not surprising that the techniques of differzn- 
tial forms are usefd in general relativity (ref. ',). Many problems in reia- 
tivity can be concisely expressed and efficiently solved using differential 
forms together with Cartan's "rrethod of moving frames." The cal.culationa1 
effort involved is often significantly reduced compared to the stsdard tensor 
formalism. Other areas of theoretical physlcs in which differential forms have 
utility, as well as elegance, include Hamiltonian mechanics, starist3.caZ 
mechanics, and the calculus of variations (refs. 5 and 6). 

In recent years the geometriL techniques of exterior calculus developed 
(again by Cartan) for systems of part:al differential equations (refs. 1 and 7) 
have been applied to physically important nonlinear equations. Many results 
on transformation properties, invariance groups, and conservation laws can be 
derived directly and systematically using these methods (ref. 8). When the 
methods are applied to nchlinear eoiiati3ns which exhibit the recently 
discovered "soliton" phenomenon /the Korteveg-de Vries equation, for instance), 
a beautiful algebraic structure assoc3at.d witt the equations is revealed. 
These so-called "prolongation structures , I t  which are essentially "free" Lie 
algebras, can be shown tc lead directly to solution methods such as the 
inverse scattering method, Bzcklund transformations, and exact nonlinea . super- 
position principles (ref. 9). 'ihe prolongation structures also have a geome- 
trical interpretation in tesms of affine cGnnections over solution manifclds 
(ref. 10). From this vietipoint they appear to be closely related to non- 
linear, gauge-invariant, field theories; the Yang-Mills fields. 

* 
This paper presents thc results of one phase of research carried our: at the 

Jet ?ropulsioil Laboratory, California Institute of Technol.ogy, under Contract 
No. NAS7-1013. sponsored by the Natlonal Aeronautics and Space Administration. 
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The utility of differential forms is not limited to proving abstract 
general theorems; they also 2rovide an efficient calculational tool for 
deriviizg particular results in specific problems (ref. 11). Ar i:i other areas 
of analysis, the computer can be of great help in carryilig out the acLual 
manipulations. Exterior calculus has been implemented in Pl/l-FORT.IAC by 
F. Ernst (ref. 12). The major purpose of his programs WLS to facilitate the 
use o€ differential forms in general relativity, although the programs are not 
restricted to that application. Secently, we have wrjtten a small fi3e of 
routines in XtKSYPfA which we are using to perform differential form calcula- 
izions in thc theory of nonlir,e;ir differential equations. These rolltines 
accomplish only partial im;.Jerr;ent.itioq: in fact, the main reason for this paper 
is to advertise the nced for implemmting exterictr calculus in MASSYNA which 
clearly has the facilities to dc the complete job. PIy hope is to provoke 
enough interest in someone sufficient7y knowledgeable to do the jot right. 

Algebrdically, the differential forms constitute a Grassman algebra over 
<he cotanpent space of a manifold involving the nmcommutative exterior prodcct 
operation, usually denoted by the wedge symbol, A. The exterior derivative, d, 
' i s  the unique operation of differentiation leading from one differential form 
to another. Tts application to a form of rank p rzsults in a fora of rank 
p -c 1. 

When in addition the dual tangent vectors of the manifold are introduced, 
new invariant algebraic and derivative operations can be defined: contracrion 
brtween vectors and forms, a.id Lie derivatives of both forms and vectors. 

The paper describcs the EiXEYMA file whiLh has been written tc perform 
thesr operatirns and discusses t!,e impi-ovements and aaditions which are needed 
to accomplish a complete and efficient implementation. Examples of differen- 
tial form calculations are also displayed. 
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ABSTRACT 

pa describe a new computational to51 for ahyslcal calculations. I t  is the fireP 
computer bystem capable a c  performing indidial tensor caiculustas apposed to 
cttmpom,i tensor calculusl. 1 t ir nou operational opc the symbol i6: manipulation 
system PtACS HA. k'r outline th9 cepablfities ~t the aysten md describe so%& of 
tho phgsica problslaa ue have considered aa ublt 818 others ud are ewaminlng at 
tkls tima. 

@ab0 I 

9 

* 

1 NTRlXXCf I ON 
c or ol.;ebraic computer nenipulation rysle~ls ari finding a grcuing 

fhw=ies uhrsre thuse clystrnr are mu brconing essential tae'lr, Sumbol le manipu- 

latlan qiveta One tha abllltu to ~ 3 6  at Owact mlutiono 9t g*ovitatiansl field 

equal lono or use approwtnatlan arocedwclr ta f Ind theH treV.2). Symbol I C  C ~ I G U -  

Istion 

tlun by hand Mould R8 err* krone and could teke months. A recent paksr retvisua 
borne af ths prablen~ in QFIvitat Ian uhlch hisva been rtudlad using 6lgmbol ic 

nranlpulDtIon Je uoll BI the computing agrtaaia uhich era now In UCP 4ref.3). 

I 

prOVld@S on* tho fracrdon to consldrr lwnpthy problrrb uhoss sotu- 
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Thm u w a  

in the fcllltu 

symbolic co~putinp system for gravitation calculations operates 

ng manner: The uaer often uivhes to study a particular metric and 

inputs each specific component relative to a cowdinate eystea or nonccordinata 

frame. The system then computes the geometric objects or differential equations 

of intsrest. fbsra are many types of relativistic calculations khich computer 

syetams are pstforrninp (ref.3). CJe have had such o sgstem running on nACSYHA 

aince 1973. In 1971, houevsr, UB began construction of a novel package far 

prjtforming actslat indicia1 tensor anatyeis a5 3pposed to the uwal component 

tensor calculus, The purpose of this papor I3 to deecribo the current capabi I i- 

tie8 of our indicial tensor manipLlation systm, IT!%. Ue shall atao describe 

soma of the Froblens we have balved aa usll as Others of current ifiterest. 

i jk,. 
Ua reproaint a tensor f as a function of tuo %rpuments uhich are th* 

ri... 
lists of Indlcea, A list In fiACSW Ir a saqwtce ol Its elements which are 
separated by commas and anctoaed by dquare brackets, Thus ua urate the above 

tensor a b  7t[Ps8,**.I,[i, j.k...f) uhils a scalar Is tepreeentrd by a function 

uith empty llsts such a0 P([1,[1), 

In IOflS ordinary differentiation of a tensor uith rarpect to a coordinate 
k 

x cawcies the k lndax to be appended onto the Iist~Carlswb ab an adjitionai 

of coordlnates and th:s caumJ !:b wdinary dririvstivs to vanish, Thla brtature 
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uhere tncs Lorentr metric appears as a function of the metric tensor. 

also identifg a metric by entering the command "metriclg)*' (all 1TflS 

function names and def!nitions are written crith double quotes in this text) 

uhir). makles nACSYMA to raise and louor indices 05 a tensor biith respect to 

the tsnsor #lamed g. 

CQimatId 90 tbaP the statement **contract(gI[i, jl, tl)*g!tl, [j,kl))** re:urns 

**delta(til.[kl)". 

delta are also w e d  in the contract routine for index substitution. 

functioc "delta([1,tl)*' is the dimwneion of the manlfold uith a default of 4. 

In contrast to hand calculations, one of the difficulties faced uith indi- 

cia1 tensor manipulat:on is the ease xith uhich one aray create exprsssions uith 

We may 

With Such a definition !.IO may employ the **cont.'act'' 

The Kronecker delta as uell as the generalized Kroiiecker 

The 

more than on+- sav;rrisnt and contravariant dumniu Index ulth the same symbot. 

avoid the e r r ~ r  ut3 enplag an a'gwitkm in ITHS uhbreby duntng indices are aluaym 

repreeented by the set %1,%2,...%n, Uhenever a dummy inden is generated, a 

counter Is increaaed by one and appended ontp the % syrbol to form a neu index. 

For a given metric tho calculatlon of a curvature tensor may cause the counter 

tu reach a laq8 number. Houever, ewpreeslcns uith rvltipld dummy itxiices are 

avoided, Clearly, in ouch a calculation, many of the terma are capable of being 

combined, differing only ir the Inden number. Sinplltication of this kind io 

carpled out by bwpanding th expression and applying the function '*rename*' 

uhich resets the counter to zaro and renames dc;mmy indices in sack of the 

expanded tarns. The resulting swprmslon ir then the r a m  order of Lonprority 

08 one m u l d  find by hand calculation, 

flultiple covariant differentiation et any tensor dsnsitl: ia based upon an 

algorithm described elseuhare (ref.4). the ro9UlZJnt exp*esBicln may be ercpres- 

sed in terrna of Christoftel symbo!e or rpvaluatad for a particular indicia1 

mstrlc i f  clne *taa bean defined. 
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0 ther f ea tures we have i sp I enlJnt€?d i nc I ude a tunc t ion cif I I ed * * shou' * i 
k, 

which diaplaye any intiexsd object with E te appropriate covariant and contra*'- 

ariant indices. A functica called *'nttPrms** will tell the user the upper limit 
.* f 

to the number of terne an expre3eion uould have if fully expanded. This is use- i 

I ful for avoiding the ean;puiaiion of iin axp;rss?cn uhlrL? 13 eo 1 2 ~ ~ s  that the 
! 

- 

. e y a t m  ? R  riot capabjo of oirnplifying It. t f  too large the user may use lTHS to 

slmpllfg the subexpressions and combine them lator or decide a m u  approach to 

the calculation is appropriate. A 

pose rariova typse of contraction 

null or uhether a givan tensor Is 

sxpressione in coordinate eyetems 

are est to zero. ITMS ha8 pottern 

#unction called "defcun" allous one to im- 

properties euch as uhether a give3 vecto- ie 

trace free. A .iUnCtiQn "geodesic" evaluates 

in which undifferentiated Chrietoffel symbols 

matching routine? to emele the user to applg 

vertaua conditions on difterentiated tsneors 8uch as the Lorentt conditione, 

Another Seatr:re is the ability of lTHS to perform differentiation Jith respect 

to tha metric tensor and \fb der\vatives. This enables fTtlS tc compute field 

equations for altsrnative ralativintic Lagranglans (ref.5). ITUS also manip- 

ulates the nurnericai tensor densities. 

To sxernplt fy the speed and ab1 ! i tg of the system we can carry out 

verification rtf the Biaochl identity (bee any text on rslativlty) given bg 
I j (klta) 

R' - B by axpariding tho Rimann tensor; in twns af Christoffel nymbnla 

and emploU!ng the simplificaticn r;uCines of ITflS in 4 seconds cpu time. Here 
the p a r s n t h m w ~  inply syaostriratlnn of bncloesd i:diers, the seafcolon Is 

covariant dlffersntlation and tire hook dsn3tas enti-eymmstrlc Indlcea. AB 

enatksr ex,'mple, #ha Balekrara ldentltu !rsf.61 uhich Is R 'J 
vv I f i ed in 4a ssco~ds cpu t lore. 

= e can be 
i I 

neng calculations in gravi tatlon QPQ rtralghtforuard with ITRS, The def in- 

i tiene of the chrietoffel ajmbois, curvature tensor, and varioub geomstr\cai 
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oSj%cts are programmed in the system as functions 01 the metric tensor or 

other geonetrical objects. For exabple we ma& defina the metric tensor and its 

jnveree by commands in ITMS Rotation such a0 

COMPONENTS(g~ti,jl. til. E([i,jl,t])+L*(~~~[l.jj. tl)-E([i.jl,il)~(~l,t~))) 

CORPONENTS?g( 11, Ii, jll , E( [I , ti. jllA*[ZdrH( I], ti, jl)+E( [I , ti, jl ]*Hi [I 1'1 1 1  1 

I 
for the ueak field metric apprswisation defined by the metric tensor components 

Here E 

and L is an infinitesimal ex9arsaicn parameter(ref.7). In this case It  1s usual 

Ps impose the Lorentz condition H For such a metric ue can use IT% 

to compute the first order Riaaann tsvsor, Einstein tensor and Ueyl tensor in 

less than 18 8RCOndS cpu tifnc ui+h the implementation 0) the Lorentr conditlnn. 

Uhfle the full manipulative abillty of the IT% syatss, has not been rigorousty 

tested UB have had occasion to compute Elnetrrin tensors uith fwrth order 

Amtries replacing thd rlght kjnd side of (1). T n e ~ a  calculations involved the 

wanipulation of ewpressions ui th more than 1880 tarma uhich u8re contracted and 

eimpllfled. Thug the memory space available to iT% ie sbqn to ?e quite large. 

One of the larga calculation6 uard to t o ~ t  1 T S  involved the study ut the 

gravitation the3rlse of H, Y l S m m  To Wiird order' Vilmaz' metric ir (rst,8) 

le ;hs Lorentt metric, H is an arbitrary teneor fie:d H its trace 
i l  1 1  

1 1  
.I 8, 

* i  
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where H is *he trace 3f H khich satiefies the bcrentz conditior; H * 8. 

lPnS was w e d  to cmpcta the third order Einsteir tensor G for (Z! m d  

eubtract from i t  the third order tensor d'Alecbartian of H . These cblcuia- 
ab 

tioh3 uith *TMS indicate ths theory is valid to firat order. but when Cdrried 

to oecond order di'ficdlties arise uhich 'Ir.!aIidate *'.ha theory to all orders. 

These resulta are presented els,*uhsre (ref 91, 

.. , I  .i 
ab 

An analunia uhich is idealid suited to ITE is the study of various 

metric gravitational thecries by using algebrairal iy special metric8 irof.l$) 

uhere the metric taker tho form 

uhere m is sona+ant, E la, the lorantt metric and 1 is 8 nut1 veztor uith 
l i  i 

respect to both 0 

ferential identities which arise from the differentiation of the idsntlty for 

and-€ a For the metric (31 one also has a numbsr of dif- 
l i  i i  

i 
null vktors* L L - 8, In),lementing these identities we ran compute the Ricci 

tsnscr for 13) i? 38 eecand!, cpu tin* and verify the well known ff*p-899iQn9 for 

the Einstein vacuum field qquationa in thesg coordinetss (ref,lB). Ue are -tow 

attempting to find algotkalcalf; epecial solut'ons for the flansouti-Chang 

equations (rnf.ll1 in addition to the Kilmister-Yang equation3 (raf.iZ1 which 

have bean diacuseod in barticular cowdineto systems (rsf.13). 

t 

Conforsally flat mutrtcu of the fore 

rrhrsrn P is a scaler and E ir tho Lotmtr autrie repre84tnt Ideal raftdidatas 

t:.? 17% since simplifi:a!i?nr bscanre extensive, Fer* the metric (01 we travo 

examined the cleaa of Riarnclnnisn invarlmte defined in teras of tPa goneralizod 

1 )  

i 
:/ 

1 
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Kronecker dslta by 

One of our hopes ie that lTFIS ri I I ais0 have the abi 1 ity ts carry out 

neec'ed inve?tigatiois in di'ferential geometrgl, ilany iaerti tie, in Riemannian 
r\ 
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APPEND I X 
t 
t 8eiou ue exhibit the output for the ueak field approximation in General 

Relativl ty(ref.7). (Ell) and (E121 are the covariant and contravariant metric 

tensors to first order in L. The previuue commands (CS)-IC8) define the metric 
- 

tensor to be G. cieclare the Lorentz metric E t, be constant uith respdct to ' ,  

ordinary di ffersntiation and specify its inner prrduct. (E161 demcnstrates that 

the contraction of the inner product of G uith itself, to first order. is equal 

to the Kronecksr delta as expected. The first order RiLci tensor is displayed 

by fE201. (E211 is the same tensor aftsr irplementation of the Lorentz condi- 

tion. 

ture displayed in (E23). We then xnstruct the contravariant Einstein tei'sor 

displayed in (€25). A convenient feature of ITnS is reen in (CZS) where the 

metric is redefined as E to enaDIb us to display the ordinary d'AlenJ?ertian in 

the first term of (€281. Then redefining the metric as G ue take the covariant 

divergence of the Einstsin tensor to flnd'it vanrshss identically as expected. 

Contracting :he Ricci tensor with the metric ue obtain the scalar curva- 

- 

I 

, 

, (C5) DECLARE (€.CONSTANT) 8 \ 



I 
v 

r" 
& 8 

I 
D j 

(C12) SHOWrG(t1, tI,JIIII9 
'IJ I J  I J  

x 

', (E121 5 - 2 ( P C  - 2 P  I i  : 
- tC13) RATVARS(L1S 
!+ 

(C14) RATWEIGHT (L, 3 1 S 

(C151 RATUTLVL: IS 

(C16I SHBW (CONTRACT (RATEXPAND (G ( 11 , J1, 11 Ia ( 11 , tJ,KI I) ; I S 

I 

K 
j (E161 DELTA 

I ; 

' 

! (C18) 017,EVALS 

+ (C19I RICCI rCONTRACT(RATEXPANO(Dl$I IS 

b 

(C17I RIEHANN( tS,U,Nl, IN1 IS 

I 
I 

$ 

I (~20) SHOL~RICCIIS 
X1 x1 x2 x1 %2 

(E201 - 2 L P + 2 E  i P  - P  E L E  
< U,XP s s u,x1 %2 ,x1 %2 s u  

X1 

s,x1 u 
- 2 t P  

; K211 SHOW (LORENTZ (R I CC I 1 I S 

(€21) 2 E  L P  - P  E L E  

C221 SC:CONTRACTIRATEXPAND(RICCI*CI tl , tS,UIIIl S 

(C23I SHOW (SCI 8 

x1 %2 %l x2 
s U,%1 %2 ,%I %2 Sil 

I 

' 

x1 %2 x1 %2 

,x1 %2 0 x 1  x2 

(C24) EINSTEIN:CONTRACT(#ATEXPANDI (RICCI - SC&( 1S,UI (I I1 1/21*6( (1 , 11 .SI I* 

I 

a (E231 - 4 P  L - 2 P  E i a 

f 
I G(U, 1J,UlIIIS 
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I i 
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- a  - 4  

I (C25) SHOW(EINSTE1N) 8 

I ,x1 x2 ,Ti %2 ,x1 x2 

1 X I S  I J  X1 I X2 J X l X ?  I J  
I 

P 1 + 2 P  E L - 2 P  E L t 
(€25) 2 E 

i 

l -  X1 J X2 I 
- 2 P  E I, 

,%l Xf 
i I '  (C26) HETRIC (E) 8 

(C271 E1 NSTEI Nr flAKEBUX (El NSTEIN) 8 

(C28) SHOW {EINSTEIN) 8 I 

I J  XI%? I J  X1 1 %2 J %1 J XZ I 
(E281 2 t1P L + 2 P E L - 2 P  E L - 2 P  E L 

,X1 %2 ,x1 0 ,xi x2 

1C36) COVOIFF (EINSTEIN, JIS 

(C311 038, EVALt 

(C32) CONTRACT (RATEXPAND (031) 1 S 

(C33) SdOW (D32) 8 

(E331 
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PURE FIELD THEORIES AND HACSDfA ALGORITHE 

William S. Ament 
Naval Research Iaboratory 

A pure field theory attempts to describe physical .phenomena throush 
singularity-free solutions of field cquations resulting from an action princi- 
ple. The physics goes into forming the action principle and interpreting 
specific results. Algorithms for the intervening mathematical steps are 
sketched. Vacuum general relativity is a pure field theory, serving as model 
and providing c;.ecks for generalizations. The fields of general relazivity 
are the 10 components of a s;metri.c Riemannian metric tensor gij; those of 
the Einstein-Straus generallzation cre the 16 cmponents of a nonspmetric g 
Algebraic properties of pi) are exploited in top-level MACSYMA commands 
toward performing same of 
cone for the theory as left by Einstein and Straus is fomd and simplifications 
of that theory are discussed. 
theories; the algebra of g may help in their construction. 

ij' 
the algorithms of thaz generalization. The light- 

Attention is called to the need for sp'nor 

iJ 

PURE FIELD THEORY (PFT) 

A pure field theory (PFT) (ref. 1, final pages) attempts to describe 
physical phenomena in terms of singularity-free solutions of a set of field 
equations, the Euler-Lagrange equations of an action grirrciple. The physical 
wisdom goes into assembling the action integral and into interpreting any 
specific results; the interwening mathematics appears strictly algorithmic and 
therefore doable with, and perhaps only with, computer symbol rnanipuhtions 
such as done by MACSPIA. Einstein's general rrlativity (GR) is a prototype 
PFT. GR serves boch as the physical basis for test algorithms and as model 
for the followirg outline of 'formal' PFT. 

the has a coordinate manifold of (presumably) four dimensions, param- 
eterized by Gaussian coordinates xi, i = 1,2,3 ,!\. 
N scalar components f = f(xi) are assembled, together with their low-order 
coordinate derivatives f,i , f,ij , ..., into a scalar density L serving a8 
integrand of the action principle LL. The scalar fields fi of GR are the 10 
components of a symmetric Riemannian metric tensor 

Coordinate Indeyerdence 

Dependent ' fields' having 

ij = gji, 
Algorithmic Process No. 1 (Apl): 

Taking the integration of LL over a coordinate region V having sai3oth 
boundary B, check that the value of LL is properly invariant to coordinate 
transformations interior to V. 
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0 2 :  Get the Field Equations as Lbler-Lagrange Equations of LL 

This aiouncs to r2placing f with f -I- rlf, f Y i  with Q,i + df,i etc., 
throughout L, rGtaining terms of first degree in df, df, i,... in the expansion 
of the result, and integrating by parts to eliminate, in V, dzrivatives 
df,i , df,ij 
to zero, are then the N scalar field equations in the N scalar fields f. 

... of t',e 'variations' df. The coefficients of the E: df, set 

AP3: Gauge Conditions (Ref. 2) 

When the dependent scalars f are components of a tensor such as the of 
f i j  ij 

GR, rhea coordinktc transformations in V sbch tis T: xi 4 x 
corrcspondlng transformations for the indexed fieid compononts. For example, 

+ y (x ) require 

is a 'variation' of 2 
mation T. 
atives of $ 
differential order arising from invariance of LL to <he four dg possible with 

a four-parametar gauge transformation y (xJ). The (unassembled) algorithms for 
findi-rg the 'gauge variatlons' and correspvnding Bianchi-like identities should 
be sonre mix of those of AP1 arid AP2. 

arising from a mere infinitesimal coordinate tranafor- 
il 

The 10 EuIzr-Lagrange equations of GR are linear i.. second deriv- 
but there are four scalar Bianchi identities of third 

ij 
i -  ij 

AP4: Small Amplitude High Frequency Wavea and the ?.i&ht Cone 

If a PFT is to describe physical vacuum somewhere and is to be 
singularity-free, then the PFT describes vacuum everyhere. The acceptcd 
physical vaciium permits gravitational, electromagnetic, and neutrino waves 
propagating according to d single light-cone or dispersion relation. To find 
the light cone: 
(K a frequency parameter, bi a propagation vector, df an infinitesimal scalar 
amplitude) for each f in each field. equation. Expand and retain only terms 
linear in the df of highest degree in K--which tt-en factors orrt, along with 
expo. The result is N equations each limar and homogeneous in the N ampli- 
tudes df, each homogeneous in the bi. 
finding a sufficient number of quadratic factuxe b 2ijb 
that bgb E 0 is the light-cone equation. 
believed, then w e  what you may have learned for revi-ring I..] 

In each of the N field equations, substitute f + df*exp(Kbjxi.) 

Factor the coefficient determinant, 
5 bgb to feel sure 

i j  
[IF no such bgb factor ie found nr 

AP5: GR With Non-Phenomenological Source Terms 

The gij of bgb = 0, built from the f and their coordinate derivatives, ia 
necesearily s p e t r i c ,  and its invetie can be construed as (up to a c o r E o m l  
scalar factor Sj the Riemannian metric tensor of GR. Usa the algorithms 

ij 
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1 I 
1 

of GR to get the Einstein tensor Gij, 8 form in the f, f,i,,.. . IJse the field 

i 
1 
I 

i 
AP6: Neutrinos and Spin One-Half 

Unless some of the f in L are spinor variahles, there will be no neutrinos i anone the vachun: waves, or other 'spin-%' structure in the field equations. 
Thus: prepare a 'spinor version' of L and plod through the foregoing semi- 
algorithms. 
from a Riemannian metrtc tensor (ref. 3), but may not be so in othex PFT's. 

[ConversJon to 'spinor form' appears algorithmic in GK, starting 

EiNST EIN- STRALfS THEORY 

The scalar fields of Einstein-Straus (ES) theory (refs. 1 and 4) are the 
This g is w e d  in an L and in 16 components of a ij' ij 

subsequent development in a way suggesrad in GR, but the g 
nonsymmetric tb,xior g 

is in no way L ij 
usable for or equivalent to the symmetric Riemannian 10-component metric ten- 
sor ; 
one appears to have asked after the 'vacuum waves' of ES theory, their light 
cone, or its mathematical connection with GR. 
finding the vacutm waves of thc ES f i 4 d  equaticns--equations given in terms of 
an afzine connection or 'gamma' defined as the solutim of n 64x64 linear 
equation system 

%j,k 

of GR. T!ie ES fielt equations arc derived from an action principle; no 
I iJ 

So we began with the problem of 

I I I 

gin ';,j + h j  rrk 
I 

 his leaves ni = in 
Let the in-rerse gi'j be defined through g g n! - g gjn = 6 j' 

hij = g g,,, with g g Jn (h j' 

another order for the sumation over the 'duniny index' n: 
-I i in ni I tet AA = h = trace (111, 

2 CC = (hi hj ) = trace (h ), BE = (AA' - CC)/2. Then n = hi .I sstipfies 
j i  

3 Q(h) = h4 - AAJh + BE%* - AAJeh + 1 = 0; 
-1 I Matrix h has generally four eigenvectors V[n] and Q(h ) = 0 by symmetry. 

eigenvalues v[n]: i 
I I 
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i j h j Vrn] = v[n]V[nf 1 

i h V [n] = v[n]V[n] 
3 1  j 

One can normalize so that V[m]iV[n]i = t[n,m] and (summing over the repeated 
'eigenindex' n) V[nIiV[n]J = di. The symmetry of Q(h) implies that if 
@(x) = 0 then Q(l/x) = 0 so that if v[n] is an eigenvalue then so io 
l'v[n] = v[n'j, say. 
run Oiler say 1,1',2,2' and we introduce op: op[n]:=n', op[n']:=n. 

and with u[nI2 2 v[n], u[n]u[n'] = 1, we have hi 
compatible representations 

Thus, eigenindices [n] (which are not tensor indices) 
With this, 

= ~[nlV[n]~V[n] and 
j j 

Thus, the 16-scalar g 

with spinor-like (ref. 3) eigenindexing, and supplies what m a y  be called a 
built-in vierbein provide$! by the four directions V[nIi, n = 1,1',2,2'. 

The E.S field equations being in terms of the gammas, we solved (I) for the 

of ES theczy has a natural 18-parameter representation 
ij 

ni g a m a s using 9 
through eigenindices as W = Z[p,q,r]V[p]iV(q]jV[r 3, SAV. By exploiting 
symmetries, the 64x64 problem (ref. 5) of inverting ,' 1 fnr the gamas reduces 
to a 10x10 problem for finding Z[p,q,r]. The etraigh: orward 'G~CSYXA solution, 
giving terms of up to degree 6 3.n AA, 5 in HB, is cor;) (f-stionalry weless (as 
suspected by Schrgdinger, ref. 4, p. 111): fonnally, there are snne 472 terms 
before replacing three scalar symbols by three hi 

= g Wnjk with W represented in the manner of (3), (4) 
jk 

ijk 

matricss 3 
.- 

The ES field equations, however, entail the gamaa in symmetrized or 
internally contracted forms, so that it was possible to use eigenhdexing to 
set them in terms ot the basic fields g 
sion of (1). 
ing from APL was much too big for the computer but could be made tractable:. 
(1) Resolve the equations and the bi along vierbein directione, as already done 
for the g&mmas by the W -, 2 above. (2) Then bgb haa to be two fom.ally identi- 
cal terms, one in eigenindices 1,l' the other in 2,Z'; replace variables having 
2,2' indices with random integers. (3) Any bi given in eigenindex or vicrbein 
compotents as (bl,,bl' ,b2,b2') = 1! is orthogonal, for m y  possible 2 'metric', 

without ra.sort to the formal ir.ver- 
ij 

The 16x16 determinant of the homogeneous equatiom system result- 

ij 
to 5 = (b1,-bl',O,O) and to 
and bgd p 0. A final such vector 2 = (bl ,bl' ,-b2 ,-b2') satisfies cge 5 0 

= (0,0,b2,-b2') in the sense big A t j  c sbgc E c g brO 
j 

dge; 
cgd E 0 but bge # 0 generally. 
quadratic f o m  (exterior product) in the near-orthogonal vector nystem L,c,d,e, 
with 16 unknown coefficients a5 new 'amplitudes'. The substitution 
diagonalizes the 16x16 equation system 5nto 6x6 and 10x10 blocks. 
appear degenerate (coefficient determinants vanishing). But eliminaticg 

Take the amplitude-tensor dg. as a 4x4 .) 

Both blocks 
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equations of the result one at a time gives a sequence of identical bgb fzctors 
in which the structure of the symbols of the 1,l' term is matched by thit of 
the integers of the 2,2' term. 
zi' from xhich the light-cone metric is then, via Q(h) = 0 

The resulting eigenindexed bgb then implies a 

where S is an undetermined conformal scalar. But: the nature of the waves 
propagating according to the tgb light-cone equation remains unknown, owing to 
complexity and, particularly, to failure to eliminate 'gauge transformations' 
mentioned in AP3. (That failure may also a.?count for the degeneracy of the 
coefficient determinant.) 

In GR the bgb = 0 light-cone equation is known a priori; it is asserted in 
In examining final equations, for the nature of the ij' the metric tensor g^ 

'vacuum waves' one can take as locally diagonal, thus rendering sTpboli- 
cnlly indexed expressions in compact, inspectable forms. 
tion is seen valid in ES theories, and finding bgb may always have to be done 
with explicit components. If so, the foregoing sketch of a zoute to bgb will 
save much time. 

ij 
KJ such diagonaliza- 

Published variants of ES theory use the gammas and are thereby unnec- -war- 

i j,' 
ily complicate:. 
metric tensor g 
scalar 'and tensor objects. from which the 
gammas are defined, via equation (1), and there are no further objects. There- 
fore the g a m a s  are superfluous. The ES equations follow GR by using a Riemann 
tensor gi.;en compactly in terms of the gammas and their first derivatives. The 
Riemann tensor has two basic definitions, equivalent in GR: The coefficient of 
tensor Ta in Ta;b:c - Ta;c;b is the Riemann tensor R abc--but there is no Ts ia 
ES theory for which this function of the Riemann tensor migrit be needed. 
Alterrlatively, the lower-indexed Riemann tensou Rijkl is the non-trivial tensor 

of lowest degree formable from a 'metric tensor' 
Handcrafting gives, with 

In Memannian geoqetry the garmnas, defined in :ems of the 
are used for forming tensors from derivatives of further 

But ES theory is in terms of the g 
ij 

d 

and its derivatives. 
gi j 



- - in which IEij is the (symmetric) inverse to g (i j) - (si + F; . . ) /2 , and or%r of 
the indices is to be respected., (Compare eq. (7) with rq. (30) of ref. 6, p. 153.) 

J 1  

The clkss of PFT's now under consideration is therefore restricted to 
those startinq fron: the foregoing tensor R contracted to a curvature 
scalar R by some multiplier I4 i jkm concncced frori g ij , h i *g nj ,..., and then 

riltiplied by various similarly availa'cle Jacobians J to form the scalar 

density L; these forms are essentially unique ill GF., where M - g g and 

i jkm 

ijkm - -ikAjm 
1. 

J = (de:(;. .I) '2 . In this general ES theory, each term of L can have a scalar 
1J  

ij' 
coefficient arbitrarily dependant on scalars AA,BB formed frum g 

Tensor RiIcnj has the ' familiar symmetries 

ikn j one may assign the same 

ji i mj 

In view of the symmetries, >I can be given as a 

Ri k n j ' 
In forming a 'curvature scalar' W R  2 M 

symmetries to the multiplying tensor P. 
cf gi' usable in PI to essentially four forms gij,g ,h mg 
ca1l.y representcd here as F'-'. 
10-parameter f o m  >le of symmetrically arranged products FinFjk plus a 
3-parameter form Plo OF products F ik F nj . 
trized derivatives ag(i,j,k) = 
parameter scalar NN = ~(a,b,c,d,e,f)ag(a,b,c)ag(d,e,f); tensor N has two 
additional parameters. 
linear in a total of 15 free scalar parameters. 
some function f(.QA,BB) depending on the basic fields gij vi.a the tA,BB of 
equation (2). 

Equation (2) restricts the occurrence 
j mi and h g , generi- .. m 

In addition, from total.1y antisynrme- 
oile can assemble a legitimate two- 

g[ij Ykl 

Thus symbolic action ictegrana L = MJrR+NN is a furm 
hny 'parapeter' is actually 

CONFORHALLY TWARIANT FS THEORY 

The present attempt is to assign the foregoing 15 parameters so that LL is 
confomally invariant, L.e., its value is unchanged by the substitution - giJ + wgij, where w is an arbitrary infinitesimal scalar function of gi j 
coordinates. 
are visible [suggestions are welcome, particularly those having 'soinor' impli- 
cations 1, becallse physicists have said kind things about such conformal invari- 
ance, because the problem of assigning confonnal scalar S of Ap5 and equatior, 
(5) becomes eliminated, and most of all, because the choice appears to give a 
well posed, doable problem having a possibly unique answer. 

We choose conformal invariance because no plausible alternatives 

The present situation with this problem is best described as fluid. The 
implication, if any, of 'gtiuge invariance' is not yet u:iderstood in this ccn- 
text a Several unmentioned algebr~ic sirnotifications makc the proi,l-.m ehsier 
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than it appears at first glance; not all such algebraic niceties are incor- 
porated¶ and the present package of computer commands rzquires too much think- 
ing at the keyboard. 

APPRO1RIATE SYNBOL MANIPUMTIONS IN M.ACSYMA 

First described are notational and other conventicna, then some general 
purpose commands and functions, 

 et gij 

gi j ,kp 3 jh ,P 

g(i,j) ; gij + gg(i,j) ; gij,k -. gl(i, j ,k) - g2(i,j,k,p) ; ri.k - gam(i,j,k), ri -.I gam1 (i , j ,k ,p) , . . 
(conventional s9bol) + (MIzCSyf.IA typein and display symbol). 

No attempt at displays in textbook format io made; one has to remember that 
both indices i,j of gg and the first index of gam and gam1 are upper (U) 
indices whereas the other indices above are lower (L) indices. *,us 

g 
appearins once as U-index and once as L-index. 
are 'free' indices appearing once each. 

ni 
gnj + gg(n,i)ng(n,j); rcpeated index n is a 'dummy' index of sunnnation 

U-iridex i aIlu L-index j here 

An indexed expression EE is valid ocly when each free U- or L-index is 
represented by the same symbol (letter or atom), and occurs only once, in each 
term of EE, and when any dummy index symtol appeazs just once in any term as 
U-index, once as L-index. A validity-checking TEST(EE) is readily constructed. 
One builds desired forms by 'contraction' on one or more free indices. For 
example, s = s(i,j,k) = t(i,j,n)+a(n,k) = t;';u, where free U-index n in u, 
L-index n in t, becomes dummy index n in the conrrac'ed tensor product s = tfu. 
To JOIN t,u as s then entails 1) preserving the final free indices i,j,k and 
'contraction' dummy index n while 2) cnanging d u m y  indices x of say u so as to 
differ from these oE s This is done by DECIARE'ing i, j ,k,n to be constants 
wh:Lle changing any item say x of LISTOFVARS(u), found in the similar list of 
d m i e s  of s, to some new symbol say xrr = CONCAT(x,rr). 
should not change other atoxic symbols such as the AA,BB of (2)--such symbols 
are thus initially DECLARED constant, 

But this process 

Of course replacement symbol xrr could be found in t; also t,u and a valid 
resulcing s may contain identical, possibly cancelling, terms disguised by 
having different symbols for the same dummy variable. 
tion corverting each tern of an expression EE to consistent canonical indexing. 
Command hOx(EE,ILTS) does this term by term: ILIS is a list of free indices 
declared constant.. 
list of symbols declared constant, and NAMES is all slphanumerically ordered 
internal list of these names (such as g,gg,gaml) which occur in the term. 
Suppose ILIS is [b,x,y,a] and f(i,j,b,p,a) is a factor in the form1 term of 
EE; hOx finds this factor as the one containing b, finds its LISTOFVARS 
[i, j ,p], substitutes yl .y2 ,y3 €or i, j ,p throughout the term and reconsider; 

Thus One wants a fvnc- 

Internal to hOx, YLIS = [yI,y2,. ..I is an adequately long 
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the result with ILIS = [yl,v2,y3,x,y,a],YLIS = [y4,y5, ... 1. 
ILIS were empty and the foregoing factor's name f is first in NANIS then 
ylYy2,y3,y4,y5 are substituted in order for the LISTOFVAXS [i,j,b,p,a] and 
become the new ILIS . At the close, the constants [yl ,y2.. . ] of YLIS are 
replaced by variables pl,p2,... to avoid conflicts in any iteration of hOx. 
I believe that hOx converts a valid EE to uniqde form of minimal length when 
e?ch term of EE has some dummy-containing name occurring just once so as ta 
appear in NAMES, and the order of indices within each named object is unique. 
Otherwise hOx(EE, [I) will produce an EE with dummy symbols pl,p2 not neces- 
sarily in minimal form. 
iterations of hOx, which never increase the number of terms. 

Or if the initial 

Regrettably, this now calls for ad hoc measures and 

I 

The synmetry IE(a,b) = IE(b,a) is invoked automatically by a prior 
DECLARE(IE,COMY'LJTATIVE); this imposes the canonical ordering IE(a,b) fbr either 
form. Declaring AJJ commutative, and C constant, then doing LISTOFVARS 
(APPLY(ALF, [a,y,C ,x,b,x2])) produces the alphanumerically ordered list 
[a,bYx,x2,y]--sans constar,t C, of course. ALF may analogously be used to 
order !ZilyjX "@(i,j,y,x) E g2(i,j,x,y) in the latter form, and used in canon- 
ical an.tisymmetrizing comands. 

Perhaps the central problem in simplification of dmy-indexed expressions 
is seen %E an exanple: Let scalar form F be IEw(K -K ). Tensor IE"Y41E(x,y) 
has been declared 'iomutitivz' so that IEfy,x) appears alphanumerically 
reordered as IE(x,y). Thus, thou:h nothing is asserted about tensor K, scalar 
F as contracted fr>m IE,K above is to vanish--it would if the indices of the 
second factor of F were canonically reordered as permitted by the symmetry of 
IE. 
that the priority in the order of the ned indexing goes to AK, resulting for- 
mally in F = AK(plyp2)+~(IE(pl ,p2)-IE(p2 ,PI)) , whereupon thc? declared synmetry 
of IE produces cancellation in the last factor and one gets the wanted F = 0. 

XY YX 

Our dodge has been: substitute the name AK for 1: in F, do hOx(F,[]) so 

Clearly, what one wants is some simpli-fier that orders d u m y  indices, of 
factor, in a monomial, taking full account of dezlared symmetries of tensor I 

cated by (a) the variety of possible symmetries and antispetrias, (b) multi- 
ple occurrences of ter.sor names in the monomial, (c) the present nczessity to 
change fiunnny eigenindex p' = op[p] in step with p = op[p'], (d) the utility of 
keeping intact the symbols for free indices. 

factors in which dummies have already been assigned, The problen is compli- i 

One plausible way to keep free indices, say i,j,k, of a form 
f = f(i,j,k,dumies), is to contract f with a 'holding tensor' H = H(i,j,k), 
process the contracted scalar Hf , and then substitute back i,j,k for the 
plYp2,p3 of the final result as indexed with priority set by the name H. 
this sometimes results in sone terns with the anticipated factor H(plYp2,p3) 
while other terms have factors say H(pl,p2 ,op[pl])--making for unwanted 
thought and typing. 

But 

The sketched algorithms of AP2 ,AP3 ,AP4 require different types of differ- 
entiations. 
TENSDIFF(EE,NLIS) by supplying appropriate versions of DIFFLIS, listing forms 
of derivatives. when TENSDIFF calls on It. NLIS lists names of tensors 

All can (apparently) be done in a single overall comand 



ccnsidAred differentiabl~ , ail other symhols and functions being considered 
constants. Exmple: TENSDIFF(f(i,j,p)"g(i,j), [g]j first 5ees name g in NLIS, 
goes to -1 list GSUBS to find g(a,b) .=g%[a,b] evaluates EE as FEE:f(i,j,p)*g%[i,j; 
does DIFF(FEE) returning f (i, j ,p)>vDEL(g%[i, j I), replaces the MACSYMA symbol 
DEL Ly DDEL, DDEL(arrsy member) being specified in DIFFLIS, e.g., 
3DEL(gX[3,b]):=gl(a,bYik). Such indexed forins g%, gg%, gam% as rray remain &re 
rzconverted to initial forms through the array definitions of list CSACK, 
reversing GSUBS. Index-renaming as in JOIN prevents dunnng indices occurring 
in XFFLIS from conflicting with those already in EE. Tha generk differen- 
tiJtion index Y k "  is then to be r-placed by some choszn symbol, and before ary 
second differentiation the result should (as witk an iterated JOIN operation) 
he boiled down and converted to relatively harmless indices via hOx. 

4fter all difrerentiations, one goes immediately to eigenindexed forms as 
much pore compact and perspkuous. 
and y(x,y):= x"f(x,y)--the tensor indices x,y of g,gg become eigenindices 
and the freestanding Cactors x,y are in effect the eigenvalues u of equation 
(4). Function NTJFF then sequrntially extracts each' factsr f(p,q) and in its 
coefficient replaces q with op[p], op[q] with p. 
renaiies and reorders, term hv term, ths eigenir-dices p together with the!.r 
'opposites' p' = op(p) in the general man*ler of hOx, though with priorities as 
set by the ordered list NAEiES of germane function nenes. 1Jith sufficient 
application of CRIMP, some uiinimwa cf ad hoc substitution, and luck, the naned 
objects are canonically indexed end may be factored o"t, leaving a pblyno-nial 
P = P(A,*..,pl,pl',.*.) linear in undetermined parameters A. One must event- 
ually allow for p' = op[p] as irnplyilig p' = l/p--but not too scan, for expres- 
sion p"p'%(other indices) represents a sum over eigenindex p with result 42. 
Punction CR?MP leaves indices of objects in NAMES as constants, other free- 
standing indtces, like the above p,p', as variables. Function CEDO does sums 
over such variables: CFDO applied co p 9 '  yields 4, applied to p'n+$!f3 yields 
the scalar AA of equation (2), etc. Polynomial P is reGucible to degree 3 in 
2 2 p through Q(p - 0, equation (2). Requiring P to vanish then gives a set of 
linear relatiom among the p' :ameters A, which m y  qow be solved for in 
familiar ways. I 

The basic substitucions are g(x,y) := :'l;f(x,y) 

Function CRIMP(EE,NAMES) the:. 

I 

\ REMARKS 
\ 

Described elsewhere in these Proceedings (ref. 7) is a tensor rzmipulating 
package ITMS, deslgned primarily to analyze field equations of GR based on a 
symmetric metzic tensor g 
as upshot of field equations derived from action integral3 based on non- 
symmetrtc tensors. 
items. 
of overlappinb capabilities. 

.I Our developing package is aimed at finding d 

There appears to be no significant duplication of ITMS 

ij' ii 

I welcome appropriate extensioiis 02 ITMS and recommenl its trse in case 

I call attention to the problem cf providing a spinor representation 
natural for the non-synmxtric p 
tive of two-component spinor notation, and the eLgenvectors may provide a 
natural framework €or a spinorization. 

The present n,n' eigeniodexing is sugges- ik 
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BLACK HOLES AND RELAIIVISTIC GRAVITY THEORIES 

A. J. Fennelly 
Physics and Astronomy Department 
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ABSTRACT 

02 173 

!? 

11 
.-a .. 

We consider all presently known relativistic wav!tatior. theories wfLich have 
a Riemannian background geometry and possess exact static, spherically symmetric 
solutions which are asymptotically flat. We show each thaory predicts the 
existence of trepped surfaces (biack 'holes). For a general static isotropic 
metric w3 use MACSYMA to compute the Newman-Penrose cquatlons, the black hole 
radius, the impact parameter and capture radius for photon accretion, and verify 
asytcptotic flatness. These results are then applied to several of the better 
known gravitation thenrfes. It appears the claims of Hawking, Lightman, Lee and 
Rosen regarding the existence of black hulss in several theories are not valid, 
and black holes are a natural consequence of present idees about gravity. 

- 

INTRODUCTION 

The subject of black holes has become very popular in recent years. With 

dozens st papars appearing in scientific journals each month and popular articles 

in abundance, the subject of black holes is a true mystery since there is no 

known methud for observing them directly if indeed they exist. Opponents develop 

theories Wfllch they believe elimlnata black holes entirely while proponents 

attempt to show that black holes are legitimate or that their existence is 
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temporary in the ev6lution of certaiti classes of sSars. Our purpose in thfs papei 

is to s~ionr that black holes are a natural consequence of the basic format of 

gravitation theoriss (at this tine) when solutions of field aqna2ians can be 

found in sxact form and where the background yeometry of the space-time is 

Rlemennfan. The calculations involved In the analysis are extremely complicated 

and we would not have attempted +,hit particular problem without the atd of 

HACSYHA. HACSYnA possssses a number of special purpos:a, relatlvistlc programs as 

pert of the corngonent tensor manipulation system, CTRS, in addltkn to ITMS 

(ref.1). Gtven tha metric components as implicit or expllclt functions of the 

CQOrdlnateS, ClHY can compute all geometrical objects such as Riemann 

tensors,etc. It also has the capabilleles for finding the Naman-Penrose suln 

COeffiClwttS 8s Well as 8 host of other objects owing to the genera?lty of 

HACSYHA and CTMS. 

TPAZiED SURFACES AND P9OTOI CAPTURE 

The llne element for 8 static spherically symmetric metrlc may be written in 

isotropic form us 

dS2 Q2$(dR2 + R2df&2) = e 2 h 2  (1) 
whwo $(R) and +(a). We use Isotropic lorn rather than Schwarzschild coordinates 

for a glance at the literature shows that (1) with Its high degree of symmetry 

3ends Itself to closed form solutions more roadiiy than other metrics. Far 

example a closed form solution of the Brans-Dicke theory in Schwarzschild 

coordinates has never baen exhibfted (ref.2). 
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A trapped surface (the physical measure of the radius st which physical laws 

changa) Is one for which all geodesic congruences convergo, l.e.,strike a 

singu?arlty jref.3, reP.4). ?he measura of the convergencs of & geodesic is the 

spin coefflclertt (ref.5) 

p = 1p;v d8 (2) 

where ly Is the tangent vector to an outward directed null geodesic congrueme. 

the semi-colon is cavariant dffferentlatlon and I# is tho complsx vector 

spennlng the celestial sphere. The vectors I,,, m,,, and Zp are combined with an 

ingolvg tangent; vector np 20 form a compler null tetrad. The merric Is given by 

g p  = ’(& - m(&) (3) 

where ( ) is symmetrizetian. The tetrad obeys usual inner product rules (rsf.5). 

The isotrooic metric (1) may be written In terms of a new luminosity coor- 

dinate by the transformation 

e’bdt = d d v  + e#dR (41 

which gives the transformed metric (1) as 

ds2 s -$+dvZ - 2e+*$dvdR R2e2ffa2 (5) 

Tha null tetrad cmponents are easily found, and the complex expansion of the 

null emgruencs Is then found by HACSYMA to be 

p d 1 * R$’ (6) 

where r#’ 8 d#/dR. TPe expansion p will be negatlve and EL traoped surface will 

form only if 1 +R#’ < 0. Clearly, 18 large c ~ a s s  3f metrics nlll satisfy this 

condition lor some critical flnita value(s) of the radius nhfch wa denote by Rt. 
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This trapped surface location Is coordinate dependent. For comparison we shall 

wish to transform the expression Rt to Schwarzschild coordinutcs by choosing the 

coordinate system in which we redefine the radius by r 2 Re$. Titus having found 
- 

the trapped location for (1) we easily find rt. 

For a metric to represent the gravitattonal field of an Isolated particle It 

IS necessary that the field vanish asymptotically at large distances from the 

190 

particle end the space-time reduce to that of special relativity. The invariant. 

meas~re of "asymptotic flatness" is satisfied If the Weyl invariant 

q2 -1/2 Cabcd I znd-mcfid) (7) 

VaniShQS asymptotically as R h e r e  t,bcd Is the Weyl tansor. For the metrlc (lj 

we find CTMS sivcs the followi?iy expression for the Weyl invariant as - 

[e! I y* a ---- (9' - cp' + F (9' + (+')2 - z+'y - &" + ($'I*) 0-2$ 

12R 
\ 

It is well known that G~neni1 Relativity predicts both the existence of 8 
I 

trapped surface and the logically r2lated physicrl conkequence which is an impart 

paramater far particle capture residing outside the travped surface (ref.6). This 

Is a non-Newtonian effect and It is therefore of interest to determino whether 

\ 

, 

ollhcr relativlstic yr 1 t, r.5:sories also predict such a phenomenon. The only 

rssumpt+on we make is thet the geodesic equathns which are valfd in General 

Relatlvity hold In other theories too. This assuaption is reasonable slncs 

alternatives to the geodesic equations of motlon have not been proposed. 

For the metrlc (1) end motion in the oquatarlal plane the geodestc equations 



immediately give two constants of the motion h, and K. There follow respectively 

from g++ ds/dA = 0 and gtt ds/dt = 0. Writing A = K;h as th.j impact parameter 

one finds orbital equattons whlch may bo put in the form 

E2)&$& 
(9) 1 'I2 -- = f e-- RZe2(51"4) - A2 + --------- 

R[ x h2 

dR 

d+ 

where E=O for a photon and E=1 for a material particle. 

We proceed now directly to the photon E=O, slnce material particles are 

more drastically affected and will simply glve more extreme !?!3sictrl behavior 

Orbits are stable dohn to a critical rad?.as given by R=Rc. We find a general 

method for scoiiutlng the value of R, Is given by simultaneously Fetting 

dR/d+ = 0 and d/dR (dRldi#) = 0. These eqdations also give a cxresponding 

critical impact parameter Xc. These conditions are found to gtve R, from 

~ 

(10) 3 0  + '(4' - #'I RrR, 

and 

Z:i#(Rc I-$ (Rc 13 hc = Rce 
for th0 corresDonCing capture impact paramoter. 

VALUES OF THE PHYSICAL PARAWETERS 

We now apply HACSYHA to the equations berived above for tho study of various 

gravitation theories. #:: adopt tho followlw notation for our physical 

parameters: 

Rt o iocation(s1 of trapped surfaces in isotropic coordinates from (6) 
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rt 3 correspondtng locat lon(s) in Schrr~rzschild cxrdinates by Eransformaticn 

Re 0 losa&ion[s) of photon capture radbl in lsotropic coordinates from (IO) 

rc = corresponding location in Sdiwarrschild COOrdln8teS by transformation : 
A, = c~rresposding impiict parameter for photon capture(coord1nate independent) 

I -  
1 In each theory we usd HACSYHA to coepute end sfmplify tho physical parameters as 

well as verify the condition of asymptotic flatness. By eguqti;lg (1) to the 

actual metrlc in each theory W B  can solve for 4 and 9. Then we use HACSWA to 
compute (63, (8), (10) and (11) as well as transform the physical parameters to 

Schwarzschlld coordinates. 

I 
i 

1 

I 

A) GENERAL RELATIVITY: The lsotropic form df the Relssner-Nordstron metric Is - !  ‘ 1  
2 2  
n - E  2 

2 
i 

1 
1 

1 (1 - --*---- 
I I 2 2 2  2 H - E  2 M + E  2 4 R  2 

dt dS 8 (a R + dR ) (----d + 1) (---- + 1) -------.------.-I----”--- 

Z R  2 R  n - E  2 # l + E  2 (12) ’ 

, + 1) (----- + 1) I 1 I 
(----. 

i‘ 
I 2 R  2 R  

where E is the charge of the mass ?I. We find 

The results for the ttacpad surface locatlon are known whereas tba frrrm of th9 

metric (12) and the photon capture patmeterr appear to be new. Settlng E = 0 in 
~ 

I 

1 

(13) the parsmeters become 
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Rt = H/2 rt = O,2N 
R, = H{l* a/2) rc = 0,3# Xc H e  3 G  

ell of wttlch are known (ref.7) and confirm the validity of o w  cmputatlons. 

B) Rosen’s Thecry (ref.6) : This theory has received nlde attentfun recently 

and Is presently the m s t  popular alternaftvs to General lelattvity. One uf the 

reasons fei- this is che belief that the theory does not predict the existence of 

black holes. We shall ROW see this clalrn Is false. RosPn”s metric Is 

( 15) ds2 $wIR{dl;Z + R2cf112) - e0?l’l:Rdt2 
and we find 

We now see trapped surfaces do exist in this cheory as wsll as capture radii and 

photon Impact parameters. 
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where 

Here too we fird a contradiction with earlier results which claimed that Brans- 

Dicke black holes 8re identical to those of General Rilativity (ref.9). Note 

that trapped surfaces do no& form m b s s  the couplIng co3stant w is negative. 

Also, (17) redwe to (14) as 0 becomes infinite as one w u l d  expect since this 

It tha asymptotic correspondence llmit 07 the Brans-Dicks thstry. 

0) Yang-Kilmlster Theory (ref .lo) : Two solutions of the Yeng-Kilmistar 

equstlons are gfven as (ref.11) 

ds2 (1-H/R)2 (dR2 * R2dn2 dt2) 

I 104 
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which glve respectively 

p R/R-H I211 

Rt M/2 rt t 2H R, f HJZ rc 3 ZM = ZM (22) 

The first solutlon (191 is peculiar as it implies, from (Zl), an impenetrable 

barrier et R = tl correspondtng ts r = 0 In Schwarzschild coordinates. The second 
solution exhibits more unusual behavior since the trapped surface location, 

cspture radius and Impact parameter resid:, et the same FadlUS In Schwarzschild 

coordinates. These results are not surprising since it has been skom, usirrrg 

NACSYMA, that these metrics two unphysical (ref.12) by possessing solution; whfch 

give incorrect physical predictions. 

E) Lightmen-Lee Theory tref.13) : A metric for this theory 1s 

which yialds 

It has been claimed irer.14) that (23) does nct contain a black hole radtus at 

M/2 and 3 W 2  , Miere the metric components become singular, since there rad11 

cannot be encountsred dfter travelling a firiits affine dtstance. This claim ts . 

Invalid since, froin (24), we find a trepped surface forms at H/2(3tds) which lies 
' 

beyond 3 W 2 .  flt Is clear a black hole forns in thtr theory too. 
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CONCLUSIONS 

- We have establis d thilt black holes are a normal rather than a pathological 

feature of viable Oravitation theories. This fact is amplified by the new 

observation that photon cepture and photon impact parameters are also normal 

occurrences in the behavior ut the gravitational field of dense bodles. Thus we 
9 

i 

have disproven the claim that black holes do ~t exist in Rosen's theory as well 

as shown that the trapped surface exists and can be approached in the Lightman- 

Lee theory. In addition wo have shown that Brans-Dicke biack holes are quite 

unlike those or General Relatdvlty. W% are now using tlAG:WlA to investigate a 

recent attempt Cntroduelng Quantum theory into the subjact black holes in thfl 

study of the "evaPoration of black holes" in which particles can tunnel out of 

the trapped surface. 

- 

These results will be presented elsenhere. 

106 

1 ! !  

J "i 

1 

1 



REFERENCES 

1. Bogen, R. A.; and Qav-116, R.: Indicia1 Tensor F1 nipulation on flACZYflA. 
Proceed’ngs of the 1977 NACSYHA Users‘ Conference, NASA CP-2012, iQ77. 
(Paper No. 9 of this Compilatlon). 

2. Bra~s, C.; and Dicke, R. H.: Mach’s Principle and a Relativistic Theory 
vi Gravitation. Phys. Rev., 124, 1961, ppI 925-935. 

3. Penrose, R.: Gravitational Collapse end Space-Time Singulsritles. 
Phys. Rev. Latt., 14, 1965, pp. 57-59. 

4. Hawking, S. W.: Occurrence of Singuiarities In Open Universes. 
Phys. Rev. Lett.. 15, 1965, pp‘. 689-690. 

5. Neman E.; and Penrose, R.: An Appraach to Gravitational Radiation 
by e Method of Spin Coefflcledts., J. Hath. Phys., 3, 1962, pp. 556-518. 

6. Darwin, C.: The Gravity Field of a Particle,I. Proc. Roy 
249, 1958, pp. 180-194. 

7. Hisner, C. W.; fhorne K. S.; and Wheeler 3. A.. Gravltnt 
W. H. Freszian, and Co., 1973, pp. 921-9~4. 

8. Kosen, N. A 81-Metric Theory of Gravitation. 
6en. Rel. 6rav.. 4, 1973, DP. 435-448. 

Soc. London A., 

on. 

9. Hairking, 5, W.: Black Holes In the,atans-Dicke Thmry of Grav 
Commun. Hath. Phyt., 25, 1972, pq. 167-171. 

10. Yang, C. N.: Integrzl Forma7lsm for Gauge Fields. 
Phys. Rev. Lett., 33, 1914, pp. 445-447. 

11, Pavelle, R.: tinphysical Soluttons of Ymg’s Gravitetional-Fie 
Phys. Rev. Lett., 34, 1975, pp. 1114. 

tatlon. 

d Equations. 

12. Pavelle, R.: Unphysical Charactsrtstics of Yang’s Pure Space Equations. 
Phys. Rev. Lett., 37, 1976, pp. 961-964. 

13. Lightman A. P.; end Lee, #. L.: ? k ~  Two-Hetrlc Theory of Gravity with 
Prior Geometry. Phys. Rev. D., 8, 1973, pp. 3293-3302. 

14. Lightcan, A. P.; Press, 9.; Price R.; and Teukolsky, S.: Problem Book in 
Relativity and Sravltat~on, Problem 17.12, Princstan Unlr. Press, 1975. 

I07 





The Evaluat!an of Atomk Vaalablcs in M ACSIM * 

Jcf f ie7 P. Golden 
Labcatory for Computer SJ snce 

Massachusetts Institute d Technolug7 

1. Jntduction 

In this tutorial paper, wr explore the many issues involving the use of atomic variables, of 
names, Ia MACSYMA. We hope thereby to gal*! Insight into the mplexities of tpnluaiborr 
whlch may sometin& cause frus,ration to the MACSYMA user. Some of the dmp?er aspects will 
be glossed over as they are adequately cclvrml in the MACSYMA Reference Manual (ref. 1). and 

we may w u m e  t!tat at$ MACSYMA U M ~ S  are sontewhst familiar wKh them. 

2. Evaluathn-Frw Expressions 

We begin by looking at "evaluation-fm' expressions, in which names s t a d  for themselves. 

(Cl) FACTOR(X"2-YA2); 
(Dl) - (Y - X) (V + XI 

The basic idea in t)ce above example is clear to the ZAACSYMA user. W e  wish to factor thr, 
polynomial x2-y2 over the Integers, so we type In the command line shown et (CS), obtaining the 
answer at (01). X stands for itself ami Y stands for itself. 

3. Implicit Assignment 

Now. wa dtclde to expand the mult (at). We may i p !  

(C?) EXPAMD(D1); 

or more ufually 

o This work wzs supported, in part, by !k~ Unite4 States Energy Research land Development 
Mmtnfttialkn ucder Contract Number E~ll-I)-s070 and by the National Aeronautics and Space 
Admlnlstratfm under Grant NSC 132% 
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pc2) EXPAND( %) ; 

obtaining 

2 2  
x - Y  

In this case, we know that D1 or X do not stand for themselves, but athlrr that they both 
refer ta the expresston -(Y-X)(Y+X); DI because MACSYMA Implicitly labelled tha: exprution 
wlth -Dim, and %,because In MAGSYMA It refers to the previousm expresslm or computation. 

4. Eosluatiotl 

It is important to be clear on the proccu by which the command lines (el) and (C2) were 
handled. These command lines were rw(wled, meaning that In order t dettrmlne the 
expresslofts FACTOR and EXPAND were to operate on, their arguments, the expressions XA2-r"2, D1. 
or X were ezduhted (and simplified) first, and this means that the variabfa or n a m u  in them 
were duuted one cimc Eocrluasim of M ~ C J  m a n s  that I a name has been Implldtty or 
cxplicltlp assigned a value, that we obtain that valua If a name has not bnn outfled a vatu% 
the evaluator just returns the name Itself. 

(C3) POLY I : r2*x+y; 

w e  know that POLY1 and D3 are the same in the mse that the7 both refer to the same expressi*m, 
Y+Xz+X We also now that even though X and Y have no amigncd values (are ounbound"), and 
thus evaluation produxd no changes In our polynomial, that It has been rco?dcred by the 
dmpllflcr. Lastly, D3 king an fmPllLUIf nrsipd nimr gas on the IABELS list, whlk POLil 
being an explidflp ursignsd nam goa on the VALUES tist, which perhaps Is named somewhat 
confusingly. Crhese lists has-c many uses ar nlskdl in the bnanuab) The totlowing sliorsld be clear: 

2 
Y + X  - x  
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Q. MACSYMA Options 

We can also OR explicit assignment 60 reset the value of - MACSYMA option. A 
MACSYMA opton it simply a n m  that has been initiaily assfpsi a value by MA@SYMA, anti 
which directs the performance d MACSYMA a certaln wag by its current setting. Thur, 1: we 
wish to see the computation #me elapsed In evafwthg mmarid !in& we my tlpc 

(65) TIHE : TRUE8 
tOae= 1 IlltBC. 
(C6) FACTOR(XA3+Y"3); 
tine= 90 msec. 

2 2 
(06) (Y*X)(Y - X Y + X )  
(C7) TIM€ : FALSElB 

When we reset z MACCYMA option, 
MYOPTIWS 1isL 

it we reset it back to Its Inltlal value, it pes on the 

D1, Cll, CPOlYlI, [TIHE]] 

7. The EV CommumJ 

Often, we only wlsh tn reset the value of a MACSYMA option tempoiarlly, say, for a slqk 
armputation. We may do this as follows: 

The Irtter form Is also acceptable, but the former abbreviated variant 1s avallabk for man7 

1 1 1  



Lars now assign to X the value d 2: 

MACSYMA optlsns, and map also be introduced by :he use: by GECLIREing a varlabk 1~ an 
E W U G  (see the manual, p. 120). 

W e  also m!t that (C9) is an abbreviatd tjntax for a call to the EV commaGd, and could 
have been givm a3 

(CP) EV( SIN( X)+COS{ X) , EXPOENTIALILE) : 

EV is by far the most frequently used command in MACSYMA. The above exampk on the face 
of it Imks very stmple, and indeed, 91 most Instanccs EV gives the ex,pect& result in a 
straightforward manner. Unfomnatelp as we shall see later on In thls paper, EVs many variants 
whlch lead PO its great usefulness, are a h  the naso~l for Its mpkxlt7, in understanding it and 
In how It 1s handled by MACSYMA 

We know what tplng in x2-# d#1: 

z 

2 2  
2 - Y  

Let us ifow rcqlticst the vrhre d 02 

(el21 02; 

(D12) x - Y  
2 2  

We notice that the v?Iw of 02 has not changed even t h q h  X has now bem lurgned valuc 
This Is because MACSYMA otdlcanli edahtates aprwlons (In thlr cae 02) mty me time and I does not reevaluate expressions even if ddng so would mutt in further change. 
9. Muftllcreled Eviduatlon 

--+ One can request evaluation until tm further change taka pha by udng the IWFEVAL 
(''Inftnlte cvaluatton3 flag of rV, as folbwr 
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In designing MACSYMA, we chose t3 ordinarily evafuste expressions only one time as this 
gives the user much more control ove; hidher expressroars In that ht?:shc can mntml the number 
of timer evaluation Is to take place. In almost ewry case this is not xn important issue as 
variables appearing in expressions are usually either unbound (stand. for then.w!vesJ) or arc 
bound to expressions contaitrtng vartables all of wR!ch are unbound. Thus, In almost every case, 
It would makz no difference If we evalua'xJ vr:,riables only one time or attempted to evaluate 
them more than cttce. ! 

However. suppc3se the user tu an expreulon which 1s hbclled, say, L1. which conmlns m e  
or mote srixrrcnces of the varbbk 4 and that A in him has been assigned as vabc a hrge 
expression. (One way of acc-crnpllshing thls easily 1s by assigning to L1 beforr aulgning io A) 
Tlien, thanks to the evalv~tlw~ xhme desc.r?'ocd abeve, the user can play arwnd with the 
ex?ression L1.1.4. use Cl ;n his/her command lines, without fearing that a large expression wllt be 
plugged In for A befwz the user wants this to occur. 

{As another example, when 'she user qpd 02; at (Cl2). the user map have only waltted to 
~ o e  02 dlsptayed again, rathe than wanting additimbl mputatlon to take place at that pofnt 
Cr, when the use; types VRLUES; at NACSYMA, the uxr wants tc see the names of the varlabks 
that have bnn assigned to, rather than thelr values.) 

When the 5;ser rinu this plug-in b LS to take place, thls may be done slrnply wlth 
MACSYMA by typing an) of the fo'ilowlng command-llncs: 

EVC hl ) : iir L1,RESCAN; or L1,IOJFEVAL; 

T h e  flrst two are quivaknt, and take advantage of the fact :hat calling EV auxs the exprevsion 
I1 to be evaluated one extra time, Le. twlce. This is obviously the ilaxm the flag Is narntd 
"RESCAMP. (The reason for this extra evaiuatlon wlll be gone lntu furtlrer bciow, whca EU tr 
taken up again.) 

The above example, however, Is actually somewhat arilficlal. If the user wanted the above 
effect, it is more usual to either postpone t&~lgnlng to A until that assignment is needed, or to use 
the WPIST command whm rzeedcd to substitute in that large expression for tb However, one 
elmumstance in which a slttratlon slmllnt to that above accu5s is when uslng the SOLVE mrnand, 
as In the folbwlng: 

(Cl4) KILL(X)I 

(C B 5) SOLE( XA3+X4C, X) ; 
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2 
SQRI(27 C + 4) 

c 1/3 
2 

(E15 - -) ' 
solution 

We note that hn order to keep the so1rWns El7, E18, and El9 to the cubic quatlon mnewhrt 
smaller than they Otherwise might be. tho hbel El6 Is rutmatically assigned by SOLVE to I; 
subcxprestlon mrnm to all three solution& The hbcl E15 Is a140 generated as m ruxllirr7 
label. T h u k  we gatn m w h n t  In the tire of dlyrhyed cxpnulmis at tho expcrrsa perhaps of 
some convenlence in manipulating the exprcu;ms. 

Now, let us b k  at what mlght be smr by mnc u a p r o b h  wlth MACSYMA's cvalualtar 
urd rlmpliflcatlon xhemc Sssppose we hrve 

(C20) SIN(X)*COS( X); 
!020) CW(X) SIH[X) 

j r  
i 
i I 

f 
--1 

I 

(C21) EXPOIENTIALIZE:TRUE8 

(622) DIFF(D20,X); 

114 



t4ate that the EXPONENTIALIE flag has bcm rtKt in the mlddk of a computation. T h e  resuh 
&mined In 022 (whlch, by the way, is qlvaknt to WS2(X)-S1N2(X)) at first dght ma7 be 
surprising to tte MACSYMA user. We see that even though the EXPOHEYTIALIZE switch hat 
been ut to ?RUE vta CZ1, that D22 s!!! k s  SI#a and COS5 in it! This an be seen to be 8 result 
of MACSYMA*s slngle level evahation and simplifiatim z s h m  in Its interaction with the mk 
for dtfferentiatlon Qf p d u a  Thaw parts of the result whlch are generated by DIFF  re 
scanned and converted into expammtfals, wherezs rho unrescannd subexpressions are unchanged. 
The user a n  obviously obkb the pmbabll Bulrcd mutt, IR a fui$ t~ponmtiallted ~11presstm~ 
by cautlng II r w n  to take piwe, eg. BI 

I 
(Cf 3) EXPONENTIALILE :FICUF.1 

(CLb F ~ C U  EXPBHENTIALIXE bark to iu ddautt value.) 
The mutts tt23 and 624 are different for reams exphined In h a  mlm on EV bebw. 
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correctly. It may be necessary for expressions to be consistent with the current envimment.) An 
implementation which automatically rexans expressions whenever flags such as EXPOHENTIALIZE 
are reset since the last tine tht expressions were scanned Is possible, although cumbermtt, and It 
would tmove some level of mr.rt01 fm the user. 

io. The EV Command Explained 
W e  have secn several examp'es of the vcrsatllity of the EV cunmand above. T h e  EV 

command is used to ccmtrot the mvtmnment in which an evaluatlon andlor simplltcattcn zre tQ 
take place. The general syntax is 

exp, arg2,. . . , argn 
rnmnlng tha: the expreulon exg Is tq be evaluated and slmpiffled In the e n v l m m n t  glvm by 
the remalning arguments, the a:@. For axanpk, noting (C9) above 

we u that ehe Intentton Is that the cxpreulm SIN( X)NOS( XI be r~mpliblad, l.e transformed. ita 
the environment where EXPONENTIALIZE Is TRUE. 

To see how iklr affects evahrrtim, *e consider the cxampb 

2 
x * 1  

10 

The cxpresslon YN (or 026) 1s to be eviluated In the mvlrunment where X his value S, g W n g  to. X 
has valu? S whlk evaluating X (026) IrreapecPive of any value X mlght have tn the "ourslde 
wurfd". Also, X wlll revert to tu "mt.Ide world' (global) value when evaluation 01 the call to EV 
In C27 I3 completed. (By the way, !he syntax X:3 may a h  be u s 4  for X.3 here.) 

Now, let UJ uc &st how the evaluatlon of the all to EV In C27 kakes place. Flnr, the name 
% It evaluated, glvlng X2+& thereby obtalnlng the expression EV Is to work on. In gmeml, names 
rpporlng In the flrst rrgurnen' to EV are evukakd one tIm at thl3 stage. Usually, tiles n a m  
are labels which point to (whose values are) the ex rcssdms EV It to work on. The evakmtion (of 

slde of an quation or 8 s s I g n ~ t  Obvtcuslp, the global vaiue of X 1s not wanted in tnls a)(., 

So, we note that the otigiiral exprwlm X WEI waluaied h&c~ I.& one e m a  tfm 

the name X) wlll nd take place tn a case like EV(# P +1,#*3); where the nanlt (X) is the kft hand 
Next, X Is bound to 3, and the expresstan X2*1 ti evaluated In this mvfirorimt, glvlng t0. 
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Using this' Informetion, we can analyze how the consnand lines (C23) EV(DIFY(020,X) ; 
and (C24) EV(022); are handled. In the caw of C23, first the vatu?$ of 020 (whlch is 
CoS(X)&IN(X)) and of X (whlch Is X) are retrievd Then, the resulting expression 
DDIFF( COS( X)fiIt.i{X) ,X) 1s evaluated, which means, shce EXPONEMlIALIZE is TRVE and since 
the evatuation of argumens takes place before DIFF tt called, that COSIX) and SlNlXP arc 
consertd to exponentialr before the differentiatlon is carried out. Thus, we set? that 
EV( DIFf( Otdr , X) ) ; 1s equivalent here to DfFF( fV( D20 1 ,X) ;. In the care of C24, first the value 
of 022 is retrieved, whtch is dn exprcnfon conra1n:ng both SIN'S arid COS'S and exponential%. 
Then, thio Fxprcnion is evaluated, whlch in this a%, shce EXPONEHTIALIZE Is TRUE, simply 
causes the mcurrencu of 5INfX) and COSiX) to be converted to exponectlal% 

Noting the above analysis, the examples in the manual following the dexrtptlon of the 
SURST command should be clear, There. the differences b d w m  rubsfrtutfm as performed by the 
StJ5ST command and binding as performed by EV, as wet! as the differmca in tho order In whkh 
and extent to which evaiuatisn takes place are Iflustrateti. e;'ha argurntnu in il call to SUBST arc, 
of course, evaluated before substltutlon taka place.) 

W e  have seen above how EV may be used to affect evnhiatton. We have a b  Scen the use 
of the IXFEVAL fbg of EY trr cause repeated evaluatlon of an expression untll no further change 
takes pkc. New, we will brleflp mmtlon other fhgs of EV whlch map be uK3 to affect how 
evaluatlm and slmyliflation taka place 

€specially when we use N to plug in mb.a:imt obtahd by SOLVE, eg. 

( S N )  X*3*K+C ,Ei9 ,RATSMP i 
2 t 

w e  may wish ofre more evaluarlon than normal to cake place, In thls case to cOlm6ntte the E15. 
This my be done rAth the INFFVAL flag of EV, but If we wish to contml the n u m b  of extra 
cvaluatlons (usualll. m l y  one will be necessary), this mal be done with the W A L  flag of EV. 

( C29) X"3 * X N ,  E 19 ,EVAL,RAfSfHP ; 
(029: B 

In fact. one extra evaluation will take place for each mznttwr of the €VAL flag. EV finds that El9 
evaluates to an quatian tknr Is used to o W n  I vatuc !as K Tho RAlSfHP flag ts a SbC;Llftd 
WFU# whlch is used to obtain the timptiflratlm we 2aire, by ampwing It arocnd the first 



. 

i 

i 

(C30) SI#( 1/2)+SQRT( l+XI),R&CrFOIW,WU#ER; 
(030 1 0.45508987 %I + 1.57810968 

Sametimes, e.g. when the WWER effect of EY is desired, but the extra wahiaxbn done br !?: lu Wq 
the =VAL flag mr; be uscd to hdlcate tbot !ob&itutions rather than evaluations are to be uoed 
where nNcuar7. (An exmpk of the use ob W A L  is givm lam.) EV wipI also use urbltfhrdanS 
rather than binding when the kft hand rides af cgut5ltionr in Its latter ;irymcntS are m-atmnbr 
Ea- 
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called the Yormai parameters'" c?r the function definition. They are bound in turn to the values 
of the arprnents or kmal parameters" of the function call; in the case of (C33), to SIM(X), X, 
A, and 3, mqxctlvely, (X and A are unbound) when thr! cali is handld. When the body (rlght 
hand side of the function definition) of HYTAYLBR Is exited upm completion, t h e  blndings are 
undone. and EXPR, VAR. POINT, and HIPOWER again take on whatevw values thq may have 
had prior to the call. We also note that EXPR is cwigned a new vuluc each H m  the DO statement 
troops. This, of course, causes no difflcultles. 

T h e  deflnltion also has a bcal BLOCK variable RESULT. Being a BLOCK variable, It IS 
treated as unbound upon entering the BLOCK, and In this CW, in the fin& actual statement of the 
BLOCK, it is assigned to. RESULT is reassigned in the M y  of the DO statement, and, not!ng the last 
statement of the BLOCK, 1u flnal value is actually the vhhre returned by the call to HYTAYLOR 
And, like the format panmeters of the ddinitlan, when the BLOCK it exited, RESULT takes On 
whatever value it may have had outside the BLOCK 

(We note that we can use this SW ha ta tcmpcmrll~ nusign the value of a MACSYMA 
o,ptfon, as In the following exarnpk fw teaching WACStiMA a pibk slmpltflcatim mk o^B + 
I. Here, we want slmpilflatlon turned off wh!k the ruk It being sct up to avoid gettlng an error 
m=ag= 

(C34) QAO; 

0 has been generated 
0 

(C35) ' 3 1 ~ ~  (1 SIHP J.SItlP:FALSE, TElLSIHS( VO, 1 ) ) ; 
rule 3jiaced on flr 
(035) fmRdLEl, SInPEXPTl 

Lastly, tha ddlnlttcm has a bcal DO rarlabk L I 1s given an lnlttal vatue of 1 In the 
Each succeslvc 

time through :he body of the DO, the value of I It lncrtmmtcd by 1. And, #st as with BLOCK 
vnriab'lu, when the DO statement Is exited, I taka on whatever wlue it may have had ouesldc ehe 
YYD. 

dtbinltlon. This lo the value I has the flrst time through the body of the DO. i 
1 1 

The above example exhibits no real dlfflculrlea. When a function call Is made, variables 
are bound to certain values. The values these variabb had prior to these blniilngs are placed on 
a I l S  and when the body of the funetion, BLOCK, mr DO shtmmt is exited. these prtor values arc 
r?etrieved and the variables are reasslgned to them. 

BUS kt ut exhibit a cas that doesn't work sa well. Csnrtdcr 

(C37) F( X) :=SIN( X)+M 
I 
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(C38) F(-X); 
(038 - SIN(Xj - X 

This is surely thc answer we expected. We note that X was bound to -X during tha evaluation of 
the body of the definition for F. But. what If 

(C39) F( X) :xEV(SIN( X)+X,NUWER)S 

;C40) F( 112.); 
(040 1 0.97942555 I 

SIN(X) + X 

The intention of the user is to obtain numerical answers in casu like C40. But, notlcc what 
haspened In svaluattng the command llne for C41. Vubbks in EVs flrst argument are 
evatuated e&, and X evaluated twlce @.va -{-Xj or & wt the OX the user probably intended. 

O n e  way to get a m n d  the problem In this case is hj u c  the NOEVAL flag to EW. 

IC42) Fi X) :=El!( SIN( X)+X,NUnER,NQWAL)~ 

Note that SXN is handled by the slmpllfla, rather than by the evaluator. 
.- 

In general, however, %hen EV Is ~sed as above In the body of a function ddlnltlon. a better 
and sometlnes necessarg solutton Is to name one's local program varlabks (Le. function, BLOCK, or 
00 varlables) dlfCerently from or& spnbok varlrbla (the variables appearing In one's rstdol 
cxprculons). E.g. If one expea, that %X will not a p p r  in one's expressions (or in that of a user 
of one's pr~g~ims!!, then the following wiil work. 

*, 

~ 

( C44 ) F ( XX ) : .EV( SSN( XX)+%X, )IWER)S 

IC451 tF(l/2).F(-Xll; 
(045) [0.97942555, - SINIX) - Y] 

Prsbkmr like the above occur ranb In using MACSYMA We are thlnklng about 
solutions to It It Ir dlxuwd I n  reference 2 mC I plbk mlutlon via a change In 
implcmemtfon of MACSYMA Is ptDpoKd there 

1 I i I 
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, .  12. SLng.le-Quote and Quote-Quote 

Single-quotc (') and quote-quote (") are twa operators which affect the- evaluation of 
name5 (and of other forms) in essentially opposite ways. A complete discussion of these operators 
is given in sectiai 3.2 on Evalaiation in the MACSYMA manual, ana that discussicn will not be 
repeated here. Essentially, preceding a variable tg a sindlp-quote prevents an evaluatlm ;ram 
taking place; while preceding a variable by a quotequote causes an extra evd. ition and 
simplification to take place. The effec of sltrglequote is at evaluation time. while that of quote 
quote is a€ parse time. Quotequote is often used to cause re-eva!uation of a C-label. 

One interesting use of singlequote is when using the IMFEVAL flag of EV. Suppose one has 
an exprmion named EXPR which one wishes to repeatedly evaluate until no further change takes 
place. Suppcse, however, that EXFR contains a variable, say X, which one would prefer to retain 
zz ? name Is the expression, even though X 1s now bound. One simple WPJ of doing this 1: as 
follows 

EV(EXPR,I#FEVkL,X='Xj; 

This assigns to X the value of X durfng the "inflnite' evaluatlon of EXPR, zhus czuslng X to 
omaln unchanged in the process. 

(By the way, ushg singlequote, OF course, offers another solution to our problem above, eg. 

' (C47) [F(1/2),F(--X)]; 
(047) 10.97942555, - SIN(Xj - X] 1 

13. Other Issues 

To keep this paper reasonably slzed, only the rrvaluatlon of atomic varlahks was discussed. 
Thus, many other evaluation isrues were not mentioned. Tar the sake of completeness, a 'list of 
these omitted Issues Is g!vm here: Otht;. evaluation-forms, e.g. compound slatements. the coton- 
colon () operator, LAHSOA notation, APPLY and MAPping, 60 and REJURH, prtdieate cvaluatlon, 
passing functlon names into programs and the evaluatlon of fcnction nanses, passing array names 
Into programs, the cvaluatlon and simpltflcation of SUM and PRODUCT, the noun-verb sdWrtw, 
subscripted variables and functions, running interpreted (normal) functions VS. running transhtcj 
or ompiled Functions, and debugging what the evaluator has done to you. Many of these issues 
are discussed at Eength in the manual, or may be the subject of future papers. 

I wish to thank Jog1 Mas for mixing me into writing this paper, Ellen Lewls for her 
helpful aulstance, 2nd all meriibers of the Mathlab Gnzp and others at M.I.T. and elsewhere for 
our many discussions, agrmients, hn3 dlsagrcements on the sub@ OF evaluation -. a hotly 
oontetted &sue! ' 
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THE VARIETY OF VARIABLES IN MATHEMATICAL EXPRESSIONS 

Joel Moses 
Laboratnry for Computer Science, MITe 

The methods of evaloatiag mathematical expressions in a symbolic mathematical system 
differ from system to system. We shon that classical computer science evaluation approaches are 
inadequate for this task. T h e  problem is that one Is mixing two worlds - the world of mathematks 
and the wald of programming. An approach which separates these two worlds is indicated, ani 
various alternatives t9 it are indicated. 

Consider the evaluation of the following pair of statements in a programming language 
such as FORTRAN or PLII. T h e  rtatemenIs are written in MACSYMA syntax. 

(CI) 7: i; 
G2) r:9*2; 

After the first statement has been evaluated, the variable p will have the value I stored in 
a cell reserved for y. In evaluating the w o n d  statement, C2, tne value of y is ohtaiiied from that 
cell, a constant 2 IS xldd to it, using integer addition , and the rewlt is stored in the cell respved 
for 5. This process of looking up values in celJs temporarily reserved for variables is equivalent IO 
the usual method of evaluattan of variables employed in most programming languages. 

Now consider a slight variation on the two statements above 

Suppose that 7 ha; no value at the time the first statement is reached. What is the value 
to be given to x? Different languages will have different results. Some might automatically store 
some shrting value, say 0, for all variables. Others may discover the p:oblem in the cornpiler and 
give an error message. In an algebraic manipulation syscem such as MACSYMA, neither of these 
actions occurs. T h e  result stored in the cell reserved foe z is the expression y + 2. Thir is obtained 
in the following manner. T h e  ldentifler y Is encountered and the cell rescrved for it is examined. 
TMs yields the informatlon tkdt y has no value at this time. Thus the result returned for 9 is the 
expression y itself. Such an actlltn cannot be taken ty an algebraic language which does not have 
a symbcrlic expression as a legal data type, and it is one thing which makes algebraic manipulation 
languages differ from other language, Next the constant 2 is evaluated as usual. The addition 
4s haEdled differently. SIncc we no lorsgcr h a w  numbers only, numerical cddition becomes 

*- 

+. This work was supported, In part, by ERDA eontract Number E(ll-1>3070 and NASA Grant * 

NSG 1329. 
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simplification of sums. The simp:ifier may use namerical addition but in thi7 case cannot. and 
thus returns the expression y + 2 to be stored ..I the cell for x. 

Now consider the second statement. @2. The evaluation done here is quite normal, that 
is, a constant 1 is stored in the cell reserved for y. Consider the value for x after this pprnt, 
however. Either x has the old value of y + 2 or die it has the Jaluc '3, which utilizes the newly 
obtained value of y. That there is an issue here is due solely to the fact that the variabl- '1 3: has a 
value ir,vo!ving the symbol y. In the usual algebraic language, if x depended on an rld numerical 
value of y. and then y's value changed, no one would expect x's value to change autumatically. 

Let us consider the alternatives for the value of x again. The value y + 2 is easy to get. 
because that is exactly what is rtored in the cel: reserved for x. W e  claim that users of algebraic 
manipulation systems want to get the value 3 most of the time. There are several ways of getting 
that value for x. The rest of this paper will discuss such appoaches. and the diffit..Jllties that they 
engender. 

T h e  ba:ic idea of the alternative approaches is to re-evaluate the value of a variable. 
Thus in MACSYMA the command. 

e31 x; 
will return y + 2, but 

(C33 EV(xk 
will return 3. 

T h e  EV functisn will. in effect, evaluate the expression y + 2 for x. Since y now has the 
value I, simplifying I + 2 will yield 9. Thus the MACSYMA user can in this case c5mse either of 
the alternative valrias for x. The EV command is inscfficirnt In handling more complex cases, 
however. Furthermore, experience indicates that the value the user would no:ma:'y wimt to w e  IS 
3. and thus extra work should be requited for gettjng the y + 2 rather than the ?, as is now the 
case. 

A simple example, where EV fails to give the desiredwlue, is shown below: 

Consider the psssibte values for Y: Using the usual algebraic evaluation scheme. x 
evaluates to y + L. Using EV(x), we would get z + 3 after sirnFlification. Our user probably wants 
to see w + 6. We could get that by calling EV twice, or EV(r,EVAL), but that sirr~pfy exposes the 
problem with EV, that one may need to huld its hand until m e  gets the vAue one desrc.es. The 
Lay to gettlng w + 6 automatically is to consider another evaluation strategy; namely a Markovian 
or Wlnltc erahation strategy. 
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T h e  basic idea behind infinite evaluation is to keep evaluating the results unti! there is 
no change, T h e  proce:; ends when one obta;ns a constatit or a variable which has !lot yet been 
given a va!ue. S ~ c h  a strategy has recer'ly been itiiroduced into EV with tl:e INFEVAL mode 
Thus, EV(x, XNFEVAL) would yield w t 6 in the example above. 

__ 
There are-twq basic problems with the infinite evaluator strategy. It is no; the strategy 

you want when dealing with usual pmgramming variables. Moreover, when it is clear that you 
want something like infinite evaluation, it is not prxisely infinite evaluation !hat you want. We 
shall deal with the latter, and easier, Lsue first 

Consider a situation which might m r  whea one uses substitution of variables a 
number of timet in a problem: 

I 

x : f(y,zh 

r : k&p,q); 
s : k&,qk 

What are the possible values for x? The usual evaluatian strategy will yield f(y,z). 
EV(x) will ytrld -m expression in u and u). EV(x, INFEVAL) will yield an cxpres'.on in vaiues p 
and Q. Suppose you wanted to see x in terms of r and s. This rquest, which Is n ~ .  ur,rtasrmable, 
Is hard to satisfy In gcctrat using the strategies we have dixuned. There Is an easy solutiorl. 
however. This is to make t and t tmponrily appear Lo have no value, and then Infinitely 
evaluate x. We call the role that t and s play in this case gadow variables. Shadow variables are 
variables which have known values, but arc cmponrily considered to be atomic 

Shadow variables arc, in A sense, already in use In MAGSYMA in various ways. W h e n  
soliing cubic or quartic equatlons, certain lntermedtatcr rfsults are generated tnd given E labe4. 
The final result is given in terms of these E labels. The reason for using the E labels is to keep 
the expression relatively small. W e  claim that the E iabels are acting as sh2.dow variabks far those 
IC: rmediate expressions they possess as valuu. Unfortunatdy, there is no easy way to keep the E 
labels from being evaluated an command. A n  expression ccntaining them, when evaluated using 
EV, will substitux the values for the E hbtlr. The shadow variable schrve, when implemented, 
would allow one to introduce shadow va:tables and specify exactly when their values are to bc 
shown. There are yet other situatioa 18 MACSYMA c'lere a similar n i d  for shadow varrables 
shows up. MACSYMA's constants %E and %PI have numerical values associated with them which 
are revealed when one evaluates an expression with, uy, EV(expression, NUMER). Thus %E and 
%PI may bc said to be shadow variablcs. Slmllarly the functions SIN and COS are shddowing 

I I 

\ I 

125 



their numerical counterparts. Thus Fr'(SltJ(l), NUMER: calls the *value* of the Slk; fuaction in 
crdsr & &tat% :: nwwrica! result. 

In the above we have considered evaluation of mathematical expre-siozs without dealing 
with :he companion operation, that is, simplification. Since these two operarions tend to get 
confused, we would like to indicate a possible distinction. W e  like to consider evaluation 2s a 
relatively straightforward, welldefined, and simpk operation whose basic job is to replace 
vartables m d  functions with arguments by their 'talues". Simplification, on the other hand is a 
kss welldefined operation which Coes not usually deal with programming concerns such as 
varlables and their va!ues, but rather 4 t h  etp!vaience transformations on the mathematical 
o b F s  tkemsclvcs. We would like the result of eralsation to be unique. W e  know that the results 
of simplification are often not s6 well defined and different users will want different results. 

ft turns out that a classic way to implement simplification algorithms is with a Markuv 
algorithm, Le., infinite evaluatiun. Since we kdicated that Infipite ev;!sti~n might be of' use in 
evaluation, it is not surprising that one algebraic manipdation system, SCRATCHPAD, ha5 opted 
for having only an infinite evaluation xhcne. This is reasonable only as long as one avoids 
writing subroutines and stops using variable1 in the usual prcgramming sense. In such a case, one 
can get into unexpected difficulties, with one of the simplest ~f them shown below: 

Consider the value of f(x 4 2) dled for in C2. In MACSYMA, using the usual 
cvaluatton strategy, you would get x + 3. But with Infinite evaluation for all variables you will get 
cn infinite lmp, t!ncc the x occurring irc the expxsjion Y + 1 in the definition of f(x) forces one to 
keep evaluating Its value. SCRATCHPAD prevents the u!m from defining functions in the usual 
way, but this 1s clearly unzatlsfactor]r In gentral. 

Infinite evaluation thur has a drawback In that It allows infinit: loops. T h e  yossib~lrty 
for looping may be essential when dealing with most Mdrknv algorithms. But mathematicians do 
not evaluate expressions that way: When x dopix?s on 7 and 9 depends 09 x that leads to a sysrtm 
of equations to be sofved and not one to be evaluated or .r?mplified. Evaluation 3f mathematical 
exFrcssions requires 3 Mnitc number of substitutions and no loops are allowed. W e  shall cail 
"finite evalbtion' the process whsrh eiia.lua.tcs kithout bound, but which checks for loops and thus 
avoids infinite lo~lps. We believe that Infinite cvaloatlon has been in vogu? in certain symbolic 
zystms due. rn part, to a confuslon between rimplificatlon aid evaluation. Simplification 
algorithms, if Implmcnted as Markov algorlthms will, in fact, rquirc loops! If a loop is folrad in 
finite :valuation, we shail assumle that evaluation stops and an error message is given. 

Ano:her approach thal has been taken It to rxognire that some variables will be 
cvaluttlrd once and others infinitely, and to farce the user t3 choose the mode by a declaration or a 
changr in the $pelting of tho variable's name. An approach whlch relies on declarations is 
essentially the one hken In REDUCE. In addition bo our deslre for a dhtinction between finite 
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and infinite evaluation and for a shadow variab!c capability, we eschew the declaration or the 
spelling approach because one dms not want users of interactive systems to make declarations 
unless they’re abjoluteiy required, as successful interactive systems such dt APL and LISP have 
clearly indicated. In addition, the declaration agproaeh is unnecessarily restrictive, since it dogs not 
normally kllow a variable to be used in both the usual or finite evaluation modes in the same 
subroutine, for example. 

Hence our goal is to indicate an evaluation strategy that ;) gives the user the usual 
strategy when he wants it for a given variable. 2) gives him the finite evalut;ion srrateg~ when it 
Is more appropriate and (3) allows him to swltcch from one mode io taco other while rquiring 
hardly any declamtions This particular feat rf magic appears possible when we make the 
following observations: 

I) Variables nsed inside subroutlnes are usually intend& fbr programming ob jectivec, 
an6 no: as symbolic data objects- Users of such variables will usually want :hem to be evaluated 
Rlst once. 

2) Variables used in an interactive step-by-step mode, wdt the exception of labels, are 
usually intended as symbolic data objects. Users OC such variables vu11 usually desire thew to be 
evaluated finitely. Labels, such as MACSYMA’S Ci and Di labels are (1ot data objxts. T h e  values 
of labels wid usually be desired to be evaluatd finitdy, however. 

if we take these observations to heart, then we would evaluate all variables inside 
subroutines &t once, and 211 variables occurring In step-by-step (top level) calculattoni f rnitely. 
We could allow for exceptions By declaration, but such declarations will rardy be necessary. Yet 
this doesn’k solve the probkm. The b’tic dilemma is that inside a given subroutine one could 
have the identifier r representing a kjcal variabk (which is to be evaluated just once for its value) 
and Implicitly have a data obJect containing the vrrkbk x (which is to be evaluated finitely for its 
(usually different) value). 

Before 1 describe a proposed solution, kt me recall some remarks made to me by the late. 
famous computer scientist, C. StncSey. t? 1965. Strathey said that mathematicians never really 
understood the conccpt of a varhbk. The variables in marhtmatiu are clearly constants. It is 
computer scicntlstr who were the first to deal with and appresiatc variability in mathematical 
ab&&. 

I was deeply impressed by Stnchey’s comments and to my sormw I have learned how 
misleading they were. Mathematicians, physicists and engineers, I have conclrrded, have used a 
much richer concept of variable than computer scientists have ever dreamt of. Since symbolic and 
algebraic manipulatton synicms are essentially the only computer systems to attempt to deal with 
mathematlcs in the way it is usually dealt with, they have been most hurt by thp Intaprrratron of 
variables In v q u e  In computer scienc?. In part, computer scientists have been overly enamored by 
varlabtlity of our variables (e.g., r : x + f), and have only lately Iearned that there is much to be 
gained in ease of understanding by restricting varitbllity. In part, txl thls is a major point of the 
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present effort, variables in computer science have not shown muctt variety uf interpretation. The 
reason is largely that the data objects in vogue in computer merice (Le.. numbers) 6.3 not possess 
much structure. 

Getting back to the present subject, we note that one solution is to recogni- 7~ chat there 
may be several different variables with the same name at the sa ne time throwhout a computation. 
M a n y  languages already allow one to use the same ideidifte: for both a function and a variable, 
since the usage is so ve:y differeqt. Others might let one use array names which are the sarr*e as 
variable names. Again the usage differentiates them In maf.hematics it is common to play such 
gamer, some would call them puns, depending on mn;ext to g:ve sufficient information regard1r.g 
the type of the variable inteiided and its mcdc of interpretation. In our situation, we claim that 
there is no acceptable solution unless each variable can essentially h3ve two different values. a 
regular one and a symbolic one. At any given rime, the value chosen is a function of the 
interpretation assigned to the variable. The remaining questions are largely of how one , 

de:ermines what interpretatisn to assign. 

W e  are, therefor?, led to propose the tollowing etaluation strategy- 

Rule 1. A varlable used in the top level, step-by-step mode uses its symbolic value, unless 
a declaration is made to do the con:rary. The symbolic vdue is then evalua!e? f:n!te!y. 

Rule 2. A variable ~~~ iniide a tubrclitine uses its regular value which is not further 
evaluat?.i, unless there is a declaration made to do the contrary. 

Rule 3. A label used at the top level stows its value in its regular value cell. T h e  value 
of a label is further evaluated finitely. 

1 
t Switching modes, an issue we made much of :arlier, could be accomplished with EV , 

using the fallowing rute. 
i 
l 

E 
I 

Y 
E 

Rule 4. In a subroutiae, EV of a programming variable first evaluates usrng the 
variable’s regular value. The result is then evaluated finitely, using only the symbolic values for 
any variables. Should a variable given to EV not have a regular Jalue or be declared syrnbolrc, its 
syrnbul!c value (which always ez!::~) i3 us& and evaluated finitely. 

! We believe that such rules allow for the drversity of usage of variables in symbolic and 
algebraic manipulation systems that users expect. Since the scheme above has cot yet been 
Implemented, we unfortuna:ely do not have practlcol experlence as yet to indica!e its acceptance in 
such a context, but we hope :his situation wit! be remedied soon. 

L 

We shall now discuss various approaches whish are closely related to the propoial above. 
T h e  first is that instead of having IWO value cells far each variable, otre would achieve largely the 
same purpose by automatically renamlng one of h e  variables. For example. any variable 
occurring Inside a subroutine and not declared to be symbolic could be uenamed. for exainpte. by 

i 

1 
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automatically attaching the symbol !4 to the name. Thus, the symbolic and programming variables 
would be distinct and the values would not clash. The CGmmunications between the two modes 
would be handled by EV still, but slightly differently. For example, suppose we communicate the 
expressicn %+I into a subroutine which WOGM like to assign different values fa 1. inside that 
subrourine, we might use the variable J. snd :hen perform SUBSTITUTE (J, 'I, expression). 
Mere. 'I will indicate that we mean the ,'jmboiir variable I, rathe: than the programming variable 
1. 

Another approach, which IS closer to what the FORTRAh-based (eg , FORMAC) rather 
than the LISP-based systems have attempted is to disallow assignment to symbolic variables and to 
force users to simulate the Markov algorithm evaluatiGn by explicit substitution. Thus if  you wish 
to substitute 2 for p in an expression. you expl~cttly make the subsritution or similarly indicate it 
with EV(expression, p - 2). This forres the user to separate his mathematical and prosramming 
;rorlds and could avoid some confusions. It does appear to force the user to be more explicit in his 
evaluations, which may get tiresome. It also necessitates another mechanism for dealing with 
shadow variables and possibly even with labeis for expressions. 

CONCLUS!ON 

This paper disiusxs various distinctions which can be made regarding evaluation of 
mathematical expressions: regular evaluation vs. tnfiriite evaluation vs. finite evaluation. regular 
variables vs. mathematical variables vs. shadow variables vs. labels, simplification vs evaluation 
VI. solution of equations. We claim that the unsatisfactory state of evaluation strategies i k i  
symbolic systems is due to insufficient use of such distinctions ir. the part. Yet we can claim to 
have onlr begun the discussion abut such distinctions and the various mrchanisrns for 
implementing them in a human engineered manner. 

This paper resulted from discussions that have been going on in the Mathlab Group for 
the past year. Not surprisingly, a number of positions on evaluarion have arisen. W e  shall 
mention only two here. In a companion paper, Jeffrey Golden defends MACSYMA's current 
evalusiion strategy. This strategy has changed sorrtcwhat in the past year with rhc introduction of 
the INFEVXL mode in EV. Another view is held by David Barton. H e  maintains that 
mathematicians hzdly evaluate expressions. Usually they restrict the range of solutioiis wrth side 
conditions (e.g., let 2 - a in ...) until only one r m l t  is possible. He also maintains that assignment 
to mathematical variables s!?GPrld appear syntactically different from assigment to programming 
variables. SubstittNon also re pi;^ evaluation In rnany cases in his scheme. T h e  approach of this 
paper may be viewed as a comprorni.ie bciwnn such views. 

We wish to acknowledge the uwfuiness of dlrcussions with David Barton and Jeff 
Golden, as well as with Michael Cenesereth, Barry Trager, and Richard Zippel. 
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RATIONAL APPROXIMATION TO e-x W;TH NEGATIVE REAL POLES 

Elizabeth Cuthill 
David W. Taylclr Naval Ship Research and Development Center 
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SUMMAKY 

This note describes an application of MACSYMA to the generation of an 
expansian in terms of Laguerre polynomials to obtain approximations to e-x 
on EO, m) of the form 

(1 + Elm m 

Here Pm is a polynomial of degree m-1 in x. These avproximations are compared 
with those developed by Saff, SqhSnhaEe, aad Varga 131. Their's are optimum- 
Ciiebyshev approximations. In particular, Table 3 contains a ccmparison ot 
the maximum errors in the Chebyshev sensc silowing the superior performance of 
the approximations in [3] when this norm is used. 
son of the least squares errors. In such a comparison, the approximation, 
de'reloped in this paper are superior. 

Table 4 contains a compari- 

Kaufman and Taylor [4] consider approximacions to e-x of the form 

m 
(l+Blx) (1+B2x) . . . (l+BGx) 

P 

where B1, ...,% are positive real numbers. 
expansion of e-X(l+Blx). _.. (l+Bmx) in terms of Laguerre polynomials. 
first few terms of such an expansion are derived wit!. VACSYMA. 

In this note we also consider the 
The 

INTRODUCr ION 

In the few months that we have been working with MACSYMA, we have found 
that it provides us with a greatly expanded capability for generating and 
exploring the behaviix of e variety of approximations. In this note we dis- 
CLOS one such application of MCSYMA for the generation of racional approxi- 
mations to e-x on [0, a) with negative real poles. There has been consider- 
able interest in the past few years in such spproxiqatlons because of their 
importance in developing and analyzing numerical methods for solving certain 
systems of differeLitial equatims [l, 22. 

In particular, in a recent paper, Saff, Schb'nhage, and Varga 131 
dcucloped a sequence of rational approximations to e-* for x on [0, a) of the 
f o m  
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m m = 1, 2, ... (1) 
P -- 

- 
\ -  

(with Pm a polynomial of degree m-1) which ar2 optisum in the Chebyshev norm 
and converge geometrically to e-X on [0, w). On considering this sequence of 
approximations, a natural question arises .- how does it compare to an 
approximating sequence 03tained by using for Pm the first in terms of the 
expansion of 

iii Laguerre polynomials? Such an expansion can be generated analytically. 
The availability of KACSYMA allowed us to easily obtain the required expnnzion 
to answer ,pome of our questions. 

A recent paper 05 Kaufman and Taylor [4] considers a more general form 
for the approximating function : 

n 
I r m in = 1, 2. ... 
(1-i-R;~) (l+B2x). . . (l+B,x) 

I 

where agairi P, is a polynomial of degree m-1 in x and the B, are real and 
?ositive. They prove an existance theorem for best Chebyshev approsinations 
of this form to e-x on [ 0, m). 
best uniform dpproximation to e-x from this class has only one pole and 
for m=2 they prove such a rewlt. Here we consider the first rev approxima- 
tions of this type which can again be generated using the appropiiace number 
of ternis of an expansiou of e'X(l-l-Blx) (l+B*x). . . (l+B,x) in Laguerre poly- 
nomials. Ln thssc expansions Pm depends not only on x but oll the paromet.ers 
B1, ...,&. Nearly op,timun valces for the Bi in the Chebyshev sense for the 
first few such approxfmatiotb are obtained and cumpiired with thosa obtnineii 
in 141- 

Their numerical results suggest that the 

I 
RESULTS 

The first case considered is the gencrntion of il sequence of approxima- 
tions to e-x of thz form 

0 
m 

-1 

(1 + y 
for rn = 1, 2, ..., 10, by a sequence of expansions of the form 

* 
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where 

m-1 

i= 0 

m 
fi 

e -X (1+ ;' x, E Litx) t --x dx. 
i ,m 

We do not expect such an approximation to behave well for large m, but for 
small m we rxpect it to do reasonably well. 
Ai ~. generated by MACYS?IA for m = 1, 2, . ,. 
eqdiJalent polynomials. 
of order PI is given in Figure 1. 
of Figure 1 for m = 4. 

Table 1 contains the values of 
10. Table' 2 contains the 

The program used for generating such an approximation 
Figure 2 shows the execution of the program 

Since the Chebyshev approximatior4 are developed in [3] and (4 )gives 
a weighted least squares approxin:ation, we expect cur maximum absolute error 
to be larger than that obtained in [3] for an approximation of the same 
order. This is confirmed by Table 3 which contains estimates of the maxiclum 
ermrs on 10, m) for the approximations in Table 2 m d  in Reference [3]. 
relative ertor for the approximatLon sequence presefited hzre remains under 
control somewhat longer than for Cne minimax approximations of [3]. 
estimate of the interval on which the relative error remains ucder 10% for 
both sets of approximations is also given in Table 3. 
point there w€I? in generil be less than one significant figure in the 
approxixiat ion. 

The 

An 

Note that beyord that 

# I  Table 4 contzins weighted least squares errors in two forms: 

1 
and 

?!.!ore that €or given rn and P 
exact 1 y . 

MAC XMA can perform the integration in (6; m *  
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The apFroximations Given by (4) behave somewhat erratically with respect 
to the error n o m  (5), but they behave more regularly with respect to the 
error norm (63 used in generating ;he approximation. 

For the general approximating form ii: exFres3iou (2), 
the first three approximations to e-x of the parametrized form 

where 

(8) A =/ e --x (l+B1x) (1+B2x). . . (l+Bmx)Li(x)e-xdx 
i ,m 

0 

were generated. In particular, for m-1, 

so that thc approximating fcnction is 

B1+2 

4(1+B1x) 

The entire set of approximations generated by varying B goes through the 
point x = .5 with a ./slue of .5. Since: -.SI = '.1065..., we have 
a bound on how weil (1) can perform in apprcximating emX on [0, m) for any 
fixed value of B. 

From Table 3 we have that for B1 21 1 in (lo), an estimate of tk-e maxhum 
error in approximating e-x on [0, m) is .25. This can be improved to .lo3 
by taking Til = 2.435. 
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For m = 2, we cetermine 

so that the approximating function has the form 

(B B -2)Z C B B +?(B2+Sl) +6 1 2  1 2  
8 ( l+BIZ) ( 1+B2Z) 

As noted in Table 3, when B = B. = .5, an estimate of the maximum 1 error in using (11) as an approxmatiin to e-X un [0, m) is .033. 
appears that this can be improved only sljghtly by changing the values of 
B and B2. 
+ion to e-X of the form (2) with negative real poles has B = B,. The optimum 
approximation in the Chebyshev sense which they determine &as BY = B2 = .52416 
and has an estimate for the maximum error on [0, a) of .02271. 

It 

Kaufman and Taylor [4] show that the opt*hur Chebysiiev approxima- 1 

For m = 3 we determine 
3BIE 2B3+2 (BIB 2+B1Bi>B2B3) +2 ( B1+B *+B3) +4 

& A =  
093 

3B1B2B3+2 ( B1B2+BlB3+B2B3 )+(B1+B2+B3) -2 
%3 = - . 16 

With thjs srt of expressions, 

B1 .= *214 B2 = .27 B3 = .3 
or any permutation thereof appears to be near optimum. 
parameters our estimate for the maximum error is .019 which cor.pares with 
the value of .OS6 from Table 2 for B =B =B =I13 and ,00805, the error 
estimate of Kaufman and Taylor obtained when B=B =B =B = .27127 in (2) 
and Pj was determined to minimize the Chebyshev Aos. 3They determined that 
thiq value for B was near optimum. 

With this set Qf 

1 2 3  

For convenient reference, a table of the first ten Laguerre polynomials 
generated by MACSYMA is appended as Figure 3. 
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TABLE 2 

APPXGXIPIATING POLYNOMIALS P, (See Equation (3) 1 

I .  I 

3 
4 P1 = -  - 7 z - 3 3  

32 P2 - - Z2 - 32 Z + 152 .= -- 
p3 144 

61. Z3 - 523 Z2 - IGE! 7, + 16814 
1 6 3 r  

- P4 - 
3 2 
$. 73622 X 
96000'3 

551 Z4 - 12334 Z + 28896 Z - 966216 
P5 = -  

2833 z5 - 11001.5 Z4 + 1480040 Z3 - 7442760 Z2 + 288600 Z -t 796r196g 
'6 79626240 

P, * - (3771 L' - 326804 2' + 9525750 Z4 - 1208d3U!b@ 2' f 621070920 Z2 

- 5PBd5l.20 Z - 7221Q5640Q)/7228354560 
4 

pa = - (3374353 z7 - 16i279391 z6 + i98143790ti z5 .t. 13xa90831n z 
- 472304062120 Z3 + 3058703597880 Z2 - 190815090480 Z 
- 43270628481360) 143293270343680 

= (323197 z8 - 24586616 Za + 706666604 Z6 - 9122407392 Z5 *9 
+ 37275042840 Z4 + 284113381440 Z3 - 2860087476960 Z2 + 61728145920 2 
+ 493624i8082a80)/4936~423380480 

7 
0 - (2388i.093 Z9 6 -  2478867747 Z8 i- 104255443296 Z 

4 
*lo - 2266707280992 Z6 + 26146314869472 Z5 - 126953976270240 Z 

- 296150820215040 Z3 + 4937635894897920 2' + 1012259928960 Z 
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FIGUE 2. - EXCCUTION OF PROCW'1 TO GENEIL4TE P4 

-K 
(C11) m:4; 
TIME= 1 MSEC. 
(Dl11 

(C12) dsmo(e,l,dsk,elizc); 

(Cl3) T1MC:TRUE; 
TIME= 1 MSEC. 
(D13) TRUF 
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TIME= 9256 HSEC. 
(Dle) 

FIGURE 2. - CONTINUED 

DOVE 

TIME= $0 MSEC. 
(Dl91 DONE 

TIME= 10392 MSEC. 
( D20 1 DEMO TERMINATED 

(C21) 
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TIMING FORHULAS FOR DISSECTION ALGORITHMS 

- - _  , I._ 
ON VECTOR Ci)Z.LPt"TERS 

\ '  
W. G. Poole, Jr. 

College of William and Yary 

The use 0, the finite element and finite difference met..o-> often leads to 
the problem of solving large,\ sparse, positive definite systems of ].inear equa- 
tions. Recently the one-way dissection anc? nested dissection algorithms have 
been developed for solving such systems. 
puters with hardware iristructions that accept vectors as operands) have been 
developed for k r g e  scientific applications. 
Voigt analyzed the cse of dissectim algorithms on vector computers. 'Ir. that 
paper, YACSYMA played a major role in the generation of formulas representing 
tte tire_ required for execucion of the dissection algorithms, In the present 
paper the author describes the use of MACSYMA in the generation of those 
formulas. 

Concurrently, vector computers (com- 

Tn reference 1, George, Poole and 

- 

DISSECTION ALGOKITHMS 

When finite difference or finite element methods are used for approxi- 
mating solutions of partial differential equations, it is often the case that a 
large, sparse, positive definite system of linear equations, 

A x = b  (1) 

aust be solved. We shall assume that the domaln over which the differential 
equation is defined is a square region covered by an n by n grid consisting 
of (n-l)* small squares called elements. It follows that A is an 
n2 by n2 matrix. The ordering of the unknowns at the grid pcint.s determines 
the location of the nonzero components o €  A and, consequently, the storage 
and time required to solve the lineair systeni by Gauss elin*ination. 

An ordering of the unknowns called one-way dissection is due to G~ciitjc? 
(see ref. 2). Referring to figuse i, the idea of one-way dissection is first 
to divide the grid with m horizontal separators. The unknowns in t.i.e m+1 
rerliaining rectzngles are numbered vertically toward a separator and then the 

h.' ' 
I* 
'? 

This paper was prepared as P result of work supported in part under NASA 
Contracr. No. NASl-14101 at ICASE, NASA Langley Research Center, tiampton, VA 
23655 and in part by Office of Naval Research Contyact N00014-75-':-0879. 
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separator nodes are nrmbered. The prvblem is to derive formulas for storage 
and timing requirements and to minimize those formulas with respect to 

'-1 m (see J I 
reE. 2). 

The second dissection scheme is called Zested dissection (again, see ref. 
2) and has bten shown to be asymptotically optimal (seE ref. 3). The idea here 
is to divide the gri5 with both horizontal and vertical sepaxators as shown in 
figure 2. 
5 - 7. 
horizontal 2nd vercical Separators. 
and, in the case 

Unknowns in regions 1 - 4 art. numbered before those on separators 
Each of the regions i - 4 is a square and may itself be dissected using 

Thus the idea may be applied racursively 
n = 2k1, nested dissection will terminate after k-1 steps. 

Although both dissection orderings were analyzed in reference 1, only 
ntsterl dissectior? will be discussed further here because it is a more important 
algorithm and the generation of its timing fcrrmula was a much more formidable 
task. 

The nested dissection algorithm is nontrivial to describe in detail. 
was ficst developed and analyzed with scalar computers in mind by A. George in 
tile early 1970's. 
by hand and only gave a description of the asymptotic behavior, 
the first few terms were generated by hand. 
obtained the entire formula wit!i the aid of P-LTRAN. 

It 

The f i m t  attempts at obtaining a timing formula were done 
Ob3). Later, 

Then in reference 3, A. George 

VECTOR COWUTERS 

The existence of vector computers, i.e., computers with hardware instruc- 
tions that operate on vectors rather than scalars, raises the question of how 
effective the dissection techniques are on this rather new class of computers. 
It is assumed that these computers have basic vector instruction execution 
times which are of the form 

vhere T*(j) is the total time for the vector' instruction *; S* is an over- 
head time, called "start-up" time; P* Is the "per-result'' time of that 
instruction; and j is the length of the vectcr. 

The large value oE S*/P* on currently available vector con;puters implies. 
that one pays a significant penalty for operation on short vectors; consequent- 
ly, one would prefer aigorithms which permit the lmgest possible vectors (see 
ref. 4). However, both of the dissectian algorithms work by repeated subdivi- 
sion of the grld until a minimum operation count is obtajned. It is this 
apparent conflict between the cost of using shorter vectors and the corrcspond- 
ing lower operation counts that was studied in reference 1. 
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GENERATION 

In reference 1, George, Poolc and 

OF FORMULAS ;I . .* 

Voigt were interested ic obtaining - 
parameterized versions sf the tiqing formulas for the dissection algorithms on 
vector computers. Such formul-.? were needed in order to srudy the effects of 
varying several parameters. 
vector computers: 3 start-up times for vector addition, multiplication, and 
inner praduct; 3 per-result timer; for the same instructions; an3 3 scalar 
operations. Furthermore, there was a parameter, n, related to tne problzm 
Fize and another, R, related to the algorithm which the user could vary at 
liberty. The goal was to choose !Z so as to minimize tLe tFmimg formula for 
a given set of computer parameters and a given problem size. 
timing formulas was useful in several ways: 

They identified nfne parimeters characterizing thi! 

Obtai9ing the 

With the formulas in ha-id, one could study the effects of chang- 
ing values for the parameters. 
could try to optimize sc5ject to certain side constraints. In a 
very practical sense, manufacturers announced changes in the 
parameter values sever31 times; 

In a hypothetical sense o m  

There are several options in the iraplementation of the dissec- 
tion algorithms. For example, one can use a vector inner 
product or a vector "outer product" version (see ref. 1). The 
choice reduces to comparing the time required for a vector inner 
product versus a vector addition plus a vector multiplication. 
Timing formulas permitted analysis of such options; 

ConsiderPble insight into the vectorization of algorithms was 
gqiqC;d. For example, average vector lengths could be studied; 

Without the formula, a table of timing values for partiwiar 
chcices of the parameters could Le generated by executing a 
modal of che algorithm. Hobever, the coefficients in tne formu- 
las could not be gaerated. 

The nested dissection timing formula was generated in tile following manner. 
The execution of the nested dissection algorithm was simulated in a top-down 
fdshlon. The top level, level 1, involved several summations of wbich 

is typical, wherz 0 ,  is a procedure at the ,necond level. Each Jf the seco?d 
level procedures called several third level procedures, e.g., 

THETA(Q,P,K) := CHLSKY(Q) + P LOWSOL(Q) + MOPNES(Q,P,K) (4) 

CHLSltY, LOWSOL and W D N E S  are three of the third level procediires defined to be 
the timing formulas for aimple numerical computations, e.g., 
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is thz timing formula for the factorization of a dense linear systen. These 
third level procedures were formulas fcr factorization, lower solve and upper 
solve of dense systems snd banded systems and matrix modifications of the form 

Finally, the bottom level consisted of the piirameters which characterize the 
vector computer. E.g., 

SA + Q PA (7) 

is the time for B vector add of length Q. 

The second and third levels each consisted of 10 to 15 modules and level 
4 consisted of 9 instruction parameters, 1 pCrametei related to the algo- 
rithm and 1 relaied to the grid size for the prcblem. The top level module 
contained several WCSYMA sums of the form 

SUM( ' ' (EV( ( (2'-2) *)*(THETA( (N-2'+1) / (2 I ) ,4*(N+l) / (2 I ) ,4)) , 
(8) 

EXPAND)), I, 1, I -1) . 
This Is the MACSYMA fora of the s*Jm in eq. (3). The entire generated formula 
consists of over 200 terms and can be faun; in Appendix B of reference 1. The 
formula was checked by evaluating it for several sets of parameter values and 
comparing the results to execution tines of P FORTRAX simulation of the algu- 
rithm. The one-way dissection formula WGS geneL-aced in a similar, but rwch 
more forward, 

CONSLUDIKG RJ3ARKS 

MACSYMA has been shown to be of considerable value in the study of the 
perzormance of the nested dissection algorithm when used on hypot\etjcal vector 
computers. The derived timing formulas lead to an understanding of the effects 
of varying the parameters Lhich Characterize the computers. 
algorithm's implesentation can be studied as well 3s the extent to which the 
algorithm vectorizes. 

0pt.ions in the 
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FIGJJRE 1. - ONE-WAY IISSZTION WITH 0"DERING OF 
UNKNOWNS 1NDICAI"ED BY NUMBERS (m = 3). 
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FIGURE 2. -' ONE STEP OF NESTED DISSECTION WITH 
ORDERING F UNKNOWNS INDICATED bY NUMBERS. ! 
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SYMBOLIC CALCULLTIOCS IN A FINITE 
DYNAMIC ELEMENT ANALYSIS 

Kajal K. Gupca and Edward W. Ng 
Jec Propulsion Laboratory 

INTRODUCTION 

16 

Since this paper 's addressed to sn audience primarily interested in sym- 
bolic cjmputations, we shall briefly deacribe the context of engineering 
mathematids to motivate the computational aspect. 
ccncerned with prestressed membrane elementb with application to the davelo9ment 
of large furlable conicai spacecraft antenuas wlioae reflector surfaces are made 
of stretched membranes (Ref. 1). 
caticn of a finite element method to approximate the membrane deformation as a 
funcpion c17 time. 
dependent corrections La the static modeis attacked by the usual. fisite element 
method. 
described by Gupta (Ref. 2) and in the following we shall confine ourselv, 
the conputattonal FTchlemR. 
for vectors and matrices, and lower c a w  letters for scalars. 

in detail a second order problem for which MACSYMA was used only €or checking 
purpose, and then in brevity a fourth order problem for which a symbolic system 
is necessary. 

complexity of the computational problem. 

The present problem is 

The mathematical aspect +-nvolves the appli- 

The phrase 'dynamic elemert' is used here to connote time 

The general stratcgy and overall scope of the present application is 
to 

Throughout this paper we shall use capital letCers 
We shall describe 

At the end, some snmple output is displayed to indicate the 

A S E C O N D  O R D E R  FHOBLEM 

For the simpler problem we are dealing with a second order time harmonlc 
differential equation in two dirnenslons, (x,y) an3 a tJme variable t: 

151 

' ,'\I I 



i 'T z . 
j 

i 

Pubject to boundary conditions for the four corners of each rectanguiar finite 
element, say, (O,O), (3,0), (1,l) apd (0,l): 

U(0,O) = , ~ ( 1 ~ 0 )  = q2 , ~(1,1> = q3 , ul0,ij = q4 

Here we are simulating a thin rectangular membrane of thickzess h, mass per unit 

area p and uniform tensile force per unit length ah, and (a,b) specified the 

size of the rectangle. 
pansion of the time harmonic problem, with natural frequency ri, i.e., 

The solution is :onstrwted from a second-order ex- 

vhere Ao, A and A2 are vector functions of instantaneous n6dal displacement and 

being dependent only on E and q. 
converges, but in (Ref. 2) it is given physical arguments and empirical evidence 
that such expansion does lead to dramati; improvement o v a  the usual finite 
element approach. 
of w render the followin,: equaticns: 

1 
also of the frequency of such motion, and Q T is a unit vector, all these vectors 

We have no formal proof that such expansion 

Substituting eq. (2) into eq. (1) and equating like powers 

P'A,Q~ = o 
P2A,QT = CI 
U2AzQT 4 L4,QT =CI (51 ch 

witk the corresponding bougdary corditions that A 0 

A2 
a cow vector, and the superscript T signifies the transpose of a mscslx or 
vector. 

191'92'93'943' A1 = 0 and 
0, wheie the above s:mbol [: I ,] ia used throughnut the present paper for 

At this step we have to choose certain basis functions to form the 
solutions, for exampla, 
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where these coefficients have to satisfy the boundary conditions, and P is a 
particular iiitegral that satisfied eq. (Sj. Once a set of basis functions is 

p/cked, we need to calcuiate the A vectors as functions of 5, 
boundary pararr.eters a an6 b. 

and the 

The next step cmcerns the application of the. principle of minimum total 
potential energy. In particulqr, a sufficient condition for this principle is 
given by equating the lateral strain energy and the kinetic energy of 
vibration, i.e., 

where thc K's axe stiffness matriceb and the M's are mass matrices. The zeroth- 
order terns correspond to the wdl-:<nown static counterparts in the usual 
finite element method and the higher-order tenns represent dynamic corraccions. 
These matrices ace given by 

Finally, we can apply the above expression8 to eq. (9) and obtain au 
equation of motion in the form 
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This is a quadratic eigenproblem and is to be solved mmerically. 
use of a oyinbolic calculator is to prepare and simplify the matrices K's and 
M's in the form of FORTPAN statements far the inclusion into a numerical 
program. 

The main 

The symbolic calcdation steps may be summarized t.8 follows: 

The vectors [c ¶c ,C ,c 3 and [d d d d ] are Zompured from the 
boundary conZi:ions, 

A and A are computed from these two vectors. 

The particular integral P in eq. (8) is chosen. 

has been made from an ad hoc procedure. 
shall describe an attempt towards a more systematic approach for 
this step. 

1 2 3 4  IJ 2, 3' 4 

0 1 
So far the choice 

In the next section we 

From the boundary ccndittons the vector [e e ,e ,e 3 tan be 
calculated in terms of [c ,c ,c ,c 1 which in turn gives the 1 2 3 4  
vector A 

1'2 3 4 

2' 
Once the A s aT3 determined, we need to compute the matrices K 
and M througt symbolic aiffeTentiations and integrations. 4-j 

i3 
The output has to be simplified and formatted for inclusior. in a 
FORTHAN program. 

A FOURTH ORDER PROBLEM 

For a plate bending problem we are dealing with the biha-xaonic eqcatiop 

Conceptually the approac). is exactly the same A B  the above. pro'ulec. 
ference in size, however, is two crdcrc of magnitude. 

The dif- 
There are now 12 
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boundary coiditions, 4 each in u, & and 2s 
described above are now of dimrnsiiis 12 &d 12, respectively. 
riiaipulation is most extensive, and a symbolic system is an zbsolute necessity 
here. 

!!21us all the vectors and matrices 

The algebraic 

For this prbblem the SLY steps abcve basically cairy tlirmgh, with the 
exception of (iii) which can be somewhat hazardons. 
process in soae detail here. 
(51, we get, witf. D 

We shall 2llustrate this 

Followlng the same procedure from eq. (1) to eq. 

= a / K ,  D,, - >/all 5 

Let 

We can formally invert the above equattona by defining the anttderivat?ves as 
Din and D-". Combining eqs. (2n) end (21) gives US 

rl 

(5 '3 ) 
- + - 4  

.+- 

,an chose a sinole bivariate ", - ) t-/&t\) (24) 
I .U 

To satisfy the twelva 
cubic function, viz., 
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Then DP(5,G) = 0 for n > 3, snd only two t a m s  remain in eq. (249, i.e. 

(2C) 

axid, similarly, 

1 So Khe above represents a somewhat ad hoc procedure to find a particz- 
la7 I integral, but obviously the answer is not unique, because we could have 

reversed the role of D and D at eq. (23) and/or at eq. (27). This freedom is 

symmetry in the hatrices K's and M'b. 
howyvzr constrained hy 5 the phys~cd 17 of the problem which requires certain 

\ 
I 

, 

SAMPLE OUTPUT 

On thc next two pJges, we present some sample output from MACSiiii to 
indicate the complexity involved. We print the vectors A an4 A from eqd. (6) 
and (81, and do from eq. (25). The matrices, however, aze a bit too unwieldy 
to display for thc present purpose. The tvo different A '8 demlnstrate that 3 
the fourth brder problem is two orders of magnitude more cornpiex than the second 
order problem (the vectors bcing one order and the matrices being two ordt:rs). 

0 2 
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The two vectors on this given b:- eqs. (05) and (D€) correspond to 
A and A, from eqs. (6) and (S). 0 L 

2 
B ETH 

I 
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The vector given below coxresponds to A. from eq. (25). 

3 3 2 E 
CH FTH X I  - H X I  - H ETA X I  + A ??I 5 1  

I 
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SYMBOLIC MAN1 PULATION TECI INIQUES FOR VIBkATION 

ANALYSIS OF L4MiNATED ELLiPTIC PLATES" 

C. M. Anderser: 
The College of Irlilliam and Mary in Virginia 

AhmeJ K. Noor 
Thc George Washington University 

at NASA Langley Research Center 
Joint Institute for Advancement of Flight Sciences 

SUMMARY 

A computational scnecre is presented for the free vibration analysis of 
laminated cornposit& z:. lptic plates. 
principle. the Rayleigh-Rf tz txhnique and symmetry considerations atid is 
iinplementea with the aid cf the MACSYMA symbolic manipulation system. Tne 
MACSYMA sys tern, thr'oush differentiati on, integration and simp1 if ication of 
analytic expressions, produces highly-efficient FORTfiAN code for the evalu- 
ation of the stiffness and lliass coefficients. Multiple use is made of this 
code to obtain not only the frequencies and mode shapes of the plate, but 
also the derixtives Lf the frequencies witn respect to varims material and 
geometric parameters. 

Th2 scheme is based on Hamilton's 

INTRODUCTION 

Many of the boundary-value prpblems which arise it, engineering and 
physics cannot be solved in a closed or analytic form. 
methcd: sre necessary for -heir solution. 
some cf r;he zteps in the solution process will be symbolic or analytic in 
nature. 
(a) casting the governing differential or functional eqtiations in a more 
convenient form for solution through replacement of the fundamental unknowns 
by ne., variables which are dimensionless or have other desirable properties, 
and (b) the in2roduccton of approximation functions or perturbation expansions 
and a regroupirg of the various terns. 
thought of as consisting of a symbolic (or sna!ytic) phase followed by a 
numerical phase. With the aid of computerized alqebraic manipulation, we may 
sometimes carry the symbolic phase of the calculation further than is ,.OM- 
ventiorally done and thereby reduce the cost and/or im3s-c)ve the ccciJracj of 
the calculations. 

Therefore, niimerical 
Nevertheless, we can expect tnai. 

For example, early steps in the 3olutidn process may involve 

Thus, the solution process can be 

*W,wk supported by NASA Langley Hesearch Center. 
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,1 case in point is the free vibratior analysis of laminated composite 
elliptic plates (refs. 1 and 2). P, ,-late is a flat body whose thickness is 
small compared to its other dimxsions. Plates and other struc+gres formed 
from ccltnpa.sLtc mnte~.,&?,5 such as grap'7ite or boron fibers imbedaed in a matrix 
of apoxy 3r polyimide resins have considerable interest tc~ the aircraft 
indust:y because of their high strength and rigidity, easy machinability and 
light weight. These composites are characterized by ex:remely high tensile 
stiength in the direction of the fibers but relatively low strength in direc- 
tions normal to the fibers. As a consequence, the composites are typically 
used in laminated structures where the orientation of the fibers changes from 
lamina to !amina. 
considerably complicates the ana;ysis of the structures in whjch they are used. 
An investigation of the dependence of the frequencies of vibration (and the 
associated mode shapes) on the various geometric and lamination parmeters is 
needed for the efficient '?sign of Dlates made from composite materials. 
requires riot only the efficient eva;u=.cion of the frequencies and mode shapes 
for a given set of parameters, but also the efficient computation of the 
derivatives of the frequencies wi ch respect to the Various design variables. 
Such de,- ivatives provide information about the sensitjvity of' the frequencies 
to changes in the design variables. 

The high?y anisotropic behavior of corcposi te materials 
' 

This 

The objectives of the present Carer are to develop a computational schcne 
for the free vibration analysis of lminated composite elliptic plates with 
clamped edges and to identify the major advant-ges gained froin the use of 
symbolic manipulation in the sciutiw prixess. 
scheme include (1) the use crf the 4ayleigh-Ritz method in co-tjunctim with 
Hamilton'.; princiole, (2) simplification of the computation through consider- 
ations of ';arious types of syrnmelries, (3) the use cf the MACSYMA syiiiboiic 
manipulation system to generate efficient FUiiTRAN codn, and (4) multiple use 
of that code in the deterniina:,on of both frequencies and frequet-xy derivatives 
Becau;e of the elliptical sha;le of the plates, MACSYMA is able to provide 
shurt exact analytic forms for a large number of expressions which would 
otherwise have to be apprcximatec! through the use of numerical qdadrature. 

The main elements of the 

MATYEMATICAL FORHULATION 

Figure 1 shows an elliptic plate and its Cartesian coordiriate system. 

The 
The z-axis is noma1 tc the flat sirrfaces of the plate, and the x- and y- 
axes lit. in the middle plane akrig the principal axes of the ellipse. 
problem domain is thus specified by 

(x/a)* + (y/b)' 2 1 -h/2 c< - -  z h/2 

In this study we treat the plat? $<b?dtiOn problem zs a three-dimensional 
elasticity problem. A free vibration mode of the platc is de;cribed by a 
frequency w (actually an anaular velocity) and by the displacement 
amplitudes Ui(X,y,Z) i 1,2,3). A point in the vibratinrl plate witn 
equilibrium posi"im t x,y,z) wil! have %he position 

I 
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(.'tul (x,y,z)sinwt, y+up(x,y,z)sinwt, z+u3(xyy,z)sinwt) at time t. 

The components Ei*(x,y.z) of the strain tensor are defined i n  m - m s  of 
the displacement compondnts U j  by 

where a1 = a/ax, a2 = a/ay ind a = a/az. 
ents into a vector FI(x,y,z) (I = $4) by letting 

We group the six strain compon- 

- - 
€3 = &33 Ea = EZ2 €1 - € 1 1  L 

c4- 2 EZ3 z, = 2 i31 Z6 2 E12 
(3) 

We ana1ogous;y define a stress vector Zl(x,y,z) (I = 1+6) in terms of 
the six indep2ndent cortiponents of the stress tensor and assume the stress- 
strain relationship is linear and given by the -constjtutive relation 

6 

We assume that c ,(z) 
to layer. Furthef, we a m m e  that the fibers arr? all parallel to the x-y 
pla.,e. As a Consequence, the CIJ(Z) form a symmetric matrix of the form 

is constant within each layer but can vary from layer 

The strait1 energy U and :he Linetic energy T are gtven in terms of the 
strains and displacemnts by 
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i f  ! ?  

- 3 
2 z 

T = $-- f p ( ~ )  [ui(x,y,z)] d x  dy dz 
4 i=l 

r 
i 

whc ce p(z) is the density of t,?e plate material. Since we assume that 

to layer, the inc2grations in the z-direction aI-e to be performed in a piece- 
wi se manlier. 

is to be renarded as a fLnctiona1 of the 
displacement functions Uj tx,y,z). Hamilton's variational principle states 
that Ui(X,y,Z) must be such that the quantity Ii(ui) is stationary with 
respect to variations in the displzcement functions, i .e. . 

i 
p(z), like [c(z)J, is constant within each layer but can vary from layer ? 

i 
i 
I The quar;t;ty IJ(Ui) = T - U Y 

drI = 0 (7) 
hihere 67 is the symbol for the first variation of n. The variational ~ 

principle thux gives rise t? s set of elliptic partial differential equations 
in the i!i(x,y,z). However, rather than explicitly developing these dif- 
ferential equations we shall adopt a slightly different approach. We approxi- 
md%e thz ui(x,y.z) in n by linear comtinatiotis over a set of appnximation 
functions. The coefficients ~ij (j = l+N) which appear in theFe linear 
combinations are determined from the requirement t.hac 

This results i n  6 linear 'generaiized eigenvalue problem of tho form 

z 
i ' 

, 
I 

N N i t  
(9) i C Ki $lj .= u2 M ij "Jj j=l lj=l 

1 
where I' 
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SYMBOLIC PEASE OF COMPUTATION ]I 

=i 

I 

The first ziey ir, the synioolic phase of coiliputation is to approximate the 
.,splacements ui (x,y,z) in the functional r[. The boundary cwditioqs .A 

i l  
I Ui\XYY,Z) = 0 (i = 1,2,3! (11) 

along the cianped 2dge of the plate are automatical?y satistizd by the use of 
1 approxir3tions of the T o m  I 

I? ~ 

k 
I( m,n 

c +m,n,k U-(x;a)* - (y/b) 2 I x ni Y n (12j u,fx,y,z) = c z i 
I I 

where the upper limit of k in the summation 5s one higher for i = l  or 2 
than For i=3. Tne numoer of t e r m  needed in the expansion (12) depends on i 
the thickness of the plate as ~ 1 1  as on the accuracv desired for the solutions. 
The +j of eqs. (8) through (10) are the coefficients $"sn*k taken in some 
arbitrary order. The symbolic ph3s2 of the computat'm can proceed as follows: 

i 

(1) Select a (new) pair of indices, i and J, for which expressions , I  
'1 1 

-for K.. and Mij are desired (see ihe section on Symmetry ! 
Cons i d4Jations). 

(2) Set. all bk tc zero except $i and II, which remain as 

(3) Form the terns ?f uk(x,y,z) (k = 1,2,3) which depend on $i 

(4) Carrpute the terms of sI(x,y,r) (1 = 14) which depend -n :pi 

(5) Evaluate the t e r m  of tne integracds of U and T which depend 

(6) Evaluat? the integrands of " and M. by differentiatian 

(7) Evaluate K i .  and M.. by performiiig the intr3rations over 

8 
> jy t urdef i ned (atolni c) variables. 
1 
P and Q using eq. (12). 

and bj using eq. (2). 

on $4, +j using eq. (f). 

with respect to both 

X ¶Y and z h a  patteta matching. 

j 

aniiJwj usinQeq. (10). 

I j 
; i t '  4 

i s 
*: 

I. 

J 

/ 

1: 

i 

=~ - 1  and M: and develop FO?TRAN & __ 
j 

(8; Simplify the nonzex Klj 
expressions for them. 

(9) Gc to ste? ( 1 )  unless linished. 
4 

In stcp (7f, the integration with respect to the z coordinate is a complished -1 sy.nbolical1y (analytically) simply bj. introducing new variables C\;s dnd 

I 
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D(') defined by 

(1,J = 1+6; li = O,-l,2 ...! 
-h/2 IJ 

D(a; =J"" f a  p(z) dz ( a  = 0,1,2 ...) 
-h/Z 

and the intngration with respect to x and y is accomplishej b.v the 
rep1 acements 

x .+ a r cos(a) 

y + b r cos(a) 

fallowed by exact closed-form integratiori in r ani e. The expressions 
produced for i(i 
expression conta'lns at mas$ a single term, and a KijD(efpression cfnr.ains 
at rliosc three terms The Mij are linear in the and the most 
general form for the Kij is 

and Mi. in step (8) are very sim?le since an Vi$ 

Kij - - 

where xi, 
number c effi .ients; 
x, is an integer; and .le F RTRAN vafiables A, B, AB, A2, B2, A2B2 a d 
def i w d  by 

and are linear combinations of the C('! with rat'o a1 
and h are integer multiplgs of the Cle7: p; $ 

A - a  B z b  A B = a b  

A282 = a2b2 2 52 = b 2 A2 = a 
The symbolic phase ends when the FORTRAN code has been transferred to a local 
computer for the numerical phase of 'computatioc. 

NUMERIClrL PHASE OF COMPUTATION 

The first goal of the wimericc;l pk,ase of computation is to solve the 
linear generalized eigenvalue problem (eq. (9)) for the lowest few frequeQcies 
wk(k=l ,2, ". .). To accomplish this the wnerica? program evaluates 
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the Cfs', the D(e), the FORTRAN variab es of 
Kij and Mij. Then the eige.ivd1ues (Wk)' and 

may be determined by the method of subspace '9 
eq. (16) , 'ar!d finally the 
their associated eigenvectors 
terttion (ref. 3). 

Thc second goal of the nux.?rical phase of computation is to deterwine the 
derivatives of the !)k with respect to Lr'.irrl'-JeS in geometry, fiber orientations 
or material properties. 
the plate area nab (keeping the aspect ratio a/b, thickness h and 
material properties fixed) is given by 

The derivative of tne frequency Wk with respect to 

h, a/b 

This equation takes in:o account the fact that each Mij 
the area but is independent of the aspect ratio. 
eq. (17) is evaluated by i:sing the FORTRAN code for the Kij 
FORTRAN variables of eq. (16) defined as follows: 

is proportional to 
The derivative on the RHS of 

bvt with 

A = a/2 B = b/2 A6 = 1 (18) 
A2 = a/b 82 = b/a A282 = 0 

aw using 

The derivative of 

solving the 
The computational effort involved in the evalLation of 
eq. (17) is considerably less than tbzt required for 
eigenvalue problem. 
matrix in eq. (17) by cmventional niimerical techniques. 
Wk with respect to the thickness h (keeping a and b fixed) is given by 

Vote that it would be difficult to evaiuate the derivative 

a,b 

This equation is based on the fact that the rep1a:ement of a by la, b by 
xb, and h hy xh (keeping the re1 tive thicknesses of ?he ladnae consts;lt) 
results in Wk being replaced by h-'wk. The derivative of the frequency uk 
with respect to a change in the zspect ratio a/b (keeping the area nab and 
thickness h fixed) is given by 



I 

where the sumination in the denominator is the same as in cq. (17). 
need to make the A 1  and p6 terms of eq. (15) vanish since they do not 
depend on s/b. We accomplish this by settitig 

Ne now 

A = N b/2 A B = a b  
(2:) 

A ? = N a b  132 = - N b'/a A2B2 = 0 
15 Nhere 1. and compensate for the 

introauction oi N by dividing by N aftcr th2 rumation indicated in 
eq. (X) hzi been carried out. When the derivatives of wk with respect 
to arei, aspect ratio and thickness are known, one can easily determine tbe 
derivatives of wk with respect to a, b and/or any other iunctiofis of 
nab, a/b and h. 

erial properties may be computed similarly, but for these cases the FORTRAN 
variables of eq. (21) regain their original definitions (eq. (56)) and the 
Ai ( i  = 1+6) are replaced by their appropriate derivatives. This kind of 
uiultiplc use of a large block of FORTRAZ code is very useful for reducing the 
length of the FORTFi4N program as well as the amount of syrnbolic ccmputation. 
Both are further redured by the symmetry considerations discussdd in the nexS 
section. 

N is a very large number (e.g., N = 10 

DerivatiLes of U'k with respect to the fiber orientation angles or mat- 

SYMMETRY CONS I DE RAT I ONS 

There are three types of symmetries which help simplify our calculations. 
T k s e  are associated with a) symmetry of the [K] and [MI matrices, b) 
rotation-reflection symmetry of the undcforned plate, and c) synnietry of 
tne stiffness and mass coefficients wiLh respect to interchanging the roles of 
a, b and the suDsr.ri+tc 1 ,2. 

Symmetry of the / K ]  and IM] Matrices 

The first type of symmetry is the symmetry of the [ K ]  and [MI matrices 
under transposition, that is 

M i  =, Mji 

(see eq. (10)). 
expressions cn 

The pr ezenca 
y for those K 

of this symmetry means that we need syr:iiiol ic 
aqd Mij wit$ i L j j 

. d 
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Ro ia ti on - Ref 1 c c t i on ,Synlme t ry b f the Unde f orned P 1 at e 
- ihe second type of symetry is the syinmetry of the (undeformed: plate 

itself. Various rotdtions or reflections may leave the boL;n$ariis and material 
properti25 of the plate invariant (ref. 4). 
that the fiber directions are parallel to the plate, rotation< of the pidte by 
'INc, about the z- axis leave [C(z)] invariant. 

Schoenf:iss tiotation (ref. 5)) is that there are two fami1ic.s df solutions - 
those with u = i and those with = -1 in the relations 

For instance, b.y our assurnptioii 

A consequence of this symmetry (the symretry youp is cdl-ied C;: in 

ul(x,y,zj = - 0 ul(-x,-y,z) 

u3(x,y,z) = c3 U3(-X.-Y,Z') 

Equation (23) def ,lies the minimum synimetry exhibited by the laminated pldtes 
considered in the present study. 

tk,k group D2h. 
by 180° 1151: only around the z-axis but around the x- and y-axes as w l l .  
Further, it is invaridrit icndcr reflections in the x-y, y-z and z-x planes 
and under 'nversion (the operation which sends the generic point 
to the point (-x,-y,-2)). Plates with Dzh syrmrctry have eii,ht families cf 
solution: each corresponding to cge of the possible combinations of 
01 = 21, 0, = + I ,  o3 = +_I in the reldtions 

The largest symmetry group which can leave the boundaries inkariact is 
A ?late which has this symmetry is invaridnt under ;*otacions 

(x,y!z) 

ul(x,y,z) = -c,ul(-x,y.z) = 'r,~ L 1  (x,-y,z) = -n3d1(x,y.-z) 
UZ(X¶.Y,Z) = J1U2(-X,Y,L) = -y&xy-y,z) -~y2(XyY,-z) 

u3(x,y,z) = ff u (-x,y,z) = a2u3(x,-y.Zf = m u (x*y*-z) 1 3  3 3  

For the four families rJith u = -1 the middle suriace of the ;late (the 
surface with z = 0) is defo?med with planar n:otions only. In order for a 
laminated compos,te plate to hav? the full 
with respwt tc! the x -axis, 6 (z), must take only the virlues Oo and 90° 
anu o(z) must enual o(-z). 

D2h syrmetry, the fiber anqlc 

?he groJp Dz has three sdbgroups of ordet. four which contdin C2 as 
a sub5rouc. !n SC,oentlies I- notFtion they arc Lalled Czh, C p v  and 52. 
Each cf these subgroups correspond to a possible plate jynlIllet:3y higher than 
the minimal c'? syirirnetrj yet lower t.h?n the full D2., s/nmetry. Plates with 
any of these syriiinetri?~ have four farriilies of solutions. Plates w i t n  syiiiiiietry 
C2h hdVe o(z) equal to (f(-z) acd have solutions characterized by 
(n, u3) = (1,1), ( l , - l ) ,  (-1,l) or (-],-I) in 
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Ui(X,y,Z) = -5 Ul(-X,-y,z) = --G3LI1(X,Y,-Z) 
?! (X,?,L) = -0 u,(-x,-y,z) L = -yl?(x'Y, 7 )  (25) 

- -. 2 
u3(x,.y,zj = 5 u3(-x,-y,z) = u 3. Ir 3 (x,y,-zi 

Plates with symmetry CzV have fiber aiiglps ctf 0' and 90' only and h s w  
solutions charactwiz?d by (ol , 5 1 ~  ) = (1,1), (1,-1), (-1,l) or (-1,-1) in 

ul(x,y,z) = -olul(-x,Y~z) = u2u2(x,-w) 

u,(-:,y,z! - = ~-u~(-x,y,zj = -a 2 2  u (x,-y,zj (26) 

Plates with symmetry D2 are invariant under rotations by 180' abcut the 
x-, y- and z-axes and thus have 

For thcse plates w,e let 

e l  u;ix,Y,z) = ui\x,y,-z.) 
I 

\ 
\ (29) 

0 
I \ 

u?(x,y,z) = -ui (x,y,-z) 
\ 

Ther, the solutions are characterited by 
(-l,-l) in I \ 1 

(a1, u2) = (l,l)* [l,-lJ, (-1,l) or I 

(30) u2(x,y,r) e = -0 u e (-x,y,z; = 02u;(x'-y,z) 1 2  
U3(X.Y,Z? e = Oluj(-x~Y,z) e = U2U3(X,-Y,Z) e 

~~ 

~ - with (q, a21 replaced by (-ai* -02) in the rorrespondinq relations for 
u8. I f  any two of the eqs. (25), (26) and (30) hold simultaneously then 
pq. (24) must hold. On the other hand, eq. (23) is a consequence of 
eqs. (25), (26) or (30) separately. 

Solutions lacking the sppropriata symmetry are possible only in the 
(unlikely) event that the eigenqalues for members of ~ W G  different families 
of solutions coiiicide, in which case the solutions are liriear cornbirations of 
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The first, second and third types of symetries interact with each ather in 
the fallowing way. Either all thc index pzirs i,j in the block of the [K] 
matrix associated with symmetry T correspond to index pairs i',j' in the 
block !-iavinq a different symmetry T I  or they a71 correspond to i',j' in 
"LP same block. For the former case tk,? FORTRAN code generated to find thr? 
so'lutibcs witn symmetry L can be use3 to find the solutions with synimetry 
T I  as well. Crlr the latter case the relations (22), (32) and (33) together 

I 

- \  

q 4  

i 

I 

symmetric solutions. 

[I:] and IN] matrices have a block diagonal form witn anp block fat, each family 
ot bolutions T. That is, r! may be written as 

The presence! of families of solgtions with differelit 
the symmetries means tt-at with the ihoice O F  a proper orderina of the I 

c 

n = c n  
T 

T 

whcre RT coctains the $i associated with the symmetry T. This results in 
repiacing a largr problem by two, four or eight (depending on the symmetry 
g r o w )  smaller' zubproblems. For each of the subproblems, the expansion in 
ed. (12) IS adjusted to uatch the desired symmetries. 

Symmetry of Stiffrless and Mass Coefficients With Respect to 
Jnterchanging the Roles of a,b and the Subscripts 1,2 

The third type of symmetry is related to the observaticn that when given 
a physicai p1a:e w may analyze it in two different ways - with the semi-major 
axis of the plate along the x-axis ar along the y-axis. 
equivalent but result. in interchanging the numerical values for a and h 
and for some of the material properties CIJ(Z). Let Ki j and Kf * be com- 
ponents of the stiffness matrices (before the partitioning of eq. 141)) for 
the same physica: problen as formulated i r l  &he two different ways. 
is not true in general that Kij equals Kij, it i5 true that for e$ch pair 
of indices i ,j there corresponds a pair 1 , j' !;uch that Kij = Kiljt; 
thus 

The t w  ways are 

While it 

i 

r .  

'4- 4' 

1 

do not necessarily have the same numerical value, t I 

I I 
I 
1 

a?d ""i' Thus, while Kiij 
they do have essentially 
to evaluate Kij can serve to evaluate Ki 1 jl as well. The re1l;tion turns 
out to be even itronger for the [MI watrix sinre 

he same iilgebraic form, and the iORTRAfl code usea 
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a second time with variables interchangpd as i n  eq. (32) a,id tne two sets s+ 
matrices clre merged. The interactions 01 the three types of svrnnietry are 
sumniarized in Table 1 for the five syrnnietry groups of interest. 
co?siderations discussed in this sectSon arqly eqi!ally well for the dcterml- 
nation of thz derivativt matrices in eqs. (17), (19) and (20). 

The symmetry 

! ’  - 
! TP,2LE 1. - INTC3P,CT!OYS AFlONG THE FIRST, SECONC nPID THIRD TYPLS OF SYHMETR’ES 

1 
3 .  

i 

-I-__ 

Symme t ry Yyme try 
Grxp cf Parametem, [Kl and [Ml are siriipli- by eqs. (22), (32) 
P1 ate T t‘icd by eqs. (22), (32) ana (33) 

Symmetries for dhich- Syrnn:e t ri es i n terrel a t X -  

rfid (?3) I 

c2 h (5, 1.i ! 3‘ i?,i), [l,-l), (-1,1), 
:; -1 ,-1) 

CZh (11 9 C 2 i  03) (1 9 1  9 1 )  (1 3 1  ,-I), (l,-l*l) <-’ (-l,?,l): 
(-1 ,-1 ,l), (-1 ,-1,-1) (1 ,-1,-1) - (-1 ,? ,-1) 

NUMERICAL RESULTS 

Numerical resu’i ts have been obtainzd for inoderatel;. thick laminated plate; 
xith syrniiictry D2. For the case r1 1  = u2 = 1, we use the following version of 
eq. (12) which takes eq. (30) into account: 
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where 

1 his appr9x'sation scbeme rE.;ul ts in matrices [K] and [M! having dimension 
119 by 110 dlld requires the generatiov of 3541 FORTRAN statements. 
approximction scheves are used for the other fa. ;lies of solutions. 
resrrlts are stloriii 517 figure 2. Thrie results are for eight-layered platcs 
with h = b/13 and fiber orientations Awith respert to the x-axis) dhich are 
alternateiy e and -e, where a = 45 . The mat3rial properties are chosen 
to be tbtbse typical of a higt,-rvodulus graphite-epoxy com;j~s~te. 
shows the variacion with tie aspect r?tio of the lowest frequencies and 
of the derivatives of these frequencies with respect to the fiber orientation 
an.gle 3 .  

Similar 
Typical 

Figure 2 
a/b 

COrUCLU DI NG FtEMARKS 

The major advantaqes of using symbolic manipulation in the free vin;-ation 

1) 

analysis of laminated composite elliptic p?ates are 

The accurate and ieliable symbolic evaluation of large numbers 
of derivatives anu integral5 

2! The concise iar'3 Q F  the resulting FChTRAN expressions for 
and PIii 

The ease of implementing symnietry ccrnceptc 

The simplicity of evaluating the first derivatives of the 
frequencies with 'rezpect to the desiqn variables 

Kij 
J 

3) 

4) 

The multiple usage of the larqe blocks of FORTRAN code generated by 
MACSYMA allows the calculztion of frequency derivLAti.Jes with no extra symbolic 
effor, arid very little excra niiiiierical coinputation. Cf course, the sysibolic: 
apprclar,h would be useless were it not for the fact that the output is in t!x 
form of FORTRAN statements which r.wd never' he keypuvched. Manua': o2erations 
on such a large quantity of' data would .,urely introduce errors which would be 
very difficult to rectify, 

The major disadvantdqes are 

1 )  The large diriount of FORTRAN code needed to obtain accurhte nliwrii31 
results 

2) The relatively lonc; syrilbolic cornnutzition r i i x s  
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2) Ihe slow speed of transferring data from the symbolic 
processing computer to the number processing computer 
when the two computers are not on the same netwrk 

Seve;.al extensions of the present work come to mind, such as studyin:; 
plates with other boundary conditions and other geometries. S h m e s  requi;irq 
numerical quadrature for the x-y intograt’m may also be inLsstigited. The 
various integrals required can be identified, frolated and assignzd mriable 
lames through the use of symbal manipulation much as the z-integrals ire 
treated in the present study. The techniques used hereir; are applicable to a 
wide variety of other boundary-value pmblems. 
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OBSERVATIOKS ON APPROXIMATE INTECRAT IUiS 

Edward Y. Ng 
Jet Propulsion Laboratory 

Extended Abstract 

In this presentation we explore a class of integration strategies that 
fall in between the two extremes of symbolic integration and numerical qasdro- 
ture, which are, respectively, aimed at the cogputer generation of answers iri 
the form of exact expressions and numerical values. 
theoretical advances in symbdlic integration, as motivktion to the followjag, 
then examine three major contexts of applications with attendant case studies, 
a d  finally explore four possible types of strategies for approximate inte- 
gration. 
inadeq2acy) of FIACSYMA for implemtnting these strategies. 

We shall first discuss the 

In particular we shall comment on the feasibility and adequacy (or 

We begin with theoretical discussions. In this aspect we have discerned 
two major paradigms of strategies, which we label the "pattern-recognition 
paradigm" and the "problem-solving paradigm". These labels, rhcugh far from 
perfect, are chosen to indicate the empharis only. In the former class we 
include, for example, Risch's algorith, (Ref. 1) and Moses' new apprGach based 
on w-tension operators (Kef. 2). We believe these strategies to be particularly 
characterized by the search of algorithmic ability to recognize that certain 
expressions or operators belong to some specified class of such. 
solving paradigm is obviously inherited fro= heuristic strategies of artificial 
intezligence. 
integrations (Ref. 3) and our elliptic integrations (Ref. 4). All these 
theoretical strategies suffer from practical limitations of m e  kind or anocher. 
Notably anong these are the multivariate factorization problem, the optimal 
selection of input vis-a-vis output class of expressions and intelligent choice 
of contours for definite €ntegration. 
elaboration here. Take €or example the integration of rational functione. 
is easy to devise an efficient algorithm to decide if a givcn rational function 
can be integrated in terms of ratimlal functions. 
of extremely limited interest because it waulu return a negative airswe: for 
most inpur expressions, such as something as simple as l/(x+l). 
of one 'new' function (logarithm) in the output class dramatically expands the 
problem-solving horiton. 5x1 the other hand, we obviously cannot carry tais to 
the other extreme of choosing a large mmber of new functions, lest the result 
be next to worthless. All these discussions, however, force us tQ consider 
:?hat we mean by 'usefulness' of an output expression, which in turn leads us to 
consAering three major contexts of applications. 

The problem 

In this latter class we include, for example, Wang's definite 

The oytinal selection needs particular 
It 

But such algorithm would be 

The addition 

At this Laboratory we have been assoctated with an applied mathematics 
group which provides consultation and support fa a diversity cf engineers and 
scientists. Although our picture is still somewhat ltmited, it does give us an 
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indication'of the major ccmtexts in which integration tools are considered neces- 
sary or useful.. The first is the usual exploratory context, where a scientist 
or engineer encounters isolated integrals which he needs to tackle. Here he 
typically wants closed form solution, bbt often settles for an approximate 
answer. The need here is based on the motivation to "do something with" the 
result, that is, to either st-idy its dependency on sone parameters or on some 
other mathematical o?etctiors. 
Lntegration. Here the goal is usually numerical evaluation, but one is inter- 
ested in reducing the dkaensionalicy of integration as much as possible, because 
nultiple quadrature is costly both in computing time and accuracy. 
context concerns multi-parameter studies, where the integral depends on a 
nwber of parameters, thr:s making numerical results difficult, if not impossi- 
ble tc interprete. FOT example, if the integral is a function of six parameters, 
the numerical result) would require a six-dimensional table or sixdimensional 
hypersurface to represen'i. 
technology forces an investigator to take either alternative of the two cx- 
tremes of numerical versis analytic results (with some exceptions to be 
mentioned later). It is fair to say that most "real life" problems are non- 
elegant in nature and for which analytic results are difficutt and unlikely to 
come by. For example, a polynomial of 5th degree whose coefficients are 
derived from data or other computations are usually irreducible over the 
integers. 
limitation is often fatal, because they involve, in one form or another, partial 
fraction decomposition which depends on factorizPtion. 
point to thc need of a compromising approach between the extremes of numerical 
and exact integration. 
is resorted to by scientists and engineers in !solated instances, but has not 
oeen investigated as a possible general purpose tool in the sense of a quadratLre 
scheme or a symbdlic integration algoritlm. The Lmportant point to stress is 
that the approximate approach is intended to yield an output that is an ex- 
pression, rather than a table of numbers. 

The second context revolves around mult'iple 

The third 

In 211 these contexts of applications, current 

In mos? non-trivial algorithms of integration this fundamental 

All these discussions 

Such an approach (let us call it approximate inteeration), 

At this stage we have cxamiaed four broad categories of such approximate 
schemes. 
basis funci;ionc such as polynamials or splines. 
applicatJo6s using such appro.:lmation, for instance, in finite element analysis. 
One example is given in the particular integratiori clf mass and stiffness 
matrices Given in (Ref. 5). 
manipulations, is made up of a matrix of bivariate polywmials which are readily 
integrated. 
integrations Cor triangular and quadrilateral finite elements. 

The second ,2r,proach may be labelled interpolatory scheme. 

The first consists of the approximation of the integrand by a set of 
m.ere have been some isolated 

Here tfie integrmd, after H sequence of symboXc 

in a more general vein, Andersen (Ref. 6) describes tte variety of 

Hele the spirit 
is analogous to the derivatiw of quadrature schemes. i. e. , by anproximating 
the integrand by some interpolatiun formula and then integrating term by term. 
An example cun be cited from Filon quadrature (Ref. 7). Here the integrand is 
of the form f(x>sico(ax) where sic0 is either sine or cosine. The integration 
interval is subdivided into n segments and f(x) is interpolated by a quadratlc 
in each segment to fit the mldpornt and two endpoints of that segment, 
interpolated exprcssion can then be integrated analytically. 

The 
Similar techniques 

i, ' 1  
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can be applied to other types of €unctions. 
interpol.ation actually can be tiewed PS a special case of approximating in 
terns of a basis, it being the Lagrange polynomials associated with the in2er- 
po?.ation points and having an integral error criterion subject to exact fit at 
lkese points. 

As pointed out by a referee, 

The third approach is based on a reduction of transcendence of the inte- 
grand. 
asymptotic series is a well-known example in this category. 
amounts to an approximation of the integrand by a polynomial. 
also approximate the integrand by a rational furction. 
exponential of a polynomial. 
approximated by a rational function, brtt there is an associated difficulty 
here, namely, that the rational function consfsts of polynomials of high degrees, 
and that some kind of telescoping procedure need be applizd in order that the 
integrated result is manageable. 
asdantages and dlsadvantages of such e. strategy. 

Temwise integration of approxirantions of th? fntegrand by power or 
This strategy 

However, one can 
For exaqle, take the 

For a proper range the avgonential can be 

An example will be presented to detail the 

The last approach is to compute the intrjgral by quidrature and then 
approximate the answer by, for exaniple, some basis functions. 
can hardly be considered under the cmbrella of fntegration (it is more of a 
curve or surface fittfng problem). 
(Ref. 8: the author gives an example on the approximation of an integral. 
baeic Fdea will carry through to a more general problem where quadrature can 
be used instead. We shall comment on the pros and c o m  of this approach. 

this approach 

In a paper on practical approximations 
The 

In the oral presentation we shall prcr~i3e a concrete example for each 
approach and Ziscuss the MAC- relevance to each. 
coherent theory behind each, we believe this invaRtigation is a aodest 
beginnbg of approaches of practical significance. 

Thottgh we do not have a 
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LISP: PROGRAM IS DATA 

A HISTORICAL PERSPECTIVE ON MACLISP 

Jon L U'hitc 
Laboratory for Computer Scienc-. M.I.T.* 

ABSTRACT 
For over 10 years, MACLISP has supported a variety cf projects at M.I.T.'s Artificial Intelligence 

Laboratory. and the Laboratory for Computzr Science (formdy Project MI'.C). During this time, there 
has been 3 continuing development of the MACLISP system. spurred in great measure by thc needs of 
MACSYMA development. Herein are reported, in a mosiac. historical style, the major features of the 
system. For each feature discussed, an attempt will be made to mention the year of initial development. 
and the names vi persons oi piojccts primarily responsible for requiring. needing. or suggesting such 
fe3tures. 

iFiiRODUCT ION ?- 
In 1954, Grecnblatt and oIhers participated in the check-out phase of Digital Equipment 

Corporation's new computer. the 7DP-6. This machine had a r!rmber of innovative features that were 
thought to be ideal for the development of a list processing system. and thus it was very appropriate that 
the first working program actuaily run on the PDP-6 was an ancestor of the current MACLISP. This 
early LISP was patterned after the existing PDP-1 LISP (see reference I), and was produced by using 
th: text editor and a mini-assembler on the PDP-1. Thai first PDP-6 finally found its way inio M.I.T.'s 
Project MAC for use by the Artificial rntelligence gr #up (the AI. group later became the M.I.T. 
Artificial lntelligeiice Laboratory. and Project MAC became the Laborator) for Computer $cicnce). By 
1968. the PDP-6 was running the Incompatible Time-sharing system, and was'soon supplanted' by the 
PDP-IO Today, the KL-IO. an advanced version of the PDP-IO, supports a variety of time sharing 
systems. most of which are capabie of running a MACLISP. 

MACSYMA (ref. 21 'grew out of projects started on the 7090 LISP 1.5, namely Moses'. SIN 
Frogram and Martin's MATHLAB. By implementing the, Project MAC Symbolic and Algebraic 
manipulation system in LISP. many advantages were obtained. Of particular importance were 
(1) a basic data convention well-suited for encoding algebraic expressions, (ii) the ability for many 
independent individuals to make programmirtg contributions by adhepng to the programming and data 
'framework of LISP. and (iii) the availabilitv of a good compiler and dcbugging aids in the MACLISP. 
system. A s  the years rolled by. the question was .!sked "What price LISP"? That is, how much faster 
cduld the algebraic system be if the advantages. brought by the LISP system were abandoned and an 
all-out effott was made in machine language? Moses aas estimated ,hat about a factor of two could he 
gained (private communication). but at the cost of shifting much of the project resources from mathe- 
matical research to coding and progunin.ing. Howuver, that loss could have been much larger had not 
MACLISP developmerit kept pace, being inspired by the problems observed during MACSYMA 
development. and the kvefopmcnt of other projects in the AI. Laboratory., The most precarious strain 
placed on the supporting LISP system by MACSYMA has heen its sheer size. and this has led to new 
and fundamental changes to MACLISP. with more yet still in the future. Many times. the MACSYMA 

*During the calendar year 1977, the author is toccted at the IHM Thomas J. Watson Research Center. 
Yorktown Ileights. NY 10596. 
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sy*trm was not ab!e to utiliz,. the solution generated for one of its problems, due to the familiar trap of 
having aiready too much code invested in some bvpass solution; but there has generally been an 
interchange of ideas amongst those eroups nshg MACLISP at the A.!. Lab and LCS. and another group 
may have received the benefit of an idea born by MACSYMA needs 

Because the 5y5tem is still evolving after a decade of development. it is useful to think of it as one 
big piece of dura. a prog~mn still amenable to further critical review and emendation. Below are 
presented some of the developments of this past 10 years. with P little bit of explanation as to their 
significance and origin. 

HOW w E GOT ’ro WEERE WE ARE 
Clever Control Features 

In 1966, Greenblatt suggested abandoning the a-list model for program variables. and returning to P 
standard save-and-restore stack model such as might be used by a recursive FORTRAN. This was the 
first LISP to do so, and a later LISP developed at Bolt. Beranek. and N e w m a n  (BBN) in Cambridge 
used a model whereby storage for program variables was dynamically allocateb on the top 01 a stack. 
Both stack models could achieve a significant speed-up over the a-list models. but at a cost of limiting 
the use of FUNCTION (zee ref. 3). The BBK LISP later became INTERLISP (ref. 4). and currently 
has a stack model with the same function capabilities as the a-list model. In 1975, the PROGV feature 
was added and is apparently unique to MACLISP. PROGV is essentially PRCS, except that the list of 
variables is not syntactically present, but rather is computed P; an argument to P R O G V ;  previously. 
about the best one could do was to call EVAL for APPLY) with a dynamically-constructed LAMBDA 
expression. 

In 1969, Sussman. noticing features of the MULTICS operating system, demanded some similar 
features for MACLISP: asynchronous interruption capahility, such as alarmclocks, job-console control 
keys, hardware faults. interprocess communication, and exceptional process conditions (chiefly. errors). 
M a n y  LISP systems n o w  permit the user to supply functions for handling standard LISP errors. and 
provide for some mechanism at the job-console to interrupt the ;:wem. putting it into a top-level-like 
loop called BREAK. MACLISP permits interruption capzbility on any character of the input-console 
keyboard; the user m a y  designate any function to bc run when a particular key is typed. To some 
degree, these features appeared concurrently ir: IN’TERLIAP. but especially the stackframe aad 
drbugging facilities of INTERLISP inspired similar ones in MACIJSP. In mid-1976, MACLISP CO~W 
final:y give an interrupt to the user program on several classes of hardware-detected conditions: accek’s 
(read or write) to a specific address. attempred access lo non-existent address. attempted write access 
into read-only memory, parity error, and illegal instruction. Furthermore, some operating system 
conditions could trigger special interrupts: system about to shut down in it few minutes, and ronsolc 
screen altered by system. Evident from the dewlopmcnt of LISP-emhcddcd systems was the need ft,r a 
NOINTERRUPT facility, which could protect user-coded processes from an accidental, mid-function 
aborting such as might occur during an asynchronous interrupt. Steele desipred and irnplemcnted the 
current scheme in late 1973. 

%*- ~r~aii’s .-.. developmen! of MICRO-PLANNER (ref. 5) required some more capabilities for 
intelligetlt. dynamic memory management; and thus Wnite. in 197 I, introduced programmable parame. 
ters for the gaibage collector - a minimum sile for each spacz, a maximum allo~ahle. and a figure 
demanding that a c c 4 n  amount bc reclaimed (or found free) after a cnllcction. Then in the next year 
came thd OC-DAEMON mrchaniam. wlacreby o user function is called immcdiately after elch garbage 
collection so that it can intelligently moniio; rh:. umge of memory and purpowfully modify the 
memory-nranagemert parameters. Baker. w h o  hafi rucently d o w  work on concurr:nt pnrhapc roilccrion 
(rrf. 6). has produced a typical storuge monitor using the MACLISF mechanisms (ref. 7). 
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Sussman's later development of CONNlVER (ref. 8) showed the need for a sort of nun-local 
GOTO. as a inearis of quickly aborting a computation (such as a pattern-matching data-base search) that 
had gone down a wrong path. Thus in 1972 White devised the CATCH and THROW facilities 
(THROW provides a quick. non-local break-cat to a program spot determined by CATCH). and 
implemented FRETURN as a means of an impromptu "THROW" out of any itackframe higher up than 
the current point of computation (this is especiaily effective if an error break occurs, and the user can 
supply by hand a correct return value for some pending autroutine call several levels up the stack). In 
1975. Stecre coded the EVALHOOK feature. which traps each interpretive entry to EVAL during the 
evaluation of a piece of code; this permitted users to write debugging packages that can effectively 
"single-step'' through at! evdluarion. 

- i  The embedding of advanced programming-lanr:uabe systems in LISP. such a9 M 4CSYMA. 
MICRO-PLANNER. CONNIVER. and LLOGO (ref, 9) required a means of insulating the supporting 
system (written as LISP code) from the users CI de (written in the ne-# experimental 1ant;uage). Sussman 
and White noticed that the action of INTERN was yrimarily a table look-up. and they implemented this 
table (in 1971) as a LISP array. which a m y  is held as the valde of the global variable OBARRAY. 
Thus a user can change, or even LAMBDA-bind. the INTERN envircnment. Similarly, the action of 1t.e 
programmable reader could be controlled by exposing its syritax and macro table as the value of the 
global variable READTABLE, whicli was dune in 1972. In 1915. the MAPATOMS function a5 found in 
INTERLISP was implemented for quickly applying a function to all the objects on a given OBARRAY. 
All these embedded systems wanted to have better control over the LISP top-level and break-level 
loops; so in 1971 two features were added: 1) abXty to replace the top-level a d  break-level action 
with a form or the user'.; choice. and 2) a facility to capture control after a system-detected error has 
occurred but before rr-enty to the top level. At first, the error-break permitttd only exiting by quitting 
out back to top lebel, but later these breaks were suck that many errors could be corrected and the 
computation restarted at the point just prior !o the error detection. By earv 1975, it was noted that 
many applications wanted te alter what might be called the default input reader and the default output 
printer: the formei because thcir code files were writ'.:n with many macro and special facilities, and the 
latter because of the Occurrence of circular list structure. Thus the two variables READ and PRINI. if 
non-NIL, hold a user-supplied funct;on for these operations. 

J 

-3 

. - I/O Facilities 1 
I 1 In 1968, White proposed a prc~grammabfe. macro-character input reader. and by the summer of I 1 
1 1969. the reader was i3 operation. Since that time, some other LISPS have added certain special 

featvres io their readers. such as inputting 'A a9 (QUOTE A). or as in INTERLISP3 permitting the user 
to change the meaning of break, separator. and escape characters; but to the author's knowledge none 

The PRINT function of MACLISP bas remained relatively neglected over the years; but in I973 
Steele implemented the PRINI-EVEL and PRINI,ENGTH fdcilities as inspired by the INTERLISP 
PRlNTLEVEL facility. LISP has always had the notion of "line length", such that if inore than a 
specified number of characters were output without an intervening newline character, the a newline was 
automatically inserted by the system (this was especially practical in the days when model 33 Teletypes 
weic! the main terminal used, and the operating system did not take cart' of preventing tm long it line). 
MACLISP allowed aid override on this automatic insertion feature. but in 197b Steele modified this 
facility so that. ~ V C K  when not overriden. it would not insert the generated newline character in the 
middle of some atom. Along with the macro-reader in 194%. White installed dynamica!ly-vadahlc haw 
conversion fur fixnums, so that any bare between 3 and 36 could be used; for what it's worth. Steele 
ext-nded this for roman numerals also in 1974. 

# 
I 
' I  

I have any user-programmable macro' lacility. nor so wide a range of parsing options a: does MACLISP. 
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The problem of "perfect" output for flodting-point numbers on the PDP-IO has apiX%tKiilly not been 
solved in any other uystetn. 1 hat is. given the more-or&ss standard'input algorithm for base conversion 
from Eloairnp-point decimal numbers (dfpns) to floating-point binary numbers (bfpn:ij, construct an 
output convers;on algorithm such that 

i )  every rrpre%entahir hfpn is con\ertcti ti) a shortest dfpn, and 
ii) if e is a representable hCpn. and e* is its dfpn image by the output algorithm. then the input 

In '1972. White devised and instalitd in MACLISP an algorithm that was more nearll; "perfect" than any 
other known to the author w,to pcson% of his acquainta.nce; and in M a y  IF77 White and Steele 
improved that algorithm so that they think it is "perfect" (a proof of which is forthcoming). Most other 
algorithms will increase thc least-significant bit of some numbers when passed through the rcad-in of 
print-out cycle ( w e  reference 10 for a possible expiamion of why this problem is so hard). Golden 
anticipates b1ACSYMA.s usage of this capability, "perfect" print-out, if it indertd is truly so. 

inspired by 1.ISP 1.6 Ircf. f 1). a preliminary version of i? rnsitiple I/O scheme was coitcd up by 
Stallman in lW!. Pritx to this, MACUSP could effectively READ from at most FCG file at a time. and 
PRINT out onto at most unc tile at a time; furthermore. there werc no prwisions far IiO other t h m  the 
ASCII streams implicit in READ and PRINT. That preliminpry version w.is abandoned in carly 1'273. 
and a decision was niade to copy the,,design of t t  MLLTICS verion i/O (which had teen developed 
rather independently). This scheme. coded by Stcele and ready for'ur,~ early in 1975. has Irt;en icrmed 
"Newio". It has sincr bccn undergoing continuing check-out and dcvelopment up until now. and in 
January 1977 became the vtandard f4ACLISP on the ITS versions. although w e  have not yet made.thc 
necessary modification* to the TUPS- IO version. 

Be:ween 1967 and 1971. the A.I. LLh Vision Group. and MACSYMA Group saw the need for a 
faster method of getting compiled LISP subroutines off disk **torape and into a running system. Back 
then, the compiler would produce a file of LAP code, which would be assembled in each time it was 
required. The first step in this direction was taken in 1969 when White devised a dynamic array sp-ce. 
with automatic garbage collection. Then White and others worked out a rclocaiable foriblilt for disk 
storage such that thc load in lime could he minimal; StreSe and Whitc implemc3ted this scheme between 
1972 and 1973, c a k d  FASLOAD. Golden reportd that the irnx !o load in all the rauiincs comprising 
the thcn-existing ?hACSYMA dm?pcd from about an hour to two minute:%; continuing MACSYMA 
develuprnenl certainly required this FASt 1.OADing scheme. Closely lollowing in time was the 
AUTOLOAD scheme. whereby .a Iuncthii that was not pari of the in-core environment. hut resident in 
FASL forinat on disk. would be F A S L O h D e d  in upon firs1 invocation. 

algorithm app!ied to e" protlwes exactly e. 

I 

. ,  

A rdhrnc' t ic Capabilit ics 
Perhaps the most ritunnir); achievement (If MACLISP has heen the method of arithmetic thai him 

permitted FORTRAN-like sped from compiled LISP cede In 1'368, Martin and Moceu. lowccinp 
futurc. needs of MACSYMA. demanded bctter atitkmcttc cdpabilittcs from MACLISP. In 1969, Martin 
changed the nmplemcntatltrn of nlrmbers sr. that FIYWJMs and FLONUMS consumed only anc word. 
rather than three - that is.. the I ISP I .5 lormitt war, ahsndctncd ind numheru were implemented merrsly 
a5 lhe potntrr to the full-wort1 ipace cell containing their value. Suc', a scheme had already k e n  
oecompli\hed. partially. in other I IV%. After that change ir the intetp eter had been rompletcd. some 
new functions were introduced frit type-specific atithme!ic: 

for fixed point: + - / I +  I -  
forftoatini!point: +$ -$ *$ /S I+ $  I-$ 
lor uithet (hut not mixed): = < > 

Later. more function\ were udclcd, w c k  as ftxrd-point square-roo!. rnd erritleut-c(,mnon-tlivisc,r. 'rhe 
fixed-point functions wriuld hr an automatic drdaralion to the compiler that ill1 arguments iInJ res~ilts 
would ho rixnuinv. and that all arrthnnctic can OE motlulo 215, similarly. tlw flonuni funciton'c would 
specify the w e  of flodng point hartlwirc in the cornpilcd crdfc. 
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At the same time, Binford ouggesled installing separate full-word stacks for F!XNUMs and for 
FLON!.!?vir, and interpreting these stack addresses ' ao the corresponding type number. Then White 
proposed eliminating the discontinuity in FIXNUM representation caused by the INUM scheme, so that 
opn-compila~ior! of numeric code would need no extra, interpretive-like steps to extract the numciici?l 
value from a LISP, number:' White also designed a schemr: for using thc number stacks, interfacing 
compiled subroutines with one ancther and with the interpreter. The redesign of number storage, and 
the design of a numeric subroutine interfaze, was for the purpose 0: permitting the compiler to produce 
code similar to what a PDP-IO FORTRAN compiler could produce on es.-,-nttally numeric programs.? 
Work then began on the compiler to take advantage of all this. and a preliminary version for arithmetic 
code was. operational by late 1971. under the care of Golden and Rosen y h 3  did most of the early 
coding. Rosen and Wnite developed optimization in the compiler during 1972. and White continued this 
work through the end of 1976. In 1974, Whits2 and Steele extended the array dpta facilities of 
MACLISP to include FORTRAN-like arrays of fixnums and flonums so that the compiler could optimize 
array references in numerical code; see Steelc's paper describing the current output available from the 
compiler (ref. 13). 

Early along in MACSYMA dereiopment. Moses and Martin saw the need for variable-precision 
integer aiithmetic. and thus the BlGNUM functions were born, with most algorithms taken from Knuth 
(ref. 14). During 1972 and 1973. Golden suggested the need in M,ACSYMA for some of the risual 
transcendental functions. like SIN, ,COS. natural logarithm and anti-logarithm. and arc-tangent (these 
were adapted from some rational approximations originally developed by White in 1967); for GCD. 
WAULONG, HAIPART. and improvcments to the the exponentiation function E X M ;  and for the 
ZUNDERFLOW switch, which permits interpretive arithmetic routines to substitute ;I real zero In; any 
floating-point result that causes a floating-point underflow condition. By combining the binary and 
Lehmer algorithms from Knuth (rrf. IS). Gosper produced a GCD algorithm early in 1976 which runs 
much faster on bignum inputs. A~M. in 1976, a feature was addcd to the interpretire floating-point 
addition and subtraction routines suclr that if the sum is significantly less than the principal summand, 
then the sum is converted to zero; the variable ZFUZZ holds ii scale-factor for this feature. which is 
sti!l considered experimental (LISP370 has a more pervasive use of a similw :eature in all floating-point 
arithmetic and 1/0 functions). 

Randomness has always hzen 3' properly of MACLISP. having had a linear-shift-reFistet RANDOM 
nuniber generator since early. times. This generam produced a. maximally-long scquence. was extremely 
fast. and moderately acceptable fx most applications. Howcvet. is failed the corrvlatsd-triples test, and 
when it was used to generote ranflom scenes for display on lhe LOGO Advent color projector. it 
produced wrne very nice kaleidoscopic pictures; so in late 1976. n,inodificnlion of Knurh's Algorithm A 
(ref. 16) was coded by tforn. 

Ancillary Packages 

A number of ancillary Functions have k e n  coded in LISP, mostly by pcrsrrns w h o  wcrc LISP uws 
rather th:m syqtem developers. and arc kept stored in their compiled. FASL. forms; for ltiading in when 
desired. In 1970, Billfwd coded a small. but powerful, subset uf the INTERLISP in-corc,aditor IS a 
LISP package, but this was later recdrd in machine language; DI more citensivr: vrrsion of the 
INTERLlSP ediiar has bech cod?d by Gabriel in 1975. In i970, Winston designed and ccnlcd INDEX. - 
MACLISP. by inspecting the numerical value <if a number coming into rfic f;tXNUM-cnnser. supplies a 
canonical. read-only copy for fixnurns in !he range of about -IO(HI. io + 2 O W  Thii sipnilicrnily 
reduces the number of new ce!ls required by rurinitig arithmetic cnrlc. without sipnifican:Iy dowing 
down thc npcraticrns. Currently. no similar action is taken for F-'L.ONUMs 

.'The genera:ly-acccpted opir,ion in 1961, and irxtecd in some yuartcrs UD until 1973. was t h t  l,.lSP is 
inhcwndy a hundred rirncv dower on arithmetic than is FORTPAN. Fatrk in's note in 
rebutted this opinion Cref. IZt, but in 1969 it t w k  fitiih 10 gn iIhfJJ with this plan; 
the author had :J clear resolve to da so then. 

I 97 3 c Ikci i v e I y 
only Martin ;tnd 
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a package to analyze a file of LISP progrxw and report oil certairi properties therein. During 1972. 
Gold~tein replaced .in existicg, slt:a pretty-printer (ca!led CIRIWD) witk a programmable pretty .printer 
(ref. 17). and Stcelc spruced-up an existing TRACE package to have more features. After the iGewio 
sc.hemc became operational. two packages were coded for the fast dumpipg onto disk and retrieval 
therefrom of numeric arrays, and a FASDUMP package was intpiemented for MACSYMA that co~ld 
quickly and efficiently store list strwture oi: disk' (Kulp had a hand in developing this package, but it 
may no longer be in use). Many of these user-supplied packages n o w  reside on a disk area called 
LIBLSP. which includes a FORMAT package by White for printing out 'nwnbers under cmlrcil of a 
format (such as is used in FORTRAN), a package for reading and printing circular list structurzs. 
various debcgging packages and :-expression Pditors. and many others. 

irl i9T3 Piiit: ~ ' 3 5  cr?n!inving work on a "iron: end" for LISP. CGOL (ref. 18). which he had 
:begun at Stanford IJniversity In 1371. and he had it generally operational at z nu,mber of sites by 1975, 
It exemplifies the Pratt operator-precedence parser (now used at the front end of MACSYMA). and has 
some of the character of MLlSP (ref. 191. However. the CGOL-toMACLISP cornersion is dynamic and 
fast. and furthermore, an acceptable inverse operation has been implemented. so that one can efftctively 
use this .ALGOL-like language while still retaining all the advantages .nf MACLISP (fast interpreier, 
good compiler, many debagging aids, etc.). It is not at all impractical to replace the MAC1.ISP default 
reader and printer with CGOL's (see notes on READ and PRINl irt the last paiagraph of "Clever 
Control Features'' above). so that C G O L  may be properly thought of as an alternate exteraal syntax for 
LISP. Sze reference I for a practical example - one particular GC-DAEMON function for MACLISP. 
coded in CGOL. 

MiDAS. the A.I. Lab's asscnhly-language system for the PDP-IO, cooperates with MACLlSP tc 
the extent of being able to produce a FASL format file. A number of these ancillary packagcs have thns 
been coded in machine language fsr greater efficiency. In iniQ 1973, Steelc coded a versior, of 
Quicksort (ref 20) which is autoloadable as the function SORT; in 1976, after Newio became srahk. 
Steele coded a file-directory query package (called ALLFILES). and designed a package for creating dnd 
controlling subjobs (tasks) ,in the ITS time-sharing envirtmiwt (called Ht'kiilLE). lking the E U M -  
RLE packagc, Kulp and uthers irtterfaced the text editw I'ECO with Mc.\CLISP. for incrca5ed progrsm- 
m=.r efficiency in debugging and updating LlSF programs. 
processing system suitable for use wiih a photo-composcr to bc written in M,\CI,ISP and using tiirse 
features. but this has not yet been realized. With the ALARMC'L-OCK facility for periodic interrupts. 
and HUMBLE for driving sutr,tasks, M A C l  ISP is frlly cquipprd for :teconling a tivnu-,pharinp system. 

1 
j Kulp arid others had proposed a text- . 

i 

Expc rt Systems 
Martin's desire to he able to use M A C S Y M A  on the MULIICS system Icd to thc start ~t s 

MULTICS version of MACLISP. begun in late 1971 hy Reed; after this was fully &cr;ltionirl in 1973. 
Moon. who had worked on it wrote the now-extinct' MACLISP Reference Manual published in Murch 
1974 (ref. 21). Although there has been littlc use of M A C S Y M A  on &he MULTICS version. it was 
successfully transplanted there: several other c.xten:iion systems devrlowd on the PDP- IO version were 
also succsssfully tc*;ted on the MUtTlCS version, such LIS l.l,OGO and CONNIVER. 

In the summer of 1973, the MACLISP system was extended 1.) permit its use on TOPS-:O. DEC's 
non-paped time sharing system. Much hclp on this developmcnt has come from members of the 
Worcester O.'olytech COnpUtatiOn Center. and frola1 Ihc rcsoLIrces (If the Conlputcr Science dfpilrtment of 
Carnegi+MelJon University. The impetus for hdving a TGPS- IO version canit' lrom many ,icademic 
institutions, where students with interests in ar'rificiai intdligence had heen intrigued hy MICRO- 
PLANNER and CONNIVER and their a3piiuatiorlu, a d  had wanted to experiment with these sysicnls 
on their o w n  PDP- 10s. Litter. as M.I.T. gradoatc. students and prnfossors moved to other univcrsitics. 
they took with them the desire to use MACLISP. rathcr than any of the other ,wrilahlc 1,ISP oltcrria- 
tivvr. The major diificultv in cxporl to thew otficr institutionc; has been their lark of adcquatt. itmounts 
of msin tncmory - fcw pliccs could even run thc MAC:.tSP compiler. which rr:quires OS+K. At one 

: &6 



time Moses had abdesire to export MACSYMA through this means, but inis has not proved feasible 
Even for the KI-IO znd KL-IO processors, which have paging boxes, the TOPS-IO operating system 
does not give user programs sufficient control over the page-map; consequently, this versicjn of 
MACLISP is :o some degree less efficient in its memory utiization. 

The TENEX an ! TOPS-20 operating systems should be able to support the TOPS-IO version of 
MACLISP, under Q compatibility mode, but there has been some difficulty there. In 1971: a specially 
tailored veryion of MACLISP was run under the TENEX sysiem, but this version died out for lack of 
interest. If future interest demands 3, there should be no trouble in getting almost ihe full range of 
MACLISP fealuies found on the ITS vcision to be implemented in a TOPS-20/TENEX version. In 
1936 Gabriel adapted the TOPS-IO version to run on the Stanford A.I. Laboratory operating system. 
and there is currently an increasing body of users out thrre. 

Revised Data Renresentati~ns 

A msjor step was taken in 1973 when the long-awaitud plans to revise the storage strategy of 
MACLISP saw the light. A plan called Bibop (acronym for Blg Bag 0' Pages). inspired in part by the 
prior INTERLISP format, was designed by Wlrite, Steele, and Macrakis; and this was coded by Steele 
during the succeeding year. The new format relieve!: the need for a LISP user to make precise alloca- 
tions of computer memory, and permits dynamic expansion of'eacb data space (although only the array 
stcirage area can be dynankally reduced in size). In 1974, nurnzric arrays were added. and in 1376 a 
new data type called HUNK was added as a s-expression vectar without any of the overhead associated 
with the array data type. Steete's paper in these proceedings (ref. 22) gives a detailed account of h o w  
tile current str.rage picture looks inside MACLISP. 

Espxially MACSYMA, as well as Whograd's SHRDLU and Hewitt's PLASMA systems. needed 
the etficiency and versatility 0: these new formats. The concept of "pure free storage'' entered the 
picture after Bihop became operational: this is list and s-expression structure that is essentially constant, 
and which can be removed fror,~ the active storage areas that the garbage collector manages. Further- 
more, it can be made read-only, and shared among users of the same system; in MACSYMA, there are 
myriads of such cells, and the cowequent savings is enormous. Thus the incremental amount of memory 
required for another MACSYMA user on the system starts at only about 45K words! 

The Compiler 

Greenblatt and others wrote a compiler €or the PDP-6 lisp, patterned initially after th? one for 7090 
LlSP on CTSS. This carly attempt is the grandfather of both the nurrent M A C L A S P  and current 
LlSP 1.6 compilers. However, optimizing LISP code for the the PDP-6 (and PDP-10) is a much more 
difficult task than it might first appear to be. because of the multiple oppurtunities provided by the 
machine architecture. That early compiler had too many bugs to be really useful, but it did prwide a 
good, basic structure o n  which White began in 1969 (joined by Golden in 1970) to work out the plans 
tor the fast-arithmetic schemes (see ref. i3). The LISP 1.6 compiler has apparently not had so 
thorough II check-out and debugging as the MACLISP compiler, since its reputation is unreliability. The 
INTERLISP coxpiler was produced independently, and seems to be quite reliable; but comparisons have 
shown that average programs compile into almast twice as many instructions through it than through the 
MACLlSP compiler. 

Ad-Hoc Nacs 
A s  the number of ne!: and interactive featuyes grew, there was observed need for a qstemaric way 

to qcery and change the status of various of the operating system and LISP system facilitieq. We did not 
want to have to introduce a new LISP primitive function for every such feature (there are scores!), so 
thus was born in 1969 [he STATUS and SSTATWS series. The first argument to these functions selects 
one of many operations, ranging from gettiiig t5e time of day from a home-built clock, to reading the 
phase of Pie moon, and to setting up a special TV terminal line :n monitor the garbage collector. Later, 
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in 1975. the function SYSCALL was added as a LISP entry into the time-sharing system's CALL series 
of operations. (Six rvferencc 23 for information on the ITS system.) 

B e t w e n  1970 arid 1972, the demands of the A.L Lab Vision group rrecessitatcd the installation 0,. 
a simulated I'V camera. called the FAKETV, along with il library file of disk-stored scepe images. A 
cooperative effort bctween the Vision group and thc LOGO group led to the design of a Display-she - a higher, display-orientated language for use with the Lab's 340 Display unit using the PDP-6 as ;in 
off-line display processor. Goldstein. because of his inierest in LLOCO (ref. 9). participated in the 
inilia1 design along with Lerman and White; the programming and coding were done by the latter tv'o. 

In 1973, terminal-iaput echo processing (rubout capability) was enhanced, anr' cursor control wds 
made available to the user for the existing display terminals. W h e n  the A.I. Lab began wing !he 
ham-built TV terminal system, Lieberman coded a general-purpose display packages in LISP for u!:e on 
the TV display buffer. W h e n  hewio became available in 1975, Lieberman and Steele showed examples 
of split-screen layouts usabie from LISP. and in 1376 Steele shoived h o w  to code a variety of "rubout" 
processors in LISP. Furthermore, Newio permitted extended (12-bit) inpw from the keyboards 
associated with these 'eminals. 

In 1973, MACLISP copied a feature from LISP 1.6 for improving facilities in linkage between 
compiled subroutines - the NJOLINKS technique. 411 compiled subroutine calls are done indirect 
through a table, which contains interprecive links for subroutine-lo-subroutine transfer. Under user 
option. thzse link!; may he "snapped" during run time - that is, converted to a single PDP-IO subrout- 
ine transfer instruction. A read-only copy is made of this table (after a system such as MACSYMA is 
generated) so that it m ay be restored to its unsnapped state at any time. The advantage of this is that, 
normally. subroutine transfers will take place in one or two instruction executions, but if it is desired to 
debug some already compiled subroutines, then one need. only restore the interpretive links from the 
read-only copy. 

Inspired by M A C S V M A ' s  history varia,bles, MACL.ISP adopted the convention in early 197 1 that 
the variable "*I' would hold the most recent quantity obtained a: top !rid. 

In 1973, 'Vhite coded an s-expression hashing algorithm called SXHASH, which has beeii useful to 
routines doing c;.?onicalization of list structure (by hashing, one can greatly speed-up thc search to 
determine whethcr or not rhcre is an s-expression copy in a table EQbAL to a given s-exp<esrion). 

To accommodate th: grciup that translated the lunar rocks query-information system from 
INTERLISP to MACLISP, the c0nvention':vas established in 1974 that car[NIL]=cdr~NlLJ=NIL. This 
seems to have been wide!y accepted. since it simplifies many predicates of the form 
(AND X (CDR X) (CDDR X)) into something like (CDDR Xj. 

WHERL DO WE GO FROM HERE? 
The major probiem n o w  with MACLISP. especially as far as MACSYMA is concerned, is the 

limitation imposed by the PDP-IO architecture - an 18 -bit address space. which after overhead is 
taken out, only leaves about IXOK words for data and cornpiled programs. Steeie discusses some of our 
current thinking on what to do about thib in his paper (ref. 22) of these proceedings. under the sention 
"The Address Space Problem". Since the LISP machine of Greenblatt (ref. 24) is such an altractive 
alternatk+e, and is even operational ri.\w in 1977, w e  will no doubt explore the possibilities of incorporat- 
ing into PEP-IO MACLISP some of its unique features, and in general try to reduce the differences 
between them. For the future of MACSYMA, w e  foresee the need for new, primitive data types for 
efficient use of complex numbers and of double-precision floating-point numbers. We anticipate also tlie 
need to have a version efficiently planted in the TOPS-20 system. 

, 

, /  

! . :  i . ,  , ' /  . ..' 



FbLL N A M E S  O F  PERSONS '~SS~3CiATED WITH MACLISP DEVELOPMENT 
Ab' ) MENl"3NED IN rHlS PAPER 

MIT Professors 
loel hloscs 
William A. Ma .tin 
Ckr:ild J. Sussman 
Ira P. Soldstein 
V a ug ha 11 Prat t 
Patrick H. Winston 
Terry L. Winograd* 

Richard J. Faten:an* 
Berthold E;. P. Horn 
* = No longer at h.l.'I.T. 

. Carl E.. Hewitt 

Research Staff 
Jon L White 
Jeffrey P. Gold:n . 
Richard <ircenhl;iti 
Thomas 0. Bir.fi)rd* 
Jerry B. Lerrnasi.* 
R. William GGSFerY- 

. . .  

Students 
G u y  L. Steclc Jr. 
IJavid A. Moon 
Eric C. Roben': 
John L. Lulp 
Kichard P. Gahri;l* 
Henry Lieherman 
Richard M. Stallman 
Slavros Macrakis 
David P. Rccd 
tknry G. Baker. lr. 

REFERENCES 

P R O G R A M M I N G  L A N G U A G E  "LISP". edited by Berekeley, E., and Bobrow. D.. Information 
International Inc., 1'964. 

1. Deutsch, L.. and Berkeley, E.; The LISP Imple'mentation for the PDP-1 Computer, in THE 

2. M A C S Y M A  Reference Manual. Project M A C  Mnthlab Group, M.I.T.. November 1975. 
3. Moses, J.; The Fimction nf FUNCTION in LISP. AI Memo 199, Artificial Intelligencc Lab, M.I.T.. 

4. Teitelman. W.; INTERLISP Reference Manual (Revised edifion). Xcrox Palo Altq Research Center. 

5. Susqman. G., Winograd, T, and'charniak. E,; Micro-Pl.rwer Reference Manual (revised). AI Memo 

6. Baker, 5.; A Note on the Optimal Allocation of Spaces in MACLISP. Working Paper 142. Artificial 

7. Baker. H.; List Processing in Real Time on a Serial Computer. Working Paper 139. Artificial 

8. McDermott, D., and Sussman, G.; THE CONNIC ER R E F E R E N C E  M A N U A L .  AI Mer.i0/259A, 
1974. 

9. Goldstein. 1.; LLOGO: An Implementation of LOGO in LISP. AI Memo 307, Artificid lntdlligence 

June 1970. 

I975 

203A. Artificial lnteiligence Lab. M.I.T.. December 1971. 

Intelligence Lab. M.I.T.. March 1977. 

Inteliigence Lab, M.I.T., ,February ! 977. 
, 

Artificial Intelligence Lab, M.I.T.. January I 
Lab, M3.T.. June 1974. '; 

University, 1969. ', 

\ 

IO. Matula, E.; In-and-Out Conversions. C A C M  II, 1. Jarwary 1968. pp. 47-50. 
I I. Quam, L.: S T A N F O R D  LISP 1.6 M A N U A L .  SAILON 28.3. Artificial Intelligence Lab, Staiford 

12. Fateman, R,; "Reply to an Ed'torial", S I G S A M  Bulletin. 25. :rlarch 1973. pp. 9-1 I. 
13. Steels. G.; Fast .Arithmetic in MACLISP. Proceedings of the 1977 biACSYMA Users Conference, 

14. Knuth. D.; The Art oj" Computer Programming. V2. Addison-Wesley. 1969, pp. 229-210. . 
15. -, ibid., pp. 293-307. 
16. --, ibid.. pp. 26-27. 
17. Goldstein, I.; Pretty-Printing. Converting List to Linear Structure. AI Memo 2i9. Artificial 

18. ?ratt, V.; C G O L  - An Alternative External Representation for LISP Uscrs. Working Paper 121, 
19. Smith, D.;.MLISP. AIM-135, Artificial 1ntel:igence Lab. Stanfori University. 1970. 
20. Kwth. D ; TC.e Art of Compic!er Programming. V3. Adslison-Wesley. 1973. pp. 114-1 16. 
2 1. Moon. D.; MACLISP' Relerence M n n m l ,  Revision' 0. Laboratory for Computer Science (formcrly 

22. Stcele. G.; Data Representations in PDP-10 MACLISP. Proceedings of the 1977 M A C S Y M A  

23. Eastlake. D.: ITS Smru.v Report. AI Memo 238, Artificial inteiiigencc  ah, M.I.T.. (.pril 1972. 
24. Greenblatt, R.; The Lisp Machine. Working Papcr 79. Artificial Intelligence Lab, M.I.T., 

\ 

i 
i 
1 

\\ 
NASA CP-2012, 1977. (Paper no. 22 of this compilation). 

Intelligence Lab, M.1.T , Feburary 1973. 

Artificial lnteliigetice Lab, M.I.T., March ,1976. 

nrrojrct MAC), M.I.T., March f971. 

Uscrs Confcrcnce. NASA CP-2012. 1977. (Paper no. 21 of this compilation'). 

November 1974. 

189 

; ./' 
/ 





. . .-- 

- - .  - -  
N19 - 2 81 6 9 - -  

LISP: DATA IS PROGRAM 

A TUTORIAL IN LiSP 

Jon L White 
Laboratory for Computer Science, M.I.T.* 

ABSTRACT 
A novel approach at teaching LISP to R novice is herein developed. 

is presented, emphasizing its real structure and its machine implantation. 
1;iDgrams in the data language. and or "interpreting" them. is presented. 
from various extant LISP ihplernentations. 

. -  20 

First. the abstract data format 
Then the technique of writing 
Illustrative features are drawn 

IN'TRODUCTION 

The design of LISP as a p r o p m m i n g  language was based on the desire for a prac?ical implementa- 
tion of recursively defined subroutines capable of operating an data of arbi1;arily complex structure. 
This paper will develop, partly from a historical point of view and partly for th- benefit of a program- 
ming novice, thc requirements placed on the data implementation, and the usefulness of the data 
structure to symbolic cwnputation. A self-contained and motivating data presentation for the novice has 
not been adequately handled elsewhere, as previous works invariabiy define c classic logical languag r of 
well-farmed-formdae over a character alphabet - an approdch which does no! relate well to the 
structured nature of LISP data, and which cacnot provide the basis for explaining one of the primary 
data predicates: FQ. In addition, the goal of embedding the programming linguage into the data 
language, and achieving efficient interpretation thertin. will be discxsed. LISP is unique in that a 
simple data operation will take an expression of the data language and. leaving its structure intact, 
extend it to be an applicable fucction in the programming langnagr?. This is essentially the ability to 
create LAMBDA expressions dynamically (and. where appropriate. to create FUNARG expressions. and 
to compile functioils a1 run time). It is not expected that this paper will be sufficient for a novice 
actually to learn h o w  to program in LISP, but it should provide a good, basic understanding of the 
concepts involved. 

THE DATA 
Its Structure 

In many programming languages. the 3aia are essentially "flat" objects. In FORTRAN, the basic 
ddtum is an integer (or floating point number), limited in information content to some fixed number of 
bits, and the basic arithmetic operators are not thought of as decomposing an integer into sib-parts. 
Even the notion of w vector of nurnhcrs is quite "flat" since the components of such B vector are not 
themselves considered to Le sub-vectors. but merely numhers. In laqguages which providc for character- 
string processing, there is a similar "flatness". with 'number' replacxd by 'charactel'. and 'vector 
replaced by 'string'. Just as we would no! want each program bariable to be restricted to o m  kind of 
data. similarly we would no! want our most geqeral type of composite ciilta to he reetrictcd as to thc ,ype 

*During the calendar year 1977. the author is located at the LBM T ~ ~ I N ~ s  J. Watson Research Center, 
Yorktown Heights. NY 105%. and wiehes to acknowlcdgc members of the LISP370 project as having 
contribu!cd to thc development of ideas in this paper. 
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of suhcomponents it m a y  have. Another problem in these languages is that the prograrr variables must 
of1,en be restricted tc data of a particular size - FORTRAN integer variabks bring implicitly limited by 
the word size of the supporting machine, FORTRAN vectors (and vector variables) requiring explicit 
corxpile-time dimensioning of sizes, 2nd PL/I string variatlvs being limited arnlogously by explirit 
prograrr declaration. 

O n e  goal of LISP is to remove the limitations of "flalness" and size from the data uhjccts arid their 
corresponding variablcs; r.g., typeless variables are permissible in L!SP. and the transition from 
hasdware-supported integer hrithmetic (modulo, say, 235.) to infinite-precision integer arithmetic need 
noi conLern the programmer (except for the question of computation cost). For the data to be of the 
most general structure. its romFonents must not be restricted as to type; 'in short, the d.ita should be 
defined recursively. Two obvious featurc5 of structured data sets a.e: I) that at least some of the data 
structures have more t'lan one component (otherwise, there would be no structure!), and 2) that without 
an! real loss of generality it is sufficient to have only binary structures. since there is a ns.iwal. easy 
embedding of any other into these. 

LISP has, for its basic non-atomic data. objects of two components which are decomposed by the 
functions CAR and CDR. and which are built up by the function CONS. These functions reprzsrnt. in 
an abstract sense, the cxessary operators defined over a structured data set - CONS being mnemonic 
for the ronstrwtion fmction. and the other two. suScomponent accessors. being named after a particular 
feature of the architwture of the IBM 704 on which t!.e first LISP system was implemented. In fact, 
actual machine architi.c!v:c hzs decply influenced L.ISP design. for one ,oal of LISP was to become a 
useful programming Jang e. Thus, a first step was to assign a logical record of memory (that is, some 
finite nuinher of bits easiiy accessible by the supporting hardware) to hold a data object; w e  call such a 
block of memory a "cell". and use the.machine address of the cell as a handle for the object. An 
addre.ss used this way wiil variously be called a "pointer" or "name" of the stored objert. 'Half of the 
bits in the cell (or thereabouts) hold the first par! of the pi:, accessed by C.4R. and the other half hold 
the second, or CDR. part. Computer architecture intrudes at this point, in that the computer word is 
often chosen as the unit of memory for a cell, partly because of economy in memory utilization and 
partly because of a computer instruction repertoire which prrmits easy decomposition of data stored this 
way. This has been true for almost all PDPIO LISPS, m d  quite a few IBM36Q LISPs. but LISP370 (an 
experimeetal LISP at IBM's Research Center) uses a double wwd for each cell, snd :he MULTICS 
MACLISP takes four words per cell. At first. this storage method seems to invalidate the goal of not 
limitiiig the size of a data object to a fixed bound, but this is not nearly sa serious as it may seem, since 
the pr!s of a sell are interpreted as names for other cells; thus a clal ohject is thought of as a graph. 
consisting of all the cells and links reachable from a given pointer by CAR and C D R .  

In the world of algebraic inanipulation. any reasonable fixed alloc=tim for the makmiiii h i x  of 
integers will prevent most simplification algorithms from working.' For this raxjn,. most pod LISP 
systems provide for variable-przcision integer arithmetic, ofteic by embedding thc parts of a long intcper 
ji"0 one of the other complex data structures. Howeve:. the maximum size c; a data structure is !imited 
by the %tal number of names available for nodes of the conceptual graph which i: represents, and this 
n a m  space is limited by the numDer of his in a half-cell. At the outset of LISP development. large 
computers had up to 32K words cf main memory, and this was thought tc be laryer ttun any program 
would ever need; however. applications soon c m e  up rcqiiiring many times tht number of LISP cells 

I A n  "unreasoiiable" size allacation would he one in which only a few hundred itltcgers could fit in rr.ain 
memory st m e  time. The default allccation for most languages is OUIP computer word pcr integer. 
because there is generally built into the hardware the circuitry for quickly doirv arithmetic on and- or 
two-word cells. O n e  can anly go so far in aftempi< to speed up arithrurtic with larger and litrger 
circuitry. as the wrtrk of Winoprad shows in referenrcs 1 and 2. Another approaca at increasing 
speed has been to analyze nunmical algorithms, trying lo separate olrt the parallel parts so thdt 
duplicate aiithmetic unilr; may carry oil1 the suhcomputwions in parallel; thc ILLIAC-IV has much 
circuitry involvtd in tte latter approach. 
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- MACSYMA is a particularly good offendel in this' regard. An early LISP at the ISM Research 
Center had only a Ih-hit address space, and was soon "choked" to death by SCRATCHPAD t5e current 
system, l.lSP370. has 3 24-bit address spaci: in ii coinplctcly revised design. This size seems optintistic 
n r w  (25 bits. of which thrw arc the nyte address within a cell. leavmg room for .uidrtshinp 2M cells), in 
that 2 million 04-bit douhlewords is otohahly more rnztiii mem\,ry than mtat computers a:'u likely to have 
Jircctly addrensahlc during the next five or so years. but w e  have bccn wrong about this in the past. 
'The dangcr of biting off ton many bits for the address space is tbat each cclI would then require niort. 
and mow w(.mlb for storage. and thus with a bounded amount Jf main memory f e w x  and fewer cells 
could be held therein. is 3' real u p w r  hound. even in a virtual- 
rncrnory n:ac.hint. with it much sniallcr amount of real memory. Sometimes. it is possible to segment the 
data and process it in two or more passes so that it need not all be directly addressable at once. but the 
familiar "intermediate-expression swell" 0: algebraic manipulation shows that thi:. can not serve as a 
general solution. Apain, it would be possible to extend the name space beyond ac!uai address space by 
treating each name as an address in an extended secondary-storage s p ~ e :  however, except for w r y  
limited applications. this would slow down operations drastically. Thu costs of computer memories are 
sdl decreasing, larger and larger address spaces are becoming more feasible. but the finiteness bound is 
still ihcre. Ebcn though we have bumoed into the lop of that bound several limes, it should not he too 
frightening: arl excellent article by Knuth puts "finite" into proper prrsp,-ctiqe (reference 3). 

Of scrilrse, 2<nuc11her of a d d r ~ w  

A data okject, graphically represented as in figure 1, can easily and directly be translated into 
computer rneniory by assigning each node of the graph a new cell. and iabelling each directed edge with 
the address of the translated node that it points to. Stored in a cell. then. would be the two addresses 
found on the etlgcs leading out of the corresponding node. In order to get these data "off the ground'. 
certain structures are dusigiiatcd os atomic. that is, not decorripo~ahle by (there are no sub-parts 
accessible by) the functions CAR and CDR. Atomic objects can be denoted graphicdlly as I string of 
alpnabetic chartictxs (from a com,,u;er alphabet such as ASCII or EBCDIC), and in figure 1 they are 
enclosed in rcctangular rather than round The collections of atoniic and non-atomic data are 
called "s-expressions", which is qhort for "symbolic expressions". 

Atoms - Symbols 
Atoms are in fact striirtured objects (but not in the general sense described above). and thvir 

sub-parts are obtaincd by specialized access0r functions. Because of the varying potential for efticirncy 
n: representation and operation. there are peli;rally several classes of atoms in a LISP system. distin- 
guishable in L k i r  !?enwry structure. A most importarti one of these will he calleci an "atorttbc symhul". 
or merely SYMt30L. and each has a plncr. in its structure for stc,:inr: (i) a pointer to a list of associated 
propcrtios, (li) j pointer to P hindirig cell when the symbol is hcinp usvd as a program variable, (iii) a 
string of alphabetic cha:aclcrs for 'en[.' l~,g the object on input-output, and possibly o:her parts 
depending on the implcmcntatim. iten, (ill) has been historicAly called the print nanic, but nc'w 
gcnct:4ly acronymized as P N A M E  (pruwunceJ pea-name). and providcs the output routine with a qui < 
method of generating a sequence of characters corresponding to that object. An input routine. whcr, 
giver. a string of ch:::aciers. could, by taking new cells of storage. construct. a symhol with that siring us 
PNAME. Rut more d!cn. it i? deqircd to use the PNAME sequence as an external. addrrss-frce 
reference to a specific symbol. a canonical symbol with that PN.%Mt, so that pte-existing properties 

2Our use of rectangular and round boxes is an invc'rsiwi of the conventim fcwnd in other presentirtions. 
e.g. Weissrs?nn's "I.ISP 1.5 Primer" (ref. 41, and the "LISP 1.5 Programmers Manual" (ref. 5). This 
is by design. partly to cmphasiiv tha! the structure in the hoxus. rather than theit sttupr.. is rbr 
important trllirig; hut also two other adxmtapes occur: I) the PNAMEs of atoms, which can hc :t .c 
long. have a l?nx .fw more suitahlc to iheir typograplty, and 2) there is B fuller scparntion heiu;:~ v 
the older i ! t w i v d .  which promptod one to think of s-expressions as well-fclrmcd-lormuhe over ;I 
character set, and the' notation in this paper. which only begrudgingly admits of the IincarizeJ print 
farm. 
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attached to that particular object may be easily accessed - the PNAME: thus serving as a kind of 
"ke,y". The standard input routinz for LISP, general'.y called .READ, cozstr.ds s-expressions by parsing 
an input stream of characters; but in particular, when it parses a string into a Ph'hME it uses a function 
INTERN to locate the canonical symbol with that P N A M E ;  INTERN. in turn, accomplishes this by 
keeping a table (called the OBARRAY, or the OBLIST) of all canoirical symbols. creating new ones as 
the need arises. S o m e  irnplementationP d o  not permit the creation of aay syrnbols except tbe canonical 
ones, so that no two distinct symbols would have the same PVAME; but in othe:s not : 3 strict, the 
terminology "uni9terned atom" is used to mean a symbol .IOI entered (and hence not "canonical") on 
the cuirent OBARRAY. The knportaim of en external. address-free reference will be seen as ths paper 
develops the presentation of *he LISP data language as a programming language: atomi, symbols are 
w e d  as names (ir, thc informal sense) for system subroutines, for user- defined subrownes. for program 
variables. and for a few specially recognized constants. 

Atoms - Numbers 
The desire to use machine hardware arithmetic instructions. an3 to economize on storage. has led 

LISP 40 introduce thc class of atoms called FIXNUM (and, .in most systems. FLONUM alw). Tie 
programming language provides basic'predicrtcs for testing whether a given object is an atom 0; numeric 
type, the most general such being NUMBERP. and most LISP systems support a variety of numeric data 
types with associated type-specific predicates in order to nccommodale progranming needs (some LISPS 
also provide a basic predicate to test whether an object is an atomic symbol, such as SYMBOLP in 
M A C L I S P  and LlTATOM in INTERLISP. but some others '3 not - the programmer resorting &O a 
compound form like "atom[xl~~numberpIxj'"). A firnum. lor exampie. has a word in which a number is 
stored in the usual computer notation (say, 2's complement in a 36-bit word); Fumeric operations will 
now be facilitated. but the output routine will have to go thruugh = m e  base-conversion process to 
produce the digit-string that one would like to see f& that number. On the input side af the question, a 
d;git-striug can be evaluated assuming a particular radix notation, and a new cell (or ~~llj, it a rnultiple- 
precision integer is indic3ted) allocated for ststing the incoming number. At this point. a certain 
ambiguity is evident concerning the input parser: should a string of chracters. all af which 3re decimal 
digits. ht: converted into a fixnulr. or into a symbol with that string as PNAME? As a convention, such 
a suing would be input as a fixnum (or flonum if the sequence alsG had some character recogsized t y  
the parser cs a floating point indicator), and another convention is established for escvpihg the special 
significance that the parser might apply to particular Characters. In MACLISP, the character ! is used in 
prefix of any character that might otherwise cause the parses not to include that character in the 
PNAME of a symbol. For example. 

1729 
could be read in as a fixnum, the least integer expressible as the sum of two cubes in weciscly two 
different ways. whereas 

/ I7?9 
would be read in as a s y m b l  with four charactcis in ir!, PPAMP. 'here are no systemic propertics 
d t e d  with a number otkr than its numcrical value. so there seems IO be no nerd to try to identify 
a r8norPkal storage 1.wtiun for a given valut (but wine systems do canonicalization, of varying degrees, 
iu ordcr to reduce stuta;e utilization). 

Lists 
Thc general data structures of LISP are then built up over the fieM of atomic objects with the 

constructiol: function CONS. The basic non-atomic object, because of the way it is constructed aod 
storeC. is called by some persons a "cons" cell, by others a "pair ', and by many others P '%st'' celi. As 
a function, CQNS is anti-commutative in that if et and cz arc unccjml, theti CONSlel,c2) and 
CONS[e2.elj are also unequal. Graphically, this is Seen in figure 1 iq that the edges emrnatinA from a 
node have a definite left-hand and right-hand orientation; also evidcnt IS tht. binary nature of CONS. in 
that each non-atomic node has precisely two cdgcs emanating froni it (and each atomic node has ntrnc). 
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The external. linearized representation of a non-ato& object; calkd its "print representation". is 3 
modification af a fully-parenthesized notation. The full notation is easily described: let el and e2 be any 
two data nbjects, and let el* and e** be theit respective prihtt representations. Then a data object 
constructed from el 2nd e2. that is by CONSIel.e21. will have the print representation 

(et+ . e2*) 
It is generally convenient to think of the pair cell as holding a list. even though this is only an intcrpreta- 
tion in the mind df the beholder: the CAR part of a pair is the first elenent of the list. and the CDR 
part is the tail of the list with the first elemen. removed. Ostendbly. by successive applicaiions of the 
CDR function. sor.ie atom will be reached; by convention, w e  desire this atom IO be the symbol NIL. 
and elevate it to the status of the null list, Le.. the list with no elements. Many L!SP systems will permit 
lit operators to work with lists teminaiing in sonle other atom. but by fixing on this conventional use of 
YIL. the following simplification can be made for the print representation: 

(i) Instead of (el* . NIL), 
w e  will print (el+) 

(ir) Suppose there is a list 1 wnich prints as 
(el* ez* ... en'), 

then. for I' P cons[eo./J. instend of 
(eog . (el* e** ... en*)). 

w e  will print (ep+ elc e,* ... en*) 
Figure 2 shows a graph for a data strcture, as in flgure 1, with the two possibk print representations 
printed below it. Note. also, the several c o m m o n  references EG the boxes for the symbo!s ABC and NlL. 
and the duplication of the boxes for the fixnum 35; sc~: haw the graph more directly shows the 
=anonicelization that has taken place far the input of symbols and the duTlication for input of numbers. 

- 
THE PROGRAMS 

What kind of operations might one want to do in this data world? McCarthy'& classic paper, 
"Recursive Fmctions of Symbolic Expressions and Their Computation by Machine, Part I" (ref. 6. one 
might say the grandfather of LISP papers). is a good start at answering this question. Both it and the 
LISP 1.5 Programmer's Manual indicate that the elementary OpecJtians CAR, CDR, CONS (discussed 
above as bring the requisite operations needed over any binary sttuctrwed data set). and the elementa;y 
predicates ATOM. EQ. along with the mathematical notions of functional composition. conditional 
expression, and recursive definition comprise a sufficient means to build up any computable function on 
this data d o m a h 3  This collection of primioive func:ionr and funcrio.raI schemata is minimal in that no 
one part can be derived from the others alone. (The two mints, sufkiency and minimality, have been 
proven by Mike Levin. one of the early originators of LISP). Of course, in real ?sage, many more 
functions art added for the corrvenience of the programmer; part of khe job uf a Lis3 system imp!r.m- 
enter is to choose a reasonable et of basic, system-suppiied funciions - not so large as to bloat the 
compcter's memory. and noi so small as to unduly cramp tee prograntmer. 

Historically, the developm nt of LISP iu; we know it today, was quite accidental. Originillly. it was 
assumed !hat various functions could 5e tiefined and written down witt. some math;~.clticat rigor. using a 
more-or-less standard mathematical notailon which was called the Meta-language (see refs. 5.6). Then 
from this presentatioti, one would compile the algorithm into a rmchine language program. with 
subrouiincs holdhg their data at.d exit addresses on o stack in order to provide for rccurshe opwation - -- 
31t is intctrcsting to note that the paper (ref- 61, while laying the foundation of a good nor-numeric dcta 
structu~e for computers (symbolic expressions). at the samc time has had B profound effect on the 
development of program schenro. namely the way in which programs arc puk tapeihcr from compo- 
nents. Conditional expression and m e m w y  operation br: required in any nun-trivial programinin8 
world; but McCarthy. by emphasizing functbnal composition and recursive drfinition, injected u bit 
of mathematical common-sense into the world of \equrntial programmirlg. 
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- hardly the interpretive LISP w e  know today! In any programming project, the task of getting 
programs into the computer always becomes more difficult as time goes on (and time has 1 aorrrrious 
infamy for always going 9"): so someone had th, bright idea of transcribing progiams. not into machine 
language. but into the data !anpuage already aefined, namely s-expressions. so that they could be 
automaticaliy translated into machine language. The first mechanical compiler was, of course, written ia 
machine language. but it-'was not very succkssful (needless to say, subsequent compilers were written in 
LISP). rhen. one of the pYogrammers associated with the original LlSP project had the bright idea of 
making an s-expression evaluator. which could hterpret these encoded programs. and hence. through 
EVAL, the LISP interpreter was born. 

That single idea has had enorlnous consequence on the developrnent of the fields of list processing. 
artikial intelligence, snd symbolic manipulation. Although some other languages. such as APL. permit 
the dynamic evaluation of ccmputed expressions. in n o m  save LlSP is tne programming language so 
thoroughly embedded into the data. In no other is therc the smooth naturalness with which Ll.;P 
ptogranis may dissect. analyze, report urim. ruview, "dress-up". synthesize. eniulate. and cornrile other 
LISP programs. 

Functions. Functional Composit;,on. and QUOTE 
What. &en. is the transcription scheme? It is really quite pimple. First, w e  note that mo\t LlSP 

systems have at least the characters of the 6-bit ASCII alphabet. which is 26 uppercase Irlrers. IO digits. 
somu punctuation marks. and the usual assortment of special characters found on most lypcwriters or 
teletype machines. Then, a variable or function IS representei by the symho: of the corresponding 
PNAME; numbers stand for themselves. that is the;. will be transcrikd directly; functional application is 
shown as a list of the function and all its arguments in order; functional composition ib showri as Iht 
cornpusition; the elementary operations are represented by the atomic symbol% CAR. CLIR. CONS. 
ATOM, wid EQ; Lnd some of the basic arithmetic operators are implemented with mnemonic names in 
prefix notation (instead of wri..ng "x+z+2.3", w e  wouid *Ante in prefix noaation "plus[x.z,2.3)"). As 
an example illiscrating all the rules mentioned so lar. w e  woyld transcribe 

5 [log sin( x+ z+ 2.3 11 
into a list printable as 

( I t  
If all OM; Punctions were defined only over rrumbers, then the intent of such a program, ccwled in list 
structure. is clear: add together the numeric values of the vartahles x and z and the numhrr 2.3, toke the 
trignnonerric sibr of the resuit, then the natural log of that. and finally multiply by 5. But some of our 
fusctions are defined over lists as well as other objects. and the question arises as to h o w  the argument 
fw such a function is obtained. Far example. suppwe w e  ward 10 print out the list (PLUS X 3). and 
suppose coincidentally that the variible X has the value 7, Then what does 

(PRtNT (PLUS X 3)) I21 
do am a progrsm? By the above rules, it should print out the numhur IO. Flow then arc H C  to indicate 
tht we want to print uut the list (PL.US X 317 A becomes necessary to add a rule in the transcriptitin 
=hame that overrides the r.otatkm for functional composition - far this patgosc. we use the atom 
QUOTE in the first element af a lit1 Io indicate that the second clement is not a subprogram. hut rnthct 
is to be taken directly as dc:a without any interpretation. Line (2! above would yrint out the nirmher 7, 
whereas 

\ 

(TIMES 5 (LOG (SIN (PLUS X 2 2.3)))) 

I 

(PRINT (QUOTE: (PI 119 X 3))) (3) 
*-/auld print out the desired list, (PLUS X 3). Line (2) could hr tt transcription d the rxprcssion 
"print(x+31". whereas line (3) could bc the! for "printl'(?LUS X >,'I". 

There are several kinds of overritles 00 the functlrrnd romp~sitron rule. to he discursrd in tiirn 
helow. ~ ~ ~ u ~ c  of the uimilurity of structure -- namel'c , sn etoniic symkrd ut the firot rlcnirrii 01 ii l~rt - many purwne have begun r:fcrring io thew overriders 3s "functions" also; hut they shoutd mnrc 
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properly he viewed as parts of the syntax of the propr:imming tanguage LISP. Ir. LISP 1.5. they 3re 
called "rpecisl forms". IR  particular. ¶hey represent :he realization in LISP Of some of the abstract. 
univer%al concepts foucd in m y  prxtical pr.>graniming lariguagt-; c.g.. CONL). PRO<;, SETV, DEF1NE. 
1 ISP further has QUOTE as jus\ discu\sed. and LAMBDA - !he former to cfistinpuish d a b  expressions 
from propams in which the data might he emhcdded. and the lattcr to diitinguish proprams from some 
data in which thcy. in turn. might be embedded. At this point. it n.ust be 5trLsscd that these riiies and 
conventitins ccmprisc part of the progrumrrutic. iit/e*rDrcf~r!oii ot' 1 !S? data cxprcsskns; other. radically 
iliffercnt interpretations ;Ire pc>-.l;ihle. e-g, without 01 :0'1 F. o r  without Y R O G  ;mi! SE-I'Q. hut lhcy are 
gencralfq less u w h k .  

Program interpret'jtio:, also i m p k s  an importance to the sequence in which the sub-computations 
3re carried out. if there. were no meninry cells in ;I computer. nor any side-rJyrcrr during .:omputation. 
then the order of evaluation of ihc sub-paits of a propram would he irrelevant. For example. what 
diffrrencw would it make if. in computing "(x+3).(y-5)". the sun, were peifijrmed after the difference 
ca1ciiI;Ificm:' L.c>picrtlly. n o m :  but if while cctmputing the difference "y-5". some actioa is tahen that 
chanpcs the ~ a l u c  of the \ariahie x, then piohably :+ different final product would result. Thc normal 
rule fcr LISP program interpretation is left-io-right order of evaluation, heginning ivith the firsf element 
of ttr lis!. This fir-.[ clement. corre\ponding to some function to be ;hppiicd. is i?spWted for a hasic 
funciion defini!ic:g. o r  one supplied by the pryvrimmer (vhich may involvc recursion through the 
interpreter)? and then the first argtrrment to the function is calculated according to the program part in 
the sword element of the list; and ihrn the third. mil 50 on. Finally. thc lunction is invoked with the 
corresponding arguments. The special forms PROG and SETQ do  not come under this normal rul;. 
PROCi corresponds to the, sequential mtuic. with Ci(Yl'0s. of FOH'THAN programs; and SRTQ 
corresponds to the notion of assigning a new w!ue to a variahie while releasing the ofd valuc. Bccausr. 
of lack of spabx, these features will not be further d i w ~ s w d  in this paper. 

Prediczies and Conditional Expressions 

Predicates operate on data to pi*oduce one of two values - Irue or fdw. In the L.IP world. we let 
the symhoi NIL encode the valtie fube and T cnc(x1c true. tfowcvrr. as 3 convenioffce, we ahw any 
non-NIL value to he returned by a predicate, and in so doing interpret it as true. Furthermore. we 
remove NIL and T fiwz :he collection of pussible proprani tariab1r.s. ccrnsidcring Ihcm as C'oRStanls 
which stand fo r  thernsclvrs just as numbers do. 

The elementary predicate ATOM is a function which it true for terminal nodes of the graph- 
structured data (the items in rectangular hoxcu in figures 1 thrir 3). inti lalsv lo$ coiis cells. It is 
apparent that the damairi of A'T0)M on which it is ,Jib,* is prucisely the domain of s-exprev+ions on 

Normally. the identity of the function. of sub-propram. to he applied h cbidcnt upon "inqwetion". in 
ti131 it will he an atomic symbol with uome dircct funciicinal propcrty. What happns whcn ihiu is not 
the rase has never been clearly drfincd - noticr. for uxarnpk, thc tliwrcprrncy ktwccn Iinrs 18-19 ' 
and lint. 2lf on pagc 71 of thr I.ISP 1.S I'ropramrncr'u Manu;il (ref. 5). itnd rrfcrencc 0 h;n :tn vrsn 
'more ctrr.lusinp hug :\I thc correuponrling spot of Ihc definition of WAI;. Mtw I .IW qy\tcins ni;iLu 
one rvalustion of the first clement, then evaluate all the remaining clrmcnts once in o r r k r  to ohtain 
the argunicnts. atid then kpin a prmxra ul rc-walualim r)F ihr* result from the first clcincrrt until it i\ 
dircclly discrrnihlc to be a funciion. Tlerc is co problrnt unless sointi relevant nicmory Icmtion iu 
changed. such as happens in the following example. 1;irst. note the \horth;rnd strnvrnt;m of writing 
'c.up in%tracl of (cjll(lTE e$..:?. 

- 

((SIIHS'I' 3 'N '(PEOCi2 (SET0 X !Pl.lIS X N;) 'D!J-'FEKFNC'K)I 
x 
Yt 

In hi=+ <.@<e. hy evdualing the first clement wccewivcby twice. onr. pstv ii re*uli dirfewnf irctrn [hiit 
oGi.mr~d hy the urdrr of rvaluirticrn ju+t tncntioncd ahovr, 
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which CAR acd CDR are applicable. Atoms which are interpretable as nuin'wrs ar? stored in computer 
mtinory in such a wzy as to require specialized functions and predicates. for the purpose of achieving 
efficiency in numeric operations; e.g, NUMBERP, FlXP, FLOATP. GREATERP. and nirneric-equal. 
In MACLISP. and some others. many new numeric functions and predica:es have been introduced 
penerally having shorter names. such as > as a less gen?ral form of CREATERP. = for (exactj numeric 
equal. + for addition restricted to fixnuins. +$ for addition restricted to flor-ums. and so om5 

The predicate EQ. a 'unction of two arguments. is 2 test foi pointer identity; let us see h o w  this 
works. In figwe 3. two lists LI and 22 are shown graphically alcnp r W s  their print representaticn (in 
Lq. the edges are not shown as extending all the way to the rectangular boxc: for atoms. merely because 
of the romplexity of drawi7g to many intersecting lines). Suppose for example that the top node of LI 
is stored in a cons cell at computer address 0129. anu L2 at 3724. Let x. y, z be program variables such 
that x =LI, J' = L2. LnJ z = 1-1. This means that the variables hold 3ome *$iter tu a cans cell - the 
bits of x ,ind z woulct correspond to the decimal number 129. and those of y to 3724. But a LISP 
system interprets this pointer according to its data classification; thus ATOM is fake for each of the 
varirbles. and each would be printed out as 

(LIST (QUOTE FCO)) 
Now, EQ is true of !x,zl. hut Jcripe of [x.y] and [y.zl because x a d  z he!d the same pointer. but x iind y 
are different pointers carresponding to isomorphic structures. 

Of course. not all functions. even over the domrrrn nl numkrs. are smooth and "analytic"; 
discontinuities of various sorts can be introduced by conditional expressions. Let DELTA be defined as 
a fcnction of x and n as fdlows: I if x m .  -1 if x<n, and 0 ntherwise. This conditional 
expression would be transcribed into LiSP as 

I 

(COND ((GREATERP X-N) I) (4) 
((LESSP X N) -I) 
(T 0)) 

As with QUOTE. COND is a specint form in the programming language. and indicates that a sequence 
of sub-lists follows. each sub-list consisting of one clr more cxpressions. The lirtt elements of the 
sub-lists are evaluated in sequence order until the first one that comes up not Jbfw iq found; the 
remaining dements of that sub-list are thcn evaluated and value of thc last clement (which might also 
incidentally be the first: is taken as the resulting valur Inr thc COND expression. In addition io the 
"discontinuity" which the conditional expression introducer. there is a noticeable programmatic feature. 
namely that of selectwe evaluation. Not all of the predicates are evaluated. but only thosc whicb, in 
seuuence, turri out Co be fake. up until the first one hat is inre. Qbvious:y. CON0 may be thought rrf 
as a compound predicate; rn are OR and AND, whose definitions arc in accord with onc's intuitive 

I 

notion. It niay be helpful to see corresponding code for 
(OR x y E) (C'OND 

(AND x y (COND 

the logical crrnncclivcr. NOT operites To iound out 
(NULL x) optrote thr same us the cxpressicm {CONI3 (x NIL) (T)). 

LISP rystcrrir which havv intrcduced novel data iyivi pencrdly h a w  intrtducod lunctionu and 
prcdicafcq with rcwictcd Jomhs in order to o p r r w  efficiently o n  thcm. This is crnt way of 
extending I.ISP. 
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Ikfining Functions . 

The expression (4) ab0v.e is almost a definition for a function ''&:ia", hut it is not symmetric in the 
two variables x and n; if you were to write (DELTA 3 51, y ~ u  would want to know wiicther X wouid 
hold 3 and N 5, or !ice-versa., The symbo: LAMBDA is a special form to in'dicate that a functioi is 
Deing defined from an expression. by specifying the order in ,which the variabizs of the exoression shall 
correspond to the inconiing arguments. Rewriting (4) as a functlrtnal expression, w e  get 

(LAMBDA. (x N) (5) 
(COND ((GREATERP X N) I) 

((LESSP X N) -1) 
(T 0))) 

Now (5) is an expressioii tha! can bc applied to 13.5) and result in -1. but when applied to 13.21 results 
in I. T he syntax permits us to writ$ this expicssion directly in the functional position of a list intended 
for program interpretation: 

However, for convenience of writing. we might like to define PELTA as 'a functiotc name corresponding 
to the functional expressiun (5); in the case of recursive definition. there is no choice about the matter, 
w e  must start out with S G K ~ ~  function name SJ that we can write ctovt; the definition using that name. 
Consider the classic case. defining the factwial function. 

(LAMBDA (N) { C O N D  ((= N 0) I) (T (* N Vucr-corrinuarion (-, N I)))))) 
At the point where /bcr-ronfinuorion occurs. w e  would like ancther c.>py of the entire functional 
expression substituted. so that the conrputation could be carried oft recursively. Rather than eitend !'.e 
notation to encompass cyclic struciurc. or to infinite sub-structure. w e  fiild that using a symbol as a 
name for a furxtion being defined S ( J I W ~  not only. this problem. but also !hat of conciwness. Thus the 
factorial definition bt.comes: 

(DEFINE FACT CLAMBDA (N) (b) 

(1' (* N (FACT (- N I))))))) 
Function definition is eeyrally rcaliztd inaa LISP system by executing a pmgram that places a 

property .on the property 1i.a of the symbol which is the function name; DEFINE (or DEFUN in 
MAGLISP) is a special form which causes this to happen? Evaluating (DEFINE- _FQO e.rp) will cause 
an attribute-value pair to go on the property list of FOO - the aitribute ,name is EXPR, and its 
correqxmding value is exp. The interprutrr can then quickly recugnizc FOO to bc a function name by 
accessing its EXPH property. and substituting the LAMBDA expression obtained lor the name. In 
the case of machinrdanguape ,subroutines. a starting-addre%! is rtcrred under Ih- SllRR attribute. and. 
after the areumcnts are obtained. the inlerjmtcr can quickly 4espaich control off to the rclevant 
location. In vuch il LISP, one needs only the ability to r-ad-in'lh and to cvaluatc them after reitd-in ir: 
order to add suhroutines (or programs, if you will) Io the systcm. The so-called "tup Ieurl" ~f a LISP 
system is basically a loop: 

((LAMBDA IX N) (COND'W x N) I) ((.: x N) -11 (T 0))) 3 SI 

(CONCI ((%a N c)) I) 

A: prinl(cval(rcad( 1)) 
' A 

From this w e  can sw. the inportrtncc crf IN'I'EHN la !hc input RFAD function: it is necessary tllhi h,lh 
instances of "FACTI"" in (Oi ahove be read in as pointing to the %itme utoniic ohjcct (and not nlerrly to 
atoms with the srime, PNAME). and the samr holds (rut: of the three instanccs of "N". 'rhuu it is t h ~ t  
one programs in LISP,.and interacts with LISf* cnvironnicni, 

- -I_____ 

hThcrc arc LISP sy\temc that do not UFC thc property lid for function definition. hut invtcrid use 
whatever mech:tni\m implcrncntv thc owipnmrnt of o value to o veriehlc. 'This ;tp;wt;tch i\ atfvyu;ttc. 
although it mean* [hat one could not u w  a crymbol hoth fnr a voriithle name ant1 il fuf1ction nafnr. 
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A Uwlul Example 
Let us consider a Jcfinition of an "equality" predicate EQUAL defincd over all the data types 

mentioned in this papcr. such that two s-expressions are printed out in linmr format the same way if and 
only if they art. EQUAL.. For  urnh hers, the numeric equality pridlcatt is used; frv symbols, 
SAMEPNAMEP and for list>, the dcfinition is recursive over tbv C.\R piirk and the CDR part. 
Hi\toric;Jliy. EQUAL. was ddfincct befurc any consideratinit was piven to multiple copies of atomic 
objects ai! with thc ;arm PNAME: hence EQ was generally used instead of SAMEPNAh1E;P; hcrause if 
two sy-mhol\ ut'w ctorcJ in Jiffercnr It>%:ations then they nece.ssarily had dQfcrcnt PNAMEs. As far 3s 
the author knows, all LISP systrrn.5 vtill 'use EQ here, ana :his is considered satisfactory. 

(DEFINE EQUAL 
(LAMBDA (X Y) 
(COND ((EO .K Y) T) 

i [ 4TC)bl X) 
(COND ((NOT (ATOM Y)) NIL? 

((AhiD (NL'MBERP X) (NUMRERP Y,) (= X Y)) 
((OR (NUMBERP X) (NUMBERP Y)) NIL) 
(T (SAMEPNAMEP X Y)))) 

({ATOM Y) NlLj 
(IEQC'AL ,(CAR X) (CAR Y)) (EQUAL (CDH X) (CDR Y))) 

It would hc instructive for thv reader to consider this cxanrple linc by line to verify how it works. Notc 
carefully that EQII:'..I, dries nc;t define "etaph-isomorphism". but rather a concept that has come to be 
called "accc.ss-equivalcnce". Two structures are said to be accesr.uquivalent (or EQUAL) if any access 
chain (a scquenre of CARS and CDRs, for LISP) leading to an ati:mic object in one silucturc also leads 
to the same atomic ohjcct in the other. See ligurc 4 for a graphic ,resentation of twa srrurturcs that arc 
EQUAL but not isomorphic 

(T NIL)))) 

REFERENCES 

C. Winogrzd. S.; O n  The Time Rcquircd to Perform Addition. J. ACM 12. 2, April 1965. pp. 277-28s. 
2. Winogr.4. S.: O n  l'hc 'iime Required to Perform Multiplication. J. AL'M i4. 4, oc't l')b7, 

3. Knuth. I) ; Mathcmitics and Computer Scirncr. Coping with Fin;isne\s. .%.it.nrc /94. 

4. Weissman. Clerk; f./SY 1.5 Prinrur. Dickcnson Publishing Co.. 1967. 
5. McCarthy. John. et. at.; LISP 1.5 Pro~ramnreri Munrrrri'. The MIT Prrss. Second edition IYbS. 
h. McCarchv John; Recur\ive Functions of Symholic Exprcssicinu and Their Conlputntiutt by Mnchtnc. 

pp. 7Y3-XO2. 

17 Dec 177h. pp. 1235-!242. 

P d  I. CAC'd 3. 4. April I9hO. pp. l#4-I95. 

200 



.-. 

-_  

, 

... 

. .I 

i '. . 
i .  ,.:. 

t 

Figure 1 

(35 . ((ABC . (35 . NIL)) . (ABC . NIL)) 
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Figure 2 

201 ' 



' I  

I 

i 

.*./ . r , 

L2 
372 4 

(LIST (QUOTE FO~)) 

Figure 3 

A 

Figure 4 

20% 

' ,  







I 

- .  . 

N?? - 2 81 7 O 
21 

DATA REPRESENTATIONS IN PDP-10 HACLISP 

Guy Lewis Steele Jr. 
tlassachusetts Institute of Technology 

Laboratory fog. Computer Scieace 
(fowerly Project HAC) 

ABSTRACT 

The internal representations of the various UacLISP data types are presanted 
and dPscussed. Careain implementation tradeoffs are considered. The ultimate 
decisions on these tradeoffs are discussed in the light of FacLISP's prime 
objec'tive of being an efficient high-level languogs for the implementation of large 
systems such as MCSYilA. The basic strategy of garbage collection is outlined, 
with reference to tho specific represenSatiens involved. Certain 'clever tr. &ck:s* 
are explained and justified. BIie .uddress space crunch. is explained ana some 
alternative solutions explored. 

INTRODUCTION 

llacL1;SP is a version of LIS7 which is used not only as a user dpplication 
language but. as a systems programming language, supporting such system2 as HACSYMA 
and CONNIVER. As such, it has been carefully designed with speed as one of its 
major goals. Generality, ease of usd, and debuggability have not been neglected, 
but speed of compllad code has been the primary considorat?on. This is a departure 
from the traditioniti vie# of LISP as a friendly and general but slow and clumsy 
language. 

The representations of data objects in UacLISP have undergoce a continuous 
evolution towards this goal. When XacLISP was first cr8ated, t h e  data 
representations were designed for simplicity and compactness at the e,gense of 
speed. Sinre then there have been at least two major revisions, each to %peed up 
compiled code and simplify the processing of tho data. Here we discuss EKe current 
implementa'ion on the PDP-10 (H&rLISP also runs on Hultics. and OCI the 'LIS6 
machines' being constructed at the HIT Artificial Intelligence Laboratory). We 
shall contrast it with previous FlacLISP implementations and implemen'tstions of 
other LISP systems, and discuss some of the design decisions involved. 

ORGWIZA?loN OF T H E  PDP-10 I 
The data representations in nacLISP have been carefully daslgned to take 

full advantage of the PDP-10 architecture. ! full undrrstandlng of the design 
dscirions involved requires the following minimal knowledge of the PDP-10 
Instruction set. 

The PDP-16 operates on 36-bit words. Hemory addresses designate words, pot 
bytes, and are 18 bits wide; thus two addresses can fit in one word. There is a 
class of instructions which manipulate half-words; for example. one can store into 
half of a memory word and elthep not affect the other half or set the other half to 
ali zeros or all ones. 

The PDP-10 has 1G accublulators, each 36 bits wide. All but. one can be used 
for indexing; all cP.n be used as stack pointers; all can be used for arithmetic. 
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I The accumulators can also be referenced as the first I6 memory locations (though 
they are hardnitre registers and not actually rneaiory locations). 
explainvd later. MacLISP devoter certain accumulators to specific purposes. 
Accumulator G contains the atom NIL. Accumulators 1-5 may contain pointers to data 
obJects; these are used to pass arguments to LISP functiclns and return values fraa 
them. Accumulators 6-10 are scratch registers, and are generally used for 
arithmetic. Accumulator 11 is reserved for a future purpose. Accumulators 12-15 
ars usad for stack pointers to the four stacks. 

For reasons f 

1 Every user FDP-10 instruction has the following fomat: 

i 
address I 

Each instruction has a 9-bit operation code and a 4-bit field specifying an 
accumulator. The effective memory address (or immediate opbrand) is un!fortiily 
computei, by adding to the 18-bit address field the contents of the accumulator 
specified by the 4-bit index field (d zero index field means no indexing). Ir the 
Sadirectioc bit "@* is set, then a word is fatched using the computed address and 
the process iterated on the address, index, and C fields of the fetched word. In 
this way the PDP-10 allows multiple levels of indirection with indexing at each 
step . 

WCLISP DATA TYPES 

XacLXSR currently provides the user with the following types of data 
objects: 

FIXNUn Stngle-precision integers. 
FLONUH Single-precision floating-pcint numbers. 
BIGNUH 

SYilBOL 

LIST 

integers of arbitrary precision. The site @f ah integer arithmetic 
result is limited enly by the amount of storage available. 
Atomic symbols, which are used in LISP as identifiers but which are also 
manipulable data objects. Symbols have value cells, which can contain 
LISP objects, and property lists, which are lists used t o  store 
information which can be accessed quickly given the atom. Symbols w e  
written as strings of letters, digits, and other non-special characters. 
The special symbol NIL is used to terminate lists and to denote the 
logical value FALSE. 
The traditional CONS cell, which has a CAR and a CBR which are each LISP 
objects. A chain of such cells strutig tagether by the!r CDR fields is 
called a list; the CAR fields contain the elements of the list. Tho 
special syr;;bol HIL is in the CPR of the last cell. A chain of list cells 
is written by writing the CAR elements, enclcsed in parentheses. A non- 
W!L non-list CDR field is written preceded by a dot. An oxample of a 
list Is (ONE nt0 THREE), which has three slenents which are ala symbols. 
It is made up of three list cells thus: 
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car 

ONE THO THREE 

A R M Y  Arrays of one to five diaensions, dynmically allocatable. 
WiNK Short vectws, similar to LtST cells except that they have more than two 

components. This data typa is fairly new and is still experimental. 

POINTERS 

In HecLISP, as in most LISP systems, the unit of data is the pointer. A 
pcinter is typically represented as a memory address, witf. the components of the 
data 0bj3ct pointed to in the memory at that address. Tbe reasorl for this is that 
LIS? data objects have varying sizes, and it is desirable to manipulate them in a 
uniform manner. Numbers, for example, may occupy varying numbers of words. and it 
Is not always feasible to put one as srich into the accumulators. A poin*.er. being 
only 18 bits, can always fit In one accumulator regardless of the size of the 
object pointed to; aoreover, it rewires only 18 bits for one data object to 
cocteln another, since At need acfually only contain a pointer to the other. 

Given a pointer, It is necessary to be able to determine what kind of 
object js being polrrted to. There w e  two alternatives: one can either have a 
field in every data object specifying what type of object it is, or encode the type 
information in the pointer to the object. The latter method entails an additional 
choice: one can either adjoin type informarion to the memory address (in which 
case it takes more bits to represent a pointer), or rrrange it so that tho type is 
implied by the memory address itself (in which case the memory must be partitioned 
into different areas reserved fcr the various data types). nacLlSP has generally 
used this last solution, primarily because of the half-word eanipulation facilities 
of the POP-IO. Two memory addresses wit1 ftt in one word with no extra bits loft 
ov0r. (Contrast this with .in IBFI 370, which has 3Z-b?t words and 24-bit addresses; 
on this machine one dould use 32-bit pointers, oticodlng type information in the 
extra eight bits.) This Is extremely useful because a list cell will fit in one 
word; the left half can contain a pointer to the CAR and the right half a pointer 
to the CCR. 

ihe method HacLISP presently uses for detsrmining the type of a data object 
Involves using a dats type table. The 10-bit acQfess space (25611 words) of the 
PUP-10 is divided into segments of 312 words. A11 objects in the same segment are 
uf the Same data type. To find the data type of an object given its address, one 
takes tha nine high-order bits of the address and uses them ta index the data type 
table (called ST, for Segment Table). This tabla e.ltry cuntrtns an encoding of the 
drta type for objects in the Corresponding segraent: 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

0 if stumic, 1 otherwise. 
1 if list cells. 
1 if fixnums. 
i If flanums. 
i if bignums. 
1 if symbols. 
1 if arrays tactually, array pointers; see below), 
1 if value ceils fnr symbols. 
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Bit 8 
Bit 9 it ciirreatly unused. 
Bit 10 1 if meqory exists, but it net used for data. 
Bit 11 1 if maraory does not exist. 
CBt 12 1 if memory is pure (rekd-only). 
Bit 33 1 if hunks. 
Bits 14-17 are currently unused 
Bits 18-35 (the right half) contain a pointer to the tymbul 

1 if number stack (one of bits 2-3 should also be set). 

representing the data typys, namely one of LIST, 
FIXNUM, etc. The symbnl W WH is used for segments 
containing no standard MacLfSP data objects. 

That ancoding is redundarrt to take advantage of the PbP-10 instruction set and to 
optimize certain common opsrations. There is an instruction which can test 
s%lected bits in a half-word of an accuwlator an4 ski2 if m y  are set. Thus, one 
can vest for a n u a e r  by testing bits 2, 3, and I togeiher. Bit 0 (the sign bit) 
is 1 for list, hunk, and value cell segments (nan-atoms) end U for all others 
(atoms). This saves aft instruction M e n  making the very COBPlOn test for atn~n-ness. 
since one can USQ the skip-on-memory-sign instruction instead of having 20 fetch 
the table entry into an accur~ulator. ?he right hrlf of I table entry contains a 
pointer te the symbol which the HacLiSP function TYPEP is supposed to return for 
objects of that type. Thus. the TYPEP functlon need only extract the right half of 
a table entry; it does not hare to test a11 the bits individually. Finally. ths 
system arranges for &ll thu symbols t8 which tc table entry can point to be in 
consecutive memory locations in one symbol Segment. Sincr these symbols have 
consecutive memory address, the tight half of & tablo rntry ton be used to index 
dispatch tables by type. For r x ~ p l o .  the EQUAL function. which determines whether 
two LISP objects are isomarphic, first compares the data types o f  its two 
arguments; if the data types match, then it does an indexed jwp, indexed by the 
right half of o Segment Table entry, to determine how to compare the two objects. 

By way of contrast. let us briefly consider tha storage convention formerly 
used by HaCLISP. ffaaory was partitioned into ieve*8l contiquaus regions. not rll 
of the S a m  size. The lawist and highest addresses uf each region were known 
(usually the low address of one region was one mrs thrn the highest address of the 
region below it). ta datermine the data type of 8 pointer it was necessary t o  
compare the aedress to the rddi-esset of all the boundaraer cf the regiods. This 
was somewhat faster than the currcrr?t. table method it only m e  or two comparisons 
werr needed (as 4n determining whather & poihter gotnted to I nuolber, since the 
number regions wore contiguous), but rlowrr in tho gonrral case; furthermorr, 
there was no conventent way to dispstth m ths data type,. On the other hand. the 
table msthud reqgires space for the entirc, 512-word tablr, bven if otrly a small 
number of segments are in use. (Them is another 512-word table for use by the 
garbage collector, the tC PiegrPent Table (CCST), which doubles this yena:ty.) The 
deciding advantagr of the table method is that tt permits dynrlrlc oxpansion of the 
storage used for 4ach kind af data. The region mothod requircss all list cells. for 
example, to be in contiguous region; once ?his rcgion is fixed, there is no easy 
nay to expand it. linter the table QtJthQd, any currently unused segment can b e  
presasd into servicr for list calls merely by changing its table entry. An 
additional bonus of l;hd tabla scheme is that the space required Tor the 
instructions to do a type-check is small, m d  so it is often worth-while to compils 
such type-checks in-line in compiled code rather t h m  calling Y eype-checking 
subroutine, 

In practice new data orlgmrats are not rllocated randomly, but from the top 





f of memory down. 
1 

As new pages of memory are needed they are acquired from the t i w -  
sharing system and used for segments (on the ITS system, theics are two segments per 
page). Compi?ed prograas are loaded starting in low memory and working up; thus 
between the highest program loaded and the lowest data segment allocated there is a 
big hole in memory, rhich is eaten away from both ends as required. This hole has 

l heen whimsically named "the BIg 8ag Of Pagesm from which new ones are drawn as 
needed; hence the name *BIBOPm for the scheme. (The TOPS-10 timesharing system 
providgd by DEC does not allow memory to be grown from the top down, but only from 
the botton up. When running under this time-sharing systes ?lacLISP has a fixed 
Pegic.? for hading programs, and allccates new data segments from the bottoa up.) 

DATA REPRESENTATIONS 

i 

List cells, as mentioned above. are represented as single words. R e  CAR 
pointer is in the left hrlf of the wrd, and the COR pointer in the right half. 

Fixnums are rapresentrd as single nords which contain the POP-10 
representation of the number. As explained more fully in reference 1, this 
representation permits arithmetic to 3r performed easily. If a pointe. to a fixnum 
Is in an accumulator, the7 any arithmetic instruction can access the value by 
Indexing off that atctiwh:or wit+ a zerb base address. 

The left half of this 
word is all zeros or all ones, representing the sign of the number. This 
representation of the sign Is compatible with that for fixnums and flonums; thus 
the sign of any number can bo tested with the test-sign-of-iaemry instruction. 
(Bignums were formerly represented as list cello with special polnters in the CAR; 
this did not permit the compatibility of sign bits, and made it difficult to test 
for either numbers or lists.) The right half points to a list of positive fixnums, 
which represent tne magnitdcie of the bignure, 35 bits per fixnum, least significant 
bits first in the list. A list is used inslcead of a contiguous block of stotase 
for both ease of allocation and generality of usa. The least significant bits come 
first in the list to ease the addition algorithm. 

Smbols are quits complex objects. Each symbol has one word in a symbol 
segment and two a3rds it, another segment. The right helf of the one word points to 
the symbol's property list, which is an ordirar! list; the left half points to the 
two-word block. T h e m  two words in turn IVQ laid out so: 

Flonums are represented as single words in a manner similar to ftxnums. 
Bigr?ws each have a stngle word in a bignum segment. 

s 
i 
I *args* property pointer to print name 
t 

bats pointer to value cell 1 
.. .I 

nte 'bits' have various rpetlalixed purposes. Tha value cell for the symbol is in 
a value cell segment. Notice that bits 13-17 of tho first word are zero, 1 specifying no indexing or Indirection. This pernits an instruction to indivect 
through this word to get the value of the symbol. Getting the address of the two- 
word block also takes an instruction; thus one can get the value ot' a symbcl in 1 two Instructions. The @argsa property is used by the ?lacLISP interpreter for 

I checking the number of argument to (I flrinctiort (for sywbols ire also used to dertote 
ths names of functions). The print n m u  is a list of fixnums containing the B characters of the s ~ o ~ * r  name, packed five ascit characters to the word. 
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The special symbol Nii is not rePieSei,tad in tbis manner. 
This allorf? a particularly fast check for NIL; 

The address of 
NIL is zero. one can use the Jump- 
if-zero instruction. This is why accumulator 0 (which is also memory location 0) 
is reserved for NIL. Accumulator 0 normally contains zero itsslf; in this way 
taking CAR or CDR cf NIL yields NIL. This allows one to foilow a list by CDR 
pointers to a predetermined depth and cot have to check at each step whether one 
has run off the end. (This trick was borrowed from InterLISP (ref. Z).) Host 
functions make special checks for NIL anyway, so this non-standard representation 
is not harmful. PRiNT, fer example. just checks for NIL speclally and just outputs 
NIL without leaking fer ?! print name. MIL does have a property list, but it is 

not stored where it is in other symbols; the proparty list functions must check 
for NIL (which takes only one instruction anyway). NIL has  SO value cell, and 
always evaluates to NIL. 

One might wonder why normal symbols are divided up into two parts, aEd why 
the value cell is not simply part of the two-word block. The answer is that Once 
censtructed the two-word black normally does not chanse, and so may be placed in . 
read-only memory and shared between proces,es. If several WCSYICA processes are in 
use, thls sharir,g nay ease core requirements by tens of thousands of words. 

To save even Gore mamory, rynbols are not prwidsd with value cel'h until 
' 

necessary (most symbols are never actually given values). Instead, they w e  made 
to point to a "standard unbound" value call, which is read-only and contains the , 
marker specifying that no value is present. When an attamyt $s made to writd into 
this value cell, the write is intercepted and a new value cell crerted for the 
symbol in question. 

(Besides making parts of symbols read-only, XatLIS? currently allows for 
read-only Xist cells, fixnums, fXonums, and blgnumr. These are useful for 
constructing constant data ob jects which are referred to by compiled code but never 
modiTied, and for proporties on property lists whose values are not expected to ! 
change (such as function definitions). In certain cases, such as the property-list 
modifying routines, checks are .ado for read-only objects, and such objects are 
copied into writable nemory if necessary to carry out the operation. Thin copying 
causes the old read-oaly copy to bo wasted from then on, but this is acceptable as , 
such copying is seldoio necessary in prrc:ice. This strategy may be contrasted to 
the approach o? Intel-LISP (ref. Z), in which un entire page of memory is made 
writable if an attempt is made to modify any object on that page. This apnroach is 
more genaral than tha,r of HacLISP, But in prectice tends to reduce the sharing of 
pages among procqsses, Increasing tho load on fhr time-sharing system.) 

Value c&$, though not properly r ?lacLISP data tyc.8, lire worthy of 
dlscussion. They artt single words, contrlning a pointer in the right half and Zero 
:n the left half. This apparent waste of 18 bits is motivated by speed 
considerations. Compiled code often references 3he vrlue cells of global 
variables. Sincls the left balf of a V B ~ U O  cell it zero, 4 test for NIL can be done 
with I single skip-if-meaory-zrro instruction; this is useful for switches. 
Furthorrnore, if a value c.11 is known to coiitrin 8 list, the CAR or CDR ccn be I 

tahen In one instruction, w i n g  a half-wml instruction with indirect addressing, 
bocauso thr Yqdex acd indirection fields ara Z B ~ D ,  without having to fetch the 
valua into accumulator first. Similarly, if t value cell contrins number, the 
sign can be tested ana the valua (except for hignuws) accessed by using indirect 
addrmsing, (It should Be noted :bit compiled code doer not keep local variable 
valuss In ralue cells, but uses even m ~ e  clever techniques involving stacks. 1 

Arrays have a complicaked representation because they can b6 of arbitrary 
8120, and must be alloca9e.j as r contiguorrs block far efficient indexifrg. T!te 
solution ChOdan is to split tt into two parts: II PPecial ARrny cell (ca1Xsd SAR, 

t.... I 

I 

I 

1 
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.I 
not SAC, for some reason) In an array scigment, and the block of ciata. The data 
itself is kept just below the hole in memcry. floattag above loaded program. When 
new program are loaded, tke array data is shr:Yfled upward in memory, and the 
Special array pointers are updated. Similarly, when allocating % sew array or.. 
reclaiming an old one it slay bc necessary to shuffle the array data. 

. .  

- 
The specie1 array p~iratec' is two words: 

? 

special array 
pointer (SAR) 

infot ma t iun 

- .I 
'. \ 

A complftta discussion of the SAR contents and array access mthods It beyond tho 
scops of tnis papnr. Notice. hawevsr. that the indirection and index flcelds (Ire 
chosen to be 0 and 7 for the two SUI words. The first admits an indirection for 
calling the array as if it were a function, according to RrfLfSP cowention; the 
second allows indexing off accumulator 7 for accessing the data from coropiled code. 
Soe reference 1 for a tuller trdrtaen\t of thls. - Hunks are P i k ~  list cells, but consisf ol several contiguous wfds. T h y  
arb alvays a power of two in sire, for convenience of altocatitn. W m k s  OC siarr 
other than powers ol two are created by allocrting a hunk of a size just big 
enough, and then marking some of the hrlfwardr as being unused by filling them with 
a This w13 chosan Because it never points to I data 
object, and because it is easily gansratsd wlth instructions that set half- or 
full-words to all ones. It is tfmo-consumg to determine the actual size of 4 
hunk, since one oust count the number of unused halfwords, but then hunks wbrm 
created as an exportamtat space-saving reprosantation with properties rome#hrte 
betwsrn t h Q m  of lists u\Q arrays, 

pofnter (actually 777777). 

O A R M E  COLLECTfOW 
Every so often thore C G ~ S  (I paint when all t h  spncs currently existinn 

for data objects has been allcrcatrd. At this point there are two rltarnetivas: 
El] allocate P new segment for data objects of the type noadad. 
[23 attempt to reclaia spaco used b/ data objactb which are no longer nseded (by 
tho process of garbage collection). 
A study by Conrad lndicatas that the bast stratajy Is to do [21 only if Ill fails 
because one's address space (256K words, in this case) is co(DplWa1y elloeatad, 
PROVIDED that one has the faclllry to cmvrrct om's data storage and da-r;locatr 
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segments. (Ref. 3) Since JlacLISP currently hasn't the ability to de-allocate I 
segments ('once a fixnuro, always o fixnun'), this strategy must be md?fied. One 
must be cautious about allocating a new segment, since the allocation cannot be 
undone; thus MacLISP tries garbag9 collection fit-? t unless explicttly told 
otherniso by tho programerp and theli allocates a new sepent if garbage collection 
fails to reclaim enough space far the requited data type. 

Suppose, for example, that it is necessary tn allocate a new list cell. 
The CONS function checks the fraeltst for the data type 'list cell"; if the 
frmilist is not empty, thei; the first cell on that list is used. (There is a 
freelist for each data typb, which rnn$ists of all ths currently utrused objects in 
all the segments For tbat data type, strung together such that tach object poibts 
t% the next. lRis car! be done even for objects whfch ordinarily do not contsin 
pointers, such a5 flxnums end flonums, since those objects ate lerga ertaugh to 
contain at least B single poigrter. fhere is il set of fixed locations, one for sach 
data type, which contain pointers to the first cells on the rerjizctlve freelists.) 

If, in our exaznple, the list coll Preellst is empty, then the garbage 
collector is invoked. Controf.1ed by user-settable parameters, the garbage 
collector way decide simply to rllocate r new list sswent (which 'Involves getting 
a new memory page from the tim-rharing system, alterinq the Setpaent fable, and 
adding the newly allocated objects trr tbe freelist). If it decides not to do this, 
cir if the attempt fails for any reason, the;. tie actual garbage collaction process 
it undertaken. This involves fiilding all the data objstts which are accessible to 
the user program. An object is arccessiblls if it 1% pohted to by coinpiled code, if 
pointed to by a global vilrirble or intarnal pointer register (such as accumulators 
I-S), or if pointad to by another clccrssiblr objsct. Notice that this definition 
is rscursive, and so requires a recursive s e w h i n g  of all tho data objects t o  
determine which a m  accessiblc~. This searching is known as the E W k  phase of the 
garbage csllector. 

Associated with each data object is a 'mark bitD fQr US. by the garbage 
collector. As the garban* Collector locates each accossiblr object, it sets that 
object's mark bit. For list crllt, IIxnums, flrmums, Bignutas, and hunk, these 
bits are stored jn b part of memory unrrlated to the assrory occupied by the data 
objects theuirelvcu. For rach S12-WQrd regaent t h w e  is li "bit block. of 16 m r d s r  
rach holding 32 mark bits. Tho locatim of the bit block Is found by using tRe top 
9 bits of the address of tho data object to indrx tte GC Segarnt frblo. (Bit 
CIbcka thsmre:vrr are allocated in special 'bit block* sements: thus bit blocks \ 
&re treated internally as yet anottclr bata type. Occasionally %he obscure error ' I 
message 'CLEEP - OOT OF BIT BLOCKSa is printed by LISP in tha highly Infrequent. 
situation whore it cannot allocate 1 naw bit block after allocating I new segment 
which needs a bit blQCk.) No bit blacks are nrrdrd for syabolr and special array 
pointers. Recall that the left half J f  a symbol word points to a two-word block. 
Since such a two-word block It always at aI; even rddr9ss, the 104 bit of the 
pointer to it It normally zero. This bit is used during garbage collection as tho 
murk bit for that symbol, SoecirP array pointnrt hevo t o m  in them for I vsriety 
of bits, and one of them is used IS mrrk bit- Value cells are only reclaimed 
when the syrabol polnting to them is Feclaimsd (and not even then, If cornpized code 
points to ihs value cell, which fact is indicated by li bit 13 the two-word symbol 
block pointing to the value call), rad sa thry require no mark bits. 

To aid the garbage callactor in *,he @ark phase, the QCST contains come bits 
which also encoda *,he data type ~rdurdmt:y, in a lore usePuP to the marking 
routlne. The bits indicate whether the object must be mrk6d, and if so the method 
of rparklng; 
the object now bring JIaFkQd. 

they also indicate how many pointers to other objects are contrine4 in , 
I 
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After recursively locating and marking all accessible cells, the garbaga 
collector then performs a sweep phase. in which every data object is examined, and 
those which ha,ve not been mzlrktrd are added to the appropriate freelist. To aid the 
s w a p  phas~, each QCST entry has a field by aiii~b i?? cztrf8s fiji segarents 5f the 
§ m e  datd type arb 1lnkt.d together in it list. In this way the garbage ColleCtOr 
does noe need to scan the entire sement table looking for entries for each type. 
For eacn wiFjMent, the garbage sollector examines each data object in the segment 
and its mark bit, and rdds tho object to the appropriate freelist if the mark Fit 
is not set. For synr~ols and arrays 11; also resets the mark bit at this time. (Bit 
blocks are reset at the beginning of the mark phase.) 

If, in our example. the garbage t-nllcctiori process has not reclaimed enough 
3ist cella (as detarmiaed by anoti-er programer-specified parameter), than it rill 
try to allocate one or more new list cell segments. If, however, this causes the 
total number of list cells to excetd yet another progp&wer-speclf icd p a r o t o r ,  
then a *user interrupt. is signaled. and a functicn written by the Drograsaer steps 
fn. In RACSYR4, this function is the one that typically informs ycru: 

YOU HAVE RW OUT OF LIS7 SPACE. 
W YOU H W T  WWE? 
TYPE ALLj W9EE; R LEVEL-NO. 08 THE W& OF R SPACE. 

The reason for all these parmaterr is the necrssary crution deswibad abwe; if 
111 tne available sagmentr gat ailrreated as list cell sements (which can cvlly 
happen due to internsalate expression swell, for exas~lo), then *,hey Emnot be u m d  
for anything olro, including cmpiled code. TRij is e y ,  in MCSYM, if you use up 
too w c h  list spas@, you can't laid i.p DEFINT theteafirr! 

Array data (as apposed to the SAR objects) is handled by a special routine 
that knows how to struffle them up ant down in core as nrc~ssory. When a new array 
is allocatad, the garbage collector has the sad decisian to m k e  as to whether to 
allocate more memory or otterapt to reclaim unused @ways. Thr decision hato is 
less critical, since moaory allocattod far arrays erUr Or de-allocated, and so no 
DrcgrarPPtermapecifio4 paramoberr w e  usaG. Array data only goes away when the 
Corresponding $AR fu reclaimed by the n o m 1  garbage collaction process (or when 
the array is explicitly killed by the user, using thr *REAPMY function). 

For the intetertsd roadeb , tho .amat of a CCST entry is shown herr: 

Bit 0 
Bit 1 
Rig 2 1 If syarboxs. 
ait 3 
6if 4 

Bit 8 

1 if data cbjocts In this ternant amst be markad. 
1 if this segment contains value cells. 

1 if special array pointers. 
1 If the right half of this data object Icmtainr a 
pointer (true of list, blgnuar. and hunk data objects). 
1 if tho left half of this dutr object contains a 
painter (;rue 04 Ifst and hunk objects -- nate th& 
symlols and specfal array painters get special traatment). 
It is elnays true that bit 4 is set if this one is. 
1 tI hunks (in this etsa, tho ST entry is used to 
determine thn size of the hunk). 

same date type, or zero if this is tae last such entry. 
(Ssment 0 never contains data objaccr, except NIL, 
whfch it treatad specially anyway,) 

&it 6 

Bits 7-12 arc unused. 
BIts 13-21 contain the indrx finto G C M  of the next entry with the 
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Bits 22-35 contain the high 14 bits of the address of the bit 
block far this sewent, if any. 

Since bit blocks are 16 words long, the low four bits of :he address of such a bit 
block are always zero. Thus the GCST entry only needs to contain the high 14 bits 
of the address. These 14 bits are right-adjusted in tire GCST entry for the 
convenience of a clever, tightly-coded marking algorithm. This algorithm works 
roughly 8% follows: 
[a] Shift the address of the data object to be marked right by 9 bits, putting the 
low 9 bits into the next accumulator. i 

[ b ]  Use the high 9 address bits to fetch a GCST entry into the accumulator holding 
the high 9 address bits, skipping m the sign bit (whether io mark or Rot). 
[cl Test bits 1. 2, 3 (special treatment), skipping if none are set. 
jd] Shift the two accumulators left by 4 bit;. This brings four Of the low 9 
address bits back into the first accunulator, which together with 14 bits fron the 
GCST entry yield the address of a knrd in the bit block. The 5 bits remaining in 
the second accumulator indieate the bit within the ward to use as the mark bit. 
Finally, bit 4 is brought inta the sign bit of the first accumulator. 
[e] Rotate the second accumulator, bringing the 5 bits.to the low end. 
Tf] Indexing off the first accuaulator, fetch the word of mark bits. 
101 Set a mark bit in the word, skipping if it was nos already marked. (If this 
doesn't skip, then w? exit the marking algorithm. It is not necessary to store 
back the word of mark bits.) The bit is selectsd by ind6xfnq off the second 
accumulator into a taole of words, each with m e  bi% set. 
[hl Stare back the word of mark bits. 
[i] Test the sign bit of the first accumulator (bit 4 of the GCST entry:, jumving 
to the ex3t If ndt set. 
Ill If bit 1 is set (bit 5 of the GCST entry), recursively mark the pointer in the 
left half. If brt 2 is set (bit 6 of the GCST entry), mark all the psinters in the 
hurk. I 

[k] Iteratively mark the pointer ii. the right half. 
I have tiikarr fhs trouble to outline ?her6 sieps caretulty because mast of 

them ara single PDP-10 inswuctionf, :arefully designed La petforra two or throa 
useful operations simultanaously. TIM point is that €,le careful design 01 tables , 
end the use of redrindant ericodfPg Can greatly iitcreass the speed of critical inn+?r 
loops. (It should r l b o  bo mentioned that such errrful thought about design Is 
ususlly warranted anly for criticei inner loopr;!) 1 should also mention that m f t  
of the constants which have been aentionsd in this paper (bit numbers, sizes af 
SeslPBntS, and so on) are rapretentsd symbolically in the t8%t of tho HecLlSP code: 1 
one can change the size of a segment by changing a ringlr dcflnition, and the sizes 
af fields in GCST entries, positions of bits, afi5 so on will be adjustad by 
Urcmbly-timcl computations. I have used numbers in this paper only f o r  
cckncrrteness. 1 

Par certain spaces tho mark bits are actually used in the inverted SBI'ISI: 
1 mans nOL marked, and 0 means marked. This allows thr snawp loop to test for an 
entire block of 32. words all 3elnp markad by tercing for a Serb word of mark bits: ' 
th8 loop can than just skip over the block, rnd avoid tssttng tha individual bits. 
The test for a z6r0 word is done while movPnQ the word into en aecuwilator, wnlch 

' 

I 

has t~ be done anpay, and to is rasontirlly free. 1 
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ME ADDRESS SPACE PZOBLEM 

One of the difficulties currently facing HacLISP is tho "limited" address 
spece provided by the PDP-10. The archite-tire of tbe mazhine inherently limits 
addresses to 18 bLts; hence ? single prosram cannot address more than ?56K Word5 
of Icernory. Cmbtned with the fact that MasLISP does not presextly zillow for de- 
allocation of data segnents :or of :?aided conpilcd code, for that matter), this 
ssverely liqits the use of nemcty. S:;e XkCSYMA problems, for example, would 
require mcch nore than 256K of grogrss acd list data to ..ol+e; others require 
less than 256K at any one time, but cannot be run beeair-e of the de-allotalioii 
difficulty. 

It is fairly clear that completely solving the de-allocation problem would 
be more trouble than it is wntth, and rould not stave off the fundamental 
difficulty indefin,fzly. As loth ?L!CSYKA problems 2nd HACSVMA itself grow in size, 
we wkll feel Piore and more ths "acidress space crwn:h*. %e only gen?ral way to 
tOlV@ this y-oblem is to arrance fcr a bigger address space. 

There are three solutions whitl. are presently at $11 realistic. Two 
involve continued U M  of the PDP-IO architectwe, but modified iol several ways tr, 
allow Brograms to access more nemsry. These modifications m y  or nay not be made 
available by DEC, an& may or may not be retrofit:able ta the MCSYMA Csnsortium 
%LlO processor. The rla-ifference between the two schemes involves the decisior. as tQ 
whether HacLISP data winters should still fit into I8 bits. I f  not, there js 
immediately a factor-eZ-two nemory penalty, since lisl cells must be two words 
instead of one. However, there are also some technical advantagqs %h) ruch an 
arrangement, as well as the ahvious advantage that list saace can becnme bigger 
than 256K. If pointers .we kapt to 18 bits, then all LISP data must fit in 256K. 
tut any amount 5f ca~pile& code and any nuuber of arrays could be loaded. Bcbtn of 
these schrims have been w k e d  out on paper to h great. extent by Guy L. SteeIe Jr. 
and Jon L. White, to compare their merits and a prepire for the possibilitj that 
one o? them may Le needed. Either scheme wocld require 'T good deal of Work (62 
least onc to twr, man-yeax) to implement fully in LPot:I the interpreter and tlW 
conpil-,r. 

alae third solution involves moving to another machine archi tecCure 
altogether. fhts leaves open the choice 6f machine. Few comerciallv availah;.e 
machines are as conducive tu tile support or LISP as the POP-10, and it prcbably 
would not be practical to undertake a comirletely new Implementation. ?lacLISP doss 
prsrently run on Multics [on a Hansywell 6180 processor), bot ?s rather slow, and 
the Multics system 1% axpenrive and not widely available. The best h t  in this 
direction s0ems to be the LISP machine, rlesigr.6d by Richard Greenblatt, Tom Knight, 
et al. at the RIT Artiffetal Intelligence Laboratory. The prototype mac3ine has 
been working for a nu&nr of months n w ,  snd the basic software is begiim..nj to 
rt!Jw signs of life. It Is not inconcetvable that RACSYM may be ren experimeb tally 
09 it by Sumeacr 1977. fhe LISP machino has a 23-bit address space, and makos m o m  
efficient use of its mcmory than Q V C ~  %he PPP-10, However, althoubh it is much 
less expensive than a XLlO, it is not desicned for time-sharing. 

The PDP-IO in, lamentation fir MacLISP and of RACSYNA will certainly bo 
UsefJl for at least the next five to ten years. After that, only time can tell. 

SUtlW4RY 

MacL:S? is des1gne:l to bo ap. affictant, Irigh-level syst~ms-w~,r~~-g 
language, rather than pricarily 4*t applications programing lhnguage. Its Interne1 
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organization is a carefully chosen balance betwsen useful generality and special- 
case efficiency tricks. 
exploit the architecture of the host Jachine tr, gain speed in critical places 
without great loss of generality. The use of symbdlic assembly parameters can 
avoid tyi?g the system to a single rigid fcrmat. The greatest effort has been 
expended on spseding up type-checking, access to values in global variables, and 
garbage collection, sincll -these are among the most frequent of LISP operations. 
The address space crunch may eventually force yet another redesign if the PDP-10 
architecture is retained. 

A tlloughtful choice of r' ta and table representations can / 
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FAST AVTHIIETIC IN MACLTSP 

Guy Lewis Steele Jr. 
tlassachusetts Institute of Technology 

Labdatory for Computer Science 
(formerly Project MAC) 

ABSTRACT 

HacLISP provides a compiler which produces numerical code competitive In 
speed with some FORTRAN implementations and yet compatible with the rest of the 
HacLISP system. All numerical programs can be run undrr the RacLlS? interpreter. 
Additi-naL ~dnclarations to the compiler specify type information wtidh allcws' the 
generation of optimized numerical code which generally does not requi:s the garbaqs 
cgllection of temporary numerical results. Array accesses are almost as fast as in 
F O R T W ,  and permit the use of dynamically allocated arrays of varying dimensions. 
Here we discuss the implementation decisions regarding user interface, data 
representations, end intarfacing convent~ms which allow the generation of fast 
numerical LISP code. 

INTROUUCT ION 
For several years now tlacLISP has supported a compiler which produces 

extremely good numerical code. Ieasurements made by Fateman indicate that the 
generated code is competitive with F08'ir4. (Ref. 1) Expressinp such numerical 
code dGes not require the use of special numerical language embedded within LISP, 
in the manner that some higher-level languages allow the user to write machine code 
in the middle of a program. Rather, all numericel programs are completely 
compatible with the tlacLISP interpreter. The compiler processes the interpreter 
def initions along with additional numerical declaratims. These declarations are 
not required; omitting them merely results in sionsr comD!l%d code. For 
convenience, special numeric functions are provided whic;. carry ieplfcit declared 
type lrtfprmatioc (such as + and +$ for integer an4 floating palrbt addition, as 
opposed co PLUS), but the user n m d  not use them to get optimized nunerical code. 

CHANGE5 TO THE HACLISP LANGUAGE 

The primary change to the ?lacLISP language, a& seen by the user, was the 
creation of numerical declarations for us0 by the cmptler. A general compiler 
declaration mechanism was already a part of the lerrguagc;, so adding the numerical 
declarations was not djfficult. This' mechanism involves writing 8 EtdctISP 
sxpression beginning with the word DECLARE and followed by various declaratims. 
Declarations may be global e:- local. Global declarations are written by themselves 
in a file, and affect all following functions; local declarations at-0 written 
within the text of a MacLXSP function, and affect only the scope of the sonstruct 
they are written within. 

The simplest new declarations aie statements of the types of variables. 
Recall that rlacLXSP has three b a s k  numeric types: fixnum, flonum, and bignum. 
Theca arc (respectively) single-precision integers, single-precision floating-poin t 
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numbers, and arbitrary-precision integers. '?nLy the first two types can be 
operated on directly by hardware instructions, and so they are the Only tYDeS Of 
interest to the conpiler. An example of a variable declaration: 

(DECLARE (FIYNUFI I J K) ;single-precision iztegers 
(FLONUM A B FOO ZAP) 
(NOTYPE SKURF QUUX)) 

;single-gr+=cision reals 
;no specific type 

If a variable is always numeric but sometimes may hold bignums, it must be declared 
NOTYPE. The default assumption is that a variable is NONPE (that is, may contain 
any MacLISP data object); ROTYPE declarations are primarily useful to undo 
previous numeric declarations. 

The types of the arguments and returned values of functions may be 
simi1ar;y declared: 

(DECLARE (FLQNUM (CUBE-ROOT FLONdM) 

(FIXNUM (FIBONA'JCI FIXIUUM) 

(NOIYPE [EETUEEN-ZERO-AND-ONE-PREDICAYE FLONUH))) 

( INTEGER-POWER-OF-REAL FLONUH FIXNUlq) ) 

(LENGTH-05-LIST NOTYPE)) 

This declaration specifies that CURE-RCOT takes a FLONUH argument and delivers a 
FLONUM result, fhac INTEGER-POWER-OF-REAL takes a rLONUH and a FIXNUH and delivers 
a FLONUM, acd so on. The types of the arguments could also be specified 3y using 11 
local declaration: 

(DECLARE (FLONUM (CUSE-KCKIT))) ;global declaration 

(DEFUN CUBE-ROOT (X) 
(DECLARE (TLONUM X)) ;local declaration 
(EXPT X .333333333)) 

The result type must be specifled by a global declaration, however, and declaring 
the argument types globally also can help the compilei to produce better code for 
functions which call the declared function. 

HacLISP arrays came 
in three types, which are ?%sentially FIXNUM, FLONUM, and NOTYPE. (There are othar 
types also, but these do not concern us here.) The ARRAY* declaration takes a 
subdeclaration specifying the array type; the subdeclaration in turn soucif ies the 
nmes of arrays and their dimensions. Ar example: 

Arrays may also ae declared globally to the compiler. 

(DECLARE (ARRAY" (FIXNUM TUPLE 1 TABLE 2) 
(FLONUM VECTOR 1 M T R I X  2))) 

This declares TUPLE and VECTOR to be one-dimensional arrcys, and TABLE and tlATRIX 
to be a two-dimensional arrays. (MacLISP arrays may have up to five ctimensions.) 
I f  ths vislues of the dimensions &M also known ahead of time, a sllghtlg different 
form may be used: 

(DECLARE (ARRAY* (FIXNUM (TUPLE 43) (TABLE 3 5)) 
(FLONUH (YECT6R 3) (NATRIX 7 17)))) 

731s declares TUPLE to be of length 43, TAB!,& to be 3 by S, and HATRXX to have 17 
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columns and an unknown number of rows. Note that "7" can be used to denote an 
unknown dimension value; even partial dinension information can help the compiler 
to opzimize array accesses. 

The user can write arithmetic code using the traditional names PLUS, 
DIFFERENCE, TIRES, and QL'OTIEKT; these functions work crri any kinds of numbers, 
even bignums, and admit mixed-moda arithmetic. Xrr the p - e s m c e  of type 
declarations, the compiler may be able to deduce that the arglrfi-nts are always 
flor,ams, ;"or exampla, and produce hardware instructions for floating-point 
arithmetic. The user can also use the FIXSW and FLOSW declarations to tell the 
compiler that such "generic" arithmetic will always involve only fixnums or onJy 
f lonums. 

As a ccnvenience to the usar, however, several versions of the coamon 
arithmetic functions are prcrvided: 

generic 
PLUS 
DIFFERENCE 
TIHE3 
QUOTIENT 
REKAINDSR 
GCD 
GREATERP 
LESSP 
EQUAL 
EXPT 

fixnum only 
+ 
* 
I 

// 
\ 
\\ 
> 
< 
s 
A 

flonum only 
+s 
-3 
*s 
//s 

> 
<, 
"S (fixnum exponent) 
s 

(The division functions are written as */I* instead of "1" because "in is a HacLfSP 
escape character.) The functions in the last two columns are completely equivalent 
to those in the first column, Fxeept that they ccnvey sddittorial type information 
about their argmsnts and results. (An exception is that the fixnum-only functions 
do not check for overflow, so in a situation where, for exaapla, lOOOOOOOO ahd 
100000000 were multiplied together, TIRES would produce a bignum, whereas * would 
overflow and produce a not-very-meaningful ffxsus. The flonum-only functions do 
not check for overflow either, whereas tho generic functions give an error ?or 
overflow, and either an error or zoro for underflow.) 

CHANGES TO ra MCLISP IRPLEPYENTASION 
In order that the arithmetic aachine instructions mlqht be used directly on 

HacLISP numeric data objects, it was necessary to modify HacLISP to use a uniform 
representation for fixnums and flonums. Before the fast-arithmetic scheme WQS 
lrnplemerited, HacLISp, like many other LISP systems, used two rapresrntations for 
single-precision integers. One represented the integer as a pointer to r; machine 
word containing the v a l u ~ ,  in the same manner at floating-point nu%bsrs were 
represented. The other encoded the value into the pqfptker itsel?, using pointer 
values which Were otherwise wrthless because they pQi.lted at code instoad OC date 
objects. The motivation behind the earlier dud1 reprewntatlon was to avoid 
allocating sZorage for small inteyer values, which ere frequently used. ( IntorLISP 
has for several years *OP6n-C01~iled" arithmetic functions as single machine 
Instructions. (Ref. 2) Unfortunately, It still has 8 dual representation for 
integers; as a result, befor9 adding twa numbers it must call 8 rautina which 
determines at run-time the represenlation of each number and converts each into a 
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full machine word rapresentation. Compiled InterLISP code also calls a Sisilar 
routine for floating-point numbers, not because of multiple represer,tations, but in 
order to perform error-checking as completely as the interpretsr does. l3is run- 
time checking destroys any advantage dained by open-compiling the arithmetic 
instructions. ) 

The pointer encoding was removed from HacLISP for the fast-arithmetic 
scheme, and all numbers aro ROW uniformly encoded as pointers to Pull machine vords 
which cantaip the lnachine representations uf the velues. In order to avoid 
allocating storage for frequsntly used small integers, therb are several hundred 
wordt crf melrory containing consecutive small integer values, and small integers are 
created by making a pointer to one of these startdard locations, rather than 
allocating a new word for each use of a small integer. [HacLISP does not allow the 
words used to contain numbers to be modified in the way InterLISP allows using the 
SETN primitive (ref. In 
fact, thesf< small integer locations ate even shared among all the MacLISP processes 
in thit time-sharing system by making them read-only.) 

While arithmetic on bignums cannot be compiled as standard arithmetfc 
machine instructions, their represehtation has been chosen to permit sign tests t o  
be open-compiled. A bijnum is t pointer to a word which has the sign of t:ie bignum 
in the sign bit (and in fact t h  entire ieft half), and a pointer to a list of 
fixnums (which represent tblz magnitude) in the right half, Thus all numbers are 
painters to words which contain the sign of the nu&.rr in the sign bit, and such 
functions as MINUSP caq always be compiled as singla mcchins instructions. 

In order to preserve the uniformity of the function-calling interface, It 
was decided that all arguments to functions must be valid RacLISP data objects. On 
the other hand, it is not desirable to h a w  ta "number cons" out of free storage. 
with the garbage coilettton overhead that-implies, in order to pass numbers t o  
futxtions. The solution used was to introduce tiw extra pushdown lists :stacks) 
called the fixnum and flown pdls. The storage in ?hese ipdls appear t:, have fixnum 
or flonum data type, but they ar6 allocated as stcckt rather than as garbaga- 
collected heaps. These stacks can be used t.0 held temoorary numerical values and 
the values of PROG variables which have been declarar) to be nueeric, but they can 
also be used Lo allocate pseudo-data ob joctr compatible with HacLfSP'r standard 
number representation. A pointer to a fixnu% pdl locatlon is indistinguishable 
from an ordinary ffwtum ?or most purposes; it is a, pofnter to a full machine ward 
containing the numeric value. A typical code sequence resulting from cornpining 
(FOO (+ A 5)) is: 

2), so there is na diffLculty in sharing such words. 

;assume accumulator 1 han the pointer value of A in it 
flOVE 7,(1) ;get the machine word for A intc accumulator 7 
ADD1 7,5 ;add 5 to the mwhine word 
PUSH FXP.7 ;purfi resulting word into ftmue pdl 
?!WE1 1,IFXP) ;copy fxp pointer into argument accumulator 1 
CALL 1,FOO ;crii roo 
SUB FXP,[l,,l]; iremove pushed word from fixnum pdl 

To the function FOQ th3 pointer passed in accumulator 1 has the precise format of b: 
flacLISP integer: a pointer to a machine word coqtaining the integer valua. Note 
that the value of the variable A may itself have been such u "pdl number'; tha 
ROVE Instruction would move the machine word value into accumulator 7 whether it 
was a pdl number or an ordihary fixnum. 

One of the difficulples of urjing stack-allocated numbers is that they have 
a definite lifetime; on re2urn from the function they ere passed to, they are de- 
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allocated and no longer exist. By the tins they are de-allocated, there must be no 
more pointers to that nord accessfble to the user program, ~f else subsequent 
references might aee a wfo;lg value hecauss th6 pdl word was re-allocated for soma 
other aurpose. 

A copy af 
a pointer is safe if it can be guaranteed that the copy will beccime InaccesAble 
before what it points to is de-allocated if the pointer in fact points to Q pdl 
number. Alternative:y, a use for a pointer is safe If that us6 doesn't requlra a 
safe pointer. The fast-arithmetic compiler doer s m e  complsx analysis €0 determine 
what situctions are safe. Some stbndarC conventions for safety: 
cl J A pointer A!! s global (special) varisbls m y  have an indeflnita lifetine, and 
so gutting a pointer in a global variable is unsafe. It f o l h w s  that such R 
variable may nct contain a pointer to a pdl nuiaber, sincs ne cannot guarantee such 
a pointer to be srfe. Consequently, my pointer actually obtaineid from RI global 
variable is safe. 
621 Consing a pointer into a list cell (or using R P k A  to put a pointer into an 
exlsbing list call) is similarly unsafe. Pointers actually occurring ie list 
structure must therefore be guaranteed safe. 
[SI It is not possible to return a sdl number OS the value of a function, Secauaie 
there would be no return to 'he code to de-allocate tt. therefore returning a 
pointer from a function is u n d o ,  and all pointers actually returned from 
functions are safe. 
[SI Passing a pointsr at an argument to a function is safe; therefore pdl numbers 
(unsafe pointers) may be passed as arguments to functions. All' function arguments 
a m  t h s  potentially unscfe. They m y  be passed on d o w  to other called functions, 
but may not be returned or athemisa used 8s if they ware safe. 
E32 Pdl numbers may be pointed to by ordinary compiled local vclriskles. Such 
2oeal variables may or may not have unsafe values, drpendfng on mhsrs tRe value% 
came from. The compiler must guarantee that when the VrlU9 of l w a l  vari8bla is 
usrd either tho vdlue is safe or th8 use is safe. 

To overcome this difficulty the notion of safety uas deviloped. 

fiuppose we wrote a function such as: 

(DEFUM ZAP (A) (CONS A 'FOO)) 
W e  are putting the argunrent A into I list cell Ian unsafe use), but tho arguasnt A 
is also (potentially) unsafo. In this situation the compiled code mist create a 
safe copy of the unsafe pointer. The compiled code therefore uses 8 routine PDLNRK 
(.pdl number make.) which che:ks for 8 pdl numbrr and aprker a copy by doing 8 
number cons if necessary. That is, if tho pointer given to PDLNWK is already safo, 
it is returned as is; but if it is unsafe, a safe copy is made with the same 
value. Tho compiled cada for ZAP would look like this: 

; 

HOVEI 2,'F00 ;put constant "roo' in accumulrtor 2 
JSP T,PDLNHK 
JCALL 2,CONS ;call CONS 

imakr sure rccumlrtor i h s  E rafr paintrr 

If A is not a pdl number, PDLNHK does ncthing; but if it is, FDLNRK replaces the 
pointer in accurnulator 1 with a freshly allocated fixnum with the same value QS the 
pdl number. In this way a safe value will be passed to the COW9 function. (Tho 
convention about function rrraumnts boinq pctenbially unsafe has en exception in 
CONS, so thst CONS htrrslf need not always perform FDLNHK on its rrguments. The 
compiler knows abouf this exception, m d  guarantees that anyone who cells CONS will 
provide safe argunentr. Xtr practice, arguments parsed to CONS often can bo 
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guaranteed safe by compile-time analysis, and it saves time not to Save CON3 us0 
PDLNMK . ) 

Notice that one consequence of the use of PDLNHK is that two nufrhers which 
are apparently EQ !i.e. the s m e  pgintsr) may Got be if tho compilcd code has to 
make a copy. For exanple, consider this code: 

(DEFUN LOSE (XI 
(SETQ G X) 
(Ea x 

The result of the EQ test could be NIL, e v m  thoush the clobal variable G 
apparently is assigned the same polnter as was passed to LOSE 45 an argument. If 
an unsafe pointer is passed to L=iSE, G will receive a sefe copy of that value, 
which will not be the same pointer, and so the EP tast wili fail. (this is anrther 
reason why NscLXSP does not have a SEW prhitive; since the compiler can make 
copies of a number without warning, conceivably SETN might atodify one copy of 1 
number but not the other, witt anonalous results.) 

Recall that one tinsafe use of a pointer is returning it as the value o? a 
function. We would like for numeric codc not to ever.have to "number tons", but We 
cmnof return a pdl nursber from a function. The solutlon to this dilemma is to 
allow numeric-valued functions to have two entry points. One is the stundard 
RacLISP entry point, and is cospetfble with the standcrd flacLISP calling saquence; 
calling the function there will prodcrca a ?lacLISP pointer ualue, which wlll involve 
a number cons if the value is in fact numeric. The other is a special entry 
which is non-standard, and cap only be used by compiled code which knows that tha 
called function is numeric-valbted. Entering nuseric function there will deliver 
a machine word in accumulator 7 tnstesd of the standard pointer in accum~JlatoF 1. 

In order to use this special calling sequence, both the called frtn:tiorl and 
the calling function musf be ccrmpiled with declarations specifying thirt the called 
function is nuaeric-valued. $he compiler will then compile the callerr functiort to 
have, two entry points, and the calling function to use the non-standard numeric 
entry point. \ 

The entry points are actually inplemented as two consecutive locatixm at 
the beginning of the fcilctian. The firs; is the standard entry point; it merely 
pushes the address of a special routine FIX1 (or FtOAfl, for a flonum-valued 
function) onto the stack, and then \falls into the non-standard entry point. ?he 
function then always produces a nachine number in accumulator 7. If the function 
is called at the numeric entry point, it will daliver its value as a machine word. 
If called at the sta,rdard entry point, then on delivering the machine word it will 
Veturn" to FIXI, Ghich performs a "number cons. on thm machine word, producing a 
normal r'ixnum (or FLOATl, which produces a flonum), and then returns to the caller. 

\ 

As an 8xBmpler, here ara two functions with appropriate drcIaraLions: 

(DECLARE (FLONOW (DISC F&ONU)I FLONUH FkONUH))) 

(DEFUN DISC (A B C) 
(-5 (*S B 3) ("8 4.0 A C))) 

(DEFUN QUAD (A B C) 
(PROG (D) 

(!)&CLARE (FLONUH 0)) 

(COND ((MINUSP 3) (RETURN (ERROR))) 
(suo D (DISC A B c)) 
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(T (RETURN (//S (-5 (SQRT D) B) 
(*s 2.0))))))) 

The code produced would look like thts: 

DISC: P W H  P,[FLOATlJ ;for na:-taal entry, push address o LOAT 1 
MOVE 7,(2) 
FHPR 7.7 
HOVSI 10,(4.0) 
PHPR 10,(1) 
FRPR 10,(3) 
FSBR 7.10 
POP3 P* 

;rcuareric entry point; get machine word far B 
;floating sultiply 8 by itself 
;get 4.0 in rccumula%or :.O 
;floating multiply by A 
;floating multiply by C 
;flaating subtract ac 10 from ac 7 
;machine word result is in ac 7 

point. Zg dsss all rrlt*metic In the accumulators, and returns a machine word as 
its result. The code Is remarkably coinpact, t~f the kind one ordinarily expects 
from a FORTRAN compiler. 

QUAD: PUSH P,l 
PUSH P.2 
PUSH P,3 
W A L L  3,DISC 
PUSH FLP.7 
JUHPGE 7.G0003 
HOVE1 T,O 
CALL 16,ERZOR 
JRST GO005 

NCALL 1,SGRT 
FSBR 7,@-3(P) 
nOVE 10,@-2/P) 
FSC 10.1 
FDVR 7'10 
JSP T,FLCONS 

SUE FLP,[l,,l] 

GOOOJ: hOVE1 1 n (FLP) 

60085: P#[3,*3] 

PoPJ P, 

:save A, B, and C on the strck 
i to praserve them acrass the 
; call to DISC 
;@of1 DSSC with the s u o  arguments 
;push the result orcto flonulr vdl 
; juap if value non-negativr 
;call the ERROR routine 
;go to GOO03 
;got r pointer irrto flonu~ pdl 
;call gqRT with that pointrr 
;floating tubtrmt turchico v d o o  of 8 
;fetch machine word valuo of A 
;multiply by 2.0 (using gflorbing scalao) 
;divide IC 7 by ac 13 
;porfom a flonum cons 
jclern up +.he stacks 

;roturn pointrr vrluo in rccumulator t 
l'hsrs aril several paints to noto about QUAD: 
(1) It wes not declared to be num~ric-va1urd. As a rorult, when rrturning, a 
numbor it must do I number cons. !iorrsvrr, it Jars not have a nusloric entry point. 
(2) Recause, DISC was doclarod to ba fiumerfc-vnluad, QUAD uses NCALL lnrtrrd of 
CALL to lnvokr it; NCALL ontors rt the numeric ontry paint. Tho rrrult af DISC 1s 
%xpsct%d in accumulator 7. S i w e  QUAD nbddS to use this rorult to pars ta *WRT, it 
makes a gdl number out of this machine word. In thls nay function v r l u w  can be 
made into pi31 numbrrs after all 0- but by thr callor tathor than tha called 
function. 
(3) As 4n aside* t h  compiler makes Some other nerrt optfmizations. It. MSOS a 
JUMPGE Instruction fct RXNUSP, because the value to be tested is in an eccunuleter 
anyway. It trkea advantage 'If the rddtrss rritkmrtic of tho PDP-10 ko fetch 
machine WOb'dS pointed to by pointrra on the stack tn one instruction. It knows how 
fo us@ aevsral accumulrterr for arithmetic, end to rtrangr for tho rsrult to end up 
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in the correct accumulator. It expresses the multiplicetisn by 2.0 as a "floatinn 
scale" instruction, which is faster t h m  the multiplicdtion Instruction if one 
operand is B floating-point power of two. 

Ths representation of arrays in HacL'!SP was carefully redesigned to allow 
fast access to them by compiled code, again takiny advantsge of the powerful 
address arithmetic of the PDP-10. There are essentiRZly two kinds of arrays: s- 
expression arrays, whose components may be any safe pointers, and numeric arrays, 
whose components must be all fixnum machine wards or irli flcnum machine words. 

The HacLISP ARRAY data type is a pointer to il double word (the *special 
array pointer') which in turn points to the array data. c h ~  reason for this is 
that the pointer ffiust point. to e. fixed place (as all HacLISP pointers must), but 
the actual arrzy data may have to be shiftea around by the garbage caXlector t~ 
accomnodate new storage b*rqw4tb, becs.;sr iiiriify are nc-t of a uniform size. When 
tire garbage collector moves the array data, it updates the the contents of the 
special erray pointer, but tke special array pointer itself may remain in a fixed 
place. 

In exchange for the flexibility of dynamically allocated arrays, however , 
one pays the price of alWey5 accessing the array date indirectly through the 
Special array pointer. This cstt !.s rllevieted by taking advantage of addressing 
arithmetic. The second nerd of e w h  special array p~inter points to the array 
data, which is arranged liriekrly In row-majrr order; this second word furthermore 
specifies indexing bj sccumulator '7. 

special asray pointer array data 

Compiled code can access a nuneric array datum by calculating the linear subscript 
value in accumulator 7 and than using en indirect fetch through the seco.rd word of 
the special array pointer for tns array. The linear subscript value ts of courso) 
calculated as 

( -.. ($1 * D2 + Jt) * D3 + 33 .". ) * bn + Jn 
where the Ni are the dimensions al the array rnd tha Jt are the mtual subscripts. 
For example, suppose that accumu?utor X contains r potnter to a 3 by 5 by 13 timdrn 
array, and that accumulators 2, 3, and 4 contain fixnuat subscripts for that array. 
Then to fetch the desired datum this code would be used: 

Rove 7,(2) 
fHkrLI 7,s 
AD3 7,(3) 
IwuLI 7,13 

;fetch first subscript into QC 7 
;multiply by 3 (second dimension) 
;add tn second subscript 
(m169ply by 13 (third diaaailrlonl 
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ADD 7.(4) ;add in third subscript . 
HOVE 7,61( 1) ;fetch in8frect ihrmicjh special array pointer 

If the nunber of dimensions of the array has bean declared to the compilsr but not 
the values of the dimensions, the cozipiler arranges to fetch tha dimension values 
at run time. This Is aasy because the array is arraegsii so that negative su3script 
values fetch the dimension informatian. C?!-d LlSP 1;ser fs not supposed to use t h m  
fsct. but only cotepiled code.) The same example for a threr-dimensional array crf 
arbitrary b:aensia!!s night look lika this: 

now io,~z) 
)IQVhlf 7,2 
I m L I  lO,@l( 1) 
ADD 7,(3) 
ROW1 7.1 
IMULI lO,@l(l) 
ADD 15,(4) 
NOVE 7,lO 
HOVE 7,@1(l) 

;fetch first subscript into ac 10 
;put -2 into nc t 
;multiply by sscond dimension 
:add in sscond subscript 
;put -1 into ac 7 
;mltipZy by third dimension 
;add in third subscript 
;move into ac 7 for aubscripting 
;fetch indirect through special array pointer 

The code is a little longer than before# but will work for any three-dimensional 
array. In general, the compiler tries to ralnimize suhcript cocsputations. If the 
exact dimensions are declared, or if souie of the subscripts are constant, the 
compiler will do part or a11 of the subscript calculations at conpi1.e time. 

For r-expre$sion arrays, the pointer data are stored two per Word. with 
elements having even llnear subscripts tii the left half of I word and the 
succeeding odd subscripted elements in the right half of the word, The compiler 
must grtnerate code to test the parity Qf the linear subscript and fetch the correct 
half-word. Suppuse that a pointer to r one-biaensiona: array is in accuwlator 1, 
and a flxnum subscript is in rccuaulrtor 2. Then tho following code would bo 
generated: 

MGVE 7,(2) 
809 7,-1 
JbRPI, 7,GOOW 
KLRZ 3,@1(1) 
JRST COO07 :jump to 00007 

;fetch subscrip: into ac 7 
$divide by 2, putting remainder bit in sign 
;jump if linrar subscrip: was odd 
;fetch poi~trr from left half 

00006: HRRZ 3,810) ;fetch pointrr froa right half 
G0007: ... 
If the compiler can determino at compile time that tho linear subscript wilt always 
be odd af sllweyr even, it will rimplify tha code and omit the JUHPL, JRST, and the 
unused halfword fe%h .. 

SuFwuaY 

HacLIlFP supports the compilation of nunericaf programs into code comparable 
to that produced by a FORTRAN coupilat whlh maintaining coarplets competibility 
with tho real ef the XatLXGP syrteia. All nunerfc code will run in the HRcLISP 
interprater; additional informtion may be given to the crtapilor In the form of 
declarations to help it oeiierate thr best posslblo codo, If such dstleratibns are 
mittid. the worst that happens is that tha cod0 runs slower. 
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Compatibility with non-nmeric functions was achieved by the Judicious 
choice of a uniform representation for LISP numbers combined with a :onyat?ble . 
stack-allocated roCresentation for temporary numeric values ??-:ad beiween 
functions. The use of stack allocation reduces the need for garbage collectian of 
numbe-s, while the uniformity of representation eliminates the need for most run- 
Zime representation checks. One exceptic:: t3 %>is ic that the use of stack- 
allocated nurtbers must be restricted; this difficulty is kept in check by 
maintaining B careful hxterface between safe and unsafe dses, ar.d analyzing the 
safety of po;stt,ors as much et possible at coapile tlw. 

While nurneric functions and non-nuneric functions may call each other 
freely, a special interface is provided for one numeric function to call another in 
5ucn a way as to w o l d  number canslng. 

Arrays aru stored in s%ch a way that they m y  be dynamically CIlocated and 
yet accessed quickly by compiled code. This is aided by the rich address 
arithmetic provided by tho PPP-10. 

The philosophy behind tne ioplewntation 5s that the generality of LISP and 
the speed 9f optimized numeric code are not incompatible. All that it needed is a 
well-chosei't, uniform represen,atiw for data objects suitable for use by hardware 
instructions, combined with a willingnoss to hendie iaportant spacial ea5812 
cleverly in the compiler. 
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ON COHPUTING CLOSED FORMS FOR S'.rMpIA'IIOBjs 

Robert Moenck 
Division of Physlcal Sciences 
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Jniversity of Tororrto 

ABSTRACT 

The problem of finding closed forms for a summatien involving polynomials 
and rational functions is considered. 
method for integration of rationai functions is derived. The method evpressbs 
the SUIT. of a rational function as a ratimal funcrior: part and a transcendental 
part involving derivatives of the gamma function. 

A uiethod closely related to Eermite's 

_ -  

Section 1. Introduction 

Mathematicians have long been icterebted irc finding closed forn eipressions 
€or fsrmnl sm.ttions. 

For exampli,: 

or 

The history ai thi3 problem is dotted wlth the nnmus of the fitants of 
mathematics; Jord;~n (rpf. 1) 
gives 3 comprehensive survey of this field of motilematlcs. In spite of the rn;lny 
years of work which has been devoted to the problcm, there is 111) gt-nc*rnl ~ l p n -  
rtttimic approach to flndtng such closed forms. .lard:cn's book is mc)re tlke n 
cookbook of approachrw, rather than il rigorous algorithmic treatmc,rrt, such its wc 
would l i k e  to hr;ve for cunlyuter applications. 

other dlrectcons. 
analyeis have been lt'a progeny. 
si~mitilitions atlll exitlta. 
natorLc8. 
wfth the aid of algebraic rnmlpulotlan. 
ground work to explore p'rrtu 3I' thc pt~blctr~. 

names like Newton, Euler, Bernoulli or Booje. 

For this reason, since tf~c turn of the century, ttic field 11.1s deviploilrd S P  
In portlculi~r the arf'as of appruxLnicltlan :lIt*Ltry ~ I I I J  nlrnic+rlc.r] 

tiowevcsr, the need for ilnillt,g rlo.od?d forms for 
It is uaefu? for large portinn,* of the at rdy of camhi- 

So, L E  would be nice, i f  t\c. problem could be .salvc+d nl~arlcttmIr;~lly, 
Thta pltpcr 1s lutL*trdt>d to Irry wrne 
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success iLr solving the integration problem. 
(ref. 215 Moses (ref. 3) and many others has resulted in the development of 

(ref. 4) noted I,: his work on differences over a century ago, there are strong 
parallels between the two problems, 
them and use the methods of the integration problem as a light to guide our way. 

Work by mathematicians like Risch 

- 1  algorithms for finding closed forms for a large range of integrals. As doole * 
In this paper, we shall explore some of - 

To a large extent the problem of finding closed forms for summations has 
been neglected in the work of algebraic manipulati,n. 
sidered the zero recognition problem for combinatorial sums and Gosper (ref. 6) 
considered the problem of automatically economizing summations. 
Cheatham (rei. 7) uescribed a program which attempts to find a Glosed fonn for 

a method based on continued fractions, for finding summations. 

Jonnson (ref. 5) con- 

; I  
I ]  

Recently, 

I summations computed by loops in a piagram, and in reference 8 Gosper describes 

In section (2) we present some notation and properties of differences. 
I Section (3) sketches the summation of polynomials. Section (4) deals with 

briefly considers the transcendental part. 
finding the rational part of a summation of a rational function and section (5) i I 

Section 2. Sone Xotation 

If we are presented with a definite summation and asked to find its closed 
I 
I form: 

/ '  . 

! i  . . ,  
--1 

one way we can approach the problem is to find the indefinite sunimation: 1 

x-1 
h(x) = 1 f(i) . 

i=@ 
\ '  
\ Thrn ane can evalcate h(x) to obtain ;(n). 

! x=n+l 
I - 1  

1 
x=a+l I 1 1 

r 
g(x) = ; b'(x) 

i 

This brief sketch sidesteps the issue of any singularities which may occur in 
the function over the range of summaticn. However, it does point out the impor- i 

1 tance of tne indefinite sumnation, the quantity we shall be oncerned with here. -. -7 
I 
I 

! 

In'plicit in our notation for (eq. 1) is that i takes on integral values 
between a and b. Therefore, if we take the f!rst differe.,ce of h(x): 

(2) Ah(x) = h[x+l) - h(x) = f(x) 
I 

I I 

we obtain f(u), the function we are trying to sum. Conversely, if we apply the 
in\--rse dif ierence operatior A-' to f (x) : 1 

1 
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A"f(x) = h(x) 
we obtain the indefinite summation. 

This leads to our first parallel between summation and integration: xe can 
obtain an expression for the summation by anti-differencing the function; much 
in the way one obtains an integral by anti-differentiation, Also, the study of 
differences leads to the understanding of sums, much in the way differentiat;-os1 
is the key to integratlon. 

The anti-differmce is unique up to the addition of. functions whose first 
difference is zero. Examples of such functions are: 

a) constants 

b) funct.ions with period 1 e;g. sin(ax). 

Since the beginning of the studj of differences; it has been convenient to 
employ an operator notation to express equations. 
emplcyed by Jordan (ref. l), which is fairly standard. 
vseful operators are: 

We shall use the notatimx 
The common and most 

a) the Shift Operator E : Ef(x) = f(x+l) 

b) the Difference Operator A :Af(x) = Lf(x) - f(x) 
x-1 

c) the inverse difference operator A-l : A-l f(x) = 1 f(i) 
110 

We wi3 1 use the inver-se difference operator A-I to represent the quantity 
we wish Lo compute, to avoid any confusion between it and any bounded sums t7hich 
will be expressed by the sumation operator C. 
the notation by Idicating the variable involved in the difference and eh,? length 
e€ the difference: 

Occasionally, we shall extend 
.- 

Normally x will be understood from the context and h=l, and sc) this extra embd- 
lishment will not be necessary. I 

In modern terms operators a) and b) are derfvations'on an extension field 
F(x,x1, ...,%I over some ground field Fix). 
9) constructs 3 Difference Algebra much like Ritt's (ref. 10) Differential 
Algebra. 
difference equations, rather than the simple linear difference equation (eq. 2). 

Using these derivations Cohn (ref. 

However, Cohn is more concerned with the larger problem of systems of 

Properties of Dlfferences: 

The. following properties can be simply derived from the definition of 
differences: 

PI) Akf(x) -- kAf(x) , ksF 
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i 
It is the slight discrepancies between these proper*--; 5s and their analogous 

ones in differential algebra, that prevents direct applLcation of its results and 
methods. J 

3 

I Section 3. Sums of Polynomials 

The simplest form of *unction we night vant to sum is a polynomial: 

a(x) = C ai x i . 
' ,  

In the case ~f diffxential algebra, the integral is easily obtained sfnce: 

n-l (3) D x n = n x  . 
Therefore, the integral is constructed by anti-differentiatie.?. 
ferences of powers do not have such a concise form: 

I 1  

I 

Mowever, dif- ! 

!* 

Thu? expressing a function as a 5um of powers Is not a convenient form in dif- 
ferenc.e algebra. 

(4) 

The difference of a factorial is: 

Instead, the factorial functions are used: 

Cxln * x!x-l)(x-2) ... (x-n+l) 
I - 1  

This has the concise form of (eq. 3) and 80 is a oetter representation. We can 
convert a polynomial to che fact-r-t.al form usin3 Newton's fornu!.:, which oxprc- 
sses a function in term of it's higher differences: 

f(x) = 1: Aif(0) 
i-0 ' 
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where f(x) is a polynomial of degree n. 
using a difference table after evaluating the polynomial at the points 
x=O,1, . . . ,a. 

The higher differences c:m be found 

Now 2 

n Cxl, 
(7) f(x1 = 1 7 fi 

i=O 

eg: To compute g(x) = A';(3x3-2x+1) =. A-If(x> 

The difference table is: 

X f (XI Af(x) A*f (x) G3€ix) 
0 i 1 18 18 

1 2 19 36 

2 21 55 
3 76 

To convert from f.ectoria1 representatfon to power reprcsertatian we can expand 
the factorial functicms using their definitions. 

[XI, = x 
1 1 1  
$XI, - - -x 2 + 2x2 
 XI, p 6~ - 9X' + 3x3 

3 Total g(x) 2x - 1;"4-"? - 3 + 
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Section 4. Sums of Rational Functions 

The next larger class of problems is sums of rational functions. In iqte- 

Moses (ref. 3) describes this process. 
gration, these are approached using Hermite's method which performs a partial 
fraction decomposition of the function. 
The partial frirction decomposition breaks the rational fusction into a sum of 
rational functions whose denominators are powers of sqcare free factors of the 
original denominator. Then using integration-by-parts the integral can be ex- 
pressed a5 a rational function portion and a transcendental portion which is il 
sua of logarithms. 

We shall follow this method. with slight mcdificaeions, to derive a ra- 
tional portion of the s w a t i o n  and a transcendental portion. 
two methods is close encjugh that we can dercaibe it as Hermite Surmnat!.on. 

The match of the 

Remenbering from ssxtinn 3 that powers are not nice forms for summation, 
we define a factorial operator on a function: 

Cf(x)lk = f(x)=f(x-l)*f(r-2)...f(x-h~l) €or k>O . _ -  (9) 

We can extend this operator by noticino,: 

(1 0) 

If we define Ef(x)lo = 1 and assert that (10) is an identity then substituting 
k=O we get: 

k- R. [f(x) J1( = Cf(x) l,*Cf(x-,) I 

(11) Cf(X)3-, - 
We will call the value of k or E in equations 9 and 11, the factor1r.l degree of 
funciion, because of its parallel to the "power" degree. We now proceed to 
examhe the differences of Eacrorials. 

(12) 

A special case of this Is eq. 5 for factorial pol.ynomlols, 

IlCf(x) J, 31 m x )  Jk-l Li f(X-k-t-1) , k.3 . 
k 

(13) A C f W  3-, - -Cf(x) A Ef(x) a 

P 
I 'Ef (xee+l) lp+i 

Notice that the factorial degree Is decreased (resp. increased) by 1 on differ- 
encing factorials (resp. reciprocal factorials), 

Shift Free Deconiposi t'ott: -- P I -  - 
If we are given a product of functions we m n  decompose 6t into cr proauct 

of factorial functionc. 
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S = a-b-c 
where a,b,c are mutually relatively prime and Ezsb. Then; 

ES = (Ea) (Eb) ( Ec) = 'ti (Eb) (Ec) 

and GCD(S,9ES) = b 
so we can divide out b and a f m m  S aild form: 

S - Ebl,*C . 
Applyiag this method repeatedly we can put a prcduct into the form: 

(14) s * Ls111*[s232 e.. Lsklk a. 

where the inrlividiial S are shift-free. Given a raeJova1 function we can PIC- 
form a shift-free partla1 # fraction decomposition: 

and also a complete shift-frre parLial fraction decomposition. 

This complete shift-free p&itial fraction decoirpssition is completely analogous 
to the starting point of the inte,qdtion-by-parts phase ol Hermite's method. 
It can be camputed in the same way tne complete square free partial fractian 
decomposition for integration 13 dona 
ret.12). We can also deduce (f(x+K), A t(x+l)) - 1 iff (f(x+k), f(x+i)) - 1. 

k-l 
This will be true if we have performed a k-shift-free decomposition of f(x). 

Shift Independence: 

(see Horovirz ref. 11 or Y;n 

- 
$.;e can test if a ;unction is shitc. free using the GCll construction above. 

However this does n3t eliminate all the caaes. Consider: 

u.- 1 
Six) x(x+3) 

Cur GCD tes: will say S(x) is 1-shift-free which might lead tc errore if we 
assme it is k-shift-free for all keZ, 
pcrident sirce it is no* 3-shift-frae. 
the following method: 

1) @om S(x+k) where k 16 a new verinblo. 

2) 

We might c ~ l l  such function shift de- 
We can test for Bhift independence using 

S (x+k) - 9 +( 2k+3) x+( k2 +JK) 
Compute the resultant with respect to k; 
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Res (S(x+k), S(x)) = R(k) 
Res (x2+(2k+3)xi-(k2+3k), x2+3x) = -k4-9k2 

! 

3) Test for integer roots of R(k); these will disclose any k's with non-trivlal 
GCD's of the form. k GCD (S(x), E S(x)). 

i.e.: k=.3,+3. Choose: k=+3. 
4) Apply Stirling's Method to convert the rational function into a factorial 

denominator. (..e. multiply top and bottom by (x+l)(x+Z) to obtain - .  . .  . 

5) Proceed a3 before. 

Summation bv Parts -- ---- 
From propkrry P3) of differences we can deduce the rule for summation-by- 

parts : 

(17) A-l (u*Av) = U*V - A-'CEV A u ~  

We can apply this to a typiciil term in our complete shift-free partial fractinn 
de composi ti on, 

First we can apply the extended euclidean algorithm to find B,C such that: 

(13) B fi(x+i-j+l) + C A f(x+i-j) 1. 
1-1 

This can be ueed to expand the term further as: 
. -  

Applying summation by parts to the first terra of cq. 19, 

The second terms of (20) s-d (19) and any terms of factorial degree j-1 in tLe 
complete shLft-free partial fraction decomposition, can be combined together to 
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give the next term oE the iteratfon: 

8’’ [m) . 
The same method can be applied again. Continulnb in this way we even~t.uaJ.ly ob- 
tain an expression for the indefinite sum of a rational f.mction as a rational 
funcLion nlus an indefinite summation of terms with shi’t-free denominators of 
factorial degree 1. 

An Exaffiple of Hermite Summation: 

A-1 A 
B We wish to compute: 

whe :e : 

- 5  A - (x2+3x+3) 
B X “ C ~ X ~ - ~ X ~ - ~ X Z  * 

First we put 9 into a shift free fore: 

EB 5 x4+6x3+9x2-2 

and 

A -(x2+3x+3) :-rzi~ ’ 
and so 

I 

Next we perfom a complete shift-free decomposition on - A : B 
f -1 - a - + P .  c ‘ A  I E --d- - (3u4-5) 

B [~‘-++2>:-1]., [x2+2x-lj1 D ,. 
Now we want to put -. c into a form suitable for summation by putts. Since 
E”(x2-2x-l) x’-2. D 

C GA(x2-*2) + H(x2-2) 
- I -  

D 1x2+2x-1J2 Cx2+2x-1J2 

Since (x2-2) is shift free: 

__--- 

e 

! 

i 

I 

(A{x2-2), (x2-2)) 31 1 

and therefore we can employ the extended euclidean algorlthG to salvo the 
equation: 

-13Xt5) S(23!+1) 9 T(x2-2) - -(x+1)(2x+1) 4- 2Cx”-a> 



C 
D so - is of the form: 

I c s1 -I_- -(x+X](Zx+l) + 2(x2-22_ 

-(x+l)A<x-2) + 2 

D r,x2+2x-ll2 [x2+2x-1 J, 

Cx2+2x-1I2 c x2+2x- 11, 
Now we perform summation by parts to obtrb: 

x+l 2 
Ex2+2x-lj1 

A-1 c z - - A-1 
D (x2-2) 

and so: 

Section 5: The Transcedental Parr 

''e have reduced the problem of sunmation of rational functions ta the sumation 
of a set of terms with shift-free denominators. 

~,(x) - D" iogr(x+l) , rn>O 

Now we define a set of functions: 

where r(x) is the gamma-function, a generalization of tho factorial. 
Lions Q, have the property: 

The func- 

- D" AlogI'(x+l) - D" lt~fi:$ - D" log(x+l) 

Therefore the sum of a n3gative power of (x+l) 1s: 

The ftlnctions $,(XI are also known as ?::e polygamm functions. 

roots:, 
We can now expand the remainder ot our retionnl function ln terms c\f its 

Y 

/ 



where j(i) is the indtiplicity of the root. 

Usi,ig the $a futlstions the indefin.ite sunmation of remainder of :he ration- 
? 

aJ function is: I 

Tne functions Ji 
rational functions. I conjecture: 

play a role similar to logarithms In the integration os m 

a) Tne functions $,(x) are transcendental with respect to the ground 
ifeld F(x). 

b) If bi are the shift-fm* r m t s  of a polynomial then +l(i)(x-bi) are 

algebraically independent. 

If these 5.taternents are true then one could argue, much as Hermlte did for 
integraiios, that the rational and transcendental parts of a sumation are 
unique . 
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Indefinite Hypergeometric Sums in MACSYMA" 
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ABSTRACT 

We preront I MACSYMA fwtion which, given tlu r;wnmmd 

>, , 
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. c  

S.tm ad Summands,. Range and Damoh 

If g(n+l)/g(n: is a rational function of n, then gin), r d iiisiefar~ a,, - A&I, is Y constant time a prabust Qf 
n conswutb a va1.m of some rational function. We shall d! such funeticru "hypsrrgeawt. ic toms". w a  
believe our dgorithm fhds all inrorse differences which havo DNr form, tipus prr10rmi~p iwhfinite swmmrtion 
on generalized hypergeometric series. 

Of course, not all finito prcdurto of rational functions sum *C functions of ltw s ~ m o  tyz* just 1~ mt rrl rdiirnd 
functions intagrate to rational functionr. On. might ask, tbercferr, wh.lh.r picclvdtng b g h r  functicna frdm 
the answer g(n) might thweri ow algor;lh thr way pvoeluding :ogrrithmo, o k t  wscM ttmilrl an intugrrtkn 
algorithm. The ltwwer io yes, but wt near'.l rr bodly. It ipperrs $bid rm~ltg the Irri!ior Mghr fwrrtieno, 
only !he palygammas' of crrtrin linear rrp,ments hrvr first d i f h r m m ~  ih !he forin 91 hypergromtrk tor?#. 
This paucity of functions applicibls to tho exg:esiion d Irdefinito sums 1s duo to It# lrsk of I &ure!r 
analaguo to ths chdn rbla, ad hrr the unfwtunale consequento that 0 g!vm ).m k 1- lik.ly to hrva I 
clored form than is an intogral of similar compkxity. :a particular, {bo onfg tr)rwrgoonctrie sorim wbr+ 
indefinite sums aro fitciliiatod by pdygammlo are thoro v,ilh rdi&nJ! 8urlmJnbs. ShOIlfQ it b. poodsd, fairly 
eimplo partial fr8Cic(iOtW algorithm can suw rr!ionrl flrp;tion, JP flygarnor, at iewt wbn it k chat how 1s 
adoq~!!ely factor tho s u m m a h ~ r  ;~~min~tor. (Po!ygammas in th. rummrjrdr might br h d h d  wing 
summation by parts, bu( not In tho algorithm undor diSCWion.1 

I 

It is 0 little surprising that th. rrtionil summands which requiro polygrmrnm aro hwirMy $pHid cases of 
hypargeomatrk summandr which a10 amenrbla to eur MACSYMA turn function, SJ. 

- 

Lotling t -+ 0, we have rn arbilrriy sum as tho limit of 8 produd ovor tha 8 4 M  r m g o  (which ir e'lerr {rem 
r~nridorin~ fha axphnior; of the product lhrough tho o(0 trrms.) Whon a, h rrtienal In A, we em always 
oxpkrr this brcrduct rwd tho rummrnd 18 hyperl;eomcrtric tormr prior te taking Ihr tirdllt, thur, fw mother 
oxamplo of th. Du m  of rwiprocd squarnr, use a,, * t/n' (and, for c~nvodenco, ropluo t by C1)t 
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i S m s  apd Summands, Range and Domoin 

Of course, no! all finitcl prcducts of rational functions sum tt functions of tlw same Iy ;* tvst 10 not at} rdmnd 
functions integrate to rrtional functions. Ono might ask, tbereforo, whdhor p~i~lbid~np highr funtticm trdm 
tb answer g(n) might thwtrt our a1gor;lhn tho wry precluding :ogarithms, ok., wsuld tlrnirrt an intogratkc 
algorithm. Tha answer ir yw, but wt n9a~'" as badly. It cppewo fh~t a m q g  Ih. iwG!iw h l g d  funttiono, 
only the prrlygsmmlo' of certain linear ar~umonb hrve tirtt difierrncon ih tho fortn d hyprrgwmtrk lormr. 
This paucity of functions epplicabls to tho oxp:rsricn 6f irdefinito sumo diM (0 th Iwk of I) diuto!~ 
analogue to the chdin rtk, awl hrr the unfortunate consrquonse {ha! e g!vm w!n h loss lifuly to hrve 8 
closed form than I8 an integr.d of similw complexity. :A particular, 1b only hymtgoomrlrk m r i ~  w h 6  
indefinite $urns w e  facilitated by polygammas are thooo v,ith FZtiQnd! our)ma#s. S W  it S. MY&$, a fairly 
simplo partial frrctiono algorithm can EUW ra!iond tur;lione as palygammw, rl kat wbn il b! clew how t3 
adequddjj iwtor !he rummrr3s ;et!o!ominrtor. (Palygommro in tho #wnmm% might be h&hd reing 
summation by parts, bu' not in !ho algorithm undor discussion.) 

' 
1 

i 

H is I little surprising that tho rational summrnds which requir. polygammw aro hrirbfy $wid cum of 
hypergoomatrk summands which aro rmensbilr to cur MACSYMA sum function, e.#. i 

Lotling f 3 0, we hrvo rn arbitrvy sum IS tho limit of a product OW !hr $am tmgo (which k ctarr {ram 
r;ntidoring tho exp)rtaiOr: of thc product through tho O(0 terms.) When ern h rational In n, wa em rlwsyr 
exprosr lhir product an4 tho eummad IS hypor~eomotric trrmr prior to taking tha liwit. Thus, lor mother 
example a! the om ot roeiprocd Pqurrw, use a, L i/nS (and, for c;~vonisneo, ropiuo 4 by c*): 



Unfortunately, the current alporithm is not a decision procedure for the expressibility of indefinite 
hypergeometric sums in closed form. The top level pmfdure heuristically bounds the complexity of the 
telescoping function 1, to prevent the main iteratlon, when given an impossible problem, from plunging down 
an endless continued fraction. Another as yet ;ronrigorou@ aspect of the main iteration: it uses a rather 
shortsighted, "greedy" algorithm to determine the successive term polynomials, and we have yet to show that 
it will nevcr need to backtrack when solving the functional equttions which arise from series. (If necessary, 
backtrack could be installed, but it might be very costly in cases which turn out inexpressible in closed form.) 

The Aigorithm 

The oniy significant problem is to solvs :he rational functional equation 

(func) 

which is rational when g(n+l)/g(n) is. Because we have no bomdary condition lo satisfy, equation (func) is 
easier to satisfy than a first order linear recurrence with polynomial coefficients. In fact, if f(n) is a solution, ' 
then so is f((n)+c/a,, c arbitrary. Thus if the summand a, is rational, then there is a continuum of rational $ 
satisfying (func), differing only in the "constant of siimrnation" c that they add to the sum 8. 

If f is a ration?: function, then the quotients from Euclid's zlgorithn) (using polynomial division) Corm'the to-m 
of its continued fraction: 

Our MACSYMA algorithm successively determines pl, q2, . . . , with the proviso that no p, be constant for i > 
1, so as to guarantee the uniquenms of the reprosentatlon. 

Since the term ratio an+,/a,, is a rational function, we can wri?e it as P(n)/Q(n), whre P and Q ere 
polynomia!s. Then f must satisfy 

4 i 

, f  

1 In pariicular, this relation holds for large n, where Eln) pl(n). We thus "greedily" determine p1 as the 
polynomial approximation to f which most nearly satisfies (11, that is, the oolynomial Which minimizes the 
degree of thq Iefthand side. We then substitutir pl(n) + l/i2(n) for !(ti), SO that we can recursively detormin~ 
the rest of fs coi;?lwed f &ion as f2, the solution of the new functional equatio > 



We write this equation in the form 

(2ndform) A(n)j'2(~i)f2(~i+1) + B(ii)[2(ii) + Ch)~,Jii+l) + D(n) - 0 , 
where A, B, C, and D are poiynomials. Then w e  "greedily" seek the polynomial p2 which, in place of f,,, 
most nearly satisfies (2ndform). W e  proceed in this bay, replacing 

i 
1 

i i  
t 

1 

: I  2 '  

I (subs11 fi(n) by pi(n) + l/li,l(n) a t  

until we either find 6 p&n) which exactly satisfies our equation, or yc9 conclude that no oolut'on oxirtr. 
Fortunately, further substitutions of the form (wbst) lead lo no equations mora complicr!od than (2ndform). 

J .  

, I 

t Worked Example: w e  seek 

in closed form. Equation (func) becomes 

or 

(fl) 

In arder to determine the first polynomial of I"s continued fraction, w e  must first determine tho dagroo of 1 .  
that polynomial. We do this by replacing ! with the "polynomial" estirnato p,(n) - onqtO(nq-'), q tr, b. 
determined. Suppose 9>O. Then (f 1 1 bscomes 

2anq.t t O(nq'1) - o , 
implying a - 0, meaning that q was too large. So (I must bo 0, and thus pi must bo (I constant 0, making (I 1) 

4 i' j! 
I 

(ZU+l)iI2 + O(n) = 0 , I I 
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Now Q must be positive since we have forbidden pi to be constant for bl. But if pl then 2g+1 > qt2, 
forcing a to bo 0, whirh it equivaient to reducing q. SO q=1, and the above twomes 

(ra*+4a)n3 t 0(n2) - o 
which deferminer a - -4/r* Now w e  know that p,(d is of the form -4n/r t 6, and wo ton bterrnim 6 by 
substituting this expressdm for fa in (121, leaving for the lefthand sido 

r(r-1) 
2 (2-6) (4r? + (4-bf-Zr)n + b - + 2) , 

which identically ranithe-. if b - 2. Thus w o  have f-- .,nd ths solution 

whence, by 

(voi I a) 

we get 

(This oxamplo was suggested by Q. Knuth.) Incidentally, Eulor, (refs. 1, lrl, had !he spsciil cis. m I co of 
(voila) in 1753, but he didn't got much mikaje out of it. Chrystal trof. 2) giver (voilr) within' I chrngo of 
variables, but still uoderostimatos its gonerality. He credits Eulor in "Now. Comm. Petrop., 1760", bvt I can't 
locate this. 

In certain cases w h r e  the continued fraction fails to terminate quickly, it is porsiblo 10 doou.to th. g.rnoral 
formula for the ilh term. With this yor; can :ell if and when the fraction will torminrte, and in any case got an 
intorooting identity. Considor, for oxa~rplo, 

which ~mempacsor the Tayior series of many useful functions, e.g. 



First off,'wo noto thrt equation (voila) has arbitrary upper and lower llmils en th rum. We ~pkit ilia 
dep-oe of Irwdom by shifting tho tummation index by c-1, so thot (2F1) becomes 

which, if we roplace a-c by 6, rliminateo I parameter from the summand. (Summing for &e-1 meins for n = 
c-1, c, ctI, ... regardless of rhrlhc. c is inbgral or even real.) 

Experience indicatss that, having delerrltinud pi in the form (4n + B)/c, cay, we rhould clear od the 
denominator C by writing 

br.foro going on to determim 
solution will then begin 

This will usurlly lead to oimpler coefficient8 in tho lder plynomirlr. Uur 

1 bz 
fin) - &(I + (6-1)s 

Z(6-NZ (1-An - br + 1 + - 
a ( m K  (l-rh - (b-lh + 2 + 

(1-tln - (6-2!~ + 3 + - 
m d ,  in gotierall, the ith oquation 

which in turn yields tho i;Ict equation 

for 123. Findy, shce oo - I and (If the cerirs convorgoo) an + 0, 
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I 

which, for m - 0, gives a nice continued fr.rc4ion for #. 
Messy Details 

I have glossod over threo problems that arise in determining the succemive polynomirlr, nimly, whrC 
dagreo ~olynomial to chooco, how many cooff,cients must be solved for at Om@, 8116 what to do 8bout 
multiplo solutions. 

1) Tho polynomial dogrcer 

The MACSYMA rigorithm basically chooser the IaryLat integer Q such that whon an* I8 rubrti9uted for ffm) in 
tho oxpresricm 

mol0 than ono of the four 10fthr.d terms is of maxima! drgrrc in n. W h n  bora h ruch 8 Irrgori 9, Ih. 
coofficiont of tho highost power of I? will contain at toast two difforont pwrrr of 0, 80 thd tha toeffickni 
ern ba oI,minated with a nonzero choico of a. But on tho lirst  tor^ (i - 11, A(n) 0 rr#l an) D(n), and !l 
can hrppon tC4t dog iB(n)4h)) dog (B(n)-C(rrlh La. W(n) and Un) h a w  tha form 

(tricky) B(n)/i(nrl) + ~(n)j~(i(b) * ~ i t t )  9 o(ctpdB*dC)nP’*-l - cnp + OWW + O(RP-’) . 
Hero wo can zero tho high ardor caotticirnt with rither of two choicori q - -Cd,,+dc)/o or q .I 1. fin 
progrrm hourl8t:cally chooior thi Irrprw of thoto, provided it Is in integrr, an. tho lhoory thd thoro I# (I 
good chrmo of liter de!rrminin# thrt a 0, thould tho rhoicr prow wrona. But thir rononln# it 
quodionablo in light of tho functional oqurtion 
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I 
I .  I 

but only the second solution i.r 8 rational function. Thus, any 8\t&q\ 10 find tho first solution will rotult In 
nontermination. Yet the arroneous choice Of pi(d - do’ raduceo the kfihad side of (loser) to degree 197, 
while the correct choice p,(n) - b only reduces it to degree 210. Cur meek ercusr is thrt in problomr arising 
from sums WB never encounter ruth products as (j(n+1)j2J(tdB which app~aro in (kmr). (Robort Mais holpod 
construct thio oxlmple). 

At tho ond of fha next cacfion, we give an exainple where tho heuristic cuccerdo in roboretivrly &tormining 
that the hiit corfficisnt is 0, bu! very marl; requires backtracking to do it. 

2) Th. need to considor mor. than ona cecfiicied at a time: 

The rforemont!aned (tricky) w e ,  in whirh tho oxpontlnt become6 involved in th co&icien!r, b iho wurco el 
another, luot sorious annoyance. In thio cam, and thio blono, it is necrecary to dnlormim o ~ h  eacrlficlmt of 
p, In forms of tfre next lewor one. Consider the cum 

which detrrminer thr :unctionrl aquation 

I 
I 

In tho notrtion of iho prrtoding diaeussion, c - 1, d, = 1, dc -3, and thw q - 2. Now ruppwo WO 
ortimdod fin) a1 on’ + 8n’* OW. thon wo would hrvo 

Sa - 6 - 1)d OG) - 0. 
Had wo rnwoly ostimrt8d /En) bv OR*, wu would hrvo rrronroutly datotrnlnod o on tho assumption ihd b WH 
0, lid thon gonr on to dotorminc that 6 was, in fact, nonzero. Sino 0’8 valw deponds on b’s, thlt Incorrect 
vrluo of o would fail to rnnihi!rtcr tho ~j~ torm, leaving that job for 6, If c ir oxprrdrd on lho Ilmar farm, It 
happens that thn conttmn! tarm romains utwanquirhod, and tho continrmd fraction procrrr wilt ptungo down an 
almost cvrtoinly kttomlosr holo. Thir would be I aham#, rincr tho qualion could hwo boon solved with lb 
first term$ \ 

(+ 

I fifi) - rn’ +In. 
TMr, huidonblly, provider 

In principlo, It la nwor nscrrrrry to tolvo timultaneour rquationt, w o n  in thia word crao. It lo rnoroly 
necorsrry to doformin9 orch cooVlici~d in tormr of th re yrt undetsrminrd succeeding cootfklrn!: wd only 
in those c a s ~ s  wharo R(n)+C(n) hrs lower ddgror thon Dh)-C(td, and only for h fir81 polynomid. In 
practice, o m  algorithm invokor MACSYMA’s LINSOLVE linear nyotern prckago, mrinly fw Ilr rutomaik bock 
rukt ilution. 
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Incidantally, the only wmy :hrt a coefficient could doprnd on thm nrrt bwr cwffici..rta mu:Q br H fh, 
Cunctionrl oqurlion containod thres dirtintl invocs!icnt sf j, rtey j(n-11, I(&), and fln+i). 

Very occ6sionally, rn equation for (I coeffkient can have no solutionrl Thir hrppens whh tumrninf 

(weirdo ) 

which requiror tho roluition of 

Proceeding as before, we would again find q - 2 and estimating 1 by an2 + bn + O(l:, 0 would ,--.~vmjm 
that u - -2-Zb. Thon ostirnrhp j' - -2(b*l)n2 6 n  + c O(n"), we would deterivilrc, 6 - (fG+l)/3. Bd this 
leaves the equation 

and there is no way to chooro c to annihilate ths coefficient of A, rinco it drponds on tho next codinued 
fraction term tither than on e. It is unsafe to eboore c rrbitrarily, rioco aur nonrrtionrl summrml pr~1ud.t 
the "constant of summation", so *e must postpone the detrrmination un!il after cktormining that Ihr rscond 
continued lractien 1rrm is (-16n*36c*13)/3, whiih Iaavrr us tho Iefthrnd rid. 

Our pationce is rewarded, iw the determination c - 4 4  rerminntrr tho problem, but with thr ironic result 
that 6 - 4/3 and a - 0, so that tho choice q - 1, whih io rlwayr rvsilrblo !n such cat.$, wu correct aftor JI. 
6.0 the first sontence rftor equation (tricky).) Incidentally, w r  hJV0 dototmined 

8d thus 

3) Multiple rooto whon dotormining r coelficiontt 

_ -  

I ,' * 

If fin) is r rational function with rrtional coefficirnb, we can be sure thrl no irrrtlonrl coofficiont will rrioa in 
Its tonltnuod ftrclian. I! ir thrrrforr ressontblo $0 hopr thrt in solving I functionrl rqurtlon lor ruth I ' 
continuad frrction, no nonltnerr rquation nerd bo solved. Thlr hope is DubrlrnUrily fullillod, but fer I coupla 
of glitchot. For oxrmple, in ottrblirhing tho idantity 
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3 / 
(A-1Xb-l X 3 n t - 3 m  
--iiT-*& - I  fin)- ;-;* 1 

3n + 
(C2-1OF 

c( lO(c*-lo)n - c3 -- 
(CZ-lO)S * E 

1 o * * C *  - 

, f  whoro c is tho arbitrary "constaint of summation" which wo got whon tho rummand ir rational. Ed ow 
algorithm io no! smart enough to lcrvo e, (which is also the cooffkiont of R* in p3(n)), umktorninod, and flre 
c o m o q u e ~ o r  of this grsod can bo annoying, To determine tho linear coefficionl in pj, an h cubr!ildod for 
f&n) in tho current (Lo. tho third) aqurtion, reoultisg in a polynomirl 01 Iho form a(lO.9)~' + Oln3), wMch 
determiner a - 10. But thon, whon we go to determino E by ortimating /&a) 8s 10n + c, wo find YO h a w  a 
polynomial of the form (e2-10)n* 4 Oh). In other words, She ehoiss a +I 10 "fortuiteusly" annihilded tho cubic, 
eo WON as tho quartir torm. Oidinariiy, tho only quadratic rjuationr we encounter aro of tho dogonorato 
form ai&-a) - 0, which ocw whsn wo rro dstrsmining tho high cooffi&nI 01 o w h  pi &or i - 1. If choorlng 
Q (or any lower cooffisiont) annihjlatos only one term of tho Oxprwrtan hing rgduced, ihon tho noxi twin 
ran..ot bs quadratic in tho coefficient below a. This it bacauto cqurres of cooffiicionls of tan only coma 
from the /(n)fln*l) tor, of tha functional aquation, but horo tho firtl qwdrdic inrtmces of o w h  rodfkknt 
some two pswarr of A apart. But when two or mor0 powort Of n dk8pp.w wi!h eno choir0 of rooffition& 
wo may bo !eft with a ~ g o n o r a l o  quadratic quition tor lho nor1 coofficiont. 

Groedily pursuing our oxamplo, thon, w o  find c - a, whieh n;rlu~ OW contlnurrd fraction for f en 
iw!s!o:mii.ob !em. €:;her by porforming tho rlporilhm or taking Ilmita, wo find that tho continued frfcttoe 

/ 

, 

./ 

.a 
found by tho groody rlgorithm is rctually ono torin shortori i 

/ 

1 " 

Although MACSYMA solvoo quadratic equctions a$ rsjdily 80 linoar onor, the introdustlon of rurdr into the 
computation can consumo valuablo tiws and aforEp, a~pociolly if il hrpp.nS mor. than mce, r5r involv8r Irr#e 
sitprossiont containing symbolic pwarnotors. If IM original sum was rational and involvod 110 ruracl, yo$ a 
curd arioer in tho :ourso oi the rolution, it is protably dW4Y8 rate 10 arbitrarily roplece lhh rwd by 0 or 
rnythtng .Ire sanwenient, bu! until this atop has born mathomrtically juotifiod, il rhoufd be lakon only 7h.n 
tha greedy rppoerth runs out 01 tim or stovago. 

, 
1 

: \  
1 

Tho quadrafic final Ierm of tho tbvo continued fraction IllrdrotcRs rmthor c0n)w~uro whlch, if truo, would 
simplify tho solution algorithm. We noto that in conwrting a ra)!anal function lo 8 eonl!nuod frntion with 
Euclid'r algorithm, most romrind.llr8 ara of degroo on0 loss thon tho corro~ponding divirx, 8d, consoqwntly, 
the mx! partial quationt is linorr. But if some rome!:dor it 'forluitowly" Iwo or mar0 powor8 lass than ttm 
divisor, thon nut quotiant will bo qudralic or groatar. Rocall that on tho form procoding tho quadrrttt 
(and 1st) torm in our oxamplr~, we we19 "lortuitcurly* ab10 to annihilrrfe throe wlynomid 10r.m wlth two 
dogrear of frardom. Wo tharoforo conjocturo thrt Ihe degroe of a iiwn polynemirl in rimply I + howmvor 
many lorlultoue annihilstions occurrod during tho detrrmination of tho prwiow polynomial. 
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How many !oms of a continued fraction should w? ccmput~ boforo rrlinquishing hop0 of ilr torminalion? I 
can only offer ihat ieomi tq bo a eafe and rsasonable bound, namely 1 Ihe sum of tho mrgnitudor of th 
integer roots, rj, of tho resultant of Pin) and Q(n+ri wi!h radpecf to ti, whom Pfn) end Q(n) ar;i tho 
numerator rnd donominator of tho k r m  ratio ae,,/an, and mu::lple roots rrr to bo wdghted by thrir 
muitiplicitios mi. This reprosonto ala of the possible intsgor Ohiftt af the denominator wifh roswt to tho 
nwmerrtor which recult in on. or mora cancellations. 

Porsiblr Extensions 

Trigonometric sumo might be handled by a process which first convortr to complex oxpon~ntia! notation, thon 
rep!acss some po;ver of ezir by tho "base" q, thw forming a basic, or Q analog hypcrgromotric cum. Thon 
we would apply the adstiny MACSYMA function to the corresponding ordinary hyporgoonutri-, Mdi form Ih. 
Q analog ot the reruli, if we got one. This is, howwar, highly tpeculrlivo, ond, kn m y  oven?, Wouca b. 
unlikoly to find sueh fancy telescoping functions 1s fin) - -1-cos 2"r, whifh provkh Uu Modity 

X 
,,.O sin 2% 

Just aq with dofinit. intrgrrticn, 'L9 problrm Of drfinib (lypicrlty idinito) summrtion is wnalicrtod by t)H 
bewildering variety of lechniqurr availrblr. On. etprelally promising Irchniqw kistorkally p r a c a h  rnd 
g~snaralizro the mothad descrikd in this papor (rot 3). Yo soo tho rrlrtion botwrcm tha rdhds, wo point 
out another way of looking rt tho Iolrocoping function fin), that is, as tho "splitting fwcttoli" ddormining the 
proportions into which tho nlh lrrm of r series bo prrtitionrd, prior to combining lhs left portian of oeh 
term with the right portion of tho prrcrdi~j lrrm. Writ'ig I,, for fil, wo two 

a c + Q,*, + . . . U, (-fc*I*f,,h, * (-l,,~~*1+fpr~bpr~ 9 * bI,*I*f,hq 

which yirlds rqua4ion (voila) upon the ritirfaction of (tunc). Ev! t u p p ~ o  I! is R(lt polribk ta rmrihidloio Ihe 
qurnt i ty 

Then wo will hrvo only tuccoodod in creating r now rorlor whuo lormr ~ r 8  u,, !/moa th# old OM$. Bul if urn 
is rorsanebly rimpk and numoricrlly smrll, It might ba podblo tb ikrrtr !hie tplitting proeesn Indoflnitrly, eo 
that in tho limit, rll of tho original terms rtd multiplird by 6. Whon tho vrriow d30 offnlr wo trkn Into 
meount, tirit prococa yirlds many intorusting idrntitirs, ruth u 
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Sometimes, the edge effds involve limits which hsve thus far eludsd rnalysis, whor@uporr wo inwko 8 
nonrigorous technique which involves interpreting Knife products over noninleger rmgos. Tnis ra.4ta in 
conjectural identifier such 8s 

All of theor tonjeeturri fsrmb!as can be proven for countrbly many values of tbir pwamo:orc, s d  they nave 
withstood oxtwoivo numorrcil testing at other values, but thdy remain taritrlitingly uncortifiod. 

hforcr the next MACSYMA Lkers' Conk;enca, we hcpe to report on a prrtirl implrmontrtion Of I t.yttom for 

i *  
I 

1 &finite rumination 

i Late ikveloprnantr 

i 

Kovin Karplw of Stanford Ius beon dwoloping I roughly parallel re1 of MASSYMA functions, B@ n to 
1 , offoctively double th* rrto of rlgcrlthmi6 oxpsrihientrtion. Diocuviont with him lod me to dirco;.er fhd 
i 

j 

I 

while tho polynornid which moat norrly ratiofirs (tunc) is , 

As a rowI1, I prtched tho rlgorithm to only determino q 04 ita 041 undotormined coofflciontr on non iorrdnaF 
torms whoro q > 1, thus trorting rll tuch casos in the mannor Of (weirdo;. Thir roonnd to raprls tho 
problom, at tho cost of oxhruntlng lid rtorage c~papli*y on cctrtrin crsos that had fornwrly write4 
Foriundoly, an 20 April 1977, all of thir kludgery was rnnaered obsolote when I taurd o hision prscodwa 
for this problom. (A dircroto wtclog to tho Rkch rlgorithm for indefinib integrdim) Th. procdur. h 
stmplor, end makos bolter wo af Jolf Gdden't recently insrrilod FUNMAKE ad SUB9T(LALI&DA( - 
crprbilitior, rnd, rs o rorult, run8 ton to fifty timer f8st.r than tho continued trutlon d8Orithm For 1- 
mad Intorwtod, thr dotrilk will be rvailrblo in a handout at tho conlerwtco. 

j 

Hero follows tho trrmcript of r short demo of both 8lgoriIhmt. 

BOTIER GUM15 DSK RUG being loaded 
laadlng done 
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(CZ) bother sua ( (-1 1 ?n/n92, n. 1, a), %c fdcptht9; 
TIRE= 11585 RSEC. 

(D21 

(C3) Xcf; 
TIRE- B MSEC. 

(03) 

1 

Old ~ersion fails (torrrctly) to find 8 tiasod farm, but findo a nice continwd fraction kw I(A), wkh il ulor+r 
in XCF. Binding XGFDEPTH to an intrgrr ovrrridrt the heuristic dopth limilw. 

NUSUll 19 DSK SHARE ioadsd 

(CS) nt3*3tnt 
TIME- 3 flSEC, 
(05) 

3 N  
N 3  
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N.w verolon doer a tougher ~111. UNSUM (backward diffrrrntr! !hen chub it, 
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MODULA!t POLYNOMIAL AtIITFMETIC IN PARTIAL FaCTION 
DECOMPOSITION* 

S. K. Abdali 
B. F. Caviness 
A. Pridor 

Rensselaer Polytechnic Institute 

ABSTRACT 

Algorithms for general partial fraction decomposition are 
obtained by using modular polynomial arithmetic. An algoritnm 
is presented to compute inverses modulo a power of a polynomial 
in terms of inverses modulo that polynomial. This algorithm is 
used to make an improvement in the Kung-Tong partial fraction 
decomposition algor: thm. 

INTRODUCT IOH 

25 

The partial fraction decomposition (pfd) of rational func- 
tions constitutes an important step in some symbolic inteqration 
algorithns (Horowitz ref. 1). Such 3 decomposition is frequently 
needed hlso in electiical network theory and control theory (e.g., 
Kuc ref. 2, Hsu and Meyer ref. 3). Consequeatly, a number of pfd 
algorithms Sealing with the gereral aL:d the important special 
cases (only linear or qwdratic fectors in the denominator of the 
rational function being decomF.oscd) have appeared in the liter- 
ature (see references in Kung ar,d Tong, ref. 4). These 
algorithms fall into two categories: those based on applying the 
extended Euclidein alqorithm (see Knuth ref. 5) and those based 
on solving linear systems of equations. Prior to 1969, the pfd 
algorithm most widely Fmplemcnted in ,ymbolic computation sys- 
tems (e.g., Engelman’s MATHLA3 ref. 6, Moses’ SIN ref. 7) was one 
of the former type and dated back to Hernite (ref. 8). Horowitz 
(ref. 11, however, discovered a faster 3lgorithm of the latter 
type. The latter type algxithms require solvinq n linear 
equations in n unknoms, chsre n is the degree of the denominator 
in the rational fraction to be decompGsed. Thus in the general 
case, they require 0 (a3) operaticns using cla5sical elimination 
methods, or O(n2-8i) operations using Strassen’s method (ref. 9). 
In special cases, the best bound is O(n2). Eat quiLe recently, 

*Research partially suppcrted by National Science Foundation 
Z5-C Grant MCS-7623762. 
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2 Kung and Tong (ref. 4) have given an OIn log n) algorithm which 
is again based on the extended Euclidean algori.t':m. 

This paper uses the notation 3f modular polynomial arith- 
metic to derive pfd algorithms. This formulation brings out the 
similarities between the general pf2 algorithms and the well- 
known technique of pfd by substitution for non-repeated linear 
factors (e.g., Kuo ref.2). The Kung-Tong algorithm is then 
easily derived as an adaptation of the general algorithrr for fast 
computation. An algorithm is presented to obtain inverses 
modulo powers of a polynomial in terms of inverses modulo that 
polynomial. This is used in an improvement to Kung-Tong algor- 
ithm, which improvement although asymptotically minor, is be- 
lieved to be of practical value in symbolic computation systems. 

i 
/ 

I 
I 

PRELIMINARIES 

Throughout this paper, polynonials are assumed to be uni- 
variate with coefficients in some given field. 

Let B be a fixed polynomial. As usual, the relation 
congruence modulo 3 and the binary operation mod on polynomials 
are defined by 

X 2 Y (mod B) iff, for some polynomial Q, X = QB + Y. 
X mod B = Y, where X E Y (mod R) and deg (Y) < deg IB) . 
Let A be a polynomial relatively prime to b. Then it is 

well-knqwn (see, e.g., Eerstein ref. 10) that there exis: unique 
polynomials X, Y satisfying 

AX + BY = 1 , deg (X) < deg (B), deg (Y) < deg (A). (1) 

Accorflingly we have the following: 

Definition 2.1 (Inverse and division modulo B. Defined only if 
the denominator is relatively prime to B.) 

(a) mod B = X where AX 2 1 (mod B) and deg (X) < deg (B) 

(b) - mod B = {A* (-- mod B)) mod B A 1 
C C 

Definition -2.2 (': -mcated F2lynomial quotient) 
LA/g = (A - (A mod B))/B . 

We use M(n), D(n) , F (n3 to denote (an upper bound on) the nunbe,- 
of operations needed, rc:..p-ect:.vely, to mi-ltiply two pclynomials 
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of degree' D, divide a pdlynomial of' degree 2n by one of aegree n, 
obtain polynomials X and Y of (1) when given A arid B with max 
(deg (A), deg (B)) = n. We assume that the following convexity 
conditions are satisfied. 

aM!n) 5 Y(an) , a 1. 1 

CM(ni) 5 M(Zrii) I n. integer 

CF(ni) 5 F(Cni) , n integer. 
i 

i 
It is reasonable to require such condit.ions as they are satisfied 
by the bDunds M(n) and F(n) for.all existing algorithms. Sinilar 
conditions are usually assumed, for example, by Aho, Hopcroft, 
and Ullman (reL. 111, Kung and Tong (ref. 4). 

PARTIAL FRACTION DECOMPOSITION PROBLEMS AND SIMPLE ALGORITZiMS _ -  

Following Kung and Tong (ref. 41, wz define three problem 
related to panial fraction decomposition. 

1) General partial fraction decomrosition \PF) Problem. 

Let: Q1, ...,Q be pairwise relatively prime Folynomials of k 
degree nl, ..., n respectively. Let R1, ..., R be pos.i.csve 
iritegers and let P be a Folynomial such that 

k' k 

k 

i=l 
=  ne = n .  i i  deg (P) < deg 

i=* 
The problem to obtain the polynomials .: 5 j - < X i  satisfying 

k 

2; Problem Pl.: (Special case of PF with R i  = 1, 1 i 5 k.) 

and the polynomial P such &hat 
Rk Given pairwise relatively prime polynomiGls Rl, ..., 

deg (P) .: deg ( n Ri) . 
i= 1 
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The problem is to obtain the polynomials Cl, ..., C 
ing 

satisfy- k 
k 

< , l + l k .  

3) Problem 22: (Special case 3f PF with k = -1.) 

obtain the polynomials C1,...,Cp, satisfying 

R 
Given polynomials E’, Q such that deg (PI < deg (Q I ,  to 

0 

It is well known (e.g., H0rowi:z ref. that the polp- 
nomials to be determined in the above three prcblems all exist 
and are unique. 

Uei,:ig the modular polynomial arithmetic, we can now state 
simp12 algorithms for solving problems P1 and P2, 

Algorithm 3.1 To solve P1. 
Cor i + 1 to k do - - -- 

n 

i *  mod It S ci = 

j=1 

The alqorithm is derived by multiplying both sides of (2) by 
Ki and reducing each side Todulo Ri. 

Remark_ 
substitution in the case of non-repeated linear factors (ref. 2). 
If Ri = x - a, then according to that. alqorithm m e  wocld obtain 
C2 by substitiit-ing a for x in the fraction after cancelling x - a 
from the denorninatcr. That is, 

Note the similarity with the algorithm th?t kwrks by 

.L 

I? = inad x - a 
x - a  x - a  

Algorithm 3.1 is Vhus a straiqhtforwnrd gmeralization of that 
approach repls.+:inq substitutions by evaluation modulo a poly- 
nomial. 

. 
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Algorithm 3.2 To solve P2. 
heqin P' +- P; --- 

for j + L downto 1 do 
- b e e  
C * P' mod d; 

end 

- 
j 

P *  +- ~ / Q J  - 
end 
The PF problem can now be solved by cascading solutions of 
- 

Pl and P2: 
Algorithm 3.3 (Horowitz ref. 1) To solve PF. 

begin 
compute R + Qi , i. = l,.-*,k; 

k 
solve problem P1 for P/ mi , obtair-ing C i which 
satisfy (2); 

solve problems P2 for the fractions Ci/Qi , i=l,.. .,k; 

i 1 

2 

Ri 
i=i 

3 
end 

The above algorithm lends itself %o fast computation, and 
$dill bti discussed further in section 5. We close this section 
with ailother useful algorithm which requires computing inverses 

- 

ti nb>duio Q only, not Qi 

Alaorithm II 3.4 To solve PF. 
beg in 

i 

D + P ; E +  li .:i ; 
i=l 

i f o r i f 3 E k g  
l -  

1 
1 
E 

begin 
Pij + (D*F) rod Qi; 
D + (D - Pij*g)/Q. 3. 

F + - mod Qi ; 
- for j + Ili aownto 1 do 

' : 
/ r  
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/ COMPUTATION OF INVERSES MODULO A POWER OF' A POLYNOMIAL 

1 a 

;;here A is relakLvely prime t9 B and dzzg (A)-<.& deg (B). By 

:!ped 9 (7 (P:deg (B) ) operatioqs. We describe below an alternatim 
metho; in which us2 is made of the inverse modulo B only. 

1x1 this section, we consider rhe computation of  mod I3 I 

I applyjncj, say, +_ne Extended Euclidean Algorithm directly, we will 1 

:,emma 4.1 Let A, €3 be relatively prime polynomials and let 
Yi = mod B for each i > 0. Then r--- i 
- _._- 

i+j 
3 ;  = (X. + Xi(l - AX,)) mod B 

3 J 

2i = ( X .  (2 - AXi)) mod I3 . x2i 1 
h) 

ThEse relations (with j = 1) are used below to compute mod €3 

; ~ n  a ~ ? a  ner reniniscent of the kinary algorithm for exponen- 
tiation (Knutb ref. 5). 

I 

R 

a Aigorithm -- 4.1 -- Computation of mod B 
I - begin 

AX1 i 
1 
A 'XI + - nod B; D c 1 - 

while u > 1 d9 
L 

begin 
c f uj2; 



2, 
o < v < u , z = x  - 
creasing powers of 
v'- 0). 

C = BZ, and u varies through cocsecutive d e -  
2 from about R at entry to l at exit (where 

1 R - Theorem 4.1 Algorithm 4.1 computes mod B in 
O(F(deg (B)) + !log R)M(R deg (B))) operations. 

FAST ALGORITHMS FQR PARTIAL FRACTION DECOMPOSITION 

We now turn to the adaptation of the pfd methods far fast 
computations, the resulting algorithm being essentially +->at of 
Kung and Tong (ref. 4). In addition to the notation iu the 
statement of the general PF problem, we use two other sy.tbols: - max (R1#. . . ,2, j 'max x 

n = n1 + ... + nk . 
Lemma 5.1 Lines 1 and 3 of Algorithm 3.3 can be executed in 
13 (p1 !n) ) a-id 0 ( {log amax) .IY (n) 1 operations respectively. 

The analysis of Line 2 of Algorittm 3.3 is mure involved. 
This line reqilires the execution of Algori+frm 3.1, i.e., the 
computation of 

Writing R' for fi Rj , we have 
j=1 

mod ai . 
D P mod Ri 
R i = ,-r mod R = 

'i 7 

Ri 
R' The cortiputatior. of all of - mod Ri is not easy to arrange for a 

fast algorithm. Instead, let us introduce the new quantity 
Ri 

k 

.(li 
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k k 
R’ 

Now R mod Ri = ( 2 $)mod Ri = ?< + 1 v m o d  Ri - mod Ri 

since each term in the last summation is a multiple of R . Hence 
from (21, we get 

”i j=1 ’ j=l 
j Si 

i 

P mod Ri 
‘i = ( R nod Ri ) mod “i . 

(This result, derivable so readily in terms of modular arithmetic, 
has a more intricate proof in Kung and Topg (ref. 411. That is, 

R mod Ri mod Qii]) mod Ri . (4) 

By using a binary splitting technique, Kung and Tong (ref. 4) show 
how to obtain all of P mod Ri and R mod Ri in O((loy k)*M(n)) 
operations. For the inverse part we may use Algorithi 4,l. Hence 
by Theor,?m 4.1 and the assumptions on the bound F(n), we obtain 

_. Lemma 5.2 All of the inverses in (51 can be compuked in 
F (E) + O( (log amax) *M(n) 1 operations. 

Now we have 

Lemma 5.3 
F(G) +.O( (log grnax) * M b )  1 + O( (log k) *M(n) ) operations. 

Lin,.; 2 of Xlqorithm 3.3 can be executed in 

Theorem 5.1 The general PF problem can be done in 
F(i) + O((log RmaX)*M(n)) .+ O((log k)*M(n)) operations. 
- 

The original Kung-Tong algorithm requires F(n) ingtead of 
F(G) as the first term. Recall that n = hitj-, while n = Eni. 
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A NEW ALGORITHM FOR THE LNTZGRITION OF EXPONENTIAL 

AND LOGARITHMIC FUNCTIONS* 

Micklael Rotbstein 
Univxsidad Simon Bolivar 

- 
~ 

\ \  

ABSTRACT 

A' new algorithm for symbolic inteqration of functions built 
up from the rational functions by repeatedly applying either the 
exponential or logarithm fun.ztions is discussed. This new al- 
gorithm does not require polynomial factorization nor partial 
fraction decomposition and requires solutions of linear systems 
with only a small nwtber of mknowns. It is proven that if this 
al.goritnm is applied L-o rational functions over the integers, a 
cofiputing time bound for the algorithm can be obtained which is. 
a polynarial in (1) a bound on the integer lengtk crf the coeffi- 
cients, and (2) the degrees, of the nunerator and denominator of 
the rational function involved. 

I 
INTRODUCTION AND SGME NECESSARY CONCEPT3 I I In this papsr we discuss 4 new aljorithm for symbolic Ante- 

g-at ion .if r s t ~ ~ J x S ~  €unctions, of logarithms and exponentials ob- 
tained {rmughly speaking) by Fepeatedly applying the logerithq 
and exporiential functions to rational functions in the integra- 
tion variable. No restriction, is placed on the constant field, 
except that arithmetic in this field bt? recursive, And that no 
functional expression abtainabze from Dur erpresaions above by 
addition, subtraction, multiplicat.irc and division be a new 
constant. 

As many authors havc done in this area (see a complete his- 
tory of the subject in ref. 1) we shall u w  the notation am? 
concepts described hv Risch (ref. 2). Tr. particular we shall work 
with cliffere-tial fields of the form 

F = Fn 0 K(Z,Ol,*.*tQn) 
where K is the constant field of 2, p ii the integration vax;nblo, 

*Work supported in part by National Scierice Foundation Grant 
L__ 

MCS76-23762 (to Rensaelaor Polytechnic Instftkto) and by 
Grants GJ 32181 and MBS76-15035 (to University of Utah), 

263 



and each en is a monomial (logarithmic or exponential) Over 
/ Fi-l = K(z,B1 I..., oi,r) Fo '2 K(Z) 

We shall also say that Fn LS a Liouville extension of Fi (i 
i.. this sitriation. 

n) 

Our algorithm will require the existence of algorithms to 
perform arithmetic in K, and also, azqarithms for thc usual 
arithmetic operation defined on the domains Si = Fi-lfeil and 

F E Si and % E 21, like addition, s*:btraction, multi- Ei i' 
plication, and division (for elements of Si, obtaining a quotient 
2nd a remainder). 

= IP/OR 

Finding gcd's (greatest common divisors) of elements o'f Si 
can be done by appiying Euclia's aiysrith,. NotjLe that this gcd 
is always rnonic. For Ei, we define the gcd G+ two elernents f and 
g by pointing out that we can find Y and Q in Si Such that gcd 
(P,ei) -I: gcd ((),ei) = 1 and for sone integers j, m, we have that 
f = PO1 and g = QOi . i 

m We t b n  define gcd (f,q) = gc? (P,Q). 

We shall also require algorrthms for finding X and Y in Si 
such that AX -+ BY = C kith deg X < deg B €or given A, €3, C in Si 
with gcd (A,6) = 1, Wc *-hall refer t.o these equations aE univari- 
a:e pa1yrsG)mial equations (U.P.E. '9). 

of given elements A, B of Sital (where a J.s some indeterminate 
over S.) with respect to B i 0  We shall denote this function by 
Res (A,B, Oil. 

Firally, we will need tho ability to compute the resultant 

I 

Now some more definitionst 

a) Given a nun-zero element f of Fm (m I n) then. exist 
unique P, Q in Sm such that P/Q = f, qcd(P,Q) = 1 nrrd Q is manic. 
We $hall ~ 5 1 1  P the nunieratoL (dunotcd by nurn f) and Q the d c m m -  
jr.ator (denoted by dEn E) of f. Let; u8 also define num 0 = 0 and 
den i) = 1. 

-- -- --- 
b) Wo shall say that f in Pm ia a pt-w~~ elrnont of F, f.E 

f = 0 or dccj (rium € 1  !: dog (don P) and also, if O, is exponcnt.ic1 
over F' then On, docs not clividc dcn f. 
square free factots g of' den f satisfy yod(c~,q') = 1. 

This implies that all in-i' 
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c) If f is a proper eierneilt of F we shall say that f is m' 
narma1 (in E' ) if den f Is square-fre: (equivalently, if jcd 
(den r, (den f)') = 1). 

m 

d) Let Dm denote E if 3 = exp u, u E E otherwise 7 m rn-1' Dm - - Sm. 

Kotice that a7-1 these definitions are valid with m =: * and 
= K. F- 1 

ALG09I'rHM OUTLINE , 

We shall 
when presented 
R = den .f and, 
that 

now d i w u s s  the operations donc EIy our algorit?m 
. with some integrand f(z) E F . Let Q = num f, 
by a division process, obtain P1, T in Sn such 

.n 

Q = PIR e T , deg T < deq R , or T = 0 . 
If O n  is not exponential over F we now have to compute 

Otherwise, let R = C!iR1, R1 fr i  S 
the U.P.E. n 1 n  

gc? (R ,Q ) ftf 1, and salve 

We then have to romputc 

and thus, we have sucrt'c.icd in dccamposing our integral inks 
irtcqratinq ar? element of D and 
'n 

inrcqratinq a proper allpnlont ot rl 

To inkegrate cltimcnts of D we cmploy a mr3thsd similar t ~ ,  n' 
one described by nisch (ref. 2) with tht. followinq cknngas: 
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i s  

I 

i 

a) 
curs ive ly 
A special 
pp. 46-49 

In the logarithmic case, the algorithrll invoked re- 
is the aiqorithm described herein instead of Riszh'ri. 
pv-pose algorithm is also c;iscussed in rezerence 1, 

b) In the exponential case, we m e  a ZifCCrent algirltbm 
to solve the resuit.ing diff sreritial equation for X 

X' + U'X = T 

with x, u, T ir P ~ - ~ ,  where exp (31 is a regular monomial. ~ v e r  
Fn-l 

This algorithm will be described In section 3. 

To intearate proper elements g af Fn we use ar! algorithm 

clescribcd by D. Mcck (ref. 3) which yLe?Ss 

where h2 is norrncf in F,. 
described in sc-ction 4. 
irry time analysin for the rational function case. 

Our ?lgorithm to find /h2 will be 
In swtlon 5 we will present a camput- 

SOLVING A SPECIAL CASE OF A DIFPERENTXAL EQUATXfM 

In thip section we uill present a method for oblving khe 
differential equation . 

X' + vx = T 



1 

I 
1 

! 



other conditions will apply.) 

In order to find X, let 

T = -  *1 and 1 V 
v = -  

v2 T2 

with vl, T1 in D 

F (Dn = En) ther. Bn{v2' and BnfT2. We will also require 

that gcd (vl,v,) and gcd (T1,T2) = 1 and that v2,T2 be monic. 

v2, T2 in Sn, where, if en is exponential over n' 

n- 1 

Let us further factor 

- A  

v1 = v v and T l = T G  

A h  

in such a way that w, T E S 
= 1, B, ?; are in D 
(respectively $1 divides T2 (respectively v2). 
that gcd (c,;) = gvd (T,T) = 1. 

are monic, gcd (G,T2) ='gcd (v2,*) 
h n 

and every square-free factor of v n 
We can then prove 

A 

h h  

Now, let pl,= =. t ~ k  be a square-fzee basis for v, T, v2, 

Assume each pi is monic, obtaining 

where the birci are integers with bi # 0 if ci = 0. 
It can be shown that X can then be represented uniquely 

25 

- 
X 

k with 2 E Dn 

T2 
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- - 
. .if we assume tt.i: no pi divides X (though possibly gcd iX,pi) 
# 1). - 

We wi13 nc)w Find the x , as foll~ws: If we substitute i 
these values oi X, v, T in (11, fle obtain 

k k k 

21 ]-I pi - iT h.P! Pj) 
I 1  

i= 1 i=l j=l - - T j#i +--- G Z  - 

i=l 

k 
n p I i + b i  
1=1 i=l 

If bi # 1 we notice that xi = ci - max (bi,l). 
bi = 1 1  we can have p 
sion. But this can happen if and only if 

Otherwise (for 
dividinc: the numerator of this expres- i 

0 I O  

I 

', i#io 
\ 

where a = max (b l)',and w is the smallsst non-negative integer 

such that the expression in parenthesis times 9" belongs to S . i f  \ i 

n n 
But this is true 'if and only if 

a k 
a a -bi 

Res (pi ,; 6; n p i i  - enp; E pii I en) = 0. 
O i=1 0 i=l 

i#i, 

i 
SinCelthis is a polynomial equation in xi , we can ?heck whether 

our root is an integer (bigger than c - 1) and solve for it; 0 

io 
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otherwise we set x = ci - 1. 
0 

We then obtain an equation of the form 

- li 21 + ii ji = c 

with x, E, E, 2 in D ~ .  
a similar computation to find an equivalent equation with x, E, 
e, 2 in Sn. 
X, we now do the following analysis: 

g = gcd 1x, E). 

If e is exponential ovsr F ~ - ~  we can do n 

Thus, assume x, E, e, are in S . In order to'find n - 
We can assume that gcd (x, E) = 1, s h c e  otherwise, let 

Then glc (otherwise no solution exists) and we - 
obtain the equivalent equation 5 zt + 2 = - c' . 

- g 9 53 
We have three different cases: 

i) deg = 0 and deg fi > 0. 
In this case, either e = 0, (so that = 0) or deg E > 

deg E, so that no solution exists, or deg 5 < deg E and we can - - -  
find the leading coefficient of 2, (since deg A XI < deg 5 %) 
arriving at an equation of the form 

with deg 2. deg E, so that we can solve it recursively. 
ii) deg = deg 5 := 0 . 
Since, by assumption, our solution, if it exists, is unique, 

we obtain that deg 2 = deg 
(1) but with v, T, X in F 

and a set of equations of the form 
We then entar our algorithm n-1' 

recursively, noting (though not trivially) that these equations 
satisfy the same condltions we had before, with respect tc -*. 
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In this case, we point out that if we let 2 = QE -t R, 
(deg R < deg x) and substitute, we obtain 

i Thus if we solve the UPE 

1 
: : 

YA + 2; = for Y and 2 

with deg 2 < dey x, we must have that Z = R, and Q must be the 
solution of the equation 

I 
which we can solve (if Y = 2' then Q = 0) by checking gcd (A,B+A') 1 

and applying one uf (i), (ii) or (iii) again. 

a f t q  computing a bound on deg X and noting that deg Q < deg X - 
deg A. 

already known. Finally, the first time we apply (iii), we compute 

- - -  
> 

It is very inportant to nose that (iii) should be applied I 

solutiosi. Note that after the first time we apply (iii), no com- 1 
putation on the bound of X 

a bound on deg X using methods &scribed in reference 2. 

! 
If we obtain that deg Q < 0, then there is no possible 

1 
I is required, since this bound is 

\ 
I 

INTEGR4TION OF NORMAL ELENENTS OF Fn 
, 1 
) I  i 

In this section we will present a new algorithm for finding 
> ,  

I 

I 
the integral of a normal element of Fn. The algorithm is justi- 
fied and explained in the following: f: ' 

I 

Theorem 1. 

! 1 
I 

Let f be normal in Fn, P = num f, Q = den f. Let r(a) = 
resultant (P - aQ',Q,B,). 
alZ the roots of r(a) are constants, if and only if r(a) = s t(a) / - I  , 
with t(a) 

Then ff is elementary if and only if I 
I 

I 1  

I E KIa] and s E Sn. I , i s  
Zheorem 2. 1 

I 

Using the same notation as in Theorem 1, if f is elementary, I 
let clr...,c 
Then 

be the roots of r(a) and vi = gcd (P - ciQ',Q). m 

1 ., .-. ' c 
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L) If 0 is logarithmic Over F or n = 0, then n n- 1 
Vi 

f = T c  -. 
i i v  

m i= 1 
V i  

ii) If Bn = exp (w) , w E Fn-l, then f = C ci(q - n.w*i 1 

i=l 

where n = deg vi . i 
Theorem 3. 

Using the same notation as in the two >revious theorems, 
if f is elementary, then r(n) (and t(a)) define the least Legree 
extension of the constant field, necessary to express the intc-yral 
of f. This theorem answers affirmativzly the open problem asked 
by Risch on page 171 of reference 2, and generalizes a result of 
Wager (ref. 4). For proofs of these statements, we refe; the 
reader to reference 1. 

COMPUTING TIME ANALYSIS FOR THE RATIONAL FUNCTION CASE 

In this section, we will present a coxputing time anal?-sis 
of this algorithm for the rational function case. r'irst if P 
is a polynomial with integer coefficients, 

i P = 2 a.x , we define 
1 

Now, we define F(m,n,d) as L e  class of functions PjQ, w,th 
P, Q relatively prime univariate polynomials over the integers, 
nax (lPl,lQl) L_ d , de4 P - < m , deg Q n . 

codominance used, for example, by Collins (ref. 5). 
We shall use the definitionc and notation for dominance z.nd 

Then, we have the following theorem. Fcr f t' F(m,n,d), the 
time required by the algorithm described herein is given by 

8 2  6 3  (m,n,ct) - < n L (dn) f n L (kn) INTG 
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2 -  
+ max (m + 1 - n, O)nL (d) + 1 

(if we assume that the norm of any of ?:he partial r sults except 
the resultant, is also bounded by d) where L(d) = log2(d! + 1. 

Proof: We have two cases to ccnsider. 

(a) m 2 n , and 
fb) m < n . 
If ri! < n, we do a quotient-remainder operation, and then we 

continue with D. Mack's i?ilaoi'ithn! and tf'e algorithm described in 
section 4. Re then have the follcrwing comput;ng times. 

The quotient-remainder operation requires constant time. 
D. Mack's algorithm requires time n L(ndI2 as proven in reference 
3. 

5 

The algorithm in section 4 requires time dominated by: 

i) nI,(d) to compute Q' 

ii) nL(d) to compute P - aQ' (deg P C n) 
3 iii) n L(d) t? compute R = resultant (I? - ccQIrO). 

2n 
(We point out that degclR 2 n, and its norm is boullded by (2n)!d 
- < 2n2nd2n = (2dn) 2n and thus Lfnorm R) 5 nL(dn) 1. 

6 2  3 3  8 2  6 3  
iv) n8 + n L ( n o m  R) + n L [norm R) 1 n L (dn) + n L (an) 

to comrmte the roots of Rfas qiven in private commcnication from * - 
G.E. Collins assuming number of roots = n). 

1 - -  C i < n (assuming there are n distinct roots of A). 
2 2 v) n(n L(d) + nL (a)) to compute gcd (P - .=.Q',Q) for 

Adding these times, it is clear that the time to compute 
the roots of R dominates all other computing times, and we obtain 
the desired result that the ccimputing time for the algorithm 
in section 4 is dominated by 

6 3  n8L2(dn) + n L (dn). 

FinaLLy, if m > n, the time to compute the quotient-remainder 
is given by (rn + 1 - n)nL2(d) and the time to compute the integral 
of the polynomial part (by the classical method) is given by 
(m + 1 - n)L'(d). 
272 

... 1 3 



1 I 
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1 

If we add all these computing times we obtain the icszlt 
that we quoted at the beginning. 

the norm of R were obtained from reference 5. 
Note: The bounds OR the time to compute the resultant and 

C3NC LU S I ON S 

We have shown that for rational functions integration in 
finite terms can be done in time bounded by a polynomial in the 
size of the input, if part of that size is the deg ee. 

for the case where the number of monomials is fixed, yields a 
polynomial in the sr;~ne sense as above. 

n x  obtained, as shown by the example .fx e dx.) , This conjecture, 
though, Fiiiplies that the computing time of any algorithm for 
symbdiic integration is at least exponential in the number of 
monomials in the integrand. 

In the general case, we conjecture that the computing time, 

(No better bound can be 
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SUMMATION OF R A T I O N A L  EXPGXENTIAL EXPRESSIONS 

1N CLOSED FORM 

Joel Moses" 
and Jacques &hen- 

ABSTRACT 

A program is described which provides, whenever possible, symbolic closed form 
solutlons to summations of rational exponential expressiam, Le.. of the type 

X=,l 
, 1 

jl I 
where the F's are polynomials in x. T h e  progiam is based on a Ceclsion procedure recently 
developed ,by M. Kart. T h e  decision prcTtdure conslsts of determining if the resiiltlng sun, is in 

I itself a rational exponential, and if so, generating that expression. The paper first reviews some of 
, I Zhe classid1 techniques summarized by G. Boole for attempting to find c'md form for the given 

' technlques. Several examples of the prcgram's use are provided. 

. type of summations. Karr's method is then informally presented. His I' .-!hod riot only provides a 
decchion procedure but also appears better suited for computer impkr~lc:r!t~fion thai the classical 
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-+ LSUMMARY 5 

by 
V. Ellen Lewis 

Laboratory for Computer Science 
Massachums Institute oi Technology 

Cambridge, Masachusetts 

I Y 
The alds available to the MACSYhfA user are described, from the printed manual. primer. 'i 

f 4- % 

, 3 I 
i r 

and tystem Inaiaduaion to the various on-line sources of help. ?'hi: Is a tutoria! paper which IS, in 
fact, a 'user aid' iwlf. 

- 

2. PRINTED MATERIAL 
I 

W h e n  a new user requests Information about M A C S Y M A ,  he is sent a standard package 
conslsting of the MACSYMA Reference Manual, the 'MACSY M A  Primer", and the "Introdrrcrton 
to ITS for the MACSYMA user.') These three documents cnmprise the printed documentation for 
MACSYMA and are Intended to provide enough Information to a prospective t:ser tct permit him 
to (1) determine whether or not MACSYMA can help him solve hls problem, and (2) get started 
using MACSYMA. 

I 
i 
I 

I 2.1. The MACSYMA Reference Manual 

The Reference Manual is, of course, the most complete document dealing with the 
MACSYMA System. It describes rlt the functions, commands, switches and options available in 
the sysr.em. Most serious MACSYMA users will want to have one for reference. It has Indices of 
functions and switches, as well as detalled inrormatton dealing with programming and the internal 
operatlon of MACSYMA. It Is updated approximately every 12 to 18 months. In between 

r 
f. o. Thls woik was suppcrrttd, In part, by the United States Energy Research and Develspment 

Adminlstrarion under Contract Number E(Il-l>l)OtB and by the Natlond Aeronautics and Space 
Admlnimac!on under Grant NSG 1323. e ,  
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revisions, information about new features i3 available on-line in the file HACSYM;UPDATE >"". ' 

2.2. The 'Introduction to ITS'' sand the "MACSYMA Primer" 

T h e  "IntrQductiotr to ITS for the MACSYMA user' attempts to explain to those whose 
primary purpose in using the compurer is using MACSYMA hcw to cope with the time-sharing 
system (ITS) on which MACSYMA runs. This is at best a stop-gap measure, but an essential one 
for the moment, because MhCSYMA runs on a 'research" system. Thc assurnprion is that the 
person using the computer wants to have access to any part of the operating system at all times. 
For a programmer this is a "feature' (an advantage), but for a user this can be a distinct 
disadvantage. T h e  "Introduction to ITS" is intended to offset this disadvantage. 

. 

T h e  MACSYMA Prlmer is a brief descrlption of some cf,the commonly used features of 
MACSYMA By use of a n m b e r  Gf examples, it demonstrates MACSYMA's syntax an3 gives a 
short "cook book recipe' for how to, use MACSYMA 

Using these two documents, a potentia! user can establish a connection to the computer, and 
get started using MACSYMA. 

3. THE ON-LINE AIDS 

MACSYMA is a system with a lot of bullt-in expertise. Once the user has gotten himself 
connected to it, it ir reasonable to hope that MACSYMA a n  offer information about itself should 
the user desire It and respond to simple user querlu. 

4 
\ 
4 3.1. The PRIHCP, 

For the novlce user, or other users who want some instruction in I partir?.i!;r aspect of 
MACSYMA, there is the on-line Primer. This Is conceived as an interactive educational too; 
which leads the user through some sampk akubtion~ It allows m e  user to type commands, but 
intercepts them for checking before they reach MACSYMA's evaluator. If a command is typed 
correctly, it Is pa.ucd on to thh evaluator and MACSYMA handles it exactly as If it had been typed 
In from top level MACSYMA If a command Is not correct, the Prlmer tries to identify the sourie 
of the error and give the user an appropriate error message. The command Is not passed on to 
MACSYMA and the user b asked to Try again.' Thus the user gets 'hands ori' experience 

00. T h b  fik may be prfnted out wC:h :he command :PRINT HACSYH;U?RATE Bcurrfage rerum> at 

i 

' 

i - 
DDT 18Vd 
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typtng actual MACSYMA commands but in a controlled situation where he will be introduced to 
the complexities of the system without having to flounder around. 

T h e  cornmand to stare up the P;imer is PRIHER( );.” This will print out a brief introduction 
and offer a choice of subjgCts to Icam about, thus: 

(61) PRIHER( 1; 

Hello. Please terminate your respooses with a ;. What would you 
lik6 to go over? (Select, the number of the script you would like to see.) 
IMTRO Is a general introduction for people who have never used PIACSYtlA or 
this PRIMER before. 
1 - INTRO 
2 - SIMPLIFJCATIOH 
3 - SCkATCHPAD 
4 - SYNTAX 
5 - ASSIGNMENT 
6 - FILING 
7 - MATRICES 
8 - SHARE 
9 - EXIT 

These topics arc ca!led scripts because thelr interactive nature makes them closer to dramatic scripts 
than to narratives. T h e  user selects a script by typing its number (or its name) followed by a semi- 
colon. (IPTRO is the introductory script and should be run uy new users.) There is a “standard” 
introduction consisting of the LNTRO script (which inserts the SYNTAX script), the SIMPLIFICATION 
script, and the so-called SCRATCHPAD scripp. These scripts lead one co the npx:, with an optional 
ordering offered. Additional sc..pts are available on HATRICES, FILING (the various kind: of 
atsk files ind how to use them), and ASSIGNMENT (how to define functions and assign variables). 
Scripts will eventually be added dealing with EVALUATXOS program wri:ing, and (in the spirit of 
self explanation) User Alds. Some of the information on the SHARE directory may aSso be printed 
out in the Primer, by selecting the SHARE script, which offers a further selection of file names to be 
printed. T h e  PRXNER command may also be given a script name as an argument, e.g. 
PRIHER(3ATRICES);, and Lt will then run thzt script. 

T h e  uwr is moved around from xtipt to script in the Primer depending on how he answers 
the .‘yes or no’ questions the Frtm atkr 

+. This Is called a Yunctloii of no arguments’, since MACSYMA functions take their arguments 
Inside parentheses. 

w. SCRATCHPAD b rnnnt to imply the ability to “fiddle’ with MACSYMA expressions. N_o_ 
ctmnectlm wlth another manlpulation system I5 intended. 
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00 you need help with HACSYrlA S ~ R ~ R X ?  

YES ; 

Other scrtpt switches are accomplished by the primer printing out the list of scripts again and 
allowing the user to select a script or to exit. (Also at any point the user may type control-uparrow, 
thz MACSYMA 'quit" character, and exit back to top level MACSYMA). 

T h e  user wili be invited to cry gut the various commands as they are explained, e.g. 

i 

Here is a simplo example of the use of SUBST. The numerator of I 

i this expression is qual to 1 for all X, be% the HACSYMA simplifiers will 
not simplify if directly. I 

1 

(C2) (SIN(X)^2+COS[X)^2)/(XA2+39); ; I  I 
2 2 

SIh (X) + cos {XI 
------"---------- : i  

2 I \  
+ 3 9  I \  

I 

iD2) 

Theri are three ways to use S!ZST on this example: 
One could substitute 1 for SIN(X)"Z+COS(X)"2 
One could substitute 1-SIN(X)*Z for COS(X)*2 
Or one cou:d substl tute 1-COS( X)̂ 2 for SIN( X)"2 

The first way is more d:rect, but In more complex examples where 
the sin squared plus ccs squared is deeply entwined with other elements 
of the expression the second or third way would be necessary. Pick the 
way you like best and simplify the expression by using SWBST. 

\ 
; '  
1 ' 1  

T h e  user may then perform the 1ndica:cd operation, or if b,;e is not sute how to proceed (or has * I  
I tried once or twice and beer, tinsuc;z.;sful), he may :ype NO; and the Primer will show him how to ' 

i 
t 
I do it: 1 
I 

(CJ) NO; 

O.KG I'll do it for you. 
I C3) SUBST( 1 ,SIN( X)"2+COS( X)"2 ,%) ; 
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3.2. Tbc HELP Command 

T h e  casual MACSYMA user frequendy wants to do one task, invert a matrix or solve a 
'differential equation, for instance. The advanced user sometimes needs to k m w  one thing like 
what switches affed a particular command. That is to say, there are specific questions users have, 
whlch flt into two general ~QQPIT)~: 

I. How do I <do something, ? ~. ~- 

2 What are the caagcments, sait~hes~ for <command> ? 

Of course, the user coulC ask a knowledgeable user these questions, or look tnem up in the 
Reierence Manual, but this is not always convenient, So the HELP(); command has been 
implemented. T h e  HELP( ) ; m m m a n d  starts up a small "natural language' subsystem which can 
understand English in a flexible but 1imi:Pd way. Sentences it cannot understand are returned 
with the constrbctions or words the system docs not undertand pointed out, SO the user may 
nphrasr his question. This HELPer is the beginning of the .4DVIS@R subsystem which will 
ultimately take the place of the communication with humar: advisors for neat questions (see ref. 1). 

Basically, this subsystem will be able to understand and replv to questions of the two forms 
shted above: "How do I 3" end "What are the - for -?" The flexibility of the system permits, 
fur instance, the two questions: ' 

1. H o w  do you append two lists? 
2. HGW db I .,lake one list vat of two lists? 

by recognizing that they are both requesting information about the APPEND command. Questions 
of the form 

'How can I integrate D37' 

can also be handled, since the subsystem has access to the rest of the user's MACSYMA and can 
find out what D3 It, even replying "I'm sorry, MACSYMA cannot Integrate cexpression>." should 
thrt be the case. 
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To exit from the HELPer, type BYE. 

3.3. Options. Describe, and Example - 

3.3.1 Options 

Users 
matrix?" ar 
OPTIONSO; 

sometimes need to ask a more general sort of question, like "What can I do with a 
T h e  

command was conceived for this purpose. 
"What kinds of operations can I perform on triganometric functions?" 

OPTIGW( 1; starts up the 'Opcions Intupeter-. Note that OPTIONS may take the n a m  of a 
command or a genera! topic (e.g. MATRICES, SIMPLIFICATI~N. FACTOR) as an argunwnt. 
T h e  effect of 5?TIONS( ); IS 

(C4 1 OPTIONS{ 1 ; 

1 -  
2 -  
3 -  
4 -  
5 -  
6 -  
7 -  
8 -  
9 -  

OPTION FRSL DSK HACSM being loaded 
loading done - 

OPTIONS interpreter (Type .EXIT;. to exit.) 
INTERACTION 
DEBUGGING 
EVALUATION 
LISTS 
WATRICES 
SIHPLIFICATION 
REPRESENTATIONS 
PLOTTING 
TRANSLATIQN 

ThIs list of topics is the top of a branching hlerwchical structure like an inverted tree which 
organltes the n a m a  of MACSYMA commands and switches by topic or fiixtion. A portion of 
the tree looks like this: 
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INTERACTION DEEUGGXNG EVALUATION LISTS HATRICES SIMPLIFlCATION 

EXPANSION A FACTORIYG TRIG 

EXPAND /\ 
(C) RATEXPAND 

MAXPQSEX (S) MAXNFGEX (SI 

The Options Interpreter uses [..e same mechanism for moving around in this tree that the Primer 
uses for script selection, thus referring back to the printout from OPTIONSO;, the use: types 3 
number followed by a semi-colon to q the things under a particular topic (a "node" in the tree). 
Tot example: 

(C4 ) OPTIONS ( ) ; 
OPTIONS interpreter (Type .EXIT;. to exit.) 
1 - INTERACTION 
2 - DEflUGGING 
3 - EVALUATION 
4 - LIST§ 
5 - MATRICES 
5 - SIHPLIFICATIO# 
7 - REPRESENTATIONS 
8 - PLOTTING 
9 - TRANSUfTON 
1 - EXPANSIOM 
2 - FACTORIN6 ~ 

3 - TRIG 
6; . -  

Continuing further 
I 

1; 
1 - EXPAND (C) 
2 - RATEXPAND (C,S) 

A mnmand Will have thp symbol (C) after If, a twltch wlll have the symbol (S), awi 3 variable 
wlll have (VI. ConttiXSiIg down the bee, If t4e user selects 7". the EXPAND command, MACSYMA 
ptfnta auk 
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1; 
1 - HAXPOSEX (S) 
2 - MAXNEGEX (S) 

showing the switches which affect that command. If the user selects "1" at this point, the MAXPOSEX 
switch, MACSYMA prints cut 

no options 

indicating that he has reached the bottom of the tree.. To move back up, perhaps to check out the 
RATEXPAND command, the user types 

back; 
1 - EXPAND (C) 
2 - RATEXPAND (C,S) 

and the system moves him back up to the next higher level. To exit from the OPTIONS Interpreter. 
type exit;. 

3.3.2 Descr i be 

T h e  OPTIONS command allows the mer to select a command or a small set of commands. 
T h e  user can then check the command in the manual or use the DESCRIBE command to find out 
what it does exactly, and what arguments it takes. DESCRIBE takes a command name or a switch 
name as an argument and prints out the section of the manual which explains the command or 
switch? DESCRIBE works within OPTIONS, taklng the number of the command: 

1 - FACTOR (C) 
2 - GFACTOR (C) 
3 - FACTORSUM (C) 
4 - GFACTORSCM (C) 
5 - SQFR [C) 
6 = PARTITIOY (C) 
DESCRIBE( 1); 
FACTOR(exp) factors Ihe expresslcrn exp containing any number of 

I 
1 
I 

variables or funcllons, into factors irreducible over 
the integers. 

0. Of course. this is only as good as the latest vers!on of the manual, and might be out of date if 
new features have been added. 
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Of DESCRlSE can be used directly from top level MACSYMA: 

(C5) DESCRIBE(FACTQR); 
FACTOR(exp) factors the expression BXD containi . g any nun.,er o 

variables or fuactions, Into factors Irreducible over 
the Integers. 

33.3 Exame 1 e 

T h e  EXAHPLE command fits very clasely with DESCRIBE. It also takes a command as an 
argument avid gives examples of how that csmmand may be used, and the sort of output it gives. 

(C6) EXAHPLE(FACT0R); 

E X A W L  2 DSK DEMO being loaded 
loading done 

(C7) FACTOR&& FACT9R(2^63-1); 

Since the EXAMPLE command is actually a demonstration (se? DEMO cormand telow), ~t prampts the 
user with a "," at the left margin after ech command line is proceued, so the user may type a 
space to see the next command line, or control-uparrow to "8UI1" out of the EXAMPLE. 

3.4. Demonstrations, and the DEMO Directory 

Another way a user can find out how various &T~*..tSYMA functions work and get an idea 
of how MACSYMA can be uscd on real pmblems is to run same of the demonwitions which are 
contained in the DEMO directory. 



1 
! . .  

The directory may be listed at system top kvel (DDT leuel)*' and the files loaded into 
MACS'IMA with the DEHO command, e.g. 

(C9) DEMO(MOEnO,FILE,nSK,DEnO), 

4. USE3 SPECfFIC INFORMATION 

All the user WIQL dlxusscd thus far have been for getting information about the system. It IS 
sometimes nemsary for a user to get information about his own functions or the current state of 
his MAWfHA 

4.1. Information about User-Dcf incd Fbnctior; and Variables 

4.1.1 DISPFUN and GRIND 

Suppose the user has defined a function F(X), for instance 

(e10 ) F( X) : 3 x 2  ->Z*Ui.i ; 

(Dl01 F(X) := X + 2 X + 1 
2 

The user can redisplay this function using the command DZSPFUW( F) ; 

(C11) DISPFUW( F) ; 

(011) F(X) := X + 2 X f 1 
2 

In thls way he can check the wrratites of ths deflnition, 3r rcvlew It. 

If the funaton she user had defined Is a BLOCK tta!emeot, c.g* 

( C12 WY TAYLOR( EXPR ,VAR, POINT, HIPOER ) : xBLOCK( [RESULT 1, 
RESULT: SUBSJ(POIHT,VAR,EXPR),FOR X:1 THP.11 HIPOKER 
DO { EXBR : DIFFt FXRR, UAR) /P, RESULT: RESULT+(VAR-POSNT)AI* 
SUBST( POINT,VAR, EXPR) ) , RET'JR#( RESULT))$ 

+. : LISTF DEHWcarriag, rttum' 
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just displaying it may not be very helpful, especially if the user is trying to "debug" it. T h e  
command GRIND(6); can be used and will display the function G with ;he mitous par:s of the 
BLOCK statement indented properly SO their structure can be more easi?y seen, for example: 

(CLJ) GRINDCHYTAYLOR); 
#YT~YLOR(EXPR,VAR,POTNT,HXPOHER):=BLOCK(ERESULTJ, 

RESULT:SULST( FOINT,UAR, EXPR), 
FOR I THRU HIPOWER DO 

(EXPR : DIFF( EXPR,VAR, 1 1 /I, 
RESVLT:RESULT*(VAR-POINl)nI*SUBST(POINT,VAR,EX~R)), 

' RETURN(RESULT))t 

Using GRIND on a functlon like F(X) above (whlch fits on one line) prduces the one drmensional 
representation in whiik the function was lcpu!, although in general It might be equivalent but 
slightly rearranged. 

DONE 

4.1.2 PROPERTIES and ARRAYIIFO 

The command PROPERTIES takes a function or a,varlable as an argument, and prints out the 
thkgs MACSYMA knows about It, c.g. that It b a functlon. For example 

(C15 1 PROPERTT;ES(tlYTAYLOR) ; 

PROPFH FASL DSK HAXOUT bslng h d e d  
loading dona 
(D15) [ FYHCTIOM] 

(Cl61 PRBPERTIES(6RIHD); 
(016) [SYSTEH FUNCT:ON J 

The command ARRAYINFO takes the n a m  of an army as an argument, a m  wi:l print olif the 
ilnformation about the army: whether or not It Is dechted and Its dlmentiont. 

. 
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42. INFOLISTS 

! INFOLISTS is a list of the lists of information MACSYMA maintains about the user's 
MACSYMA state. Typing INFOLISTS; will produce the following output: 

- 
(C17) INFOLISTS; 
(Dlf) LlABECi, VALUES, FUNCTIONS, ARRAYS, HYOPTIOMS, PROPS, ALIASES, 

PULES, GRADEFS, DEPEtJDZNCIES, FEATURES] . 
EWZNFQLISTS) E wlfl produce a list of the things in each of the lists. The lists maintained are: 

, 

LABELS - The line labels in the current MAC3YMA which htve been asshgned. that is all C-lines, 
D-lines, and E-lines. 

VALUES - All t5,e vaiiablcs the user ha assigned a value to explicitly with the : operator. by 
, variable name, 

FUNCTION3 - All the funciiijs: the user hu defined wieh t%e :a operator, except subscripted (array) 
t unctions. 

I 
1 
i 

ASIRAYS - Ail arrays and matrices, dccfarcd and urtdeclarzd, and at1 zrrq fund:ms. 
NYOPTIOHS - All the MACSYMA options (switches) the user has changed. 
7ROPS - Any atoms which hive p r F  %iiS ssch as atvrlua, matchd~lares. or properties speclfred 

I 

by the DECIARE functfbn. 

4LIASES - Tin user'; c x  sbt?rcvistcd names for qwantltles, e%. ALIAS( INTEG,IIJTEGRATE) sets 
up ItiTE6 as a short spelling Tot INTEGRATE. 

RULES - Any s1mptrf:ntion ru?a or pattern matching rules the user has defined using the 
TELLSIW, TELLSf?IFAF:TER, DEFWATCH, or DEI RULE commands. 

I 
i 
i 

GRADEFS - Those functlons for which the user has dcflned derlvatives. 
DEPENXNCIES - The functional depmdrnclct declared by the UMI with the DEPENDENCIES or 

6RADd command. 

FEATURES - Speclal mathsmalrul ot othct propcrtirr of? functions. 'Three are bullE inuo 
MACSYMh: INTEGER, EVEN, and OD& but the user caii ad:! ethers. 
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4.3. Tracing and Debugpiig Aids 

T h e  TRACE runttion accepts the names of functions as arguments, and will print out 
information each :]me the functions being traced arehgi, e.g. 

(C18) TRACE(HYTAYC0R); 

This pcrmiu the user to make a better gueu as to where his function ts nor behhing as he 
ClXPKU. \ 

\ 
T h e  UNTRACE function is the complemenary function which removes the tiace from 

flre?ctbns (e.& UNTRACE(HYTAYL0R) ;). UNTRACE( ); will remove tracr;ig from all ful.ctlon;. 
TRACES ) i will prlni: #st a llst of all functions bc!ng traced. I 

( C ~ O  TRACE{ j ; 
(020 1 5 MYTAY LOR J 

There is a switch which helps tk user keep track of what variables he has assigned values 
to. Thi3 Is SETCHECK. SETCHECK mar be sa (uslng the : operator) to a list of variables, and 
M.tCSYMA will print out a message any tim an assignment 1s made to one of those variables. 

i 
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I -7 1 There are it few ocher debugging aids, which are explained in the manual in the section on 
Debugging Functions. 

5. FINALLY, T H E R E  ARE STILL PEOPLE1 

Finally, skould the user find these various aids inadequate, there are still human advisors 
around to whom he air put his questions. These human advisors are MACSYMA's best "User 
Aid", and the user IS tmouragcd to contact them with his problems. This can be done within 
M ACSYMA by using the SEND command, e.g. 

(C22) SEND("H0W DTS I INVERT A HATRIXP"); 

Notice the quotation marks, they are part of the command. This will send a message to one of the 
M AGYMA helpers V J ~ O  Is logged in at the time. Alternatively, the user desiring help can exit 
from MACSYMA with a control4 and use the DDT ccmmand S E N D  to Contack a ptrticular 
person', or In cases of desperation. the : LUSER command"0 

6. REFERENCES 

1. Genesereth, M. k.: .An Automated Consultant for MXCSYMAl: 1977 MACSYMA tlrer's 
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+. See the "Int~duction to XTS for MACSYMA Users' for details 

M. Once agaln, sa? the Introductlm to ITS," 
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,The Difficulties of Using MRCSYMA and the Function of User Aidso 

hlichael R. Genesereth 

Center for Research in Computing Technology 
Harvard W n iversi t y 

Laboratory for Comput, rr Science 
Masdwtctts Institute of Technology 

Abstract 

The aiffimut!es of using a computer systcm to help solve a problem can be divided intn 
learning difficulties, :emrce knowledge difficulties, aqd communication difficultits. T h e  
purpose of this pager is to explore the nature and manifesvdtions of these difficulties in 
MACSYMA and to explain the function of user aids in dealing with them. A learning diffrculty 
irlsei! whenever a system is too large or too complex to understand fully. A resource knowledxi 
difficulty arises wherever a us= 1s unable to solve his problem due to a tieflctency in ;his 
ur.4crstanding. A communication difficulty Ir due to a difference betueen the primitive cbjects, 
actions, and rcktions of a users problem and those provided by the system. T h e  importance of 
this d&tinction Ita I n  the way each difficuby 1s handled: learning drf ficulties by primers, lectures. 
tutor% resource knorledge difficulties by manuals, Iiformation networks, consultants; 
communication diffirJ!ties by bringing the system closer to the user's needs. In all cases, the 
optimal assistance can k pmilded by an ald that maintains and uses an explicit, inte. mal "model" 
of the user's sitte of InowWgc, hlt goals, and h b  'plan' tor achieving them. 

Intrbduriton 

Consldvf sclentht trylng to solve a mtkernatlcal probtm wlth the aid of an algebraic 
manipuhtion systm ?!ke MACSYMA. If he were to solve the problem by hand, he would 
permnaily have to gnppk with the probkm Itself and all the subproblems chat arise. By using 
MACSYMA, hc can delegate many oubpr&lcmt and thereby save time and cffart. However, to 

a This work was suppotted. In part, by the Waited States Energy Research and Development 
Admlnlstn!km under ?%ntnct Number E(ll-I)-3Mo and by the National Acrona-**-- -r.e~a and Space 
Adminhtratian un:?tr Crane NSG 1325. 
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do so, he must (1) understand the re?evant portions of MACSYMA. (2) be able to remedy any 
difficrr?t% :hat a.rist from a del iciency in this understanding, and (3) expend the additional 
effort necessary to communicate la MACSYMA the essential details of his problem. In general, 
when a person employs any tool 'cr help solve a problem. he is trading off the effort required for 
these three tasks in return for ths tool's powerful or unique abilities at solving his Frobiern. 

T h e  purpose of this paper is to explore the nature and man'f 9 estations of these tasks in the 
context of MACSYMA and to explain the function of user aids in Facilitating their execurion. 
Peapie sometimes eomplain that MACSYMA is difficult to understaid or to cmtrol, and they 
usually cite specific properties of the system as primarily rezaonsibk, e.g. too many commands. too 
hard to specify subexpressions. In all cases, these complaints are attributable to increases in the 
difficulty of one or more of the above tasks. Difficulties encouotered in acquiring an initial 
undersranding of a system will hereaf!er be cz'hii learning difficultios; problem sctvrlng 
difficulties resulting from a deficierq iv thit uncierssanding will be called resource kn- 4Wkd R(P 
dlfficufties; and difficulties in communicating to the system the essential details of a problem and 
in retrieving a comprehemible result will bc called cammumcatinn difficulties. T h e  importance 
of this distinction lies in the way each difficulty can best be handled. All three difficulttes can be 
lessened by improving MACSYMA itself. However, learning difficulties can also be tre2mi by 
tutorial aias, and res.mrce knowledge difficulties by nuset-witiative' information sources. It will 
be argued that in all three cases the ultimate aid io one that maintains and uses a "model" of the 
user's problem and his plan" for solving it. 

The analysis presented here 1, concerned mly with difficulties arising from the use of 
MACSYMA; it does not consider those arising from ill formu!at& or partially farmulated 
problems. Such problems are not. uncommon, e.g. a scientist will occasionally engage in algebraic 
manlputation without a precise goal because he wants the insight that comes from writkg his 
result In different forms. Although the paper does mention !n seneral terms the ronstraints on 
MACSY MA's design, it does not consider LQecific impknentational or mathematical dif f icultles, 
e.& address spdce problems. the representation of derivatives. 

A learning diffisulty arises when a system is too large or its primitives too .:cr.iplex for a 
new user to understand fully. MACSYMA, for example, has over 350 cornrnandr and 200 
switches. and the behavior of many commands like TaICREDUCE cannot be simply described. 
Learning difficulties are b?st cwntered either by simplifying the system or by providing tutorial 
aids like primers and lectures. 

A resource knowledge difficulty ariss when the user finds himself utiable to proceed 
Curther in solving his problem due to a deficiency in his knclwledge of MACSYMA. H e  might 
mat, for example, be able to remember the name of the command for putting a sum of quotients 
over a common dLnominator (COMBINE). Or, he might be unaware of a cornm?nd's 
dependence OR the settlng of some varlable, e.g. EXPAND and MAXPOSKX. Or, he might get 
an incorrect answer due to a programming mistake but not know where in his derivation he went 
wrong. Resource knowledge difficulties are best treated by user-initiative information sources, c.g. 
manuals. lriformation networks, and consultants, 
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I 
A communication difficulty results from a different? between the chjects, actions. and 

example, MACSYMA can represent a matrix and conpute and solve its characteristic polynomial, 

7 
re la':^:;; ef !he !user's problem and those prorided by the system. T h e  difference may be either 
simple or cornplev. A- "simple" difference is eliminated by defining the re'evant concepts. For 

but it knows nothing about eigenvalues. The mer with a matrix eigenvalue problem may either 
call the appropriate commands one kg one or define 3 fanction A "complex" difference results 
when there is no hrjnomorphic mapping betweer. the ~rirn,ii\.rs cf the user's problem and their 
representation in MACSYMA. For example, a user may want to write an expression as (V&, 
but MACSYMA insists on writing V2/C2. Th 2  inost straightforward solution to communication 

-1 .~ 

1 
+- 

- 
\ \  

difficulties is far the system designer to bring 'he system's primitives closer to those of the user. 1 
i 

'It is trnportant to ksep in mind a basic distinction between learning and resource 
knowledge difficultic; on the one hand and communriation difficulties on the other. A 
coc~nunication difficulty results from the differencc between the excertise required to solve the 
user's problem 3nJ that provide,' by the system. A learnirig or ie;tc:'tC kcowledge difficulty is 
due .3 the user's -.ifsunderstinding of the system, no matter tvw app:o;riate the system is ta :kt 
problenr at hand. A communication difficulty varies inversely wifh :he system's experrice and 
would exist even if the user understood MACSYMA perfectly. ! iarnmg and resource knowledge 
difficulties vary directly with the complexity of that poutior; oc the system appropriate tr the 
user's problem and are othetwisP independent of the problem. 

' 

J 

i 

T h e  advantage of a large algebraic manipvlation system like MACSYMA over a smal!er, 

unfzmiliar. T h e  disadvantage is that MACSYMA can be more difficuft ta understand and to 
In other wcrds. tI,e communication difficulty is drasticallg decreased for increased learning 

! 
1 j sparer system like REDtJCE is that MACSYMA has more mathematical knowledge built in. As a 

conseqvsnre, the dser is not forced to commu:iicYii as much t;'athematical knowledge to the 
system, and it is.even pcssible that th? sjstem offers exFertisc with uhi..h the user himself is 

t j  

i use. 
and resource knowledge dift ir-ities. 

\ 
O n e  advantage of numerical computation over symbolic manipulation is tk.: the former 

can sometimes succeed where the latter fails -- many problems are amenable only to numerical 
techniques. This i.s unfortunate because graphs and tab;es alone do not offer as much structure 
as closed form or even series solutions. The inadequacy of numerics: solutiorr: can be viewed as a 
communication difficulty in which the answers are not as readily interpretable in the user's terms 
TIlus, when both nJmerical Lomputatiorr and symbolic manipulation are applicable. the latter h a s  
the advantage af more comprehensible results and, due to the decreased communication difficulty, 
may actually be more efficient in terms rJf user time. 

In providing the optimal assistance for each of these three types of difficulties, one feature 
14 commorr, nameiy the impartance of a model for the user's goal and hrs plan for achieving it. 
In order til provide hformation tailored to the user's need, the tutor or consultant must know 
what the user knows and what be is trying to do. If MACSYMA were able to keep track of the 
structure of the user's session (why he is doing what he is doing), it could choose defaults and 
disambiguate input in a way that is not now possible. The automatic user aids of the future -- 
tutors, const!ksnts, acd apprentices -- will very likely maintzin and use such models. 
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This paper deals with the three types of difficulties in turn. T h e  first section describes 
MACSYMA's tutorial aids, discusses their strengths, and suggests some ~mprovements. T h e  
second section classifies dnd explains the observed manifestations of resource knowledge 
difficu!tx; by way of an explicit model ci the "typical" MACSYMA user and describes 
MACSY MA's provisioar for dealing with these diff.culties. After listing the requirements for 
communication with MACSY M A ,  the third seztion outlines its current capabilities for easing 
communication diffmities and suggests several improvements that would further reduce their 
degree. T h e  fcurth section states in very general terms why MACSYMA has developed as it has. 
T h e  final section describes the state of implementation CC th suggestions made in the paper, 
indicates some shortcomings of the model used in section 2, and argues that the difficulties of 
using a computer system need not be prohibitive if adequate user aids are provided. 

1 
. 

i , 

1. Learning Difficulties 

A learning difficulty arises when a system is too large or its primitives tm complex for a 
new user to understand fully. The effect of havirsg too many commands and switches IS that the 
useI cannot remember all the capabilities available ana tkc details of each; there is just too much 
information. A mnemonic naming scheme is one way MACSYMA tries to cminter this difficulty. 

- Obviously, a good naming scheme should be unambiguous, systematic, piescriptive, and 
designative of the command's exact fuvrtion. 

Mnemonic naming is the best wzy to help a user retail tht name of a command or switch. 
however. the best way to help him remember the range of capabilities availabfe is to provide a 
conceptual framework for those capabilities. A prirner is a user ;id that supplies information 
from a fixed syllabus. This facllitaces the learning process by structurtng the m;terial to be 
learned. MACSYMA has a small hard copy primer (ref. I) that is supplied to all new users. 

I 

T h e  best way to help a user remember the details of a command's use. e.g. its arguments. 
options, side effects, Is practice. MACSYMA also has an interactive primer (ref. 2) in which the 
user participates by solving test problems under its auspices (via the PRIMER command). T h e  

T h e  user's solution is checked for mistakes by specialized analysis functions supplied by the 
primer's author 

I 
\ 

, 

advantage is that the user is forced to try out what he has learned immediately aftc: b? lezrns it. ', 

In the future, thi. analysis and maybe eve? the invention of exdmples nay be automatmi. 
The work reported In (refs. 3, 4, 5, 6) suggests a possible lmpiementation. T h e  MACSYMA tutor 
would maintain a model of the user's knowledge of MACSYMA basd on the material already 
presented to him a1.d a model of the task he was given; and it would obtain through analysit of 
his actions and statements a model of his plan for solving the problem. It would examinc these 
trodels in an attempt to recognize any tutorial "iuues- (ref. 4) In its syllabus and, finding one. 
wcwi generate the appropriate correction. The const-uction of such a tutor, however, has not yet 
bem seriously considered. 
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O n e  other tutorial approach is the traditional lecture and p,.oblem set discipline. T h e  
MACSYMA staff yearly offers a six lecture mini-course at M.I.T., and there are plans to 
videotape these lectures for general circuhticn. 

T h e  disadvatzage of a tutorial aid is thar the inforvation provided is not railored to !he 
user's current problem. While a full presentation may br best in the long run, some useis may not 
have the time or patience to consult such an aid before tackling their problem. 

2. Resnurre Knowledge Problems 

T h e  MACSYMA user typicziry has a mathematical problem he is trying to solve and 
approaches MACSYMA for its powerful abilities at algebraic manipulation. T h e  domain in 
which the problem is expressed (here mathematics) is called the task environment, and the user 
typically knows a good deal about it. This knowledge is represented in figure 1 as the box labeled 
T. H e  also has a model of MACSYMA's abilities (M) and maintains a dynamic model for the 
state of his current MACSYMA (m). In Lohing his problem, the person uses this knowledge to 
m a p  his problem from the task environment to MACSYMA. solve the resulting MACSYMA 
problent, and interpret the result. Fur example, he represents his equations as a matrix, inverts It, 
and reads off the solutions. In executing this procedure, he implicisly generates and follows a 
plan P, Le. a goal-subgcal tree that he believes will solve his prob'rem. This view af the user's use 
of MACSYMA leads :o the configuration in figure 1. 

Fig. 1 - A MACSYMA user's data structures 

A resource know1cdr;e difficulty axiies whin a user is unable to proceed further in solving 
his problem due to a dericiency in his model of MACSYMA (M). W h e n  this happen-. the user 
must either strike out ai random or consult one of the information sources aviiihtrle to him. 
Difficulties due to errors In she user's model of his task envirmment (T) ar? nut treated here, 
though they often arise. O n e  might. for example, balk at seeing an irnaginxy solution when 
trying to find the intersec:iot. of two rircles, iwil one realizes that the circles da no! intersect. 
Difilculttes due to deficiencies in the user's model of his current MACSYMA (m) stem from 
deflcicncies In M or T and are dealt wjth In part by impmv!ng communicatlon of MACSYMA's 
skte to the user as dcscrlbcd in setion 9. 
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In analyzing resource knowiedge difficulties, several questions nituraily arise. Is there any 
way to bound and classify the sorts of difficulties that can beiall the user? Of what use are user 
aids in dealing with these difficulties? This section presents some data on the information needs 
OF users experiencing resource knovledge difficulties and explains this data by way of a m d e l  of 
the "typical" MACSYMA user. 

2.1 Observed Information Needs of MACSYMA Users 

One of bsACXYMA's strongest user rids is its staff of human consultants, available on-line 
to help users with resource :.nowledge difficulties. Shring the last three years, the author has 
served as a MACSYMA consultant and recorded many of these cottrultation sessions. During the 
same three years, Profs. Gory, Martin. and Szolovitz have offered a course on "knowledge-based 
systems" at M.I.T. in which one of the requirements is the solution of a MAGSYMA probtem and 
an analysis of the resulting protocol. The analyses were suppored tc indicate which information 
sources were consulted and why. The author also had the opportunity to read many of tResc 
ardyses. 

A n  examination of the data obtained from such consultations and protocol analyses reveals 
that In using MACXI MA. people perceive the need for five general clasts of informat:on. 

(I) T h e  user needs to know the name of a command or technique to do some task. If he were to 
This is called a HOWDO phrase his need as a question, he would ask %ow do I do 

need. 

(2) He needs to know a command's prerequisites, arguments, ptrequksites, etc. Hr would ask 
W h a t  are the ... of ... ?". A WHAT need. 

(3) He needs to check h13 beliefs about MACSYMA He would ask "Is it the case that ...?". An IS . 
ne&. 

(4) He needs a procedural explanailon of how a command works or a result was ctb:ained. H e  
would ask "How did M A C S Y M A  dn ... 7". A HOW need. 

(5) MACSYMA has returned an unexpectx! result, and he can find nothing wrong with his, 
derivation. He needs sufficient information to pinpoint and correct the misconceptim 
underlying his crmnmus expectation. He would ask W h y  Is It that ... 1" A WHY n d .  

Of eourse, the syntax the person uses need not correspond ti, these five categories, only the 
underlylng question. For example, "Can you tell me how IO invrrt a matrix?" means "flow do f 
invert a matrix?" and a cwnglaint QF "Dt3 is positive!' mans W h y  is D13 posltive?". 
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2.2 A Model for the Typical' MACSYMA User 

The analysis presented here assume: thzr in solving his prob!em the user acts in accordance 
with a standard, high levei pianning algoyithm. Titis ~lgoriii~~ 1s hest represented as a "state 
and tra:;sition augwented r,etwork" (called SATAN) in which the states represeni p;:cb!*m 
soolving commitments and the transitions are augmented by predicates and problem solving actions 
(accesses and updates to M, m, and P). For the present discussion, however, the full networh 
described in (ref. 6: may be simplified to the flowchart in figure 2. 

Satlsby Prerequlsites 

c I Set UD Arguments I 
t 

DI Run method and update model1 

Che& Result 

Fig. 2 - A f kwchart for the "typical" user's planning strategy 

T h e  Initial goal Is the solution of the MnCSYMA version of the user's problem. In 
processing a goal, the problem solver either selects a "canned' method (a "template") or develops 
one especially from the facts about the objects and relations involved. T h e  method chosen may 
be a single command or a high level program with commands and other goah as steps (a 
-procedu, al net'). In processing these subgoah the rroblem solver generates yet other procedural 
nets untll a level is reached containing only M A C S Y M A  commands. Thus, the normal aptvation 
of the problem solver implicitly generates a hierarchical goal-subgaal tree, the root of which is thc 
user's ultimate goal and the fringe of which is his M A C S Y M A  solution At any given level, the 
problem ssEuer may insert additional goals to achieve prerequisites or check results. It may also 
transform the plan, omitting or rear:anging steps, in order to optimize it. This s:ep is not shown 
In figure 2. This means that the god "tree' may in fact become a d,rectcd acyclic: graph. It is 
Important to remember that the plan need not be ex?licit, Le. the user netd not be conscious of 
his plan; tlie essentlaS point Is that the user e as If he here following a plan. 
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During the planning process, the user forma expectations about the results of his plan. 
W h e n  he checks these results, however, he may aiscover a discrepancy between these expectations 
and the facts (a bug manifestation). This discrepancy may be due either to a simple planning or 
exeeution mistake, e.g. a sign error, or to a more significant deficiency in M. m, or T (called a 
misconception). However, the point in his plan at which the misconception had its effect (the -- locus) may not be immediately apparent. If SO. the user must pinpoint the locus in order to 
uncover the misconception. In debuggilrg his plan, the user is assumed to operate in accordance 
with a standard, high level debugging algorithm. Like the phnrting algorithm. this. algorithm is 
also best descrlbed at an augmented network. However. for the present purposes. it can be 
simplified to the flow chart in figure 3. 

Identify LOCUS I 
Correct nlscancept ion 

I 

Fig. 3 - A flowchart for the "typical" user's debugzing strategy 

It In when the user finds hlm;etf unable to perform any of the steps In thc planning or 
debugging procedures due to a lack of knowledge about MACSYMA (deficient M) that a 
resource knowledge difficulty b m e s  manifest, 

0) A HOWDO need arises In box A of the planntng algorlthm. 

(2) WHAT needs arlse In boxes B, C, D. 

(9) An IS nwt Cali arlse in any box, but most often In debugglng. 

(4) The user may be unable to identify the locus of a miscoriceptton In box E of the debugging 
algorithm a7d therefore experiences a HOW need. 

(5) He may be unable to find anything wrong with his plan, Le. he needs help in Fiihii box E or 
F. This is a WHY need. 

Acsordlng to this mechanlstlc model of MACCYMA problem solving, a resource knowledge 
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difficulty is viewed as she user's inability to make a transition from sone problem solving state, 
and the kind of difficalty that arises iden:ifies the offeriding state. T h e  inapwance of having 
such a model is that it explains how reSource knowledge difficulties arise and sets a neaVy 
specifiable bound on the types of difficulties and thereby on the types oi assistance !hat user aids 
must provide. 

2.3 T h e  Function of User Aids 

In order to deal with the difficulties listed in section 21, system designers often provide an 
ar.ay of user aids. 

T h e  most common aid is the system's reference manual. MACSYMA's manual is avaiiable 
both in hard copy and en line (via the DESCRIBE command). T h e  function of a manual is lo 
provide quick reference to :he facts about a command or variable. eiven its name. T~IIJS. a 
manual effectively satisfies WHAT needs and many IS needs. 

Also common is the system's trace capability. MACSYMA allows a user IS tave all function 
cstries and exits (the TRACE command) as well as the settings of variabks (the SETCHECK 
variable). T h e  purpose of tracing is tn help the user discover the tscus of the misconception 
underlying his bug manifestation, and thereiore it helps meet HOW n&s. 

A less c~?mrnm user aid is the -inverted manual., or information network. MACSY M A's 
version of this is available via the OPTIONS commnsrd. As; Information network Is essentially a 
thesaurus of commands indexed by category and I1 primarily intended to help the user find the 
commands applicable to a particular task. Its primary effect IS to answer HOWDO questions. 

WHAT, MOWDO, and IS problems can be dealt with directly by an information source 
with no senzitlvity to the user's purposes or state of knowledge. A WHY or W O W  problem. 
howcvw, often calls for different mswers to different people in ail~ertat situations. Such a 
problem arises when a misconceptton gives rise to a bug manifestation, and i:s treatment calls for 
provlding the user with enough information to correct the rnixon,reption. h source able to 
provide just this information and nu marc must have a model of the user's smte of knowledge 
(M), hFs model of the current MACSYMA (m). his goal (Ti, and his plan for achteving it (P). and 
It therefore must be considera5ly morc sophisticated than the other, rrrcr-lndeper.de~t aids. A 
conslskant Is an information source that seeks to improve the user's model of the system in "user- 
Initiative" mode Consultation is a method widely used !n computer centers for coping with W H Y  
and HOW questions, and MACSYhiA's consulting staff has proved to be Its most effective user 
aid. A consultdnt can deal with all five hinds of problcms wtd provide information tailored to 
the user's need and level of understanding. Armed with the msultantf advice, the user can 
often surmount his difficulty and continue solving his problem. 

Unfortunately, human consultants are a scarce remurct and quite expensive. And, as 
MACSYMA is exported and its user community grows, even more consultmtr might have ro be 
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provided. For this reason, work hrs begun on the construction of an autc;mated consultant, call& 
the Advisor. This program should be able to converse with the user in English about a difflculty 
he has encountered and provide advice taibred to his need. The MACSYMA Advisor is a 
program distinct from MACSYMA wirh its own separate data base and expertise. However, for 
conver.ience the program can be called directfg from MACSYMA (via the HELP command! and 
can access the user's data structures. As currently irnplemer.ted, the Advisor deals only with the 
Straight line' or nested use of MACSYMA commands ant' mt loops or user-defhd functions. 
For a concrete example of the Advisor's performance, one shouv see the abstract printed In the= 
proceedings. As wish the proposed M A C S Y M A  tutor, the MACSYMA advisor relies heavily 015 
2t4 partial models of the user's 3tate of knowledge, his goal, and hls plan for achieving it. 

5. Cmmunication Difficulties 

A communication difficulty is the result of the dfffermrx between the primitive objecrr, 
.actions, and relations in the user's probkm and thoK provided by the system. Thus. the degree 
of such a difficulty ks a funcrlon of tmth ehe uur's pr&h and the system's expertise. Atthough 
a resource ktsorledge difficulry can be thought of as a mmunlcattm difficulty, the concern here 
is with those difficulties that remain even whim the urn's model of UACSYMA I: rslnpkte. 

The dlfrercnce may le either simph or complex. A slrr.pb difference is ellminitea by 
defining the relevant concepts. For cxampte, MACSYNA caa represent a matrix and compvte 
and salve its characteristic polynomial, but it B.nows nothing about eigenvalues. However, the 
user with a matrix eigmoahe problem my educate MACSYMA simply by defining a function 
that calk tke appropriate commands. The tiiudvrntage ot a gconservatlve* system (ref, 3) Js that 
the user must convey large amounts d knowfcdge in this form. A m p l e x  difference results 
when there is no homomorphic mapping between the primitives of the user's pmbkrn and their 
cepremtation in MACSYMA. For example, a user may want to write an expression as (vIc)~, 
but MkCWMA ii13i~i 01t witkg V2!C*. Or, t 3% my define his operators by the identities 
they satisfy. but MACSY MA insists on function definitions and unidirectionai rcpiar.nnrnt tules. 
T h e  disadvantage of a "radical" system kef. 7) b that its "mdel" of algebraic manipdatiow is in 
some domains tcw; narrow and rigid to accommodate tht full range of models poasctsed by users. 
Some recent work m reformulating prabk-m dexrlptions expressed in the uscr'y langumqc In 
terms uf a system's model of the domain is reppcr:ed in (ref. 8). However, 98 such capabilbty is yet 
ovallablo in MACSYMA, and so the user must translate hts prcbtems into MACS'EMA's terms. 
Fortunately, MAC!!YKA is, within !:mi& a dlvcrse system offering both radical rtpresmtatlons 
wheat applicable and a fkxible general represmtntion otherwise. 

T h e  communication task consists of breaching the distance between the uwrk problem and 
the rpproprlate system m&cl . The necessary inrormation that must be convcpd to the system 
includes: 

(I) Input expressions, constraints, and domaln-dependent expertise, e.g. itrcqualtttes, order 
Zruncation Information, physical rrgumznts 



(2) operations to be performed, e.% solving an eyoation, showing two expressions qual 

In evaluating the degree of the input communication b:fftculty, the two most important issues are 
the amount of rnzterial that must be presented and ttx dcgice of tk~ibflity in order and forma: 
of its presentation. The information that must be retrieved from MACSYMA inctudes: 

(3) form of the solution. e.g. "expanded in 2' 

(4) information abaut MACSYMA's state, c.6. values of switches 

Furthermore, the user might want an explamation of how the result was obtained. If the system's 
model is similar to the. user's, the explanation should bis quite simple. e.g. inrcgration by parts; if 
the technique used is very different, the explanation might be more complicated. c.g. cxpkining 
the whole Rixh algorithm. Recent work reported in (refs. 6, 9, 10) indicates how a system ccdd 
b.t made to explhin Its behavior. 

3.1 Present Capabilities in MACSYMA for Facilitating Communication 

Occasionally, a user may want to update or verify his mdd of the current MACSYMA 
(m). For this purpose, MACSYMA has a full set Informatkin commands and variables. These 
differ from the commands mentioned in section 2 in that they provide informat:un about the 
state of the user's particular MACSYMA and not about NACSYMA in general. These sources 
fall into two categories: finding information about an &p given its nam. e.g. DISPFUN. 
DISPRULE. and PRINTPROPS, and Finding the names d all objects having a given feature. 
e.g. VALUES, FUNCTIONS, CRADErS, clr, The sources rvaikbk are listcd in (ref. 2) and 
described in detail In (tct. 11). 

Very often MACSYMA produces large, unwlekfy results affording little insight. ln a 
recent paper (ref. 12), k v i d  Stoutemyet discusses a parkage written in MACSYMA to extract the 
gqualitatIve" features of an expression, e.g. Its sign behavior, convexity M concavity. zeros, 
periodicity, ctc. For users as intcreitcd in the q~a behavior of an expression as Its symbolic 
details, this package should be of great value. cks tha mmunkaticm problem through 
Item (3) of the above list. 

The idea behind a specialized "appkatim package' is to convert MACSYMA into an 
expert in a given domain and thereby kssen cmmunlcatlan difficulties. A good ckampk 1s 
MACSY MA's explicit tensor man!puktlon package. Another example is the forthcoming 
TRANSLATE helper t;ml will kad the ufer by the hand through the trrndntim End cmplktlon 
process. T h e  tensor package brings with It much knowledge that the we? would otherwise have 
to cornrnunica:c hlmself. The TRANSLATE helper guides the user's activities according to a 
model of the translation process and thereby saves problem solving effort rm the part of the user. 
In this manner, these packages convert MACSYMA in lirnitd domain% from Its normal 
"operator-based' mOd* into a 'modcl-based* system. 
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3.2 Suggested Improvements to MACSYMA 

W h e n  a perscn chooses to employ any tool to help him solve a problem, even if he has P 
complete model of how it works, he must expend the effcwt necessary to specialize the tool (e&. 
define functions in MACSYM4, build jigs for a vroodworking machine). and transform his 
problem i3to an amenable form, (eg represent 111s linear equations as a matrix). Obviously, some 
tools are better suited to a given problem than others. Among computer systems. two extrcmes 
stand out. namely the expert problem solver and the programming language. 

A n  expert is an agent with language, knowledge, and abilities tailored to a particular 
domain and able to solve any reasonable. appropriate problem without outside guidance, e g. an 
electronic circuit analTris program like SCEPTRE. Assuming the expert is flexible about input 
and dms not employ too alien a model, the user nced only describe his probkm, then sit back and 
wait for the answer. Communication difficulties, a m n g  others. are minimal. In fact, i t m  (4) 
above is completely unnecessary. 

The appreach of programming language designerr is to provide some p%nputational 
primitives txeful to the user in writing code tCv solve his problem. Usually, the user must 
contribute his own problem solving skilis in writing the code. The meaning of a primitive Is 
usually independent of the use to which it is put, e.g. COEFF works the sm whether the 
problem is solving a quadratic or computing syzygies. The tower the %vel' of the primitives, 
the grater the simple differences between the user's world and the system's but the fewer the 
complex differences. 

MACSYMA is primarily a programming language, albeit P very high kvel one. with on?y a 
few expert question-asking submodules. e.g, the tensor package. One could Imagine. though, a 
system somewhere between these two extwmcs. It mtd keep track of the user's goals and actions 
and terminology and would use this information to Irciittatc Input a.rd try to solve his problem 
using a mechanical problem solver able to take advlce from the user at crucial points. This 
possibility is discussed further btbw. 

Several of the idezr presented in this section are concerned with the conception of 
mathematical knowledge as a body of progrl'mrnlng rules, implemented In MACSYMA as 
variable values, function definitions, TELLSIMP rules, etc., rather than as a set of mathematical 
definitions and c'mstraints. A rule in MACSYMA consists of (I) an identity rnd (2) an 
rpptication prmdurc. A n  identity is always interpreted as a unldircctimal replicerncnt rule, Le. 
whenever an txpression matches the left hand side of an identity, It It replaced by the right hand 
side and never the other way aroubtd. The match procedure is for the mt part "focal*. 
Although global conditions can be tested In the predicates catstraining tha variables of a 
TELL§IMB rule, the properties Q! the expression encloshg the one bebg vatched tannot be 
easl'ry checked. And, most signiflcanaly, there is no sensitivity to ..IC! user's goat or plan. RO overall 
direction to decide when a replacement rule should be made and when bypassed In arder, for 
example, to achieve a ancelhitcn or prevent an toflnitc loop. 
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There are various types of application procedures. Some rules are applied at only a str,gle 1 

r i  I $2 

level, eg. XTHRU, MULTTYRU. Others have automatic recursion birtft in. e g  

deterministic, despite the possibility of a non-unique match between the pattern and iStp 
expression, e.g matching X+Y to A.B+3. 

TRIGEXPAND, LOGCONTRACT, TELLSIMP rules. The apphcat'on is in all cases I 

< -  
1 

: I  W h e n  a user complains that FrACSYMA is roo hard to conirol , he is usuaily refPrrinc to 
its lack cf selectivtty in the autsmatic. recursive a;:plication of eva!uatisn or simp1:fication T uIrj 
MACSYMA provides automatic recursive applicziion to save the user the drudgery of a p p ~ y ~ ~ r ~  a 
large body of system-defined and uber-defined rules by h.iwl However, the user iliai.' 

rn an expresston after plugging in values for some varisbles. Qr, tw m a y  want a rule appiied in 
reverse. Due to MACSYMA's unidirectionality, this requires that JI seccind rule be defined, which 
can result IR an infinite Imp In trsing aubmatic, recursive rule a?plic-,tic-, the user IS 
sacricicing the effort necessary to control MACSYMA to ehinatc the drr:dgPry of applying the 
rules himself. 

! 

7 ! 1 occasionally want a rule to be appliecl nocuniformly, e g  when evqlu>!tng only certain dvrivatrves 
i 

I 

i 
1 In order to avoid the complications that can arise from the usc.'s ignorance of the rilles 

used by the general simplifier and commar,ds like INTEGRATE, these rules should be made 
explicit and controllable. This suggestion has already beeh realized in the realm of trigonomptric 
simplification, where at1 ruks are namcd and can be activated or deactivated by the setting 0.. a 
switch. It would be ccmvenie:tt if [&e -,* syntax at top level MACSYMA could be extended to 
activate rules for one line's adration just as it is nonu used to define substitution rules. With this 
syntax one would 51 able to say. for example, D.I,X-2,Z2=4,SINRULEI,EXP~NENTIALIZE. 
This suggestion is in keeping with the viev of the ODm syntax as an oenvrronmen! betup" command. 

1 
I I 

I 

More generally what is needed is a be:ter structuring of simp1ific:ction rules. It 13 dorrbtftil 
that a user would define ruler far the lnternal use of heurrulc conminds since rhcir operation 
usually is too complex to describe. Therefore. complex commands M e  INTEGRATE shotflf.1 
deactivate all potentially conflicting user rules until their work Is done, O n e  way of impimwnttng 
this that would offer other desirable featcres 1s In the form of *environments" sers of rukss, 
variable bindings, function definitions, declarations, and assumptl~ns that can be "shallow 
bound". A primitive form of environmeit structuring is already available in MACSYMA 
through the context mechanism. As with contexts, environment:: should be hierarchically 
structured. It would then be porsibte for the envlronm-nts far certain domains, like gravithtron 

I I 
I 

c theory and continuum mechanics, to share the knowledge of commwI subdomains tike tensur 
manipulationr, white remaining distinct from conf lictlng domains like N--wtonian physics 

5 
! variables. Anothvr improvement would be the ability to add prapcrties to expressions as wrtY as 

It is currently porsrb!c !c &E!~EE par:iai iniormairorr about vari:,51yc, 8' 9; 
DECLP!?,Iif+4,INTECER); however one canaot declare slmibr information alsotit P X ~ ~ ? T S W I I S  

etcn though It might be useful Tor taler manipulations. Fur example, rn intrgrittng an 
cxprcsilon. the user might make an anumptros about rtt s f p  of a variiblr that roo1.3 tjp w e d  b y  

1 the LIMIT commaaid at a later the. The nrw MACSYMA internal rrpresentatrnn rt.purthcr with 
k 
f 



MACSYMA's high level data base system (ref. 12) shoutd be able to represent such informat:on 
quite easily. Furthermore. it shovld al!ow the u w  to tell MACSYMA the semantic significance of 
expressions, eg. that CsVlM is a mtivection term, and to define semantic ruies VJ prevent 
combining semantical!y incmpattble teims, e.&. adding apples and oranges. This ability is 
available now cnly in the res;ifc:ive form of the "irtvisitie boxes" generated by the TITOS 
command. 

/ 

Perbaps the most ambitious suggestion is to transform MACSYMA from the 
programming language that it is now into a more intellngent. problem wlving system. a sort of 
"mathematician's apprentice'. The essential idea behind this proposal is for the system to 
rnarntarn and use inforrnatton about the user's goal and his plan for achiering it. MACSYMA's 
syntax, while remaining the same, would no longer deno!e rixed, pre-defined operations but 
would serve rather only as a convenient language for communicating the mathematical operations 
the user wants performed. With this view, a command or syntax could mPan different things in 
different situations. For example, COEFF might mean RATCOEF 111 solving a quadratic but 
have its current definition in finding polynomial solutions to a polynomial rquatiori; or 5 in 
DIFF(F.X) might mean the variable F if F has a value or the function F if it has a function 
definition. The input would be interpreted an the basis of not only the rwwnand line but also 
the user's plan. Similarly, the application af a rule would depend on not only the rule's pattern 
but also surne notion of its use in achieving h e  user's goal Where the system is unable to decide 
which of several interpretations the user prefers. it could inform him of the options rather than 
choosing a default as It does now. The essential idea again is tr: oberve and use the structure of 
a user's session with MACSYMA to help ease his cornmuriication reqwrements. T h e  
implementation of such an apprentice cotlid rely at the start on ;he programming apprentice 

, 

tshnology described in (ref. 14). i 
i 

Even if an apprentice were available, the user would still have to direct most manipulztions 
of expressions. O n e  frequently occurring type of manipulation IS the aFplication of several rules 
to some subpart of an expression. The SUBSTPART command was rniplernentd for this 
purpow. However, the use of SUBSTPART requires a careful couw of parts to select the desired 
subpart; if afterward the aer wishes to apply another transformatron, he must wppfy the part 
specification again; and of course all the intermediate expressions are sslved. A better alternative 
Is the use of a two-dimensional editor, a m c h a n ~ s m  whereby the user IS given cmtrol of a 
rnoveahk "window" around an expression which he cat1 mom in on the desired subexpression 
using simple "up" and 'down" commands, apply as many rules as he likes, then morn out again to 
find the overall expression suitably modified. Such an editor would bc ~nuch less tedious than 
the current SUESTPART mechanism and would avoid the accumulation of unwanted 
Lnt*rmdiatc results. A primitive 2D cditor was prngrammed for MACSYMA by Richard Bryan 
but never released due to the inefficiency of the 2D display routtnts; with tht. current 
Irnplernefitotton, however, an efficient editor could be implemented. 

f 
1 

i I 
Input problem 
recognition of 

Is the graphics tablet. 
handwritten expressions 

I En the kmg run the best solution to the subpart spxification problem and the expression 
Technebgy has developed to the point where the I is feaslblc (refs. I5, IS). T h e  remaining probleni is 
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Inefficiency; however. with the advent of r,x-timeshared cornpxers such as the LISP machine 
(ref. 171, the necessary processing need not be prohibitive. A less extreme alternative is the use of 
a light pen for 2D editing with keyboard input A user could type in his expression; on the 
keyboard but move his window and cancel terms using a light pen. T h e  disadvantage of either 
of these proposals Is the limited availability of tablets and devoted processors at prcsent. T h e  
LISP machhe coukf, hnwever, make the idea of "MACSYMA in a briefuce' a reality in a decade 
or so. 

4. MACSYMA's Evolution 

People sometirnes complain that MACSYMA is difficult to understand or to control, and 
they usually cite specific properties of the sy3tern as primarily responsible, e.g. tou many 
cmnmarids, too hard to specify subexpressions. These proptrties are not inherently difficuiiies 
but rather give rise to difficulties when the system is applied to certain tasks or by making thc 
system difficult to understand or to use. 

Such properties are not the results of poor design decisions. Rather. they are the best 
rffrts af an active group af programmers to sa:isfy the conflicting goals of program modularity 
and efficiency and satisfaction of the user's needs (ref. 7). The resolution of this conflict is 
considerably harder lor algebraic manrpulatlon systems like MACSY MA than far more 
traditional programming languages. Mut other programming language designs in a sense 
-define' the world in which they operate. MACSYMA's goal is to match as closcly as possible a 
world that js already defined, namely mathematical manipulation as used in rextbaokt and on 
thousatids -rf blackboards and notcpads. Although some people say the constraints can and 
should be changed. with the current goal. they cannot be. even for a particularly eiegant or well- 
strlrctured design. 

MACSYMA mulct atso satisfy the often conflicting needs cf a diverse uicr community. 
Many capabilftres in MACSYMA were originally implemented to satisfy z particular need. As 
new users required analogous capabiSities for other classes of expressions and in dicferent 
environments, the capabilities had to be suitably broadened or refined. Viewed historically, 
MACSYMA is an excetlenz example of evolutionary pragrarnming. It is reminiscent of the 
progress of 'normal scieivd described by Thomas Kuhn (ref. 18) in which a theory, or 
'paradigm", Is repeatedly patched to repair its weaknesses until it is supplanted by a ccgnitivcly 
cleaner descendant. T h e  growth of MACSYMA has led some people to believe that the new 
paradigm can be achieved only by avoiding the creation of new commands or by implemenring 
simpler, more uriderstandabte evaluation algorirhms However, complexity in MACSYM A tias 
usually rcsulteu from the attempt to satisfy the conflicting needs of different users; if a n.:w 
symbolic manipulacim paradigm does arise, It wlll have to take these differing needs into account. 
The MACSYMA of the future will have bo maintain an explicit, internal 'mdtl" of the user's 
goals and ob his plan' fsr sc%!cving thm. 
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5. Commentary 

O n e  of the purposes of t5is paper is to suggest some research projects oriented toward 
minimizing the difficulties of using a complex system like MACSYMA. Sam( of these projects 
are already underway. T h e  MACSYMA Advisor is scheduled for limited release thir summer. 
T h e  new rational function 
mentioned here to indicate some directions in which MACSYMA might go and to solicit 
implementation ideas and comment on their value. 

- representation is already partly implemented. T h e  other projects are 

T h e  model for the "typical" MACSYMA user presented in rectim 2. on vrhich the analysis 
of mource knowledge problems is based suffers two m a p  deficiencies. T h e  first is that it says 
little about domain dkpendent expertise. A sophisticated MACSYM A. user probably mentally 
employs specialized procedural strategies and representations. Tht! fcrmer are approx imawd by 
the templates in hl; the latter are not dealt with at all. The model was designed to exphin the 
performance of novice users as observed in several dozen protoco;s of MACSYMA usage; 
protocols of more advanced users Wcie irot included. The second major deficiency is ! h t  the 
model does nor take learning jilt0 account. There is 118 sensitivily to how the user c3rnes by his 
misconceptions. Also there is no information that could be used to deterhine how a consul!ant 
could best teach a point. it might, fsr example. be exaedient to lie about something to make an 
cx)r:anatioi as simple as possible. These are severa? theories of learning in the literature (refs. 19, 
20) that tou!d be used in this rega:d. 

The contributions of this paper arc (i) its statement of the distinction between the various. 
essentr:ilfy "orthogonal" types of difficulties of. using a tool to help solve a problem and (2) its 
explariatim of the irrnction of user aids in meeting these difficulties. resulting in its proposal for 
more advanced aids based on this explanation. A learning difficulty arises when a system is tm 
large or its primitives too c3mpl;x for a new user to understand fully. A resource knowledge 
difficulty can arisc whenever one is faced with a problem solving situation in a domain which 
one docs not folly undwszand.. The lack of knowledge may be incidental. as it is when the 
domain oi device is fairly simple but time constraints make it Imbossible for the user to learn all 
that is necessary (e.g. using a caliclatcr oi oscilloscope). Or it may be essei,tial, as w h m  the 
domain is very COTT'DIEX and the user can't >oisiD!y learn everything (e.g. MACSYMA or business 
or law). Furthermore, the need is ?cute for computer systems like MACSYMA in which the Icvel 
of ccrnniands is so close to the level of the task environment that the user is apt to confuse a 
slmply defined procedure (like COEFF) with its mathemaiica! counterpart (here coefficient) that 
it at best apprqxinates. A communication difficulty can arise .whenever a system's designer 
ca?nr;ot provide every iniecded user with 'expertise tailored cxc.lurively to his need. MACSY MA's 

' knswledge based approach to algebraic manipulation drastically reduces communication 
dlfiiculties; and by transforming MACSYMA from a prqvammtng ,language into a 
mathematician's apprentice. these difficcltres might be even further reddced. Although the 
knowledge Ossed approach engenders increased learning and resource ktiowledge dif ficillties. 
these difficulties *xed not be prohibitive, if adequate user aids - tutors and advisors -- are ! 
provided. 

' 

I 
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30 

Consider a person trying to solve a problem with a computer system he does not fully 
unCersrnd. And assume that, althvugh he has encountered a difficu:ty due to his lack of 
knowledge, he is unwilling to learn more about the system than is necessary to solve the problem. 
The simplest way for him to acquire just the information he needs and nu more is to consult an 
expert. Then, armed with the expert's aiivice. he may surmount the difficulty and solve the 
problem. A corrsultan~ Is an informatiat wurce that seeks to improve tkt user's model of its 
domain in "user-initiative" mode. Consultatim Is a method widely used in computer centers at 
well as in domains like business, taw, ?nd medicine. Unforturwtcly, humiln consultants are a 
scarce resource and quite expensive. 

The purpose of this paper is to prrrpose as an alternative an automaze! consultant, as 
exemplified by an "ad-rlsor" for the algebraic manipulation system MACSYMA. Such a program 
should be able to converse with lu user In Englizh about a difficulty he has encountered and 
provtdc information tailored to his need, Thc MACSYMA Advisor is a prograw distfnc! from 
MACSYMA with its own separate data base and cxpertlsc. However, for convenience the. 
program can be called directly from MACSYMA and can access the user's data structures 
contatned therein. The Advisor described here deals only with the "straight-line" or nesMd use of 
IVIACSY MA commands and not loops or user-dcf i r d  functions. 

T h e  Implementation of the Advisor relics heavily on an explicit, tnternal "model" of the 
user's state of knowledge, his goals, an3 his "plan" for athievlng them. As a result, it can prav?de 

- 
This work was supported, in part, by the United States Energy Research and Dtvelopment 

Admtnlstratton under Contract Wumber E(11-1)-380 and by the National Aeronautlcs and Space 
Adminlstration under Grant NSG 1323. 

(Thls.artPle is an extend& abstract of a paper to be publlshed In the proceedings of the Fifth 
Sntctnatlonal Joint Conferencc on Artificial Itsteltlgence.) 
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.- more precise answers to a larger class of informatlsv needs than traditionat user aids, such as ( 1  

nw~.~ats, information networks, and simple questicn-answering prTrams. 

As a concrete example of the Advisor's perfcrmance. consider a scientist trying to solve a 
firatrix eijgenvalue problem using MACSYMA, as iillustrated in f!gure 1. A n  advisor episode is 
She connected fragment of discourse between a user and the Advisor that begins when the user 
types HELP() in MACSYMA and ends when he bids the Advisor goodbye. Each episode can 
haiv any number of scbepisodes. A subepisode begins when the user asks a question and ends 
when the Advisor considers itself done. During a subepisode the Advisor may ask the user 
questions and expect aqswers; however, further questions by the user are ignored. In the protocol 
the flrst episode cmtains two subepisodes; the others one rach. as marked. 

(C1 ) (M[ 1,11: 2%2 ,ME 1,2 3: Z,H[2,1]:2ari!-3,H[2,2 3:Z-3)8 
; The user tries to iaput hi!; matrix 8y dirtdy assigning to elements. 
; Unbeknownst eo him, this results in the creation of an array named M. 
; In C2, he checks M andfinds aha Ais urremp fded. 

(C2) n; 
(02) n 
(C3) HELP( )S 
~ o o - - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ " " ~ ~ ~ ~ - ~ ~ ~ ~ . ~ . ~ . . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ o ~ ~  

Advlsoc Speak up! 

User: How do I construct a matrix? 

Advisor: Use MATRIX or ENTEQMATRIX. 



(C5) SOLVE( D4) ; 
Error - more unknowns than equations. 

; He tries to solve the p o l y m n t a l ,  but forgets to specify the varfabk 
; fo solve for. Not understanding the errW message, he decides to 
; solve it Aimself. 

(C6) RATSMP( D9) ; 
2 

(06) ( - 3 X - 3 ) Z * X  * 3 x  

( C 7  ) (A : 1, B : COEFF( 06, X, 1 1, C : CMFF( 06, X, 0) )Q 
; Inlending to lsse the guadroticforrnda, he picks OUF the coefficients 
; of 06. Unfortunardy, by wing a Y", he doesn't see that the answer 
; he gets is not what Ar experts. 

(D8) 0 
(C8 ) ( -B+SQRT( B2-4*hC) )l( 286) ; 

0 



! 
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4C14) HELP( 13 

User: D13 IS wrong. 

Advisor: What were you trying to do? 

User Find the eigenvalues of M. 

Advlsur: You used the dctermlnant formula to compute the charactcrlstlr; 
polynomial. You uri RATSIMP !'i simplify kr. You used the quadratbc 
formula to solve it tc! &ain the eigenvalue. Am I right? 

User: Yes. 

Advisor: Bid you intend the MCJI to select elements frm the matrix M? 

User. Obviously. 

Advisor: When at1 array exists, the subxript notatim means to select 
the corresponding element from the array. It works as matrix ekmr 
releaion only witen no a r q  exists. Were you aware you had an army? 

User: No. 

Advisor: An array Is auiomatically crated when an aszlgnmcnt is mrdc 
to an unbound subscripted vat irbk. Incidentally, to m g u t c  the 
characterlstlc polynornlal of a mntrlx, pu shwM use W A R P  3LY. 

User: Bye. 
*--o*- 0---~1-~00-0~0~0~.~~~~~~.0.~0~0~*.~.0.0.~0..00~...",,~..~00~~00~~ 

(C14) CHARPOLY(t?,X); 
2 

:011) 

(015) - (X 31 (2 " %) 

3 2 + x 1- E - 3) 4 x 
(Cb5) FACTOR(D14); 

; TAd US# recoi+&s ti# CAUrUctflistlc #~FW and ~S#S FACTOR 
;from tho result of PrAlch tho roots arr u&vtou~. 

(Cl6) LOGOUT( )8 
Fig. I - Protoad of MACSYMA uie and mnsultation 

The cxamplles In this protocol were chosen to illustrate the most impmn! of the Advlsar'r 
rbllitlcs. !. full llst of the types of quka!Ions It can answer follows. 
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(1) ”What is the ... of -7” Rarieral of a propcreg of an &jea or concept given its name. c.g. 
subgrtsocie 1B. 

(2) “How do I do ...?* Retricvar of a mmmand or method given a descrlptton of the task to be 
performed, suhepi.sarie IA. 

(3) I s  it the case that ...?a-Evaluatian of predic-.*tes. 

(4) ”Why ir it the use that .-?* Ability to pinpoint a deficiency in the user’s understanding 

t 

and provide a precise answer, e.g. episodes 2 and 3. 

(5) W o w  does MACS’fMA do ...?. Procedural explanation of a result or fact. 

Of these, the questioris requiring the most sophisticated treatment are WHY and NOW. WHAT, 
HOWDC. and IS questions can be answered directly, with no consideration of the user‘s 
purpose or his state of knowledge. A WHY or HOW questhn calk for different answers to 
different people in different situations. The primary implementational contribution of chis 
research is its tnchniqure for handling such questions and the data structure? it uses. 

Although the various parts of the Advisor have all been implemmtecj, as ot this writing 
they have not yet been mmbind into a working system Also, the present data base is at best 
meager. Thc current timetable calls for its reiezsc tu the MACSYNA user community this 
summer, where if successful ~t will find heavy UK and provide valuable data lor further 
irnprorcmcnfs. 

I 
I 
I - 
1 

The important csrc:ributions of this research are (1) its\irecognition of the need for P 
consultant In any sufficiently complex domain and an indication of the nature of the user’s ne&% 
(2) a demonstration by design and partial tmplenrentation of the feasibility of automatmg such a 
consubnt, (3) the model debugging rlgorltttm utilizing a partial, explicit runtime model of the 
user and a partial plan for hls behavior and bastd on an ex@kit design model. In general, a 
zontultant Is nrxesrary whenever one It faced with (I) a problem wiving situation (2) In a domain 
one h s  not fu!ly understand. The lack of knowledge may be hcldental, at it 1s when the 
donrain or device Is fairly simple but time constraints mate It impshble for the user to learn all 
tnaf Is necessary (eg. using a calculator 01‘ oscilbscope) Or 1t may be essential. as whcr. the 
domrtn Is very csmplex and the user can’t possibly learn everything (e.g. MACSYMA or business 
at law). Furthermore, the need Is acute lor computer systems like MACSYMA in which the level 
of commands is so close to the Icvd :f the task envtrocment that the user is apt to confuse a 
simply :t”,tTind procedure (like COEFF) with Its mathematictrl counterpart (here coeffkient) that 
It at best approxirnatcs. ‘.t w w M  be of interest tO see whether at automared business or kgal 
consultant wcld La construeted and how effective tho rcchniqw described here would be in those 
dmadns 

t 
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A MCSYMA COHPUTER-ALGEBRA MOVIE DEMONSTRATION 

David R. Stoucemyer 
University of Hawaii 

The compelling exeitment of using a pcwerful interactive computer-algebra 
system is hard to convey without a live demonstratior, which is of:en imprac- 
tical because of the size or location of an audience. However, a movie of a 
live demonstration is Frobably the next best way to convey the impact of trter- 
active computer-algebra to an audience of newcomers. 
equipment is iar more available than the alternative of videa tape equirment, 
which suffers from marginal resolution. Avaiiatle €ram naticnal educat 'tonal 
film libraries and from the developers of computer-algebra systems, such films 
could significantly increase the awareriess and utilization of this under- 
utilized resource. 
sound movie MACSYMA demonstration tc show RZ thi6 coaferoiice. ti;7lle not of 
sufficient quality to be reproduced os a distributed 16m film, Jt is hoped 
that this proLotype will inspire 8 full-scale effort by someone with more cine- 
matographic talent, with more funds, with access to 5igh quality photographic 
resources, and with access to ti fast terminal with high resolution. 

Sound projection 1 6 m  

To this erd, I have produced a 10-minute prototype Bmm 
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SOME YACSYMA PROGBAFIS FOR SOLVING 

DIFFERENCE EQUATIONS* 

John Ivie 
University of California, rerkeley. 

INTRODUCTION 

We describe here a set of programs to find closed--Fom solutions 
to linear recurrence relations (or "difference equations"), namely 
equations of the f o m  

ak u(n+k) + ak-l u(n+k-1) + ...+ a. u(n) - g(n) (1) 

where the coefficients :+. are either constants (the constant coefficient 
case) or polynomials bn (the variable coefficient case). 

I would like to thank Richard Fateman for suggesting this problem 
to ne, as well 2s for all of his help with the NACSY'ifA system. 

CONSTANT COEFFICIENT CASE 

32 

The Characteristic Equation Method 

We first consider the homogeneous case, that is when g(n) * 0 in 
equatJon (1) above. 9y substituting xk-i for u(n+k-i) in equation (1). 
we obtair. a polyncmial equation; the soiution to the recurrence relation 
can then be written as a linear combination of the roots of this pclynomial. 
All of this is fairly easily done hy means 02 the YLlCSWLA "SSLVE" command. 

* This work was made possible by access to the tlACSYMA %stern at H.I.T. , 
sttoported in part by ERDA under Contract rUumber E(ll-1)-3070 and by 
NASA under Grant NSG 1323. 

This is an extended aSstract of a paper to appei in the ACE! Tran- 
sactions on Mathematical Software . 
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Ir! the inhomogenesus case, when the right hand side of equation (1) 
is non-zero, we first find the homogeneous solutlon as above, and then i 
add to it a particular solution of equation (1). This particular solution 
is found by the method of undetermined coefficients, which gi;les a set 
of linear equatiors to be solved via the "SOLxJE" command. In our case 
here, we assme that g(n) is either a polynomial in n, a corstant raised 
La a polynomial pnwer, or sine or cosine of a linear function of n. 

i I 

This method is implemented by the '*CHAR" portion of our programs, 
xhich are givsn in an appendix. 

The Method of Generatirg Functions 

This is another method for sciving cnstant coefficient recurtiuce 
relations. This method finds the homogencous and particular solutions 
at once, but is slower in our impl=mentation than the charactersstic 
equation method. 

The basic idea of this method is the following: define the gener- 
ating ;unction F(x) of the sequence u(n) as 

Using the recurretlce relation (l), we can arrive at an algebraic equatfor 
far F(x), so that F(x) 
We can then rewrite this rational function far F(x) in t e m c  of a partial 
fraction decorr?osttlon, so thdt the Coefficients u(n) in F(x) can be 
identified, which gives the solution to the recurrence relation. 
(This technique is very much like a discrete Laplace transform). 

can be expreased as a rational function in x. 

The main MACSYMA commands used to do all of this are "SOLVE" and I 
i %IFF'*. 

This method is implernented by the "GENF" portion of Gur programs. 1 

VARTABLE COEFFICIENT CASE 
i 
i 
i 
i 

E 

One method for aolvlng variable coefficierit recurrence relatioris 
is that of exponential generating functions, Ne asswim that our gen- 
erating function for the sequexe u(n) is of the form 
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Taking successive derivatives and using the recurreme relation (l), we 
obtaiq an ordi.nary differential equation for Y (XI. Expanding the solution 
to the differentlsl equation in a Taylor series, we see that the nth 
tern of the series is the solution to our recurrence relation 
This method can be programmed using the MACSYFA c o w n d s  
"POWERSERIES" . 
of our programs. 

(1). 
"03E2" and 

This technique is implemented by the "VARCl" portion 

One major problem with this method is that there m y  be no way to 
find a closed-form solution to the differential equation which is obtained, 
or even to express a closed-form solution in a "nice" form. 
an eltplicit closed-form solution is available for first-order recurrence 
relations; chis is implemented by "VARCZ" in our programs. For second- 
order recurrences, a special check is made for those that can be solved 
in terms of Bessel functions; this is given by "BESSELCHECK" in our 
program listings. 

However, 

TESTING THE PROGRAMS 

Using our programs, we were able tc solve problems and examples 
taken from several textbooks ( as given in our list cf references ), 
The following is a small sample of sowe typical problems: 

(Cd 6 1 CHAR ( U ( N+ 1 1 -. U ( N I ( 1 / 6 1 * N * ( N- 1 1 * ( N- 2 ) +N- 1 U , N ,1, [ U ( 0 1 = 1 J ; 
I 3 2 
I 

(Dfl! 

\ 

N N 23 N 7 

24 4 24 4 
U(N) = N (-- - 9- + ---- - -1 + 1 

\ (D77) 
, 
I 

2 N  N S  S N  
U(M) N (-- 1 - + -0) + --- 

12 3 12 6 
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(Cl2) VARCl (U(N+2)-(3'N+2) *U(N+1) +5*U(N) ,8,U,N,2, [U(U)=D,U:lj =I]) ; 
(D12) A LINEAR COMBIJUATION OF BESSEL FUNCTIONS i 

i 

Using the 77 problem from the references which we tried, we Eound 
that CHAR had an average running time of 585 msec., while that for GENF I 
was 1113 msec. . Thus, the characteristic equatim metbod is much faster '\ 
in our implementation here. ;' 

CONCLUDING kEMARKS i 

After this paper was written, we became aware of a similar paper by 
Cohen and Katcoff (to appear in Transactions on Mhthemati::al Software). 
Their methods seYm somewliat more general (they deal kith system;; also); 
hodever, our programs are much shorter and seem to have faster runni-ig 
times. 
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APPENDIX 

F3r con?plPteness, bre give here a listi.ng of the actual MACSYM4 
code for our prcgrams. 

/*THIS BLOCK CdECKS FOR A POLYNOMIAL IN N*/ 

POLYP(G,NI :=BLOCK( !D,F,C] , 

D:ElIPOirj (G,N) , F:THUE, 
G: FSTEXPAND (GI , IF FREEOF (N ,GI THEN RETURN (TRUE) r 

FOR I:D S'IEP -1 THRU 0 DO 
(C ZCOEFF (GIN, I) , IF NOT (FREEOF (N pC) ) THEN F: FALSE 
G:RATEXPAND(G-C"N**I) 1 ,  

RETURN {IS (G=iq AND F) I \ $ 

/*THIS BLOCK CHECKS ?Gk A CONSTANT TO A POLYNOMIAL POWER*/ 

POLYINN(X,N) :=BLOCK( lB,El, 
IF I NPART ( XI kl) =" * " THEN 
RETURN(POLYlidLJ(INPART(G,l) ,NI 
IF IRPART(XtO)#"**" THEN RETURN (FALSSI 

AND PoLYLNN(INPART(G,2) ,N) I ,  

B:INPART(X,l) I 

E:INPART(X,2), 
IF NOT FREEOF(NIB1 THEId RSTURN (FALSE), 
RETURN(POLYP(E,NI))$ 
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/*THIS BLOCK IMPLEMSNTS THE CHARACTERISTIC EQUATION METf!ODf/ 

C~AR(E,G ,u, N ,B IV) :=LLOCK ( [GENSOL ,HOMSOL, PARSOL, LOS ,MULTIPLICITIES, 
H ,VI L , SS , DI SPFLAG] , 
LOCAL (A, AA, E, R, M) , 
DISPFLAG:FALSE, 

FOR I :0 THRU K DO 
AA [ I] :COEFF (E ,U (N+K-I) ) , 
H:0, 

F9)R I : 8 THRU K DO 
H:H+AA[IJ*UfN+K-II, 

IF H#E THEN RETbRN ("ERROhEOUS INPUT"\, 

FOR I:J THRU K DO 
H:SUBST(U** (K-I) ,U(N+KLI) ,HI v 

MULTIPLICITIES:TRUE, 
LOS:SOLVE(H,U), 
FOR I:1 THRU LENGTH(LOS1 DO 

M[I~:MULTIPLICITIES[Ij)r 
(R[IJ :LOS[I] , R[I] :RHS(EV(R[I])), 

HOMSOL : 
SUM (SUM (A [ I, J ] *N* * (M [ I 1 -Y 1 , J ,I, M : I ] 1 *R ( I I * *N , I, 1 LENGTH (LOS) * 

IF G=0 T H E N  
(V:I 1 ,  
FOR I :I THRU LENGTH (LOS1 30 
FOR J:1 THR'1 MIIJ DO V:CONS(A[I,Jl,V) 

i 

i 

\ 

t 

L:[ I ,  + 

FOR Q:0 TdRU K-I DO L:CONS(SUSST(~,N,HOMSOL)Du(oI rL) I ,' 

RETURN(U(N)=CEV(HOMSOL~SSI I I I . __ SS:EV(SOLVE(L,V) ,IV) 

I 
I ELSE I7 POLYP(G,N) - TRUE THEN 
\ 

IG: RATEXPAND (G) , FARSOL: SUM (B 1 J 1 *N* *J , J ,0 ,HIPOW (G ,N j? , 
'\ FOR J:0 THPU K DO 

(L:0, V:E, 
FOR 1:0 THRU K DO 
(L:kATEXPAND(SUBST(NtK-I,N,BIJ)*N**J)l, ~ 

U:RATEXPAE(D(SUBST(I.,U(N+K-I) ,;r) 1 z , 
V :RATSIMP (V) e 
IF V#B THEN RETURN (V) FLSE PARSOL:N*PARSOL) 

V:E, 

V:RATEXPAND(SUBST(L,U(N+K-II ,VI 1 1 ,  
L:[ I ,  

V:[ I, 

FOR I:0 THRU K DO (L:RATEXPAND(SUBST(N~~~I,N,PARSOLII, i 

FOR I:Q THRU HIPOW(PARSOL,N) DO 
&:CONS (COEFF (VsG ,ti, I! , L) v 
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B 

FOR J:O THHU HIPOW(PARSOL,NI DO 
V:COt4S(B[J] ,V.), 

JARSGL : EV ( PARSOL, SS) ) 
>u W L V E  (L,VI , 

ELSE IE POLYING(G,PI) = TRUE THEN 
( PARSOL : a1 * G 
FOn J:8 THRU K DO 
(L:0, V:E, 
FOR I:@ THRU K DO 
!L*: SUBST (N+K-I ,N ,PARSOL) V :SUEST (L,U (N+K-II ,V) 1 I 
V:RATSIKP(V), 
IF V#B THEN RETURN (V) ELSE PARSOL:N*PARSOLI 8 

SS:SOLVE(V=G,Bl), 
PARSOL : EV (PARSOL ,SS) ) 

ELSE IC" INPAHT(G,OI=STN OR INPART(G,BI = COS THEN 
(PARSOL : B [ 11 *SIN (INPART (G ,lk + I3 ( 21 *COS (INPART (G ,1) I., 
FOR J:id THRU K GO 
(L:0, 'J:E, 

FOR I:8 THSU K DO 
(L: EXPAND ( SUBST (N+K-I e N PARSOL) 1 , 
V:EXPAND(SUBST(L,U(N+K-I) ,VI 1 1 ,  

V:TRIGEXPAND(V) , 
IF V#ld THEN RETURN (V) ELSE PARSOLrN*PARSOLl, 

V:E, 
FOR 1:0 T H W  K DO(L:EXPAND(SUBST(!:+K-I ,N,PAFSOL) 1 , 

V:EXPAN@(SUBST(L,U(N+K-I) ,V!i), 

1,:l 1 , 
V:TRICEXPAND(V), 

LT: [SIN(XNPART(G,l)) ,COS(INPART(G,1)1 I ,  
FOR JJ:l THRU 2 DO 

L:COWS(COEFF(V~C,LT[JJII ,L) I 
V:I I ,  
V:CONS(B[J: ,VI, 

FOR J:1 THRLl 2 D3 

SS:SOLVE(L,VI, 
PARSOL : EV (PARSOL, SS) 1 

ELSE RETURN ("CAN'T BE SOLVED IN CLOSED FORM BY PROGRAM") , 
GENSOL :HOMSOL + PARSOL, 

V:I I ,  

L:[ I ,  
FOR I :1 THRU LENGTH (LOS) DO 
FOR 3:l THRU M[I) DO YICONS(~[I,J!,V)I 

FOR Q:9 THHU K-1 DO 
LZCONS (SUBST (Q,N ,GENSOu)=U fq) r L) I 
SS.EV(SOLVE(L,V) IIV; 
RETURN (U(N)=(EV(GENSOL,SS) )$ 
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/*ZHIS BLOCK IMPLEMENTS THE GENERATING FUPICTION MYTHOU*/ 

G Ei3 F ( E, G U N K IV 1 : = €3 LOC Y ( [ M ULT I P I, I C I TI E S L V S S VV LOS 8 
NR, F , SOL, P , D I  SPFLAG] 8 
LOCAL(A,AA,BI, 
DISPFLAG:FALSE, 

FOR I:n THRil K DO 
AA[I) :COEFF(E,U(N+K-I\\ , 
h:Q, 

FOR r:rd THRU K .DO 
H :H+AA [ I] *U (N+K-I\ , 

IF HPE TflEN RETURN ("ERRONEOUS INPUT") I 

L:E, 
FOR 1:i THRU K DO 

L:SUBST ( (F-SUM (U (J) *XLy.3 :J :!A, K-1-111 *X**I ,U(N+K-I) LI 

IF G=O THEN 
(S:SOLVE(L,F! , 
F:EV(F,SI\ 

ELSE IF POLYP(G,N) = TRUE THEN 
(G : RATEXPAND (GI , 
V:S~BST(X**K/(l-X)*CBEFP;GINIB) ,COEFF(G,N,B) ,GI, 

FOR 1:l THHU HIPOW(C,N) DO 
IV:SUBST(X**K*X*VV*COEFF(G,N,I~ ,COEFP(G,N,I!*N**18VI, 
VV:RATSIMP(DIFP(X*VV,X~~~, 

V:RATSIMP (V) , 
SS:SCLVE(LmV,F), 

i F:EV!F,SSi) 
I 

ELSE IF POLYINN(C,N) = TRUE AND HIPOV(INPART(G,2) ,NI 4 2 THEN 
(G1: (X* *KI * ( INPART (G ,l I **COEFF ( JNPART (G ,21 pN ,B 1 1 , 
52 :f X* (INPART (GI11 "*COEFF (INPAR'I:(G,ZI ,N ,I) ), 
'J : HATSIRP (Gl/G2) , 
SS:SOLVZ(L*V,FI, 
F:EV(F,SSI) 

ELSE AETURN("CAN'T BE SOLVED IN CLOSED FGRM BY PROGRAM") 8 

MULTIPLICI%IES:TRUE, 
LOS:SOLVE{NEWRAT(PI p X 1 ,  

FOR 1:1 THR'J LENGTti(L0S) DO 
(R(IJ:LOS[I], R[I):RHS(EV(RfIJ)), 
MI 1) :MULTIPLICITIES[ 11 1, 
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v:i I ,  
B : PRODUCT ( { 1- R 1 I ] * X * * M [ I 1 , I ,I, LENGTH ( LOS ) , 
FOR 1:1 THHU LENGTHILOS) DO 
FOH J:1 THkU MI11 DO 

P:SUM(SUM (PI I ,J] ,J ,1 ,M [I1 ) ,I ,1 ,LENGTH 
(P[I,J] :~*A[I,J]/((l-R[XI*X)**J), 

L:I I ,  
NF:HATEXPAND (NUM ( FI/AHS (COEFF (DENOM (F 
FOR I:@ THRU HIPOW(RATEXPRND!BI ,Xh-l 

SSS:EV(S3LVE(L,V) ,IV), 
L CONS (COEFF (NF=P, X , I ) c L) , 

,X,O) j 1 ,  P:RATFXPAND(P) , 
DO 

SOL : SUN (SUM I A I I , J 1 COEFF (DENOM ( Fl ,XI 0 /ABS (COEFF (DLNOM (F I ,XI 0 I I * 
BINOMIAL (J+N-1 .N) *R [ I! * *N ,J ,I ,M I I] 1 , I, 1, LENGTH (LOSI \ , 

RETilRN (U (N) = ( EW ( SOL ,SSSI 1' ) $ 
/*THIS BLOCK FINDS T H E  NEC POLYNOMIAL ASSOCIATED TO F*/ 

NEWRI\T(F) :=BLOCK( [HD,CP,DP] 
HD:HIPO\'i:DENOM(FI ,X), 

DP:SUM ( (COEYF (DENOM (F) ,X p I) ) ,'CP*X**I f I ,B ,HDI I 
CP:COEYF(DENOK(F) ,X,HDI, 

RETURN (SUM (COEFF (DP ,X ,HD-I \ *X* * I, L ,Be HI)) 1 1 s 
/*THIS BLOCK IMPLEMENTS T H E  VARIABLE' COEFFICIENT METHOD*/ 

V A R C 1 ( E , G , U ~ N , K , I V ) : = B L O C K ( ( V , V V ~ ~ ~ , Y , C A U C H Y S U M ~ F ~ C ~ S O L ~ ~ ~ ~ ~ ~ O L ~ D I S ~ F L A ~ ~  
LOCAL(A,B),DISPFLAC:FALSE, 

FOR f :6 THRU K D3 
(A(IJ :COEFF(E,UIN+I)), 
A[I: :RATEXPAND(A(II), 
IF PO&YP(A[I) ,N)=FAiSt; THEM PS.TURN("CAN'T D O  IT")), 

IF K=2 AND (B:BESSELCHECK(E,KI # FALSE) THEN PETURN(B), 
V:RATEXPAND(E) , 
FOR 1:K STEP -1 TdRU 0 DO 

FOR J:HIPOd(A(I],NI STEP -1 THRU 0 DO 
(V:RATSUBST(X**J*'CIFF(Y,X,I+J) ,N**J*U(N+I) CY), 
V:RATEXPANC(V)), 

V:~TSUBST(Y,'DIFF(Y,X,B) ,V) 8 
V : Ri'TEXPAND (VI 
I F  POLYP(G,N) - TRUE THEN 

(G:RATEXPAND(G), VV:G, 
FOR 1:B THRU HIPOW(GIN) DO 

VV:SUBST(X**I,N**I,VV) , 
VV:%E**X*VV) 

FLSE RETURN ("CAN'T DO IT"), 
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I EQ : V-VV 
DEPENDENCIES (Y (X) I 8 
ST); : Ob22 ( EQ=0 Y , X) , 
IP K=l THEN FINSOL:INITIALl(SOL,X=0,Y=E~i~~0)8Iv)) 
ELSE IF K=2 THEN FINSOL:IC(SOL,X=0,Y=EV(U(0~ ,IV) ,'DIFF(Y,X)rEt(U(1) ,IV) 
ELSE RETtiRN('0.3.E. CAN'T BE SOLVED AT PRESENT BY MACbYMA*), 

SERS0L:POWERSERIES (RHS (FINSOL) ,X,0) 8 
IF ATOM(SERS0L: THEN RETURN("U(h)=B FOR N > a"), 

CAUCHYSCM:TRUE, 
SERSOL:EXPAND(SERSOL) , 

B: INPART (SEHSOL, 1) 8 
C:EV;B,X=l) , 

RETURN (UiN)= ((Y!) *B) 1 )  $ 
IF ATOM(B)=FALSE THEN B:SUBSTPART(N,B,4) 8 

/*THIS BLOCK CHECKS FOR A BESSEL RECURRENCE RELATION*/ 

BESSELCHECK(E8K) :=BLOCK( [A,ANS] 8 
LoCAI4 (A) 8 

FOR I:0 THRU I6 a0 
(All] :COEFF(E,UIN+I)), 

IF NOT{INTEG&RP{A[B])) THEN RETURN(FALSE) 8 

IF NOT(HIPOMIA[A] ,N)=l) THEN RZTURN(FALSE) ). 

IF t'OT(A[21=1) THEN RETURN(FALSE), 

. A(I1 :RATEXPAND(A[Il I), 
IF NOT(INTEGERP(EV(A[1] ,N+$))) T H E N  RETURN(FALSEI, 

IF NOT(INTESERP(COEFF(A[ 11 8N81)) 1 THEN RETURN [FALSE) 8 

ANS:-A LINEAR COMBINATION OF BESSEL FUNCTIONS*, 
/*EXACT DETAILS ARE OF NO SIGNIFICANCE,SINCE WE ARE MERELY 

DEHONSTUTING THE FEASXBILITY OF THIS A?PROACH*/ 
RETURN (AIJS) ) $ 

! 
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SOX2 COMMENTS ON SERIES.SOLUTIONS 0 
Rtcbrel 3. Faternan 

Cniver:ity of Califomla, BerRrley 

1. SUMMARY 

The use of power series and truncated power .series in the MACSYMA system for algebraic 
manipulation is illustrated. Algebraic and dtfferentkd equations arc solved using Taylor ser~cs or 
asymptotic serief. Dcficimeies of the current scheme aru noted, and remedies suggested. 

2. Infinltc Power Series 

T h e  general term -seriesa is used for at least 3u;wcr different types of exprersrons in MACSY M A 
(ref. I). A power series, informally, Is an exact representation of a function usually of onc complex 
variable, fit), sometimes rqulr;ng th5 summation or' an ir,finite number of terms, where the power 
s e r h  may canverge only for lzl<R, wf ?re R Is the radius o€ ronvergence. Examples: 

expIx)= sum(x"i/i! ,l,O,inl), cunvcrr-gent for 1x1 < Inti 

l/(l-x) * aua(x"l,l,O,Inf) convurgent tor 1x1 < 1; 

These are pwer serla expansionr about n.9. Translation to a point a 4 0 Is trivtdlly 
rccomp~istm~ for a finite wries x*3*x3 -a> &a + (sa2+lbdx-a) + *m(x-aF + 3.4~-119. For a 
functlon f(r) analytic at a finite point c, a Hncar transformation can br used to map the point c to 
the origin. Expanslor: abaut a pole of f($ in the cmpkx plane Is sketched in section 5. Such 
problems arc examlrted :n t mathcmrttcal contest In nurnerws texts of which ?t%renres 2-3 arc 
examples. 

- 
9. T h e  work described herein was performed with the help of M A C S Y M A ,  which is supported. In 
part, by the United States Energy Rtmrch and Develcpment Administration under Contract 
Number E(Il-I)-LKnO pnd by the NatIonat Aeronautiu and SpacP Administration under Grant NSC 
1323. 
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Power series as us& in MAGSYMA rid not consist solely of non-negative expor,cnts: 
exp(x)/x - sum(xi/(i+U,i,- i,inf). 

, They need Rot consrst solely of integer exponents: exp(x)~x'/~ - ~urn(x~+*/~li!,i,O,inf). 
T h e  existence of power series solutions to various types of equations, (iyplcally differentia! 

equations) has been established, (see. for example, :ef. 3) but proofs, even if constructive. rarely 
provide a means for expressing in closed form, in terms of some limited class 9f functions arid 
forms, :he power series itself. By 'forms' ye mean suinmacims. products, or integrals with finite 
or infinite limits, or derivatives of finite order of knowr functions. 

To be more precise, in terms of finite presentation, a univariate power series :s a triple: (x, 
(Ik].(ak)). T h e  first item, x, is the independent variable (indeterminate) of the series, (Ik] is a 
sequence of exponents. and {ak] Is il sequence of coefficients. Usuatly the sequecces are infinite. 
and therefore cannot be represented in a computer by enumeration, bur rather by generation. It 
io convenient to require that given some value from (1,). say j, the corresponding k such that Ik'j 
can be fund: this is the operation of finding out the coefficient of a given power of x. 

MACSYMA producer powrr series via the POWERSEZSES tanmand in J closely related 
form. T h e  triple specified above b only a slight genmlization of the representation: the 
summat!on form used in MACSYMA devolves down to a subset st !he integers. and thus the 
exponents are a fuiction of the index rather than rncvbess e? the E-qmnent KC. 

Furthermore. the MACSYMA default result for the product of two infinite series 
sum(ajaxl.i,ODinf) and sum(bpxi,iDO,inf) has the form su~~um(a,eb~xi'~.j,O,inf),i,O,inf) rather than 
(with CAUCHYSUM:TRUE) sum(sum(a. bk- J,0,k%xk,k,9,1nf) in which the coefficient of xk is a 
finite sum. If the convmion to "WJchy -style products were the only barrier, then there would be 
little cause lor alarm. Much clyore difficult Is the generation of an explicit form for composition. 
Although lmplicit forms, usually recurrence rehtlons for the squcnce (ai], can be calculated. these 
do not satisfy our "ilnite closed forma restriction. 

T h u s  white Infinite power series are P powerful mathematical construction, operations on them 
may lead outstdo the domaln of scrics with explicit Finitely genexed terms. 

This is not to ray this leads necessarily to intractable problems: on the contrary. w e  can say the 
same thing about trigonometric or algebraic functlo~~s (square tmts for example) since they may 
lead from the f Inltely-gencrated rational numbers to algebraic cr transcendental number:. 

Newtheleu, if o m  Is attempting to cowpute with power serk, It is useful to rninirnalJy ensure 
thht the ratio test for convergence can be computed fur any power series expimion: 
Iim(an/an,~,n,inf) Inf, where an Is the coefficient of xn. The finitelj-generated restriction gives 
one a g d  possibility for thlt, although It Is nct a necessary condition for the power-series ratio 
test to be computable. 
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3. Truncated Power Series L 

T h e  second r-ype of series construction in 2 4CSYMA which by and large ignores querrions of 
ultimate convergence, but hap considerable 0.55-intage in terms of ease of computatian, is the 
twncated Qower series (TPS- so calliEd in ALTRAN and SCRATCHPAD) or the "Taylor Series" 
form in MACSYMA. Since it is unreasonall? t3 restrir' P J u r  discussion to Taylor series (no 
negative exponents), and the name used in MACSYMA is primaiiiy of historical origin. we will 
use the phrase truncated power series or TPS to :fenote this type of expression. A TPS IS a finite 
subset of the coefficient-cxpment pairs in a full power scries. T h e  representation includes an 
indication of the order of truncation khich has been imposed by the user andlor the system. In 
some cases the order of truncation is iiltved by operations, which include all rational operations 
(where division by TPS with a zero constilnt term may lead to a tiuncatedLaurent serics with 
negative exponents). Additional operations such as power series reversion, multivariate expansions. 
a type of asymptotic expansion, and extension to more terms are described in t!ie MACSYMA 
manual (ref. 1, also see ref. 4 for a more detailed discussion of univariatel .TPS in M A C S Y M A ) .  
Other systems offering automated handling of TPS include ALTRAN ,and SCRATCHPAD (refs. 
S,6).. Facilities are present in many earlier algebra systems fc,r handling 'weighted variables" but it 
seems that only recently has an appreciation developed fol the fat: that these rudimentary power- 
series Ideas are e 4 y  generalized to operations such as inversion and reversion. 

W e  indicate in pssing that asymptotically fast methods of computalion on TPS have beer! 
described by Brent and Kung (ref. 7). Kung and Traub (ref. 8). to replace the classical methods 
(see. for example, Lipmn (ref. 9) or Knuth (ref. 101). For the remainder of this paper w e  will be 
concerned with the use of TPS in the solution of equations, and the relative rapidity of the 
~;gorlthms underlylng the methods will not much affect the usefulness of the results. 

For our purposes, wt choose to omit from the TPS repertoire a number of the more 
wp'nisticated features. We consider a TPS to be identlcal with a power series with the c5ange that 
{rklt the set of exponents, is necessarily finite (and a prefix of the infinite se:), and each operation 
on TPS must preserve as matiy terms in the answer as can be guaranteed correct, given :he 
operand description. In some cases additional assumptions are made. For example, given the TPS 
Y - I-xc ..., then 1IY - I+x 4 .-. Yet if Y is in faa .- + 1 - x + ..., e.g. l/x 4 I - x + ... then 1/Y - x - 
x2 ..., rendering even the constant term incorrect. Thus we will assume, except when explicitly 
stated otherwise, that a!l negative txpanent t * r m  are given. 

4. Aljzebralc Equations and Truncated Power Series 

If we lay aside autions concerning the validity of expressing an unknown function as a TPS, 
w e  can often proceed to find the cwfficlents in the series by substitution into a defining cquat:on. 
We ilrussrate with examples of algebraic quations and differential equations. Additional examples 
can bc: demonstrated combtning these twc, or adding the operation integration. 

this nature, but to illustrate a common-sense app:oach which frequently Is useful. 
The techniques in thls steticm are not intended to be general prescriptions for all problems of 

0 
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Consider th8 following Irreducible cubic equation: 

T h e  three roots for L obtainable by ineans of the cubic formula are, as expected, unwteldy. If 
w e assume the existence of a solution L(e)- sum(LLjdj,Ojnf) and rry to determine {LL,} by 
substitution, we find tbat setting tu rem coefficients of various powers of c ~n the equation result 
In inconsistencies (e.& -1 = 0). A few mommts considentiw of the defining equatlon sugkests that 
such a series does not exist, but that if we solve for L3, then a cube root of the lowest term in e, 
(d) will provide a basis for expansion. In fact, substitution of 9 for e in the origirral equation (or 
alternatively, expansion of L in terns of the cuberoot of e), serves the purpose precisely. 

p.. bL.8 the general form has been chosen there are several levels of generality in which the 
coefficients may be found. 

. The infinite Fower series approach, namely to substitute power series forms into the def inrng 
quation and sobe for the arbitrary coefficientr, in closed form as a function of n. the index of 
d3, would .be L?Jc most powerful. Unfortunately, MACSYMA cannot do this automattcally, 
although with sufftdetit p:mptlng part of the algebra caii be accomplish&. (Ir would be 
interesting to completely characterLt what can be done by mechanical means tcl find closed form 
solutions; the result wouW be analogous to the Rluri Integration algorithm.) 

Less satisfactory, but more to Le expected considering the smail set of sorbable recurrences, is 
the derivation of a tecurren E which e n  be marched to any des:rtil order. 

Yet more likely is that a set of quatlans can be pmanred such that a11 LLi up to some fixed 1 - N can be found. Of course it may happen that the defining quations lot the cw-fflcients are no 
m r e  tractable than the original equation. This is certainly possible for algebraic ecpuationr but if 
we start with a differential quation we have at least traded it far an aiget,alc proShn. 

Elementary oritlmetical considerations suggest chat polynom:rl equation; of !he form Ln- 
dlower order terms in L) L 0 have formal power icries solutions for L In terms of c?". In fact 
the degree of the smaliat non-zero term an &e predicted. A cmplae procedure for such 
determtnations for algebraic cxpreuians wouM be interstilag, but in general we must tackle -ather 
difficult problems: The computation of Lb In L = sun(LLloei,i,O,inf) given a daf lnlng polynomial 
In L Is In general as hard as (and may be the utne as) finding an algebraic expression for L itself. 
If e Is mluing from the equation, then trivially L- L\* 

Some algebraic quatlons can be dealt wlth in a very powerful framework involvtng 'NeNton- 
like" ttcrattons. (ref. 8) Rather han use these somewhat esoteric rnethcds hcrc. wr will proceed on a 
more direct path to spcuific crzmp!es. Section 7 treats Newtor, iterations briefly. T h e  results 
coincide when both approaches are appropriate. 

As Illustration of the algebratc substltution technique on the example given above, we 
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present the following dialogue with MACSYMA The definition bf the function SOLVEALL is 
more complex than need be. perhaps, for this simple function, but it illustrates the "blind" use of 
this substitution technique. In this psrtieular case, LLQ is found from the coefficient of e', LLl is 
found from the coefficient of e3 (and is chosen arbitrarily to be one of the three roots of LLt-1 - 
0). and LL2 through LLd are 3:termined from the coefficient; of et through e6. While LLg and 
L b  appear in the ecpatim. their values are not determined because the appropriate coefficients 
arc already zero. 

(C1) EQ: LA3-E%( L+1) ; 
3 (01) L - E  ( L +  1) 

( @2 ) OEFTAY LOR( H( E) ,SUM( LLC I NE"I, I ,O , INF) 1 i 

(C3 1 TAYLOR( SUBSTiti( E), LIEQ) ,E, 0.4) ; 

(D3)/T/ LL + (3 LL LL - LL - 1) E 
k \ (02) cy3 

3 2 ' 
0 $ 0 1 0  

2 2 2 
+ (3 Lb LL .b 3 LL LL - LL 1 E 

c 2 0  1 0  1 s: 

b 

2 2 i! 
+ (3 LL LL + (6 LL LL + 3 LL 1 LL + 3 LL LL - LL 3 1 4 0  3 1  2 0  2 1  

Note that the first three cacfficima imply that LLo4, LLl--I/3, 
cbrly fnconslstent. 

(C4) E03 :SUBST( EA3,, E ,EO) ; 
(04 1 L - E  ( L + 1 )  3 3  

( C5 ) RES : TAY LCA( SU8ST( H( E), Le FQ3), E, 0,6) 2 ; 
2 2 3 2 

(OS)!T/ LL + 3 LL LL E + (3 LL LL + 3 LL LL 1 E 0 1 0  2 0  1 0  

4 
E *... 

and LL19 rimultaneo,i:I{, 
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2 3 3 

2 1 .  0 1 
+ (3 LL LL v (6 LL LL - 1) LL + LL - 1) E 

. .  
3 [I 

it 2 2 4 
+ (3 LL LL + (6 LL LL +'3'Lk ) 11 + 3 LL LL - LL ; E 

4 :I 3 1  2 0  2 1  1 

it 2 2 

5 61 4 1  3 2  0 3 1  2 1  
+ (3 LL LL + (6 LL LL + 6 LL LL ) LL + 3 LL LL + 3 LL LL 

5 2 2 

2 6 0  5 1  4 2  ,3 a 
- LL ) E + (3 LL LL + (6 LL LL 9 6 LL LL + 3 LL ) LL 

2 3 a 
+ 3 I L  LL + 6 L L  LL LL + L t  - L L ) E  +... 

4 1  3 2 1  2 3 

T h e  value of REE above is the result nf substituting a series into EQ3, the same as EQ, but 
with E replaced by E3. Wr now define a fairly general pryram to solve for all the coefficients in 
such a defining quaiion. The program below is not asymptotically fast, since examples can be 
concocted fx which it Is O(n!) for n terms desired. Iterative rnethbds described in section 6 
provide the potential for much foster construction of terms, yat 'the relative timp!icity of 
SOLVEALL below - in riu relying m how the quation wai generated, is attractive. 
(C6) /r SOLVE EQ FOR CCKO] CC[LIM] Rs REQUIRED TO HAKE EQ(X) ZERO. e/ 

\ 
\ 

SOLVEAIL(EP,X,GC,LIn):o 
BLOCK ( [ C , VARS, S , K 3, 
K:O, 
WHILE EQ#0 AND K<LIH W 
( C : COEFF ( EO, X,K) , 

', 

I 
I 

IF GI0 THEN 
[VARS:LISTOFVARS(C), 
UNK:tiINF,/* HINUS INFINITY s,' 
FOR I IW VARS 00 

IF NOT(ATOM(1)) AND PART(f,O)aCC AND PART(1,l))UNK THEN 
UNK : PART( I, t ) , 
/*PICK BUT HIGHEST INDEX */ 

/* WO WAF TO HAKE COEFF. ZERO n/ 
IF UNK 8 HINF THEN €RROR( LIMCGNSXSTENTe), 

UMK : CC[ UPiK], 
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S :SOLVE( C, UM), 
IF S =[ I THEN ERROR( "INCONSISTENT") 

ELSE (IF REST(S)P[I THEN PRINT - 
( "MULTIPLE SOLUTIONS: FIRST Okt: CHO,',EN"), 

UNK::F!HS(EV(SCiI)), /* ASSIGN COEFFICENT VIL'JE */ 
ES :w E31 1 1 * 

K :K+l) )$ 

C7) SOLVEALL( RES, E, LL, 6) ; 
SOLUTION 

WULTIPLICITY 3 
SOLUTION 

LL = o  
0 

1 
WULTXPLE SOLUTIONS: FIRST ONE CHOSEN 
SOLUTIOP 

kD12) 
3 
DONE 

The difficulty wlth ntultiplc solutions for LL1 can be nicely resolved in MACSYMA as follows: 
Let w be a primitive root of w3-I (Le. a root of the Irreducible factor of w3-I with roots whrch 
generate all distinct cube roots of I: w2+w4), remove old values of LL, and then set LL, to w. 
SOLVEALL then uses the given value for LLJ, dnd proceeds to find the OI?Y c'3efficlcnts. By 
informing MAACSYMA vla TELLRAT and ALGEBRAIC about the special properties of w, LL2 
come out ntcely reduced. 
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(C13) (KILLiLL),TELLRAT(W^2+W*l), 
I* Y IS PRIPl1T;VE CUBE-ROOT OF 1 %/ 

LLE lI:W, ALGEBRA1C:PRUE)S 

( CPS ) SOLVEALL( RES, E, LL, 6) ; 
SOLUXON 

(E141 

HULTIPLICITY 3 
SOLUTION 

(E151 

SOLUTION 

(E161 

LL S O  

0 

LL = O  
3 

I 

i 
‘ I  
q 

1 I 

5. Differential Equations and Truncatd Power Series 1 

S F  1 This section deals with an admittedly trivial difierentid equation as an !!lustration. We 
demonst;ste the types of a?erat!ons supplied by MACSYMA and how to use them. T h e  
differential quation (assume right haiid side !: zero) Is eiitered on !he Ci7. we r m o v e  the 
previous vdues for the LL-array, and gencrate tire TAYLORSOL PS giw=i Mow. 

~ 

! 

1 
(C 17 ) DE : DIFF( H( E), E, 2)-4”Z*H( E) ; 

2 
d 2 

(D17) --- H(E) - A H(E) I 

(Cl8) KILL( LL)S 

2 
dE * i  

i 
! 

I 
5 rn (C19) DETAYLQRtSAYLOPCGE,E,0,6); , I  i 

2 2 2 2 
(D19)/T/ 2 LL - LL A + (0 LL A + 6 LL ) E + (- LL A + 12 LL ) E 

I I 2 0 1 3 2 4 
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!& 2 3 2 4 
E. + ( - L L  A + 2 0 L L ) E  + ( - L L  A + 3 0 L L ) E  
s, 3 5 4 6 
i 
!r 2 5 2 6 
5 + ( - L L  A * 4 ? L L ) E  + ( - L L  A + 5 6 L L ) E  +... 

-i' 
1 E 7 6 8 

& 
6 6 6  7 

0 1 

J20 5040 

A L L €  A L L E  

... + --------- + --------- + 
To check this result by "automatic' means, we use MACSYMA's ODE cotver, which uses 

standard textbook recipes, mostly drawn from reference II. These procedures solve many classes of 
first and second order linear ordinary differential equaticrns. Anticipating a query about the value 
of "A", we specify A > 0 below. The answer is reformatted by simplification via RADCAN, and 
Kt, K2 arbitrary constants arr! related to LLg and LLl arbitrary constants by the simultaneoirs 
solution of th,n two linear equatlms for initial conditions. The result i; expanded as a Taylor 
series to order 7 in E, where it is seen in llnc D32 to agree to that order with TAYLORSOL 
generated earlier. 

(C28) ASSUME(A>O)S 

(C29) RADCAN(ODE2 ( BE, H( E) ,E) ) ; 

OERIVD FASL DSK MAXOUT belng loaded 
loading lcne 

- A €  2 R E  
(D29 1 H(E) = %E (KI" + %E K1) 
(C30) /* IMPOSE XNiTIRZ CONDITIONS H(O)=Li[O], H'(O)slL[l] */ 

rC2(X,E~O,~(E)=LbC01,'DIFF(H(E),E)nhLI 11); 
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(C32 1 TAYtOR(RHS(X) ,E,O, 7)-TAYLORSOL; 
(032 )/T/ o +  * .  

Vi!! will return briefly to this extmple in the next section when steps (Cl9) through (C27) are 
mathematically reformulated and simplified for the special case of a regular solution to a second 
order linear differential ecpation, expanded at the origin. 

6. A n  Intrduction .a Asymptotic Series 

i This section will necessa~ily be very sketchy since asymptotic series are bolh complicated, and 
discussed in great detail elsewhere. (see (ref. 2) for example). 

Consider the function sin(l/x). It is not possible to construct a Tailor series in ascendlng 
powers df x, since there are no derivatives at xlc). Ths fact that there is an esseritial smgularrty at , 
zero is a sufficient b?-rier to power series expansion. However, for sufficiently large 8. when l/x IS ' I 
sufficiently small, cin(k/x) behaves like Vx (sin(y) - y + ... ). 

I 

The notion of >n asymptotic serifs is qtlite useful in the approximation of functions. Whether 
or not the series converges is not necessarily Important: just as we were willing ;o deal with a ' 

truncated power series, we can deal with a truncated asymptotic szries. KACSYMA is capable of 

1 

i 

i 1 

i 
i 

i i 

I 

1 producing some series from dPf inipg expressions at i:lusttated below. 

(C1) TAVLOR(SIN(l/X),X,a,S); 1 ? > 
1 

Essential singularity encountered in 
i \  

1 

X 
SIN( -) 

( C2 ) TAYLOR( SIN ( IL /X) ,I X, 0,5, ASYMP 1) ; 
1 1  1 

X 3 5 
(02 )/T/ - - ---" + -*---- + . . 

6 X 120 X 

I Unfortuna.tcly, many of the most useful asymptotic expansions do ncr have such a simple 
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structure. For example, instead of a series in descending powers of x, we may need a series in 
powers of exp(x). A series which MACSYMA cannot Sutonatically" handle is easily produced via 
the program given below. The reference to Olver is ref. 2 in the References. W e  do not define 
"irregular singularity" or "rank', but the Interertcd reader may refer to ref. 2 for backgimnd. 
incidentally, chis program is a demonstration of the.brevity possible in MAGS\ MA programs for 
ncn-trivial mathematical transformations. 

(C3) /* EXTENSJON OF LG (WKBJ) 
ODE'S IN THE NEI6HBORH000 OF AN IRREGULAR SINGULARITY 
(SUBCASE: UNIT RANK AT INFINITY). SECTION 7.1 IN OLVER. 

APPROXIMATION FOR LINEAR 2ND ORDER 

C SOLVES 
W"+F(Z)*W+G(Z)*W = 0 

61VfN6 SPECIFIED NUMBER OF TERHS, ) 
%/ 

CDE701(FF,G6,iJW,Z,TMS):= 
BLOCK( [ RHO], 
LOCAL(F,G,LAMBOA,MU,A,W), 

/* 701 indicatss section 7.1 in Olvcr */ 

/*F[ I] and G[I] represent terms in expansion of arguments 
FF and 66 */ 
F[ I]:=ILIHIT( Z"I*( FF-SUM( F[ J]/Z"J, J,O, I-l)),Z, INF), 
6[ I]:~LIMIT( PI*( GG-SUP( G[ J]/Z"J,S,O, 1-1)) ,Z, INF), 
RHO:( 1/4*FCO]*2-G[O])"( 1/2), 
IF RHO=O THEN RETURN(ODE701U3()), 

/* lambdal0J and lsmbda[l] correspond to two 
solutions In series. Same lor nu[Oj, mu[13. a/ 

LAnBDAL I] : 3-1 /2*F[ 0 I* ( -1 )'%RHO, 
flU[I]:=-(F[ 13*LAi4BDA[Sl+6[ l])/(FlO]+ZhLAHBDA[SIr, 
A[O,O J:'Kl, A[O,l]:/K2, /* arbitrary constants */ 
Ais, I I :s I/ (5*( F[O]+2*MM!OA[I]) )a 

/* SPECIAL CASE OF SECTION 7.1.3 */ 

(SUM( ( LAMBDA[ I l*F[ J+1 ]+GI J+1 I-(S-J-HU[ 11 )*F[ 51 )*AI S-J, S J, 

+( S-MU[ I])*(S-I-MU[ I])+A[S-l, I]), 
Jo1,S) 

IC I] : =%E"( UHBDAC I FZ)*Z"flU[ I ErsURiA[S, I ]/Z*S, S, 0, THS) , 
RET'JRN( W+W[ 1]+W[ 0 1) )S 

(C4) TESTF: ( 2*Zn2+2*2+5)IZ*2S 

(C5) TESTG:(Z*Z+3)/2*28 

(C6) ODE70 B ( TESTF. TESTG,W, Z,3) ; 
/at solve ~2*W"+(2r-2A2+2*2+5)*n +(2*2+3)W s 0 t/ 
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' i  This section is rquireO for exercise Y.i.2 in Giver, w we proceed to fill in the "blank" in the 
j -  above program namely program ODE73:OS. 

(C7) /e 0LVE.R SEC'SfCN 7.1.3 mTransformatioa of Fabrya a/ 

ODE70163( ) :r. 
BLOC#( 1F2, GZ , NEWF .NEWG, ANSI, 

F2:SUBST(ZA2,L,FF), 
62:SUBST(ZA2.Z,GG), 
NEWF:2~Z~F2~2~2~F[O]-l/Z, 
NEW16 : 2"2*( 4*6P+F[ 0 ]*2-2#F[ 3 >FZ), 
IF 2*C[ 1 ]=F[ 0 BF[ 1 J THEN 

/+ REGULAR SINGULARITY AT ZnINF: CQNVERSENT POWER SCRIES */ 
#*nethod In Olver, Section 5.4, but expand 
at Infinity. See below for expansion at zero. a/ 

ANS:0DE5041NFiNEWF,NEW6,~,ZsTH~) /a AT XNF*/ 

ANS : ODE70 1. (NEWF ,NE%, W, I, THS ) , 
ELSE 

RE rORN(WW=SUL3T( SI)RT( Z) 2, RHS( A!!S)#XEA( SF[ ON2/2) 1))s 
(e$) TESTF:2/kS 

{ C9 ) TEST6 : - ( 1 /4+5 / 16 / Z 1 /ZS 
(C10) /&LVER EXERCISE 7.1.2 L/ 

i 

ODE70b[TE4TFsTESf6,W,2,4); 

338 
1 



',: c e _  - I 
1 

(Cll) /* THIS ANSWER HAPPENS TO BE EXACT. PROW? BELOW: */ 

'DLFF( W, 2, 2)+TES~a0DIFF(W,Z)+TESTG*W,%,DIFF, L'!PAISC; 
(311) 0 

Another standard technique for series expansion is the method of Frobenius. Here we dispense 
only with the cas of roots of the indicta! quaticn which do not differ by an integer (or zero!. 
The latter case requires separate, but falrly simple treatmen: One example is worked on lines 
(CI9RClls). 

( C U )  1% OLVER SECTION 5.4.1: REGULAR SINGULARITY. 
ASSUME WITHOUT LOSS OF GENERALITY EXPANSION AT ORIGIN 
(HETHOD OF FROEENIUI). s.! 

OOE504( FF, G6,WM, 2, THS) : = /+Olver sect ion 5.4.1 */ 
BLOCK ( [ DISCR , SI,], 
LOCAL( ALPHA, F, 6, A,Q, W) , 

I I 
F[ I] : nLIHIT( ( Z*FF-SUH( F[ J #X"J, J,O,X-l) )/PI, 2,O 1, 
G~I]:=LIflXT( ( XA2*GG-SW( 6[ JBZA3,4,0, I-l))/Z"I,X,O 1, 
DISCIR: ~F[0~-1)"2-4*G[O], 
SD:RAocAN(SaRT(DISCR)), 
ALPt~A[I]:~~-F~O]+l+(-l)"I~O)/2, I8 QUADRATIC SOL. a/ 

WY I I: =f"ALPHA[ I W U M (  A[$ I f*Z"S,S, 0, RIS 1, 
AIS, I1 7 =-SOH( ( (ALPHA[ I]+J)*F[5-J].6[S-J])*~[ J, I], J ,Om So l) / 

A[O,O ]:8KI,Ar0,1]:'K2, /MBITRARY CONSVS tl 
XF INTE€iERP(ALP!iA[O]-ALPHA[ 11) THEM ODE50501( ) /U ROOTS DIFFER 

/a OISCRIlCIWANT OF INDICIAL EQUATIdN */ 

Q( X) :a%( X-1 )+F [ 0 ]*X+G[: 0 ], \ 

Q!ALPHA[I]+S), 

BY INTEGER CR 0 8/ 
ELSE WTgRN(WW:, W[O]+qii))S 

(C13) FF:XEAZ/fS 
(C 14 ) 66 : --COS( 2) / P 2 $  
( C 1  5) RATSIMP( ODF504[ FF,66,W, 2,B) ) ; 

(015) W = (2 2 SQRT(3) 3 
((176 SQW(3) - 253) K1 2 
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2 
4 (108 - 117 SQRT(3)) K1 Z + (72 SQRT(3) - 432) K1 Z 732 K1) 

3 2 
+ (- 176 SQAT(3) - 253) KZ Z (117 SQRT(3) + 108) K2 Z 

SQW3) 
+ (- 72 SQRT(3) - 432) K2 Z + 792 K2)/(792 z ) 

To close this ration, we show how to generate, in a rather brief program, a Taylor 
expansion we have seen before; the soaution to gIFF(pi(E),E,2)-A2~H(E)9. 

(C16) /e EXPAINSION IN SERIES, ORDIOCARY POINT. 
ASSUME WITHOUT LOSS OF GENERALITY EXPAHSICN AT ORIGXN 
OLVER SECTIOL 5.3.2 at/ 

series 

. -- 

This it the same at DZS of the preview tectiwt. 
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7. Use af Newton Iteration over a Power Series Domain 

A powerful technique for solving algebraic problems is pointed out in references 8 and 9. W e  
restate Lipson's theorem 3.1 (ref. 9) to justify the following constructions. 

THEOREM: Let f(x1 bc ;a polynomial aith coefficients in a power series domain (serres in t 
with coefficients in F) D-Flitn Let a in r' be an O(t) approximation io a rcut of fIx) (Le. x=a IS 8 
Yolutlon t0 f(x)-O when t-0) Furthermare, suppose that a satisfies f'(a) 4 0 when t-0 {where the 
prime indicate: differentiation with respect !o x) 

Reference 8 generalires thns result somewhat by explaining how an iteration can be constructed 
for a polynomial f(x) which does not satisfy the condition on f'(x). Thic "Nel.~!cn polygon" 
calculation will m be dmanstratd here. 

We note in paning thct our earlier examples do not satisfy the requirements of this theorem. 

T h e  following protocol does not demonstrate the most efficient formutation of this iteration, 
since one can concoct (as demnstrated in ref. 9) efficient Homer's rule evaluation of a polynomial 
and its first derivative at a power-wries point, and furthermere, the essential computations can be 
done by nsyrnptotically faseer methods (ref. 7). Yet, since one Is much more ltkely to be interested 
in the first few terms of an expansion than any others, on O(n*) or slightly worse algorithm for n- 
terms Is not obJectionable. 

(C1) /8 NEWTON'S METFOD FOR ROOT-FINDING OVER A POWER SERIES 
DOIIAIN */ 

/S INPUTS: 
EX= FXPRESSION IN VARIABLES W AND 1, EX80 WILL BE SOLVED 

APPROXIMATELY 
FOR W( TI TO ORDER N OR HIGHER. 

AROOT IS A ZERO OF EX WHEN TsC, SUCH THAT DIFF(EX,W) WITH TaO 
IS NONZERO. 

MEWTONff OOT( EX, W, T, N, ARCKZT) : = 
BLOCK(CDEX,S,I J, 
DiX:DIFF!EX,W), 
/a CHECK INITIiri. CQWITIONS IN NEXT EF STATEHENT xl 
IF TAYLOR(SUBST(AROOT, W,EX) ,V, 8 ,L. !#O 

(THIS COMDITIOM IS CHECKED.) t/ 

OR TAYLOR(SUBST(ARCK)T,W, DEX) , T, 0,O)rO 
THEN RETURM(PRINT(mtJC)f ABLE TO EXPAND AT a, ARDOTI), 
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s : A R W T  -. 

FOR S:1 NEXT 2+I+1 WHILE I<:N DO 
(S:RATDPSRC3( SU3ST!S ,W,S-Th";LOR( EX/DEX,T,O, I) ) 1, 
S:TAYLOW(S,TB0,2*I+1) /a PREPARE FOR NEXT ITERATIOH *I )p 

(C2) /x THE FOLLOWING EXAMPLES ARE TAKEN FRW REF. 9. 81 

/a BaQBLEM 1. COMPUTE A SQUARE ROOT OF A+1+T+2*TA2+3*TA3+* 
T: ORDER a ERROR. r01 

+... 

(C3) i8PROBLEH 2. CONPUTE A SOLUTION TO.& CUBIC 8/ 

NEWTONROOT( XA3-2 P( 1 -T)*X*l, X , T ,I, 1 ) ; 

(03).'T/ 1 + 2 T - 6 1 + 58 t - 622 T + 7505 T - 96822 T 6 2 3 4 5 

7 
+ 1307466 T + 

(C4) /*PROBLEM 5. REVERT T=ATAN(X) TO FINO A SERIES FOq TAN(T) 
a/ 

,- "e3 

1 

(04) IT/ 

I' . . 
'4 , 



8. Comments on the lmpferncntation 

Seven1 notational problems seem appareQ.t, If a TPS is displayed as Y - 1 + x + ., docs this 
mean that Y - 1 - x is O(x2)? How would :he display differ if the difference was 0(x3)? T h e  
ellipst: is insufficient, and 1 + x + O(r2), !f such Is the case, would resolve the question. This 
information is ava:!-!b:e internally, in most czses, atiyway. As pointed out by R. Zippel {private 
communication), how can or? compte n in sin(x)*+~os(x)~-l I 0 + O(xn) ? A calculus of orders 
Seems tc be tbe next seep In this directim: (I+O(x*))o(l+O(y)) I c C(x*oy), not 1 + ._.. Addition and 
other operations would have to be implemented, along with a careful treatment of the asymmetrical 
uw of this notation of1 the left 2nd right hand sides of equations. 

Another deficiency, not i1lus:rated ir: this paper exists in terms of the consistency of TPS 
operations in parts of MACSYMA For example, matrix opc-ations with TPS entries forces a 
corversion to a non-TPS form. In the process, information is lost which can be of considerable 
benefit. It also appears that signlficact time saving\ may be possible by recognition of T P S  
matrices ds a special casz computing the inverse of a matrix of TPS entries can be done in a 
variety of ways by matrix-wise series expansion, for example. 

The implementation of infinite summations SUM"s is currently ip flux, because of important 
work due ta R.W. Cosper (reponed in this Proctedings). Whle it is possible to solve the equation 
(CI) as mnttoned earlier, io get a closed-form formula for LL, in finite terms, the manipulation 
Is not ye: routine using MACSYMA. 

What Is need$, minimally, is the capability of moving independent variables both in and out 
of summations: assum[xi,i,O,inf) <-I> turn(arxi:,O,inf), changing the index: xac~sum(xi,iR.inf) 4-5 
tum(x*+a,t.o,inC) <=I> sum(d,i,a.inf), taking terms out .of sums: sum(aiJ,o,inf) a=> ag+sum(a,,i.l.inf) 
0' sum(ai.i,O,n) 3-a ~umCa~i.0~1-I) + 2n. Suitable generalizations of these transformations, plus a 
net methodology for specifying Which transformation to use where wuutd provide a basic facrlity. 
More elaborate simptificariona tan be progtirmmed, but Wthout this type of facility, the lone user 
has a difficult time. We note that thisproposed facillty is different from one which docs exist in 
MACSYMA, namely the simplification of sums to closed forms when possible, mentioned in the 
previous paragraph. 

9. Conclusions 

We hope we have glvcn a sufficient number both of main-line and incidental cammcnts 
concerning the use of series, tspeckally In MACSYMA. to illustrate the principal welt-understaod 
approaches. While t4e details of derivation of these methods, and the underlyjng (sometimes quite 
sophisticated) programming and matharnatlcal algorithm have not been explained in this paper, 
rufficienl informaticn on these topics Is available in the references. 

We have delibcratcty avo'ded discuulon of methods for convergent or asymptotic series 
approximations of integral equations, and transcendental equations. This is not Because of lack of 
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rnateribl: rather, there is a wealth of material, especially on integral approximation and integral I ]  
equation solution. T h e  work of Sioriici?iycr (rtf. !3) wlginaljg in REDUCE has been made 
available in MACSVMA by Richard Bogen (reported in these Proceedings). Early work by Paul 
W a n g  (ref. 14) and Seth Chzikm at MIT provide procedures for integral approximation by the 
methods of statlonarg phasii, ;:eepst descent, and other schemes. There are a growing number of 
references to work in other systems, prirrrlpaily REDUCE, FORMAC (ref. 15) and ALTRAN along 
the lines of the more straightforward rational methods. These may be identified through recent 
ACM SICSAM Bulletin listings of abstracts. W e  would like to note the interesting use of Taylor 
series in a combineti numericallsymbolic mode as in (refs. i6, 17). T h e  idea in these papers is to use 
symbolic methods in a compiler a5 a techniqbe for producing numerical approximation program. 
By separating the two passes, machine resouries can be optimized for the differing requiremefits of 
symbolic and numerical routines. 

We hope to classify. describe. and extend approxima:ion work in a variety of areas. including 
but not iimitea to the arcas expiord In this paper, at a later time. number of researchers have 
examined simple applications of the method of successlve approximation (Picard's method) in a 
symbolic context. T h e  combination of this technique with power series is very prmtising. 

A common question raised by tt.e automatic solation of quatior's by series IS: H o w  do w e  knc Y 
these mer%.& produce a convergent series, or how can we find the radiut of convergence. T h e  
answer tc both of thrse qut,rions is: we use the same methods thet mathematicians use by "hand". 
there 4s very little maglc in the automation of these methods. They are for the most part "fornral" 
methods whose convergence can be guaranteed only by additional consideration of :he problem a; 
hand. Indeed, some of the asymptotic methods will usually produce a divergent serie:; this does not 
mean the result is meaningless or useless, since such series have a wide use In the literatcre. 

Significantly absent from this paper is a discussion of the validity of series solutions, and h o w  
to diigriose the appropriateness of various aFpr0aCheS to solving algebraic or dif ferentia1 
equations by approximation. This problem is F'obably best solvd by practitioners in each given 
area who are familiar wlth particular approaches relevant In their zpec!al problrm domains. T h e  
tools provided by MACSYMA, plus slmple programs as outlined above serve as *.ariy steps coward 
more useful cooperation betkeen the applied mathematicia and the ccmpuier. 
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PUWER ShRIES SOLUTIONS OF 

OKUINAKY DZFFSRENTIAL EQUATIOXS IN MACSYHA* 

Edward L. Lafferty 
The I41TRE Corporation 

IMTRODUCTIUN 

A progran nas been developed m i c h  extends the differential equatior 
solving capability of PIACSYtU to power series solutions and is available via 
the SHAKE library. The program is directed toward tlrose classes of equations 
with variable coefficxentE (in pdrticular, those with skngularities) apd uses 
the raethod 02 Frotrenius. between this 
package and others currently available or bein? developed is that, wherever 
possible, this program will attempt to provide a "complete" solution to the 
equation ratil,.- ,nan an approximaticn, i.e., n finite number of terms. This 
solution will take the form of a sqvm of infinite series. 

The Frobedas metnod stated simply here as a refresher (see Ref. 1, p.183 
for a mcre complete treatment) asserts that for a homogmeous, linear, 
differential equacion of rhe form: 

Probably the most important distinction 

where P and 9 are pol.ynomials in X, then at the ordinar;' point,X=Xp, a solution 
exists 2: the form: 

where A and A 
c 1 

are arbitrary constants and are the values of Y(0) 3rd Y'(0). 

The methwl €ur-her asserts that for n ~rgular singu1.ar point, XfXs, the 
solution is the sum of two linearly independent solutions: 

*. 'Ihr wurk described in this paper was begun by B. Kuipers in 1973 and the 
autnur is indebted to h1m fur several ideas and at least one routine. in 
addition, the author wishes :u acknowledge the cncourngement and .assistanct of 
J. Y. tiuldcn throughout the course of the effort. , 
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where rl and r2 are the expments of the singularity. 

There are two special cases: 

i) rl=r2, in which the B's are founG to be A' (rl)* and the ser.ond 
solution contains a logarithmic term; 

and ii) rl--.2=S, an integer, in which the E's are found to be (r-r2) A'(r2) 
and the second soliltion contains a logarithmic term except for the 
very special ca5e in which it is found that some m e  of the A'S (in 
addition to A ) is arbitrary (see ref. 2 for a particularly 

complete treatment of this case). 
0 

At top level, after a LOADFILE(SCtlLES,FASL,DSK,SH-.WE), cne program is 
called by the statewnt SLdIES(equatirn, y, x), where "equation" is a second 
order li?ear ordinary differential rquatior. and "y" and "x" are the dependent 
and iridependent variables resper tively. (Of course, the dependencies betveen 
tae variables must be established Frior to typing the equation .) 

1 

i 

RATIONALE FOK COMPLCTE SEKLES SOLUTIONS 

Virtually all elementary ~ ( m r s e s  in differential equat ions intrduce the 
student to the power series nethau at an early stage, and many such courses 
ccntinue to solve problems by using direct substitution of the power sezies 
into che equatioi- and determining the recurrence rulation. Even in those 
instances where the student is introduced to approximation iiietbods using Taylor 
coefficients to determicc a recurrence relation for each term it, the so!ution, 
tne authors (f.3r example, see references i,L,3,4,5) €requ,:ntly will rcvrrt to 
direct substitution so tnat the studect nay better understand the behcvior of 
ttic variables, arbitrary constants, and parameters of the equations. 

While che mathematician who is intimately Zaiuilfar with the theory and 

* A'(ri) denotes the partial derivative of A with rcsyect to K evaluated ;it 
rl. 
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practice of solving differential equations may have no difficulty recognizing I* s ! 

> - 1 
,; J 

instantly that certain forms are Besscl equations, iegendre equations, or 
hypergeometrics, &he average mathematician or, more izprtantly, the engineer 
who has only a superficial understanding of this subject may not. Early ia the 
pursuance of zhis project, I confzonted several advanced degreed mathematicians 
with the equation (later found in Kef. 6, p. Y7): 

a 

1 

urily one of five even oifered a tentative identification of this equation 
as a Bessel, and of the five, two proceeded to solve it by the method of 
r‘rooenius. (The above equation will also be used throughout this paper to 
illustrate some of the internals of tt.e program. These results will be numbered 
(ha), (4b;, etc.) 

Surmnarizing, then, the reasor, for ii.cluding such a chpability within 
tWCSYl.IA, we find d-t usefui Lor: 

a. the stude..t who wishes to understand the theory; i 
i 
1 

b. the mathematician or engineer who nay fail to recognize the particular b. 

form; and 

the theoretical Inathematicirtn working on advanced forms who prefers to c. 
start fruln basic principles. I ’  \ 

f i 1 I THE NETHOD 

The first step in the solution process is the diagnosis of the equation 
~ for- singularities. While only one (the one at which a solution is desired) of 
I these s:ngularities is of conceru to the program for what is to follow, it may 

be generally useful for the user to know at what points the equation pczssesses 
poles of one sort or mother. The prazram use8 Stoutemyer’s 
ZEKUSAl4USIfiCL)LAKI’lLES routine because ot its generality, e.g., it will find 
poles of log(x), Lan(x), etc., as well as polynomials. p 

The indicia1 equaLion is computed from: 

2 
K +(P - 1 ) K + Q  - 0  

0 0 
(5) 
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where P and iJ are the values of P(x) and Q(x) at x-0,computed by: 
t 0 a 0 I) 
r 

- i 

Solving this equatic.1 for K yields the roots rl and r2. From these roots, it 
is determined whether tnt- f iual solution will contain a logarithmic r.erm, i.e., 
if rl = r2 or if rl - rL S (an integer). In adAition, the very special case 
is cetected in which the rodts differ by an integer, but the solution does not 
possess a logarithdc term, i.e., wherein: 

A = 0  
i-1 

and therefore, the caefficient ‘A is finite ar.d arbitrary. 
i 

At this point it is time to begin the direct substitucion of the series: 

(PO for an ordinary point) into thL equation and evaluate the derivatives. 
The PkCriYllA PUWEKSERILS functia is then used to deteruine a single series for 
the entire left-hand side of the equation.*For our example (eq. 4) the result , 
is : i 

IIJF 
-313 

*\ K + I6 2 

I 16 IE I6 

16 0 

> A X  + ( A  K + ( 2 1 6 - 2 ) 4  R 

Pa== 

2 H + I b - 2  
+ (16 - 2 16) A ) X 

--- 
* dhile this is a fo:m of overkill for this oper-tion, the routine can handle 
the job and will bc necessary for later oreratinns. 
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.% important feature of the program is the routine which computes the 
recurrence relationL This is done by removing tPe sunnation s i p  and by 
equating like powers of the independent variable to zero. Some program 
shortcuts are taken in this process, but it is essentially a replication of 
whar. is done by hand. The example result looks like this: 

L 2 R + N - 2  
(A K + 2 N A  R - 2 A  K + N  A - 2 N A  + A  ) X  (rb) 

* N N N N - 2  i? . $4 
%i form: 

kc 
$ 

w M 

k The recurrence relation which is available to the user is expressed In the 

A = f (") A !5 $2 
N 11 -1.1 

*Y &+ 

7 3  

ap 

t- 
os for singular yoi.nts: 

F 
A(R) = f (I4,K) A 

B N -1.1 

!! if 11>1, Lhere are some adjustments which must IIOW be made to the rest k soluiion. * For our equation the recuxience relation becones: 

A 
ti - 2 

A = - -..---.I------------- 
kl (R + N - 2) (R + N) .- 

of the 

(4cZ 

In S O R ~  cases this is as far as tr,a user m y  want to go in determining the 
solution tc? his equation. In particular, if the function on tile ri&it-:a,Ed 
side of equatim (8; contains more than m e  "b" term, no easy simplificatiun 
method is available, and the program can then compute only a finite number of 
terms for each af the solutions to be determined. In the special cases, of 
course, apbroyrldte d.i fferentiat ion of thi recurrence relat ior, is required 
before this can be done for the second solution. In all cases where the 
recurrence relation is expressed as a single tctm in A, the program S h m  
proceed& to determine B complete solution as an infinite series. It is here 
that the system nust pcrfora tuo interestirz functions which will be descrihed 
in the next section, i.e., differentiation of partial products and .he 

< -  * rnese will not be doscriocd in detail here for lack of space, but suffice it 
to say tiiat some "A" values must be set to zero in the sclution, and the 
exponents of the independent variable must be adjusted to reflect the nlssing 
t e r m  

f 

\ '  

', ' 1 
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simplification of partial products** into factorialn and polynomials. 

The special cases rl = r2 and rl - 12 = 5 are handled hy the fcllowing 
relation: - 

d A M )  I \ %  

N I  (9) 
! d =  ------- 

N dK I evaluated at rl 

and trie solutions will have the logarithmic forn. For our equation which is 
the rl - r2 = S = L case, the filial so1uti.cn would be: 

* 

Prvvabiy tne w s t  interesting st-ction of tlic program is that which 
yerforns the tranvfrrimtion €mi* equations (4c) to (4d). Phis involves 

*': ihe term "partial pruductr 'I is used to distinguish them trom conplciely 
€inite products, i.c., tiiose that can be computed by tlic function, PKUUUCT, 
and irif inite products. hnotncr cotni.loi,ly acccpred tc;rtn i b  "indefinite" 
products. 

* '[tic iitWi4 function aitd ics prdduct analog, FFF, is dLscusscd in the next 
sect 1 on. 

a 
35 ' 
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exprcssind the recurrence relation as an :nfinite series of partial prodiicts in 
LJ, tile index and IC, the generd. exponent of the singularity. This nust be 
difterentiat 2d with respect to K in the two special c.?ses (eq. 9) ana then 
sinplif ied. 

T1.o slightly different approaches weie taken to :hie problem and code for 
butn currently elist. Ihe first, retaining the PROOUCT and SUP1 forms 
tiiroughout, is deened tu be inflrior and will not be described here; but a 
package does exist which c:n handle the sinpler equdtions using this ~echnique. 

In working with the more cooplicated cases, it was found useful to change 
the representation of the partial products tc? the more compact "fac5orial 
function" (FFY) of Kainville (see Ref. 3, pp  109-112). 

FPP(exp,n)=exp(exp+;) (exp+S). . . (exp+n-,l) n 2 1 (10) 

and FFF (exp, 0)~1, cxpt0 (1:) 

and tile f acliliar : pecial case: 

FFF( 1 ,n)=n! 

This laetiiod has a distinct advantage in that quotients of FFF's simplify 
easily and the gradient of FFY with respect to a variable first argument is 
simpiy 

where iiMM(exp,n) F p  the partial sum of the harmonic series: 

and the special case: 

i 
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Simplif icstion of factcsial function quotients is zccomplished using the j 
following algorithm: 

FFF (alph,nalph)/FFF (bet ,nbet ) := 

where: 
rhO~dlph-Det 
yow=polysign(alph+naIph-bet-nbet-nbet) 
mnaintaly~~.nsl~h-~~~p~+nhet-l) 
n=max(alph+nalFk, bet+nbet) -min (alph+nalph ,bet+obet ) and 

thus giving nicer Laoklng results. &re importantly it allows the easy removal 
of the trcldblesone denoninators (see Rei. 3, p.44) which occur in case ii) 
anove since 

simplifies by the above algorithm to 

In addition, the compact notation &or E'FF and HN.M nay lead eventually to 
a user's &itowtic recognition of closed forms 

visual recognition process. 
by HACS'llfA, or at least assist 

USE2 OPTIONS 

There ere seveeaL facil1;ies which the user may control. In particular, 
he my control the poiat around whic!. the solution is Ceterrnined by setting the 
variable PLJIdTFX?ANi): (01 and tirs maximum number of term$ to be computed ia a 
finite series by settilig the variable NUhTENlS: 151. The above variables have 
o:ily limited use in ttre program currently. kiowever, they have ultimately a more 
general u5er In particular, tne POIUTtiXPANU flag Is used to detcrmine whether 
the equirtioii beins processed.hds atngularities ,At that point However, if the 
variable is nat zero, the translation will riot be made to the R ~ W  point and, 
therefore, aLthouyh the diagnosis will be correct, the solution will not. 
NUMTEiUIS is used €or computing a partial series as well as for computing tho 
Taylor coefficient of polvnomials P and q and m a y  be useful in thost case8 
where a complete solution is not possible. 
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In addition to tne above op:ions, the user may set the flag VERBOSE1 
[FALSL] to TKUE 20 obtain automatic printout of the diagnostic j.nforma.tio3 
relating to the equattan, F.e., rhe recu-rence relation, the location and type 
of singularities, and the roots of the indicia1 equation. This may be 
particularly useful if the routina is attempting to solve an equation for which 
it is not now equipped, i.e., irregular singular points, contplex rcDts, 
equations of urrLr higher than tuo, etc., or wher;! the user is only interested 
in tnL: diagnostics rather than the complete solution. 

THE FIJTURE 

Iii order to produce a program in a reasonable period of time, certaic 
restrictions were imposed which can, with varying anaunts of difficulty, be 
relaxed, and there ate some basic extensions which might prove valuable in the 
fl;:ure. We will atternpt to enumerate some of these here. It should be noted 
that several of the internal routines were coded with these extensions in mind, 
i.e., certain data are now comp-ited which are not used in the current program, 
and these will be noted where applicable. 

Higher Order Equai ions 

The metnod of Frobenilis readily extends tc higher order linear 
differential equations and up to the point 3f: diagnosis, this has been 
generalized. This, in the author's opinion, is the most valuable future 
improvement which might be undertaken. It is required that the n roots of an 
nth order equation De campLted, n arbitrary constants be allocated, and n 
solutions be generated. Cven the special c a s s  af rl = r2 ... * rn and rl - 
r2,rZ - r3$ s.., rn-1 - rn - S can be solved by tiking n derivatives of the 
recurrence relation, although this may require some thought (see Ref. 3, p. 
120). 

Solution Around Polnts Other Than Zezo 

While the user can easily transform his equation into one whose solution 
can be determined around zero by the transformation: 

newX=X-po itit (15) 

it would be P trivial matter for the program to recognize POINTEXPAND = 0 m d  
perform tne translation and retranslation for him. 

Complex Roots 

An unnecessary restriction exists in the clirrent program for rl, ri 
complex. The sestriction can be relaxed rather easily by computing the real 
parts of rl and r2 and using them in the diagnosis and Volution of the equation 
as follows: 
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RE (r 1) >RE ( r 2) (15) 

Irregular SfnguiArities 

At presedt the !>rogram will not attempt a sclution around an irregular 
sirigular point. It may be possihle to dttenpt complete solutions to the 
equation around an irregular singularity, but some work must be done t d  
determine the validity of such solutions (see Ref. 3, p. 136). There a:e, 
however, other approximation tz2thods for these cases which may be aJequatf. in 
view of the work involved to incorpoiate an extension to the program. 

Convergence Tests 

h useful feature could be added to the program at the pcCnt of geucratlon 
of the Lecurrenx relation or after completion oE the final solution which 
wou?.d perform a test for convergence. This would give the uss"r important 
additioual irkormation regarding the radius of convergence and viilidity of the 
soldtions thus cbtained. 

User Cueing 

It was aseuued in the constructior! of this cipability that the user could 
substitute the values for arbitrary consiants after the solution was obtained. 
Fccr certain applications, it might be desirable for the prograw to interrupt 
its execution to ask the user for the initial *.'dues of the dependent variable 
and its derivatives. In addition, where variable yhraneters are dsed instead 
of conszaacs in the polyncmia3. cozfficients, P arid t), the program dczs not 
currently Iuslke assuuptions regarding the ranges a~1.I will, for example, produce 
sol.itions in terms of MIN (paramctar, . 0 ) and rIAX (parameter, 0). The user 
my, of course, reenter the routine havinc made assumptions abQut the 
parameters. (Sze the f i n d  example of thifi paper,) HoMever, since these 
relations!iips could, in fact, cause a iiajor vnriation in the aolution type, it 
would be desirable for the program to sense rhcse ambiguities qnd cue the ustr 
for his assumptions prior to final diagnosis of the equation and initiation of 
the solution. 

Non-Houo$;eneous Cases 

At present :he progracr solves only homogmeov 1 h e o r  differential 
equaclons of the form: 

:' ' +P (x ) Y '+q ( x ) Y=O (17) 

Anotiler particular soldtion may be obtained for cquattons of the form: 

~"+Z(x)W'+~(x)Y~F(x) (17a) 
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A yrovideu the functiuii on the right-hand slde can be expressed as a power 
~ ,I 

series. Sone nodification will. be required to the program to recognize this 
case AS wall as to insure that the routLne which computes the recurrence 
relation does not encaulitrr any problems in combining the additional series. 

-.. 
icon-Polyromial Coef f Fcients 

I.f t:ie fuilctioils P and can be expressed in t-rms of power series, then a 
modification of tne progran can be made siinilar tG the non-homogeneous case 
whiclr would allow solation by this method. Again there must be some work done 
to ueterminc whether the routines will encounter expressions beyond their 
capaoility. 

CONCLUSION 

Several more elaoorate extensions come to d n d ,  but they require uore than 
a mere moditication of thi; package. The first would Le to incorporate this 

'\ capability into the current ODE solving capability of 14ACSYMA such that in 
cituations where 032, csnnct rccognize a particular forlil, it automatically 
attempts a power series solution. Naturally, certain tests should be made by 
OJL (or alternatively, built into the SERIES package) prior to this attempt 
depending on the current state of i:s capability. 

I - 
A final and far more extensive venture which has been suggested by others 

and is highly endorsed in ttrls raper is the extcnsion of HACS'HMA's differential 
equation soiving iatc the realm of systems of dlffeqential equations similar to 
iaat currently available for algebraic equations in LIEJSOLVF., SOLVE, aQd 
ALGSYS Tnis is a project worthy of serious consideration by the community at 
large and will require the resources of more than a $ingle indi.vldua1. since, in 
order to 30 it justice, all of the differential equation capabilities should ke 
examined for possible inclusion in such a system. 

\ 
\ 
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The following section contains examples of several of the cases noted 
above, i.e., sohition around: 

1. simple ordinary point; 

2. ordinary point in which one or both solutions truncate after 
n u m e r  of t .as; 

redular sixdular goint (tl - r2 * S) but the solution does not contain 
a lop.rit~ki~.* ter,i; 

4. the beiirrs:Feid bgk-cgeonetric equation in which the user uakes rn 

riot; that in tne . a t  --%- have already shcwn an example QCS the logarithmic case 
of 3. aDove and the reader is dirccted to the SHAKE demo file €or a more 
coaplete set of examples. 

a finite 

3. 

in+.tLaL +SSJPF < I  XI. 

(C6) DEP&?DE!CILS(Y (X) ) ; ~ 

(06 1 tY(X)I 

(C?) /*.?:dinary points*/ 
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2 
2 d Y  
(X + 1) --- - 2 Y = O  

2 
dX 

INF 
I=== t; L K S 1  

2 \ .  (- 2) 
y 3f A (X + 1) A > -----------------.----- (Dl41 

0 I /  K 
===E (2 L - 1) (2 K + 2.) 2 
K = O  

(C4L) /*roots a positive integer-non-log case*/ 

Eq8 : X*L)IFF ( f ,A, 2) - (4+X) *1)IFF (Y , X)+2*Y=O$ 
(C43) S!XIES(%,Y,Y>; 

114 r 
===a 1; 2 I 

\ 

I 

2 

d -- Y E X  
) + A  ( - - + - + 1 )  ----------------*--------- (D2.Z: Y = 60 A ( ;$ 

5 1  --- ---EL (K - 2) (K - I) K :K - 5): a 12 a. I /  
K = 5  i j  

j i  

2 J .  1 
(C25) /*The generalized f orur of the h,ryergeomet ric is : */ i 
fly 1 : X* 1-X) *I)IFF (Y . X , 2 )+ (GAkl-. (ALPH+SETA+lj *X) *!JIFF ( Y , X) -ALPN*BETA*Y*O ; 

dY d Y  1 
i i 

1 
' I  

1 (1)2b) -- (CAil - X ( E G A  + ALPH + I)) - ALP11 Y BETA + (1 - X) X --- * 0 
f di( 2 

dX 1 ,  
I \  
i ,  (CL7) /*since we already know Ehat SEKIES will be confused by the paraaiet 

ers */ 1 
1 
I 
1 

I 
1 

ASSUME( 1-CAIl~Oj$ i 
(C28) bEAIhS(HYl,Y,X); 
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Radical Simplification Wad3 Easy* 

Richard E.E. Zlppel /y/ 
7.' ,>yy 

~assachusetts Institute of TE ~ h r m l o g y - y / p - -- - 
Labariitory for Computer Sclsnce 

. - -I-<, ' --// 
-- - _-- 
.- c_ f *,A 

It is a fortunate person who has not been styinled by an a1geh:alc manipuletlon 
system whlch was unable to manlpulate fully the algebralc numbers and functions which 
occured'ln a problem. Hlsre we see three diatlnct types of problems. Some slmpl~fless 
are ngulllblen enough to be coaxed Into erroneous sequences of transformatlons such 83: 

1 = filfi-3 J T = - m =  mfi= -1. 
On the other hcrnd, there are the "conservative" slmpllflers whlch refuse to reduce 
expressions like to zero. Thh con$ervatlsm is at least parttally Justlfled bf 
the sort of problem8 Into which the gullible simplifier can fall. The third and final 
deflclency In algebralc slmpliflets (and the one whlch we will dwell on the most) may be 
described as the problem of ths naive simplifier, Typical of these sorts of problems Is: 

Js + 2&= A!+ fi. 
I 

AdnJttedly many users are thenselves gullty of being naive in this sense (the above 
Identlty Is not really obvlous), but for some reason we'don't seem wllllng to accept this 

, 

naivet6 on the part of our systems. \ 
Some previous work has been done on the problem of slmpllflcatlon of algebrelc 

exprosslons. S.L. Klelman (ref. 1) dld early work on ,the prcblem In a more general 
context. Both B.F. Caviness (ref. 2) and R.J. Fateman (ref. 3) dld work on unnested 
radlcals In thelr theses and have written a recent summary of thelr work (ref. 4). Our 
work generallzes all the results on slmpllflcatlon of radlcels contained In these two 
fheses. For the sake of slrnpliclty all the examples qlven here are In algebtalc number 
fields. However, the results are fully general and depend upon only the cbaracterlstlc of 

n Thls work was supported, In part, by the United States Energy Research and 
Development Administration under Contract h'uniber E(l1-1)-3070 and by the National 
Aeronauttcs and Space Adminlstratlon under Grant NSG 1323. 
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ground field. 
1 

Basic Def!nitlons 
W e  will need some methematlcal terrnindugy In this discussion. If k Is a fieid then 

the field of ratlonel functions in a over k, K J k'a), is called 3n extenslon of k. If a Is 
thb zero of some Irreducible polynomial with euofflcients in k, p(x), then K is said to he 
an algebraic extension of k and Q Is said xo be algebralc ovbr k. Otherwise K Is a 
transcende.-ta/ extension of h arid a is transcendental over k. K Is tl k vector space G F  
finlte dlme-don if and only if a Is algebralc. The degree of K over k, wrlf ten [K : k] Is 
finite when a Is algebraic and in which case Is equal to the degree of p(x1. If plxj 
conslsts of two terms, Le. p(x)=u"+b, then K is said to be a radical extenslon of k. A 
tower of fields is mi d  to be radical If each extension In tho tower is radical. Generdlly 
a radlcai field L over k Is an extension of k for which there exlsts a radical tower of 
flelds between L and k. (Nota that w e  dlii'fer from a comrrm usuege of the term "radical 
extenslon" whlch refers to a purely Inseparable extension.) An element of 6 radical 
extension of Cr can always be written in terms of (possibly nested) radicals. 

The work contained In this papor comes from the autnor's thesis (ref. 6). The 
Proof8 cf the thsorems quotsd Ir! this paper ceii be'found there. 

Gullible and Conservative Radical Simpliflera 
The problem into wiilch the gullible system fell, and which the conservative system 

avoided, ean be characterlzed by the foilow!ng transformation: fi-, -fifi. Assuming all 
sqcere roots take the same branch and all occurrences of a single ratlichl rare? to ti1p 
same element (assumptlons which will be maintained throughout this paper) this 
transformation I3 valld If acd only If w g A B  argA + argB. The correct transformation is 

+ $twn8 - rrgd - ~ 8 1 1 2  46 
Thus w e  trave d(-l )(-I ) = - fi&i * (-1 )(-I 1 8 'I as desired. 

In general Phla transformation takes the cillowing form: 
-A,-, ei("rgAl"'Am- W A (  - *+* - W C , J I r q * s , q .  

1 2"' 

Similar expressions are valid for logarithms but their consideration would take us a bit 
far afield. I? shouid be noted that for algebTaic functions there are other techniques 
whlch may be useful. For instance, we might want to know under what circumstances a = fi&, where A end 6 are functlans of x. Thls may be a valid transformatlon for x 
In a certain region, In whlch c a m  restricting x to that regidn may be the appiopriate 
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coursu of action. 

From no'w on we shall assume that in Implementing the techniques outlined below 
sufficient cere Is take?* with regard to the problems Just mentloned. This Is not too 
difficult and wo shall potnt out the @ne polnt at whkh care must be exerclsed. 

Con8tnrctlon of tha BE& 
Assume K Is a radlcai extension of k of degree m. Theit K is an m-dimension 

I;-vector space. W e  propose to find a & a t  of elements {a, ,...,a,) contained In K, 
linearly independent over k, which spans K. Then all the elements of K may be 
expressed as: 

q a t  + 02a2 4 ... + omom, 
where the 0, are elements 0: k. As a8 exahiple consider K = k ( G ,  fi, &I, k -0. W e  
ahail see that [K : h] = 4 but wo have elght candldates for the a, : 

1 

I,&, a, Jii; ala, w 5 6 ,  456, 4zG a. 
Our algorRim VU:!! recognlze 6 = fiJa', thus picking as a besls 9, fi, a, fifi. A 
more illuminating example Is provided by A! = Q(61, K 'J k(&, j-1. Recognizing 

2(6 + 2&) (2 + 612, 
we will use 1, *a3 the bash e!mefits 6.nG lat 

This technlque is based on the foHowlng result: 

Theorem: Let X = k(a,'/',...,a,,'/') and let A = (x+alsi ... a> I Oss,r;r and x is not a 
perfect rth power of an element of k), then the ctegree of K over k is the numbor of 
elements of A. 
It Is clear that [Kart] Is bounded by the cardlnailty of A slnce K contalns the set 01 
linear cumblnatlcns of alements of k and rm roots of elements ct A. The theorem saya 
that tb elemerr% clf A are actually llneariy Independent. This Is precisely the set of 
basls elements fcir which we were looking. 

In the general problem we have radlcab fl,"'i, ..., #,"h whlch w e  adjoln t0 k. Let 
I be the least common multiple of the r, and let QI! 8 a:/'/. So,' K = k(t~,'~~,...,a~'''l. 
Clearly A, * {eI8i ... an% 1 Ors,<r,) forms a group under mltlplication modulo a,'/. Some 
of the eternants of A, may tctually be perfect r* pwvers as elements of k. Any such 
elelnsnt generates a subgroup of elements whlch ere perfect r* powers In k. Conslder 
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the following exampla: let nv3, r=6 and assume all the r, are olso 6. A, has 
8xexf3=218 elements. If we can datermlne that a,'.: is a perfect sl;cth power then 
we &!so h w e  

All are perfect sixth powkrs th6t Is, a1 Is 8 perfect cube and a2 is a perfect square. 
This ?educes the slze o? A, by a factor of 6. 

There are many technlquee avei!able far flndlng the "quotient groupt1 6s it is Call%d. 
W e  present one method which Is partlculprly suggestive in (rur particular case. With 
mtatlor: as before, the n a, are of crder r,. Lot ... a,% be an element of A, which Is 
a perfect rth power In k. Assume m, + 0. let w = ml/Er, -m,) modr,, where the ratio Is 
rsdured to lowest terms In P (the retlonal integers) and then the dlvislon takes place In 
lhe flnlte fleld. Then 

(a2"'2.,.a,mn)'y .i (al'~-"'l)w = a,"'~ 
and w e  Rave ret!uzed ut's order to ml. W e  also know that 

cat"'2 ..I a,mny1'*1 = 1, 
so w e  may repeat the procsrdure with thls new smaller expresslon and obtaln further 
reductions. 

To Illustrate thlo technlquo ccnsidw our favorite example: 

JCG- e. 
W e  have a, = 6 + 2&, a2 = 2, k 8 Q(6). W e  are looklng for perfect square3. A, Is of 
order 4 and there are only 3 Elements to check: a1 * 6 + 2 6 ,  a2 = 2, and &,a2 10 + 
4 6  u2 Is obvlousty not a perfect square. For a1 we have to work a blt. Assume It 
W%S, 

6 + 2 6 s  (e + b&I2 8 q2 + 032 + 2 a b G  

where a and b must bo ratlonsl numbers. The resulting pair of equations must possess 
solutions In rational numbers. This lesda to 

a' - 6a'+ 8 = (e2 - 21 (a2 - Si 3 0 
whlch plainly has no rmtlonal roots. Thus a, Is not a perfect square in Q(6). (An 
alternattve manner of dbtermlning thla ts to factor x2 - at over if en algebraic 
factoring algorithm Is avallabla.) By anslogous reasonlng we deduce that ala2 1s a 
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k parfect square (whlch was polnted out earlier). Mow cones the dangerous part. By 
j" 

taking 8qUatt3 roots We get 

? 
5 Making the approprlate substltutlon In ill w e  finally get (or as desired. An 

1- ' 1napproprla:e choice of th6 root of unity at this step would-be the SOUPCB of incorrect 

< 

... 

,- 

~MSWCP~I. a 
At SYMSAC '78, Fatemabt posed the following problem due to Shanks: 

J l l  + 24zi+ j3t3 - 2 8 m +  2465 1oJ29 = J22 + 2&+ &. 
The Trlply nested radlcal Is not a square as an element of Q ( d % , / m l ,  but as 

an element of Q(G,G,JGZZEI It is: - 
18 - 2 4 5  2 j66 - l o a i m  (G+ fi- m 1 2 .  

In the next section we chow how to determlne the fields In which to search for perfect 
powers; what we conslder here Is the resulting rlmpliflcation problem: 

(2) 

Using the technique Just desc-lbed, w e  hcve a, a 1 1  + 2 a ,  u2 = 1 1  - 2 6 ,  end a3 = 
22 + 2& ~ , a ~  .: 6, which happens to be 8 pc fect square In k. This glves the following 
reduction: 

Contlnulng, we get 

a , a J e 2 4 2 + 4 ~ + 2 2 ~ + 4 ~ ~ = ( ~ 9  1 1  +2&)'. 

So finally 

JGE&= 1 + fi fGzz l 1  - 2 a T  

And thus all the radicats involved In (2) can be expressed in term3 of a single quadratic 
extension of QCG, 45). 

Dsnesting Nested Rediceis 
The fundemental concept in thlv sectton Is that of nestlng, and In partlcular, what 

the nestlng level of a field Is. Rather than glve the rlgorous deflnitlon of nestlng order 
(which would probably only serve to confuse the redar) we shall rely upon hls lntultlen 
and the folowlqg examples. Th8 fields O~CG), k(fi,fil, ~(JXI, and MJZZ) 
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are singly nested over k, I, k, and k(fi) respectively. The next to iast fleld is singly 
nested because It la corltalned In a fleld which Is singly nested (Le. the second field). 
Thus the ne3i;ng of a fleld ;s roughly the mlnlmal amount of nestlng needed to express 
the most deeply nested expressi~ In the fleld over a particular ground fjeld. W e  w e  
not able to ccmpute the minimal nesting level of any fleid b?rt we are able to prove the 
following theorem. 
Theorera: let E be an algebraic extension d k of nestlag level n and let L = €(a''% If L 
can be expressed with nestinr level n then there Is ar. element 8 of a proper subf/,ald of 
2 such that clfl is a p(srf9ct rm pokver In fi. 

An an example consider ]a. Then k = 0, E = (a(G;. The only piaper 
subf:ald of P is Q. Thus w e  have # * 2 or 3 slnce 2 (6 + 2fi) f (2 + w.5)' and 3 15 + 2&) 
= (3 + &)*. In the general quadratic case we have 

B (P + 41 = (ao + a,JP. 
Since a0 and fi are elements of a fleld we may assume a, = 1 and w e  i-rcirrs the equatlone 

Slnce fi must be tatlqnsll p2 - q must be 8 perfect square. bttlng d2 
the following clamlsal formula: 

p2 - q, we h a w  

It Is eesy to extend ?hls technique to arbltrary degree extensions of k. From a 
practical polnt of view, however, the systems of equatlons can become quite unwieldy 
when the degrea Is much above 3. The author's thesis contains b number of !jeneral 
formulas which were derived In thls manner, but wlth qulte a blt of work. For Instbnca: 

i 

W a  have hoped to point out that what had been thought to have been difficult 
problem, the slmpllflcatl~n of nested radlcals, Is ctually not very much n q e  dlffkult 
than slmpllflcntlon of un-nested rddtcals. Of the algortth s presented only the 
da-nestlng algorithm I8 really very costly, and that algorithm Is really not necessary. All 
the result8 mantloned here are either cltrsslcal or direct corollaries of classlcal results. 
What we hope to have contrlbuted Is a novel WQY of looklng st classical m%thematlcs. 
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A CONSTRUCTIVE APPROACH TO 

COtmUTATI VE RX NG THEORY 

David A. Specr 

llassachueetts Institute of Technology . I* 
2'* 
%. 
F 
$ 

1. INTROOUCTION 

k We are building I in MACSYNA , a syetea for Commutative Ring Theory . a: The object is to deternine hou much of the theory of commutative rings [*" 
can be made effective , end to realize those parts of the theory OR 

a computer We adopt 2 basic goals I 

(11 to provide a languase capabi I ity 

(2) to provide 8 prObleR-BOlVing capability . 
Our main interest is in solving ring theory problem8 ; 

however it la clearly deeirable to be able to express 

information in a language reasonably cloes to that of ring theory 

Wu present here an outline of the system as ue envision it 

The implementation has just begun and is proceeding rapidly 

but as of ROH only a saatl part of the system is ready for use 

.2. AlMISSIBLE RINGS 

By an adnisslble ring , we mean a ring which Is alDOuabl6 in 

ur system As the system grows , the class of admissible rings 

i I I expand . Soma axioms of admisribili ty twft t 

. -- 

I 

i 
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. .  

. ,  

(1) Z is admissible 

(21 I f  R is admissible so is R M 1  . 
(31 I f  R is admisoible and I is a finitely generated ideal of R 

then R/I is admisaible . 

(2 denotes the integers) . . 

(4) If R is admirsible and R is an integral domain 

then the qugtient field of R is admissible . 
(5) I f  R and S are admissible so is their direct sum . 
(61 I f  R and S are admlssible so is their tensor product (over 2) 

(7) I f  R is admissible 80 is any finitely generated svbring of R . 
The m a l  lest class sf rings satisfying the83 axioms we shal I cal I 

the elementary ring3 . Thus ne Pive 
c (e I emen tary r i ngsl tadm i ssi b I e r i ngsl 

Initial 5y , al I admissible rings ui I I be elementary . 
Examples of slelnsntarg rings : 

(2) 
2 

Z [XI // tX + 11 (the ring of Gaussian integers) 

(4) 
2 s  a IX,YI tx - Y I 

I t  should bs apparent that the eltnrsnt;r(l ringe fora a large 

and intsrestlng clasr of ringo . 
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3. ALGOR I THHS FOR ELEHENTAAY A I NGS 

Built into the systcrn are a collection of algebraic algorithms 

uhich uork in dny elementary ring . Some of t h c a  algorithms 

are classical , others fairly recent , and some * due 'to the author I 

are apparentlg ~ Q U  . In developing the system 
h a  been directed toward enlarging and improving its package of 

most oJ our ene-gy 

algorithms . To give an idea of the strength of the system , 
ue list soma of the problents uhich it is able to solve . 

Let R be an elementary ring and 1st a + ... a i 'R . 
Let I be the ideal of R generated by the a 

1 n 

and let 
' i  

s be the subring of ff generated by the a 
i 

(1) ideal membership . 
Given r c R decide w%ethcr or not r f 1 

(2) subring iaembershlp e ~- 

Given r i R rfocld6 uhethsr or Got r c s i k 
(3) syzygies 

Find all sulutions x , ... , x c R to the equation 
n 1 

a x  
1 1  

4 

t 4  

(4) algebra 

Find al 
i 

c relatione . 
algebraic re 

+ 

at 

... +, a x .I 0 
r?.n 

e m  bstusen a ... e a . 
1 n 
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Given r a R decide I f  r is a unit in R a if so , compute l/r 

(18) zero-divisors . 
Given r c R decide if r is a t7ro-d1viaor In R . 
I f  se , find e c R , 8 VI 0 ,  euch thct r ?f .I 8 

4. THE CANONICAL FOHH 

The solutian t:, aarh of tha problems described above 

depends on a fundansntal elgori thm for cxymai,!g ideals 

In a canonical form . Thlc algorlthm appears to have been 
f iret di8cOVOFed bg Buchbarger (ref. l i  . Slrni lar algori thms 

c 

, 

! 

i 

(51 prime test . 
Decide i f  I is o maximal ieeal . 
Decide if I is a prime ideal . 

;*t 

Decide if I is a radical ideal . 

(6) dimension . 
Compute the dimension of A . (Krull dimension) 
Compute the transcendence degree of R over S . 

(7) ideal intersection . 
Given ideala I and 2 compute their intersection . 

(8) ideal contraction . 
Compute the intersection of the ideal 1 with the subring s . 

I 



have been constrccted by Richman (ref. 21 , Shtokhamer (ref. 31 , 

and Lauer (ref. 41 . My owa version , independently obtained , 
is only slightly different from Buchbarger's ; however the difference 

- is crucial - it if, the key to salving most of the problems listed in 

the previous sectinn . The canunical form for an ideal I is denoted 

IDEALBASIS (I) . IDEALBASIS has been implemented by David R. Barton 

5. EXAMPLES 

We give oome concrete examples , illustrating the use of the 3ys+ern : 

(CIE R: RING( Q [X-YI // IX"2 - Y"31 1 ; 

2 3  
101 1 G tX,Y? // tx - Y I 
(C21 DOPAINP (R1 

(02) TRUE 

(C3) FIELDP ; 

(03) FALSE 

(C4) DIIIENSION (R1 ; 

(541 1 

(C51 1: IDEAL 4 [XI , R 1 : 

(05) 

iC6) RAPICALP (11 ; 

tX! 

R 
Y .I 

Y NOT e I 

FALSE 

tx, Y1 
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2 z tX1 i/ TX - 23 

CCl@I I: IDEAL ( t71 , R 1 : 
(DlBI 571 

(C111 PRIMEP (1,R) : 
(El 11 (3 + XI 13 - XI e I 

(3 + XI NOT Q I 
(3 - XI NOT o I 

-. -- FALSE 

(C14I UNIT( 3 + 2 ~r X I R 1 : 
(E141 (3+2XI (3-2x1 - 1  

(13141 mrE 

K15) R: RING ( 0 [X,Yl') : 

(C16) I: IDEAL (CX"3 * Y"4 , X"2 d 'VW , R) : 

(DL61 
3 4  2 6  rx Y , x  Y 1  

(C18I INTERSECTION (i,JI : 

(0181 
2 3  5 4  

tX V , X  Y l  

... 374 _- 
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f: 
.- I 

(I2131 S: SUBRING ( Q tX + Y, X f Y1 , R 1 

(C28) MEMBER ( X*2 + 'fA3 , S 1 : 
(02%) FALSE 

6. FUTURE PLANS 

Ui thin the next year , many improvements ani ac i ions ' 

(Dl.3) I! [X + Y , x Y1 

to the 

system are IikeIg . For example , ue plan to alluu R-modules 
into the s p t e m  . Aige9raic Number Theory and Algebraic Geometry 
offe;. other possible directions for the system . buever , much of 
the growth of the system will be determinod by the needs of its users . 
Ue ueIco.re wggestions far chanpas or m u  features . 

- 
A complete , current desciption of the Ring Theory System 

can be found on the nC f i le : 

DAS: RINGS INFO 

This file als5 contains descriptions of sjstem commands , 

examples , and other information relevant to the use of the system . 
I would like to thank David R. Barton far his excalient im,.lementation 

of fDEALBASIS . 1 uautd also like to thsnk Alax P. Doohovskoy and 

Barry !I. Tr iger for their eticouragenent and for many helpful suggest ions . 
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Rttseavh Laboratory of Oectronics a d  Plrsrna Fusion Cerrter, 
RAorseehusettr Institute sf Technobay 

The equations describing the, nonlinear propagation sf wwes tn an enisoPrapic plasma w e  
rarely ensctly soluble. Hwever It is often possible to make opproximations that reduce tho srrct 
equations into a simpler equation. In this paper we will describe how MCSYMA may ba WRJ ta 
make such approximsfions, and so reduce tns equation describing lawet hybrid waves into the 
nonlinear Schr8dinger equation which is soluble by th inverse scattsrhg mathod (ref. 1). It 
should be pointed oui hers that we have not used MACSyhaA to do the whole ptobfem; rather 
WCSYMA is used at saverwl stages in the crlculotion that are oiherwise done by h a d  This is not 
to say that M A C S W  could not do the whole problem, jwt that there Is 8 natural division 
between calculaticms that era easiest done by hand, acd those that u o  easiest done by machina. 

fk. equation dswiblne the cterdy-strte wo-dtmnsional electrostatic propsgation of lowcsr 
hybrid ww6s in I homogetleous magnetized plasma is (refs. &3) 

whre 4 1s the compbx potential and I( m d  z are tha directions parallel and perpsndiculrr t6 tha 
magnetic field and the other quantities are constants. CIPW, real potential is Re[$exp(Jarf)L where 
w is the frequency of the wave.) The significanco of the terms in equation (1) is w follows: Tha 
first two terms (with coefficents, KA and v,() describs the linear, cold, electrostatic response8 
they constil'ute a wrve equation 8nd have solutions which propagate along well defined rays (ref. 
4). the terms with coefficients a, b, m d  c ir oql;a?ion are the corrections due to the finita 
tmmputo4we cf the plasrrr; the effect of thesa term is to cause the ray to disperss. The terms 
on the m t m d  line (with coefficients a. ad bo) are due to the norllinesrity of the plrsrnai these 
term arks because in regions where the slectrk pstentM is high, thb so-crlkd pmderomstive 
fore. exwk sotc) of the plasma, causing li change in the dielsctris properties of the m e d i m  

We wish to reduce equation (1) to I mce manrperble form Ta do tMs we must decide 
what type of solution we are looking for. Since wr) ere interested ir sitcations where the 
mnllnaar terms are perturbations to the linear terms, and since wmwa4;lrs solutions ere known for 
linear problem, intcrastlryS rolutierns to consider ue oms of the form 
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w h w e  the wrvenumbers k, and kz are constants and the complex envelope, 0, is slowly varying 
cowpared with the exponential. Since we wiah to treat the tionlinear terms IS a perturbation, w o  
w e d  only consider the leading order contributions tb these terms. '%us w% cRn immediately 
simplify the nonlinear terms since each derivative operator will bring down either ika or 4kE; 
thus t h y  may be written as 

(3) 

where C is a constant. The problem remaining is to reduce the complexity of ths linear terms. 
This we can do by saying that the dispersion has only I weak aff9ct on the solution (in the final 
equation we will see thai :hs =:!iwstrity and dispersion are treated as being perturbations of ths 
same order). If we neblect dispersion entirety, then I SOldiOn ?Or 3 is 

(4) @(K# zt = @b? - v#x) i 
is. the waves travel along characteristics. We will trsd the effects of both dispersion and 
nodinerrity by letting 4) have an explicit x dependence) !Ai 

#.y# &$ 9(f, K')exp((k# - 'kfl) (5) 

whore z' = 4 - v,x, x' - x. We order the dependemies in qqurtlori 8) DS follows 
jikJ * jvpz') = jd/&X'l, PkJ * P!&'l. (6) 

[This ordering is not thd mly possi'ofe one: !;i instance abrrles and Lee (ref. 2) considered the 
c a m  w h o  &# - A# = 0, and derlvod I modified !G~tswcsgdeVrier equation.] 
mere gmsrsrrt pro91am So we re-writs the llrwor terms in equation (11, to glvo 

Ratktr than wlq thls ordering directly l:r equation (11, it is more convenien! to tr m t  tho 

&$ + noniimaer terms .I 0, (71 a i )  

where L is I @lynomial, 

l@, 4) KAp2 - IKJd + *P' + bP2d + cq4 - id) 

Fbw if L{&/bx, alba) operates on equation 15) we mr.j make the repl!?cements 

a/a~ 4 -ME - %a/&' + a/&' , &j%' 4 6 a/W . (9) 

W may thon Taylor erpred L about 4ku @wJ Mr,. %: i% 4 COWW, most sadly dono on 
MACSM: 

(C1) 6RADEF(LC P,Q) ,LiII.S!,L2CP,09)P 
(C2 1 ERADEF(LI(B,Q) ,el I( P,Q) #LIZ( P#Q))S 
(C3) BWIGEF( L2( P ,Q), Ll2( P,Q), 122I P ,Q) )S 
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Unfortunately WCSYklA has no notation for the derivative of a function with respect to its 
arguments; thus we use GRAADEF to define L1 to &note ttte derivative of L with respect to its 
first argument, etc 

(e41 L(P,Q); 
(04) UP ,  Q) 

(05) 

( C5 ) X, P~-%I*KX-fEPS*VG~ADZl+~~ PS"P*DXl ,@XIW+ZEPS*CbZl; 
2 

L(3xi ZEPS - rii VG ZEPS - XI KX, D Z ~  LEPS + XI KZ) 
Here we have just written l(P,Q), substituted for 9 f- &/ax) and 0 (- a/&) wing equation (9). 
In order to intorpora!e the ordering information implied by equation (6) we hrqe introducad the 
small parameter ZEPS (ZEPS is chosen tatbr tbmn, say, EF$ s k a  WCSW wilt treat it m the 
main variable in 6% farms.) DZ1 snd DX1 are waod to dsmrte a/&' and alar' respectively. 
( CQ 1 TAYLOR( X,ZEPS, 0,2 )$ 

$ *  
. (C7) L€XPAND:EV(X,L( -%I*KX,%I*KZi4., 
'k L1( -XI*KX,XI*KZ)=Ll, 

L2( -%I*KX,XI*KZ)=LZ, 
ill( -%I*KX,%I*KZ)*L11, 
Lt2~-XI*KX,XI*KZ).L12, 
L22( -%I*KX,%I*KZ)*L22) ; 

c 

2 2 2 2 2 
(Dt)/R/ 1/2 ((OZl CS! VG * 2 OX1 L12 V6 9 OZi L22 + 2 OK1 L1) ZEPS 

Y P 021 L1 Vii + 2 DZl ti!) ZEP§ 4 2 L) 
We carry out the Taylor oxpansion using TAYLOR, kmping term up to 2EPS"Z The result, 
LEXPAHCI, Is made more compact by mrking the fwtiond Ipndsme of L on KX a d  KZ implicit. 

Since we ere interested in the brlanca d !)re nonlinear term, equation (3% against the 
dispersive part of the tiwar operrtor, l, we dbmrnd !tort dl but the LEPS"2 term in 07 vanish 
identically. (Note that the th ZEPSY term conlulnb Phra dspmlve opordw, 3*/&".) 
(C9) LE#PAHQC:CWFF( LEXPAWD,ZEPS,O); 
(P8)/R/ L 
Ths zeroth order term is just UdAr, ik> Satting if fa zero 

l(Jtr,, rc*9 y 0 
just states that Ar a d  4. must satisfy the Iimw dispersion relattoni 
(C9) LEXPAnDl:COE~F(LE%FAND,ZEP~,a); 
(09) /R/ - AX1 11 W6 4 QX1 I2 
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Setting the first orlor ferm to zero gives LYS the exyressioq for v8. We recogt?ite E10 95 the 
familiar expression for the group veiocity in (I dispersive medium, 

i 

1 

v -51 (1 1) i 

(Cll) LEXPAHD2:CeEFF(LEXPAWD,ZK~S,2); -l 
' LPP'-ik,,Q'u,' 

(The subscripts p and q donois derivative%) 

2 2 2 2 
(Oll)/R/ 1/2 (021 111 V6 - 2 DPl 132 V6 + 321 L22 + 2 DXI Lt) i 

f 012 ) /w/ L1 
(C12 1 AA:CQEFF( LEXPAWD2,"Jl) ; 

( C 13) 88 : WEFT( LEXIPAIIDE ,021.2) ; 
(t)B3)/R/ 112 (Lll V6 - 2 L12 W; + h22) 
Knrlly we have the orthr fEPS"2 terns. Note that it hm tb form Ab/&' + B2/&f2, where A 
a d  #3 are given by (M in (412 a d  BB in 013) 

I 

1 

2 I 
1 
i - 

(All the durivrtes are evriuatsd d p - 4kw, 4 - Ug.) If we demlmnd that the ZEBSA&! tsrm balrina 
!b &Wt;irPesr Perm, cqurtion (31, we obtrin 

I 

P I 
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Hers we hava defined L [see eq. (8)) Tha srnshssr of a, &, r.d e is impSisd by tb small 
parameter LOTA HFs have atso defined the various &~riva!ivss ot C a d  VI; l b  evaluation of 4 
(AA) is stroightfoswrd. Wa Taylor expand AA to c3train the leading term. - 

( C 16) AA:EV( Alb, P~-%X*KX,C=XI*KZ, EUAl3 ; 

(Cl6)/R/ 
-_ 

2 3 
(a. XI B ax KZ + 4 21 A KX ) ZOTA - z XI KPERP KX 

(C17) M:TAYLOW(M,tDTA,Q,O)r 
(D17 )/T/ 1 2 KPERP Xf KX + e e 

I 
2 is. 

A - .2ik$&. 
Ye repeat tli3 wiilr f.i ($EX 

:el@) BI:EV(BE); 
IDl8)/R/ ((4 6 C + (24 A C + 2 I C) D Q + (32 A 8 C - 2 B ) P 0 2 8  2 2 2 6  3 1 4  

2 2 a 2  2 8  3 
+(24A C + 2 A B ) P  Q + 4 A  B P I Z D T A  

- 

2 1 2  2 6 
+ ((24 A d - B ) XPEW + 8 A B KW!) P Q + (4 A B KPERP + I A KPAR) P ) 

ZOTA + ((4 C KPAR KPERP + B KPA3 1 r) 4 (6 C U?€RP 4 6 A KPAR 1 P 0 

+ (8 IPEI'P + 4 CI KPAR KPERP) P ) ZDTA + KPAR KPERP Q + KPAR RPERP P ) 

!((e P Q + 4 A B P  Q + 4 A  P)POTA 

+ (2 a KPERP P Q + 4 A KPERP P 1 ZDTA + KPERP P 1 

2 0 4  t 2 0 2  

2 I 2 2 2 2  

2 2 4  4 2  2 6  2 

2 2  4 2 2  

\ 

:t19) BB:TAYLOR(BtJ,ZDTA,0,1); 
2 2  2 
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of confusing the two small parameters ir. the problem (ZEPS and Z1sTA). A's0 some OF the 

&ova ta indud3 the effects of a thIrd spatial dimension [which ;ntrodutes a term, KAa2f;3J in 
sq. (t)] is possib!e (ref. 5). This !@ads to an unusual generalitallion cf tb rwlimar SchrBdinger 
equation, 

(17) 

Tho procedure prosanted herla was suggested by the work a! *&well m d  Kaup (reF. 61, who 
use a more rroditional mult~ple-tin;s-scalea approwr; ?'tie help of F. Y. F. Chu in preparing this 
paper is graidully ocknowtsdgsd 

generality ct tho method would be lost. For instance, a simpla extension o? the mt'nod outlined I 

iv I + - v m  .+ rlv12v - 0 . 
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Ray Trajectories in a Torus: 

An Api!icaiion of MACSYMA to a Complex Numerical Computation* 
by 

John L. Kulp 

Research Laboratory of Electronics and Plasma Fusion Center, 
Massachusett., Irsiitute of Technology 

The study of ray trajectories of plasma waves in a toroidal geomeiry using M A C S Y M A  is an 
exarnplf. of how symbolic, rtdmerical, and graphical faciiities can be used in concert to accomplish a 
complex computalional gcal. Computational features of thi: study which are of parlittila- 
significance include: ,the derivation of code (i.e. writing funtihs to generate program fragmc7ls). 
the use of array functicns to sirplify the specification of a numerical iteration scheme. and ltv 
graphical presentation of the rzrslts. MathornaticaKy, this stud) originates in the solution ol a 
linear inhomogeneous partial differential equation in 3 dimenTions by the rmthod of characteristics. 
It is possible IO describe this equation compactly by using veclcr notation, and by sw?cifyli.g the 
spatial variation of the coefficients in tblms of interaediate paramelers. Howcvcr the 
transformatian of the equation into a form amenable to solution is very tedious. 

This work is part of a study of the heating of plasmas by radio frequency wfives ociurrin!: 
in controlled thermonuclear flizion research (ref. I). The objective is to obtain il descriplion of 
the rf field structure excited by a waveguide lotated at the edge of a :Or 7idal pli'swca confincnwn! 
device. A steady-state, single frequency driven oscillation is assumed an,j an examination is nwlc? 
of !he resulting spatid distribution of fields. In the electrostatic ajwoxmation, Ihe elccfric 
potential is lhea given by 

where r is a spatial position vector and K is a second rank dielectric tensor. For the pararnctcr 
range of interest, this second order equation is hyperbolic, and its characteris!bc surfacm 
$4r)-r%st can be found from lhe characteristic form, W$,r)=O(ref. 2). This nonlinear lirsl ord 'r 
equation can be solved by integrating: Y$ along Ihe characlerislics of D(V$,r) which are ray? 10 

3-dimersions. UnfoAunately, transforming to the coordinates given by OJI does not, in ecnrral, 
reduce the order of D(V,r! sims it is a second order operalor in 3 independent vari-iblcs. Thw. 
some additional assumptions are necessary to make the calculation of 4 tractable. If Ilicrc IC. 8 

spatial coordinate along which 0 is uniform, a Fourier docomposit;un of 9, with respect to I l ~ l  
coordinate is usually successful ir. reducing the number sf dimensions of the equalton Howcwr. 
:his may be inconvenient for other reasons, such as difficulty in applyrng inilial condtl;on%, or iv 
Integrating the resulting Fourier spectrum. An alternative is IO pursue solutions in Ihe WVD 
eF;:oxima!ion which have the form, 

Work supported by U.S. Energy Research arrd Development Administration * 
(Contract E( 1 1-1 )-3070) 
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+(r> ~~~~e‘Jl(r) 

and where IVlogGl (* lV$1 is assumed. The former approach has been inves!igated (ref. 3) for a 
stiaight cylinder ge9metry. Here, the WKB approach is followed since it is wdre readily 
generclized (comput4ionally) to models resulting in higher order equations. 

< .  ‘In the following sections, (I) a description of the method for iinding 5 ai+ JI is given, (2) Ihe 
implementation of the calculation on MACSYMA is presented, and ;3) a samp’o case is show,? to 
illustrate ?he display of results. 

~- - 

WKB Solution Along the Characteristic Rays. 
Let k a Vp. The characteristic eqlrdion D(k,r)-0 by itself is not sufficient to determine k. 

Ma e information cart Sc? obtained by noting that 

Thus by integrating alone aD/dk w e  can find k. The initial values of 2 components of k are 
required (the third can be found from D(k,O)-O). The rays defined by the ‘tangent vector r)D/Ak 
are the bi-characteristics Gf 0. Let s be the distance along the ray from some starting point and 
S - IdCl/akl. Thm, the equations for determining Jl become: 

L - / S  ao (trajectory equation) 
ds dk 

\ dk &I ,s (Wave vector equation) 

(phase equation) 
\ z=-s 
I \ g = ( k * g ) / S  

I For tie electros!atic equation, note that k.dD/ak I 0, so the rays are lines of constent (k. In 
w a v e  propagation terminology, aD/ak is in the direction of the group velocity of the excited 
waves. \ 

To so!ve for 6, let +(r) = z(r1ei@(‘) so that 
\ 

D(V,rh D(v,r)&P - ei$ mi(v+) + V, ri$ . 
Now 0 can be expanded tw  first order in V (the WKB approxilnation) to obtaic 

which can be integrated to give the usual WKB amplification factor 

TO solve the equations for 4” expressions for aD/ak and h D / h  must be derived. Once 
obtained, these expressions must be simplified with a goal of getting an approximate analytic 
result, or of producing c-de which can be numerically evaluated efficiently. The explicit r 
dependence of D can be represented 
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MV,r) - DIV, ao(r!,a,(rLe -.,a#, cyc,,. . .I 
where the a> are physically convenient parameters such as the imposed magnetic field 
components or plasma density and the c,'~ are constants characterizing tne particular situation 
being studied (9.g. the rf source frequnncy, or the peak nagneiic field arnpli'ude). Let 
a - {ao,a,, ...I. Then M / a r  can Le computed using thP chain rule for dif:zrentiation, 

Note da/dr is a 3xm matrix which is fixed by :he plasma configuration being studied and IS nJt 
dependent on the plasma model being used as reflected in K (this dependence occurs in AD/h). 

Implementation of the Ray Ca!cu!ations on MACSYMA. 
The implementation of th, calculation of ray trajectories involves the following steps: (1) 

calculate 0 in a form where its dependencies on k, and ai are explicit; (2; calculate the derivatives 
aD/dk and do/&, then put them in d form suitable for numerical evaluation; (3) asp these 
derivatives in an iterative scheme for solving dr/ds and dkjds; ,and fhaily (4) present the results 
graphically. Once the rays have been found, $I can be computed by evaluating SIk,r), and $ by 
summing tj$ along the ray. Finally, a complete solutinn is obtained by su~zr'irnposing solutions for 
the differcrit initial values of k and r which characterize the source of the qxcitation. This part of 
the solution will not be discussed here. 

e 

- 

The derivation of D raises two frequently encountered issues. First, the order of the 
calculation must be considered su that the nlost simplification can be obtained at each slep wlth a 
minimum of storage overhead. Sesand, it is often propilious to make certain apprr>ximations on the 
resultinc form of D to avoid unwieldy expressions at later stages (i.e. when computing lk 
derivatives and simplifying the results of differentiation). For the equation of inierest her J, D(k,r) - k #(t). k, the above concern$ motivate us to compute D by expressing K as sirriply as possible, 

of Refraction */ 
-XI*KKRT, KKTT, 

XI*KKRP, KKTP, 
XI*KI(.RT, -X?*KKRP 

while retaining its basic symmetry. Once the matrix multiplications have been carried out, and 

simplifications accomplished (in this Lase SCANMAP( HULTTHRU, . . , ) suffices) the elemenis such 
(IS K K R R  are replaced by expressions such as: 

AC5) /R Define the remainlng elements of KK that are needod. */ 
KRR : 1 - WP12/ I-WCIZ) 

" uPIn*an",( 1-WC12*AMUA2)S 
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Automatic generation of appropriate type declarations for the temporary va;iables would make the 
translation and compilation process less tedious. Finslly, as in any such auromalic scheme, certain 
numerical problems may be obscured (like the cancellation of large numbers) or partlculzr 
restructuring optimizations lihe Horcer's rule may be overlooked. For example, consider the 
subexmession below: 

This expression reo-~lts from a straightforward zalculation of the derivatives. 
optimization can be obtained as shown next: 

A n  obvious 

It is not clear how to -pply such optimizations automatically on large expressions. In some cases 
pattern matching and partial fraction expansions can be armlied with some success (this approach 
was suggested by P. Wang and is currently under invd ' Jation). At the time of this work, the 
OPTIMIZE command was extremely !nefficiant computationally, I 1  but has since k-n rewritten by M. 
Gsnesereth and Is now quite fast. Despite soma of the drawbacks mentioned above, the use of 
OPTIMIZE has been very helpful in this application. 

I 
The implementation of (3), the iieration scheme for integrating (dr/ds, dkjds), is acbieved by 

Array functions have two important advantages over the usual ?he use of array functions. 
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Here, WPI2 and WCI2 are parameters (ais) and AWU is a constant. The number of a,% might vary 
between 3 and 10 depending on the plasma mode:. Ppprowimations car1 be rntroduced by 
expanding irr terms of, say, l/AHU, but for ths case it is not necessary. 

TO acccmplish (2) the calculation ct derivatives of 0, the matrix da/dr is eirterca (it is 
u~ually rather sparse) and multiplies by a list of derivatives obtained by computing -W/Aa, for 
each ar Computing dO/dk acd thus liN?/akl is straightforward. Now, it is expected that tppiyirlg 
FACTORSUM to various subexpressions may result in a :impler form (note, for instance, the 
common WPI2 term in KKRR above). This is done by the command 

SCANHAP( LAMBOA( X 
h&K( Y], Y:FACTOASUM(X), 

IF Y=X THEN X ELSE Y>), .... ); 

where the IF conditional assures the preservation of common subexpressions. 
One reason for bin,: step !2) on MACSYMA is that the matrix arithmetic irvolves a 

considerable amount of work if done by hand. But perhaps even more significant Is the fact Ihaf 
the MACSYMA command, OPTIMIZE, can now be used to automaticarly generale a procedure BLOCK 
tor evaluating the expressions efkienrly. The BLOCK generated by OPTIM!ZE consists of a 
sequence af assignments of SubeKpressivns to temporary, local variables. For exmple, 

(el) F'(A+B''L)+G( A+BAZ) ; 

i!i{ OPTIMIZE(%); 
(021 

2 2 
F(A + 8 ) + 6(A + B ) 

BLOCK([f2, TOJ, TO : 6 , T2 : A + TO, RETULN(f'(T2) + G(T2))) 
2 

Using OPTIMIZE is a highly convenient way of accomplishing the familiar programing task of finding 
common subexpressions, and rewriting the expression in \arms of I sequence of statements 
constituting an ~wluation "tree" of ths subsrpressions. Furthermore, the derivatives for the SIX' 
equations king integrated (dr/ds and dk/ds: cap be calculated in "paraltel" (sharing ccrnmon 
suberpressions). The BLOCK can be translated and compiled lor greater execution efficiency. As 
might be expected, this optimization ol!en significantly reduces the amount ot code required to 
evaluate an exprersion, leading to both execution and storage efficiency. A typical list of the 
derivatives requires 4% words t6 stcra 3n dish (with the SAVE command), and ye1 Ihr? procedure 
BLOCK generated requires less than 3k words. A more useful comparison would be obtained by 
writirg on disk using FASSAVE (which preserves common subexpressio.n) or STRIFJGOUT, but both 
of these run out of available metnory when applied to tb origirlal expression. 

A .typical 
BLOCK might coatain a total of 250 temporary variables, when, in fact, a data flow analysis would 
show that 41 considerably sma!ler number of temporaries is needed (Le. they ;an be reusrd). 

There are several prcblems with this nrsthod as it is currently implemented. 
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DO-loop form of specification First, the order in which particular v~lues of kJs) dr r/s) are 
computed does not have io be specified. They are computed as reeckd. This imkts it much 
easier to mcdify a code sinca end dsss not have to bt corcerned with the order of a sequence of 
command statements. Second, programs specified this way are highly modular SO it ii very simple 
fc change one singie array function definition in the run time envirbnmint, i.e it bas W h  the 
advantages of a frlnctioq and of ar, array. The current liabilities of array functions are: !hey can 
use up more storage if used where arrays would not otherwise .be vied; in the currcr.1 
implementation, -6ferencss (call5 or array accesses) to array functions are not translated or 
compiled efficiently. 

As on example of how the computation of o w  alemcnt of r is set up, consider \he fol!owing 
MACSYM conirnands for implemei-.!:2g il predicts?-corrector iteration: 

gcx) 1 * Adams-Bashforth Predictor step. */ 
STEP:Y[N-A ]+55/24*OY[N-1]-53/24*DY[M-2 ]+37/24*DY[N-3 ]-9/24*RY[W-4]f 

C2 /* Corrector sie *I 
/STtP: Y[ N-1]*9/24*OY~N~~19/24*~Y[N-l]-5/24~~~~N~Z~+l~~~*DY~N-3 JS 

' 'fJUBST([Y=R,DY=DR ],PSTEP)); I* Predlct R[N 1. */ 
+ 53/24 OR - 59/24 DR 4 37/24 DR 

(D3) 'N :* ' N - 1  N - 1  N - 2  N - 3  - 3/8 DR 
N - 4  .- 

/* Computes 6R[N] usin RIM]. */ 
*/ 

*/ 
*/ 

/* Return DRIN]. 
SUBST(EYIR,DY=DR],CSTEP)~, /* Compu;e corrected R MI. 

/* Compute corrected D K [#I. 
(06) DR :: (.)STEP(N), R : 3/8 DR + R + 19/24 all - 5/24 OR 

N N N . N - 1  N - l  N - 2  

+ 1/24 OR DSTEP(M), OR ) w * 3' N 

The function DSIEP computes all the elcments of br end 6k in par4!e!. Nois the ease with which 
the iteration scheme can be changed. If tho array fadions were to bo compiled, terms like Y[ ti] 
wrc3dd be rscp!eced by ARRAYFUNCALL(Y,N) in the forms PStEP and CST€P. The derivation of 
starting points is done separatdy. In this calcciation, each element ot r, k, br, bk, and a is dclinccf 
as an array function. Wtiilc saving olemanto of a is not essential to the tntegr&ion, it is u m u l  for 
subsrquen! calculation3 lo know I;rs frejectory through the parameter s p x e  given by ds). 

It should be poifikd aut that in usi?g array funct:ons, one is making a iradeolf bctwccn 
programming condenienca versus execution and storage efficiency. 70 what extent is the 
inefficiency inheran! rather than implementition dependent? Thtc ordinary implementation of array 
functions in MACSYMA suffers from excessive "number consing" (ret. 4) rerulting in a need for 
large numbor spaces and coslly additional Garbage collection. Thi3 problem was &!PviaIed by C. 
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Karney, w h o  implemented a new array function callira routine for the MACSVMA inierpreter (cot 
yet installed) which allows LISP number arrays to be .;sed with array functions. The maiii 
outstanding difficulty is that array functions cannot be referenced efficiently. In principle 
however, the check for arrey elements being undefined should only require one 0- !wo machine 
instructions; thus there is hope that subsequent irrplementation; wiil have relatively unimportant 
overhead qssociated with them. 

Bisplr;y of the Ray Trajectories. 

Toe graphical display of the ray trajeclorie; employs a rather exlensive library packsgo of 
graphics cspabiiities imrlemented by C Karney, called PLOTZ. The mal? signrficance of this 
packa~e is that it interacts aith the M K S Y M A  environnsent, thus giving both M A C S Y M A  and PLOT2 
more power than each woultl have by thnmselves. The interactive nature of PLOT2 due to its 
residing in MkCSYMA is particularly advantageous for exploring the parameter space defind by 
a W .  This is done simply by erttering a formula depending on the parmeters and cat!ing PLOY2 on 
it. Rescaling and changing view points (in the cise of 3-3 plots) are very simple interactwe 
operations. 

A sample ray trajectory plot is ~1kwrn in Figure 1. The outer ring is a tap view of Iho 
Porus. The rw) starts at the right outside edge 00 tS..is ring and ci-clss around 'he torus until il 
hits the edge again. The inner c d u  is a projection $1 the miner crassection of the torus into a 
single plane. The ray plotfing consists of plotting a Implate indicating the boundaries of ?he 
torus and the sector marks followed by c o h  to PLOT2 using the POLAR option. The tempiatc is 
computed once for each cbwge in sspecl ratio and is displayad wilh REPLOT. 

$3 is important to note that the actus; calculation ol ?he rays is invoked 3y the plolfing 
routine asking for the data in the arrays. Once the array lunctions on$ iniliat conditions have 

other routine will.rout 
one may not De #;redly 

!n which case referenring !hem 

been specified, the array data CI:! be oxtricted in 
explicitly calling I main program ta do the computafio 
interested in the rays at all, bdf simply in lhs auxiliary 
csuses the rays to be iomputed first. 

Summary. 
5pase firnitations do not permit 1, more thorough discussion of how the capabilihty 

mentioned here are usad in this continuing study. Several different model equations 0, and a large 
number or different parameters are being inwstigated. 'the poirctr to be emphasized are: (1) 
MACSYMA io in sortie sense evolving into I "comp!ete" system where 8 utur can tormtrhte his 
equations, approximat* ap.d simplily them rymbolically, and if need be, study solutions lo them 
numerically and graphically (the drrwbacks boing that some facilities are, not implemcnlcd 
efficiently yet or are foo awkwaid to useh (2) since MACS'IMA is a symbolic rnanipulalron 
envircnmenl, it crn h w e  facilities to rlutcrmate various well-defined steps in the crcstiw of 
numerical proceduresi and (3) array f~mtions are en effective way to implsmont wmot kal 
ltsratlon schemer with o degree o! simplic!!y and flevibility uncharacisristir. of most numerical 
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programming !acilities. A major outstanding problem in generating expressions for wmcrical 
evaluation, is fiqding effective restructuring methods fur obta*lino, cxpresslons which cvaltratc 
efficiently (is. minimiricg multiplkations). 

-1 
-4 d 
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APPLICAl?ION OF MACSYMA TO FIRST CRDER PERTuXBATION TiiEORY 

IN CELESTIAL MECXANICS* 

John D. Anderson and Eua!-ce i.. Lau 
Jet Propulsion Labora z.0 cy 

S W ? Y  

Tlau application of MACSIXA to general first order perturbation theory in 
celestial mechanics is explored. Yerhods of derivation of smll vijtiations in 
the Keplerian orbital elements are developed. 
the small general relativistic perturbations on the two-body Newtonian motion, 
resulting from thz rotation 01 the central. body, are developed in detail. 

AS an exanple of the methcds, 

GENERAL PROBLEM 

The total accdz.:+4on f on many objects in the sol&r system can be 
written in the following fark 

.. Pr 
r = - - = = + a  

r3 

where the firat term on the right hand side of the expression is the t w  body 
acceleration, and the second term is a perturbattve acceleration, assumed s m l l  
enough that a first order perturbeeion theory is adcqwte to describe the 
motion. The zero ordei sCl?ttion to equation (I) is the two body solution 
(a 0) which yjelds u Keplerian ellipse with constent orbital elements (a, e, 
M$ i, 0, (4- 

tione in ehe Keplerian orbital eicmentz ta rha first order in the small perttrr- 
bative acceleration. 
nente of a 
city I, td'mean enoa?ely 
orbit i, the longitude of the 'Lscending node fi, end the argmeat of the parifa- 

In titis pzper we use Gauss'u perturbation equations to derive b i w  varfta- 

Irr terms of radial R, tranverse S, and no:mai w comyv- 
the variations in the Kepferian semimajar axis a, the mrcentri- 

at the initial Lime epoch, the irxlination of the 

p i n t  w, ate given ky the fallowing set of equations (ref. 1). 

da 2 2 -?$ -- * -(l-e ( ~ e  sin v + s dt n 

* The work presented in ?hie ptsper represents one phase of remrrch carriad aut 
at the Jet PropuIBion Ldmratory, California Tnstitues E)' Techrtclogy, un;!er 
NASA Contract N.G 7-100. 
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_ -  d e -  -- (‘-e’)’ { R ~‘in v + S [(1 + :)cos v f e 
dt na P 

I 

[-R p cos v + ~ ( 1  + sin v] ‘- cos 4 - dl (7) dw r 2 
- = - 1 1 - e )  

2 ’  dt 
dt na e 

J 

I 1  i 

1 

I 

: j 
: j j  

, where 
n 5 !u/a 3 %  1 

r - (: 11 5 

(8) 
1 

(9) : J  
t 2 p - a ( l - e )  

(10) 
I 
1 
I and v is the true anomaly in the paler equation for the Keplerian ellipse. 

E E - 1 + e cos v (11) 1 
r 1 ”  I 

3 

I i 
s \  I 

The application of MACSYU to the eo’lutian of equrlthts (2) chroiigh (7) 
proceeds according to the following etapa. 

i !  
Step 1. Evaluate the components R, S, and W of the perturbetita acceleration 1 1 

The magnitude of the orbital angular momentum (2 X I) le (v/p)”, and if 
defined as thc unit vrctar normal tc the orbital plane along the enp,ulnr momen- 
tum vector, than 
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W = a  * W  T -  

Step 2. SubPtitute R, S, and W into equations (2) throw& (7' and simplify. 
1 
1 
i 

Step 3. Multiply the ,six time derivatives from Step 2 by il2e c m m m n  factor i 

f 2 -% 2 

na 
2: L- 2 ( 1 - 0  
C?Y 

i 

Step 3. Multiply the ,six time derivatives from Step 2 by il2e c m m m n  factor i 

Simplify the results to obtain expressions da/dv, de/dv, dElo/dv, dJ/dv, dR/dv, 
and dw/dv. 

Step 4. Integrate the six derivatives from S r e ~  3 between the limits v to v. 
Simp1i:y the results. 
ha, Ae, Atlo, Ai, AQ, and Aw as explicit functiws of the unperturbed true 
anomaly v or its implicit functions: of time by rnems of the KepLerian relatians 
between t and v. 

The resulting slx expressions represent the rarfa?ions 

Step 5. 
evaluating the variations from Step 4 

Obtain the sepular time rats: of change of the Keplerian elements by 
Lt v = 0 and v * 2 ~ .  The rates are 

given by 0 

with similar expressions for the other elerr.ente. 

EXAMPLE 

In order to illustrate the general method, we select R relativistic pertur- 
hative acceleration that arises because of thr rotation of tho central body 
(ref. 2) 

where & = t X 
mentum per unit mmm for the centra? body. We C h m 8 @  the equator of the central 
body as the refsrence plane Co?: the arientatioo elements (i, $2, w) a€ the orbit. 
Then, the spin angular momenl!m Is along the z nx:s and 

J - (0, 0, j) 
fa the orbital angular momentum, and _J, is the ipin angular mo- 

4 

419) - 
The unit vecc.ors: 2. 

focus, as well a@ the vestor 
stat erne n t 8 a 

in tho orbit plana, where 1 is directed to perri- 
along h, are defined hy the following MACSYMA 
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PX: COS (OXEGA) *COS (NODE) -SIN (OEIEGA) *STN (NODE] *COS (I) $ 
PY :COS (OIGCA) *SIX(NODE)+SXN(OMEGA) *COS (WODE) *COS (I) $ 
FZ;SIx?(iXE3GAj*SIK(I> $ 
QX:-SIN(UEZEGA) *COS (MODE)-COS(OMEGA)*SIN(NODE)*COS (I)$ 
QY :-XIN(OMEGA) *SIN(XOOE)+COS(OMEGA)*COS (rro~~)*cosir) $ 
QZ :COS (OMEGA) *S1N(I) $ 
WX:SIN(NODE)*SIN(I)$ 
WY:-COS(NODE)*SIN(I)$ 
wz :cos (I) $ 

where ti-e Eulerian anqles i = I, fi = NODE, and w = OMEGA are defined in the 
usual sense. 

Now, the position I and velocity vectors are given by, 

where 

The corresponding MACSYMA definiticns are as follows: 

(C30) XOMEGA:R*COS(V) $ 
(131) YOWGA:R*SXN(V)$ 
(C32 1 XUMECAWT : - (M/P; ** (1 /2) *SIN (V) $ 
<C33) YOftECADO1: ( (YIP) ** (112) )*(COS (V)+E) $ 
!C34) X: XOMECA*PX+YOMECA*QX$ 
(C35) Y :XG(i.IE'.CA*PY+YOMCAbQY$ 
(C36) 2 : XOEE.GA*PZ+1OE.IECA*QZ$ 
(c37 DX: ~ ~ ~ I ~ E C A ~T*PX+~'O~:CN)OT*QX$ 
(C3R ) DY : XC~!~L%GAMT*PY+Y OMECADOT*QY $ 
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(C39) DZ:X~%GADOT*PZ+YO~GADO?*QZ$ 

We now &rive expressions for R, S, an& W as given by equation? (12) (13), 
and (15) fox che prrtuxbative acceleration of equation (18). 

Fixat of all, che scalar product of and (2: X 4) is zero by inspect.ion, 
so 

The MACSYMA evalmtion of the triple sLalar prodwt arid then R pxoces,ds as 
fotlows : 

(C40) ENTEWTRI;.?3,3) ; 
ROW 1 COLUMN 1 X; 
;?OW I COLUMN 2 Y; 
ROW 1 COLUKN 3 2; 

ROW 2 COLUMN 1 DX; 
ROW 2 COLUifN 2 DY; 
ROW 2 COLUMN 3 DZ; 
ROd 3 C O L W  1 0; 
ROW 3 COLLXN 2 0; 
ROW 3 COLU” 3 J; 
MATKIX-ENTERED 

(c’ri) DETERMINANT(%) ; 

(c43) RAT SUB ST(^, SIN(NODE) 4 * 2 + ~ ~ s  (NODE) **2 ,X’I S 
(C42) RATEXPAND(%) ; 

(Cii4) RATS!JBST( 1, S itj (OFEGG) **2+COS (OMECA) **2, X) $ 
(c45) R4TSUBST (1, SIN( I) **2+COS (1) **2, X) ; 
(C46) RATSUBST( 1, SIN(V) **2SCOS (V) **2 ,I) ; 
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~ ..- . I .. . . I  , .  .. , , -  

c - v  ! ]  

1 
, ." . 

4 CL SQRT(P) R 

(C52) RATSLJBST(P/F.,l+E*COS(V) ,Drl) ; 
(C53) CAPR:%; 

2 COS (I) J M3l2 SQRT (P) 
C2 R4 

(D53) 

I 
i 

Becawe a - r = 0, the expression for S from equation (13) is obtained as I 

1 

7 -  follcws : 

(c55) CAPS : -R~APR*E*SIN (v) /P ; 
1 

! 

1 
1 

1 
The final component of a , normal tr the orbit plane, is obtained by form- z 

' ing the scalar product betwe2 
scalar product !J, 

2nd a . First of all we obtain the triple (x X 2) and then e;;I;)luate W with the knowledge from the two 
body problem that * = (up)$. The MACSYMA evaluation follows. I 

- 
' >  

(C64) ENTERMATRIX(3,3) ; i 

ROW 1 COLUMN 1 WY; * 

c 1 ROW 1 COLUMN 2 WY; i .  

ROW 1 C01,LJMN 3 WZ; 

! .  

! 
I 

5 

J 
/ 

j 

ROW 2 C O L L ?  1 DX; 
ROW 2 COLUMN 2. DY; 
ROW 2 COLUMN 3 DZ; 
ROW 3 COLUMN 1 0; 
ROW 3 COLUMN 2 0; 
ROW 3 COLUMN 3 J: i 
14ATRIX-ENTERED 
(~65) DETERMINANT (w) $ 

3 I Id 

(Cb6) EUTSUEST (1, S'CH (NODE) **2+COS (NODE) **2, %) $ 
(C67) RATSUBST(1, SIN(0MEGA) **P+COS (OMEGA) **2,2) $ 
(C68) RATSUBST(1, SIN(I)**2+COS (1)**2,%) $: 
(C63) RATSUBST(l,SIN(V)**I?COS(V)**2%); 

1 I 
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FACTORSLY (D69) ; 

SIN(1) J S?RT(M) (COS(0MEGA) SIN(V) + SIN(0MEGA) COS(V) -I- E SIN(0MEGA)) - --__ - 
SQRT(P) 

D7 7 /SIN (I) ; 
TKI GREDUCE (%> ; 
%*SINIT) ; 
RATS 1142 (%) ; 
FACTORSUM(%) ; 

SIN(1) J SQRT(t4) (SIN(V t OHEGA) + E SIN(UMEGA)) 
SQRT(P) 

- 
% *2 *M/ C**2 / R* * 3 ; 
%+6*kP!W?RT(M*P)*Z*J*(l+E*COS (VI) /C**2/P/R**4; 

bACTCRSUM(2) : 

-2 SIN(I) J (sI~~(v+o~GA) - 3 E COS(OMEGA) cos(v) SIN(V) 

COS(0MEGA) SIN(V) - 3 E SIN(0bEGA) COSL (V) - 3 SLN(0MEGA) COS(V) 
SIN (OMEGA) ) / ( C2 SQRT (P) R3) 

D89/SIN(I) ; ,- 

TRIGREDUCE(%) ; 

%*SIN(I) ; 
'> FACTORS UM ( X) $ 

SIN(1) J M3'2 (7 E SIK(2 V i OMEGA) + 4 SIk(V + OMEGA) + E SIN(0MEGA)) 
C' s(~RT(P) R3 

(C95) CApW:%$ 

Now that R, S, and W have been ohta-ined, the variations in the nlements 
cal? be derived from equatiors (2) through (7). 
de/dz in equation (3) is 

The MA'JSYMA expression for 





i 
" w  

(C4) SQRT(l-E**2) *(CAPIZ*SIN (V) + CAPS*(R/P) *( (I+(P/R))*COE (V)fE)) /N/A; 1 
We perform some substi;t:ions, and mdtiply by dt/dv to obtain le/dv as follows. 

(c5) RATC~UEST(P]A,~-E**~,%) ; 
(C6) RATStrBST(SQP.T (M/A**3) ,N,%) ; 

how multiply by dt/dv. 

(C7) %*(R**2/SQRT (M-kP)) ; 
-(C8) FACTORSI'M(%) ; 

2 2 
(D8) -2 COS(1) J SQRT (15) (A 's R2 COS(V) + A E P R CCS(V) - P R -b A R 

2 312 R2) , - A p2) SIN(V)/(A c P 

(CS) RATSUBST(P/(I+E*COS(V)) ,R,%); 
(c10) RATSUBST(N*A**(3/2) ,SQRT(M) ,%) ; 
(Cllj RATSUEST (A* (1-E**2) ,?, x) ; 

2 CI)S(I) J N SIN(V) (Dll) - 
This is the final expression for de/dv. 

c2 SQRT(~ - E2j 

We will illustrate one more YACSYMA derivation of a variation by determin- 
ing dQ/dv from equation (6). 

(C41) R*CAPW*SIN(VSOMEGA) p/A**2/SQRT (.?--E**2) /SlR(I) ; 
(C42) SUBLT(SQR2' (PI:.) ,SQRT (I-E**2,X) ; 
(c43) X*(K**2/SQRT (M*P)) ; 

J F! ELN(V + OKEGA) (3 E SIN(2 V f OMEGA) + 4 SiN(V + OMisGA) + E SIN(0MEGA; 
043) A3/2 c2 p3/2 

(c45) D43/%; 
( ~ 4 6 )  TRIGREDUCE(%) : 
( ~ 4 7 )  FACTORSUM(%) ; 
(D47) -(4 COS(2 (V .t OMEGA)) + 3 E CCS(3 V + 2 0E;IEGA) + E COS(V + 2 OMEGA) 

- 4 E COS(V) - 4)/2 
(C48) RATSUBST(A*(l-E**2) ,P,D44) ; 
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i 

1. ,' 

(1)53) 2 J N (-COS(2 (V + OMEGA)) - 3 E COS(3 V + 2 OMEGb) 
4 

This is the final ex?ression for dQ/dv. 

A complete listing of the six derivatives follows. 

- d'o = "5 cos i cos v 
e dv C 

di 2 -3/2 - = 2n(l - e ) dv [1/2 e sin v + 1;2 sin (v + 2w) 2 -- - C 

+ sin (2v + 2w) J. 3/4e sin (3v + 211) 

do - = 2n/l - e ) dv 2 -3!2 1 11 + e cos v - 1/4 e cos (v + 2w) 
C 

2 
' dw - = -2n(l - e2)-3/L 

dv [3 + = 2 !  cos Y - lj4 e cos(57 + LO; 2 e C 
(32) - coe (2v + 2w) - 3/4 e cos (3v + 2w) cos i 1 
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MACSYMA has produced expressions which can be integrated by inspection. - i  I I The secular rates in the elements f:llow almost immediately. 

(di/dt)s = 0 

a. 5 0 
S 

e = O  
S 

= O  

* I  
The physical Interpretation of these secular expressions is that the I 

i perifocal point regresi.cs slowly for satellite motions tn the same general 
direction as the rotation of the ceatral body, and advances slowly for r e m -  , grade satellite motions. The line of nodes of the orbit always advances 
slowly no matter what the value of the inclination angle. The sicular vaiia- I 

tions can be interpreted In terms of a slcw dragging of an inertial coordinate j 

system by the rotzting central body. This occurs in general relativistic mech- ' 
anics, but not in Newtonian mechanics where :he angular momentum of the central 
body has no direct effect Qn the orbital motion. 
two theories of motion are described very well by the exauple of this paper. 
The results agree with those obtained by Lense and Thirring (ref. 3). 

1 
I i 

The differences between the 
t 1 1  
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SYMBOT,IC COMPUTATION OF REC'JRRENCE EQUATIO&iS 
FOEi TKE CHEBYSHEir SERIES SOLUTION OF LINEAR ODE'S* 

- K.O. Geddes 
University oE Waterloo, Waterloo, Ontario, Canada 

t 

AESTRACT 

J 

If a linear ordtnary differential equatin.1 with polynomfal. cczffkicnts 
ie convertsl into integrated form then the formal substitution oP a Chebyshev 
series 1~.als to recurrence equations defining the Chrzbyshev coefficients of 
the solution function. An explicit formula is presented for the yalynomial 
coefficients of the integrated form in terms of the polynomial coefficients of 
the differential form. The symmetries arising from multiplication and integ- 
ration of Chebyshev polynomials are exploited in deriving a gcneral recurrence 
equation from which can be derived all of the linear equations definlng the 
Chebyshev coefficients. Procedures for ceriving the general reLucr%nce 
equation are specified in a precise algorithmic notation suitable for trana- 
lation into any of the languages for symboljc computation. The method is 
algebraic and it can therefore be applied tc differential equations containing 
indeterminates, 

1. INTRODUCTIDN 

The most widely used methods for computing the numerical solution of an 
ordhary differentia; equation (ODE), in the form of either an initial-value 
prcblem or a bound6%ry-velucr problem, are discrete-varlnbla methods. That is 
to say, the solutlon is obtained in the farm of discrete values at aelectecl 
points. Methods for computing an Approximate solution fa the form 0: a con- 
tlnuous function (usually A polynoaial or rational function) have! received 
same attention in the literature. 
nethod is the Lancaoe tau-method (ref. 1) which is closely related to the 
Chebyshev series mothode of Clennhaw (rkf. 2) and Fox (ref. 3) for linear ODEs. 

Brobably the best k.i~ovn continuous-varlable 

c * This research was supported by the N3biuna1 Rcaenrch Council of Csnada 
under Grant A8967. 
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The Chebyshev method has also teen used for a first-order non-linear ODE (refs. 
4 and 5) but the method then requires iteration whereas it is a direct method 
in the cage of linear ODES. 
extended to the solution of parzbalic paztbl differential equations (ref F.. 6 
and 7). \ I  

More recexTtly, the Chebyshev series method has been 

The most extensive treatment of Chebyshev series aethods is contained in 
the book by Fox and Parker (ref. 8). The basic approach is serie3 substitution 
followed by the solution of resulting recurrence equazions. .'ill 05 the authors 
treat the series substitution and generation of the recurrence equations as a 
hand computation prior to tile application of a numerical proceduze for solving 
the recurrence eqnations. Howevsr, except for parlicalarl y shple speciai 
cases, the gegerstion of thP recurrence equztions la a tadfous and error-prone 
hand manipulatioii which could well be progrExs2 in a language for symbolic 
computation. 
correrice equations for arbitrary-order linear ODE9 with polynomial coeff i- 
cients. 'rhere :a no need to restrict the method to first and second order 
equations as previous aothorsl k v e  ~IGI;~. Parthemre, the method can also be 
applied to problems ckatoining indeterminates (for example, indeterminate 
initial conQitions) and to eigenvalue prablems. 
method is that the associated eonditioriu nay be of initial-value type, 
boundary-value type, or any linear cwSination o€ function and derivative 
values at one or more pofnts. 

In this paper, procedures are described for generating the re- 

AE stiractive feature of the? 

The proced+.ares described 'here have been implemented in the ALTRAM lang- 
uage (ref. 9). Once the recurrence equaticvls have been generated their 
solution could, in the standard case, be aceosplished by a numerical proce- 
dure rcther than a synbolic procedure, However, in the potentiallv powerful 
application of the method to problems ccntaining indeterminates a symbolic 
solution of the recurrence equations will sometimes be desired. Therefore 
thie second phase has also bccm coded in the A L W N  laaguage. The standard 
problem without indeteriiinater is obviously 8 prime candidate for a hybrid 
symbol?c/numerlc computational procedure. In keeping with the potential de- 
sire for a symbolic solution, we restrict our attention to a ctiss of problems 
:or which the truncated Chebyshev series ezn be obtained by a direct method. 
Thus we consider only linear ODES with polynomial coefficients. 
a linear ODE whose coefficients are rational functians could be converted to 
one with polynomial coefficients und therefore, in principal, the method can 
be. applied to any linear ODE: whose coefficients are ttwtions which can be 
approxinated well by rational functions. 

Of courre, 

The method assumes that the solution js desired in &he interval [-1, 11 
(which means that a simple trnnsfol-mation of variables will Be required, in 
general, before applying the method). The truncated CheSykihev sfties pro- 
duced by ttG method is a neer-miniuiax polynomial approxtmatfon of tha true 
solution to the problem. ThirP is based an th.j fact that, for any function 
continuous in [-1, 11, the minima:: error in the truncated Cilcbyshcv series 
of degree n ls never appreciably lorgcr than the error in the \)est minimax 
;olyr?omba'l of degree n (e.q. ref, 10). Thc goodness of the approxrmaze 
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solvtion obtained therefore depends on the ability of polyriomials to approx- 
inate the true solution. A more powerful class of apprcahating iunctions is 
the rational functions. Horever, the computatioi of near-ninimax rational 
functions would be best accomplished in the form of Che3yshev-Tade approxirnz- 
tions (ref. li) which require, as an initial steD, che generation of C'heby.r%ev 
series coeff-kients. Thus the method discussed in this paper is a basic 
building block as well as a powerful met.ho3 in irs o w  right.. 

2. CONVERSTON TO INTEGFATED F g  

Consider an ordinary differential equztion of order v with polynomial 
coefficients: 

p,;x) y(v)(x) + + pl(x) y'(x) i- p0(x) y(x) = r(x). (1) 

We will temporarily ignore the: v associated conditinncl %kith would serve 
to specify a unique solution ai (1). We seek a solution uf the form 

m 

where the prime (I)  indicates the standard conventioo that the Eirst coeffi- 
cient 1s to be halved and where Tk(x) denotes the C'nebyshev polynomial oE the 
first kind : 

Tk(x) - cos (k arccos x). 
If the reries (2) is substituted Into tha differential equation (1: then 

the left side of (1) can be expressad in the € o m  of B Chebyshev series. By 
expressing the right-hand-side polynomial .r(x) in Chebyshav form, w.? can 
e;.;vate coeificicnts on the left and right to obt<sin an Infinite ser of linear 
eyations in the unkn-rws c ,cl ,c2, . . . (ref. 8). 
a3 equations derived from t8e oktsociated condittons.) Thir. infinite linear 
system has the property that the lower trtanpular part is m r ~ r  except for a 
fev sub-diagonnla and it therefore becones finite und.sr thc assumption 
Ck - 0 (k > lunnx), for Rome chosen kmnx. This assrmptian mu& be valid, to 
within some absolute error tolerance, if the aolutfon y(x) in to have a con- 
vergent Chcbydiev mrfes sicpansion. 
for increasing vnluea of b x ,  until some convergence criterion has bean 
sntisfisd. 

There will be v additibn- 

Thus one may solve the linear syetem, 

Howover, ne in noted in reference R, t!ie linear systea is much simpler if 
(1) is flrst converted to integtnted €arm. This is bccnueae tha series resulting 
from intlefinltfe htegration of (2) 
from formal Jlfferentiotiun. Specifically, formal differentiation of (2) yields 

much sinphr ttion the eerie8 resulting 
mm 1 . .Y 

I '  
I 
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while indefinite integration of (2) yields 

(where II denotes an arbitrary constant). 
finite linear system derived f r m  the integreeeo fo? of the differential 
eqaation (I), each individual equation contains only a finite number of terms. 
In the original (differential) form, each individual equation in the infinite 
linear system is itself infinite. 
plexity is achieved by considering the integrated fern. The coefficients are 
then spectfied a5 the solution of a finite recurretlze relation (wcth non- 
constant coef ficienrs) r8.ther than an inf inice recurrence relation. 

Tine end result is that in the in- 

Thus a very svbscaneial zeduction fn CL~YI- 

! 

The derivation of the recurrence equation is described in detail in the 
next section. The following thecrem gives a fonnuln for the polynomial CO- 
efficicnts of the integrated form O€ the order v differential equation (11, 
in terms of &ha polynomials in tho original form. This formula for the new 
polynomials is readily incorporated into a pr9gram written in any of the 
computer languages for symbolic computation, since each new polynaminl is 
specified explicitly as a linear cornblnation of derivatives of the orighal 

I 

1 i '  
i 
L 

i 
! \  

polynomials f a d  the new right-hand sick is obtained by integratfmg the 
original right-hand-side piynsmial). kn induction proof for Theorem 1 is 
given in refersnce 9 and io mitred hem. 

Theorem 1: i '* 
The ordinary differentia3 equation (1) of order v with polynornlal co- 

efficients p (x) ,e.., po(x) and right-hand-side polynomial r(~) is equiga- 
lent to the YnzegrRted form 

I V qo(x) Y(X) + !q,,(x) Y(X) + e.* + !/ a * * {  q,(x) y(x) - s(x) + Ky(x) 0) i 
i 

whers the pol.ynonia1 coefficients qo(x) ,. . , q,,<x) are givon by 1 
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and where the right-hand-side polynomial s(x) is given b:r 

(7) s(x) = ~1.:. /r(x) . 
In (S) - (7) the notation %{XI denotes an arbitrary polynomial of degree 
V-1 arising from the corlstants of integration and the notations 

i II" ... lf(x) and f(i)(x) 

denote the resulcs of applying, respectively, indefinite integration i times 
and formal differentiation i ttmes to the function f(x). 

GEXERAI. FOW. 3F THE dECUFlicENCE EQUATION 

Fnr an ordiiarv differer.ria1 equation of oril.sr 'J in the integrated form 
(5) we seek a solution in the form of :he Chebqnhev series (2). 
(2) into the left side of (5) and removing the acmnation sign and the 
side the integral signs yields 

St&sritating 
out- 

*I 

P 

F ?" 
' 
1; tyties (ref. 8) art? applied: 

.n order to express (8) in the fort' of a Chebyshev cmries (where the coefti- 
cient of Tk(x) will. be a linear combineellon of ci's) , the polyramiala 
q (x), ...,id x) are converted into Chcbyshev form. :'hen the folloking iden- 

where, for the! moment, we may assume that k l.s "large enough" in (9) and that 
i is "large enough" in (10) to avoid non-positive slibecripts. This ttens- 
forms (8) into t'm follewing form, for k 1rlrg.a enough (&,a. neglecting the 
firet few term): 
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where the coeffi-ients v.(O S i 5 2h) are rational expressions in k arishg 
from repeated applicatiok of (4) and (10) and h is some positive integrr. 
Then changing the indices of sunanation in (ll), separately in each term, con- 
verts (11) into a Chebyshev ~eries of the following form (neglectin: the 
first few tenas) : 

f ... -t u c 1 T,,(x) CCuOck-h -+ UICk-h+l 2h k+h ~. k 

where the coefficients uj(D = i 21) at2 rational expressioas in k. The 
first few terms could z?c derived independentlv. Finally, by convertiq the 
right-hand-side po?.j-nomiaI in (5) into Chebysheg i~rm, we are ready to equate 
coefficisnts ard solve for the c '8. Ttte coefficients of To(x), ..., T,,-l(x) 
w u l d  iiot be equated Escauee of fhe arbitrary term \(xj appearing in (5). 
.Instead the first v equations would some from the associated conditians. 

The following example will serve to illustrate, Cowicler the problem: 

2 2 (l+x ) y"(x) - y'(x) + x y(x) = 2-x 
y(0) - 0; y'(0) - 1. 

The integrated form of (13) is, from (5) - (71, 
(l+x2) y(x) + I (-1-4x) y(x1 + 1/(2+x) y(x) - x2 - (1/12) x4 .+ K2(X)* 

Substituting (2) into (15) ahrd converting the polynomials into rhebyehev 
foiw yields 
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where some cmstant term6 0'11 the right have been absorbed into the arbitraw 
linear te-rm .L (x). Appiying the identities (9) and then (IO) yields, after 
much manipulation, the following farm for the factor 
large encdgh: 

2 1 in (16), for k 

{[8(k+2) (k+3)]-' Tkf3(x) + (1/4 - (k-t2)-' + [2(k+l) (k+2)]-1)Tk+2(~) 

+ (-[2(k+l)]-' - [8(k+l) (k+2) ]-'I Tk+l (XI + (3/2 - [f4-1)(k+l)]-1)Tk(x) 
+ ([2(k-l)]-' - Ca(k-1) (k-2)]-1) Tk,l(x) 

+ (1/4 4 (k-2)-' + [2(k-1) (k-2)]-1)Tk-2(~) f [8(k-2) (~L-~)]-'T~-~<x)]. (17) 

To obtain the general coefficient of Tk(x) on the left si& of (161, the index 
of stanacaticn must be changed separately in each tern of the iaetor (13). 
example, for the Eirst term 

Fos 

tile desired change of index is k * k-3, which yields 
I 

\ 

where again we are neglecting the first: few Cra~rs ie the series. After 
changing the : -.dices of summation appropriately, the left siae of qquatinn 
(16) becoanes \ 

Working aut tha firat few terms using special C a m s  (see aeckinn 4) of 
identitled (9) and (lo), and obtaining the flxct two eq:.atLors from the two 
associated conditions (14), we obtain the foL1orzL:rg Lr.n'lnl te aet of linear 
equation8 which deflne the Chebpshcv coaf ficiante of the mlyttisn function 
Y (XI : 

I 



= C )  112 co - c2 + c4 - C6 + .-* 
c1 - 3c + 5c5 - 7c7 + ... = I  

= 11/24 
3 

-5124 c . ~  + 716 c2 + 3/16 c3 + 516 ~4 + 1/48 C5 

i / u  c0 + o c1 - 17/96 c2 + 11/8 c3 -+ 7/48 c4 
s o  + 15/24 c5 a -f- 1/96 c6 

1/96 c1 + 1/24 c2 - 211160 C3 f 4313’1 C4 +- 11/96 cij 
+ 21/40 cF! + 11160 cj -1196 

. . 

The remining equations are obtained by equating to zero the coefficient 1 

Tk(X) in (Is), for k = 5,6,7,... . Mote that (19) is a 7-diagonal system 
starting fro= the fourth equation. 

In genera!, the tkstrei Chebyshev coefficients satisfy a (2h+l) - term 
linear resurrence equation of tile f 3rsn 

u c  + u c  t ... + KLh Ck+h 0 (LO) 
0 k-h 1 k-h+l 

where the coefficients oi are rational expreuslonv In k. Equation (20) will 
be valid foi k 2 h except Lhat the first few right-himd-sides nay he nonzero 
dependlng on the degree of thc right-hand-side polycsminl i? (5). The value 
of n depends on the order v of the differcntlal equation and an the degree of 
the left-hand-side polynomials in the integrated farm (5). 7ach nppiirnrion 
of the product formula (9) and each application of the ilrteg~..~ion formtila 
(la) increases the value of h by one. 
readily determined frcm the original order-v dlf farentlal el;uation (1); 
namely, if maxdcg is the maximum of the. degrees of the left-hwd-side pol>- 
namiills in (1) then 

Lower sild upper bounds c;n k c,nn bo 
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The first V equations in the iiifinite linear system come from tha 
associated conditions and will be equations containing an infinite number 
of terms. If 11 > V then there wiil follow V-h "special" cases of the ger~eral. 
recurrence equation (201, uith nonzero right-hand-sides in genersl, resulting 
from tquating the coefficlents of the terms TV(x), ... , Th-l(X). 
maining linear eqaatio-is result from equating the coefficients of 'fk(X), 
k = h, h+l, ... and will all be in the form of recurrence equation (20) 
except that there will be a few more nonzero right-harid-sides if 

Thz re- 

where s(x) is the right-hand-side polynouial in the integrated form (5.;. 

4. SPECIAL CASES OF THE PECURRCNCE ZQUATION 

The derivation of the general recurrence equation (20) as described in 
section 3 is not difficult to irrplement in a symbolic language. We now 
consider the derivation of the "special" equations which require the appli- 
cation of modified versiorts of the product formula (9) and the integration 
formula (10). Irz other words, we now want to consider what happens when we 
drop the assungtion that k is "large enough" which was ass ..3d in the de- 
rivation of equation (20). 

The product formula (9) is ir fact correc: for all values of k and j 
if the subscript k-j is replaced by Ik-j 1. 
special form for h e  cases i =I 0 and i = 1, namely 

The irtegral formula (10) has a 

whers an arbitrary ccsstant of integration is implied. These special cases 
could be incorporated into a program for generatipg the recurrence equations 
but the cost of deriving each individual "special" equation would be approx- 
imately equal. to the cost of deriving the one general equation (20). %or- 
tunately, the form of the special equations can Le 8educed immediately from 
the general equation without extra work. Referring to the example in section 
3, the third equatici of (19) arises from equating coefficients of T,(x) in 
the transformed forre of (16). 'If we "blindly" obtain the left-side toeffi- 
cir-nt of T2(x) by setting k=2 in the general fcrmula {the 3racketeJ expression 
in (18)) we obtdn the equation 

1/16 c - ~  + 0 c0 - 13/48 c1 4- 7/6 c + 3/16 c3 + 5/6 c4 2 
+ 1/48 c5 = 11/24. (23) 
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If the negative subsciipt is interpreted in absolute value - i.e. if we 
equate c - ~  with c1 - then the t'-ird equation of (19) results. Our task is 
LIOW to prove that this "rule" holds in general. 

Thz main point is that negative subscripts may be ctrried throughout 

Theor2ms 2, 3, a d  4 below show that the "special" 
the derivation and their interpr-tation in absolute value may be postponed 
uiitil the final. step. 
cases of the recurrence equation can be immediately deduced from the general 
recurrence equation. Proofs of these theorems appear in reference 9 and are 
omitted here, 
in the tiansfomations applied to convert (8) into (12). 

The proofs require careful attention to the symmetries involved 

Theorem 2: 

Identities (9) and (10) are valid when non-positive subscripts occur 09 
the left and /cr right in the sense that Ti(x) represents Tlil(x). 

'Phe following simple example will c13ri:y the application of Theorem 2. 
Consider the dif farential equation 

Y1(X/ + YCX) = 0 

,or, in integrated form, 

y(x) + /Y(X) = 0. 

Substituting :he series (2) into (24) yields 

m 

/,plying formula (10) gives 

co 

The tnird term in brackets would cause trouble if we evaluated iL for k = 1 
but we will never do so because we do not equate coefficients of TO(x). 
Continuing with the example, the next step is to chmge indices of ammation. 
in (26) yielding 

m 00 OD 
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5 Equating coefficlents of Tk(x) on the left and right of !37j gives the 
general recurrence equation: 

i 

i 
For this first-order differential equariml we muat equatz coaffirientr of 

Theorem 2 gives a valid interpretstion to (26) for each 
value OF. the index k but we have gat to prove that (28) is valid wha, for 

* Tk(x) foi k 2 1. 

3 
fi 

example, k = 1. In this example, exdrratictz of the lower limits of s u m a t i w  
in (271 reveals that (28) is clearly valid for k 2 2. The case 1.. = 0 will not 
be reqtdred. 
summation in (27) has a factor 1/2 associated with the first tern ir its sum 
and the third sumption will contribute two t e m s  to the coefficient of Tl(x)- 
nsnely, the tern with k = -1 aqd k = 1, 
from the terms 

For k a 1 (i.e. equs:ing cxfficients of Tl(x)j, the middle 

Thus che coefficient of Tl(x) cmes 

The special form of tke recurreice equation corresponding to k 0 1 should 
therefore be 

1/2 co + c1 - 1/2 c2 = 0. (29) 

But (29) is precisely the result 02 srttfng k = 1 in the general recurrence 
equation (28). 

The following two theorems prove that the left side of the generd re- 
currenr.e equation (20) is valii for all k 2 1, in the sense that negative 
subscripts are tc, b- interpretec! in abso:lJte value, Recall that the left 
side of the general recurrence eqcation is clrtaincld by tran6formir.g (11) into 
(12). 
tsken to Le 0 to (with the usuaZ "prinie" dn the summatior. SI.@ 85 in (2)). 
Changing the tntlices of summation in the terms of (11) transforms (11) into. 
the for 1 

By Theorem 2, Lhe range c: ;he indur of summation in (11) may be 

C' v (k * k-h) c ~ - ~  Tk(x) + C' 
kmh-1 

tpl(k * k-h+l) c&-,,+~ T (x) 0 k=h 
(XI 

+ ... + C' vZh(k f- k+h) ck+h Tt((x) 
km-h 

where the notation vi(k + f(k)) denotes, in an obvious way, aR opcratiun 05 
substitution in the rational expression vi. 
the general fonn (12) where the new rational expressions ui are given by 

Collecting termo, (30) takes 

Y 

i 

4 
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I 
u = vi(k +- k-h+i), 0 5 i 5 2h. (31) 
i I - 

Theorem 3 gives a symmetry property of the rational expressions v aqd then 
Theorem 4 uses this a).metr, prcjpertv to prove the validity of the general re- 
currence f m  k 2 1. In the sutstitution .-perations appearing in Theorem 3, the 
sy;nbol 'q = " 4s =sed in place of the symbol " f " in order to emphasize the 
fact that they ars arithmetic evaluations in contrast to the change of indices 

1 
% 

I 
i 
j 

i - i 

i 

occurring in (30) and (31). -,= 

I I Theorem 7: 
I 

The rational expresstons v i (0 5 i 5: 2h) appearing-in til.) siatisfy the 
following symmetry property: 

(k -L), 0 5 i 5 h V2h-i v (kAL] = i 
i 

i for any value of 9. 

TheoreT 4: 
I 

1 The expression U2), which defined th,? general form of the recurrence 
equation, is valid for values of the index k :. 1 in the sense that negative 
subsc2ipts are to be interpreted in absolute value. 

Fitally in this section, we mention the interpretation of the term k=O in 
(12) which vould be required in equating cosfficfents of TQ(y). 
any diiferential eqrlatior. (1) of order v 5 1 the cccfficient cf To(x) is un- 
determined because of the constants of integration. However, the method 
discussed in t!iis paper c m  be applied directly to a differential equation of 
order 0: 

Of course for 

, 

in order to compute the Chebyshev series coefficients for an explicit rational 
function r(x)/p (x). 
right must be eguated for all k 2 0. 
the transformed form of (32) is not that obtained by direc? application of the 
general expression in (12) : 

In this care the coefficients of Tk(x) on the left and 
The coefficient of T (x) on the left of 

Rather, the correct coefficient of TO(x) comes Erom :he last h+l summations in 
(30) and it is 

1/2 vh(k=O) co + ~ ~ + ~ ( k = l )  c1 + ... + v2h(k=h) ch* (34) 

Using (31), (34) becomes 1 
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1/2 u (k=O) co + uh+,Ik=0) cl + ... + u2h(kaO) ch h (35) 

Comparir-c, (35) with (33) we see that, for the special case k=O in (12),tbe 
terms with negative subscripts must be rgnored and the term in F. must have a 
factor 112 associated with it. 0 

5. ZECIFLCATION OF THE PROCEDURES 

Procedures for generating the general recurrence equatioii (20) for the 
differential equation (1) are specified in a pseudo-Algol algorithmjc notation. 
Pour bas-lc "system" functions for polynomlal manipulation are assmd: 

degree (p,x) 

derivative (p ,x ,n) 

coefficient (r,x,n) - returns the coefficient in the polynomial p of 
substitute (r,x,expr) - returns the result of substituting the 

- returns the degree qf the poly~omiel p in the 
- returns the n-th derivative of the polynomial p indeterminate x 

with respec: to the i?determinate 'Y 

the n-th pawer of the indeterminate x 

expression expr for every accurrCnce of the 
indeterxiinace x ia the rational cxpreaskm r. 

A brief description of each proceduie ifi: given followed by the algorithmic 
specif icatLon. 

Description of the Procedures: 

(1) Procedure generate-recurrence . 
- 

Input parametws: v, p 
Output paraneters: recurrence-equntion, h 

(0 r; k 5 .Q> in t& dbIferential equation (1: are The polynomials p k passed into the procedure. 
polynomials is x and it is a b o  assumed ~ S a t  the! global array cole3 hqs been 
initialized euch that 

It is assim?d \ere that the indeterminate in these 

comb (i,;) c) . 
The indetermfnate arr..r.ye tk and ek are assumed; tku) is used to represent the 
Chebys'lev po?ynomial T (x) wheze k is an indeterminate and cku) ia used to 
represent the term c k apporire n5il.y 
as an indeterminate k3.! in them procedures On return, recurrence-equRtioa 
is the left side of the gecaral recurrence equation (201 and '0 is its 

k+_iin the general recurrence equatiori. 
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"half-length'' as defined by (20). 

Each pass through the m-loop adds o w .  term into factor, where the terms 
The f5rst part cf in factrjr are defined by the bracketed expression in 

the m 4 o o p  canverts.the given po?.ynomials into the m-th polynomial of the 
integrated form, using Theorem 1. 
the identities (9) and (10). 
formed to transforn (11) into (12) which yields the general recurrence 
equation. 

(8). 

Then follow procedure calls which Implement 
Finally, the ap2roprl.ate substitutions ?re per- 

(2) Procdure chebyshev-fora , 

Icput parameters: p, degp 
Output: the Chebyshev form of p is returned 

The polynomial p of degree degp in the indeterminate x is converted into 
Chebyshev fcrin. 
ized such that the element xpower(i) is the Chebyslrev form of x**i, using an 
array of indeterninates t where t(j) represents T (x). 

(3) Procedure product-tk-times, 

It is assumd that the gl-otal array xpower has been initial- 

j 

Input parameters; p, degp 
Output: the representation of Tklx)*p is returned 

The polynomial p of degree degp, mssumed to be in Chebyshev form, is I 
1 multiplied by the polyiiomial Tk(x) by applytng identity (9) to eech tern of p. 

The indeterminate arrays t and tk are as discussed above, 

L (4) Procedure integrate. 
\ 

Input parameters: p, h 
Output: \ the representation of the Integral of p is retuinrd 

I It is assumed t;rat p is a 1inen.r combination of !A* elements 
tk(-h; ,..., tk(h) where the meaning cf the array tk is discussed above. The 
 integral of p is computed by a~plying identity (10) to each term raf p. 

I 

p roc ed -1 re gene 1: at e-r E? e ur r c'n c e ( v , p , recur ren c e-cq uo t ion, h ) 

degp degree (P,,x) 

q * chebyshev-form (p,,degp) 

factor + product-tk-tirne?, ;q,degp) 

h * degp 
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, .- , 

sig? + -1 

- for i = w 2  step -1 

sign + -sign 

q + q a t  sign * 

doend 

until 0 -- 

comL (v -i,m-i) * derivative(p ,x,m-f) V-i 

degp f degree (q,x) 

q + chebyshev-form (q,degp) 

term + product-tk-times (q,degp) 

h e w  + degp 

- for i-1 step 1 until m & 
term + integrate (terni,hnew) 

h e w  *- hnew + 1 

doend 

factor + factor + term 

h f max Ch,hnew) 

_I__ 

doend 

recurrence-equation + 0 

- for j - -h *n 1 until h & 

- 
.- 

coef * coefffcient (factor, tk(jl.1) 

-*oef * PubstitUte (coef ,k,k-jS i 

recurremce-equetion * recurrence-equation .C coef * ck(-j 1 

daend 

- end of procedure generatarecurrenee 



pocedure chebyskev-.€wrm (p ,degp) 

newp + 0 

- for k=O step 1 until degp 512 ' 

newp + newp -+ coefficient (p,x,k) * xpower tk) 

duend 

return (newp) 

- end of prdcedure chebyshev-form 

procedure product_t2r_times (p ,degp) 

newp f 0 

far j=cl 1 until. degp & -.- 

nery + ne- + coefficient(prtQ),l) * (tk(j) + tk(-j))/2 
doend 

return (newp) 

-- 

-- end of procedure product-tk-timee 

procedure :integrate (p,h) 

newp * 0 

111 doknd 

return (newp) 

- end'af procedure integr.ate 
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6. SAMPLE PROBLMS ------ 
Reference 9 contains a listing of an ALTRA;? program which is arr iaple- 

mentation of the prwedures in section 5 and also incluaes an implezentation of 
a met;kod €or sJlving the recurrence equations. The program will accept 
problem with indetzrminates in the associated conditions and also with imiet- 
erniiates in the differeztial eluation itself, The solution of the recurrence 
equaticns is by a method of backward recurrence which nbtafw a solution under 
the assumption c =O for k > kmax where knax is specified. 
easily be inplemented k 
satisfied. 

A strategy could 
for updathg kmac until some desired ahsolute accuracy is 

The followlng three sample problems il.lustr:ite the application ol+ the 
met hod. 

Value of kmax: 10 

Recurrence equatioil generated: 

-(1/2k) c ~ - ~  -+ ek f (1/2k) ck+: = 0 
Maximum absolute error in ck (0 L k s 10): 

.U (1fr7) 

Size of last. computed coefficient: 

c *. .55(A0'9) , 10 
Problem 2_: (Complicated boundary-valw problem) 

(1-h 2 ) y" - y' -t xy " 2-x 2 
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SLze of last computed coefficient: 
-5 c 1% .34(10 ). 10 

--- Problem 3: (Indeterminate initial conditions) 

2 2 (l-fir ) y" - y' + xy * 2-x 

~ ( 0 )  = vl; ~'(01 = u2 
Value of kmax: 10 

Recurrence equation generated: 

Remark: Each c is a bilinear polynomial of the fcrn k 

' 

b 

same as problem 2. 

c k - a v  k l  + b k u 2 + d k ,  for constants a k' bk% dk 

Size of last computed coefficient: 

The following table gives the execrttic? times for these three pr*~.olellas on : 
a Honeywell 66/60, where: i ! 

4 
1 .  Tl * time, in seconde, to generate the general recurrence tqutrrion; 

T2 = time, in eeconds, to solve the equations far E 
i 

i (0 S k Z 10). k 

Problem 2: 160 80 

Problem 3: 160 73 

8 
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David R. S t x t e q e r  
University of Hawar: i 

This is a chronicle of manifold atteffipts to achieve taster-d automatic 
amployment of the identities sin2, + cdC2x Z 1 and cosb2x - sinh*zZl, 
mannsr which truly miniioizes the complexity of tile resdting expression. Aft-.:r 
describing the ciisappointments of trfgononetric reduction, trig-Yonetric expan- 
sion, pattern matching, Poisson ser*es 
reveals how he achieved his g o d  .ta the methdd of comparative cnmbinatorial 
mbstitutions. 

in a 

and Denoiwe's thewen, the atlthor 

1mFG DUCT ION 

It is na'coimidence that the spectre of the identity 

(1) ' 2  2 sin x + cos z: 3 1 

is raised in many papers 3n computer algebraic simplification, BIICR as 
references 1, 2, and 3. This 9s a well-known identity, with especially fre- 
quent opportunities for emplsyment. -The identity 'i 

1 
is perhaps the only one that enJoys greater use. H-uever, the t'omer b.~es not l ~ 

:: 
$2 rn -1 

share tne univariate binomial property of the latter, making rtl profound Oif- 
fcrence in the ease of their effect:ve rcutine use in computer algebra. 

Identity (1) and its hypsrboZPc cwnterpnrt 

(Pi ~ 

2 2 cosh x - sinh x E 1 
I 

are rnerelr the simplest cases of' an infinite set >f such identities, bub I 
will noiifine my attention to these two identities becausi: 

1. Ta r; !mnvledge, XEO c?f the ,-x:iiting cnmputer algebra s y ~ r  mi 
provides R toCally 8ati~lfe~tory tul It-in r?m?loyment cf even tl. ek)o 
two identities. 

Until these two identities can bo treetsd sati8factorily. why 
worry about the others. 

2. 
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3. 

4. 

5. 

1 'vas 

In a cenain s e w e ,  tCese identi.?ies most concisely corivey the 
central facts ccncerning thefr co.:st,ituents: 
are dependent, :is are their hyp?rkiLiic cc~w.c~p..rLs. 
triganornetrie criif hyprbolic ;.?entities at'e 3artl.y REF rei tera- 

/ 
The sine arrd cosine 

%e ctk-r 

tions of these facts. 

I con,jecturs thst drdxi:ic cjppoZ",u?ities for tkese tx7 id2ntities 
far o:.tnmb.c.r thcae fo: an:y other tw3 sixn trigowceLric sr 
hyperoollc identities--perhaps even all of the G - 7-y SUC:~ iden- 
tities corcbined. Many engi2eering azd scieiice r. Le- uiiii-2 
sin, cos, qinh, sr  COS^, raised only to mdest . "2, wid? 8rgLi- 
merits thst are Fiere icAeterminates, such as 0, %- 3 proauct of 
simple cseffiiients and indeterminates, such as or 2m. For 
s ~ e h  expressions, appiicztion of the few applicable 'dentities 
other thsn identities (1) or (2) is most likely .:c incresse the 
complexity of' the expresslon, as we shnll see. 

A failure to exploit identities (I; or (2) is m r e  noticeable .hsn 
a failure to exploit more esoteric identities, 
computer-algebra candidates rse quick to notice exmples v':ere they 
CB:! ou~perf~rrn a cornpter-e-LgcbA-a system. Unfortunately, many :rho 
might enJoy and benefit f x m  computer algebw a1.e stibject to the 
aU-tou-prevai:nt human tendency to eam,ar:l.y 2ksniss .sew 0pport~- 
nities on the bzsis af a hastily-formed first impression. 
perhaps the scoffer's zcorn is somewhat deserved. 
embarrassing tha: computer-algebra systems that car do such an 
elegarit j?h of factoring and iqtegration cannot explTit one of the 
fed identities that :ri@xmwtry :-+.udmtg are likely to remember. 

rJneommittcd 

However, 
Xs it no+. 

unconcerned with 8wlh ratters until I first surfered at the h n d ~  

i 
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AN (EDITED) ACCOUNT OF TXE AWIIOR'S TRAVAILS 

Given a transformation frm curvilinear coordinbtes 81.82,. . . ,On tc, 
Cartesian coordinates x1,x2,...,xm, 16th mln: 

x = f.Jel5e?,...,en), Lj=iY2,...,m) , i 
it was desired to compute the Jacobian matrix A, with elements 

ij aPi 
aj- 

a = 2 (i=i,2,. .,n) . 

From this, the components of the covzriant metric tensor are computed a:: those 
of the matrix product 

G = A A ~ ,  (5) 
The desired second-kind of Christoffel symbol involves line- ar combinations 

of the derivatives of G and the inverse of G, but a general need for automatic 
trigonometric-hyperbolic simplification was almady evident il; the r%esults of 
expression (5) and sometimes even expression (4). 

Of the 12 classic orthogonal coordinate systems reported, the coordinate 
transformations of 8 involve either trigonometric functions , hyperbolic 
functions, or both. Relatively simple instances of those 8 are 

1 =I 4 
0 

I 

I 
I 

. *  * I 
Spp.erical : I 

x = r sin 8 cos @, I 1 
y = r sin 0 sin 9, c 1 I z = r cos 8; I 

Elliptic Cylindrical: 

x 7 a cosh u cos v, 
y = a sinh u sin v ,  

ii I 
, 

: ,  

! 
1 

2 = 2. 1 
I 

For orthogonal coordinates, G in expression (5) should simplif.,. to a diagonal 
matyix. I 

General use of the built-in fractional-power simplifier, RADCAN, was 
I 

I necessary because 2 of the 12 reported Zoordinate transformations involve 
sqmre roots ar,d because for vector analysis 
elernents of G z1e computed. 

the sq'lare roots of the diagonal 

17sSng RADCAA alone, it required 2.2 seconds for spherical coordinates and 

A 

1 I I 1.4 seronds for elliptic cylindrical coordinates to compute G matrices thai; 
were inadequately simulfled. For example, some off-diagonal elements did not 

. I 
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simplify to 'zero in spherical cooruinc.tes, and the following values were 
nomputed for Kl in spheric& and elliptic-cylindrical coordinates 
reskectively: 

(6) 

(7) 

3 2 sqrt( sin-$ + cos $)r sin @ , 

ci sqrt(cosh u sin v + sinh u cos V: . 2 2 2 2 

IUDCAN alone is clearly inadequate. The lack of off-diagonal zero- 
recognition had pwticularly disastrous effects on the computed inverse of G 
and on the computed Christoffel symbols. Indeed, it orten led to storage 
exhaustton or patience exhaustion during these subsequent calculations. 

A perusal of the MACSYM4 manual suggests TRIGREDUCE as the obvious 
candidate for overcoming these problems, and TRIGREDTJCE can indeed exploit the 
syxtactically most obvious guises of identities (1) and (2). Iiowever, 
co-respanding to expressions (6) and (71, this technique gave 

i r sqrt[cori28) - 11 
sqrt (2) Y 

i c sqrt[cos(P,), - cosh(2u): 
sqrt (2 1 Y 

(9? 

wing 10.4 and. 4.5 seconds respectively. apparently TRIGREDUCE also combines 
products of trigonometric or hyperbolic functions into corresponding functior.:: 
of multiple angles, which is more than we want. 
revealed that TRIGREDUCE also combines proaucts oi' such function: of different 
arguments into such functions of slm, which is even less desirable in our 
circumstances. 

Other coordinate system 

This suggests following TRIGREDUCE with TRIGEXPAND, io undo these 
undesired multiple-angles and angle sums. 
sin20 + cos20, so we hope for somc net simplification from this appruiimately 

framional-power simplification. 
coordinate systems, correspo?ding to expressions (6) and (7) thi6 technique 

TRIGEXPAND will not expalld 1 into 

- inverse pair. This pzir-?as followcd by RADCAN, for its ration4 and 
Although this strategy hp'lped for some 

gave 2 2 r sqrt(sin t - cos e + 1) 
sqr (2) 9 

2 2 2 2 a sqrt(sin v - cos V + sink u + eosh u: 
sqrt (2) Y 

usins 4.9 and 4.1. seconds respecti.vely. 
frorli ideal. 

Clearly th'.s strategy 3s still far 

Undclunted, I next tried using the pattern mt-Lcher as follows: 
MATCHDECLARE (XTRUE, TRUE) $ 
TELLSIMPAFTER (SIN(XTRUE)f2 + COS(XTRliE)f2, -.) $ 
TELLSIMPAFTER (COSH(Tt'RUE)+2 - SINH(XTEUE)?2, 1) $ 

I 
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ThiJ technique failed -LG simplify some of 
elemGnts to zero. Also, correspondlng to 
niyue gsve 

r sin 

the Fpherical-coordinate off-diagonal 
expression's (6) and (7), t:is tech- 

The gatterns w e  evidently unzble to operate together to .;imTlify 
rJoshCu sin2v + sinh2u cos2V to sin2v + sinhz-:. 
revealed that the two terms of each pattern are not treated symmetrically. 
Under the internal ordeiing, one of each peir is considered to be the "leading 
vzriable", whlch len& a bias towards terms of one type. 
expression sin2, is transformed to i-cc023. 

Also rJCher coordinate systems 

For example, the 

More clesperate then, I could no locper postpone learning about Poisson 
series, which are csnonical and efficient. In the suite of MACSYMA Poissor. 
functions, OTPTOFPOIS seemed more appropriate. However, the Cine print 
reveale5 some serious restrictions on the allowable arguments of this functi.cn. 
Sone., such as the restriction to tL-igonometric argmcnts that are linear combi- 
naciom of indeternxnates, with integer coefficients, are fundmen:d '-0 the 
rlature of Poisson series. Others, 5uch as the limitation to single-grecision 
integers and indeterminates in the trigonometric arguments with names chosen 
from the set fU,V,W,X,Y,Z}, are concessions to efficiency and ease of imple- 
menta%ion. Clearly these restrictions ar" tco severe to permit direzt au+.-J- 
mtic use of OUTOFPOIS Prom within the curvilinear coordinates fucction. 
Revertheless, if Poisson simplification did the right thing, I was willing tc 
write a front-end filter which feeds OUTOPOIS only those portion? rf an expres- 
sior which, with indeterminates tenporarily renamed appropriately, meet the 
restrictions. Although OUTOFPOIS does not perform hyperbolic simplifi-ation, 
I was willing to take what I could get, and I had hupes for usinE; a trick such 
as replacing cosF x wLth cos(i3). 
I tried renaming the coorcinate variables manually, ther, wing 

However, before investing all of this effort, 

TRIGSIMP( u) := 
! u: P,?TSIMP( u) , 
OIJrOI.-P3IS( NUd( U) )/OWOFPOIS( DENOM( U) ) ) $ 

Corresponding to expressions (6) and (71, this techn!c,ue g w e  

Y (14) 
i sqrt(2j r sqrtr~xx(2u) - 11 

2 

2 2 3 2 a sqrt[(sinh u - cosh u) cos(2v) + sinh-u + cosh u]/sqrt(C?), (15) 

wing 3.5 and 2.1 seconds respectively. Again we see that the simplificaticn 
is too drastic , indiscriminately replacing products and pavers of trigonometric 
functions with trigonometric -functions of mdtiple angles and sums. This may 
be ideal for series approximations to periodic solutions of eyJations, but it 
is not ideai fQr all tr2gonometric situations. 
for example, will be converted to ai expression truly ugly to behold. 

A lovely arswer such as singx, 
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Neverth 'less, I .Lhink that the aksve-mentioned front-end filter would be 
worthwhile in xany situations. 

At this point, casual perusal. of th? manual was repliced with an i:;iensive 
study, which revealed that using 9V(. . . , EXPONENTIALIZE) will convert the 
trigonometric functions to complex exponentials, vhjch car1 then be skplified 
with RADCAN, after which EV( ..., DEMOIVRE) converts complex expocentials KO 
sines and cosines. 
nity to cancel. 
gave 

A find RAXAN then gives any spurious t r < ' c l ~  an opportu- 
CorrespondFng to expressions (6) and ( y r ) ,  this technique 

i P sqrt{[sin(28) + i co~(2e); sin(4e) + [ 3 0 ~ ( 2 e !  
2 - i sin(20)] cos(4e) - 2 sin lee) - i sin(20) 

(16) 2 - 2 cos (20) + ~e~i2e)!/?, 
i a e-' sc,i%t([ea sin(2v) + i e2' cos(2v)l sin(4v) + [eLh cos(2v) 

2 sin(2v)] tos(lio) + (-e4' - 1) sin (2v) - i e2' sin(2V) - 1) cos 2 (20) + ea cos(2t"1/2, (17) 

usi,&' 37 and 16.7 secon?s raspectivel.y. 

/' The mdtjple angles were unforeseen, so I tried inseeing a TRIGEXPAND 
between the DLMOIVRE and final RADCAV. Corresponding to expressions (6) and / {7), this technique gtve 

5 2 4 i 
r sqrt[sin6e - 2 i cos 8 sin e + (cns e + 2) sin e - 

a e - t! sqrt{e2' sin 6 v - 2 i e 2% cos tt sin 5 v + (e2' cos 2 

i cos3 sin3e 
2 2 5 6 4 (-  cos'+^) + 4 cos e + 1) sin 8 + 2 i cos e - 2 i cos e sine - cos e 

+ 2 conke - cos2e~/2 , (18) 
'+ 4u + 1) sin z, + e 

4 2 2 
6 

- 4 7: 
+ (2 i e2Id cos v - 2 i e*% c0s52,9 sin 0 - e2' C03 v 
+ (e4' + 1) cos v - e2' cos2v1/2 

c0s3u sin't, + [-e2' cos v + (2 e4' + 2) cos t, + ea] sin 

(19; 4 

using 32.4 and 20.3 seconds respectively. 

k-z I : ?alize that ~ v e n  if the occur*i-ences of imaginary i all. disappeared, 
this process is much like the Poisson simplification -- too drastic for my 
purposes. 

The MACSYMA primer (Yeference 5) menti6ns all of t.te above techniques, 
exczpt using REALPART where I used DEMOIVRE, which gives equally disappointing 
results for this aprlication. 

Resol.ved now to writing my own irig-hyperbolic, simpliCicatj on funct-i-on, 
I firs+ tried the fnll.or.ing: 
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TRIG~IMP(IJ) := 

(u: RNjCUl(U), 

TRIGPOLYSIMP(NUM( U) )/TRIGPOLYSIW( DEXOM(U) )I $ 
TRYGPOLYSIMP(Uf : = BLOCK ( [L], 

Make a list L of all unique Fubexpressions 
which occ-xr as the argumnts ut both sin m and cos n , with m,nL2, 

FOP X IN L DO U: 

Perform a simikr mssage for sinh and cosh, 

REMAIND~R(U,SIN(X).f2+COS(X)f2-1), 

u) $ 
Corresponding to expressions (6) and (7), this technique gives 

P sin 6 , 
5 u Sqrt(c0S ;.' - cash U) Sqrt(COS ZJ + cash U )  , 

ii!;ing 2.6 and 3.2 seconds respectively. 
Wjthin TRIGPOLYSIMF, using RATSUE%ST(l,SIN(X)f2 + COS(X)+2tU, inatead of 

EtEMAIRDER (U,SIN(X)+2 + COSlX)42-1), and similariy for i3entity (2) gives 
"rirtually identical results. 

At the expense of miscing opportunities such as replacing 1-cos x by 
sin2x, checking for the presence of both sinm and  COS^ removed m s t  of the bias 
present in the pattern-mstchiny alternative. 
mil (21), this technique does an adequate job for these two coordinate system, 
,though sin% + sink% is slightly preferable to cos% - cosh*u for computational 
and esthetic reasons. Thi? tech- 
nique also did an adeq;late.job for the other tested coordinate syf:tems, so it 
is not cleer to Le now why I looked further. 
the tecnnique '.-as still too drastic for many purposes. For example, a 1ov+, 
answer such as ain9x + 50~9.7: is replaced by an expression too obscene to list here. 

A way to very nearly reLain s$m?A&ry and to 3 w i d  an increase in ::xpres- 

2 

As revealed hy expressions (20) 

(I regard "+" as slightly simpler than 'I-". 1 

Perhaps it was because I knev that 

sion complexity is to compare the complexities of the expressions obtsined 
by r3tionally szbstituting 1-cos2x for sin?c, by rationally substituteng 
l-sin2x for cosLx, and by substituting neither, for each relevant species of' 
x in the exprcjssior.. Naturaliy, similar comparisons are done for cosh and 
sinh. Far these comparisons, the least complex nsndi3ate wins, with ties 
troken in an arbitrwy as,ymmetric manner. The complexity function can be 
deTigned to reflect the user's value judgcments. Fcr SimpJiCity, I defined 
the conplexity as the length of an expression, with the length of a EIAPATOK 
as 1 and the length of a comylete subexpression as 1 plus the sum of the 
lengths of the dperands. However, the built-in LISP function ?STRING was a 
faster length measure, pr0babl.y bectrdse it is a compiled LISP function rather 
thzn an interpreted MAZSYN4 function. 
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The technique then is to replace the above TXiGPOLYSIMP with a function 
that m k e s  a set of elements, with each element being, for a unique argument 1 
X, e set cor;taining sin x, cos x or both, P.:cording to rhic'n of these o c c w  
to at least the second power. 
and sinh. 
retaining at each stage the cxpz-ession with shorter length. 
to expressions (6) and (7) , this -"%comparative sequential substitutions" 
technique gave 

AnKLogo~s elemrits are alca included for cosli 
Then, the apprcpriate sdxititutions are successively tried, 

Corresponding 

4 

r sin 0 , (22) 

( 23) 2 2 2 2 a sc,i-t(cosh u si3 D + sinh u cos u), 

using 5.6 and 6.5 seconds respectively. 
opportunities such as replacing u cos2u sinh*V + a sin2u cosh2V by 
a( sin%+sinh2v). 
by l-sinhz , but either alone temporarily Lengthens ',he eqression, causing 
the combination to be overlooked. 

Unfxtunate',y ;his technique misses 

This example requires replacing cos& by 1-sin% and cosh2ir 

This phenomenoii suggests trying all combinations of feasible substjtutions, 
taking the shortest of t h x e  results. 
(71, this "comparatl .'c combinatorial substitutions" technique gives 

Correrponding to emressions (6) and 

(24) , r sin 8 , 
I 

(25) 
2 2 - a sqrtjsin u 4 sinh u) , 

1 I 
using 7.1 and 7.6 seconds respectively. 

Of cowse the computing time would grow dmmati,:allyiwith the number of 
distinct species of sin x, c3s x, sinh x, and cosh x that 'occur to at 

when less-than-optimally simplified expressions are used Qr subsequent 

ccmparitons are organized in a mmner to share some c o m n  substitutions 
between cand.iaates and to elimimte some cewlidates before? Computing a13 

i 
1 .  

j 

v 

i 1-east the second power, but the computing time grows even m r e  cbamtlcctlly 

calculation ot the ChristcVd symbcl components. Also, the combinatorial 

of \ 
J \  

1 '  

them -- sort, of a depth-first substitution and comparison. \Moreover, we ?,re! 
dealing with situations where there are not many distinct species. 
combinatorial growth was with respect to the number of t e r n  rather tlsn the 
number c:' kptldes, this algorithm wotdcl be less practical Poy this tinsar 
qplicat ion. 1 : 

If the 
1 

t 
CP the various techn'ques, I m happiest with this last one of comparative 

i combinatorial substitutions. However, I expect to remain content Oniy until 
I suffer at the hands of :In example such as 

i 2 0 
ness + 2 sec z - tan'x , 

which would most esthetically transform to I 
2 1 + mess + aec x ; 

or an example such aa 
2 9 1000 (mess + sin LC 4. ccwLx) 9 

432 



i' 

which for mast purposes is best replzcid by 
1000 (mess + 1) 

I 1 
I. 

E 7, 

-7 

-i 
f 
-4 Thus, it m'ght be useful to judiciously utilize all 12 :rigxionetric 2nd 

hyperbolic- functions, together wit.h an inside-out u.tilization of TRIGPCLYSIMP 
cri d l  sums, rather than merelg the top-level numprstor and denomina.tor. 

i 
'1 I 

1 
1 

CONCLUSION3 

I have come to regard identities li) and (2) as a blessing rather t L m  
i 

a curse. The ability to use variow judicious combinations sf depeqdent i 
trigonumtric and dependent hyperbolic functicns often pemits a far more 
compact aqd understandable answer than is posaible vhen such side relations 
are not present. Tile urge to canmicalize in a straightfomaid fash€on c m  

i 
I 
I przclude some of these opportunities. It is possible and sometimes necec-lary 

to automatically exploit the types of non-canonicaJ simplifications described 
here. 1 

1 
f 
i 
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A n  tcnportant facility for P computer aymbdlc mthemtiu system is matrix computiHion. 
MACSYMA provides many built-in t acikies for manipulating matrices, The matrlca may have 
numerical or symbolic entries, This IT-tns matrix elements may Involve indeterminate; and 
futxtionil expressions. Computations will be dme exactly, keeping rymSats as symhok The 
purpose oh this anicle is to describe these matrix facllitiu, to explain their use ah4 to give somt 

In section 2 the question af how to form a matrix and how to create ether matrices by 

wlth mitrices is &sawed in section 9. The user control of computationat p m m ~ e 3  through the 
use of OPTION VARIABLES is indicated In section i. Io uctlons 5 and 6 two a1go:lthm 

-1- 
1 ;  

idea as to the algorithms or proc4ur.s used. 

transforming existing matrices within MACSYMA is addressed. Arlt~mctlc and other ccmputation 

designed specbtly for sparse macriw are given. Section 7 mpares the computing ttmct sf several 
different way ta conipute the determinant of a matrix. 

I 

i 
1 

4 - ' 1  

FORMING .43D TRANSFORMING MATRICES 
1 

r' 

Matrlces arc crated in M A C S Y M X  by entering a new matrix, making trmsformtton WI 
an existing matrix or colketfng elernenu of an my or cafficienrs d a set of theat quatkss 
To enter a matrix, fnr example, 

P 

- _  

t 

k t  

I , 
h e  just typa MATRIX ((A.01 [C,Dl). If the mrtrlx b large rnd me wbha to type the entries m e  
at a tlme then the command A:ENT&R(m,nk can bo used. Ths lntcgcrr rn and n are the 
dtmenrlonr of the rnattlx 'Q bn entered. Someti(met the viluu of an entry an be exorttsed as a 
function of the row and column tndcxer Ita this CIK the twnnionri OENMATRfX whkh 
gencratcr a mmrx from a MACSYMA array is umfu1. For Instance, Lf an m 8 n matrlrr A 1% 
ndd wtth Ad m ill, one flru defines on m y  B by Bhjh U) T h m  the commend 
W h i e  work waa supported by ElDA cont -act Ell-1-3070 and by N&A grant h3C 1323, ' 1  

sl, g I -  
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C;ENMATRI!<(B,m,n) will construct thj desired vaaix. Th e  M ACSYMA reference manual (ref. 
1) coritains a more r;txzikd description of 6ENMATKX. 

Phe comma.:$ P,:INDENT!m) produces an m x m identity matrix; 
AUIACIdAA";'2IX(m,x) pr;duces ar m x rn diagonal matrix with each diagocal e!Xq Y. 

MASSYMA provides several commands for taking 2 pa:t 0; a submatrix of an existing 
matrix. The commaiid M INQR.(A.i,j) produces a ney matrix by deleting row i and column J f .om 
A. ROW(A,n) and COL(.\,n) give, as a matrix, the t.!A row and column of A respectively. In 
general. SURMATRIXii,, ... , i,, A. jl. ... ,j& produces a iiiatrix from A by deletirig the row5 ii. ._ 
i, and columns j:, ... ,jW T h e  (t,j)th eartry in a matrix A is ac.%ed by typing Afi,l]. 

There are also fxilrties for rnndifying or tramforming a given malrrx. 'TRANSPOSE 
(A) re:urns AT. ADDROW(A,!Q produces a matrix uhxh i p  erjtizl to A with R appended a -  the 
last row. MATRIXMAP(fnJ4i creates a new matrix of rhe same dimensions as A whsie each entry 
is formed by applying the piven function fn to earh element of A. The function fa can be a 
MACSYMA function or a user defined fiinctlon. For example, rf one want3 to make a marr.x of 
numerators of the entriiii of A one can do MATR1XHAPIhUM.A). 

A user can ctiangc the (i$h entry LI i matrix A, 10 x, say. by typmg A[I.;~ Thr5 
change is made on &. If one wishes a new matrix then the change should be made on a copy of E. 
COPY M ATRIXIA) gives a new matrix wkich Is a 'topy of A. 

As a rule, MACSYMA commdnCs will not drer existing expressions There are a few 
exception: to this rule and they are cltarly indicated in the MACSYMA refeience manual (ref. 1) 
To cmphat.rc the effect d an expression altering command we show the fcjllow~ng example 

Let a set of linear eQltaKl0113 EQJ, ... , E* In the ?;rriabtcs XI, ..., Xm be given. The commands 
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CO.EFMATRIX(eqlist,varlist) and A’JCCBEFMa~P.IX(e~li9.cariist) are used to produce the 
coef f icienr matrix and augrnirrlted meffickct matttx, respeccrivelp, where eqlizt is EQ1. ..., EQm! 
and vartirt is 1x1, -. ,Xnrl. 

MATRIX COM P3TATIONS 

Between two matrices of the same dtmcnsion and tetween a Kalar ifid a matrix the 
arithmetic operators 9, -, e, t and / are used for an elements8se effect. Thus if 

then 

I 
I 
i 

and 

\ 
\ 
\ 

The usual matrix rnultlplltatlon USP rha dot opmrot. Multiplying a matrix by rttelf a 
number of tlmes Is Andlcoted by the operator It. Thus 

4 37 
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As an aside, w e  should note that :he= operations are not excksively reserved fir 
marrices: the dot and tt operators are used for noncommutative !n,u’ltiplication and powers in 
general. Comptitaticn involving noncommtative nwltdplication kotwcen variables can be dcrie by 
declaring the variable NONSCALAR and usiicg thP dot operator. Far example: 

iCi> DECLARE: ([A, B], NCINSCALAR$? 

(CZ) (A * B) . (A - SI, EXPAND; 
A<2’ B.A - A B  - 8‘2> 

Note now exponents resulting fron noncommutative mvftiplitaticn are displayed. T h e  inverse of 
. A is Art-I. Among these marrix computatims, the inversc is the most time .onwr;:ing. T h e  exact 
:nv.er;e of a matrix whose ewies are pdynomials, rational f‘unctions ir:4 other fuacticnal 
expressions is often mucLt layer than th,? matrix Itself. In some cases, moderately-sited symbolic 
matrices (under 10 X lC, say) witb not very complicated entries mny have inverses whose sire 
exceeds the rnax,imorn store available to MACSYMA. In ot5er cases. the inverse is of reasonable 
size but the computation runs out of store as an .ntermediate stage. This diffrcutty, catted 
lnterrnediaec expr?ssioh swrll, is common to may other symbolic compuraticn proccsscs: polynond 
greateso-cammon-d~vi53r calcuhtim (CCD), factoring and definite integration, just to nan.c a few. 
The challenge ta algorithm designers is :o avokd or control intermediate expression growth while 
keeping the a1go:ithrns :eatonably fast. Iq general, the best procedure to use is dependent on the 
problem to be solved. There are two different inversion procedures in MACSYMA: a basic 
Bareiss-type Fraction Free Gaussian Etimina:lon (FTCE) algorithm (ref. 2) and a speca! procedure 
fw sparse matrices. The Intter io a special feature in MACSYMA and will be described in the 
kc:iqn; “Inverse of Sparse Matrices.‘ 

.- 

The FFEC uses the usual Cauviac elrminarion proms which .educes the given matrix 
ca the rdsntrry by elementary row operations while !rawforming an identity matrix appended to the 
given matrix to the desired inverse. However, in order ta avoid computing with fractional forms 
which involves many costly CCD ealculatrons, the ellminatios: is made fraction-frcc. irst each row 
is multiplied by the kart common rnultlplc of Its denominators. Tim the eliminitlon It corrred out 
bIrn cross mul:ipl!ca:ion :nsrnd of r!!vrsm. Significant improvcmcni in sped results from 
f rocticn-r ree elimination. However, crosr~multiplicaiion adds to intermediate txprcs;!cm growth, 

W h e n  the FFOE ha3 reduced a glven matrix to upper triaqphr form, the last diagon,l 
element I5 equal to thd determinant of the (r*ic;L!wJ) matrlx. Tkcrelorc It It also Q nicrhod for 
cornpumg the determinant of a marrlx. The command in MACSYMA using this technqcic to 
calcuim a deterrntnant is DETERMINANTCA). There aru three other ways to compute the 
cleterminnnt also In,plamenteei in MACSYMA. There wrl; be d e w b e d  in section 0. O n e  can a h  
otaraln the triangular form, the echelon form (crrentia!ly thu triangular form with the first entry 01 
each row normalined ro 19, the rank and charuterltiic polynernrat d a rnatrrx A by 
TRIANCULARIZ&(A), ECHELON(A), R ANK(A), and CWARFIOLY(A5r), rcspccr‘vcly. 

i 
*II. 
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OPTiONS IN CONTROLLING ZOMPUTATION 

Matrix computations can result in expressions which are rather large and compli"!d. 
Tt'ereforc it is impor;ant to carc-fdly control the rnamier in which a given cornpiitatran is csccurcd. 
User control op:ions w e  provided in MACSYMA in the form of OPTION VAKlAOLE or 
SWITCH settings. Thrrr ?.re SWITCHES in MACSYMA. Each SWITCH may have two 
or more possible settings wirich aifrct the behaviw of one or s@ver?l rmfin~s controlled by the 
SWITCH. A SWITCH is set, like any other variable, by using the : operator. For exampic. if 
RATIvfX:TRUE is bane. then a11 matrix arithmetic wjli be done in CRE.forrn (ref 1). In a fresh 
MACSI 1.4 system, each SWITCH has a default value or setting. RATMX has the defwrl! value 
FALSE. which means MATRIX arithmetic wilt be done in generai represenratron. Vectors in 
MACSYM Q can be represensed as one-dimensionai matrices. Howeve? it is often convenirnt to 
xeprestnt vectors as lists. A list V:[A, B, C1 represents a row vector. To mix, computation with hm 
anJ matrices oce sets LlSTARlTH tu TRUE. If A is a 3 X 3 rr,atrix then V.A is a 1 S 3 matrix 
and A.V :s a 3 X I matrix. Setting SPARSE 00 TRUE enables teve:al rotitines specially designed 
for sparse symbolic marrix ciornputatiorlo to be activated. Ocher options control operations of 
scalar-matrin arithmetic and noncotnrnuativo operations. T h e  availabk options are described in 
detail in the manual. Efficieit UK of these controls 3r.les with experience wish a grven 
application, and experimentation. 

. .  

INVERSE OF SPARSE MATRlCES 

T h e  querrlon of whether the inverse of P glum matrix will fit in the available mznory 
space to MACSYMA depends on the slte, the number of indctrtminates and rbe number of xre 
entries In the matrlx. A matrlx wlth many zero cnrrles Is said ta be sparse. Spartc ma,. 'yices occur 
frequently in practice. One oftmasked question in connection with inverting a sparse matrix IS 
how to order the rows and colurr.n$ to f8:ihtate the conputation. MACSYNA has prwrams for 
rcorderlng rows and columns. We present its algorirhm here in mcrr detail to provide the user 
with a deeper insight. 

If the given matrlx I5 tparw Its inverse may also have many zero entries. O n e  obvious 
example of this situation is a triangular matrix. Subuantirl computation can be ssvcd rt tho zero 
entries in the In.rdrre arc predicted so tarat they do nor havs to be eomputd. It hrr been 3hown 
that this can be done if and only at *he given mrtrtx is b M  reducible (rtf. 9), Let Qbc an ii I( n 
sparse matrix. If there Is a way of reordering row- and columns so that Qbccmcr 

i - .  
d it. 
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I 

where is a matrik of dimension nix n,,ni + ... + ni s n and if t r t then 0, is 'reducrble. 
atherwise Q is irredutibie. A fairty efficient algorithm is imp;ernrn:ed in MACSYXIA for 

I campu:ing 8'' from Gil. has the same block structure as 6. To obtair. from 4-l IS just 
a matter of undoing the raw and column permurations that transformed Qts 4. , 

Now let us consider the means of obtairwi the Cesrred block structure A drrectrd graph 
(ref. 2) g(C\ can be associated '0 the matrix Q This graph has n nodes labeled 1 through n T h e  
nodes are linked by directed edges representing ?onzero entries of Q An d g c  ironi nrMe t 10 
node j represents the nonzero entry q,,. This edge it hbc\ied q,,, Only khe nonzero entries vc Q a w  
represenred in g(Q. A sequence of edges Icqdrng from node L 10 j is :atled a path from I f!, J h 
subgraph is isolated if any pair of nodes in the subgraph are coritttvtpd and no nodes outside the 
subgraph are connected ic any tnrrde, such iwhted :&graphs are called wong componenti of 
g Q .  T h e  strong components of g(Q) give rtw to the bhck mucture of QI We denote by SO tne 
n u m W  of strong components in giQ. 

T h e  outcome of the above scheme is dependent on the w e n  order of the ro%s I 
columns of Q, This r n e m  that a permutailon ot the tout ar*.;cx coturnris may rcwlit-in tn 
atroclilted graph with more strong components and therefore lead tc L rrfiticd btuck srrwl*re of 
Q For example, if Q i s  given as 

i 

I 

then gCQ looks like 

f I 
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which h;s only one strong component. However, by interchanging the first and third ro-vs of 9, 
one would find t - 2. Indeed two is the maximum number of b!ocks Qhas. As a matter of fact Q 
can atway: be fully reduced if nonzero 4ements are assigned on the main diagonal before 

I 

- 
constract ing g(Q. 

DETERMINANT OF SPARSE MATRICES 

There are four diffcent ways to compute a determinant in MACSYM If R. T,1 
\ ' I  

S is i 
FALSE the DETERMINAPIT command use; general representation ,and a Bottom-Up niinOr 
expansion (BU) susgested by Gentleman and Johnson (ref. 4). T h e  BU method computes a!l 
possible 2 x 2 minors in :he last two cotumns (rows). Then all the 3 x 3:minors, etc. , T h e  BU 
method was also programmed in LISP by Fateman to tender expressions in CRF form. T h e  
c o m m a n d  using it is NEWDET. If RATMX is TRUE. then one of two methods is used by the 
DETERMINANT ccmrnand depending on the s6,ting of SPARSE. If SPARSE is FALSE, the 
FFGE method mentioned before is used. :."SPARSE is 'TRUE, then a robtine, TDBU. specially 
designea for taking the determinant of matrices with many zero er,tries is called. 

We describe the TDB'J sparse determinant algorithm in more detail, since w e  believe it 
to be one of the m m  efficient methods for this purpose currently implemented on a symbolic 
mathematical computer system. 

If the given matrix, Q, i5 reducible to a block triangular form, then its determinant is 
the product of the determinants on the maiii diagona! multiplied by 1 or -I. deaending on ihc row- 
column reordering. Let us assume Q is sparse and irreducible. A minor expansion nicthod is 
employed for the dacrminant of Q -It consists of a Top-Dawn analysis phase and a Bottom-Up 
computat'm phse. T h e  Top-Down phase con;tructs a graphical structure of minors needed t3 be 
computed and the interdependence betweeri these vinors. This avoids almost all iinncccssary, 
minors. Theii :he minors needed are computed Bottum-Up so thi.t there is no repeated 
computation. T h e  inethod is named TDBU !ref. 5). 

Let us illustrate the TDBU by an example. Consider the 6 x 6 tridiagonal matrix. 

!' 
i 

. . i  

! 

\ 
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By the list (il, ..., ik) we decote the mifior at the intersection of the last k columns and the 
rows il, i,, ..., ik Using the position of the nonzem entries the following tree is constructed: I 
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I 
Y There are 14 nodes be:ides the root. However some of these nodes represent obviously 

singular rr.inors. If a singularity check IS used which looks for aPr entire row or columo of LE,'OS in 7 
I 
7 

I 
a minor, several branches can be cut from this tree. With signed multipiisr,labels attacld fo the 
branches the tree structure now becomes the fol!owlnp;i 

P 

*. .. --. 

ccrre. T h e  timings (including garbage collection time) are measurzd on a DEC KL-io. 

i 

(1 3 4 5 6) (2 3 '4 5 6) 

I' 

Y* 
3 I\ 

I 

I .  

I 



I 
i 

BLK (6) 

[ C + B  C + A  0 8 0 8 1  
I I 
[ B + A  C + B  C + A  0 a 0 1  
I 3 
[ 0  0 C + B  C + A  0 0 1  

3 r 
c o  0 B + A  C + D  C + A  8 1 
[ 1 
I 0  0 C 8 C + B  C + A l  

I 
[ 0  0 0 8 a - + ~  C + B I  

. I  

BLK 
DIRENSI ON 

6 
8 
10 
12 
14 
16 
18 
20 

. 2? 
24 
26 
28 

FFGE 
1405 
531 a 
17f+10 
43883 
104642 

X 
X 
X 
X 
X 
X 
X 

BU 
166 
684 
1523 
2952 
5933 
l6763 

I( 
X 
X x 
X 
X 

TDEU 
209 
356 
363 
1163 
1584 
2044 
3006 
3643 
4807 
6107 
7992 
9537 

time in milliseconds 
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TRID(6) 

[ C t B  C t A  8 0 0 0 1  
I 1 
I B t A  C t B  C + A  0 8 0 1  
I 

[ 
1 0  8 
I 
1 0  0 r 
E 0  Q 

r 0 B + A  
3 

C + B  C + A  B 0 3  
I 

B + A  c + a  C + A  0 1 
J 

0 6 + A  C + B  C s A 1  
1 

0 0 B + A  C + B 3  

-1 I '  I 

TRID 
- 

01 ME!S I ON FFGE RU TOBU 
6 1563 177 214 

758 8 69:9 7112 
10 22758 1281 1446 
12 57251 2768 2114 
14 140445 6099 2970 
16 X 17307 4739 
18 X )i 6321 
20 X X 9367 
22 . X  X 12565 
24 X X 17132 
26 - x  X 23138 
28 'X ' X 38313 

time it 1  mi ! I imconds 

1 

I )  i \ 
I 

, ', 

i 
' 1 .  

i 
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SYMEXILIC COMPUTER VKCTOR ANALYSTS* 

David 9. Stoutewer 
Univer.sitjr of Hawaii 

ABSTFACT 

A MACSYMA program is described wh!' ;h performs sjmbclic vector algebra ani 
vector calculus. 
including dot products and cross prohcts, together with t1.e gradieKt, diver- 
gence, c-ul, and Laplacian operators. The distributi- n of these operators ovei 
suns or products is uncter user contr31, as are various other expansions, in- 
cluding exparislo12 into componed>s in any specific orthogond coordinate system. 
There is dlso a capability for deriving the scalar or vector potential of a 
vector field. 
tions describing fluid flow and m.gnetohydrodynamics , fox 22 different classic 
orthogonal curvilinear coordinate systess. 

The pr3grm can cmbine and simnl.fy symbolic expressions 

Exam?les include derivation of th2 partial differihtial equa- 

SXTRO'DUC T I ON 

Vector algebra and vector calculus enjwg diverse use througimut engineer*- 
jng, science, and mathematiLs. Vector analysis lends concisme: s that oftcn 
simplifies the derivation of rmthcmatical. theorems and the statement of phys- 
ical laws. 
pretatiocs that greatly facilitate u1;Zcctnnding. 
snalysis prc-.ides a systematic method for derivifig ti~c mthematlcal statement 
of physical laws in spucific orthogonal anvilinear coordinate system. 
another extreme, vector ,&&.lysis provide4 a mans of stating and operating on 
these physical laws inZcpcndent of er coordinate sys+.em, free Eron: the distrac- 
ting details of individual CDmponents. 

Vectsr sotation often clearly conveys geometric or physical inter- 
At one extibeme, vector 

At 

However, many engirlecrs and. scientists dJ not. use vector analysis 
frequci.tiy enough to remcin i'amiliar with mny of t?ie special wctor identities 
that are sometimati ciiic:&L to binlplifving vt!ctor expressions. 
systematic, the expaniion of vector axpresslonfi into specific orthogonal curvi- 
linear comprnents Is Lsua.21;. tedious ant! fraught with opportunities fer blun- 
ders. Other tedious bL mder-prone o?eratior?s include dwiving scalar or 
vector potentials from given vector fields. 
program which hclps owmo'll? theLze h u r r m  frnil.ties by autorating tnese 
processes. 

Also, though 

Thio ariicle deuori3e.s 8 computer 

*This work was supported by Yational Science Fcimdatloa grant MC575-22893. 
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The next sectim gives a brief demonst.rat.ion of the program. Subsequent 
sections outline the mderlying mathematical and yropammirig techni.lues, then 
summarize the perform xe for more comprehensive examples. 

Th? vector-a: crlysf-s package contains various derault and optional simpl2- 
fications for the dot and cross products together with the operators, GM3, 
DIV, CZ'RT,, and LAPLACIAN. The vector operanas may be an arbitrary mixture of 
similar-length ordereu ll::ts, representing the specific components, together 
with indetermicstes declared MONSCALAII, representing the vector? as ahstract 
entities. For example, to establish P, Q, F and G as vector entji-vs, we type 

(C3) DECLAFiE([P, Q, F, C], NONSCXLAR) $ 

Now, let's, attempt to prove the following rect3r identity, where "-" 
represents the cross product operator: 

(C4) (P"Qj*(F"C) + (Q"F)*(P-G) + (TP)*(Q"G) = 0; 
(D4) F.(G"Q)-P-F*(G"P)"Q+ F * G * P - Q =  0 

Evi2ently ,he default simplificatisns are nJt dsar,tic enough, so we type 

(r j) VECTORSIMP( $) , EXPANDALL; 
(D5) o s 0  

Now, let's detem5ne the expardion of an eq-ression involving vector 
different id. operators : 

( ~ 6 )  EXAMPLE: LAPLACIAN( %PI*(S+H)) = DIV( 3*S*P); 
%PI LAPMCIM? (S + H) = 3 D'iV (P S) 

Y 

(C7) VECTORSIMP( EXAMPLE), EXPANDALL; \ 
* t  (D7) %PI LAPLACIAN S + %PI LAPLACIAN H = 3 DIV P S + 3 ? *bRAD S 

Suppose that we wish 50 find the qkxific representation of' this equation 
in Farabolic coordinates. 
p5rLbOlic coordiiiates : 

To avoid having to look tip the tleflnition of 

( C9 BATCH( COORLG ) ; 

.I 

/' ' -* 





I 

BYPC'JAR, RIPOLARCYLINDRICAL, 
TOROIDAL, 
CONICAL */ 

/" KESEP,!IID COORDINATE VARIALLES LVD PARMXi'ERS: */ 

in general, coordf:.ates are specified as a list wit'.? the first element 
being a list of the transformation to a set of rectangdar Cartesiar. coordt- 
nates. The remalning elements are the ordered curvilinear coordinate 
var i a5i e s : 

v2 -V2 u VI, u, VI 

First we use the function SCALEFACTORS to der!.ve a set of global sca?e 
factors. 
corresponding coordinate system: 

'Then we use the funciiiin EXPRESS to express its argument in the 

( ~ 1 6 )  SCALEFACTORS(PWOLIC) $ 

( C17 EXAMPLE : EXPRESS ( EXAMPLE 1 ; 
d2 d2 

v2 +u2 

$PI (7 (S + H) + 7 (S + H)) 
* P  av" ClU - ;D17! 

a (S SQRT(V2 +I?) Pv) + d (S Fu SQRT(V 2 2  + 1J ))) 3(x 
v2 + L? 

Alternativeiy, the glob, .1 scale factors can be esft~bliohcd or changed by 
supplying tLe coordinate system as a second argument to EXPRESS rather t h m  
an argument to SCALEFACTORS . 

Suppose that H depends only on U, that P dcpcads only upon V, md that S 
To exrand tne above derivatives, taking advnntnce depends upon both U acd V. 

of these simplficntions: 

(cia) DXPENW([S,H],U, [S,P],V) $i 

!cis) mva'rx, DIP; 
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;:ow, ,suFpase thst we are given the fallowing parabolic-coordinate corripfi- 
ner,ts of a gradient -recto;', 

(C20) E - W L E .  [ I2*UYV*'3+3*~**3*~)/~~~*2~~*~2~, 
(2*U**2*7~"~-+3**L)/(U**2t~~*2) 1; 

3 + 3 U 3 V  2 u  2 2  v + u  4 ] - * 
f2 ;2 + .$ v2 + v2 f 1 

and wc %:ish to d.?terTnine the correspnding Scalar potential rehf,ive tQ the 
potent izl at the Tcint [o,o]: 

( C21) PORENTTAL( EYAWLE) ; 1 
(D2b ? zrz v F,0K(V2 4. $1 1 

There is an analogous function named VEC"OdFCTEW1hL tnat, computes rhe 
\ vector potential associated with a Siven cur. vector. 
1 

VecSor algebra has an intriguing E tructure. Besides cantaidin$ the ordi- 
nary scalar* operations, vector slgebrp" has two special. pr;ducts ulth ~omewhat 
bizarre pt'oprcies. Nthuugh the di*t and cross pmduc 63 are both distributive 
witi. respect ts vectur r3dition. 3nd nlthou3h 8c:rLrtr factors in elither opcrnnd 
may be factored out of tne dot and crors product: 

I 
I 
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4. Neither is associstive. (px(qxr)$(pxq)xr, wkerem p'(q*Y 1 am3 
! p-q) O r  are invalid. ) 

Neitkey has a miil+iplicative uzit. 
u such that Tor arbitra,? p, UXp=p or p W = p  or U*p=:, or p*U=p.i 

5. (There does not exist a fixed 

6. Both a&it zero divisors. (For all nonzero p, 

P X P  = 0 3 (3) 
Q.? L.:iere exist nonzero q such that p*Q=O), 

7. Both are connected via ordinsry scalar ::;ltjpli?atfon, demted kith 
It * It , by -che :;trange side relation 

?. The structui-e is even rorr? cmplicated if' we comider dy~dios, 
triadics, O ~ C .  

Vector calculus is equally rich in comparison to its ccslur counterpart. 
Besides contaiping the usual derivatives, vector ca3eulu: %as tSrPt! special 
differential. operators. 
oucative (far exrunple, grerf(cons:ant*4) Zconatmt*f,grad 4)) and additive (far 

Nthodph the gradient, afvergence, an9 c w l  are 

exsnipl, , grad( @++kgrad (p + grad $1 : - 
1. The gradient and .liimrgence arc not closed. ("ha gradient o? a 

scalar Is B vector, Ejrd the divergence of n vector is scalar.) 

2. Vectors w e  closed under the curl operation cnly in threc- 
dimensional spice, the curl being undefiwd ot:ierwf se. 

d 
9 

2 '  

i 
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2 7  -I ;13) - 
(14) 

i:urP($.XQ) z q*(grad p) - p*lgrad c,) + p biv 4 - q div p 
grad(p*q) E (grad p?*U + (grsd q j o p ,  

For brzvity, t,"e composition div gr%d is often dencrted as 4 the Laplacian operatcar: 
c) 

? 

Laplacizn 4 z djv grad 9 E TQ . (15) 1 
9 The Laplacian inherits the linearity of div and grad, together 

with the following expansion for prodxct oyerar,ds: . 

For, many phvaixl problem, syrrsaetries or boundary surfw.s encourMe the i j use or orthsgonal curvilinear coordinates that m e  not rectangular Cartesian. 
For example torotbal coordicates are mcst apy:>priate fbr Many cofitr;slled 
fusion problem, ani! oblate spheroidrA soordinates are most sppropriate for 
Some geophysical problems. In such irStRzces, it 5s oflea n e c e a s s ~  to kn0V 
'the specific prsdinl d'ffcrentirrl reyresantr tisn of the gradient, Oiverge:lte, 
cml, or Laplacian in order to derive the differential equationrr pert%:nin1; 
to the desired coordinates. 

1 
It the orthogonal curvilinear coordinates are denoted by %,t12, . . ,eE, 

and a transformation to some reetangtlnr. Cartesian coordinates x1 ,x2,. 
wjth rn?, Ls given by 

, 7P 

1 then eoorJinnte 8caie factors are defined by 



-7 - 
7 - 
7 

iractional-power sinplification, bit it was nectssary to develop a risk' 
trigononetric/hy;~r5~1~c siqlifier, different frdu those built-io. Tqough 
crucial to the Ferfordar.ce of this port<-on of the veclx pazkage, a suff-- 
ciently ',torough rfiscusslcn of this nev sinplifier wou33 lead us too far 
astray here, ;o the simTllfier is discusseci sepirately in Tefer-nce 1. 

- 

Let 

, 

i 

I '  
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* 
where $(S) is an undeterminable constant. 

Successful closed-form computation of these integrals m y  depend upon 
the chosen The validity of 
this formula depends upon the assumed existence of a scalar pctential. 
Consequently, the function POTENTIAL attempts to use differentiation and sin- 
plification to verify any candidate constructed by this formula. 

and the chosen ordering of the components of S. 

If a given vector p is the curl of an unknown three-dimensional vector 
potential q, then 

n 

where JI is an arbitrary twice-differentiable scalar potential. 
$osed-form computation of these integrals may depend upon the chosen 92 and 
83 together with a well-chosen cycllc permutation of the components of 2. 
validity of this formula depends upon the assumed existence of a vector 
potential. Consequently, the function VECTORPOTENTIAL attempts to use dif- 
ferentiation and simplification to verify any candidate constructed by this 
formula. Formulas (25) and (26) are generalizations of those given in pages 
201-202 of reference 2. For the program, in equations (25) and (26) is 
specified by the global variable POTENTIALZEROLOC, which is initially set 

Succeszful 

The 

to [o,o,. . . ,ol. 
MACSYMA has several built-in features which greatly facilitate the imple- 

mentation of extensions such as this v?ctor package: 

1. The syntax extension facility makes it easy to introduce new 
operators, such as l'Xo, GRAD, DIV, CURL, and LAPLACIAN, together 
with their parse binding powers and restrictions on their valid 
operand types. Hcwever, attempted implementation of GRAD, DIV, 
CURL, and LAPLACIAN respectively as DEL, DEL e, DEL X and DELt-2 
caused incredible chaos, which should not be surprising to 
anyone who has written an extendable parser. 
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2. The declaration facility mde it essy to establish the automatic 
oiitative and opt',onal additive properties of GRAD, DIV, CURL, 
anJ LAPLACTAN, :..e declaration facility also made it easy to 
sappleuient 5he al georaic properties of the built-in operator "*" 
with commix ativlty. 

3. A built-in flq permitted defeat of the default associativity 
property of "*", and another built-in flag provided optional 
distribution of I' 0'' over "+" . A built-in flag also permitted 
the automatic factoring of scalars from dot operands. 

The pattern-matching automatic-substitution facility made it 
easy to implement simplifications such as tracsformations (3) , (5) 
and (6). 

4. 

5. The procedae-definition facility together with a buil5-in function 
for determining the parts of expressions made if possible to irnp1.e- 
ment the other expansions and simplific%tions without recourse to 
the lower-level MACSYMA implementation language. 

Simplifications that are unlikely to enlarge an expression, that do not drasti- 
cally change the form of an expression, and that are easy to implement via 
declaration and %utomatic pattern-matching substitQtions were made automatic. 
Examples include the use of transformations (l), (31, (5) ar.d (6). 

Other expansions, such as expansions (2), (b), (7), and (8) through (271, 
together with the employment of additivity or distribntivity require a specific 
reriuest by the user, via th? fuction VECTORSIMP, together perhaps with the 
eppropriate setting of various global variables. 

It is expected that most users will wish to use the function VECTORSIXF 
with the flag EXPANDALL set to its defwlt value of FALSE, requesting only the 
least controversial expansions, or set to TRUE, requesting nearly every pro- 
grammed exparsion. However, for the user who needs fine control there is a 
hierarchy of flags permitting individual control over each of the programmed 
expansions or over various logical groupings of these. The flags are 

EXPANDALL, 
EXPANDDOT, 

EXPANDCROSS , 
EXPANDDOTPLUS, 

EXPANDCROSSPLUS , 
EXFAEXROS S CROS S 

EXPANDGRADPLUS, 
EXPANDGRADPROD, 

EXPANDDIVPLUS , 
EXPANDDIVPROD, 

EXPANDGRAD, 

EXPANDDIV ). 

i 
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EXPiiNDCUAL 9 
EXPANDCURLPLUS , 
EXPANDCURLCURL, 

EXPANDTAPLACIAN , 
EXPANDLAPIAC IANPLUS 
EXPANDLAPLACIANPROD. 

The PLUS suffix refers to employing additivity or distributivity. 
PROD suffix refers to the expaasion for an operand that is any kind of product. 
EXPANDCROSSCROSS refers to expansion (4), and EXPANDCURLCURL refers to 
expansion (7). 
EXFANDCROSSCROSS=TRUE, et c . 
the same effect a: setting all similarly suffixed flags true. 
another flag named EEANDLAPLACIANTODIVGRAD, replaces the LAPLACIAN operator 
with the composition DIV GRAD. 
declared FVFLAGS. 

The 

EXPANDCROSS=TRUE has the same effect as EXPANDCROSSPLUS= 
Two other flags, EXPANDPLUS AND EXPANDPROD, have 

When TRUE, 

For convenience the flags have all been 

Those who prefer a plethora of fmctions to a pletbora of flags are 
encouraged to define a corresponding set of functiocs which merely locally 
set the appropriate flag, then use VECTORSIMP. 
approaches are free to igno-e all of this. 

Those who loathe both 

TEST RESULTS 

A crucial question is: How comsll'cated can problems be, for the various 
port ions of the vector package, befor? exhausting the available memory space 
or a reasonable amunt of computing time? Unfortunately, the answer to this 
questicn is very problem-dependent, difficult to characterize concisely and 
objectively. However, to suggest rough indications, this section summarizes 
a variety of test results, 

First, to test the non-component simplifications, default simpli- 
fication, followed by VECTORSIMP with EXPANDALL=THUE, was applied to the 
expressions in Table 1, taken from pages 32-33, 60, and 215 of 
reference 2. 

These examples all cor-ectly simplified to zero, with the exception of 
case 6, which simplified to 

-a cx( a bxcsb-a - bx( bxc ) ) -( a- Dxc )' 
A spcond application successfully annihilated the term containing bx(bxc), and 
rearranged the first term to give 

a*( a*bxc*b)xc-( a*bxc)2 , 

awbxc could be factored out, clearly revealing that the expression is zero, but 
the built-in scalar-factoring-out mechanism does not recognize that aobxc 
is a scalar despite its vector components. 
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Regarding %he orthogonal curvilinear components portion of the package, 
Table 2 reports the times required to compute the scale factors, and express 
three paxticLiia: expressions in a va?lety of three-SimensioIial coordinate 
systems. The first e,Tression is an equation arising in magcetohydrodynamics 
given in reference 3: 

Laplacian Leplacian w + clrlfn curl W) = -curl . (27) 

The second expression is the Navier-Stokes equation of fluid mechanics: 

-= i: v Laplacian v - Vegrad v 
V '  grad f! 
3 P + - grad div V - (28) 

The third expression is all but one tern of another equation from magnetohydro- 
dynamics, given in reference 4: 

-- ck (grad Ne)x(grad Tee' a 
eNe 

2 c T ~ E  omitted term was 
c u r i ( ~  r-(curi B!) , 

vhere r is a resistivity dyadic. 
represents the gradient of a vecto= as a list of derivztives of lists, which 
can be interpreted as a fyadic, the package was not designed to treat dyadics 
in generel. The function EXPRESS expands expressions into components from the 
inside out, and expsnsicn of the curl operat& requires an argument that is a 
list of three elements. 
tries to expand the outer curl in expression (30). 

Although the vector package fortuitously 

Thus, EXPRESS halts with an error message when it 

The definitions of the coordinate systems are given in rr:fsrence 5. As 
indi-ated in Table 2, the scale-factor computation depends strongly on the 
complexity of the coordinate system, vkereas the time required to express 
vector expressions does not. 

To test the function named POTETJTIAL, the fully-eqanded gradient of each 
of the expressicns in Table 3 was derived in three-dimensional rectangular 
Cartesian coordinates. Then, with ?OTENTIALZEY.',3LOC set as indicattd, POTENTIAL 
was applied in an attempt to generate an expression differing from the original 
ky no more than a constant. 

For case 2, POTENTIAL printed a warning that it could not verify the 
solution by differentiation together with sixnplificstlon. However, expansion 
of the trigonometric factor of the gradient revealed the answer was correct. 
(The integration utilized this expansion, whereas the verification simplifi- 
cation did not. ) 
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In contrast, POTENTIAL was able to verify the solution for the similar 
case 3, which has no angle sun. 

CONCLUSIONS 

The examples-here demonstrate that vector analysis is a feasible and 

- - 
worthwhile supplementary program package for a compbter-algebra system. 
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TABLE 1 

Computing Time ( seconds ) 
Case input Express ion 

Default VECTORSIMP 

1 ( d-a ) 0 ( b-c) +( d-b) ( c-a )+( d-6) ( a-b 0.02 0.3 

(b-a) (b-a)+( c+b) ( c-b )+( d-C) ( d-C) 

+( a+c-b-d) *( a+c-b-dj 

(a-b)*(k -l)+(b-c)*(k a+b -2) b+c 

+(c-a)*(k -2) 

(a+b-c-d)*( a+b-c-d) - 
(a-b-c+d) -( a-b-c+d)-4( a-c) *( b-d) 

( bxc) x( axd)+( cxa) x( bxd)+( axb)xi cxd) 
+2( a*bxc)+d 

2 +( a-d) e( a-d)-( c-a) ( c-a I+( d-b) *( d-b) 0.04 0.6 

0.03 0.3 c+a 3 

0.02 0.7 

1.3 4.8 

6 (axb)x(bxc)'.(cxa)-(ao(bxc))2 4.0 2.0 

0.5 8.6 ( a-d) x( b-c );( b-d )x( c-a I+( c-d 1 x( a-b 1 
7 -2*( axb+bxc+cxa) - 
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TABLE 2 
r- 1 Lime in seconds 

Coor dinat e s 

Eq. (27) Eq. (28) Eq. (29) Scale 
Factors -- 

paxabclic cylindrical 0.7 0.4 0.9 0.9 
rectangular Cartesian 0.8 0.8 0.8 1.2 
polar cylindrical ?- . 5 0.3 0.4 0.8 
paraboloidal 3.4 0.4 0.9 1.3 

I conicai 6.9 1.5 1.3 2.1 

elliptic cylindrical 9.3 0.4 0.5 I .4 
spherical 7.4 0.4 0.8 0.8 

confocal ellipsoidal 17. a 1.9 1.1 2.5 

oblate spheroidal 21.8 0.5 1.2 1.0 

prolate spheroidal 35.3 0.5 0- 5 1.5 
t or0 i dal 57.0 0.5 0.5 i.6 

birolar cylindrical 20.5 0.4 0.5 1.4 

TABLE 3 

time in 
seconds Expres s ion POTENTIALZEROLCC Case 

2 
1 w + (z3+34 y [ S O ,  y=o, z=o] 1.1 - 

b o ,  9’0, z=o] 11.2 2 

3 3c sin(m)e3y+Tz2 log (l+z) [ s o ,  y=o, z=o] 4.2 

z 3 Sh(%+b)@39+~ A o g  (l+z) 
-. 

3 
I 

4 x/ (y*z+l) b o ,  y=o, 2=O] 1.0 

5 (z +y +z 1 [PI., y=1, z=1] 5.9 
2 2 2.-1/2-3-1/2 
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A NATURAL WAY TO DO SPATIAL LINEAR GEOMETRY IN MACSYMA 

Juan Bulnes 
Stanford Artificial Intelligence Laboratory 

ABSTRACT 

A set oi routines appropriare for use as an interactive aid in %-dimensional calciilations with 

simplicity with which these routines can be written in MACSYMA is quite remarkable, and that 1s 
the main reason for presenting them here. Because of the natural way in which geometric intuition is 
mapped into them, they can Serve as a model for an interactive computational aid for architects, 

I planes, lines and points is presented. The mathematical language used is vector calculus. T h e  

5 
’ 8  

INTRODUCTION I 
i f  

This pzper is concerned with the apphcation of MACSYMA to 3-dtn?er.;:cn&l linear geometry 
calculations. A number of routines are presented which provide a designet w k ,  a mast natural 
language for interacting with the system. Fcr example, the designer may be ct. nrchitecr who 59s 
drawn tentative plans for a structure which he wishes to meet certain specificar.da regarding shape, 
perspectives. etc.; his design having been driven by the outward shape he has in rnlrd, he may know 
the exact dimensions of some of the subsystems of his st;ucture, but there may Be many essential gaps 
in his knowledge of how they fit together; also he may still be wondering as to which of his givens 
can be used as initial reference and whether the tcit would then be under-, over- or uniquely 
determined by these. O u r  routines pernit him to interactively explore the consequences of his 
decisions. In the situation envisioned, the structure does not have any curved surfaces, although it is 
posiiblc to deal with them, with some extra work. 

I T h e  mathematical lanpage chosen is fnres dimensional teaor calculus and all surfaces are 
represented parametrically. Thus a line is represented by a vector depending on one pawmeter and a 
plane by one that depends on two parameters. This Is different from the usual rcprcsen:ation in 
analytic geometry, where a plane is represenled by an equation in three variables and a line by a 
system of two equations, and where the variables X, Y an6 2 stand for the three coordinates of a 
point. In our represe:itation, a point is represented by an ordered triple [a,b,cI and our parameters do 
nGt represent coordinates. Thus the vector [X,YZl with three free parameters represents the entire 
3-dimensional space, while PO.X,Ol represents the y-axis, the same as [O,Y,Ol or 1QU,O1 * 

-‘L !i 
T h e  objects we are dealing with are points, lines and plmes. It seems handier to represent an 

object like a line by a vector with one free parameter rather than by a system of two equations. It wilt 
be shown !hat. this representation makes the routines tha; compute distances and angles extremely 
simple; in fact they are written in just the language of vector calculus. 
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BASIC VECTOR CALCULUS IN MACSYMA 

I 
f 

T h e  most important convention we hrve kept throughout is chat for any line the free 
parameter will be named X and fm any plane the paramete:. will be Y and 2. Thus, cornputip.rg the 
intersection between two planes can be done by renaming the parameters of one of them to X and U, 
and then solving the resulting system of three equations for YZ and U; the solution will contain X 
and will theyefore be a tin?. 

While the above is a convention for the system we are building in MACSYMA, the following 
are conventions for the sake of this exposition only. W e  shall use lower case letters a.b,c, ... to 
represent numerical quantities, as opposed to parameters (however, responses typed back by 
MACSYMA will appear always in upper case). Thus we may talk about the point [a,b,cJ, for 
instance; cr about some horizontal plane [Y,Z,al. Upper case identifiers A,B,.., Ll,L2 ,... and 
PLl.PL2. ... will be used as arguments in the definitions of MACSYMA functicns. But X,Y,Z,U will 
be reserved for the parameter names. 

T h e  author wishes to acknowledge his debt to Bill Gosper who taught him how to use 
MACSYMA and substantially contributed to the system shown in the sequel. 

Vector addition, substraction, multiplication and division by scalars are already built in 
MACSYMA. So is also the dot product. For example: 

(C 1) [al,a2,a3k[bl,b2,b33; 
(D I) [El + AI. E2 + A2, B 3  i A31 

(C2) a*Eb I,b2,b3k 
032) [A Rl, A B2, A B31 

(C3) [a I,a2,aSl.[b l,h2,b31; 
(D 3) A 3  B 3  + A2 B2 + A 1 B 1 

T h u s  the only basic operation that n:e.ls be added ;s the c m s  product, also called vator 
prduct. T h e  fol!owing routine suggested by Bill Cosper combines the MACSYMA functions 
DETERMINANT and MATRIX so as to write the cross product in the very same way It is defined. 
in textbooks. 

CROSS(A, B) :- DETERMINANT(h4ATRiX([[1,0, 01, IO, 1, 01, [O, 0, 111, A, B)) 

Thus: 

(C4) CROSS([a l,a2.a33,Ib I,bZ,b3D; 3 

I 

(D4) [A2 B 3  - A 3 B2, A 3 B 1 - A 1 B3, A 1 B2 - A2 B 1 I 
O f  course D4 would mako! a more efficient definition of the cross product. But Cosper's 

routine is worthy of presentation for its elegance, because iz Illustratas the capabilities of the 
MACSYMA language and also for its additional merit that it follows the mnemotechnic rule by 
which the definition is commonly remembered. 
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FUNCTIONS FOR 3-DIhlENSIONAL LINEAR GEOMETRY 

Using SOLVE in addition to the basic set of operations jus1 described, one can program a set 
of useful routines for using MACSYMA as an interactive calculational aid, in a language thst follows 
almost verbatim a tutorial exposition of vector calculus. We start with the nor,n of a vector: 

," 

NORM(A) := SQRT(A . A) 

T h e  distance between two points is the norm of the difference vector: 

DISTANCE(P., B) := NORM(A - B) 
Vectors of length one are useful for many purposes, for instance for determining angles. T h e  

following function, 

A - 
UNITL(A) :r ---------- 

NORM(A) 

yields a vector of length one pointing in the same direction as A. While writing such a functlon is 
barely justified from the point of view of economy in typing and not at all justified from t5.c point of 
view of computational efficiency, it seems worthwhile to keep the user in touch with the intuition 
behind what he is doing. 

P w i n g  a line rhrough two points: 

LINE(A, B) := A + XU@ - A) 
' 

A n d  a plane through three points: 

PLANE(A, B, C) :I A + Y*(B - A) + S*(C - A) 
Getting the point of lntt?rsection of a line and a plane: 

INTERSECTION(L, PL) := EV{L. SOLVE(L - PL, [X, Y, 23) 
There are several ways to compute chh intersection line between two planes. O n e  possibility is 

the following routine, suggested by Bill Gosper. 

PLANEIN?'ERSECTION(PLl, PL21 :- 
BLOCK([INTI, INT : SOLVE(PL1- EV(PL2, Y - X, 2 I U), [Y, Z, VI). EV(PL1, INT)) 

This function works fine in most cases; but when the planes are parallel, SOLVE falls and 
gives the message "inconstscent equations", and that Is rhzt it should do. T h e  same happens to 
INTERSECTION when the litre and the p!ans don't intersect. Mowevct, PLANZINTERSECTIOW 
falls for the following pair of perpcndiculai p!anes because of the asymmetry stemming from the Pact 
that we solved for three arbitrary parameters out of the four. 
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(C5) PLPI NEINTERSECTIQN([Y,O,Z3,;2,Y,ZI); 
INCONSISTENT EQUATIONS:(2) 

Switching arcund Y and Z in the first argument does nor do any good, but, curiously enough, 
dcing it with the second one dues: 

By tracing SOLVE we find the solution to the puzzle: 

((29) PLAN EINTERSECTION[[Y,O,Z1,[2,Y,ZI); 

INCONSISTENT EQUATIONS(2) 
1 ENTER SOLVE [[Y - 2, - X, Z - UI, LY, 2, VI! 

t 

((26) PLAN EINTERSECTIO N( [Y ,O,Zl,[S,Z,Y I); 
SOLUTION 
(E61 w - 0  
(E7) Y - 2  
(E81 Z - X  
038) r2, 0, Xl 
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What has happened is that the second equation says X 0, but X is considered a coefficient 
because it is being solved for [Y,Z,Ul. Swirching the second argument helps bechuse we then have U 
I 0. which is O.K. for a variable U. P 

Failure of PLANEINTERSECTION due to the above situation is a rare occurrence; a more 
serious problem of this and other routines is occasional numerical unstability. In the next wction we 
shall discuss some modifications that help with rhe latter; also we will show how to construct a routine 
for intersecting planes that never fails unless the planes do not intersect. 

In the rest of this section we shall use a function VCOEFF instead of the MACSYMA 
-- function COEFF. The definition of VCOEFF will be given in the next section, as we see why 

COEFF does not always work. 

The following %unction CRADVECT computes a vector of unitary length perpendicular to a . 
plane. i 

1 1  

CRADVECT(PL) := UNITL(CROSS(VCOEFF(PL, Y), VCOEFF(PL, Z))) 

Similarly, the unitary vector pointing in the direction of a line. 

UNITDIR(L1NE) :- UNITL(VCOEFF(LINE, X)) 4 

T h e  angle between two lines can be computcd with help of UNITDIR. The simplest way is t3e 
f otlo w i ng. 

i ACOS( UNITDIR(L1). UNITDIR(L2) ) 
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ABS((A - EV(PL, Y - 0.2 - 0)) ~ GRADVECT(PL)) 

ANGLELINEU'ITHPLANE(L, PL) :- ABS(nl2 - ACOS(UNIlr'DIR(L) . GRADVECT(PL))) 1 

3 

, 

The nbmm of these routines are self explanatory. The following ons computes the angle 
between two pfaes. 

SOLIDANCLE(PL1, PL2) :- II - ACOS(CRAbVECT(PL 1) . CRADVECT(PL.2)) 'I 
A n  interesting problem is passing through a point P a plane perpendicular to a line L. It can 

be solved in the following way: iet the vector IX,Y,ZI represent a random point in 3-space; then 
IX,YZl-P is a vecr.Jr from P to a random poiat; restricting [X,Y,&P to being Perpendicular to L, we 
obtain an equation in X.YE, solve it for X and substitute the solution fnto tXDYZ3; the resulting 
vector depends on Y and 2 and represents the plant: sought. The following routine embodis this 
procedure. I 

NORMA&PLANE(F, L) := EV([X,Y,ZI, SOLVE( ([X, Y, ZI - P) . UNITDIR(L), X )) -- -1 

- - 

But this functio,a, like PLANEINTERSECTION, may fail in some cases; I.c., if the first 
coordinate of P is 0, it will return [X.Y,Zl. Fortunately the following simple modification makes it 

' reliable. 

z SOLVE( (IX+Y-2, X-Y+Z, -X+Y+ZI - P) . UNITDIR(L), 3; )) 
~ 

_ I  

f NORMALPLANE(P, L) := EV(IX+Y-Z. X-Y+Z, -X+Y+ZI, 

1 
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Similarly, given a line L and a poiiic P not on L, we can'draw through P a line perpendicular 
to L and intersecting L in the following; way. 

DRA WPERPL.INE(P, L) :I LINE(P, EV(L, SOLVEILINE(P, L) . UNITDIR(L)))} 

However, if we now want to find the point of intersection of L with the perpendicular drawn 
by DRAWPERPLINE, we often find that they do not intersect. This is due to the errors of 
numerical approximation: the two lilies may miss each other by less than a millionth cf an inch. The 
second argument to LINE in the function definition of DRAWPERPLINE is supposed to determine 
on L the nearest point to P; I have found that the following wzy of using differentiation to find the 
closest point maks the function more friendly. 

DRAWPERPLINE(P, L) :- LTNE(P, EV(L, SOLVE(DIFF( (P - L) (P - L), X, 1)))) 
In a similar way we might continue defining functions for solving many kinds of geometric 

problems. But we shall leave our account here atid discuss some practical issues in the next two 
sections. 

SOME HINTS ON MAKING THE SYSTEM MORE FRXENDLY 

The foregoing routines suffice for most practical calculations. However, you may often want tr 
look at the numerical values of your points or lines. 'The following value serves to itlustrat.. a 
problem associated numerical evaluation. 

(D10) ( '706351256145697026997480181 12214808S57010 Y X 
+ 1666520868 16795 18096?878228055S54 176601 3 175 ) 

I 18759568463 199@82~0595774089014019~515034 16 

(C 11) 8,numer; 
(Y10 0.0 

T o  see what has happened, let us look at its floating point representation. 

(C12) BFLOAT(D10); 
(DS2) 5.83061302595671 iB-43 (7.06351256145697b40 X + 1.6G6520868167952642) 

I T h e  soiution to this and other problems is to use EXPAND. 
1 
i ((213) EXPAND(D10); 
i 

1767696304486602082432666926435 X 499465706 14294479876938 15085325 

4694720871 1865656381358681 516292 5622348503627836928~278666721~ 
(D]3) ____________________-__----_------- + -__-___________I____----_-----~-- 



I 

/ 

T h e  MACSYMA function COEFF offers an analogous difficulty, as illustrated by the 
follawing case. 

x + 5  
(D 15) 

' 7  

(C 16) COEFF(2,X); 
(D 16) 0 

(C 17) COEFF( EXPAND(D 15). X>; 

This is the reason why we had to use a function VCOEFF instead of COEFF In the last 
section. Our definition of VCOEFF is as follows. 

'fCOEFF(V, X) :- MAP(LAMBDAICL1, COEFF(EXPAND(L), X)), V) 

In my own experience, the system is quire friendly if cne keeps expressions in expanded form 
and exercises extreme caution with floating point conversions. In the use of EYAL in the routines, 
one map include the EXPAND argument througbout. 'When converting a value using numerical 
evaluation, It is wise to do i: always in two steps: first expand it and then evaluate it. Use of 
EV(R,EXPAND,NUMER) won't do any good; you have to say: 

(INT:EXPAND(%), EV(INT,NUMER)) 

As for the particular type 3.' fulure of PLANEINTERSECTION showed in the previous 
section, it occurs so seldom that I have preferred to keep it as it is. However. the following routine 
will never fail unless we encounter a plane whose twra COEFFs are linearly dependent - which could, 
have been created by giving th:ec colinear points to the routine PLANE. Also it wi21 return NIL if 
the two places are parallel. 

PLANEXTERSCT(P1, P2) := 

BLOCK([INT lDINT2,1NT3), INT I:SRADVECT(P I), 

IF MAX(INT2, INTS) > 0 THEN 
INTZL:ABS(YCOEFF(PZ, Y). INT l), INT9ABS(VCOEFF(P?, 2). INTl), 

INTERSECTION( IF 1NT2 > INTS THEN EV(P2, Y-X, Z-0) ELSE EV(P2, Y-0, Z=X), P1) 

ELSE NIL ) 
+ X Y UNITL(CROSS(GRADVECT(PP), INT1)) 

This routine works by first locating the coeffidient of P2 whose directio:: meets PI at a steeper 
angle and taking a line on P2 in the direction of that coefficient; the point of intersection of this line 
with PI is then used as a starting point for the line of intersection of rtic two planes, which points in 
the direction of the cross product of the GRADVECTs of the two planes. 
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I 
THE WSE OF THE SYSTEM: AN EXAMPLE FROM APOLLONIUS. 

T h e  referees have exp-essed the desire to see some examples of the use of the system described 
in the previous sections. Also one of them raised Lhe qiiesrion whether there are probl~ms in which 
the symbolic capability of MACSYMA offers a clear advantage. 

To me, the main advantage of the system is its flexibility. If you need to get started on some 
calculations of your own, here you bave an environment where you can compute things exactly as you 
want. Not having had much experience with other systems for this purpose, I can’t give a 
comparative answer. I hope that the example shown below will permit the experienced user to draw 
his awn conclusions. 

As for the questior on the symbolic capability, my answer is a qualified yes. I have fmcnel 
examples where it is useful; but in many %he: cases I have found it necessary to fot:e MACSYMA 
to stick with numerical approximated values. Thus I will make a case both ways. I hope that the 
example worked out as weil as the problem of the quarter cylinder mentioned below, will make the 
reader enthusiastic about symbolic calculation. I can think of examples which make much heavier 
use of this facility. O n  the other hand, I hope to temper the enthusiasm so that symbolic computazion 
will not be abused, because the complexity of algebraic expressions grows extremely !arge in three 
dimensional calculations and in many cxes they will blow up M A C S Y M A ’ s  storage capacity. 

I 

For example, consider the fcllowing two problems. First give yourself three points P-lp l,p2,01, 
Q[ql,q2,03 and R:irl,r2,01, and compute the coordinates of the center CNT of the circumscribed 
circle of the triangle. Then let MACSYMA d? a RATSIMP on 
DlSTANCE(CNT,P)-ClSTANCE(CNT,Q, and it will compute 0. N o w  give yoprself four points 
with symbolic coordinates in space and compute the coordinates of the center CNT of the 
circumscribed sphere. You will get a huge expression for each coordinate of CNT. W h e n  I asked for 
RATSIMP(DISTANCE(CNT,Q\-DISTANCE(CNT,P)), MACSYMA was not able to handle it. 

W h e n  doing practical calculitions, it pays to keep values stored in numeritdl form so as to 
minimize the size of expressions. Granted this, I have fownd that a limited use of the symbolic 
capability can be very useful. For instance, consider the following problem. You want to make a piece 
in the shape of a quarter of a cylinder that should be inserted between two planes A, B that are not 
parallel. and the axis of the cylinder is not perpendicular to either of the planes. The planes, the 
radius and the axis of the cylinder are given; so &:e also the planes F1, F2 of the two not1 curved 
faces of the quarter cylinder. You want to make your cylinder by rolling up a sheet of metal, Which 
should be cut for you on order. Then you may use MACSYMA as follows. Define a line on the 
cylinder depending on one parameter THETA; THETA Is the angle :hat the plane through 
LINE(THETA) and through the axis makes with F1. You are Interested in the range 
OsTHETASrd2. N o w  you can compute the intersections IA(THETA) and IB(THETA), of 
LINE(THETA) with A and B, respectively. Similarly let IR(THETA) be the fnterscction of 
LINE(THETA) with some refersnce plane perpendicular to the cylinder axis. T h e  distance on the 
cylinder surface from LINE(THETA) to the edge on F1, is THETA times the radius. With all these 
functions of THETA, you can now plot the shape of the sheet of metal, which you want cut sa that It 
will fit hto your structure. It cannot be overemphasized that for an application of this nature, it is 
con’ onient to keep everything but THETA in numerical form. 
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Now let us look at a sample problem. Presencini any practical application in a short paper like 
this, I a m  forced to restrict MACSYMA's oulput to its shortest possible form. For 'his reason, 1 will 
make usc the followirig function. 'I 

1 
I T 

- -~ 

I - ,  NUMVAL(A) := BLOC;K([TMP], TMP : EXPANa(k), EV(TMP, NUMER)) 
t 

(I am not claiming there are no better ways of achieving !he same effsct. Having written this 
section after my paper was reviPHed, I can only apologize if this way of doing it is far from optimal.) 

d 
Now consider the following variation of the Apolionius' problems: given two planes PLI and 

PL2, and two points A and 3, find the ceiiter and the radius of a sphere through A and B that is 
tangent tc PL.1 and to PL2. We shall take some numerical values for the planes and the points. 

(CIS) PLl : PLANE([l,O,O], [0.1,01, [O,O,!]); 

1 
1 ' 

(D 18) [- Z - Y + 1, Y, 23 
i (C19) PL2 : PLANE([l.Q,01, [2,1,01, [2,i,61); 

(D 19) [ Z + Y +  l,Z+Y,6ZI 
1 f. 
, (C20) A : [0,20,203; 

i h (C21) B : [6.16,161 

(D20) IO, 20,201 

(D21) [6, 16, 161 

I 4 
d Let LOCl be the 10:us of the points that are equidistant from A and B Let LOC2 and LOC3 

W e  use the line of be the loci Gf the poina that have the same distance to PL1 and so PL2. :! 
'I 1 .  ' interseuion of PLI and PL2, L12, as an intermediate value. 

(C22) LOCl : NUMVAL( NORMALPLANE( (AtB)/P, LINE(A, B) )h 
(D22) 11.33333335 Z - 21, 9.33333334 Z - 2 Y - 21, - 1.33333333 Z + 2 Y + 211 

4 (C2S) IL 12 : NUMVAL(PLANEINTERSECTION(PL1, PL2)); t 
10.75 X + 1, 0.75 X, - 1.5 XI I \  9 

f \  1 ', 

8 j \ 
! \  

LO62 : NUMVAL( EV(IL12, X-Y) + 2 * ( SRADVECT(P1-1) + GRADVECT(PL2) ) 
(D24) [1.'28445704 Z + 0.75 Y + 1, 0.75 Y - 0.12975651 Z,0.57735026 2 - 1.5 YI I 

> I  

(C25) LOC3 : NUMVAL( EV(IL12, X-Y) + 2 X. ( CRADVECT(PL I) - CiXADYECT(PL2) 1 
(D25) [- 0.12975651 2 + 0.75 Y + I, 1.28945704 2 + 0.75 Y, 0.57735026 2 - 1.5 YI 

j r  
8 

ir i 'i j 
t- 

I Intersecting LOCI with LOC2 and wi:h LOC3, we obtain two lines LOC4 and LOC'i, 
d i  

7 respectively, on wnich such a sphere may exist. Of course it will exist In at most one of them, bl;t we - - ; do not yet know OII which one. d:? 

I ((226) LOC4 : NUMVAL.(PLANEINTERSt .: I .ON(LOCl, LOC2)); 
' (D26) [- 0.87826738 x - 2'3.657506. 0.9144SS'K ?,' .* 2.8949957, - 2.2318895 x - 12.85115473 
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(C27) LOG5 : NUMVAL(PLANEINTERSECTION(LOC1, LOCS)); 
(D27) [0.63169204 X - 1.08222031, 1,92112805 X + 20.61185?, 9.264817 - 0.97358996 XI 

Now we proceed to find out wbaher there is any point on LOC4 or LOC5 that has the same 
distance to, say, A and PLl. 

(C28) Q4A : NUMVAL( DISTANCE(LOC4b)72 ); 
(D28) 

(C29) Q5A : NUMVAL( DISTANCE(LOC5.A)92 h 
(D29) 

6.5889733 X2 + 164.071367 X + 2138.6957 

5.0376453 X2 + 21.8869693 X + 116.7S97t9 

(C30) Q4 1 : NUMVAL( DISTANCEFROMPOI~.ITTOPLANE(LOC4,PLl}tZ h 
(D 30) ABS(1.26756976 X + 22.310988)' 

The last line Is typical of some of the minor problems on2 frequent'y encounters. It is the price 
one has to pay for using a system of such great generality. It still seems much less than the price one 
pays with more conventional systems. So we try again. 

(C31) Q4 1 : NUMVAL( PART(DiS'T'ANCEFROMPOINTTOPLANE(LOGi,FL!),!)~ 
(D31) 1.60698665 X7 + 56.56593 X + 497.78019 

(C32) Q51 : NUMVAL( PART(DISTANCEFR0M PONI"OPLANE(LOC5,PLl),l)t2 h 
(Ip 32) 0.8313226 X2 + 29.262555 X + 257.51049 

! 

(C3fJ) REALRGOTS(Q4 l-Q4A> I I  

(C34) REALROOTS(Q51-Q5A); 
(D 35) EE34, E353 I 

i I  
So we know there Is no such sphere on LOC4 but there are two of them on LOC5. Now we ' \ 

proceed to determine their ccntdrs and radii. 

(C36) CNT 1 : NUMVAL(EV(LOC5, E34)); 
(0 36) [- 4.223S372, 11.0574374, 14.10680721 

(C37) CNT2 : NUhiVAL(EV(LOC5, ES5)); 
(D 37) [5.1670384, 314.534$75,2.7 15683341 

(C38) RADIUS; : NUMVAL(DISTANCE(CNT1, A)); 
(U 38) 11.5125996 

(C39) RADIUS2 : MUMVAL(DISTANCE(CNT2, A)); 
iD39) 22.1 SO4 1 
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Finally let us check for the sphere in CNTI whether it actually fulfllls the conditions of the 
problem. 

(C 4 0) NU M V A L( D ISTA N C E( C N T I, Pa)); - -. (D40) 11.512535? 

( ~ 4  ij NUMVAL(DISTANCZFROMPOINTTORLAI"~~E(CP. ri, PLI)); 
034 1) 1 1.5 135996 

(342) 
(C42) NUMVAL(DISTANCEFROMPOINTTOPLANE(CNT I, PL2)); 

11.5125993 

Yes, it does 
answer. Notice the 

so! Also we  have good reason to be happy with the numerical accuracy of the 
use of symbolic eva!ua:ion in the comniands (C28) through (C32). 

Y 

i 

CONCLUSION 

T h e  foregoing routines arc useful for interactive calculations of three dimensional linear 
str~ictures. They could provide a mndel for practical interactive sys:ems for architects and other 
designers, which could be enhanced by rhe addition of graphic facilities. Also they show how 
naturally vector calculus can be expressed in MACSYMA. 

it is plain that the same a.pproach can be used 'to express a lot more of vector calculus 10 
MACSYMA. Linear transformations and the like can be expressed moit easiiy. O u r  use of SOLVE 
could have been handled also by 'L!NSOLVE. But SOLVE can also be used for problems involving 
curved surfaces. Differential geometry can be readily treated in this manner too, using also the 
K A C S Y M A  functions for differentiating and integrating. 

Textbook problems iii dynamics of solid bodies ars ry~ically expressed in 'the ianguage of 
vector calculus. T h u s  they can be naturaily rreated using this approach. A fun project would be to 
work out a course !n rationai mechanics with MACSYMA by using also its ability to solve 
differential equations. 
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\ttwietim operator Manipulation 1 
Alexander lbohovskoy 

Laboratory for Computer Science 

Mlssrchusatts Itwtitute of Technology 

Symbdlc operator manipulation began when program (~dif?crentirte,veTh) wm perceived 8s 
dstr (D,Ihrluatkepoun).. Althoqh thls realization took mre than 100 years (ref. 11, the nineteenth 
century mathphysicists s w n  devaloped this peruptiasr in three major directions: direct and imlirect 
mothod8 for the solution of differential equations, calculw of finite differences, atid the fredbnd 

W e  propose I chscnge in MACSYMA syntax In order to accommodate tha operator maniputatilbrw 
mesrrry to implement t'nsse classical symbolic methods a5 well ms their modern counterparts. TO 
ili~~strrte the virtrrs and convenience of thin syntax extension, we show how MACSVMA's pattern- 
matching capacity can be used ba lntp!einent a particular set Q) operator identities duo to bbta 
which can be used lo obtrin exact soltitlorn to nonlirwar differ&t?firl equations. 

C8!CdUr. 

What is en operator calculus? fh. w ~ d  tacchnlcrl nreming imlvss tin Iuamorphisrn bdwesn m 
atgobra of tunetiom ray of tb form 

fb) - B q$xk 
m m l  en algebra of opotrtorr 





I '  

 he ioomrphism t(x) 4 tm) is afso rsquird to k linear. 1 
Brslca!!y, this nsesm that expressions iwolving tha oprsrator X can b manipuhted a!gebrricrtly. 

Qmrator olgsbro thus becomes a too9 for finding soiutians to aqurtions or studyl.?g their structure. 
For example, ccmldsr the (linear) differantirl equation 

(p(D)Wf(tf) 0 dt) 
where p(D) is 8 polynomial in the operator 0 - d/d over the coefficient ring Qt]. We might try to 
solve this equation using vrtiow transform methods. for example, using the Laplace transform This 
Is the typical %direct method" which consists of trindrting the original prsblom Id6 0 
corresponding problem in s o w  7mage SPHO., solving thsre, at!d then transforming bwk. If g(t1 * 
exp(t2),however, the Lapllu transform of tkr RHS doer not exist. The *direct" metkd,on the other 
hand, deals with the orighd problem itselfi om could consider r factorization of the operator 
polynomial 

(D-r,P'-(wpf(t)) - g(U 
and then rstwn tk mswer In tk form 

f(t) - (Dr,P'-(b-rkrJn(gWk 
Th. pr;rblem now Is to give msoniq to the invevu operators whife presetvim basic afgebsrit laws 
such m: 

@os 0 vq 
biq 0 slightly different hngU8g@, om can view t:w cm;i;iim of 'operator t e c ~ ~ ~ ~ ~  2 y1 tb 
rerliosYicm that something conceptually a d  compuhtionrlly useful can b gdned from imposing ad 
studying the structure of the dual algebra A* of operators er functional$ clcling d?n some given 
algebra A. For exrmpta, A might bo ax], the ring of univariate pofyramials over tho rationals. 
Typlerlly, om intre&ct#r s pmlhg 

< , +3 A* x A ------> R 
w b r r  R Is some relevant rly of scalars. t)ls neut step is to defirw, a proauCt in Ih. dud dgObr8. 
There are various ways d ckia this one example is 

Q,L*v+ 0 bin(n,h) ~z,x"* 8 (1) 

Th. product is commutrtive and mttocidivr. The mevrlwfiona mop (wudty crilard the augmentation) 

UdXP " P(0) 
swves 8s the multiptlcativo ldmtlty In tho dud algabrr of functionak ectlng on univ8rhto 
pdynomlatr 

1. Itn some cases functlonul composition is atso preserved u(Kklr the mop. 

2 A b  known IHI symbel!c mathodrc, symbalk taikdw, functionel cakuIm, operator 
crkrdurppsreitianll calculus, functional eperetfom 
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It 86 ais0 pors!ble to contemplate 8ba meanin$ of opsratbns opplkd to o$erat9r$ such 8w the 
dsrivrtive of wt Operafa: (@ismant of tPm dud 8fgebrrl Suppose th! A k the d,g8bra Of 
polymda!: in i3f10 VWhb!e, then om mmi~ (refs. 2.3) is given by 

a', P(x, ' - 4$ X P W  

/r more frmilir meantg r?t the dorivativs of an operatar is found in tb context of generolited 
functions (funetlonak) F rcdng OR I sroltpbb r p m  of test fumtlonr, 440. 730 poiring is ghnsn by 

GdW - 1 F(t1 O(t) 
and In this case tha krivatke of the frcnctionrl F h defld by 

edtP - - QRrtP 
(to e r r h  at thh o w  uses integration by parts and then forgets). Of course the  rei it virtue of tMs 
definition Is that the meaning of P no longer &pe& on fhs waning or existem of a derhrdivs (in 
ttw ordinary sense) for F. This is very convenient for functionalr F which 810 &fined as 8 Iirdt Of a 
roqwnce of functions. Thus, tb we11-known 6th functionlsl) hrJ I derivative which bahsvss n 

MI-a), NftP - - o(4 
T h e  lira just some of the mathematicd parrllrrls bstwwn "operator. mtMs appiisd to the 

dlf!ercgnco cdculus as wsil os tho differential calculus. Rota (ref. 3) h m  rdined ths dsseme OS the38 
I&rr lnto a wry general theory al operators which far example finaify explrim the somewhat 
mysterious umbral opmrdzrr cdcuitw dewloped in el8ssksi hviwlmt theory. In wkiiilion, it provider 
(I mat solutlott to tha problem of computinp 5onnectbnm cwffldefits betwaen various clmses of 
polynomlalr. 

iln what foltows we attempt fa Illuatr~ts tha varidy Ol npplicrtiorrs and scm of the carp?mon 
them8 in vatloin apetrotor calculi arlrirpg in pure and epplisd mntfrsmetico. WCSYtdA's prttern- 
motchin( Iscliltgr, together with &ha extended syntax we propore, ts idsol for implementing these 
Meas. 

I 
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Let w examine some of the W C S M  programming espects of operator algebra. Far example, 
suppose we are dstaiing with a linear operator. L fn MACSybut thela are sevofal ways Of 
expressing Identities Involving ths operator L In orkr to say that L is linet-r, we nwst first &fine a 
predicrts to recognize sums: 

9 

t 

? 

i i 

An alternative method is to set up a rule using MATWC(.ARE ad D E W Q  in order to hwra 
tha identity applied automatically, one can use TELLSIMP. Or, finally, one can simply 38y 

OECURE (L ,LI NEAR) 

vhe exlgancieo of these methods can be OvercomB with 8 little help from primers, &isor$, stc. 
(refs. 4 52 05 courm thy Isst mcthod is I response to the programming inconvenismer of the first 
two a d  ttso rttesfs to tha mathsrnrtical imprtrme of the notion of UNSAMty. Other basic 
rlgebrait proprtins of operators and fum!lom which have b n  subsumed undor the 
function irrrsludu C O % % W A T i W - A S S A W - A S m M T =  As an example, the fdluwiy 

hm tho tollowirlq effods 

tbw consl&r the following simple Identity 

€@$Ax) - dx + ai) 

i 

, 



1 

< -  

I 

usual sugg,estion is to break up ttm operator ~q and appand s,~ as a raw operands to a 
function E defined by 

E(p,x,a, I):- p(n+atll) 

This hrs the cinpfeasmt semantic consequence of destroying (at tb user level) the unify 8nd 

iunction &finition But 
idmtity of the operato; E ai and introducer an unrmesrary syntack-restriction u p n  4 (recursksly) 
forctw tham to be atam since they now appear as formal psratmterr in 
we may mt want to app!y the operator immediately. Perhap? a little simplification 

(Ea(&pB - (Ea*EbXp) = (Ea*Xp) 
wtlf reveal the structure of interest to the user. ?hat is, we may want to took at the corseqcwnces 
of the R-modsnle structure giwn by 

ESp+s) = E a W  + E%$ 
(E'&Xp) = E%'/ + Eb(p) 

~ 

€?(PI - p 
This is simply an sbdrrction of the axiom for vector spwe over a fiefd in which ths fcrlreo 

ire allowed to bs elewmtr of I rlw R 
ft is this intefp#ay between different dg&rric s!ructurer which le& to thc wathernrticd 

To t8b futr Ktv.nt8ge of 8 cdculus o# ophPrtars 8c!in# on sa,m domrin, om must respect the 
dgabrsic rtturhwe of BOTH the opwatws srpd the domain 

&w c m  we enable the M A C S W  user $0 me compound e~prsssions in the functional position? 
In the iurrbnt 'MACSYU4 evduarion schem, when a compound expression accurs in the functional 
posltion rmf Is not en atom Or a swbscriptd funcliort, WCSVRAA errs out with tho mcssrge as in the 
exampls a%ve. Instead, it Is not unremmable to retwn the original form with the compound 
expresston in the functbnai position simply rpperded before the giwn rrgumentr (with 
"MciApptr). With this modification tb fcr?lowiq kinds of exprestiotw b c o m  possible in MACSYMA 

power of operator cdcufi #rd to the prbgpsmming diffid!ies in their impfsnsnt8tions. 

; 
$ 

1. In our example R is tkr urmclrtlve ring of rhlft opsra!ors E'. 
.*. 

111 
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These ttvs examples suggest that the user can us() the new operator syntax to conveniently 
dofins the action of combinatorial objsctr For example, in the study of the representations of the 
symmetric group, [l,2,3,3] might represent the cycle structurn of I mnjugpcy class. Many ather 
interestins discrete actions arise from ct8sslcrl invariant theory, differential geometry, ord the 
dffererw c~lcdw. 

Consider now the iterates al a t h s  of llmrr opsrrtors indexed in some wry: 

WP 
We would lib to say thrt all these are llnezr. Ons coJd of coursa oECtAfK(L~&IN€AR~and induce 
linemrity for all the iterates. With symbolic ewplnsntv towever, this is not possible. Using ths new 
syntex, we may proceed as follows: 

tC61) IlATCMlEkARE U4?4%, TRUE) 8 

(C63) TELLSIIZP( (LWlwNO(? !SW, 

Then, n I result, we obtain tho following automatic timplitications: 

(CGZ) WA'TCMIECLARE~WU,TRlE~r) - - 

(LIUWIW") (F1115T(SWII+~LRAMlWNN) (REST(SUnS))S 

2 In futare WCStWs una may be able to give meaning to such an expression directly through 0 
function definition 

3. If and when DECLARE takes nondomic arguments 
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&!OW we give further examples o! tka ww syntax, irivolving nmrstar forms wising in differential 
catculw a d  in !ha finfts differems cr?culus. 

1 1 . 1  1.21 
1 I 
l D  D I 
K2,L 2.21 

n 

D 
%E 

4 3 2  
O D 0  

24 6 2 
(-- + -- + -- + 0 + 1)W) 

J 

5 
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3 NAL!JATICKV AND SIMPLIFICATION OF OPERATW F&WS 

Row that w0 can write down mmpound cF:v:rsr forms in MASSYMA, w e  are faced w;ih the 
task of !elling MCSYhM what they mean. %e convonient way of doing this would be to attach 
properties to the non-atomic objects forming the operator ?art of an expression (the ability to 
ettach properties to non-atomic objects wil? soon be wailable in MACSYMA). Naively, one might 
h n p ~  to simply writs a function definition of the form 

(0 tYldlIT1I G,G? :I 2rdl MI (i3iFF F,TZ ,GI 

, 

i 

i 

or use MACSYMA's pattern-matching facilities 

MATCHQECLARE 4 DFF , GGG * XXX , T'i ? , TA&) It 

OEFAULE(NAM1, (OMXXldl[TTTIl IFFF,C;CG) ,2aDWXLI (DIFFQFFF,TTT) ,GGG) 18 

TELLS~nP(I(DMXXY~[TTTII CFFF,GGG) ,ZdI[xXXI (OIFF(FFF,TTT) ,GGCI )S 
fn either case, thare are several ambiguities to be resolved. 

1. How is klACSYM.4 to recognize instances at the LHS? What does the user mea? when he 
typss the function definition? Does the user intend to specify a relation involving fixed mathematical 
constants DD(3,QTT] or does he intend to specify an identity involving the programming variables X,l 
? When usbg OEFRULE, om usas MATCIXECIARE to restrict the sense of th8 varhbles used to 
&scribe the pattern. 

2. Even !f the LHS could be recognized unambiguously, the user may still he forced tu label his 
"sltnpllffcrtjon' rules since the same LHS may trmsform to distinct RHSk For example, 

or 9 1 I (...gCopl,op2)...) top) (fl (...foplsop2)...)(op)(f) ---> < i 

I t.... (opl+op2I...)(sval op t) 
3 

The last exampk reflects the possibility 0: mrklng choices involving the order of simp8ficrtion and 

These chaices rrisa Bgcawe wo may hws I relatively complicated (R-module) interaction 

' 

i 
OVOflJItl Wl. 

pi 

i 
1 
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f 

between the rlgebrelc structures of tha operators and the elements of the domain upon which thsy 
ect. 

If one views the world of (algebraic/MACSvM4) expressions e5 mads up of operators/programs 
In Up eppljed to objectsldata in Do- then the Intertwining of simplitication end evaltsation can be 
represented/defined by the diagrsm 

ova I ua t 1 on 
I I evaluation 
I 
i 
I 
V 

whlch somatimes cornmutor: 

i 
aV8IUatlr?R I 

I 

I 
I 
I I evaluation 
I 
! 
I 
V 

i 
I 
V 

f (%&+e? ------------------> t (X+(a+b) 
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I I 1 svaluatlafr 
I v 

f (t 1 

I 
evaluation I 

I v 
f It) - f (@I --------//------z 

riap 

I 
which says that 

Yt is clew that th!s noncommutrtivibf is an Irnpdsrrent ta the development of m operational calcuim. 

i 
i 
I 

. I  

I 
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Hiotarically, thre have b a n  ~ ~ v e r a l  approaches to the, restcration of cormwtativity in the 
~ibfJvle dlogrrm Orrs mstM ir cenccepturlly trivia!. Tha, diagram con be mda csmrnutrtiva by 
redaflnlng tk operand - -. 

f(a, ---+ f(t) - f(O) 

There cia sevsra! mst.Ws avcilable in MAC!WM to solve differential equations (refs. %1ok If! 
tNs section w e  discuss the *direct* symtdic method applied to ordinary differedlal eqtirtions wlth 
mactsnt coeffictentr. \ 

bt D b diffarentlflrn wltii respect to t rml consldsr the differential equation 

(o+l)f.,P 
An operrtor approach to tha mlutlan g h r  
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M cction of ttw operrtor.1 
f B t3 " a3 a - $$ + - 

f k3 - at2 + St - 6 
(often) yields substantirl dividends by clarifying ths structure of tb prGblew and providing efts&tiVs 
means of computation 

Eslcentially we Rave used a Euclidern identity 

P(0xY.D) + RD) - 1 
apptid to the givcn function g(t) - t3 

[P[D#IID) + WDIIp g ----> R W D %  - g 
since wb arrange WD)g = 0 (by making the degree R in 0 high enssh). We can then pick Out OUT 
balution as f - r#Wg. 

Now consider B slightly more general differential equation P(DH - g (constant coefficients? 
where g m e  .nt a simple polynomial. (h, can still look for f dlrsctiy by inverting P(D) 

f *P'f(D)g 

but the RHS may not be compactly exprestibl@ now. To remedy this om c w  qstwrrlize the previsU3 
id88 8d look for 8 at%) $&! !hd 

O(0)a - 0. 2 
?'kn wing ths extended Euclidean algorithm to look for AID), WO) ouch thrt 

P(DM0) + r#DUO) - UIOl 
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As an exrmple of the economy sometimes afforded by warking directly with the differentid 
operators, consider the following equation (ref. 11) 

(D4 + 2x-W - x402 +2xBD 7 1Xf) - 0 
Oncr can attempt e power serles solution to this eqwtion (ref. 10); but anofbr rppro&h is to fector 
tha differentid operatar BS 

(02 + X”D + 1x02 + x-43 - 1x1) - 0 
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I 

- f(x=rt,y-btp-Et) 
ualm Tsyylor's tborom in aperator farm. 

an rpproprirte substitution, om can express I @vee equation In term of such diffarentlrl 
O~errtors. Ths resulting form are thn nnanablm to I iperhrbrtton awparrttm which loads t0 tho 
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F. A. Crk'~um 
Uslfversi-ty of Califorria, Berkeley 

AESTRACT 

',i 

46 

Let %...X denote a random vector with Gaussiar, distribution with n - 
ij' ' ; mean vector m &id correlation xstrix R i 

The explicit computation of moments of the type 

is best done by expressinq the usual pavers in tcrms of Hermite polynomials 

Hn(x) 

1 
and computing the expectations for these in ternsaf rnultigrophs. 

1 
I (See ref. 1. Corngutations similar to these are common in quantum ficid 

theorj where: Qn: = %($I?. I i 

Here we propose to describe the use of FM!SYPlA fo= dealing with a much 

tougher but related problem, described below. I 

1 g 
* 

1 

1 

I 

I 
i 

I 

-e 4 If A is as ii x n r e d  matrix we warit to find out what. infcrmation 

6: about A is contained in the set cf moments of the random variahlri. 
t- 
k$ 
P 

det(A + E) 

5 Here E denotes an n x n matrix each 
i ** 

(2 1 

of whose entries is a C,iur;sien random 
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varia3le with mean zero and none Joint correlation matrix. 

In the case of independent entries with a c o k n  non-zero variance 

the result -- partially obtained using FfACSYYA is 

Theorem. The moments of det(A + E) detemine exactly the sTnffular 

-- values of A and its determinmL. 

Crucisi for this work is the possibility of cmputigg quantities 

sidlar tu (1) where pbwers CP 

the Eatrix E. 
Xi are replacod by powers of minors of 

We obtain some icterestlng nultigraph expansions but the 

picture is still far from coqlete and a good deal of extra experimentation 

is needed. We anticipate the MACSYMA Xi11 be q d t e  valuable I:. this aspect 

of our wrk. 

1. Gr;i.lham., F. A,: Inverse Problems for ?Ionlinear fiandom System. Partial 

Differential. Equations and Relr*ted Topics, Volume 446 of' Lect'ures Notes 

in Yathematics, J. Coldstein, cd., Springer-Verlag, i9$5, pp. 247-263. 
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